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Göteborg

Sweden

Jialun Liu

Wuhan University of

Technology

Wuhan

China

Xiumin Chu

Wuhan University of

Technology

Wuhan

China

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Journal of Marine Science and Engineering (ISSN 2077-1312) (available at: https://www.mdpi.com/

journal/jmse/special issues/8LU63V096V).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-2241-6 (Hbk)

ISBN 978-3-7258-2242-3 (PDF)

doi.org/10.3390/books978-3-7258-2242-3

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

Chenguang Liu, Wengang Mao, Jialun Liu and Xiumin Chu

Intelligent Ships and Waterways: Design, Operation and Advanced Technology
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 1614, doi:10.3390/jmse12091614 . . . . . . . . . . . . . 1

Zhenxian Peng, Zhonglian Jiang, Xiao Chu and Jianglong Ying

Spatiotemporal Distribution and Evolution Characteristics of Water Traffic Accidents in Asia
since the 21st Century
Reprinted from: J. Mar. Sci. Eng. 2023, 11, 2112, doi:10.3390/jmse11112112 . . . . . . . . . . . . . 7

Zhiyuan Wang, Yong Wu, Xiumin Chu, Chenguang Liu and Mao Zheng

Risk Identification Method for Ship Navigation in the Complex Waterways via Consideration
of Ship Domain
Reprinted from: J. Mar. Sci. Eng. 2023, 11, 2265, doi:10.3390/jmse11122265 . . . . . . . . . . . . . 26

Feng Ma, Zhe Kang, Chen Chen, Jie Sun and Jizhu Deng

MrisNet: Robust Ship Instance Segmentation in Challenging Marine Radar Environments
Reprinted from: J. Mar. Sci. Eng. 2023, 12, 72, doi:10.3390/jmse12010072 . . . . . . . . . . . . . . 46

Chuanguang Zhu, Jinyu Lei, Zhiyuan Wang, Decai Zheng, Chengqiang Yu,

Mingzhong Chen and Wei He

Risk Analysis and Visualization of Merchant and Fishing Vessel Collisions in Coastal Waters: A
Case Study of Fujian Coastal Area
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 681, doi:10.3390/jmse12040681 . . . . . . . . . . . . . . 74

Jinyu Lei, Yuan Sun, Yong Wu, Fujin Zheng, Wei He and Xinglong Liu

Association of AIS and Radar Data in Intelligent Navigation in Inland Waterways Based on
Trajectory Characteristics
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 890, doi:10.3390/jmse12060890 . . . . . . . . . . . . . . 97

Zhiyuan Wang, Wei He, Jiafen Lan, Chuanguang Zhu, Jinyu Lei and Xinglong Liu

Ship Trajectory Classification Prediction at Waterway Confluences: An Improved KNN
Approach
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 1070, doi:10.3390/jmse12071070 . . . . . . . . . . . . . 116

Jin Xu, Yuanyuan Huang, Haihui Dong, Lilin Chu, Yuqiang Yang, Zheng Li, et al.

Marine Radar Oil Spill Detection Method Based on YOLOv8 and SA PSO
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 1005, doi:10.3390/jmse12061005 . . . . . . . . . . . . . 131

Jinqiang Bi, Peiren Wang, Wenjia Zhang, Kexin Bao and Liu Qin

Research on the Construction of a Digital Twin System for the Long-Term Service Monitoring
of Port Terminals
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 1215, doi:10.3390/jmse12071215 . . . . . . . . . . . . . 149

Arbresh Ujkani, Pascal Hohnrath, Robert Grundmann and Hans-Christoph Burmeister

Enhancing Maritime Navigation with Mixed Reality: Assessing Remote Pilotage Concepts and
Technologies by In Situ Testing
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 1084, doi:10.3390/jmse12071084 . . . . . . . . . . . . . 165

Zhe Kang, Feng Ma, Chen Chen and Jie Sun

YOSMR: A Ship Detection Method for Marine Radar Based on Customized Lightweight
Convolutional Networks
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 1316, doi:10.3390/jmse12081316 . . . . . . . . . . . . . 184

v



Anqing Wang, Longwei Li, Haoliang Wang, Bing Han and Zhouhua Peng

Distributed Swarm Trajectory Planning for Autonomous Surface Vehicles in Complex Sea
Environments
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 298, doi:10.3390/jmse12020298 . . . . . . . . . . . . . . 213

Mao Zheng, Kehao Zhang, Bing Han, Bowen Lin, Haiming Zhou, Shigan Ding, et al.

An Improved VO Method for Collision Avoidance of Ships in Open Sea
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 402, doi:10.3390/jmse12030402 . . . . . . . . . . . . . . 235

Chenchen Jiao, Xiaoxia Wan, Houpu Li and Shaofeng Bian

Dynamic Projection Method of Electronic Navigational Charts for Polar Navigation
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 577, doi:10.3390/jmse12040577 . . . . . . . . . . . . . . 260

Guozhu Hao, Wenhui Xiao, Liwen Huang, Jiahao Chen, Ke Zhang and Yaojie Chen

The Analysis of Intelligent Functions Required for Inland Ships
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 836, doi:10.3390/jmse12050836 . . . . . . . . . . . . . . 276

Qiaochan Yu, Yuan Yang, Xiongfei Geng, Yuhan Jiang, Yabin Li and Yougang Tang

Integrating Computational Fluid Dynamics for Maneuverability Prediction in Dual Full Rotary
Propulsion Ships: A 4-DOF Mathematical Model Approach
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 762, doi:10.3390/jmse12050762 . . . . . . . . . . . . . . 300

Song Zhang, Qing Wu, Jialun Liu, Yangying He and Shijie Li

State-of-the-Art Review and Future Perspectives on Maneuvering Modeling for Automatic Ship
Berthing
Reprinted from: J. Mar. Sci. Eng. 2023, 11, 1824, doi:10.3390/jmse11091824 . . . . . . . . . . . . . 318

Daiyong Zhang, Xiumin Chu, Chenguang Liu, Zhibo He, Pulin Zhang and Wenxiang Wu

A Review of Motion Prediction for Intelligent Ship Navigation
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 107, doi:10.3390/jmse12010107 . . . . . . . . . . . . . . 349

Bowen Lin, Mao Zheng, Bing Han, Xiumin Chu, Mingyang Zhang, Haiming Zhou, et al.

PSO-Based Predictive PID-Backstepping Controller Design for the Course-Keeping of Ships
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 202, doi:10.3390/jmse12020202 . . . . . . . . . . . . . . 384

Changde Liu, Yufang Zhang, Min Gu, Longhui Zhang, Yanbin Teng and Fang Tian

Experimental Study on Adaptive Backstepping Synchronous following Control and Thrust
Allocation for a Dynamic Positioning Vessel
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 203, doi:10.3390/jmse12020203 . . . . . . . . . . . . . . 404

Sheng Zhang, Guangzhong Liu and Chen Cheng

Application of Modified BP Neural Network in Identification of Unmanned Surface Vehicle
Dynamics
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 297, doi:10.3390/jmse12020297 . . . . . . . . . . . . . . 429

Bing Han, Zaiyu Duan, Zhouhua Peng and Yuhang Chen

A Ship Path Tracking Control Method Using a Fuzzy Control Integrated Line-of-Sight Guidance
Law
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 586, doi:10.3390/jmse12040586 . . . . . . . . . . . . . . 444

Zifu Li and Kai Lei

Robust Fixed-Time Fault-Tolerant Control for USV with Prescribed Tracking Performance
Reprinted from: J. Mar. Sci. Eng. 2024, 12, 799, doi:10.3390/jmse12050799 . . . . . . . . . . . . . . 460

vi



Citation: Liu, C.; Mao, W.; Liu, J.;

Chu, X. Intelligent Ships and

Waterways: Design, Operation and

Advanced Technology. J. Mar. Sci.

Eng. 2024, 12, 1614.

https://doi.org/10.3390/

jmse12091614

Received: 8 August 2024

Accepted: 9 September 2024

Published: 11 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Editorial

Intelligent Ships and Waterways: Design, Operation and
Advanced Technology

Chenguang Liu 1,2, Wengang Mao 3, Jialun Liu 1,2,4 and Xiumin Chu 1,2,*

1 State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology,
Wuhan 430063, China; liuchenguang@whut.edu.cn (C.L.); jialunliu@whut.edu.cn (J.L.)

2 Intelligent Transport System Research Center, Wuhan University of Technology, Wuhan 430063, China
3 Department of Mechanics and Maritime Sciences, Chalmers University of Technology,

41296 Göteborg, Sweden; wengang.mao@chalmers.se
4 East Lake Laboratory, Wuhan 420202, China
* Correspondence: chuxm@whut.edu.cn

Intelligent ships have been attracting much attention with the intention of downsizing
the number of staff, increasing efficiency, saving energy, etc. With the perspective of a full
lifecycle for intelligent ships and waterways, this Special Issue focuses on the advanced
technologies for the design and sustainable operation process. Intelligent ships need to
have real-time environment perception, human-like decision making, and high-precision
motion control. Intelligent waterways should provide real-time and predictive navigation
services, e.g., water depth and velocity, ship traffic flow, etc. The advanced methods and
technologies, including artificial intelligence, big data analysis, mixed reality, building
information modeling, and digital twins, should be introduced to improve the safety,
efficiency, and sustainability throughout the lifetime of intelligent ships.

The present Special Issue contains 20 research articles and 2 review articles, with
8 articles related to waterway and port monitoring, 2 articles covering ships’ navigation
environment perception, 4 articles handling ships’ navigation decision making and motion
planning, and 8 articles studying ships’ motion modeling and control problems.

Navigation safety is the key issue for waterway transportation. Peng et al. [1] inves-
tigated the spatiotemporal distribution and evolution characteristics in Asia since 2000
by collecting technological water traffic accident data. The methods of gravity center and
standard deviation ellipse analysis were utilized to determine the spatial and data-related
characteristics of water traffic accidents. This study provides guidance for improving
marine shipping safety, emergency resource management, and relevant policy formulation.

Ship collision risk identification plays a crucial role in the safe navigation and monitor-
ing of ships in inland waterways. Wang et al. [2] proposed a new method for identifying
ship navigation risks by combining the ship domain with Automatic Identification System
(AIS) data to increase the prediction accuracy of collision risk identification for ship navi-
gation in complex waterways. A ship domain model was constructed based on the ship
density map drawn using AIS data. The effectiveness of this method was verified through a
simulation of ships’ navigation in complex waterways, with correct collision avoidance de-
cisions being able to be made in accordance with the Regulations for Preventing Collisions
in Inland Rivers of the People’s Republic of China.

In high-traffic harbor waters, marine radars frequently encounter signal interference
stemming from various obstructive elements, thereby presenting formidable obstacles in
the precise identification of ships. Ma et al. [3] proposed a customized neural network-
based ship segmentation algorithm named MrisNet to achieve precise pixel-level ship
identification in complex environments. MrisNet employed a lightweight and efficient
FasterYOLO network to extract features from radar images at different levels, capturing
fine-grained edge information and deep semantic features of ship pixels. MrisNet accurately
segments ships with different spot features and under diverse environmental conditions in

J. Mar. Sci. Eng. 2024, 12, 1614. https://doi.org/10.3390/jmse12091614 https://www.mdpi.com/journal/jmse1



J. Mar. Sci. Eng. 2024, 12, 1614

marine radar images, exhibiting outstanding performance, particularly in extreme scenarios
and challenging interference conditions, showcasing robustness and applicability.

There is insufficient research on the mechanisms underlying collision risks specifically
related to merchant and fishing vessels in coastal waters. Zhu et al. [4] proposed an
assessment method for collision risks between merchant and fishing vessels in coastal
waters and validated it through a comparative analysis through visualization. The results
indicated that this method effectively evaluated the severity of collision risks, and the
identified high-risk areas resulting from the analysis were verified by the number of
accidents that occurred in the most recent three years.

To improve the situational awareness ability of ships in busy inland waterways,
Lei et al. [5] focused on the situational awareness of intelligent navigation in inland
waterways with high vessel traffic densities and increased collision risks. A method based
on trajectory characteristics was proposed to determine associations between AIS data and
radar objects, facilitating the fusion of heterogeneous data. Through a series of experiments,
including overtaking, encounters, and multi-target scenarios, this research substantiated
the method, achieving an F1 score greater than 0.95. Consequently, this study furnished
robust support for the perception of intelligent vessel navigation in inland waterways and
the elevation of maritime safety.

To support ship trajectory prediction at waterway confluences using historical AIS
data, Wang et al. [6] proposed a method to improve the recognition accuracy of ships’
behavior trajectories, assist in the proactive avoidance of collisions, and clarify ship collision
responsibility, ensuring the safety of waterway transportation systems in the event of ship
encounters induced by waterway confluences or channel limitations. An improved K-
Nearest Neighbor Algorithm considering the sensitivity of data characteristics (SKNN)
was put forward to predict the trajectory of ships, which considers the influence weights
of various parameters on ship trajectory prediction. The accuracy of the ship trajectory
prediction method was above 99%, and the performance metrics of the SKNN surpassed
those of both the conventional KNN and NB classifiers, which was helpful for warning
ships of collision encounters early to ensure avoidance.

The global demand for oil is steadily escalating, and this increased demand has
fueled marine extraction and maritime transportation of oil, resulting in a consequential
and uneven surge in maritime oil spills. Xu et al. [7] introduced a methodology for the
automated detection of oil spill targets. Experimental data pre-processing incorporated
denoise, grayscale modification, and contrast boost. The realistic radar oil spill images were
employed as extensive training samples in the YOLOv8 network model. The proposed
method for offshore oil spill survey presented here can offer immediate and valid data
support for regular patrols and emergency reaction efforts.

Structural damage is a prevalent issue in the long-term operations of harbor terminals.
Bi et al. [8] proposed a novel digital twin system construction methodology tailored for
the long-term monitoring of port terminals, which elaborated on the organization and
processing of foundational geospatial data, sensor monitoring information, and oceanic
hydrometeorological data essential for constructing a digital twin of the terminal. Experi-
mental validation demonstrated that this method enabled the rapid construction of digital
twin systems for port terminals and supported practical applications in business scenar-
ios. Data analysis and a comparison confirmed the feasibility of the proposed method,
providing an effective approach for the long-term monitoring of port terminal operations.

In response to the evolving landscape of maritime operations, new technologies are
on the horizon, such as as mixed reality (MR), enhancing navigation safety and efficiency
during remote assistance, e.g., in the remote pilotage use case. Ujkani et al. [9] initially
tested and assessed novel approaches to pilotage in a congested maritime environment,
which integrated augmented reality (AR) for ship captains and virtual reality (VR) and
desktop applications for pilots. The efficiency and usability of these technologies were
evaluated through in situ tests conducted with experienced pilots on a real ship using
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the System Usability Scale, the Situational Awareness Rating Technique, and Simulator
Sickness Questionnaires during the assessment.

In scenarios such as nearshore and inland waterways, the ship spots in a marine radar
are easily confused with reefs and shorelines, leading to difficulties in ship identification.
To accurately identify radar targets in such scenarios, Kang et al. [10] proposed a novel
algorithm, namely YOSMR, based on a deep convolutional network. The YOSMR uses
the MobileNetV3 (Large) network to extract ship imaging data of diverse depths and
acquire feature data of various ships. Meanwhile, taking into account the issue of feature
suppression for small-scale targets in algorithms composed of deep convolutional networks,
the feature fusion module known as PANet was subject to a lightweight reconstruction,
leveraging depthwise separable convolutions to enhance the extraction of salient features
for small-scale ships while reducing model parameters and the computational complexity
to mitigate overfitting problems. As a result, the YOSMR displays a substantial advantage
in terms of convolutional computation.

The trajectory planning of multiple autonomous surface vehicles (ASVs) is particu-
larly crucial to provide a safe trajectory. In [11], a swarm trajectory-planning method was
proposed for ASVs in an unknown and obstacle-rich environment. Specifically, a kinody-
namic path-searching method was used to generate a series of waypoints in the discretized
control space at first. Then, after fitting B-spline curves to the obtained waypoints, a non-
linear optimization problem was formulated to optimize the B-spline curves based on
gradient-based local planning. Finally, a numerical optimization method was used to solve
the optimization problems in real time to obtain collision-free, smooth, and dynamically
feasible trajectories relying on a shared network.

To effectively deal with collisions in various encounter situations in open water envi-
ronments, Zheng et al. [12] established a ship collision avoidance model and introduced
multiple constraints into the Velocity Obstacle (VO) method, which was proposed to de-
termine a ship domain by calculating a safe approach distance. Meanwhile, the ship
collision avoidance model based on the ship domain was analyzed, and the relative velocity
set of the collision cone was obtained by solving the common tangent line within the
ellipse. The timing of starting collision avoidance was determined by calculating the ship
collision risk.

Electronic Navigational Charts (ENCs) are geospatial databases compiled in strict ac-
cordance with the technical specifications of the International Hydrographic Organization
(IHO). Facing the urgent demand for high-precision and real-time nautical chart prod-
ucts for polar navigation under the new situation, Jiao et al. [13] systematically analyzed
the projection of ENCs for polar navigation. Based on the theory of complex functions,
the direct transformations of Mercator projection, polar Gauss–Krüger projection, and po-
lar stereographic projection were derived. A rational set of dynamic projection options
oriented towards polar navigation was proposed with reference to existing specifications
for the compilation of the ENCs. Taking the CGCS2000 reference ellipsoid as an example,
the numerical analysis shows that the length distortion of the Mercator projection is less
than 10% in the region up to 74◦, but it is more than 80% at very high latitudes.

Sorting out the requirements for intelligent functions is the prerequisite and foundation
of the top-level design for the development of intelligent ships. Taking the technical
realization of each functional module as the goal, Hao et al. [14] analyzed the status
quo and development trend of related intelligent technologies and their feasibility and
applicability when applied to each functional module. This clarified the composition of
specific functional elements of each functional module, put forward the stage goals of
China’s inland intelligent ship development and the specific functional requirements of
different modules under each stage, and provided a reference for the Chinese government
to subsequently formulate the top-level design development planning and implementation
path of inland waterway intelligent ships.

Predicting the maneuverability of a dual full-rotary propulsion ship quickly and accu-
rately is the key to manipulate a ship with machines. Yu et al. [15] performed integrated
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computational fluid dynamics (CFD) and used the mathematical model approach to sim-
ulate ship turning and zigzag tests, which were then compared and validated against a
full-scale trial carried out under actual sea conditions. The results indicate that the pro-
posed method has a high accuracy in predicting the maneuverability of dual full-rotary
propulsion ships, with an average error of less than 10% from the full-scale trial data (and
within 5% for the tactical diameters in particular), in spite of the influence of environmental
factors, such as wind and waves. It provides reliability in predicting the maneuverability
of a full-scale ship during the ship design stage.

Automatic berthing is at the top level of ship autonomy. Zhang et al. [16] introduced
the berthing maneuver model, which is able to predict a ship’s responses to steerage and ex-
ternal disturbances and provide a foundation for the control algorithm. The similarities and
differences between the conventional MMG maneuvering model and automatic berthing
maneuvering model were elaborated. Bibliometric analysis on automatic berthing was
also carried out to discover common issues and emphasize the significance of maneuver
modeling. Furthermore, the berthing maneuver’s specifications and modeling procedures
were explained in terms of the hydrodynamic forces on the hull, four-quadrant propulsion
and steerage performances, external disturbances, and auxiliary devices.

The challenge of accurately modeling and predicting dynamic environments and
motion statuses of ships has emerged as a prominent area of research. In response to the
diverse time scales required for the prediction of a ship’s motion, Zhang et al. [17] explored
and analyzed various methods for modeling ship navigation environments, ship motion,
and ship traffic flow. Additionally, these motion prediction methods were applied for
motion control, collision avoidance planning, and route optimization. Key issues were
summarized regarding ship motion prediction, including the online modeling of motion
models, real ship validation, and consistency in modeling, optimization, and control.
Future technology trends were predicted in mechanism-data fusion modeling, large-scale
modeling, multi-objective motion prediction, etc.

The complex navigational conditions, unknown time-varying environmental distur-
bances, and complex dynamic characteristics of ships pose great difficulties for ship course
keeping. Lin et al. [18] proposed a Particle Swarm Optimization (PSO)-based predictive
PID-Backstepping (P-PB) controller to realize the efficient and rapid course keeping of
ships. The proposed controller took a ship’s target course, current course, yawing speed,
and predictive motion parameters into consideration. The parameters in the proposed
course-keeping controller were optimized by utilizing PSO, which can adaptively adjust
the value of parameters in various scenarios, and thus further increase its efficiency.

Cargo Transfer Vessels (CTVs) were designed to transfer cargo from a Floating Produc-
tion Storage and Offloading (FPSO) unit into conventional tankers. Liu et al. [19] presented
a synchronization control strategy based on the virtual leader–follower configuration and
an adaptive backstepping control method. The position and heading of the following
vessel were proven to be able to globally exponentially converge to the virtual ship via the
contraction theorem. Then, the optimization problem of the desired thrust command from
the controller was solved through an improved firefly algorithm, which fully considered
the physical characteristics of the azimuth thruster and the thrust forbidden zone caused by
hydrodynamic interference. The SAF algorithm outperformed the SQP and PSO algorithms
in longitudinal and lateral forces, with the R-squared (R2) values of 0.9996 (yaw moment),
0.9878 (sway force), and 0.9596 (surge force) for the actual thrusts and control commands in
the wave heading 180°. The experimental results can provide technical support to improve
the safe operation of CTVs.

It is challenging to understand and collect correct data about USV dynamics. Zhang
et al. [20] proposed a modified Backpropagation Neural Network (BPNN) to address this
issue. The experiment was conducted in the Qinghuai River, and the receiver collected the
data. The modified BPNN outperformed the conventional BPNN in terms of ship trajectory
forecasting and the rate of convergence. The updated BPNN can accurately predict the
rotational velocity during a propeller’s acceleration and stability stages at various rpms.
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To satisfy the needs of autonomous navigation and high-precision control of ship
trajectories, Han et al. [21] proposed a fuzzy control improvement method with an Integral
Line-Of-Sight (ILOS) guidance principle. A three-degree-of-freedom ship motion model
was established with the battery-powered container ship ZYHY LVSHUI 01 built by the
COSCO Shipping Group. Then, a ship path-following controller based on the ILOS algo-
rithm was designed. A controller was applied that uses a five-state extended Kalman filter
(EKF) to estimate the heading, speed, and heading rate based on the ship’s motion model
with the assistance of Global Navigation Satellite System (GNSS) position measurements.
The research results provided a reference for the path-following control of ships.

The USV is an emerging marine tool due to its advantages of automation and intelli-
gence in recent years. Li et al. [22] proposed a novel prescribed performance fixed-time
fault-tolerant control scheme for a USV with model parameter uncertainties, unknown
external disturbances, and actuator faults, based on an improved fixed-time disturbance
observer. Firstly, the proposed observer not only accurately and quickly estimated and
compensated for the lumped nonlinearity, including actuator faults, but also reduced the
chattering phenomenon by introducing the hyperbolic tangent function. Then, under the
framework of prescribed performance control, a prescribed performance fault-tolerant
controller was designed based on a nonsingular fixed-time sliding mode surface, which
guarantees the transient and steady-state performance of a USV under actuator faults and
meets the prescribed tracking performance requirements.

In conclusion, the articles presented in this Special Issue cover broad research topics
related to advancements in the design, operation, and advanced technology of intelligent
ships and waterways, guiding readers through the best methods for carrying out analysis.
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Abstract: As an important mode of transportation for the global trade, waterborne transportation
has become a priority option for import and export trade due to its large load capacity and relatively
low cost. Meanwhile, shipping safety has been highly valued. By collecting technological water
traffic accident data from the EM-DAT database, the spatiotemporal distribution and evolution
characteristics were investigated in Asia since 2000. The methods of gravity center and standard
deviation ellipse analysis were utilized to determine the spatial and data-related characteristics of
water traffic accidents. Temporally, the results indicated that accidents occurred most frequently
during the seasons of autumn and winter, leading to a significant number of casualties. Spatially,
both South-eastern Asia and Southern Asia emerged as regions with a high frequency of water
traffic accidents, particularly along the borders of Singapore, Malaysia, Indonesia, and the Bay of
Bengal region. In addition, the Daniel trend test and R/S analysis were conducted to demonstrate
the evolution trend of accidents across various regions and seasons. The present study provides
guidance for improving marine shipping safety, emergency resource management, and relevant
policy formulation.

Keywords: water traffic accidents; water transport safety; spatiotemporal characteristics; Asia; center
of gravity analysis; standard deviation ellipse

1. Introduction

Waterborne transportation, known for its energy efficiency [1], high cargo capacity, and
cost-effectiveness [2], is the primary mode of international trade. Additionally, it is highly
concerned as an important transportation mode which can construct a balance between
overall economic development [3] and ecological environment protection in developing
countries [4,5]. If a ship encounters a safety incident during its journey, the absence of
timely and effective rescue efforts would result in substantial economic losses and loss
of human lives. To mitigate the frequency of water traffic accidents and ensure maritime
safety, the International Maritime Organization (IMO) [6] was established, and is dedicated
to promoting a safe, efficient, and sustainable shipping industry.

The potential causes, underlying mechanisms, and risk assessments of water traffic
accidents always differ between regions. For example, occurrences of inland shipping
accidents in Europe are related to the geography, climate, national economic background,
and safety culture characteristics [7]. The risk assessment of waterborne transportation
becomes challenging due to the complex mechanisms and multivariate factors. Therefore,
great effort has been devoted, both by academia and industry, to improve water transport
safety. Cao et al. [8] provided a theoretical basis for the implementation direction of
maritime safety development. Huang et al. [9] demonstrated that artificial intelligence-
based risk assessment methods could provide systematic and comprehensive results. Ma
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et al. [10] synthesized DEMATEL (decision-making trial and evaluation laboratory), ISM
(interpretative structural modeling method), FBN (fuzzy Bayesian network), and other
methods to reveal influencing factors and their weights for maritime dangerous goods
transportation accidents, and put forward a new comprehensive risk analysis method.

The analysis of water traffic accidents would also support the decision-making of
the authorities, e.g., maritime administrations and waterway management departments.
Hanafiah et al. [11] conducted vessel navigation safety analysis to improve the maritime
situational awareness in the Malacca Straits which could help authorities to respond more
effectively to accidents. Ma et al. [10] identified more than 20 influencing factors according
to the reports of maritime dangerous goods transport accidents in China, and established a
BN (Bayesian network) model, which provided a quantitative evaluation of risk factors. Fan
et al. [12] analyzed the occurrence of shipping accidents from the perspective of seafarers,
and put forward an evaluation framework of seafarers’ psychological quality based on the
neurophysiology society. The framework would provide effective means for the selection of
seafarers and their driving behavior evaluations. According to statistical analysis, a series
of human-related factors, e.g., operation and psychological quality of crew, contributes
to 70% of water traffic accidents [13,14]. In addition, the impact of vessel traffic service
operators on the overall water traffic safety cannot be ignored [15].

In this article, the water traffic accidents data were extracted from the EM-DAT
database from the beginning of the 21st century for Asia. Through the methods of gravity
center analysis and standard deviation ellipse, the spatiotemporal distribution and evo-
lution characteristics of water traffic accidents were analyzed. The incidence periods and
locations were explored as well. The Daniel trend test and R/S analysis were adopted to
estimate the development trend of water traffic accidents, which could provide a basis for
water traffic accidents prevention in Asian countries and ensure maritime traffic safety.

The remaining part of the article is organized as follows. A brief introduction of
the EM-DAT database is provided in Section 2. In Section 3, the specific methods are
elaborated upon in detail. A comprehensive analysis and discussion on both spatiotemporal
characteristics and evolution trend are presented in Sections 4 and 5. The concluding
remarks and prospects are provided in Section 6.

2. Data Sources

As a well-known disaster collection database, EM-DAT has recorded natural and other
technological disasters worldwide since 1900, including the starting and ending time of
the events, the causes (triggering factors), economic losses, secondary disasters, deaths,
missing persons, and affected people caused by various events (injuries and homelessness
due to disasters, etc.). The database has been widely utilized to reveal the evolution charac-
teristics of disasters such as floods [16], landslides, and extreme weather conditions [17] on
different scales in the world, which would be beneficial for risk assessment [18], emergency
resourcing management, and disaster prevention [19–21] etc.

Notably, the EM-DAT database upholds stringent criteria governing the incorporation
of disaster data; only events meeting specific conditions are deemed eligible for inclusion.
Due to the special nature of the EM-DAT database, all water traffic accidents are categorized
as one technological group and some specific accidents (e.g., fishing vessel accidents) are
not included. This shortcoming might be overcome by introducing some other data sources
(e.g., IMO, Lloyd’s List Intelligence [22,23], etc.). In addition, a minimum number of 10 deaths
or 100 affected individuals applies for event qualification [24]. Alternatively, if the national
government publicly declares a state of emergency during the incident or international
assistance is solicited, the event would be recorded. These rigorous standards reinforce the
integrity of the EM-DAT database. A total number of 397 accident records were adopted
for analysis in the present study.
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3. Methodology

3.1. The Methods of Gravity Center and Standard Deviation Ellipse

The center of gravity was put forward in the mechanical field in physics, and is consid-
ered as the point where forces are balanced in all directions in the regional space. The center
of gravity analysis is widely applied to demonstrate spatial variation characteristics [25],
thus their evolving features could be revealed for different time periods [26,27]. “.shp”
files with site information (e.g., latitude and longitude) were imported to create an overall
visualization of accident data. Scatterplots were thereby generated and the classification
tool of ArcGIS was employed to visualize the severity and distribution characteristics. The
gravity centers of various regions were calculated, on the basis of which standard deviation
ellipses were obtained for different stages. Subsequently, all these elements were integrated
to facilitate further analysis. The calculation of the gravity center is given as follows:

xI = ∑ n
j=1xjwj/∑ n

j=1wj (1)

yI = ∑ n
j=1yjwj/∑ n

j=1wj (2)

where (xj, yj) is the barycentric coordinate of the sub-region, wj is element value corre-
sponding to the sub-region, and (xI , yI) is the barycentric coordinate of the main region.

The standard deviation ellipse was initially interpreted by Lefever [28] as a summary
measure of two-dimensional points. Firstly, the standard deviation of a group of points
scattered in two dimensions was obtained as an x axis and y axis, and then these two
axes were rotated. Subsequently, the new standard deviation of the x axis and y axis was
calculated, after which the rotation angle with the maximum standard deviation could
be obtained. A new coordinate axis could thus be created to derive the short and long
axes [29]. The short axis indicates the distribution range of elements, the long axis denotes
the distribution direction of all elements, and the difference between the long and short
axes represents the distribution directivity of elements. The center of the ellipse represents
the central position of all elements. The calculation formulas are given below:

x =
√
(∑ n

i=1(xi − X)2)/n (3)

y =
√
(∑ n

i=1(yi − Y)2)/n (4)

where (xi, yi) is coordinates of element point which ranks in i place and (X, Y) denotes the
regional barycentric coordinate. The rotation angle of ellipse is calculated as follows.

tan θ =
(∑ n

i=1xi
′2 − ∑ n

i=1yi
′2) +

√
(∑ n

i=1xi
′2 − ∑ n

i=1yi
′2)2 + 4(∑ n

i=1xi
′yi

′)2

2∑ n
i=1xi

′yi
′ (5)

where xi
′ = xi − X, yi

′ = yi − Y.
The calculation of the long and short axes is accomplished using the subsequent

formulas:
ϕx =

√
(∑ n

i=1(xi
′ cos θ − yi

′ sin θ)2)/n (6)

ϕy =
√
(∑ n

i=1(xi
′ sin θ − yi

′ cos θ)2)/n (7)

3.2. Daniel Trend Test and R/S Analysis

The Daniel trend test is a statistical analysis method based on the Spearman rank
correlation coefficient and can be accomplished by MATLAB. Given a dataset with a length
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smaller than four, it does not need to consider the data accuracy in the test process, but
only sorts the time series [30]. The rank correlation coefficient r is calculated as follows:

r = 1 − (6∑ N
i=1di

2)/(N3 − N) (8)

where di = Xi − Yi, N is the length of the dataset. Provided that r > 0, a rising trend in the
data could be demonstrated, and vice versa [31].

R/S analysis is known as a traditional method for time series analysis [32]. By dividing
the data of 23 years into T continuous intervals Dn(n = 1, 2, . . . , t), each interval element
is denoted as yk,n(k = 1, 2, . . . , n), and n is the integer part of 23/T. The R/S statistic is
accomplished by MATLAB and the principal equation is given as follows:

Qn = Rn/Sn (9)

In addition, Qn can be obtained by following the principle of statistics.

Qn = C1 × nH (10)

The calculated H value (Hurst coefficient) is the index of the correlation and represents
the trend of time sequences [30]. The specific values correspond to different evolution
features as shown below.⎧⎨⎩

0 < H < 0.5, changing trend is contrary to the past
H = 0.5, unpredictable
0.5 < H < 1, continue the changing trend of the past

(11)

4. Occurrence Analysis of Water Traffic Accidents

4.1. Time Series Analysis
4.1.1. Seasonal Distribution of Water Traffic Accidents

The accident occurrence features could be explored for different Asian regions, as
shown in Figures 1 and 2. It is noted that the accident records greatly exceeded 30 for
September, October, and December. In addition, the occurrence frequency of water traffic
accidents in South-eastern Asia and Southern Asia are relatively higher than other regions,
which might be attributed to the developed shipping industry in these regions. Within
South-eastern Asia, the months of January, July, September, and December manifested
heightened accident frequencies. Southern Asia, on the other hand, witnessed heightened
occurrences in May, July, August, and September. In Western Asia, water traffic accidents
were commonly observed in January, September, November, and December, while in
Eastern Asia, accidents more frequently occurred in June, October, and December.

Figure 1. Monthly distribution of water traffic accidents in Asia from year 2000 to year 2022.
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Figure 2. Seasonal distribution of water traffic accidents in Asia from year 2000 to year 2022.

The seasonal distribution characteristics of water traffic accidents are demonstrated
in Figure 2. Autumn stands out as the season with the majority of water traffic accidents,
tallying 107 occurrences. Following closely, winter documented 102 incidents. Within this
context, South-eastern Asia experienced frequent accidents in both summer and autumn,
reaching 40 and 37, respectively. Meanwhile, Southern Asia recorded 36 incidents in
summer, and Western Asia documented 23 occurrences each in autumn and winter. In
Eastern Asia, notable accident frequencies were observed, encompassing 18 incidents in
spring and 19 incidents in both autumn and winter.

4.1.2. Yearly Distribution of Water Traffic Accidents, Deaths, and Affected Persons

In general, the temporal variation of water traffic accidents in Asia shows similar pat-
terns with the number of deaths and affected people, i.e., an upward trend at the beginning
of the 21st century, a fluctuating decline till 2020, and a minor upward trend in 2022 (as
shown in Figure 3a–c). The peak values of water traffic accidents and deaths appeared in
2005 and 2003, respectively, while a maximum of affected people was observed in 2021
with an unprecedented 50,000. After inquiry, it was found that the marine environment
was seriously polluted due to the fire and explosion of cargo ships in Sri Lanka [33], which
may last for a decade and led to the explosive growth of affected groups. Therefore, this
special case was excluded from the present study and the peak point was observed in 2009.

From a regional perspective, water traffic accidents exhibited a heightened frequency
within South-eastern Asia and Southern Asia during the early years of the 21st century, as
shown in Figure 3a. The accident occurrence in Asia experienced substantial fluctuations
since 2007 without distinct discernible patterns for different regions. In terms of fatalities,
the Southern Asia predominantly held the highest death tolls from 2000 to 2007 (as shown
in Figure 3b).

4.2. Spatial Distribution Analysis
4.2.1. Spring Season

The site information of each water traffic accident was extracted from the EM-DAT
database. Records were excluded if exact coordinate information was missing. The distribu-
tion diagram and heat map of water traffic accidents in spring are presented, respectively,
in Figure 4a,b and Figure 5a.
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(a) (b) 

 
(c) 

Figure 3. Yearly variation of water traffic accidents (a), accident-resulted deaths (b), and affected
people (c) from 2000 to 2022.

Simultaneously, the database revealed a compelling correlation between accidents and
the number of deaths attributed to the accidents. This correlation was visually depicted in
Figure 4b, where the intensity of the marker color deepens in tandem with the rising death
count. Notably, within the nexus of Southern Asia and South-eastern Asia, encompassing
countries such as Myanmar, Bangladesh, and the northeastern coastal regions of India, the
spring season witnessed 24 recorded accidents. Indonesia reported 16 cases, succeeded by
Singapore, Malaysia, and other locales, each registering 13 incidents. The high-incident
belt stretches from the central south (Bangladesh) to all directions with heat progressively
tapering off, and faint upward trend in the southwest (Yemen), as shown in Figure 5a.

With regards to fatalities (as shown in Figure 4b), the majority remained at relatively
lower levels. Bangladesh, the Makassar Strait, and the confluence of the Korea Strait and
Tsushima Strait stood out as regions with elevated fatality counts. Most of these locations,
where incidents occurred are the coastal areas and bustling port zones. Such areas would
be recognized as high-frequency accident locations.

Intriguingly, among the 81 pinpointed accidents, nearly 10 took place in inland water-
ways; China, situated in Eastern Asia, accounted for seven of these inland incidents. This
underscores the imperative of not only concentrating on coastal and open waters but also
analyzing the distinct attributes of inland water traffic accidents, especially in a country
like China, which actively promotes inland water transportation.

12



J. Mar. Sci. Eng. 2023, 11, 2112

 
(a) (b) 
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(e) (f) 

 
(g) (h) 

Figure 4. Distribution diagram of water traffic accidents (left panel) and deaths (right panel) in Asia.
From top to bottom, Spring (a,b); Summer (c,d); Autumn (e,f) Winter: (g,h).
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(a) (b) 

  
(c) (d) 

Figure 5. Heat map of water traffic accidents in Asia for different seasons. Spring (a); Summer (b);
Autumn (c); Winter (d).

4.2.2. Summer Season

In the summer seasons, the same method of latitude and longitude positioning was
applied, as illustrated in Figures 4c,d and 5b. The spatial distribution of accidents in
summer closely mirrored that of spring. The nexus of Southern Asia and South-eastern Asia
remained the focal point of accidents, with Indonesia following closely behind. Singapore,
Malaysia, and other regions also figured prominently. However, in comparison to spring,
there was an increase of accidents for Indonesia, Singapore, and Malaysia, with increments
of 3, 2, and 3, respectively.

The heatmap (Figure 5b) displays a relatively scattered pattern in summer, character-
ized by a tendency to spread and a larger presence of yellow and red areas. Concerning the
fatality count, summer recorded a relatively elevated overall level. Notably, accidents with
high fatality counts occurred in Eastern Asia’s inland river region in China, as well as in
South-eastern Asian countries such as the Philippines, Malaysia, and East Timor. Southern
Asia’s Bangladesh also witnessed a surge in accidents with substantial fatality rates. The
potential causes of these phenomena require further consideration.

Combined with the findings from the spring, it is evident that the water traffic acci-
dents and resulting casualties have increased in China. This underscores the imperative
of treating inland waterway accidents with utmost seriousness, even if the navigation
conditions for inland water traffic might be excellent.

4.2.3. Autumn Season

As shown in Figure 4e,f, the prevalence of accidents remained consistent between
spring and summer. Once again, the Southern Asia and South-eastern Asia junction
remains a focal point for accidents, tallying 24 cases. Indonesia followed closely with
13 incidents, while Turkey recorded 12 cases. Singapore, Malaysia, and Philippines all
reported 11 cases each. The high mortality points of the death that occurred in southern
Indonesia (e.g., Jakarta) are not reflected in the spring and summer seasons.

Notably, the hotspots (as shown in Figure 5c) shifted from the India–Bangladesh–
Thailand–Cambodia–Singapore–Indonesia cluster in the spring and summer to a more
diversified distribution, concentrating along the Turkey, Indonesia, and the border between
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India and Bangladesh. Moreover, areas with high fatality rates encompassed Indonesia,
Singapore, Bangladesh, Yemen, and various other locations.

When considering inland water transportation, a notable decrease in the accident
number was observed. This phenomenon is quite possibly caused by the onset of the dry
season on inland rivers, leading to a reduction in the navigational capacity of rivers and a
decrease in vessel traffic flow.

4.2.4. Winter Season

During the winter seasons, as shown in Figure 4g, the highest incidence of accidents
was concentrated in South-eastern Asia, particularly in Singapore and Malaysia, which
recorded 20 accidents in total. There were 17 records in Bangladesh and the northeastern
coastline of India, i.e., at the junction of Southern Asia and South-eastern Asia. In Turkey, 11
records were reported. These regions account for approximately 55% of all winter accidents.

From the hotspot map of accident distribution (Figure 5d), it is evident that, in addition
to the aforementioned areas, there was a notable increase in accidents along the eastern
coastal regions of China, the coastal zones around Japan and South Korea in Eastern Asia,
as well as in Yemen and Saudi Arabia in Western Asia. In addition, a high fatality rate
was observed (as shown in Figure 4h) in some countries (e.g., Turkey, Yemen, Bangladesh,
Singapore, and Indonesia).

Regarding the continued reduction of inland waterway accidents, this also substanti-
ates the pertinent conclusions drawn in the preceding section (Section 4.2.3).

5. Results and Discussion

5.1. Daniel Trend Test and R/S Analysis
5.1.1. Daniel Trend Test Analysis

To reveal evolution trends of water traffic accidents, the time series were divided into
five segments, each spanning 5, 5, 5, 5, and 3 years, respectively. The Daniel coefficients
for both water traffic accidents and fatalities were thus calculated and compared with the
Spearman rank test values. The magnitude of r signifies the temporal evolution trend, with
a positive value indicating an increasing trend and a negative value indicating a decreasing
trend [31]. When the absolute value of r surpasses the test value, it signifies a statistically
significant trend, and vice versa.

As noted in Table 1, a decline in the number of water traffic accidents and fatalities
was witnessed for whole of Asia, with a 95% level of significance. However, there was
a noticeable upward trend in accidents during the early period of 21st century and the
years following 2020. The former trend can be attributed to the aftermath of the Asian
economic crisis in 1997, particularly affecting South-eastern Asia and Eastern Asia, where
economic reconstruction was urgently conducted [34]. In this period, the coefficients for
South-eastern Asia and Eastern Asia reached 0.850 and 0.750, respectively. The latter trend
may be attributed to the global COVID-19 pandemic since 2020. In the post-pandemic
era, countries have had to accelerate economic recovery and trade, leading to a substantial
increase in shipping vessels and, consequently, a higher likelihood of water traffic accidents.

Generally speaking, the number of accidents in Eastern Asia, South-eastern Asia,
Southern Asia, and Western Asia exhibited a declining trend, although the feature in South-
eastern Asia is relatively weak. Moreover, the number of fatalities decreased significantly
in all regions except Western Asia.

5.1.2. R/S Analysis

The utilization of the Hurst coefficient, similar to the Daniel coefficient, elucidates the
evolution patterns of the dataset. However, the Hurst coefficient assumes a dual role; not
only does it provide insights into historical trends, but also possesses predictive capabilities
regarding future evolution. By computing the Hurst coefficients for variables such as the
number of accidents, fatalities across different Asian regions, and the occurrences of water
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traffic accidents during distinct seasons, the nuanced trajectory of these crucial factors can
be further demonstrated.

Table 1. Daniel coefficient of Asia and regions in different periods.

Area Year
r

(Accidents/Death)
Trend

(Downward-D/Rise-R)
Significance of 95%

Asia

2000–2022 −0.636 (−0.825) D/D Y/N
2000–2004 1.000 (0.100) R/R Y/Y
2005–2009 −0.500 (−0.100) D/D N/N
2010–2014 −0.050 (0.700) D/R N/Y
2015–2019 −0.800 (−1.000) D/D Y/Y
2020–2022 1.000 (1.000) R/R Y/Y

Eastern Asia

2000–2022 −0.824 (−0.669) D/D Y/Y
2000–2004 0.750 (−0.100) R/D Y/N
2005–2009 −0.500 (−0.700) D/D N/Y
2010–2014 −0.450 (0.100) D/D N/N
2015–2019 −0.550 (−0.100) D/D N/N
2020–2022 0.250 (−0.500) R/D N/Y

South-eastern Asia

2000–2022 −0.225 (−0.649) D/D N/Y
2000–2004 0.850 (−0.400) R/D Y/N
2005–2009 0.350 (0.500) R/R N/N
2010–2014 0.700 (0.500) R/R Y/N
2015–2019 −0.900 (−0.400) D/D Y/N
2020–2022 0.750 (1.000) R/R Y/Y

Southern Asia

2000–2022 −0.513 (−0.601) D/D Y/Y
2000–2004 0.250 (0.900) R/R N/Y
2005–2009 −0.300 (−0.300) D/D N/N
2010–2014 −0.500 (0.100) D/R N/Y
2015–2019 −0.050 (−0.300) D/D N/N
2020–2022 0.500 (0.500) R/R Y/Y

Western Asia

2000–2022 −0.197 (0.041) D/R N/N
2000–2004 0.350 (0.900) R/R N/Y
2005–2009 0.450 (0.200) R/R N/N
2010–2014 −0.050 (0.000) D/— N/—
2015–2019 −1.050 (−0.600) D/D Y/Y
2020–2022 −0.500 (0.500) D/R Y/Y

As shown in Table 2, the calculated Hurst values for water traffic accidents and fatality
occurrences within the four regions consistently range between 0.5 and 1.0. This range
underscores the enduring correlation embedded within these eight datasets. Given the
persistent influence exerted by preceding data and in conjunction with the outcomes
deduced from the Daniel trend analysis (2000–2022), it can be reasonably expected that
the water traffic accidents and associated fatalities in Asia are poised to exhibit a subtle
downward trajectory in the impending years.

Table 2. Hurst coefficient calculations of accidents and deaths in different areas.

South-Eastern Asia Southern Asia Western Asia Eastern Asia

Accidents 0.65315 0.87011 0.74831 0.73104
Deaths 0.81037 0.80481 0.65312 0.82565

To further explore the ability of this impact to persist, by taking double logarithmic
value for R/S statistics and conducting linear fitting, a distinctive set of intersection points
of accident frequency were obtained as 1.38, 1.60, 1.79, and 1.60, respectively, in Figure 6.
The results show that the dataset of water traffic accidents will sustain its influence on the
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changing trend for the ensuing 4, 5, 6, and 5 years, respectively. Similarly, for fatality figures,
the intersections are noted as 1.71, 1.38, 1.38, and 1.79, indicating a continuous data-driven
impact on trend evolution for the subsequent 5.5, 4, 4, and 6 years, correspondingly. These
calculated intervals forecast the persisting ripple effect of historical data on the future
trajectory of these vital metrics.

Figure 6. Hurst coefficient of water traffic accidents (left panel) and accident-related deaths
(right panel) in different regions of Asia.

In the context of the Hurst coefficients, it is evident that its range falls between
0.5 and 1.0 (as shown in Table 3), similar to the aforementioned Daniel coefficient. However,
a notable distinction emerges where the seasonal index tends to gravitate towards 1.0. For
instance, the Hurst index for summer accidents registered a substantial 0.95, underscoring
a pronounced level of data correlation.

Table 3. Hurst coefficient calculations of water traffic accidents for different seasons.

Seasons Spring Summer Autumn Winter

H 0.81288 0.95321 0.68202 0.90795

After being subjected to linear regression analysis (Figure 7), the intersection points
for four seasons are derived as 1.65, 1.38, 1.30, and 1.40, respectively. This delineates a
noteworthy insight that the data will sustain its influence on seasonal trends over successive
timeframes of the next 5, 4, 3.5, and 4 years, respectively.

5.2. Evolution Features of Standard Deviation Ellipse and Gravity Center

The spatial distribution of water traffic accidents was explored in terms of gravity
center and the standard deviation ellipse of accident frequencies for Asian and its sub-
regions. A comprehensive analysis of the Asia area is presented in Figure 8a, while detailed
results are provided for the sub-regions in Figure 8b. The specific coordinates of gravity
centers and axes lengths of the standard deviation ellipses are tabulated in Tables 4 and 5.
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Figure 7. Hurst coefficient calculations of water traffic accidents for different seasons.

  
(a) (b) 

Figure 8. Evolution features of water traffic accidents in Asia. (a) Gravity centers of the Asia region;
(b) Gravity centers of four sub-regions in Asia. The triangle represents the gravity center of the whole
research period from 2000 to 2022.

Table 4. Coordinates of gravity center in Asia and four sub-regions for different time periods.

Year
Regions

Asia South-Eastern Asia Eastern Asia Southern Asia Western Asia

2000–2022 89.835◦ E, 16.862◦ N 112.121◦ E, 4.523◦ N 120.785◦ E, 31.639◦ N 85.600◦ E, 22.596◦ N 37.789◦ E, 29.207◦ N
2000–2004 95.808◦ E, 19.344◦ N 117.056◦ E, 3.776◦ N 115.153◦ E, 32.086◦ N 86.736◦ E, 22.269◦ N 35.452◦ E, 34.534◦ N
2005–2009 89.482◦ E, 15.562◦ N 112.690◦ E, 5.295◦ N 123.776◦ E, 31.095◦ N 84.321◦ E, 22.955◦ N 41.490◦ E, 24.239◦ N
2010–2014 89.683◦ E, 13.192◦ N 110.014◦ E, 3.908◦ N 125.611◦ E, 31.697◦ N 85.131◦ E, 23.641◦ N 41.738◦ E, 20.441◦ N
2015–2019 76.816◦ E, 18.543◦ N 106.453◦ E, 4.650◦ N 121.713◦ E, 32.022◦ N 84.493◦ E, 20.734◦ N 34.334◦ E, 34.029◦ N
2020–2022 93.597◦ E, 16.996◦ N 111.765◦ E, 6.276◦ N — — 87.807◦ E, 22.833◦ N 34.610◦ E, 38.495◦ N
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Table 5. Axes lengths of standard deviation ellipse for Asia and four sub-regions in different time
periods. (Mm-megameter, km-kilometer; the former data denote the long axis while the latter
represent the short axis).

Year

Regions

Asia
(Mm)

South-Eastern Asia (km) Eastern Asia (km) Southern Asia (km) Western Asia (km)

2000–2022 42.699, 14.323 16.919, 10.617 15.575, 5.887 12.450, 8.050 7.055, 20.689
2000–2004 41.211, 16.251 15.852, 9.768 14.325, 5.938 9.709, 6.747 8.626, 15.743
2005–2009 40.018, 12.360 17.347, 10.866 13.391, 5.268 12.923, 8.706 7.244, 19.703
2010–2014 39.847, 13.640 16.127, 10.261 21.587, 4.909 15.060, 5.452 3.411, 19.659
2015–2019 50.655, 9.363 17.460, 8.703 10.957, 2.446 17.599, 6.590 19.008, 5.090
2020–2022 35.340, 10.134 13.933, 10.746 — — 9.369, 7.348 — —

Over the whole research period of 2000–2022, the center of gravity for water traffic ac-
cidents was situated at (89.835◦ E, 16.862◦ N). The center of gravity was initially positioned
in Myanmar from 2000 to 2004, shifted southwest to the Bay of Bengal waters from 2005 to
2009, continued southward while remaining within the Bay of Bengal from 2010 to 2014,
then shifted northwest to regions near India from 2015 to 2019. Subsequently, it migrated
southeast and settled on the boundary of Myanmar and the Bay of Bengal. This migration
represents the furthest movement among the four shifts in these five periods.

From the perspective of gravity center distribution, the locations of the gravity center
differ for five time periods, four of which were located in or near South-eastern Asia.
Only the center of gravity for 2015–2019 was positioned in Southern Asia, India. This is
attributed to the dense vessel traffic flow through the navigable straits in South-eastern Asia,
coupled with the substantial volume of ships, which increases the likelihood of accidents.
Additionally, countries such as Bangladesh in Southern Asia and Vietnam in South-eastern
Asia have numerous ports (e.g., seventeen in Vietnam, seven in Bangladesh) and rely
heavily on exports (export to China, Malaysia, etc.) for their economic development. This
leads to a surge in vessel traffic flow through the Straits of Malacca and the South China
Sea, potentially resulting in water traffic accidents.

Figure 8b provides a visual representation of the standard deviation ellipses and
center of gravity analyses for water traffic accidents across Asia. It was found that accidents
frequently occurred (i.e., concentration of gravity centers) in Malaysia and Singapore in
South-eastern Asia, the Bay of Bengal in Southern Asia, the western periphery of Turkey
in Western Asia, and the southeast region of China in Eastern Asia. The phenomenon of
high-frequency water traffic accidents might be attributed the Straits of Malacca, Bay of
Bengal region, Mediterranean Economic Belt, and China’s Golden Waterway where the
shipping industry is well developed. It needs to be emphasized that the Strait of Malacca is
a crucial international trade route shared by all countries [35], thus carries a large amount
of maritime vessel traffic flow [36]. To ensure navigation safety in this area, maritime
supervision efficiency remain focal points of ongoing research [11].

5.2.1. South-Eastern Asia

Between 2000 and 2022, the center of gravity for water traffic accidents in South-
eastern Asia resided at (112.121◦ E, 4.523◦ N), i.e., the juncture of James Shoal and Malaysia
(East). In the initial period of 2000 to 2004, the center of gravity was situated in northern
Indonesia near Brunei. It shifted northwest to the James Shoal–Malaysia (East)–Brunei
junction during 2005 to 2009. From 2010 to 2014, it migrated southwest to the western
waters of Malaysia (East). It moved northwest again to the junction connecting Malaysia
(West), Vietnam, and the South China Sea. In the most recent three years, the center of
gravity shifted northeastward, nearing the border between James Shoal and the Nansha
Islands. Over the entire period, it is evident that the center of gravity in South-eastern
Asia consistently hovered around the South China Sea and Malaysia, except the early years
(2000–2004) when it was situated in Indonesia as shown in Figure 9a.
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(a) (b) 

Figure 9. Evolution features of water traffic accidents in (a) South-eastern Asia and (b) Eastern Asia.

Following the standard deviation ellipses analysis within the South-eastern Asia, it
was found that the disparities between the long and short axes consistently remained
within 10 km during different time periods, which suggests a relatively concentrated data
distribution feature. In combination with the center of gravity patterns, it is concluded that
the focal area of water traffic accidents in South-eastern Asia is located in the South China
Sea because of its important role for the Asian Maritime Silk Road. South-eastern Asia
historically constituted the primary trade hinterland of the early Maritime Silk Road [37].
The Maritime Silk Road has built close ties between China and Asian countries, and has
promoted all-round cooperation. As an important part of the global shipping routes,
thousands of ships pass through this area every day, thereby resulting in a higher risk of
water traffic accidents.

5.2.2. Eastern Asia

The water traffic accident data of 2015–2019 were insufficient for center of gravity and
standard deviation ellipse analysis, thus the dataset was neglected in the present study.

Over the time period of 2000 to 2022, the center of gravity consistently resided in
Suzhou, China, a city situated along the Grand Canal route. The Grand Canal is the earliest
and longest artificial waterway in the world, and has played a great role in the economic
and cultural development and exchanges between the north and south regions of China.
In the time period of 2000 to 2004, and the most recent three years, the centers of gravity
were located in the vicinity of the Yangtze River estuary. Conversely, during 2005–2009
and 2010–2014, the centers of gravity were situated in the East China Sea. The evolution
features of gravity centers in different periods are correlated with the development strategy
of shipping industry in China. China holds a prominent role as the leading nation in the
Eastern Asian Maritime Silk Road [38].

Furthermore, results from the standard deviation ellipse analysis consistently exhibited
a predominant northeast–southwest directional distribution, with weaker data intensity
distributed in the northwest–southeast direction, as shown in Figure 9b.

This phenomenon may be affected by the lengths of coastline in Eastern Asia. The
coastline of the Eastern Asia is concentrated around China, Japan, and South Korea, who
own approximately 32,000 km (ranked 6th in the world), 29,000 km (ranked 7th in the
world,) and 2413 km (ranked 52nd in the world), respectively. The presence of extensive
coastlines facilitates the establishment of deep-water ports, allowing for the optimal utiliza-
tion of coastal advantages for the development of maritime transportation. Additionally,
these three nations are major importers and exporters in Asia. Consequently, the number of
vessels traversing these coastlines has experienced a notable increase, leading to a higher
risk of water transport safety incidents. The analysis also confirmed that a significant
portion of these accidents tend to occur at the junctions of these three countries as shown
in Figure 4a,e,g.
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Throughout the entire research period, the center of gravity was positioned within
the inland regions of China. This phenomenon might be attributed to developed inland
shipping infrastructures in China, e.g., the Golden waterway of the Yangtze River and the
Grand Canal. Simultaneously, the Chinese government has consistently supported the
digital development of inland waterway shipping [39]. It is worth noting that inland water
traffic accidents might happen occasionally with substantial casualties, such as the sinking
accident of the Eastern Star in 2015. This incident underscores the gravity center of water
traffic accidents in this specific period.

5.2.3. Southern Asia

The gravity centers in Southern Asia consistently clustered in the eastern region of
India, near the Bay of Bengal, as shown in Figure 10a. India and Bangladesh emerged as
the primary nations where accidents occurred with high frequency. A notable observation
is that the majority of accidents were concentrated in the inland waterways and coastal
regions of Bangladesh. In India, the capacity transfer of road and railway transportation
to inland waterway transportation has encountered numerous challenges, resulting in
suboptimal waterway management and high frequency occurrence of water accidents [40].
Meanwhile, the coastal areas of Bangladesh are prone to natural disasters such as storm
surges and hurricanes, which increase accident rates and exert significant impacts on the
maritime transportation safety [41].

 
(a) (b) 

Figure 10. Evolution features of water traffic accidents in (a) Southern Asia and (b) Western Asia.

A clear directional distribution pattern of the standard deviation ellipse was observed
in South-eastern Asia, Eastern Asia, and Western Asia for different time periods. However,
in Southern Asia, there were notable variations in the standard deviation ellipse during
different periods. In the time period of 2000 to 2004 and in 2020 to 2022, the data display
a northeast–southwest distribution, with minimal disparities between the long and short
axes, indicating relatively concentrated data. In the time periods of 2005 to 2009 and 2015 to
2019, a northwest–southeast distribution pattern was observed. The former is characterized
by data concentration, while the latter is distributed in a distinct direction and features a
significant difference between the long and short axes, extending up to 11 km. The data
distribution during 2010–2014 appears primarily horizontal, with a slight rotation toward
the northwest–southeast direction.

Interestingly, the gravity center and the ellipse axes of the 2000–2004 period closely
resemble those of 2020–2022, as shown in Figure 10a. In these instances, the center of
gravity (with a mere 1-degree difference in longitude) and the standard deviation ellipse
(featuring only a 0.6-km difference in the short axis) nearly overlap. This suggests that
water traffic accidents in this area may follow a periodic pattern. Further data analysis is
required to validate this preliminary conclusion.
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5.2.4. Western Asia

In the context of gravity center distribution, from 2000 to 2022, the focal point for
water traffic accidents in Western Asia consistently gravitated towards the northwest of
Saudi Arabia, in proximity to Jordan, as shown in Figure 10b. During 2000 to 2004, the
gravity center was situated in Syria along the Mediterranean region. Subsequently, this
point shifted southeast to the central part of Saudi Arabia from 2005 to 2009, and continued
its journey southwards to the southern region of Saudi Arabia near the Red Sea. Later, the
center of gravity shifted significantly northward to an area positioned between the middle
of Lebanon and Cyprus in the Mediterranean Sea from 2015 to 2019, marking the most
extensive migration distance. Finally, in the most recent three years, the center of gravity
has settled in Central Turkey.

An intriguing observation emerges from the gravity center distribution analysis. In
all five time periods, the gravity centers consistently aligned along a northwest–southeast
axis. This alignment is also clear when examining the standard deviation ellipses. This
suggests that water traffic accidents in Western Asia are concentrated along this trajectory,
corresponding to the interconnectedness of Turkey, Saudi Arabia, and Yemen at the national
level [30]. The rationale behind this phenomenon may be attributed to the Mediterranean
Sea facilitating exports for countries like Turkey and Lebanon, while the Red Sea, Gulf of
Aden and Arabian Gulf have become vital maritime regions for the export trade of Saudi
Arabia, Yemen, and Oman.

5.3. Discussion

The international shipping industry contributes more than 80% of world trade volume.
It is imperative to reveal spatiotemporal characteristics of water traffic accidents, thereby
more appropriate and effective countermeasures could be proposed to ensure navigational
safety. The EM-DAT database has provided a systematic data source for thorough analysis
of water traffic accidents worldwide. Both spatial statistical analysis and time series analysis
methods were introduced to investigate the features of water traffic accidents in Asia since
the 21st century.

The evolution features and intrinsic correlation of water traffic accidents were investi-
gated through time series analysis (i.e., Daniel trend test and R/S analysis). The present
study indicates that most of the water traffic accidents occurred in September, October,
and December, i.e., in autumn and winter. This might be attributed to the harsh wave
conditions and wind speed [42]. An increasing trend has been observed since 2020 (as
shown in Figure 3). The calculated Hurst values of water traffic accidents and fatalities fall
in a range of 0.5 to 1.0 (as presented in Figures 6 and 7). It is expected that the water traffic
accidents and associated fatalities in Asia will show a decreasing trend over the coming
years, which agree with the conclusions drawn by Zhou et al. [43].

Following the spatial statistical analysis by gravity centers and standard deviation
ellipses, water traffic accidents showed evident spatial variation features during different
stages. Water traffic accidents frequently occurred in the South-eastern Asia and Southern
Asia (as shown in Figures 4 and 5). This is closely related to the advanced shipping industry
of countries within these regions (e.g., Singapore, Malaysia, etc.) and busy shipping routes
(e.g., North Pacific shipping line and the Strait of Malacca). The results are consistent
with the published literature [43]. With the gradual improvement of inland waterway
conditions, China’s inland waterway shipping has developed rapidly. The inland river
freight volume exceeded 4.4 billion tons in 2022, with an increase rate of 5.1%. The dense
vessel traffic flow and trend of larger ships has resulted in a challenging task for the
maritime administration of inland shipping. Local extreme weather conditions may cause
water traffic accidents, leading to tragic consequences (e.g., The Eastern Star accident in
June 2015 [44]). In addition to the primary cause of human error [14], more effort needs be
paid to identify key environmental risk factors and evaluate their impacts on water traffic
safety [43].
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The present study fills the gap in the analysis of characteristics of water transport
accidents in Asia, and the current results are of great significance for improving maritime
safety services and risk management of shipping companies. It is worth noting that strict
criteria have been applied for disaster data inclusion in the EM-DAT database. More
sufficient data are thus required to conduct a comprehensive study of risk causes and
emergency response strategy in water traffic accidents. Other databases (e.g., IMO, Lloyd’s
List Intelligence, etc.) can provide a good supplement for relevant research. Some interesting
results of accident association rules in Artic waters [22], environmental risk factors [43],
and regional frequency density [30] have been reported. The incorporation of knowledge
graph theories [8] and ergonomics in further studies may provide valuable insights into
the underlying mechanisms of water traffic accidents.

6. Conclusions

In the present study, the EM-DAT database was utilized to perform characteristics anal-
ysis of water traffic accidents in Asia since the 21st century. Some preliminary conclusions
are drawn as follows:

1. Both South-eastern Asia and Southern Asia were identified as high incidence areas
of water traffic accidents. Most of the accidents occur in September, October, and
December, i.e., in autumn and winter. Overall, the occurrence frequency of water
traffic accidents in Asia shows a feature of an upward trend at the beginning of the
21st century, a fluctuating decline till 2020 and a minor increasing trend in 2022.

2. Heat maps and scatter diagrams were presented to demonstrate the distribution
patterns of water traffic accidents in different sub-regions. The regional and seasonal
evolution trends are anticipated to persist for 4~6 years and 3~5 years, respectively,
based on the Daniel trend analysis and Hurst coefficients calculations.

3. The spatial analysis of water traffic accident data demonstrates that the gravity center
of Asia is located at the junction between India and Bangladesh. The evolution features
of different sub-regions were presented and analyzed. The geographical conditions,
industrial planning, and development strategies of Asian countries might have an
impact on the distribution and evolution characteristics of water traffic accidents. The
potential causes of accidents were also briefly discussed for different sub-regions.

The scope of the present study was confined to a detailed analysis of water traffic
accidents in Asia since the 21st century. The results provide a guidance of improving vessel
traffic services and disaster prevention. Due to the nature of the EM-DAT database, the
potential causes and underlying mechanisms of water traffic accidents were not thoroughly
investigated which would be the topic of future studies.
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Abstract: Collision risk identification is an important basis for intelligent ship navigation decision-
making, which evaluates results that play a crucial role in the safe navigation of ships. However, the
curvature, narrowness, and restricted water conditions of complex waterways bring uncertainty and
ambiguity to the judgment of the danger of intelligent ship navigation situation, making it difficult
to calculate such risk accurately and efficiently with a unified standard. This study proposes a new
method for identifying ship navigation risks by combining the ship domain with AIS data to increase
the prediction accuracy of collision risk identification for ship navigation in complex waterways.
In this method, a ship domain model is constructed based on the ship density map drawn using
AIS data. Then, the collision time with the target ship is calculated based on the collision hazard
detection line and safety distance boundary, forming a method for dividing the danger level of
the ship navigation situation. In addition, the effectiveness of this method was verified through
simulation of ships navigation in complex waterways, and correct collision avoidance decisions can
be made with the Regulations for Preventing Collisions in Inland Rivers of the People’s Republic of
China, indicating the advantages of the proposed risk identification method in practical applications.

Keywords: collision risk identification; ais data; ship domain; ship navigation; complex waterways

1. Introduction

With the development of waterway transportation, the increase in the number, ton-
nage, and speed of ships has raised the possibility of ship collision, especially in complex
waterways [1,2]. Therefore, more scientific and efficient collision warning and collision
avoidance decisions are needed in today’s water navigation scenarios. At present, ships
have been widely installed with traffic sensing devices such as an automatic identification
system (AIS) and a shipborne radar, and most complex or important waterways have been
equipped with vessel traffic service (VTS), whose purpose is to obtain more navigation
information to ensure the safe navigation of ships. However, ship collisions still exist and
have not decreased with the advances in navigation technology [3]. This may be due to a
combination of factors such as insufficient experience of ship navigators, sudden collision
situations, and high thresholds for advanced equipment analysis [4]. The International
Regulations for Preventing Collisions at Sea (COLREG) is implemented by the International
Maritime Organization (IMO), and some navigation regulations are implemented in some
complex waterways, such as the Regulations for Preventing Collisions in Inland Rivers of
the People’s Republic of China in the Yangtze River waterway. Nevertheless, these rules
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are qualitative and do not have quantitative collision prediction thresholds to assist in
judgment in order to reduce the subjective judgment of navigators.

Several methods have been proposed to identify the risk of ship collision. In the
mid-20th century, concepts such as Distance to Closest Point of Approach (DCPA), Time to
Closest Point of Approach (TCPA), and Ship Domain were used to make decisions on ship
collision avoidance [5,6]. Zheng and Wu [7–9] proposed the concepts of space collision risk
and time collision risk, which considered the main factors that reflect risk levels of collision
between ships, such as DCPA, TCPA, safety distance, and the latest avoidance point, to
establish their respective collision avoidance risk models. Sotiralis et al. [10] proposed
a quantitative risk analysis method based on Bayesian networks by considering human
factors more adequately, which integrates elements from the Technique for Retrospective
and Predictive Analysis of Cognitive Errors, focusing on analyzing human-induced col-
lision accidents. Abebe et al. [3] proposed a ship collision risk index estimation model
based on the Dempster–Shafer theory and its accuracy and fast calculation were verified by
comparing it with different machine learning methods. Pietrzykowski et al. [11] proposed
an integrated, comprehensive system of an Autonomous Surface Vessel dedicated to ships
with various degrees of autonomy, and tests were conducted under the actual operating
conditions of ships. Perera and Soares [12] proposed a collision risk detection and quan-
tification methodology that can be implemented in a modem-integrated bridge system.
Ozturk and Cicek [13] believe that the risk assessment of wind, current, and wave height
on a ship’s dynamic cannot be ignored.

More advantageously, ship domain models can promote the rapid identification of
ship navigation collision avoidance, and their boundaries determine the accuracy of ships’
collision avoidance. As early as 1963, a symmetric elliptical ship domain model centered
around the own ship using the ship’s radar information was first proposed and widely
applied [14]. Goodwin [5] divides the ship domain into three different-sized sectors based
on ship lights. Van der Tak and Spaans [15] established a ship domain model based on
previous research, in which the center of the elliptical ship domain has a forward offset
from the position of the ship, and the bow of the ship was deflected, resulting in an area
of approximately equal to the three-sector areas of the Goodwin model. Coldwell [16]
established the ship domain model in overtaking and encountering situations by observing
the traffic of over 200 ships in the 19 nautical mile waterways of the Humber River in the
UK. Zhu et al. [17] proposed a multi-vessel collision risk assessment model based on the
Coldwell ship domain model. Wen et al. [18] obtained the shape and size of specific types
of ship domains in typical inland waterways by observing AIS-based grid density maps
and analyzing grid density data, in which the ship domain in real life is quite different
from the theoretical prediction. The shape of the ship domain in typical inland waters takes
the form of an asymmetrically shaped ellipse, with its major axis coinciding with the ship’s
central line.

With the widespread application of modern AIS technology, research on the ship
domain based on AIS has become increasingly meaningful. Qi et al. [19] established a
ship domain model and obtained boundary curves of the ship domain under different
avoidance degrees by utilizing AIS data from Qiongzhou Strait. Hansen et al. [20] estimated
the minimum ship domain where a navigator feels comfortable by observing the AIS data of
ships sailing in southern Danish waters for four years. Szlapczynski and Szlapczynska [21]
proposed a ship collision risk model based on the concept of ship domain and considered
the related domain-based collision risk parameters, such as degree of domain violation, the
relative speed of the two vessels, combination of the vessels’ courses, arena violations, and
encounter complexity. Feng et al. [22] proposed a quantitatively evaluated method of the
collision risks combining information entropy, which integrated the K-means clustering
based on AIS data. Liu et al. [23] proposed a systematic method based on the dynamic
ship domain model to detect possible collision scenarios and identify the distributions
of collision risk hot spots in a given area. Du et al. [24] proposed a data ship domain
concept and an analytical framework based on AIS, in which the ship domain explicitly
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incorporates the dynamic nature of the encounter process and the navigator’s evasive
maneuvers. Liu et al. [25] proposed a quantitative method for the analysis of ship collision
risk, in which a kinematics feature-based vessel conflict ranking operator was introduced,
and both the static and dynamic information of AIS data were considered to evaluate
ship collision risk. Silveira et al. [26] introduced a method to define AIS data-based
empirical polygonal ship domains, which can fit the empirical domain better. He et al. [27]
proposed a dynamic collision avoidance path planning algorithm for complex multi-ship
encounters based on the A-star algorithm and the quaternion ship domain from AIS data.
Zhang et al. [28] proposed an interpretable knowledge-based decision support method
to guide ship collision avoidance decisions with a knowledge base based on the ordinary
practice of seamen using AIS data.

In summary, on the one hand, these studies mainly focus on open water areas, and
there is a lack of empirical research on ship navigation risks based on complex inland
waterways. On the other hand, research methods based on statistical analysis use actual
traffic flow data. Early research was mostly based on radar data, and in recent years,
it has shifted towards AIS data. However, for research on risk identification with ship
domains in complex waterways, qualitative research is often used, and data containing
ship navigation information is rarely used for quantitative research. Thus, while taking the
risk identification computations in complex waterways, a ship domain model considering
the characteristics of navigation separation based on AIS data needs to be developed.

In this paper, a risk identification method is established based on the collision risk
detection line and the safety distance boundary of the ship domain to provide real-time
and fast guidance for collision avoidance control during navigation in complex water-
ways. Section 2 provides an overall description of the proposed risk identification method,
Section 3 introduces the process of establishing a ship domain model, and Section 4 intro-
duces collision risk classification algorithms based on the ship domain model. Section 5
validates this method using real ship data. In this way, we can evaluate the collision risk
of ship navigation based on AIS data and assist ship navigation by providing a collision
avoidance decision-making basis for navigators.

2. Procedure of the Proposed Risk Identification Method

The risk identification method for ship navigation in complex waterways consists of
two procedures: establishment of ship domain and collision risk classification, as shown in
Figure 1.

Due to the complex waterway characteristics and the Regulations for Preventing
Collisions, the AIS position data distribution pattern of the target ships around the own
ship in the same direction is not the same as that of the target ships in the opposite direction.
Therefore, based on historical AIS data, a corresponding ship domain model for the own
ship with different encounter situations is established in the complex waterway, which is
described in detail in Section 3. When the position data (from AIS, radar, or a fusion of
the two) of the own ship and the target ship are collected during real-time navigation, a
mathematical equation using Formula (3) in Section 3.5 and Formula (11) in Section 4.1 can
be applied for calculating the safety distance boundary in the ship domain. By determining
whether the target ship is within the ship domain, whether the collision risk detection line
intersects with the safe distance boundary of the own ship, and whether the time (Tca)
to the intersection point between the collision risk detection line and the safe distance
boundary of the ship domain is sufficient (Tca < TAlarm), the collision risk level is described
and divided, forming a fast collision risk identification method for ship navigation in
complex waterways.
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T

T T

Figure 1. Flow chart of the proposed method.

3. The Ship Domain Model of Navigation in Complex Waterways

The selected data is sourced from AIS onboard equipment on the ship “Channel 1”,
which includes over 2.7 million AIS and GPS data records of the ships from March 2023 to
July 2023 in the Wuhan reach of the Yangtze River.

3.1. Preprocessing of AIS Data

There are some abnormal data in the initial AIS data, so it is necessary to exclude
these abnormal data from the selected AIS data, such as ship position anomalies (not
within the navigation waterway, with speed but unchanged position), speed anomalies,
and heading anomalies, etc. Preprocessing of AIS data mainly includes data cleaning and
data repairing. Data repairing mainly involves linear interpolation of the data, with an
interpolation interval of 2 s. In addition, the research focuses on the state of the ship during
navigation, and it is necessary to determine the current sailing state of the ship based on
its speed. Therefore, AIS data with a speed less than 0.5 m/s is considered a parked state,
which is excluded. Meanwhile, considering the size characteristics of the ship domain in
complex waterways, ships within a 1 km range centered around the own ship are selected
as the research object for the encounter situation. The processed AIS data will be used for
subsequent calculations of the ship distribution density map.
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3.2. Scatter Distribution Map of the Target Ships

Based on historical AIS data, a coordinate system relative to the nearby water area of
a ship is established, with the ship’s position as the coordinate origin and its heading as
the longitudinal axis direction. The relative orientation is calculated from the longitude,
latitude, and heading of the ship and the longitude and latitude of the target ship.

Firstly, the relative distance and relative orientation of the two ships at a certain time
can be calculated by the longitude and latitude of the ships.

Secondly, to ensure that the own ship’s position is the coordinate origin and its heading
is the longitudinal axis direction, it is necessary to perform coordinate conversion on the
heading of other ships while the own ship is sailing to obtain the relative orientation, which
ensures the accuracy of the selected statistical samples.

Finally, based on the calculated relative distance and relative orientation, a scatter
distribution map of target ships can be visualized and displayed, as shown in Figure 2.

Figure 2. Scatter distribution map of target ships.

Figure 2 shows that there is a sparse distribution area of ship positions near the origin,
which is the ship domain of the own ship.

3.3. Distribution Density Map around the Ship

To improve the accuracy of describing the distribution of target ships around the own
ship, the Scatter distribution map of target ships was converted into a distribution density
map for analysis, in which the density value of coordinate points is the number of ship
points within a unit distance divided by the area. When the unit distance is selected as 5 m,
the conversion of the distribution density map is shown in Figure 3.

By calculating the density of each coordinate point around the own ship and setting
color legends based on the density, a grid density map of the own ship is obtained. The
shape and size of the own ship domain can be obtained by analyzing density map data, as
detailed in Section 3.5.

Figure 3b shows an area in the center of the image with a density much lower than
other surrounding spaces, which is classified as the ship domain of the own ship for safe
navigation. The ship domain is all in an asymmetric elliptical shape, with the major axis
of the ellipse parallel to the bow direction, and the center of the ellipse deviates from the
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center of the ship domain (the coordinate origin). The center of the ellipse in the ship
domain is located to the left rear of the center of the ship.

(a) (b) 

Figure 3. Distribution density map around the own ship. (a) Scatter distribution map; (b) Distribution
density map.

In addition, there are banded high-density areas of ships on both sides of the own
ship domain. The “Channel 1” researched is a command ship for channel work, with a
total length of 49.60 m, a molded width of 9.3 m, and a molded depth of 3.1 m, which
is much faster than other cargo ships sailing in the Yangtze River. The power system of
the ship is two C32 twelve-cylinder V-type four-stroke engines produced by Caterpillar
in the United States, with a cruising speed of up to 35 km per hour. Therefore, the own
ship often navigates close to the centerline of the waterway and is often in a situation of
overtaking other ships. When the right chord of the own ship overtook another ship, it
should maintain a distance of about 50 m, which is consistent with the banded high-density
area of ships within a range of 0 to 200 m on the right side of the origin, and these ships
are overtaking ships sailing in the same direction on the right side of the own ship. On
the other side, there is also another banded high-density area of ships within the range of
50 to 250 m on the left side of the own ship, which is the encounter of ships sailing in the
opposite direction on the left side of the centerline of the waterway. The distance between
ships encountered on the port side and the own ship is generally greater than 100 m.

Therefore, the shape and scale of the ship domain in typical complex waterways are
significantly different from that in the wide waters of the sea, as well as different from that
based on the traditional theoretical analysis. The shape of the ship domain is significantly
influenced by its navigation behavior.

3.4. Distribution Density Map with Different Encounter Situations

To ensure the safety of Yangtze River vessel navigation, provide navigation efficiency,
and promote shipping development, Yangtze River vessel navigation has implemented
segmented waterway navigation and fixed route navigation.

The segmented waterway navigation includes two-way navigation and one-way
navigation, and a crossing zone is set up.

During the implementation of two-way navigation, ships follow the prescribed route
and try to navigate on the side of the waterway as much as possible in order to maintain
sufficient safety distance in case of an encounter. When overtaking, the slow ship should
navigate on one side of the channel, while the fast ship should overtake the slow ship on
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the centerline side of the waterway as parallel as possible and maintain sufficient lateral
distance to prevent the occurrence of ship suction. The overtaking ship should first pass
through the stern of the overtaking ship and then carry out overtaking. After overtaking
another ship, the overtaking ship should not immediately turn to cross the front of the
other ship to avoid creating an urgent situation.

During the implementation of one-way navigation, it is stipulated that ships should
pass through in one direction and are prohibited from giving way to each other. Ships
should navigate laterally within the designated lateral navigation area, strengthen the
lookout, and steer with caution.

Due to ships navigating in different lanes along the Yangtze River, the surrounding
ships are classified into two categories: in the same and opposite directions for analysis.
Figure 4 shows the relative heading distribution of surrounding ships based on the own
ship’s heading, in which 77.5% of the ships have relative heading between −180 degrees to
−160 degrees, −20 degrees to 20 degrees, and 160 degrees to 180 degrees. Therefore, the
relative heading of the ship is selected with data from −20 degrees to 20 degrees as the same
direction data and data from −180 degrees to −160 degrees and 160 degrees to 180 degrees
as the opposite direction data for distribution density statistical analysis of ship.

Figure 4. Distribution of relative heading of ships.

Firstly, the scatter distribution map of target ships around the own ship in the same
direction can be obtained by selecting data from −20 degrees to 20 degrees for the relative
heading of ships as co-heading data, as shown in Figure 5.

Figure 5. Scatter distribution map of target ships around the own ship in the same direction.
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Considering that the navigation diversion of the Yangtze River’s inland rivers will
change left and right with the flow conditions of the channel, the scatter distribution map
will be symmetrically supplemented along the x = 0 line to calculate the distribution density
map, as shown in Figure 6.

  
(a) (b) 

Figure 6. Distribution density map around the own ship in the same direction. (a) scatter distribution
map; (b) distribution density map.

Then, the scatter distribution map of target ships around the own ship in the oppo-
site direction can be obtained by selecting data from −180 degrees to −160 degrees and
60 degrees to 180 degrees for the relative heading of ships as opposing navigation data, as
shown in Figure 7.

Figure 7. Scatter distribution map of target ships around the own ship in the opposite direction.

Similarly, the scatter distribution map will be symmetrically supplemented along the
x = 0 line to calculate the distribution density map, as shown in Figure 8.
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(a) (b) 

Figure 8. Distribution density map around the own ship in the opposite direction. (a) Scatter
distribution map; (b) Distribution density map.

It can be seen that when sailing in the same direction, the navigation behavior of the
own ship is mostly following or overtaking, and the space in the ship domain presents a
situation of short front and long back (in a word, the center of the ship domain moves back-
ward), and the space on both sides is relatively narrow due to the influence of lane width;

When sailing in the opposite direction, the navigation behavior of the own ship is
mostly encountering behavior, and the space in the ship domain presents a situation of the
long front and short back (in a word, the center of the ship domain moves forward), and
the space on both sides is relatively wide due to the influence of lane width.

3.5. The Mathematical Models of Ship Domain in Complex Waterways

Considering the characteristics of ship navigation in complex waterways, the elliptical
ship domain is chosen as the basic graphic, as shown in Figure 9.

