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Abstract: Olive, Olea europaea L., is a tree of great economic and cultural importance in the Mediter-
ranean basin. Thousands of cultivars have been described, of which around 1200 are conserved in
the different olive germplasm banks. The genetic characterisation of these cultivars can be performed
in different ways. Whole-genome sequencing (WGS) provides more information than the reduced
representation methods such as genotype by sequencing (GBS), but at a much higher cost. This may
change as the cost of sequencing continues to drop, but, currently, genotyping hundreds of cultivars
using WGS is not a realistic goal for most research groups. Our aim is to systematically compare
both methodologies applied to olive genotyping and summarise any possible recommendations for
the geneticists and molecular breeders of the olive scientific community. In this work, we used a
selection of 24 cultivars from an olive core collection from the World Olive Germplasm Collection
of the Andalusian Institute of Agricultural and Fisheries Research and Training (WOGBC), which
represent the most of the cultivars present in cultivated fields over the world. Our results show
that both methodologies deliver similar results in the context of phylogenetic analysis and popular
population genetic analysis methods such as clustering. Furthermore, WGS and GBS datasets from
different experiments can be merged in a single dataset to perform these analytical methodologies
with proper filtering. We also tested the influence of the different olive reference genomes in this type
of analysis, finding that they have almost no effect when estimating genetic relationships. This work
represents the first comparative study between both sequencing techniques in olive. Our results
demonstrate that the use of GBS is a perfectly viable option for replacing WGS and reducing research
costs when the goal of the experiment is to characterise the genetic relationship between different
accessions. Besides this, we show that it is possible to combine variants from GBS and WGS datasets,
allowing the reuse of publicly available data.

Keywords: Olea europaea L.; olive; genotype by sequencing (GBS); single-nucleotide polymorphism
(SNP); whole-genome sequencing (WGS); reference genome

1. Introduction

Olive tree (Olea europaea, ssp. europaea, var. europaea) is a member of the Oleaceae
family which has an estimated 600 species of mostly small trees and shrubs [1,2]. Within
the genus Olea, there are around 35 species and subspecies classified in three subgenera,
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Olea, Paniculatae, and Tetrapilus [1,3], Olea europaea being the most widely cultivated and
economically important species [1,4]. It is a long-lived, outcrossing species of fruit tree na-
tive to the Mediterranean basin. Nevertheless, its popularity as a commodity has extended
its cultivation to other areas such as the coast of California (United States), the central coast
of Chile, southern Africa, southwestern Australia, and Asia [1]. All subspecies are diploid
(2n = 2x = 46), with the exception of two inter-subspecies polyploids [5]. As one of the
world’s oldest crops, the long history of cultivation and trade has made O. europaea cultur-
ally and economically significant to many countries in the Mediterranean basin [6]. The
wild ancestor was domesticated around 6000 BC in the eastern region of the Mediterranean,
but it has since spread across the world [6–9]. Though the exact origins of its domestication
and distribution are unclear, it was likely spread east to west by humans through migration
and the trade routes of the Levant area of the Mediterranean, contributing to its genetic
diversity [10–12].

Over the past 50 years, agricultural intensification and global economics have con-
tributed to a shift towards reliance on a small subset of high-performance cultivars, placing
greater reliance on a limited supply of genetic resources [13–15]. Therefore, ex situ curation
is becoming increasingly necessary for the maintenance and understanding of the genetic
resources available for future breeding programs of insertion in the fields of new cultivars
and their cultural conservation. To this end, in 1994 the International Olive Council (IOC)
began to establish ex situ collections in national and international germplasm banks. Cur-
rently, there are three international germplasm banks located in Córdoba, Marrakech, and
Izmir, as well as 19 national collections [14,16]. Since their establishment, limited molecular
analysis has been carried out on olive germplasm banks to understand the genetic diversity,
establish core collections, or suggest progenitors for future breeding programs.

There are around 1200 native cultivars, 3000 synonyms [8], and currently there are
5 published Olea europaea assemblies comprising 3 different cultivars, Olea europaea cv.
‘Farga’ (Oe6/Oe9) [17,18], Olea europaea cv. ‘Picual’ (Oleur0.6.1) [13] and Olea europaea cv.
‘Arbequina’ (Oe_Rao) [19], and a purported wild variety Olea europaea ssp. sylvestris
(Oe451) [20]. Due to the prohibitive cost and effort involved in whole-genome sequencing, it
was once an endeavour only available to consortia and solely focused on model organisms.
However, the rapidly evolving sequencing technologies from companies such as Illumina,
Pacific Biosystems, and Oxford Nanopore have consistently surpassed Moors law [21],
allowing even small labs to afford to sequence their own species of interest. This affordable
access to rapid high-throughput sequencing has been revolutionary for many areas of
biology, with applications in de novo genome assembly, genotyping, gene–trait associations,
metagenomics, transcriptomics, and epigenetics [22,23]. Given the economic and cultural
importance of olive, it is not surprising that we have seen so many olive genome-sequencing
projects in a short space of time. Each of the available olive genome assemblies uses
different sequencing technologies, or a combination of methods. It is necessary when
choosing a sequencing approach to consider the application of the genome, as the different
types of errors, error rates, and biases that can come from a particular methodology will
affect the overall quality and completeness of the assembly [24]. Furthermore, the different
choices of assembly tool and pipeline will impact on the contiguity, accuracy, and handling
of repeat regions in highly polyploid species [25].

Genetic profiling in many crops, as well as the analysis of genetic variation within and
between their populations, has been achieved using cheap and effective biochemical and
DNA markers such as random amplified fragment polymorphic DNA (RAPDs) [26,27],
amplified fragment length polymorphisms (AFLPs) [28,29], SSRs [10,15,30,31], and single-
nucleotide polymorphisms (SNPs) [32–34]. A sequence assembly of any quality is not
required for many projects such as genetic profiling, establishing genetic relatedness, QTL
mapping, or to perform a GWAS, although access to a complete and correctly annotated
genome assembly provides the best account of individual genome variation and provides
more information, increasing the potential resolution when using methods capable of
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recovering a higher density of variants, such as genotype by sequencing (GBS) [35], or
whole-genome sequencing (WGS).

Both GBS and WGS could be used to call SNPs but differ massively in terms of
missing data and their cost effectiveness. The main difference is that GBS is a reduced-
representation approach to sequencing, that while quick and cost-effective, results in much
more missing data due to its DNA fragmentation step. GBS uses restriction-site-specific
digestion enzymes to fragment DNA samples. The DNA fragments then have unique
barcode sequences ligated to the ends of the DNA fragments before fragment size selection
is performed. The primary advantage of GBS is that by assigning sample-specific barcoded
adapters, it is possible perform multiplexed sequencing in a single Illumina flow-cell lane
for a large number of samples [35], making it much more cost effective than WGS. The
number of SNPs that can be identified from within a WGS dataset can be significantly
more than with GBS; however, this level of resolution is not always necessary in genetic-
linkage-based research [36]. GBS has already been used in olives to generate genetic
maps [20,37,38], study the diversity, and perform association analysis [39]. While the GBS
library preparation itself is relatively simple, demultiplexing of the raw data is required
to process the samples. This step can add extra difficulty for any researcher not already
familiar with data processing.

It is likely that as the cost of sequencing and data processing continues to fall, we
will see even more cultivar genomes assembled using differing technologies and assembly
pipelines. It then becomes important to be able to assess the quality and functionality
of a genome in order to choose the right assembly for a project’s goal. Several tools and
methods already exist to estimate genome completeness and contiguity [40]; however, the
potential impact and bias that may arise from a reference genome’s genetic background is
not fully understood, nor to what extent this issue may affect different types of analysis.

