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Abstract

Network traffic analysis is crucial for understanding network behavior and identifying
underlying applications, protocols, and service groups. The increasing complexity of net-
work environments, driven by the evolution of the Internet, poses significant challenges to
traditional analytical approaches. Graph Neural Networks (GNNs) have recently garnered
considerable attention in network traffic analysis due to their ability to model complex
relationships within network flows and between communicating entities. This scoping
review systematically surveys major academic databases, employing predefined eligibility
criteria to identify and synthesize key research in the field, following the Preferred Re-
porting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews
(PRISMA-5cR) methodology. We present a comprehensive overview of a generalized archi-
tecture for GNN-based traffic analysis and categorize recent methods into three primary
types: node prediction, edge prediction, and graph prediction. We discuss challenges in
network traffic analysis, summarize solutions from various methods, and provide prac-
tical recommendations for model selection. This review also compiles publicly available
datasets and open-source code, serving as valuable resources for further research. Finally,
we outline future research directions to advance this field. This work offers an updated
understanding of GNN applications in network traffic analysis and provides practical
guidance for researchers and practitioners.

Keywords: network traffic analysis; network security; graph neural networks; graph
feature aggregation; graph-based methods

1. Introduction

Driven by the ongoing developments in Internet technologies, the Internet has become
an integral part of daily operations for both individuals and enterprises. According to the
latest report from the International Telecommunication Union (ITU) [1], the global number
of Internet users reached 5.5 billion in 2024, an increase of 227 million over the 2023 estimate.
This explosive user growth presents substantial challenges to Internet management, neces-
sitating effective traffic analysis methods. These methods are crucial for applications such
as user traffic identification, encrypted traffic classification, malicious traffic identification,
intrusion detection, network anomaly detection, and website fingerprinting, all essential
for ensuring quality online experiences and maintaining network security.

Researchers have continuously adapted to technological advancements over the years,
implementing new network traffic analysis methods. Early rule-based analysis methods
were widely adopted [2], but their primary limitation was poor generalization to new
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patterns. Minor modifications to attack sequences were often sufficient to bypass these
rules [3]. For instance, port-based analysis methods became less effective with the advent
of dynamic ports. Subsequently, Deep Packet Inspection (DPI) techniques emerged [4].
However, DPI became progressively ineffective with the continuous refinement of encryp-
tion technologies because of its inability to analyze encrypted packet content. Machine
learning-based approaches achieved considerable success in addressing these issues [5-8].
However, feature engineering in machine learning necessitates domain experts to select use-
ful features for downstream detection systems. This reliance on prior knowledge hinders
adaptability to the rapidly changing nature of contemporary network traffic.

Deep learning-based methods have become the mainstream approach in contemporary
network traffic analysis. Common deep learning methods include Multi-Layer Perceptrons
(MLPs) [9], Recurrent Neural Networks (RNNs) [10], Autoencoders (AEs) [11], and Convo-
lutional Neural Networks (CNN)s [12]. Current deep learning methods primarily focus on
extracting features from individual traffic flows or packet sequences but exhibit limited
awareness of the interactions between traffic flows. Network traffic data are inherently
structured, with rich information embedded in the relationships between various elements
such as IP addresses, protocols, and host events. Consequently, traditional deep learning
architectures may not fully exploit the structural properties of network traffic in the domain
of network traffic analysis. Researchers have extended deep learning methods to graph
data to leverage graph structural information. A key characteristic of graph data, compared
to other data structures, is its ability to effectively capture multiple interaction relationships
within complex systems [13].

In numerous fields, GNN-based methods have demonstrated strong performance [14,15],
effectively capturing intricate interactions and relationships within complex systems. Due
to the inherently structured interaction properties of traffic data, industry practitioners have
also started applying GNNSs in the field of traffic analysis, resulting in a growing body of
research. However, there is currently no systematic review in this area, and existing studies
such as [16,17] emphasize the importance of structured overviews. A systematic review would
summarize existing frameworks and provide guidance on selecting appropriate prediction
methods, graph construction techniques, and feature aggregation strategies for different
tasks. It would also help identify the limitations and future directions of current research
and evaluate the advantages and disadvantages of applying GNNSs in this context. Therefore,
a comprehensive survey is urgently needed, as it is crucial for enhancing the theoretical
understanding and practical applications of GNNSs in network traffic analysis.

To address the research gap in systematic reviews of GNN-based traffic analysis, this
work begins by revisiting fundamental concepts of GNNSs and their applicability to traffic
analysis. We then summarize the current challenges in traffic analysis and the inherent
advantages of GNNs for this domain. We conduct a methodical review of 78 studies (details
in Figure 1). We organize these studies into three prediction task categories: node-level,
edge-level, and graph-level prediction. This allows us to analyze their graph construction
techniques and feature aggregation strategies and conduct a comparative analysis across
different prediction tasks. Finally, we compile publicly available datasets and open-source
resources, and summarize the limitations of current approaches while outlining potential
directions for future research.

The main contributions of this paper are as follows:

1.  Technical Workflow Framework: A structured technical workflow framework for
GNN-based traffic analysis is introduced, serving as a valuable guide for researchers
and practitioners.

2. Comprehensive Task-Based Analysis: This review presents a thorough review of
78 studies categorized by prediction tasks. It summarizes common graph construction
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methods and node aggregation strategies, along with a comparative analysis of
techniques in typical task scenarios.

3. Challenge-Driven Perspective: A unique challenge-driven perspective is provided,
analyzing how representative works tackle key traffic analysis challenges using GNN-
based methods.

4. Curated Resource Collection: A selection of publicly available datasets and open-

source implementations is provided to support reproducible research and benchmark-
ing in GNN-based traffic analysis.
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Figure 1. Statistical data of articles included in survey. (a) Number of articles categorized by year,
(b) number of articles in each field, and (c) number of articles in each level of conference or journal.

The remainder of this paper is organized as follows. Section 2 shows the review
methodology used for the survey. Section 3 reviews existing survey research on GNN-
based traffic analysis. Section 4 discusses challenges and opportunities in network traffic
analysis, emphasizing the advantages of GNNs. Section 5 presents background knowledge
and general framework of GNNs. Section 6 comprehensively reviews GNN-based network
traffic analysis methods. Section 7 summarizes public datasets and open-source code
resources. Section 8 discusses the limitations of this review and future research directions.
Finally, Section 9 concludes the paper.

2. Review Method

This scoping review was conducted and reported in accordance with the PRISMA-
ScR guidelines. The primary objective was to systematically map the literature on GNN
applications in network traffic analysis and network security, identifying research trends,
methodological approaches, and knowledge gaps. No review protocol was registered prior
to the commencement of this study.

We conducted systematic searches across major academic databases including IEEE
Xplore, ACM Digital Library, Scopus, and Web of Science from January 2024 to April 2025.

ZAi

The search strategy combined keywords related to “network traffic analysis”, “network
security”, “GNNs”, “graph feature aggregation”, and “graph-based methods”, restricted to
English-language publications. We included primary research studies that focused on GNN
applications in network traffic analysis or security domains, proposed novel methodologies
with clear technical innovation, and provided reliable experimental evaluations. Preference
was given to studies with open-source datasets and code for reproducibility.

Two reviewers independently performed the study selection process. A third reviewer
resolved any disagreements. Our initial search identified 388 records, as depicted in the
PRISMA flow diagram (Figure 2). After removing duplicates and screening based on title
and abstract, we assessed 147 reports for full-text eligibility. We excluded studies based
on the following criteria: ineligible topics (n = 24), unclear methodology (n = 16), lack of
source code (n = 13), outdated methods (1 = 10), and conference abstracts (n = 6). In the
end, 78 studies met the inclusion criteria and were included in the synthesis.
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Figure 2. The scoping review procedure using PRISMA-ScR.

We performed data extraction using a standardized form. This form covered publica-
tion details, application domains, GNN architectures, graph construction methods, datasets
used, evaluation metrics, and code availability. We performed a descriptive synthesis of
the extracted data, presenting the results through descriptive statistics and visualizations.
Quantitative meta-analysis was not deemed appropriate due to significant heterogeneity
in methodologies, datasets, and evaluation metrics across studies. We used the excluded
survey papers for contextualization in the Related Work chapter, but we did not include
them in the primary synthesis.

3. Related Surveys

This chapter reviews existing surveys from two perspectives: (1) surveys on network
traffic analysis, and (2) surveys on GNN-based traffic analysis tasks.

3.1. Surveys on Network Traffic Analysis

Existing surveys primarily focus on traditional techniques for network traffic analysis. For
instance, Goli et al. [18] and Bhatla et al. [19] reviewed machine learning methods (e.g., supervised
and unsupervised learning), while Azab et al. [20] and Getman et al. [21] compared the strengths
and weaknesses of various approaches. Papadogiannaki et al. [22] explored encrypted traffic
analysis, and Meng et al. [23] briefly mentioned GNNs in decentralized applications. However,
these works lack a systematic analysis of GNN-based methodologies, which is a key focus of
this article.

3.2. Surveys on GNN-Based Traffic Analysis Tasks

Other surveys focus on GNN-based approaches for specific traffic analysis tasks, in-
cluding intrusion detection [24,25], anomaly detection [26,27], cybersecurity solutions [28],
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and malware detection [29]. While these surveys provide valuable insights into GNN ap-
plications in specific areas, they lack a unified perspective and comprehensive framework
for the broader field of traffic analysis.

Existing surveys predominantly address conventional methods with minimal discus-
sion of GNNs, while GNN-related surveys are fragmented and lack a holistic perspective.
To address these gaps, this article provides a systematic review of GNN-based traffic anal-
ysis, unifying diverse methodologies into a coherent framework and offering practical
guidance for researchers and practitioners.

The key content of these surveys is summarized in Table 1, highlighting the gaps
addressed by this article.

Table 1. Related Review Summary.