Figure 9. Schematic diagram of an elliptical ship domain model with eccentricity.

The coordinate system is established with the own ship as the origin, the right trans-
verse direction as the x-axis direction, and the heading direction of the own ship as the
y-axis direction.
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In this coordinate system, the boundary equation of the own ship domain is given by

f (x, y) =
(x + x0)

2

a2 +
(y + y0)

2

b2 = 1 (1)

where a is the radius length of the elliptical ship-type field in the positive and negative
directions of the x-axis, m; b is the radius length of the elliptical ship-type field in the
positive and negative directions of the y-axis; x0 is the eccentric coordinate in the x-axis
direction, m; y0 is the eccentric coordinate in the y-axis direction, m.

To determine the size of the ship field, the following process was carried out:
1© In the distribution density map, select the density data of ships in the same and

opposite directions separately and generate the cross-section of x0 = 0 (the center of ship
domain) section. Observe the changes in the ship domain under different cutting thresholds
to determine the appropriate threshold value. Therefore, a cutting threshold of 40% was
selected as the size of the ship domain at the same direction, and the eccentricity points in
the same direction ship domain were determined to be (0, −140), with a major axis radius
b = 360 m; a cutting threshold of 15% was selected as the size of the ship domain in the
opposing direction, and the eccentricity points in the same direction ship domain were
determined to be (0, 160), with a major axis radius b = 350 m, as shown in Figure 10.

 
(a) (b) 

Density curve
Density curve

Figure 10. The density curve of the ship under the x0 = 0 section for ship navigation. (a) the same
direction; (b) the opposite direction.

2© Select the density data in Figure 6b, and generate the cross-section of y = −140 (the
center of the same direction ship domain) section; Select the density data in Figure 8b, and
generate the cross-section of y = 160 (the center of the opposing direction ship domain)
section, as shown in Figure 11. A cutting threshold of 40% was selected as the size of the
ship domain, and the width a of the same direction sailing ship domain is 30 m, and the
width a of the opposite direction sailing ship domain is 70 m.

The mathematical formulas for normalized density in Figures 10 and 11 are given by

f (x, y) =
ρ(x, y)

max
−1000<x<1000,−1000<y<1000

ρ(x, y)
(2)

where ρ(x, y) is the ship density at the left point of (x, y); select a unit distance of 5 m and
calculate the density value of each coordinate point by dividing the number of ship points
within the unit distance by the area.
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(a) (b) 

Density curve Density curve

Figure 11. The density curve of the ship under the y section for ship navigation. (a) the same direction;
(b) the opposite direction.

3© When judging whether there is a risk of collision solely based on the ship domain, it
may result in the two ships being unable to pass at a safe distance in the complex waterway,
so expand the values of a and b in the ship domain by k times to increase an external safety
distance boundary and improve the safety of ships during encounters. The equation of the
safe distance boundary of the ship domain is given by

f (x, y) =
(x + x0)

2(
ka· a)2

+
(y + y0)

2(
kb· b)2

= 1 (3)

where ka and kb are taken between [1, 2]. By visual comparative analysis, when sailing in
the same direction, ka = 1.5 and kb = 1; when sailing in the opposite direction, ka = 1.15 and
kb = 1.28, as shown in Figure 12.

 
(a) (b) 

Figure 12. Schematic diagram of the safe distance boundary of the ship domain. (a) the same
direction; (b) the opposite direction.

The equation of the safe distance boundary of the ship domain is defined as Formula (3).
According to research conducted with experienced navigators and Wen’s research [18],
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the safe distance between the own ship and the target ship ahead in the same direction is
about 200 m in the Yangtze River. In Figure 10a, the Normalized ship distribution density
corresponding to a distance of 200 m from the target ship ahead is about 40%. Therefore,
we chose a cutting threshold of 40% in Figures 10 and 11. However, in Figure 10b, choosing
a cutting threshold of 40% is clearly inappropriate, so a moderate cutting threshold of
15% was chosen to determine the eccentric position of the ellipse. In order to ensure the
availability of the final ship domain, adjustments are made in the Formula (3) through ka
and kb.

4. The Collision Risk Classification Method of Ship Navigation

4.1. Collision Avoidance Collision Model Based on Ship Domain

The collision risk detection line is the straight line where the target ship’s direction
of its relative velocity vector is located. If the collision risk detection line intersects with
the safe distance boundary of the ship domain, there is a risk of collision; otherwise, there
is no risk of collision, as shown in Figure 13. Therefore, the equation of the collision risk
detection line in the coordinate system with the own ship’s position as the origin and its
heading direction as the y-axis direction.

Figure 13. Schematic diagram of collision judgment.

Assuming the coordinate point of the own ship at time t is OS (0, 0), the speed is vos,
and the heading is 0◦; the relative distance of the target ship to the own ship at time t is D,
the relative orientation is qt

OT, the coordinate point is TS (xt
OT, yt

OT), the speed vTS, and
the relative heading is ct

TS. For the convenience of calculation, the range of the relative
orientation and the relative heading of the target ship have been changed to between
[−180◦, 180◦].

qOT
t =

{
qOT

t , 0◦ ≤ qOT
t ≤ 180◦

qOT
t − 360◦, 180◦ ≤ qOT

t ≤ 360◦ (4)

cTS
t =

{
cTS

t , 0◦ ≤ cTS
t ≤ 180◦

cTS
t − 360◦, 180◦ ≤ cTS

t ≤ 360◦ (5)

The coordinate point of the target ship is TS (xt
OT, yt

OT), which is given by{
xOT

t = D·sinqOT
t

yOT
t = D·cosqOT

t
(6)

The velocity components of the target ship’s velocity on the x and y axes are as follows:{
vxTS

t = vTS
t ·sincTS

t
vyTS

t = vTS
t ·coscTS

t
(7)
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The velocity components of the target ship’s relative velocity on the x and y axes are
as follows: {

vxOT
t = vxTS

t
vyOT

t = vyts
t − vOS

t
(8)

When vyOT
t �= 0, the slope kt of the collision risk detection line is:

kt =
vxOT

t

vyOT
t

(9)

When vyOT
t = 0, the slope kt of the collision risk detection line is:

kt = 0 (10)

According to Formulas (9) and (10), the equation of the consolidation risk detection
line is given by

y = f (x) = ktx + yOT
t − ktxOT

t (11)

The equation of the consolidation risk detection line is defined as Formula (3).
By using simultaneous Equations (2) and (11), the intersection point between the

collision risk detection line and the safe distance boundary of the ship domain can be
obtained.

The number of intersection points between Formulas (3) and (11) is determined by the
discriminant of a univariate quadratic equation. The discriminant Δ is given by

Δ =
[
2x0k2

bb2
+ 2k2

aa2kt
(
yOT

t − xOT
t kt + y0

)]2 − 4
(
k2

bb2 + k2
aa2k2

t
)

·
[
k2

bb2x0
2 + k2

aa2·(yOT
t − xOT

t kt + y0
)2 − k2

aa2k2
bb2

] (12)

When Δ < 0, there is no intersection between Formulas (3) and (11), there is no risk of
collision with the target ship; when Δ ≥ 0, there are 1 or 2 intersections between Formulas (3)
and (11), there is a risk of collision with the target ship. The x-coordinate of the intersection
point is given by: ⎧⎪⎪⎨⎪⎪⎩

x1 =
−

[
2x0k2

bb2
+2k2

a a2kt(yot
t −xot

t kt+y0)
]
+
√

Δ

2(k2
bb2+k2

aa2k2
t )

x2 =
−

[
2x0k2

bb2
+2k2

a a2kt(yot
t −xot

t kt+y0)
]
−√

Δ

2(k2
bb2+k2

aa2k2
t )

(13)

And the encounter time to the intersection point Tcax is:⎧⎨⎩Tcax1 = x1−x0
vxOT

t
, Tcax1 ≥ 0

Tcax2 = x2−x0
vxOT

t
, Tcax2 ≥ 0

(14)

Take the minimum between Tcax1 and Tcax2 as the value of the encounter time:

Tca = min{Tcax1, Tcax2} (15)

4.2. Collision Risk Classification

According to the safety distance boundary in the ship domain, refer to Li’s risk
classification method [29], the collision risk detection line, and the encounter time at the
intersection point, the collision risk level of the ship navigation in complex waterways is
divided into four levels: safe (Level I of collision risk), unsafe (Level II of collision risk),
dangerous (Level III of collision risk), and very dangerous (Level IV of collision risk).

1© Level I of collision risk: if the target ship is outside the own ship domain, and the
collision risk detection line does not intersect with the safety distance boundary in the ship
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domain (Δ < 0), it indicates that the two ships can safely encounter each other. In this case,
it is considered safe.

2© Level II of collision risk: if the target ship is outside the own ship domain, and the
collision risk detection line intersects with the safety distance boundary in the ship domain
(Δ ≥ 0), but the encounter time to the intersection point Tca is greater than the alert time
TAlarm, it indicates that the own ship has sufficient time to take avoidance actions to avoid
the target ship from entering its domain and reduce the safety. In this case, it is considered
unsafe.

3© Level III of collision risk: if the target ship is outside the own ship domain, and the
collision risk detection line intersects with the safety distance boundary in the ship domain
(Δ ≥ 0), but Tca ≤ TAlarm, it indicates that the own ship must take timely avoidance actions
to avoid the target ship from entering its domain, which poses a collision risk. In this case,
it is considered dangerous.

4© Level IV of collision risk: if the target ship is inside the own ship domain, it indicates
that the target ship has posed a threat to the own ship and poses a significant collision risk,
which must implement emergency collision avoidance. In this case, it is considered very
dangerous.

5. Simulation Results and Discussion

5.1. Simulation

A complex waterway in the Wuhan reach of the Yangtze River was selected, as ships
frequently encounter each other, which significantly increases the demand for collision
avoidance warnings. According to the ship “Channel 1”, which has been introduced in
Section 3.3, and its actual situation of collision avoidance with other ships in this complex
waterway, the proposed risk identification method has been verified by mainly taking
practical avoidance measures in the change of direction, when “Channel 1” and other ships
are in a dangerous or urgent situation of encounter.

From 15:48 to 15:52 on 18 April, the ship “Channel 1” was sailing on the Luoyang reach
between the Yangluo Yangtze River Highway Bridge and the Wuhan Qingshan Yangtze
River Bridge, which has a width of about 350 m (the up lane width is about 150 m and the
down lane width is about 200 m), and a depth of 8 m. Figure 14 shows the electronic chart
of the Luoyang reach, in which facing the direction of water flow, the down lane is on the
left side of the waterway, while the up lane is on the right side.

 
Figure 14. Chart with AIS data of the Luoyang reach.

During this navigation, AIS data of the own ship “Channel 1” overtaking the target
ship (MMSI: 413786692) was selected for analysis. In the beginning, the target ship was
sailing at a speed of 3.4 knots, while the own ship followed at a speed of 13 knots. As
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the distance gradually narrowed to about 500 m, the own ship turned right and began to
overtake the target ship. Then, the own ship was sailing parallel to the target ship, with
a parallel distance of approximately 50 m. Finally, the own ship overtook the target ship
and then turned left to return to the middle of the up lane of the waterway. The entire
overtaking process is shown in Figures 15 and 16.

the own ship

Figure 15. The trajectory map of the own ship and the target ship.

Figure 16. The trajectory map of the target ship relative to the own ship.

5.2. Validation

Figure 17 shows that Tca can effectively describe the collision risk level of the target
ship relative to the own ship when the alert time TAlarm is 60 s. In addition, due to the low
frequency of sending AIS data from the target ship and the low real-time performance of
AIS data, which leads to missed alarms and poor alarm stability when using AIS data alone
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to calculate the collision risk level, compared to using the fusion data of AIS and radar.
Compared with using the fusion data of AIS and radar, the lag time of only using AIS data
calculation is about 5–10 s, which may affect the navigator’s misjudgment of the navigation
risk situation.

(a) 

(b) 

T

t

T

T
T

t

T

T

Figure 17. Change rate curve of the encounter time to the intersection point Tca. (a) Data from AIS;
(b) Data from the fusion of AIS and radar.

The change rate of the own ship’s heading objectively reflects the behavior of the
ship’s navigating operation. In other words, when the navigator discovers that there is a
collision risk of the target ship, he will take corresponding avoidance actions, resulting in
a change in the ship’s heading. Therefore, comparing the Tca change curve of the fused
data with the change rate curve of the ship’s heading can prove whether the collision risk
judgment result is consistent with the navigator’s risk judgment result, which can also
verify the reliability of our risk identification method.

Figure 18 shows that at 15:50:00, our method began to alert collision risks from the
target ship, and almost at the same time, the rate of the own ship’s heading change gradually
increased, indicating that the navigator also judged that there was a risk of collision from
the target ship and turned the rudder. Until 15:50:32, our method ends the collision risk
alarm for the target ship, and the rate of the own ship’s heading change is gradually
decreasing, indicating that at this time, the navigator also determines that the collision
risk of the target ship is relieved, and turns the rudder in reverse to return to the original
heading for navigation. Overall, our method’s collision risk alarm judgment is consistent
with the navigator’s judgment, so our method is effective in identifying the collision risk
during navigation and in line with the navigator’s cognitive habits.

Therefore, the risk identification method for ship navigation in complex waterways
via consideration of ship domain can accurately reflect the collision risk of the target ship
relative to the own ship, and the warning data is stable and has good real-time performance,
which can effectively assist the navigator in identifying collision risks during navigation, in
other words, our proposed method has been validated.
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Figure 18. Relationship between Tca and heading change rate (the blue line is Tca, and the yellow
line is the actual rate of change in heading).

5.3. Comparison

According to traditional methods, DCPA less than 200 m and TCPA less than 80 s are
used as alarm judgment conditions, where DCPA is less than 100 m throughout the entire
process, so only the changes in TCPA are considered [30].

Figure 19 shows that our proposed method is more accurate than the traditional DCPA
and TCPA judgment methods for early warning. Firstly, the traditional DCPA and TCPA
judgment methods lag by 8 s before starting to alarm. Secondly, after the navigation risk
alarm, the traditional methods always maintain the alarm state for a long time and only
stop the alarm after the ship has passed and cleared, which is inconsistent with the driver’s
judgment of navigation risk and cannot accurately reflect the navigation situation.

T

T

Figure 19. Comparison between our method and TCPA.

5.4. Discussion

In this paper, a new method for identifying ship navigation risks by combining the
ship domain with AIS data is proposed, in which the collision time with the target ship is
calculated based on the collision hazard detection line and safety distance boundary and
formed a method for dividing the danger level of the ship navigation situation.

The research focuses on the Wuhan reach of the Yangtze River, where ships navigate
by the Regulations for Preventing Collisions in Inland Rivers of the People’s Republic of
China. In the complex waterway of the Yangtze River, the simulation results of our method
are consistent with the actual navigation behavior and superior to the traditional TCPA
method. This also indicates that our method can accurately reflect the consolidation risk of
the target ship relative to the own ship, and the warning data is stable and has good real-
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time performance, which can effectively assist the navigator in identifying consolidation
risks during navigation.

However, our method did not consider the hydrodynamic interaction between the
ships. External hydrodynamic interference, such as waves and currents, is one of the
important influencing factors for ship navigation decisions [31,32]. Our method has limi-
tations by determining a reasonable size of the ship domain and avoiding the impact of
hydrodynamic interference through navigators. Due to the lack of actual flow field data,
poor ship informatization conditions, and the lack of equipment such as recorders and
meteorological instruments, our research cannot consider external disturbances. In addi-
tion, hydrodynamic simulation requires a certain amount of computational power support,
which may improve the accuracy of early warning but reduce the speed of early warning.

In the future, we will conduct research on rapid simulation and early warning methods
that consider hydrodynamic interaction based on our proposed method. Our method will
provide a decision-making basis for intelligent ships and assist in the construction of the
future New Generation of Waterborne Transportation systems [33].

6. Conclusions

We have considered navigation conditions such as narrow waterways, as well as the
characteristics of navigation rules for Yangtze River diversion navigation, and conducted
research on methods for estimating the navigation collision risk of ships, and obtained the
following conclusions:

(1) In this paper, we combined the ship domain and ship position data from the fusion of
AIS and radar to calculate the collision risk level of ship navigation and proposed a
new convenient risk identification method for ship navigation in complex waterways.

(2) According to the analysis of the distribution density map around the ship, it can be
seen that when sailing in the same direction, the center of the ship domain moves
backward, while sailing in the opposite direction, the center of the ship domain moves
forward. The space on both sides of the ship is wider in the same direction than that
in the opposite direction.

(3) According to the safety distance boundary in the ship domain, the collision risk
detection line, and the encounter time at the intersection point, the collision risk level
of the ship navigation in complex waterways is divided into four levels: safe (Level I
of collision risk), unsafe (Level II of collision risk), dangerous (Level III of collision
risk), and very dangerous (Level IV of collision risk). In addition, data analysis was
conducted on the real overtaking instance on “Channel 1”, verifying the effectiveness,
stability, and real-time performance of our risk identification method.
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Abstract: In high-traffic harbor waters, marine radar frequently encounters signal interference
stemming from various obstructive elements, thereby presenting formidable obstacles in the precise
identification of ships. To achieve precise pixel-level ship identification in the complex environments,
a customized neural network-based ship segmentation algorithm named MrisNet is proposed.
MrisNet employs a lightweight and efficient FasterYOLO network to extract features from radar
images at different levels, capturing fine-grained edge information and deep semantic features of
ship pixels. To address the limitation of deep features in the backbone network lacking detailed shape
and structured information, an adaptive attention mechanism is introduced after the FasterYOLO
network to enhance crucial ship features. To fully utilize the multi-dimensional feature outputs,
MrisNet incorporates a Transformer structure to reconstruct the PANet feature fusion network,
allowing for the fusion of contextual information and capturing more essential ship information
and semantic correlations. In the prediction stage, MrisNet optimizes the target position loss using
the EIoU function, enabling the algorithm to adapt to ship position deviations and size variations,
thereby improving segmentation accuracy and convergence speed. Experimental results demonstrate
MrisNet achieves high recall and precision rates of 94.8% and 95.2%, respectively, in ship instance
segmentation, outperforming various YOLO and other single-stage algorithms. Moreover, MrisNet
has a model parameter size of 13.8M and real-time computational cost of 23.5G, demonstrating
notable advantages in terms of convolutional efficiency. In conclusion, MrisNet accurately segments
ships with different spot features and under diverse environmental conditions in marine radar images.
It exhibits outstanding performance, particularly in extreme scenarios and challenging interference
conditions, showcasing robustness and applicability.

Keywords: ship segmentation; radar image; lightweight convolution; adaptive attention mechanism;
loss function

1. Introduction

Real-time monitoring of busy waterways is a critically important task in maritime
management, with positive implications for ensuring ship navigation safety, and improving
port operational efficiency. Marine radar is widely applied in various domains such as
ship collision avoidance, weather forecasting, and marine resource monitoring [1,2]. Simi-
larly, shore-based deployed marine radar plays a significant role as it enables continuous
monitoring of ships in expansive water areas, even under adverse weather and low visibil-
ity conditions. Compared to detection technologies like Automatic Identification System
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(AIS) and Very High-Frequency (VHF), marine radar does not rely on real-time informa-
tion responses from ships, thereby greatly enhancing the speed of obtaining navigation
information.

In general, the images presented by marine radar consist of a two-dimensional dataset
composed of a series of spots. These spots represent the intensity and positional information
of the radar signal’s reflection and echo from objects such as ships, islands, and air masses
in space. By analyzing and processing these spots, radar images with different resolutions
and clarity can be generated. Additionally, by overlaying and calculating a series of radar
images taken at different time intervals, the positions and trajectories of ships can be
simulated, resulting in ship spots with varying lengths of trails.

Traditional ship recognition methods for marine radar images mainly involve tech-
niques such as filtering and pattern recognition [3]. These methods demonstrate appropriate
suppression capabilities when dealing with relatively simple interference. However, they
are relatively inapplicable in tasks that involve low pixel features, slow movement speeds,
and strong interference in ship recognition. In recent years, deep learning techniques
have rapidly advanced in the field of object recognition, particularly with the widespread
application of Convolutional Neural Networks (CNNs). CNN-based methods have shown
more competitive performance in complex scenarios, such as equipment defect detection,
autonomous driving, and aerospace applications. Compared to traditional methods, these
approaches are capable of extracting deep semantic information from images and achieving
more accurate object localization.

Both traditional recognition methods and CNN-based object detection algorithms
can only provide rough positional information of the targets. As a derivative method in
the field of computer vision, instance segmentation offers higher precision in pixel-level
target localization and can effectively distinguish multiple instances. For marine radar
images, instance segmentation methods also provide richer ship motion information, such
as heading and speed. Therefore, utilizing these methods to process marine radar images
can provide more accurate and comprehensive ship identification and tracking information
for maritime authorities.

Compared to ship instance segmentation in natural images, performing such tasks in
radar images faces more challenges. Firstly, there are only small numbers of spots represent
actual moving ships. This significantly affects the accurate classification and localization of
ship targets, while interferences such as waves, clouds, rain, clutter, etc., further increase
the difficulty of interference removal. Secondly, both long-tail and short-tail ships in radar
images are considered small or even tiny objects. Particularly, in cases of dense sailing or
crossing navigation, distinguishing between ship spots can be challenging. Lastly, due to
the extensive use of embedded devices in radar systems, traditional fractal algorithms and
micro-Doppler techniques have been commonly employed for radar signal processing for
several decades, despite their relatively limited adaptability in many cases. In contrast,
deep learning-based recognition methods generally exhibit preferable performance, but
they require more computational resources, and only a fraction of mature algorithms can
be directly applied to embedded devices.

In response to the characteristics of marine radar images, this paper proposes a
customized CNN-based instance segmentation algorithm called MrisNet. Compared to
previous research, this method exhibits significant differences in several aspects.

(1) We enhance the feature network to extract crucial ship features by employing more
efficient convolutional modules.

(2) A convolutional enhancement method that incorporates channel correlations is intro-
duced to further enhance the generalization ability of the feature network.

(3) An attention mechanism with contextual awareness is utilized to enhance the multi-
scale feature fusion structure, enriching the representation of convolutional features at
different levels and effectively integrating micro-level and global-level ship features.
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(4) The positioning loss estimation of predicted box is optimized to improve the preci-
sion of ship localization and enhance the segmentation performance for dense ship
scenarios.

(5) To evaluate the effectiveness of various algorithms for ship segmentation in radar
images, a high-quality dataset called RadarSeg, consisting of 1280 radar images, is
constructed.

The remaining sections of this paper are organized as follows: Section 2 provides a
brief overview of relevant research on instance segmentation and detection of ships in
different imaging scenarios. In Section 3, a customized CNN-based ship segmentation
algorithm is proposed. Section 4 presents a comparative analysis of experimental results
using various algorithms in marine radar images. Finally, Section 5 summarizes the main
contributions of the proposed method and discusses future directions for development.

2. Related Works

Currently, ship recognition in natural scenes and remote sensing images has been
widely explored and developed. Early traditional methods primarily employed techniques
such as clustering analysis and filtering for ship recognition [4]. However, these methods
have obvious limitations and relatively poor adaptability, making it challenging to achieve
satisfactory results in different scenarios. Meanwhile, the rapid development of deep
learning and neural network-based technologies has brought significant advancements
in tasks like instance segmentation. However, in the field of ship recognition in marine
radar images, the application of deep learning-related methods remains relatively limited,
presenting vast opportunities for further development.

In this section, we first provided an overview of ship recognition techniques in ma-
rine radar images, including neural network-based approaches for object detection and
instance segmentation. It is worth noting object detection and instance segmentation share
commonalities in feature extraction, object localization, and post-processing, thus the de-
sign principles of object detection algorithms can offer valuable insights for the design
of instance segmentation algorithms. Additionally, we reviewed and summarized ship
recognition techniques and relevant optimization methods in other scenarios.

2.1. Ship Identification Methods under Radar and Other Scenarios

In recent years, significant advancements have been made in object detection and
instance segmentation using CNNs. In 2014, the R-CNN algorithm demonstrated a sig-
nificant advantage on the PASCAL VOC dataset, gradually establishing the dominance
of deep learning-based algorithms in the field of object recognition. As is widely known
single-stage algorithms is achieving a good balance between computational speed and
recognition accuracy, allowing for end-to-end training and widespread adoption in various
recognition tasks. However, in certain tasks, single-stage algorithms may exhibit slightly
lower accuracy compared to two-stage algorithms such as Faster R-CNN [5] and Mask
R-CNN [6]. Therefore, the selection of benchmark algorithms and network architectures
requires careful consideration and decision-making based on specific application scenarios
and requirements.

In the research on ship recognition in marine radar images, significant progress has
been made by scholars who have incorporated deep learning methods into the field of
object detection. By designing effective algorithm structure and utilizing techniques such
as clutter suppression and feature enhancement, even single-stage algorithms can achieve
satisfactory recognition results. Chen et al. [7] proposed a ship recognition algorithm based
on a dual-channel convolutional neural network (DCCNN) and a false alarm-controllable
classifier (FACC) to suppress clutter and accurately extract ship features in images. Further-
more, some studies have achieved high levels of ship recognition accuracy and effective in-
terference suppression using two-stage recognition algorithms. For instance, Chen et al. [8]
made several improvements to Faster R-CNN in multiple aspects, including optimizing the
backbone network, sample data balancing, and scale normalization, aiming to enhance the
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algorithm’s accuracy and robustness. Additionally, differential neural architecture search,
label reassignment, and various types of feature pyramid structures have been widely
applied in algorithm design, yielding promising recognition results [9–11]. In conclusion,
deep neural networks have proven effective in extracting ship features. However, current
object detection techniques still have limitations in suppressing complex interference, and
there is room for improvement in recognizing dense small-sized ships.

Currently, research on ship segmentation under marine radar images is still relatively
limited. It is well-known ships in synthetic aperture radar (SAR) images exhibit small scales,
limited effective pixels, and significant background interference, which are similar to the
challenges faced in marine radar images. In the context of SAR images, there has been
extensive research on ship segmentation, and we could draw upon the technical methods
from these studies to provide insights for the design of ship segmentation algorithms in
marine radar images.

In ship segmentation under complex background conditions of SAR images, a well-
structured feature extraction network plays a crucial role in enhancing the model’s recog-
nition capability. Zhang et al. [12] proposed methods such as multi-resolution feature
extraction networks, and enhanced feature pyramid networks to ensure more adaptable
performance in complex scenarios. Moreover, various attention mechanisms can signifi-
cantly enhance the extraction of ship features and contextual information. Zhao et al. [13]
proposed a ship segmentation method based on collaborative attention mechanism, which
improved the recognition performance of multi-task branches. Typically, instance segmen-
tation networks employ horizontal bounding boxes to fit the objects, which may include
redundant information. Moreover, in dense ship scenarios, it becomes challenging to
accurately differentiate between individual targets. Yang et al. [14] proposed a novel ship
segmentation network that utilized rotated bounding boxes as the segmentation foundation,
enclosing the targets along the direction of the ships. Besides, they designed a dual feature
alignment module to capture representative features of the ships. Instance segmentation
of small-scale or multi-scale ships has been a focal topic in SAR images. Shao et al. [15]
proposed a multi-scale ship segmentation method specifically designed for SAR images.
Specifically, they achieved more precise target regression by re-designing the input unit,
backbone network, and ROI module of the Mask R-CNN.

The above-mentioned methods provide valuable references for the design of instance
segmentation algorithms in marine radar images, particularly in terms of feature network
design, attention mechanism application, and multi-scale segmentation.

In other domains, research on ship segmentation primarily focuses on natural images.
Researchers have employed various techniques and methods for algorithm design. Some
studies have utilized single-stage algorithms, incorporating efficient backbones, feature
fusion structures, and prediction networks to achieve high-precision ship segmentation [16].
Others have adopted two-stage algorithm designs, involving the extraction of target candi-
date regions followed by classification and fine-grained segmentation to enhance accuracy
and robustness [17]. These diverse algorithm design strategies cater to the demands and
challenges of various domains.

2.2. Optimization Method for Ship Identification Research

The ship recognition in radar images can be enhanced through the utilization of
auxiliary techniques. For instance, employing multi-modal fusion techniques and clutter
suppression techniques can result in clearer and higher-resolution radar images, thereby
providing more accurate ship information. Guo et al. [18] proposed a method that utilized
deep learning techniques to identify targets in marine radar images and achieved consistent
fusion of electronic chart and marine radar images by treating these targets as reference
points. Mao et al. [19] introduced a marine radar imaging framework based on non-uniform
imaging theory, which combined techniques such as beam recursive anti-interference,
non-uniform sampling models, and dimensionality reduction iterations for improved
computational efficiency and higher-quality imaging results. Zhang et al. [20] employed
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generative adversarial networks to remove noise in radar images and utilized image
registration methods to eliminate imaging discrepancies between radar images and chart
data, supporting efficient ship recognition through parallel computation of feature data
and image fusion.

Currently, there are several techniques available to improve the ship recognition models.
Among them, constructing datasets that include rich ship features is an effective method for
enhancing recognition performance [21]. In addition, the ship detection can be increased by
integrating feature augmentation and key point extraction into the recognition algorithms [22].
Furthermore, through the design of feature enhancement modules and small target attention
mechanisms, substantial improvements in the recognition of small-scale ships might be
made [23,24]. In certain scenarios, it is necessary to consider the computational limitations of
embedded devices, thus requiring the design of efficient lightweight algorithms. Yin et al. [25]
addressed this challenge by introducing depthwise separable convolutions and point-wise
group convolutions, resulting in a lightweight feature extraction network that balances the
accuracy and inference speed of ship recognition.

Based on the above analysis, it can be concluded leveraging deep learning techniques
to design feature networks and prediction structures significantly enhances the effective-
ness of ship recognition. Furthermore, compared to traditional methods, deep learning
approaches exhibit prominent advantages. Given the presence of numerous small-scale
targets in marine radar images, this study proposes a ship segmentation algorithm that
combines deep convolutional networks, feature attention mechanisms, and multi-scale
feature fusion structures. By integrating different hierarchical features from the images,
this algorithm effectively suppresses interference and enables accurate localization and
precise segmentation of different types of ships.

3. A Proposed Method

The overall framework of the ship segmentation model for marine radar images
proposed in this paper is illustrated in Figure 1. The model consists of components such as
the feature extraction network, feature fusion network, and prediction structure.

Figure 1. Overall structure of the proposed MrisNet. In comparison to the standard network of
YOLOv5(S), MrisNet introduces several improvements and appropriate innovations. Specifically,
in the feature extraction network, MrisNet replaces the original C3 (Cross Stage Partial-Darknet53)
module with the FTN module and incorporates a SimAM mechanism. In the feature fusion network,
the proposed method replaces the original C3 module with the CoT module. In the prediction head
structure, MrisNet replaces the localization loss calculation criterion with the EIoU function.
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To be specific, the feature network, called FasterYOLO, adopts a novel convolutional
structure that combines efficient convolutional units and adaptive attention mechanisms.
The FasterYOLO network is composed of four types of structures, namely FTN (Faster-
Net) [26], CBS, SimAM (Simple, Parameter-Free Attention Module) [27], and SPPF (Spatial
Pyramid Pooling-Fast), which are concatenated in a sequential manner. The FTN structure,
an efficient convolutional module, is detailed in Section 3.1.2. CBS, a commonly employed
structure in YOLOv5 [28], consists of conventional convolutions, batch normalization lay-
ers, and the SiLU function. Additionally, SimAM, a parameter-free attention module, is
introduced in Section 3.1.3. Finally, SPPF, a widely adopted feature enhancement method,
is utilized. The network reduces redundant computations and improves the extraction of
spatial features of the targets, facilitating the model’s understanding of the hierarchical
pixel and semantic information of ships.

The feature fusion network, CPFPN (Context-sensitive Processing within Feature
Pyramid Network), integrates a novel convolutional enhancement method known as the
CoT (Contextual Transformer) module, based on the Transformer pattern [29]. CPFPN
employs a dual-path feature fusion strategy, combining both bottom-up and top-down
approaches, to facilitate the integration of multi-scale features. Notably, the CoT module
enhances contextual information of ship targets. It captures global and local dependencies
in the feature sequences, thereby avoiding feature loss and degradation.

Finally, in the prediction structure of the proposed algorithm, three object detection
branches are designed to target ships at different scales, along with an instance segmenta-
tion branch, enabling accurate ship localization and pixel-level segmentation. Especially,
the EIoU (Enhanced Intersection over Union) loss [30] is introduced to optimize the loss
calculation for predicting bounding box positions. This method improves the conver-
gence speed and accuracy of the predicted boxes, enabling the model to learn feature
representations with better generalization ability.

3.1. Feature Extraction Network

As mentioned earlier, marine radar images exhibit unique characteristics such as
noise and low resolution, making them significantly different from natural images. Classic
feature networks like ResNet-50, ResNet-101, and SENet are typically designed for general
natural datasets and may not adapt well to the distinctive image features of radar images,
resulting in suboptimal feature extraction performance. Furthermore, these networks often
contain a large number of redundant parameters, which can lead to overfitting issues when
applied to ship segmentation in marine radar images. Therefore, employing lightweight
customized feature networks may be more suitable for such tasks.

Furthermore, due to the generally small-scale of ships in marine radar images, the
feature network should possess the ability to perceive small objects. Moreover, to capture
different signature features of ships, the feature network should employ suitable convo-
lutional structures and downsampling ratios to obtain feature representations of targets
at different scales, thereby enhancing the accuracy of ship segmentation. Based on the
aforementioned analysis, the overall framework of the proposed feature extraction network
is illustrated in Figure 2. This network is an adaptive neural network that effectively
extracts ship features at various levels and achieves more prominent performance.

 
Figure 2. Overall architecture of the feature network. By aggregating convolutional features from
three distinct depths, salient information pertaining to different categories of ship spots, with a
particular emphasis on small-scale ships, can be acquired.
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3.1.1. YOLOv5(S) Network

In this research, we selected the YOLOv5(S) [28] as the baseline feature network. De-
spite its relatively smaller convolutional scale, YOLOv5(S) is still able to perform effectively.
The network is illustrated in Figure 3, YOLOv5(S) utilizes a series of downsampling layers
to progressively extract image features, adapting to variations in target scale. It employs
different sizes of convolutional kernels and pooling layers to design receptive fields at
different levels, capturing multi-scale features of the targets while maintaining a lower
number of convolutional parameters and computational complexity. This contributes to
improving the accuracy and robustness of ship segmentation, particularly enhancing the
recognition of small-scale ships in radar images. It is important to note while YOLOv5(S)
has fewer convolutional layers and parameters, as well as lower computational complexity,
this lightweight design makes it more suitable for instance segmentation tasks in resource-
constrained environments.

Figure 3. Network structure of instance segmentation of YOLOv5(S). It is apparent the standard
YOLOv5(S) exhibits conspicuous disparities from the algorithm proposed in this paper. However,
MrisNet still retains the sequential connectivity structure of the feature extraction network and
the bidirectional fusion structure of FPN (Feature Pyramid Network) and PAN (Path Aggregation
Network) in the feature fusion network.

3.1.2. The Main Architecture of FasterYOLO Network

In marine radar images, image sequences often contain ship regions of various sizes
and shapes, with the majority of ships being relatively small in scale. Therefore, it is
crucial to capture key ship features with high sensitivity. Additionally, the feature network
should possess noise resistance and robustness. To address these requirements, valid
convolutional computation units can be employed to enhance network performance. This
paper introduces a simple and fast convolutional method, combining standard convolutions
and pointwise convolutions, to design a more efficient feature network.

With the advancement of CNNs, classical computation methods represented by stan-
dard convolutions often suffer from redundant calculations, resulting in inefficient increases
in model parameters and computational costs. Moreover, a significant amount of ineffective
convolutional computations can impact the extraction of crucial features, especially in ship
recognition under radar images where targets are small in scale and feature information is
limited. Excessive convolutional calculations can lead to overfitting issues. Research has
revealed convolutional feature maps exhibited high similarity across different channels,
and standard convolution unavoidably duplicated the extraction of image features in a
per-channel computation. Therefore, simplifying the convolutional computation to reduce
feature information not only ensures network performance but also greatly enhances com-
putational speed and efficiency. Specifically, this paper proposes a network structure called
FasterYOLO, which incorporates the FasterNet modules [26] after standard convolutions,
as illustrated in Figure 4. This improvement aims to enhance the model’s ability to extract
key ship features and reduce the risk of overfitting.
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Figure 4. Network structure of FasterYOLO. This research employed four FTN modules to replace
the C3 modules in the original YOLOv5, while enhancing the deep-level features through the
concatenation of SPPF.

Compared to conventional convolutional networks, integrating the FasterNet modules
in the feature network significantly reduces the computational cost of convolutions. The
FasterNet employs PConv (Partial Convolution) to optimize per-channel convolutional
computations. In practical terms, PConv convolution is a convolutional structure with
multiple branches and spatial feature extraction capabilities. It utilizes partial convolution
operations, which means it performs conventional convolutions only on a subset of channels
in the input feature maps, thereby reducing the computational workload. Additionally,
PConv incorporates a parallel branch structure that performs convolutional operations
on different spatial positions of the input feature maps, capturing more spatial feature
information.

Figure 5 illustrates a brief comparison of the computational processes between PConv
convolution, standard convolution, and depthwise convolution [26]. Depthwise convolu-
tion, a classical convolutional variant widely used in various neural networks, has shown
significant effectiveness in MobileNet series. For an input I ∈ Rc×h×w, We apply c filters
w ∈ Rk×k to compute the output O ∈ Rc×h×w. In this case, the computational cost of
standard convolution is h × w × k2 × c2, while depthwise convolution only incurs a cost of
h × w × k2 × c. It can be observed depthwise convolution is effective in reducing computa-
tional cost. However, it directly leads to a decrease in recognition accuracy and therefore
cannot directly replace standard convolution. On the other hand, PConv convolution only
applies regular convolution to a subset of input channels, resulting in a computational
cost of h × w × k2 × c2

p. When r is 1/4, the computational cost of PConv is merely 1/16
of that of standard convolution. Consequently, PConv convolution greatly simplifies the
computational process of standard convolution while maintaining identical input and
output dimensions. Without altering the network hierarchy, standard convolution can be
directly replaced with PConv convolution.
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Figure 5. Comparison of several types of convolution methods. It is apparent PConv selectively incor-
porates conventional computation solely in specific convolutional channels, leading to a substantial
reduction in redundant convolutional parameters and computational costs compared to conventional
convolutional methods.

3.1.3. Feature Enhancement Mechanism Based on SimAM Attention

For the feature network, it is crucial to fully leverage the contextual information
surrounding ships in radar images to enhance the accuracy of ship segmentation. To fulfill
this requirement, attention mechanisms can be introduced or convolutional structures
with global contextual awareness can be utilized. By capturing the correlations between
ships and their surrounding environments, the network can better comprehend the shape,
contour, and semantic information of ships, thereby enhancing the effectiveness of ship
segmentation.

In this research, the SimAM method [27], which is constructed based on principles
derived from visual neuroscience, is appended after the FasterYOLO network. According
to the theory of visual neuroscience, neurons carrying more information are more salient
compared to their neighboring neurons when processing visual tasks, and thus, they
should be assigned higher weights. In ship segmentation, it is equally important to enhance
the neurons in the convolutional network that are responsible for extracting crucial ship
features. SimAM captures both spatial and channel attention simultaneously and possesses
spatial inhibition capabilities that are translation-invariant. Unlike methods such as SENet
and CBAM that focus on designing attention mechanisms through pooling and fully
connected layers, SimAM evaluates the importance of each feature based on an energy
function derived from neuroscientific principles. It offers better interpretability and does
not require the introduction of additional learnable parameters. Consequently, SimAM
effectively extracts and enhances salient information of ships in marine radar images.
Specifically, SimAM evaluates each neuron in the network by defining an energy function
based on linear separability, as shown in Equations (1)–(4).

e∗t =
4(σ̂2 + λ)

(t − μ̂)2 + 2σ̂2 + 2λ
(1)

μ̂ =
1
M

M

∑
i=1

xi (2)
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σ̂2 =
1
M

M

∑
i=1

(xi − μ̂)2 (3)

X̃ = sigmoid(1/e∗t )� X (4)

Among them, t is the target neuron, x is the adjacent neuron, M is the number
of neurons, and λ is a hyperparameter. A lower energy value of e∗t indicates higher
discriminability between the neuron and its neighboring neurons, implying a higher level
of importance for that neuron. In Equation (4), we weight the importance of neurons using
1/e∗t . The introduction of SimAM enables the feature network to comprehensively assess
feature weights, thereby enhancing the representation of crucial ship information, and
reducing reliance on prior information regarding significant variations in the shape of the
targets.

3.2. Feature Fusion Network

In marine radar images, the majority of ships exhibit relatively small-scales. Therefore,
developing an efficient convolutional architecture to capture fine and effective feature
representations of ships becomes crucial. In convolutional networks, shallow convolutional
features possess higher resolution, providing more detailed spatial information that aids in
the recognition of object edge structures. Moreover, shallow features are more robust to
image noise and lighting variations. However, shallow features exhibit limited adaptability
to transformations such as translation, scaling, and rotation in images. In contrast, deep
convolutional features have lower resolution but contain stronger multi-scale and semantic
information, which helps filter out the effects of noise and lighting variations in images.
However, deep features have relatively weaker capability in extracting fine-grained details
from images. Hence, this paper proposes a more efficient feature fusion network that fully
integrates feature information extracted from different scales and depths of receptive fields
in the images.

Currently, object detection or instance segmentation algorithms based on deep neural
networks commonly employ feature pyramid structures to address the challenge of scale
variation. Among them, FPN serves as the most widely used feature structure, delivering
more adaptive results in both single-stage and two-stage algorithms. FPN realizes the fusion
of features at different scales through a top-down feature propagation path. However, high-
level features need to undergo multiple intermediate-scale convolutions and be fused with
features at these scales before merging with low-level features. In this process, the semantic
information of high-level features may be lost or degraded. In contrast, dual-path fusion
structures such as PANet compensate for the shortcomings of FPN in preserving high-level
features but also introduce the opposite problem, where the detailed information of low-
level features may be degraded during fusion. To address this issue, this paper introduces
an attention mechanism that integrates rich feature information into the PANet network.
This mechanism adaptively learns the importance of different regions in the feature map
and weights the fusion of features at different scales, resulting in more comprehensive
feature representations. Based on these theoretical considerations, we refer to the proposed
feature fusion network as CPFPN, and its overall structure is illustrated in Figure 6.

Specifically, in this research, we employ an attention mechanism based on CoT [31] to
extract crucial features of ships in radar images. This mechanism fully utilizes the contextual
information of the input data and enhances the expressive power of key features by learning
a dynamic attention matrix. In comparison to traditional self-attention mechanisms, the
CoT provides a more comprehensive treatment of contextual information. Traditional self-
attention mechanisms only interact information in the spatial domain and independently
learn correlation information, thereby overlooking rich contextual information among
adjacent features and limiting the self-attention learning capability of feature maps. In terms
of specific implementation, the CoT module integrates two types of contextual information
about the image. Firstly, the input data is encoded through convolutional operations
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to capture contextual information and generate static contextual representations. Next,
dynamic contextual representations are obtained through concatenation and consecutive
convolutions. Finally, the static and dynamic contextual representations are fused to form
the final output.

Figure 6. Network structure of CPPFN. In this section, we conducted substitutions of the C3 modules
in the original YOLOv5 with four CoT modules. This integration of contextual information derived
from image features contributes to the significant feature expression of minute ship spots.

In the context of marine radar images, the CoT module effectively captures global and
local contextual features of targets by encoding the input feature maps with contextual
information. By leveraging contextual information, the network is able to extract more
diverse and meaningful features, thereby obtaining additional information about the back-
ground surrounding the ships. Furthermore, CoT adaptively allocates attention weights
to different features, enabling the model to flexibly acquire the most relevant and salient
ship characteristics from the feature maps. Moreover, CoT exhibits the capability to directly
substitute the standard 3 × 3 convolutional structure, facilitating its seamless integration
into other classical convolutional networks.

The convolutional process of the CoT module, as depicted in Figure 7, operates on
the input feature map X ∈ RH×W×C, with keys (K = X), queries (Q = X), and values
(V = XWv) associated with the convolutional feature map [31]. Unlike traditional self-
attention methods, the CoT module employs k × k groups of convolutional operations to
extract contextual information. Through this process, the resulting K1 ∈ RH×W×C is further
utilized as the static contextual representation of the input X.
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Figure 7. Convolution fusion process of CoT module. Through the concatenation of static and
dynamic features, CoT aids the model in capturing appearance information (e.g., texture and color)
and motion information relevant to ship spots.

Next, the previously obtained K1 is concatenated with Q and passed through two
consecutive convolutional operations to compute the attention matrix A.

A = [K1, Q]WθWδ (5)

Based on the given attention matrix A, the enhanced feature K2 is generated and
computed according to the following formula. By leveraging the enhanced feature K2,
it becomes capable of capturing dynamic contextual representations regarding the input
X. Ultimately, the fusion of these two contextual representations is achieved through a
classical attention mechanism, resulting in the final output.

K2 = V � A (6)

3.3. Ship Prediction Module

As MrisNet maintains the fundamental structure of YOLOv5, there exist slight vari-
ations in the calculation of loss for object detection and instance segmentation. The com-
prehensive loss for object detection consists of three components, i.e., localization loss,
confidence loss, and classification loss. These losses are individually multiplied by cor-
responding weights and ultimately summed to yield the overall loss. Notably, since this
study focuses solely on a single category, the classification loss remains consistently zero.
The object detection branch predominantly employs the CIoU (Complete Intersection over
Union) [32] metric from the IoU series to compute the localization loss and utilizes binary
cross-entropy loss for the calculation of the confidence loss.

In contrast to object detection, the comprehensive loss for instance segmentation
comprises four components, i.e., localization loss, confidence loss, classification loss, and
mask segmentation loss. Similarly, these losses are weighted and summed to yield the final
calculation result for the overall loss. Specifically, the calculation process for localization
loss, confidence loss, and classification loss is identical to that in the object detection
branch. However, for mask segmentation loss, binary cross-entropy loss is predominantly
employed to evaluate the disparity between predicted masks and ground truth masks.

The significance of the localization loss is apparent in both the object detection and
instance segmentation branches. In the instance segmentation branch, specifically, the
extraction of predicted masks is restricted to the scope of predicted bounding boxes. The
predicted bounding boxes, generated through regression using the localization loss, form
the basis for calculating the mask segmentation loss. Consequently, this research optimized
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the calculation process of the localization loss in the instance segmentation branch while
preserving the standard calculation of other losses.

Therefore, we introduce a novel evaluation method, referred to as EIoU, as the com-
putation standard for the target’s position loss, aiming to further enhance the localization
accuracy of ship bounding box predictions. The loss function takes into account multi-
ple factors such as IoU loss, distance loss, and width-height loss, fully considering the
relationship between the predicted box and the ground truth box. This leads to a more
stable gradient during the algorithm training. Moreover, the EIoU loss helps the model
better understand the spatial distribution and relative positions of the targets, which is
crucial for achieving high-precision ship segmentation. Specifically, the EIoU loss is defined
as follows:

LossEIoU = 1 − (IoU − ρ2(bgt, b)
c2 − ρ2(hgt, h)

ch
2 − ρ2(wgt, w)

cw2 ) (7)

IoU =
Spr ∩ Sgt

Spr ∪ Sgt (8)

wherein, c represents the Euclidean distance of the minimum bounding rectangle diagonals
between the predicted box and ground truth box; ρ(bgt, b) denotes the Euclidean distance
between the center points of the two boxes (i.e., ground truth box and predicted box);
ρ(hgt, h) represents the difference in length between the two boxes; ρ(wgt, w) represents
the difference in width between the two boxes; ch and cw are the height and width of the
minimum bounding rectangle, respectively; Sgt represents the area of the ground truth
box; Spr represents the area of the predicted box, and other key indicators are illustrated as
shown in Figure 8.

Figure 8. Key indicators of EIoU and calculation comparison of different loss functions. DIoU
(Distance Intersection over Union) exclusively takes into account the variation in the distance between
the center points of the predicted box and the ground truth box. CIoU extends this concept by
incorporating considerations for the difference in aspect ratios between the two boxes. Building
upon the considerations for area, shape, and distance differences between the boxes, SIoU (Scylla
Intersection over Union) introduces the novel factor of angle difference.
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In this section, we compared the EIoU loss with the classical DIoU [32], CIoU, and
SIoU [33] and demonstrated their computational processes (refer to Figure 8). Specifically,
unlike the IoU metric that solely focuses on the overlapping region, DIoU considers both
the distance and the area overlap between the ground truth box and predicted box, thereby
enhancing the regression stability of the predicted boxes. CIoU not only takes into account
the positional information and localization errors of the predicted box but also introduces
shape information to more accurately measure the target accuracy. However, when the
aspect ratios of the two boxes are small, there may be issues of gradient explosion or
vanishing. Building upon CIoU, SIoU further considers the angle of the regression vector
between the two boxes by defining an angle penalty vector, which encourages the predicted
box to quickly converge to the nearest horizontal or vertical axis. However, SIoU defines
multiple different IoU thresholds, which present challenges in the practical training and
evaluation of the model. In comparison, the EIoU function exhibits stronger interpretability
in capturing the variations of loss during the regression of the predicted box. This leads
to more accurate measurement of position, shape, distance, and width-height losses for
small-scale ship predicted boxes in radar images, thereby facilitating the training and
convergence of the algorithm.

4. A Case Study

4.1. Dataset

A high-quality dataset can significantly improve the empirical outcomes of CNN-
based algorithms. Typically, the performance of the model is heavily reliant on the
quality and quantity of the training data. A good dataset should encompass multiple sce-
narios and situations. This research conducted pre-processing on the real data obtained
from the JMA5300 marine radar deployed at Zhoushan Port in Zhejiang, resulting in
the creation of a high-quality marine radar image dataset named RadarSeg. The dataset
comprises 1280 images. As shown in Figure 9, ships in the images are mainly classified
into two categories, i.e., long-wake ships and short-wake ships. To be specific, long-wake
ships have distinct features that are easy to extract, while the pixel features of short-wake
ships are similar to those of interferences such as reefs, which can interfere with the
instance segmentation of ships. Moreover, the RadarSeg dataset covers complex back-
ground environments, including different weather conditions, harbor environments, and
imaging conditions. Additionally, the dataset also takes into account factors such as the
variations in ship heading, and traffic flow. Besides, it also emphasizes an augmentation
in the number of images depicting ships of small-scale and miniature sizes. Considering
different types of ships exhibit similar spot features in marine radar images, all ships in
the dataset are uniformly labeled as “boat” category.

In the RadarSeg dataset, each image has been annotated with ship type labels and
tightly fitting bounding boxes along the target edges. These annotations were saved in JSON
format files and have been preprocessed to meet the requirements of the YOLO algorithms.
We divided all the images into training, validation, and testing sets in an 8:1:1 ratio. Various
algorithms were trained on the training and validation sets, and evaluation metrics and
algorithm performance were assessed on the testing set. Additionally, cluster analysis
revealed the number of pixels occupied by ships accounts for approximately 0.035% of the
entire image. Thus, in marine radar images, ships are predominantly small-scale or even
miniature targets.
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(a) Examples of long-wake ship images

(b) Examples of short-wake ship images

Figure 9. Marine radar images. Long-wake ships, when compared to short-wake ships, occupy a
larger number of pixels in an image, thereby possessing more pronounced and distinctive feature
information.

4.2. Training Optimization Methods

This research optimized the training process of the proposed algorithm by improving
aspects such as learning rate decay, loss calculation, and data augmentation. Normally,
traditional neural network-based algorithms usually employ a series of fixed learning rates
for training, which may result in significant learning rate decay at different training stages,
leading to unstable changes in model momentum and negatively affecting the algorithm’s
training effectiveness. To address this issue, the Adam optimizer was introduced to op-
timize the learning rate, which adaptively adjusted the learning rate without the need
for manual tuning, based on the magnitude of parameter gradients. Additionally, label
smoothing was introduced to enhance the generalization performance of ship segmentation
model. This approach reduces the model’s reliance on noise or uncertainty information in
the training data. Furthermore, data augmentation methods, including random cropping
and horizontal flipping, were employed to increase the diversity of training data and
improve the model’s robustness and generalization abilities.

4.3. Experimental Environment and Training Results

The experimental setup relied on the Ubuntu 20.04 operating system and utilized
the NVIDIA RTX3090 graphics card with an effective memory size of 24GB. The CUDA
version used was 11.1.0, PyTorch version was 1.9.1, and the Python environment was 3.8.
We compared the performance of different algorithms in the ship segmentation, including
the YOLO series and its improved variants, classical two-stage algorithms, hierarchical
algorithm based on the Transformer, and MrisNet. All algorithms were evaluated using
the same dataset of ship images. During algorithm training, the input image size was set to
640 × 640 pixels, the momentum was set to 0.9, the batch size was set to 8, and the training
was conducted for 800 epochs with an initial learning rate of 10−4.
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Under the aforementioned settings, the training of various algorithms and related
experiments were carried out. Among them, YOLOv5(S), YOLOv8(S) [34], and MrisNet
achieved convergence of the loss values on the training set to 14.91 × 10−3, 15.09 × 10−3,
and 14.52 × 10−3, respectively. The experimental results indicated, when evaluated using
the same metrics, MrisNet exhibited lower convergence loss compared to the standard
YOLO algorithms. This illustrates MrisNet is capable of more accurately identifying ship
pixel-level features in radar images. Furthermore, through the analysis of Figure 10, it
could be concluded under different threshold conditions, MrisNet has achieved favorable
experimental results across various evaluation metrics, further substantiating its ability to
minimize misjudgments and omissions in ship segmentation while accurately locating and
identifying targets.

Figure 10. Various verification results of MrisNet. The convergence curves of these three categories
manifest the efficacy of the proposed method in extracting positive samples for ship targets and
suppressing false positives.

4.4. Comparisons and Discussion

Due to the monolithic nature of the dataset utilized in this research, which consists
solely of a single ship category, the calculation of mean Average Precision (mAP) directly
corresponds to the Average Precision (AP) value of that specific class. Thus, we selected
Recall (R), Precision (P), mAP50, and mAP50-95 as metrics to measure the effectiveness
of ship segmentation and object detection. Additionally, we evaluated the convolution
parameter count and computational cost using parameters (PARAMs) and floating-point
operations (FLOPs). Furthermore, five sets of experiments were designed to assess the
practical performance of MrisNet. Firstly, comparative experiments were designed to
assess the actual performance of various algorithms across different evaluation metrics,
thereby validating the effectiveness of the MrisNet. Moreover, ablation experiments were
conducted to analyze the individual improvements in MrisNet and verify the specific
effects of different methods. Finally, the adaptability of the MrisNet for ship segmentation
in marine radar images was examined through the identification of different categories of
radar images.

4.4.1. Experimental Analysis of Different Algorithms

On the constructed RadarSeg dataset, a comparison was conducted between several
commonly used standard algorithms and the proposed MrisNet. All the algorithms were
trained using the same hyperparameters and tested on the same dataset. Moreover, each
algorithm underwent cross-testing, and the Recall, Precision, and mAP values were aver-
aged over three experimental trials. As shown in Tables 1 and 2, for the ship segmentation,
our proposed method achieved a recall rate of 94.8% and a precision of 95.2% on the
testing images. Compared to other algorithms, our method demonstrated satisfactory
experimental results. This is attributed to the MrisNet’s enhanced capability to accurately
identify densely navigated and small-scale ships in radar images. Furthermore, MrisNet
demonstrated remarkable performance in the object detection, achieving a recall rate of
98% and precision of 98.6%. This highlights the beneficial ship localization capability of our
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proposed method. The results also indicate, in the context of ship instance segmentation,
MrisNet surpasses other algorithms with its mAP50 and mAP50-95 scores of 0.96 and 0.508,
respectively. These findings underscore the notable accuracy of MrisNet in recognizing
diverse ship instances. Additionally, MrisNet showcased desirable performance in terms
of parameter count and real-time computational cost, with values of 13.8M and 23.5 G,
respectively. Compared to the standard YOLOv7 [35], MrisNet achieved a reduction of
61.77% and 83.44% in model parameters and computational cost, respectively. These results
indicate MrisNet is more suitable for deployment on edge computing devices.

Table 1. Specific experimental results (i.e., Precision, Recall, mAP50, and mAP50-95) of various algorithms.

Box Mask

Algorithms P R mAP50 mAP50-95 P R mAP50 mAP50-95

YOLACT 0.901 0.86 0.92 0.492 0.875 0.826 0.871 0.349

SOLOv2 0.897 0.871 0.926 0.508 0.882 0.855 0.884 0.367

Mask R-CNN 0.97 0.975 0.991 0.717 0.938 0.942 0.952 0.495

Deepsnake 0.939 0.94 0.964 0.603 0.917 0.919 0.911 0.424

Swin-Transformer (T) 0.979 0.976 0.991 0.725 0.937 0.94 0.953 0.519

HTC+ 0.913 0.883 0.936 0.528 0.903 0.881 0.892 0.373

SA R-CNN 0.946 0.958 0.97 0.594 0.911 0.905 0.919 0.401

YOLOv5(N) 0.957 0.961 0.981 0.618 0.913 0.908 0.92 0.406
YOLOv5(S) 0.962 0.965 0.988 0.655 0.932 0.933 0.94 0.477
YOLOv5(M) 0.966 0.968 0.988 0.669 0.923 0.924 0.933 0.467
YOLOv5(L) 0.965 0.971 0.986 0.668 0.924 0.925 0.937 0.466
YOLOv5(X) 0.967 0.971 0.989 0.671 0.925 0.924 0.939 0.463

YOLOv7 0.968 0.965 0.98 0.675 0.919 0.917 0.924 0.412
YOLOv8(S) 0.961 0.909 0.956 0.608 0.917 0.851 0.914 0.377
YOLOv8(M) 0.967 0.956 0.982 0.662 0.923 0.914 0.935 0.446
YOLOv8(L) 0.958 0.973 0.982 0.663 0.92 0.925 0.927 0.47
YOLOv8(X) 0.969 0.964 0.977 0.659 0.925 0.922 0.94 0.465

Mris_APFN 0.966 0.965 0.981 0.65 0.92 0.923 0.935 0.452
MrisNet 0.986 0.98 0.993 0.737 0.952 0.948 0.96 0.508

Table 2. Specific experimental results (i.e., PARAMs and GFLOPs) of various algorithms.

Algorithms PARAMs/(M) GFLOPs

SOLOv2 61.3 232.6

YOLACT 53.72 240.2

HTC+ 95.53 1289.5

SA R-CNN 53.79 101.9

Mask R-CNN 62.74 244.8

Swin-Transformer (T) 88 745

Deepsnake 16.37 25.94

YOLOv5(N) 1.8 6.7
YOLOv5(S) 7.1 25.7
YOLOv5(M) 20.65 69.8
YOLOv5(L) 45.27 146.4
YOLOv5(X) 84.2 264

YOLOv7 36.1 141.9
YOLOv8(S) 11.23 42.4
YOLOv8(M) 25.96 110
YOLOv8(L) 43.79 220.1
YOLOv8(X) 68.4 343.7

Mris_APFN 10.3 20.6
MrisNet 13.8 23.5
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To evaluate the practical performance of MrisNet, multiple single-stage, two-stage,
and contour-based instance segmentation algorithms were employed for comparison. The
experimental results demonstrate MrisNet outperforms single-stage algorithms such as
YOLACT [36] and SOLOv2 [37] in terms of core evaluation metrics. This indicates MrisNet,
through its adaptive design in network architecture, loss function, and feature enhancement,
enables more precise extraction of ship features from radar images, resulting in accurate
localization and segmentation of ship instances. Due to the introduction of an additional
segmentation branch outside the object detection framework, Mask R-CNN achieves
relatively robust precision and segmentation quality. Experimental data reveals for ship
segmentation, this algorithm surpasses 93% in both accuracy and recall rate. Additionally,
it achieves mAP50 and mAP50-95 rates of 0.952 and 0.495, respectively, which are very close
to the experimental results of MrisNet. However, due to its high parameter count and
computational demands, it exceeds the computational capacity of most maritime devices,
making it unsuitable for direct deployment on such devices. Additionally, Deepsnake [38],
combining deep learning with the Snake algorithm in active contour models, enables real-
time instance segmentation in various common scenarios. However, in the marine radar
images, Deepsnake achieves a segmentation precision of only 91.7%, significantly lower
than the proposed method. The analysis suggests the fine and small ship contours in radar
images do not provide sufficient information for accurate learning of vertex offsets, thereby
affecting the segmentation accuracy and recall of targets.

The Swin Transformer [39], a novel recognition algorithm based on the evolution
of the Transformer architecture, achieves a recall of 94% and precision of 93.7% in ship
segmentation. Moreover, the method demonstrates encouraging performance in both the
mAP50 and mAP50-95 metrics, outperforming the majority of conventional benchmark
algorithms. Compared to MrisNet, it experiences a decrease of 0.8% in recall and 1.5% in
precision. The analysis suggests due to the limited pixel information of ships in the images
and the presence of significant background noise, the fixed-size image patches used in Swin
Transformer may struggle to effectively capture and represent targets of different scales. As
a result, the algorithm illustrates relatively underwhelming performance in recognizing
different types of ships and fails to extract detailed ship features accurately, making it
difficult to distinguish ships from interfering objects.

Due to the scarcity of research focused on ship segmentation using CNN or transformer
techniques in the context of marine radar images, we selected two instance segmentation
algorithms specifically designed for SAR images, namely HTC+ [12] and SA R-CNN [13],
to compare against our proposed method, MrisNet, to validate the effectiveness of our
approach. As previously discussed, the features of targets in SAR images bear resemblance
to the spot-like information of ships in marine radar images. Experimental results indicated
the two modified two-stage algorithms, when applied to radar images, exhibited subpar
performance. While they demonstrate relatively suitable performance in terms of object
detection, their precision, recall, and mAP metrics in ship segmentation are noticeably
weaker compared to MrisNet. This discrepancy can be attributed to the fact that ships in
SAR images predominantly represent static targets in harbor areas, which starkly contrasts
with the characteristics of ships in radar images. Hence, it is likely the algorithms designed
for SAR environments may not be well-suited for the scenarios addressed in our research.

Compared to the standard YOLOv5, YOLOv7, and YOLOv8 series, MrisNet exhibits
relatively robust segmentation precision and recall rate, surpassing various YOLO algo-
rithms, including the relatively high-performing YOLOv5(S). Moreover, MrisNet exhibits
significantly lower parameter count and computational costs compared to many deep-layer
algorithms in the YOLO series. Additionally, in terms of recall rate, MrisNet increases 9.7%
and 1.5% compared to the lightweight YOLOv8(S) and YOLOv5(S), respectively. Moreover,
the method significantly outperforms these two classical lightweight algorithms in terms
of both the mAP50 and mAP50-95 metrics. This indicates MrisNet experiences fewer in-
stances of ship loss in marine radar images and shows improved efficiency throughout the
experiments. Furthermore, the proposed method demonstrates noteworthy capability in
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suppressing false positives, accurately identifying interferences that resemble ship features,
such as coastal objects, reefs, and clouds. This effectively reduces misidentification rates
and enhances the precision of ship segmentation in various scenarios.

To investigate the influence of different levels of image features on ship segmentation,
we combined a progressive feature pyramid with the MrisNet. This network integrated
multi-scale features through a layer-by-layer concatenation approach, preserving deep-
level semantic information more effectively compared to standard PANet. In the process of
algorithm improvement, the feature network and prediction structure of MrisNet were re-
tained, and the original PANet was replaced with the AsymptoticFPN [40] to construct the
Mris_APFN algorithm for comparison. The experimental results demonstrated Mris_APFN
achieved a recall rate of 92.3% and a precision of 92%. In addition, the method attains a
modest performance with scores of 0.935 and 0.452 in terms of the mAP50 and mAP50-95
metrics, respectively. Apparently, it falls short of MrisNet in all evaluation metrics, indicat-
ing Mris_APFN suffers from more instances of missing ships and fails to extract features
relevant to ship instances effectively. Further analysis suggests deep-level features tend to
focus more on abstract semantic information while being relatively weaker in extracting
contour details. Therefore, for ship segmentation in radar images, it is necessary to appro-
priately restrict the influence weight of deep-level features to better express salient features
of the targets.

4.4.2. Ablation Experiments

To further validate the practical performance of each improvement method in MrisNet,
a comprehensive decomposition analysis was conducted based on the RadarSeg dataset
to analyze their impact on ship segmentation. The main experimental process involved
step-by-step application of various improvement methods on the standard YOLOv5(S),
followed by testing their respective performance metrics. The specific results of the ablation
experiments for MrisNet are presented in Table 3.

Table 3. Ablation experiments of MrisNet. The presence of an asterisk denotes the model’s adoption
of the method corresponding to the leftmost column of the table.

Methods Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

YOLOv5(S) * * * * * * *
+FasterYOLO * * * * * *

+SimAM * * * * *
+CPFPN * * * *

+SIoU *
+DIoU *
+EIoU *

Rmask 0.933 0.937 0.94 0.945 0.944 0.94 0.948

Pmask 0.932 0.942 0.943 0.946 0.941 0.938 0.952

mAP50 0.94 0.949 0.95 0.957 0.945 0.942 0.96

mAP50-95 0.477 0.489 0.492 0.505 0.49 0.488 0.508

(1) Analysis of the FasterYOLO network. By replacing the feature network with
FasterYOLO, experimental results revealed the improved feature network increased the
ship segmentation precision by 1.0%, with an improvement in recall as well. Furthermore,
the network yields a substantial enhancement of 0.9% and 1.2% in the mAP50 and mAP50-95
metrics, respectively. This indicated the algorithm’s ability to suppress false targets has
been enhanced, reducing the misidentification rate and decreasing the probability of target
omissions. Furthermore, through multiple experiments, it has been observed FasterYOLO
could accelerate the convergence speed of the algorithm, leading to relatively rapid and
stable convergence of the loss values based on the training and validation sets.
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(2) Analysis of SimAM. In this paper, a SimAM attention mechanism was appended
after the FasterYOLO feature network, enabling the algorithm to weight the convolutional
feature maps based on the principle of similarity. This allows the model to focus more
on the relevant feature representations associated with the target’s spatial location. As a
result, the model exhibits enhanced robustness when faced with challenges such as low
illumination and occlusion in challenging scenarios. Based on the experimental results, the
SimAM module enhances the salient features of ships, resulting in improvements in both
precision, recall, and mAP rates of the ship segmentation model.

(3) Analysis of the CPFPN network. As mentioned earlier, applying attention mecha-
nisms based on Transformer structures to feature fusion network enables better modeling of
global contextual information in images. According to Table 3, it is evident compared to the
standard PANet network, CPFPN improves the recall and precision of ship segmentation by
0.5% and 0.3%, respectively. Concurrently, the network demonstrates an enhancement of
0.7% and 1.3% in the mAP50 and mAP50-95 metrics, respectively, leading to a relatively clear
improvement in the overall ship recognition capability. However, this improvement comes
at the cost of a moderate increase in model parameters. In theory, due to the presence of
various interfering factors in radar images, the complexity and diversity of objects such as
islands and reefs make it challenging to distinguish ships from the background. The CPFPN
network, by adaptively attending to target features and effectively filtering out noise or
redundant objects, plays a crucial role in the instance segmentation of small-scale ships.

(4) Analysis of EIoU loss. In neural network-based algorithms, the position loss
function aids the model in better accommodating variations in the position and scale
of the targets. Experimental results indicate the EIoU loss improves ship segmentation
precision by approximately 0.6%, along with improvements observed in other evaluation
metrics. To further validate the effectiveness of EIoU, the SIoU and DIoU functions were
also compared in this section. Theoretically, these two types of loss functions are also
capable of accelerating model convergence. It could be observed the model employing the
aforementioned comparative functions achieved somewhat favorable results, yet lower
than EIoU in terms of evaluation metrics. Analysis reveals the position loss function, which
takes into account spatial and shape factors, exhibits relatively better performance in ship
segmentation under radar images.

4.4.3. Comparisons in Radar Images

We presented in Figure 11 the ship segmentation results in marine radar images under
different scenarios using MrisNet, with a specific focus on evaluating its performance on
ships with various trail features. From Figure 11a, it can be observed MrisNet accurately
segments ships with long trails in different water areas. This demonstrates the algorithm’s
ability to recognize ships with prominent features, as these targets maintain a certain
consistency in position and shape across consecutive frames. In radar images, it is noticeable
longer ship trails often exhibit trajectory interruptions or significant curvature, posing a
significant challenge to the algorithm’s adaptability. However, experimental results show
MrisNet effectively avoids the degradation of segmentation precision caused by these two
scenarios. Figure 11b reveals MrisNet achieves satisfactory segmentation results for short-
trail ships under different backgrounds, without missing or misidentifying small-scale
or even tiny-scale targets. This indicates the algorithm’s relatively positive capability in
extracting fine-grained object features and mitigating the influence of terrain, sea conditions,
and clutter interference. Figure 11c demonstrates MrisNet accurately segments dense ships
in radar images and exhibits good recognition capabilities for complex scenarios such
as head-on or crossing trajectories. Analysis suggests the adoption of adaptive attention
mechanisms and efficient convolutional computations in MrisNet enables it to capture
salient ship features even in scenarios with dense small targets.
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(a) Segmentation of long-wake ships

(b) Segmentation of short-wake ships

Figure 11. Cont.
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(c) Segmentation of dense ships 

Figure 11. Segmentation results of MrisNet under marine radar images. The red boxes represent the
detected positions of the ship spots, and it can be observed that there is no omission of various types
of ships to be recognized. The findings illustrate the proposed method exhibits commendable efficacy
across a wide range of radar scenarios.

4.4.4. Comparisons of Small-Scale Ship Segmentation

Instance segmentations of small objects has been a prominent research direction in the
field of visual recognition tasks. To evaluate the performance of different algorithms in the
segmentation of small-scale ships, this section conducted experiments in two scenarios,
i.e., cross navigation and dense navigation. These scenarios involve a large number of
ships with short trails, and factors such as islands, reefs, and atmospheric disturbances
significantly affect the model’s performance. To enhance the credibility of the findings,
this experiment compared the performance of MrisNet with the standard YOLOv5(L)
and YOLOv8(L). As shown in Figure 12, YOLOv8(L) exhibited a higher misidentification
rate but fewer omissions in recognition. YOLOv5(L) demonstrated relatively poor accu-
racy in recognizing small-scale ships, leading to more omission issues and a tendency
to misidentify ships traveling in opposite directions. In comparison to the comparative
algorithms, MrisNet achieved more accurate localization of small-scale ships, enabling
finer segmentation of ship contours and demonstrating favorable segmentation accuracy
for tiny objects. This result highlights lightweight algorithm, through the construction of a
rational network structure, can effectively extract ship pixels and contour features from
radar images, thereby significantly improving the performance of the model in small-scale
instance segmentation tasks.
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Original image MrisNet

YOLOv8 YOLOv5
(a) Segmentation comparison in cross navigation scenario

Original image MrisNet

YOLOv8 YOLOv5
(b) Segmentation comparison in interference scenario

Figure 12. Cont.
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Original image MrisNet

YOLOv8 YOLOv5
(c) Segmentation comparison in dense navigation scenario

Original image MrisNet

YOLOv8 YOLOv5
(d) Segmentation comparison in parallel sailing scenario

Figure 12. Comparisons of various algorithms for small-scale ship segmentation. The positions of
the ship spots are indicated by the red boxes, revealing that MrisNet achieves lower false positive
and false negative rates compared to the benchmark algorithms.
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4.4.5. Ship Identification in Extreme Environments

To evaluate the capability of MrisNet in ship segmentation under extreme environ-
ments, a subset of extreme scenario images was constructed by selecting samples from
the RadarSeg dataset. This subset consists of 200 images, categorized into two identifi-
cation scenarios, i.e., dense ship and tiny ship identification. For comparison, YOLACT,
YOLOv8(S), and Mask R-CNN were also tested on the same images and threshold settings.
The experimental results, as shown in Table 4, indicated MrisNet exhibited encouraging
performance. It achieves relatively higher ship segmentation precision and fewer misidenti-
fication errors and performs better in terms of recall rate. Therefore, MrisNet demonstrates
satisfactory adaptability to ship segmentation in extreme scenarios.

Table 4. Comparisons of experimental data in extreme scenarios.

Algorithms
Detected

Ships
True

Ships
False

Alarms
Recall Pr

YOLACT 1296 1117 179 0.8007 0.8619
YOLOv8(S) 1288 1170 118 0.8387 0.9084

Mask R-CNN 1389 1299 90 0.9312 0.9352
MRNet 1382 1301 81 0.9326 0.9414

Figure 13 showcases the instance segmentation of MrisNet on ship radar images under
various types of interference signals. The experimental images were extracted from the
aforementioned subset of extreme scenario images, covering three common target types,
i.e., short-trail ships, long-trail ships, and dense ships, which were prevalent in radar
images. In this experiment, the original radar images were subjected to three types of noise
processing, i.e., salt-and-pepper noise, gaussian noise, and speckle noise. The research
found speckle noise and gaussian noise had a more significant impact on radar images,
causing noticeable interference with trail features. This led to a decrease in the positional
precision of long-trail ships and the potential omission of identification for small-scale ships,
as their trail features became confounded with the image background. In contrast, salt-and-
pepper noise had a minor impact on the effective ship features. The experimental results
demonstrated even under the interference of salt-and-pepper noise, MrisNet was able to
achieve precise segmentation of all ships. However, under the influence of speckle noise and
Gaussian noise, the confidence of ship segmentation by MrisNet slightly decreased, and the
positioning accuracy of ships in dense navigation scenarios also decreased. Nevertheless, in
the majority of scenarios, MrisNet maintained an effective ship segmentation performance.

    

    
Original image Salt-and-Pepper noise Gaussian noise Speckle noise 

(a) Segmentation of short-wake ships 

Figure 13. Cont.
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Original image Salt-and-Pepper noise Gaussian noise Speckle noise 

(b) Segmentation of long-wake ships 

    

    
Original image Salt-and-Pepper noise Gaussian noise Speckle noise 

(c) Segmentation of dense ships 

Figure 13. Ship segmentation results of MrisNet under various noises. By depicting the detected
positions of ship spots using the red boxes, the results underscore the satisfactory ship segmentation
performance of MrisNet, which remains robust in the presence of moderate levels of interference.

5. Conclusions and Discussion

This paper presents a ship segmentation algorithm called MrisNet for marine radar
images. MrisNet proposes a novel feature extraction network called FasterYOLO, which
incorporates efficient convolutional units to accurately extract key features of ships in radar
images. Furthermore, a simple, parameter-free attention module is introduced to infer the
three-dimensional attention weights of feature maps, optimizing the deep feature output of
the network and enhancing the ship segmentation at a higher semantic level. Additionally,
the algorithm integrates a self-attention mechanism based on the Transformer structure
into the feature fusion network to model and extract long sequence feature of images more
accurately, aiding in distinguishing ship instances from the background environment. In
the prediction structure, the algorithm improves the calculation of position loss for the
predicted boxes by utilizing the EIoU function, thereby extracting more precise positional
information of ships.

Experimental results have demonstrated MrisNet outperforms common algorithms
in ship segmentation on marine radar images. MrisNet achieves accurate segmentation
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of long-tail and short-tail ships in various scenarios, with recall and precision reaching
94.8% and 95.2%, respectively. Particularly, it exhibits acceptable performance in scenarios
involving tiny ships, dense navigation, and complex interference. Furthermore, MrisNet
exhibits advantages in terms of model parameter size and real-time computational cost. It
has a parameter size of 13.8 M and a calculation consumption of 23.5 G, significantly
reduced compared to deep YOLO series, making it more suitable for deployment in
maritime monitoring devices. Considering the relatively limited image samples, future
research will focus on expanding the RadarSeg dataset to cover a wider range of ship
navigation scenarios. Additionally, the next steps in research will involve introducing more
interference factors to enhance the model’s robustness.
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Abstract: The invasion of ship domains stands out as a significant factor contributing to the risk
of collisions during vessel navigation. However, there is a lack of research on the mechanisms
underlying the collision risks specifically related to merchant and fishing vessels in coastal waters.
This study proposes an assessment method for collision risks between merchant and fishing vessels in
coastal waters and validates it through a comparative analysis through visualization. First of all, the
operational status of fishing vessels is identified. Collaboratively working fishing vessels are treated
as a unified entity, expanding their ship domain during operation to assess collision risks. Secondly,
to quantify the collision risk between ships, a collision risk index (CRI) is proposed and visualized
based on the severity of the collision risk. Finally, taking the high-risk area for merchant and fishing
vessel collisions in the Minjiang River Estuary as an example, this paper conducts an analysis that
involves classifying ship collision scenarios, extracts risk data under different collision scenarios, and
visually analyzes areas prone to danger. The results indicate that this method effectively evaluates
the severity of collision risk, and the identified high-risk areas resulting from the analysis are verified
by the number of accidents that occurred in the most recent three years.

Keywords: merchant and fishing vessel collisions; coastal waters; ship domain AIS; data visualization

1. Introduction

In recent years, the marine fishing industry has undergone rapid expansion and has
emerged as a pivotal facet within the maritime fisheries sector. The proliferation of fishing
vessels has led to a discernible increase in channel congestion, making the navigational
environment more intricate and increasing the collision risk. Despite the integration of GPS,
AIS, and the Beidou positioning system in many fishing vessels, merchant vessels often
lack familiarity with the operational practices, methods, and working domains of fishing
vessels. Consequently, insufficient attention is devoted to fishing zones and areas with a
heightened risk of collisions. And effective communication between merchant and fishing
vessels during hazardous situations proves challenging, culminating in collision incidents.
Moreover, the visualization of high-risk navigational areas prone to collisions between
merchant and fishing vessels holds paramount significance for maritime safety. Firstly, it
can issue navigational hazard warnings to vessels in areas characterized by high naviga-
tional density, thereby mitigating the occurrence of maritime accidents. Secondly, with a
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comprehensive understanding of the primary navigation routes and operational domains
of merchant fishing vessels, targeted supervision within these areas can be implemented
by maritime authorities. However, devising a risk quantification model to assess collision
risks between merchant and fishing vessels in different areas remains challenging due to
the disparate maneuvering characteristics, navigational environments, and risk standards
associated with these vessel types.

With the application requirements of AIS equipment by the IMO and the development
of artificial intelligence technology, AIS data become the most powerful “big data” of
maritime traffic [1]. Collision risk research based on big data has become a mainstream
trend. Liu et al. [2] use static and dynamic information from the automatic identifica-
tion system (AIS) to calculate the closest points of ship–ship collisions (CPCs) based on
ship specifications and geographic positioning, estimate dynamic collision boundaries,
and introduce a kinematics-feature-based vessel conflict ranking operator (KF-VCRO) to
evaluate collision risk by integrating relative position and velocity information from AIS.
Silveira et al. [3] propose a method to calculate the collision risk from the assessment of the
number of collision candidates by estimating future distances between ships based on their
previous positions, courses, and speeds and comparing those distances with a defined colli-
sion diameter. However, the method relies on estimating future distances between ships
based on their previous positions, courses, and speeds. So this estimation may not always
accurately reflect the actual future positions of the ships, leading to potential inaccuracies
in the collision risk assessment.

At present, the analysis of ship collision risk under different navigation conditions
can be mainly divided into qualitative analysis and quantitative analysis. Regarding the
qualitative analysis of vessel collision risk, Sedov et al. [4] introduce a fuzzy linguistic
model to determine collision risk levels for vessels in busy traffic areas. This model
comprises 22 terms within five fundamental term sets, each endowed with membership
function parameters, and a total of 200 fuzzy rules are generated to delineate collision
risk levels. Additionally, Yi et al. [5] leverage fuzzy reasoning and discrete event system
specification (DEVS) theory to propose a novel model for predicting vessel collision risks
while considering general collision avoidance patterns. This innovative model anticipates
collision risks by forecasting changes to future vessel movements, and the authors validate
the functionality of the model’s structure and fuzzy reasoning module through simulation
experiments. In the domain of quantitative analysis for vessel collision risk, scholars often
employ the concept of closest point of approach (CPA) for situational analysis. Chin et al. [6]
from the National University of Singapore have established a collision risk regression
model for port waters based on CPA. In this model, distance to closest point of approach
(DCPA) and time to closest point of approach (TCPA) are pivotal factors for determining
collision risks.

In order to study the characteristics, causes, and risks of collision accidents between
merchant and fishing vessels, scholars have adopted various methods and models for
analysis and have put forward corresponding conclusions or strategies, such as risk as-
sessment analysis methods [7,8], navigator collision avoidance behavior models, navigator
error development process models [9], machine learning methods [10], and probability risk
assessment (PRA) models [11]. Mou et al. [12] constructed a linear regression model em-
ploying AIS data collected from collision avoidance scenarios in busy waterways. The study
ascertained correlations between vessel size, speed, and heading with distance to closest
point of approach (DCPA). Additionally, the researchers proposed a dynamic method for
risk assessment based on a Safety Assessment Model for Shipping and Offshore on the
North Sea (SAMSON). Uğurlu et al. [13] compiled statistics on the causes of accidents in-
volving fishing vessels during the period from 2008 to 2018. Based on the identified causes
of fishing vessel accidents, the researchers constructed a Bayesian network to estimate the
probabilities of accidents occurring under various circumstances.