In the context of a typical population genetics study, we wanted to understand if
the genetic background would have a significant impact on the interpretation of group
clustering and genetic relationships. Given the difference in data production and cost,
we asked how comparable GBS datasets are to WGS datasets for this mode of research.
Furthermore, we assessed the practicality of combining WGS and GBS datasets (Table 1),
as this would allow for unrelated sequencing projects to access and combine publicly
available data using two very different genotyping methods.

Table 1. List of Olea europaea cultivars sequenced using GBS and available WGS data.

Sequenced Cultivar Country of Origin Country Code Available Data

Klon-14-1812 Albania ALB GBS/WGS
Kalamon Greece GRC GBS/WGS
Koroneiki Greece GRC GBS/WGS
Mastoidis Greece GRC GBS/WGS
Mavreya Greece GRC GBS/WGS
Myrtolia Greece GRC GBS/WGS

Mari Iran IRA GBS/WGS
Grappolo Italy ITA GBS/WGS
Leccino Italy ITA GBS/WGS

Arberquina Spain SPA GBS/WGS
Manzanilla de Sevilla Spain SPA GBS/WGS

Manzanillera de
Huercal Overa Spain SPA GBS/WGS

Menya Spain SPA GBS/WGS
Morrut Spain SPA GBS/WGS
Picual Spain SPA GBS/WGS

Piñonera Spain SPA GBS/WGS
Temprano Spain SPA GBS/WGS
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Table 1. Cont.

Sequenced Cultivar Country of Origin Country Code Available Data

Verdial de
Velez-Malaga-1 Spain SPA GBS/WGS

Abbadi Abou
Gabra-842 Syria SYR GBS/WGS

Abou Kanani Syria SYR GBS/WGS
Abou Satl Mohazam Syria SYR GBS/WGS

Barri Syria SYR GBS/WGS
Majhoj-1013 Syria SYR GBS/WGS

Uslu Turkey TUR GBS/WGS

Removed Cultivars

Chemlal de Kabylie Algeria DZA GBS
Megaritiki Greece GRC GBS
Shengeh Iran IRA GBS
Barnea Israel ISR GBS

Frantoio Italy ITA GBS
Forastera de Tortosa Spain SPA GBS

Llumeta Spain SPA GBS/WGS
Picudo Spain SPA GBS/WGS
Jabali Syria SYR GBS

Maarri Syria SYR GBS
Majhoj-152 Syria SYR GBS

Dokkar Tunisia TUN GBS/WGS

2. Results and Discussion
2.1. Genome Assembly Comparison

In this study, we used five publicly available Olea europaea subsp. europaea assemblies
(Table 2) comprising three different cultivars, ‘Farga’ (Oe6/Oe9) [17,18], ‘Picual’ (Oleur0.6.1) [13],
and ‘Arbequina’ (Oe_Rao) [19], and a purported wild accession, Olea europaea subps. sylvestris
(Oe451) [20]. Our full list of GBS samples and WGS samples is listed in Table 1. We removed
12 GBS samples from the initial 36-sample dataset that either failed to pass quality controls or
for which no WGS data were available. The analysis was carried out on the remaining 24. The
selection process is described in more detail in Section 4.5. These samples likely failed during
the library preparation, although, there could be many reasons behind this problem. One of the
most common is related to the quality of the DNA. Low DNA quality (e.g., due to impurities
in the DNA extraction) reduces the efficiency of the restriction enzymes and leads to a partial
digestion and reduction in the fragment population. Nevertheless, the low yield for the samples
that failed (e.g., Barnea) indicates a bias in the amount of template used in the pool. Because
the libraries were performed by an external service, it is difficult to assess where the problem
was, but our guess is that it was related to the amplification step of some samples during the
library preparation [35]. This would be an issue for a typical study of olive cultivar relatedness
and would therefore need to be repeated. Fortunately, in this case the remaining samples were
sufficient to compare GBS performance against WGS and the impact of assembly bias.

The assembly of GCA_002742605.1 (Oe451) used a whole-genome shotgun sequencing
approach with the Illumina HiSeq 2000 platform to sequence Olea europaea var. sylvestris
(wild olive). The assembly was performed using SOAPdenovo to generate a genome
coverage of 220.0× [20]. For Oleur0.6.1, Olea europaea cultivar ‘Picual’ was selected
as the genetic background [13]. The assembly process integrated Illumina HiSeq2500
and PacBio RSII sequencing to improve gap filling. Olea europaea cultivar ‘Farga’ based
GCA_900603015.1/Oe6 [17] was assembled from Illumina HiSeq2500 with a genome cov-
erage of 380×. Oe9 is an updated version of Oe6 [18], where a genetic map was used
to anchor scaffolds to chromosomes. The most recently published is the Olea europaea
cultivar ‘Arbequina’ (GWHAOPM00000000/Oe_Rao; NGDC) [19], which used Oxford
Nanopore long-read sequencing and Hi-C data to construct chromosomes. The quality and
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completeness of each assembly was assessed before read mapping, SNP calling, and further
analysis. Our comparison of genome assemblies was based on four metrics, (1) contiguity
stats, (2) gene space completeness, (3) a k-mer completeness assessment using Merqury,
and (4) the LTR Assembly Index (LTR) that evaluates the completeness of the genome using
LTR retrotransposon elements (Table 2).

Table 2. Genome assembly and contiguity statistics.

Cultivar Wild Olive Farga Farga Picual Arbequina

Assembly Stats
Oe451

GCA_002742605.1
(Unver et al., 2017)

Oe6
GCA_900603015.1
(Cruz et al., 2016)

Oe9
GCA_902713445.1
(Julca et al., 2020)

Oleur0.6.1
(Jiménez-Ruiz

et al., 2020)

Oe_Rao
GWHAOPM00000962

(Rao et al., 2021)

Chromosome
assembly Yes No yes no yes

Assembly size (Gb) 1.14 1.32 1.31 1.68 1.1
Scaffolds 41,256 11,038 9753 9174 962

Longest seq (Mb) 46.03 2.58 36.44 4.14 68.07
Shortest seq (bp) 452 500 500 1017 10,772

Average seq length
(Kb) 27.69 119.47 135.00 183.12 1146.54

N90, number of
seq 3410 3099 2019 4503 320

L90 (Kb) 23 111 116 86,918 279,924
N50, number of

seq 23 901 162 1145 11

L50 (Mb) 12.57 0.44 0.73 0.41 42.60

% BUSCO
complete 85.9 96.6 96.6 96.6 93.4

% BUSCO
duplicated 13.4 23.6 23.6 51.5 18.3

% BUSCO
fragmented 5.9 1.9 2.0 1.9 2.1

% BUSCO missing 8.2 1.5 1.4 1.5 4.5

Merqury
completeness 72.62 78.39 78.73 89.41 NA

Merqury QV 43.00 34.78 35.68 33.04 NA
Merqury error 5.00867 × 10−5 0.00033 0.00027 0.00050 NA

LTR_Retriever LAI 4.14 5.10 4.34 11.52 8.80

Assembly stats generated using custom script. Gene space completeness assessed using BUSCO v5 with eudicot_db10 dataset. Com-
pleteness, repeat regions, and sequencing data incorporation evaluated with Merqury v1.3 and Illumina short-read-derived k-mers. LTR
Assembly Index (LAI) was estimated using the LTR_Retriever tool v2.9.0 with the default parameters.