Surveys Year Task Survey Content
Goli et al. [18] 2018 Real-time traffic analysis Machine learning
Bhatla et al. [19] 2023 Network traffic analysis Machine learning
Traffic Azab et al. [20] 2022 Encrypted traffic analysis Machine learning
Analysis Getman et al. [21] 2022 Encrypted traffic analysis Deep learning
Papadogiannaki et al. [22] 2021 Encrypted traffic analysis Machine learning
Meng et al. [23] 2023 Encrypted traffic analysis Machine, Deep and Graph learning
Bilot et al. [24] 2024 Intrusion detection GNN
Zhong et al. [25] 2024 Intrusion detection GNN
. . Dong et al. [26] 2024 IoT securi GNN
GNN-based Traffic Analysis Pazh% etal. [27] 2023 Anomaly detgtion GNN
Yan et al. [28] 2024 Network infrfastructure GNN
security
Madhoun et al. [29] 2023 Malware detection GNN
Our Survey 2025 Traffic analysis GNN

4. Challenges and Opportunities

This chapter introduces key challenges in network traffic analysis and discusses how
GNN’s address these challenges.

4.1. Challenges in Network Traffic Analysis

We categorize the research directions in the field of traffic analysis into three primary
domains: network analysis, network security, and user privacy. Furthermore, we sys-
tematically classify the GNN-based traffic analysis literature encompassed in this survey
according to their specific problem formulations, as illustrated in Figure 3. Although traffic
analysis problems and their associated research directions exhibit considerable diversity,
the majority of these problems encounter common fundamental challenges.

Network traffic analysis research direction

Network Cvbersecurit User Privacy
analysis y Y Protection

\

Application Malicious .
User Behavior PP . . . Intrusion Anonymization Identity
. Functionality Entity . . .
Analysis N : Detection of Behavior Protection

v Research Detection

Personalized Traffi? . Anoma!ous Illegal Activity Financial Anti-tracking

. Characteristics Behavior . .

Recommendations . o . Detection Privacy Technology

Analysis Monitoring

Figure 3. Research Directions in Network Traffic Analysis.

4.1.1. Training Data Challenges

Training data quality issues significantly compromise traffic analysis model perfor-
mance. Key problems include insufficient data volumes, imbalanced distributions, and
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annotation errors. Small sample problems are particularly severe in specialized domains
like emerging network attacks or rare application types [30], where limited training samples
cause model overfitting and poor generalization to real world scenarios.

Data imbalance affects many traffic analysis tasks. In anomaly detection [31], normal
traffic samples vastly outnumber anomalous ones, causing models to favor majority classes
and compromise minority class recognition. Traffic data annotation is labor-intensive and
error-prone, resulting in mislabeling and inconsistent annotations that further degrade
training quality. For instance, encrypted traffic classification [32] requires in-depth packet
analysis, which becomes extremely challenging in encrypted environments.

Effectively addressing training data quality issues and developing robust algorithms
that adapt to small samples, class imbalance, and annotation inaccuracies represents
a critical challenge in traffic analysis research.

4.1.2. Feature Extraction Challenges

Feature selection involves identifying and extracting the most representative features
from large amounts of network traffic data. This requires a deep understanding of network
protocols and application behaviors. While deep learning approaches can automatically
learn features, their lack of interpretability makes it difficult to understand and validate
the model’s decision-making process, increasing the complexity of model optimization
and deployment.

Additionally, feature tuning becomes complex due to the need to continuously adapt
to evolving network environments and emerging application types, requiring researchers
to constantly update and refine feature extraction strategies. For instance, in encrypted
traffic classification [33], effective features may evolve temporally as encryption algorithms
advance. In anomaly detection tasks [34], the dynamic variations in normal traffic pat-
terns further exacerbate the complexity of feature selection. Developing robust, efficient,
and adaptive feature extraction methodologies represents a pivotal challenge in traffic
analysis research.

4.1.3. Model Design Challenges

The high-dimensional, high-velocity, and high-variability characteristics of network
traffic require models with robust feature extraction and learning capabilities. Traditional
machine learning models often cannot handle complex non-linear relationships effectively.
While deep learning models can automatically learn complex features, their “black-box”
nature makes model interpretation and optimization more difficult.

Furthermore, real-time processing imposes substantial constraints on model design.
For example, in intrusion detection systems (IDSs) [35], models must analyze massive
traffic volumes and make decisions within extremely short timeframes. This demands both
high accuracy and exceptional computational efficiency. Additionally, the dynamic nature
of network environments presents significant design challenges. Emerging application
types, attack vectors, and encryption protocols require models with strong adaptability and
generalization capabilities. For instance, in anomaly detection [36], models must identify
novel attack patterns.

Finally, model interpretability and trustworthiness constitute indispensable design
considerations. In security-sensitive scenarios, high accuracy alone is insufficient; mod-
els must also provide decision rationales to support subsequent analysis and response
actions [37]. Consequently, designing models that can efficiently process complex traffic
data while maintaining superior adaptability, interpretability, and real-time performance
represents one of the core challenges in traffic analysis research.
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4.2. Advantages of GNNs

GNN s offer significant advantages in addressing the three challenges mentioned above.

For training data challenges, GNNs can better utilize limited data by leveraging
graph structure and node relationships. The graph representation captures connectivity
patterns that help improve learning from small datasets and handle class imbalance through
neighborhood information.

For feature extraction challenges, GNNs automatically learn features from graph structure,
eliminating manual feature engineering. The message-passing mechanism enables adaptive
feature learning from node and edge information, reducing the need for domain expertise.

For model design challenges, GNNs provide flexible architectures that can scale to
different network sizes and adapt to various traffic analysis tasks. Their modular design
enables efficient processing while maintaining interpretability through graph visualization.

In the following chapters, we systematically review existing GNN-based traffic analysis
work from three perspectives: node-level, edge-level, and graph-level analysis approaches.

5. Background Knowledge and General Framework

5.1. GNN Background Knowledge
5.1.1. General Graph Structure

Graphs constitute a fundamental concept in mathematics and computer science for
representing relationships between objects. This subsection introduces graph structures
commonly used in traffic analysis, categorized by node and edge types, graph directionality,
and graph attributes. Figure 4 presents a summary of these graph structures.

Homogeneous Graph Heterogeneous Graph
G=(V,E) G=(V,E,A,R)
Directed/Undirected Graph Attribute /Weighted Graph
maa]
mma]
jsss) %
maa]
[maa]
G=(V,E,N",N") G=(V,E,N) G=(V,E,P,F,4) G=(V,E,Q)

Figure 4. Common Graph Structures Used in Network Traffic Analysis.

Homogeneous Graph: A homogeneous graph can be defined as an ordered pair
G = (V,E), where V represents a non-empty finite set of nodes (vertices), and E represents
a finite set of edges (relationships). In this definition, all nodes v € V belong to the same
type (e.g., all are IP addresses), having the same attribute structure and semantic meaning,
while all edges ¢ € E represent the same type of relationship or interaction (e.g., all are
TCP connections).

Heterogeneous Graph: A heterogeneous graph can be defined as an ordered four-tuple
G = (V,E, A, R), where A represents a finite set of entity types (e.g., IP addresses, device
types, user roles, etc.), and R represents a finite set of relationship types (e.g., TCP connections,
HTTP requests, login behaviors, etc.). In heterogeneous graphs, there exist mapping functions
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¢:V = Aand ¢: E — R that, respectively, map network entities and relationships to their
corresponding types.

Directed/Undirected Graph: A directed graph can be defined as an ordered four-tuple
G = (V,E,N*,N7), where Nt :V — 2" is the out-edge adjacency function. For any
v € V,NT(v;) = {vj € V|]ejj € E},and N~ : V — 2V is the in-edge adjacency function.
For any v; € V, N~ (v;) = {vj € V|e;; € E}. An undirected graph can be defined as an
ordered three-tuple G = (V,E,N'), where N : V — 2V is the adjacency function. For any
v; € V,N(v;) = {v]- € V‘eij € E}. In directed graphs, e;; represents a unidirectional con-
nection from v; to v, while in undirected graphs, e;; represents a bidirectional connection.
Edge directionality can be flexibly defined during specific computations according to task
requirements; for example, in directed graphs, in-edges can be represented as positive
numbers and out-edges as negative numbers, or vice versa.

Attributed/Weighted Graph: An attributed graph is defined as a five-tuple
G=(V,E, Py, P, A), where P, : V — 240 maps nodes to attribute sets, P, : E — 24e maps
edges to attribute sets, and A = A, U A, represents the set of all possible attributes. This
structure allows nodes and edges to possess multiple attributes, allowing the representation
of complex network characteristics. A weighted graph can be defined as a three-tuple
G = (V,E,Q), where Q: E — R is a function that maps edges to real-valued weights,
primarily used to represent single numerical features such as traffic volume. In certain stud-
ies, to simplify computation, node attributes may be defined as constants, ie., P, : V — ¢,
where c is a constant value. This simplification can reduce computational complexity while
preserving basic network structure, making it particularly suitable for analysis tasks that
primarily focus on edge attributes or network topology.

Note that graph types are not mutually exclusive, and in practical applications, their
properties can be combined to meet specific task requirements. For example, a weighted
directed graph can be defined as a five-tuple G = (V,E,N*,N—,Q). This structure
combines the directionality of directed graphs with the numerical attributes of weighted
graphs. This flexible approach enables graph models to adapt to various network traffic
analysis scenarios, from simple traffic volume analysis to complex multi-dimensional
network behavior modeling.

5.1.2. Graph Tasks

When constructing graphs, data can be represented as a single large graph for node
or edge prediction through transductive learning. Alternatively, it can be represented as
multiple graph structures, learning from these graphs and then inductively generalizing to
new graphs for graph prediction.

Node Prediction: Node prediction aims to classify individual nodes in network traffic
graphs. In traffic analysis, nodes typically represent individual data packets, flows, or
hosts. The model classifies nodes by learning their features (such as protocol type, port
number, packet size) and topological relationships within the graph. During training,
GNNs aggregate information from neighboring nodes, capturing both local and global
features of the nodes in the traffic graph. For large-scale traffic graphs, mini-batch training
is commonly used, sampling subsets of nodes and their neighborhoods. During prediction,
the model can classify unlabeled nodes in the graph, such as identifying malicious traffic
or specific application types.

Edge Prediction: Edge prediction aims to predict the type or attributes of edges in
traffic graphs. In network traffic analysis, edges may represent connections between hosts,
sessions, or data transmissions. The model learns features of both endpoint nodes and their
interaction patterns. Common approaches include representing edges as combinations
of features from two nodes, or using GNNSs to learn embedding representations of edges.
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During training, negative sampling is typically used, randomly selecting non-existent edges
as negative samples. During prediction, the model can classify potential edges between any
two nodes in the graph, such as detecting anomalous connections or identifying specific
types of network interactions.