In terms of mitigating the risk of collisions between merchant and fishing vessels,
many researchers have put forward related approaches from different perspectives. These
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include ship-to-ship dialogue and protocols [14], human–machine cooperative collision
avoidance systems [15], requirements for fishing vessels [16], safe navigation for merchant
vessels [17], and collision avoidance methods during fishing seasons [18]. Obeng et al. [19]
systematically summarized the patterns of collisions between merchant and fishing vessels
and proposed preventive measures from aspects such as personnel, vessels, environment,
and management. Chou et al. [20] conducted studies on collision accidents involving
fishing vessels in different water regions. They delineated the risks and causes of collisions
between fishing and non-fishing vessels with the aim of reducing incidents involving both
types of vessels. In a study focused on preventing fishing vessel collisions, Seo et al. [21]
developed a safety navigation system that can simultaneously receive the positions of
smartphones and AIS information from vessels. It issues warnings to both merchant and
fishing vessels when another vessel approaches within a 500-m range. However, these
studies that specifically focused on collision prevention for fishing vessels have limitations
because fishing vessels exhibit significant heading deviations, making it challenging to
achieve precise risk predictions solely based on distance, DCPA, and TCPA.

Although there is a plethora of research on ship collisions, studies concerning the
spatiotemporal characteristics of such collisions extend beyond the events themselves,
and the literature lacks comprehensive exploration of the temporal and spatial dynamics
from the initiation of ship encounters to the culmination of collision incidents. Moreover,
research focusing on collisions between merchant and fishing vessels in coastal waters is
relatively scant. Some of these studies often overlook the individual differences between
merchant and fishing vessels at the time of collision, failing to consider the impact of fishing
vessels in fishing states on collisions. Therefore, this paper conducts a collision risk analysis
of merchant and fishing vessels using vessel traffic data during the fishing season in the
coastal areas of Fujian. Initially, the study adopts concepts from the ship domain and
incorporates considerations for the operational status of fishing vessels to extract potential
collision risk events from historical AIS data. Subsequently, a comprehensive visualization
analysis of the spatial distribution of encounters between merchant and fishing vessels is
undertaken using a weighted kernel density estimation method. Finally, the paper identifies
high-risk collision areas between merchant and fishing vessels based on the density of
spatial distributions. This study utilizes the concepts of ship domains and collision risk
to calculate collision risks in real-time throughout the entire process of ship encounters,
which serves as the basis for visualizing collision risks. The innovations of this research are
as follows:

• When assessing collision risks, we innovatively adjust the ship domain for fishing
vessels during their operations.

• We conduct a visual analysis of the temporal and spatial distribution of encounter
risk data.

• We validate the accuracy of our risk assessment methodology using ship collision
incidents from the past three years.

The subsequent organization of the paper is as follows: Section 2 introduces the
preprocessing of historical AIS trajectories and defines encounter risks based on ship
domains and the operational statuses of fishing vessels. Section 3 systematically extracts
encounter risk data between merchant and fishing vessels from historical records and
conducts spatial and temporal analyses using a weighted kernel density method. Section 4
examines accident data from the past three years in the study area and conducts validations
of the collision risk assessment algorithm proposed in this paper. Section 5 provides a
summary and highlights the shortcomings of this paper.

2. Methodology

This paper utilizes historical AIS data from the coastal areas of Fujian to establish a
ship collision risk model for the research and analysis of collision risks between merchant
and fishing vessels. Firstly, the historical AIS data are processed, and the encounter risk
data are extracted on the basis of ship domains and the operational status identification of
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fishing vessels. Subsequently, a weighted kernel density estimation visualization method
is employed to display encounter risk data, facilitating the identification of navigational
areas prone to collision risks. Lastly, the approach is validated using the locations of ship
collisions that occurred within the research area over the past three years. The workflow of
this paper, as illustrated in Figure 1, primarily comprises four modules: (1) AIS data pre-
processing, (2) identification of fishing vessel operational states, (3) extraction of encounter
risk data, and (4) visualization of encounter risk data.

Figure 1. Visualization and assessment method for collision risks between merchant and fishing
vessels in coastal waters.

2.1. Data Preprocessing

Due to issues such as location offsets and data loss in the raw AIS data, the analysis
of collision risk areas between merchant and fishing vessels based on historical AIS data
necessitates preprocessing of the raw data. Processing historical AIS data for merchant and
fishing vessels includes data cleaning, trajectory separation, and the repair and prediction
of AIS data. Finally, vessel static information is queried based on MMSI to distinguish
between merchant and fishing vessels, providing an analytical foundation for assessing
collision risks between these two types of vessels.

2.1.1. Data Cleaning

The data cleaning process primarily involves removing abnormal and duplicate data
from AIS data. Abnormal data include the following situations:

1. Geographical coordinates located on land;
2. Values exceeding the normal range (refer to Table 1 for data range);
3. MMSI not conforming to specifications.

The occurrence of duplicate data is primarily attributed to the repetitive transmission
of AIS data by anchored vessels. As the experiment primarily focuses on the potential risks
associated with moving vessels, it is necessary to eliminate AIS data for vessels at anchor.
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Table 1. Data range of the study area.

Parameters Type Range

Time timestamp 1 August 2022–1 December 2022
Maritime Mobile Service Identity

(MMSI) string 200,000,000–799,999,999

Longitude float 0–180°
Latitude float 0–90°

Speed Over Ground (SOG) float 0–20 KN
Course Over Ground (COG) float 0–360°

True Heading float 0–360°

2.1.2. Trajectory Separation

When analyzing collision risks between merchant and fishing vessels, it is crucial to
identify different behavior patterns of vessels accurately by considering key features such
as location, time, heading, and speed. In order to reconstruct the historical navigation
behavior of vessels, trajectory separation is necessary. Trajectory separation involves two
main tasks: one is to separate the trajectory data of different ships according to MMSI; the
second is to separate different trajectories from the same ship. Firstly, according to the data
characteristics of AIS data, MMSIs are the unique identifications of different ships and
can be used as the basis for separating different ship trajectories. Here, we directly group
AIS data according to MMSIs to obtain the trajectory data of different ships. Secondly,
different trajectories of the same ship are separated according to the AIS data receiving
time interval and the distance between adjacent points. The algorithm process for trajectory
segmentation is shown in Figure 2.

Figure 2. Schematic diagram of trajectory segmentation algorithm.

The experiment selects 1 h as the time interval to determine whether the trajectories
before and after the interval are consistent. In addition, the distance between two adjacent
points is also used as the basis for judgment. According to the calculation of the ship speed
of 0–20 knots, the sailing distance every three minutes is within 0–1 nautical miles. If the
distance is excessively large, it is deemed to indicate equipment failure or latitude and
longitude drift, leading to the direct exclusion of such points. The latitude and longitude
data used in this paper are based on the WGS84 coordinate system. Formula (1) is used

78



J. Mar. Sci. Eng. 2024, 12, 681

to calculate the cosine distance between two points on the sphere, where xi and yi are
the longitude and latitude of the I-th point on the sphere, with i ranging from 2 to m.
In Formula (2), D represents the distance between the two points being calculated, and R
denotes the radius of the Earth, which is taken as 6371 km. Formula (3) is used to convert
speed values from knots to meters per second.

C = sin (yi−1)sin(yi) + cos (yi−1)cos(yi)cos(xi−1 − xi) i = 2, 3, . . . , m − 1, m (1)

D = R ∗ arccos(C) ∗ ( π

180
) (2)

νm = νk ∗ 0.518 (3)

During processing, the separated AIS trajectory points are grouped into sub-trajectories
and connected based on time in ascending order. This process further reconstructs the
historical navigation path of the vessels, as shown in Figure 3. The processed data clearly
reveal the main channels of vessel navigation and points of trajectory intersection.

(a) (b)

Figure 3. Comparison of before and after data pretreatment: ((a) before preprocessing; (b) after
preprocessing).

2.1.3. Data Restoration

In the actual data collection process, AIS data reception can be affected by sensor
noise and external environmental factors, leading to issues such as data loss. To ensure the
temporal synchronization and high frequency of AIS data for various vessels, interpolation
and resampling of AIS data are necessary. The proposals in references [22,23] suggest that,
in the absence of prior experience, using piecewise cubic hermite (PCH) interpolation yields
minimal errors when reconstructing missing data. Therefore PCH interpolation is applied
in this study to restore AIS data.

2.2. Identification of Fishing Vessel Operation Statuses

The statuses of the fishing vessels are crucial in order to define the avoidance distance
of passing ships, and the operating status of the fishing vessels should be taken into account
when judging the risk of collision. In this experiment, the analysis of AIS trajectory data in
the research area during fishing operations reveals distinctive features. Different rules are
established to identify the operational states of fishing vessels, and varying safety encounter
distance thresholds are set based on the specific state of each fishing vessel.

2.2.1. Characteristics of Fishing Vessel Operational Trajectories

Different fishing methods exhibit distinct trajectory characteristics during fishing oper-
ations. Fishing vessel operations can be classified into three main categories, which mainly
include trawling operations, purse seine operations, and gillnet operations. Trawling
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operations are the trawling of fishing gear along the seabed to catch fish. Purse seining
entails surrounding a school of fish with a net to capture them; gillnet operations employ a
long net suspended vertically in the water to entangle fish. The trajectory characteristics
for each of these fishing methods are as follows (Figure 4):

(a) trawl operation (b) gillnet operation (c) purse seine operation

Figure 4. Characteristics of fishing vessel operational trajectories under different operating modes.

The typical trajectory characteristics for different fishing operations are as follows:

1. Trawling operation: characterized by frequent turns during operation to tow the net
back and forth in a specific area.

2. Gillnet operation: marked by dropping numerous drifting gillnets along a trajectory
and returning along the same path to retrieve the nets.

3. Purse seine operation: distinguished by deploying a net to encircle a target area,
returning to the starting point, and then retrieving the net.

2.2.2. Fishing Boat Operation Status Judgment

In the study, the operational states of fishing vessels are categorizes into three modes:
normal navigation, anchorage, and active fishing. The criteria for each state are defined
as follows:

1. Normal navigation: Fishing vessels engaged in normal navigation exhibit relatively
stable speed and direction, with no abrupt changes. Vessels with speeds greater than
2 knots and that maintain stable speed and heading within a 10 min interval are
identified to be in a normal navigation state.

2. Anchorage: Vessels at anchor may exhibit some speed due to factors like sea currents.
Therefore, during processing, vessels with speeds below 2 knots and a substantial
number of AIS data positions in close proximity—exhibiting a movement distance less
than 0.1 nautical miles within a 10 min interval—are identified as vessels at anchor.

3. Fishing: Identifying whether a fishing vessel is actively fishing relies on distinguishing
trajectory characteristics that differ from normal navigation. Fishing vessels typically
operate at speeds ranging from 2 to 5 knots. We identify vessels within this speed range
and examine their trajectories to determine if they are engaged in fishing. If nearby
vessels are also in a fishing state and are within 0.5 nautical miles, this is considered to
be cooperative fishing. During this operation, the fishing vessel’s maneuverability is
limited, and passing merchant vessels are advised to maintain a distance of at least
1 nautical mile.

2.3. Encounter Risk Data Mining and Visualization

Establishing an effective model for identifying vessel navigation risks is crucial for
extracting encounter risk data. This paper constructs a model for identifying vessel en-
counter risks based on ship domains. Then, this model is employed to extract data related
to vessel encounter risks, and it further quantifies the collision risk by calculating the
CRI. Firstly, DCPA and TCPA are computed for pairs of vessels that may encounter each
other. According to the experience of relevant maritime regulatory personnel, the mini-
mum encounter distance between large-tonnage vessels during daytime and good weather
conditions with high visibility should satisfy a DCPA of at least 1 nautical mile. In adverse
weather conditions or during nighttime, this distance should be at least 2 nm [24]. To obtain
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a sufficient number of potential collision encounter samples for analysis, we selected the
maximum DCPA. After determining the DCPA threshold and considering that fishing
vessels typically operate at speeds of 2–5 knots, we consider vessels to be at risk of collision
if their TCPA is less than 20 min. The encounter risk is further determined by calculating
whether there is an intersection in the vessel domains. Finally, the data related to encounter
risks are saved, and visualization tools such as QGIS and Folium are employed for the
analysis of encounter risk data.

2.3.1. Ship Domain Model

In the early 1960s, Japanese scholars Fujii et al. [25] proposed the concept of a ship
domain when studying the traffic capacity in the waters near Japan, and they tried to
establish a calculation method based on ship domains when ships navigated in narrow
waters. According to this model, the ship domain is an elliptical area centered around
the vessel and with the major axis aligned with the vessel’s heading and the minor axis
perpendicular to the vessel’s heading. The variables a and b represent the major and minor
axes, respectively, and determine the elliptical domain. As illustrated in Figure 5, specific
values for a and b can be chosen based on the actual circumstances.

Figure 5. Fujii ship domain model.

This paper employs the Fujii model to determine the values of the axis (a) and the
axis (b) for the elliptical ship domains of vessels during normal navigation, as expressed in
Equation (4). Here, l represents the vessel’s length, and w represents its width.{

a = 1.5 × l
b = 1.5 × w

(4)

In the case of fishing vessels engaged in operations, occurrences such as obstructive
fishing nets render the classical elliptical ship domain inapplicable. The ship domain radius
for fishing vessels involved in operations was determined by considering the lengths of the
fishing nets commonly used by fishermen. According to information from the Fuzhou Aids
to Navigation Division of Eastern Navigation Services Center, the maximum length of trawl
nets and gillnets should not exceed 600 m. To ensure an adequate safety distance between
passing merchant ships and fishing vessels engaged in operations, we expanded the length
of the fishing nets by one-third to establish a safety domain for fishing vessels. Therefore,
the ship domain radius for fishing vessels was set to 0.5 nm, as depicted in Figure 6a.
Furthermore, for fishing vessels engaged in coordinated operations, they are treated as
points on a polygon. The circumscribed circle of the polygon is considered as a whole when
calculating the ship domain, ensuring that the encounter distance for each fishing vessel is
not less than 0.5 nm, as shown in Figure 6b.
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(a) (b)

Figure 6. Schematic diagrams of fishing vessel domains in operation; (a) single-vessel operation;
(b) multi-vessel collaborative operation.

2.3.2. Calculation of DCPA and TCPA

DCPA and TCPA are crucial parameters for determining the risk of ship collisions
when vessels encounter each other. During calculation, one of the vessels is chosen as the
reference vessel in order to establish a coordinate system as illustrated in Figure 7.

Figure 7. Schematic diagram of the encounter of two ships.

Assume that A is the target ship; lonA, latA, VA, and θA are the longitude, latitude,
speed, and course, respectively, of ship A. B is the encountering ship; lonB, latB, VB, and
θB are, respectively, the longitude, latitude, speed, and course of ship B. Then the relative
speed of the two ships is shown in Formula (5):

Vr =
√

V2
A + V2

B − 2|VA · VB| cos (θB · θA) (5)

DCPA and TCPA can be calculated by Formulas (6)–(8):

DCPA = D × sin (∠OTP) (6)

|TP| =
√
|OT|2 − |OP|2 (7)

TCPA =
|TP|
Vr

= D × cos (∠OTP)
Vr

(8)

where D represents the relative distance between two trajectory points, which can be
obtained from Formula (2). Then, DCPA and TCPA are utilized for assessment of collision
risk during vessel navigation and for visualization of risk data.
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2.3.3. Collision Risk Index

According to the definition of ship domains, a dangerous encounter is considered
when the domain of a navigating vessel is breached. However, this cannot be used to
measure the magnitude of the collision risk. In order to further quantify the risk after
the invasion of the ship domain during the encounter, the CRI is introduced to quantify
the collision risk. This paper evaluates the magnitude of collision risk throughout the
entire ship encounter process by considering both the intersection of ship domains and the
collision risk index.

Among the calculation methods of CRI, Kearon [26] comprehensively considered the
influence of DCPA and TCPA and took into account both factors by using a weighted
combination of DCPA and TCPA to determine the CRI, as shown in Equation (9).

ρi = (a · DCPAi)
2 + (b · TCPAi)

2(i = 1, 2, · · · , n) (9)

However, the equation has severe deficiencies and even mistakes. DCPA has dimen-
sions of length; TCPA has dimensions of time. However, the weighted summation of them
only involves a value without consideration of the dimensions, which are in accordance
with the actual situation. To resolve this issue, we referenced the paper [27] and improved
the calculation method of the CRI.

ρ =
√

DCPAs2 + (ηV0 × TCPAs)2/
√

DCPA2 + (ηV0 × TCPA)2 (10)

In Equation (10), V0 is the speed, V0 = DCPAs/TCPAs, DCPAs are the secure ap-
proach distances, TCPAs are the secure approach times, and η is the weighting coefficient
between DCPA and V0 ∗ TCPA , which is related to the relative speed of two ships and
also varies with the encounter situation. When the ship is coming from the starboard
side, then η = 0.5 × TCPA−TCPAs

TCPAs , and when the ship is coming from the port side, then
η = 0.55 × TCPA−TCPAs

TCPAs . Generally speaking, the condition whereby the ship is coming
from the starboard sie is more dangerous than the condition whereby the ship is coming
from the port side. Therefore, when the ship is coming from the port side, η increases; then,
the security vector increases, and the situation is less dangerous.

2.3.4. Risk Data Extraction

Based on the ship domain theory, navigational encounter risk can be defined as a
situation where two or more vessels come into contact or overlap when encountering each
other. The COLREGs defined three encounter situations: head-on, crossing, and overtaking.
However, the COLREGs only quantitatively define overtaking situations and do not provide
quantitative definitions for crossing encounters and head-on encounters. To extract risk
data from different encounter scenarios, the experiment divides ship encounter situations
based on the difference in heading between two ships [28], as illustrated in Figure 8.

The process of extracting encounter risk data involves three primary steps. Firstly, it
is essential to determine whether an encounter situation has arisen between the reference
ship and the approaching vessel. According to the COLREGs, the masthead light visibility
distance is specified as 6 nautical miles for vessels with a length exceeding 50 m. Therefore,
we only compute the DCPA and TCPA for vessels within a 6 nautical mile radius of
the reference ship. It is considered that an encounter situation exists when the closest
vessel’s DCPA is less than 2 nautical miles. Secondly, further calculations are performed
to determine whether there is an overlap in the ship domains. If ship domains intersect,
the encounter data are stored in different encounter scenario datasets based on their
relative positions during the encounter. Finally, computation of the CRI for the vessels
involved in the encounter is performed. The algorithm flow is illustrated in the diagram
below (Figure 9).
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Figure 8. Classification of encounter situations.

Figure 9. Schematic diagram of dangerous encounter extraction algorithm.

2.3.5. Risk Data Visualization

Risk data visualization enables the concise and intuitive display of spatial distribution
patterns and reveals deeper insights. QGIS (Quantum GIS) is user-friendly open-source
desktop GIS3.28.5 software with powerful analysis capabilities that make it suitable for
conducting visual analyses of vessels’ encounter risk data. Figure 10 is based on the
historical AIS track data of the coastal area of Lianjiang County, Fujian Province, combined
with the navigation environment of the coastal area of Fujian Province and the status quo
of customary shipping routes, traffic flow rules, conflict risk of merchant fishing vessels,
and ship track clustering analysis to obtain a visualization of merchant and fishing vessel
routes. Figure 10 is a visualization of vessels’ trajectories using the QGIS software. This
visualization is based on historical AIS trajectory data along the coastal waters combined
with the navigational environment and the analysis of traffic flow.
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(a) (b)

Figure 10. Overlapping channels of merchant and fishing vessels; (a) Trajectory density maps of
merchant and fishing ships; (b) Area of convergence of merchant and fishing ships activities.

Kernel density analysis of ship trajectory data can also be performed using QGIS and
can be used to display different colors by calculating the density in each raster pixel; this
can more intuitively show the navigational density situation and risk severity in different
encounter situations. Figure 11 is a kernel density visualization of the original trajectory
data in the coastal waters. For typical fishing vessels engaged in operations, a circular
area with a radius of 0.5 nautical miles is utilized as the safety domain; enlarging the
safety radius of fishing vessels during operations can unearth more potential collision risk
vessels. For vessels with potential collision risks, real-time calculation of collision risk will
be conducted, and the CRI will be used as the weighting factor for risk visualization.

(a) (b)

Figure 11. Comparison of Original and weighted kernel density trajectory visualizations; (a) Original
trajectories data; (b) Weighted kernel density trajectories data.

3. Experiments

3.1. Analysis of the Characteristics of Dangerous Vessels
3.1.1. Ship Type Distribution in Encounter Scenarios

The experiment statistically analyzed the histogram of the distribution of ship lengths
and widths involved in dangerous encounters, as illustrated in Figure 12. The histogram
revealed that the lengths of fishing vessels involved in dangerous encounters were predom-
inantly concentrated in the range of 30–50 m, with widths between 5–10 m. On the other
hand, merchant ships involved in dangerous encounters showed a concentration of lengths
between 50–150 m and widths between 8–20 m, comprising small- to medium-sized mer-
chant ships. Typically, some small- to medium-sized merchant and fishing vessels studied
in the research area did not strictly adhere to regulations in the same manner as large cargo
ships, often as a result of discrepancies in crew equipment and instances of over-ranking
of officers. Some inland individuals engage in fishing operations as temporary laborers
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without valid employment certificates or systematic safety training. This results in a lack of
strong safety awareness, collision avoidance knowledge, and navigational skills, leading
to the occurrence of collision risks. Additionally, the experiment conducted a statistical
analysis of the distribution of ship types involved in dangerous encounters, as illustrated
in Figure 13. Out of the 6442 vessels involved in dangerous encounters, fishing vessels
accounted for the largest proportion at approximately 61.8%, followed by merchant vessels
at around 28.86%. This highlights that cargo and fishing vessels are the primary types
contributing to maritime accidents in this area.

(a) widths of fishing boats (b) lengths of fishing boats (c) widths of merchant ships

(d) lengths of merchant ships

Figure 12. Histogram of frequency distribution of ship lengths and ship widths.

Figure 13. Distribution of vessel types involved in hazardous encounters.

3.1.2. Speed Distribution of Encounters

A statistical analysis of vessel speeds is presented in different encounter situations
in Figure 14. Overall, there is a similar trend in the distribution of speeds, with a higher pro-
portion falling within the 7–10 knots range. Specifically, for vessels involved in head-on en-
counters, their speed distribution follows a Weibull distribution, as depicted in Figure 14a.
The majority of speeds are in the 8–10 knot range, accounting for 50.47%, with an av-
erage speed of approximately 8.23 knots. In the case of vessels involved in crossing
encounters, their speed distribution follows the distribution shown in Figure 14b. The pre-
dominant speeds are in the 8–10 knots range, constituting 39.7%, with an average speed
of 7.5 knots. For vessels involved in overtaking encounters, their speed distribution is
illustrated in Figure 14c. The majority of speeds are between 8–10 knots, making up 46.1%,
with an average relative speed of approximately 7.94 knots. Notably, vessels involved in
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overtaking and crossing encounters exhibit lower average speeds compared to vessels in
head-on encounters in hazardous encounter scenarios.

(a) (b) (c)

Figure 14. Histogram of collision velocity distribution of different collision situations; (a) Head-on
conflict speed of ships X/kn; (b) Crossing conflict speed of ships X/kn; (c) Overtaking conflict speed
of ships X/kn.

A heat map illustrating the velocity distribution of hazardous vessels within the study
waters is depicted in Figure 15. It can be seen from the figure that the ship speed in the
hazardous encounter scenarios from the internal route to the external route along the
coast of Fuzhou presents an increasing distribution. The speed of the external route is
significantly higher than that of the internal route; this is closely related to the wide sea
depth of and fewer obstacles in the external route.

Figure 15. Heat map of speed distribution in dangerous situations.

3.2. Spatial Distribution of Hazardous Encounter Events

Based on the spatial distribution of hazardous ship encounter events depicted
in Figure 16, hazardous encounters along the Fujian coast are predominantly concen-
trated in four regions. These regions are the fishing port areas (such as Tailu Fish Port), the
entrances to bays (such as Sansha Bay), the estuary of the Minjiang River, and Guanbei
Island. A conflict peak is observed at the entrance waters of Sansha Bay and forms due to
the fact that this is the sole entrance and exit of Sansha Bay. During the fishing season, nu-
merous fishing vessels navigate through this area, and the complex navigation conditions,
including obstacles such as reef islands in the middle of the channel, contribute to the dense
distribution of collision conflicts. The secondary conflict areas are located from Guanbei
Island to the main channel of the Minjiang River estuary. This area is a mandatory passage
for fishermen from the town of Tailu entering and leaving the fishing port and intersects
with the traffic flow to and from the Minjiang River estuary. With a higher navigation
density, the likelihood of maritime collision accidents is significantly increased.
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Figure 16. Spatial distribution of risk encounter data.

3.2.1. Spatial Distribution of Hazardous Head-On Encounter Scenarios

The most intensive area of head-on hazardous events is situated near the entrance
to Sansha Bay, as illustrated in Figure 17. This area serves as the exclusive entry and exit
point for fishermen heading out to sea from Sansha Bay. The presence of navigational
constraints such as reefs on the southern side creates a traffic bottleneck, making it a
high-traffic area prone to head-on encounter conflicts between commercial and fishing
vessels. The conflicts are particularly pronounced within the primary shipping lane,
emphasizing the prevalence of head-on encounter issues in this region. The second-highest
density of head-on encounter hazardous events is observed in the nearshore waters. This
area functions as a major transportation hub for fishermen from the town of Tailu and
intersects with the recommended inland waterway connecting Guanbei Island and the
Min River estuary. The notable conflict area arises from encounters between southbound
and northbound commercial vessels and fishermen heading out for fishing activities.
The conflicts are widespread in this area due to the high volume of fishing vessels.

Figure 17. Spatial distribution of hazardous head-on encounter scenarios.

3.2.2. Spatial Distribution of Hazardous Crossing Encounter Scenarios

Hazardous crossing encounter events constitute the predominant type of maritime
conflicts in the research area, accounting for a substantial 63.14%. This highlights the
significance of crossing encounter hazards as a primary concern for vessels navigating the
strait. Figure 18 illustrates the spatial distribution of hazardous crossing encounter events
in the research area. The maximum concentration of crossing encounter hazards is located
near the waters of the Minjiang River estuary. This area serves as a convergence point for
river vessels from the Minjiang River and ocean-going commercial vessels entering the
Minjiang River estuary. It is a crucial turning point for vessels navigating from Guanbei
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Island to the main channel leading to the Minjiang River, creating a region with a broad
distribution and high density of crossing encounter hazards. The second dense area of
crossing encounter hazards is situated in the Sansha Bay. Vessels navigating through
this area tend to make significant turns near Jigongshan, leading to crossing encounter
situations. Limited visibility and the necessity for vessels to make substantial maneuvers
increase the potential for dangerous encounters with passing vessels, posing a significant
risk of collision.

Figure 18. Spatial distribution of hazardous crossing encounter scenarios.

3.2.3. Spatial Distribution of Dangerous Overtaking Scenarios

The spatial distribution of hazardous overtaking encounter events within the studied
area is illustrated in Figure 19. The primary hotspot for hazardous overtaking encounter
events is situated at the entrance and exit points of Sansha Bay and Luoyuan Bay, espe-
cially in the vicinity of Jigongshan when navigating the channel to and from Sansha Bay.
The deceleration and acceleration of vessels during course changes in this area are likely the
primary contributing factors to the occurrence of hazardous overtaking encounter events.
The second dense area of hazardous overtaking collision events is in the region connecting
the towns of Tailu and Haidao. This area serves as a crucial intersection for fishermen from
Tailu heading north to the open sea utilizing the recommended waterway, and it also serves
as a convergence area for fishermen changing course to return to port. The likelihood of
vessels accelerating and decelerating in this waterway is significant, making it a key factor
in the numerous hazardous overtaking encounter events observed in this area.

Figure 19. Spatial distribution of dangerous overtaking scenarios.
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3.3. Temporal Distribution of Hazardous Encounter Data

The study area’s fishing season is divided into two distinct periods: spring and
autumn. The spring season spans from March to May, while the autumn season extends
from August to November. The data utilized cover the period from August to November,
corresponding to the autumn flood fishing season. Fishing vessels typically navigate
without a fixed course during the operational process, involving both departure and return.
These movements are generally determined by the tide and the abundance of fish. Typically,
fishing vessels are small, limiting the use of large nets for deep-sea fishing. Consequently,
they engage in small-scale fishing in the shallow waters near the sea. Due to the abundance
of predators in shallow waters during the day, fish in these areas disperse, hide, or migrate
to the deep sea. Consequently, fishermen opt to fish at night. To analyze the temporal
distribution of dangerous events involving fishing vessels, statistical analysis was applied
to the AIS data of the study waters.

3.3.1. Distribution of Fishing Vessels in Hazardous Situations

The temporal distribution of hazardous encounter events, as shown in Figure 20,
reveals a notable concentration during the evening hours from 6:00 PM to 12:00 AM. This
period is often considered the peak period for fishing activities. Navigational conditions
become more complex during this time due to the onset of darkness coupled with the
fact that certain fish species exhibit increased activity during the night. Additionally,
nighttime weather conditions at sea are typically more intricate than those during the
day. The reduced visibility for crew members, coupled with fatigue from continuous
work, significantly impacts their vigilance and responsiveness, thereby elevating the risk of
maritime accidents [29].

Figure 20. Data distribution of fishing boats during different time periods.

3.3.2. Temporal Distribution of Hazardous Encounter Events under Different Scenarios

The temporal distribution of hazardous encounter events under various encounter
scenarios is illustrated in Figure 21. Across all encounter scenarios, the primary time frame
for encountering risks is from 8:00 AM to midnight, with the least data recorded between
4:00 AM and 6:00 AM. However, the peak periods for hazardous encounter events slightly
differ among the encounter situations. For head-on encounters, the peak time occurs
between 2:00 PM and 4:00 PM, while for crossing encounters, it is between 10:00 PM and
midnight, and for overtaking encounters, it is between 12:00 PM and 4:00 PM.

90



J. Mar. Sci. Eng. 2024, 12, 681

(a) Head-on (b) Crossing (c) Overtaking

Figure 21. Distributions of risk encounter times under different encounter situations.

3.3.3. Spatial and Temporal Distribution of Hazardous Encounter Events

The experiment incorporated the time dimension into the heat map. Figure 22 illus-
trates the thermal maps representing hazardous data during six time intervals: 0–4, 4–8,
8–12, 12–16, 16–20, and 20–24. The figure reveals a similar spatial distribution of hazardous
encounter events across different time periods, with relatively dense concentrations along
the east coast of the Lianjiang River, the Shacheng Port, the Sansha Port, and the Minjiang
estuary. It exhibits a higher density during the period from 12 to 24, corresponding to the
busy hours for fishermen. Typically, merchant ships and fishing boats navigate during
this period, resulting in the intersection of their sailing paths and elevating the risk of ship
encounters and potential collisions.

Figure 22. Heat maps of hazardous encounter data during different time periods.

4. Analysis and Discussion

4.1. Case Analysis of Collision Accidents

To validate the accuracy of the high-risk collision zones identified based on historical
AIS data, this study gathered maritime accident data from the study area over the past
three years. The analysis of accident occurrence regions was coupled with an examination
of the causes behind these incidents. Furthermore, a comparison was made between the
locations of six maritime collision incidents that occurred in the study area over the last
three years and the high-risk collision zones identified above.

4.1.1. Marine Accident Data Statistics

According to the International Maritime Organization (IMO), maritime accidents are
classified into the following major categories: (1) Very serious marine casualty: a very
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serious casualty means a marine casualty involving the total loss of the ship, death, and
severe damage to the environment. (2) Serious marine casualty: serious casualties are ship
casualties that do not qualify as very serious casualties and that involve a fire, explosion,
collision, grounding, contact, heavy weather damage, ice damage, hull cracking, suspected
hull defect, etc., resulting in immobilization of main engines, extensive accommodation
damage, severe structural damage such as penetration of the hull under water, etc., ren-
dering the ship unfit to proceed or pollution (regardless of quantity) and a breakdown
necessitating towing or shore assistance. (3) Less serious marine casualty: less serious casu-
alties are ship casualties that do not qualify as very serious casualties or serious casualties.
(4) Marine incident: a marine incident means an event or sequence of events other than
a marine casualty that occurred directly in connection with the operations of a ship that
endangered or, if not corrected, would endanger the safety of the ship, its occupants, or
any other person or the environment. Marine incidents include hazardous incidents and
near misses.

We conducted a statistical analysis of maritime accidents that occurred in the study
area from 2020 to 2023 following IMO standards. In Figure 23b, serious accidents in coastal
waters made up 12.12% of the total incidents, major accidents accounted for 27.27%, while
general accidents were the most frequent, representing 60.61%. Among these incidents,
self-sinking accidents were the most prevalent, constituting 30.30% of the total, followed
by collision accidents at 21.21%. Fire/explosion accidents had the lowest proportion,
accounting for a mere 3.03%, as depicted in Figure 23a.

(a) Accident types (b) Accident classes

Figure 23. Statistical diagram of ship accident data.

4.1.2. Analysis of High-Risk Areas of Collisions between Merchant Ships and
Fishing Vessels

Merchant ships and fishing boats serve distinct purposes, resulting in varied sailing
areas. To delve deeper into the analysis of high-risk collision areas for these vessels,
the experiment presents heat maps depicting the frequency of encounter risks for both
types. The identified high-risk areas for merchant and fishing vessels are illustrated
in Figure 24.

In the case of fishing vessels, the predominant incident-prone region is around the line
connecting the town of Tailu and Yangyu Island. This is attributed to the high volume of
fishing vessels navigating through this area and overlapping with the recommended inner
shipping route for merchant vessels. The complex interweaving of trajectories, narrow
channels, numerous obstacles, and intricate water currents contribute to frequent accidents.
Particularly, small- to medium-sized wooden fishing vessels with poor radar reflection and
limited visibility are prone to accidents in this region, as passing merchant vessels may
struggle to detect their radar echoes effectively.

For merchant vessels, the primary incident-prone area is the exit of the Minjiang River
channel. This region is characterized by numerous bends, and many merchant vessels tend
to overlook radar blind spots and fail to exercise sufficient caution. There is a tendency
to excessively rely on radar functionality and neglect proper lookout procedures. Lack
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of essential experience and knowledge of utilizing radar echoes to detect smaller fishing
vessels contributes to collisions in this area.

(a) fishing vessels (b) commercial vessels

Figure 24. Commercial fishing vessel risk encounter data heat map display.

4.1.3. Comparison with Actual Collision Incidents

The analysis conducted in this study focuses exclusively on collision incidents. There-
fore, a comparative analysis is performed between the areas where six collision inci-
dents occurred in the past three years and the high-risk collision areas identified in this
study. Figure 25 illustrates the comparison between the experimentally derived high-risk
collision areas for merchant and fishing vessels and the actual regions where ship collisions
occurred. Moreover, five out of the six collision incidents align with the areas identified as
high-risk collision zones in this experiment. This correspondence validates the effectiveness
of the experiment’s methodology at identifying high-risk collision areas for merchant and
fishing vessels.

Figure 25. Comparison of merchant fishing vessel collisions and high collision hazard areas. (The red
star is the accidents place.)

5. Conclusions

Based on historical AIS data collected during the autumn 2022 fishing season in
the study waters, this paper proposes a method for visualizing high-risk collision areas
for commercial and fishing vessels. In this method, the safety domain of fishing vessels
operating is redefined by considering fishing vessels engaged in cooperative operations as
a whole entity. Additionally, the process of vessel intrusion into ship domains is visualized
based on the degree of collision risk using different weights.. The aim is to identify areas
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prone to collisions between merchant and fishing vessels in order to provide a warning for
vessels to exercise sufficient caution when navigating through high-risk zones and to reduce
the occurrence of maritime collisions. The primary research findings are summarized below:

1. Identification of fishing vessel operational status: The paper proposes a method to
identify the operational status of fishing vessels. Recognizing the operational status
of fishing vessels is crucial for collision prevention, particularly when encountering
fishing vessels engaged in operations. The experiment distinguishes between the
navigation trajectories of fishing vessels under different operational characteristics to
effectively identify the operational statuses of fishing vessels, with a focus on those
engaged in operations for encounter risk analysis.

2. Evaluation of hazardous encounter events for merchant and fishing vessels: The
paper introduces a method to assess encounter risk data for merchant and fishing
vessels. By calculating the CPA and TCPA, the collision risk is quantified. The experi-
ment sets the vessel domain for fishing vessels engaged in operations to 0.5 nautical
miles, ensuring a safe distance of at least 0.5 nautical miles between each vessel in
a collaborative operation. The paper categorizes and assesses risk data for different
encounter situations.

3. Visualization of high-risk collision areas for merchant and fishing vessels: The pa-
per conducts a visual analysis of high-risk collision areas for merchant and fishing
vessels in the research area under different encounter situations. The identified high-
risk collision areas include the eastern nearshore waters of Lianjiang, with latitudes
ranging from 26°17′56.40′′ to 26°25′12′′ and longitudes between 119°24′25.20′′ and
119°48′7.20′′, and the Minjiang River estuary. The paper validates the identified
high-risk collision areas using data on the locations of maritime collisions in the
research area over the past three years, demonstrating the reasonableness of the
experiment’s outcomes.

Although the research in this paper revealed some interesting findings, there are
still some limitations that need to be further studied in the future. First, this paper does
not consider the impact of ship maneuverability and ship tonnage for quantifying ship
collision risk, which are needed in further research. Second, the method does not consider
the influence of objective conditions such as adverse weather conditions like typhoons,
visibility, and traffic density on collision risks. Finally, the assumption of dynamic collision
boundaries (polygon and ellipse) may influence the results of the collision risk evaluation,
which will be further explored. In future research, we aim to research or refine more
advanced models to better suit the characteristics of our study area. Additionally, further
collaboration with relevant authorities can be pursued to equip multifunctional naviga-
tion aids within high-risk collision areas, providing real-time maritime traffic alerts and
information on hazardous zones. By establishing a comprehensive maritime safety system
within these high-risk collision areas, vessels’ perception of danger can be heightened, thus
reducing the occurrence rate of collision incidents and ensuring safe and smooth maritime
traffic flow. Additionally, the construction of vessel trajectory prediction models within
high-risk collision areas can be explored to estimate the time and location of potential
collisions during encounters.
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Abstract: Intelligent navigation is a crucial component of intelligent ships. This study focuses on the
situational awareness of intelligent navigation in inland waterways with high vessel traffic densities
and increased collision risks, which demand enhanced vessel situational awareness. To address
perception data association issues in situational awareness, particularly in scenarios with winding
waterways and multiple vessel encounters, a method based on trajectory characteristics is proposed to
determine associations between Automatic Identification System (AIS) and radar objects, facilitating
the fusion of heterogeneous data. Firstly, trajectory characteristics like speed, direction, turning
rate, acceleration, and trajectory similarity were extracted from ship radar and AIS data to construct
labeled trajectory datasets. Subsequently, by employing the Support Vector Machine (SVM) model,
we accomplished the discernment of associations among the trajectories of vessels collected through
AIS and radar, thereby achieving the association of heterogeneous data. Finally, through a series of
experiments, including overtaking, encounters, and multi-target scenarios, this research substantiated
the method, achieving an F1 score greater than 0.95. Consequently, this study can furnish robust
support for the perception of intelligent vessel navigation in inland waterways and the elevation of
maritime safety.
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1. Introduction

With the continuous evolution of maritime logistics, the integration of intelligence
and technology has gained significant attention. Within this domain, intelligent navigation
plays a pivotal role, and vessel navigation situational awareness has emerged as a critical
element. In recent years, inland waterway transport has experienced rapid development,
resulting in the accumulation of a substantial repository of foundational data resources.
These resources encompass various aspects, such as channel surveying, lock scheduling,
operational vessel information, AIS data, radar images, and more. However, the intricate
nature of inland waterways, characterized by complex shorelines, winding channels, high
vessel traffic densities, and frequent vessel encounters, poses substantial constraints on
situational awareness, especially on perception data association and fusion. In addition,
inland intelligent ship navigation systems primarily focus on intelligent ships as the central
element [1]. The key to intelligent ships lies in the association of multi-source data in
navigation situational awareness [2]. Conducting research on the association of perception
data in inland vessel navigation is essential for enhancing intelligent situational awareness.
Therefore, this research endeavor contributes to the advancement of industrial technology
in inland intelligent vessels.
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In maritime navigation situational awareness, perception data primarily originate
from various sensors, such as radar, AIS, remote sensing satellites, and BeiDou [3], which is
a global navigation satellite system (GNSS) similar to other GNSS systems like GPS (Global
Positioning System) and GLONASS (Global Navigation Satellite System). BeiDou provides
precise positioning, navigation, and timing services to users worldwide and especially
prevails in passenger ships and fishing ships in China. Radar is one of the primary sensor
technologies for improving navigation safety. While small plastic or wooden boats without
AIS systems may not have as strong a radar signature as metal-hulled vessels, radar
is still capable of detecting plastic or wooden vessels, such as fishing boats, within a
certain range, typically up to 3 km. Multi-source data invariably contain a variety of noise
and interruptions in trajectory continuity that arise from signal disruptions, introducing
uncertainties in navigation situational awareness. Therefore, achieving more precise target
association and perception is of the utmost importance when dealing with multi-source
trajectory data. Singer introduced the nearest-neighbor method, which employs a distance
gating approach to eliminate spurious targets. This algorithm measures the similarity
between different trajectories, enabling the determination of trajectory associations [4]. Bar-
Shalom et al. proposed a probabilistic data association approach for trajectory association
in single-target scenarios [5]. These methods are characterized by their simplicity and low
computational loads. However, their performance tends to degrade in areas with complex
traffic patterns and high levels of noise [6].

In addressing the intricate and multi-track fusion scenarios present in maritime surveil-
lance data, Ming et al. introduced a weighted trajectory fusion algorithm leveraging local
information entropy for the integration of AIS and X-band radar data [7]. And, based on
fuzzy theory, Liu proposed a trajectory association method for AIS and surface wave radar
(SWR) based on a fuzzy dual-threshold approach. This method utilizes fuzzy membership
to quantify the degree of association between trajectories and employs dual-threshold detec-
tion to determine associated trajectory pairs [8]. In addition to AIS and SWR data, synthetic
aperture radar (SAR) data and satellite images are employed to facilitate trajectory associa-
tion for the objective of ship traffic monitoring in open seas [9,10]. With the advancement
of deep learning, relevant techniques have also been applied to ship trajectory association.
Jin et al. integrated track and scene features to estimate the probability of track association
by deep learning [11]. Simulation results reveal the method’s superior scene adaptability
and association accuracy compared to traditional approaches. And Yang et al. developed
a multi-target association algorithm for AIS–radar tracks using a graph matching-based
deep neural network [12]. The above-mentioned method primarily relies on shore-based
equipment and is commonly applied in vessel perception data association research in
coastal areas and validated through simulation to assess its effectiveness in real-world
scenarios. However, the navigational environment in inland waterways is significantly
distinct, exhibiting intricate shorelines, convoluted channels, and diverse inland electronic
interference factors. Consequently, the practical applicability of these methods in such
environments necessitates further validation.

In inland waterways, closed-circuit television (CCTV) is prevalent in management
to enhance traffic situational awareness and monitor abnormal vessel behavior due to its
remote and real-time capabilities [13]. Guo et al. incorporated a dynamic time warping
algorithm that calculates the similarity of AIS- and CCTV-based vessel trajectories to
improve vessel traffic surveillance in inland waterways [14]. Huang et al. established a ship
information fusion model based on CCTV images and AIS data, specifically focusing on the
tracking of ships [15]. By employing the YOLOv3 algorithm, Gan et al. presented a vision-
based data fusion approach for enhancing environmental awareness in ship navigation [16].
In addition to the fusion of CCTV and AIS data, it is also employed for radar data integration
to facilitate ship target detection. Liu proposed a method of multi-scale matching vessel
recognition (MSM-VR) by fusing CCTV and marine radar to ensure navigation safety [17].
CCTV surveillance systems are susceptible to adverse weather conditions, such as rain,
fog, and strong winds. These conditions can result in blurred or obstructed visibility,
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thereby potentially compromising their detection performance. However, advanced CCTV
systems with multi-spectral or thermal imaging technology often outperform human vision,
particularly in challenging visibility conditions and nighttime operations. Additionally,
their capabilities for accurately measuring distances and sizes are limited, making the
recognition of distant or smaller vessels challenging. As a result, the identification of
remote or compact vessels may prove to be a challenging task.

Maritime ship track association methods are mainly based on statistical methods and
fuzzy mathematics, including the nearest-neighbor (NN) method, fuzzy double thresholds,
fuzzy comprehensive functions, etc. Nearest-neighbor data association is a relatively simple
method and mainly suitable for situations in which there is little noise and scenarios with
a small number of targets [18]. Due to factors such as random noise and the inconsistent
detection ranges of different sensors, there is ambiguity in the similarity between their
tracks, and fuzzy mathematics has been applied to judge track associations [19,20]. How-
ever, existing vessel navigation perception techniques, primarily designed for coastal and
open-water areas, require validation and refinement for inland waterway applications.
Furthermore, inland waterways primarily emphasize the fusion of video images and AIS
data, which have the capability to detect objects not discernible by radar or lacking AIS data,
while research into AIS and radar trajectory association methods for shipborne perception
systems is lacking. Moreover, AIS and radar systems are usually mandatory equipment
for vessels according to maritime regulations, so it is essential to enhance the accuracy and
reliability of vessel position and motion information to compensate for the limitations of
each system and provide more accurate vessel positions, aiding in real-time adjustment
of course and speed to maintain safe distances at sea. Therefore, this study focuses on
vessel association of shipborne data in inland waterway vessels by leveraging trajectory
features. By employing machine learning and harnessing trajectory information, this re-
search endeavors to enhance the precision and efficacy of vessel situational awareness,
thereby contributing to the safety and intelligence of inland waterway navigation. There
are two specific contributions of this paper:

• We propose a novel classifier approach that incorporates trajectory characteristics to
solve data association issues in inland waterways.

• We propose a dataset construction method to build positive and negative sample
datasets for data association using labeled shipborne perception data.

The rest of the paper is organized as follows: the methodology is introduced in
Section 2, the computation of trajectory features is detailed in Section 3, the dataset con-
struction is described in Section 4, and the experiments conducted for the method analysis
and validation are described in Section 5.

2. Methods

This paper employs a binary classification method based on trajectory features to
achieve ship target association from AIS and radar data in intelligent navigation perception
systems, as illustrated in Figure 1. The approach encompasses trajectory feature calcu-
lation, positive and negative sample dataset construction, and support vector machine
(SVM) model development. Initially, trajectory feature calculation is performed on the
training dataset. Subsequently, a training set is constructed with radar and AIS trajectory
features extracted from the targets, encompassing both positive and negative samples.
Then, trajectory feature calculation is performed on the prediction dataset to establish the
features of the trajectories that require association. Finally, an SVM model is built using
the constructed dataset for training and predicting newly received AIS and radar data. In
cases where AIS data are missing, interpolated AIS data along with radar data are utilized
to make predictions.
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Figure 1. Flowchart of association process.

2.1. SVM Model

Ship radar and AIS are two prevalent ship monitoring technologies that capture
ship position and movement data via radio waves and signals. However, the integration
of data from these two distinct sources poses a noteworthy challenge stemming from
their unique characteristics and inherent incompleteness. The Support Vector Machine
(SVM), a supervised learning algorithm, was originally proposed by Vladimir Vapnik [21].
Since its inception, it has undergone continuous development and refinement, emerging
as a prominent algorithm in machine learning with wide-ranging applications in pattern
recognition, classification, and regression tasks. This section will delve into the fundamental
principles of the SVM and explore its utilization in the association and classification of ship
radar and AIS track data.

The core idea of the SVM is to find the optimal hyperplane that effectively separates
different classes of samples in a feature space. In the case of linear separability, a hyperplane
exists that perfectly separates two classes of samples and maximizes the margin, as shown
in Figure 2.

Figure 2. Separating hyperplane.

The training set is set to the following form:

D = (x1, y1), (x2, y2), ..., (xn, yn) (1)

xi ∈ Rm represents the input feature vector, and yi ∈ {−1,+1} represents the corre-
sponding class label.
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The hyperplane can be represented by a linear equation, w ∗ x + b = 0, where w
is the weight vector, x is the feature vector, and b is the bias. For any sample point
(xi, yi), the relationship between its class label and the hyperplane can be expressed as
yi[(w · x) + b]− 1 ≥ 0.

When the training data are linearly inseparable, a non-linear SVM can be learned by
using the kernel function to transform the data and combining it with the margin maxi-
mization method. The main components include margin maximization, kernel functions,
and the solution of the SVM.

2.2. Margin Maximization

The objective of the SVM is to ascertain a hyperplane that maximizes the margin, that
is, the distance between samples of different classes. The distance between two different
samples and the hyperplane is defined as the sum of the distances from each sample to the
hyperplane. The optimization problem to maximize the distance can be formulated as a
convex optimization problem.

max
w,b

2
‖ w ‖ , subject to yi[(w · x) + b]− 1 ≥ 0, i = 1, 2, . . . , l (2)

The norm of the weight vector, denoted as ‖ w ‖, represents the magnitude of the
weight vector, while b represents the bias term. The label of the i-th sample point is
denoted as yi, and the corresponding feature vector is denoted as xi. The objective of the
optimization problem is to maximize the margin, which refers to the distance between the
hyperplane and the two class sample points. Maximizing the margin helps improve the
generalization ability of the classifier and its accuracy for new samples.

Meanwhile, the constraint yi[(w · x) + b]− 1 ≥ 0 ensures that each sample point is
classified on the correct side. These constraints require all sample points to meet the
correct classification requirements, thereby ensuring that the margin is not affected by
misclassified samples.

2.3. Kernel Function

In practical applications, the data may be linearly non-separable, making it impossible
to directly use a linear hyperplane for classification. To address this issue, the concept
of kernel functions is introduced to map the data to a higher-dimensional feature space,
making them linearly separable in the new feature space.

A kernel function is a function used to calculate the inner product between two sample
points in the feature space. Common kernel functions include linear kernels, polynomial
kernels, and radial basis function (RBF) kernels. By introducing kernel functions into the
optimization problem of the SVM, non-linear decision boundaries can be obtained. For lin-
early non-separable cases, we can modify the optimization problem to the following form:

min
w,b

1
2
‖ w ‖2, subject to yi[(w · x) + b]− 1 + ξi ≥ 0, i = 1, 2, . . . , l (3)

In the above formula, the constraint condition is softened by introducing slack vari-
ables to allow some samples to be misclassified. With yi[(w · x) + b]− 1 + ξi ≥ 0, the slack
variables, ξ =

(
ξ1, ξ2, ..., ξl)

1 , represent the degree to which the training set is incorrectly
classified. A larger slack variable indicates a higher degree of misclassification.

2.4. Solving the Support Vector Machine

The optimization problem of the SVM is a convex optimization problem, which can be
transformed into a dual problem through Lagrange duality.

By constructing the Lagrange function:

L(w, b, α) =
1
2
‖ w ‖2 −

l

∑
i=1

αi[yi(w · xi + b)− 1] (4)
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where αi is the Lagrange multiplier vector, the dual problem can be formulated as follows:

Maximize F(α) =
l

∑
i,j=1

αi − 1
2

αiαjνiνj(xi · yj), subject to
l

∑
i=1

αiνi = 0, α ≥ 0 (5)

Solving the dual problem yields the optimal weight vector, w, and the bias term, b.
In addition, according to the KKT (Karush–Kuhn–Tucker) conditions, only the Lagrange
multipliers of the support vectors, αi, are non-zero, and they are located on the margin
boundary, which determines the position of the optimal hyperplane.

In the practical association of AIS and radar track data, optimization algorithms such
as SMO (Sequential Minimal Optimization) and QP (Quadratic Programming) are used to
solve the dual problem and obtain the optimal solution for the support vector machine. In
the context of ship radar and AIS track data association, the SVM demonstrates effective
handling of high-dimensional and complex data, thereby enhancing the accuracy and
reliability of vessel perception data association.

3. Trajectory Characteristic Calculation

Track characteristics denote the meaningful information extracted from various data
sources, such as ship radar and AIS, which aid in the association of track data and the
understanding of ship movement patterns. When calculating track characteristics, it is
essential to preprocess the ship’s movement data and extract relevant characteristics. This
preprocessing involves tasks like data cleaning, denoising, and handling missing data to
guarantee the accuracy and completeness of the input data. Subsequently, by extracting
features like speed, direction, turning rate, acceleration, and trajectory similarity from ship
radar and AIS data, a feature vector representing the ship’s trajectory can be established.
The following content explains the method of constructing each characteristic.

3.1. Trajectory Length Difference Characteristics

The utilization of the characteristics of length difference between radar tracks and
AIS tracks aims to compare any discrepancies in the length of target trajectories captured
by the two distinct data sources. By calculating the overall lengths of the radar track and
the AIS track, the consistency of the target trajectory information across the different data
sources can be evaluated. The length difference characteristic, Lendiff, is expressed by the
following formula:

Lendi f f =
∣∣∣Len(Radar_Trajectory)− Len(AIS_Trajectory)

∣∣∣ (6)

where Len(Radar_Trajectory) represents the length of the radar trajectory sample within a
certain time span and Len(AIS_Trajectory) represents the length of the AIS trajectory sample
within a certain time span. If the difference in length between radar and AIS trajectories is
small, this indicates that the target observed by the two data sources is more likely to be
the same target, and vice versa. The length difference feature serves as a valuable indicator
in detecting variations in trajectory length between radar and AIS data, which, in turn, aids
in determining whether a target is associated with both data sources.

3.2. Course Difference Characteristic

Course denotes the direction of a ship’s movement trajectory relative to the ground,
and we exclusively utilized course over ground for our analysis. The characteristics of
course differences between radar tracks and AIS tracks are employed to compare any
discrepancies in the course of targets observed by the two distinct data sources. By quanti-
fying the difference between the average courses of radar tracks and AIS tracks, we can
evaluate the consistency of target course information across diverse data sources. The
course difference characteristic, Coursedi f f , can be expressed by the following formula:

Coursedi f f

∣∣∣= Course(Radar_Trajectory)− Course(AIS_Trajectory) (7)
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where Course(Radar_Trajectory) signifies the course of the radar trajectory and
Course(AIS_Trajectory) denotes the course of the AIS trajectory. If the difference in course
is minimal, this implies that the target detected by the two data sources is highly likely
to be the same target. Conversely, significant differences in the course information could
indicate inconsistencies.

3.3. Average Acceleration Difference Characteristics

The characteristics comparing the average acceleration difference between radar tracks
and AIS tracks are employed to analyze any discrepancies in the acceleration of targets
detected by the two distinct data sources. Acceleration pertains to the rate of change in ship
target speed with respect to time, and the acceleration range varies among different ships.
During the construction of the dataset, we standardize the sample length to align with the
temporal span of three AIS data points, ensuring consistency across samples. Consequently,
the initiation time for calculating acceleration corresponds to the timestamp of the first
AIS data point, while the termination time corresponds to that of the third AIS data point.
Then, the average acceleration of AIS and radar data is computed within this designated
timeframe. By calculating the difference between the average acceleration of radar track
points and AIS track points, we can assess the consistency of target acceleration information
across diverse data sources. Acceleration difference characteristics, Avg_Accelration, can
be expressed by the following formula:

Avg_Accelration = | 1
n

n
∑

i=1
Accelration(Radar_Trajectory)i

− 1
m

∞
∑

j=1
Accelration

(
AIS_Trajectory)j

∣∣ (8)

where Accelration(Radar_Trajectory)i represents the acceleration of radar trajectory point
i, Accelration

(
AIS_Trajectory)j represents the acceleration of AIS trajectory point j, n is

the number of data points in the radar trajectory, and m is the number of data points in the
AIS trajectory. If the average acceleration difference is small, this indicates that the target
accelerations observed by the two data sources are relatively consistent, indicating that the
two observed trajectories are likely to be from the same target.

3.4. The Distance Difference in Starting Positions

The characteristics of the initial-position distance differences between radar tracks and
AIS tracks are employed to compare any discrepancies in distance between the starting
positions of targets observed by the two distinct data sources. By quantifying the differences
in the distance between the initial points of radar tracks and AIS tracks, we can evaluate the
consistency of targets’ initial-position information across diverse data sources. The distance
difference characteristics of the starting position can be expressed by the following formula:

Diff_Start =‖ Pstart_Radar − Pstart_AIS ‖ (9)

where Pstart_Radar represents the starting-position point of the radar trajectory and Pstart_AIS
represents the starting-position point of the AIS trajectory. If the initial-position distance
difference is small, this indicates that the target’s starting positions observed by the two data
sources are relatively consistent, indicating that the two observed trajectories are likely to
be from the same target.

3.5. The Distance Difference in End Positions

The feature of the end-position distance difference between radar tracks and AIS tracks
serves as a crucial metric to compare the variance in the distance between the end positions
of a target tracked by the two distinct data sources. By quantifying the distance difference
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between the end points of a radar track and an AIS track, we can assess the conformity of
the target’s end-position information across different data sources.

Diff_End = ‖ Pend_Radar − Pend_AIS ‖ (10)

where Pend_Radar represents the end point of the radar trajectory and Pend_AIS represents the
end point of the AIS trajectory. If the end-position distance difference is small, this indicates
that the target’s starting positions observed by the two data sources are relatively consistent,
indicating that the two observed trajectories are likely to be from the same target.

3.6. Dynamic Similarity Characteristics

Dynamic time warping (DTW) is a method used to compare the similarity between
two time series, which is widely applied in trajectory feature calculation. By treating
a radar trajectory and an AIS trajectory as time series, the similarity between them can
be calculated using the DTW algorithm, which allows us to quantitatively measure the
dynamic similarity between the two trajectories.

Given two time series of radar and AIS trajectories, X = {x_1, x_2, . . ., x_m} and Y = {y_1,
y_2, . . ., y_n}, where x_i and y_j represent the elements at timepoints i and j, respectively,
firstly, construct an m x n cumulative distance matrix D, where D[i][j] represents the
distance between the first i elements of sequence X and the first j elements of sequence Y.
This distance can be calculated based on Euclidean distance metrics.

Secondly, compute the optimal path through dynamic programming to find the best
alignment between sequence X and sequence Y.

D[i][j] = dist(xi, yi) + min(D[i − 1][j], D[i][j − 1], D[i − 1][j − 1]) (11)

where dist(xi, yj) denotes the distance between the sequence elements xi and yj. Finally, the
DTW similarity between sequence X and sequence Y can be obtained by accumulating the
lower-right element, D[m][n], of the distance matrix, D.

The primary advantage of DTW similarity lies in its ability to handle scenarios in
which the lengths of time series are inconsistent and the speeds vary. In ship trajectory
analysis, the speeds of ships may vary and the sampling frequencies of radar and AIS data
may differ, leading to a mismatch between the two trajectories in the time dimension. The
DTW algorithm utilizes dynamic programming to determine the optimal time alignment,
effectively addressing these challenges and enabling more accurate similarity assessments.

This characteristic holds a crucial role in ship trajectory matching and association
problems. By comparing the DTW similarity among diverse target trajectories, it aids in
determining whether the radar and AIS data correspond to the identical ship target, thereby
facilitating data association and consistency analysis.

4. Trajectory Dataset Construction

The aim of trajectory dataset construction is to extract the trajectory characteristics,
as previously described, from labeled radar and AIS trajectory data. By extracting these
features from labeled radar and AIS trajectory data and creating positive and negative
samples, we can effectively train an SVM classifier, which facilitates the automatic classifi-
cation and association of unlabeled data. These samples include both positive and negative
instances, with positive samples comprising radar and AIS trajectory features labeled as the
same target and negative samples consisting of radar and AIS trajectory features labeled as
different targets. To maintain sample consistency, we standardized the sample length to
correspond to the time span of three AIS data points. In the end, to address the issue of
imbalanced distribution between positive and negative samples, we conducted imbalanced
preprocessing to create the final dataset for model training.
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4.1. Data Preprocessing

The AIS data of ships in a navigation environment are collected by the on-board AIS
terminal, and then the location information of surrounding ships is extracted through
protocol analysis. Due to the quality problem of AIS data, they usually need to be polished
in historical data analysis. However, to mimic real-time scenarios, in which AIS reports
sent from other ships are decoded and applied for association directly, raw AIS data are
collected in the dataset construction. When vessels are not equipped with an AIS device,
they can only be detected by radar. And, in data association, radar data will not match any
AIS data. Therefore, track data from radar will be used for collision avoidance and radar
data will be employed to build the negative samples.

Radar data preprocessing mainly includes shoreline elimination, connected com-
ponent detection, and coordinate transformation. Firstly, to acquire radar targets, it is
necessary to eliminate shorelines from the original radar images to obtain radar images
solely containing the navigation areas of ships. Eliminating shorelines can remove the
influence of riverbank objects on radar target detection. Based on the acquired shoreline
positions, the intersection of the radar image and the area enclosed by the shoreline can be
taken to eliminate the shoreline.

Subsequently, connected component detection is performed on these images to extract
the targets of ships. In this paper, the two-pass scanning method [22] was chosen for
connected component detection. Through two scans, the connected components in an image
can be detected, thereby identifying the radar targets within these connected components,
as shown in Figure 3. Then, ship objects are filtered according to the pixel values of each of
the connected components.

  
(a) (b) 

Figure 3. Radar target recognition. (a) Radar image. (b) Connected component analysis.

Finally, in the domain of waterway transportation, the trajectory data generated by
radar and AIS exhibit different data formats, which requires the transformation of coordi-
nates. The conversion of radar polar coordinates to AIS coordinates fundamentally involves
transforming the geodetic coordinate system into the polar coordinate system. The radar
coordinate system operates in a polar fashion, with the radar device as its origin, measuring
both distance, ρ, and rotational angle, θ. Meanwhile, AIS target position data (loni, lati)
are originally in the form of longitude and latitude in the geodetic coordinate system.
Therefore, to integrate AIS and radar data effectively, conversion from the polar coordinates
of radar to geodetic coordinates is necessary, as demonstrated by the equation below:

lat_r = arcsin(sin(lat_o)× cos(d/R) + cos(lat_o)× sin(d/R)× cos(θ)) (12)

lon_r = lon_o + arctan
(

cos
(

d
R

)
− sin(lat_o)

)
× sin(lat_r), sin(θ)

×sin(d/R)× cos(lat_o))
(13)
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where (lon_r, lat_r) denote the geodetic coordinates of the radar data, (lon_o, lat_o) denote
the coordinates of the radar device, θ represents the relative angle, d signifies the radar
detection distance, and R denote the radius of the Earth.

4.2. Positive Sample Construction

The process of constructing positive samples aims to establish a feature model for the
target vessel, allowing the radar and AIS trajectory features belonging to the same target to
be correctly associated. The specific steps are as follows:

Step 1—Data Preparation: Initially, manual labeling of radar and AIS trajectory data
is performed. These data encompass vessel motion information along with labeling infor-
mation, indicating which radar and AIS trajectories correspond to the same vessel. For
each pair of radar and AIS trajectories labeled as the same target, they are combined to
form a positive sample trajectory pair, facilitating subsequent trajectory feature calculations.
Positive sample trajectories are illustrated in Figure 4.

   
(a) (b) 

   
(c) (d) 

Figure 4. Positive sample trajectory pair (red represents radar trajectory; blue represents AIS trajec-
tory; subfigure (a–d) represents four positive sample trajectory 47, 82, 41 and 37 respectively).

Step 2—Time Alignment: Due to potential differences in the sampling frequency of
radar and AIS data, there may be time discrepancies in the sample’s time dimension. To
ensure data continuity and consistency, time alignment is carried out when constructing
positive samples. Typically, the radar’s sample length is set to match the time span of
three consecutive AIS data points, which helps mitigate issues related to inconsistent
time intervals.

Step 3—Feature Extraction: Trajectory features, such as distance differences, course
differences, and average acceleration differences, are extracted from radar and AIS data.
These features reflect crucial characteristics of vessel motion, aiding in the establishment of
ship identification and association models.

Step 4—Sample Labeling: For each constructed positive sample, a label of “1” is
assigned, indicating that they belong to the same target vessel. These labels serve as training
data for supervised learning, assisting the model in comprehending the characteristics of
the target vessel.
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4.3. Negative Sample Construction

The process of negative sample construction aims to establish a feature model capable
of distinguishing between different vessels. Negative samples are composed of radar and
AIS trajectory features labeled as different targets, assisting the model in understanding
the trajectory differences between various vessels from AIS and radar data. The detailed
procedure for negative sample construction is as follows:

Step 1—Data Preparation: In contrast to the positive sample construction process, we
initially select radar and AIS trajectory data that are not labeled as the same target during
the same time interval. These datasets contain vessel motion information and labeling
information, indicating which radar and AIS trajectories correspond to different target
vessels. For each pair of radar and AIS trajectories labeled as different targets, they are
combined to form a negative sample trajectory pair. Negative sample trajectory pairs are
illustrated in Figure 5.

   
(a) (b) 

  
(c) (d) 

Figure 5. Negative sample trajectory pair (red represents radar trajectory; blue represents AIS
trajectory; subfigure (a–d) represents four negative sample trajectory 0, 8, 15 and 7 respectively).

Step 2—Time Alignment: Similar to the positive sample construction process, time
alignment is crucial for radar and AIS trajectories to guarantee the synchronization of
heterogeneous data within a consistent temporal interval.

Step 3—Feature Extraction: Similar to the process of constructing positive samples,
trajectory features, such as distance differences, course differences, and average acceleration
differences, are extracted from radar and AIS trajectory data. These features serve to
characterize the differences in AIS and radar data between different vessels.

Step 4—Sample Labeling: For each constructed negative sample, a label of “0” is
assigned, indicating that the features of this negative sample trajectory pair belong to
different vessels.

4.4. Imbalanced Preprocessing

The process involves combining the constructed positive sample set with the negative
sample set to create a comprehensive dataset. In tasks associated with associating ship
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radar and AIS data, the number of positive samples representing the same target vessel
trajectories is relatively limited, while the number of negative samples corresponding to
different target vessels is more substantial. Given that the SVM algorithm is significantly
affected by sample distribution within the dataset, this imbalance can potentially lead to
a reduction in the model’s performance during both training and testing phases. This is
primarily because the model tends to favor predicting the class with a higher sample count
while neglecting the one with fewer samples.

To guarantee the precision and resilience of model training, it is paramount to ensure a
balanced distribution of both positive and negative samples across the entire dataset. In this
research, we harness the SMOTE (Synthetic Minority Over-Sampling Technique) algorithm
to synthesize additional samples, thereby augmenting the minority class representation
and mitigating the imbalance in sample category distribution. The generation of these
synthetic samples occurs within the feature space and leverages the inherent similarity
among samples in the minority class, thereby improving the original data’s class distribu-
tion imbalance. Consequently, this effectively addresses the problem of sample category
imbalance, enhancing the model’s performance and generalization capabilities.

5. Experiments and Results

5.1. Data Sources

In our experiments, we employed radar and AIS trajectory data collected from the
perception-integrated system installed on the vessel “HANG DAO 1 HAO” within the
Yangtze River inland waterway. The shipborne perception system incorporates SIMRAD
solid-state radar, which is widely used in maritime field. The detection range of the radar
is between 1/32 nm and 36 nm. The AIS device used in the system meets the relevant
standards of AIS Class B and can receive data related to ship navigation safety in real
time. The dataset encompasses radar and AIS data for various target vessels, along with
corresponding labeling information, as shown in Figure 6 and illustrated in Table 1. In
the figures, own ship is the “HANG DAO 1 HAO” vessel with the MMSI 413835537, and
the straight lines in front of the vessel icons represent their headings. This dataset was
collected under sunny weather conditions with high visibility. The AIS data contained
data decoded from AIS reports with static and dynamic information. Radar data included
radar IDs, labeled MMSIs (Maritime Mobile Service Identities), and the other features were
the same as in the AIS dataset, which had 9307 records with labels. From this dataset,
we extracted several sample features, including distance differentials, course differentials,
average acceleration differentials, starting-point distance differentials, end-point distance
differentials, and DTW similarity features. To facilitate our experiments, we divided the
constructed dataset into training and testing sets in a 7:3 ratio, allowing for comprehensive
testing and evaluation of our proposed methods. This division ensured the independence of
the test data from the training data, enabling us to assess the effectiveness and performance
of our approaches accurately. The utilization of real-world ship monitoring data from the
Yangtze River inland waterway added authenticity and applicability to our experimental
framework, contributing to the robustness and relevance of our research outcomes.
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Figure 6. Experimental scenarios.

Table 1. Dataset information.

Features Type Values

MMSI String 0–799,999,999
Longitude Float 0–180◦
Latitude Float 0–90◦

Time Timestamp 17 April 2022
Course Float 0–360◦
Speed Float 0–20 kn

Radar ID String 0–1992

5.2. Evaluation Criteria

Experimental evaluation metrics were utilized to assess the performance of the SVM
model in the task of associating ship radar and AIS trajectories, specifically its ability to
accurately identify AIS and radar trajectories as belonging to the same vessel. The primary
experimental evaluation metrics were precision, recall, and F1 score.

Precision: Precision refers to the proportion of samples that are predicted as “true”
by a model and are indeed true positives. It is particularly relevant when dealing with
binary classification problems, where the goal is to classify instances into one of two classes,
typically referred to as the positive class and the negative class. Here, a high precision
value indicates that the model is good at identifying the heterogeneous data belonging to
one vessel and does not make many false-positive errors.

Recall: Recall refers to the ratio of positive samples correctly predicted by a model
to true-positive samples. Specifically, in the present study, recall is defined as the number
of true-positive classifications (correctly identified instances of data from the same vessel)
divided by the sum of true positives and false negatives. It indicates the model’s capacity
to capture and correctly classify data instances that truly belong to the same vessel, which
is essential in vessel tracking, navigation, and various maritime applications. A high recall
score means that the model is effective at finding and classifying most of the heterogeneous
data belonging to the same vessel, reducing the risk of missing important information.

F1 Score: The F1 score is a metric used in classification tasks, including the classification
of AIS and radar data belonging to one vessel [23]. It is a valuable measure that combines
both precision and recall into a single value to provide a more comprehensive evaluation
of a model’s performance, especially in scenarios with imbalanced class distributions. The
F1 score is calculated as follows:

F1 = 2 × Precision × Recall/(Precision + Recall) (14)

F1 scores range from 0 to 1, with a high F1 score suggesting, here, that the model
achieves a balance between correctly classifying data as belonging to one vessel while mini-
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mizing the risk of missing relevant data points. Therefore, we can conduct a comprehensive
evaluation of the model’s performance on the ship radar and AIS trajectory association task
in the test dataset using F1 scores. High precision, recall, and F1 score will substantiate the
capability of our proposed method to accurately discern whether AIS and radar trajectories
pertain to the same target.

5.3. Results

In inland waterways, where there is a high density of traffic flow, frequent cross
encounters, and substantial diversity in vessel trajectories, the challenge of data associa-
tion becomes particularly intricate and complex. Therefore, we conducted experiments
categorized into four groups: vessels moving with the same heading, vessels moving
close together with the same heading, vessel encounter scenarios, and multiple vessel
encounter scenarios. These experiments allowed us to conduct a comparative analysis of
the performance of the ship radar and AIS trajectory data association method based on the
SVM in different scenarios.

(1) Vessels moving with the same heading

The purpose of this experimental group was to explore situations in which vessels
move in the same direction, observed by both radar and AIS. Specifically, we selected two
typical situations within this group for analysis. We extracted and processed the data to
obtain a total number of 174 trajectory samples for further analysis. In this situation, the
vessels’ movements are in the same direction, albeit with noticeable distances between
them, as illustrated by target 92 and target 57 in Figure 7a and target 1532 and target 1548 in
Figure 7b. The experiment aimed to confirm the effectiveness and accuracy of our approach
in addressing these same-direction forward- and backward-movement scenarios.

(a) (b) 

Figure 7. Vessels moving with same heading. (a) Target 92 and target 57. (b) Target 1532 and
target 1548.

An F1 score of 0.96 signifies a balanced trade-off between precision and recall deliver-
ing accurate classification results. The model effectively discriminates between the radar
and AIS trajectories of the target vessels, aligning precisely with the actual labels.

(2) Vessels moving close together with the same heading

This experimental grouping was designed to replicate scenarios in which vessels
closely follow the same course and are ready to overtake in both radar image and AIS
data. Specifically, we selected two typical situations within this group for analysis. We
extracted and processed the data to obtain a total number of 415 trajectory samples for
further analysis, as illustrated by target 7 and target 8 in Figure 8a and target 1880 and
target 1881 in Figure 8b. In this case, multiple vessels are navigating near each other while
maintaining a consistent direction of movement. This suggests a scenario in which the
vessels may be in the process of overtaking one another, with one vessel gradually moving
past another while maintaining a similar course. In these circumstances, the radar and AIS
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trajectories of the target vessels displayed distinct temporal and spatial similarities and
were characterized by minimal differences in distance, heading, and speed.

  
(a) (b) 

Figure 8. Vessels moving closely with same heading. (a) Target 7 and target 8. (b) Target 1880 and
target 1881.

Through calculations, we obtained an F1 score of 0.95. These results signify the
performance of the data association method in the scenarios in which vessels 7 and 8 were
moving close together in the same direction.

(3) Vessel encounter scenarios

In this group, we considered scenarios in which target vessels encounter each other
in both radar image and AIS data. An encounter refers to a situation in which vessels
approach each other in close proximity or along intersecting paths. Specifically, we selected
two typical situations within this group for analysis. We extracted and processed the data
to obtain a total number of 77 trajectory samples for further analysis. In such cases, the
trajectories of the target vessels may exhibit significant differences in terms of distance
and heading, as illustrated by the trajectories of vessels 1960 and 1981 in Figure 9a and
target 1751 and target 1782 in Figure 9b. This experiment was designed to evaluate the
performance of our method in situations involving vessel encounters.

  
(a) (b) 

Figure 9. Vessel encounter scenarios. (a) Target 1960 and target 1981. (b) Target 1751 and target 1782.

By computation, an F1 score of 0.98 was obtained, indicating that the proposed method
for associating ship radar and AIS trajectory data performs accurately in scenarios in which
vessels encounter each other.

(4) Multiple vessel encounter scenarios

In this set of experiments, we explored scenarios in which multiple vessels simultane-
ously encounter one another in both radar image and AIS data. Specifically, we selected
a typical situation within this group for analysis. We extracted and processed the data to
obtain a total number of 230 trajectory samples for further analysis. Multiple-target associa-
tion requires simultaneous associations across multiple sets of radar and AIS trajectories, as
depicted by the examples involving vessels 158, 144, and 136 in Figure 10a and vessels 1805,
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1807, 1810, and 1812 in Figure 10b. The experiments aimed to investigate the applicability
and efficiency of our proposed association method in multi-target scenarios.

  
(a) (b) 

Figure 10. Multiple vessel encounter scenario. (a) Target 144, 158, and 136. (b) Target 1805, 1807, 1810,
and 1812.

Through calculations, we obtained an F1 score of 0.97. These results confirmed the
performance of the classifier-based association method in the scenario involving vessels
encountering one another, which indicates the model’s ability to distinguish between
different vessels in multiple vessel encounter scenarios.

6. Discussion

We conducted a comparison with the nearest-neighbor method to provide a more
comprehensive evaluation of our classifier approach. The comparison results are presented
in Tables 2–5, which detail the evaluation metrics for the different scenarios. For scenarios
involving vessels moving with the same heading (Tables 2–4), both our classifier approach
and the NN method demonstrated high precision, recall, and F1 score values. In the
multiple vessel encounter scenarios (Table 5), our classifier approach consistently achieved
higher precision, recall, and F1 score values than the NN method, highlighting its robustness
and effectiveness in identifying vessel encounters.

Table 2. Evaluation of vessels moving with same heading scenario.

Precision Recall F1 Score

Classifier Approach 0.97 0.96 0.96
Nearest Neighbor 0.98 0.95 0.96

Table 3. Evaluation of vessels moving close together with same heading scenario.

Precision Recall F1 Score

Classifier Approach 0.96 0.95 0.95
Nearest Neighbor 0.98 0.98 0.98

Table 4. Evaluation of vessel encounter scenario.

Precision Recall F1 Score

Classifier Approach 0.99 0.98 0.98
Nearest Neighbor 1.00 1.00 1.00

Table 5. Evaluation of multiple vessel encounter scenario.

Precision Recall F1 Score

Classifier Approach 0.99 0.95 0.97
Nearest Neighbor 0.87 0.86 0.86
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Our analysis focused on a representative set of data collected by on-board perception
systems in several classical scenarios, including overtaking and encounters. In these sim-
pler scenarios, both existing NN models and the proposed model exhibited satisfactory
trajectory association performance. This is attributable to the relatively straightforward
nature of these scenarios, in which ship movement patterns are more uniform and thus
easier for models to associate. However, when confronted with more complex scenarios,
such as multiple vessel encounters, the proposed method demonstrated its distinct ad-
vantage. In multiple vessel encounter scenarios, multiple vessels interact within a limited
space, resulting in more intricate and variable trajectory characteristics. In the multiple
vessel encounter scenario (Table 5), the nearest-neighbor method exhibited a precision,
recall, and F1 score of 0.86. Compared to our classifier approach, the NN method demon-
strated a lower performance across all evaluation metrics in this scenario. The NN method,
which relies solely on proximity-based matching, may struggle to accurately identify and
associate trajectories in such dense and intricate scenarios. And this is attributable to
the complexity of the situation, in which distinguishing between multiple overlapping
vessel trajectories poses a challenge. In contrast, because it utilizes a comprehensive set of
features derived from trajectory characteristics, which enable it to capture nuanced patterns
and relationships in the data, our classifier approach ensures accurate identification of
positive instances.

Overall, while both methods performed well, the results shown in Table 5 highlight
the superior performance of our classifier approach, particularly in scenarios involving
multiple vessel encounters. Incorporating multiple trajectory characteristics to solve data
association issues makes it more reliable than approaches like the NN method which
just take trajectory distance into account. However, its accuracy relies heavily on the
training dataset, which may not effectively generalize to complex or open-sea scenarios
not adequately represented in the training data mainly obtained from an inland waterway.
And as we focused on the association method for AIS and radar data, cases in which
radar or AIS are not employed were not considered in this study. Furthermore, the data
primarily originated from a single vessel’s perception system, and the scenarios selected
were relatively limited, potentially affecting the model’s generalization capabilities. In
future research, we aim to collect a more diverse and extensive dataset, encompassing data
from various types of vessels, different weather conditions, and across diverse geographical
locations. This will enhance the model’s performance and generalization.

Meanwhile, video sensors play a crucial role in enhancing vessel perception, especially
in challenging visibility conditions and nighttime operations, where AIS and radar may
fall short. After the inclusion of video, we can extend our approach to utilize target
detection algorithms to identify vessels present in a video at first. Subsequently, coordinate
transformation can be performed to align the coordinates of detected vessels with AIS
and radar. Furthermore, leveraging the calibrated relationships between video targets and
those identified by radar and AIS, positive and negative sample sets could be constructed
for vessel trajectory features in video data. These sample sets will serve as the basis for
training a data association classifier, enabling the correlation of vessel perception data from
video, AIS, and radar sources. Sensor fusion techniques allow us to leverage the strengths
of each sensor type while compensating for their individual limitations. By combining
AIS, radar, and video sensor data, we can enhance the accuracy and reliability of vessel
motion perception.

7. Conclusions

In this study, a trajectory characteristic-based SVM binary classifier approach is pro-
posed to achieve effective association between ship radar image and AIS data. Based on
the data captured from a perception system installed on a vessel named “HANG DAO 1
HAO”, we extracted trajectory characteristics of different vessels from radar and AIS data.
Then, positive and negative training sets were constructed to feed them into the classifier
for association analysis. The research results demonstrate that the trajectory characteristic-
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based SVM binary classifier excels in ship radar and AIS data association. Through a series
of experiments that included two typical situations for each of the following: overtaking,
encounters, and multi-target groups, which are common situations in inland waterway
traffic contexts, this research substantiated the method, which achieved an F1 score greater
than 0.95, with the aim of enhancing the precision and reliability of ship monitoring and
navigation information.

In a future study, more diverse and extensive datasets will be collected to enhance the
model’s performance and generalization. This could involve using data from different types
of vessels, varying weather conditions, and different geographical locations. Moreover,
the integration of data from other sources, such as CCTV or BEIDOU data, which have
the ability to detect objects without radar or AIS data in challenging visibility conditions,
will be applied to expand and compensate for the detection capacities of current ship
monitoring and navigation. And in future work, data fusion methods, such as covariance
intersection, will be implemented after data association to provide more accurate position
information about surrounding vessels and enhance maritime situational awareness.
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Abstract: This study presents a method to support ship trajectory prediction at waterway confluences
using historical Automatic Identification System (AIS) data. The method is meant to improve the
recognition accuracy of ship behavior trajectory, assist in the proactive avoidance of collisions, and
clarify ship collision responsibility, to ensure the safety of waterway transportation systems in the
event of ship encounters induced by waterway confluence or channel limitation. In this study, the
ship trajectory based on AIS data is considered from five aspects: time, location, heading, speed, and
trajectory by using the piecewise cubic Hermite interpolation method and then quickly clustered
by regional navigation rules. Then, an improved K-Nearest Neighbor Algorithm considering the
sensitivity of data characteristics (SKNN) is proposed to predict the trajectory of ships, which
considers the influence weights of various parameters on ship trajectory prediction. The method is
trained and verified using the AIS data of the Yangtze River and Han River intersection in Wuhan.
The results show that the accuracy of SKNN is better than that of conventional KNN and Naive Bayes
(NB) in the same test case. The accuracy of the ship trajectory prediction method is above 99% and
the performance metrics of the SKNN surpass those of both the conventional KNN and NB classifiers,
which is helpful for early warning of collision encounters to ensure avoidance.

