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Abstract: Braided corrugated hoses are widely used in displacement compensation and vibration 
absorption environments due to their excellent flexibility and energy dissipation properties; 
however, the axial stiffness has rarely been discussed before as an important physical property of 
braided corrugated hoses. In this paper, the theoretical axial stiffness model for braided corrugated 
hoses is established based on the energy method and the theory of the curved beam. The influences 
of the braiding parameters of the metallic braided tube and the structural parameters of the bellows 
on the axial stiffness are also discussed. Through finite element tensile testing, the axial stiffness 
curves of the braided corrugated hose under different braiding angles and different wire diameters 
are obtained. The theoretical axial stiffness model is in good agreement with the simulation 
experiment, which reflects the nonlinear effects of the braiding angle and wire diameter on the 
braided corrugated hose. This paper provides an accurate method and basis for the design of 
braided corrugated hoses in the future. 
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1. Introduction 
Braided corrugated hoses are important connection components in pressure vessels 

and pipeline systems, providing compensation displacement, vibration absorption, and 
noise reduction. They are widely used in petrochemical, aerospace, automotive, marine, 
and other fields [1,2]. The performance of a braided corrugated hose directly affects the 
normal work of the pipeline system and is vital to its reliability. 

A braided corrugated hose is composed of metal bellows and a metallic braided tube. 
Over the years, there have been many studies on the axial mechanical properties of metal 
bellows. Anderson [3] used the simple beam approximation method to obtain the 
displacement and stress solutions for U-shaped bellows by decomposing the asymptotic 
integral, then further derived the approximate formulae on this basis. Based on the theory 
of having a thin annular shell, Qian [4] calculated the stress and strain for C-shaped 
bellows under internal pressure and axial force with the given calculation formula, which 
can be used in engineering design. They also obtained an accurate linear analytical 
solution for U-shaped bellows based on the exact solution of the annular shell. Huang [5] 
obtained the numerical solution for C-shaped bellows using the initial numerical 
integration parameters and improved the calculation accuracy for the stress and 
deformation under axial force and uniform distribution pressure using an extrapolation 
formula. Laupa [6] used the energy method to analyze the mechanical properties of the 
U-shaped bellows under axial load and external force and obtained the load–
displacement and load–stress expressions. 

Many researchers have also used the finite element method to analyze the 
mechanical properties of bellows. Chen [7] established the finite element analysis model 
for U-shaped bellows. The results of the analysis using the finite element analysis showed 
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that this method can simulate the load–stress response of U-shaped bellows well. Yang 
[8] carried out a finite element analysis on multilayer bellows and found that this method 
can better simulate the characteristics of multi-layer bellows by comparing the results 
with the experimental values. Zhu [9] established a finite element model of multi-layer U-
shaped bellows with sandwich damping. The simulation results were compared with the 
EJMA formula to verify the rationality of the model. Zhou [10] used ABAQUS to establish 
an axisymmetric finite element model of the bellows with different numbers of layers and 
simulated the axial stiffness and stress–strain distribution of the multi-layer U-shaped 
bellows. The results showed that the stiffness of the bellows decreased significantly with 
the increase in the number of layers at constant thickness, while the overall stiffness of the 
bellows changed significantly under large deformation, which was divided into elastic 
and plastic stiffness. 

Regarding braided tubes, many researchers have tried to investigate the structural 
and mechanical properties. Brunnschweiler [11] first derived the structural parameters of 
the diamond-shaped woven mesh and described the practical method used to derive the 
mechanical properties. Hristov [12] investigated the mechanical behavior of a woven 
mesh sleeve without an inner core under axial tension. A predictive model of the 
mechanical response of the braids based on the constituent yarn characteristics and 
machine parameters was also developed. Phoenix [13] established a response for a 
braided tube with an elastic inner core and found that the braiding angle, crimp angle, 
modulus of the inner core, and Poisson’s ratio all affect the mechanical properties of the 
entire braided tube. 

Many researchers have used the energy method to analyze the mechanical properties 
of braided tubes. Grosberg [14] first established the energy equation for a plain weave 
fabric, which was found to be a good description of the mechanical properties of woven 
meshes via experimentation. Hearle [15] studied the basic theory of the energy method 
and discussed the elastic responses of plain weave fabrics. Dabiryan [16] used the energy 
method to analyze the mechanical properties of the diamond braid, deduced the 
equivalent elastic moduli of the different stages, and verified the reliability of the model 
through experiments. 