Graph Prediction: Graph prediction aims to classify entire traffic graph structures. In
network security and traffic analysis, each graph may represent network activity within
a specific time window or a complete attack session. The model captures the global
topological structure and node feature distribution of the entire traffic graph. A common
approach uses graph pooling operations to aggregate node-level features into graph-level
representations, which are then input to a classifier. During training, each complete traffic
graph is treated as a sample. Training typically requires a large number of diverse traffic
graphs. This enables the model to learn characteristics of various network behaviors and
attack patterns. Graph classification is important for network anomaly detection, attack
type identification, and network status assessment.

5.1.3. Representative GNN Architectures

In this section, we introduce the graph models commonly used in traffic analysis and
summarize their characteristics, as shown in Table 2.

Table 2. GNN Architectures Comparison.

Architecture Key Features Aggregation Methods Attention Mechanism Use Cases
Message passing, . . General tasks,
GNN iterative updates Neighborhood aggregation No node classification
GCN Spectral convolution, localized Neighborhood averaging No Node/graph Clz?sglflcatlon,
link prediction
. . . . Large-scale analysis,
GraphSAGE Inductive learning, scalable Sampling-based aggregation No inductive learning
Edee-GraphSAGE Edge-level prediction, combines node Node and edge No Edge prediction,
and edge features eature aggregation relationship analysis
ge-brap d edge f f ggregati lationship analysi
GAT Attention-based weighting Attention-weighted aggregation Yes (edge-level) Node/graph classification
Graph isomorphism-inspired, Sum aggregation P
GIN R . R s No Graph/node classification
learnable epsilon with epsilon weighting
Meta-path-based . . . -
HAN Meta-path guided aggregation Yes (node and semantic level) Heterogeneous graph analysis

heterogeneous processing

GNN [38]: The GNN was developed to extend deep learning methods to non-
Euclidean data. GNN computation involves two main processes: feature aggregation
and node update. In the feature aggregation stage, each node collects information from
its neighbors to form updated node representations. This process can be represented
as follows:

WD = f(h}”,AGGREGATE({h]@ ] jeN (i)})) (1)

(0
i
node set of node i, and AGGREGATE is an aggregation function used to collect infor-

where /.’ is the feature vector of node i in the I-th layer, N (i) represents the neighbor
mation from neighbors. Through multi-layer aggregation and updates, GNN can gradu-
ally integrate information from distant nodes into node representations, enabling global
information propagation.

GCN [39]: GCN (Graph Convolutional Networks) is an important member of the
GNN family that extends convolution operations to graph-structured data. The core GCN
operation is as follows:

(2)

where H() is the node feature matrix of the I-th layer, A = A + I is the adjacency matrix

g+ — U(D*%ZD*%H(Z)W(Z))

with added self-loops, D is the degree matrix of A, W(!) is the learnable weight matrix, and
0 is the non-linear activation function. The key to this operation lies in the D™ 2AD~:H®
part, which actually performs a weighted average of each node’s neighborhood information.
Specifically, A ensures that each node considers information from itself and its direct
neighbors, while D~2AD~ 2 normalizes the adjacency matrix to prevent nodes with higher
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degrees from dominating the aggregation process. GCN achieves multi-hop information
propagation by stacking multiple layers, enabling the model to capture larger-scale graph
structures. With each additional layer, the receptive field of nodes expands by one hop:

H*Y = ¢(D™AD 3¢ (D77AD 1 .. .o (D #AD T HOWO) . . WI-D )W) (3)

This multi-layer structure allows GCN to progressively aggregate information from
broader ranges, learning more abstract and global feature representations.

GraphSAGE [40]: GraphSAGE (Graph Sample and Aggregation) processes large-scale
graph-structured data. Unlike traditional full-graph methods, GraphSAGE performs node
embedding learning by sampling and aggregating features from neighbor nodes. This
approach reduces computational complexity and enables efficient scaling to larger graph
datasets. GraphSAGE involves two main steps: neighbor sampling and feature aggregation.
First, for each target node, GraphSAGE samples a fixed number of nodes from the neighbor
set using random sampling. Neighbor sampling can be represented as follows:

Ni(0) = SAMPLE(N(v), k) (4)

where N(v) is the set of all neighbors of node v, k is the sampling number, and Ny (v) are the
k neighbors obtained through sampling. This sampling strategy reduces dependency on full
graph data and simplifies computation. Then, GraphSAGE performs feature aggregation
on the sampled neighbor nodes. The feature aggregation formula is as follows:

nk = a(wk : CONCAT(h’;*l,AGGREGATE({h’;;l,w € Nk(v)}))) 5)

KK represents the embedding of node v in the k-th round, Nj(v) is the sampled neigh-
bor set of node v, WK is the trainable weight matrix, and ¢ is the activation function.
GraphSAGE employs various aggregation functions, such as mean, pooling, or LSTM.
Different aggregation functions enable GraphSAGE to capture rich neighbor information.
This flexible approach allows different contextual information to be reflected in node em-
beddings, improving the model’s representational capability. This is especially beneficial
for heterogeneous graphs and data with diverse connection patterns.

Edge-GraphSAGE [40]: Edge-GraphSAGE is a GNN variant specifically designed for
edge-level prediction tasks. As an extension of GraphSAGE, it generates edge embeddings
by aggregating node and neighbor features while considering edge attributes. The node
representation update formula is as follows:

i = (W - CONCAT(hS Y, AGG({p(h " eou) : u € N(©) }))) (6)

where o is the activation function, AGG; is the aggregation function, and ¢ is the function
that combines node and edge features. Edge representations can be generated through
eup) = f (CONCAT (KK, hK, e,,)), combining the final representations of nodes at both
ends of the edge with the original edge features.

GAT [41]: GAT (Graph Attention Network) dynamically allocates importance weights
to neighbor nodes using attention mechanisms. Unlike methods that uniformly weight
neighbor features, GAT enhances the flexibility and accuracy of node feature learning
on heterogeneous graphs. The core computational steps of GAT include the definition of
attention mechanisms and feature aggregation. For each node v and its neighbors u € N(v),
GAT first computes pairwise attention coefficients. This is achieved through a shared linear
transformation and attention mechanism:

eon = LeakyReLU(aT[WthWhu]) 7)

where W is the learnable linear transformation matrix, h, and h, are the features of
nodes v and u, a is the learnable attention mechanism parameter, and || represents the
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vector concatenation operation. Next, GAT normalizes these using softmax to obtain

attention coefficients:
exp(eou) @)

Yjen, exp(eq;)

This attention mechanism enables GAT to perform weighted aggregation, assigning

Koy =

greater weights to more important neighbors.

GIN [42]: The GIN (Graph Isomorphism Network) is inspired by graph isomorphism
testing theory. It captures subtle differences in graph structures, enabling excellent per-
formance in graph classification and node classification tasks. The GIN’s core operation
is a special aggregation and update function that combines a node’s own features with
neighbor features through weighted summation. The GIN update rule is as follows:

1w = MLP® ((1 +e®)-nE VY v hg‘k_l)) ©

where hz(;k) is the representation of node v at the k-th layer, N(v) is the neighbor set of

node v, €% is a learnable scalar parameter, and MLP®) is a multi-layer perceptron. The
key to this formula lies in the (1 + ¢*)) term, which allows the model to flexibly adjust
the importance balance between the central node and its neighbors. The GIN also uses
multi-layer structure and skip-connections. Stacking multiple GIN layers enables the model
to capture broader structural information. Layer outputs are concatenated to form the final
graph representation:

hg = CONCAT (READOUT(D ( {hﬁ})

ve G}),...,READOUT(K)({th)‘v c G})) (10)

The READOUT function can be summation, averaging, or pooling operations. This
design enables the GIN to capture multi-scale structural information. These characteristics
enable GIN to achieve excellent performance in graph classification and node classification,
particularly when fine-grained structural distinction is required.

HAN [43]: The HAN (Heterogeneous Graph Attention Network) is designed for
processing heterogeneous graph data. The HAN involves two main steps: meta-path-
level aggregation and attention-weighted updates. First, for each meta-path M, the HAN
performs aggregation in the corresponding view graph:

nM®) — AGGREGATEM®) ({hﬁ,"*” (u c NM(ZJ)}> (11)

N (v) is the meta-path-based neighbor set, and AGGREGATEM *) is the meta-path-
level aggregation function. Next, HAN uses attention mechanisms to weight different
meta-path results, obtaining the final node representation:

n =y ol 1o (12)
M
ucg\]/? is the attention weight calculated for the path M. In path-level attention learning,

HAN regulates the influence of each path on node representation by computing attention
weights for different paths. The calculation formula for attention weights is as follows:

() _ _ exp(LeakyReLU(a" [y ™ 1))

ay) = : |
M )Y exp(LeakyReLU(aT[hf,vI (k) HhMM (k)]))

(13)

a is the learnable attention parameter, and || represents the vector concatenation
operation. This multi-level approach enables the HAN to capture broader attribute and
relationship information, making it effective for heterogeneous graphs with multiple node
types and relationships.
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5.2. General Framework

Based on the literature of GNN-based traffic analysis, we summarize the general frame-
work into the following steps. First, raw traffic data are collected from various sources
including public datasets, real network traffic, and simulated traffic. Data preprocessing
is then conducted, where preprocessing steps are tailored to specific task requirements,
typically including data cleaning, segmentation, and normalization. Feature extraction is
performed to obtain relevant node and edge features by analyzing the data characteristics.
In the graph construction stage, appropriate graph construction strategies are selected ac-
cording to specific tasks to build different types of graph structures. The graph embedding
process vectorizes node and edge features and aggregates them through GNN architectures
such as GCN and GraphSAGE, or through specialized aggregation mechanisms designed
for specific tasks. After completing graph construction and embedding, classifiers are
trained on the processed data to identify anomalous patterns. The general framework is
shown in Figure 5.
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Figure 5. Graph-based Network Traffic Analysis General Framework.