Keywords: waterway transportation safety; ship trajectory prediction; AIS; KNN; trajectory classification

1. Introduction

With the continued growth of the economy, waterway transportation is becoming in-
creasingly congested, and more and more channels are becoming saturated, especially at the
confluence of rivers, putting increased demands on waterway navigation management [1].
The popularity of the AIS not only improves the efficiency and safety of navigation but also
makes it possible to collect a huge volume of ship motion data for waterway transportation
studies. Ship motion data can be extracted to understand the navigation status and they
can be applied to many maritime fields, such as ship collision avoidance, maritime moni-
toring, ship trajectory prediction, and maritime accident investigation. The analysis and
application of AIS data are mainly reflected in research on traffic flow [1], ship encounter
characteristics analysis [2–5], ship trajectory prediction [6–8], and navigation anomaly
identification [9,10]. The following technologies are used as the foundation: data recovery,
trajectory clustering, and trajectory prediction modeling.

AIS data cleaning is the basis of ship trajectory data preprocessing, usually based on the
ship’s position, speed, and heading data to identify anomalies and repair them [11]. On this
basis, clustering methods are often used for ship trajectories, such as DBSCAN, K-means,
GMM, EM, and other algorithms. Lee et al. (2007) [12] presented the TRACLUS algorithm,
which has been widely used, and many researchers have developed the algorithm to
improve the clustering effect. Among them, Rong et al. (2020) [13] achieved trajectory
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clustering through the improved TRACLUS algorithm. Gudmundsson et al. (2015) [14]
proposed a distance-based trajectory clustering algorithm using the Frechet distance to
define the similarity between trajectories. Further, trajectory prediction has been based
on data preprocessing and trajectory clustering, such as the Markov model, the Naive
Bayesian model, SVM, neural networks, the particle swarm algorithm, the Kalman filter,
and other algorithms for prediction. Perera (2012) [15] uses the K-means algorithm to
classify the historical trajectory of the ship and establishes an ANN model to predict the
trajectory of the ship based on the ship’s information and grouping results. Experiments
show that the algorithm has an accuracy of more than 70%. Hu et al. (2021) [16] used an
artificial neural network to study AIS data and realized the prediction of ship trajectories.
The results show that the accuracy of route prediction was 76.15%. Although the above
methods are effective, the accuracy of trajectory prediction may not meet requirements
due to the lack of in-depth research on ship trajectory changes. Murray et al. (2021) [17]
used the Gaussian mixture model to cluster AIS historical data, and then predicted ship
trajectory based on this. The results showed that the accuracy of ship trajectory prediction
based on clustering was higher than that of un-clustered ships. The effect of clustering
directly affects the accuracy of trajectory prediction. Wang (2019) [18] used the improved
TRACLUS to cluster the AIS trajectory and adjust the internal parameters, but because the
clustering effect was limited by the choice of internal parameters, under the influence of
waterway confluence, the final clustering effect did not fully reflect the actual situation.

Artificial Neural Networks (ANNs) are widely used in ship trajectory prediction
research. Qian et al. (2022) used a deep Long Short-term Memory Network Framework
(LSTM) and Genetic Algorithm (GA) to predict ship trajectories in inland water [19]. But
LSTM models have high complexity, long training time, and require a large amount of
historical data. Tian et al. (2023) proposed a ship trajectory prediction model using a
Difference Long Short-term Memory (D-LSTM) neural network, which more effectively
processes differential sequences, improves prediction accuracy, and stability [20], but also
requires high computational resources and high-quality logarithmic data. Gan et al. (2016)
combined clustering and an ANN to predict ship trajectory, which reduce data complexity
and dimensions through clustering to improve the training efficiency of the ANN [21].
However, this method requires adjusting multiple parameters to tune the model and is
sensitive to the initial clustering results. Recurrent Neural Networks (RNNs) are suitable
for time-series prediction and have dynamic prediction capabilities, but traditional RNNs
suffer from gradient vanishing problems, limited ability to predict long time series, and
require a large amount of computational resources [22,23]. Zhao et al. (2023) proposed a
ship trajectory prediction method based on GAT and LSTM, which has high robustness [24].
Li et al. (2023) analyzed five classical machine learning methods and eight deep learning
methods on ship trajectory prediction [25,26]. Zhou et al. (2024) proposed a ship trajectory
prediction method based on Optuna–BILSTM [27]. Li et al. (2024) proposed a ship trajectory
prediction method based on ACoAtt–LSTM [28]. Jiang et al. (2023) proposed a ship
trajectory prediction method based on an attention mechanism model [29].

Due to the large volume of ship traffic and complex interactions in intersecting wa-
ter areas, machine learning methods such as KNN and Naive Bayes (NB), which have
strong adaptability and can quickly respond to environmental changes, are used to predict
ship trajectory intentions in intersecting water areas, achieve real-time trajectory category
prediction, and improve navigation safety and efficiency.

The confluence area of main and branch waterways is one of the most complicated
channel circumstances [30]. Due to waterway confluence, the traffic flow of ships often
forms a complex situation of intersection, such as serious traffic conflicts, irregular nav-
igation order, and heavy pressure on the safety of drivers, which increases the risk of
collisions between ships in the confluence area [31,32]. It has been shown that more than
80% of ship collision accidents are caused by human error, including misidentification of the
ship’s behavior trajectory without correctly perceiving the risk of collision, failing to take
appropriate collision avoidance measures, and ultimately causing collision accidents [33].
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Therefore, we present a simple method to support ship trajectory prediction using histor-
ical AIS data. In our method, a clustering method based on regional navigation rules is used
to achieve fast and accurate clustering of trajectories, and an improved K-Nearest Neighbor
Algorithm considering the sensitivity (SKNN) of data characteristics is proposed to establish
the mapping relationship between ship navigation characteristics and ship trajectory, to then
predict the ship trajectory reflecting perceived collision risks while ensuring allocation of
avoidance responsibilities. The exploration of the Ship K-Nearest Neighbors (SKNN) algo-
rithm within the realm of maritime trajectory forecasting should support advancements in
various pivotal sectors. These include enhancing the efficacy of collision avoidance warn-
ing systems, optimizing navigational efficiency, refining energy management strategies for
navigation [34], and innovating in the domain of navigational route planning [35].

In this paper, a machine learning approach is proposed to predict ship trajectory at
waterway confluences using an improved K-Nearest Neighbor Algorithm considering the
sensitivity of data characteristics. Section 2 provides a description of the proposed method
for ship trajectory prediction, Section 3 presents a comparison between the proposed
method and a conventional KNN, NB, based on the same AIS data of the Yangtze River
and the Han River intersection in Wuhan, and Section 4 concludes the article.

2. Proposed Method for Ship Trajectory Prediction

Taking the AIS data of the Wuhan Bridge section in the Yangtze River from October 2020 to
November 2020 as an example, a total of 148,325 trajectories, a method for ship trajectory predic-
tion using historical AIS data is established based on the K-Nearest Neighbor Algorithm (KNN).
The main scheme of the methods (Figure 1) primarily includes three parts: (1) Ship trajectory
data preprocessing; (2) Ship trajectory data clustering; and (3) Ship trajectory prediction.

 

Data Preprocessing

Data Clean

Data Repaired

Data Partitioning

Holdout 90:10

Training Testing

Model Building

KNN

SKNN

NB

Model OptimazationModel Testing

Accuracy F1-score

Recall Precision

AIS Row Data

SKNN Algorithm

k-d TreeFeature Weight Normalize

Improved KNN

Figure 1. Flowchart for prediction of ship trajectory based on AIS data.

2.1. Ship Trajectory Data Preprocessing

As AIS-based raw data are the research object of ship trajectory, there can be sampling
data errors due to the abnormal operation of software or hardware equipment. Hence, these
data need to be preprocessed first to clean the wrong AIS data dynamic information and
repair the missing information. Figure 1 shows that there are a large number of erroneous
data in the AIS-based raw data of the Wuhan Bridge section in the Yangtze River from
October 2020 to November 2020, and there are many ferry trajectories to and from Jijiazui
Wharf, Qingchuan Wharf, Wuhan Guan Wharf, Zhonghua Road Wharf, etc., which are
useless for the study of ship trajectory data on the main routes between the Han River
and the Yangtze River. Therefore, the AIS-based raw data need to be cleaned and repaired
before studying it, such as with regard to ship latitude and longitude, speed, heading, etc.
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2.1.1. AIS Data Cleaning

The parsed dynamic information is sorted according to the ship’s MMSI, and if the
ship’s MMSI does not match, it is classified as the sub-trajectories of different ships; for
trajectories with the same MMSI, when the time difference between two consecutive ship
trajectory points is greater than 900 s, they are divided into sub-trajectories of the ship
and data points with MMSI equal to 0 are deleted. In this paper, we mainly use the time,
longitude, latitude, speed, and heading characteristics of the AIS data dynamic information,
which are denoted t, x, y, v, and θ respectively, as shown in Table 1.

Table 1. AIS data dynamic information.

Parameter Data Type Data Range

Time (t) timestamp 01/10/2020–30/11/2020

MMSI text (200000000–799999999)
Nine-digit integer

Longitude (x) float 0–180◦

Latitude (y) float 0–90◦

SOG (v) float 0–20 kn

Heading (θ) float 0–360◦

According to observation of the AIS data, we find that there are three types of error
data: abnormal latitude and longitude, abnormal heading, and abnormal speed. Therefore,
the following cleaning rules are formulated for error data types.

(1) Area restriction: Defining the research area and deleting data points outside the area.
(2) Removing the duplicate data: Repeated AIS data are the same AIS data sent by a

ship continuously while underway. For this kind of data, set rules are as follows: if the
speed of the i-th track point is greater than 2 knots, but the data of this track point i are the
same as the data of the next track point, then they are deleted.

(3) Position offsetting: If the coordinates of the trajectory points in the AIS data have
changed, it will cause the distance between the two adjacent coordinate points to suddenly
become larger, which will lead to the calculated vessel sailing speed being clearly unrealistic.
Since the coordinates in the AIS data are from the WGS84 coordinate system in the differen-
tial GPS-DGPS, the distance between two track points can be calculated by the following:

C = sin(yi−1) sin(yi) + cos(yi−1) cos(yi) cos(xi−1 − xi) (1)

D = R × arccos(C)× (
π

180
) (2)

where R is the radius of the Earth.
The average speed between the two trajectory points is as follows:

vi =
D

ti − ti−1
, i = 2, 3, . . . , m − 1, m (3)

When the average speed is greater than 10 knots, the corresponding track points are
deleted as error data.

(4) Processing excessive acceleration: According to the Inland Waterway Navigation
Standards, the acceleration distance Lm is 20 times the ship’s length in theoretical conditions,
while the distance can be reduced to 10–14 times the ship’s length when the ship is empty.
To prevent deleting correct AIS data, the acceleration distance Lm is set to be 10 times the
ship’s length in the unloaded case in this paper. According to the equation of uniform
acceleration motion, the maximum acceleration of the ship is calculated as follows:

Lm = 10 × L = 0.5 × tm × Vm (4)
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amax =
Vm

tm
=

Vm
2

20 × L
(5)

where L is the length of the ship and Vm is the maximum speed of the ship sailing in the
Wuhan section.

In the calculation, the value of Vm is taken as the maximum inland vessel speed of
12 knots (6.17 m/s), and the length L is set to 100 m. The maximum acceleration of 0.02 m/s2

is obtained using the above formula and is removed when the acceleration between two
trajectory points exceeds 0.02 m/s2.

(5) Removing ferry data: To eliminate the ferry data, this paper adopts the following
rules: the trajectory passes through Region 1 and Region 2 at the same time, Region 1 and
Region 3 at the same time, or Region 2 and Region 3 at the same time, as shown in Figure 2.

 
Figure 2. Prediction of ship trajectory process based on AIS-based raw data.

After processing the data as described above, the cleaned trajectories are as shown
in Figure 3, and it can be seen that the wrong AIS dynamic data have been removed.
However, anomalous data with little position deviation or speed not exceeding the cleaning
criteria still exist, and personal judgement may be required if the anomalous data are to be
completely cleaned.

 
Figure 3. Schematic diagram of AIS trajectory after cleaning.

2.1.2. AIS Data Repairing

After data cleaning, there are some problems such as missing track points and in-
consistent data time intervals in the AIS-based ship trajectory. To ensure the subsequent
clustering and prediction, the segmented cubic Hermite interpolation is selected to repair
the missing trajectory points. Its expression is as follows:

f (x) =

{
f1(x), x ∈ [x0, x1]

f2(x), x ∈ [x1, x2]
(6)
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fi(x) = [hi+2(x−xi−1)](x−xi)
2

h3
i

yi−1 +
[hi−2(x−xi−1)](x−xi−1)

2

h3
i

yi

+(x−xi−1)(x−xi−1)
2

h2
i

y′i−1 +
(x−xi)(x−xi−1)

2

h2
i

y′i
(7)

where hi = xi − xi−1, i ∈ [1, 2].

2.2. Ship Trajectory Data Clustering

When a ship is navigating in the Yangtze River Channel, its trajectory clusters are
obvious due to the constraints of the “Regulations for Navigation in the Middle Reaches of
the Yangtze River”. Hence, we set the five sailing areas to quickly obtain each route and
mark six training labels, as shown in Figure 4.

Figure 4. Schematic diagram of sailing area division and route label marking.

2.3. Ship Trajectory Prediction

The proposed method for ship trajectory prediction by SKNN is described in this
section to predict which route the ship will sail on according to the current trajectory and
determine appropriate collision avoidance measures that can be taken in time to avoid
collision accidents. In this method, we improved KNN by considering the sensitivity.

2.3.1. K-Nearest Neighbor Algorithm Considering the Sensitivity (SKNN)

The K-Nearest Neighbor Algorithm is a common classification algorithm whose basic
approach is to find the individual that differs the least from the predicted sample and
consider the class of the predicted sample to be the same as the class of that individual.
The Euclidean distance is often used as a distance metric function in KNN algorithms. The
Euclidean distance assigns the same weight to the different characteristic quantities of the
sample, as shown in Equation (8).

D(x, y) =

√
n

∑
i−1

(xi − yi)
2 (8)

where x is the test sample, and y is the training sample.
However, different feature quantities have different effects on the accuracy of the clas-

sification results in practical situations. For this reason, the sensitivity method is introduced
to improve the KNN, and the improved Euclidean distance equation is as follows:

D(x, y) =

√
n

∑
i−1

wi(xi − yi)
2 (9)

where w is the feature weight. Its calculation process is as follows:
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(1) The test samples are classified using the conventional KNN algorithm and counting
the number of misclassified samples as n.

(2) The samples are removed i (i = 1, 2, 3, 4, . . ., l) feature vectors at a time, and then
the conventional KNN method is used to classify the test samples and count the number of
misclassified samples as ni.

(3) Stipulating when ni = 0 or n = 0, ui = 1; The larger the ni, the greater the error
of classification, and the greater the contribution of the i-th feature to classification; The
smaller ni is, the smaller the classification error is and the smaller the effect of the i-th
feature is.

The weight coefficient of the i eigen weight is defined as:

wi =
ui

l
∑

k=1
uk

, i = 1, 2, . . . , l (10)

where the fulfillment of conditions is
l

∑
i=1

ui = 1.

2.3.2. Data Training of Ship Trajectory Prediction

In our method, the labels are regarded as the prediction results, and the sub-trajectories
of all ships are taken as samples. Then, the k sub-trajectories with the closest distance to
the current ship’s trajectory data are found, and the labels of these k sub-trajectories are
counted, and the highest number of labels is the final prediction result. The conventional
KNN algorithm assigns equal weights to the labels of all k sub-trajectories, i.e., the weights
of all the neighboring points are equal. However, in instances of sample imbalance, where
one class has a significantly larger number of samples compared to others, there is a high
probability that the classification model will be skewed towards the majority class. This
bias can lead to misclassification errors for test samples that belong to the minority classes.
For this reason, this paper uses the method of weights to improve this problem. By using
the reciprocal of the distance as the weight of the label, the neighbors with a small distance
from the sample have large weights, while the neighbors with a large distance from the
sample have relatively small weights; thus, the factor of distance is also taken into account
to avoid misclassification due to too large a sample.

To avoid the effect of the difference in the data magnitude of longitude, latitude, speed,
and heading on the model results, this paper uses Min-Max scaling to normalize the data,
as shown in Equation (11).

yi =
xi − min

{
xj
}

max
{

xj
} − min

{
xj
} (11)

where, 1 ≤ i ≤ n, 1 ≤ j ≤ n, max{xj} is the maximum value of the sample data, min{xj} is the
minimum value of the sample data, and the transformed data are all within [0, 1].

In addition, this paper uses the data structure of the k dimension tree algorithm (kd-
tree) to save the training data; using the kd-tree for nearest neighbor search reduces the
number of calculation times. The main steps are as follows:

(1) Find the leaf node containing x in the k-d tree.
(2) Take this leaf node as the current nearest point and calculate the distance from the

current nearest point to the target point, which is D.
(3) Recursive upward backtracking, with the following operation at each node: If

the distance Dcur from the instance point is saved by that node to the target point, and
if Dcur < D, the current node is taken as the current nearest point. Check whether the
region corresponding to another child node of the parent of this child node intersects
the hypersphere with the target point x as the center of the sphere and D as the radius;
(i) intersect: there may be a point closer to the target point in the region corresponding to
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the other child node, move to the other child node and recursively perform the nearest
neighbor search; (ii) do not intersect, backtrack upwards.

(4) When it returns to the root node, the search ends, and the current nearest neighbor
is the X’ nearest neighbor.

3. Results and Discussion

3.1. Data Preprocessing Results

The trajectories of the ship with MMSI 413210950 are analyzed before and after restora-
tion for a total of 1000 s from 21/10/2020 14:41:00 to 21/10/2020 14:57:50, comparing
linear interpolation, quadratic interpolation, and segmented triple Hermite interpolation
methods for the cleaned trajectories in five aspects: time, longitude, latitude, speed, and
track direction. The restoration effect is considered below. The red circles in Figure 3 are
the original trajectory points; it can be seen from the figure that the original AIS trajectory
data have a lot of data loss and the data sending period is unstable.

Figure 5 shows the restoration results of longitude (lon), latitude (lat), velocity (SOG),
and heading (COG). Figure 5a shows that the three interpolation methods have compa-
rable longitude restoration effects when the data are missing at short distances, while
the secondary interpolation and segmented triple Hermite interpolation methods have
closer restoration effects when the data are missing at long distances. Figure 5b shows
that the latitude restoration results of the three interpolation methods are comparable at
both long and short distances. Figure 5c,d show that the speed and heading fixes of the
three interpolation methods are comparable in the case of missing data at short distances,
while the secondary interpolation is poor in the case of missing data at long distances,
and the linear interpolation and segmented three-time Hermite interpolation methods are
close to each other. In summary, the three interpolation methods are comparable when
the data are missing at short distances, the segmented three-times Hermite interpolation
method is better when the data are missing at long distances, while the original trajectory
characteristics are well maintained. Therefore, this paper selects the segmented three-times
Hermite interpolation method to repair the trajectory.

 

Figure 5. Schematic diagram of sailing area division and route label marking (a: longitude; b: latitude;
c: speed; d: heading).
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3.2. Analysis Effect of Clustering

To verify the effectiveness of the above clustering method, this paper clusters the
cleaned AIS data. The clustering results are shown in Figure 6. As can be seen from the
figure, the clustering method proposed in this paper can cluster the ship routes well.

Label 1 Label 2

Label 1 Label 2 Label 3

Label 4 Label 5 Label 6

Label 3

Label 4 Label 5 Label 6

Figure 6. The result of ship trajectories clustering based on AIS data.

To gain a deeper understanding of the navigational patterns of vessels within inland
waters, this study employs the speed and heading information from AIS data corresponding
to label-1 and label-2 as indicative features of vessel behavior. This analysis aims to assess
the impact of both upstream and downstream conditions on these navigational behaviors.

The Figures 7a and 8a show the ship heading distribution of this trajectory class, and
Figures 7b and 8b shows the ship speed distribution of this trajectory class. As can be seen
from the graph, the heading of upbound vessels is concentrated between 144◦~288◦ and
the speed is concentrated between 2 m/s~6 m/s, while the heading of downbound vessels
is concentrated between 0◦~72◦ and the speed is concentrated between 6 m/s~10 m/s. The
heading and speed of the two labels have obvious regional characteristics. In addition,
the vessel speed of tag 2 is significantly greater than that of tag 1. This is because the
inner speed of river vessels is affected by the current; downstream vessels (vessels in tag 2)
need to travel against the current and their speed is affected by the current. The impact
of the ship is weakened; in contrast, the upstream ship (the ship in label-1) sails with
the current, and the speed is equal to the sum of the ship’s speed and the current speed,
which is necessarily relatively faster. It can be seen that the behavioral pattern recognition
under the trajectory clustering algorithm based on this paper can effectively explore the
navigation pattern of ships, thus helping maritime managers to perceive the traffic form in
the waterway.
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Figure 7. Frequency distribution of heading (a) and speed (b) of label-1.
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Figure 8. Frequency distribution of heading (a) and speed (b) of label-2.

3.3. Prediction Accuracy
3.3.1. Subtract the Length

In our method, 95% of the ship sub-trajectories from label 1–6 are taken as training
sets and 5% as test sets, respectively. The length of the current trajectory of the ship has
an important influence on the route prediction. The ship may predict different results at
different stages, and if the ship has sailed only a short distance, the route prediction result
may be very inaccurate and difficult to predict by the current trajectory; however, if the
ship has sailed a relatively long distance, the prediction result is more accurate. For this
reason, sub-trajectories with different trajectory lengths are used as input quantities.

Figure 9 shows that the accuracy of the SKNN, the NB (Naive Bayesian algorithm),
and the KNN gradually increase with increase in the sub-trajectory length. Under each
sub-trajectory segment, the accuracy of the SKNN is the highest, the KNN is the second,
and the NB is the worst, which indicates that the SKNN is effective.
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Figure 9. The effect of trajectory with test sample length.
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Figure 10 shows that the three methods can achieve high accuracy when the input
trajectory length n is 60 trajectory points. For this reason, 60 trajectory points are selected
as the input quantity in this paper, and the feature weights of longitude, latitude, speed,
and heading are [0.17, 0.23, 0.3, 0.3].
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Figure 10. Comparison of accuracy from different algorithms. (a) Accuracy of NB = 0.9762; (b) accu-
racy of KNN = 0.9967; (c) accuracy of SKNN = 0.9996.

3.3.2. Optimal k-Value for Comparing SKNN and KNN

Selecting an appropriate value of k is crucial for the effectiveness of the KNN. If the
value of k is too small, the model has a high squared error problem, leading to overfitting; If
the value of k is too large, there is a high bias problem in the model, resulting in underfitting.
The k-value can be adjusted based on the distribution of data points in the feature space. If
the data points are relatively dense in a certain area, a smaller k-value can be used to avoid
overfitting; And in areas with sparse data points, larger k-values are used to increase the
model’s generalization ability.

Figure 11 shows that when k takes the same value, the accuracy of SKNN is less than
or equal to that of KNN, and the accuracy of both SKNN and KNN decreases when k
increases. When k equals 6, the accuracy of SKNN and KNN is the same, which provides a
reasonable benchmark for evaluating the effectiveness of SKNN relative to KNN. To further
compare the accuracy of the two algorithms under different test samples, the value of k
was selected as 6 for subsequent calculations. Therefore, choosing a k-value of 6 helps to
fairly compare the performance of the two algorithms under different testing conditions.
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Figure 11. Influence of k-value selection on accuracy.

3.3.3. Number of Training Samples

The percentage of test samples is gradually increased from 5% to 30%, with each
growth step being 5%. How number of test samples relates to the error rate at the time is
shown in the figure below.

Figure 12 shows that the error of both SKNN and KNN gradually increases with
increase in the training samples. The error of the SKNN algorithm is smaller than that
of the KNN algorithm for different numbers of test samples, and the advantage becomes
more obvious as the number of test samples increases. Due to its weighting mechanism,
the SKNN can better adapt to this change and maintain a lower error rate. In contrast, the
KNN is affected by noise and outliers when the data features change significantly, resulting
in an increase in error due to treating all neighbors equally. Therefore, the SKNN is more
stable and more accurate than the KNN algorithm with increase in the training sample
proportion under the condition that the k-value is determined. The SKNN algorithm can
maintain more than 99% accuracy when the percentage of test samples is below 40%.
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Figure 12. Effect of the number of training samples on algorithm accuracy.

Table 2 shows that SKNN performs the best. The macro avg does not consider the
number of samples in a category and assigns the same weight to all categories. The
performance metric SKNN > KNN > NB using the macro avg indicates that the SKNN has
a very balanced performance across various categories, while the NB performs poorly on
small categories.

The weighted avg considers the number of samples in a category, assigning greater
weight to categories with larger sample sizes. The performance metric SKNN > NB > KNN
using the weighted avg indicates that the SKNN has good adaptability to imbalanced
datasets. Using the weighted avg, the precision, recall, and F1-score of all algorithms
improved due to the large sample size of certain categories in the dataset, which have better
performance and thus improve the overall performance indicators. The weighted avg
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performance index of the NB significantly improves, indicating that the NB may perform
better in categories with a larger sample size.

Table 2. Comparison of performance metrics of SKNN, KNN, and NB.

Performance Metrics SKNN KNN NB

Macro avg

precision 0.99 0.93 0.62

recall 0.99 0.87 0.72

F1-score 0.99 0.9 0.64

Weighted avg

precision 0.99 0.93 0.96

recall 0.99 0.92 0.94

F1-score 0.99 0.92 0.95

In short, the SKNN has good adaptability to imbalanced datasets; the KNN performs
better when dealing with categories with a larger sample size; the NB algorithm performs
better in categories with larger sample sizes.

3.4. Discussion

In general, the length of the navigation trajectory for training has a significant impact
on trajectory prediction. Compared to the conventional KNN and NB, the proposed SKNN
has better generalization ability on new data, especially when there are smaller lengths
of the navigation trajectories in the predicted samples, so, the prediction effect of the ship
navigation trajectory is better. Although there is only a slight improvement in accuracy,
this reflects the model’s more stable performance on unknown data.

Based on the above research results, the proposed SKNN improves the limitations
of conventional KNN on training large datasets by enhancing the sensitivity of close-
range points, thereby reducing time complexity. However, the SKNN algorithm still faces
challenges in real-time prediction when fast response is required.

The proposed SKNN still has sensitivity to data quality and distribution. If the dataset
contains noise or outliers, it may affect the accuracy of the prediction results. Although the
training effect of SKNN is better than that of KNN, the influence of the selection of k still
exists, and improper selection of k may lead to overfitting or underfitting.

Therefore, further research and improvement are needed in the field of ship trajectory
prediction by SKNN and support is needed for research in areas such as ship navigation
efficiency, energy management, and navigation path planning.

4. Conclusions

A method to support ship trajectory prediction using historical AIS data is established
to address the problem of waterway transportation system safety in the event of ship
encounters induced by waterway confluence or channel limitation, which includes three
parts: ship trajectory data preprocessing, ship trajectory data rule-based clustering, and
ship trajectory prediction by SKNN. The research conclusions for each part are as follows:

(1) For the preprocessing of AIS data, the segmented cubic Hermite interpolation
method is more suitable for repairing the AIS data of ships, especially when long-distance
data are missing.

(2) Aiming at the characteristics of the waterway confluence, a rule-based clustering
method is proposed to cluster the AIS data from the converging waters. The results show
that the clustering algorithm in our method can effectively determine the ship’s navigation
law and ship heading distribution.

(3) To predict ship trajectory, an improved K-Nearest Neighbor Algorithm considering
the sensitivity is proposed. Based on the clustered ship trajectory data, our KKNS, the
conventional KNN, and the Naive Bayes algorithm are used to compare the effect of ship
trajectory prediction. The results show that under various input trajectory lengths, the
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accuracy of our SKNN is higher than that of the KNN and the Naive Bayes algorithm. In
the case of different k-values and proportion of test set samples, the accuracy of our SKNN
algorithm is better, being above 99%. Furthermore, the SKNN has good adaptability to
imbalanced datasets.

The research conclusions can assist maritime management departments in formulat-
ing traffic management policies and providing technical support for the identification of
abnormal ship trajectories and the analysis of ship navigation risks.
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Abstract: In the midst of a rapidly evolving economic landscape, the global demand for oil is steadily
escalating. This increased demand has fueled marine extraction and maritime transportation of oil,
resulting in a consequential and uneven surge in maritime oil spills. Characterized by their abrupt
onset, rapid pollution dissemination, prolonged harm, and challenges in short-term containment, oil
spill accidents pose significant economic and environmental threats. Consequently, it is imperative to
adopt effective and reliable methods for timely detection of oil spills to minimize the damage inflicted
by such incidents. Leveraging the YOLO deep learning network, this paper introduces a methodology
for the automated detection of oil spill targets. The experimental data pre-processing incorporated
denoise, grayscale modification, and contrast boost. Subsequently, realistic radar oil spill images
were employed as extensive training samples in the YOLOv8 network model. The trained detection
model demonstrated rapid and precise identification of valid oil spill regions. Ultimately, the oil films
within the identified spill regions were extracted utilizing the simulated annealing particle swarm
optimization (SA-PSO) algorithm. The proposed method for offshore oil spill survey presented here
can offer immediate and valid data support for regular patrols and emergency reaction efforts.

Keywords: oil spill; marine radar; YOLO v8

1. Introduction

Oil is one of the most vital energy sources for humans, and as economic development
advances, so does the worldwide demand for oil [1]. This has already led to larger-
scale offshore oil extraction and transportation activities. Oil spills can result from ship
collisions during transport or from explosions on extraction platform [2]. Following an oil
spillage incident on the ocean apparent, bumper oil sheen will quickly drift and spread
due to the influence of waves and sea breezes, wreaking havoc on the marine ecology
and the surrounding natural environment. In addition to gravely harming the marine
environment and causing the deaths of numerous marine animals, plants, birds, fish,
and mammals, oil spills worldwide also pose a grave risk to human health [3]. The
cleanup process for oil spill pollution is time-consuming and labor-intensive, requiring a
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substantial investment of financial, material, and human resources. Additionally, ocean
regions contaminated by oil become unsuitable for tourism and fishing [4]. They also affect
maritime traffic, complicating the transportation of shipping operations. A notable oil
spill occurred at the Bohai Penglai 19-3 oilfield on 4 June 2011, which was being jointly
developed by ConocoPhillips and CNOOC. This spill impacted 6200 square kilometers of
ocean region, with 870 square kilometers experiencing severe pollution [5]. On 27 April
2021, approximately 9419 tons of cargo oil leaked into the Yellow Sea due to a collision
between the Panamanian-flagged cargo ship Sea Justice and the Liberian-flagged oil tanker
Symphony. This incident contaminated 786.5 km of coastline and 4360 square kilometers of
ocean regions [6].

The nation will suffer the least amount of damage if oil spill monitoring data can be ac-
cessed quickly for emergency action plans [7–14]. Marine radar can be mounted on cleanup
vessels for oil spill monitoring, which is ideal for real-time assisted pollution control. This
oil spill monitoring technology comprises three main aspects: image preprocessing, ex-
traction of meaningful oil spill surveillance regions, and oil film separation [15,16]. Image
preprocessing involves denoise, gray scale modification, and contrast boost. Methods
for extracting effective oil spill monitoring regions are mainly divided into two kinds:
gray-scale distribution matrix and texture feature classification. Oil film segmentation
currently involves adaptive thresholding and machine learning classification methods. Oil
spill radar image treatment is a tremendous question, apart from the above, and many
scholars have conducted research on various aspects [17–20]

The application of deep learning in marine radar oil spill monitoring technology is
infrequent. We employed the YOLOv8 model here for marine radar oil spill region detection.
The experimental results illustrated that the YOLOv8 model can accurately and swiftly
extract the effective oil spill monitoring regions. In this paper, the oil film segmentation
is conducted by using the simulated annealing particle swarm optimization (SA_PSO)
method. While the particle swarm optimization (PSO) method offers numerous advantages,
including simple implementation with few parameters, straightforward convergence with
strong robustness, and wide applicability, it does have a drawback: a tendency to settle
into local optimal solutions. To address this limitation, the simulated annealing (SA)
algorithm’s competence to flee locally optimal solutions is incorporated into the PSO
algorithm, facilitating faster escape from local optima while searching for the best solution.
The experimental results corroborated the practicality of the SA_PSO methodology for oil
film segmentation.

2. Materials and Methods

2.1. Materials

The analysis data were acquired by a marine radar transceiver, which was integrated
with a computer system featuring a monitor that displayed the processed imagery, as
shown in Figure 1. The short wavelength of the X-band radar produces finer echo signals,
resulting in high resolution and the ability to detect targets at longer distances. Additionally,
X-band radar has strong penetration capabilities, enabling it to penetrate rain and snow.
The X-band marine radar was chosen as the platform for experimental data collection here.

With the rotation of the X-band horizontal polarization radar antenna, the system
was capable of capturing and storing digital representations of the clutter signals. It could
capture between 28 and 45 images in one minute. The radar measurement distance is
adjustable through variations in pulse width. To enhance the image resolution of oil film
targets, the experimental data detection range was specifically set to 0.75 nautical miles,
resulting in images with a resolution of 1024 × 1024 pixels. The type of oil spills in the
experimental data were crude oil spilled from oil tankers and storage tanks at oil terminals.
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Figure 1. The experimental marine radar remote-sensing image in the polar coordinate system.

2.2. Experimental Process

The experimental process is shown in Figure 2. First, the original marine radar
images were preprocessed. Afterwards, the preprocessed images were loaded into the
YOLOv8 model for training to generate an oil film prediction model. Furthermore, the new
preprocessed images were input into the prediction model to obtain the oil film detection
result images. Then, the SA_PSO algorithm was used to preliminarily segment oil film
targets. Finally, speckle noises were removed to obtain the final segmentation results.

 

Figure 2. Experimental process.

2.3. Data Preprocessing

The data preprocessing process is shown in Figure 3. The detailed process includes:
a. The original image under the polar coordinate system was converted into Cartesian

coordinate system, as shown in Figure 4a.
b. The data in Cartesian coordinate system were convolved with the row vectors of

[−1,−1,4,−1,−1]. The co-frequency interference noise pixels in the Cartesian coordinate
system exhibit bright features compared to adjacent horizontal pixels. Thus, the above
row vector that highlights the central pixel was used to enhance co-frequency interference
noises.

c. The co-frequency interferences were extracted according to the gray threshold. After
this, the mean filter was accessed to smooth the co-frequency interference noises [15].

d. The smoothed co-frequency interference image was binarized again using the gray
threshold [16].

e. The speckle noises were extracted by the pixel-quantity threshold.
f. The median filter of the 20×20 window was used to remove speckle noises, as

shown in Figure 4b.
g. The noise reduction image was processed for gray correction, as shown in Figure 4c.
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h. An overall grey contrast enhancement was applied to the image, as shown in
Figure 4d.

 

Figure 3. Data preprocessing scheme.

 
(a) 

 
(b) 

 
(c) 

Figure 4. Cont.
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(d) 

Figure 4. The preprocess: (a) Cartesian coordinate system conversion; (b) noise reduction; (c) gray
correction; and (d) local contrast enhancement.

2.4. YOLO

Spaceborne and airborne oil spillage detection utilizing deep learning techniques
has emerged as a dominant methodology [21]. Nevertheless, the implementation of deep
learning methods for marine radar oil spillage detection remains limited. Deep learning
technology has the capability to automatically extract oil film characteristics from remote
sensing data, eliminating the need for intricate algorithmic designs. The development of
a target detection network mainly focuses on two directions: two-stage algorithms and
one-stage algorithms [22]. The main difference between them is that two-stage algorithms
need to use a feature extractor to generate a series of pre-selected boxes that may contain the
objects to be detected, then apply certain filtering rules to filter the pre-selected frames [23].
By contrast, the one-stage algorithm can extract features directly in the network to predict
object classification and location. Because of the constraints related to computer memory
usage and communication expenses, the two-step approach is less favored compared to the
one-stage approach. The one-step approach is suitable for real-time dynamic monitoring
due to its precision and low resource consumption, which can meet the significant demand
for oil spill cleanup and management. Hence, the one-step YOLOv8 model was employed
here for marine radar oil spillage detection.

The YOLOv8 structure consists of the following four primary components: Input,
Backbone Network, Neck, and Output (Figure 5). The input side is responsible for receiving
raw images and pre-processing them. In YOLOv8, the input side usually uses Mosaic data
enhancement technique to stitch multiple images for increasing the diversity of the training
data. In addition, preprocessing operations, such as adaptive image scaling and gray-scale
filling, are performed to resize the image into the input size and format required by the
network. The backbone network is the core part of YOLOv8 and is responsible for extracting
features from the input images. In the backbone network, a series of convolutional layers,
pooling layers, and other operations are usually employed to gradually extract feature
information from the image. Common backbone network structures in YOLOv8 include
Convolutional Layer (Conv), Connect to Fusion (C2F), and Spatial Pyramid Pooling (SPPF),
which can effectively capture semantic and spatial information in the image. The Neck end
is responsible for further processing and fusion of the features extracted from the backbone
network. In YOLOv8, the Neck side is usually designed based on the Path Aggregation
Network (PAN) structure, which fuses feature maps at different scales through operations
such as up-sampling, down-sampling, and feature splicing, so as to improve the network’s
ability to detect and recognize targets. The output side is the last part of YOLOv8 and
is responsible for generating detection results and outputting them. In the output side,
a decoupled head structure is usually used to decouple the classification and regression
processes to improve the efficiency and accuracy of the model. In addition, the output
side includes steps, such as positive and negative sample matching and loss calculation, in
order to evaluate and optimize the detection results. The YOLOv8 network uses the Task
Aligned Assigner method to weight the classification scores and the regression scores. The
loss calculation contains classification calculation and regression loss calculation. Binary
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Cross-Entropy (BCE) is used to calculate classification loss and Complete Intersection over
Union (CIoU) loss functions.

Conv

Figure 5. The YOLOv8 model architecture.

2.5. Sample Labeling Tool

LabelImg is an open-source image annotation tool designed specifically for creating
bounding boxes and assigning labels to objects in images. Developed primarily in Python
and utilizing the Qt framework for its Graphical User Interface (GUI), LabelImg provides a
friendly operating platform for efficiently annotating large datasets for object detection and
localization tasks. Bounding boxes around objects can be quickly and precisely drawn with
LabelImg. The annotations in various formats, including the PASCAL VOC XML format,
YOLO, and CreateML, can also be exported correspondingly. Labelimg was used here to
mark oil film targets in marine radar images, as shown in Figure 6.

 
Figure 6. Sample labeling method.
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2.6. Model Training Evaluation Indicators

The model training evaluation indicators include the Precision-Confidence Curve and
the Recall-Confidence Curve.

a. The Precision-Confidence Curve
YOLO assigns a confidence score to each predicted bounding box, representing the

model certainty. The Precision-Confidence Curve in YOLO illustrates the connection
between the precision of predicted bounding boxes and their confidence scores. Precision
in object detection refers to the percentage of true positive predictions among all positive
predictions, indicating how accurately the model predicts the existence of an object inside a
bounding box. As the confidence threshold increases, the model becomes more selective,
predicting fewer bounding boxes. This may result in lower recall but higher precision.
Conversely, decreasing the threshold leads to the model predicting more bounding boxes,
potentially increasing precision due to more false positives but also increasing recall;

b. The Recall-Confidence Curve
The Recall-Confidence Curve captures the relationship between the model confidence

in its predictions and recall, or ability to detect true objects. The recall gauges the percentage
of real objects that the model correctly identifies. The Recall-Confidence Curve displays the
recall value against the confidence threshold. As the confidence threshold rises, the model
becomes more selective and only predicts bounding boxes with higher confidence scores.
However, this may lead to certain real objects being missed due to lower confidence scores,
resulting in a decrease in recall.

2.7. Particle Swarm Optimization

In PSO models, a group of particles, firstly randomly initialized without volume or
mass, are considered as feasible solutions to an optimization problem [24]. Subsequently,
the algorithm iteratively searches for the optimal solution. During each iteration, particles
update themselves by tracking two extreme values: the best solution found by the particle
itself, known as individual optimal solution Pbest.i and the second the best solution found
by the entire population, known as the global best Gbest. The particle performs the selection
of velocity v and position x by the following:

vi(k + 1) = ωvi(k) + c1r1(Pbest.i(k)− xi(k)) + c2r2(Gbest − xi(k)) (1)

xi(k + 1) = xi(k) + vi(k + 1) (2)

where ω is the inertia weight coefficient. c1 and c2 are used to control the influence of
individual best position and global best position on particle movement. By adjusting
the values of c1 and c2, a balance between local and global search can be achieved, thus
enhancing the algorithm performance and convergence speed vi(k) and xi(k) denote the
velocity and position of the particle at the kth iteration. r1 and r2 are random numbers
uniformly distributed in [0, 1]. If any dimension of a particle position exceeds the specified
upper bound (Upbound) or lower bound (Low bound), it is directly assigned the value of
Upbound or Low bound, respectively. Due to the normalization of the grayscale values
of the image, the Upbound was set to ‘1’ and the Low bound was set to ‘0’ here. The ω
determines the tendency of particles to maintain their current velocity. A higher ω value
makes particles more inclined to retain their previous velocities, which helps the algorithm
move quickly across the search space to explore new regions. However, if ω is set too
high, it can lead to instability in the search process, and the algorithm may even miss
the global optimal solution. When ω = 1.1, the PSO algorithm exhibits faster exploration
ability through experimental comparisons. It enables the PSO algorithm to find candidate
solutions closer to the global optimal solution more quickly, and a stable oil film threshold
can be obtained.

137



J. Mar. Sci. Eng. 2024, 12, 1005

2.8. Simulated Annealing

SA is a probability based global optimization algorithm that simulates the process
of material annealing and cooling at high temperatures [25]. It is widely used in the field
of signal processing [26]. The principle of the classic simulated annealing algorithm is as
indicated below:

a. The beginning temperature T0 is set for the initial state of the object.
b. Given Eg represents the internal energy of the current best point in the population,

Ti represents the current temperature, and the energy of a new state i after iteration is Ei. If
Eg is greater than Ei, the new state is accepted as the current state. Then Eg = Ei, Otherwise,
the state is accepted with a certain probability determined by the acceptance probability
formula pi. The expression for pi is as follows:

pi =

{
1 Ei < Eg

exp
(
− Ei−Eg

Tg

)
Ei � Eg

(3)

c. If the new state is accepted, the new temperature decreases gradually as:

Tt+1 = αTt (4)

where α is the cooling attenuation factor, 0 < α < 1, Tt+1 is the new temperature, Tt is the
temperature of last state.

d. Back to step 2 and repeat the iteration process until the termination condition is met,
such as several consecutive new solutions not being accepted, reaching the preset number
of iterations, or temperature threshold, etc.

e. When the algorithm stops, the current solution Eg is output as the optimal solution.

2.9. Simulated Annealing Particle Swarm Optimization

As an efficient intelligent optimization algorithm, the PSO algorithm requires minimal
parameter tuning, which is easily implementable. It avoids complex operations and can
swiftly solve intricate optimization problems. However, when dealing with optimization
problems featuring multiple local optima, the algorithm is prone to getting stuck in local op-
tima, resulting in slow convergence. To address this issue, when particles in the population
become trapped in local optima, efforts should be made to facilitate their escape from these
local optima, thereby enhancing the diversity of the entire population. Considering that
the SA algorithm can probabilistically accept suboptimal solutions during the optimization
process, it can effectively prevent the algorithm from getting trapped in local optima during
iterative searches. Therefore, we integrated the core principles of the SA into the PSO
algorithm for finding the segmentation threshold between real and suspected oil spills, as
shown in Figure 7.

a. Set an initial temperature T0 and cooling attenuation factor α based on the initial
state of particles in the population. The T0 is a crucial parameter that determines the hotness
of the algorithm during the search process. Typically, the initial temperature needs to be set
high enough to ensure that the algorithm can escape from local optima during the initial
search phase and prevent premature convergence. The value of ‘100’, as a relatively large
number, often satisfies this requirement. The value of α determines the rate at which the
temperature decreases in each iteration step. A smaller value of α, such as ‘0.95’, implies a
relatively slower decrease in temperature, which allows the algorithm to explore the search
space for a longer time, thereby increasing the possibility of finding the global optimal
solution. So, the T0 was set to ‘100’, the α was set to ‘0.95’ here.

b. Particle i computes its velocity vi and position xi through Formula (1).
c. Calculate the fitness f (xi) of the current position xi based on the evaluation objective

function.
d. If f(xi) < f (Pbest.i), then set Pbest.i = xi. If f (xi) > f (Pbest.i), utilizing the above-mentioned

simulated annealing acceptance probability pi to apply the Metropolis criterion [27]. If the
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probability pi is greater than a random number within the range [0, 1], then the state Pbest.i
is still accepted. If this condition is not met, then the velocity vi and position xi will be
recomputed.

e. If Pbest.i is accepted as the new value, then f (Pbest.i) and f (Gbest) are compared
according to the evaluation objective function. If f (Pbest.i) > f (Gbest),then Gbest = Pbest.i.

f. If the number of iterations reaches the maximum iteration J (The J was set to ‘100’
here), Gbest is determined as the threshold for the particle swarm optimization algorithm. If
the condition is not met, proceed back to step (2) for further iterations.

T

vi xi

f xi

f xi f Pbest.i

 Pbest=xi

pi

f Pbest.i f Gbest.i

 Gbest=Pbest

 
Figure 7. SA_PSO algorithmic process.

Ultimately, based on SA_PSO method, dual thresholds were calculated iteratively for
separating the real and the suspected oil films here, respectively.
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3. Results

3.1. Model Training Curve Analysis

The Precision-Confidence Curve and the Recall-Confidence Curve are shown in
Figure 8. As the confidence level increases, so does the accuracy of the model in detecting
oil sheen. At a confidence threshold of ‘0.846’, the precision rate stood at ‘100%’, as reflected
in Figure 8a. Due to insufficient sample size, the model may not be able to fully learn the
distribution of data, resulting in unstable performance on validation or testing sets. This
is the reason why the confidence curve oscillates between ‘0.6’ and ‘0.8’. The collection of
oil spill data from maritime radar is an ongoing work in the future. The model’s ability
to identify oil slicks improves as the single recall value increases. The model had a single
recall of ‘0.92’, indicating that the model exhibits high accuracy in oil identification and
localization, as shown in Figure 8b.

(a) 

(b) 

Figure 8. YOLOv8 model training curve: (a) the Precision-Confidence Curve; and (b) the Recall-
Confidence Curve.
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3.2. Oil Film Prediction

The YOLOv8n model, which was trained here, was employed to predict the oil slick
targets within the newly preprocessed marine radar image and the results obtained were
shown in Figure 9. The location and size of the effective oil spill monitoring area marked in
red in Figure 9a were subsequently extracted in Figure 9b.

 
(a) 

 
(b) 

Figure 9. YOLOv8 model prediction results: (a) preliminary detection result; and (b) the oil film
regions were preserved.

3.3. Oil Film Segmentation

The classification result was obtained by using SA_PSO, as shown in Figure 10a. Then,
the true oil spills were preserved by removing the sparkles, as shown in Figure 10b. Finally,
the oil film identification image was converted from the Cartesian coordinate to the Polar
coordinate, as shown in Figure 10c.

 
(a) 

 
(b) 

Figure 10. Cont.
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(c) 

Figure 10. The oil spill segmentation results: (a) the segmentation result of SA_PSO; and (b) the real
oil pill result; (c) The polar coordinates result.

4. Discussion

4.1. Comparison of Prediction Results of Different Training Models

There are five official versions of YOLOv8: 8n, 8s, 8m, 8l, and 8x. Since the 8l and 8x
models were too large, only the 8n, 8s, 8m models were trained here for comparison. The
three training models were used to predict oil spill targets on preprocessed marine radar
images, as shown in Figure 11. The prediction times are displayed in Table 1. The average
detection speed of the 8n model for each image was 24.9 ms, with fine prediction results.
The effective oil spill monitoring regions were detected, while the ship wake region was not
misidentified in Figure 9b. The 8s model exhibited an even detection tempo of 49.8 ms. The
detection performance of the oil spill effective monitoring area was excellent, but the ship
wake region was misidentified as the oil spill region in Figure 11a. The 8m model exhibited
an even detection tempo of 49.8 ms. Although the ship wake region was not misidentified,
some effective oil spill detection regions were missed (blue box), as shown in Figure 11b.
Therefore, the YOLOv8n model was chosen for subsequent oil film segmentation work in
this paper.

 
(a) 

 
(b) 

Figure 11. The prediction results of different training models in red color: (a) YOLOv8s model; and
(b) YOLOv8l model.
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Table 1. The prediction times of different training models.

Training Model Forecast Time

YOLOv8n 24.9 ms
YOLOv8s 49.8 ms
YOLOv8m 109.6 ms

4.2. Comparison with the Prediction Result of YOLOv5n Model

The YOLOv5n model, after being trained, was utilized for predicting the oil spill
targets in Figure 4d with a computational time of 1.3 ms, as shown in Figure 12. The
YOLOv5n model detects the ship wake as oil spill targets which marked in blue box in the
middle of Figure 12. The YOLOv8n model used here did not misidentify the ship wake
region as oil spill targets in Figure 9a. The trained YOLOv5n model did not detect the small
oil spill target in the left corner of Figure 12, whereas the method in this paper was more
comprehensive.

 

Figure 12. The YOLOv5n model prediction result in red color.

4.3. Comparison with U-Net Semantic Segmentation Network

The U-Net of PyTorch is a deep learning architecture for image semantic segmentation
tasks. It combines encoder and decoder for semantic segmentation of high-resolution input
images down to the pixel level. The encoder extracts the features through convolution
and pooling operations while reducing the spatial resolution. By employing up-sampling
and inverse convolution techniques, the decoder diminishes the eigenmaps output from
the encoder to match the dimensions of the original input image. This section combines
the eigenmaps from the respective encoder layers to produce the segmentation outcomes.
The uniqueness of U-Net is that it introduces jump connections, which connect the feature
maps of each layer in the encoder to the feature maps of the corresponding layer in the
decoder, helping the network to better recover detailed information.

In reference [28], the number of U-Net training epochs was set to ‘200’, the batch size
was set to ‘1’, the learning rate was set to ‘10−5’, the validation dataset accounted for 10%,
the number of classes was set to ‘3’, the prediction computing time was 2.56 s. The same
parameter settings were used here for comparative discussion. The experimental results
are shown in Figure 13.

The target detection network is faster than the semantic segmentation network, but it
must be combined with other algorithms or models to segment the oil films. The semantic
segmentation network directly assigns image pixels to different categories for achieving
accurate segmentation of the oil spills at once. However, the semantic segmentation
network has very high requirements for the sample labelling, and the suspected oil slicks
are the most difficult to mark in the marine radar training images. Thus, many suspected
oil slick segmentations were generated in green during our experiment. In terms of the
number of real oil film pixels detected in red, due to Figure 13b identifying false positive
targets in the ship wake region and sparkles as real oil films, many more real oil film image
pixels were identified, as shown Table 2.
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(a) 

 
(b) 

Figure 13. The U-Net segmentation results: (a) Cartesian coordinate system; and (b) Polar coordinate
system.

Table 2. Comparison with the detection pixel numbers of real oil films.

Method Detection Pixel Number of Real Oil Films

Proposed method 304
U-Net 5384

4.4. Comparison of Performance with Other Machine Learning Threshold Segmentation Methods

Three machine learning methods were used to compare with the SA-PSO method. The
first one is the traditional PSO method [29]. The second one is the FCM-based marine radar
oil spill segmentation method [16]. The last one is the traditional K-Means method [30].
The segmentations of 4 methods of Figure 9b shown similar results. Because there were
little wave echoes in the far range in the experimental data, the upper 2/3 region of the
contrast-enhanced image (Figure 4d) was uniformly assigned the same gray value ‘128‘, as
shown in Figure 14.

 
Figure 14. Contrast enhanced image with no-wave-region information removed.
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Figure 14 was segmented by the above four methods and the results obtained were
shown in Figure 15. All the methods identified some ship wake regions as oil slick targets.
Among them, there were fewer errors of SA-PSO method. The initial segmentation of
SA_PSO method also contained fewer noise results. The corresponding results of PSO
and FCM methods were similar with more noises. However, the K-Means method became
excessively noisy. The K-Means method segmented suspected oil slicks with weak image
features into real ones (in red boxes), while also adding many blocky false targets. The
PSO and FCM methods also determined some of the suspected oil films as real ones (in
red boxes). The SA_PSO preliminary segmentation were relatively accurate and can show
better results by simply excluding speckle noises.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15. Comparison of four machine learning threshold segmentation methods: (a) SA_PSO;
(b) PSO; (c) FCM; and (d) K-means.

4.5. Validation of Experimental Results

During the daytime, the accuracy of marine radar oil spill detection can be judged
by visual observation or unmanned aerial vehicle (UAV) visible light data, as shown in
Figure 16a. During the nighttime, infrared or laser fluorescence data can be used to verify
the accuracy of marine radar oil spill monitoring method. Our marine radar experimental
data were collected at night, and the corresponding thermal infrared images (Figure 16b)
were obtained. In the thermal infrared images, the gray value of the oil film is slightly
lower than that of water [31]. The thermal infrared images corresponding to the oil spill
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locations in the experimental data also show the characteristics of the oil films, which can
assist in verifying the feasibility of our method.

(a) (b)

Figure 16. Auxiliary verification methods for oil spill detection: (a) visible light data can verify the
performance of marine radar oil spill monitoring; and (b) Infrared data can be used to verify the oil
spill detection results of maritime radar at night.

4.6. The Impacts of Weather Conditions on Marine Radar Oil Spill Detection

The marine radar oil spill monitoring technology has the capability to detect oil spills
in a large range and has a relatively low construction cost. Despite its promising application
prospects, this technology is still constrained by weather conditions. When the weather
causes excessive ocean waves, ships equipped with marine radar are unable to go out
to sea to perform pollution clean-up tasks. When the sea surface is too calm, the radar
cannot retrieve certain wave echoes, making it difficult to identify the oil films. Moreover,
the ability of the oil films to absorb waves is weak in both cases. In addition, for deep
learning networks, training and detection data under the same sea conditions (including
sea breeze) can achieve better results. To establish a comprehensive oil spill detection
model, continuous collection of marine radar oil spill data under different sea conditions
is needed.

5. Conclusions

In this study, the preprocessed images of marine radar oil spills underwent training
using the YOLOv8 model. In contrast to prior methodologies, the proposed approach
exhibited a notable improvement in detection efficiency. Solely tasked with pinpointing the
location and dimensions of oil spills, the YOLOv8 deep learning network was exclusively
employed. The SA_PSO algorithm was applied for the final segmentation. As more marine
radar oil spill images are gathered across diverse oceanic conditions and deep learning
networks are refined, enhanced techniques for oil spill detection will be realized. The future
research focus will focus on how to distinguish offshore oil films from false positive targets
such as shadows, wind, and plumes, etc.
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Abstract: Structural damage is a prevalent issue in long-term operations of harbor terminals. Ad-
dressing the lack of transparency in terminal infrastructure components, the limited integration of
sensor monitoring data, and the insufficient support for feedback on service performance, we propose
a novel digital twin system construction methodology tailored for the long-term monitoring of port
terminals. This study elaborates on the organization and processing of foundational geospatial data,
sensor monitoring information, and oceanic hydrometeorological data essential for constructing
a digital twin of the terminal. By mapping relationships between physical and virtual spaces, we
developed comprehensive dynamic and static models of terminal facilities. Employing a “particle
model” approach, we visually represented oceanic and meteorological elements. Additionally, we
developed a multi-source heterogeneous data fusion model to facilitate the rapid creation of data
indexes for harbor elements under high concurrency conditions, effectively addressing performance
issues related to scene-rendering visualization and real-time sensor data storage efficiency. Exper-
imental validation demonstrates that this method enables the rapid construction of digital twin
systems for port terminals and supports practical application in business scenarios. Data analysis
and comparison confirm the feasibility of the proposed method, providing an effective approach for
the long-term monitoring of port terminal operations.

Keywords: digital twin; data-driven; port infrastructure; long-term service monitoring; multi-source
heterogeneous data

1. Introduction

The harsh marine environment in which harbor terminals operate is characterized by
complex factors such as wind, waves, currents, temperature, salinity, and load conditions,
leading to pervasive structural damage during long-term operations [1–3]. The terminal
components are numerous and highly complex, with current safety and early warning
measures primarily reliant on periodic manual inspections. However, existing inspection
methods face challenges such as adverse working conditions, concealed internal damage,
and low data accuracy, making it difficult to dynamically, continuously, and comprehen-
sively reflect the safety status of the terminals. The deployment of sensors for automated
and digital health monitoring has emerged as a new trend in recent years [4–6], offering a
more effective approach to addressing these issues.

Digital twins are used in many disciplines to support engineering, monitoring, con-
trolling, and optimizing cyber-physical systems [7]. Digital twin technology, a virtual
representation of a physical entity, has revolutionized various industries, including port ter-
minals [8–11]. Digital twin technology is a digital and technological concept, which means
that is based on the integration and fusion of data and models. It accurately constructs
physical objects in real-time in digital space and simulates, verifies, predicts, and controls
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the entire lifecycle process of physical entities based on data fusion and analysis predic-
tion [12,13]. Digital twins can capture the combined usage of heterogeneous models and
respective evolving data for the entire lifecycle [14]. The development of digital twin tech-
nology provides new solutions for the integration of virtual and real, real-time interaction,
and iterative operation and optimization, as well as full factor digital transformation and
the intelligent upgrading of port terminals. The key to the application of digital twins to
ports lies in IoT (Internet of Things) perception and full element digital expression, massive
data visualization rendering and data fusion, spatial analysis calculation and simulation
deduction, etc. The core lies in the interaction and collaboration between the real scene and
twin scene of the port, as well as the transmission and automatic construction of real-time
data. Also key is the acquisition of data such as water depth measurements, sensor percep-
tion, and maintenance and operation history at the front of the port, ultimately achieving a
multi-physical quantity, multi-scale, and multi-probability simulation process of the port.

By creating dynamic models of port operations, digital twin technology has become
instrumental in advancing smart water transportation by offering real-time monitoring
and predictive maintenance capabilities for port structures. A digital twin (DT) creates a
revolutionary opportunity for smart ports’ authorities, with the capability of high-fidelity
digital representation of real-world things [15,16]. At present, digital twin technology has
already been applied to numerous domestic ports [17–20]. Yu P. analyzed the key problems
and technologies that need to be solved and used, respectively, in the specific implementa-
tion of digital twins of integrated port energy systems [21]. Hofmann proposed a digital
twin for truck-dispatching operator assistance, which enables the determination of optimal
dispatching policies using simulation-based performance forecasts [22]. Li Y proposed a
framework integrating DT with the AdaBoost algorithm to realize the real-time optimiza-
tion and security of the ACT(Automated Container Terminals) [23]. Martínez-Gutiérrez
proposed a new DT design concept based on external service for the transportation sec-
tor [24]. Shanghai Port has employed digital twin technology to monitor the health of its
infrastructure. By creating a virtual model of the port’s structures, including piers and
docks, the system can detect structural anomalies and predict maintenance needs, thereby
enhancing safety and operational efficiency. Guangzhou Port has integrated digital twin
technology with advanced sensors and IoT devices to detect structural integrity issues.
The system analyzes data from these devices to provide insights into potential weaknesses
and degradation patterns, enabling timely interventions. Shenzhen Port has developed a
comprehensive digital twin-based health monitoring system. This system combines real-
time data acquisition, simulation models, and predictive analytics to monitor the structural
health of port facilities, ensuring long-term stability and reliability. Ningbo–Zhoushan Port
has deployed a digital twin to monitor real-time operations and predict maintenance needs.
The technology aids in efficient berth allocation, reducing vessel waiting times and improv-
ing overall port throughput. The Port of Rotterdam has implemented a digital twin system
to continuously monitor the health of its infrastructure. The system uses real-time data to
detect structural issues and predict future maintenance requirements, ensuring the safety
and efficiency of port operations. Antwerp Port’s digital twin framework integrates with
various detection technologies, including LIDAR (Light Detection and Ranging) and sonar,
to analyze the structural health of underwater and above-water components. This integra-
tion allows for the detailed inspection and timely maintenance of critical infrastructure. The
Port of Los Angeles has constructed a robust digital twin-based health monitoring system
that incorporates machine learning algorithms to analyze structural data. This system
provides real-time insights and predictive maintenance recommendations, enhancing the
port’s operational resilience. Singapore Port has developed a comprehensive digital twin
to manage complex logistics and improve service levels. The system supports real-time
decision-making, asset management, and operational planning, leading to increased port
productivity [25–27].

Structural health monitoring of terminals through sensor data collection allows for
real-time safety assessments based on empirical values. However, there is a lack of effective

150



J. Mar. Sci. Eng. 2024, 12, 1215

support for feedback on the long-term service performance of terminal structures. This
paper proposes a digital twin system methodology tailored for the long-term service
monitoring of harbor terminals. Utilizing multi-source heterogeneous data from long-
term service monitoring, we establish monitoring data resources encompassing terminal
structures, environment, materials, and loads. By extracting characteristic parameters
that represent the terminal’s performance under marine environmental influences and
using deployed sensors to collect status data, we investigate techniques for constructing a
comprehensive digital twin of the terminal. The system is designed to handle large volumes
of data with low latency and intelligent processing. This digital twin system enables data-
driven visual management of structural safety through historical backtracking, monitoring
and early warning, and future predictions, thereby illustrating the structural safety status
of the terminal at different stages of its service life.

2. Methodology

The framework for the digital twin system construction method proposed in this paper
is illustrated in Figure 1.

 

Figure 1. Construction framework of digital twin system.

Based on the physical information–mapping relationship between the physical space
scene and the virtual space scene, the logic block diagram is shown in Figure 2.
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Figure 2. Terminal digital twin logic block diagram.

2.1. Port Terminal Data Resource

The construction of a digital twin for a seaport terminal encompasses foundational
geospatial data, sensor monitoring data, and marine hydrometeorological data. These data
resources exhibit semantic independence and heterogeneity, varying across temporal and
spatial dimensions and storage formats. This includes unstructured data such as vector and
raster maps of the port area, and detailed models of the terminal (as shown in Table 1), as
well as structured data such as terminal stress–strain data, structural settlement data, and
marine hydrometeorological information (as detailed in Table 2). The diverse acquisition
methods, data content, and spatiotemporal characteristics necessitate varied approaches to
data processing, structure, representation, and storage.

Table 1. Unstructured data.

Serial Number Data Item Data Description

1 Topographic data of port area Including port infrastructure, elevation, and other data.
2 Port infrastructure data Including data of docks and berths.
3 Marine topographic data Including data such as the water depth at the wharf front.
4 Wharf model data Including model data such as wharf components.
5 Sensor model data Include sensor model data such as stress and strain.
6 Sensor layout position data Includes sensor point, line, and area data.

Table 2. Structured data.

Serial Number Data Item Data Description

1 Dynamic response monitoring data Including fundamental frequency, amplitude, acceleration, sensor
position, and other data.

2 Stress and strain data of components Including stress value, strain value, sensor position, and other data.
3 Dynamic inclination data of components Including vibration, angle, sensor position, and other data.
4 Component crack width data Include data such as crack length, width, and sensor position.
5 Settlement data of wharf structure Include data such as settlement depth and sensor position.
6 Ship mooring force data Including data such as stress and sensor position.
7 Marine hydrological element data Including ocean wind, waves, currents, and other data.
8 Meteorological element data Including temperature, humidity, air pressure, and other data.
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2.2. Multi-Source Heterogeneous Data Fusion and Storage

Terminal monitoring and related data have the characteristics of large data volume,
high concurrency, and strong real-time performance. For unstructured data, this study
employs an XML-based (Extensible Markup Language) distributed spatial data organi-
zation and storage method. This approach supports deep-level nested expressions and
tree-like storage structures, systematically managing metadata concerning data sources,
types, information content, structure, and access methods. This framework establishes
a unified spatial reference for terrain scenarios above, at, and below the waterline at the
terminal’s edge. On this basis, an integrated spatiotemporal dataset of port infrastructure is
constructed, correlated by geographic location and attribute information, and stored using
a combination of file systems and relational databases. Regarding structured data, the
study first analyzes sensor monitoring data in terms of acquisition frequency, data format,
and volume. Then, a time-series-based multi-parameter column storage database model for
terminal monitoring is developed, specifying database entity attributes, data types, lengths,
and precisions. A distributed storage system database is utilized for storing these data.

Following the organization and processing of these data, the CGCS2000 (China Geode-
tic Coordinate System 2000) geographic coordinate system is adopted as the reference to
create a foundational geographic information basemap of the port. This basemap inte-
grates terminal and sensor models, allowing for the real-time monitoring and collection
of terminal safety status data, ultimately forming a unified digital twin data resource for
the terminal.

2.3. Digital Twin Construction Technology for Port Terminals
2.3.1. Construction Method for Wharf Digital Twin

The construction of a digital twin for the terminal integrates physical models, simula-
tion models, and data models through mutual coupling. Based on the mapping relationship
between physical and virtual spatial scenarios, the process begins by constructing com-
prehensive models of static elements within the terminal’s physical space in the virtual
environment. Sensor perception data and structural state data are then fused. Subsequently,
dynamic elements of the terminal are simulated, based on kinematic and dynamic charac-
teristic models. Finally, data organization and the optimization of the digital twin model
are performed, achieving the construction of a terminal structure digital twin scenario
driven by both models and data. The specific steps are as follows:

(1) Construction of static element scenarios: This phase involves four stages: model
creation, model establishment, texture mapping, and model baking. Utilizing 3ds Max for
three-dimensional modeling, we develop high-precision 3D models of the natural envi-
ronment within a 3 km radius of the terminal, including marine, terrain, and topographic
features, as well as the relevant port infrastructure. Structural parameters, geometric param-
eters, material parameters, and state parameters are embedded within these 3D models. A
multidimensional terminal scene model compatible with sensors is constructed, analyzing
the rotation, translation, and orientation of the terminal scene model to determine the
relationships between variables such as sensor inclination, angles, and positions. Real-time
updates of model data are achieved through data interfaces, facilitating the information
interaction and data synchronization between the physical entities and the digital twin.

(2) Construction of dynamic element scenarios: Building on the static model scenarios,
dynamic elements of the terminal, such as movable equipment and facilities with action
attributes, are modeled according to their motion characteristics. Corresponding animation
frames are created, and a graphics engine is employed to execute related operational ac-
tions and commands. For complex motion models, elements are categorized and grouped
based on the relative motion relationships of terminal components in a tree structure. Each
dynamic element of the terminal is then modeled according to its structural character-
istics, using kinematic and dynamic properties to construct physical simulation models.
These models simulate kinematic and dynamic behaviors, providing parameters for the
operational states of the terminal’s digital twin (Figure 3).
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Figure 3. Scene construction of dynamic element model of wharf.

Organization and rendering optimization of the digital twin model: This study em-
ploys a scene tree directory structure for the logical management and optimization of
massive model data. The constructed terminal digital twin scene comprises billions of
model nodes, each containing vast amounts of data such as triangles and polygons, mate-
rials, and textures. The scene graphics are organized using a top-down, hierarchical tree
data structure. The root node is at the top, extending downward, with each group node
containing geometric information and rendering state information to control its appearance.
At the bottom of the scene graph, leaf nodes contain the actual geometric information
constituting the scene’s objects. Utilizing the rendering tools in 3ds Max, models are
rendered in sequence according to the directory structure. This process involves adding
materials, defining surface color, transparency, roughness, and texture, and incorporating
the physical model’s material parameters, structural data, and geometric data, along with
optimizing boundary conditions. Additionally, rendering optimization is applied to the
edges of the models.

2.3.2. Expression of Marine Hydrometeorological Elements

During the actual operation of a seaport terminal, risks to safety arise from adverse
weather conditions, including wind, waves, and currents. To effectively integrate and
display marine hydrometeorological data within the digital twin scenario, a dynamic
evolution simulation method using “particle models” is proposed. This method involves
performing coordinate transformation operations on particles and setting parameters such
as color, texture, lighting, and fogging to achieve a three-dimensional dynamic visualization
of marine hydrometeorological elements. The specific steps are as follows:

(1) Index Construction: Taking the ocean current field data of the demonstration port
area as an example, the raw data are parsed to obtain the basic information of the grid. The
values in the u and v directions are stored using two arrays. The data grid spacing is 0.03◦,
with each grid cell storing the parsed (u, v) values and the calculated flow direction and
velocity information based on these (u, v) values.

(2) Parameter Initialization: The fundamental structure of a particle includes variables
x, y, dx, dy, age, birthAge, and path, which are initialized to define position and velocity
parameters. The initialization of particle position parameters involves generating random
floating-point numbers within specified ranges. The initial lifespan (birthAge) is randomly
generated. Once the particle position is determined, the corresponding velocity values from
the flow field are obtained via bilinear interpolation. This interpolation method establishes
a function based on two variables and linearly extends the function. It determines the
value of function f(x) at point P using the known values at points Q11, Q12, Q21, and Q22
(Figure 4).
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Figure 4. Bilinear interpolation diagram of flow field particles.

Firstly, bilinear interpolation is performed in the x-direction twice according to
Formulas (1) and (2), as follows:

f (R1) ≈ x2 − x
x2 − x1

f (Q11) +
x − x1

x2 − x1
f (Q21) (1)

f (R2) ≈ x2 − x
x2 − x1

f (Q12) +
x − x1

x2 − x1
f (Q22) (2)

Subsequently, linear interpolation is conducted in the y-direction according to
Formula (3), as follows:

f (P) ≈ y2 − y
y2 − y1

f (R1) +
y − y1

y2 − y1
f (R2) (3)

(3) Data Computation Update: Based on the velocity values of the vector field, integra-
tion is performed to calculate the next position of the particle, continuing iteratively until
the termination condition for integration is met. The lifespan of the particle corresponds to
the period when integration of the particle’s trajectory ceases. Assuming the velocity of the
vector field is represented as

→
v (

→
r (t)), where t is the integration variable or time variable

and
→
r (t) is the position vector of the particle’s trajectory, differential functions are utilized

for computational solution. According to the integral equation of formula 4, the position of
the particle at the next moment can be determined as follows:

→
r (t) =

→
r (t0) +

∫ t

t0

→
v (

→
r (t))dt (4)

(4) Streamline Generation: After updating the particle position data, particles with
different lifespans generate a series of points. These points can be connected using piecewise
linear segments to form streamlines. To enhance the dynamic effect of the streamlines,
transparency is adjusted based on the order of particle generation. This approach allows all
particle points to be connected into line segments, forming cohesive streamlines.

2.3.3. Driven by the Fusion of Digital Twin Scenes and Feature Data

A complete digital twin of the port is established, based on the integration of digital
models, sensor data collection, and marine hydrological and meteorological elements that
reflect the authenticity of physical entities. Applications such as data perception, intelligent
identification, and control prediction need to be driven by the fusion of twin scene and
element data. Through multi-source sensor technology, real-time monitoring data of the
port structure, environment, materials, loads, and other operational processes are collected.
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Through multi-source heterogeneous data analysis, system functional integrity verification,
and the iterative optimization of control algorithms, decision-making control, performance
evaluation, and health predictions of the digital twin of the port are achieved, as well as real-
time feedback and autonomous learning of the physical and historical states of physical
entities. A digital twin driving model is established for the data-driven analysis and
interactive mapping of digital twin data at the dock, integrating scene construction, element
data access, and prediction and deduction. The model mainly includes the following:

(1) The description and precise characterization of dock equipment, equipment com-
ponents, and system integration, achieving component coupling simulation and the precise
characterization of digital twins.

(2) The dynamic data regarding virtual–real interaction at the dock is updated and
visualized in real time. Through real-time updates of physical models, state parameters,
operational data, and marine environmental data of in-service dock operation facilities,
data-driven and interactive iterations, process monitoring, performance evaluation, and
health predictions of the digital twin of all dock elements are achieved.

(3) The consistency mapping detection of dock digital twins and application systems is
achieved through parallel intelligence, compressive sensing, and deep learning to generate
and optimize digital twin interaction mapping, completing accurate data analysis and
consistency mapping. We use data-driven models to express the characteristic elements
of port terminal structural safety monitoring for different scene objects and application
requirements, and map them to the application system through visualization.

2.4. Analysis of Long-Term Service Monitoring and Early Warnings for the Wharf

Based on the constructed digital twin model of the port, driven by real-time monitoring
data, deep learning neural network algorithms are used to deeply analyze and mine the
multimodal data collected from real-time monitoring of the port, in order to establish an
accurate data analysis model, reveal the relationship and temporal characteristic trends
between the structural data indicators of the port, improve the analysis ability of the digital
twin of the port, and achieve accurate identification and warning of the safety status of
the port.

By applying deep learning algorithms to real-time monitoring data such as settlement,
displacement, and acceleration in dock structures, utilizing long short term memory neural
networks (LSTM) and gated recurrent units (GRU), complex relationships and nonlinear
features between data can be discovered. Extracting valuable information from massive
monitoring data allows us to provide more accurate intelligent analysis support for digital
twin structures at docks. By analyzing the characteristics of structural state monitoring
data for specific events such as ship collisions, heavy load operations, extreme weather, etc.,
a deep neural network model is trained to identify these events and analyze their impact
on structural state. We integrate the predictive analysis results into the digital twin system
to achieve real-time control, historical review, and prospect prediction of port structural
safety, thereby enhancing the safety analysis capability of port infrastructure.

3. Performance Optimization, Comparative Experiments, and Results

3.1. Efficiency Optimization Methods for Scene Data

Optimizing digital twin scenarios for port operations is a critical challenge, requiring
the further enhancement of efficiency for the effective deployment of digital twin appli-
cations. Efforts have been directed towards optimizing the organization, management,
scheduling, and visualization of scene data, incorporating multi-level detail, view frustum
culling, asynchronous data loading, and request prediction. Additionally, a semantic-
indexing model oriented towards the organization, transmission, and storage of hetero-
geneous data collected by sensors has been proposed. Furthermore, for the access and
interactive visualization of massive ship data, a density clustering approach is employed
to manage densely packed AIS (Automatic Identification System) data symbols, thereby
reducing data display latency.
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(1) Efficiency optimization of port scene data involves several key strategies. Firstly,
employing multi-level detail (LOD) optimization gradually simplifies the surface details of
models, in order to reduce geometric complexity. Thresholds are set and evaluated based on
the ratio of view height to data size, in order to determine whether further decomposition
into higher resolution data is necessary, thereby enhancing graphical rendering efficiency.
Secondly, view frustum culling optimization controls the range of front and back clipping
planes, defined by the field of view angles and projection matrix, to ascertain the size and
depth of visible content within the visible view frustum. Thirdly, asynchronous data loading
divides data among different threads; the main thread calculates required data through
LOD algorithms and clipping. If not cached, data are added to the request queue. Once
loaded, the main thread is notified for tile utilization and view refresh (Figure 5). Lastly,
predictive request optimization forecasts data needs during continuous scene movement.
Data are preloaded into buffers based on the predicted requirements, maintaining the
invariant graphic projection frustum. Adjustments are made to frustum size and shape
according to viewpoint movement direction and speed, thereby improving the accuracy
and specificity of data retrieval predictions.

Figure 5. Optimal design of asynchronous data loading.

(2) The efficiency optimization of sensor monitoring data involves several strategic
steps. Initially, the storage space for sensor monitoring data is partitioned into N grid
regions, abstracting data entities and their attribute relationships into nodes and edges
within a model. This enables the indexing of multidimensional features and associative
relationships. Subsequently, prior to storage, sensor monitoring data undergoes normaliza-
tion, where raw data are linearly distributed to achieve a normalized distribution within
the [0, 1] interval. This transformation converts raw data into semantic vectors, establishing
a semantic indexing structure. Furthermore, during the query–response phase, query
requests are forwarded to an integrator module. The integrator module distributes the
query to multiple relay modules for the parallel execution of searches. Each relay module
is designed with multiple identical instances to ensure load balancing and fault tolerance.
Results from queries are merged and returned to the integrator module. Lastly, for sensor
monitoring data such as stress–strain and structural settlement data, feature extraction
is performed. Multiple datasets are classified and their features correlated to construct a
data classification and attribute inverted index. This facilitates the establishment of vector
connectivity graphs for different types of data at the same moment in time.
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(3) Ship data simulation and efficiency optimization in port twin scenarios involve
the real-time integration of ship position data. Each update of ship data necessitates re-
rendering to enhance the display’s efficiency and reduce latency. This study employs
density clustering to optimize dense ship AIS data, ensuring the efficient presentation of
ships within the twin port scenario.

Building upon the DENCLUE (Density-based clustering) algorithm, this study opti-
mizes the integration of ship AIS data in twin port scenarios (Figure 6a). For ship position
points where the distance between two ships is d and the interaction range is set to ε, if
d ≤ ε, these points are considered to be within the same clustering range. Using Pi as the
center and ε as the radius, the algorithm calculates the number of ship position points u
within this neighborhood circle. It then calculates the number of points in the neighborhood
of each point within the neighborhood of Pi and takes the maximum value v. If u > v, Pi
is saved as a density attractor point for that region; if u ≤ v, then Pi (where (x2,y2) are
coordinates) with the maximum neighborhood density becomes the attractor point, and
all ship position points within Pj’s neighborhood, including Pi, are clustered around Pj.
To prevent the sequential clustering of point coordinates, clustering is only performed
if d ≤ ε. This process is repeated for all ship position points to complete one clustering
iteration. The pseudo code of the DENCLUE algorithm for ship density clustering is shown
in Figure 6b. Based on the previous layer of clustering points, the threshold is incrementally
increased, and clustering is repeated until the desired density point count is achieved. As
more ship position points are clustered, the density attractor points gradually become
the local maxima of global density. When the required density point count is reached,
clustering is considered complete. Addressing the issue of low efficiency and display
latency in rendering three-dimensional ship models, this method integrates the efficiency
optimization techniques proposed earlier for port scene data. Starting from rendering,
view frustum culling optimization dynamically loads ships within the view range as the
viewpoint moves, simultaneously removing ship models outside the view frustum.

sample:P={(x1,y1),(x2,y2)
, ,(xn,yn)}  
threshold:
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Figure 6. Optimization design of ship density clustering and pseudo code. (a) Optimization design
process for ship density clustering. (b) Pseudo code of DENCLUE algorithm.

158



J. Mar. Sci. Eng. 2024, 12, 1215

Through the aforementioned efficiency optimization design for scene data, several per-
formance issues related to the organization, display, and scheduling of three-dimensional
scenes have been addressed. Simultaneously, the real-time storage and query efficiency
problems of sensor monitoring data have also been resolved. This integrated approach
not only enhances the rendering and interaction capabilities of complex three-dimensional
scenes but also ensures that sensor data can be stored, accessed, and queried efficiently in
real time, thereby improving the overall system performance and user experience in digital
twin applications for port environments.

3.2. Twin Scenes and Platform Construction

The demonstration utilizes the ore terminal berth of the demonstration port area. It
employs unmanned aerial vehicles for photogrammetric data collection, integrating oblique
photography with satellite imagery and spatial elevation data. This process establishes
a spatial geographic information repository. Utilizing the methodology proposed in this
study, a digital twin model of the port area (Figure 7a) is constructed. Surface and ver-
tex/fragment shaders are employed to create realistic shadows, enhancing the fidelity of
the terminal model imported into the Unity model library. These digital twins provide a
perspective on the internal components of the terminal and the status of sensors (Figure 7b).
The reason for choosing Unity in this article is that it has a good visual rendering effect,
supports both Client/Server architecture for easy deployment and an efficient display,
and supports publishing Browser/Server architecture for browser access when the display
efficiency is not high.

(a) (b) 

Figure 7. Construction of digital twin model. (a) Twin scene model of port area. (b) Refined
dock model.

The development of the dock digital twin system (Figure 8) using the Unity3D base
platform expands functionalities with the WebGL (Web Graphics Library) 3D graphics
module. This integration of JavaScript and OpenGL for Embedded Systems provides
hardware-accelerated rendering for HTML5 (HyperText Markup Language 5) Canvas,
enabling the smooth display of dock digital twin scenes and models within web browsers.
The system consists of four main components: a data layer, a service layer, a rendering
layer, and a presentation layer. The data layer is structured according to dock feature data
characteristics, encompassing geographic spatial data, sensor monitoring data, and hy-
drometeorological data. The service layer centrally manages basic geographic information
services, dock feature services, hydrometeorological model services, and interfaces for
sensor monitoring and perception data access. The rendering layer focuses on simulating
and rendering dock component models, vessels, sensors, and marine hydrometeorolog-
ical elements. Meanwhile, the presentation layer implements the functionalities of the
digital twin system platform, including twin scene display, monitoring data presentation,
monitoring alerts, and intelligent decision-making capabilities.

