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Abstract: Braided corrugated hoses are widely used in displacement compensation and vibration
absorption environments due to their excellent flexibility and energy dissipation properties;
however, the axial stiffness has rarely been discussed before as an important physical property of
braided corrugated hoses. In this paper, the theoretical axial stiffness model for braided corrugated
hoses is established based on the energy method and the theory of the curved beam. The influences
of the braiding parameters of the metallic braided tube and the structural parameters of the bellows
on the axial stiffness are also discussed. Through finite element tensile testing, the axial stiffness
curves of the braided corrugated hose under different braiding angles and different wire diameters
are obtained. The theoretical axial stiffness model is in good agreement with the simulation
experiment, which reflects the nonlinear effects of the braiding angle and wire diameter on the
braided corrugated hose. This paper provides an accurate method and basis for the design of
braided corrugated hoses in the future.

Keywords: axial stiffness; energy method; curved beam; braided corrugated hose

1. Introduction

Braided corrugated hoses are important connection components in pressure vessels
and pipeline systems, providing compensation displacement, vibration absorption, and
noise reduction. They are widely used in petrochemical, aerospace, automotive, marine,
and other fields [1,2]. The performance of a braided corrugated hose directly affects the
normal work of the pipeline system and is vital to its reliability.

A braided corrugated hose is composed of metal bellows and a metallic braided tube.
Over the years, there have been many studies on the axial mechanical properties of metal
bellows. Anderson [3] used the simple beam approximation method to obtain the
displacement and stress solutions for U-shaped bellows by decomposing the asymptotic
integral, then further derived the approximate formulae on this basis. Based on the theory
of having a thin annular shell, Qian [4] calculated the stress and strain for C-shaped
bellows under internal pressure and axial force with the given calculation formula, which
can be used in engineering design. They also obtained an accurate linear analytical
solution for U-shaped bellows based on the exact solution of the annular shell. Huang [5]
obtained the numerical solution for C-shaped bellows using the initial numerical
integration parameters and improved the calculation accuracy for the stress and
deformation under axial force and uniform distribution pressure using an extrapolation
formula. Laupa [6] used the energy method to analyze the mechanical properties of the
U-shaped bellows under axial load and external force and obtained the load-
displacement and load-stress expressions.

Many researchers have also used the finite element method to analyze the
mechanical properties of bellows. Chen [7] established the finite element analysis model
for U-shaped bellows. The results of the analysis using the finite element analysis showed
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that this method can simulate the load-stress response of U-shaped bellows well. Yang
[8] carried out a finite element analysis on multilayer bellows and found that this method
can better simulate the characteristics of multi-layer bellows by comparing the results
with the experimental values. Zhu [9] established a finite element model of multi-layer U-
shaped bellows with sandwich damping. The simulation results were compared with the
EJMA formula to verify the rationality of the model. Zhou [10] used ABAQUS to establish
an axisymmetric finite element model of the bellows with different numbers of layers and
simulated the axial stiffness and stress—strain distribution of the multi-layer U-shaped
bellows. The results showed that the stiffness of the bellows decreased significantly with
the increase in the number of layers at constant thickness, while the overall stiffness of the
bellows changed significantly under large deformation, which was divided into elastic
and plastic stiffness.

Regarding braided tubes, many researchers have tried to investigate the structural
and mechanical properties. Brunnschweiler [11] first derived the structural parameters of
the diamond-shaped woven mesh and described the practical method used to derive the
mechanical properties. Hristov [12] investigated the mechanical behavior of a woven
mesh sleeve without an inner core under axial tension. A predictive model of the
mechanical response of the braids based on the constituent yarn characteristics and
machine parameters was also developed. Phoenix [13] established a response for a
braided tube with an elastic inner core and found that the braiding angle, crimp angle,
modulus of the inner core, and Poisson’s ratio all affect the mechanical properties of the
entire braided tube.

Many researchers have used the energy method to analyze the mechanical properties
of braided tubes. Grosberg [14] first established the energy equation for a plain weave
fabric, which was found to be a good description of the mechanical properties of woven
meshes via experimentation. Hearle [15] studied the basic theory of the energy method
and discussed the elastic responses of plain weave fabrics. Dabiryan [16] used the energy
method to analyze the mechanical properties of the diamond braid, deduced the
equivalent elastic moduli of the different stages, and verified the reliability of the model
through experiments.