With respect to (1), assembly contiguity statistics were generated using a custom
script (see Section 4.4). First, we note that total assembly size varied between genetic
backgrounds; Oleur0.6.1, at 1.68 Gb long, was by far the largest assembly, and over 360 Mbs
longer than both Oe6 and Oe9 (Table 2). Indeed, it was over 500 Mbps longer than Oe451 or
the ‘Arbequina’ genome (Oe_Rao). Jiménez-Ruiz et al. proposed that the bigger size of the
‘Picual’-variety genome could be explained by the presence of a large number of duplicated
DNA fragments coming from a very recent partial genome duplication event or artificially
introduced repeat regions from assembly issues [18]. This comparison is interesting to
observe because we are comparing the shotgun approach (Oe451, Oe6 and Oe9, Oleur0.6.1),
where the genome is fragmented into reads of 250–800 bp [20], to sequencing with Pacbio
first-generation RSII long reads (Oleur0.6.1), and the Oxford Nanopore third-generation
long-read approach where reads are commonly 10–30 kb [41]. Shotgun approaches are
very cost effective, but the process of sequence reassembly is more complicated than
with long reads. The short reads make it difficult to correctly assemble repeat regions,
particularly tandem repeats. This can also cause issues when using a genetic map to anchor
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to chromosomes, as the shorter read may not span a large enough section of the sequence to
contain genetic markers. The trade-off is that on a per read basis, short reads are currently
still more accurate and cheaper than long reads [41]. However, when only using short reads
for an assembly, greater coverage is required, and this increases the number of errors in the
dataset. Error correction and the filtering of low-quality reads is therefore an important step
in the genome. We noted that Oe451, according to the Merqury assessment, had the highest
QV score even with a 220× coverage, indicating careful management of the raw data
during assembly. It is important to remember that each assembly will have its own unique
set of errors introduced by sequencing or assembly issues, and thus any assembly should
not be considered as a definitive sequence but rather, as stated in [42], only a working
hypothesis.

Next, we checked (2) gene space completeness using Benchmarking Universal Single-
Copy Orthologs (BUSCO) [43]. BUSCO genes are a set of ancestrally conserved genes
used to estimate how complete a genome assembly is. Highly fragmented assemblies may
contain greater percentages of missing or fragmented genes. The number of duplicated
orthologs may be used as an indicator of possible errors that can occur when an assembly
tool mistakenly assembles, or fails to assemble, reads into repeat regions. Nevertheless,
polyploidy events and partial duplications may also lead to an increase in the number of
duplicated genes detected by BUSCO, so often a deeper analysis needs to be carried out in
order to distinguish a biological cause from a technical problem. In the publications for
each of the olive tree genomes, BUSCO was used to evaluate assembly quality; however,
the results were not comparable in terms of gene set database or BUSCO software version
used. Thus, we ran BUSCO v.5 on all assemblies, using the eudicot_db10 gene set, which
contains 2326 eudicot-specific genes. The results are different from those in the publications
of the genomes used; however, this can be explained by the fact that the gene dataset’s
specificity can vary greatly depending on which is used, and older versions of the gene
datasets may be less complete. Using the eudicot_db10 dataset, we obtained an identical
completeness score of 96.6% for Oleur0.6.1, Oe6, and Oe9, which indicates that a high
proportion of the core gene space was captured by these assemblies [44].

In addition to a recent genome duplication event in ‘Picual’, there are signs of at least
two older whole-genome duplications in Olive [20], so it is unsurprising to see high levels
of duplicated genes here. However, the ‘Picual’ genome has 51.5% duplicated genes, more
than twice any other assembly. This could be an indication of a technical error such as a
failure in the consensus calling due to high levels of heterozygosity, or in this case, there
is also evidence of a biological origin for a recent genome duplication. BUSCO gene sets
cannot have taken into account very recently uncovered duplications, and so this high
duplication percentage in Oleur0.6.1 is difficult to evaluate. The number of missing BUSCO
genes was low in the ‘Picual’ and ‘Farga’ assemblies (1.4–1.5%), as was the percentage of
fragmented genes (1.9–2%), indicating an overall high level of completeness. Oe451 scored
the lowest using this dataset, with a completeness score of only 85.9, an indication that
a large portion of the genome is still unassembled despite its pseudo chromosomes; this
may be an issue for use in particular studies, such as synteny, or the discovery of candidate
genes by QTLs, but may not be an issue for SNP calling as we had intended if the GBS sites
are not in the unassembled regions. Oe_Rao scored 93.4 for completeness and had a lower
percentage of duplicated genes compared to the ‘Farga’ and ‘Picual’ assemblies.

We assessed each of the assemblies using (3) Merqury, a k-mer-based method able
to evaluate the quality and completeness of a de novo assembly without the need for a
reference genome. Merqury uses a similar method to KAT in which high-quality sequencing
reads are decomposed into k-mers datasets, then the k-mer sets are compared to the genome
assembly. Merqury summarises the quality assessment with two values: a completeness
score that measures the completeness of the assembly based in the k-mer populations of the
assembled and the unassembled reads, and a phred-scaled consensus quality (QV) score
that measures the error produced during the haploid sequence consensus calling of the
assembly. Additionally, Merqury’s copy number spectra plots (Supplemental Figure S1)
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allow for a visual inspection of unassembled reads and artificial duplications [45]. The
evaluation of Oe_Rao could not be carried out correctly as Merqury requires short reads
and the Oxford nanopore reads used in the assembly are not compatible with the process,
and no Illumina reads were publicly available at the time of this analysis. The two ‘Farga’
assemblies and the ‘Picual’ assembly had an identical BUSCO gene completeness score,
yet, using Merqury, the overall completeness of the ‘Farga’ and ‘Picual’ assemblies was
vastly different. This indicates a high amount of reads which were never used in the
final ‘Farga’ assemblies (Oe6/Oe9). Indeed, in the Supplemental Figure S1 plots Oe6
and Oe9, we can see that this is the case. This result may be partially explained by the
co-sequencing of the fungus genome Aureobasisium pullulans with the olive samples, which
led to an assembly of 18 Mb [17], but the K-mer multiplicity indicates that there was also an
important proportion of the repetitive content unassembled. However, these three scored
an equally high QV, indicating highly accurate consensus calling during contig assembly.
Discounting the Oe_Rao results, Oe451 scored the lowest in terms of completeness and had
the most k-mers found only in the assembly, but had the highest QV score. Sequencing
error types and error rates vary with the sequencing technology [36,41,46]; these may cause
contig misassembles and scaffolding, and thus affect the reliability of a genome assembly
for use in the development of genotyping markers, breeding programs, or population
studies. A good example of the impact of the genome completeness on olive genetic studies
can be found in Kaya et al.: 51% and 75% of the SNPs with strong association signals were
mapped to the Oe451 and Oe6 reference genomes, respectively. Although these percentages
are not correlated with the estimation of the completeness from Table 2, they are a good
indication that the quality of the genome can influence the usability in other analyses.

Finally, the assemblies were evaluated using the LTR Assembly Index (LAI). Genome
assemblies based on short-read sequencing technologies such as Oe451, Oe6, and Oe9
presented lower values than the assemblies based on long-read sequencing technologies,
Oleur0.6.1 and Oe_Rao, as was expected and previously described in the use of LAI for the
assessment of genome quality [47]. It is interesting to note that the updated version of Oe6,
Oe9, has a lower LAI (4.34 compared with 5.10), meaning that some of the transposable
element genome space was lost or fragmented during the improvement. From all the
genome assemblies used, only the Oleur0.6.1 had a LAI value over 10, such that it is
considered a standard value for high-quality genomes with a good contiguity.