159



J. Mar. Sci. Eng. 2024, 12, 1215

 
Figure 8. Digital twin system platform.

The paper applies a digital twin system for monitoring the safety status of port
terminals. The monitoring data collected by sensors (stress and strain data, structural
settlement data, siltation depth data, meteorological environment data, etc.) and spatial
data (terminal refinement data, vector and grid map data, etc.) are used as input values. The
characteristics of sensor data, collection frequency, and data volume are comprehensively
analyzed, and the safety status of port terminals is used as the target output. A deep
learning model for evaluating the structural status of ports is constructed to achieve an
impact analysis of port structures. Based on monitoring data and numerical analysis results,
we extract characteristic elements such as the settlement (Figure 9a) and stress (Figure 9b)
of the dock structure, and use multi-dimensional simulation special effects technology to
visualize and enable interaction with early warnings, using aspects such as particle effects,
light and shadow materials, and grading colors.

  
(a) (b) 

Figure 9. Application of digital twin platform. (a) Simulation of settlement of structure. (b) Simulation
of stress of structure.
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3.3. Efficiency Optimization Experimental Analysis

In the experimental setup, the raw data for constructing the dock digital twin model
amounted to 4.56 GB. Rendering and analysis of the scene were conducted using various
computational servers, where CPU (Central Processing Unit) usage rates encompassed
the operational overhead of internal system processes. Findings indicated that, for a
system with 16 GB of memory, CPU usage reached 58.7%, whereas, for a system with
64 GB of memory, CPU usage was 21.6%. Overall, these results suggest that the dock
digital twin model construction is adaptable to lower-tier computational resources. How-
ever, for practical applications, consideration should be given to provisioning higher-tier
computational resources.

In the experiment integrating monitoring data into the digital twin scene, compar-
isons were made between the initial rendering time and the subsequent rendering time
after changes in the view. Before optimization, the initial rendering time was prolonged,
increasing exponentially with larger datasets. Conversely, rendering times after changes
in the view area were relatively faster and less affected by dataset size increments. After
optimization, there was minimal difference between the initial rendering time and the ren-
dering time after view changes. However, overall processing time significantly decreased
(as detailed in Table 3). The formula for efficiency improvement rate is to subtract the
efficiency before improvement from the efficiency after improvement, and then compare it
with the efficiency before improvement.

Table 3. Comparative analysis of scene-rendering efficiency (ms).

Number of Access Data 100 865 1985 7582 13,500 21,000

Before optimization First rendering time 150.14 681.84 1146.1 6095.36 15,652.38 36,034.96
View change rendering time 130.22 319.32 461.38 641.96 1351.74 2977.05

After the
optimization

First rendering time 148.82 345.96 393.22 667.04 1450.74 3036.52
View change rendering time 146.3 270.24 273.34 558.56 1243.26 2560.84

Comparative analysis
before and after

Efficiency improvement in
first rendering 0.88% 49.26% 65.69% 89.06% 90.73% 91.57%

Efficiency improvement in
rendering after view changed −12.35% 15.37% 40.76% 12.99% 8.03% 13.98%

In the experiment on the efficiency of displaying dynamic ship data, the real-time
performance and smoothness of the digital twin scene model were analyzed before and
after clustering optimization. This analysis focused on two aspects: monitoring the average
frame rate after moving the scene view and comparing the time taken to switch between
different ship symbols. The experiment involved 2896 ship data entries of various types,
using the frame rate before loading ship models as a baseline. Compared with the situation
before loading the ship data, the average frame rate showed a slight decrease post-loading,
but the difference was minimal and did not significantly affect the smoothness of the visuals
in practical applications. Regarding the time taken to switch between different symbols, the
transition time between clustered ship positions and their three-dimensional models was
only 368 milliseconds after optimization. As shown in Table 4, this demonstrates that the
optimized three-dimensional visualization of ship data performs well in terms of display
efficiency, meeting the requirement for smooth visuals.

Table 4. Rendering efficiency of multilevel symbolic modeling.

Display Model Average Frame Rate/fps Switching Rate/(ms)

Digital twin scene 18.53 -

Ship point (original) 34.49 0.183

Ship location (clustering) 23.94 0.245

Three-dimensional model of ship 21.65 0.159
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4. Conclusions

This study explores the construction of a digital twin system for harbor terminals in an
exploratory manner. Firstly, it designs the architecture of the digital twin system focusing
on four aspects: data resources for harbor twin scenes, the integration and storage of
heterogeneous data from multiple sources, the construction of the harbor digital twin body,
and long-term service monitoring and early warning analysis. Secondly, it analyzes the
data format of the harbor digital twin body, elaborates on data organization and processing
methods, and proposes methods for constructing and simulating visualizations of harbor
digital twin bodies and marine hydrometeorological data. Solutions are presented for
organizing and scheduling massive data, optimizing twin scene efficiency, and addressing
issues related to the visualization performance of scenes and the real-time storage efficiency
of sensor monitoring data. Lastly, a digital twin system tailored for the long-term moni-
toring of ports is developed and experimentally applied at the demonstration berth of an
ore terminal in a harbor area. Comparative efficiency analyses of twin scenes using the
methods proposed in this study demonstrate their capability to integrate real-time sensor
monitoring data, enhance the display of digital twin system data elements, and provide
essential data support for practical applications of digital twin scene models.

This study has certain limitations in the interactivity of twin scenarios and deep
learning-based analysis and prediction. It requires iterative training and upgrading of the
model through long-term accumulated data, ultimately forming a warning analysis model
suitable for the long-term service monitoring of dock structures, and achieving efficient
collaboration between physical and twin scenarios.

The research outcomes presented in this paper are applicable to port operations
and the analysis of vessel arrivals and departures. They provide technical support for
the intelligent management of port infrastructure and the optimization of infrastructure
health monitoring. The rapidly constructed comprehensive digital twin scenes of docks
enhance cognitive efficiency and accuracy, facilitating the integration of next-generation
information technologies with the maritime transport industry. The next focus of research
includes two aspects. Firstly, in-depth research will be conducted on the interactivity of
twin scenes and deep learning-based analysis and prediction. Secondly, research will be
conducted on complex scene perception, collaborative control, scheduling organization,
information security interaction, etc., to form ubiquitous, interconnected, efficient, and
intelligent applications in port digital twin scenes. In the future, the rapid development of
the shipping trade will drive automated container terminals towards intelligence, safety,
and efficiency. Future research results can be further applied to the formulation of job
scheduling tasks and the safety and stability of transportation paths [28,29].
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Abstract: In response to the evolving landscape of maritime operations, new technologies are on
the horizon as mixed reality (MR), which shall enhance navigation safety and efficiency during
remote assistance as, e.g., in the remote pilotage use case. However, up to now, it is uncertain if this
technology can provide benefits in terms of usability and situational awareness (SA) compared with
screen-based visualizations, which are established in maritime navigation. Thus, this paper initially
tests and assesses novel approaches to pilotage in the congested maritime environment, which
integrates augmented reality (AR) for ship captains and virtual reality (VR) and desktop applications
for pilots. The tested prototype employs AR glasses, notably the Hololens 2, to superimpose the
Automatic Identification System (AIS) data directly into the captain’s field of view, while pilots on
land receive identical information alongside live 360-degree video feeds from cameras installed on
the ship. Additional minimum functionalities include waypoint setting, bearing indicators, and voice
communication. The efficiency and usability of these technologies are evaluated through in situ tests
conducted with experienced pilots on a real ship using the System Usability Scale, the Situational
Awareness Rating Technique, as well as Simulator Sickness Questionnaires during the assessment.
This includes a first indicative comparison of VR and desktop applications for the given use case.

Keywords: remote pilotage; navigation; augmented reality; virtual reality; in situ test; situational
awareness; usability assessment

1. Introduction

The primary task of maritime pilots is to ensure the safe passage of vessels through
challenging or congested waters by providing expert navigation guidance [1]. This remains
important despite technology advancements in navigation technologies. Pilots possess
in-depth knowledge of local waterways, including currents, tides, depth variations, and
potential hazards. While pilots provide guidance, the ultimate responsibility for the safety
and navigation of the vessel rests with the ship’s captain. Pilots serve in an advisory
capacity, offering recommendations and assistance based on their expertise. Pilotage is
still a dangerous profession with several casualties happening each year. Especially the
process of entering and leaving a vessel is associated with risks [2]. This can be one of
the benefits of enabling remote pilotage: by removing the need for a pilot to be physically
present onboard a vessel, remote pilotage can reduce the risks associated with accidents
and injuries during pilot transfer operations. Additional benefits are scheduling flexibility
and time savings according to a Finnish study [3].

However, changing from onboard to remote pilotage comes with challenges, specifi-
cally with regard to human factor-oriented topics. Communication remains crucial, as the
pilot and master must still communicate efficiently to ensure smooth and safe navigation,
despite being geographically separated and lacking non-verbal communication capabilities.
Additionally, with the pilot not being on the bridge, it is essential to ensure high situational
awareness for the pilot ashore. Addressing these challenges must be supported by remote
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pilotage technologies in the future to ensure smooth and safe operations. Those challenges
must be addressed by any future Remote Pilotage Technology, to ensure that its benefits can
be realized without countering effects on navigational safety. Hereby, new technology and
interaction concepts should be also investigated with regard to their applicability. Thus,
different user interface concepts for remote pilotage are tested and assessed within this
paper with regard to their principal usability for remote pilotage operations. This answers
the question if they are suitable visualization and interaction technologies for Remote
Pilotage Systems of the future. A significant innovation of this paper is the on-site testing of
these technologies on an actual ship vessel, a pioneering approach in the field. Our research
uniquely evaluates the practical application and usability of these systems in real-world
maritime conditions. This hands-on testing not only provides more realistic insights, but
also bridges the gap between theoretical concepts and practical implementation, offering
valuable contributions to the current literature and industry practices. The tested technolo-
gies are classical desktop visualizations for shore-based pilots, immersive virtual reality
(VR) technology for shore-based pilots, and immersive augmented reality (AR) technology
for onboard masters being piloted.

For the immersive technologies, prototype systems introduced in the concept pre-
sented in [4] have been used. By transmitting sensor data and a 360° video stream from the
ship to shore and displaying it in a VR environment, a high level of SA for the pilot shall
be assured in combination with an integrated electronic nautical chart application. On the
ship, an AR system is used to superimpose the view of the master with essential data about
the traffic situation. Voice communication between shore and ship is supported by a marker
and hint system with the aim of achieving an efficient and unambiguous communication.
The prototype of the concept was tested in an in situ trial on a ferry during a voyage in
the Baltic Sea. For the desktop visualization, a similar prototype has been created having
a comparable level of technological readiness. As the focus was on testing the principal
usability of the different technologies rather than testing a specific system implementation,
all systems had a pre-commercial implementation standard.

The Introduction is followed by a brief recap of the state of the art in remote pilotage
and maritime mixed reality in Section 2. The system prototypes are described in Section 3.
The testing procedure and the assessment are presented in Sections 4 and 5, respectively.
Finally, Section 7 concludes the paper, followed by a discussion in Section 6.

2. State of the Art

2.1. Remote Pilotage

Remote pilotage has been the subject of scientific publications for at least 20 years [5].
To date, however, the most advanced practical efforts to establish remote control have been
limited to only parts of the fairway [6]. An example of this is the port of Rotterdam, where
remote pilotage (here called shore-based pilotage) is offered between the Maas Centre pilot
station and the Hoek van Holland traffic center. In this port, the pilot communicates with
the ship via a VTS-monitored VHF channel. The pilot is supported by a VTS monitoring
view and a land-based radar image [7]. Apart from a few exceptional cases, the pilot still
enters the ship at one point in time. Complete remote pilotage does not take place [8].

Implementations of remote pilotage in the context of research projects are often limited
to implementation in simulation environments [6]. One exception is the Sea4Value research
project. In 2022, remote piloting was tested in Finnish waters as part of the research
project. To support the pilot, sensor data are transmitted from the ship to the shore,
including the ship’s foresight as a video stream. The above-mentioned research projects
and implementations are based on conventional display technology, with communication
between the shore station and the ship taking place exclusively verbally via a radio link.

There is a broad consensus in the scientific community that communication and trust
are the two most important factors for the successful execution of pilot maneuvers [9,10].
In addition, communication is considered essential for successful decision-making and
for building SA [6]. A survey of pilots confirms that communication is a key factor for
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successful piloting and that advanced technologies that facilitate communication are seen
as a prerequisite for remote pilotage [6]. Besides human factors, communication stability,
as well as proper officer qualification are seen as key enablers for such services [3].

2.2. Maritime Mixed Reality

The approach of developing a remote piloting system based on VR and AR technology
has not yet been implemented. Modern ship navigation on a bridge is already supported
by a variety of sophisticated digital and automated tools such as radar, automatic radar
plotting aids, and electronic navigation systems. However, the International Regulations
for Preventing Collisions at Sea (COLREGS) apply. Rule 5 requires that every vessel shall at all
times keep a proper lookout by sight and hearing and by any other available means appropriate to the
circumstances and conditions, giving a full view of the situation and the possibility of a collision [11].
It is expected that AR technology will allow bridge personnel to fulfill their duty to keep a
lookout while having the information from the modern tools at their disposal.

There are already several research projects investigating AR in ship navigation [12,13]
and maritime traffic control [14]. In most cases, augmentation is limited to overlaying
the navigator’s field of view with AIS data. Furthermore, most implementations have a
low technical readiness level (TRL). In a systematic literature review on AR in maritime
collaboration, Van den Oever et al. [15] concluded that it would be more advantageous to
develop prototypes with a higher TRL and criticized the lack of scientific evaluation of the
prototypes developed so far.

Until now, virtual reality in the maritime sector is primarily used for trainings. An
exception is the project FernSAMS, where a VR setup is used to steer a tugboat from shore
with a 360-degree video stream as the primary sensor input [16,17]. This has led to the
MR demonstrator for remote pilotage demonstrated in [4], which is used here for the
technology assessment. To the knowledge of the authors, there exist no further approaches
for VR-based remote pilotage stations at the moment.

3. System Overview

This section outlines the development and deployment of a mixed reality infras-
tructure aimed at facilitating remote pilotage operations. An in depth analysis of the
infrastructure can be found in the paper Use Case Remote Pilotage—Technology Overview [4].
Focusing on augmenting SA and interaction between the ship’s captain and remote pilots,
this infrastructure integrates augmented reality on the ship side with a desktop and a
virtual reality application for the shore side. Notably, all system validations, including the
shore-side application, were conducted onboard a vessel, reflecting a unique approach to
evaluating the interaction dynamics under real navigational conditions. All applications
were developed in the Unity game engine (Unity Technologies, San Francisco, CA, USA).

3.1. System Infrastructure

Data acquisition is systematically facilitated through a comprehensive network of
onboard sensors, capturing vital navigational inputs such as GNSS and AIS signals. These
sensors channel data to a central processing unit. A general overview can be seen in
Figure 1.

It is worth mentioning that the setup for the user study was different from the pre-
viously mentioned conceptional setup. For logistical and organizational reasons, the
shore-side equipment was also placed on the ship during testing. Therefore, the data
exchange was performed via a WiFi router instead of a 4G/5G connection. This paper will
continue to refer to the respective interfaces as the shore UI/shore application and the ship
UI/ship application for clarity and consistency with the initial conceptual framework.
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Figure 1. Conceptional system overview: for the user study, a WiFi-connection was used instead of
4G/5G (adaption of [4]).

3.2. Information Exchange between Ship and Shore

To ensure a high SA of the pilot, sensory data are transmitted from ship to shore. These
data include AIS and a 360° video stream. In our setup, the GeoVision VR360 camera was
used. It produces a H264-encoded RTSP video stream with a resolution of 3840*2160 pixels.
One of the installed cameras faces forward from its position directly above the ship’s bridge.
The second camera is mounted on the port side at the forwardmost corner, also above the
ship’s bridge.

Our system offers verbal communication between ship and shore via a VoIP connection.
Additionally, we aim to compensate non-verbal communication with a system of markers
and clues that can be placed by the pilot and give the master additional information.
These are as follows:

• Markers for guiding attention towards specific coordinates in the environment.
• Bearing line for guiding attention towards a specific direction.
• Highlighting for guiding attention towards specific vessels in the environment.
• A message system with predefined messages for ensuring safe communication about

a chosen target.

3.3. Shore-Side Implementation

The shore-side system was implemented in two variations: a desktop solution and a
VR solution. The former runs on a 27-inch touch screen for interaction purposes, while the
later uses the Varjo XR-3 headset with hand tracking capabilities (see the Shore Application
column in Figure 1). A VR desktop application requires significant computational power to
deliver a smooth and immersive experience. For our application, we used an Alienware
laptop equipped with an NVIDIA RTX 3070 graphics card and an Intel CPU from the 13th
generation. Communication with the ship’s system was established via local WiFi, as both
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systems were placed on the ship. As the focus was on usability, this modification was
acceptable during testing. The available information in both variants is the same, and the
user interfaces are designed to be as similar as possible. Both variants present the live video
stream from the 360° cameras on the ship and an electronic sea chart1. It is possible to
change the displayed chart section and to alter the scale of the map. Essential information
about the ship, namely heading, course, and speed, is always visible. Symbols for the
vessels in the environment are shown on the chart according to the received AIS data.
These symbols can be selected to open a panel with detailed information about a vessel.
The info panel also offers the options for tagging a vessel with a highlight and attach it
with a message. Markers for the purposes of highlighting specific locations for the master
can be placed on the chart.

3.3.1. Desktop Application

The layout of the UI of the desktop application can be seen in Figure 2. The interface
is divided between a section for the video stream and a section for the chart. The chart
can also be closed so that the video stream is shown as full screen. The interface shows a
maximum 140° section of the 360° video stream. On top of the video stream, the compass
element and the ship information are placed.

Figure 2. Shore-side desktop UI in split-screen mode.

All interactions with the application are performed via touch gestures on the display
surface. The selection of UI elements is performed via a single touch; changing the chart
section and the displayed section of the video stream is performed via swipe gestures.
Zooming in and out of the chart and the video stream is performed via two-finger gestures.

Figure 2 shows the UI in split-screen mode.

3.3.2. Virtual Reality Application

In the virtual environment, the user is surrounded by a sphere on which the video
stream is projected. The chart is placed as a 3D element in front of the user; its position can
be changed between predefined options or be disabled completely if needed. The compass
element is implemented as a ribbon in the upper part of the users field of view.

Figure 3 shows the user interface of the VR application. Interaction with the environ-
ment is performed via the hand-tracking capabilities of the headset. Rays from the shoulder
to the hand intersecting with the UI elements in the environment define the cursor position.
A finger pinch gesture selects the element the cursor is currently on.
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Figure 3. Shore-side virtual reality user interface inside 360° video environment with hand-
tracking rig.

3.4. Ship-Side Implementation

The ship-side system harnesses the capabilities of the Microsoft Hololens 2 (Microsoft
Corporation, Redmond, WE, USA) to superimpose critical navigational data, including AIS
information and route specifics, directly into the captain’s field of vision. This integration
is designed to augment the physical maritime environment with digital data.

Figure 4 shows an AR overlay with navigational data for a vessel called “Testship”.
On the left side is the vessel information collapsed behind an AR button. After interacting
with the button, the information on the right side is displayed. Essential information such
as heading, course, speed, and status is presented alongside the vessel’s position. A 3D
wireframe model provides visual context. Additionally, collision avoidance details like
CPA and TCPA are shown.

Figure 4. Ship information visualized in AR.
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Interaction with the Hololens 2 system is intuitively designed to occur through hand
tracking and hand gestures, alongside voice commands. Specific gestures allow for the
expansion or collapse of ship information by pinching the thumb and pointer finger.
Additionally, looking at the right-hand palm activates the display of the vessel’s own
navigational information, while glancing at the left palm summons a menu for layer
management (Figure 5). This feature permits the toggling of various data layers, such as
ships, markers, and waypoints.

Figure 5. Layer menu and ship information as seen through the Hololens 2.

Figure 6 delineates the overlays in greater detail. Besides AIS data, the overlays
include route information and markers, with AIS details encircling identifiable objects.
Depending on the type of vessel, a 3D wireframe model is also presented, enhancing the
spatial understanding of nearby maritime traffic. Ships that are highlighted via the shore-
side application are marked with arrows at the field of view edges if positioned outside
the captain’s immediate visual range. Moreover, a bearing indicator from the shore-side
application can be visualized within the Hololens 2, ensuring synchronized navigation and
planning between the ship and remote pilots.

Figure 6. View through the Hololens 2.
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The technical setup was already installed and tested in voyages previous to the user
study. During these voyages, informal feedback was collected from the ship’s crew and
integrated into the prototype. To improve the system further, it was deemed necessary to
collect systematic feedback from pilots in an in situ test run.

4. Testing and Evaluation

The testing procedure consists of several campaigns in which the usability, intuitive
operation, effectiveness, and accuracy of the systems are evaluated. The results aim to
determine the potential of each system to establish maritime SA for safe and robust remote
pilotage and, where possible, provide insight into which enhancements could improve
these systems. The test setup is divided into four phases aimed at assessing different
aspects of technology application in a maritime context (see Figure 7).

Figure 7. The four phases of the testing procedure.

4.1. Survey Methods Applied

During testing, three survey methods were employed that are utilized in human–
computer interaction research, particularly with respect to immersive systems such as
AR and VR. These methods aid in understanding and evaluating user experience, system
performance, and the physical and psychological impacts of these technologies on users:

• System Usability Scale (SUS): The SUS is an effective tool for assessing the usability of
a system. It consists of a brief questionnaire with 10 items, providing a quick gauge
of how user-friendly a system or product is [18]. The questions are designed to be
generic, making them applicable to a wide range of products or systems, including AR
and VR. It scores on a scale from 0 to 100, though it is not a percentage. Scores can be
categorized into ranges: scores from 85 to 100 indicate excellent usability; scores from
68 to 84 reflect good usability; scores from 51 to 67 are considered marginal; scores
below 50 are deemed poor, highlighting significant usability issues. It is critical to
acknowledge that the SUS does not provide detailed insights into the specific issues
or potential enhancements of a system. Rather, the SUS serves as a general metric for
a system’s usability and can be employed as a benchmark for comparing different
systems or iterations of the same system.

• Situational Awareness Rating Technique (SART): SART was developed to assess the
level of SA experienced by users during system interaction [19]. It quantifies SA [20].
This is particularly critical in AR and VR environments, as these technologies aim to
seamlessly integrate digital information into the user’s visual surroundings. A high
level of SA implies that users can effectively perceive, comprehend, and respond to
information provided by the system. When using this method, subjects rate their own
awareness using a questionnaire consisting of ten questions. This questionnaire uses a
7-point scale, with the lowest score being 1 and the highest score being 7. Based on
these scores, the questions are divided into three categories (understanding, demand,
and supply) to calculate SA. The SART scores range from −14 to 46.

• Simulator Sickness Questionnaire (SSQ): The SSQ is used to assess symptoms of simula-
tor sickness (also known as cybersickness) that may occur when using MR systems.
Symptoms include nausea, disorientation, and discomfort [21]. The SSQ assists de-
velopers and researchers in identifying system aspects that may cause discomfort, to
improve them and optimize user experience.

In addition to the traditional surveys, application-specific questionnaires were incor-
porated and discussed with the participants during the testing campaign, i.e., AIS Data
and Efficiency, Live Video Stream, and General Questions.
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4.2. Phase 1: Familiarization

The introduction of new technologies requires an adjustment period in which users
can become acquainted with the functionalities and possibilities of these technologies.
This is crucial for acceptance and effective use. In the first test run, the participants
were familiarized with the AR, VR, and desktop systems. This allowed them to become
comfortable with the functions and operating methods of the systems. The benefits of this
familiarization are that the participants develop a better understanding of the functionality
of the systems and can assess their user-friendliness:

• Objective: determination of the adjustment time and comfort of the participants with
the various technologies (AR, VR, desktop).

• Methodology: Participants are systematically guided using the AR, VR, and desktop
systems. The SUS and SSQ surveys provide quantitative data on usability and potential
physical impairments caused by the technology. Here, an initial baseline of usability
and user comfort is examined, as well as the effects of the technologies on the users.

4.3. Phase 2: Optimization

In this testing campaign, the usability and intuitive operation of the systems were
evaluated. Participants were asked to perform tasks with the various systems and then
conduct the SUS and SSQ surveys. Intuitive operation and user-friendliness are crucial
for the effectiveness of the systems in critical situations. High usability reduces the risk
of operating errors and increases acceptance among users. This phase focuses on how
intuitively and effectively the systems can be applied by end-users, which is crucial for
the practical implementation of the technologies. Smaller features and changes have been
implemented in the applications for an optimized routine in the following tests:

• Objective: evaluation of the usability and intuitive operation of the shore-side and
ship-side systems.

• Methodology: performing tasks using the various systems and subsequent evaluation
through the SUS and SSQ to quantify usability. SSQ surveys are used to monitor the
well-being of the users.

4.4. Phase 3: Consolidation

This phase was designed to evaluate how effectively and accurately the mixed reality
technologies could deliver specific, critical information and support users in executing
precise maneuvers. By guiding participants through a series of predefined tasks, the tests
assessed the capacity of both the VR and AR infrastructure, as well as the desktop and AR
setup to provide real-time assistance in navigational decision-making. With developers
on the application’s opposite end, the evaluation was structured to simulate a realistic
pilotage scenario where developers relayed tasks to the pilots via VoIP communication.
The interaction of the pilots with the systems has been consolidated in this phase to prepare
for the next one:

• Objective: to investigate the effectiveness and accuracy of both VR and AR systems,
as well as the desktop and AR setup in handling specific pilotage tasks.

• Methodology: Each pilot participant was required to test every system once to evaluate
the systems’ efficiency and accuracy. The developers, serving as the counterparts in
these tests, assigned a set of tasks that the pilots had to perform using the systems.
These tasks included the following:

– Highlighting a specific ship within the visual field.
– Setting a status message for a ship to communicate its operational condition.
– Placing a marker in proximity to their vessel or on top of other ships to designate

points of interest or navigational relevance.
– Adjusting the bearing indicator to aid in the navigation and orientation process.
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This phase aimed to provide insights into the user’s ability to complete navigation-
specific tasks effectively with each system and to determine the operational accuracy of the
mixed reality infrastructure.

4.5. Phase 4: Cooperation

Phase 4 is pivotal in assessing the independent operational capability of the mixed
reality systems by examining the direct interaction between pilots without developer inter-
vention. This phase focuses on the core of maritime operations: the effective collaboration
and communication between ship masters and pilots under authentic conditions:

• Objective: to evaluate the independent usability and efficiency of the shore-side and
ship-side applications for cooperative maritime tasks.

• Methodology: Pilots enacted typical maritime scenarios, including vessel entry and
departure from a harbor, by collaboratively performing tasks using the mixed reality
systems. These tasks were designed to simulate the coordination required during
actual pilotage without external assistance, ensuring the systems facilitate effective
pilot-to-pilot interaction.

This phase of testing emphasizes real-world applicability and the self-sufficiency of
the pilots in utilizing the systems’ collaborative tools. The execution and repetition of these
scenarios contribute to the iterative enhancement of system performance, mirroring the
dynamic and sometimes unpredictable conditions of maritime navigation. Through these
exercises, the systems’ potential to reinforce safety and improve operational fluidity in
maritime navigation is rigorously examined.

4.6. Test and Interpretation Notes

In total, 42 tests with 3 test participants and 3 systems have been conducted. Table 1
gives an overview about the executed test schedule. With regard to the interpretation, it
must be noted that the test faced limitations concerning the diversity and number of test
persons. While all participants had professional maritime backgrounds either as pilots or
navigator, they were all male and in the age range from 45 to 65. This is representative of a
pilotage peer group as of today, but of course, the scope for evaluating the system’s usability
and effectiveness across a broader demographic spectrum was consequently constrained.
Additionally, as testing took place under in situ conditions, the external maritime traffic
was representative of real-world situations, but of course not controllable and comparable
between all phases of testing, which could leave room for different interpretations, as
system and traffic assessment can be interlinked by human test participants.

Table 1. Executed test schedule according to phases.

Phase Date Time Test Person and Topic Test Person and Topic

Phase 1 11.03. 11:00–11:10 Person A (AR) Person B (Desktop)

Phase 1 11.03. 11:20–11:30 Person B (AR) Person C (Desktop)

Phase 1 11.03. 11:40–11:50 Person C (AR) Person A (Desktop)

Phase 1 11.03. 12:10–12:20 Person A (VR) Person B (AR)

Phase 1 11.03. 12:30–12:40 Person B (VR) Person C (AR)

Phase 1 11.03. 12:50–13:00 Person C (VR) Person A (AR)

Phase 2 11.03. 15:00–15:15 Person A (AR) -

Phase 2 11.03. 15:15–15:30 Person A (VR) -

Phase 2 11.03. 15:30–15:45 Person A (Desktop) -

Phase 2 11.03. 16:00–16:15 Person B (AR) -
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Table 1. Cont.

Phase Date Time Test Person and Topic Test Person and Topic

Phase 2 11.03. 16:15–16:30 Person B (VR) -

Phase 2 11.03. 16:30–16:45 Person B (Desktop) -

Phase 2 11.03. 17:00–17:15 Person C (AR) -

Phase 2 11.03. 17:15–17:30 Person C (VR) -

Phase 2 11.03. 17:30–17:45 Person C (Desktop) -

Phase 4-1 12.03. 08:00–08:10 Person A (AR) Person C (Desktop)

Phase 4-1 12.03. 08:20–08:30 Person C (AR) Person B (Desktop)

Phase 4-1 12.03. 08:40–08:50 Person B (AR) Person A (Desktop)

Phase 4-1 12.03. 09:10–09:20 Person A (Desktop) Person C (AR)

Phase 4-1 12.03. 09:30–09:40 Person C (Desktop) Person B (AR)

Phase 4-1 12.03. 09:50–10:00 Person B (Desktop) Person A (AR)

Phase 4-2 12.03. 15:00–15:10 Person A (VR) Person B (AR)

Phase 4-2 12.03. 15:20–15:30 Person B (VR) Person C (AR)

Phase 4-2 12.03. 15:40–15:50 Person C (VR) Person A (AR)

Phase 4-2 12.03. 16:10–16:20 Person A (VR) Person B (AR)

Phase 4-2 12.03. 16:30–16:40 Person B (VR) Person C (AR)

Phase 4-2 12.03. 16:50–17:00 Person C (VR) Person A (AR)

Phase 3 13.03. 10:30–10:45 Person B (AR) -

Phase 3 13.03. 10:45–11:00 Person B (VR) -

Phase 3 13.03. 11:00–11:15 Person B (Desktop) -

Phase 3 13.03. 11:15–11:30 Person C (AR) -

Phase 3 13.03. 12:00–12:15 Person C (VR) -

Phase 3 13.03. 12:15–12:30 Person C (Desktop) -

Phase 3 13.03. 12:30–12:45 Person A (AR) -

Phase 3 13.03. 12:45–13:00 Person A (VR) -

Phase 3 13.03. 13:00–13:15 Person A (Desktop) -

Phase 4-3 13.03. 19:00–19:10 Person A (AR) Person C (Desktop)

Phase 4-3 13.03. 19:20–19:30 Person C (AR) Person B (Desktop)

Phase 4-3 13.03. 19:40–19:50 Person B (AR) Person A (Desktop)

Phase 4-3 13.03. 20:10–20:20 Person A (VR) Person C (AR)

Phase 4-3 13.03. 20:30–20:40 Person C (VR) Person B (AR)

Phase 4-3 13.03. 20:50–21:00 Person B (VR) Person A (AR)

5. System Assessment and User Feedback

During the testing phase, participants provided valuable insights into the usability,
functionality, and practical limitations of the systems for remote pilotage. Their feed-
back is instrumental in identifying areas for improvement and potential enhancements to
the system.
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5.1. User Interface and Usability

Participants reported that both the AR and VR headsets, along with the screen interface,
were generally user-friendly and intuitive to operate. However, they noted that accurately
selecting options using the AR headset required a period of adjustment. Concerns were
raised about the image quality provided by the 360° video stream, specifically mentioning
that it was insufficient for operational needs. Additionally, the zoom functionality did not
meet expectations, and the system’s performance during night-time operations was deemed
inadequate. Prolonged use of the VR headset was found to cause eye fatigue, suggesting a
need for further ergonomic optimization to ensure user comfort during extended periods
of use.

Despite these challenges, the overall system architecture aligns with standard nautical
procedures and workflows, making it usable in principle. It was acknowledged, however,
that the system prototype has not yet achieved full operational readiness, but served as
a technology demonstrator. In terms of usability, the overall SUS score with an average
of 68.33 across participants indicates that the system is on the threshold of above-average
usability (see Figure 8). Given the small group of test participants, this is, however, only
a first indication and not representative, as it can also be seen that the assessment differs
between the participants in height, as well in order of preference.

Figure 8. System Usability Scale Test Persons A, B, and C.

5.2. Situational Awareness

The average values of the respondents’ ratings for the individual questions are shown
in a graph (Figure 9). The computed SA scores of all the participants were above the middle
of this range, indicating that they had good SA during the test scenario.

The overall SA score is a calculated value from the three dimensions.
It is described as SA = Understanding − (Demand − Supply) [22]:

• “Demand” quantified the extent of human awareness processes during the simulation.
(represented by Question 1, 2, and 3).

• “Supply” represented the available cognitive capacity and uncommitted attention
available to the subject during the simulation. (represented by Question 4, 5, 6, and 7).

• “Understanding” indicated the extent to which the individual grasped the situational
circumstances during the simulation. (represented by Question 8, 9, and 10).
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Figure 9. SART questionnaire statistical results.

SA describes the recognition, understanding, and anticipation of environmental factors
and events within defined time frames, particularly in dynamic and complex contexts. SA
is typically divided into three hierarchical levels [22]:

• Level 1—perception (perception of the surrounding elements).
• Level 2—Comprehension (Comprehension of the current situation).
• Level 3—projection (projection of future states).

The characteristics of effective situational awareness include the following:

• Complete and accurate perception: all relevant information is recorded completely
and without error.

• Correct understanding of the situation: the meanings and interactions of the various
elements are correctly interpreted.

• Effective projection of future developments: future states and developments are
reliably predicted, enabling informed and proactive decisions.

In contrast, the characteristics of inadequate situational awareness are incomplete
or erroneous perception, misunderstanding of the situation, and inadequate projection
of future states. Endsley’s theory [22] provides a central model of SA that emphasizes
the importance of the three levels and shows how effective SA is achieved through a
combination of environmental perception, processing, and cognitive prediction.

Having effective SA is essential for decision-making and the ability to act in dy-
namic and complex environments, while inadequate SA can lead to poor decisions and
ineffective actions.

5.3. VR and AR Sickness

In the context of VR, subjective symptom reports were gathered from participants
during testing sessions. On March 12th, during the late session, Test Persons A and B both
experienced mild fatigue prior to engaging with the VR prototype. Following the test, Test
Person A reported symptoms of mild eye strain and a sensation of fullness in the head.
Test Person B experienced only mild eye strain. Test Person C, who initially felt moderately
fatigued, did not report any post-testing issues.

On the morning of March 13th, Test Person A commenced the VR application without
any pre-existing simulator sickness symptoms, but subsequently reported “difficulty in
focusing”. Test Persons B and C did not report any simulator sickness symptoms either
before or after their VR tests.
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Later that day, Test Person A maintained an absence of simulator sickness symptoms
both before and after the VR test. Conversely, Test Persons B and C both noted mild fatigue
related to simulator sickness in the pre- and post-testing phases.

These findings indicate variability in the manifestation of simulator-related symptoms
among participants within the VR environment, with some experiencing mild discomfort
and others reporting no adverse effects. The symptoms observed, such as eye strain and
difficulty focusing, align with known indicators of simulator sickness and highlight the need
for further research into their etiology and potential mitigation within VR development.

The evaluation of the SSQ is based on the assessment of the three primary dimen-
sions of simulator sickness: nausea, ophthalmic (visual) symptoms, and discomfort. The
interpretation of the SSQ should be considered in conjunction with other factors such as
the test environment, duration of exposure, and individual experiences. Since the test
participants conducted the VR sessions standing for a relatively short duration (10–15 min),
the results were, as expected, positive. For future tests, longer standing durations should be
considered. Additionally, tests should be planned that involve sitting and the combination
with desktop development within a single test session. It must be further noted that the VR
system was presented in a more challenging way, as the shore application would normally
be on hard ground and not on a moving vessel, the movements of which are neither aligned
nor synchronized with the movements within the VR system.

5.4. Comparative Analysis of VR, AR, and Desktop

A comparison between the VR and AR headsets and the desktop interface highlighted
the distinct presentation styles of each platform. Notably, the VR headset, while offering
an immersive experience, was considered to have limited practical viability for prolonged
use due to eye strain. The AR headset, on the other hand, posed fewer issues regarding
extended wear, though it was observed to diminish overall sensory perception. Such
limitations could potentially lead to disadvantages in nautical practice, raising questions
about the system’s effectiveness in critical scenarios, such as a fire alarm on the bridge.

In the course of the test campaign, the test subjects had the opportunity to test all three
systems. As part of these tests, there was constant feedback on the comfort of the systems,
how intuitive they were to use, and comparisons with similar conservative systems. The
results are shown in the following graphs. It can be seen that the comfort of the systems
and the intuitive operation were always above average. For the desktop system, touch
operation was preferred to a conventional setup.

The VR glasses (Figure 10) are characterized by several functions, in particular the
availability of the electronic chart applications, which allows navigation information to
be integrated into the VR environment. The abilities to enter data and access ECDIS-like
data are also important features. The 360-degree overview of the situation and the intuitive
user interface improve SA. The full view in the camera supports the visual capture of
the surroundings.

The availability and use of chart information within the VR environment were seen
as particularly useful. Although the functions are not yet fully developed in the current
development phase, the potential for the use of VR is considered to be conceivable and
promising for the future. This could even lead to the integration of existing systems and
proven applications like PPU software in the VR environment.

The Hololens 2 AR glasses (Figure 11) can make work more difficult in certain situ-
ations, especially when several ships are on the same bearing. Problems can arise here
if there is an overflow of data and too many visualizations block the view. A key point
mentioned was that radar and ECDIS are considered more reliable information systems
and the AR glasses only have a supplementary function. The glasses can also interfere
with normal vision and make it difficult to find relevant information quickly, which is
particularly problematic during maneuvers.
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Useful functions of the setup are the display of ship data, interaction with the AIS
system, the ability to deactivate information, the three-dimensional representation of ships,
the distance to waypoints, and the color coding of traffic vessels for better differentiation.

Figure 10. Feedback on the VR system regarding comfort and interactivity.

Figure 11. Feedback on the AR system regarding comfort and interactivity.

The desktop solution (Figure 12) offers a number of features that were highlighted
for users. These features include the ability to interact between the map and live view,
including centering the camera, improved overall operation on the desktop, selecting and
tagging other ships, and intuitive handling.

Sending messages appears to be particularly useful, although according to the test
subjects, it involves certain risks that still need to be assessed. However, it was noted that
the available functions may not be sufficient to make well-founded decisions. This is due
to the early stage of development.
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Figure 12. Feedback on the desktop system regarding comfort and interactivity.

5.5. Interaction Design

The system’s interactions were designed to be user-friendly, with a specific emphasis
on minimizing the need for a physical controller. However, feedback suggested that
foregoing a controller entirely should only be considered after comprehensive and effective
training to ensure complete operational proficiency and safety.

6. Discussion

The development process during the testing phase was characterized by iterative
enhancements and responsive adaptations. An integral finding was the inconsistency in
hand tracking within low-light conditions, a common scenario on the bridge at night. The
precise positioning of the user’s hand relative to the Hololens 2 camera proved crucial; it
was noted that users had to slightly tilt their hands to ensure visibility for the camera to
register the interaction, which was not entirely intuitive. Moreover, the standard settings
of the Hololens 2 presented challenges in dynamic maritime environments. The system,
which relies on built-in cameras and a gyroscope for spatial tracking, faced difficulties with
the ship’s movement, especially when dealing with ocean waves. The gyroscope’s detection
of tilting conflicted with the camera’s perception of a stationary bridge. To address this,
enabling the Moving Platform Mode was a critical adaptation, minimizing the gyroscope’s
influence and stabilizing the AR experience amidst the vessel’s motion. Consequently,
a maritimization of AR and VR equipment is needed, if commercial onboard operation
is intended.

While the participants refrained from evaluating whether the prototypes could fully
replace onboard pilots at this stage of the project, they concurred with the paper’s outlined
advantages and disadvantages. Looking ahead, the addition of a night vision feature by
including infrared/thermal imaging was proposed as a beneficial enhancement, partic-
ularly for operations in foggy conditions. This indicates potential directions for future
development in the VR application.

The quality and communication speed over VoIP was considered very good by all
participants.

The journey to integrate mixed reality technologies in maritime navigation is ongoing,
and this analysis indicates that at least a similar usability level with respect to desktop
solutions can be achieved already today on a prototype level. However, the ultimate
objective remains clear: to create a system that not only aligns with, but enhances the
natural workflows of maritime professionals, thereby promoting safety, efficiency, and
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precision in the complex domain of seafaring considering the best technology options for
the respective tasks.

7. Conclusions and Future Work

Enabling remote pilotage requires solutions addressing the communication and SA
challenges inherit to this novel concept. Within this paper, different technology options
for visualization and interaction have been initially tested to support technology scouting
when setting up these systems in a safe and interactive manner. Given the results with the
peer group of three experienced nautical persons, it can be noted that the classical desktop,
as well as immersive mixed reality reached a comparable usability on the SUS score. All
passed the SUS threshold for good usability on average and reached a good SA level in
SART. Consequently, this indicates that all three technology options are suitable in principle.
However, the limitation of the peer group prevents a comprehensive understanding of how
the system would perform or be received by users of varying ages, experience levels, and
roles within the maritime industry.

Despite the principle usability of the prototype, several technical constraints have also
been identified that need ergonomic enhancements to fully exploit the technologies for the
remote pilotage use case properly. First, high-resolution cameras with better specifications
than the GeoVision VR360 are necessary to provide clear, detailed images with minimal
latency and high frame rates. This is essential for maintaining accurate situational aware-
ness (SA). The zoom function sufficiency is another important aspect. The system’s zoom
capabilities must maintain image clarity and detail even when magnified. High-quality
digital zoom functions are required to avoid significant loss of resolution and minimize
noise, ensuring that small details remain visible and actionable. Regarding augmented
reality (AR) and virtual reality (VR), reducing eye fatigue for prolonged use is crucial. The
hardware must incorporate advanced display technologies to mitigate eye strain. This
includes implementing high refresh rates, adaptive brightness, and ergonomic design to
facilitate extended use without causing discomfort to the users. Hand tracking consistency
is also vital for immersive AR and VR systems. The Varjo XR-3 and Hololens 2 must ensure
precise and responsive gesture recognition, allowing users to interact intuitively with vir-
tual elements. This level of accuracy and responsiveness is critical. Lastly, the stability and
reliability of AR overlays must be ensured. The Hololens 2 must deliver stable and accurate
overlays that provide essential navigational data reliably. This includes superimposing AIS
information, route specifics, and collision avoidance details onto the captain’s field of view.
The system must be robust enough to withstand maritime environmental challenges, such
as ship motion and varying light conditions, ensuring continuous and reliable support for
safe navigation. By addressing these technical constraints, the Remote Pilotage Technology
system can effectively support remote pilotage operations, enhancing both safety and
efficiency without compromising navigational integrity.

Future work shall include extended test durations. The combination of desktop and
immersive technologies within a single test session also needs to be examined to offer pilots
the flexibility to choose the interface that best suits the task at hand.
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Abbreviations

The following abbreviations are used in this manuscript:

AIS Automatic Identification System
AR augmented reality
COLREGs Convention on the International Regulations for Preventing Collisions at Sea
CPA Closest Point of Approach
ECDIS Electronic Chart Display and Information System
MR mixed reality
RTSP Real-Time Streaming Protocol
SA situational awareness
SART Situational Awareness Rating Technique
SSQ Simulator Sickness Questionnaire
SUS System Usability Scale
TCPA Time to Closest Point of Approach
TRL technological readiness level
UI user interface
VHF very high frequency
VoIP Voice over Internet Protocol
VR virtual reality
VTS Vessel Traffic Service

Note

1 Within this prototype, basic sea chart implementations have been used. The authors are aware of the existence of special
screen-based pilotage software, so-called Portable Pilot Units (PPUs), that offer pilotage-specific chart applications. For a final
commercial system, the PPUs’ functionalities or even the software itself could be integrated here so that the pilots can benefit
from their established set of known functionalities also remotely, but as this was not the focus of this usability tests, simplified
prototypes have been used. It is, however, important to note that Remote Pilotage Systems are not a substitute for PPUs, but that
the authors recommend fully integrating PPUs into such systems in the future for improved SA and to smooth the transition
between onboard and remote pilotage execution.
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14. Nad̄, Ð.; Mišković, N.; Omerdic, E. Multi-Modal Supervision Interface Concept for Marine Systems. In Proceedings of the
OCEANS 2019, Marseille, France, 17–20 June 2019; pp. 1–5. [CrossRef]

15. Floris van den Oever, M.F.; Sætrevik, B. A Systematic Literature Review of Augmented Reality for Maritime Collaboration. Int. J.
Human–Computer Interact. 2023, 2023, 1–16. [CrossRef]

16. Burmeister, H.C.; Grundmann, R.; Schulte, B. Situational Awareness in AR/VR during remote maneuvering with MASS: The
tug case. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–6.
[CrossRef]

17. Byeon, S.; Grundmann, R.; Burmeister, H.C. Remote-controlled tug operation via VR/AR: Results of an in-situ model test.
TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2021, 15, 4. [CrossRef]

18. Brooke, J. SUS: A quick and dirty usability scale. Usability Eval. Ind. 1995, 189, 4–7.
19. Bolton, M.; Biltekoff, E.; Humphrey, L. The Level of Measurement of Subjective Situation Awareness and Its Dimensions in the

Situation Awareness Rating Technique (SART). IEEE Trans.-Hum.-Mach. Syst. 2021, 52, 1147–1154. [CrossRef]
20. Taylor, R. Situational Awareness Rating Technique (SART): The Development of a Tool for Aircrew Systems Design. In Situational

Awareness in Aerospace Operations (AGARD-CP-478); NATO-AGARD: Neuilly Sur Seine, France; Routledge: London, UK, 1990.
21. Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for

Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [CrossRef]
22. Endsley, M.R. Measurement of situation awareness in dynamic systems. Hum. Factors 1995, 37, 65–84. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

183



Citation: Kang, Z.; Ma, F.; Chen, C.;

Sun, J. YOSMR: A Ship Detection

Method for Marine Radar Based on

Customized Lightweight

Convolutional Networks. J. Mar. Sci.

Eng. 2024, 12, 1316. https://

doi.org/10.3390/jmse12081316

Academic Editor: Marco Cococcioni

Received: 3 July 2024

Revised: 24 July 2024

Accepted: 31 July 2024

Published: 3 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

YOSMR: A Ship Detection Method for Marine Radar Based on
Customized Lightweight Convolutional Networks

Zhe Kang 1,2,3, Feng Ma 1,2,3,*, Chen Chen 4 and Jie Sun 5

1 State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology,
Wuhan 430063, China; kz258852@whut.edu.cn

2 National Engineering Research Center for Water Transport Safety, Wuhan University of Technology,
Wuhan 430063, China

3 Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China
4 School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China;

chenchen0120@wit.edu.cn
5 Nanjing Smart Water Transportation Technology Co., Ltd., Nanjing 210028, China;

sunjie@smartwaterway.com
* Correspondence: martin7wind@whut.edu.cn

Abstract: In scenarios such as nearshore and inland waterways, the ship spots in a marine radar are
easily confused with reefs and shorelines, leading to difficulties in ship identification. In such settings,
the conventional ARPA method based on fractal detection and filter tracking performs relatively
poorly. To accurately identify radar targets in such scenarios, a novel algorithm, namely YOSMR,
based on the deep convolutional network, is proposed. The YOSMR uses the MobileNetV3(Large)
network to extract ship imaging data of diverse depths and acquire feature data of various ships.
Meanwhile, taking into account the issue of feature suppression for small-scale targets in algorithms
composed of deep convolutional networks, the feature fusion module known as PANet has been
subject to a lightweight reconstruction leveraging depthwise separable convolutions to enhance the
extraction of salient features for small-scale ships while reducing model parameters and computa-
tional complexity to mitigate overfitting problems. To enhance the scale invariance of convolutional
features, the feature extraction backbone is followed by an SPP module, which employs a design of
four max-pooling constructs to preserve the prominent ship features within the feature representa-
tions. In the prediction head, the Cluster-NMS method and α-DIoU function are used to optimize
non-maximum suppression (NMS) and positioning loss of prediction boxes, improving the accuracy
and convergence speed of the algorithm. The experiments showed that the recall, accuracy, and
precision of YOSMR reached 0.9308, 0.9204, and 0.9215, respectively. The identification efficacy
of this algorithm exceeds that of various YOLO algorithms and other lightweight algorithms. In
addition, the parameter size and calculational consumption were controlled to only 12.4 M and 8.63 G,
respectively, exhibiting an 80.18% and 86.9% decrease compared to the standard YOLO model. As a
result, the YOSMR displays a substantial advantage in terms of convolutional computation. Hence,
the algorithm achieves an accurate identification of ships with different trail features and various
scenes in marine radar images, especially in different interference and extreme scenarios, showing
good robustness and applicability.

Keywords: marine radar; ship identification; lightweight convolution; feature fusion network;
maritime management

1. Introduction

The continuous surveillance of ships within ports and designated navigational wa-
terways represents a pivotal undertaking, serving to provide regulatory personnel and
ship operators with instantaneous insights into the state of maritime passages [1]. As a
widely deployed monitoring apparatus, a shore-based marine radar enables the continuous
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detection of ship targets in wide-ranging water areas under adverse weather conditions
(e.g., rain or fog) and poor nighttime visibility. It offers expansive imaging coverage and
demonstrates stable imaging performance at relatively close observation distances. Com-
pared to detection methods like the Automatic Identification System (AIS) and Very High
Frequency (VHF) radio, marine radar does not require a real-time response from ships,
significantly improving the speed of obtaining navigation information. Consequently,
marine radar has emerged as a critical means for ship identification in open water domains.

In the context of shore-based surveillance, marine radar systems intended for regu-
latory purposes commonly incorporate diverse tail display modes of varying lengths. By
discerning the distinctive features of ship trails, maritime regulators and navigators can
approximate absolute or relative speeds, enabling them to assess the existence of potential
risks. Consequently, in this particular scenario, the prompt and effective detection of ship
targets assumes paramount importance. The ship identification in marine radar images
can be effectively categorized into two distinct classes, i.e., long-wake ship identification
and short-wake ship identification. Long-wake ships typically display conspicuous spot
and trail features that exhibit clear differentiation from the background, thereby facilitating
their localization and feature extraction with relative ease. Conversely, short-wake ships
present image characteristics akin to environmental elements like rocky formations and
coastlines within the maritime domain. Therefore, the discriminative process for such
targets becomes susceptible to numerous background interferences, resulting in substantial
difficulties in their distinguishment.

In comparison to object classification conducted on natural images, ship detection
in the context of marine radar introduces a relatively higher degree of complexity. Pri-
marily, within congested waterways, only a small portion of the detected spots genuinely
correspond to mobile ships, leading to a heightened presence of interference in marine
radar images. This, in turn, exerts a significant influence on the precise classification and
localization of ships, alongside the formidable challenges associated with clutter removal,
encompassing the elimination of sea waves, atmospheric elements such as clouds and rain,
as well as extraneous noise. Moreover, the observational angle between the radar system
and the ships imparts a substantial impact on the resulting ship imaging, while the irregular
shapes of ship trails and spots further impede the efficacy of ship identification efforts.
Meanwhile, ship targets within radar images exhibit a relatively diminished occupancy of
absolute pixels, usually numbering in the hundreds. This results in a reduced pool of dis-
cernible features. Furthermore, when ships draw closer to coastlines, the backscattered spot
from ships and the coastal backdrop often prove indistinguishable. Thus, the extraction
of effective features and subsequent detection of small-scale ships become pivotal areas
of focus and complexity within the research domain. Additionally, given the widespread
adoption of embedded devices within radar systems, ship identification methods designed
for radar images necessitate careful consideration of the practical computational limitations
imposed by the deployed hardware.

Traditional methodologies for ship detection in radar images encompass a range of
techniques, including reference object calibration, filtering algorithms, and pattern identi-
fication methods. The investigation of reference object calibration approaches primarily
capitalizes on image processing methods, such as thresholding and connected compo-
nent extraction, to extract salient contour features pertaining to ships and the surrounding
coastal boundaries. These extracted features are subsequently employed in tandem with tar-
get feature-matching techniques to effectuate the calibration of ships within the surveilled
water domain [2,3]. Furthermore, filtering algorithms are judiciously applied to distill
the authentic trajectories of ship spots from a multitude of traces within the image, thus
enabling the acquisition of essential ship attributes encompassing temporal and positional
information [4,5]. Based on an exact modeling of ship motion trajectories, the judicious
application of filtering algorithms may yield efficacy. However, conventional filtering
algorithms, prevalent in radar systems, may not be amenable to ship detection manifest-
ing diminutive target scales, occlusions, or intricate environmental perturbations [6,7].
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Conversely, pattern identification methods have engendered commendable results in the
classification and localization of ship spots within marine radar images [8]. Notably, several
non-probabilistic models have gained wide acclaim, engendering improvements in ship
identification efficacy. Nevertheless, the efficacy of the aforementioned techniques may
exhibit limitations when confronted with ship identification characterized by a paucity of
pixel features, languid motion velocities, and formidable background interferences.

In recent times, the utilization of Convolutional Neural Networks (CNNs) in object
detection algorithms has witnessed notable advancements, encompassing both single-stage
algorithms [9–12] and two-stage algorithms [13,14]. These CNN-based techniques have
demonstrated conspicuous advantages over traditional methodologies, particularly con-
cerning the extraction of deep semantic information from images and the attainment of
precise object localization [15]. Of particular significance, researchers have made semi-
nal contributions to ship identification by harnessing the potential of CNNs within the
domains of Synthetic Aperture Radar (SAR) and remote sensing images, yielding satisfac-
tory outcomes [16,17]. The prevailing ship instances within the aforementioned contexts
predominantly manifest as diminutive object types, invariably accompanied by the con-
spicuous presence of background interferences. This intrinsic similarity shared with ship
identification in marine radar images thus furnishes invaluable inspiration for the formula-
tion of the identification algorithm elucidated within this present research.

Presently, radar image-oriented ship identification methods grounded in CNN ar-
chitectures have attained a moderate degree of advancement. The judicious design of
backbone networks and attention mechanisms aids in suppressing clutter interferences and
ameliorating ship confidence levels [18]. Concurrently, certain investigations have achieved
an efficient extraction of pivotal ship features within radar images through the implemen-
tation of two-stage algorithms [19,20]. Nonetheless, the aforementioned approaches still
exhibit inadequacies in effectively mitigating complex interferences and precisely identi-
fying dense small-scale ships. Moreover, it is imperative to elucidate that models based
on deep neural networks are conventionally deployed on high-performance computing
devices, which entail elevated computational costs due to the excessive convolutional layers
and parameters encompassed within. This predicament engenders a diminished sensitivity
of higher-level features within the network towards diminutive targets, consequently yield-
ing unsatisfactory outcomes in terms of feature extraction for small-scale objects. Ergo, the
adoption of lightweight algorithms, characterized by optimized computational efficiency
and a reduced number of convolutional layers [21,22], may be deemed more appropriate for
small target identification, thereby augmenting the identification effectiveness pertaining
to small-scale ship instances characterized by truncated wake signatures within marine
radar images.

In light of the distinctive attributes associated with ship identification in marine radar
images, this research designs a novel algorithm, denoted as YOSMR, which leverages a
tailored lightweight convolutional network. This approach deviates significantly from
prior research in several key aspects.

[1] Adoption of a more efficient lightweight network for extracting crucial ship spot features;
[2] Introduction of a deep feature enhancement method that integrates multi-scale recep-

tive fields to enhance the generalization capability of the feature network;
[3] Incorporation of convolution methods with higher parameter efficiency into a bidi-

rectional feature fusion network, enabling effective learning of spatial and channel
features from input data and facilitating the fusion of ship features at both micro and
global levels;

[4] Improvement of prediction box formation through advanced non-maximum suppres-
sion (NMS) and localization loss estimation, leading to improved ship localization
accuracy in dense scenarios;

[5] Design of a more robust ship identification method by utilizing a lightweight convo-
lutional neural architecture to address the computational limitations of embedded
devices in radar systems.
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It is noteworthy that the ship detection undertaken in this effort is based on the
output images from a shore-based radar system. As the imaging foundation, fundamental
signal processing techniques within radar systems, including the CFAR (Constant False
Alarm Rate) operating modes, will profoundly influence the resulting radar imaging
quality. For the shore-based radar used in this research, the echo acquiring and processing
technique has undergone targeted adjustments in prior work, with the aim of enhancing
the efficiency and stability of the radar imaging in the specific region. It is only upon
this foundation that the image-oriented ship detection method possesses true practical
value. Additionally, traditional radar’s multi-target tracking generally employs the Track-
While-Scan (TWS) model, wherein the core technologies are tracking filters and data
association. Techniques such as Least Squares Filtering (LSF), Kalman Filtering (KF),
Extended Kalman Filtering (EKF), and Unscented Kalman Filtering (UKF) have long played
a pivotal role in tracking filters. For data association, the Nearest Neighbor algorithm is
suitable for environments with low clutter interference, while for scenarios with medium
to high-density clutter and multiple targets, the Joint Probabilistic Data Association (JPDA)
algorithm and Multiple Hypothesis Tracking (MHT) algorithm have been proposed and
utilized, though these methods also exhibit limitations in high real-time computational
demands and large computational loads.

In this work and the upcoming research, we are exploring a novel image-based ship
detection-tracking pipeline. Specifically, we will build upon the proposed YOSMR model
and seamlessly integrate a customized tracking algorithm tailored for ship targets in radar
images, which will enable the development of an innovative working paradigm for shore-
based radar detection and tracking. This will serve as a complementary technique to
the traditional TWS method, thereby enhancing the real-time performance, accuracy, and
robustness of radar perception.

The subsequent sections of this manuscript are structured as follows: Section 2 elu-
cidates a CNN-based customized ship identification algorithm. Section 3 juxtaposes and
scrutinizes the experimental outcomes of diverse algorithms employed in marine radar
images. Lastly, Section 4 encapsulates the principal contributions of the proposed method
and deliberates upon prospective avenues for future advancement.

2. A Proposed Method

The overall framework of the proposed method is depicted in Figure 1, consisting
primarily of a feature extraction network and a lightweight feature fusion network. The
feature extraction network utilizes the MobileNetV3(Large) architecture [21], which pos-
sesses a deeper convolutional layer structure and demonstrates adaptable capability in
extracting features at different levels from radar images. The lightweight design of the
feature fusion network incorporates three prediction channels, each encompassing the
identification process for ships at different scales. Additionally, this network employs
depthwise separable convolutions (DSC) [23] as a replacement for standard 3 × 3 con-
volutions, significantly reducing the model’s parameter and computational complexity.
Furthermore, an SPP module [24] is introduced between the feature extraction network and
the feature fusion network. The SPP module employs multiple pooling layers to transform
feature maps of arbitrary sizes into fixed-size feature vectors, which enhances the capability
of extracting ship features and reduces overfitting issues. Lastly, in the prediction head of
the algorithm, the non-maximum suppression process is improved using the Cluster-NMS
method [25]. This enhancement elevates the accuracy and confidence level of the predicted
boxes. Additionally, the α-DIoU loss function is introduced to optimize the calculation
of position loss for the predicted boxes, thereby improving the convergence speed and
accuracy of the predicted boxes [26].
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Figure 1. The pipeline of the proposed algorithm. We present a novel detection algorithm grounded
in the YOLO architecture, which we term YOSMR. The holistic architecture of YOSMR can be
delineated into three core components: Backbone, Neck, and Head. Furthermore, the algorithm
also encompasses loss functions and training strategies as pivotal elements. Relative to the standard
YOLO framework, YOSMR has undertaken adaptive adjustments across its Backbone, Neck, Head,
Loss function, and NMS components to better cater to the unique characteristics of radar-based
applications. (a) Within the Backbone, YOSMR has integrated a mature feature extraction network,
MobileNetV3(Large), and appended a feature enhancement module known as the Spatial Pyramid
Pooling (SPP). (b) We leverage the efficient Depthwise Separable Convolution (DSC), a lightweight
convolutional unit, to reconstruct the feature fusion network. This not only ensures the effective
extraction of small-scale object features but also significantly reduces the convolution parameters.
(c) In the Head structure, we have introduced three prediction channels of diverse scales to encompass
the detection of various target types. (d) we have incorporated Cluster NMS and designed the α-DIoU
loss to optimize the algorithm’s training and accelerate convergence.

2.1. Feature Extraction Network

MobileNetV3(Large) is a remarkable lightweight network renowned for its favorable
identification performance on general datasets involving multiple object categories. It
comprises 15 so-called Bneck modules with diminishing feature map sizes. In addition, the
inverse residual structures within the network exhibit an increment in channel numbers
and feature layer quantities. This architectural configuration effectively tackles the issue of
feature networks losing object salient information in deep convolutional layers. The Bneck
module, depicted in Figure 2, utilizes an inverse residual structure with linear bottlenecks
to enhance model dimensionality. Meanwhile, it incorporates residual edge structures
for convolutional feature fusion. Additionally, the module employs depthwise separable
convolution and lightweight feature attention mechanisms to perform feature extraction,
resulting in reduced parameter count and computational requirements. This approach
enhances the network’s ability to capture significant features of small objects. Research [21]
has demonstrated that MobileNetV3(Large) exhibits efficient convolutional computation
capabilities and a relatively deep network architecture, enabling robust extraction of essen-
tial object features. Moreover, the network has significantly fewer parameters compared to
general network architectures such as RCNN series, ResNet-101, SENet, and Darknet53,
striking a good balance between accuracy and speed.
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Figure 2. Structure of the Bneck module. In the process of forward convolution, this module employs
an attention calculation mechanism and a residual edge structure to enhance the extraction of crucial
features relevant to the targets.

In marine radar images, the small scale of ship targets and their limited distinctive
features result in the representation of only a limited number of abstract features in deep
convolutional networks. This can give rise to the challenge of confounding ship features
with background information. Therefore, ship identification in radar images imposes
elevated demands on feature extraction networks. MobileNetV3(Large), with its efficient
feature extraction architecture for small targets, can capture more comprehensive ship
information and enhance accuracy. By incorporating convolutional heatmaps, it is ob-
served that MobileNetV3(Large) primarily leverages the trailing features of ships for object
localization. As shown in Figure 3, MobileNetV3(Large) is capable of effectively extract-
ing ship features and accurately distinguishing ships from the background environment,
even in scenarios involving minute scales or extreme conditions. This significantly im-
proves ship detection performance and ensures increased accuracy with relatively fewer
convolutional parameters.

 
(a) Micro-scale ships 

 
(b) Dense ships 

Figure 3. Cont.
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(c) Ships in cross-traveling 

Figure 3. Convolutional heatmaps. It is apparent that MobileNetV3(Large) leverages the detection
of radar spot features to discern the validity of targets. The heatmaps substantiate the remarkable
precision of the feature network in localizing ships while effectively mitigating false positives.

2.2. Receptive Field Expansion Module

When performing convolutional computations in the feature network for radar image
inputs, variations in the input image size often necessitate operations like stretching and
cropping, resulting in the loss of pixel information from the original image. Moreover,
small-scale ships tend to have fewer preserved effective features in deep convolutions,
leading to lower accuracy in their identification by the model. To address these challenges,
concatenating an SPP module after the feature network can preserve more comprehensive
image features. This is because SPP utilizes pyramid-like pooling operations, which
increase the network’s receptive field without altering the resolution of the feature maps.
Consequently, it better captures object-related features at different scales, thereby enhancing
the model’s capability. The SPP structure, as depicted in Figure 4, employs the concatenation
of multiple max pooling modules with different sizes to transform the multi-scale feature
maps into fixed-size feature vectors [10]. Through numerous experiments, it has been
observed that concatenating four max-pooling layers, with sizes of 1 × 1, 5 × 5, 9 × 9, and
13 × 13, yields optimized detection results for ship identification in radar images.

 
Figure 4. Structure of the SPP. Through the concatenation of multiple scales of maximum pooling
layers, this module captures the relatively prominent feature representations from diverse local
regions of the feature map. This strategy ensures the positional invariance of the feature data and
contributes to mitigating the risk of overfitting.
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Drawing upon prior knowledge, it is widely acknowledged that the inclusion of the
SPP module plays a critical role in effectively integrating features from diverse scales,
thereby enhancing the identification efficacy for small targets and mitigating overfitting
concerns. In ship detection using marine radar images, the dataset encompasses diverse
scenes and scales of ships, which exert an influence on the complexity and learning capacity
of the model, as well as the convergence of the feature network’s parameters. The SPP
module, in addressing these challenges, enhances the extraction effectiveness of significant
features from small-scale ships by expanding the receptive field range of the feature maps.
This expansion, in due course, positively contributes to the overall practical capability of
the model.

By conducting evaluations within an appropriate training environment and utilizing
relevant radar images, the practical performance of the YOSMR algorithm with the incorpo-
ration of the SPP module was assessed. In certain marine radar images, a notable presence
of ships with short wakes is observed. These ships are commonly considered small-scale
targets, posing significant challenges for accurate identification, as depicted in Figure 5.
Experimental observations indicate that in situations involving dense and intersecting
ships, the SPP module demonstrates robust adaptability to various types of ship targets. It
exhibits high precision in ship localization without any instances of mistakes. In contrast,
when the SPP module is not utilized, the detection results fail to differentiate between
densely packed ships and intersecting ships, leading to multiple erroneous results. Analysis
suggests that the SPP module effectively mitigates the common issue of misidentification
in small target detection, thus enhancing the actual effectiveness of the algorithm.

 
(a) Comparison of dense scenarios 

 
(b) Comparison of cross-traveling scenarios 

Figure 5. Comparison of identification results with and without SPP. The SPP module, by extracting
finer-grained target features, enables effective discrimination of adjacent spots in dense scenes,
reducing the probability of misidentification and enhancing the model’s robustness.

2.3. Feature Fusion Network

In the field of ship detection and identification in marine radar images, it is typical
to observe multiple ship spots with varying sizes and distinct shapes within a single
image. Furthermore, the majority of these ships tend to possess relatively diminutive scales,
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thereby potentially leading to overlapping ship pixels or a striking resemblance to the
background. These factors significantly compound the challenges associated with ship
identification. To address these aforementioned issues, the extraction of salient features,
such as ship contour morphology and the distinguishing characteristics of the bow and
stern, can furnish the model with precise discriminative information. Consequently, this
augmentation serves to enhance the accuracy and robustness of ship detection.

In general, within deep convolutional networks, shallow convolutions tend to possess
higher resolution, capturing more detailed spatial information that aids in improving the
precision of object localization. Conversely, deep convolutions have lower resolution but
encapsulate stronger multi-scale and semantic information. This research aims to fully
integrate feature information extracted from different scales of receptive fields in a single
image, thereby devising a more efficient feature fusion network.

With the advancement of convolutional neural networks, feature fusion structures,
exemplified by the standard Feature Pyramid Network (FPN) [27], often employ convo-
lutional units that entail redundant computations. Moreover, a plethora of ineffective
convolutional parameters can impede the extraction of salient features. Additionally, the
single-level top-down feature fusion structure within the FPN architecture fails to con-
catenate shallow features with deep convolutions, leading to varying fusion effects for
different levels of convolutional features. Therefore, the feature blending effect of cer-
tain prediction channels is compromised. Research has shown that when PANet [28] is
employed as the feature fusion network, its bidirectional fusion structure facilitates a sec-
ondary fusion of convolutional features from different levels. This reinforces the outputs of
each convolutional level, consequently enhancing the algorithm’s estimation and classi-
fication capabilities. Simultaneously, the feature fusion network devised in this research
incorporates three prediction channels, encompassing the prediction processes for large,
medium, and small-scale targets. Consequently, the convolutional computations of the
feature fusion network far exceed those of a single prediction channel. This, in turn, leads to
a more complex network structure with a larger parameter count and computational over-
head, resulting in a surplus of redundant information. Experimental findings indicate that
when PANet employs standard 3 × 3 convolutions, the identification model experiences
a significant increase in ineffective parameters. Therefore, simplifying the convolutional
computations of feature data serves as a direct approach to reduce the parameter count of
the model and alleviate overfitting issues in deep networks.

It has been established through research that depthwise separable convolution pro-
foundly simplifies the computational process of standard convolution while maintaining
identical input and output dimensions [23]. Compared to standard convolution, depthwise
separable convolution exhibits heightened precision in extracting features pertaining to
small targets due to a substantial reduction in redundant parameters. In the context of ma-
rine radar images, diminutive-scale ships possess fewer discernible features that distinguish
them from background pixel information within the convolutional network. Consequently,
such targets gradually fade or even vanish within deep-level feature maps. In actuality,
standard convolution tends to suppress the feature expression process of such targets,
consequently influencing actual outcomes. Conversely, depthwise separable convolution
augments the diversity of convolutional features, thereby ameliorating the algorithm’s
proficiency in recognizing small-scale ships. Consequently, within the framework of feature
fusion networks, this research enhances the PANet network by incorporating five modules
of depthwise separable convolution, resulting in the design of the LightPANet network.
This endeavor aims to curtail superfluous parameters within the network, enhance compu-
tational efficiency, and elevate identification performance for small targets. The LightPANet
structure, as devised in this paper, is depicted in Figure 6.
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Figure 6. Structure of the LightPANet. In this network, the employment of Depthwise Separable
Convolution (DSC) results in a remarkable reduction in parameter count. By decomposing the
convolution operation into depthwise convolution and pointwise convolution, DSC achieves a
significant decrease in parameters, thereby reducing model complexity and computational demands.
Moreover, the independent processing of each input channel during the depthwise convolution
allows for the extraction of highly discriminative features. This facilitates the network’s ability to
capture spatial information within the input data and enhances its generalization capabilities.

To compare the practical capabilities of LightPANet and PANet for ship detection in
radar images, the aforementioned networks were employed as feature fusion networks
within the YOSMR algorithm. While keeping other structures constant, their practical
performance was assessed. Referring to the inference results of radar images in Figure 7,
it was observed that the crossing of ship trajectories in regions 1 and 2 posed significant
challenges, resulting in substantial interference with the algorithm. The PANet-based
model encountered issues of misidentification, leading to a higher rate of false output for
ships. Conversely, the LightPANet-based model achieved accurate localization of all ship
spots. This experiment validates the detrimental impact of excessive convolution on the
detection of small targets in radar images, impeding the effective acquisition of ship pixel
features. In contrast, a lightweight feature fusion structure, such as LightPANet, effectively
mitigates this issue.

 
Figure 7. Comparison of identification results between LightPANet and PANet. The utilization of
the optimized feature fusion network, empowered by the integration of the DSC module, yields
higher precision in localizing ship spots and enhances the accuracy of identifying small-scale targets.
Consequently, this leads to a reduced occurrence of false positive predictions.
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2.4. Non-Maximum Suppression

Within the YOSMR algorithm, this research employed the LightPANet network to
construct a target prediction structure with three channels, enabling the presence of mul-
tiple bounding boxes for the same ship target. Typically, the non-maximum suppression
(NMS) method is utilized to retain the optimal detection results by filtering out redundant
predictions. In conventional algorithms, the IoU metric is commonly employed to filter out
redundant predictions, preserving only the bounding box with the highest overlap ratio.
However, the IoU metric solely considers the degree of overlap between target bounding
boxes, neglecting other crucial target attributes such as shape, size, and orientation. Thus,
in scenarios where similar but not entirely overlapping targets exist, the IoU metric may
fail to accurately assess the similarity between targets. Moreover, when there is a signif-
icant difference in scale between targets, the IoU metric may inadequately measure the
similarity between targets, leading to the selection of inappropriate bounding boxes during
non-maximum suppression.

This research introduces Cluster-NMS [25] as a solution to the aforementioned issues,
serving as a metric for performing non-maximum suppression. In comparison to the IoU
metric, the Cluster-NMS method incorporates the DIoU metric [26] and prediction box
fusion strategy [29] to achieve weighted adjustments of the bounding box positions and
confidence values. This approach enhances the prediction accuracy for small-scale and
dense ships. Particularly, the application of a weighted fusion strategy combines multiple
prediction boxes, where the weight of each prediction box is determined based on its
confidence score. Prediction boxes with higher confidence scores carry greater weights,
thereby exerting a more significant influence on the final fusion result. This method better
captures the position and shape information of targets, providing more accurate bounding
boxes and improving the quality and accuracy of object detection.

As depicted in Figure 8, YOSMR generates multiple bounding boxes for a single ship.
Conventional NMS or Soft-NMS methods solely filter the bounding boxes, which may
result in lower localization accuracy for the retained boxes. In contrast, the Cluster-NMS
method captures more precise ship position and shape information and performs a fusion
of multiple prediction boxes. This enables the method to handle ships of different scales,
shapes, and scenes, leading to a significant improvement in ship prediction accuracy.

 
Figure 8. Comparison between Cluster-NMS and other methods. By comparison, Cluster-NMS
stands out by utilizing an innovative weighted fusion approach to process candidate prediction boxes,
leading to satisfactory precision in target localization.
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2.5. Position Loss Function

For the purpose of refining the localization accuracy of ship-bounding boxes, this
research introduces the α-DIoU loss function as a computational measure for evaluating
the positional error of predicted boxes. On general datasets, this method significantly
outperforms standard loss functions such as IoU, DIoU, and CIoU. Moreover, in different
scenarios, by adjusting the α coefficient, the detection model exhibits greater flexibility
in achieving regression accuracy at various levels, making it easier to find more adaptive
threshold settings. Experimental results demonstrate that the α-DIoU loss function exhibits
stronger robustness to marine radar images and various types of noise. The overall calcula-
tion of the α-DIoU function is illustrated in Equations (1) and (2), with partially key metrics
of the function also explained in Figure 9.

Lossα−DIoU = 1 − IoU2α +
ρα(b, bgt)

cα
(1)

IoU =
Spr ∩ Sgt

Spr ∪ Sgt (2)

 

Figure 9. Key indicators of α-DIoU function. Through separate adjustments of a hyperparameter,
this method effectively modifies the impact weight of the center point distance metric compared
to the standard DIoU metric. This adjustment, made during the loss calculation, facilitates faster
convergence of prediction boxes for small-scale targets.

In this context, c represents the Euclidean distance between the minimum bounding
rectangles of the prediction box and ground truth bounding box, while ρ(b, bgt) denotes the
Euclidean distance between their center points. After multiple tests, it has been observed
that when the α coefficient is set to 1/2, the α-DIoU function is better suited for ship
identification in radar images.

3. A Case Study

3.1. Dataset

The present research focuses on the waters adjacent to Mount Putuo in Zhoushan,
China, a large coastal passenger terminal, where the primary ship types encompass pas-
senger ships and maritime auxiliary craft. The JMA5300-MKII marine radar (source from
Furuno Electric Co., Ltd., Hyogo, Japan) was selected as the data collection instrument. Fol-
lowing the preprocessing of raw data, a dataset named Radar3000 comprising 3000 images
of high quality was constructed for the purpose of training and validating various algo-
rithms. It is noteworthy that passenger terminals prohibit ship operation during inclement
weather conditions like heavy rain, dense fog, and strong winds. As such, radar images
acquired under these adverse environments would hold limited practical research value.
Consequently, the Radar3000 dataset does not consider the aforementioned situations
but instead includes other factors such as daytime, dusk, nighttime, and electromagnetic
interference, which represent the majority of real-world scenarios. As depicted in Figure 10,
the ships in the images can be primarily classified into two categories, i.e., long-wake ships
and short-wake ships. The edge features of long-wake ships are more salient. Conversely,
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it is readily apparent that the pixel characteristics of short-wake ships bear resemblance
to interferences such as islands and reefs. This issue is particularly pronounced during
ships in dense environments, where mutual interference among short-wake ships tends
to manifest.

  
(a) Long-wake ships 

  
(b) Short-wake ships 

Figure 10. Marine radar images. The radar spots present in the image are characterized by their
minuscule scale, while small islands and atmospheric clusters, due to their high feature similarity,
significantly interfere with the accurate recognition of actual ships.

Furthermore, the Radar3000 dataset encompasses a diverse range of complex back-
ground environments, including varying weather conditions, harbor settings, and imaging
conditions. It also takes into account factors such as ship heading, distance variations in
imaging, and angle transformations. Moreover, to address the issue of mistakes during
cross-traveling and busy traffic environments of ships, the Radar3000 dataset incorporates
an increased number of ship images specifically tailored to these scenarios. Given the
highly similar characteristics exhibited by different ship types in marine radar images, all
ships in the Radar3000 dataset have been uniformly labeled and designated as “B”, with
corresponding XML annotation files generated to adhere to the format requirements of the
Pascal VOC dataset.

In the entirety of experiments conducted in this research, all the images in the
Radar3000 dataset were partitioned into training, validation, and testing sets in an 8:1:1
ratio. Various algorithms were trained on the training and validation sets, and the actual
identification accuracy and effectiveness of the algorithms were evaluated on the testing set.
Additionally, through K-means clustering analysis, it was discovered that the average size
of the bounding boxes for ship targets was 21 × 25 pixels, accounting for approximately
0.05% of the entire image area. This finding indicates that ship targets in marine radar
images predominantly belong to the categories of small-scale and miniature-scale objects.

3.2. Experimental Environment and Training Results

This research conducted algorithm training and testing using a computational plat-
form equipped with an NVIDIA RTX3090 24G (source from NVIDIA Corporation, Santa
Clara, CA, USA) graphics card, operating under the Ubuntu 20.04 operating system. The
experimental comparisons encompassed conventional algorithms, the YOLO series, and
the YOSMR algorithm. The experiments were conducted using the same set of ship images.
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Furthermore, transfer learning techniques were employed to optimize the training process
of the different algorithms. Specifically, the pre-trained network weights of different YOLO
models and MobileNetV3 on the ImageNet dataset were utilized as initial weights for
algorithm training. Subsequently, several rounds of algorithm iterations were performed
to improve training stability and enhance the learning capabilities of the algorithms in
capturing ship features under different scenarios.

During model training, the input image size was set to 416 × 416 pixels, and the
momentum was set to 0.9. In the transfer learning phase, where only the prediction layers
were activated, the batch size was set to 10 for 15 iterations, with an initial learning rate of
10−4. When all convolutional layers were enabled, the batch size was set to 4, and the initial
learning rate was again set to 10−4. This phase consisted of a total of 300 predetermined
iterations. If the algorithm’s loss value did not decrease in 15 consecutive iterations,
the training process was terminated early. Based on the aforementioned settings, the
convergence of the loss during training for different algorithms is illustrated in Figure 11.
Specifically, the YOLOv3, YOLOv4, YOLOv5(L)-6.0, and YOSMR algorithms underwent
141, 125, 137, and 133 iterations, respectively. The losses in the training set converged to
9.38, 8.55, 10.31, and 9.26, while the ones in the validation set converged to 10.02, 9.03, 9.82,
and 9.4, respectively. It is evident that the training process of YOSMR exhibits smoother loss
convergence, with a smaller difference between the two types of losses, thereby contributing
to improved training efficacy of the algorithm.

  

Figure 11. Comparison of training processes of various algorithms. Throughout the entirety of the
training process, the proposed algorithm exhibits an expedited and consistent convergence compared
to standard methods, resulting in obviously lower overall loss computation values.

3.3. Comparisons and Discussion

This paper quantitatively evaluates the model using five metrics, namely recall, ac-
curacy (Ac), precision (Pr), model parameters (PARAMs), and floating-point operations
(FLOPs) [30]. Additionally, a series of experiments were devised to examine the identifi-
cation performance of the YOSMR algorithm on ship images from marine radar. Firstly,
based on the testing images from the Radar3000 dataset, comparative experiments were
designed to scrutinize the actual performance of various algorithms across different evalua-
tion metrics, thus validating the effectiveness of the YOSMR algorithm. Moreover, ablation
experiments were devised to analyze the different improvement methods within YOSMR,
thereby verifying the specific effects of each method. Lastly, by identifying ships from
different scenarios, the adaptability of the YOSMR algorithm to different types of tasks
was assessed.

A. Experimental analysis of different algorithms

In the constructed Radar3000 dataset, a comparative analysis was undertaken to assess
the performance of various generic algorithms in comparison to the proposed YOSMR
algorithm in this paper. Uniformly, the algorithms were trained using the same approach
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and tested on an identical dataset. Furthermore, cross-validation was employed for all the
algorithms, resulting in the recall, accuracy, and precision values being the average of three
experimental runs. According to Table 1, the proposed YOSMR achieved a recall rate of
0.9308, accuracy of 0.9204, and precision of 0.9215 for the testing set images. Compared to
the top-performing comparative algorithm, YOSMR exhibited a 0.64% increase in recall
rate. This improvement can be attributed to YOSMR’s adequate ability to accurately
identify dense and small-scale ships in radar images. Additionally, in relation to model
parameter size and real-time computational consumption, YOSMR exhibited favorable
performance, with figures of 12.4 M and 8.63 G, respectively. In comparison to the standard
YOLOv3, YOSMR achieved significant reductions of 80.18% and 86.9% in the respective
metrics mentioned earlier. Meanwhile, YOSMR has achieved an inference throughput of
122 frames per second (FPS) when deployed on a server equipped with a 3090 24 GB GPU
(source from NVIDIA Corporation, Santa Clara, CA, USA) in our research lab. Furthermore,
we have integrated the trained model into the existing radar-based surveillance system at
Zhoushan Port, where a 1660 6 GB GPU (source from NVIDIA Corporation, Santa Clara,
CA, USA) is utilized, delivering a real-time inference speed of 82 FPS and satisfying the
requirements of real-time computation.