Overall, the mechanical properties of metal bellows and braids have been widely
researched separately, although the mechanical properties of braided corrugated hoses
have rarely been studied. The axial stiffness and tensile properties of braided corrugated
hoses are very important in determining their service range and life; therefore, in this
paper we adopt a method involving curved beam element analysis to establish an axial
stiffness model for the metal bellows, while for the metallic braided tube, the energy
method is used to establish the axial stiffness model. For the nonlinear phenomenon of
the metallic braided tube, the Taylor series expansion is used to fit the axial stiffness.
Finally, the axial stiffness model of the metal hose is established by combining the two
models. The accuracy of the model is verified through experiments.

2. Mathematic Model of Braided Corrugated Hose
2.1. The Structure of the Metallic Braided Tube

The structure of the metallic braided tube is shown in Figure 1. The braided
corrugated hose is made up of an external metallic braided tube and internal metal
bellows. The metallic braided tube is made up of two sets of metal fibers, which are
interwoven in opposite directions, with the model geometry parameters shown in Figure
1b. The key geometrical parameters are the diameter of the metal wire (d), the inner
diameter of the metal braided tube (D) (also the outer diameter of the bellows), the
equivalent diameter of the metallic braided tube (D,), and the braiding angle (). The
diamond trellis structure (ABCD) shown in Figure 2 can be obtained by unrolling the
braided tube along the axial direction. AC is the axis direction of the braided tube and x
is the spacing of the one plait. When the braided tube is stretched or compressed, x
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increases or decreases, respectively, while the braiding angle decreases or increases
accordingly. The braiding angle can be defined by the pitch or the length of one side of
the diamond trellis (g).

sina = 1
p )
where N is the number of filaments.
The spacing of one plait x can be defined as:
x = 2qcosa 2)

In Figure 2, p is the projection of the strand length normal to the direction of crossing
strands, while 0 is the angle between p and 4. Figure 3 shows a projection of section EE’
of the braid normal to the plane. The crimp of the braid thread will be defined as the
difference in length between the actual length of the thread in diamond trellis unit (BC)
and the length of its projection on the plane (B'C). The crimp c can be defined as:

(-9
c= 3
p ©)
The crimp angle of the yarns in the braid structure can be given by:
ing = 22
sinf = e “4)

BB’ is approximately equal to the yarn diameter (d) and B'C is approximately equal
to the straight line, hence:

B = arcsin(%) Q)

Figure 1. Parametric model of the braided corrugated hose: (a) top view; (b) side view.
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255N

Figure 3. Cross-section of EE’.

2.2. The Mechanical Properties of Wires under Tensile Load
We assume that the metallic braided tube is subjected to an axial force, Fj,. As shown
in Figure 4, the load acting on each wire can be expressed as:

fu= (6)

n

where 7 is number of wires in the braid structure and £, is in the direction of the braid
axis.

To analyze the mechanical behavior of metallic braided tube, the unit cell of the 1/1
pattern is considered, as Figure 5 shows. The wires are assumed to have the following
properties:

(1) Assuming that the wire has a circular cross-section, the diameter and cross-section of
the wire are unaffected by the applied load;

(2) The wire elongation is based on Hooke’s law, ¢ = E¢, where o is the stress in the
wire, E is the modulus of elasticity of the wire, and ¢ is the strain in the wire;

(3) The bending of the filament is based on the theory M = B -k, where M is the
moment, « is the yarn curvature, and B = EI.

In its normal state, the wire is woven in a spiral around the axis. According to
Brunnschweiler’s theory [17], the wire in the unit cell is an arc, the length of which can be
obtained by elliptic integrals, which makes the calculation considerably more difficult. To
simplify the calculation, the length in the unit cell is simplified to the length of the line BC,
as Figure 3 shows. It is assumed that the internal force and the contact force of the wires
are ignored and the strain energy is mainly generated under the action of the external
force f,,. The strain energy of the unit cell can be expressed as:

Up=U,+U, )
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where Uy is the total strain energy of the unit cell, U, is the extension energy of the unit
cell, and U, is the bending energy of the unit cell.

Since the deformation of the wire is elastic, the tensile strain energy and the bending
strain energy can be calculated using the following formula.

a 2 q-T2

Ue =) 284~ 2EA ®)
qa M2 q'Mz

U= 251~ 2EI ®)

where T is the tension force of the unit cell, g is the length of the wire in the unit cell, E is
the Young’'s modulus of the wire, and I is the cross-sectional moment of inertia.