6. GNN-Based Network Traffic Analysis

Section 6 adopts a three-tier taxonomy of node, edge, and graph prediction to system-
atically review GNN-based traffic analysis methods. This structure reflects fundamental
differences in prediction granularity, addressing entity attribute analysis, interaction mod-
eling, and global pattern recognition, respectively. Recognizing that graph construction
and feature aggregation strategies often vary across prediction tasks due to differing granu-
larity, we have compiled a list of commonly used graph structures and feature aggregation
methods for each task, categorizing them based on their characteristics. These are common
methods that have appeared in recent work. Each subsection follows a consistent ‘graph
construction, feature aggregation, challenge solutions’” pipeline to establish comprehensive
methodological frameworks. Section 6.4 provides a horizontal comparison of different
approaches within the same prediction task across several common and impactful scenar-
ios, directly comparing their performance, resource costs, efficiency, and other trade-offs.
The overall distribution of the included studies—by publication year, research field, and
publication venue—is summarized in the statistical charts presented in Figure 1 (Intro-
duction Section). To assist readers in quickly locating the structure and content, we have
constructed a structural classification tree for Section 6, as shown in Figure 6.
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Figure 6. Structural Classification Tree.

In Section 4, we identified three general challenges in the field of network traffic analy-
sis and highlighted the potential of GNNs to address them. The Challenge Perspectives
in this section build upon that foundation, bridging the theoretical challenges of Section 4
with the practical solutions offered by GNN-based approaches. Incorporated within each
prediction task subsection, these perspectives showcase specific methods that leverage
GNN:s to tackle these challenges in traffic analysis, offering insights and potential solutions
to readers. Notably, in cases where representative traffic analysis solutions for a specific
challenge within a particular prediction granularity were not found, they are not included.

6.1. Node Prediction

In network traffic analysis, node prediction is primarily used to analyze the attributes
or behaviors of individual network entities. Node prediction is appropriate when the
analysis focuses on individual network entities and sufficient node features and neighbor
information are available. Typical applications include anomalous node identification,
malicious device detection, and device or user classification.

6.1.1. Graph Structure

(1) Homogeneous Graph

Homogeneous graphs represent traffic data using a single node type, suitable for
analyzing connections and communication patterns between entities of the same category.

For example, most network traffic analysis tasks (malicious entity identification [44],
intrusion detection [45,46], anomaly detection [47]) represent IP addresses as nodes and
packet-based interactions as edges. Node features typically include statistical metrics
(packet count, byte count, traffic rate), temporal characteristics (activity time, connection
duration), protocol information (protocol types, port usage), and behavioral patterns
(connection patterns, traffic direction).

The specific graph construction depends on the prediction target and the task require-
ments. For example, in account labeling tasks [48], to model interactive behaviors between
transactions, nodes are set as accounts, edges as transaction relationships between accounts,
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and node features include transaction amounts, account balances, transaction counts, and
transaction frequency. In content distribution network optimization [49], nodes can be set as
servers or cache nodes, edges as data transmission paths, and node features include cache
hit rates, response times, and bandwidth usage. In IoT device management [50], nodes
can be IoT devices, edges as communication links between devices, and node features
may include device types, data transmission frequency, and energy consumption levels.
When performing Android application functionality scenario classification, researchers pro-
posed [51] that transitions and dependencies between screens can serve as key information
for classification, constructing a directed transition graph to preserve transition information,
where nodes are screens, edges are transition behaviors, and useful information extracted
from layout files, screenshots, and activity information serves as feature vectors for screens.

(2) Heterogeneous Graph

When network traffic data contain multiple entity types and complex relationships,
researchers use heterogeneous graphs to capture diverse behavioral patterns and integrate
multi-dimensional information. Meta-paths and meta-graphs are key concepts in hetero-
geneous graph representation that enhance the analysis of complex network structures.
Meta-paths are a series of relationship sequences defined on meta-graphs, while meta-
graphs describe different types of nodes in the graph and the possible relationship types
between them.

For illegal mobile gambling detection, Gu et al. [52] constructed heterogeneous com-
munication graphs to model gambling behaviors. This graph contains two types of nodes:
application nodes and server nodes. Based on communication frequency and data vol-
ume information, they constructed meta-paths for four different communication patterns.
This approach captures communication intentions between applications and servers using
multiple edge types, integrating both server and application perspectives.

For botnet detection, Zhang et al. [53] applied heterogeneous graphs to model interactive
behaviors between hosts. In their graph, fine-grained objects in network flows (such as source IP,
protocol, and request) are modeled as nodes, with each node containing attribute information,
such as session timestamps and user agents. Regarding meta-path formulation, the paper
defines 10 symmetric meta paths to capture meaningful semantic relationships in network
flows. Additionally, the paper introduces 7 symmetric meta-graphs to model higher-order
semantic relationships. By using heterogeneous graphs to characterize the complex interaction
patterns and behavioral characteristics of botnets, this work surpasses previous methods in
botnet detection tasks.

For malicious domain detection, Simon et al. [54] used heterogeneous graphs where
nodes represent network entities (domain names, IP addresses) and edges represent inter-
actions (DNS resolution, WHOIS information sharing).

6.1.2. Node Feature Aggregation

After graph construction, GNNs learn node representations by aggregating the features
of nodes and their neighbors.

Early GNN-based traffic analysis research primarily employed classical node aggrega-
tion algorithms. For example, Chowdhury et al. [55] utilized the classical self-organizing
map algorithm to achieve adaptive detection of different types of bot behaviors in bot
detection tasks through unsupervised learning without requiring labeled data.

Recent research has introduced more sophisticated feature aggregation methods for
GNN-based traffic analysis. Hong et al. [56] proposed a method called MalDiscovery for
detecting encrypted malicious traffic. MalDiscovery represents encrypted sessions as nodes
and employs GraphSAGE to generate node embeddings through random neighbor sampling
and feature aggregation. This approach exploits correlations between encrypted traffic sam-
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ples to improve detection accuracy and efficiency. Zhang et al. [53] utilized GCN for node
feature aggregation in botnet detection tasks. This method models network flow objects as
multi-attribute heterogeneous information networks (AHIN). It defines semantic relation-
ships between nodes using meta-paths and meta-graphs, then generates weighted adjacency
matrices. Subsequently, GCN operations are performed on these adjacency matrices. This
method simultaneously utilizes node attributes and topological information while capturing
high-order semantic relationships through neighborhood aggregation. Compared with the
method mentioned earlier by Chowdhury et al. [55], Zhang et al.’s [53] method achieved
higher accuracy on the same task.

Researchers have also developed multi-level structures and hybrid models for complex traffic
analysis scenarios. For detecting real money trading in online games, Tao et al. [57] proposed
a Multi-View Attention Network (MVAN). This approach combines three attention mechanisms:
Multi-Graph Attention Network (MGAT) for social relationships, Behavior Attention Network
(BAN) for character behaviors, and Profile Attention Network (PAN) for attribute features. This
method captures multi-dimensional characteristics of trading activities and outperforms traditional
methods and other GNN approaches. Presekal et al. [49] proposed a hybrid deep learning-based
node aggregation method for attack detection in cyber-physical power systems. This approach
combines graph convolutional networks to capture spatial relationships between substations with
long short-term memory networks to model temporal dependencies. By utilizing spatiotemporal
features, this method improves both the performance and reliability of cyber-physical system
attack detection.

6.1.3. Challenge Perspectives

(1) Training Data Quality Challenges

Zhang et al. [58] proposed a GNN-based framework for industrial IoT intrusion detection
with class-imbalanced samples. The framework designs a network constructor that utilizes
multi-head weighted cosine similarity and network reconstruction techniques to optimize
graph structure and capture semantic relationships between data. Meanwhile, by optimizing
network structure and prediction task loss, it better utilizes limited training data.

Deng et al. [59] proposed a Flow Topology-based Graph Convolutional Network
(FT-GCN) for intrusion detection in IoT networks with limited labels. This method con-
structs an Interval-Constrained Traffic Graph (ICTG) to describe traffic flow topology and
then designs a Node-Level Spatial Attention mechanism (NLS) to enhance key statistical
features. Finally, it employs a Topology-Adaptive Graph Convolutional Network (TAGCN)
to learn combined representations of statistical features and topological structure, achieving
effective intrusion detection with limited labels.

Zhang et al. [60] proposed a model called Heterogeneous Graph Node Reweighting
(HGNR) for detecting piracy video websites with imbalanced data. HGNR captures
complex relationships between websites by constructing heterogeneous graphs containing
multiple meta-relationships and uses a node reweighting mechanism to address node
imbalance problems.

(2) Feature Extraction Challenges

Liu et al. [61] encountered the problem of high-dimensional node features that could
not be effectively aggregated during node prediction when performing account classifi-
cation in Ethereum transaction networks, due to the complex structure of the Ethereum
network. Therefore, Liu et al. [61] proposed the FA-GNN model to address these feature
overload problems through neighbor filtering and feature enhancement. Neighbor filtering
helps screen out important relevant information and reduce noise interference, while fea-
ture enhancement supplements and enriches node features by utilizing high-order neighbor
information, thereby improving classification accuracy in complex network environments.
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Similarly, Lin et al. [62] found that simply aggregating features from neighboring accounts
might introduce noise from different accounts when performing Ethereum transaction
account classification, and similar types of accounts might be indirectly connected through
multiple hops. Therefore, the authors used one-hop and multi-hop aggregators for feature
aggregation, where the one-hop aggregator collects information from direct neighbors, and
the multi-hop aggregator utilizes an importance-based sampling strategy to sample and
aggregate information from more distant neighbors. By balancing local transaction pat-
terns with a broader network context, account classification performance was significantly
improved. However, these two methods were evaluated on different datasets, which limits
direct performance comparisons.

Xie et al. [63] proposed a mobile application recommendation method based on GNN
and multi-view learning (GVARec) to address the feature overload problem in mobile
application recommendations. This method first constructs user and application similarity
matrices and selectively fuses feature information from neighboring nodes. Finally, it
selectively aggregates multi-view prediction scores through an attention mechanism. This
method effectively solves the feature overload problem by fully utilizing rich semantic
information and structural information from heterogeneous graphs.

Dou et al. [64] proposed the CARE-GNN model to address camouflaged fraudster
detection through enhanced node feature processing. Specifically, CARE-GNN adopts
a label-based similarity measurement method to identify feature-rich neighboring nodes.
This approach selects neighbors that are most helpful for node classification by comparing
the similarity of node features, thereby effectively addressing feature camouflage problems.

(8) Model Design Challenges

Due to the constantly changing internet environment, models need to possess the capa-
bility to handle dynamic networks. Therefore, Hei et al. [65] proposed an incremental learning
model called MSGAT++, which effectively addresses the problem of dynamic application
processing in Android malware detection. This model is specifically designed to handle
out-of-sample nodes and can quickly generate embeddings for new applications without
rebuilding the entire heterogeneous information network (HIN) and embedding model. This
incremental design significantly improves training efficiency and model scalability.