Table 1. Specific experimental results of various algorithms.

Different Types Algorithms Recall Ac Pr PARAMs/(M) FLOPs/(G)

Conventional methods CV + GHFilter 0.8910 0.8815 0.8744 N/A N/A

Standard algorithms

YOLOv3 0.9217 0.9195 0.9233 62.57 65.88
YOLOv4 0.9209 0.9286 0.9225 63.94 59.87

YOLOv5(S) 0.8944 0.9089 0.9236 7.2 16.5
YOLOv5(L) 0.9177 0.912 0.9216 46.5 109.14

YOLOv7 0.9195 0.9177 0.9281 37.21 104.7
YOLOv8(S) 0.911 0.9057 0.921 11.2 28.6
YOLOv8(L) 0.9149 0.9107 0.93 43.28 165.67

Lightweight
algorithms

YOLOv3-MobileNetV3(Large) 0.9019 0.9001 0.9127 25.74 20.77
YOLOv3-MobileNetV3(Small) 0.8565 0.8462 0.8504 7.72 4.73

YOLOv3-Ghostnet 0.8973 0.8916 0.9003 25.44 20.23

Other algorithms
SRDet 0.8962 0.9025 0.9098 35.1 /

AFSar 0.8936 0.8813 0.8612 6.52 9.86

YOSMR
YOSMR(PANet) 0.9244 0.9135 0.9095 42.11 31.69

YOSMR 0.9308 0.9204 0.9215 12.40 8.63

The conventional methods [31,32], incorporating CV and GHFilter, exhibited a recall
of 0.8910, accuracy of 0.8815, and precision of 0.8744 in the identification of ships from radar
images. These figures were lower by 3.98%, 3.89%, and 4.71%, respectively, compared to the
performance achieved by YOSMR. Analysis indicates that when dealing with small-scale
ships, difficulties arise due to their diminutive dimensions, absence of prominent charac-
teristics, and limited distinguishability from the surrounding background. These factors
pose challenges in terms of target association and data integration, rendering the processes
more intricate. Within complex backgrounds, traditional methods are susceptible to false
or missed associations, resulting in imprecise detection outcomes. Therefore, experimental
results demonstrate the advantages of CNN-based approaches in ship detection under
marine radar images.

YOSMR attains a level of identification precision that closely rivals several YOLO algo-
rithms, encompassing YOLOv3, YOLOv4, YOLOv5(L)-6.0, YOLOv7 [33], and YOLOv8(L) [34].
It closely approaches the performance of the best-performing YOLOv8(L) and even sur-
passes them in terms of recall. Furthermore, YOSMR outperforms YOLOv8(L) by a sig-
nificant margin in terms of model parameter size and computational consumption. Com-
pared to the lightweight YOLOv5(S) and YOLOv8(S) algorithms, YOSMR demonstrates
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an enhancement of 3.64% and 1.98% in the recall, respectively, while sustaining relatively
superior overall performance. In comparison to optical images, radar images exhibit lower
resolution and higher levels of noise. These factors hinder the clear depiction of details and
features of small targets in radar images, posing challenges for standard YOLO algorithms
in accurately localizing and recognizing such targets. Consequently, the experimental per-
formance of YOLO algorithms in this context often falls short of the desired expectations.
Conversely, the proposed YOSMR demonstrates competent capability in suppressing false
targets, accurately distinguishing coastal objects, reefs, clouds, and other interferences that
bear resemblance to ship features. This effectively reduces mistaken rates and enhances
adaptability for radar images.

To extract more accurate ship features from radar images while simultaneously balanc-
ing identification capability and model parameter size, this experiment explored several
combinations of lightweight feature networks with YOLO architecture. By utilizing the
prediction head structure of YOLOv3, the MobileNetV3(Large), MobileNetV3(Small), and
Ghostnet networks are successively employed to replace the original Darknet53 network,
resulting in three categories of lightweight algorithms for comparison. As shown in Table 1,
the YOLOv3-MobileNetV3(Large) algorithm achieved recall, accuracy, and precision rates
of 0.9019, 0.9001, and 0.9127, respectively. It outperformed the YOLOv3-Ghostnet algorithm
in all evaluation metrics and significantly outperformed the YOLOv3-MobileNetV3(Small)
algorithm, particularly in terms of recall. This underscores its effectiveness across diverse
radar images. Moreover, YOLOv3-MobileNetV3(Large) exhibits minimal deviation from
various standard YOLO series in terms of detection precision in radar scenarios. Given its
desirable performance in all aspects, YOLOv3-MobileNetV3(Large) has been selected as
the benchmark algorithm in this research.

To validate the practical performance of the LightPANet network, the standard
PANet network was applied as the feature fusion structure in YOSMR, resulting in the
YOSMR(PANet) algorithm. It is worth noting that the only difference between YOSMR(PANet)
and YOSMR lies in the feature fusion structure, while the other components remain con-
sistent. According to the data in Table 1, YOSMR(PANet) exhibits a slight decline in
overall performance compared to YOSMR, particularly in terms of recall and precision,
which decreased by 0.64% and 1.2%, respectively. This suggests that excessive convolu-
tion calculations can lead to a noticeable decrease in the model’s accuracy in predicting
ship-positive samples and discerning interference objects. The experiments confirm that
reducing redundant convolutions is beneficial for improving the feature extraction of deep
convolutional networks for small targets. Furthermore, in terms of convolution parameter
count and real-time computational consumption, YOSMR achieves a reduction of 70.57%
and 72.77%, respectively, compared to YOSMR(PANet). This provides evidence that the
3 × 3 convolutions in the PANet network contribute significantly to the presence of inef-
fective parameters in the model. In conclusion, the lightweight LightPANet significantly
enhances the algorithm’s performance for ship detection in radar images and is better
suited for designing lightweight algorithms.

Amidst the current lack of CNN or transformer-based ship detection algorithms specif-
ically developed for marine radar images, through a comparative assessment, we have
determined that the target features in SAR images exhibit similarities to the small-scale
characteristics of ships in radar scenes. As such, we have selected two detection algorithms
designed specifically for SAR images, namely SRDet [35] and AFSar [36], to benchmark
against our proposed YOSMR, thereby validating the efficacy of our approach. The ex-
perimental results indicate that the comparative algorithms demonstrate unconvincing
adaptability when applied to radar images. Although they exhibit better performance in
sparse target detection, the precision, recall, and accuracy metrics for the identification of
radar spots are markedly weaker in comparison to YOSMR. This disparity can be attributed
to the fact that ship targets in SAR images primarily represent static objects in port or
near-shore environments, which contrasts sharply with the dynamic characteristics of ships
in radar scenes, thus accounting for their suboptimal real-world performance.
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B. Ablation Experiments

To further validate the practical performance of the proposed method, a decompo-
sition validation was conducted on the constructed Radar3000 dataset to analyze the
influence of each method on ship identification results. The experimental process primarily
involved applying various improvement methods step by step on the basis of YOLOv3-
MobileNetV3(Large) and testing their respective metrics. The ablation experiments for
YOSMR are presented in Table 2.

Table 2. Ablation experiments of YOSMR.

Methods Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

YOLOv3 +
MobileNetV3(Large) �

+SPP �
+Cluster-NMS �

+α-DIoU �
+FPN �

+LightPANet �
Recall 0.9019 0.9098 0.9138 0.9224 0.9229 0.9308

Ac 0.9001 0.8936 0.9040 0.9142 0.9126 0.9204

Pr 0.9127 0.9053 0.9182 0.9160 0.9097 0.9215

(1) The incorporation of the SPP module following the MobileNetV3(Large) network
yields a noteworthy increase of 0.79% in the recall rate of ship targets in radar images.
This enhancement signifies an improved capability of the algorithm to suppress false
targets, reduce mistaken rates, and diminish the likelihood of ship omissions. Furthermore,
through multiple experiments, it has been observed that the integration of the SPP module
accelerates algorithm convergence, resulting in an average reduction of 11 iterations in the
YOSMR training process. Additionally, the discrepancy between the training set loss and
the validation set loss decreases from 0.7 to 0.14. The empirical findings unequivocally
demonstrate that SPP significantly enhances the training quality of the algorithm and
improves the identification ability of the model. Notably, in the later stages of algorithm
training, the model loss continues to steadily decline with increasing training iterations.
Therefore, the SPP module aids in mitigating the overfitting issue in YOSMR and enhances
the model’s generalizability across diverse ship detection scenarios.

(2) This research focuses on optimizing two modules, namely non-maximum sup-
pression (NMS) for bounding box prediction and the calculation of object localization
loss, in the conventional YOLO’s prediction structure. Firstly, the Cluster-NMS method
is introduced to optimize the candidate results of bounding boxes. By preserving more
accurate ship prediction boxes, experimental results demonstrate improvements of 0.4%
in recall, 1.04% in accuracy, and 1.29% in precision. Secondly, the α-DIoU loss function is
incorporated to calculate the localization loss of bounding boxes, providing a more accurate
evaluation of the positioning accuracy of predicted ships. Experimental findings reveal
that this approach increases recall by 0.86% and accuracy by 1.02%.

(3) As previously elucidated, the application of depthwise separable convolutions to
the feature fusion network presents a notable avenue for reducing convolutional parameters
and computational costs, thus facilitating the development of lightweight algorithms.
Analysis of the data in Table 2 reveals a significant enhancement in the identification
capability of the YOSMR algorithm with the incorporation of the LightPANet network.
In comparison to the original FPN network in YOLO, this architecture achieves a 1.18%
increase in precision and a 0.79% improvement in recall. Theoretically, assigning higher
impact factors to critical feature information is of paramount importance for the detection of
small targets, such as ships, in marine radar images. Consequently, LightPANet effectively
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improves the representation of crucial target features by reducing redundant computations,
ultimately bolstering the model’s ability to identify small-scale ships.

C. Comparisons in radar images

Figure 12 presents the detection results of YOSMR for ships in marine radar images
across different scenarios, with a specific focus on assessing its performance in recognizing
ships with various wake features. As shown in the radar images, each real ship spot is
accompanied by motion wake characteristics of varying lengths. In contrast, as the islands
and coastline remain stationary in the shore-based radar, these targets do not exhibit any
pronounced or extended wakes. By evaluating the wake features surrounding the spots,
YOSMR can accurately differentiate between ship targets and confounding entities such
as islands. Furthermore, during the image annotation process, we have precisely distin-
guished the true radar reflections from other objects, providing a robust guide for the
algorithm training. This enables YOSMR to learn the salient features of the ship targets,
ultimately facilitating accurate classification. From Figure 12a, it can be observed that
YOSMR accurately identifies ships with long-wake features in various environments, indi-
cating its strong identification capability for targets with distinctive features. This clearly
demonstrates the algorithm’s ability to effectively address and mitigate the degradation
of target localization accuracy caused by interruptions or changes in ship wake patterns.
Figure 12b reveals that YOSMR achieves high identification accuracy for ships with short
wake features in different radar conditions. It demonstrates robust feature extraction ca-
pabilities for small-scale ship targets, avoiding both missed detections and false results.
This highlights its ability to effectively mitigate the influence of confounding factors, such
as islands and weather patterns that exhibit similar features. Figure 12c demonstrates
YOSMR’s precise detection of densely packed ships, exhibiting high ship localization ac-
curacy. Moreover, YOSMR performs well even in extreme scenarios such as close-range
encounters and crossing trajectories. The analysis suggests that YOSMR’s utilization of
small-scale feature receptive fields enables it to capture pixel-level features and positional
information of ships, even in situations where small targets are densely clustered.

  

  
(a) Identification of long-wake ships  

Figure 12. Cont.
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(b) Identification of short-wake ships 

  

  
(c) Identification of densely packed ships 

Figure 12. The identification results of YOSMR for different marine radar images. Regardless of the
ship scales, YOSMR exhibits remarkable efficiency in identifying ship spots, effectively capturing
target information across various sizes. Moreover, in navigation-intensive environments, this model
excels in accurately localizing targets and demonstrates a reduced occurrence of false positives.

Within the 3 nautical miles perceptual range, as depicted in the radar images presented
in Figure 10, the proposed model demonstrates the ability to accurately identify ship
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signatures, as illustrated in Figure 12. It is well-established that as the radar detection range
expands, the effective feature points of individual ships undergo a rapid diminution. We
have also conducted experiments using radar images of varying scales, which have revealed
that without increasing the training sample size, YOSMR can maintain an identification
precision of approximately 83% for ship targets within the 3.5 nautical mile range. However,
when tasked with detecting ships across larger radar-sensing domains, the model begins to
exhibit a higher incidence of omission errors. Therefore, the current iteration of YOSMR
has been calibrated to operate within an effective perceptual range of 3 nautical miles.

A salient point to note is that upon scrutinizing the radar images, we have observed
that a minority of islands or reefs are accompanied by some short luminous streaks, which
could impact the recognition accuracy for certain ship targets. Through experiments, we
have found that in 1024 × 1024 resolution images, when the real wake associated with
a ship occupies more than 120 pixels, YOSMR is consistently able to accurately identify
the target. However, when the number of pixels occupied by the ship’s wake falls below
this threshold, or when the luminous streaks surrounding islands approach this value, the
model becomes prone to probabilistic misclassification.

D. Comparisons under noise interference

Radar systems are susceptible to electromagnetic interference (EMI) with similar or
adjacent frequencies, leading to anomalies in echo returns, which can subsequently impact
radar imaging. The shore-based radar used in this study is equipped with countermeasures
against co-frequency asynchronous interference, which can mitigate the effects of EMI at the
source. However, to quantify the resilience of the proposed method against varying degrees
of interference, we simulated different types and intensities of EMI using salt-and-pepper
noise, speckle noise, and Gaussian noise, as outlined in Table 3, to assess their impact on
ship detection in radar images.

Table 3. Noise Generation Mechanisms.

Noise Type Noise Implementation Noise Configuration

Salt-and-Pepper Noise Direct addition of noise to the original image Adheres to a random distribution

Speckle Noise Multiplication of the original image and noise,
then superimposed Follows a standard normal distribution

Gaussian Noise Direct addition of noise to the original image Conforms to a Gaussian distribution

In more detail, the salt-and-pepper noise adheres to a random distribution pattern,
and its impact on real-world detection performance is relatively more pronounced. When
the proportion of randomly occurring black and white noise pixels occupies less than
30% of the entire image, the proposed YOSMR can still detect the ship targets, though the
confidence levels may be affected, and occasional misclassifications may occur. Regarding
Gaussian noise, which follows a normal distribution, when the standard deviation is set
below 25, the designed model can accurately identify the targets. However, when the
standard deviation exceeds 25, more target omissions will arise. In comparison, speckle
noise has a relatively less obvious influence on the existing image pixels. This is because the
image features a predominately black pixel background surrounding the true ship targets,
and this type of noise minimally interferes with the black pixels, thereby preserving the
inherent pixel characteristics of the ship targets. Consequently, the performance of YOSMR
remains largely unaffected by speckle noise.

Figure 13 presents the real detection results of YOSMR in radar images under various
interference signals. The original images contain three types of targets, i.e., ships with
short wakes, ships with long wakes, and dense ships, which are common and prevalent
in radar images. The empirical investigation conducted on real images has revealed that
salt-and-pepper noise significantly impacts radar images, resulting in substantial distortion
of pixel characteristics for ships and other objects. In contrast, the influence of speckle noise
and Gaussian noise on ship-specific pixel information is comparatively minimal. Empirical
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observations reveal that YOSMR achieves accurate detection of all ships under the influence
of speckle noise and Gaussian noise, demonstrating commendable robustness against these
forms of interference. However, when subjected to the interference of salt-and-pepper
noise, YOSMR exhibits a slight decrease in confidence for ship identification and introduces
one false positive in dense scenarios. Nonetheless, it maintains a satisfactory performance
for other ships.

E. Comparisons of small-scale ship identification

The identification of small targets has always been a focal point and challenge in
various computer vision tasks, including ship detection in marine radar images. To evaluate
the performance of YOSMR and other typical algorithms in detecting small-scale ships,
an experiment was conducted using a dedicated subset of the Radar3000 dataset. This
subset included two scenarios, i.e., cross-traveling and dense environment, both of which
contained numerous small-scale, and even minuscule, ships with short wakes. The presence
of interference objects, such as reefs, also had a noticeable impact on the model’s detection.
For this experiment, we selected the commonly used YOLOv5(L) and YOLOv8(L) as the
comparative algorithms, as they are widely recognized for their effectiveness in detecting
small objects. The results, as shown in Table 4, revealed that YOSMR outperformed the
comparison algorithms in all aspects, demonstrating its adequate effectiveness in detecting
various small-scale ships.

  
Original image Salt-and-pepper noise 

  
Gaussian noise Speckle noise 

(a) Identification of short-wake ships 

Figure 13. Cont.
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Original image Salt-and-pepper noise 

  
Gaussian noise Speckle noise 

(b) Identification of long-wake ships 

  
Original image Salt-and-pepper noise 

Figure 13. Cont.
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Gaussian noise Speckle noise 

(c) Identification of densely packed ships 

Figure 13. Identification of YOSMR for different types of ships under various noises. YOSMR exhibits
resilience to a certain degree of interference, as it can effectively discern and accurately locate the
majority of authentic ship spots despite the varying impact on target confidence scores caused by
different types of disturbances.

Table 4. Comparison of different algorithms in small-scale ship identifications.

Algorithms
Detected

Ships
True

Ships
False

Alarms
Recall Pr

YOLOv5(L) 1419 1303 116 0.9086 0.9183
YOLOv8(L) 1427 1307 120 0.9114 0.9159

YOSMR 1440 1325 115 0.9240 0.9201

In the context of small-scale ship identification, although YOSMR exhibits competent
performance across various evaluation metrics compared to the comparative algorithms, it
is still essential to validate its effectiveness on real radar images. To visualize this experi-
ment, we have selected several representative images and presented them in Figure 14. As
shown in the experimental results, YOLOv5(L) exhibits susceptibility to misidentification
issues when dealing with tiny ship spots, whereas YOLOv8(L) is equally prone to misiden-
tification in dense scenarios. This can be attributed to the utilization of relatively large
receptive fields and deep convolutional layers in both methodologies, which may inadver-
tently diminish their sensitivity towards capturing intricate nuances of small-scale ships.
As a consequence, the above models may erroneously categorize background elements or
extraneous objects as ships. Conversely, YOSMR outperforms both the YOLOv5(L) and
YOLOv8(L) in terms of ship localization precision. It demonstrates lower rates of mistakes
and omission, indicating that the lightweight algorithm, through the construction of a
rational network structure, can extract finer pixel and texture features, thereby enhancing
the detection effect of small targets by the model.
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Original image YOLOv5(L) 

  
YOLOv8(L) YOSMR 

(a) Identification and comparison in cross-traveling scenarios 

  
Original image YOLOv5(L) 

Figure 14. Cont.
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YOLOv8(L) YOSMR 
(b) Identification and comparison in dense scenarios 

Figure 14. Comparison of different algorithms for small-scale ship identification. It should be noted
that the image presented above has been appropriately cropped and magnified from the original
radar image to provide a clearer visualization of the detection results of the spots. In the challenging
context of identifying small-scale ships, typical models often produce a considerable number of
false positive targets in their recognition outcomes. This issue persists even with advanced models
such as YOLOv8 and the latest version of YOLOv5, which are widely acknowledged. However,
through comparison, it becomes apparent that the proposed YOSMR exhibits remarkable detection
performance, particularly in its ability to effectively suppress false positive targets.

F. Comparative experiments on other datasets

Given the absence of publicly accessible marine radar datasets to assess the practical
performance of the proposed YOSMR across alternative scenarios, we have selected a set
of representative ship targets within SAR images to conduct corresponding experiments.
This decision is informed by the distinctive characteristics of SAR scenes, which feature a
high proportion of small targets and a rich diversity of contexts, posing notable challenges
for target detection. Employing such a dataset provides a compelling means to evaluate
the transferability of our method. The images utilized for model training, validation, and
testing were sourced from the RSDD-SAR dataset [37], which encompasses a diverse array
of imaging modalities and resolutions, totaling 7000 images and 10,263 ship instances,
thereby offering broad representational coverage. The experimental findings reveal that
YOSMR achieves recall and precision rates of 0.8612 and 0.8733, respectively, demonstrating
considerable adaptability. However, the model also exhibits a comparatively elevated
misidentification rate for small targets and densely populated ship scenes, consistent with
its performance in radar-based scenarios. Accordingly, our subsequent efforts will focus on
optimizing this specific shortcoming.

G. Comparative Experiments with CFAR Methods

In order to more comprehensively evaluate the capabilities of various methods in
suppressing clutter and accurately detecting real targets within the shore-based radar in
port waters, we have designed a set of experiments to compare two categories of approaches.
The first category comprises target detection algorithms tailored for radar echo signals,
which have been extensively deployed in a myriad of practical applications, namely the
CFAR method and its diverse improved variants. These methods endeavor to maximize
the detection rate under a fixed false alarm probability by meticulously designing dynamic
thresholds to filter the radar echo signals. The second category encompasses deep learning-
based detection algorithms designed for radar images, such as the constructed YOSMR. As
mentioned earlier, the prerequisite for the efficacious implementation of such methods is
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the pre-processing of radar echo signals to obtain radar images. In the present research,
the radar image is generated based on a customized CFAR method for clutter suppression
and a Kalman filtering-based target tracking approach, which have eliminated a certain
proportion of clutter interference while preserving the majority of true targets.

For the specific experiments, within the traditional methods, we have selected two
variants of the CFAR approach, namely CA-CFAR, and OS-CFAR, to be compared against
the proposed YOSMR. Since the conventional methods are tailored for radar echo signals,
we have chosen the Probability of Detection(PD) and Probability of False Alarm(PFA) as
the evaluation metrics [38]. To ensure the uniformity of the evaluation criteria, the YOSMR
will also be assessed based on these same metrics. The experimental data is derived from
the same shore-based radar located at the Zhoushan passenger terminal, comprising both
radar echo and image data collected at the same timestamps.

The experimental results, elucidated in Tables 5 and 6, demonstrate YOSMR’s prefer-
able performance in interference suppression compared to two conventional methods. The
analysis suggests that while CA-CFAR exhibits commendable performance in scenarios
with sparse targets and relatively low interference, it suffers from elevated miss-detection
probabilities in ship-dense waters with pronounced clutter variations. Conversely, OS-
CFAR showcases enhanced detection rates for multiple targets. As previously expounded,
radar image, through efficacious suppression of clutter interference while maintaining
satisfying detection rates, lays the groundwork for YOSMR’s image-oriented detection
capabilities. The empirical data corroborates that YOSMR, by employing identification and
localization of ship spots within images, further attenuates interference and mitigates target
misidentification instances, consequently diminishing the Probability of False Alarm (PFA).

Table 5. Probability of Detection of various CFAR methods under different PFA settings.

CA-CFAR OS-CFAR

PFA(0.1) 0.663 0.837
PFA(0.05) 0.637 0.825
PFA(0.01) 0.557 0.762

Table 6. Probability of Detection and Probability of False Alarm of YOSMR under different PFA settings.

Detected PD Detected PFA

PFA(0.1) 0.847 0.044
PFA(0.05) 0.823 0.023
PFA(0.01) 0.753 0.0087

In summary, the detection methods that operate directly on the radar echoes tend to
exhibit relatively higher target detection rates, yet also confront correspondingly elevated
false alarm rates. Conversely, the detection approaches oriented towards radar images can
effectively strike a balance between the detection rate and the false positive rates, with the
capability to further reduce the false alarm rate in particular.

4. Conclusions and Discussion

This paper presents YOSMR, an algorithm for ship identification in marine radar
images. YOSMR leverages the MobileNetV3(Large) network in its feature extraction mod-
ule, which demonstrates satisfactory capabilities in extracting ship-specific features from
radar images. Additionally, YOSMR employs lightweight design principles in its feature
fusion network by replacing certain traditional convolutions with depthwise separable
convolutions. This design significantly reduces the model’s parameter count and compu-
tational complexity while enhancing its ability to capture salient ship features. Moreover,
YOSMR incorporates the SPP module after the feature network to enhance the extraction
capabilities of deep convolution features. In the prediction structure, YOSMR optimizes
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NMS using the Cluster-NMS method and employs the α-DIoU loss function to improve the
accuracy of predicted bounding boxes. The experimental results indicate that in the context
of marine radar images, YOSMR exhibits a more satisfying performance than conventional
approaches. It achieves accurate detection of both long-wake and short-wake ships in
various scenarios, particularly excelling in extreme conditions such as recognizing tiny
ships under complex navigation scenarios. YOSMR achieves recall, accuracy, and preci-
sion values of 0.9308, 0.9204, and 0.9215, respectively. Furthermore, YOSMR significantly
reduces convolutional parameter count and real-time computational costs to 12.4 M and
8.63 G, respectively, compared to the standard YOLO series. The proposed YOSMR effec-
tively balances model size and identification accuracy, making it suitable for deployment
in embedded monitoring devices.

Considering the limited range of ship classes currently covered in the Radar3000
dataset, we plan to actively pursue the collection of radar images from typical inland
waterways and coastal ports. This will enable the inclusion of a more diverse set of ship
characteristics, such as cargo ships, container ships, tankers, and tugboats. Particular
attention will be given to enhancing the detection of dense ship formations and small-scale
ships. Moreover, the next explorations will integrate multi-object tracking algorithms to
obtain comprehensive ship trajectory data, which will enable the analysis of ship traffic
patterns and enhance safety monitoring in specific waterway scenarios, thereby expanding
the practicality of this research.
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Abstract: In this paper, a swarm trajectory-planning method is proposed for multiple autonomous
surface vehicles (ASVs) in an unknown and obstacle-rich environment. Specifically, based on the
point cloud information of the surrounding environment obtained from local sensors, a kinodynamic
path-searching method is used to generate a series of waypoints in the discretized control space
at first. Next, after fitting B-spline curves to the obtained waypoints, a nonlinear optimization
problem is formulated to optimize the B-spline curves based on gradient-based local planning.
Finally, a numerical optimization method is used to solve the optimization problems in real time to
obtain collision-free, smooth and dynamically feasible trajectories relying on a shared network. The
simulation results demonstrate the effectiveness and efficiency of the proposed swarm trajectory-
planning method for a network of ASVs.

Keywords: autonomous surface vehicles; kinodynamic path searching; uniform B-spline curves;
nonlinear optimization

1. Introduction

The autonomous surface vehicle (ASV), as an intelligent, miniaturized, and versatile
unmanned marine transport platform that operates through remote control or autonomous
navigation, has a variety of applications in offshore ocean engineering [1–13]. Among the
various applications of ASVs, the trajectory planning of ASVs is particularly crucial to
provide a safe trajectory. In order to obtain the optimal trajectory, trajectory planning of the
ASV is described as a constrained optimization problem by using local sensor and global
map information.

The trajectory-planning problem of an ASV has been widely studied in the
literature [14–21]. Specifically, in [14], a temporal-logic-based ASV path-planning method is
employed, which enables the ASV to pass through heavy harbor traffic to an intended desti-
nation in a collision-free manner. In [15], an evolutionary-based path-planning approach is
proposed for an ASV to accomplish environmental monitoring tasks. In [16], an extension
of the hybrid-A* algorithm is proposed to plan optimal ASV paths under kinodynamic
constraints in a leader-following scenario. Another hybrid-A*-based two-stage method
is provided in [17] for energy-optimized ASV trajectory planning with experimental vali-
dation. In [18], a novel receding horizon multi-objective planner is developed for an ASV
performing path planning in complex urban waterways. In [19], an essential visibility
graph approach is proposed to generate optimal paths for an ASV with real-time collision
avoidance. Furthermore, in [20], the particle swarm optimization algorithm together with
the visibility graph is applied to the ASV path-planning problem among complex shorelines
and spatiotemporal environmental forces. Recently, in [21], a hybrid artificial potential field
method is proposed for an ASV cruising in a dynamic riverine environment. However,
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it is worth mentioning that the works [14–21] are dedicated to the path planning of a
single ASV.

Compared to a single ASV, multiple ASVs are more likely to complete difficult tasks
such as exploration and development, territorial sea monitoring and route planning [4,22–32].
Therefore, the trajectory planning of multiple ASVs, as one of the key topics in the field of
marine science, has attracted increasing interest in scientific research, and much success has
been achieved. Existing path-planning methods for multiple ASVs include model predic-
tive control [33–35], the RRT method [36], satellite maps [37], the priority target assignment
method [38], the Voronoi-Visibility roadmap [39], and the multidimensional rapidly explor-
ing random trees star algorithm [40], to list just a few. However, due to the uncertainties of
obstacles, and limitations in sensor range and communication bandwidth, the trajectory
planning of multiple ASVs in an unknown—an especially an obstacle-rich—marine envi-
ronment still presents a great challenge. In fact, to the best of the our knowledge, as for the
autonomous navigation of multiple ASVs, little research is available that constructs a multi-
objective optimization problem with optimal energy consumption, dynamic feasibility, and
obstacle avoidance distance in unknown environments based on local sensor information.

In light of the above discussions, this paper focuses on the distributed swarm trajectory-
planning problem for multiple ASVs in a complex and obstacle-rich marine environment.
Firstly, by utilizing local sensors, the surrounding environment’s point cloud data are
acquired, and a kinodynamic path-search technique is employed to generate a series of
waypoints within a discretized control space. Subsequently, B-spline curves are fitted to
these waypoints, and a nonlinear optimization problem is formulated. This problem is
optimized using a gradient-based local planning approach, which allows the generation
of collision-free, smooth, and dynamically feasible trajectories through a shared network.
Compared with the existing trajectory-planning methods, the proposed trajectory-planning
method has the following features:

• In contrast to the existing trajectory-planning methods dedicated to a single
ASV [14–21] and multiple USVs [36–40], this work constructs a multi-objective op-
timization problem with optimal energy consumption, dynamic feasibility, curve
smoothness, obstacle avoidance distance, and endpoint distance constraints based on
local sensor information. By utilizing local onboard sensor information, ASVs can ac-
complish autonomous navigation requiring no external localization and computation
or a pre-built map in unknown complex environments.

• By adopting the proposed planning method, the optimal trajectory generation problem
for multiple ASVs is divided into initial trajectory generation and back-end trajectory
optimization. A heuristic-based kinodynamic path search is employed to efficiently
find a safe, feasible, and minimum-time initial path. The initial path is then optimized
by a B-spline optimization incorporating gradient-based local planning. By this means,
the generated trajectories are able to meet the dynamic feasibility with enhanced safety.

• By adopting the proposed planning method, ASVs can perceive the surrounding
environment in real time, using point cloud information obtained from local sensors to
generate real-time local optimal trajectories. Moreover, this work utilizes multiple local
optimal trajectories to form a global trajectory, which better meets the requirements
of real-time obstacle avoidance and generates shorter sail distance for short-range
autonomous navigation.

The rest of this paper is organized as follows. Some preliminaries and the problem
formulation are given in Section 2. Section 3 discusses the process of swarm trajectory plan-
ning of ASVs. Section 4 provides some simulation results to demonstrate the effectiveness
of the proposed method. Section 5 concludes this paper with some concluding remarks
and future works.
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2. Preliminaries and Problem Formulation

2.1. Preliminaries

Rn denotes the n-dimensional Euclidean space. The Euclidean norm is denoted by
‖ · ‖. λmin(·) and λmax(·) represent the minimum and maximum eigenvalues of a square
matrix (·), respectively. N+ denotes a positive integer. R+ and R− represent the positive
and negative real numbers, respectively.

2.2. Problem Formulation

In the trajectory planning, each ASV is governed by the kinematic model expressed
as follows: ⎧⎪⎨⎪⎩

ẋ = ucosψ − vsinψ

ẏ = usinψ + vcosψ

ψ̇ = r

(1)

where [x, y] and ψ denote the position and yaw angle in an earth-fixed frame, respectively.
u, v, and r are the surge velocity, sway velocity, and yaw rate in a body-fixed frame,
respectively. For the trajectory-planning task, it is assumed that v = 0 such that⎧⎪⎨⎪⎩

ẋ = ucosψ

ẏ = usinψ

ψ̇ = r

(2)

In this paper, a real-time trajectory-planning method is proposed for multiple ASVs to
reach the designated target points in a complex and obstacle-rich environment, as shown
in Figure 1.
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Figure 1. An illustration of trajectory planning for multiple ASVs to reach the designated locations.
The dashed lines represent trajectories that have not yet been optimized, the solid lines indicate the
optimized trajectories, and the black obstacles represent the complex static environments.

3. Swarm Trajectory Planning

This section gives a general description of the proposed swarm trajectory-planning
method, including the construction of occupancy grid maps, the kinodynamic path-
searching method, the curve-fitting method based on cubic uniform B-spline, the con-
struction of nonlinear optimization problems under multiple constraint conditions, and the
numerical optimization algorithm for solving the formulated optimization problem. The
proposed trajectory-planning framework for multiple ASVs is shown in Figure 2.
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Figure 2. The trajectory-planning framework for multiple ASVs.

3.1. Construction of Occupancy Grid Map

The sensing radius of the sensor is set to rid and takes a circular area for point
cloud acquisition. The position of the ASV is set to pid = [xid, yid, zid] ∈ R3. The point
cloud position coordinates obtained by sampling the surrounding environment are set to
ptid = [xtid, ytid, ztid] ∈ R3, and the quaternion of the ASV is set to
qid = [wqid, xqid, yqid, zqid] ∈ R4. In order to obtain the point cloud data within the de-
sired range, the angle value corresponding to the maximum height of point cloud collection
is set to α ∈ R; then, the constraints for point cloud acquisition are given as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ztid − zid
rid

≤ tan(α)⎡⎣ xtid − xid
ytid − yid
ztid − zid

⎤⎦
⎡⎢⎣ 1 − 2(y2

qid + z2
qid)

2(xqidyqid + zqidwqid)
2(xqidzqid − yqidwqid)

⎤⎥⎦ ≥ 0
(3)

According to (3), a dense point cloud map of the ASVs’ forward direction can be
obtained. To represent the presence of obstacles, an occupied grid map is constructed by
partitioning the point cloud into grids with each being one of two states: filled or empty.
For a grid mi in an occupancy grid map, the probability of the grid state being occupied is
denoted as p(mi) and the probability of the grid state being free is denoted as p(mi). The
t-th observation is set to zt. To calculate the posterior probability of the grid state based
on existing observations, p(mi|z1:t) and p(mi|z1:t) should be calculated. A grid is occupied
if p(mi|z1:t) ≥ κ with κ being a preset threshold. The probability of the grid state being
occupied can be specifically denoted as

p(mi|z1:t) =
p(zt|z1:t−1, mi)p(mi|z1:t−1)

p(zt|z1:t−1)
(4)

and the t-th observation is obtained as follows:

p(mi|zt) =
p(zt|mi)p(mi)

p(zt)
(5)

According to the Markov assumption that the results of the first t − 1 observations are
independent of the result of the t-th observation, one has that

p(zt|z1:t−1, mi) = p(zt|mi) (6)
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Expanding (4) based on the Bayes formula, it follows that

p(mi|z1:t) =
p(mi|zt)p(zt)p(mi|z1:t−1)

p(mi)p(zt|z1:t−1)
(7)

and

p(mi|z1:t) =
p(mi|zt)p(zt)p(mi|z1:t−1)

p(mi)p(zt|z1:t−1)
(8)

Define lt(mi) as the t-th update posterior probability for a grid mi; then, one has that⎧⎪⎪⎨⎪⎪⎩
lt(mi) = log

p(mi|z1:t)

p(mi|z1:t)

lt−1(mi) = log
p(mi|z1:t−1)

p(mi|z1:t−1)

(9)

Further simplifying the above equation using (7), lt(mi) can be described as

lt(mi) = log
p(mi|zt)

p(mi|zt)
− log

p(mi)

p(mi)
+ lt−1(mi) (10)

Substituting (5) into (10) yields

lt(mi) = log
p(zt|mi)

p(zt|mi)
+ lt−1(mi) (11)

By assuming that the sensor model will not change during the environmental modeling
process, the sensor model formulas p(zt|mi) and p(zt|mi) are constant. Then, according
to (9), one has that

p(mi|z1:t) =
alt(mi)

1 + alt(mi)
(12)

where a is the base of the log function. Based on the posterior probability, the occupied grid
map can be updated. The occupied grid map constructed by ASVs during autonomous
navigation is depicted in Figure 3.

Figure 3. An illustration of the occupied grid map in a complex and obstacle-rich environment. The
colored point cloud part represents the environmental information perceived by the ASV, and the
gray part represents the unknown obstacle environment.

3.2. Kinodynamic Path Searching

Inspired by the hybrid A* search proposed for autonomous vehicles in [41], the
kinodynamic path searching is applied for ASV to obtain a safe and reliable trajectory in an
occupancy grid map while minimizing time cost. The mechanism of the kinodynamic path
searching is illustrated in Figure 4.
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Figure 4. A schematic diagram of the kinodynamic path searching. The blue dashed line represents
the motion primitives obtained by expanding the state point by Equation (14), and the black curve
represents the optimal curve selected based on the heuristic function.

Similar to the standard A*, we use openlist and closelist to denote the open set and
the closed set, respectively. A structure node is used to record the position of the expansion
point as well as the gc and fc cost (Section 3.2.2). The nodes expand iteratively, and the
one with the smallest fc is saved in openlist. Then, CheckCollision(·) checks the safety and
dynamic feasibility of the nodes. The searching process ends once any node reaches its goal
successfully or the AnalyticExpand(·) succeeds. Details of the kinodynamic path searching
are shown in Algorithm 1.

Algorithm 1 Kinodynamic Path Searching

while openlist.empty() do
openlist pop nc
closelist insert nc
if Reachgoal(nc) or AnalyticExpand(nc) then

return Path()
end if
expandnodes ← NodeExpand(nc)
nodes ← NodePrune(expandnodes)

end while
for each ni ∈ nodes do

if closelist contain ni and CheckCollision(ni) then
gt ← nc.gc + CurrentCost(ni)
if openlist contain ni then

openlist add ni
if gt ≥ ni.gc then

continue
end if

end if
end if

end for
ni.parent ← nc, ni.gc ← gt
ni. fc ← ni.gc + h(ni)
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3.2.1. Primitives Generation

The motion primitives are generated by using NodeExpand(·) in Algorithm 1. Ac-
cordingly, we firstly define the discretization sampling of ri, Tj, and uk, i = 1, 2, · · · , m,
j = 1, 2, · · · , n, k = 1, 2 with m, n ∈ N+ as follows:⎧⎪⎨⎪⎩

ri ∈ {r0, r1, . . . rm}
Tj ∈ {T0, T1, . . . , Tn}
uk ∈ {−umax, umax}

(13)

where ri, i = 1, 2, · · · , m denotes a set of discretized yaw rates, Tj, j = 1, 2, · · · , n, denotes a
set of durations, and uk, k = 1, 2 denotes the control input.

Let p0 = [x0, y0, ψ0] ∈ R3 be the node recording the current pose of the ASV, and let
pt = [xt, yt, ψt] ∈ R3 be the pose of the ASV after sampling. Recalling the ASV kinematic
model (2) and applying the control variables uk and ri for duration Tj, the pose of the ASV
can be calculated by ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xt = x0 +
∫ Tj

0
uk cos(ψt)dτ

yt = y0 +
∫ Tj

0
uk sin(ψt)dτ

ψt = ψ0 +
∫ Tj

0
ridτ

(14)

3.2.2. Heuristic Cost

In this subsection, a heuristic function h(·) is designed to speed up the searching
in Algorithm 1 as used in A*. Heuristic cost refers to constructing a boundary optimal
problem using the Pontryagin extremum principle, considering multiple target points
generated by the A* path search method. Computing the cost values of all candidate
target points, the one with the minimal cost is selected as the optimal target point. Then,
based on the selected optimal target point, the A* algorithm is used to iteratively search
toward the endpoint.

In order to find a trajectory that is optimal in time, the Pontryagins minimum principle
is applied to design a heuristic cost function J(T) as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

J(T) = T + ∑
μ∈{x,y}

(
1
3

α2
μT3 + αμβμT2 + β2

μT)

[
αμ

βμ

]
=

[
− 12

T3
6

T2
6

T2 − 2
T

][
pμ f − pμ0 − vμ0T

vμ f − vμ0

] (15)

where pμ0, pμ f are the current and goal position, respectively, and vμ0, vμ f are the current
and goal velocity, respectively.

In order to obtain the minimum heuristic cost, αμ and βμ are substituted into J(T) to
obtain the solutions of ∂J(T)/∂T = 0. The solution which minimizes J(T) is denoted as
Tmin, and J(Tmin) represents the heuristic cost hc for the current node. Moreover, gc is used
to represent the actual cost of the trajectory from the start position (xs, ys) to the current
state (xc, yc), and it is calculated as gc =

√
(xs − xc)2 + (ys − yc)2. Thus, the final cost of

the current state is obtained by fc = gc + hc.

3.2.3. Collision Check

Collisions are checked based on the occupied grid map constructed by point clouds
from local sensors. We assume that the entire ASV is included in a maximum rectangular
box; then, a series of rectangular boxes is constructed sequentially on the trajectory points
along the generated trajectory. All rectangular boxes are detected at a frequency of 20 Hz
to determine whether they overlap with the surrounding point clouds or not. If there is
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overlap, it is determined that a collision has occurred, and multiple ASVs’ trajectories need
to be replanned. Otherwise, it is determined that the trajectory is safe.

To be specific, approximating an ASV by a rectangle, a set of footprints S representing
the area occupied by the ASV is obtained by xi, yi and ψi along the footprints, as illustrated
in Figure 5. The union of footprints S is called the swath along trajectory, which needs to
be checked for collisions, as can be found in CheckCollision(·) in Algorithm 1. With the
obtained swath, the occupancy grids of the swath are calculated to see if they overlap with
obstacles on the occupancy grid map, as shown in Figure 6.

O

EX

EY

BY

BX
( , )i ix y

i

Figure 5. An illustration of the swath along trajectory. The red rectangle represents the area occupied
by the ASV. The black area represents complex static obstacles.

Figure 6. Schematic diagram of collision checking during autonomous navigation of an ASV. The
red cube area represents the area occupied by the ASV, while the gray area represents complex
static obstacles.
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3.2.4. Analytic Expansion

Generally speaking, it is difficult for discretized input to reach the endpoint accurately.
To this end, an analytic expansion scheme AnalyticExpand(·) in Algorithm 1 is induced
to speed up the trajectory searching. When the current node pμ0 is close to the endpoint
pμ f , the same approach used in Section 3.2.2 is directly applied to compute a trajectory
from pμ0 to pμ f without generating primitives. If the trajectory can pass the safety and
dynamic feasibility check, the path searching is terminated in advance. This strategy proves
to be beneficial in enhancing efficiency, particularly in a sparse environment, as it greatly
improves the success rate of the algorithm and terminates the searching earlier.

3.3. Trajectory Smoothing

Theoretically, the safety and dynamic feasibility of the path generated by kinodynamic
path searching cannot be strictly guaranteed, as kinodynamic path searching ignores the
distance information of obstacles and does not consider curve smoothness. Therefore, a
B-spline curve is used in this section to fit the path curve.

3.3.1. Cubic Uniform B-spline

Let q = {q0, q1, . . . , qn} be the control points obtained from kinodynamic path search-
ing and Θ = {θ0, θ1, . . . , θm} be the knot vector with qk ∈ R2, θi ∈ R and m = n + p + 1.
A B-spline is a piecewise polynomial determined by its degree p and n + 1 control points
q and Θ. A cubic B-spline trajectory, used to fit the above control points, is parameter-
ized by θ. For a uniform cubic B-spline trajectory, it is noted that each knot span satisfies
Δθk = θk+1 − θk = Δθ.

The convex hull property of B-spline curves is illustrated in Figure 7. For θ ∈ [θi, θi+1),
i = 0, 1, · · · , m − 1, the four control points of a cubic uniform B-spline trajectory set within
the knot vector θ are qk−3, qk−2, qk−1, qk, where 3 ≤ k ≤ n. To construct B-spline curves,
the B-spline basis function firstly needs to be calculated, of which the degree is set to p.
Denoting the k-th B-spline basis function of degree p as Nk,p, the 0-order and the pk-order
basis function are given as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Nk,0 =

{
0 i f θi ≤ θ < θi+1

1 otherwise

Nk,p =
θ − θi

θi+p − θi
Nk,p−1(θ) +

θi+p+1 − θ

θi+p+1 − θi+1
Nk+1,p−1(θ)

(16)

For ease of implementation, p is set to p = 3. Correspondingly, the four basis functions
are set to Nk−3,3, Nk−2,3, Nk−1,3, and Nk,3.

Defining a normalized variable s(θ) = (θ − θi)/Δθ, and substituting s(θ) into (16),
one has that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nk−3,3 =
1
6
(1 − s(θ))3

Nk−2,3 =
1
2

s(θ)3 − s(θ)2 +
2
3

Nk−1,3 = −1
2

s(θ)3 +
1
2

s(θ)2 +
1
2

s(θ) +
1
6

Nk,3 =
1
6

s(θ)3

(17)

Therefore, the following matrix can be calculated to represent the coefficients of cubic
uniform B-spline trajectories:⎧⎪⎪⎨⎪⎪⎩

p(s(θ)) = nkQk

nk =
[

Nk−3,3 Nk−2,3 Nk−1,3 Nk,3
]

Qk =
[

qk−3 qk−2 qk−1 qk
]T

(18)

221



J. Mar. Sci. Eng. 2024, 12, 298

X

Y

1q

2q
�q

�q

�q

�q
�q

O

Figure 7. The convex hull property of B-spline curves with gray points representing the control points.
Each segment of the curve is included in the convex hull constructed by every four control points.

3.3.2. Convex Hull Property

In order to ensure the dynamic feasibility, it is necessary to construct a nonlinear
constrained optimization problem for the first-order and second-order derivatives of B-
spline trajectory. For this purpose, it is necessary to prove that the derivative of a B-spline is
also a B-spline. With control points {q0, q1, . . . , qn} and basis functions Nk,p defined above,
a p-degree B-Spline C(θ) can be obtained as follows:

C(θ) =
n

∑
k=0

Nk,p(θ)qk (19)

with its first-order and second-order derivatives being⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ċ(θ) =

n−1

∑
k=0

Nk+1,p−1(θ)vk

C̈(θ) =
n−2

∑
k=0

Nk+2,p−2(θ)ak

(20)

Moreover, the first derivative of the basis function is given as follows:

dNk,p(θ)

dθ
=

pNk,p−1(θ)

θi+p − θi
+

−pNk+1,p−1(θ)

θi+p+1 − θi+1
(21)
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Substituting (21) into (20) yields

Ċ(θ) =
n−1

∑
k=0

Nk+1,p−1(θ)(
pqk+1

θi+p+1 − θi+1
+

−pqk
θi+p+1 − θi+1

) (22)

Thus, the control points of the B-spline C(θ)’s first derivative vk can be computed by

vk =
pqk+1

θi+p+1 − θk+1
+

−pqk
θi+p+1 − θi+1

(23)

Since the B-spline trajectory used in Section 3.3.1 is uniform, Equation (23) is further
simplified as follows:

vk =
qk+1 − qk

Δθ
(24)

Similarly, the second-order and third-order derivatives of the B-spline trajectory can
be further derived as follows:⎧⎪⎨⎪⎩

ak =
vk+1 − vk

Δθ
=

1
Δθ2 (qk+2 − 2qk+1 + qk)

jk =
ak+1 − ak

Δθ
=

1
Δθ3 (qk+3 − 3qk+2 + 3qk+1 − qk)

(25)

3.4. Nonlinear Optimization

For the B-spline trajectory defined by a set of control points {q0, q1, . . . , qn} in Sec-
tion 3.3, a nonlinear optimization method is constructed in this subsection to further ensure
the safety of the curve. The overall optimization function is defined as follows:

ftotal = λ1 fsm + λ2 fc + λ3( fv + fa) + λ4 fsw + λ5 ft, (26)

where fsm and fc are optimization terms for trajectory smoothness and collision distance,
respectively. fv and fa are constrained optimization terms of velocity and acceleration,
respectively. fsw and ft are optimization terms for the collision distance between ASVs and
endpoint arrival, respectively. λ1, λ2, λ3, λ4 and λ5 are the designed weight coefficients.

3.4.1. Smoothness Penalty

The smoothness cost fsm is defined by a function that uses the integral of the squared
jerk. According to (25), the jerk (i.e., the 3rd-order derivative of the position) of the trajectory
is minimized to obtain a smooth trajectory. fsm is defined as follows:

fsm =
n−3

∑
k=2

||jk||2 =
n−3

∑
k=2

||qk+2 − 3qk+1 + 3qk − qk−1||2 (27)

3.4.2. Collision Distance Penalty

Initially, a naive B-spline trajectory is given regardless of whether the control points
collide with an obstacle or not, as depicted by the black solid line passing though the
obstacle in Figure 8. Therefore, the naive trajectory needs to be optimized by the A*
algorithm to obtain a collision-free trajectory Γ.

Specifically, for control points qk on the colliding segment, points on the obstacle
boundary denoted by pk are assigned with corresponding repulsive direction vectors vk.
The distance between qk and pk is denoted by dk = (qk − pk)

Tvk, as shown in Figure 8. In
order to avoid generating pk, vk repeatedly, the B-spline trajectory can only be optimized
when dk > 0. By ensuring that dk is less than the safe distance s f , the control points can be
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kept away from the obstacles. In order to optimize the collision distance of the B-spline
trajectory, a twice continuously differentiable function Fc is applied as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ck = s f − dk

Fc =

⎧⎪⎪⎨⎪⎪⎩
0 ck ≤ 0

c3
k 0 < ck ≤ s f

3s f c2
k − 3s2

f ck + s3
f s f < ck

(28)

The collision penalty function is denoted as fc and its derivative can be obtained
as follows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fc =
N−3

∑
k=2

Fc(qk)

Jc =
δ fc

δqk
=

{− 3ckvk ck ≤ s f

− 6s f ck + 3s2
f s f < ck

(29)

pk

vk

EX

EY

A

B
qk

dk

O
Figure 8. The black solid line passing though the obstacle represents the naive B-spline trajectory to
be optimized. The red solid line represents the edge of the obstacle obtained by A* search.

3.4.3. Dynamic Feasibility Penalty

The dynamic feasibility can be ensured by constraining the high-order derivatives of
B-spline trajectories at discrete control points {q0, q1, . . . , qn}. Specifically, due to the convex
hull property, constraining derivatives of the control points is sufficient for constraining the
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whole B-spline. Therefore, the constrained optimization terms of velocity and acceleration
are given, respectively, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fv =
N−3

∑
k=3

Fv(vk)

Fv(vk) =

⎧⎪⎪⎨⎪⎪⎩
0 (0 ≤ vk ≤ vmax)

(vk − vmax)
3 (vmax ≤ vk ≤ vj)

a1v2
k + b1vk + c1 (vk ≥ vj)

fa =
N−3

∑
k=4

Fa(ak)

Fa(ak) =

⎧⎪⎪⎨⎪⎪⎩
0 (0 ≤ ak ≤ amax)

(ak − amax)
3 (amax ≤ ak ≤ aj)

a2a2
k + b2ak + c2 (ak ≥ aj)

(30)

where a1, b1, c1, a2, b2, and c2 are design parameters to ensure the second-order continuous
differentiability of Fv and Fa. vmax and amax are the derivative limits, respectively. vj
and aj are the splitting points of quadratic and cubic curves, respectively. According
to (24) and (25), the first-order derivatives corresponding to fv and fa are given, respectively,
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δvk
δqk

= − 1
Δθ

δ fvk

δqk
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N−3

∑
k=3

3
δvk
δqk

(vk − vmax)
2 (vmax ≤ vk ≤ vj)

N−3

∑
k=3

2
δvk
δqk

a2vk +
δvk
δqm

b2 (vk ≥ vj)

δak
δqk

=
1

Δθ2

δ fak

δqk
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N−3

∑
k=3

3
δak
δqk

(ak − amax)
2 (amax ≤ ak ≤ aj)

N−3

∑
k=3

2
δak
δqk

a2ak +
δaμ

δqk
b2 (ak ≥ aj)

(31)

3.4.4. Swarm Distance Penalty

An illustration of swarm distance penalty is depicted in Figure 9. Similar to the
collision distance penalty and dynamic feasibility penalty, the swarm distance penalty
function is formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dsw = (qi,k − qj,k)
2

sμ = ssw − dsw

fsw =
1/2N

∑
k=0

Fs(sμ)

Fsw(sμ) =

{
s2

μ (sμ ≥ 0)

0 (sμ < 0)

(32)

where dsw and ssw represent the actual distance between swarm trajectories and the preset
safety distance, respectively; qi,k and qj,k represent the control point of the i-th and j-th
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trajectories at time k, respectively. The derivative of the swarm distance penalty function
can be obtained as follows:

Jsw =
δ fsw

δqk
=

⎧⎪⎨⎪⎩
1/2N

∑
k=0

−2(qi,k − qj,k) (sμ ≥ 0)

0 (sμ < 0)

(33)
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Figure 9. An illustration of swarm distance penalty. The red line represents the i-th trajectory, while
the green line represents the j-th trajectory. qi,k and qj,k represent the control points corresponding to
the i-th and j-th trajectories, respectively, at time k.

3.4.5. Endpoint Arrival Penalty

To ensure that each ASV can reach the endpoint, the last three control points of the
B-spline trajectory are set to qk−2, qk−1, qk, and k ∈ [2, n], respectively. Let ft be the penalty
function for reaching the endpoint; then, one has that

ft = (
1
6
(qk−2 + 4qk−1 + qk)− G)2, (34)

where G ∈ R2 represents the endpoint. The first derivative of ft is obtained as

Jt =
δ ft

δqk
=

1
3
(qk−2 + 4qk−1 + qk)− 2G (35)

3.5. Numerical Optimization

The nonlinear optimization problem has the following two characteristics. Firstly,
the total penalty function ftotal will be updated in real time based on changes in the
environment. Secondly, the quadratic optimization term about dynamic feasibility and
obstacle avoidance distance will make ftotal closer to the quadratic form, which means
that the utilization of Hessian information can significantly improve the speed of solution.
However, in the process of trajectory planning for ASVs, solving the inverse Hessian
information is prohibitive in real time. Therefore, the limited memory BFGS (L-BFGS)
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method is adopted to achieve accurate values through a series of iterations. The details of
the optimization process are summarized in Algorithm 2.

Algorithm 2 Numerical Optimization

Initialize x0, g0 ← ∇ f (x0), B0 ← I, k ← 0
while ||gk|| > δ do

d ← −Bkgk

t ← Lewis Overton line search
xk+1 ← xk + td
gk+1 ← ∇ f (xk+1)
Bk+1 ← LBFGS(gk+1 − gk, xk+1 − xk)
k ← k + 1

end while

For an unconstrained optimization problem min f (x), the iterative updating method
for x is similar to Newton’s method. Specifically, the update of x is given as follows:

xk+1 = xk − tBkgk, (36)

where Bk is updated at every iteration of the LBFGS method as summarized in Algorithm 3,
gk represents the gradient at xk, and t is the step length obtained through the Lewis–Overton
line search method, as summarized in Algorithm 4.

Algorithm 3 The L-BFGS algorithm

Initialize sk = xk+1 − xk, yk = gk+1 − gk, ρk = 1/(ykTsk), d ← gk

for i = k − 1, k − 2, ..., k − m do

αi ← ρisiTd
d ← d − ρiyi

end for
γ ← ρk−1yk−1Tyk−1

d ← d/γ
for i = k − m, k − m + 1, ..., k − 1 do

β ← ρiyiTd
d ← d + si(αi − β)

end for

Algorithm 4 Lewis–Overton line search
Initialize l ← 0, u ← +∞, α ← α0

if S(α) f ails then
u ← α

else if C(α) f ails then
l ← α

else
return α

end if
if u < +∞ then

α ← (l + u)/2
else

α ← 2l
end if
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It is noted that S(α) and C(α) in Algorithm 4 represent strong Wolfe conditions and
weak Wolfe conditions, respectively, which are given as follows:

strong wol f e conditions :

{
f (xk)− f (xk + td) ≥ −c1 ∗ tdT∇ f (xk)

|dT∇ f (xk + td)| ≤ |c2dT∇ f (xk)|
(37)

weak wol f e conditions :

{
f (xk)− f (xk + td) ≥ −c1 ∗ tdT∇ f (xk)

dT∇ f (xk + td) ≥ c2dT∇ f (xk)
(38)

where c1 = 10−4, c2 = 0.9.

3.6. Broadcast Network

Once an ASV generates a new trajectory in the complex environment, it will publish the
trajectory to other ASVs through a broadcast network. Other ASVs will save the trajectory
and generate their own safety trajectory when necessary based on the saved trajectory.
Meanwhile, each ASV checks the collision condition when the neighbor’s trajectory is
received from the network. If the received trajectory collides with the trajectories of other
ASVs, this strategy can solve the problem. In addition, considering the increasing number
of ASVs, each ASV should compare its current position with the trajectories received from
neighboring ASVs before conducting trajectory planning.

Remark 1. The current algorithm proposed in the article aims at obstacle avoidance and collision
avoidance of multiple ASVs in complex static obstacle environments. When dynamic obstacles exist
and enter the perception range of the ASV, it will stop and continuously replan until a passable path
appears. Therefore, it would still be feasible for online application while meeting unknown moving
obstacles. Nevertheless, in the case of unknown moving obstacles, it is necessary for the ASV to
have strong braking ability when sailing at a fast speed. In our future work, for the case of unknown
moving obstacles, we will try to add dynamic point cloud filtering to complete the reconstruction
of the surrounding obstacle environment. Moreover, point cloud recognition and/or clustering
algorithms will be added to determine the position and speed of unknown dynamic obstacles. With
relevant constraint conditions constructed, the safety of autonomous navigation for multiple ASVs
can be guaranteed.

4. Simulation Results

In this section, simulations are provided to illustrate the performance of the proposed
distributed trajectory-planning method for multiple ASVs in an unknown environment
with lots of static obstacles. Two cases are considered as follows:

Case 1: Swarm trajectory planning for four ASVs. In the simulation, swarm trajectories
were planned for four ASVs by various planners in the same scenario. In particular, the
proposed method is compared with the enhanced conflict-based search (ECBS) method
and the A* + B spline method in terms of sail distance (dsail), sail time (tsail), and collision
times per ASV.

Figure 10 shows trajectories planned by various planners in the same scenario with the
same initial and final positions. It is observed from Table 1 and Figure 10 that all planners
can generate collision-free trajectories, while the proposed one needs shorter sail distance
and sail time compared to the other two planners. In particular, compared with the A* + B
spline method, the proposed method solves the multi-objective optimization problem
and achieves optimization subject to obstacle avoidance distance, curve smoothness, and
collision avoidance distance between ASVs, allowing multiple ASVs to reach the specified
target points in a shorter time and with lower energy loss. Meanwhile, compared with
the ECBS method using global planning, the proposed one utilizes multiple local optimal
trajectories to form a global trajectory, which better meets the requirements of real-time
obstacle avoidance and generates shorter sail distance for short-range navigation. However,
local planning using our method and the A* + B spline method generates a global path
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using multi-segment local trajectories, which is prone to getting stuck in local optima. This
is also what we want to solve in the future.

Table 1. Comparisons between different planners.

Planner dsail (m) tsail (s) Collision

ECBS 12.6 11.6 0
A* + B spline 13.6 9.2 0

Proposed 10.6 8.3 0

Proposed ECBS A*+Bspline

Figure 10. Trajectories planned by various planners in the same scenario.

Case 2: Swarm trajectory planning for seven ASVs. In this case, we conducted
simulations on seven ASVs with a random map generated by the Berlin algorithm, where
the generated trajectories are shown in Figure 11. The generated trajectories of seven ASVs
in the xy-plane are shown in Figure 12. The evolution of the velocity and acceleration
of the ASVs are shown in Figures 13 and 14, respectively. Due to the existence of speed
and acceleration optimization terms, the navigation speed and acceleration of ASVs do
not exceed 2.5 m/s and 3 m/s2, respectively. The distances of each ASV to the goals, the
distances of each ASV to the closest ASV, and the distances of each ASV to the closest
obstacle are shown in Figures 15–17, respectively. It is noted that the safety threshold of
distance bewteen each ASV and the closest ASV is set to 0.4 m, and the safety threshold of
distance between each ASV and the closest obstacle is set to 0.5 m. At the same time, due to
the existence of boundary constraints, ASVs can reduce their speed and acceleration to 0
when they reach the goals. Moreover, when the target arrival constraint exists, the ASVs
can reach the goals accurately.

（a）

（b）

（c）

Figure 11. Seven ASVs conduct autonomous navigation in a simulated environment. (a–c) represent
the top view, left-side view, and right-side view, respectively.

To further verify the effectiveness of the proposed method, we conducted multiple
simulations based on different numbers of ASVs under different obstacle coverage ranges
and different initial conditions. Setting the obstacle coverage rate to 50% and 75%, setting
obstacle shape roughness to 10% and 15%, and setting the number of ASVs to 5, 7, and 9,
respectively, different simulations were conducted, as shown in Figure 18. As a result, one
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can see that the proposed method performs well under different obstacle coverage ranges
and different initial conditions.

Figure 12. The trajectories of seven ASVs in the xy-plane.

Figure 13. The speed of seven ASVs with each type of line corresponding to one ASV.

Figure 14. The acceleration of seven ASVs with each type of line corresponding to one ASV.
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Figure 15. The distances of each ASV to the goals with each type of line corresponding to one ASV.

Figure 16. The distances of each ASV to the closest ASV with each type of line corresponding to
one ASV.

Figure 17. The distances of each ASV to the closest obstacle with each type of line corresponding to
one ASV.
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ASVs:7
Obstacles:50%
Obstacles shap:
10%

ASVs:9
Obstacles:75%
Obstacles shap:
10%

ASVs:5
Obstacles:75%
Obstacles shap:
15%

ASVs:7
Obstacles:75%
Obstacles shap:
15%

Figure 18. Autonomous navigation of different numbers of ASVs under different obstacle coverage
ranges and different initial conditions (Left: Top View, Right: Left-side View).

5. Conclusions

In this paper, a swarm trajectory-planning method is proposed for multiple ASVs
using distributed asynchronous communication. The issues of curve smoothness, dynamic
feasibility, collision avoidance between ASVs, and obstacle avoidance are transformed
into a non-constrained nonlinear optimization problem. Efficient solutions are proposed
for generating smooth and collision-free trajectories that ASVs can track. Since real-time
local planning and collision-detection strategies have been adopted, it is effective to reduce
the total navigation time and avoid obstacles in a marine environment. In the future, we
will further address the issue of formation of ASVs subject to multiple constraints and
static obstacles.
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Abstract: In order to effectively deal with collisions in various encounter situations in open water
environments, a ship collision avoidance model was established, and multiple constraints were
introduced into the velocity obstacle method, a method to determine the ship domain by calculating
the safe distance of approach was proposed. At the same time, the ship collision avoidance model
based on the ship domain is analyzed, and the relative velocity set of the collision cone is obtained
by solving the common tangent line within the ellipse. The timing of starting collision avoidance
is determined by calculating the ship collision risk, and a method for ending collision avoidance is
proposed. Finally, by comparing the simulation experiments of the improved algorithm with those
of the traditional algorithm and the actual ship experiment results of manual ship maneuvering,
it is shown that the method can effectively avoid collisions based on safe encounter distances that
comply with navigation experience in different encounter situations. At the same time, it has better
performance in collision avoidance behavior. It has certain feasibility and practical applicability.

Keywords: velocity obstacle; the ship domain; COLREGs; collision avoidance; collision risk index

1. Introduction

Compared with other types of transportation, maritime transportation costs are much
lower, and its transportation capacity is huge. With the increasing prosperity of interna-
tional trade, maritime transportation as an important mode of transportation has achieved
great development. At the same time, the industry of ship construction is developing in the
direction of intellectualization and enlargement in capacity, which has further improved the
transportation efficiency of shipping. However, due to the huge volume of shipping busi-
ness and a more complex navigation environment, ship navigation safety faces important
challenges and impacts [1].

The safety of ship navigation has always been an important area of concern and
research by domestic and foreign scholars. According to water accident surveys, most
water accidents are caused by human factors, and ship collision accidents account for an
important proportion of them [2]. With the continuous development of intelligent and
networked technologies, the automation level of ships has been significantly improved.
Therefore, research on autonomous ship collision avoidance has also become a focus in
the field of safe ship navigation [3]. Continuous research and development in this field
provides new opportunities and challenges for preventing accidents and reducing collision
risks, which is of great significance to ship navigation safety.
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One of the focuses of research on ship collision avoidance behavior is the timing of
taking collision avoidance actions and the safe passage distance. The research results in
this area mainly focus on the ship domain and the dynamic boundary. The concept of ship
domain was first proposed by Fujii [4] and used statistical methods to establish an elliptical
ship domain model related to the ship length. Goodwin [5] considered the Convention
on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs) and
established a ship domain consisting of three unequal sector regions. However, these ship
domains do not take into account the influence of human factors, environmental factors,
and ship maneuverability, and their practical application results are not ideal. Smierzchal-
ski [6] determined a hexagonal ship domain model using ship speed and parameters of
turning test. Wang et al. [7] fully considered relevant factors such as COLREGs, ship
maneuverability, and length and speed of ships, and proposed a quaternary ship domain.
These methods determine the size of the ship domain by finding the minimum passage
distance of the ship. In order to prevent the ship domain from being infringed, Davi et al. [8]
proposed the concept of the dynamic boundary based on the Goodwin model, and defined
the dynamic boundary as the domain where the ship begins to take collision avoidance
actions. However, because the dynamic boundary cannot take into account the impact of
ship speed on collision avoidance timing, the prediction accuracy of the dynamic boundary
is not high. Therefore, most researchers use ship collision risk models to predict collision
avoidance timing. In the early days, most ships used distance at closest point of approach
(DCPA) and time at closest point of approach (TCPA) to estimate the collision risk of the
ship to avoid collisions. Although this method is intuitive, simple, and has advantages,
factors such as distance, ship speed ratio, and target ship maneuvering may be ignored
in the calculation, resulting in inaccurate prediction results [9]. With the development of
computer technology, new methods are constantly emerging. Currently, researchers use
fuzzy theory, expert systems, and neural network methods [10] to calculate ship collision
risk. Chen et al. [11] used neural network and fuzzy reasoning to propose a calculation
method for ship collision risk. Zhao et al. [12] combined the ship domain model and the
collision risk model, used the quaternary ship domain to determine the safe distance and
considered the COLREGs, and proposed a fuzzy evaluation-based calculation method for
unmanned surface vessel collision risk. Li et al. [13] proposed an improved Rule-aware
Time-varying Collision Risk Model, which considers the estimation of target ship motion
and the corresponding risk uncertainty analysis process, and integrates ship maneuver-
ability, COLREGs, and good seamanship. Abebe et al. [14] proposed a new method for
calculating the collision risk index (CRI) by combining machine learning with D-S theory
to increase the efficiency of the computations while preserving the prediction accuracy of
the CRI.

Research on ship collision avoidance mainly focuses on two aspects: ship collision
avoidance models and path planning methods. Ship collision avoidance models can be
divided into ship domain model and collision risk model. In terms of path planning
and collision avoidance, safe navigation of ships requires efficient collision avoidance
algorithms to deal with dynamic environments. Commonly used algorithms include
artificial potential field method [15], A* algorithm [16], particle swarm algorithm [17], etc.
These traditional ship collision avoidance algorithms are simple and easy to understand,
and have strong search capabilities in global planning. However, they are mostly used
to avoid collisions with static obstacles. They cannot respond quickly in the dynamic
environment during navigation and may fall into local optimal solution [18].

When dealing with dynamic obstacles or complex encounter situations, the velocity
obstacle (VO) algorithm can more flexibly adapt to situation changes and provide a more
accurate collision avoidance strategy. At the same time, it is easier to generate a global
optimal solution than traditional methods. Therefore, the VO algorithm is widely used by
researchers. Hong et al. [19] constructed an obstacle model and a collision risk model, and
completed the dynamic obstacle avoidance of unmanned surface vessels by introducing the
VO algorithm with multiple constraints. Zhang et al. [20] combined the dynamic window
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method and the VO algorithm, and proposed a virtual obstacle method; Ma et al. [21]
introduced the artificial potential field method and inland river collision avoidance rule
constraints into the VO algorithm to achieve collision avoidance of stand-on ships and
static obstacles; Zhang et al. [22] proposed a collision avoidance decision-making system for
inland river ships based on the VO algorithm, and improved the ship motion model (MMG)
suitable for inland rivers; Wang et al. [23] proposed a new collision avoidance decision-
making system specifically designed for autonomous ships, where the VO algorithm is
combined with a finite state machine (FSM) and considers various constraints such as ship
maneuverability, COLREGs, and navigation technology.

Nevertheless, there are some problems in applying the traditional VO algorithm for
ship collision avoidance. When ships are in different encounter situations, they will use
different safe distance of approach to pass by, and this algorithm often simplifies obstacles
into circular targets, resulting in the same encounter distance between two ships in different
situations, which is obviously not in line with navigation reality. COLREGs has detailed
regulations on ship collision avoidance. The traditional VO algorithm may have certain
limitations in complying with these rules, making it difficult to achieve strict compliance
with COLREGs [24]. At the same time, the traditional VO algorithm applied to ship collision
avoidance can only provide a collision avoidance strategy based on the current status, but
it is obviously difficult to determine how to avoid collision at the right time; the method
of ending collision avoidance mostly uses TCPA < 0, while under this condition, when
collision avoidance ends and returns to the original course or track, TCPA will experience a
trend of first increasing and then decreasing, which means that the own ship will create a
collision risk with the target ship again when returning to the original course or track [25].

Therefore, in order to make up for the shortcomings of the traditional algorithm,
this paper combines COLREGs and draws on the suggestions of experienced captains,
introduces these experiences into the VO algorithm, and proposes a ship domain of the
same proportion as the Fujii model, so that the give-way ship can comply with COLREGs.
Based on the rules, the collision avoidance action of the two ships is completed with the
optimal collision avoidance course angle. Finally, we also propose a method for determining
when to start and end collision avoidance. These improvements are designed to improve
the safety and efficiency of ship collision avoidance and make it more in line with the needs
of actual navigation situations. The specific flow chart is shown in Figure 1.

Figure 1. The flowchart of algorithm implementation.
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2. The Velocity Obstacle Algorithm

2.1. Methods and Principles

Assume that the position of ship A is PA, the velocity is
→
VA, and the radius is RA;

obstacle B is located at PB, the velocity is
→
VB, and the radius is RB. According to the radius

of the robot, the obstacle is expanded into a circle with radius R, R= RA + RB. Then the
mobile robot can be simplified into a particle [26].

As shown in Figure 2, define the relative velocity of A and B as
→

VAB =
→
VA − →

VB. When
the robot moves at the relative velocity VAB, the obstacle can be regarded as a static obstacle;
a ray λ(PA, VAB) denotes a line starting from point A (denoted as PA) in the direction of
vector VAB (representing the vector from point A to point B), assuming that the relative
velocity VAB remains unchanged, when the ray λ(PA, VAB) intersects the obstacle B, it is
considered that A and B will collide at some time in the future. The set of VAB that cause A
and B to collide is defined as Relative Collision Cone (RCC), that is, the relative collision
area in the relative velocity space of A and B, which can be expressed as:

RCC = {VAB|λ(PA, VAB ∩ B �= ∅)} (1)

Figure 2. The geometric definition of the VO algorithm.

Translate the relative collision cone along the direction of VAB to the end of the velocity
vector to form a new cone-shaped area, the absolute collision cone. If VA falls into this area,
A and B will collide at some point in the future, causing A and B to collide. The set of VA is
called Velocity Obstacle:

VO = RCC ⊕ VA (2)

where ⊕ represents the Minkowski sum. If VA is adjusted so that it does not belong to
the velocity vector in the VO set, the robot can avoid obstacles and prevent collisions and
continue to move.

2.2. Application in Ship

The VO algorithm is mainly used in collision avoidance of robots, using the expanded
volume of the robot as a collision area to avoid collisions. This method allows two robots
to complete collision avoidance behaviors at a relatively close distance. Later, the VO
algorithm was gradually applied to ship collision avoidance. Due to the ship-to-ship effect,
if ships also encounter each other at a close distance during collision avoidance, the risk of
ship collision will be greatly increased [27]. Therefore, ships need to ensure that they pass
at a safe distance during the encounter. The safe distance can be defined as safe distance of
approach (SDA) [28]. As shown in Figure 3, the VO algorithm is used to establish a ship
collision avoidance model. Turn the own ship into a particle, represented by O, and the

velocity vector is
→
VO; set the target ship as a circle with a radius of R = SDA, so that the

238



J. Mar. Sci. Eng. 2024, 12, 402

two ships maintain a safe distance, represented by P, and the velocity vector is
→
VP, then the

relative velocity of the two ships is
→

VOP =
→
VO − →

VP.

Figure 3. Ship velocity obstacle model.

At this time, the target ship can be regarded as stationary when the own ship is sailing

at velocity
→

Vop. If the relative velocity
→

Vop falls within the cone RCC in the figure, then the

two ships will collide at some point. That is,
→

Vop ∈ RCC, then the own ship and the target

ship are in danger of collision; if
→

Vop /∈ RCC, then the own ship and the target ship are safe.
To sum up, the core of the VO algorithm is to determine the collision cone, as shown with
grey area in Figure 3.

In Figure 3, the relative coordinates (ship mounted coordinate system) were built, in
which the y-axis points north, and the x-axis points east. The clockwise rotation angle of
the positive y-axis is the course angle. Assuming that the own ship’s routes OA and OB are
tangent to the radius of the target ship, the course angle of OA is θ1, the course angle of OB

is θ2, the relative velocity of the own ship is
→
VR, and the course angle is θ. In order to avoid

collision, θ should satisfy θ /∈ [θ1, θ2].
Assume the current position of the own ship (XO, YO) and the position of the target

ship (XP, YP), then θ1 can be obtained by the following formula:

θ1 = θOP −∠AOP (3)

where θOP is the angle between the line segment OP and the y-axis. The calculation formula
of θOP and ∠AOP is as follows:

θOP = arctan(
XP − XO
YP − YO

) (4)

∠AOP = arcsin(
r√

(YP − YO)2 + (XP − XO)2
) (5)

Substitute Formulas (4) and (5) into Formula (3) to get:

θ1 = arctan(
XP − XO
YP − YO

)− arcsin(
r√

(YP − YO)2 + (XP − XO)2
) (6)

In the same way, θR can be calculated:

θ2 = arctan(
XP − XO
YP − YO

) + arcsin(
r√

(YP − YO)2 + (XP − XO)2
) (7)

In summary, if θ ∈ [θ1, θ2], then the two ships are in danger of collision; otherwise, the
two ships are safe.
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3. Improved Velocity Obstacle

3.1. Velocity Obstacle Based on the Ship Domain
3.1.1. Determine the Ship Domain

In general, the value of safe distance of approach (SDA) is vaguely defined based on
the interpretation of rules by captains, human experts, and the practical experience of ship
pilots [29]. However, the same value of safe distance of approach often appears in different
encounter situations, resulting in a decrease in collision avoidance accuracy. Therefore,
this paper establishes a mathematical model to quantify SDA based on the calculating
method of safe distance of approach proposed by Li [30] and Chen [31], COLREGs, and
navigation practices.

The quantification of SDA is divided into two parts, collision area and operating
margin. The collision area requires a circular area that takes the size of the two ships,
the estimated relative position error, and the error caused by the ship’s navigational yaw
motion into consideration. First, Kalman filter [32] is used to calculate the track error of
the ship when sailing. Assuming that the filter variance is P, the 2P is regarded as the
systematic error caused by environmental interference such as wind, waves, and currents.

During the navigation process, the ship’s trajectory is not a line, but a track belt due to
course deviation. Generally, the turning center of a ship is about one-third of the width of
the ship position at the bow. As shown in Figure 4, assuming the length of the ship is L and
the course deviation is ε, the width of the ship’s track band is:{

WO = 2 × 2
3 LO·sinεO

WT = 2 × 2
3 LT ·sinεT

(8)

where LO, WO, εO represent the length of own ship, the width of the trajectory belt and
course deviation, and LT , WT , εT represent the length of target ship, the width of the
trajectory belt and course deviation. Therefore, the error in collision between the two ships
due to course deviation is 1

2 (WO + WT).

Figure 4. The trajectory belt of ships.

And based on the size of the two ships, the radius Rc of the ship collision area is
obtained by

Rc = (Lo + LT) + 2P +
1
2
(WO + WT) (9)

where Lo and LT represent the length of the own ship and the target ship, respectively, and
P is the filter variance.

The operating margin is the distance between the own ship and the target ship after
the own ship turns 90◦ at full speed and full rudder angle. Based on the above analysis, the
value of SDA in each encounter situation can be obtained:
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• Head-on situation and crossing situation: SDA = R f ;
• Own ship being overtaken by the target ship: SDA = R f − Ad;
• Own ship overtaking the target ship: SDA = R f − Vs × T90;
• Other situations: SDA = R f − DT/2.

where R f = Rc + Ad + (Vs × T90), T90, Ad, DT , and Vs are, respectively, the time for
the ship to rotate 90◦ at full speed and full rudder angle, the advance, the tactical diameter
of the turning, and the relative speed. Figure 5 shows the various parameters of the ship
turning test.

Figure 5. Diagram of ship turning test.

Generally, the critical safe distance of approach is largest in crossing situations, lower
in overtaking situations, and smallest in head-on situations [31]. However, using the
above formula to evaluate SDA in an overtaking situation is much smaller than the actual
navigation requirements.

Therefore, this paper makes SDA in the overtaking situation equal to the value in the
head-on situation. In maritime traffic, it is believed that to ensure ships sail safely and
effectively, a certain safety distance must be kept between ships, and this safety distance
can be called as the ship domain radius [33]. Therefore, the ship domain can be determined
by the safety distance of approach. To improve the accuracy and safety of ship collision
avoidance operation, an elliptical-type ship domain model with the same long and short
axis ratio as the Fujii model for collision avoidance is adopted.

The Fujii model takes into account the International Regulations for Preventing Colli-
sions at Sea, ensuring that collision avoidance decisions comply with international regu-
lations, contributing to the compliant autonomous collision avoidance of vessels. As an
elliptical model compared to a circular model, it better aligns with the length-to-width ratio
of vessels and maintains the minimum distance between two vessels, especially in head-on
and crossing encounter situations. However, since the Fujii model is mainly applied to
large ships, the length calculated by this model is much smaller than SDA when applied
to small- and medium-size ships. To solve this problem, in Figure 6a, a scaling factor f
is introduced to enlarge the original semidiameters in Fujii model, shown as black solid
ellipse. The dotted ellipse is a schematic diagram of the ship domain, in which the major
axis semidiameter Aa and minor axis semidiameter Bb are enlarged by f . Bb is exactly
equal to SDA. Meanwhile, the scaling factor can be defined as f = Bb/b = Aa/a, while,
a,b are the major and minor axis semidiameters of Fujii model ellipse, equal to 4 times
and 1.6 times of the ship’s length, respectively, to ensure the encounter distance between
ships greater than (at least equal to) SDA to prevent the target ship invading the own
ship domain.
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Figure 6. The ship domain: (a) Fujii model enlarged by scaling factor; (b) The state where the distance
between two ships is minimum.

In addition, it should be emphasized that when the target ship is always located
outside the boundary of the own ship’s domain, it can be considered that the own ship’s
domain is not infringed; at the same time, it cannot be considered the target ship’s domain
is not infringed by the own ship, as the sizes of these two ships’ domains may not be the
same. Therefore, this paper adopts the mutual non-intrusion principle between these two
ships, the SDA can be defined as the sum of minor axis semidiameters of these two ships’
domains. As a result, the minimum distance between two ships in overtaking encounters
is always larger than SDA, as shown in Figure 6b.

3.1.2. Collision Avoidance Analysis Based on Elliptical Ship Domain

The traditional VO algorithm uses the “expanding circle” method to simply super-
impose the collision area. If the shapes of both moving objects are irregular, this method
would introduce larger errors. This paper adopts the method of finding common tangent
lines of two ships’ ellipse domains to avoid errors.

Draw two inner common tangent lines in the ship domains of the own ship and the
target ship, as shown in Figure 7. Draw parallel lines OM and ON of these two inner
common tangent lines through the origin O to form the relative collision cone RCC, the

shadow area. In order to avoid collision, the relative velocity
→
Vp needs to fall outside the

RCC. Assume the common tangent equation Ax + By + C = 0, the ship domain equation
of the own ship is y = fo(x), and the ship domain equation of the target ship is y = fp(x).
The four common tangents (including two inner common tangents and two outer common
tangents) can be found by the joint equation, after which the two internal tangents are
identified by the relationship between the size of the angle between the common tangent
and the positive direction of the y-axis to obtain the range of relative collision area.