Because every sequencing project used a different technological approach, genetic
background, and assembly methodology, there is necessarily a great deal of difference
between them and their overall quality. While the limitations of short read length can
impact the handling of repeat regions during scaffolding with a single short-read mapping
at the incorrect or multiple regions, long-read technologies such as Oxford Nanopore and
Pacbio have much higher error rates. Further, the choice of assembly tool, corrections,
and the use of an alignment tool with and without available references can impact the
quality of a genome assembly. Considering the information collected in Table 2, Oleur0.6.1
appears to be the most complete assembly with the highest QV score of the four we could
test. However, it remains unclear if the high percentage of duplicated genes is an error or
true genome duplication. Furthermore, this genome is not yet anchored to chromosomes,
limiting its use in some studies.

2.2. Effect of Reference Genome Choice on Population Analysis

We explored the potential effect genome selection could have on a typical genetic
diversity study such as a population analysis by mapping the same GBS reads to each
of the available reference genomes, and performed the same population analysis on all
the resulting SNP datasets. This analysis began with a quality control assessement of our
dataset, which consisted of unprocessed reads from all 36 of our selected Olea europaea
cultivars, amounting to over 326 million raw reads. After pre-processing, mapping, and
SNP calling (see Section 4.5 and Supplemental Figure S19) using three different genomes
(Sylvestris/Oe451, Farga/Oe6, and Picual/Oleu r0.6.1), samples that had failed at one
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or more quality control checkpoints on all three genomes were removed from the rest
of the analysis (see Sections 4 and 4.5) (Supplemental Table S1). Removed samples are
listed in Table 1. As mentioned previously, the GBS samples may have failed during
library preparation, or sequencing and would normally need to be repeated; however,
24 samples are sufficient for the focus of this work. The remaining 24 samples were then
additionally mapped to the two remaining genomes (Farga/Oe9 and Arbequina/Oe_Rao),
before variant calling, SNP filtering, and population analysis.

2.2.1. Analysis GBS Read Mapping and Variant Calling

Considering only the remaining 24 high-quality samples, the percentage of mapped
reads did not vary much between assemblies; indeed, there was only a 2% difference
separating the highest and lowest mapping genomes (Table 3). The average number of sites
for each sample also showed very little variation, except for Oleur0.6.1, which had around
100,000 more sites, likely due to the increased number of duplicated genes in this assembly.
It is important to highlight that a substantial difference was found in the number of variants
called. Both Oe451 and Oe6 had double the number of variants called compared to Oe_Rao,
and almost six times that of Oleur0.6.1. However, by far the most SNPs identified were
from the improved ‘Farga’ genome, Oe9 with 23.7 million variants (Table 3). In terms of
variants per loci, Oleur0.6.1 and Oe9 had, on average, almost triple the number of Oe451,
Oe_Rao, and Oe6. The total number of SNPs called after filtering (see Section 4.5) was
similar for all genomes. This massive drop off from Oe9 was most significantly explained
by the 10,000 Kb thinning and 10,000 minimum quality score filtering steps. These two
alone removed ~97% of total SNPs. Oleur0.6.1 was notable for having been left with half
as many SNPs as the ‘Sylvestris’ and ‘Farga’ genomes. Perhaps the Oleur0.6.1 assembly
contained several repeat regions which were incorrectly collapsed or, alternatively, reads
may have been incorrectly assigned as a repeat(s), both of which could increase or decrease
the number and frequency of SNPs, as multiple alleles from the same locus might be
mistakenly identified as having come from different loci or vice versa. As can be seen in
Table 2, there is indeed variation in the number of duplicated BUSCO genes and the k-mer
duplications found across all of these genomes, indicating a difference in the assembly of
repeat regions of each of the tested genomes. In such cases, it might be expected to also
see variation in the levels of heterozygosity. However, heterozygosity per site was not
significantly different, ranging from 0.31 to 0.36 (Table 3), making it difficult to interpret
the source of this phenomenon. To test if collapsed regions were indeed the cause of
this SNP count variation, we extracted the allele frequency of SNPs from three random
samples (‘Grappolo’, ‘Manzanilla de Sevilla’, ‘Piñonera’) called from three of the genomes
(Oe451, Oe6, Oleur0.6.1) and compared the frequency of alleles between 0.25 and 0.75
(Supplemental Figure S2). Allele frequencies for an individual different from 0, 0.5, and 1,
such as 0.25 and 0.75, may be an indicative of the collapse of four copies into one during the
genome assembly. Once adjusted by percentage, we observed similar profiles, with most
alleles tending towards 0.25 and a small peak around 0.5. However, from our sub-sampling
we did not see any significant difference and so it remains unclear why using Oleur0.6.1
resulted in half the number of SNPs and Oe451.

Table 3. GBS and WGS read mapping and variant calling.

Cultivar O europaea var.
sylvestris Farga Farga Picual Arbequina

Oe451
GCA_002742605.1
(Unver et al., 2017)

Oe6
GCA_900603015.1
(Cruz et al., 2016)

Oe9
GCA_902713445.1
(Julca et al., 2020)

Oleur0.6.1
(Jiménez-Ruiz et al., 2020)

Oe_Rao
GWHAOPM00000962

(Rao et al., 2021)

Total GBS reads mapped (M) 294.29 298.86 299.56 300.28 297.58
Total WGS reads mapped (M) 8767 NA NA 8789 NA
% of total GBS reads 94.4 95.8 96.0 96.3 95.4
% of total WGS reads 100.4 NA NA 107.14 NA
Avg number of sites GBS 325,680 350,581 348,652 432,644 340,715
Avg number of sites WGS 493,618 NA NA 1,073,623 NA

GBS SNP before filtering 7,722,425 7,415,201 23,651,384 4,401,892 1,346,358
GBS SNP after filtering 13,343 12,507 13,410 7023 10,177
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Table 3. Cont.

Cultivar O europaea var.
sylvestris Farga Farga Picual Arbequina

Oe451
GCA_002742605.1
(Unver et al., 2017)

Oe6
GCA_900603015.1
(Cruz et al., 2016)

Oe9
GCA_902713445.1
(Julca et al., 2020)

Oleur0.6.1
(Jiménez-Ruiz et al., 2020)

Oe_Rao
GWHAOPM00000962

(Rao et al., 2021)

GBS unfiltered SNPs per site 1.01 0.90 2.91 2.39 0.89
GBS filtered SNPs per site 0.02 0.02 0.02 0.01 0.02
Average Het/site GBS 0.36 0.34 0.35 0.31 0.35
Average Het/site WGS 0.42 NA NA NA 0.34

WGS SNP before filtering 144,579,296 NA NA 128,172,089 NA
WGS SNP after filtering 119,190 NA NA 114,169 NA
WGS/GBS SNP before filtering 150,952,260 NA NA 11,679,534 NA
WGS/GBS SNP after filtering 9537 NA NA 4004 NA

2.2.2. GBS Population Structure

The filtered SNPs obtained from each genome mapping were analysed using FAST-
STRUCTURE (DARTR), ADMIXTURE (LEA), discriminate analysis of principle compo-
nents (DAPC), and principal component analysis (PCA) to identify the distinct relationships
among the cultivars (Supplemental Figures S3–S17).