Overall, the mechanical properties of metal bellows and braids have been widely 
researched separately, although the mechanical properties of braided corrugated hoses 
have rarely been studied. The axial stiffness and tensile properties of braided corrugated 
hoses are very important in determining their service range and life; therefore, in this 
paper we adopt a method involving curved beam element analysis to establish an axial 
stiffness model for the metal bellows, while for the metallic braided tube, the energy 
method is used to establish the axial stiffness model. For the nonlinear phenomenon of 
the metallic braided tube, the Taylor series expansion is used to fit the axial stiffness. 
Finally, the axial stiffness model of the metal hose is established by combining the two 
models. The accuracy of the model is verified through experiments. 

2. Mathematic Model of Braided Corrugated Hose 
2.1. The Structure of the Metallic Braided Tube 

The structure of the metallic braided tube is shown in Figure 1. The braided 
corrugated hose is made up of an external metallic braided tube and internal metal 
bellows. The metallic braided tube is made up of two sets of metal fibers, which are 
interwoven in opposite directions, with the model geometry parameters shown in Figure 
1b. The key geometrical parameters are the diameter of the metal wire (d), the inner 
diameter of the metal braided tube (D) (also the outer diameter of the bellows), the 
equivalent diameter of the metallic braided tube (ܦ௘), and the braiding angle (α). The 
diamond trellis structure (ABCD) shown in Figure 2 can be obtained by unrolling the 
braided tube along the axial direction. AC is the axis direction of the braided tube and x 
is the spacing of the one plait. When the braided tube is stretched or compressed, x 
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increases or decreases, respectively, while the braiding angle decreases or increases 
accordingly. The braiding angle can be defined by the pitch or the length of one side of 
the diamond trellis (q). ߙ݊݅ݏ = ݍ௘ܰܦߨ  (1)

where N is the number of filaments. 
The spacing of one plait x can be defined as: ݔ = (2) ߙݏ݋ܿݍ2

In Figure 2, p is the projection of the strand length normal to the direction of crossing 
strands, while θ is the angle between p and q. Figure 3 shows a projection of section EE’ 
of the braid normal to the plane. The crimp of the braid thread will be defined as the 
difference in length between the actual length of the thread in diamond trellis unit (BC) 
and the length of its projection on the plane (B′C). The crimp c can be defined as: ܿ = (݈ − ݍ(ݍ  (3)

The crimp angle of the yarns in the braid structure can be given by: ߚ݊݅ݏ = ஻஻ᇱ஻ᇱ஼  (4)

BB′ is approximately equal to the yarn diameter (d) and B′C is approximately equal 
to the straight line, hence: ߚ = arcsin (݈݀) (5)

 
Figure 1. Parametric model of the braided corrugated hose: (a) top view; (b) side view. 
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Figure 2. Diamond trellis. 

 
Figure 3. Cross-section of EE’. 

2.2. The Mechanical Properties of Wires under Tensile Load 
We assume that the metallic braided tube is subjected to an axial force, ܨ௕. As shown 

in Figure 4, the load acting on each wire can be expressed as: 

௨݂ = ௕݊ (6)ܨ

where n is number of wires in the braid structure and ௨݂ is in the direction of the braid 
axis. 

To analyze the mechanical behavior of metallic braided tube, the unit cell of the 1/1 
pattern is considered, as Figure 5 shows. The wires are assumed to have the following 
properties: 
(1) Assuming that the wire has a circular cross-section, the diameter and cross-section of 

the wire are unaffected by the applied load; 
(2) The wire elongation is based on Hooke’s law, ߪ =  where σ is the stress in the ,ߝܧ

wire, E is the modulus of elasticity of the wire, and ε is the strain in the wire; 
(3) The bending of the filament is based on the theory ܯ = ܤ ∙ ߢ , where M is the 

moment, κ is the yarn curvature, and ܤ =  .ܫܧ
In its normal state, the wire is woven in a spiral around the axis. According to 

Brunnschweiler’s theory [17], the wire in the unit cell is an arc, the length of which can be 
obtained by elliptic integrals, which makes the calculation considerably more difficult. To 
simplify the calculation, the length in the unit cell is simplified to the length of the line BC, 
as Figure 3 shows. It is assumed that the internal force and the contact force of the wires 
are ignored and the strain energy is mainly generated under the action of the external 
force ௨݂. The strain energy of the unit cell can be expressed as: ்ܷ = ௘ܷ + ܷ௕ (7)
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where ்ܷ is the total strain energy of the unit cell, ௘ܷ is the extension energy of the unit 
cell, and ܷ௕ is the bending energy of the unit cell. 