We summarize the representative methods mentioned in this section in Table 3.

Table 3. Representative articles on node prediction based on GNNs.

Paper Model Year Task Graph Type Modules Learning
55 - 2017 Botnet detection Homogeneous graph SOM Unsupervised
63 GVARec 2020 Mobile application recommendation Heterogeneous graph GCN, GAT Supervised
47 - 2022 ToT network intrusion detection Homogeneous graph GCN, GIN Supervised
59 FT-GCN 2023 Intrusion detection Homogeneous graph TAGCN Supervised
49 CyResGrid 2023 Anomaly detection Homogeneous graph GCN, LSTM Supervised
56 MalDiscovery 2023 Encrypted malicious traffic detection Homogeneous graph GraphSAGE Supervised
45 FTG-Net-E 2024 DDoS attack detection Homogeneous graph GCN Supervised
62 KYC-GCN 2024 Account labeling Heterogeneous graph GCN Supervised
52 - 2024 Illegal mobile gambling apps Heterogeneous graph HAN Supervised
46 GHGDroid 2024 Android malware detection Homogeneous graph GCN Supervised
65 MSGAT++ 2024 Rapid android malware detection Heterogeneous graph HIN, GAT Supervised

6.2. Edge Prediction

Edge prediction in network traffic analysis primarily focuses on relationships or inter-
actions between network entities. Edge prediction is suitable when research emphasizes
connection patterns between entities and sufficient edge features and node information are
available. However, in practical network traffic analysis applications, edge-level prediction
is used less frequently than node-level prediction. First, edge-level prediction typically
requires detailed edge attribute data, which may be difficult to obtain or annotate in net-
work traffic analysis. For instance, specific link features or labels are often less accessible
than node-level data. Second, edge-level prediction involves more complex computations
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and higher resource consumption, especially in large-scale networks, where processing
numerous edge features and relationships significantly increases model complexity and
training time. With advancing GNN technology and expanding application scenarios,
edge-level prediction research is expected to grow, particularly for applications requiring
detailed relationship analysis, such as network security and traffic optimization.

6.2.1. Graph Structure

Unlike node prediction, edge prediction requires defining nodes and edges along with
their features, while paying special attention to edge directionality and graph dynamics.
Edge directionality may affect the nature of relationships and prediction results [66]; for
example, in communication networks, the direction of data flow is a key feature. Addition-
ally, the time dimension in edge prediction may directly affect the existence of edges, as
certain connections may only exist during specific time periods [67].

In edge-level prediction, node features are often simplified to basic identifiers (such as
IP addresses, port numbers) [68,69] or constant vectors [70-72] to highlight edge feature
information and reduce computational complexity. Edge features include network traffic
statistics [73-75], traffic interaction patterns [70], packet features [71], and communication
link information [72].

(1) Directed Graph vs. Undirected Graph

Many tasks use directed graphs to more accurately capture interactions with strong direc-
tionality, sequentiality, or obvious causal relationships. For example, Yang et al. [73] utilized
directed graphs to represent the directionality of HTTP requests, better characterizing the complex
relationships in network traffic. Similarly, Fu et al. [70] and Nguyen et al. [76] used directed graphs
to capture traffic interaction dynamics and directionality, improving detection performance and
real-time update capabilities. In the field of network intrusion detection, Caville et al. [74] and
Xu et al. [68] adopted directed graphs to show communication directions between hosts, thereby
improving the ability to identify intrusions and anomalies. Altaf et al. [77] utilized directed graphs
to capture communication flows, enhancing detection capability for sophisticated network attacks.

In contrast, undirected graphs are suitable for interactions without clear directionality
or when simplifying model design to reduce computational complexity. They emphasize
peer-to-peer relationships between devices. For example, Duan et al. [78] used dynamic
undirected graphs, highlighting the importance of interaction patterns between devices.
Song et al. [75] used undirected bipartite graph structures to flexibly adapt to the dynamics
of e-commerce platforms, achieving fraud detection through subgraph analysis.

(2) Dynamic Graph vs. Static Graph

Network traffic is inherently dynamic, with connection establishment, disconnection,
and traffic fluctuations that require real-time capture and analysis. Therefore, in edge-level
prediction, researchers often use dynamic graphs to model these changes. For example,
Fu et al. [70] and Nguyen et al. [76] utilized dynamic graphs to reflect real-time traf-
fic pattern changes, improving system adaptability to newly emerging interactions.
Caville et al. [74] relied on dynamic directed graphs to update and evaluate changes
in network activities, thereby supporting self-supervised anomaly detection.

For stable network structures and relationships, researchers use static graphs to capture
persistent patterns. Gu et al. [79] adopted static graphs to clarify topological relationships
between network entities, which is particularly helpful for identifying global attack patterns.
Xu et al. [68] used static graphs to capture long-term connections and communication
characteristics between IoT devices, enhancing the detection and analysis capabilities
for intrusions.
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6.2.2. Edge Feature Aggregation

Researchers typically utilize classic GNN models or design their variants for edge
feature aggregation. For example, Caville et al. [74] proposed the Anomal-E method, which
combines Edge-GraphSAGE with Deep Graph Infomax (DGI) to achieve self-supervised
learning, generating meaningful edge embeddings without requiring labeled data.
Duan et al. [78] extended Edge-GraphSAGE to dynamic graphs by introducing a tem-
poral dimension. Their method simultaneously considers spatial and temporal features
of network traffic, improving intrusion detection performance. Song et al. [75] designed
the R-GIN model for edge feature aggregation to address collective fraud detection on
e-commerce platforms. When processing heterogeneous graphs, R-GIN considers edge
types (normal and fraud) to be important features. In subgraphs, R-GIN aggregates infor-
mation from neighboring nodes while combining edge type information to update node
representations. Through this approach, R-GIN can effectively distinguish between normal
and fraudulent behavior in edge classification tasks.

In addition to creating variants of classic graph models, researchers use model fu-
sion and feature preprocessing approaches to enhance the effectiveness of edge feature
aggregation. Altaf et al. [77] proposed a novel GNN framework that fuses spectral con-
volution and spatial convolution methods for edge feature aggregation, aiming to learn
spectral and spatial features in graph structures. This method handles multi-edge and
multi-dimensional edge features through a three-layer spectral-spatial-spectral structure,
improving performance in network intrusion detection systems. Fu et al. [70] proposed
an edge pre-clustering strategy that utilizes the sparsity of edge distribution in the graph
structural feature space, employing the DBSCAN algorithm for density clustering. By
extracting and normalizing key graph structural features, such as vertex in-degree and
out-degree, this method can effectively distinguish between malicious and benign traffic.

6.2.3. Challenge Perspectives

(1) Training Data Quality Challenges

Xu et al. [68] proposed the EE-GCN model to address intrusion detection problems
under insufficient sample conditions in Industrial Internet of Things (IloT). They con-
structed a two-layer GCN network to extract edge features. The first layer GCN updates
node features by aggregating information from direct neighbors through matrix operations.
The second layer GCN further aggregates the updated node features, capturing broader
neighbor information and thereby extracting deeper-level edge features. This addresses
the challenge where insufficient training samples in IloT environments lead to poor model
performance, as existing GNN-based methods fail to fully utilize limited data information.

(2) Model Design Challenges

Baahmed et al. [71] conducted research on the “black box” properties of GNNs in
network intrusion detection tasks. They adapted the existing GNNExplainer method to
explain the decision-making process of GNNs in their specific application. Specifically,
they adapted GNNEXxplainer for edge classification tasks to apply feature masks and edge
masks on edges, thereby identifying the most important features and edges for predictions.
Through this approach, they can better understand the topological relationships and
features that GNN models utilize when detecting network intrusions, thus improving the
model’s interpretability.

The references related to edge prediction mentioned in this subsection are summarized
in Table 4.
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Table 4. Articles on edge prediction based on GNNE.
Paper Model Year Task Graph Type Modules Learning

75 R-GIN 2021 Fraud detection Undirected Dynamic GIN Supervised
73 WTAGRAPH 2022 Web tracking detection Directed Static GNN Supervised
74 Anomal-E 2022 Intrusion detection Directed Dynamic Edge-GraphSAGE Self-supervised
76 TS-IDS 2023 IoT intrusion detection Directed Dynamic GAT Self-supervised
68 EE-GCN 2023 IoT intrusion detection Directed Static GCN Supervised

70 HyperVision 2023  Malicious traffic detecting Directed Dynamic GNN Unsupervised
71 - 2023 Intrusion detection Directed Static Edge-GraphSAGE Supervised
78 - 2023 Intrusion detection Undirected Dynamic GNN Semi-supervised
77 - 2023 IoT intrusion detection Directed Static GCN, GAT Supervised
69 - 2024 Intrusion detection Undirected Static GAT Self-supervised
79 - 2024 Intrusion detection Directed Static Edge-GraphSAGE Self-supervised
72 CTGNN 2024 Intrusion detection Undirected Dynamic GNN Supervised

6.3. Graph Prediction

Graph prediction aims to utilize GNNs for predicting and analyzing the entire network
traffic graph structure or its global properties. This type of task focuses not only on
individual nodes or edges, but on the behavior, patterns, or states of the entire network.

6.3.1. Graph Structure

In graph-level prediction, researchers often model traffic as a communication pattern
graph, a traffic correlation graph, and a special graph structure according to the different
characteristics of the network traffic to be analyzed [80,81].

(1) Communication Pattern Graph

Communication pattern graphs model direct interaction relationships between net-
work entities by representing actual communication flows, temporal sequences, and behav-
ioral patterns among network components.

The most common method is to use flows as graph nodes. For example, Shen et al. [82] in
intrusion detection tasks used flows as nodes with edges representing temporal relationships
between flows, effectively capturing attack sequence patterns. Chen et al. [83] also employed
flows as nodes in DDoS attack detection tasks. However, their edges represented both tempo-
ral relationships and transmission direction information, enhancing attack traffic identification
capabilities. In malicious software traffic identification tasks, Han et al. [84] further enriched
node attributes to include features such as flow size and direction, thereby improving the
model’s sensitivity to malicious traffic.