In two previous studies, there were two distinct clusters identified among cultivars
and a third cluster containing wild relatives [13,18]. In this work, the results from FAST-
STRUCTURE identify two groups (K = 2, with cross entropy errors ranging 0.7 to 0.8) as
being the most probable clustering for all GBS and WGS datasets (Supplemental Figure S8).
As wild olive samples were not included in the analysis, two groups are in agreement
with the previously published data [13]. When comparing the results of the model-based
clustering from ADMIXTURE and genetic-distance-based PCA clustering, it was noted
to be in agreement also with FASTSTRUCTURE. The first three principal components of
the PCA only explained ~30% of the variation. However, it was sufficient to see a clear
separation of the different clusters, a result observed constantly throughout all our SNP
datasets (Supplemental Figures S3 and S4). In all cases, the first principal component
(PC1) (~14%) separated the 24 cultivars into a group of 13 that could be described as
primarily composed of eastern Mediterranean cultivars (‘Barri’, ‘Abou Kanani’, ‘Abou
Satl Mohazam’, ‘Majhol-1013′, ‘Temprano’, ‘Verdial de Velez-Malaga-1′, ‘Uslu’, ‘Kalamon’,
‘Morrut’, ‘Mari’, ‘Picual’, ‘Manzanilla de Sevilla’, ‘Abbadi Abou Gabra-842′) and a group
of 11 mostly northern Mediterranean cultivars (‘Mastoidis’, ‘Klon-14-1812′, ‘Grappolo’,
‘Mavreya’, ‘Piñonera’, ‘Leccino’, ‘Myrtolia’, ‘Menya’, ‘Manzanillera de Huercal Overa’,
‘Koroneiki’, and ‘Arbequina’), reflecting the complex history of olive domestication [11,48],
and aligning with previously published results [13,18]. ADMIXTURE at K = 2 produced
a similar grouping as the PCA (Supplemental Figures S5–S7). The levels of estimated
admixture in each individual cultivar did not appear to vary depending on the assembly
used. It is also interesting to note the near identical results regardless of the number of
SNPs. Oleur0.6.1 had almost half the number of filtered SNPs as Oe451 or Oe9, but it
appears that this still provides sufficient resolution to evaluate genetic relatedness using
these analyses.

In general, the DAPC posterior membership was also estimated to be the same regard-
less of assembly used during mapping. We could see some variation in group membership
when samples were compared by country of origin. There was largely agreement while
comparing all genomes; however, we saw some discrepancies, such as in the Oe6, Oe9, and
Oe_Rao genomes, which gave a near identical result in which the cultivar ‘Koroneiki’ of
Greece showed a much higher probability of belonging to the Syrian genetic group. Indeed,
this was more in agreement with the comparison of principal components 1 and 2, seen in
all datasets belonging to the Syrian genetic group.

We calculated, for each dataset, genetic distances and constructed neighbor-joining
distance trees using the R package POPPR (Supplemental Table S4). We can see in all cases
there are two clear operational taxonomic units (OTUs), or clusters, defined in each tree
(Figure 1) with a smaller third cluster of cultivars, which is more variable depending on the
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reference genome used. Samples in the third group were those which had higher levels of
admixture (Supplemental Figures S5 and S6) and were more difficult to assign. However,
the two large groups were in agreement with the eastern Mediterranean and northern
Mediterranean clusters identified in the PCA (Supplemental Figure S3). The topology of
each grouping varied, but only slightly, and only within an out. There was no placement of
individuals in another cluster; even those with greater admixture were either in a seperate
group or with cultivars of the same region. The topography of the trees produced from
Oe451 and Oe6 were near identical, and even closer matched than Oe6 to its updated Oe9
version. The bootstrapping values were high in all cases with only 2–3 nodes falling below
50 on any tree. Syrian and Italian cultivars were the most consistent in terms of clustering
when using any other assemblies. The cultivar ‘Mari’ was seen in all trees to cluster with
Syrian samples, but, interestingly, the DAPC results indicate this same grouping only when
using a ‘Farga’ or ‘Arbequina’ genome. This might be due to some genetic relationship
between the genomes and the ‘Mari’ sample, such as a possible introgression with some of
the SNPs.
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Although there was great divergence in the number of SNPs associated with the
use of each assembly, we saw little effect on the outcome of the population analysis. As
observed in maize, reference genome selection can impact results [49,50]. Gage (2019)
reported a reduction in the ability to robustly identify key loci of interest in a genome-wide
association study (GWAS). Missing loci and inaccurate structural variations introduced
during genome assembly may introduce reference bias, which may be more problematic
in such cases. The impact of using any of the five selected assemblies in their current
states appears to have been minimal in this population analysis, and indeed each reference
genome provides confirmation of the results. However, it is still important to consider the
vast differences in variants identified from each assembly and how they could impact other
types of analysis. Using more than one reference assembly in this way can remove much of
the bias introduced by many of the choices made during a genome sequencing project (see
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Section 2.1) and is something that could be repeated in future olive breeding projects to
improve the reliability of identified structural variations.

2.3. Analysis of WGS Data

As the population analysis using GBS data showed that the selection of different
reference genomes can make a difference in the phylogenetic relationship of one sample
to another, but not in the overall grouping of samples, and no significant difference was
seen in the levels of estimated admixture, we wanted to see if this was also the case with
WGS data. Since WGS would likely generate many more variants and sites, any small
differences may be diluted or potentially exaggerated. To process the raw whole-genome
sequencing (WGS) read set, we followed the same steps as used for the raw GBS read set
(see Section 4.5).

The processed reads were mapped to two assemblies, the purported wild type (Oe451)
and the genome that scored the highest overall in our analysis (Oleur0.6.1). First, looking
at the number of reads mapped to each, we saw that the WGS read set had a much higher
number of mapped reads than the GBS set, as expected (Table 3). In both cases, the
percentage of processed reads that was mapped was over 100%. Some double mapping
was detected but not enough to cause issue. Variant calling using WGS data produced
significantly more variants than GBS; 144 million from WGS-Oe451 and 128 million called
from WGS-Oleur0.6.1 before filtering. It was not surprising to have so many more variants
called using WGS reads because of the lower amount of missing data [36], but it was
interesting to note that when we compared the total number of variants called from Oe451
and Oleur0.6.1 with the GBS data, there was a difference of 3.3 million between the two
datasets before filtering. The difference between GBS-Oe451 and GBS-Oleur0.6.1 was
almost double after filtering, but there was only a ~10% difference between WGS-Oe451
and WGS-Oleur0.6.1.

We next ran the same population analysis script as previously used for the GBS
datasets. The FASTSTRUCTURE, PCA, admixture, and DAPC results were again very
similar regardless of the genetic background of the reference genome. As before, there was
some difference in the topography of trees but overall, the same OTUs were reproduced.
Bootstrapping values were more consistently higher using Oleur0.6.1. The results are near
identical to the GBS results, suggesting that it was possible to merge GBS and WGS datasets.

Here, we also compared the genomes that produced the highest and lowest number of
SNPs. It is worth noting that, again, despite the higher number of SNPs coming from Oe451,
there appeared to be no difference in the outcome of the analysis when using any of the
reference genomes or SNP datasets. The reasons for this might be that SNPs provide limited
information and so a certain threshold, in terms of reliability and number, is needed for an
SNP dataset to be useful. The quality of the SNPs called and filtered from each reference
genome was sufficient, even with the lower number of SNPs from Oleur.0.6.1, to extract the
same level of detail. We also must consider that while five reference sequences were used,
the genetic background of one was a purported wild type and all the others were Spanish
cultivars. Our results show no difference when using either sequence, but this may change if
a cultivar from another region with a more distinct genetic history is used.