Since the deformation of the wire is elastic, the tensile strain energy and the bending 
strain energy can be calculated using the following formula. 

௘ܷ = න ௤ܣܧଶ2ܨ
଴ = ݍ ∙ ܶଶ2ܣܧ  (8)

ܷ௕ = න ܫܧଶ2ܯ = ݍ ∙ ௤ܫܧଶ2ܯ
଴  (9)

where T is the tension force of the unit cell, q is the length of the wire in the unit cell, E is 
the Young’s modulus of the wire, and I is the cross-sectional moment of inertia. ܶ = ݂ ∙ ܯ(10) ߚݏ݋ܿ = ݂ ∙ ߚ݊݅ݏ ∙ (11) ݏ

where f is the force along the wire plane (COB). 
As such, the strain energy for the AB’ part can be derived as follows: 

௘ܷ = ݍ ∙ ܣܧଶ2(ߚݏ݋݂ܿ)  (12)

ܷ௕ = න ଶ(ߚ݊݅ݏ݂) ∙ ܫܧଶ2ݏ ݏ݀ =௤
଴ ଶ(ߚ݊݅ݏ݂) ∙ ܫܧଷ6ݍ  (13)

where ܣ = గௗమସ  and ܫ = గௗర଺ସ , while d is the diameter of the wire. 
The total strain energy of the unit cell is as follows: ்ܷ = 4( ௘ܷ + ܷ௕) = ଶ݀ଶߚݏ݋ଶ݂ܿݍ6)4 + 32݂ଶߚ݊݅ݏଶݍଷ3݀ߨܧସ ) (14)

For the unit cell, the external force ௨݂ and the force ݂ in the unit cell are shown in 
Figure 4 and the relationship between them can be expressed as follows: ݂ = ௨݂ܿ(15) ߙݏ݋

For the metallic braided tube, the relationship between the total tensile force and the 
tensile force on the unit cell is: ܨ௕ = ݊ ∙ ௙ܸ ∙ ௨݂ (16)

where n is the total wires in the metallic braided tube and ௙ܸ is the wire packing factor, 
defined as the ratio of the fiber volume to the yarn volume. According to the study by 
Hachemi [18], this can be expressed as: 

௙ܸ = ݊ ∙ ݀ଶܿܦ))ߙݏ݋ + 5݀)ଶ − ଶ) (17)ܦ

According to the principle of the virtual work, the work done by the unit cell under 
axial load should be equal to the total internal strain energy. The work done by the unit 
cell and the total internal energy can be expressed as below: 

ிܹ = ்ܷ (18)

௘ܷ + ܷ௕ = 12 ∙ ௨݂ ∙ ∆ (19)

4 ቆ6݂ݍଶܿߚݏ݋ଶ݀ଶ + 32݂ଶߚ݊݅ݏଶݍଷ3݀ߨܧସ ቇ = 12 ∙ ௨݂ ∙ ∆ (20)



J. Mar. Sci. Eng. 2021, 9, 1029 6 of 14 
 

 

௨݂ = ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + (ଷݍଶߚ݊݅ݏ32 ∙ ∆ (21)

where ∆ is the axial deformation of the unit cell. 
The force–deformation relationship for the entire metallic braided tube can be 

obtained by putting the ௨݂ into ܨ௕. ܨ௕௥௔௜ௗ = ݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + (ଷݍଶߚ݊݅ݏ32 ∙ ∆ (22)

The axial stiffness of the entire metallic braided tube can then be expressed as: ܭ௕௥௔௜ௗ = ݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + ଷ) (23)ݍଶߚ݊݅ݏ32