T=f-cosp (10)
M=f-sinf-s (11)

where fis the force along the wire plane (COB).
As such, the strain energy for the AB’ part can be derived as follows:

- (fcosP)?
y, = Lo 12)
4 (fsinf)? - s* (fsinB)? - q°
Up = fo 2B =T 6 (13)
where A = anz and I = 7:14, while d is the diameter of the wire.

The total strain energy of the unit cell is as follows:
6qf2cosp?d? + 32f%sinB?q®
3Emd*

For the unit cell, the external force f,, and the force f in the unit cell are shown in
Figure 4 and the relationship between them can be expressed as follows:
foto (15)

cosa

Ur = 4(U, + Up) = 4( ) (14)

For the metallic braided tube, the relationship between the total tensile force and the
tensile force on the unit cell is:

Fy=n-Vify (16)

where 7 is the total wires in the metallic braided tube and V; is the wire packing factor,
defined as the ratio of the fiber volume to the yarn volume. According to the study by
Hachemi [18], this can be expressed as:
d2
V. = " cosa (17)
S ((D +5d)2 — D?)

According to the principle of the virtual work, the work done by the unit cell under
axial load should be equal to the total internal strain energy. The work done by the unit
cell and the total internal energy can be expressed as below:

WF = UT (18)
1
Ue+Ub=E'fu'A (19)
6qf*cosf?d® +32f%sinff?q*\ 1
4( 3Emd* =g Sl (20)
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3 3End*cosa? A
~ 8(6qcosB?d? + 32sinf?q3)

fu (21)
where A is the axial deformation of the unit cell.

The force-deformation relationship for the entire metallic braided tube can be
obtained by putting the f, into F,.

P ey 3End*cosa® A 22)
braid = 1" ¥y 8(6qcosp?d? + 32sinf2q3)
The axial stiffness of the entire metallic braided tube can then be expressed as:
3End*cosa®
(23)

Koraia =n-Vy- 8(6qcosB?d? + 32sinf2q3)

When the metallic braided tube is subjected to the axial load, the volume of the

metallic braided tube changes with axial elongation and the metal wires rub and contact

each other, meaning the axial stiffness of the metallic braided tube presents nonlinear

characteristics. According to the theories of previous scholars [19-21], the axial stiffness

of the metallic braided tube can be expanded by repeating the Taylor series three times,
as shown below:

v 3End*cosa? At v 3End*cosa?
7 8leqeosprd + 32simprq®) T 'V Gleqeospra® + 32sinpeq)

N v 3End*cosa?
(Vs 8(6qcosB?d? + 32sinf?q?3)

)ZAZ

Fyraiga =n-
(24)
)3A3

By adding the correction coefficients A;, 4,, and A3, the nonlinear equation of the
metallic braided tube under axial loading can be obtained as follows:

3End*cosa? A+ A <
8(6qcosf2d? + 32sinf2q3) ' 2
3End*cosa’
+As(n Yy 8(6qcosp?d? + 323inﬁzq3))

Fpraia =n - Vg -

3End*cosa? g
n-V- A?
T 8(6qcosp?d? + 32sinf2q?)

(25

3A3

The correction coefficients A;, A,, and A; can be obtained from the experiment
results.

Figure 4. Tubular braid under axial load.
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Figure 5. Diagram of the unit cell.

2.3. The Stiffness of the Bellows

The structure of the bellows is shown in Figure 6. Here, D is the out diameter, d;, is
the inner diameter, r; is the radius of the crest, r, is the radius of the trough, w is the
pitch of convolution, and ¢ is the thickness of the bellows. As the bellows have a periodic
structure, it is sufficient to consider only half waves in the study of their deformation law.
The wave height of the bellows and the radius of the circular shell section are very small,
so the curved beam with a width of one is intercepted along the circumference [22], which
is subjected to external forces and each internal force component, as shown in Figure 7.

F'2

2ro

D n‘:f.r'u

/ | I

sl
W

Figure 6. The longitudinal section of the U-shaped bellows.
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2ro

Figure 7. Force diagram of the half wave.