2.4. Analysis of WGS/GBS Merged Data

The ability of an SNP dataset to differentiate between groups can be quite low because
of their biallelic nature [51] and so it could be expected that increasing the number of SNPs
from WGS should significantly improve the power of differentiation. However, our results
show that GBS and WGS data performed almost identically, despite a difference of roughly
10 times the number of SNPs called using WGS data (Table 3). Given the similarity of the
population analysis results, we wanted to know if it was possible to combine variants from
GBS and WGS datasets. This would allow for more collaborative opportunities and the
supplementation of smaller datasets with already available public data.
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The same two genomes (Oe451 and Oleur0.6.1) were chosen for this experiment. The
vcf files of GBS-Oe451 and WGS-Oe45 were merged together using bcftools and a list of
shared sites (see Section 4), as were GBS-Oleur0.6.1 and WGS-Oleur0.6.1. The merged
WGS/GBS-Oe451 file consisted of over 150 million variants and after filtering, 9537 biallelic
SNPs, less than 1% of the total variants. The WGS/GBS-Oleur0.6.1 merged file contained
only around 11 million variants and less than 1% of total variants were high-quality SNPs.
This is in stark contrast to the difference seen with GBS-Oe451 and GBS-Oleur0.6.1. We
selected only the SNPs from shared sites and did not allow for any missing data, so this
would explain the massive drop off compared with either WGS or GBS after only filtering.

Again, we ran the same population analysis script as with all previous SNP sets.
FASTSTRUCTURE found the mostly likely number of clusters, based on lowest cross-
entropy, to be K = 18–19 for WGS/GBS-Oe451 and K = 20 for WGS/GBS-Oleur0.6.1
(Supplemental Figure S8). This may be an overfit of samples due to there being two
of each genotype (Supplemental Figure S11) and the WGS samples being more like their
GBS counterpart than anything else, creating the highest probability clusters. However, we
could see that the change in cross entropy decreased between possible clusters past K = 2
and K = 3. The sample clustering by PCA was near identical for the WGS/GBS-Oleur0.6.1
and WGS/GBS-Oe451 datasets (Figure 2). Importantly, they were similar to the GBS and
WGS only analysis with all the reference genomes. We saw that GBS and WGS samples
closely grouped together, forming the same clusters seen previously. The only notable
exception was GBS Arbequina. It seems likely that this sample was mislabelled at some
point in the process, as it is the only sample that does not pair up with its WGS counterpart.
DAPC analysis was analogous to all previous results, with the same groups being identified.
Analysis by NJ trees (Figure 3) revealed no major differences in terms of OTUs, but we
observed that Oleur0.6.1 had some very low bootstrapping values and Oe451 had the better
bootstrapping values, more closely resembling the WGS-only tree.
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3. Conclusions

The results of this work indicate that GBS and WGS sequencing data are highly
comparable for population structure analysis. Certainly, more information can be obtained
from WGS, and great advances have been made to reduce its cost, but GBS remains much
more affordable. For small sampling sizes WGS maybe be preferable, but a large-scale
genotyping project can quickly become too expensive for most labs; we show that GBS
is a cost-effective alternative capable of providing near identical results and identifying
the same genetic relationships at a much lower cost. Further, the ability to successfully
combine the two sequencing methods opens opportunities to mine data from a wider range
of sources. This would also be a significant cost-saving approach to consider for expanding
existing olive tree WGS datasets and past genotyping projects, and allow for collaborations
between research groups that have used either WGS or GBS genotyping methods. Although
the sequencing cost is decreasing, it is not feasible to re-sequence hundreds of accessions to
study the structure of the population or to identify some unknown accessions.

With respect to our comparative analysis between the different reference genomes
used, the Oleur0.6.1 sequence may be the most accurately assembled, but lacking chro-
mosomes can limit its application. However, we could not properly test the ‘Arbequina’
assembly using Mercury’s best practices and therefore accurately compare it to the others
in all aspects of our quality assessment. Any differences between the current existing
genome assemblies are so small that we can say that for SNP-based genetic profiling at
least, all are certainly suitable. Thus, the availability of genetic maps and chromosomes
could potentially be a more important consideration when choosing which to use in future
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projects. Furthermore, we show that while the genetic background of the reference genome
plays a role in the possible number of variants identified, there was little overall effect
on population structure, genetic clustering, or analysis of genetic relationships. As more
reference genomes of existing cultivars are rendered to the chromosome level, it might
well be necessary to compare performance before choosing which to use. The current
assemblies are of a purported wild type and three Spanish cultivars, so it is still possible
that the genetic background may yet be an important factor if using cultivars from other
regions as the reference.

Our results highlight the advantages of GBS while at the same time bringing to the
table the possible limitations. GBS is a commonly used technique for other crops, but it
has not been routinely implemented in olive breeding. Traditional breeding needs these
types of tools to accelerate the development of new varieties able to face the important
challenges olive production is currently facing.

4. Materials and Methods
4.1. Plant Material and Genomic DNA Extraction

In accordance with Belaj et al. (2012), and maximising the genetic diversity in a
reduced number of genotypes, 36 olive tree cultivars were selected from the World Olive
Germplasm Collection of the Andalusian Institute of Agricultural and Fisheries Research
and Training (WOGBC) located in Córdoba Spain (Table 1). Total genomic DNA was
extracted from fresh leaves using the Illustra DNA extraction kit Phytopure GE Healthcare
(UK) in accordance with the protocol described in the manufacturer’s instructions. To
ensure high-quality DNA was used for sequencing, the purity was measured with a Qubit
2.0 Fluorometer Life Technologies NY (USA). DNA concentration was then normalised to
20 ng/µL. The DNA had a minimum 260/280 ratio of 1.8.

4.2. GBS Library Construction and Sequencing

The DNA were sent to DISMED, and the libraries were prepared by BGI. DNA sam-
ples were digested with ApeKI (New England Biolabs, Ipswitch MA) for 2 h at 75 ◦C,
and T4 ligase (New England Biolabs, Ipswitch MA) was used to ligate to sticky ends,
one of 36 unique “barcodes”, and the “common adapter”. Samples were incubated at
22 ◦C for 1 h and heated at 65 ◦C for 30 min. A set of 36 digested DNA samples, each
with a different barcode adapter, were obtained. A total of 7 µL of each component
of this set was combined in a unique sample and purified in a final volume of 50 µL
with a commercial kit (QIAquick PCR Purification Kit; Qiagen group (Germany), ac-
cording to the manufacturer’s instructions. The result of this library was amplified in
50 µL, containing 5 µL of pool DNA fragments, 1× Taq Master Mix New England Bio-
labs (UK), and 12.5 pmol each of PCR primers, the sequences of which were: PCR primer:
5′AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
and PCR primer: 5’-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCT
GAACCGCTCTTCCGATCT, containing complementary sequences for amplifying the frag-
ments of DNA with ligated adapters. The PCR conditions were a primer step of 5 min at
72 ◦C; 98 ◦C for 30 s; 25 cycles of 98 ◦C for 30 s, 65 ◦C for 30 s, and 72 ◦C for 30 s; and a
final extension step at 72 ◦C for 5 min. The library was purified as above (in a final elution
of 30 µL) and 1 µL was used for the quality evaluation of fragment sizes. The library was
considered suitable for sequencing if adapter dimers were minimal (~128 pb in length)
and the majority of the other DNA fragments were between 170 and 350 bp. Paired-end
sequencing of one 48-plex library per channel was performed on an Illumina HiSeq2000
Analyzer by BGI Genomes.