When the metallic braided tube is subjected to the axial load, the volume of the 
metallic braided tube changes with axial elongation and the metal wires rub and contact 
each other, meaning the axial stiffness of the metallic braided tube presents nonlinear 
characteristics. According to the theories of previous scholars [19–21], the axial stiffness 
of the metallic braided tube can be expanded by repeating the Taylor series three times, 
as shown below: ܨ௕௥௔௜ௗ = ݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + (ଷݍଶߚ݊݅ݏ32 ∙ ∆ + (݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + ଷ))ଶ∆ଶݍଶߚ݊݅ݏ32

+ (݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 +  ଷ))ଷ∆ଷݍଶߚ݊݅ݏ32
(24)

By adding the correction coefficients ܣଵ, ܣଶ, and ܣଷ, the nonlinear equation of the 
metallic braided tube under axial loading can be obtained as follows: 

௕௥௔௜ௗܨ = ݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + (ଷݍଶߚ݊݅ݏ32 ∙ ∆ଵܣ + ଶܣ ቆ݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + ଷ)ቇଶݍଶߚ݊݅ݏ32 ∆ଶ   + ݊)ଷܣ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 +  ଷ))ଷ∆ଷݍଶߚ݊݅ݏ32
(25)

The correction coefficients ܣଵ ଶܣ , , and ܣଷ  can be obtained from the experiment 
results. 

 
Figure 4. Tubular braid under axial load. 
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Figure 5. Diagram of the unit cell. 

2.3. The Stiffness of the Bellows 
The structure of the bellows is shown in Figure 6. Here, D is the out diameter, ݀௜௡ is 

the inner diameter, ݎଵ is the radius of the crest, ݎଶ is the radius of the trough, w is the 
pitch of convolution, and t is the thickness of the bellows. As the bellows have a periodic 
structure, it is sufficient to consider only half waves in the study of their deformation law. 
The wave height of the bellows and the radius of the circular shell section are very small, 
so the curved beam with a width of one is intercepted along the circumference [22], which 
is subjected to external forces and each internal force component, as shown in Figure 7. 

 
Figure 6. The longitudinal section of the U-shaped bellows. 
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Figure 7. Force diagram of the half wave. 

We assume that point H is supported and point K can move along the direction of 
the force but cannot rotate. Relative to point K, the rotation ߠଵ  and the vertical 
displacement ݓଵ of point J are shown in Equations (26) and (27), respectively: ߠଵ = ܬܧ1 ଴ଶݎ2)ܨ] + ଵݎ଴ݎߨ + (ଵଶݎ − ܯ ቀ2ݎ଴ + 2ߨ ଵቁ] (26)ݎ

ଵݓ = ܬܧ1 ܨ] ൬83 ଴ଷݎ + ଵݎ଴ଶݎߨ2 + ଵଶݎ଴ݎ4 + 4ߨ ଵଷ൰ݎ − ଴ଶݎ2)ܯ + ଵݎ଴ݎߨ + ଵଶ)] (27)ݎ

where E is the modulus of elasticity and J is the moment of inertia. 
Relative to point H, the rotation angle ߠଶ of point K and the vertical displacement ݓଶ are as follows: ߠଶ = ܬܧ1 ଶଶݎܨ) + 2ߨ (28) (ܯଶݎ

ଶݓ = ܬܧ1 4ߨ) ଶଷݎܨ + ଶଶ (29)ݎܯ

According to the principle of deformation coordination, the ߠଵ =  can be ܯ ଶ andߠ
expressed as: ܯ = ଴ଶݎ2)ܨ + ଵݎ଴ݎߨ + ଵଶݎ − ଴ݎଶଶ)2ݎ + 2ߨ ଵݎ + 2ߨ ଶݎ  (30)

The axial deformation of a single wave ߜ଴ can be obtained by: ߜ଴ = ଵݓ)2 + ଶ (31)ݓ

By subbing Equations (27), (29) and (30) into Equation (31), the single-wave stiffness 
formula of the bellows can be obtained as follows: 

݇ = గ஽೘ா௧యଶସ ∙ ൜1 [ଶଷ ଴ଷݎ + గଶ ଵݎ)଴ଶݎ + (ଶݎ + ଵଶݎ)଴ݎ2 + (ଶଶݎ + గସ ଵଷݎ) + (ଶଷݎ − (௥భି௥మ)మ(ഏమ௥బା௥భା௥మ)మଶ௥బାഏమ௥భାഏమ௥మ ]ൗ ൠ (32) (32)

As such, the stiffness of the bellows for m waves is: 
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௠ܭ = ݇݉
 (33)