Beyond standard flow-based approaches, some research has constructed task-specific
communication pattern graphs to address domain-specific requirements. Gao et al. [85] used
HTTP request content types as nodes in website fingerprinting tasks, employing multi-level
edge structures (packet, traffic, and host edges) to improve website identification accuracy.
Xu et al. [86] constructed a bipartite graph for mobile application encrypted traffic classifi-
cation using IP addresses and application port numbers as distinct node types to capture
application network behavior. Feng et al. [87] developed graph structures based on program
execution flow for PHP Webshell detection, converting PHP scripts into Inter-procedural
Control Flow Graphs, with nodes representing PHP statements and edges representing control
flow relationships. Kisanga et al. [88] used various network entities (such as accounts) as
nodes in network anomaly detection to construct comprehensive network behavior graphs
for detecting potential anomalous activities.

Special graph structures further enrich communication pattern graph construction.
Li et al. [89] modeled network devices and communication flows as heterogeneous
graphs, where nodes represent different device types and edges represent network com-
munications, introducing Express Edges to improve large-scale graph analysis efficiency.
Cui et al. [90] addressed IPv6 user activity correlation attacks by constructing heteroge-
neous graphs for each IPv6 client address, where nodes include clients, servers, and
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fingerprint nodes, and edges represent communication relationships, utilizing multi-type
semantic metadata to accurately describe user activities.

(2) Traffic Correlation Graph

Traffic correlation graphs capture statistical correlations and dependencies between
different network traffic features, focusing on data characteristics rather than direct com-
munication interactions. We categorize the related work on traffic correlation graph con-
struction methods into five main categories: using byte values as nodes, using data packets
as nodes, using network addresses or flows as nodes, using events or messages as nodes,
and methods that comprehensively consider traffic flow directions.

Methods using byte values as nodes can capture the statistical characteristics and cor-
relations of data at a highly abstract level. For example, Zhang [91] and Hu et al. [92] used
byte values as nodes in encrypted traffic classification tasks. They created edges by calculat-
ing Pointwise Mutual Information (PMI), establishing connections only between byte pairs
with positive PMI values. This method demonstrates strong performance in tasks such as
identifying overall data patterns, detecting anomalies, and performing correlation analysis.

Methods using data packets as nodes focus more on capturing content and structural
information. In encrypted network traffic classification tasks, Okonkwo et al. [93] modeled
the first ten data packets of each session as a ten-node graph. Edges bidirectionally connect
adjacent preceding and following nodes. Huoh et al. [94] used raw byte data as node
attributes, with edges representing temporal relationships and time intervals between data
packets. They also introduced traffic meta-features as graph-level attributes. In malicious
traffic classification tasks, Yang et al. [95] proposed the Malicious Traffic Interaction Graph
(MTIG). This approach groups nodes based on data packet burst information and adds
undirected edges within and between groups, effectively capturing features and structures
within individual traffic flows.

Methods using network addresses or flows as nodes focus on analyzing communica-
tion interaction correlations. Fu et al. [96] used network addresses as nodes in unknown
encrypted malicious traffic detection tasks. Edges represent communication interactions
between addresses, enabling detection of potential malicious activities through traffic com-
munication correlation learning. Zhao et al. [97] in anonymous network traffic identification
tasks proposed two complementary graph structures: the Attribute Relation Graph (ARG)
and the Temporal Relation Graph (TRG). ARG establishes edge connections through key
flow attributes, capturing request-response patterns in network sessions. TRG focuses on
temporal relationships between flows, calculating edge weights using Gaussian kernel
functions based on the assumption that temporally close flows may belong to the same
network activity.

Methods using events or messages as nodes focus on capturing correlations between
attributes and message substructures. Wang et al. [98] used attribute values of behavioral
events as graph nodes in behavioral event analysis and anomaly detection tasks. Edges
represent co-occurrence relationships between attribute values, effectively capturing statis-
tical associations between various behavioral event attributes. Zhang et al. [99] constructed
directed attributed graphs from CAN message streams within given message intervals for
the task of rapid anomaly detection in controller area networks (CAN), capturing substruc-
tural features of CAN messages using graph-level algorithms, and implementing anomaly
detection and attack classification via a two-stage cascaded classifier.

Additionally, Zhu et al. [100] proposed a method that comprehensively considers
flow directions, providing new insights for tasks such as darknet application classification.
Their proposed Darknet Traffic Graph generates forward and reverse nodes for each flow.
Node features include packet count, size, and arrival time intervals, with positive and
negative values distinguishing flow directions. Nodes of the same type are placed in the
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same layer and linked. Nodes between different layers are connected through a Cartesian
product-like approach, preserving traffic direction information along with temporal and
feature information.

(3) Special Graph Structure

Besides communication pattern graphs and traffic correlation graphs, researchers have
also explored novel graph structures to address specific tasks.

For example, Pham et al. [101] constructed hybrid graphs that combine traffic correlation
graphs with features from communication pattern graphs. This approach uses combinations
of IP addresses and port numbers as nodes, with traffic interactions as edges. It focuses on
modeling traffic statistical characteristics and correlations between network entities. Meanwhile,
it also preserves some communication pattern elements such as temporal information, bidirec-
tional traffic distinction, and protocol information. In Android malware detection and webpage
classification tasks, researchers use natural language processing and semantic information
to construct graph structures for predictions. Pei et al. [102] used NLP techniques to extract
word-level, character-level, and lexical-level features of Android applications. They combined
these with static features such as permissions, components, and API calls, constructing semantic
relationship graphs for malware detection. Guo et al. [103] parsed webpage text into graphical
representations for webpage classification. Nodes contain text, visual, and structural attributes,
while edges are based on visual associations and DOM hierarchical relationships, constructing
semantic relationship graphs.

6.3.2. Graph Feature Aggregation

Based on the development trajectory of GNNs and current academic consensus [104,105],
graph feature aggregation methods can be categorized into the following four types: simple
aggregation methods, attention mechanism aggregation, graph convolution aggregation,
and advanced aggregation methods. This subsection reviews recent work on graph feature
aggregation strategies based on this classification.

(1) Simple Aggregation

In network traffic analysis, graph-based prediction approaches using simple aggregation
methods primarily employ average aggregation and its variants. Li et al. [106] used classic
average aggregation methods to process vertex and neighbor features. This method is insensi-
tive to neighbor ordering, suitable for non-Euclidean data structures, and effectively learns
graph information through iterative updating of feature matrices. Busch et al. [107] proposed
the NF-GNN model which adopts a more complex variant of average aggregation. This
approach separately performs average aggregation on incoming and outgoing edge features,
then concatenates them and obtains node representations through learnable transformations.
This method can more effectively handle edge attributes and bidirectional traffic information
in network flow graphs. Average aggregation methods demonstrate strong performance in
handling non-sequential features.

(2) Attention Mechanism Aggregation

Wang et al. [98] proposed the BIG model which, adopts a variant of basic atten-
tion aggregation. This model learns attention weights to aggregate node information
and generate event representations, effectively capturing complex behavioral patterns.
Cui et al. [90] adopted a three-layer attention mechanism to aggregate heterogeneous
graph information, specifically: node-level attention to capture meta-path specific neighbor
information, semantic-level attention to fuse semantics from different meta-paths, and
graph-level attention to aggregate global node information. By employing heterogeneous
graph representation and hierarchical attention aggregation methods, this approach can
efficiently learn correlations between IPv6 addresses.
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(3) Graph Convolution Aggregation

In graph-based network traffic analysis, graph convolution aggregation is widely applied.

For encrypted traffic analysis tasks, Chen et al. [83] proposed an Ensemble Graph
Neural Network (EGNN) architecture combining three models: the GCN, Gated Graph
Neural Network (GGNN), and Capsule Graph Neural Network (CapsGNN). The GCN
extracts features between adjacent nodes through a two-layer structure, the GGNN uses
a GRU-like structure for message passing, and the CapsGNN uses dynamic routing al-
gorithms for information processing. Voting and stacking mechanisms integrate results
to improve classification accuracy and robustness. Zhang et al. [92] proposed improved
graph feature aggregation methods based on GraphSAGE, performing average aggregation
on neighbor node messages and concatenating them with node features to form updated
representations. They introduced skip connection aggregation strategies to address over-
smoothing problems and capture multi-scale information by stacking GraphSAGE up to
4 layers. Pham et al. [101] adopted the Deep Graph Convolutional Neural Network (DGCNN)
for efficient application program classification, using 4 graph convolution layers to extract
node representations, processing graphs through a SortPooling layer, and applying 1D convo-
lution, MaxPooling, and fully connected layers for final classification. In anomaly detection
tasks, Kisanga et al. [88] constructed a supervised GCN model that includes an input layer,
16 hidden layers, and an output layer. In the feature aggregation process, the input layer
receives node features and embeddings, propagating and aggregating neighbor node informa-
tion through graph convolution operations in the hidden layers.

In website fingerprinting tasks, Gao et al. [85] proposed using a customized GCN
structure to handle heterogeneous graphs. This method first converts website browsing
traffic into heterogeneous spatiotemporal graph representations, then aggregates and updates
edge features and node features separately through multi-layer convolution structures. By
adopting the message passing paradigm and multi-layer structure, this method can effectively
capture complex relationships in graphs. Finally, it predicts the category of heterogeneous
spatiotemporal graphs by processing and integrating the output from each layer.

(4) Advanced Aggregation

Advanced aggregation methods are typically used in deep GNNSs to address issues
such as information propagation, over-smoothing, and gradient vanishing. This approach
implements aggregation using Equation (14).

l%::CONCAHREADOUTQhﬁ

veGb%:QL“qm (14)

For example, Shen et al. [82] proposed using advanced aggregation methods to ac-
curately identify distributed applications through encrypted traffic analysis. The specific
steps include using multi-layer perceptron to update node features, performing READOUT
operations on each layer, and finally concatenating the results of all layers. The main ad-
vantages of this method lie in its ability to capture graph structure information at different
scales and adaptively select feature combinations. Compared to other methods, it preserves
more structural information and is more flexible in utilizing multi-layer information.

6.3.3. Challenge Perspectives

(1) Training Data Quality Challenges

Yu et al. [108] encountered data imbalance problems in encrypted malicious traffic
identification tasks, where malicious traffic constitutes an extremely small fraction of the
total traffic. To address this issue, they modeled TLS sessions as state transition graphs and
added statistical information to form attribute graphs as session fingerprints. By adopting
the shortest path graph kernel method, they effectively measured the similarity between
attribute graphs generated by TLS sessions. This approach maps data points to Hilbert
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space for classification. This approach not only comprehensively captures the sequential
and statistical features of encrypted traffic, but also demonstrates superior performance
and robustness on extremely imbalanced datasets.