The sequences of the barcode adapter were: 5-ACACTCTTTCCCTACACGACGCTCT
TCCGATCTxxxx and 5-CWGyyyyAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT,
where “xxxx” and “yyyy” are the barcode and barcode complement, respectively. The
second, or “common” adapter sequence was shared among all samples and consisted of an
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ApeKI-compatible sticky end: 5´-CWGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG
and 5´-CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT.

4.3. WGS Library Construction and Sequencing

Raw sequencing data were obtained directly from the authors of Jiménez-Ruiz et al.
(2020). Re-sequencing of all varieties was performed by 2 × 150 paired-end sequencing
with Illumina HiSeq 4000, and all sequencing was carried out at the Duke Center for
Genomics and Computational Biology (Durham, NC, USA). Raw data are available at
NCBI BioProject ID: PRJNA556567.

4.4. Sequence Assembly Assessment

The five available assemblies used were Olea europaea subsp. sylvestris (version
GCA_002742605.1/Oe451; NCBI), Olea europaea cultivar Picual (version Oleur0.6.1; https:
//genomaolivar.dipujaen.es/db/ (accessed on 2 February 2020)), the Olea europaea cultivar
Farga (version GCA_900603015.1/Oe6; NCBI) [17] and its updated version (GCA_902713445.1/Oe9;
NCBI) [18], and Olea europaea cultivar Arberquina (GWHAOPM00000000/Oe_Rao;
NGDC) [19]. The same three forms of quality assessment were carried out on all the
assemblies: contiguity, gene space completeness, and a k-mer-based evaluation.

Assembly and contiguity were calculated using a custom script; FastaSeqStats (https://
github.com/aubombarely/GenoToolBox/blob/master/SeqTools/FastaSeqStats (accessed
on 10 June 2013). N50 is a commonly used marker of sequence contiguity, counting the
number of bases in the shortest fragments needed to span 50% of the genome. N90 is the
same information at 90% of the total genome. Average sequence length provides similar
information as the N50. L50 is the smallest number of contigs needed to cover 50% of the
genome; L90 provides the same information at 90%.

Benchmarking Universal Single-Copy Orthologs (BUSCO) genes were used to evaluate
the completeness of the assembly by searching for a list of known ancestrally conserved
genes within the reference genome. All assemblies were assessed using BUSCO v.5 with
the eudicot_db10 gene set containing 2326 eudicot-specific genes.

Merqury v1.3, (https://github.com/marbl/merqury (accessed on 10 January 2021)
a k-mer-based method, was used to evaluate both quality and completeness. Using a
similar method to KAT, high-quality sequencing reads were decomposed into k-mers
datasets, then the k-mer sets were compared to the genome assembly. Merqury generates a
k-mer dataset from the Illumina short-read sequencing data used in the genome sequence
assembly. By decomposing the original sequencing reads into k-mers, Merqury can count
how many times each k-mer appears in the assembly, as well as k-mers from the original
Illumina reads not incorporated at all or that appear only in the assembly. These k-mer
data were used to generate a completeness score and a phred-scaled consensus quality
(QV) score, along with copy number spectra plots to visually inspect the assembly for
unassembled reads and artificial duplications [45]. The Illumina short-read datasets were
either downloaded from the same location as the assembly or kindly sent by the genome
assembly curator. In the case of the ‘Arbequina’ assembly, only long-read sequencing was
performed, which was unsuitable for use with Merqury.

LTR Assembly Index (LAI) was estimated using the LTR_Retriever tool v2.9.0 with
the default parameters [47].

4.5. Read Processing, Mapping, Filtering, and Variant Calling

Raw reads were first processed and then mapped only to Oe451 to assess quality,
using the pipeline described below and in Supplemental Material Figure S10. Samples
with low SNP count can affect the overall number of SNPs available for analysis due
to the percentage of missing data encountered during the VCF filtering (see Section 4
and Supplemental Figure S10). Before removing poorly performing samples, the full
process was repeated with two other assemblies (Oleur0.6.1 and Oe6) to confirm the
results (Supplemental Table S1). Total SNPs called from Oe451, Oe6, and Oleur0.6.1 after

https://genomaolivar.dipujaen.es/db/
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filtering were initially in the range 300–900. To increase this number further, low-quality
samples were removed. The choice of samples to be included or excluded was based on
performance at different stages of processing and the amount of missing data. To achieve
this, the number of reads in each sample was counted and there were three clear groups,
those with only 50,000 or fewer reads, a second group with 600,000 or fewer, and the
majority of samples were within the range of 2–20 million reads. Samples with 50,000 or
fewer reads were removed from further analysis, as this is too low to yield any useful
information, along with any samples having less than 50% of the average number of sites
per sample.

This reduced the sample set from 36 to the current 24, but significantly increased
the number of total SNP loci shared across all samples. Sequence read mapping was
then performed on all five genome assemblies to evaluate the influence that a particular
assembly has on SNP discovery and on a population analysis using the following steps.

After sequencing, the GBS raw reads were demultiplexed by BGI Genomics. Next,
the raw reads were processed with FASTQ_MCF v1.05 [52] to remove Illumina adapters
and reads with a phred-scaled quality score of less than 30 and/or shorter than 50 bases.
After trimming, the paired reads were aligned to each of the five genome assemblies;
Oe451, Oe6, Oe9, Oleur0.6.1, and Oe_Rao, using BWA (Burrows–Wheeler Alignment Tool)
v0.7.17-r1188t with default parameters. Prior to mapping, each reference genome was
indexed using BWA. The output file of the mapping was in an unsorted SAM format, and
these were converted to bam and sorted to save space and increase SNP calling efficiency
using SAMTOOLS v1.7 [53]. Once sorted, the bam files were merged into a single bam file
with BAMADDRG (https://github.com/ekg/bamaddrg (accessed on 14 April 2018).

Variants were called with FREEBAYES v1.3.1-16-g85d7bfc [54] using a custom script;
MultiThreadFreeBayes, (https://github.com/aubombarely/GenoToolBox/tree/master/
SNPTools/MultiThreadFreeBayes (accessed on 15 May 2018) this script allows FREEBAYES
to run faster by using multiple threads on several scaffolds at the same time. Finally, the
variant file (VCF) was filtered with VCFTOOLS v0.1.15 [55] using the following parameters:
retain only biallelic SNPs, remove indels, a minimum read depth of 5 with a minimum
mean depth of 20, a minimum SNP quality of 1000, no missing data, and an MAF of 0.05.
Finally, SNPs were thinned to 1 per 10,000 Kb.

To merge the GBS and WGS datasets, we used the BCFTOOLS v1.7 [53] merge function.
The WGS VCF file contained many more sites than the GBS, so a bed file containing all
sites from the GBS dataset was supplied using the argument regions-file. This was carried
out to reduce the final file size, as any site with missing data would eventually be removed
during the filtering steps. After the files were merged, they were filtered using the same
parameters as above.