When ݎଵ = ଶݎ = ݎ  and the wave height ܪ = ଴ݎ2 ଵݎ + + ଶݎ , Equation (33) can be 
written as: 

௠ܭ = 24݉ߨ )ଵܥ௠ܦܧ ଷ (34)(ܪݐ

where ܥଵ = 1 [0.046 ቀ௥ுቁଷ − 0.142 ቀ௥ுቁଶ + 0.285 ௥ு + 0.083]ൗ , while the relationship 
between force and deformation can be expressed as follows: ܨ௕௘௟௟௢௪௦ = ௠ܭ ∙ ∆ (35)

2.4. The Axial Stiffness of the Braided Corrugated Hose 
The braided corrugated hose is made of a metallic braided tube and metal bellows 

arranged in parallel. The stiffness of the braided corrugated hose can be superimposed 
from the stiffness of the metallic braided tube and the metal bellows. The relationship 
between the axial force and the deformation can be expressed by the following equation: ܨ = ௕௥௔௜ௗܨ + =௕௘௟௟௢௪௦ܨ ݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + ∙(ଷݍଶߚ݊݅ݏ32 ቈܣଵ∆ + ݊)ଶܣ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + ଷ))ଶ∆ଶݍଶߚ݊݅ݏ32

+ ݊)ଷܣ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + ଷ))ଷ∆ଷ቉ݍଶߚ݊݅ݏ32 + ௠ܭ ∙ ∆ 

(36)

ܨ = ቆ݊ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + (ଷݍଶߚ݊݅ݏ32 ଵܣ + 24݉ߨ )ଵܥ௠ܦܧ ଷቇ(ܪݐ ∙ ∆+ ݊)ଶܣ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 + ଷ))ଶ∆ଶݍଶߚ݊݅ݏ32 + ݊)ଷܣ ∙ ௙ܸ ∙ ଶ݀ଶߚݏ݋ܿݍଶ8(6ߙݏ݋ସܿ݀ߨܧ3 +  ଷ))ଷ∆ଷݍଶߚ݊݅ݏ32
(37)

3. Numerical Experiment with the Braided Corrugated Hose 
3.1. The Material and Structure of the Braided Corrugated Hose 

The braided corrugated hose used in the numerical simulation is shown in Figure 8, 
while the material used for the bellows and the metallic braided tube was 304 stainless 
steel. The wires in the metallic braided tube underwent a cold-drawing treatment, while 
the physical properties of the 304 stainless steels are shown in Table 1. The structural 
parameters of the metallic braided tube and the bellows are shown in Tables 2 and 3, 
respectively. In order to explore the effects of the braiding angle and wire diameter on the 
axial stiffness of the braided corrugated hose, three different braiding angles and two 
different wire diameters of the braided corrugated hose model were assessed in this 
experiment. 
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Figure 8. The geometry of the braided corrugated hose. 

Table 1. Physical properties of 304 stainless steel. 

Young’s 
Modulus 

/MPa 

Poisson’s 
Ration 

Ultimate 
Strength ࣌܉۾ۻ/࢈ 

Yield Strength ࣌૙.૛/܉۾ۻ 
Elongation Rate 1.96 %/ࢾ × 10ହ 0.3 ≥ 520 ≥ 205 ≥ 40 

Table 2. Structural parameters of the metallic braided tube. 

Number Number of Strands Wires per Strand Braiding Angle Diameter of Wire 
/mm 

Length of Unit Cell 
/mm 

A 36 1 41° 0.6 4.4109 
B 36 1 45° 0.6 4.0855 
C 36 1 46° 0.6 4.0077 
D 36 1 45° 0.3 4.0855 

Table 3. Structural parameters of the metal bellows. 

Outer 
Diameter 

/mm 

Inner 
Diameter 

/mm 

Pitch of 
Wave 
/mm 

Wave 
Height 

/mm 

Radius of 
Wave 

Trough/mm 

Radius of 
Wave Crest 

/mm 

Thickness 
/mm Length/mm 

31.5 25.4 3.7 2.8 0.8 0.8 0.25 200 

3.2. Simulation Setup 
The bellows model was meshed as the shell element (SHELL 181) and the braid 

model was meshed as the beam element (BEAM 188). The meshed model is shown in 
Figure 9, containing 110,564 nodes and 104,164 elements. The contact between the bellows 
and the metallic braided tube was frictional with a coefficient 0.2. The right side of the 
braided corrugated hose was constrained in six degrees of freedom and fixed. The left side 
was constrained in five degrees of freedom and could move along the axis, as shown in 
Figure 10. 
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Figure 9. Finite element model. 