We assume that point H is supported and point K can move along the direction of
the force but cannot rotate. Relative to point K, the rotation 6; and the vertical
displacement w; of point J are shown in Equations (26) and (27), respectively:

1 ) ) T
0, = G [FQ2r§ + mrgry +18) — M (27”0 + Erl)] (26)
1 8 3 2 2, T3 2 2
wy = B [F (§r0 + 2nrgr + 4rgrf + 21 ) — MQ2r§ + mrory + 1)) (27)

where E is the modulus of elasticity and ] is the moment of inertia.
Relative to point H, the rotation angle 6, of point K and the vertical displacement
w, are as follows:

1 , T

6, =E—](FT2 +ET2M) (28)
1 . )

Wy =E_](ZFT2 + Mr; (29)

According to the principle of deformation coordination, the 6; = 8, and M can be
expressed as:

_FQr§ +mrgry 1 —17)

30
271 +%r1 +%r2 (30)

The axial deformation of a single wave §, can be obtained by:
60 = Z(Wl + WZ (31)

By subbing Equations (27), (29) and (30) into Equation (31), the single-wave stiffness
formula of the bellows can be obtained as follows:
TDELS (r1-72)2(Gro+71+715)?
24

k =

{1/[27”03 + 213+ 1) + 20 1) + T 1) — ]} (32) (32)

i3 T
219 3152

As such, the stiffness of the bellows for m waves is:
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k

When r, =1, =r and the wave height H = 2r; + r, +1,, Equation (33) can be
written as:

A

K
™ 24m

t
EDnCy(3)? (34)

where €, = 1/[0.046 (1)3 —0.142 (1)2 +0.2852+0.083] , while the relationshi
1 . H . H . H . 7 p
between force and deformation can be expressed as follows:

Fpetiows = K * A (35)

2.4. The Axial Stiffness of the Braided Corrugated Hose

The braided corrugated hose is made of a metallic braided tube and metal bellows
arranged in parallel. The stiffness of the braided corrugated hose can be superimposed
from the stiffness of the metallic braided tube and the metal bellows. The relationship
between the axial force and the deformation can be expressed by the following equation:

F = Fyraia + Fpetiows

3End*cosa?
8(6qcosf?d? + 32sinf2q3)
3End*cosa? (36)
A A + Ay(n -V - Y
1 2V 8(6qcosp2d? + 325inﬁ2q3))
A v 3End*cosa?
(Vs 8(6qcosf2d? + 32sinf2q3)

)3A3] + Ky - A

3End*cosa?

T t
F=[n-v.- A, + ED,.C.(=)3]-A
(n T 8(bqcosB?d? + 32sinB2q®) ' " 24am ™ 1(1-1) )

A Ve
+ AV 8(6qcosB?d? + 32sinf?q3)

3End*cosa? 3End*cosa? (37)

N2+ A Ve
VAT As(n Vs 8(6qcosp?d? + 32sinf?q?)

)3A3

3. Numerical Experiment with the Braided Corrugated Hose
3.1. The Material and Structure of the Braided Corrugated Hose

The braided corrugated hose used in the numerical simulation is shown in Figure 8,
while the material used for the bellows and the metallic braided tube was 304 stainless
steel. The wires in the metallic braided tube underwent a cold-drawing treatment, while
the physical properties of the 304 stainless steels are shown in Table 1. The structural
parameters of the metallic braided tube and the bellows are shown in Tables 2 and 3,
respectively. In order to explore the effects of the braiding angle and wire diameter on the
axial stiffness of the braided corrugated hose, three different braiding angles and two
different wire diameters of the braided corrugated hose model were assessed in this
experiment.
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Figure 8. The geometry of the braided corrugated hose.

Table 1. Physical properties of 304 stainless steel.

Young's . Ultimat
8 Poisson’s mare Yield Strength Elongation Rate
Modulus . Strength
Ration 002 /MPa 6/%
/MPa o,/MPa
1.96 x 10° 0.3 > 520 > 205 =40

Table 2. Structural parameters of the metallic braided tube.

Number Number of Strands  Wires per Strand Braiding Angle Diameter of Wire  Length of Unit Cell

/mm /mm
A 36 1 41° 0.6 4.4109
B 36 1 45° 0.6 4.0855
C 36 1 46° 0.6 4.0077
D 36 1 45° 0.3 4.0855
Table 3. Structural parameters of the metal bellows.
Outer Inner Pitch of Wave Radius of  Radius of .
. . . Thickness
Diameter Diameter Wave Height Wave Wave Crest /mm Length/mm
/mm /mm /mm /mm Trough/mm /mm
31.5 25.4 3.7 2.8 0.8 0.8 0.25 200

3.2. Simulation Setup

The bellows model was meshed as the shell element (SHELL 181) and the braid
model was meshed as the beam element (BEAM 188). The meshed model is shown in
Figure 9, containing 110,564 nodes and 104,164 elements. The contact between the bellows
and the metallic braided tube was frictional with a coefficient 0.2. The right side of the
braided corrugated hose was constrained in six degrees of freedom and fixed. The left side
was constrained in five degrees of freedom and could move along the axis, as shown in
Figure 10.
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Figure 9. Finite element model.