4.6. Population Analysis

Each SNP dataset was analysed in the same way, with the same script to estimate pop-
ulation structure and genetic diversity from each of the datasets. The R script Olea_pop.R
with commands and notations is available at https://github.com/frieljames/Olive_WGS_
GBS (accessed on 1 April 2021). Supplemental Figure S19 shows an overview of the R
programming pipeline. As a summary of the script, we cross analysed population structure
in our datasets with the use of R and three different methods: (1) STRUCTURE [56], a
Bayesian-based clustering method assuming Hardy–Weinberg equilibrium and linkage
equilibrium between loci within populations, (2) discriminant analysis of principal compo-
nents (DAPC) [57], which uses sequential K-means and model selection to infer genetic
clusters, and (3) principal components analysis (PCA), a method that uses genetic distance
to infer clusters. To begin, we used FASTSTRUCTURE [58], part of the DARTR package, a
faster and more resource-efficient method of running STRUCTURE. The LEA package [59]
performed a STRUCTURE analysis on the SNP data to infer the mostly likely genetic
clusters based on allele frequency and clustering probability. ADMIXUTRE was estimated
by running LEA’s snmf functional analysis for the estimation of ancestral populations

https://github.com/ekg/bamaddrg
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(K) of 1–20. This estimates the admixture coefficient in the selected K range using sparse
Non-Negative Matrix Factorisation algorithms. The output of this was used to estimate the
admixture of groups at the largest K value. To perform a DAPC and a PCA, we used the R
package ADGENETv.1.3-1 [60]. DAPC is different to STRUCTURE in that it does not rely
on model assumptions or prior information; instead, it uses a multivariate method with
sequential K-means and model selection to infer genetic clusters and assign individuals to
clusters. To ensure that maximum variance was being used while attempting to avoid an
overfit of the data, DAPC was performed using the suggested optimal number of principle
components (PCs) for each dataset (Supplemental Figures S9–S11). These were identified
as the number of PCs with the highest a-score, predicted by the optim.a.score() function,
which selects an evenly distributed number of PCs in a pre-defined range, computes an
a-score for each, and then interpolates the results using splines. For the PCA, the package
ADGENET took a genlight object of SNP data to generate a genetic distance matrix for use
in the PCA clustering.

Further estimation of possible ancestral populations was achieved with a neighbour-
joining (NJ) approach, again based on allele frequencies. This was carried out with the R
package POPPR [61]. The POPPR function aboot() allowed for the construction of a den-
drogram with 100 bootstrapping support and obtained genetic distance using bitwise.dist,
a method that calculates the fraction of different sites between samples equivalent to
Provesti’s distance. The tree was visualised in R with the package APE [62] using the
function plot.phylo(). Afterwards, the tree was exported in the newick format to generate
figures using FigTree v1.4.4 [63].

Finally, genetic diversity was calculated using the gl.basic.stats () function with the R
package DARTR [64]. Selection and neutrality were estimated by calculating the number of
segregating sites, nucleotide diversity, Watterson’s theta, and Tajima’s D. These values were
generated using POPGENOME [65]. Additionally, population diversity was estimated
using expected and observed heterozygosity, Fst and Fis values, for each of the assigned
groups (POPGENOME) (Table S4).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10112514/s1, Figure S1: Copy number spectrum plots (spectra-cn plot) of k-mer
multiplicity from each set of x50 coverage Illumina reads. Histograms coloured by number of times
each k-mer in the read set is found in a given assembly. The result is a set of histograms relating
kmer counts in the read set to their associated counts in the assembly, Figure S2: Histograms of
allele frequency sampled from ‘Grappolo’, ‘Manzanilla de Sevilla’, ‘Piñonera’ cultivars using vcftools,
Figure S3: PCA clustering of GBS SNP sets. Plots show PCs 1 and 2 for SNPs called from a given
reference genome, Figure S4: PCA clustering of WGS SNP sets. Plots show PCs 1 and 2 for SNPs
called from a given reference genome, Figure S5: Estimated admixture for GBS SNP datasets Oe451,
Oe6, Oe9, & Oleur.0.6.1. Ancestry co-efficient (0.0-1.0) estimated using STRUCTURE assigned popu-
lations, Figure S6: Estimated admixture for GBS Oe_Rao SNP dataset and WGS Oe451 & Oleur.0.6.1
SNP datasets. Ancestry co-efficient (0.0-1.0) estimated using STRUCTURE assigned populations,
Figure S7: Estimated admixture for merged WGS/GBS Oe451 & Oleur.0.6.1 SNP datasets. Ances-
try co-efficient (0.0-1.0) estimated using STRUCTURE assigned populations, Figure S8: Estimated
number of populations using STRUCTURE for each dataset. Cross-entropy values along the y-axis,
Figure S9: DAPC preliminary optimization of GBS data prior to running DAPC analysis. Reference
genome SNP set indicated to the left of each row. Left most column contains the results the function
optim.a.score() used to indicate best number of principal components to include. Center column the
value of Bayesian Information Criterion (BIC) to assess the best supported model. Right-hand column
contains the preassigned group (country of origin) representation using selected PCs and BIC model,
Figure S10: DAPC preliminary optimization of WGS data prior to running DAPC analysis. Reference
genome SNP set indicated to the left of each row. Left most column contains the results the function
optim.a.score() used to indicate best number of principal components to include. Center column the
value of Bayesian Information Criterion (BIC) to assess the best supported model. Right-hand column
contains the preassigned group (country of origin) representation using selected PCs and BIC model,
Figure S11: DAPC preliminary optimization of merged WGS and GBS data prior to running DAPC
analysis. Reference genome SNP set indicated to the left of each row. Left most column contains
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the results the function optim.a.score() used to indicate best number of principal components to
include. Center column the value of Bayesian Information Criterion (BIC) to assess the best sup-
ported model. Right-hand column contains the preassigned group (country of origin) representation
using selected PCs and BIC model, Figure S12: DAPC group composition and clustering of GBS
data set. Reference genome SNP set indicated to the left of each row. Left most column contains
the membership probability of each individual sample using discriminant functions, proximal to
admixture coefficients used by STRUCTURE. Right-hand column clustering using predefined groups
(country of origin) with selected model, Figure S13: DAPC group composition and clustering of WGS
data set. Reference genome SNP set indicated to the left of each row. Left most column contains
the membership probability of each individual sample using discriminant functions, proximal to
admixture coefficients used by STRUCTURE. Right-hand column clustering using predefined groups
(country of origin) with selected model, Figure S14: DAPC group composition and clustering of
merged WGS and GBS data set. Reference genome SNP set indicated to the left of each row. Left most
column contains the membership probability of each individual sample using discriminant functions,
proximal to admixture coefficients used by STRUCTURE. Right-hand column clustering using pre-
defined groups (country of origin) with selected model, Figure S15: DAPC posterior membership
probability of GBS data set. Reference genome SNP set indicated to the left of each row. Membership
probability of each individual at K=2, Figure S16: DAPC posterior membership probability of WGS
data set. Reference genome SNP set indicated to the left of each row. Membership probability of each
individual at K=2, Figure S17: DAPC posterior membership probability of merged WGS and GBS
data set. Reference genome SNP set indicated to the left of each row. Membership probability of
each individual at K=2, Figure S18: Genotype-by-sequencing library preparation pipeline, Figure S19:
Sequencing read processing and population analysis pipeline. Table S1: GBS read processing and
variant calling, Table S2: GBS read processing and variant calling Stats for the raw GBS sequencing
reads mapped to all 5 genome assemblies. Low quality individuals have been removed improving
the overall number of SNPs available, Table S3: WGS read processing and variant calling. Stats for
the raw WGS sequencing reads mapped to two genomes. Only samples matching the remaining GBS
samples were selected, Table S4: Results of Popgenome analysis genetic diversity and neutrality.
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