(2) Feature Extraction Challenges

To improve the effectiveness of feature extraction in anonymous network traffic identi-
fication tasks, Zhao et al. [97] adopted several innovative approaches. First, they selected
flow sequences as input, thereby preserving the spatiotemporal correlations of traffic
data. Second, by defining and utilizing attribute relationships and temporal relationships
between flows, they further enhanced the expressive power of features. Based on these re-
lationships, they proposed a method based on the Residual Graph Convolutional Network
(ResGCN). This method represents flow sequences as graph structures for information
exchange and feature extraction. Their experimental results demonstrated that this method
extracted more discriminative and effective features compared to baseline approaches.

(3) Model Design Challenges

To address the challenge of model adaptability for unknown data, Fu et al. [96] proposed
the HyperVision system for unknown malicious traffic detection tasks. They constructed
a flow interaction graph to represent the interaction patterns of network traffic. Through
aggregation of short traffic flows and recording of long traffic feature distributions, they
effectively reduced graph complexity while preserving key information. HyperVision adopts
unsupervised graph learning methods and achieves detection of abnormal interaction patterns
through steps including graph preprocessing, key vertex identification, and edge clustering.
This approach does not rely on prior knowledge of known attacks or labeled datasets, and
can effectively identify encrypted malicious traffic with unknown patterns.

Similarly, Qin et al. [109] captured network interaction patterns by constructing Host
Interaction Graphs (HIGs) and integrated them with traditional traffic features to form
comprehensive network behavior representations. They further used unsupervised clus-
tering methods to establish normal behavior models, then detected anomalies based on
distance metrics. This approach combines an inductive learning framework, enabling the
system to effectively capture complex network behavior patterns without labeled data and
enhancing the detection capability for unknown attacks.

Wang et al. [110] proposed the TGPrint method, which uses a graph prediction ap-
proach to solve the problem of unknown encrypted traffic attack fingerprint classification.
This method converts preprocessed traffic into attack graphs and uses graph convolutional
attention networks to extract key attack behavior patterns from these graphs, generating
attack fingerprints. This graph-based approach can capture the essential characteristics and
high-level behavior patterns of attacks, rather than being limited to features of specific attack
vectors, thus demonstrating strong generalization capability when facing unknown attacks.

This section summarizes recent graph prediction work in the field of traffic analysis,
with representative methods summarized in Table 5.

Table 5. Representative articles on graph prediction based on GNNs.

Paper Model Year Task Graph Type Modules Learning
[90] SIAMHAN 2020 IPv6 address correlation attacks Undirected Static HAN Supervised
[107] NF-GNN 2021 Malware detection Directed Dynamic GNN Supervised
[109] XNBAD 2022 Anomaly detection Undirected Dynamic GraphSAGE Supervised
[98] - 2022 Anomaly detection Undirected Static GAT Supervised
[86] TrafficGCN 2022 Encrypted traffic classification Undirected Static GCN Supervised
[88] - 2023 Anomaly detection Directed Static GCN Supervised
[83] E‘gFNFI;I 2023 Encrypted traffic classification Directed Static GCN Supervised
[91] TFE-GNN 2023 Encrypted traffic classification Undirected Static GraphSAGE Supervised
[92] TCGNN 2023 Network traffic classification Undirected Static GCN Supervised
[93] - 2023 Network traffic classification Directed Static GraphConv Supervised
[106] IBGC 2024 Encrypted traffic classification Directed Dynamic GraphSAGE Supervised
[85] RKHSTGCN 2024 Website fingerprinting Undirected Dynamic HAN Supervised

[84] - 2024 Intrusion detection Undirected Dynamic GCN, GIN, GAT Supervised
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6.4. Benchmark Analysis Across Key Scenarios

To elucidate the practical trade-offs among GNN-based approaches, this section con-
ducts a systematic comparison across three pivotal network security scenarios: malicious
traffic detection (CTU-13 dataset), intrusion detection (UNSW-NB15 dataset), and IoT in-
trusion detection (ToN-IoT dataset). The selection criteria emphasize benchmark datasets
with multiple published results to ensure methodological comparability.

Case Study 1: Malicious Traffic Detection (CTU-13 Dataset)

As shown in Table 6, While all three methods achieve 99% accuracy on CTU-13 dataset,
Hong et al.’s multi-view GraphSAGE [56] demonstrates marginal superiority in detection
precision. Zhang et al.’s heterogeneous graph approach [53] offers enhanced semantic
modeling capabilities, albeit with a 0.63% accuracy trade-off relative to [56], suggesting
a computational cost-benefit consideration for practitioners.

Table 6. Malicious Traffic Detection Methods Comparative Analysis.

Method Graph Type Model Accuracy F1-Score Key Advantages
Chowdhury et al. [55] Directed Graph Basic GNN 99% - Efficient search (0.1% nodes)
Hong et al. [56] Attributed Graph GraphSAGE 99.9% Multi-view feature fusion

Zhang et al. [53] Heterogeneous Graph HGCN 99.27% 93.26% High-order semantic modeling

Case Study 2: Intrusion Detection (UNSW-NB15 Dataset)

As shown in Table 7, Deng et al.’s edge-level prediction [59] achieves 88.45% F1-score
through self-supervised learning, demonstrating particular efficacy in label-scarce environments.
This contrasts with Caville et al.’s node-level TAGCN [74], which attains 98.7% accuracy but
requires full supervision, highlighting a critical trade-off between annotation requirements
and performance.

Table 7. Intrusion Detection Methods Comparative Analysis.

Method Prediction Level Model Accuracy F1-Score Training Paradigm
Deng et al. [59] Edge Edge-GraphSAGE 98.18% 88.45% Self-supervised
Caville et al. [74] Node TAGCN 98.7% - Supervised
Han et al. [84] Graph GIN 98.42% - Supervised

Case Study 3: Intrusion Detection (ToN-IoT Dataset)

Table 8 uncovers divergent optimization paths for IoT environments: Duan et al.’s CTGNN [78]
achieves near-perfect detection (99.98%) through comprehensive graph processing, whereas Gu
et al.’s DLGNN [79] prioritizes computational efficiency with minimal performance degradation
(0.18% accuracy difference). This dichotomy illustrates the growing specialization of GNN architec-
tures for resource-constrained deployments.

Table 8. IoT Intrusion Detection Methods Comparative Analysis.

Method Graph Type Model Accuracy F1-Score Specialization
Duan et al. [78] Attributed Graph CTGNN 99.98% 99.96% New behavior detection
Gu etal. [79] Line Graph DLGNN 99.8% 99.85% Label-efficient
Lietal. [89] Heterogeneous Graph RGCN - 97.78% Multi-graph fusion

The synthesized findings demonstrate several key trends in GNN-based security an-
alytics. Node-level methods consistently deliver superior accuracy (98.7 to 99.98%) but
necessitate extensive labeled data, making them suitable for well-instrumented networks.
Edge-level approaches present a viable alternative for operational environments with limited
ground truth, as evidenced by the 88.45% F1-score achieved through self-supervision in [59].
Heterogeneous graph modeling emerges as particularly effective for complex threat scenarios,
with multi-view [56] and high-order semantic [53] approaches showing consistent advantages,
albeit at increased computational overhead. The temporal progression of results (2017-2024)
further indicates steady performance improvements against evolving attack patterns, with
recent methods exhibiting enhanced robustness to novel threats as seen in [78,79].
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7. Public Datasets and Open-Source Code

7.1. Public Datasets

Table 9 presents the datasets used for different tasks in the surveyed literature, includ-
ing both publicly available datasets and datasets created by researchers, to facilitate future

research and enable reproducible experiments.

Table 9. Public Dataset Summary.

Dataset Category Task Link Reference  Related Work
. L . . https:/ /mcfp.felk.cvut.cz/publicDatasets, ~
MCFP Public Malicious Traffic Detection accessed on 22 October 2025. [56]
. . . https:/ /github.com/fuxiAIlab /JusticePC, ,
JusticePC Self-made Malicious Account Detection aceessed on 22 October 2025, [48] [48]
Pirated Video . . . . https:/ /github.com/lirenjieArthur /pirated-video-
Websites Dataset Self-made Pirated Video Website Detection websites, accessed on 22 October 2025. (51 (51l
. . L. . http:/ /mawi.wide.ad.jp/mawi,
MAWI Public Detecting Encrypted Malicious Traffic accessed on 22 October 2025. [62] [62]
Malicious Traffic 3 .. . . . https:/ /github.com/fuchuanpu/HyperVision,
Encryption Dataset Self-made Malicious Traffic Encryption Detection accessed on 22 October 2035, [63] [63]
. _ . http://odds.cs.stonybrook.edu/yelpchi-dataset, -
Yelp Public E-commerce Fraud Detection accessed on 20 June 2025. [66] [66,75]
. . http:/ /jmcauley.ucsd.edu/data/amazon,
Amazon Public E-commerce Fraud Detection accessed on 22 October 2025. [66] [66]
. . e e https:/ /data.iptas.edu.cn/web/tbps,
CERNET-2022-Service Self-made Encrypted Traffic Classification accessed on 22 October 2025. [77] [77]
Mobile Application 3 X https:/ /soeai.github.io/MAppGraph,
Traffic Dataset Self-made Encrypted network traffic accessed on 20 June 2025. [85] [88]
3 . . https:/ /www.stratosphereips.org/datasets-ctul3, -
CTU-13 Public Bot Detection accessed on 22 October 2025. [111] [53,55,56]
. . https:/ /ocslab.hksecurity.net/Datasets/can-signal-
CAN Sdlgrnal Elxttfactlon Public CAN Intrusion Detection extraction-and-translation-dataset, [112] [77]
and ransiation accessed on 22 October 2025.
. . https:/ /www.sec.cs.tu-bs.de/people/arp/drebin, )
DREBIN Public Android Malware accessed on 22 October 2025. [113] [46]
. . https:/ /www.cic.gc.ca, ;
CICAndMal2017 Public Malware Detection accessed on 22 October 2025. [114] [65]
. . https:/ /github.com/Praguard,
Praguard Public Malware Traffic accessed on 20 June 2025. [115] [107]
https:/ /github.com/henryRDlab/
SGCC Public Anomaly Detection in Industrial IoT Electricity TheftDetection, accessed on 22 October [116] [58]
https:
BoT-IoT Public Intrusion Detection / /ieee-dataport.org/documents/bot-iot-dataset, [117] [68,76,78]
accessed on 22 October 2025.
https:
ToN-IoT Public Intrusion Detection / /research.unsw.edu.au/projects/toniot-dataset, [117] [68,72,78,79,89]
accessed on 22 October 2025.
. . . https:/ /www.unb.ca/cic/datasets/ids-2018.html,
CSE-CIC-IDS2018 Public Intrusion Detection accessed on 22 October 2025. [117] [66,76,110]
https:/ /www.unsw.edu.au/engineering/our-
UNSW-NB15 Public Intrusion Detection story/our-research/ cyber-security-research / (18] [59,74,84]
unsw-nb15-dataset,
accessed on 20 June 2025.
https:
BoT-IoT-V2 Public Intrusion Detection //github.com/UNSW-NB15/NF-BoT-IoT-v2, [119] [78]
accessed on 22 October 2025.
https:
ToN-IoT-V2 Public Intrusion Detection / / github.com /UNSW-NB15/NF-ToN-IoT-v2, [119] [78]
accessed on 22 October 2025.
. . . https:/ /github.com /UNSW-NB15/NF-CSE-CIC- ,
CSE-CIC-IDS2018-V2 Public Intrusion Detection IDS2018-v2, accessed on 22 October 2025. [119] [74,78]
https:
CIC-Darknet2020 Public Intrusion Detection / /www.unb.ca/cic/datasets/malmem-2020.html, [120] [59,100]
accessed on 20 June 2025.
https:/ /www.unb.ca/research/iscx/datasets/ tor-
ISCX-Tor2016 Public Network Traffic Classification dataset.html, [121] [59,97]
accessed on 22 October 2025.
1SCX-Vpn2016 Public Network Traffic Classification https://www.unb.ca/cic/datasets/vpn-2016 html, 1,7 [83]
accessed on 20 June 2025.
https:
UNB-ISCX Public Intrusion Detection //www.unb.ca/cic/datasets /malmem-2020.html, [122] [92,94]
accessed on 20 June 2025.
. . P http:/ /www.takakura.com/Kyoto_data,
Kyoto Public Network Traffic Classification accessed on 22 October42025. [123] [98]
AndroZoo Public Encrypted Mobile App Traffic https://androzoo.uni.lu, [124] [102]