 
Figure 10. Experimental boundary conditions. 

3.3. Numerical Results and Analysis 
It can be seen from Figure 11 that the stretching deformation of the braided 

corrugated hose occurs in three stages. The first stage is linear stage, involving very little 
displacement. At the beginning of the stretching period, the metallic braided tube 
undergoes slight axial deformation. The axial stiffness of the braided corrugated hose is 
mainly provided by the metal bellows. The second stage is the soft characteristic stage, 
with the increase in the tensile force, the deformation of the metallic braided tube occurs 
as the geometry transition. The diamond trellis changes from slight deformation (first 
stage) to large deformation, whereby the braiding angle also changes. During this process, 
the friction between the wires and the change of the braiding angle cause nonlinear 
phenomena. The third stage is also a linear stage. After the second stage, the diamond 
trellis and braiding angle do not change with increases in the tensile force. The elongation 
of the metallic braided tube mainly results from elongation of the metal wires under 
tensile force. The third stage is determined mainly by the characteristics of the wire. 

Figure 12 shows the axial stiffness values of the different braiding angles. It can be 
seen that the different braiding angles cause different levels of axial stiffness in the braided 
corrugated hose. The first stage of axial stiffness, involving different braiding angles, is 
almost the same. The greatest difference is in the second stage, whereby a critical braiding 
angle is assumed to exist between the second and third stages. When suffering under 
tensile force, a small braiding angle will achieve this critical braiding angle faster than a 
larger braiding angle and will enter the third stage earlier, meaning the axial stiffness will 
be larger than that with a larger braiding angle. When the diameter of the wire changes 
from 0.6 mm to 0.3 mm, the axial stiffness of the braided corrugated hose decreases 
significantly. This shows that the diameter of the wire is also an important factor affecting 
the nonlinear phenomenon. 
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Figure 11. Load–deformation curve. 

 
Figure 12. Load–deformation curves for different braiding angles. 

4. Model Validation 
In order to verify the correctness of the axial stiffness model for the braided 

corrugated hose, data from sample B were selected for identification of the model 
parameters (as Table 4 shows) and the coefficients of the cubic polynomial were fitted 
using the least squares method. The parameters obtained from the fit were used with the 
other sample data for comparison. A comparison of the numerical experimental values 
with the values calculated by the theoretical model is shown in Figure 13. 

Table 4. Parameters of the correction coefficients in Equation (37). 

Coefficients ࡭૚ ࡭૛ ࡭૜ 
Value 0.4578 0.001728 0.000001763 
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Figure 13. Fitting curves for the braided corrugated hose: (a) 41°; (b) 45°; (c) 46°; (d) d = 0.3. 

With braiding angles of 41°, 45°, and 46°, the theoretical fitting curves matched the 
numerical results well. Some points did not match exactly; the maximum error occurred 
at the braiding angle of 41°, which was 21.9%. The reasons for the errors were due to 
changes in the diameter of the metal wire when subjected to tensile load, although it was 
assumed that the diameter of the wire remained constant. When the diameter of the wire 
was 0.3 mm, the theoretical fitting curve also matched the numerical results well. Some 
errors were caused by not considering the radial variation of the wire. 

5. Conclusions 
In this paper, a nonlinear axial stiffness model of a braided corrugated hose is 

established based on the energy method and the curved beam model. The simulation 
experimental results are used to fit the established axial stiffness model of the braided 
corrugated hose and the fitting coefficients are determined. The theoretical fitting curve 
and the simulation curve show good agreement, while the established axial stiffness 
model can describe the nonlinear mechanical properties of the braided corrugated hose 
well. In addition, the established axial stiffness model of the braided corrugated hose can 
also reflect the influence of the braiding angle, wire diameter, and other related 
parameters on its nonlinear mechanical properties, thereby allowing prediction of the 
structural stiffness, providing a theoretical basis for the production and design of the 
braided corrugated hose. These results will have important significance, guiding practical 
applications in pipeline engineering. 
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