Let θi(i = 1, 2, 3, 4; 0 ≤ θi < 2π) be the angles between these four common tangents and
the positive direction of the y-axis. Sort θi according to size: 0 ≤ θ1 < θ2 ≤ θ3 < θ4 < 2π.
Under normal circumstances, the two internal common tangents are the minimum and
maximum values, respectively, but it is necessary to additionally consider the situation
where the common tangents are on both sides of the y-axis. θ represents the set of relative
velocity angles that cause the own ship and the target ship to collide:⎧⎪⎪⎨⎪⎪⎩

θ ∈ [θ1, θ4]
θ ∈ [0, θ1] ∪ [θ2, 2π)
θ ∈ [0, θ2] ∪ [θ3, 2π)
θ ∈ [0, θ3] ∪ [θ4, 2π)

(θ4 − θ1) < π

(θ2 − θ1) > π

(θ3 − θ2) > π

(θ4 − θ3) > π

(10)

The own ship will collide with the target ship if the relative velocity of own ship and
target ship satisfies θ at a certain moment during sailing. In order to avoid the collision, it is
necessary to select the desired relative velocity angle RV(0 ≤ RV < 2π) that can avoid the
relative collision cone, and in the ideal situation, making RV equal to the boundary angle
of the relative collision cone can ensure that the ships go through at a safe distance during
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collision avoidance operation. However, in the collision avoidance process, to avoid the
influence of small perturbations on the collision avoidance system due to environmental
interference and other uncertainty factors, resulting in the mutual infringement of the ship
domains of the two ships, a correction factor θr is introduced to modify the RVθr = RV − θr,
so that the RVθr is always outside the relative collision cone RCC.

Figure 7. Collision avoidance analysis.

3.2. Application to the Convention on the International Regulations for Preventing Collisions
at Sea

When selecting the desired relative velocity angle RVθr, the traditional VO algorithm
generally uses an angle closer to the original velocity vector to update the RVθr. How-
ever, to avoid collisions, ships must conduct collision avoidance operations according to
COLREGs. Therefore, when updating RV, each type of encounter situation should be
checked according to COLREGs. This paper put forward a method to classify encounter
situations [34] referring to the COLREGs, as shown in Figure 8.

Figure 8. The relative position of the encounter between own ship and target ship.

The initial encounter situation of ships is divided into three situations: head-on,
crossing, and overtaking situation. As in different types of encounter situations, different
actions should be adopted. Based on the target ship’s initial position, cross situations
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could be divided into starboard crossing and port crossing. Ulteriorly, the course difference
between these two ships could be a useful item to classify the overtaking, crossing, and
head-on situations. As shown in Table 1, when the target ship appears in area C, while the
course difference between these two ships falls in 180–270◦, this kind of crossing encounter
situations could be called small course difference crossing from starboard side, for own
ship, turning right and pass on the stern of target ship is suitable. When the target ship
appears in area D, while the course difference between these two ships falls in 270–360◦,
this kind of crossing encounter situations could be called as large course difference crossing
form starboard side, for own ship, turning right and pass on the stern of target ship could
be dangerous, turning left may be the only suitable action. Similarly, descriptions of other
kinds of encounter situations and the suitable actions for the own ship are put forward in
Table 1 based on multiple rounds of discussion with seven experienced captains, maritime
experts, and autopilot system developers.

Table 1. Classification of ship encounter.

Types of
Encounter

The Area Where the
Target Ship Is Located

Course
Difference

Encounter Situation
Suitable Action for

Own Ship

Head-on A, B 175–185◦ Head-on Turning right

Starboard side
crossing

D 270–360◦ Large course difference crossing
form starboard side Turning right

C 180–270◦ Small course difference crossing
form starboard side Turning right

Port side crossing
G 0–90◦ port large angle crossing Keeping course and speed

H 90–180◦ port large angle crossing Keeping course and speed

Overtaking
A, H 0–67.5◦ Own ship pass on the starboard

side of the target ship Turning right

B, C 292.5–360◦ Own ship pass on the port side
of the target ship Turning left

Being overtaken
E

0–67.5◦
292.5–360◦

Target ship pass on the starboard
side of own ship Keeping course and speed

F Target ship pass on the port side
of own ship Keeping course and speed

At the same time, according to the analysis of encounter situations by Zhong [35], the
initial distance between the own ship and target ship could be divided into collision danger,
close-quarters situation, and imminent danger according to the avoidance stage, as shown
in Table 2. Significantly, imminent danger means the minimum safe turning space of the
own ship, equals to SDA.

Table 2. Classification of ship situations.

Type Minimum Distance (n Mile) Maximum Distance (n Mile)

Collision risk 1 6
Close-quarters situation 0.25 1

Imminent danger 0 0.25

Select the expected relative velocity RV when the ship is in collision danger. The
selected rules could be classified as follows:
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• In head-on and starboard crossing, the ship is the give-way ship, and could alter its
course according to the description in Table 1 to avoid collision. That is:

RV =

⎧⎪⎪⎨⎪⎪⎩
θ4 + θr
θ1 + θr
θ2 + θr
θ3 + θr

(θ4 − θ1) < π, θ ∈ [θ1, θ4]
(θ2 − θ1) > π, θ ∈ [0, θ1] ∪ [θ2, 2π)
(θ3 − θ2) > π, θ ∈ [0, θ2] ∪ [θ3, 2π)
(θ4 − θ3) > π, θ ∈ [0, θ3] ∪ [θ4, 2π)

(11)

• For port side crossing encounter situation where the target ship overtakes the own
ship, the own ship is the stand-on ship and should keep its course and speed, and
there is no need to calculate RV;

• When the own ship is overtaking the target ship and the own ship’s velocity
∣∣∣∣ →VO

∣∣∣∣
module is greater than the target ship, the own ship is the give-way ship and should
alter course to avoid collision. According to the 7–8th row of Table 1, the RV can be
concluded as follows:

RV =

⎧⎪⎪⎨⎪⎪⎩
θ1 − θr
θ2 − θr
θ3 − θr
θ4 − θr

(θ4 − θ1) < π, θ ∈ [θ1, θ4]
(θ2 − θ1) > π, θ ∈ [0, θ1] ∪ [θ2, 2π)
(θ3 − θ2) > π, θ ∈ [0, θ2] ∪ [θ3, 2π)
(θ4 − θ3) > π, θ ∈ [0, θ3] ∪ [θ4, 2π)

(12)

After determining the vector RV through the above method, the course or velocity
of the own ship should be controlled by automatic systems making the relative velocity
angle of the own ship and the target ship approaching the RV to conduct dynamic collision
avoidance. This method could operate well in simulation systems; however, the ship’s
speed adjustment frequency is too high for the actual engine system, and in this research,
the ship’s speed is not changeable to prevent engine damage. For actual ship’s collision
avoidance operation at sea, we mainly adjust course. The expected course Cm that the ship
can avoid the relative collision cone RCC is obtained by the following formula:

tanRV =
VosinCm − VPx
VocosCm − VPy

(13)

where VPx is the component of the target ship’s speed along the x-axis, and VPy is the
component of the target ship’s speed along the y-axis. If Cm has two values, choose the
desired course which is closer to the current course.

3.3. The Determination of the Start and End Time of Collision Avoidance
3.3.1. Collision Risk Determines the Start Time of Collision Avoidance

In actual situations, there are many factors that affect Collision Risk Index (CRI).
Subjective factors include sea state, visibility, etc. Objective factors include DCPA, TCPA,
etc. This paper introduced the weighted sum of the corresponding membership functions
of DCPA and TCPA to generate the collision risk, thereby determining the start time of
collision avoidance [36].

• Membership function of DCPA could be written as a piecewise function μ(DCPA):

μ(DCPA) =

⎧⎪⎨⎪⎩
1

1
2 − 1

2 sin
[

π
d2−d1

(
DCPA − d1+d2

2

)]
0

DCPA ≤ d1
d1 < DCPA < d2

d2 ≤ DCPA

(14)

where d1 indicates the minimum distance between two ships, in this paper d1 is the
minimum distance at which the ship domains of the two ships are tangent; d2 indicates
the minimum distance at which the two ships can safely pass, d2 = 2d1.
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• Membership function of TCPA could also be written as a piecewise function μ(TCPA):

μ(TCPA) =

⎧⎪⎨⎪⎩
1(

t2−TCPA
t2−t1

)2

0

TCPA ≤ t1
t1 < TCPA < t2

TCPA ≥ t2

(15)

where,

t1 =

⎧⎨⎩
√

D2
1−D2

CPA
Vr

DCPA−D1
Vr

DCPA ≤ D1
DCPA > D1

(16)

t2 =

√
D2

2 − D2
CPA

Vr
(17)

where D1 is the distance between these two ships at the last opportunity to use helm,
which is generally 12 times the length of the own ship; D2 is the dynamic boundary,
that is, the distance at which the own ship starts turning, and is obtained as follows:

D2 = 1.7cos(Bt − 19◦) +
√

4.4 + 2.89cos2(Bt − 19◦) (18)

where Bt is the true direction of the target ship relative to own ship.

By weighting the membership functions of DCPA and TCPA, the collision risk of the
ship is obtained as:

μr = αd·μ(DCPA) + αt·μ(TCPA) (19)

where αd and αt are the weighting coefficients of their respective functions.
The ship starts to avoid collision when it meets the following two conditions:

• The relative velocity vectors of the two ships are in the relative collision cone RCC;
• Based on the collision avoidance test results of multiple encounter situations and

the collision avoidance suggestions of the experienced captain, the ship collision risk
assessment μr is larger than 0.72.

3.3.2. Conditions for Ending Collision Avoidance

Theoretically, TCPA < 0 means the collision risk is low enough, and returning to
original course or track should be conducted; however, in our simulation, the desired
course Cm oscillation is caused by the algorithm. The reason is that returning to the original
course makes TCPA greater than zero. To avoid this phenomenon, the collision avoidance
could be terminated when the ship satisfies Equation (20).

VLOS /∈ RCC, Vorig /∈ RCC(Vdes /∈ RCC) (20)

where VLOS is the velocity vector of trajectory tracking planning, Vorig is the velocity vector
when the own ship moves along the original course direction at the current speed, and Vdes
is the velocity vector when the own ship moves along the original track direction at the
current speed.

4. Experimental Results and Analysis

4.1. Actual Ship Experiment

The experiment is divided into two parts: actual ship experiment and simulation
experiment. The actual ship experiment uses a built-in intelligent ship navigation test
system to record the movement data during ship collision avoidance, and the test evaluation
system evaluates the entire process of collision avoidance. This actual ship experiment was
operated by an experienced captain. The simulation experiment uses the Matlab simulation
platform to simulate ship collision avoidance using the improved VO algorithm and the
traditional VO algorithm and record movement data during the collision avoidance process.
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Finally, the established evaluation system evaluates manual collision avoidance, traditional
algorithm collision avoidance, and improved algorithm collision avoidance.

For the actual ship experiment, a sea-going fishing vessel was updated as the test
platform, which is equipped with a course keeping autopilot, achieving the course keeping
error between 1 and 2◦ during the test. To collect the vessel’s movement and turning
data, a real time kinematic (RTK) module based on GPS and a gyrocompass. The test was
conducted in Zhanjiang Bay area, as shown in Figure 9.

Figure 9. The updating of own ship and the experimental area in Zhanjiang city of China.

The specific parameters of the experimental platform are shown in Table 3.

Table 3. Parameters of the ship.

Length (m) Width (m) Total Tonnage (t) Speed (kn)

43.9 7.3 353 3–12

To verify the SDA value in OV model, this paper conducted an actual ship turning test
and obtained specific parameters as shown in Table 4.

Table 4. The results of the turning test.

DT/(m) DO/(m) Ad/(m) Tr/(m) T90/(s)

Full rudder 30◦ 148.1256 146.4241 109.3487 76.8136 44
where DT is Tactical diameter; DO is Steady diameter; Ad is Advance; Tr is Transfer; T90 is the time for the ship’s
course to turn 90◦. The average speed during turning test is about 3 m/s, the length of own ship and target ship
could be simply regarded as the same. The safe distance of approach (SDA) could be calculated as 0.251 NM.

The full rudder turning test of the test ship is shown in Figure 10:
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Figure 10. Turning test of 30◦.

The following is a brief introduction to the evaluation index system of the ship’s
intelligent navigation test system: the collision avoidance process is evaluated from three
aspects: safety, economy, and practicality. The safety evaluation index is mainly used
to judge whether the collision avoidance process meets the regulatory requirements and
ensures the safety of the ship, including whether it enters imminent danger, the minimum
encounter distance, etc. The economic evaluation index is used to evaluate whether the
collision avoidance process is economical, whether it can shorten the operation time,
and shorten the distance, including deviation factor, maximum alteration of course, total
collision avoidance time, and other indicators. Practicality evaluation indicators are used
to judge whether it meets the requirements of simple operation and whether it is suitable
for actual ship operations, including indicators such as steering frequency. The analytic
hierarchy process (AHP) is used to study the weights of the above indicators to form a final
complete evaluation system.

Actual ship experiment collision avoidance test method process: The test ship main-
tains a constant speed and travels in the designated test waters, coordinates are converted
to the preset encounter situation according to the longitude, latitude, and course of the test
ships, and ships’ courses are generated by the AIS simulator. The distance between the two
ships is about 1–6 NM (nautical mile). The own ship is operated by the captain to avoid
collisions. In order to improve the efficiency of the actual ship experiment, when there is
no collision risk between these two test ships and the own ship returns ±2◦ to the original
course, the collision avoidance is ended. During this process, the experiment evaluation
system records the navigation data of the collision avoidance process and generates an
evaluation report.

4.2. The Evaluation of Experimental Data

In accordance with the international rules for avoiding collisions at sea, this article
simulates encounter situations in three situations: head-on, crossing, and overtaking, in
which the ship has the duty to avoid. In order to make the experiment results of the
improved VO algorithm, the traditional VO algorithm, and the actual ship experiment
comparable in these three situations, it is necessary to maintain situation consistency
between the actual ship experiment and the simulation experiment. The initial parameter
settings of the actual ship experiment are shown in Table 5.
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Table 5. Initial parameters for collision avoidance experiments.

Situation

Own Ship Target Ship

Initial
Coordinates (N, E)

Course (◦) Speed (kn)
Initial

Coordinates
(N, E)

Course (◦) Speed (kn)

Head-on (20.756941◦,
110.625902◦) 324.4 9.1 (20.812550◦,

110.583753◦) 147 8.6

Starboard side
crossing

(20.784380◦,
110.616869◦) 117.2 7.9 (20.747173◦,

110.611780◦) 44 12.5

Overtaking (20.689691◦,
110.630284◦) 356.7 8.6 (20.710497◦,

110.626862◦) 356 4.5

• Head-on situation.

Figures 11–13 are, respectively, the collision avoidance trajectories of the improved
VO, the traditional VO, and the actual ship experiment in the head-on situation. In the
improved VO, the red line is the navigation trajectory of the target ship, and the blue line is
the navigation trajectory of the own ship. The closed graphics around the two ships represent
the ship domain, with the long axis being 0.4 NM and the short axis being 0.16 NM. In the
traditional VO, the red line is the navigation trajectory of the target ship, and the blue line is the
navigation trajectory of the own ship, and the closed figure around the target ship represents
the size of the collision circle of the traditional algorithm, with a radius of 0.25 NM. In the
actual ship experiment, MMSI: 111111111 represents the navigation trajectory of the target
ship (In order to facilitate the identification of AIS simulation ships, the MMSI is specially set
to 111111111), MMSI: 412382898 represents the navigation trajectory of the own ship, and the
green enclosed shape around the own ship represents the 1 NM marked circle, while the red
enclosed shape represents the 0.25 NM marked circle. When collision avoidance begins, the
improved algorithm calculates the ship collision risk in real time. When μr > 0.72, the ship
starts to avoid collision. The collision avoidance timing for the traditional algorithm is when
the distance between two ships (DOT) is less than 3600 m. The collision avoidance timing in
the actual ship experiment is determined by the captain’s discretion. The ship will turn right
to avoid the situation in accordance with the COLREGs rules and return to the original course
after the danger is eliminated.

Figure 11. Improved Velocity Obstacle in the head-on situation: (a) the trajectory of the two ships
when they are at the closest distance; (b) the trajectory when collision avoidance is completed.
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Figure 12. Traditional Velocity Obstacle in the head-on situation.

Figure 13. The actual ship experiment in the head-on situation.

Figure 14a,b and Figure 15 show the parameter changes of the improved VO, the
traditional VO, and the actual ship experiment in the head-on situation. The rudder angle,
course, DOT and DCPA were analyzed under three experiments. In the improved VO, the
own ship started to avoid collision at 207 s, 3900 m away from the target ship, turned right
to the maximum course of 347.4◦, and started returning to the original course at 426 s. The
minimum of DOT was 622 m. In the traditional VO algorithm, the own ship started to
avoid collision at 223 s, 3600 m away from the target ship, turned right to the maximum
course of 341.8◦, and started returning to the original course at 434 s. The minimum of DOT
was 482 m. In the actual ship experiment, the own ship started to avoid collision at 179 s,
4200 m away from the target ship, turned right to the maximum course of 355◦, and started
returning to the original course at 398 s. The minimum of DOT was 905 m.
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Figure 14. Parameter change diagram of the algorithm in the head-on situation: (a) Improved Velocity
Obstacle; (b) Traditional Velocity Obstacle.

Figure 15. Parameter change diagram of the actual ship experiment in the head-on situation:
(a) course graph; (b) rudder angle graph; (c) distance graph; (d) DCPA graph.

As shown in Table 6, it is the evaluation system’s ranking of each index score of the
three collision avoidance methods.

Table 6. Evaluation conclusion in the head-on situation.

Evaluation Index Improved VO Traditional VO Manual Ship Handling

Own ship is in imminent danger 1© 3© 1©
Minimum encounter distance 2© 3© 1©

Deviation factor 2© 1© 3©
Maximum alteration of course 2© 3© 1©

Collision avoidance time 2© 1© 2©
Steering frequency 1© 1© 3©

Total 1© 3© 2©
where 1© indicates the highest ranking in the score of this indicator; 2© indicates the second highest ranking;
3© indicates the lowest ranking.

• Starboard side crossing situation.

Figures 16–18 show the collision avoidance trajectories of the improved VO, traditional
VO, and actual ship experiment in crossing situation. In the improved VO, the red line is
the navigation trajectory of the target ship, and the blue line is the navigation trajectory of
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the own ship. The closed graphics around the two ships represent the ship domain, with
the long axis being 0.35 NM and the short axis being 0.14 NM.

Figure 16. Improved Velocity Obstacle in the starboard side crossing situation: (a) the trajectory
of the two ships when they are at the closest distance; (b) the trajectory when collision avoidance
is completed.

Figure 17. Traditional Velocity Obstacle in the starboard side crossing situation.

Figures 19a,b and 20 show the parameter changes of the improved VO, the traditional
VO, and the actual ship experiment in the crossing situation. The rudder angle, course,
DOT and DCPA were analyzed under three experiments. In the improved VO, the own
ship started to avoid collision at 44 s, 3600 m away from the target ship, turned right to
the maximum course of 171.4◦, and started returning to the original course at 213 s. The
minimum of DOT was 762 m. In the traditional VO, the own ship started to avoid collision
at 44 s, 3600 m away from the target ship, turned right to the maximum course of 163.6◦,
and started returning to the original course at 220 s. The minimum of DOT was 489 m. In
the actual ship experiment, the own ship started to avoid collision at 39 s, 3800 m away
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from the target ship, turned right to the maximum course of 188◦, and started returning to
the original course at 208 s. The minimum of DOT was 987 m.

Figure 18. The actual ship experiment in the starboard side crossing situation.

Figure 19. Parameter change diagram of the algorithm in the starboard side crossing situation:
(a) Improved Velocity Obstacle; (b) Traditional Velocity Obstacle.

As shown in Table 7, it is the evaluation system’s ranking of each index score of the
three collision avoidance methods.

Table 7. Evaluation conclusion in the starboard side crossing situation.

Evaluation Index Improved VO Traditional VO Manual Ship Handling

Own ship is in imminent danger 1© 3© 1©
Minimum encounter distance 2© 3© 1©

Deviation factor 2© 1© 3©
Maximum alteration of course 2© 3© 1©

Collision avoidance time 1© 3© 1©
Steering frequency 1© 1© 3©

Total 1© 3© 2©
where 1© indicates the highest ranking in the score of this indicator; 2© indicates the second highest ranking;
3© indicates the lowest ranking.
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Figure 20. Parameter change diagram of the actual ship experiment in the starboard side crossing
situation: (a) course graph; (b) rudder angle graph; (c) distance graph; (d) DCPA graph.

• Port side crossing situation.

Figure 21 shows the collision avoidance trajectories of the improved VO in the port
side crossing situation. In the improved VO, the red line is the navigation trajectory of
the target ship, and the blue line is the navigation trajectory of the own ship. The closed
graphics around the two ships represent the ship domain, with the long axis being 0.35 NM
and the short axis being 0.14 NM. When the target ship is on the port side of the own ship,
this ship has no responsibility for avoidance. If the target ship does not take avoidance
measures, this ship will start emergency collision avoidance and return to its original course
after the collision danger is eliminated.

Figure 21. Improved Velocity Obstacle in the port side crossing situation: (a) the trajectory of the two
ships when they are at the closest distance; (b) the trajectory when collision avoidance is completed.

Figure 22 shows the parameter changes of the improved VO in the port side crossing
situation. The rudder angle, course, DOT and DCPA were analyzed under the experiment.
In the improved VO, the own ship started to avoid collision at 55 s, 1850 m away from the
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target ship, turned right to the minimum course of −64.4◦, and started returning to the
original course at 130 s. The minimum of DOT was 515 m.

Figure 22. Parameter change diagram of the Improved Velocity Obstacle in the port side cross-
ing situation.

• Overtaking situation.

Figures 23–25 show the collision avoidance trajectories of the improved VO, the
traditional VO, and the actual ship collision avoidance experiment in the overtaking
situation. Among them, the red line in the improved VO is the navigation trajectory of
the target ship, and the blue line is the navigation trajectory of the own ship. The closed
graphics around the two ships represent the ship domain, with the long axis being 0.4 NM
and the short axis being 0.16 NM.

Figure 23. Improved Velocity Obstacle in the overtaking situation: (a) the trajectory of the two ships
when they are at the closest distance; (b) the trajectory when collision avoidance is completed.
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Figure 24. Traditional Velocity Obstacle in the overtaking situation.

Figure 25. The actual ship experiment in the overtaking situation.

Figure 26a,b and Figure 27 show the parameter changes of the improved VO, the
traditional VO, and the actual ship experiment in the overtaking situation. The rudder
angle, course, DOT and DCPA were analyzed under three experiments. In the improved
VO, the own ship started to avoid collision at 37 s, 2200 m away from the target ship, turned
right to the maximum course of 3.6◦, and started returning to the original course at 562 s.
The minimum of DOT was 717 m. In the traditional VO, the own ship started to avoid
collision at 1 s, 2343 m away from the target ship, turned right to the maximum course of
0.2◦, and started returning to the original course at 514 s. The minimum of DOT was 480 m.
In the actual ship experiment, the own ship started to avoid collision at 38 s, 2200 m away
from the target ship, turned right to the maximum course of 18◦, and started returning to
the original course at 589 s. The minimum of DOT was 897 m.

As shown in Table 8, it is the evaluation system’s ranking of each index score of the
three collision avoidance methods.
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Figure 26. Parameter change diagram of the algorithm in the overtaking situation: (a) Improved
Velocity Obstacle; (b) Traditional Velocity Obstacle.

Figure 27. Parameter change diagram of the actual ship experiment in the overtaking situation:
(a) course graph; (b) rudder angle graph; (c) distance graph; (d) DCPA graph.

Table 8. Evaluation conclusion in the overtaking situation.

Evaluation Index Improved VO Traditional VO Manual Ship Handling

Own ship is in imminent danger 1© 3© 1©
Minimum encounter distance 2© 3© 1©

Deviation factor 2© 1© 3©
Maximum alteration of course 2© 3© 1©

Collision avoidance time 2© 1© 3©
Steering frequency 1© 1© 3©

Total 1© 3© 2©
where 1© indicates the highest ranking in the score of this indicator; 2© indicates the second highest ranking;
3© indicates the lowest ranking.

From the comparison of collision avoidance results in four encounter situations (head-
on, starboard side crossing, port side crossing, and overtaking), it can be seen that the
improved VO algorithm can strictly ensure that the ship domains of the own ship and
target ship do not invade each other during collision avoidance. The minimum distance
between the two ships is always greater than 0.25 NM, and the timing of starting and ending
collision avoidance is relatively close to the actual ship experiment. This method can use
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a smaller deviation factor to complete collision avoidance at a safe distance, while taking
into account safety, economy, and practicality. In the evaluation index system of collision
avoidance behavior, it is significantly better than other collision avoidance methods.

5. Conclusions

This paper determines the ship domain by calculating the safe distance of approach in
different encounter situations. It employs an approach of finding the tangent of ellipses to
ensure non-intersection of the ship domains of the own ship and target ship. Additionally,
it combines the COLREGs and the VO algorithm to further determine the desired course.
Finally, it determines the appropriate initiation timing for collision avoidance based on
the risk of ship collision. By comparing the simulation experiments of the improved
VO algorithm with traditional algorithms and actual ship experimental results, it can be
seen that the improved VO algorithm can strictly abide by COLREGs to achieve collision
avoidance when facing head-on, crossing, and overtaking encounter situations, and ensure
that the minimum distance between two ships during collision avoidance is always greater
than the imminent danger distance (0.25 NM) defined in the actual ship experiment. At the
same time, the improved algorithm fits well with the captain’s collision avoidance behavior
in the actual ship experiment, which shows that this method can effectively deal with the
collision situations of various encounter situations in open water environments. And it has
certain feasibility and practical applicability in terms of collision avoidance behavior.
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Abstract: Electronic navigational charts (ENCs) are geospatial databases compiled in strict accordance
with the technical specifications of the International Hydrographic Organization (IHO). Electronic
Chart Display and Information System (ECDIS) is a Geographic Information System (GIS) operated
by ENCs for real-time navigation at sea, which is one of the key technologies for intelligent ships to
realize autonomous navigation, intelligent decision-making, and other functions. Facing the urgent
demand for high-precision and real-time nautical chart products for polar navigation under the new
situation, the projection of ENCs for polar navigation is systematically analyzed in this paper. Based
on the theory of complex functions, we derive direct transformations of Mercator projection, polar
Gauss-Krüger projection, and polar stereographic projection. A rational set of dynamic projection
options oriented towards polar navigation is proposed with reference to existing specifications for
the compilation of the ENCs. From the perspective of nautical users, rather than the GIS expert
or professional cartographer, an ENCs visualization idea based on multithread-double buffering
is integrated into Polar Region Electronic Navigational Charts software, which effectively solves
the problem of large projection distortion in polar navigation applications. Taking the CGCS2000
reference ellipsoid as an example, the numerical analysis shows that the length distortion of the
Mercator projection is less than 10% in the region up to 74◦, but it is more than 80% at very high
latitudes. The maximum distortion of the polar Gauss-Krüger projection does not exceed 10%. The
degree of distortion of the polar stereographic projection is less than 1% above 79◦. In addition, the
computational errors of the direct conversion formulas do not exceed 10−9 m throughout the Arctic
range. From the point of view of the computational efficiency of the direct conversion model, it takes
no more than 0.1 s to compute nearly 8 million points at 1′ × 1′ resolution, which fully meets the
demand for real-time nautical chart products under information technology conditions.

Keywords: polar navigation; ENCs; complex function; dynamic projection; multithread-double buffer

1. Introduction

With global warming causing the rapid melting of polar sea ice, the significance of
the Arctic region in shipping, energy, and security has been increasingly highlighted. The
Arctic route is poised to become the new major maritime artery [1–4]. Currently, there are
several challenges in polar navigation, including rapidly changing marine environments,
limited communication capabilities, and inadequate navigation safety measures [5–7].
There are potential risks associated with ships exploring the Arctic, such as the occurrence
of extreme events, such as ship collisions leading to oil spills [8,9]. Hence, to ensure safe
navigation or operations in polar regions, vessels must rely on high-precision charts as
essential information support, which makes polar charts indispensable, serving as a key
prerequisite for the realization of polar navigation and resource development. However,
when encountering the unique environment of polar regions, the common Electronic Chart
Display and Information System (ECDIS) based on true heading reference is not fully
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applicable, which could cause systemic problems in navigation parameter definitions,
piloting, positioning, and calculations [10,11]. Among them, choosing the projection
method for charts is a fundamental issue that urgently needs to be solved [12,13].

The projection of ENCs forms the cornerstone of research in navigation applications.
The presentation of navigational information, the characteristics of navigational errors, and
the implementation of navigational methodologies are determined. Since the middle of the
20th century, extensive research has been carried out on polar nautical charting by map car-
tographers such as Beresford, Snyder, Pearson, Smith, and others [14–18]. The availability
of the modified Lambert projection, Gauss-Krüger projection, gnomonic projection, polar
spherical projection, and azimuthal equidistant projection has been analyzed. With the
development of ECDIS, the study of polar chart projection has entered a new stage. The
projection to be used for Electronic Navigational Charts (ENCs) was the focus of [19,20].
However, the current international standards do not provide specific requirements for map
projection to be used in ENCs and ECDIS. The choice of projection is still up to the manu-
facturer, which leads to different systems using different methods and creating different
problems. Based on the existing literature [15,16], it is considered that the development of
a computer-based method for the projection of ENCs for polar navigation should satisfy
the following conditions:

• Conformal projection, in order to facilitate angle measurements and pilotage.
• Length and area distortions are kept as small as possible, in order to facilitate accurate

measurement of distance and area measurements.
• The grid lines of latitude and longitude should be simple, in order to facilitate the

construction of grids and the measurement of headings.
• Great circle routes should be as straight as possible, in order to facilitate navigation

along them.

Therefore, Mercator projection, polar Gauss-Krüger projection, and polar stereographic
projection are selected as projections that can be used for ENCs in the polar region. The
Mercator projection is commonly used in low- and mid-latitude charts [21]. Furthermore,
a mature set of marine navigation techniques based on the Mercator projection has been
developed, which is in line with the charting habits of mariners, but the projection has a
large deformation in the polar region [22]. The polar Gauss-Krüger projection is divided
into 3◦ or 6◦ zones [23], making it difficult to be fully represented. The existing studies
related to polar stereographic projection are based on the sphere [24]. However, the high-
precision earth model is a rotating ellipsoid, and inherent principle errors are inevitably
present in the projections based on the sphere model when navigating in the polar region.

Aiming at the problem of large distortion of the Mercator projection in the polar
region, the selection of an appropriate reference latitude or mapping area in order to
reasonably control the degree of distortion has been proposed by scholars [25], which
makes it possible to follow the Mercator projection within a certain range of distortion. To
address the problem of the poor availability of the Gauss-Krüger projection in the polar
region, Bowring, using the inherent connection between complex (variable) functions and
conformal mapping, derived the formula for the transverse Mercator projection without
zones [26]. With the help of a computer algebra system, Shaofeng Bian provided formulas
for the Gauss-Krüger projection complex function without band splitting, and the complex
function expressions of scale ratio and meridian convergence angle were derived [27,28].
The non-iterative formulas of forward and inverse solutions of the Gauss-Krüger projection
based on Lee’s formula were derived by Jiachun Guo [29]. To some extent, the difficulty of
applying the traditional Gauss-Krüger projection has been solved by the introduction of
the complex function. In most cases, polar stereographic projection has been studied based
on the sphere. Drawing on the method established by the ellipsoidal sundial projection for-
mula, the double polar stereographic projection was proposed by Chaojiang Wen [30]. That
is, the ellipsoidal surface is first conformally projected onto a suitable transition sphere, and
then that sphere is projected onto the plane in the manner of polar stereographic projection.
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All of the above solutions effectively address the shortcomings of the three projections
in practice to a certain extent. Nevertheless, in navigation, nature entails a process of
constant position change, especially in marine navigation. The use of a single projection
makes it often difficult to meet the accuracy requirements of map representation, and it
is necessary to design an adaptive map projection according to the specific characteristics
of the navigation to satisfy the needs of high-precision and high-reliability applications in
polar navigation [31–34]. In addition to this, how to make the map visualization system
better meet the needs of the users and ensure its more effective utilization is also an issue
that needs to be put into focus.

Therefore, in order to improve the accuracy of map representation in navigation
applications, this paper introduces complex functions, considering their unique role and
obvious advantages in conformal transformation. On the basis of existing research, complex
function expressions for three projections are given, and direct conversion formulas based
on the complex functions of these three projections are derived. In addition, a dynamic
projection of the ENCs oriented towards polar navigation is proposed, the conversion
accuracy and efficiency of the three projections are analyzed, and a visualization algorithm
based on multithread-double buffer is designed. The results show that the constructed
dynamic projection method of the ENCs for polar navigation can improve the accuracy
of map expression in polar navigation applications and can provide a reference for the
compilation and application of high-precision polar electronic nautical charts.

This article is organized as follows. Section 2 includes the complex function expression
of the conformal projection of a polar chart based on the ellipsoid. In Section 3, a design
approach to the dynamic projection of the ENCs is presented. In Section 4, the distortions
and their availability within each latitude band are elaborated, the most suitable navigation-
oriented projections within that range are given, and the transformations between the
different projections are analyzed. Section 5 presents a visualization idea for an ENC-based
multithread-double buffer, and Section 6 discusses the results of the analysis, followed by
the conclusions.

2. Complex Function Expression of Conformal Projection of Polar Charts Based
on the Ellipsoid

2.1. Mercator Projection Coordinates in Complex Form

According to the general formula for normal cylindrical projection, combined with the
properties of complex functions, the complex function expression for the forward solution
of the Mercator projection is as follows:

z1 = x1 + iy1 = r0w (1)

In Formula (1), z1 represents the Mercator projection complex coordinates; x1 is the
ordinate, which is the southbound coordinate; and y1 represents the abscissa, that is, the
east coordinate. w = q + il is the expression for isometric latitude in the field of complex
functions, where q is the isometric latitude, corresponding to the expression of geodetic
latitude B, and l is the longitude difference. In addition, r0 = acosB0√

1−e2sin2 B0
represents the

cylindrical radius, a represents the semi-major axis of the ellipsoid, and B0 refers to the
reference latitude.

The simple shape of the latitude and longitude gridlines of the Mercator projection
makes it easy to map and calculate. In addition, rhumb lines are projected as straight
lines, which allows marine navigation users to visualize the shape and direction of the
routes when planning the routes, so that accurate navigation can be carried out. Hence,
the Mercator projection is the most commonly used method in nautical charts. However,
the large distortion at high latitudes becomes a major factor limiting the application of
Mercator projection in the polar regions.
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The expression for the complex function of the inverse solution of the Mercator
projection is obtained by a slight change in Equation (1):

w = q + il =
x1 + iy1

r0
(2)

The Mercator projection is a conformal projection, meaning that the angles are not
distorted. The scale distortion u1 of the secant Mercator projection at the reference latitude
B0 and latitude B can be expressed as follows, where e represents the first eccentricity:

u1 =
cos B0

cos B

√
1 − e2sin2B
1 − e2sin2B0

− 1 (3)

It is clear that the secant projection is a similar variation to the tangent projection
in the theoretical study of map projections. The scale factor of the Mercator projection
can be determined by the reference latitude. According to a previous report [35], the
reference latitude is generally determined by minimizing the distortion at the maximum
deformation, with the purpose of reducing the distortion and making the deformation

uniformly distributed in the region. B0 is given by
-
B = BN+BS

2 and ΔB = BN−BS
2 , with BN

and BS being the southern and northern latitudes of the region, respectively:

B0 =
-
B +

(
12 − (

4 − 7e2)cos
-
B − e2

(
cos 2

-
B − cos 3

-
B − 2cos 4

-
B
))

8sin 2
-
B

ΔB2 (4)

2.2. Polar Gauss-Krüger Projection Coordinates in Complex Form

According to the literature [36], the expression of the complex function of the non-
singular polar Gauss-Krüger projection for the forward solution in the polar region is
given below:

z2 = x2 + iy2 = aα0θ+ a
5

∑
k=1

(−1)k−1α2ksin 2kθ (5)

Similarly, a sketch of the Gauss-Krüger projection is drawn in Geocart, as shown
in Figure 1.

Figure 1. Sketch of Gauss-Krüger projection.
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Given that power series expressions based on the third flattening n have a more
compact form and better convergence [37,38], the coefficients can be expressed in terms of
n as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0 = −1 + n − 5
4 n2 + 5

4 n3 − 81
64 n4 + 81

64 n5

α2 = 1
2 n − 7

6 n2 + 77
48 n3 − 1111

720 n4 + 2281
1920 n5

α4 = 13
48 n2 − 209

240 n3 + 3817
2880 n4 − 6917

6720 n5

α6 = 61
240 n3 − 1663

1680 n4 + 14459
8960 n5

α8 = 49561
161280 n4 − 221401

161280 n5

α10 = 34729
80640 n5

In the polar Gauss-Krüger projection plane, z2 represents the polar Gauss-Krüger pro-
jection complex coordinates and x2, y2 are the ordinate and abscissa, respectively. In order
to eliminate singularities near the poles, the conformal co-latitude θ = 2arctan[exp(−w)] is
introduced. Two points need to be noted. One is that the coefficients of the expression in
this paper are slightly different from those in the literature [36], which is due to the fact
that the origin of the expression is moved to the pole for ease of mapping in the Arctic. The
other is that Re(sin kz) = sin kxcosh ky and Im(sin kz) = cos kxsinhky. These equalities
hold for any complex number z = x + iy and any natural number k ≥ 1 [39].

We obtain the expression for the complex function of the inverse solution by using the
symbolic iteration method: {

w = z2
aα0

= x2+iy2
aα0

θ = w + ∑5
k=1 b2ksin 2kw

(6)

The coefficients in Equation (6) are expended in terms of n up to n5:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b2 = 1
2 n − 2

3 n2 + 37
96 n3 − 1

360 n4 − 81
512 n5

b4 = − 1
48 n2 − 1

15 n3 + 437
1440 n4 − 46

105 n5

b6 = 17
480 n3 − 37

840 n4 − 209
4480 n5

b8 = − 4397
161280 n4 + 11

504 n5

b10 = 4583
161280 n5

A clerical error in the inverse solution coefficients b2 and b8, as presented in the
literature [36], is corrected here.

Additionally, the angle of the polar Gauss-Krüger projection is not distorted. The
length distortion u2 can be calculated as the derivative of the coordinate z2 at a specific point.

u2 =
∣∣z2

′∣∣− 1 =

∣∣∣∣∣∣
(
1 − e2sin2 B

)1/2
sin θ

(
−α0 − ∑5

k=1 2kα2kcos 2kθ
)

cos B

∣∣∣∣∣∣− 1 (7)

The Universal Transverse Mercator Projection (UTM) is a Gauss-Krüger projection
with a central meridian projection length ratio of 0.9996.

2.3. Polar Stereographic Projection Coordinates in Complex Form

According to the general formula for azimuthal conformal projection, the complex
function expression for the forward solution of the double polar stereographic projection is
as follows:

u2 =
∣∣z2

′∣∣− 1 =

∣∣∣∣∣∣
(
1 − e2sin2 B

)1/2
sin θ

(
−α0 − ∑5

k=1 2kα2kcos 2kθ
)

cos B

∣∣∣∣∣∣− 1 (8)
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In Formula (8), z3 is defined as stereographic projection complex coordinates, x3, y3
are the ordinate and abscissa, respectively, ϕ0 stands for equiangular reference latitude.

Normally, the conformal spherical radius is considered as Rϕ

(
π
2
)
= a√

1−e2

(
1−e
1+e

)e/2
. The

Universal Polar Stereographic Projection (UPS) is a polar stereographic projection for
ϕ0 = 81◦06′25′′ .3.

Moreover, a sketch of the polar stereographic projection is drawn in Geocartv3.2.0, as
shown in Figure 2.

Figure 2. Sketch of polar stereographic projection.

We obtain the complex function expression for the inverse solution of the double polar
stereographic projection from Equation (8):

exp(−w) = − sec2(π
4 − ϕ0

2
)

2Rϕ
(x3 + iy3) (9)

Since the double polar stereographic projection is a conformal projection, the angular
distortion is 0. The length distortion u3 is related to the geodetic latitude B and the
conformal reference latitude ϕ0, independent of the longitude difference l, which can be
expressed as follows [25]:

u3 =
2cos2(π

4 − ϕ0
2
)√

1 − e2sin2 B√
1 − e2(1 + sin B)

(
1 − e
1 + e

· 1 + esin B
1 − esin B

) e
2 − 1 (10)

3. Method Design for Dynamic Chart Projection

The core objective of polar dynamic chart projection is to accurately represent maps in
navigation applications by adopting suitable projection methods. Therefore, the design of
the projection is key. In addition, solving problems based on trajectory points in real time is
crucial. The specific method of dynamic chart projection designed in this paper is as follows:
firstly, the inverse operation is carried out to calculate the latitude and longitude according
to the inverse solution expressions of the three projections, and then the latitude and
longitude are converted to plane coordinates according to the forward solution expressions.
The essence of the dynamic projection is the transformation between different projections.
At present, the numerical transformation method and indirect transformation method are
mainly used for the translation between different projections under the ellipsoid model [40].
However, these methods are more complicated and inefficient in the calculation process,
and both of them fail to establish a direct transformation between the projected coordinates.
Therefore, the formulas for the direct conversion of the projections in this section are
derived for fast visualization in the ENCs of the polar region.
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3.1. Transformation between Mercator Projection and Polar Gauss-Krüger Projection

The Mercator projection coordinates (x1, y1) are substituted into the complex function
expression for the inverse solution of the Mercator projection (Equation (2)) to obtain
the latitude and longitude coordinates. Subsequently, it is substituted into the complex
function expression of the forward solution of polar Gauss-Krüger projection (Equation (5)),
to obtain the complex function expression of the Mercator projection transformed to polar
Gauss-Krüger projection as follows:{

θ = 2arctanexp
(
− x1+iy1

r0

)
z2 = x2 + iy2 = aα0θ+ a∑5

k=1(−1)k−1α2ksin 2kθ
(11)

The polar Gauss-Krüger projection coordinates (x2, y2) are known. The latitude and
longitude coordinates are obtained by substituting into Formula (6). Then, by substituting
these coordinates into Formula (1), we obtain the expression of the complex function of the
polar Gauss-Krüger projection transformed to the Mercator projection:{

θ = x2+iy2
aα0

+ ∑5
k=1 b2ksin 2k(x2+iy2)

aα0

z1 = x1 + iy1 = −r0lntan θ
2

(12)

It should be noted that the central meridian of the two projections derived from
Equations (11) and (12) should be the same, and if not, it should be corrected.

3.2. Transformation between Polar Gauss-Krüger Projection and Polar Stereographic Projection

Similarly, by substituting the polar Gauss-Krüger projection coordinates (x2, y2) into
Equation (6) to obtain the latitude and longitude, and later substituting into the expression
of the complex function of the forward solution of the polar stereographic projection
(Equation (8)), we obtain the expression of the complex function of the Gauss-Krüger
projection, transformed to the polar stereographic projection:{

θ = x2+iy2
aα0

+ ∑5
k=1 b2ksin 2k(x2+iy2)

aα0

z3 = x3 + iy3 = −2Rϕcos2(π
4 − ϕ0

2
)
tan θ

2

(13)

Given the polar stereographic projection coordinates (x3, y3), we obtain the latitude
and longitude by inverse solution, and then substitute into Formula (5) to obtain the
expression of the complex function of polar stereographic projection, transformed to polar
Gauss-Krüger projection:⎧⎨⎩ θ = −2arctan

[
sec2(π4 −

ϕ0
2 )

2Rϕ
(x3 + iy3)

]
z2 = x2 + iy2 = aα0θ+ a∑5

k=1(−1)k−1α2ksin 2kθ

(14)

3.3. Transformation between Polar Gauss-Krüger Projection and Polar Stereographic Projection

We obtain the expression for the complex function of the Mercator projection trans-
formed to polar stereographic projection by substituting (x1, y1) into Equation (2) and then
into Equation (8):

z3 = x3 + iy3 = −2Rϕcos2
(π

4
− ϕ0

2

)
exp

(
− x1 + iy1

r0

)
(15)

Substituting (x3, y3) into Formula (9) to get the latitude and longitude and then
substituting into Formula (1), we can get the expression of the complex function of polar
stereographic projection transformed to Mercator projection:

z1 = x1 + iy1 = −r0ln

[
− sec2(π

4 − ϕ0
2
)

2Rϕ
(x3 + iy3)

]
(16)
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4. Evaluation of Dynamic Projection

With the help of Mathematica and MATLAB, the China Geodetic Coordinate System
2000 (CGCS2000) and the Arctic boundary data from the National Oceanic and Atmo-
spheric Administration (NOAA, https://www.noaa.gov/, accessed on 26 March 2024) are
taken as examples for the numerical analysis in this paper. We discuss and analyze the
distortion of polar navigation projection from two aspects: length distortion and longitude
and latitude grid line distortion, focusing on the distortion in each latitude segment of
66.5◦~70◦, 70◦~75◦, 75◦~80◦, 80◦~85◦, 85◦~90◦. Availability is analyzed and the most suit-
able navigation-oriented projection type for that projection range is given. The transition
between different projections is translated using the direct transformation formulas de-
rived in Section 3, and the translation accuracy and efficiency are analyzed. The reference
ellipsoid constants are a = 6 378 137 m and f = 1/298.257 222 101.

4.1. Length Distortion

Length distortion is a primary factor in determining which projection is used, and
controlling length distortion is crucial in cartography. The variations of u1, u2, u3, with
longitude difference l at different circles of latitude, ranging from the Arctic Circle 66.5◦
to the North Pole 90◦ are shown in Figure 3. To provide a more visual representation
of the distortion within the polar regions, the length distortions calculated based on
Equations (3), (7), and (10) are listed in Table 1.

Figure 3. Variation of length distortion with longitude difference l ((a) Mercator projection; (b) polar
Gauss-Krüger projection; (c) polar stereographic projection).

The results in Figure 4 and Table 1 show the following:

(1) In the Mercator projection, there is no length distortion at the reference latitude, while
the length distortion is greater than 0 beyond the reference latitude and less than
0 within it. The length distortions are all less than 10% in the region up to 74◦, whereas
in polar regions with very high latitudes, the maximum distortion can exceed 80%.
This suggests that it is possible to control the degree of distortion of the Mercator
projection by adjusting the reference latitude, but the Mercator projection is still
significantly distorted at high latitudes.

(2) The length distortions for l = 60◦ are listed in Table 1. In the polar Gauss-Krüger
projection, the farther away from the standard meridian, the larger the length dis-
tortion is for a fixed longitude difference. At the same latitude, the length distortion
increases and then decreases with the longitude difference, reaching a maximum at
l = ±90◦. The maximum distortion is calculated to be no more than 10%. This shows
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that the bandwidth can be broadened by using a complex function to represent the
Gauss-Krüger projection, which facilitates uniform representation of the land and
nautical charts and provides an important reference for scientific research and nautical
charting in the polar region.

(3) The overall distortion of the double polar stereographic projection in the polar region
is relatively small, especially above 79◦, where the distortion is less than 1%. It has
been able to satisfy the compilation of large and medium scale marine charts, which
is very important for the application of high-precision polar navigation.

Table 1. Length distortions at significant nodes within 66.5◦ to 90◦ of three projections.

B/◦
Type of Projection

Mercator Projection
Polar Gauss-Krüger

Projection
(l = 60◦)

Polar Stereographic
Projection

66.5 −0.074787 0.065517 0.043240
69 0.029360 0.051923 0.034335
70 0.078520 0.046964 0.031079
71 −0.089466 0.042272 0.027993
74 0.075366 0.029762 0.019747
75 0.145209 0.026102 0.017328
76 −0.130658 0.022693 0.015073
78 0.011497 0.016613 0.011045
79 0.102135 0.013938 0.009270
80 0.211028 0.011502 0.007653
81 −0.232651 0.009304 0.006193
83 −0.015044 0.005616 0.003741
85 0.377225 0.002861 0.001906
86 −0.838213 0.001830 0.001219
88 −0.676627 0.000457 0.000305
90 ∞ 0 0

Figure 4. Comparison of the two projections. (a) Schematic of the latitude lines at the Arctic;
(b) schematic of the meridians at the Arctic, where the red solid curves represent the polar stereo-
graphic projection; the green dashed curves represent the polar Gauss-Krüger projection; and the
gray line shows the boundary line of the Arctic.

4.2. Distortions of Longitude and Latitude Grid Lines

The establishment of latitude and longitude grids on the plane is the basis for deter-
mining the precise position of a ship during polar navigation. The grid of latitude and
longitude lines for the Mercator projection is widely known, so it will not be discussed in
this paper. Based on the polar Gauss-Krüger projection and polar stereographic projection
formulas, the latitude and longitude are plotted as shown in Figure 4. In this case, the
meridian starts at 0◦ longitude, the interval longitude difference is 30◦, and the latitude
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circle starts at 90◦ latitude. The red solid curves represent the polar stereographic projec-
tion; the green dashed curves represent the polar Gauss-Krüger projection; and the gray
line shows the boundary line of the Arctic. From Figure 4, it can be observed that the
meridians in the polar Gauss projection are radial straight lines centered on the poles, and
the latitudinal lines are depicted as concentric circles centered on the poles, whereas the
meridians in the polar Gauss-Krüger projection resemble an inverse hyperbola, and the
latitudinal lines resemble an ellipse.

To analyze specifically the differences between the latitude and longitude grids of
these two projections at high latitudes, the distribution of the difference Δx and Δy between
the x and y coordinates in the interval of latitude 87◦ to 90◦ and longitude difference −90◦
to 90◦ are shown in Figures 5 and 6. Figures 5 and 6 show that Δx decreases with increasing
longitude difference and Δy increases with increasing longitude difference when latitude
is fixed. In addition, Δx and Δy decrease with increasing latitude when the longitude
difference is constant. Normally, in 1:1,500,000 nautical charts, the difference of coordinates
on the charts within the region is negligible within 1 mm. Correspondingly, the actual
coordinate differences should be less than 1500 m. It is clear that the two projections
only have coordinate differences near the poles simultaneously less than 1500 m under
the ellipsoid model. Therefore, it is easier to use the dynamic projection to match other
auxiliary navigation.

 

Figure 5. Distribution of Δx. (a) Distribution of Δx in the latitude range of 66.5◦~90◦, longitude
difference −90◦ ∼ 90◦; (b) distribution of Δx in the latitude range of 87◦~90◦, longitude difference
−90◦ ∼ 90◦; (c) distribution of Δx as a function of longitude difference l for B = 87◦; (d) distribution
of Δx with latitude B at l = 30◦. The black solid line shows the curve of Δx as a function of l
and B. The red dotted line indicates the maximum allowable distance (1500 meters) for Δx in a
1:1.5 million chart.

Referring to the existing recommendations for the compilation of ENCs [41,42], the
length distortion of berthing and harbor at scales of 1:22,000 and above should be limited to
within 5%. The length distortions in the 1:22,000 to 1:90,000 approach are within 10%. The
range of distortions in the general scale, ranging from 1:350,000 to 1:1,500,000, is controlled
to 40% or less. For overviews at 1:1,500,000 and smaller scales, the range of length distortion
can be limited to about 50%. By this convention, the adoption of dynamic projection in
the polar region is suggested in this paper. Based on the analysis of the length distortions
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and the longitude and latitude grid distortions, the projections oriented towards polar
navigation are listed in Table 2. It is recommended that the compilation scales for ENCs be
based upon standard radar ranges in nautical miles. The smaller the selectable range, the
larger the scale of the ENCs, and the more detailed the geographic information displayed
on the ECDIS screen. Maritime users can flexibly manage and browse chart information by
adjusting selectable distances to suit different navigational needs and scenarios. Here, for
the purpose of uniformity of units in the paper, we standardize nautical miles to meters,
1 n mile = 1852 m.

 

Figure 6. Distribution of Δy (a) Distribution of Δy in the range of latitude 66.5◦~90◦, longitude
difference −90◦ ∼ 90◦; (b) distribution of Δy in the latitude range of 87◦~90◦, longitude difference
−90◦ ∼ 90◦; (c) distribution of Δy as a function of longitude difference l for B = 87◦; (d) distribution
of Δy with latitude B at l = 30◦. The black solid line shows the curve of Δy as a function of l
and B. The red dotted line indicates the maximum allowable distance (1500 meters) for Δy in a
1:1.5 million chart.

Table 2. Projections facing polar navigation at different scales.

Name Scale Range
Selectable Range

(m)
Deformation

Range of
Latitudes

Projection

Berthing >1:4000 463 <5%
66.5◦∼ 69◦ Mercator Projection
69◦∼ 79◦ Polar Gauss-Krüger Projection
79◦∼ 90◦ Polar Stereographic Projection

Harbor 1:4000~1:22,000 2778 <5%
66.5◦∼ 69◦ Mercator Projection
69◦∼ 79◦ Polar Gauss-Krüger Projection
79◦∼ 90◦ Polar Stereographic Projection

Approach 1:1:22,000~1:90,000 11,112 <10%
66.5◦∼ 74◦ Mercator Projection
74◦∼ 79◦ Polar Gauss-Krüger Projection
79◦∼ 90◦ Polar Stereographic Projection

Coastal 1:90,000~1:350,000 44,448 <30%
66.5◦∼ 83◦ Mercator Projection
83◦∼ 90◦ Polar Stereographic Projection

General 1:350,000~1:1,500,000 177,792 <40%
66.5◦∼ 85◦ Mercator Projection
85◦∼ 90◦ Polar Stereographic Projection

Overview <1:1,500,000 407,440 <50%
66.5◦∼ 85◦ Mercator Projection
85◦∼ 90◦ Polar Stereographic Projection
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4.3. Accuracy of Direct Transformation between Projections

The aim of this paper is to carry out an accuracy analysis of the direct transformation
between the established projections, as follows: Firstly, B ∈ [66.5◦, 90◦] and l ∈ [−90◦, 90◦]
are substituted into Equations (1), (5), and (8) to get the true value of the projected co-
ordinates. Secondly, the true values of the coordinates are substituted into the projected
conversion formulas (Equations (11)~(16)) derived in this paper to get the computed values.
Lastly, the computed values are subtracted from the true values to get the computational
errors of the conversion formulas. The computational errors of the transformation between
the polar Gauss-Krüger projection and the polar stereographic projection are listed in
this section, limited by the length of the article. The computational errors of the direct
transformation of the polar Gauss-Krüger projection to the polar spherical projection are
recorded as Δx23, Δy23, while the computational errors of the direct transformation of the
polar spherical projection to the polar Gauss projection are noted as Δx32 and Δy32. The
variation of the computational errors is shown in Figure 7. As can be seen from Figure 7, the
computational errors of the derived direct transformation formulas for both polar Gauss-
Krüger projection and polar stereographic projection are less than 10−9 m in this paper. The
computational errors of the other direct transformation formulas were calculated to be less
than 10−9 m. The correctness of the derived direct transformation formulas can be proved
numerically by taking into account the computational errors inherent in Mathematica.

 

Figure 7. Calculation error of the transformation between polar Gauss-Krüger projection and polar
stereographic projection. (a) Calculation error of Δx23; (b) calculation error of Δy23; (c) calculation
error of Δx23; (d) calculation error of Δy23, where the direct transformation of the polar Gauss-Krüger
projection to the polar spherical projection are recorded as Δx23, Δy23, and the computational errors
of the direct transformation of the polar spherical projection to the polar Gauss projection are noted
as Δx23, Δy23.

4.4. Calculation Efficiency Analysis

In order to verify the efficiency of the established direct transformation model among
the three projections, B ∈ [66.5◦, 90◦], l ∈ [0◦, 90◦] are selected as the study area, and the
transformation between the Gauss-Krüger projection of the polar region and the polar
stereographic projection is used as an example. The computational time used for the
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three resolutions of 1◦ × 1◦, 1′ × 1′, 0.1′ × 0.1′ is measured and is shown in Table 3. The
resolution of 1◦ × 1◦ requires the computation of 2 115 points; the resolution of 1′ × 1′
includes 7.614 million points; and the resolution of 0.1′ × 0.1′ requires the calculation of
761.4 million points. Here, the 0.1′ × 0.1′ resolution is chosen because of the format of
XX◦XX.XXXX′ in which nautical users enter the coordinates of points on ECDIS. In the table,
t1 is defined as the computational time used for the direct conversion of the polar Gauss-
Krüger projection to polar stereographic projection, and t2 represents the computational
time used for the direct conversion of polar stereographic projection to polar Gauss-Krüger
projection. The algorithm is tested in the following environment:

Table 3. Calculational time (unit: s).

Form Time (s)
Resolution

1◦ × 1◦ 1′ × 1′ 0.1′ × 0.1′

(x2, y2) → (x3, y3) t1 0.0018389 0.081655 197.8277
(x3, y3) → (x2, y2) t2 0.0019954 0.067192 203.3265

Hardware environment: the processor is AMD Ryzen 7 5800H with Radeon Graphics
3.20 GHz, RAM is 16.0 GB; the graphics card is AMD Radeon (TM) Graphics.

Software environment: Windows 11, 64-bit, MATLAB R2019av9.6.0.
According to Table 3, the time taken for the direct transformation between the polar

Gauss-Krüger projection and the polar stereographic projection also does not exceed 0.1 s
for the calculation of nearly 8 million points at 1′ × 1′ resolution, which can better satisfy
the higher requirements of high-precision ENCs in terms of resolution and projection
transformation efficiency.

5. Visualization of Dynamic Chart Projection

The real-time capability of the dynamic projection can meet the needs of route changing
at any time when the ship navigation path is determined. In this paper, a method based on
buffer analysis is proposed. The projection area is determined according to the real-time
position of the object, and adaptive visualization is achieved using a multithread-double
buffer dynamic scheduling algorithm. The specific process of dynamic chart projection
implementation is shown in Figure 8. The radius r of the buffer is determined by the
relationship between the screen size and the current map scale. The radius r of the buffer is
determined by the relationship between the screen size and the current map scale. Screen
width and height are represented by w and h, respectively, and scale is the current scale.

r =

√
w2 + h2

scale
(17)

The current point of the ship’s navigation, which is placed at the center of the screen,
is set as the initial point for the projection. A circular buffer is formed with the center of
the projected datum and a radius of r, and all objects within the buffer are projected. The
next projection reference point is judged by the real-time position of the ship’s movement.
Specifically, this is achieved by dividing the screen into four parts, as shown in Figure 9,
and if the point is located in area i, then Di is used as the next projection reference point.
For fast transitions in navigation scenarios, a double buffering technique can be used. The
double buffer technique means that two buffers (the front buffer and the back buffer) are
used to store and display images alternately. In general, the front buffer is used to display
the current image, and the back buffer is used to render the new image. While the vessel is
moving, the back buffer is exchanged with the chart information displayed on the screen of
the ECDIS, so that the ENCs are ensured to display updates smoothly and quickly. Dynamic
chart projection is required to visualize, while completing the projection transformation
based on the next projection datum, which can be made more efficient using multithreaded
techniques. The main thread is dedicated to loading the chart data centered on the current

272



J. Mar. Sci. Eng. 2024, 12, 577

projection reference point. It also focuses on providing the navigation-related details that
the user is interested in during the navigation process. The sub-thread is applied to load
the chart data for the next projection datum. Because the projection area corresponding to
the current projection datum covers a larger area than the current screen, fast visualization
of the projection area can be achieved by the technique of double buffering.

Figure 8. Schematic diagram of the realization process of dynamic chart projection.

 

Figure 9. Selection of the projection reference point and the corresponding projection (the dark blue
portion of the figure in the thick black rectangular box is the front buffer, which displays the chart
information from the ECDIS screen. The light blue portion and the red portion are the back buffers.
Assuming that the next position of the ship is located in zone 1, the next projection datum is D1. The
red part is the buffer with D1 as the projection datum buffer).

6. Conclusions

In order to solve the problem that the projection used in ENCs is not fully applicable
to polar navigation, an ENC projection suitable for polar navigation, based on the theory
of complex function, is analyzed in detail. Direct transformations of Mercator projection,
polar Gauss-Krüger projection, and polar stereographic projection are derived, dynamic
projections oriented to polar navigation are designed, and an ENCs visualization idea based
on multithread-double buffering is developed. Taking the CGCS2000 reference ellipsoid as
an example for calculation, the Mercator projection has less than 10% distortion up to 74◦
latitude, but distortion exceeds 80% at extreme high latitudes. The maximum distortion
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of the polar Gauss-Krüger projection does not exceed 10%. Polar stereographic projection
is shown to be less than 1% above 79◦. From the perspective of longitude and latitude
grid lines, the polar Gauss-Krüger projection and the polar stereographic projection differ
only to a small extent near the poles. By combining the existing specifications for the
compilation and mapping of ENCs, recommendations for the projections oriented towards
polar navigation at different scales and in different latitude bands for different applications
are given. Taking the transformation between the Gauss-Krüger projection and the polar
stereographic projection in the polar region as an example, the computational error of the
direct transformation formula is less than 10−9 m, and the time does not exceed 0.1 s for the
calculation of nearly 8 million points at 1′ × 1′ resolution, which fully meets the demand of
high-precision ENCs for resolution and projection transformation efficiency.

In conclusion, the adverse effects on navigation caused by projection errors in ENCs
can be effectively eliminated by the established dynamic projection and visualization meth-
ods for polar navigation. By providing high-precision spatial and temporal information
services and improving the visualization of navigation software for smart ships, it can
better serve polar scientific research, ocean shipping, and other related fields, while also
reducing navigation risks.
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Abstract: Sorting out the requirements for intelligent functions is the prerequisite and foundation
of the top-level design for the development of intelligent ships. In light of the development of
inland intelligent ships for 2030, 2035, and 2050, based on the analysis of the division of intelli-
gent ship functional modules by international representative classification societies and relevant
research institutions, eight necessary functional modules have been proposed: intelligent navigation,
intelligent hull, intelligent engine room, intelligent energy efficiency management, intelligent cargo
management, intelligent integration platform, remote control, and autonomous operation. Taking the
technical realization of each functional module as the goal, this paper analyzes the status quo and
development trend of related intelligent technologies and their feasibility and applicability when
applied to each functional module. At the same time, it clarifies the composition of specific func-
tional elements of each functional module, puts forward the stage goals of China’s inland intelligent
ship development and the specific functional requirements of different modules under each stage,
and provides reference for the Chinese government to subsequently formulate the top-level design
development planning and implementation path of inland waterway intelligent ships.

Keywords: inland intelligent ships; functional module; intelligent technologies; functional requirements

1. Introduction

Compared with traditional ships, intelligent ships possess numerous advantages,
such as safety, reliability, energy conservation, environmental friendliness, and economic
efficiency. With the rapid development and widespread application of technologies such
as artificial intelligence, the Internet of Things, cloud computing, and big data, intelligent
ships based on digitization and aiming for autonomy have become a new focus in the
shipbuilding industry, international shipping, and maritime circles [1]. In recent years, the
development of intelligent ships has achieved remarkable results. In January 2022, the
Japanese container ship Mikage completed a fully autonomous navigation test from Tsuruga
Port in Fukui Prefecture to Sakaiminato Port in Tottori Prefecture over a total distance of
about 270 km. In addition to the Automatic Identification System (AIS) of the ship and the
radar, the ship was equipped with visual cameras, infrared cameras for nighttime, and an
artificial intelligence (AI) learning system for detecting other ships. In April 2022, China’s
first self-developed autonomous 300 TEU container ship, “Zhi Fei,” made its maiden
navigation at Qingdao Port, which has three driving modes: manual, remote control, and
unmanned autonomous navigation. It is capable of realizing intelligent perception and
cognition of the navigation environment, autonomous route planning, intelligent collision
avoidance, automatic berthing and unberthing, and remote control navigation. By the
end of 2023, the ship had sailed over 20,000 nautical miles, with its intelligent navigation
system consistently operating safely. In April 2022, the Norwegian ship “Yara Birkeland”
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entered commercial operation as the world’s first fully electric, unmanned container ship
equipped with remote control and autonomous navigation systems. In June 2022, the
South Korean super-large natural gas (LNG) carrier “Prism Courage” completed an oceanic
intelligent navigation experiment. The same month, the unmanned electric ship “The
May Flower” conducted intelligent perception and decision-making with its AI captain
and edge computing system during its first fully autonomous transatlantic navigation. In
January 2023, the world’s first scientific research ship with remote control and autonomous
navigation in open waters, “Zhuhai Yun,” was delivered for use in Guangzhou, China. It
is expected that the International Maritime Organization (IMO) will issue the “Maritime
Autonomous Surface Ship Code (MASS Code)“ by the end of 2024 and implement it on
1 January 2025. This code is a comprehensive set of regulations tailored for MASS to
address issues that existing maritime organization documents cannot adequately address
or have not yet addressed for MASS. Reviewing the current research status of major
international research institutions in the field of intelligent ships, the development of
intelligent ships primarily focuses on ocean-going ships, with relatively few applications in
inland ships. There are several reasons for this. Firstly, at the international level, intelligent
ship development is still in the early stages of system development and testing, and
further refinement, integration, and reliability verification of intelligent ship technology are
needed. Secondly, compared to sea navigation environments, inland waterway navigation
environments are more complex. From a safety perspective, current inland ship operations
still heavily rely on subjective judgments, decisions, and responses based on human
experience. Thirdly, compared with the scale of sea ships and marine transportation,
the scale of manufacturing and operating bodies of inland ships is small, and there is
still a lack of economic capacity and development consciousness in the introduction of
intelligent technology.

At present, there are relatively few international studies on intelligent inland ships.
This article summarizes the functional classification or grading of intelligent ships by
international representatives of classification societies and shipbuilding companies, sys-
tematically organizes the technology, and takes into account the specific aspects of inland
waterway navigation. It extracts functional modules that meet the development needs
of inland intelligent ships and combines them with the current development status and
technological forecasts of ship intelligence technology. It proposes functional requirements
for the development of China’s inland intelligent ships by 2030, 2035, and 2050.

The remaining part of this paper is organized as follows. Section 2 briefly outlines the
international classification of smart ship functional modules and analyzes the necessity
of functional modules. Section 3 describes in detail the technologies related to smart
ships, including intelligent perception technology, intelligent communication technology,
intelligent evaluation technology, intelligent decision-making technology, and intelligent
control technology. Section 4 gives a prediction of the functional demand for inland
waterway smart ships under different stages. Section 5 summarizes the conclusion and
describes the future research direction of inland intelligent ships.

2. Analysis of Functional Modules for Inland Intelligent Ships

2.1. Current Classification Status of Functional Modules for Intelligent Ships

Currently, there is no universal consensus among international research institutions
regarding the classification of intelligent ship functions or standards for intelligent grades.
In December 2015, the China Classification Society (CCS), taking into account both domes-
tic and international experiences in intelligent ship applications and the future direction
of ship intelligence, developed and issued the world’s first “Rules for Intelligent Ships”.
Subsequently, it underwent multiple iterations, was updated, and reissued as the “Rules
for Intelligent Ships (2024)” in December 2023, which takes safety, economy, high efficiency,
and environmental protection as the starting points and introduces the new concept of
artificial intelligence. It divides intelligent ship functional modules into eight categories:
intelligent navigation, intelligent hull, intelligent engine room, intelligent energy efficiency
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management, intelligent cargo management, intelligent integration platform, remote con-
trol, and autonomous operation [2]. In February 2017, Lloyd’s Register issued the “Code for
Unmanned Marine Systems,” which adopts a system similar to traditional ship regulations.
Its chapters are highly consistent with traditional ship regulations and are divided into
sections such as structure, stability, control, electrical, navigation, propulsion systems,
and firefighting. From the perspective of unmanned operation, the regulation provides
corresponding discussions on the scope, purpose, functional objectives, and performance
requirements of unmanned systems [3]. In October 2018, Det Norske Veritas (DNV) pro-
posed in its “Class Guideline Smartship” that intelligent ships should possess a total of
five intelligent features: enhanced foundation, operational enhancement, performance
enhancement, safety and reliability enhancement, and enhanced condition monitoring [4].
In June 2022, the American Bureau of Shipping (ABS) introduced the “Smart Functions for
Marine Vessels and Offshore Units,” proposing that intelligent ships should include five
aspects of intelligent functions: structural health monitoring, machinery health monitoring,
asset efficiency monitoring, operational performance management, crew assistance, and
functional enhancement [5]. In January 2020, the Japan Ship Classification Society (JSCS)
outlined two functional goals for intelligent ships from the perspective of supporting crew
operations in its “Guidelines for Automated/Autonomous Operation of ships.” These goals
include designing and developing unmanned ships and short-distance small ships with
the aim of reducing the number of crew members and designing and developing partial
automation or remote support for onboard tasks. This guideline does not directly classify
the autonomous level of ships but categorizes automation operation systems and remote
operation systems from the perspectives of system design, development, installation, and
operation [6]. In 2019, the European Union launched the Autonomous Ship Research
and Development Program. In this program, the functions of smart ships are typically
categorized as autonomous navigation systems, intelligent energy management, intelligent
ship operations, communication and remote monitoring, and autonomous safety systems
to meet the needs and challenges of autonomous ship navigation [7]. In November 2021,
the Netherlands Forum Smart Shipping (SMASH) published the Smart Shipping Roadmap,
which sets out a vision for the development of smart shipping in the Netherlands towards
2030. Its short-term goal is to reduce the number of ship drivers through ship automation
and intelligent technology and to realize “autonomous human assistance” on ships on a
small scale [8]. Furthermore, relevant international shipbuilding enterprises and research
institutions have also put forward their respective research focuses in the development of
intelligent ships, as shown in Table 1.

Table 1. Summary of intelligent ship specifications of internationally relevant agencies.

Organization Date Related Documents Primary Content

China Classification Society
(CCS)

December 2015
(Updated as of
December 2023)

Rules for Intelligent
Ships 2024

Intelligent Navigation, Intelligent Hull,
Intelligent Engine Room, Intelligent Energy
Efficiency Management, Intelligent Cargo
Management, Intelligent Integration
Platform, Remote Control,
Autonomous Operation

Lloyd’s Register of Shipping
(LR) February 2017 Code for Unmanned

Marine Systems

Structure, Stability, Control, Electrical,
Navigation, Propulsion
System, Firefighting

Det Norske Veritas
(DNV GL) October 2018 Class Guideline

Smartship

Enhanced Foundation, Operational
Enhancement, Performance Enhancement,
Safety and Reliability Enhancement,
Enhanced Condition Monitoring
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Table 1. Cont.

Organization Date Related Documents Primary Content

American Bureau of Shipping
(ABS) June 2022

Smart Functions for
Marine Vessels and

Offshore Units

Structural Health Monitoring, Machinery
Health Monitoring, Asset Efficiency
Monitoring, Operational Performance
Management, Crew Assistance and
Functional Enhancement

Nippon Kaiji Kyokai
(NK) January 2020

Guidelines for Auto-
mated/Autonomous

Operation of ships

Streamlining and unmanned crewing of
small, short-distance ships; automation or
remote operation of part of the ship’s
operations, mainly in support of the crew

European Union
(EU) 2019

Autonomous Ship
Research and

Development Program

Autonomous Navigation Systems,
Intelligent Energy Management,
Intelli-gent Ship Operations,
Communication and Remote Monitoring,
Autonomous Safety Systems

Netherlands Forum Smart
Shipping
(SMASH)

November 2021 Smart Shipping
Roadmap

In the short term, focus on reducing the
number of ship drivers through ship
automation and intelligent technology, and
realize “autonomous human assistance” for
ships on a small scale

Rolls-Royce 2014

Advanced
Autonomous
Waterborne

Applications
(AAWA)

Focusing the functional research and
development of intelligent ships on two
aspects: firstly, intelligent subsystems, and
secondly, realizing the intelligence of the
whole ship’s platform [9]

Hai Lanxin 2016 Intelligent Ship 1.0
Specialization

Focusing on the development of ship
intelligent assisted autopilot system,
completed the ship assisted autopilot
system with sensing, decision-making and
execution functions [10]

Hyundai Heavy Industries
Group 2017 Intelligent Ship

Program

Focusing on the research and development
of intelligent navigation, intelligent
berthing and other auxiliary systems for
ships [11]

By sorting out the functional module division of intelligent ships of the above eight
institutions or organizations, it can be seen that the current mainstream classification of
ship autonomy level mainly targets specific functions or operations and elaborates in detail
what functions or operations can be realized by the system when it is at different levels of
autonomy, covering from manual operation to full autonomy.

2.2. Necessity Analysis of Functional Modules

CCS “Rules for Intelligent Ships (2024)” has a fairly complete framework of intelligent
ship specifications and corresponding functional and technical requirements, which is
more suitable for guiding the development of intelligent ships on inland waterways in
China. As illustrated in Figure 1, the regulations propose eight intelligent modules from a
technical perspective, forming a complete system of functional and technical requirements
for intelligent ships. However, in the context of inland ship development towards 2030,
2035, and 2050, the actual development status of inland ships needs to be taken into account.
For the intelligent hull module, the ship structure serves as the most fundamental system
unit and one of the most stable and reliable components of a ship. The current level of
modern manufacturing is sufficient to ensure the stable and reliable operation of the hull
throughout its lifecycle. There is scarce evidence of inland maritime accidents caused by
excessive damage to the ship’s hull structure. Therefore, investing excessive research and
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development costs in the already stable and reliable hull structure in the short term may
not be economically justified. As for the remote control and autonomous operation module,
the realization of remote control and autonomous operation of the ship not only requires
the ship itself to have a high level of intelligence but also must rely on reliable, stable,
low-latency means of communication and an intelligent remote control platform, which is
the integrated embodiment of the ship end-ship and shore communication-shore control
center. The integration of the ship’s intelligence and external intelligent technology, not
only by the intelligent ship itself, can be realized independently. Moreover, the inland
navigation environment has the characteristics of narrow and long water bodies, which are
more limited and complex compared to the marine environment. The safety risk of remote
control of inland ships is greater when other intelligent functions are not yet mature. At the
same time, there are still many problems with the large number of inland ships, complex
ship types, generally low level of advanced system equipment, and the overall quality
of crew that still needs to be further improved. In addition, compared to ocean-going
vessels, inland ships can always maintain short-distance contact with onshore bases during
navigation, and the demand for remote control is weaker than that of ocean-going vessels.
Therefore, remote control of ships does not have significant economic advantages in the
short term [12].

Intelligent navigation

Intelligent cargo management

Intelligent integration platform

Intelligent energy efficiency management

Intelligent engine room
Intelligent hull

Remote control

Autonomous operation  

Figure 1. Analysis of functional modules for inland intelligent ships.

3. Intelligent Ship Technology

From the dimension of science and technology, an intelligent ship requires a high
degree of integration of information and control, which needs to be supported by a complete
technical system. Taking the equivalent replacement of manpower with intelligent functions
as the criterion and analyzing it from the perspective of the technical realization path
of functional modules, the intelligent ship technology system specifically includes the
complete technology chain composed of intelligent perception technology, intelligent
communication technology, intelligent evaluation technology, intelligent decision-making
technology and intelligent control technology. The details are as follows:

3.1. Ship Intelligent Perception Technology

Perception technology is the basis for realizing ship intelligence, which mainly in-
cludes navigation environment information perception, ship state monitoring, information
analysis and processing, as shown in Figure 2. Intelligent perception technology utilizes
various onboard sensor devices to perceive and monitor information regarding the ship’s
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own state (including dynamic information, hull structural condition, energy efficiency and
energy consumption, mechanical equipment and system operation conditions), external
environment, cargo and cargo hold condition, etc., and realize the intelligent collection and
processing of ship state information data.

Hull and Equipment InformationExternal Information Cargo and Hold Information

Marine main engine Transmission device

Hydraulic system Hull

Radar AIS

CCTV BDS/GPS

RFID temperature sensor

Meteorology sensor pressure sensor

Multi-source Heterogeneous Data

Diversity of sources

External environment

Internal equipment

Cargo and hold

Hull structure

Different structures

Data type differences

Diverse data formats

Heterogeneous
operating systems

Heterogeneous
data semantics

Abnormal data

Redundant data

Natural 
environment

Traffic 
environment

Navigation 
condition

Status of cargo 
and hold 

Condition of 
machinery and 

equipment

Condition of
hull structural

Timely perception of 
navigation 

environment

Real-time monitoring 
of hull and 

equipment status

Perception of targets 
and obstacles in the 

way

Cargo compartment 
and cargo parameter 

perception

reconstruction of 
navigation 

environment

multi-source data 
fusion

 

Figure 2. Ship intelligent perception technology diagram.

3.1.1. Navigation Environment Information Perception

Navigation environment information sensing technology mainly utilizes GPS, AIS,
radar, depth sounder, motion sensor, wind speed, direction meter, and other sensing devices
to obtain various environmental information outside the ship, which provides more reliable
data support for subsequent key technologies such as intelligent assessment and intelligent
decision-making.

Thompson et al. [13] proposed an efficient LiDAR-based target segmentation method
for the marine environment that utilizes 3D occupancy grid segmentation to effectively
map large areas. Xu et al. [14] proposed a novel network architecture for small SAR ship
target feature extraction and multi-field feature fusion combined with dual-feature mobile
processing based on bridge node and feature assumptions, which solved the problem of
misdetections and false detections in the detection of small SAR ship targets. Ye et al. [15]
proposed an EA-YOLOv4 algorithm with an augmented attention mechanism, which
utilizes a convolutional block attention module (CBAM) to search for features in the
channel dimension and spatial dimension, respectively, to improve the feature perception
ability of the model for ship targets. Hu et al. [16] propose to add the natural image
quality evaluation (NIQE) index in the generative adversarial network (GAN) to make the
generated image have a better effect than the real image set in the existing dataset, which
effectively solves the problems of underwater image distortion, low visibility, low contrast,
and other problems.

3.1.2. Ship State Monitoring

Ship condition monitoring involves monitoring the condition of the ship’s structure,
equipment, and loaded cargo, which can be achieved by collecting parameters related to
the ship’s hull, engine room, cargo, and energy consumption systems.

Wang et al. [17] introduced machine learning algorithms and proposed a ship’s ma-
chinery room equipment’s condition monitoring method that combines manifold learning
and Isolation Forest. By reducing the complexity of the data through dimensionality re-
duction in raw data, intelligent monitoring of ship machinery room equipment’s condition
is achieved. Zhuang et al. [18] designed a ship’s electromechanical equipment’s vibration
signal data acquisition system based on wireless sensor networks. This system can collect
multi-channel monitoring data in real-time and accurately, improving the accuracy of
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ship electromechanical equipment’s vibration signal detection and analysis capabilities.
Hover et al. [19] developed and applied a hull monitoring planning algorithm, dividing the
hull into an open hull and complex regions. The open hull part is mapped using integrated
acoustic and visual methods, while the complex part achieves high-resolution full imaging
coverage of all structures through large-scale planning programs. Zhan [20] developed a
ship energy consumption data acquisition and transmission system based on the virtual
instrument Labview platform by optimizing the traditional ship energy consumption data
acquisition system, which improved the integration degree of the system as well as the
accuracy of the energy consumption data. Tong et al. [21] realized the automatic acquisition
of parameters such as humidity and gas content of the cabin by installing explosion-proof
automatic acquisition and analysis equipment on the dome of the forward part of the cargo
hold and achieved the automatic acquisition of parameters such as moisture and gas content
of the cabin to reduce the danger of cargo management for LNG carriers. Jiang [22] de-
signed a ship’s dangerous goods detection system based on IoT technology, RFID imaging,
and other technologies. This system has excellent cargo information acquisition capabilities
and can accurately read label information for different categories of dangerous goods for
detection. Hu et al. [23] proposed a ship’s cargo hold environmental monitoring and control
system based on the SSM framework. By integrating Socket monitoring interfaces into the
SSM framework, communication between local clients and cloud servers is established,
enabling effective monitoring of cargo hold environmental parameters.

3.1.3. Information Analysis and Processing

Information analysis and processing technology involves collecting, organizing, ana-
lyzing, and mining data collected through perception using information technologies such
as machine learning. This technology helps improve the operational efficiency and safety
of ships.

Liu [24] designed and implemented a data conversion algorithm that transforms rela-
tional models into XML Schema. Based on this algorithm, a multi-source heterogeneous
data integration platform was designed to address the challenges of integrating multi-
ple heterogeneous data sources and dynamic information service patterns in shipping.
Chen et al. [25] analyzed the IoT data mining technology of the ship big data platform,
reasonably set the content of different functional layers, formed an efficient operation and
management chain, and solved the problems of wide data sources and an unstable network
of the ship monitoring platform. Liu et al. [26] developed a fuzzy logic-based multi-
sensor data fusion algorithm and proposed a two-stage fuzzy logic association method.
By integrating it with the Kalman filter, the system’s data calculation performance was
effectively optimized.

Currently, the application of relevant perception technologies on ships is already
widespread. However, in the development process of inland intelligent ships towards
2030, 2035, and even 2050, challenges persist in their application. These challenges include
overcoming adverse weather conditions, numerous obstacles in inland waterways, limited
detection range, and insufficient accuracy in perception, all of which affect the ability to
obtain reliable data. With the enhancement of the ship’s sensing ability, the amount of data
collected by the ship’s sensors will also increase [27], so communication technology needs
to be continuously improved with the development of sensing technology.