accessed on 22 October 2025.

7.2. Open-Source Code

Table 10 summarizes the available open-source code from the reviewed studies to

support reproducible research and comparative analysis in network traffic analysis.
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Table 10. Open-Source Code Summary.

Year Model Task Framework GitHub Related Work
2023 MalDiscovery Malicious Traffic Detection - http:/ /galz};::slzgl:)]r/l ;; t(;zg Eérl\gglzglscovery, [56]
2019 MVAN Real Currency Transaction Detection TensorFlow httpS:a/C/C igggb(ﬁ);;/ofz(;ﬁéiazbo/zl;/l\/AN’ [57]
2020 CARE-GNN Cybercrime Detection Pytorch https:/ gfég;:g;g?{; g;gégfgé;’;bhaud’ [64]
o/ /ol 8 ine ac 7
2024 HAWK Android Malware Classification TensorFlow httpb'/gégéte};::;g;nz/f g 35]3De Srt%l;él AWK, [65]
2023 TS-IDS IoT Network Intrusion Detection Pytorch https;/Cégétsfe\gb(;og/C})’t:ti:;i?tzco/zgs- IS, [76]
2023 HyperVision Encrypted Malicious Traffic Detection - https://g;z?;igg;{;;g::;b}fg/Zlgzyé)pcr\/lswm [77]
2022 E-GNNExplainer Network Intrusion Detection - hitps:/ /github.com /Eaglefycl 107/F CNNExplainer, (71]
2024 IBGC Encrypted Network Traffic Classification - http Saéc/egs‘st:; 2;02‘; 8?{;%;:32](1;2&‘5/113‘5(" [106]
https:
2022 BIG Anomaly Detection - / / github.com/SlothfulZhu/Wrongdoing-Monitor, [98]
accessed on 22 October 2025.
) P R https:/ /soeai.github.io/MAppGraph,
2021 MAppGraph Encrypted Network Traffic Classification accesse d on 22 October 2025, , [101]
2024 TLSFingerprint Encrypted Malicious Traffic Detection Pytorch https://github.com /wesly2000/TLSFingerprint, [108]

accessed on 22 October 2025.

8. Discussion
8.1. Limitations

This review has several limitations. First, we only included research published in
English and indexed in major databases, which may have resulted in the omission of some
relevant studies. Second, heterogeneity in methods and evaluation metrics across studies
may limit the comparability of results. Additionally, unpublished and gray literature were
not considered.

Beyond these general limitations, the application of Graph Neural Networks (GNN5s)
to network traffic analysis introduces specific challenges that warrant further discussion.
While GNNs offer unique advantages in capturing spatial and relational patterns in traffic
data, their scalability remains a critical issue when dealing with large-scale network graphs.
For instance, the computational overhead of training GNNs on graphs with millions of
nodes and edges, as highlighted in the benchmark analysis (e.g., the trade-offs in computa-
tional efficiency for methods like Zhang et al.’s HGCN [53] and Gu et al.’s DLGNN [79]),
can hinder real-time deployment. Moreover, the high training latency of GNNs poses
challenges for scenarios requiring immediate analysis, such as real-time intrusion detection
or dynamic traffic routing. The benchmark results further underscore these limitations,
as methods achieving near-perfect accuracy (e.g., Duan et al.’s CTGNN [78]) often rely
on extensive computational resources, making them less feasible for resource-constrained
environments. Additionally, the interpretability of GNNs in traffic analysis remains under-
developed, limiting their adoption in operational settings where transparency is crucial
for decision-making. These challenges related to scalability, latency, and interpretability
highlight the need for future research to address the practical constraints of GNNs in
network traffic analysis.

8.2. Future Research Directions

As network environments rapidly evolve and traffic patterns become increasingly
complex, GNN-based traffic analysis technologies still face numerous challenges and de-
velopment opportunities. This section explores future development directions in this field,
focusing on technological advances, practical implementation challenges, and emerging
applications.

(1) Deepening Spatiotemporal Dynamic Traffic Modeling

Existing GNN traffic analysis methods have limitations in handling the spatiotemporal
dynamic characteristics of network traffic. Future research should focus on developing
novel spatiotemporal GNN architectures that can simultaneously capture traffic temporal
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evolution and spatial topological relationships. This includes constructing multi-scale time-
aware graph representation learning methods to understand traffic variation patterns at
different temporal granularities (seconds, minutes, hours). Additionally, efficient streaming
graph learning algorithms should be developed to enable models to quickly adapt when
traffic patterns change, thereby supporting real-time traffic analysis and prediction tasks.

(2) Privacy Protection and Federated Traffic Learning

The sensitivity of network traffic data demands enhanced privacy protection, as
traditional centralized learning methods face risks of data leakage and privacy violations.
Future research should focus on developing federated GNN frameworks that support
collaborative training across multiple network domains, achieving knowledge sharing
and model performance improvement while protecting the privacy of traffic data in each
domain. This includes applying differential privacy techniques to graph representation
learning to protect the privacy of network topology and traffic patterns while ensuring
analysis effectiveness, as well as exploring homomorphic encryption methods for GNN
computation in encrypted states to achieve truly privacy-preserving traffic analysis.

(3) Integration of Interpretability and Causal Reasoning

Current GNN-based traffic analysis methods generally suffer from the “black box”
problem, with model decision processes lacking transparency, which constitutes a major
obstacle in network operations and fault diagnosis. Future research needs to develop GNN
interpretability methods specifically for traffic analysis scenarios that can identify key net-
work nodes, edges, and subgraph structures affecting prediction results, while combining
causal reasoning techniques to not only predict traffic changes but also explain the funda-
mental causes of changes. Additionally, introducing uncertainty quantification mechanisms
in traffic prediction and anomaly detection to provide confidence assessments of prediction
results, offering reliable theoretical support for network optimization decisions.

(4) Large-scale Real-time Deployment Optimization

When considering practical network deployment requirements, existing GNN models
encounter challenges such as high computational complexity and large memory consump-
tion when processing large-scale network traffic. Future research should design distributed
GNN training and inference frameworks suitable for large-scale networks, effectively han-
dling network graphs with millions of nodes and edges. Simultaneously, lightweight GNN
models should be developed to support real-time traffic analysis on network edge devices.
Additionally, constructing incremental learning mechanisms that support online model
updates, enabling systems to adapt to network topology changes and new traffic patterns
while maintaining high-precision analysis performance with reduced network latency and
bandwidth consumption.

(5) Robustness and Adversarial Defense

With the widespread application of GNNSs in traffic analysis, adversarial attacks target-
ing these models are also increasing, making model robustness and security key challenges.
Future research needs to deeply analyze the vulnerabilities of GNN models in traffic analy-
sis scenarios and design GNN architectures with inherent adversarial resistance, possibly
through integrating adversarial training techniques to improve model robustness. Mean-
while, it is necessary to establish security evaluation frameworks specifically for traffic
analysis GNN models and develop real-time monitoring and defense mechanisms. Addi-
tionally, rapid response mechanisms for model updates and repairs should be established to
ensure stable analysis performance when facing constantly evolving adversarial strategies.

9. Conclusions

This survey presents a general framework for GNN-based traffic analysis and system-
atically reviews recent advances in this field. Through our proposed three-level taxonomy,
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we organize 78 representative works, revealing methodological differences across various
prediction tasks. Compared to traditional traffic analysis methods, GNNs can effectively
capture the interaction and structural information of traffic, thus achieving better perfor-
mance in tasks such as anomaly detection and traffic classification. However, although
GNN s have advantages in alleviating the challenges faced by traditional methods, they also
introduce new problems, such as scalability, training latency, and model interpretability.
Despite these challenges, GNNs, as an emerging technology, still hold great potential for
development in the field of traffic analysis. By continuously optimizing model structures,
improving training methods, and enhancing interpretability, GNNs are expected to become
the mainstream technology in the field of traffic analysis in the future. We hope that this
survey will provide researchers and practitioners with a comprehensive understanding
of GNN applications in network traffic analysis and offer practical guidance for future
research directions.
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