B |

Displacement Fixed supported

Figure 10. Experimental boundary conditions.

3.3. Numerical Results and Analysis

It can be seen from Figure 11 that the stretching deformation of the braided
corrugated hose occurs in three stages. The first stage is linear stage, involving very little
displacement. At the beginning of the stretching period, the metallic braided tube
undergoes slight axial deformation. The axial stiffness of the braided corrugated hose is
mainly provided by the metal bellows. The second stage is the soft characteristic stage,
with the increase in the tensile force, the deformation of the metallic braided tube occurs
as the geometry transition. The diamond trellis changes from slight deformation (first
stage) to large deformation, whereby the braiding angle also changes. During this process,
the friction between the wires and the change of the braiding angle cause nonlinear
phenomena. The third stage is also a linear stage. After the second stage, the diamond
trellis and braiding angle do not change with increases in the tensile force. The elongation
of the metallic braided tube mainly results from elongation of the metal wires under
tensile force. The third stage is determined mainly by the characteristics of the wire.

Figure 12 shows the axial stiffness values of the different braiding angles. It can be
seen that the different braiding angles cause different levels of axial stiffness in the braided
corrugated hose. The first stage of axial stiffness, involving different braiding angles, is
almost the same. The greatest difference is in the second stage, whereby a critical braiding
angle is assumed to exist between the second and third stages. When suffering under
tensile force, a small braiding angle will achieve this critical braiding angle faster than a
larger braiding angle and will enter the third stage earlier, meaning the axial stiffness will
be larger than that with a larger braiding angle. When the diameter of the wire changes
from 0.6 mm to 0.3 mm, the axial stiffness of the braided corrugated hose decreases
significantly. This shows that the diameter of the wire is also an important factor affecting
the nonlinear phenomenon.
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6000

2000

Third stage

Second stage

==

R —

1 2 3 4
Displacement (mm)

Figure 11. Load-deformation curve.

6000

Force (N)
a
o
S
S

o]
o
o
o

_410

45°

I d=0'3

1 2 3 4
Displacement (mm)

Figure 12. Load—-deformation curves for different braiding angles.

4. Model Validation

In order to verify the correctness of the axial stiffness model for the braided
corrugated hose, data from sample B were selected for identification of the model
parameters (as Table 4 shows) and the coefficients of the cubic polynomial were fitted
using the least squares method. The parameters obtained from the fit were used with the
other sample data for comparison. A comparison of the numerical experimental values

with the values calculated by the theoretical model is shown in Figure 13.

Table 4. Parameters of the correction coefficients in Equation (37).

Coefficients Ay A,

Value 0.4578 0.001728

0.000001763
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== == Numerical results == == Numerical results
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(c) (d)

Figure 13. Fitting curves for the braided corrugated hose: (a) 41°; (b) 45°; (c) 46°; (d) d=0.3.

With braiding angles of 41°, 45°, and 46°, the theoretical fitting curves matched the
numerical results well. Some points did not match exactly; the maximum error occurred
at the braiding angle of 41°, which was 21.9%. The reasons for the errors were due to
changes in the diameter of the metal wire when subjected to tensile load, although it was
assumed that the diameter of the wire remained constant. When the diameter of the wire
was 0.3 mm, the theoretical fitting curve also matched the numerical results well. Some
errors were caused by not considering the radial variation of the wire.

5. Conclusions

In this paper, a nonlinear axial stiffness model of a braided corrugated hose is
established based on the energy method and the curved beam model. The simulation
experimental results are used to fit the established axial stiffness model of the braided
corrugated hose and the fitting coefficients are determined. The theoretical fitting curve
and the simulation curve show good agreement, while the established axial stiffness
model can describe the nonlinear mechanical properties of the braided corrugated hose
well. In addition, the established axial stiffness model of the braided corrugated hose can
also reflect the influence of the braiding angle, wire diameter, and other related
parameters on its nonlinear mechanical properties, thereby allowing prediction of the
structural stiffness, providing a theoretical basis for the production and design of the
braided corrugated hose. These results will have important significance, guiding practical
applications in pipeline engineering.
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