3.2. Ship Intelligent Communication Technology

Communication technology can further integrate and share the information collected
and processed by perception technology, open the channel of information between various
systems of the ship, and exchange and communicate the corresponding state information
of its own ship with the outside world to realize reliable, stable. and low-latency intelligent
data exchange, as shown in Figure 3.
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Figure 3. Ship intelligent communication technology diagram.

Zhang [28] proposed an intelligent power allocation algorithm based on deep rein-
forcement learning (DNN) within the framework of the ship’s Internet of Things short
packet communication network structure, under the constraint of data transmission security
capacity. This algorithm demonstrates good stability in data transmission. Yang et al. [29]
introduced a ship communication information transmission channel control algorithm
based on an improved bandwidth estimation algorithm. By calculating bandwidth sam-
ple values and updating the filtering bandwidth sample value thresholds, intelligent
control of the large data transmission channel was achieved. Yoo et al. [30] proposed a
distributed state quantization formation design method under a directed network for a low-
complexity designated performance control scheme, realizing quantization communication.
Cai et al. [31] proposed a marine IoRT system based on deep reinforcement learning and
a GEO/LEO heterogeneous network for IoRT data collection and transmission. Data are
forwarded to the ground data center through satellite links, achieving seamless coverage
and capacity expansion.

Based on the various information data collected by perception technology, communi-
cation technology needs to break through the barrier of mutual independence of the data
of various systems and equipment and centralize and integrate the information on the
external environment, the ship, and the condition of the cargo in order to comprehensively
improve the operating efficiency of the ship. In addition, on the inland ships, the fusion
of information data and other ships or shore facilities for data exchange, can be more
effective coordination between ships in a variety of navigational environments, collision
avoidance operations, and ship route planning, berthing and unberthing, loading and
unloading of goods and other operations. However, considering the high dynamic changes
in the navigation environment of intelligent ships and the large amount of sensor data,
etc., the performance of the 5G mobile communication system, which is being vigorously
deployed by various countries, is still difficult to satisfy the requirements of intelligent
communication for ships; therefore, the research on intelligent communication technology
should also focus on new methods and new technologies [32].

3.3. Ship Intelligent Evaluation Technology

Evaluation technology can realize the use of computers to simulate human perception,
analysis, thinking, decision-making, and other processes to cognitively calculate the rel-
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evant data of each system and the uncertainty, imprecision, and partially real problems,
and then make evaluations and give relevant suggestions. It mainly includes navigational
posture assessment, hull structure condition assessment, energy consumption and energy
efficiency condition assessment, cargo and cargo hold condition assessment, fault diagnosis,
etc., as shown in Figure 4.
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Figure 4. Ship intelligent assessment technology diagram.

3.3.1. Navigational Posture Assessment

Realizing real-time assessment of ship navigation posture is one of the keys to enhanc-
ing the navigation safety of intelligent inland ships. Through the equipment information
collected by perception technology or the system data obtained by communication tech-
nology fusion, using deep learning and other intelligent assessment technology to carry
out cognitive computation on the navigation environment in the waters and the attitude
of the ship, to make judgments on the real-time encounter situation of the ship, and to
make predictions and assessments of the encounter situation in a short period of time in
the future through the training of adopting different collision avoidance measures in the
current situation and to give appropriate maneuvering suggestions.

Cheng et al. [33] proposed a fuzzy logic model to estimate the adaptability risk of
crossing gaps and conducted a collision risk assessment of conflict points in the scenario.
The model takes into account the relationship between the adaptive risk of the selected
crossing gap and the collision risk of the conflict point, which can reduce the ship operation
risk from the source of risk development. Bi et al. [34], using the alpha-shape algorithm
and Voronoi diagram, categorized safety assessment indicators for coastal waters into
five risk levels: very low, low, moderate, high, and very high. They then applied entropy
weight theory to calculate the weights of evaluation indicators, establishing a model
for assessing safety risks in coastal waters that fully considers the impact of objective
factors and the uncertainty of safety assessment indicators. Chen et al. [35] introduced
fuzzy theory into the ship risk assessment model, which can adapt well to changes in
heading, speed, and position, to some extent addressing the problem of poor comprehensive
evaluation and collision avoidance effectiveness of ships. Xu et al. [36] proposed an
intelligent hybrid collision avoidance algorithm based on deep reinforcement learning that
can accurately judge the collision situation, give reasonable collision avoidance actions,
and realize effective collision avoidance in the complex environment of dynamic and static
obstacles. Xin et al. [37] expanded the application of complex network theory and node
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deletion methods, quantifying the interactions and dependencies between multiple ships
in collision scenarios and enabling collision risk assessment at any spatial scale.

3.3.2. Hull Structure Condition Assessment

Ship structural condition assessment involves real-time monitoring of dynamic pa-
rameters of the ship’s structure to identify key information, such as stress distribution and
fatigue damage, and to perform condition assessment and prediction. This technology can
effectively enhance ship safety, navigation efficiency, and operational efficiency.

Akpan et al. [38] modeled the corrosion growth as a time-varying stochastic function
of the hull structural component thickness reduction over time, used the second-order reli-
ability method (SORM) to calculate the instantaneous reliability of the main hull structure,
and put forward a time-varying reliability calculation method for the corrosive structure
of the ship based on the hazardous rate function. Wang [39] took the structural condition
monitoring system of a new type of polar ship as the research object and gave a set of
reasonable measurement point arrangements, load inversion, and strength assessment
scheme through theoretical research and computational analysis. Liu [40] based on the
design technical indexes of ultra-large ships and the operational characteristics of the actual
ship, and combined with all kinds of norms and standards, established an assessment
system of the impact of the effects of torsion, thumping vibration, and other effects on the
structural safety of the ship’s hull, which fills in the blanks of the monitoring norms and
assessment standards of the ultra-large ships. Lang et al. [41] established a fatigue assess-
ment model for 2800 TEU container ship based on measured data using machine learning
technology, which can accurately capture the nonlinear increase in fatigue. Compared with
the traditional spectral method, this method can realize more accurate monitoring of ship
fatigue damage.

3.3.3. Energy Consumption and Energy Efficiency Condition Assessment

Ship Energy Consumption and Energy Efficiency Condition Assessment is to realize
real-time analysis and assessment of ship energy consumption and energy efficiency by
integrating sensors, data acquisition, processing, and intelligent analysis technologies
to provide decision-making support for ship management. This technology is of great
significance for reducing operation cost, saving energy, and reducing emissions.

Wang [42] adopted the fuzzy set analysis method to form a set pair for ship energy
consumption and ideal operating conditions. Comprehensive evaluation results were
obtained from the analysis of proximity, uncertainty, and trend levels, addressing the
fuzziness and uncertainty issues of factors affecting ship energy consumption evaluation.
Fan et al. [43] considered the stochastic nature of environmental parameters and established
a new ship energy efficiency model based on the Monte Carlo simulation method, which
was applied to ship performance simulation. This facilitated ship managers in evaluating
maritime ship energy efficiency, thereby promoting energy conservation and emission
reduction in the shipping industry. Wang et al. [44] used Long Short-Term Memory (LSTM)
neural network with better prediction performance for a sequential dataset to establish a
ship energy consumption prediction model and used a genetic algorithm to optimize the
network structure and hyper-parameters, which greatly improved the prediction accuracy
of the energy consumption model, which is of great significance for the optimization and
improvement of the energy efficiency of ships.

3.3.4. Cargo and Cargo Hold Condition Evaluation

The assessment of cargo and cargo hold conditions primarily relies on the coordi-
nated operation of various sensors and sensing systems. Through real-time monitoring,
data processing, predictive assessment, and other means, it achieves a comprehensive
understanding and effective management of the condition of cargo and cargo holds.

Gao et al. [45], based on embedded development, collect real-time data on humidity,
temperature, oxygen concentration, smoke concentration, and cold well liquid level inside
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the cargo hold, detect the condition of hatch closure, and capture real-time video infor-
mation inside the cargo hold, designing a comprehensive cargo hold monitoring system.
Lan et al. [46], based on the risk transmission model of the cargo transportation process
chain, constructed a model system for risk analysis and quantitative assessment of cargo
transportation based on real-time dynamic big data fusion technology, thereby achieving
informatization and modern intelligent supervision of the entire process and all aspects
of cargo. He [47] proposed a weighted average combined assessment method for the
security of critical information in ship cargo hold surveillance video, which uses BP neural
network, support vector machine, and extreme learning machine to assess the security of
critical information in ship cargo hold surveillance video and improves the results of the
assessment of the security of critical information in ship cargo hold surveillance video.

3.3.5. Fault Diagnosis

Fault diagnosis involves analyzing relevant data from various systems to determine
if they are in a stable condition. If the equipment is found to be in poor condition, corre-
sponding evaluations are made based on the type and severity of the fault, and alerts or
warnings are issued accordingly.

Jiang et al. [48] divided the intelligent fault diagnosis of ship power units into three
key stages: data signal acquisition, data feature extraction, and fault identification and
prediction. They proposed that the goal should be to achieve condition-based maintenance
and health management of ship power units and advocated for establishing a cloud-based
data monitoring system. Cheng [49] applied the artificial neural network algorithm from
the artificial immune algorithm to diagnose faults in ship electronic equipment, addressing
the inefficiency of manual fault diagnosis methods. Ozturk et al. [50] proposed an intelligent
fault diagnosis system for ship mechanical systems using a classification tool based on
support vector machine principles. Liu et al. [51] designed a convolutional neural network
intelligent fault detection optimization algorithm based on frequency domain information
features. The algorithm detects a small number of false alarms, but the detection effect
is significantly improved compared with the previous one, which can provide a valuable
reference for robust fusion of sensors on surface ships. Tang et al. [52] developed a ship
engine room remote fault diagnosis system based on a hybrid B/S and C/S architecture
for ship power unit fault diagnosis. This system is stable, reliable, and accurate in fault
diagnosis, providing a promising solution for the development of intelligent ships.

In the actual operation of inland ships, the ships are less manned, and the assessment
of ship intelligence will be beneficial to improve the operational efficiency of the equipment
and the navigation safety of the ship, discover the negligence that the manpower fails
to discover in time, reduce the maintenance cost, and guarantee the safe operation of
the ship. In the subsequent development of ship intelligence, the comprehensive use of
intelligent databases and intelligent machine computing, fully expanding the application
of artificial intelligence technology in intelligent ships, integrating the advantages of more
advanced computer technology [53], more sophisticated instruments, and more efficient
expert systems [54], thus enhancing the intelligence level of ship assessment technology.

3.4. Ship Intelligent Decision-Making Technology

Decision-making technology can combine the recommendations made by the assess-
ment technology, comprehensively apply artificial intelligence technologies such as expert
databases, neural networks [55], genetic algorithms, machine learning [56], etc., and re-
trieve databases from the ship or the shore at the same time, intelligently correlate the
reasoning and analysis of the ship’s historical data, automatically calculate the optimal
solution of each solution, and provide the function of visualization and human–machine
interaction so as to assist the decision making of the crew or autonomous decision making.
It also provides visualization and human–computer interaction functions to assist the crew
in decision-making or autonomous decision-making, and realizes the goal of keeping the
related systems and equipment in efficient operation. Ship intelligent decision-making tech-
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nology includes navigation assistance decision-making, hull and equipment maintenance
assistance decision-making, energy efficiency management assistance decision-making and
intelligent loading assistance decision-making. Among them, the hull structure and equip-
ment are more stable and reliable, so the current research on intelligent decision-making
technology mainly focuses on navigation-related decision-making, i.e., route planning and
intelligent collision avoidance, as shown in Figure 5.
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Figure 5. Ship intelligent decision-making technology diagram.

3.4.1. Route Planning

Route Intelligent Planning is a navigation method that obtains real-time traffic and
environmental information about the water ahead through various sensors, such as AIS and
radar, during navigation and then intelligently selects the ship’s position and course within the
waterway to optimize the route for safe, efficient, and environmentally friendly navigation.

Liu et al. [57] proposed a hybrid heuristic approach integrating genetic algorithms and
particle swarm optimization algorithms to enhance the accuracy and robustness of route
planning in constrained waterways. Pan et al. [58] utilized the Delaunay triangulation
algorithm to devise a method for adjusting the weights of navigable networks under
environmental disturbances, enabling the planning of suitable routes for ships of different
scales in various environments. Liang et al. [59] introduced an efficient, robust, adaptive,
and implementable route planning algorithm based on leader-node ant colony optimization
and a trajectory maintenance control algorithm using nonlinear feedback, enhancing both
the efficiency and safety of ship navigation. Ma et al. [60] employed a hierarchical mapping
method to separate the decision layer from the weather information layer, directly obtaining
route and speed decision schemes conforming to ship maneuverability and crew habits.
They proposed a new strategy that simultaneously optimizes ship routes and speeds,
significantly reducing the cost of route generation. Zhou et al. [61] proposed a ship path
planning method based on historical trajectory data and the SARIMA model, effectively
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addressing ship collision issues caused by buoy displacement in the navigation of large,
slow autonomous ships.

3.4.2. Intelligent Collision Avoidance

Intelligent collision avoidance is the core issue of intelligent ship navigation. Based
on the historical trajectory and position, the ship predicts the future course of the ship,
evaluates the risk of collision according to the actual situation, and chooses the best
time to carry out the automatic collision avoidance operation in order to complete the
safe avoidance.

Zhang et al. [62–64] proposed an autonomous decision-making model for complex en-
counter situations of multi-ship based on the deduction of ship maneuvering process, model
predictive control (MPC), modified velocity obstacle (VO) algorithm, and grey cloud model.
Wang et al. [65] employed the Twin Delayed Deep Deterministic Policy Gradient (TD3)
reinforcement learning algorithm to address the coordinated control problem of unmanned
surface ships (USVs) regarding speed and heading. The TD3-IC controller exhibits outstand-
ing robustness and adaptability even in the presence of disturbances and variations in USV
parameters. Li [66] combined deep reinforcement learning algorithms with autonomous
navigation decision-making technology, proposing an autonomous navigation decision-
making algorithm based on an improved Deep Q-Network (DQN) model. By establishing
a reasonable state space, a discrete action space, and a comprehensive reward function, this
algorithm enhances autonomous navigation decision-making. Xu et al. [67] tackled the in-
telligent collision avoidance decision-making problem in multi-ship encounters, presenting
an improved Sparrow Search Optimization algorithm based on Gaussian mutation and Tent
chaotic mapping. This algorithm efficiently finds collision avoidance paths that are safe and
economical, providing collision avoidance decision-making references for ship navigators.
Zhao et al. [68] devised an autonomous collision avoidance algorithm suitable for intelli-
gent ships based on navigation experience. By constructing a dynamic collision avoidance
knowledge base, this algorithm automatically acquires dynamic collision avoidance knowl-
edge, estimates real-time danger assessment thresholds, generates, verifies, and optimizes
collision avoidance decision implementation schemes, thus achieving autonomous collision
avoidance in intelligent ship navigation. Wang et al. [69] introduced an unmanned ship
collision avoidance method based on deep reinforcement learning, incorporating the MMG
model to account for ship maneuvering characteristics. This method ensures autonomous
collision avoidance in complex environments while complying with COLREG regulations.
Wang et al. [70] proposed an autonomous collision avoidance sequential decision-making
chain construction method based on humanoid thinking. The construction process involves
situational awareness, collision risk identification, collision avoidance rule library and
strategy set construction, humanoid thinking sequence collision avoidance strategy gen-
eration, collision avoidance process monitoring and strategy adjustment, and restoration
of navigational conditions, thereby enhancing the collision avoidance decision-making
capability of unmanned ships in multi-ship encounter scenarios.

In the process of intelligent development of inland ships, intelligent decision-making
technology can effectively reduce the labor intensity of crew members, mitigate various
risks caused by human operational errors, and enable crew members to make the most
accurate judgments and achieve the most reliable decisions in the shortest possible time.
In order to realize the change in decision-making mode from driver to human–machine
integration, the main body of ship control should fully understand and master the informa-
tion from various sources and make efforts to improve the reliability of the navigational
environment situation and the assessment of the operation condition of the system and
equipment. Through in-depth research on quantitative techniques of collision avoidance
rules and good seamanship, the safety and reliability of intelligent decision-making on
ships can be improved.
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3.5. Ship Intelligent Control Technology

The control technology can realize intelligent control such as route speed optimiza-
tion, system and equipment maintenance, energy efficiency control, and automatic load-
ing/unloading based on the optimized loading/unloading scheme under different naviga-
tion scenarios and complex environmental conditions through the corresponding decision-
making scheme, as shown in Figure 6.
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Figure 6. Ship intelligent control technology diagram.

3.5.1. Motion Control

Intelligent ship motion control refers to the use of intelligent technology and electronic
technology to control the ship’s motion, including heading, speed, attitude angle, and other
parameters, in order to improve the ship’s automation and intelligence level.

Wu et al. [71] employed the MMG separation model to establish a mathematical model
for twin rudder twin propeller interference ships under marine navigation conditions. They
proposed an improved practical tool for nonlinear control systems called CMAC-VPID,
achieving trajectory control for twin-rudder twin-propeller ships. Teng et al. [72] pro-
posed a hierarchical model predictive control (H-MPC) tracking method combining model
predictive control (MPC) and hierarchical control, which effectively achieves intelligent
ship tracking of target ships. Considering wind and wave disturbances, Liu et al. [73]
transformed them into equivalent rudder angles generated by the ship and proposed
an ITCA algorithm combining the Nomoto model and sliding mode control, capable of
automatically stabilizing berthing according to the ideal heading angle in undisturbed
conditions. Li [74] addressed the design problem of the guidance subsystem under time-
varying environmental disturbances and proposed an integral parameter adaptive ILOS
guidance law, providing a rational and effective theoretical optimization method for the
practical application of intelligent ships in engineering. Pham et al. [75] combined neural
networks with fuzzy logic control to design an autonomous ship steering system operating
in disturbed environments. They selected an ANFIS controller, significantly enhancing
system stability and trajectory accuracy.

3.5.2. Remote Control

Remote control refers to the use of technologies such as positioning navigation, auxil-
iary control, and beyond visual line of sight operation to manipulate ships from an onshore
control center or other remote locations.

Yoshida et al. [76] improved the methodology for developing a regulatory framework
for RO capability by applying a typical case to a remote control system based on the
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previous work. It identifies the trend of ship-perceived failures and provides the required
information and additional requirements. Basnet et al. [77] integrated models such as Noisy-
OR gates, Parent-divorcing, etc., and proposed a new risk analysis method by combining
the improved STPA with BN, which can provide reliable support for real-time decision-
making by remote pilotage. Chen et al. [78] proposed a delay-compensated state estimation
method for remotely controlled ships with uncertain delay navigation measurements. This
method effectively improves the stability and effectiveness of remote control.

3.5.3. Energy Efficiency Control

Energy efficiency control refers to the optimal management of energy consumption
and emissions of ships through intelligent technical means, which is an important means to
realize energy savings and emission reduction in ships and improve operational efficiency.

Perera et al. [79] identified potential energy-saving scenarios during ship operation
based on proposed energy flow pathways. They also discussed the use of appropriate
navigation strategies within designated ECAs to reduce exhaust emissions. Wang et al. [80]
established dynamic optimization models for ship energy efficiency, considering time-
varying environmental factors and non-linear ship energy efficiency systems, and designing
control algorithms and controllers for dynamic optimization of ship energy efficiency. This
method effectively enhances ship energy efficiency and reduces CO2 emissions. Guo [81]
aimed to reduce the energy efficiency ratio of ship energy efficiency control systems effec-
tively. He established a distributed ship energy efficiency data collector using distributed
data collection technology to optimize the distribution of energy efficiency data collection
resources. Chen et al. [82] developed a hybrid optimization algorithm combining the chaos
algorithm with GWO to design a nonlinear model predictive control energy management
strategy. This strategy maximizes optimality to achieve rational energy distribution.

3.5.4. Automatic Loading and Unloading and Intelligent Stowage

Automatic loading and unloading along with intelligent cargo stowage refer to the idea
and method of simulating the dock dispatcher through artificial intelligence algorithms, etc.,
and realizing the automation and intelligence of ship loading, unloading, and dispensing
by taking into account the situation of the equipment, the state of the stacks, etc.

Qin et al. [83] proposed a pseudo-gradient estimation algorithm based on the multi-
innovation theory and a model-free control law based on multi-innovation. They developed
specifications for open-loop control system based on the characteristics of liquid cargo
loading and unloading systems and constructed the software and hardware framework
OCSSLA for liquid cargo loading and unloading systems, which partially addressed key
issues in intelligent control systems for liquid cargo loading and unloading. Liu [84] consid-
ering both ship safety and economy, established a multi-objective constrained optimization
mathematical model for bulk carriers with ship trim control as a constraint. The intelligent
loading of bulk carriers fully utilizes the computational power of computers, compensating
for the deficiencies of traditional manual loading. The loading plans provided effectively
improve the longitudinal force situation of the ship. Wang [85] based on practical work
experience, proposed a method to inspect ship loading conditions using NAPAMANAGER,
achieving automatic inspection of ship loading conditions.

3.5.5. Hull and Equipment Maintenance as Needed

Maintenance according to the condition of the hull and equipment, that is, based
on the assessment results, to develop a reasonable safety management maintenance plan
and optimization program, and through the maintenance management system to achieve
effective maintenance of the hull and equipment. It is of great significance in reducing
maintenance costs, improving navigation safety, and extending the life of equipment.

Hou et al. [86] utilized graph theory to establish a mathematical model of diesel engine
systems. Building upon intelligent damage assessment and reconstruction algorithms, they
designed an intelligent damage assessment and reconstruction system for damaged diesel
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engine systems based on UML and implemented it in the VB programming environment.
This significantly enhances the usability, survivability, and safety of ships. Yan [87], through
the analysis of vibration signals from diesel generators, constructed a probabilistic neural
network model for identifying faults in diesel generators. Based on the health assessment
and fault identification of ship diesel generators, intelligent operational maintenance man-
agement strategies were formulated, establishing a modern ship health management and
intelligent operation and maintenance system. Hong et al. [88], leveraging digital twin
technology and big data analytics, implemented a remote operation and maintenance sys-
tem for ship intelligence. They established a comprehensive analysis of real-time operating
condition, fault prediction, and situational maintenance virtual interaction models for key
ship equipment, forming an effective equipment health management system.

For the action program after decision-making, the control technology will be able
to execute specific operations to practice. The research on inland intelligent ships is by
no means an overnight success but requires long-term R&D investment and experience
accumulation, and the degree of intelligence of the ship will be gradually and progressively
enhanced. In the recent development process, the crew in the ship to support decision-
making and control will still be the main way, intelligent control technology or will rely on
robots, drones, and other advanced technology [89], by being able to replace some of the
manpower as the goal and then realize autonomous decision-making and control.

Currently, with the continuous development of artificial intelligence, big data, the
Internet of Things, and other high-tech scientific and technological fields, the application of
intelligent ship technology needs to follow the trend of modern science and technology
development, combined with the existing advanced technology to carry out a wider range
of in-depth use and integration, and continue to create a more practical and efficient new
technologies to achieve the full coverage of the intelligent ship functional requirements of
the technology chain, this can be specified by the illustration shown in Figure 7.
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Figure 7. Intelligent ship technology chain.

4. Inland Intelligent Ship Functional Requirements Forecast

4.1. Association between Inland Intelligent Ship Functions and Intelligent Technologies

The intelligent function of inland ships is the application of intelligent ship technology.
The development of intelligent technology requires the accumulation of time, and the
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development of intelligent ships must also follow the objective law of gradual and phased
development. The development of inland intelligent ships must be based on the objective
development law of intelligent technology: the degree of intelligence from assisted decision-
making gradually transitions to full autonomy, and the scope of intelligence follows the
direction of development from individual systems to parts of the system and then to the
whole ship.

4.2. Overall Development Goals of Inland Intelligent Ships

China generally formulates a development strategy for a period of five years. Cur-
rently, China is in the final stage of the 14th Five-Year Plan (2020–2025), so we chose the
next Five-Year Plan (2026–2030) as the first stage of the development of inland intelli-
gent ships. At the same time, the Chinese government has issued development planning
documents such as the “Outline for the Development of Inland Transportation [90]” and
the “Implementing Opinions on Accelerating the Green and Intelligent Development of
Inland Ships [91]”, which sets strategic development goals related to inland shipping and
intelligent inland ships for 2030, 2035, and 2050. Therefore, we chose 2030 as the short-term
development planning node for inland intelligent ships and 2035 and 2050 as the mid-term
and long-term planning nodes, respectively.

Based on the current situation of China’s inland ships, the development plan for inland
shipping and intelligent ships formulated by the Chinese government, as well as domestic
and international trends in intelligent technology. Based on normative technical documents
such as the “MASS Code “and the “Rules for Intelligent Ships (2024)”, we make functional
predictions for intelligent inland ships in China at different stages of development.

The development of inland intelligent ships in the near future (to 2030) will still be
dominated by modularized intelligent aids and focus on the five key functional modules,
namely, intelligent navigation, intelligent engine room, intelligent energy-efficiency man-
agement, intelligent cargo management, and intelligent integration platform, in order to
ensure efficient utilization of scientific and technological resources. In the medium term
(towards 2035), the functions of each module should be more perfect, stable, and reliable,
and progress has been made in the intelligent hull module, which can realize the linkage
of multiple intelligent modules of the ship and the formation of a new shipping industry
characterized by full intelligence. In the long-term development plan facing 2050, remote
control and fully autonomous control functions will be realized, and the eight functional
modules mentioned in the “Rules for Intelligent Ships (2024)” will be comprehensively
covered so as to form the global intelligence and high degree of intelligence of inland ships,
as shown in Table 2.

Table 2. Overall prediction of functions for inland intelligent ships.

Development Stage Planning Year
Overall Prediction of

Intelligent Functional Goals
Functional Module

Near Term 2030
Modular intelligence,
primarily at an initial level
with assistance

Intelligent Navigation, Intelligent
Engine Room, Intelligent Energy
Efficiency Management, Intelligent
Cargo Management, Intelligent
Integration Platform

Mid Term 2035
Multi-intelligent module
linkage, intelligent level
advancement

Addition of intelligent hull module

Long Term 2050 Global intelligence, highly
intelligent

Addition of remote control and
autonomous operation modules

4.3. Specific Development Goals and Predictions for Inland Intelligent Ships at Different Stages

In the near-term development of inland intelligent ships towards 2030, inland in-
telligent ships should be able to realize local modularized intelligence, and the required
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functional modules mainly focus on navigational safety and green and efficient operation,
which specifically include five functional modules: intelligent navigation, intelligent en-
gine room, intelligent energy efficiency management, intelligent cargo management, and
intelligent integration platform, as shown in Table 3.

Table 3. Forecast of inland intelligent ship functionality requirements for 2030.

Functional Module Goal of Intelligence
Division of Intelligent Functional

Stages

Intelligent Navigation

Achieving reliable ship situational
awareness and environmental
information perception, equipped with
route planning functionality

(1) Intelligent perception function
(2) Monitoring function for ship’s floating
state and dynamic motion
(3) Design optimization function for route
and speed

Intelligent Engine Room

Achieving monitoring, diagnosis, and
evaluation of ship engine room condition
and equipment operation, and providing
intelligent decision support and
maintenance plans based on
problem types

(1) Engine room condition monitoring
function
(2) Engine room equipment health
assessment function
(3) Engine room auxiliary
decision-making function
(4) Engine room condition-based
maintenance function
(5) Remote control of the main propulsion
device from the wheelhouse and periodic
unmanned watchkeeping capability

Intelligent Energy Efficiency
Management

Assessing the ship’s energy efficiency,
navigation, and loading condition to
provide evaluation results and solutions
such as speed optimization and optimal
loading based on longitudinal trim
optimization

(1) Ship energy efficiency online
intelligent monitoring function
(2) Ship speed intelligent optimization
function
(3) Optimal loading function based on
trim optimization

Intelligent Cargo Management

Monitoring of cargo condition onboard
and related systems, combined with the
ship’s cargo condition and port terminal
condition, to achieve formulation and
optimization of loading/unloading plans,
as well as process risk alerting and
decision-making

(1) Function of sensing the condition of
cargo, cargo holds, and related systems
(2) Function of formulating and
optimizing cargo loading/unloading
plans
(3) Function of alarm for abnormal states,
analysis of causes, and formulation of
assisted decision-making

Intelligent Integration Platform

Complete the standardization of interface
types for various intelligent modules
within inland ships, enabling the
integration of existing module
information of intelligent ships, with the
integration platform being open-ended

(1) Integration of local area network
systems within the ship
(2) Formation of a unified digital twin
system by various intelligent modules
(3) Preliminary data processing function
(4) Integration of information and data
between existing modules

In the mid-term development phase of inland intelligent ships towards 2035, it is
predicted that it will mainly realize the perfection of single-module intelligent function and
multi-modular intelligent function linkage. The functional modules at this stage mainly
include intelligent navigation, intelligent hull, intelligent engine room, intelligent energy
efficiency management, intelligent cargo management, and intelligent integration platform,
as shown in Table 4.
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Table 4. Forecast of inland intelligent ship functionality requirements for 2035.

Functional Module Goal of Intelligence Division of Intelligent Functional Stages

Intelligent Navigation

Achieve the intelligent motion requirements
of various ships for safe and efficient
navigation, anchoring, and
berthing/departing in various
navigation scenarios

(1) Integration of multiple functions of the 2030
intelligent navigation module
(2) Autonomous navigation function for
regular routes
(3) Fully autonomous navigation function for
the entire navigation
(4) Automatic berthing and unberthing

Intelligent Hull

Achieve three-dimensional modeling and
maintenance of the hull, providing auxiliary
decision-making for the maintenance and
replacement of hull and deck machinery
during the operational phase of the ship

(1) Hull structure and deck machinery
monitoring function
(2) Formulation of hull structure and deck
machinery maintenance plans
(3) Record and evaluation of hull
structure condition
(4) Formulation of structure replacement plans

Intelligent Engine Room
Achieve fully autonomous operation and
realize the goal of a fully intelligent engine
room system

(1) Integration of multiple functions of the 2030
intelligent engine room module, adapting to
the development of engine rooms in new
energy-powered ships (LNG, electric, etc.)
(2) Continuous normal operation of engine
room equipment within unmanned duty cycles

Intelligent Energy Efficiency
Management

Achieve real-time monitoring, evaluation,
and optimization of ship energy efficiency,
realizing the goal of complete intelligence

(1) Integration of multiple functions of the 2030
intelligent energy efficiency
management module
(2) Fully automated energy
efficiency management

Intelligent Cargo Management

Implement fully intelligent cargo
management, including automatic
generation and optimization of cargo
stowage plans, as well as autonomous
loading and unloading

(1) Integration of multiple functions of the 2030
intelligent cargo module
(2) Automatic generation and optimization of
cargo loading plans
(3) Automatic loading and unloading functions
(4) Intelligent ballast water
management functions

Intelligent Integration Platform
Integrate the newly added information
management system with the capability of
data exchange among multiple modules

(1) Integration of multiple functions of the 2030
intelligent integration platform module
(2) Ship-shore information data communication
(3) Information data communication among
multiple modules

In the long-term development phase of inland intelligent ships towards 2050, accord-
ing to the current pace of development in artificial intelligence, the Internet of Things, big
data, and other technologies, it is expected that significant progress will have been made
in inland intelligent ships. It is anticipated that the ultimate functions of remote control
and autonomous operation will be achieved. Remote control of ships refers to the ability of
a ship to be controlled by a remote control station or position outside the ship, enabling
the ship’s operation. Autonomous operation of ships refers to the ability to achieve fully
autonomous operation in open waters or throughout the entire navigation without the need
for onboard crew operation. Both functionalities require the foundation of the aforemen-
tioned intelligent modules to fulfill their roles effectively. The functional modules at this
stage mainly include the intelligent hull, intelligent integration platform, remote control,
and autonomous operation of ships, as shown in Table 5. In this stage, the intelligent navi-
gation, intelligent engine room, intelligent energy efficiency management, and intelligent
cargo management modules should have already been fully implemented and integrated
into the intelligent integration platform, thus no longer requiring separate discussion.
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Table 5. Forecast of inland intelligent ship functionality requirements for 2050.

Functional Module Goal of Intelligence Division of Intelligent Functional Stages

Intelligent Hull
Achieve the goal of fully intelligent ship
hull, including self-diagnosis, and
autonomous handling capabilities

(1) Integration of multiple functions of the 2035
intelligent hull module
(2) Local strength monitoring of the hull, real-time
monitoring of overall longitudinal strength, and
stability calculation
(3) Intelligent adjustment of ballast water, heading,
and speed to ensure the ship is always in a safe state
(4) Fully autonomous hull maintenance and upkeep

Intelligent Integration
Platform

Realize comprehensive monitoring and
intelligent management of various ships,
including engineering and research ships,
and achieve real-time two-way data
exchange with shore-based systems

(1) Integration of multiple functions of the 2035
intelligent integration platform module
(2) Information sharing and presentation function
(3) Providing support for other intelligent
applications on the basis of meeting its own
information display and data diagnosis functions

Remote Control

Capable of being controlled by a remote
control station or control position outside
the ship, enabling unmanned operation
of the ship

(1) Stable and applicable wireless communication
equipment for ships with sufficient bandwidth
(2) Beyond-line-of-sight control, scene perception,
and real-time sharing of video information
(3) Intelligent detection, alarm, and control
processing functions

Autonomous Operation Fully autonomous operation throughout
the entire navigation

(1) Achieve fully autonomous navigation and
comprehensive analysis decision-making from berth
to berth
(2) Real-time monitoring, evaluation,
decision-making, and intelligent control of all
ship systems

5. Conclusions

This paper systematically examines the current status of the division of intelligent ship
function modules by international major classification societies, shipbuilding companies,
and organizations such as the European Union and analyzes the required function modules
for intelligent inland ships. From the perspective of the technological implementation of in-
telligent functions, a complete intelligent ship technology system is constructed, including
intelligent perception technology, intelligent communication technology, intelligent evalua-
tion technology, intelligent decision-making technology, and intelligent control technology.
Through in-depth analysis of the technological connotation, it can be concluded that these
five modules are all necessary key technologies and critical for realizing the intelligence of
inland ships and are of great significance for the development of intelligent inland vessels
and inland navigation. Taking into account the current situation of China’s inland ships, the
development plans on inland shipping and intelligent ships issued by government depart-
ments, and the development trend of intelligent technology, the functional requirements
of intelligent inland ships in the near, medium, and long term are predicted. This article
can provide suggestions for the development of intelligent inland ship implementation
strategies in China and other regions of the world.

Ship intelligence is an inevitable trend in the development of the shipping industry. At
present, the application of inland navigation is uncommon, and the intelligent development
of inland ships based on intelligent technology is still in the primary stage. Sorting out
the demand for intelligent functions and the many bottlenecks faced in the process of
future intelligent development is conducive to clarifying the development direction of
inland intelligent ships and promoting the development of inland intelligent ships in an
orderly manner.

Realizing the ultimate goal of fully autonomous navigation of intelligent ships not
only requires the ships themselves to have a high level of intelligence but also requires the
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joint progress of multiple supporting technologies such as shore-based platforms, network
communications, intelligent waterways, and intelligent ports. Therefore, multiple technolo-
gies should integrate and promote each other, and then jointly promote the formation of
high-quality shipping systems.

In addition, in terms of the development of intelligent ships on inland waterways in
terms of laws and regulations, management mechanisms, production benefits, and other
aspects of the same, there are many problems to be further standardized and breakthroughs.
The next step also needs to be coordinated by some parties to coordinate the conflict of
interest between the application of technology and market demand and steadily promote
the development of ship intelligence.
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Abstract: To predict the maneuverability of a dual full rotary propulsion ship quickly and accurately,
the integrated computational fluid dynamics (CFD) and mathematical model approach is performed
to simulate the ship turning and zigzag tests, which are then compared and validated against a
full-scale trial carried out under actual sea conditions. Initially, the RANS equations are solved,
employing the Volume of Fluid (VOF) method to capture the free water surface, while a numerical
simulation of the captive model test is conducted using the rigid body motion module. Secondly,
hydrodynamic derivatives for the MMG model are obtained from the CFD simulations and empirical
formula. Lastly, a four-degree-of-freedom mathematical model group (MMG) maneuvering model
is proposed for the dual full rotary propulsion ship, incorporating full-scale simulations of turning
and zigzag tests followed by a full-scale trial for comparative validation. The results indicate that the
proposed method has a high accuracy in predicting the maneuverability of dual full-rotary propulsion
ships, with an average error of less than 10% from the full-scale trial data (and within 5% for the
tactical diameters in particular) in spite of the influence of environmental factors such as wind and
waves. It provides experience in predicting the maneuverability of a full-scale ship during the ship
design stage.

Keywords: ship maneuvering; CFD; fully rotary propulsion; MMG mathematical model; full-scale trial

1. Introduction

Ship maneuverability, a pivotal aspect of maritime performance research, is essen-
tial for the assurance of navigational safety. Methods for predicting ship maneuvering
performance are categorized into three principal types [1]: no simulation, system-based
simulation and computational fluid dynamics (CFD)-based simulation. No simulation
methods encompass database approaches, full-scale trials and free-running model tests.
The former primarily utilizes regression analysis for swift evaluation, while the latter
employs targeted experiments to directly ascertain maneuverability performance. The
system-based simulation approach integrates hydrodynamic coefficients with equations
of motion for ship maneuverability, facilitating the calculation of the ship’s trajectory and
associated motion parameters to predict its maneuverability.

Broadly, the assessment of ship maneuverability favors methods that are straight-
forward, efficient and cost-effective. These include approaches grounded in regression
formulas based on characteristic parameters, database methods, free-running model test
and numerical analyses employing mathematical models [2]. Mathematical models for ship
maneuvering are principally divided into response models and hydrodynamic models. Re-
sponse models establish a direct link between the ship’s state of motion and rudder actions
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via navigational tests, enabling the analysis and resolution of maneuvering characteristics.
Regarding hydrodynamic models, two primary mathematical models are predominantly
utilized. (See Figure 1).

Figure 1. Maneuvering prediction methods [1].

The first model is the integrated structure model delineated by Abkowitz [3], which
examines the hull, propeller and rudder collectively along with the cumulative force
exerted. The second model, the Ship Maneuvering Mathematical Model Group (MMG
model [4]), introduced by the Japanese Towing Tank Committee (JTTC), conducts separate
hydrodynamic calculations for the hull, propeller and rudder, taking into account their
interferences. Meng et al. [5] developed a response mathematical model for the vessel
YUKUN, integrating Support Vector Regression with a modified grey wolf optimizer to
obtain reference values for the model’s parameters. Fossen [6] performed the theory and
practice research on nonlinear ship control in response to the mathematical model. Svilicic
et al. [7] assessed collision risks for the KVLCC2 ship through accurate modelling of ship
maneuverability using non-linear FEM (NFEM). The Abkowitz maneuvering model is
implemented in the LS-Dyna software code and is therefore coupled with FEM calculations.
Shin et al. [8] investigated the maneuverability of a KCS equipped with energy-saving
devices utilizing the MMG model. Reichel [9] introduced a novel characterization of
forces on azimuth thrusters within the motion mathematical model, employing MMG
methodology and experimentally validating its accuracy.

Both methods necessitate precise hydrodynamic derivative calculations to develop an
accurate model of ship maneuverability. The extensive application of CFD techniques facil-
itates more precise outcomes in ship hydrodynamics analysis, design and maneuverability
forecasting. Given this backdrop, numerous researchers have advanced static and dynamic
simulations to study ship maneuvering movements. Sun et al. [10] utilized the STAR-CCM+
software to model the Planar Motion Mechanism (PMM) of the hull through the overlap-
ping grid technique, deriving hydrodynamic derivatives subsequently integrated into the
MMG model for twin waterjet propulsion vessels. Ahmad et al. [11] performed Oblique
Towing Tests (OTT) and dynamic Planar Motion Mechanism (PMM) analyses on the vessel
DTMB 5512 using CFD simulations to determine the hydrodynamic derivatives.

In ship maneuverability modeling, the four-Degree-of-Freedom (4-DOF) MMG model
is broadly embraced for its clear-cut derivatives and efficient computation, particularly
emphasizing the impact of ship roll. R. Rajita et al. [12] addressed the calculation of
linear, nonlinear and roll-coupled hydrodynamic derivatives for a container ship through
CFD-based numerical simulations of static and dynamic tests across various roll angles.
Li et al. [13] executed Oblique Towing Tests (OTT) and dynamic Circular Motion Tests
(CMT) to collect essential data for MMG model identification, and they simulated the
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free-running maneuverability test using a body force propeller approach that obviates the
need for detailed flow field construction around the propeller. Guo et al. [14] investigated
the 4-DOF ship maneuvering motion in calm water for the ONR tumblehome model by a
system-based method. The result indicates the validity of the CFD-based modelling method
for the hull−propeller−rudder interaction of twin-screw ships. Okuda et al. [15] applied
the 4-DOF MMG method as a practical simulation method that includes the roll-coupling
effect to predict the maneuvering of a KCS at fast speeds. Dash et al. [16] developed a 4-DOF
simulation method for the maneuvering motion of a ship with a twin propeller and twin
rudder system. The hydrodynamic derivatives and parameters were determined by the
PMM tests, and roll-induced bifurcation in maneuvering was discussed by the simulations.

Likewise, the discretized propeller approach can simulate free-running maneuverabil-
ity tests. Shen et al. [17] implement the dynamic overset grid technique into naoe-FOAM-
SJTU solver to simulate standard 10/10 zig-zag maneuver and modified 15/1 zig-zag ma-
neuver of KCS, which showed good agreement with the experiment data. Wang et al. [18]
studied the free running test of the ONR Tumblehome ship model under course keeping
control with twin actual rotating propellers and moving rudders, and a new course keeping
control module was developed using a feedback controller based on the CFD solver. Carrica
et al. [19] conducted a study on a KCS container ship performing a zigzag maneuver in
shallow water experimentally and numerically using direct discretization of a moving
rudder and propeller. The zigzag maneuver at the nominal rudder rate uses grids of up
to 71.3 million points. Sanada et al. [20] performed research on the hull–propeller–rudder
interaction at the Korea Research Institute of Ships using a combined experimental fluid
dynamic and CFD method, with an innovative approach being employed for the anal-
ysis of steady state circular motions. Nonetheless, both techniques demand significant
computational resources and time costs to precisely model ship maneuvering movements,
especially for a full rotary ship. Consequently, integrating mathematical modeling with
CFD simulations of captive model tests has proven to enhance forecasting speed while
maintaining a balance between rapidity and accuracy [21].

Full rotary propellers, as opposed to conventional rudder and propeller setups, possess
enhanced maneuvering capabilities, adeptly dealing with intricate scenarios like stationary
rotation and sideways motion [22]. It is shown that a ship’s stability can be jeopardized
in terms of excessive heeling in calm water or parametric rolling in extreme waves due to
low GM and damping characteristics. The effect of GM or loading conditions due to the
accommodation of full rotary propellers have been more apparent between runs in design
draught and scantling draught conditions [23]. Currently, limited calculations and simula-
tions fully account for the impact of dual full rotary propellers on ship maneuverability,
with reliance primarily being on free-running tests or full-scale trials. Neatby et al. [24]
performed comprehensive full-scale trials, encompassing turning circles, effective turning
tests and crash stops, on a vessel equipped with dual Z-drive thrusters. Reichel [9] intro-
duced a 3-DOF mathematical model grounded in MMG methodology, conducting both
numerical simulations and experimental validations on a pod-driven coastal tanker. This
approach verified the model’s capability to discern performance trends, even in vessels
with unstable trajectories. Piaggio et al. [25] showcased the findings of a comparative
analysis between spade and flap rudder configurations versus pod-driven systems for a
select fleet, demonstrating that appropriately designed pod units do not compromise yaw
control capabilities.

Conducting full rotary propulsion ship free-running tests via direct CFD simulations
necessitates a finer grid mesh, thereby increasing the demand for computational resources
and extending the time required for analysis. Meanwhile, the current research on the ma-
neuverability of dual full-rotary propulsion ships lacks consideration of rolling conditions,
and the high DOF motion of the propeller makes direct CFD simulation more difficult.
Viewed comprehensively, research on fast motion prediction of dual full-rotary propulsion
ships is still relatively scant, and related theoretical studies and practical problems still
need to be examined.
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This paper introduces a fast-time prediction technique for predicting ship maneu-
verability. Utilizing CFD methods, this study simulates the captive model test of the
“Zhifei” [26] ship to derive its hydrodynamic derivatives. Furthermore, it presents a 4-DOF
MMG mathematical model for dual full rotary propulsion ships. Numerical simulations on
full-scale tests were performed on the “Zhifei” ship for turning and zigzag maneuvers in
calm waters, with the results being compared against experimental full-scale trial data to
confirm the viability of the proposed maneuvering model for dual full-rotary propulsion
ships. This approach offers a reliable solution for the precise prediction of maneuverability
during the ship’s design stage.

2. Mathematical Model and Method

2.1. Coordinate and MMG Model

The development of mathematical models for maneuvering motions necessitates
establishing earth-fixed and ship-fixed coordinate systems to delineate the pertinent motion
variables. Within the earth-fixed coordinate framework, ship movement is characterized
by the spatial coordinates [x, y, z]T and the orientation angles [ϕ, θ, ψ]T. O0 − X0Y0Z0 is
fixed to a specific point on the earth’s surface, with the Z0 axis being oriented vertically
downwards. G − xyz is attached to the ship’s center of gravity, with the x axis being
directed towards the bow and the y axis towards the starboard side, while the z axis
extends vertically downwards. Generally, analyzing such problems requires facilitating the
mutual conversion between these two coordinate systems, which are shown in Figure 2.

Figure 2. Coordinate systems.

Following the concept of segregated ship-motion mathematical modeling, the array
of forces and moments exerted on the ship is categorically allocated to the bare hull and
the propeller for computational purposes. The four-degree-of-freedom motion equations
for a dual full rotary propelled ship within the designated coordinate system are derived,
accounting for the ship’s rolling state, as follows [14]:

(m + mx)
.
u − (

m + my
)
vr = XH + XP(

m + my
) .
v + (m + mx)ur = YH + YP

(Ixx + Jxx)
.
p = KH + KP

(Izz + Jzz)
.
r = NH + NP

(1)

where XP, YP, KP and NP are the longitudinal thrust force, lateral thrust force, rolling
moment and yawing moment acted on the ship by the full rotary propeller, respectively,
while XH, YH, KH and NH are the hydrodynamic forces (moments) acting on different
degrees of freedom of the hull by all other external forces except the propellers. Additionally,
m is the mass of the ship and mx and my are the additional mass of the ship in the x axis and
y axis, respectively. It is caused by the co-motion of the water around the hull of the ship. Izz
and Jzz are the inertia of the ship around the z axis and the additional inertia, respectively.

2.2. Hull Hydrodynamic and Propeller Thrust Model

The hydrodynamic forces can be divided into two categories according to their causes:
one is fluid inertial forces and the other is fluid viscous forces. On the basis of the Kijimas

303



J. Mar. Sci. Eng. 2024, 12, 762

research [27], a model for estimating the hydrodynamic forces of the hull is summarized
based on the consideration of the rolling moment caused by the ship’s motion:

XH = X(u) + Xvvv2 + Xvrvr + Xrrr2

YH = Yvv + Yrr + Yv|v|v|v|+ Yr|r|r|r|+ Yvvrv2r + Yvrrvr2 + YH1(v, r, ϕ)

KH = −K1
( .

ϕ
)− K2(ϕ)− YHzH

NH = Nvv + Nrr + Nv|v|v|v|+ Nr|r|r|r|+ Nvvrv2r + Nvrrvr2 + NH1(v, r, ϕ)

(2)

where X(u) is the ship resistance when sailing straight, K1
( .

ϕ
)

is the rolling damping
moment, K2(ϕ) is the rolling restoring moment, YHzH is the rolling moment of the hull
hydrodynamic force YH on the x axis, while zH is the z axis coordinate of the point where
YH acts.

This study focuses on a ship equipped with dual full rotary propeller propulsion, as
illustrated in Figure 3. The propellers are symmetrically positioned, with a longitudinal
distance of Lop from the ship’s center of gravity and a lateral separation of Lps between them.

(a) (b)

Figure 3. Schematic. (a) Full Rotary Propeller of Ship “ZhiFei”. (b) Propellers Position.

In the propulsion system of ships with full rotary twin-propellers, both forward move-
ment and steering capabilities are achieved by manipulating the propellers’ orientation
or exploiting the differential in their rotational speeds. This technique allows for the
generation of axial thrust by the propellers in static water, as follows [28]:

Tp =
(
1 − tp

)
ρn2

pD4kT(p)

Ts =
(
1 − tp

)
ρn2

s D4kT(s)

(3)

where tp is the thrust deduction coefficient, the subscript p and s represent the portside
and starboard propellers, respectively, ρ is the density of seawater, D is the diameter
of the propeller disk, np and ns are the rotation speed of the left and right propellers,
respectively, kT(p) and kT(s) are the coefficients of the left and right propeller thrusts open
water characteristic, respectively, and calculated as follows:

KT = a0 + a1 J + a2 J2 (4)

where a0, a1 and a2 are the propeller coefficients, J is the propeller advanced ratio, which is
calculated as J = u

(
1 − wp

)
/nD, where wp is the wake fraction at propeller position.
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When the left and right propellers work simultaneously at rotation angles δp and δs,
respectively, the resulting axial thrust can be decomposed along the attached coordinate
system GX and GY. Based on previous studies, we proposed the following calculation
method for dual full rotary propulsion ships:

XP =
(
Tp cos δp + Ts cos δs

)
YP =

(
Tp sin δp + Ts sin δs

)
KP = − cos ϕ

(
Tp sin δp + Ts sin δs

)
zP + 1

2 sin ϕ
(
Tp sin δp − Ts sin δs

)
Lps

NP = 1
2 (Tp cos δp − Ts cos δs)Lps − YPLop

(5)

where zP is the distance of the horizontal center axis of propeller and the center of gravity.

2.3. Governing Equations

This study employs a CFD method to simulate the hydrodynamic forces acting on
a ship. The viscous flow is approximated using the Reynolds-averaged Navier–Stokes
(RANS) equations. This approach converts a transient problem into a steady-state problem
by averaging over time the random fluctuation terms in the viscous flow, thereby facilitat-
ing problem resolution. The continuity equation applicable to viscous flow is presented
as follows:

∂(ui)
∂xi

= 0 (6)

The Reynolds-averaged Navier–Stokes equation is:

ρ ∂ui
∂t + ρuj

∂ui
xj

= − ∂P
∂xi

+ ∂
∂xj

(
μ ∂ui

∂xj
− ρu′

iu
′
j

)
(7)

where μi,j(i, j = 1, 2, 3) are the mean velocity vectors, P is the time-averaged value of

pressure, ρu′
iu

′
j is the Reynolds stress, while ui and uj are the time-averaged values of the

velocity component.

2.4. Full-Scale Test

As shown in Figure 4, a full-scale ship maneuverability test was conducted for the
“Zhifei” in the China Nǚdao sea area under the conditions of a northeast wind of level 3–4
and sea state 3, with an average draft of 3.317 m. The test concluded with the ship’s 10◦
turning motion, ±10◦ zigzag motion and ship resistance test when sailing straight. Motion
data was collected using the SPS351 DGPS receiver, with a maximum dynamic error not
exceeding 5 m.

Figure 4. Full-scale ship maneuverability test.

The database controlled ship−shore data synchronization based on the network status,
where the ship-side network could establish a connection with the shore-side and the line
status could support data communication. Typically, the signal data was stored during the
experiment and uniformly transferred to the ground control PC at the shore terminal at the
end of each day’s experiment. The signal sampling frequency was 1 Hz.
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3. Numerical Simulation of Captive Model Test

3.1. Computational Settings and Convergence Analysis

This study focuses on the “Zhifei” 300TEU smart container ship, China’s inaugural
coastal intelligent navigation container ship. The principal parameters concerning its hull,
propeller and the numerical computations for the scaled model are detailed in Table 1. To
derive the hydrodynamic derivatives of the hull, the OTT and CMT are simulated by using
the RANS solver platform STAR-CCM+ (CD-adapco Company, German)with the specific
calculation conditions outlined in Table 2.

Table 1. Main parameters of hull and propeller.

Name Symbol Unit Ship Model

Scale factor λ 1 28.5
Length overall Loa m 117.15 4.111

Length between perpendiculars Lpp m 111.3 3.905
Breadth B m 17.32 0.607

Draft d m 4.8 0.158
Displacement Δ m3 4800 0.207

Block coefficient Cb 0.7797 0.7797
Metacentric height GM m 5.1 0.179

Vertical center of gravity (from keel) KG m 6.16 0.216
Propeller diameter D m 2.7 0.947

Wake fraction at propeller position ωp 0.183 0.183
Number of blades Z 4 4

Table 2. Computational case conditions.

Test Fr β(degree) r′

Oblique Tow Test (OTT) 0.226 ±11,±9,±6,±2, 0 0
Circular Motion Test (CMT) 0.226 0 ±0.2,±0.4,±0.6
Circular Motion Test (CMT) 0.226 ±11,±9,±6,±2 −0.2,−0.4,−0.6

The computational region is defined as a cuboid, as depicted in Figure 5. The inlet,
sides, top and bottom of the flow field domain are set as velocity inlet, and the outlet
is set as pressure outlet. The hull surface is defined as no-slip walls to model the inter-
face accurately. The dimensional size of the flow field domain is −4Lpp < x < 2Lpp,
−2.5Lpp < y < 2.5Lpp,−2.5Lpp < z < 1.0Lpp. The velocity field function is used to simu-
late the velocity of each boundary. The simulation region is discretized using a trimmed
mesher approach. Mesh refinement is applied to regions surrounding the hull and the
free water surface to precisely capture the flow dynamics during the vessel’s movement.
Additionally, mesh refinement is employed at the bow and stern to enhance the resolu-
tion of the flow field captured. In the boundary layer, a four-layer prism is employed to
maintain y+ around 30 for the majority of the region. The k-ε turbulence model is selected
and integrated with the two-layer all y+ Wall Treatment to accurately represent the free
water surface via the volume of the fluid method. Additionally, the dynamic fluid−body
interaction (DFBI) module is utilized to numerically simulate the captive movement of the
ship model. The computational region comprises approximately 2.55 × 106 grids in total.
The grid count varies slightly under different operating conditions, with the hull surface
and the grids of the computational domain being partitioned, as illustrated in Figure 6.

The convergence analysis for longitudinal forces on the hull under the condition of
Fr = 0.226 was conducted during the direct flight test of the ship model, employing the
methodology advocated by the International Towing Tank Conference. The mesh size and
time step were scaled by a constant factor of

√
2. The stability of the calculation results is

judged by the convergence parameter RG, which is defined below [29]. These three cases
show monotonically converge consistently and satisfy the computational requirements
when 0 < RG < 1. (See Table 3).

RG = S2−S1
S3−S2

(8)
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where: S1, S2, S3 are calculated results for fine, moderate and rough levels, respectively.

Figure 5. Computational region of captive model tests.

(a)

(b)

Figure 6. The grids in computational region: (a) Hull surface; (b) Computational region.

Table 3. Convergence analysis of mesh sizes and time steps.

Case Name Value Solution Time 1 Longitudinal Resistance RG

G1

Mesh Size 2
0.05 (m) 49,800 (s) 12.1556 (N)

0.341G2 0.07 (m) 14,065 (s) 12.2694 (N)
G3 0.10 (m) 8665 (s) 12.6028 (N)

T1
Time Step

0.007 (s) 30,343 (s) 12.2495 (N)
0.279T2 0.010 (s) 14,065 (s) 12.2694 (N)

T3 0.014 (s) 9586 (s) 12.3405 (N)
1 Time required to simulate 45 s in solver. 2 Mesh size G1, G2, G3 contains the total number of grids 5.22 × 106,
2.55 × 106, 1.26 × 106, respectively.

The findings indicate that both grid size and time step exhibit convergence. Diminish-
ing either the grid size or the time step further minimizes the errors in the computational
outcomes while leading to a significant increase in the solution time. Upon verifying the
precision of the calculations and considering time efficiency, the simulation method using a
medium grid size G2 and a medium time step T2 was chosen in this study.

3.2. Resistance Validation of Straight Sailing

Conducting a numerical simulation of the resistance during straight sailing allows
for additional validation of the numerical model’s calculation accuracy. Furthermore,
fitting the resistance function of the ship model at varying speeds enables the derivation
of X(u). The specific calculation scenarios and their outcomes are detailed in Table 4. A
comparison of the modeled ship’s resistance with actual ship test values, post-Froude-
resistance transformation, reveals an error margin of approximately 5%, with a consistent
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overall trend being observed. The error is within an acceptable range, taking into account
factors such as scale effects and experimental error. Figure 7 illustrates the free surface
wave patterns at various speeds, accurately depicting the symmetrical Kelvin waves
generated by the bow and stern. The clarity of peak and trough contours further signifies
the simulation’s effectiveness.

Table 4. Comparison of calculation conditions and results of direct flight resistance.

Fr = U/
√

gL U (m/s) Numerical Modelled Values (N) Froude Transform Value (N) Test Value (N) Error (%)

0.129 0.8 3.934 73,298.84 76,159.31 3.76
0.178 1.1 7.625 125,651.22 135,501.75 7.27
0.226 1.4 12.269 242,683.36 250,553.62 3.14
0.275 1.7 19.853 396,594.89 421,314.91 5.87
0.323 2 40.871 695,527.64 647,785.64 7.37

Figure 7. Free surface wave patterns at various speeds.

The calculated resistance values in the table are plotted as resistance curves, as shown
in Figure 8, and the resistance function of the ship “Zhifei” is fitted as X(u) = 420666.76u2 −
672733.19u + 348350.78.

R
es
is
ta
nc
e(
N
)

Figure 8. Resistance value and fitted curve.

3.3. Captive Model Test Simulation

The free surface wave patterns under varying test conditions are shown as follows:
Figure 9 shows the simulation result of wave pattern in an oblique towing test at β = 0◦, 2◦,
9◦. When β = 0◦, symmetrical kelvin waves are formed at the bow and stern of the ship, and
the height of the rising waves on both sides is basically identical. In contrast, as β increases,
asymmetrical waves emerge on either side of the hull, becoming more pronounced. The
waves at the bow and stern on the windward side converge, whereas those on the leeward
side diverge, which becomes more apparent as β increases.
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(a) (b) (c)

Figure 9. Wave pattern in OTT test: (a) β = 0
◦
; (b) β = −2

◦
; (c) β = 9

◦
.

Figures 10–12 depicts the circular motion test simulation with β = 0◦, −2◦, 9◦. In
Figure 10, with β = 0◦, the waves generated at the bow and stern of the ship continuously
intersect behind the ship while sailing. The bow wave crest progressively moved towards
the port side as the rate of turn r′ increased, while the stern wave also curves towards the
port side in response to the ship’s movement. Meanwhile, the intersection becomes more
obvious, and the wave area on both sides of the ship is more compact and shifted to the
port side.

(a) (b) (c)

Figure 10. Wave pattern in CMT test with β = 0◦: (a) r′ = −0.2; (b) r′ = −0.4; (c) r′ = −0.6.

(a) (b) (c)

Figure 11. Wave pattern in CMT test with β = −2◦: (a) r′ = −0.2; (b) r′ = −0.4; (c) r′ = −0.6.

In Figure 11, with β < 0◦, the wave amplitude along the hull significantly increases,
with the predominant wave distribution shifting to the starboard side, indicating that the
bow and stern waves gradually converge from the port side towards and spread to the
starboard side. Meanwhile, comparing with the same r′, the height of the bow rising wave
increases obviously. With β > 0◦, the amplitude of the waves along the hull is reduced, and
the primary area of wave distribution for both bow and stern is on the port side, as shown
in Figure 12.
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(a) (b) (c)

Figure 12. Wave pattern in CMT test with β = 9◦: (a) r′ = −0.2; (b) r′ = −0.4; (c) r′ = −0.6.

Figure 13 illustrates how the waterline at the bow changes with the drift angle, high-
lighting that the drift angle induces an asymmetric wave pattern on both sides of the bow.
This asymmetry becomes increasingly pronounced with larger drift angles.

Figure 13. Bow waterline at different drift angles.

Figure 14 depicts the distribution of the pressure coefficient along the hull’s bottom,
providing insights into the hydrodynamic pressures exerted on the ship’s underbody
during various test conditions. With increasing turn rate r′, the pressure on the starboard
side of the ship intensifies. At a drift angle of β < 0◦, the pressure concentration at the
starboard side of the bow escalates, expanding the high-pressure zone as r′ rises, with a
continuous increase in pressure amplitude. Conversely, at β > 0◦, the port side experiences
more concentrated pressure, with the high-pressure region progressively moving to the
starboard side as r′ increases. A gradual increase in pressure on the starboard bow leads to
the emergence of negative pressure on both the port side and the starboard side at the stern.

Figures 15–17 display the forces and moments on the hull measured and fitted during
the oblique towing test and circular motion test. It is observed that all three parameters
tend to increase as the drift angle rises. Within the drift angle range specified by the
oblique towing test, the lateral force and the yaw moment demonstrate an approximate
linear response. However, the longitudinal force shows minimal sensitivity to drift angle
variations. When β = 0◦, the longitudinal force acting on the hull can be represented by
X = X(u). Similarly, at smaller β values, the longitudinal force on the hull remains essentially
constant. As the drift angle β increases, the lateral force correspondingly rises, with its rate
of increase accelerating alongside β. In circular motion tests, changes in drift angle and
the yaw velocity significantly influence both the lateral force and the yaw moment. When
β = 0◦, the behavior of longitudinal force mirrors that observed in the oblique towing test.
However, the lateral force and yaw moment exhibit heightened sensitivity to variations in
the yaw velocity. As yaw velocity increases, the lateral force on the hull progressively rises,
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with each increment being larger than the last. Meanwhile, the yaw moment diminishes,
with its overall magnitude slightly decreasing.

Figure 14. Hull’s bottom pressure distribution in varies test conditions.

(a) (b) (c)

Figure 15. Simulation results of OTT: (a) longitudinal force; (b) lateral force; (c) yaw moment.

(a) (b) (c)

Figure 16. Simulation results of CMT (when β = 0◦): (a) longitudinal force; (b) lateral force;
(c) yaw moment.

Through simulations at varying yaw velocities, it is observed that lower yaw velocity
results in smoother transitions in the three curves, indicating a lesser impact from drift
angle actions. Additionally, at drift angle β > 0◦, the longitudinal force on the hull attains a
minimum value at some point.

A least squares regression analysis of the simulation outcomes yielded the hydro-
dynamic derivatives presented in Table 5. The empirical formulas are obtained from
reference [27,30] and enable direct calculation of the hydrodynamic derivatives from pa-
rameters such as the ship length and breadth. When these results are compared to empirical
formulas, some discrepancies are shown in the CFD findings. The calculated values of the
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linear hydrodynamic derivatives align with those from empirical formulas, maintaining a
similar order of magnitude. However, greater differences are observed in some nonlinear
hydrodynamic derivatives, potentially because the numerical simulations fail to precisely
forecast hydrodynamic forces at higher drift angles. Furthermore, all lateral hydrodynamic
derivatives appear to be underestimated, potentially because of challenging flow separa-
tions occurring at the hull’s curvature under conditions of significant drift angles and high
bow angular velocities.

(a) (b) (c)

Figure 17. Simulation results of CMT (when r′ = −0.2~−0.6): (a) longitudinal force; (b) lateral force;
(c) yaw moment.

Table 5. Results of hydrodynamic derivative calculations and comparisons.

Hydrodynamic
Derivative

CFD
Empirical
Formula

Difference (%)
Hydrodynamic

Derivative
CFD

Empirical
Formula

Difference (%)

Xuu −0.1015 −0.0837 21.29 Yvvr 0.05243 0.0405 29.46
Xvv −0.0474 −0.1391 65.91 Yvrr 1.0639 0.2341 554.46
Xvr −0.0019 −0.0007 164.15 Nv −0.0784 −0.0467 67.88
Xrr 0.0780 0.1010 22.77 Nr −0.0184 −0.0331 44.41
Yv −0.1295 −0.3082 57.98 Nvv −0.0161 −0.0114 41.23
Yr 0.0072 −0.1633 104.42 Nrr −0.0209 −0.0227 7.92
Yvv −0.5809 −2.0374 71.49 Nvvr −0.1012 −0.1845 45.15
Yrr −0.0219 −0.0080 174.24 Nvrr 0.0840 0.0257 226.85

Overall, the hydrodynamic derivatives derived from CFD calculations show acceptable
differences from those calculated using empirical formulas, with large differences in some
of the higher order and cross-coupled hydrodynamic derivatives.

4. Maneuverability Simulation and Verification

Utilizing the four-degree-of-freedom MMG equations for a fully rotary propelled
ship, this study calculates hydrodynamic derivatives through empirical formulae and
CFD simulations. Subsequently, time-domain differential equations are solved to facilitate
computer simulations of the ship maneuvering dynamics, enabling the determination
of its motion trajectory and maneuvering characteristics. The study conducts numerical
simulations of the ship’s 10◦ turning motion and ±10◦ zigzag motion under the assumption
that both left and right propellers maintain constant rotational speeds and receive identical
motion commands throughout the simulation process.

Concurrently, a full-scale trial is conducted in calm waters using the same commands,
allowing for a direct comparison between the simulated tests and actual ship performance,
as depicted in Figure 18. Additionally, a comparison of characteristic parameters for the
turning and zigzag motions is presented in Tables 6 and 7.
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(a)

(b)

(c)

Figure 18. Simulation and test curves: (a) left turning at 10◦; (b) right turning at 10◦; (c) Zigzag test
motion at ±10◦.
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Table 6. Comparison of characteristic parameters of turning test.

Main Parameters Test Case Full-Scale Trial
Empirical

MMG
Error (%)

CFD
MMG

Error (%)

Tactical Diameter (m)
Left turning at 10◦ 487.1 632.26 29.80 465.59 4.42
Right turning at 10◦ 474.5 629.56 32.68 464.54 2.10

Advance (m)
Left turning at 10◦ 289.8 372.42 28.51 332.89 14.87
Right turning at 10◦ 287.2 372.54 29.71 332.75 15.86

Transfer (m)
Left turning at 10◦ 195.9 329.03 67.96 220.98 12.80
Right turning at 10◦ 205.8 323.69 57.28 217.19 5.53

Stabilized rolling angle (deg)
Left turning at 10◦ 1.99 1.64 18.00 1.72 13.57
Right turning at 10◦ 1.98 1.66 17.01 1.71 13.64

Table 7. Comparison of characteristic parameters of zigzag test.

Main Parameters Test Case Full-Scale Trial
Empirical

MMG
Error (%) CFD MMG Error (%)

1st overshoot (deg)
Zigzag test at ±10◦

6.20 9.16 47.74 6.28 1.03
2nd overshoot (deg) 7.00 9.44 34.85 6.42 8.28

The graphical data illustrates that the ship’s maneuvering parameters simulated
during the CFD MMG tests align with the parameters observed in the full-scale trial. Fur-
thermore, the ship’s turning capabilities and directional stability meet the IMO’s standards
for maneuverability. The simulation accurately reproduced the tactical diameters observed
during the turning motion to within a 5% error of the real ship test data. Nevertheless,
the overall motion trajectory deviates slightly from the full-scale trial, which is caused
by the interference of wind and wave factors present in the full-scale test, leading to a
lateral shift in the ship’s trajectory. While the current simulation only considers calm water
conditions, as a result, the simulation errors for both advance and transfer are significantly
larger and add to the uncertainty of rolling angle simulation; however, the transfer error is
reduced when sailing upwind in the right turning at 10◦. The error for the overall parameter
characteristics is kept within 15%, which is an acceptable threshold, although there are also
errors arising from scale effects inherent in the simulation. The CFD MMG method exhibits
higher accuracy compared to the empirical MMG model.

During the zigzag maneuvering motion test, the simulated yaw direction and test
curve largely align, exhibiting minimal error in the first overshoot angle. However, as
calculation iterations progress, the cumulative time error incrementally escalates. Never-
theless, the overall deviation of the zigzag maneuvering motion parameters derived from
the simulation remains below 10%, closely mirroring the full-scale trial data.

The methodology employed in this study markedly diminishes simulation errors
across all maneuvering motion characteristic parameters compared to empirical MMG
method. It can calculate more accurate hydrodynamic parameters in advance and obtain
the ship’s motion response through a rapid mathematical model calculation, and so its
computational cost is significantly reduced compared with the CFD direct simulation
method and experiments. This enhances the precision of maneuverability predictions at
an acceptable computational expense, rendering it highly conducive to validating and
optimizing ship maneuverability during the design phase.

5. Conclusions

This study offers a comprehensive prediction of the “Zhifei” ship’s maneuvering
motion, utilizing CFD technology and empirical formulas. This approach presents a viable
method for accurately and rapidly forecasting maneuvering performance at the design
stage of contemporary ships. Initially, the study conducts CFD numerical simulations on the
captive motion model of “Zhifei”, deriving all necessary hydrodynamic derivatives for the
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ship’s maneuvering through both regression analysis and empirical formulas. Subsequently,
based on the MMG mathematical model, a maneuvering motion mathematical model
suitable for dual full-rotary propulsion ships is formulated. The model’s turning and
zigzag maneuvering motions is then numerically simulated. Finally, a full-scale trial
maneuverability test is conducted, and the data from this test is compared and analyzed
alongside the simulation outcomes, leading to the following key conclusions:

(1) The RANS-based numerical simulation method effectively predicts the hydrodynamic
characteristics of the “Zhifei” hull. The hydrodynamic curves derived from the captive
model tests align with the ship’s behavior trend. However, there is a notable deviation
in the hydrodynamic characteristics obtained post-regression analysis when compared
to empirical formulas.

(2) This study introduces a four-degree-of-freedom maneuverability prediction tech-
nique for dual full-rotary propulsion ships. It evaluates the turning and zigzag
maneuvering motion simulation results—derived from empirical formulas and CFD
simulations—against full-scale trial test data, validating the mathematical model’s ef-
ficacy for dual full-rotary propulsion ships. The results show that all maneuverability
parameters have an error of less than 15% from the full-scale trial data. The error of
the tactical diameter in the turning test is less than 5%, and the rest of the parameters
may be affected by the wind and waves with an error of about 10%. The errors in the
zigzag test are all within 10%.

(3) Currently, the research presented in this paper is limited to the four-degree-of-freedom
maneuvering motion of ships in calm water. However, in real-world conditions, the
interaction of wind, waves, currents and other environmental factors introduces some
degree of error in the comparative results. Consequently, incorporating these factors
into ship maneuvering studies represents the next focal point of future work.
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Nomenclature

ϕ roll angle mx additional masses of the hull in the x axis
θ pitch angle my additional masses of the hull in the y axis
ψ yaw angle XH hydrodynamic forces (moments)
u surge velocity XP longitudinal thrust force
v sway velocity YP lateral thrust force
r yaw velocity KP rolling moment by propeller
m hull mass NP yawing moment by propeller
T propeller thrust Izz moment of inertia of the hull mass around the z axis
D diameter of the propeller disk Jzz moment of additional inertia of the hull mass around

the z axis
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ρ density of water Ixx moment of inertia of the hull mass around the x axis
n rotation speed of propellers Jxx moment of additional inertia of the hull mass around

the x axis
J propeller advanced ratio zH z axis coordinate of the point where YH acts
δ rotation angle of propellers Lop longitudinal distance between propellers and ship’s

center of gravity
β drift angle Lps lateral distance between propellers
B breadth tp thrust deduction coefficient
λ scale factor ωp wake fraction at propeller position.
d draft RG convergence parameter
Δ displacement Cb block coefficient
Z number of blades DT tactical diameter
Fr Froude number X(u) resistance of the hull during straight sailing

Lpp length between perpendiculars
Loa length overall
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Abstract: Automatic berthing is at the top level of ship autonomy; it is unwise and hasty to hand over
the control initiative to the controller and the algorithm without the foundation of the maneuvering
model. The berthing maneuver model predicts the ship responses to the steerage and external
disturbances, and provides a foundation for the control algorithm. The modular MMG model is
widely adopted in ship maneuverability studies. However, there are two ambiguous questions on
berthing maneuver modeling: What are the similarities and differences between the conventional
MMG maneuvering model and automatic berthing maneuvering model? How can an accurate
automatic berthing maneuvering model be established? To answer these two questions, this paper
firstly performs bibliometric analysis on automatic berthing, to discover the hot issues and empha-
size the significance of maneuver modeling. It then demonstrates the similarities and differences
between the conventional MMG maneuvering model and the automatic berthing maneuvering
model. Furthermore, the berthing maneuver specifications and modeling procedures are explained in
terms of the hydrodynamic forces on the hull, four-quadrant propulsion and steerage performances,
external disturbances, and auxiliary devices. The conclusions of this work provide references for ship
berthing mathematical modeling, auxiliary device utilization, berthing aid system improvement, and
automatic berthing control studies.

Keywords: automatic berthing; maneuver modeling; bibliometric analysis; motion specifications;
hydrodynamic characteristics

1. Introduction

1.1. Background

According to statistics, 89%~96% of collision accidents [1] are caused by human error,
and nearly 70% of accidents are related to the bad ship skills of the operators in the port [2].
To reduce or even eliminate the collisions caused by human errors, the maritime sector is
moving rapidly towards autonomous shipping.

With the proposal of E-Navigation, the China Classification Society (CCS), Det Norske
Veritas (DNV), Germanischer Lloyd (GL), Lloyd’s Register of Shipping (LR), and other
authority institutions successively published corresponding regulations and standards
on autonomous ships. Regarded as the last-mile issue in ship operation, the berthing
maneuver is the most complicated and dangerous part of the mission, with comprehensive
consideration of restricted and busy waterways, off-design ship performances, and strong
external disturbances. In sum, automatic berthing is at the top level of autonomy [3–5].
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1.2. Application of Automatic Berthing

Shipping and technology institutions and enterprises in Asia and Europe have con-
ducted automatic berthing studies and experiments and made remarkable progress; the
applications of the automatic berthing systems are shown in Figures 1 and 2. Between
2018 and 2019, Mitsui E&S Shipbuilding Co., Ltd. (MES-S) (Tokyo, Japan), Mitsui O.S.K.
Lines, Ltd. (MOL) (Tokyo, Japan), Tokyo University of Marine Science and Technology
(TUMST), Akishima Laboratories (Mitsui Zosen), and MOL Ferry conducted a total of 54
auto berthing operations using a virtual pier in open water, with the training ship ‘Shioji
Maru’ [6]. And in 2022, the project team announced the success of an actual demonstration
test of their jointly developed auto berthing and un-berthing system, equipped on the
large-sized car ferry ‘Sunflower Shiretoko’ [7]. In 2022, MOL (Mitsui O.S.K. Lines, Ltd.)
completed the world’s first containership sea trial for unmanned docking and undocking,
with a 1870 DWT containership ‘Mikage’ [8]. In 2020, KASS (Korea Autonomous Surface
Ship) Project [9] brought together KRISO, KAIST, Korea Maritime and Ocean University,
and other institutions, to investigate autonomous ships and to release the study objective
on berthing aid systems and automatic berthing prototypes. In China, Navigation Brilliance
performed a series of autonomous ship tests, with the application of a berthing control
system on a training ship ‘ZhiTeng’ [10], and achieved assisted berthing and automatic
berthing on a 117 m 300 TEU container ship ‘ZhiFei’ [11].

  

(a)  (b)  

  

(c)  (d)  

Figure 1. Application of the automatic berthing systems in Asia. (a) Car ferry ‘Sunflower Shire-
toko’ [7]. (b) KASS berthing aid system [9]. (c) Training ship ‘ZhiTeng’ [10]. (d) Container ship
‘ZhiFei’ [11].

In 2018, Rolls-Royce and Wartsilia successively announced their achievement with
the automatic berthing control system. Rolls-Royce and the Finnish state-owned ferry
operator Finferries [12] successfully demonstrated automatic berthing with a developed
autonomous navigation system, without any intervention from the crew, with a fully
autonomous 53.8 m double-ended car ferry ‘Falco’. Wartsilia [13] successfully carried out
a world-first autodocking test on an 83m-long ferry ‘Folgefonn’. The test covers the full
ship docking procedure, performs a gradual slowing of speed, and activates the line-up
and docking maneuver fully automatically until the ship is secured at the berth. In 2021,
Kongsberg and Yara [14] used the world’s first fully electric and autonomous container
ship ‘YARA Birkeland’, an 80 m 120TEU open-top container ship, preliminarily achieving
automatic berthing with the assistance of a Macgregor intelligent mooring system. In the
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same year, Volvo Penta [15] released their assisted docking system for boat docking, to
remove the dynamics of wind and current and to improve the control for maneuvering
in tight spaces: this is the first commercial application of an integrated berthing assistant
system. An overview of the automatic berthing applications is presented in Table 1.

  

(a) (b) 

  

(c) (d) 

Figure 2. Application of the automatic berthing systems in Europe. (a) Car ferry ‘Falco’ [12]. (b) Ferry
‘Folgefonn’ [13]. (c) Container ship ‘YARA Birkeland’ [14]. (d) Volvo Penta docking assistance
system [15].

Table 1. Application of automatic berthing.

Name Type Date Affiliations Overview for Development

A
si

a

Shioji Maru Training ship
(49 m) 2018 MES-S, MOL,

TUMST, etc.
� Carrying out the tests using a virtual pier.

Sunflower
Shiretoko

Car ferry
(190 m) 2022 MOL Ferry

� Tests carried out on the service routes and an
actual pier.

Mikage Container ship
(95.4 m, 194TEU) 2022 MOL Ferry

� Calculating and visually displaying gaps
and angles.

/ System 2020 KASS � Berthing aid system.

ZhiTeng Training ship
(21 m) 2019

China waterborne
transport research

institute, etc.

� Intelligent situation awareness system;
� Autonomous navigation decision-making

system;
� Autonomous control system.

ZhiFei Container ship
(117 m, 300TEU) 2021

China waterborne
transport research

institute, etc.

� Three driving modes: manual driving, remote
control, and autonomous navigation;

� Independent route planning, intelligent collision
avoidance, automatic berthing,
and disembarking.
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Table 1. Cont.

Name Type Date Affiliations Overview for Development

Eu
ro

pe

Falco Car ferry
(53.8 m) 2018 Rolls-Royce � Real-time, detailed pictures of surroundings;

� 50 km remote control.

Folgefonn Ferry
(83 m) 2018 Wartsilia

� Hybrid propulsion;
� Automatic wireless charging;
� Automatic vacuum mooring;
� Automated docking.

YARA
Birkeland

Container ship
(117 m, 300TEU) 2021 Kongsberg and

Yara
� Fully electric container feeder;
� Remote and unmanned operations.

PENTA
Fully integrated
assisted docking

system
2021 Volvo Penta

� Dynamic variable compensating;
� Straight line movement without manual

compensation;
� Stop, slow maneuver functionality;
� Rotation around a fixed point;
� Micro repositioning and alignment and lateral

thrust for lateral docking;
� Human–machine interaction.

1.3. Contributions

The berthing maneuver in the harbor area is one of the key problems of ship manipu-
lation, as the course stability and helm response of the ship is rather different from that
in open-water conditions. This paper aims to explore the hot issues in automatic berthing
maneuver modeling, demonstrate the similarities and differences of the conventional ma-
neuvering modeling group (MMG) [16] model and the berthing maneuver MMG model,
and emphasize the significance of berthing maneuver modeling. The main contributions of
this paper are as follows:

(1) Conducts bibliometric and statistical analysis on existing automatic berthing research,
and extracts the hot issues of automatic berthing.

(2) Demonstrates the similarities and differences between the conventional MMG model
and berthing maneuver MMG model.

(3) Summarizes the motion specifications and hydrodynamic performances of the berthing
maneuver, and provides proper mathematical expressions.

1.4. Outline

The outline of this paper is organized as follows: Section 1 introduces the technical
background and application status of automatic berthing, illustrating the contributions and
outline of the present paper. Section 2 performs bibliometric analysis on automatic berthing,
generalizes six main topics of automatic berthing study, and indicates the similarities and
differences of the conventional MMG model and the berthing maneuver MMG model.
Section 3 introduces the advantages and disadvantages of three common mathematical
modeling methods, and provides suggestions on the utilization of the berthing maneuver
modeling method. Section 4 concludes with four motion specifications and hydrodynamic
characteristics, and gives a specific mathematical modeling procedure. Conclusions and
perspectives on berthing maneuver modeling are provided in Section 5. The workflow of
this paper is illustrated in Figure 3.
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Figure 3. Workflow of the present paper.

2. Bibliometric Analysis

Scientometric analysis [17,18] presents high-level insights into the research domain; the
field tendencies, important issues, study contents and methods can be readily visualized,
conveniently identified and interpreted. In this section, bibliometric analysis is conducted
to show the timeline and source distribution of automatic ship berthing within the collected
literature database. A global correlation analysis and research focus of each study subject
are discussed via research density in the following subsections.

2.1. Literature Search and Visualization

In the present work, the reference and citation database Web of Science (WoS), and
bibliometric software VOS-viewer are adopted to collect references, and analyze the impor-
tant issues and correlation of current references related to automatic berthing. The method
and process of a literature index [19] and visualization are as follows:

(1) The first step is to search the literature in the WoS database and the KCI-Korean
journal database, with the following index keywords in the theme, abstract, and
keywords: (“berthing*” OR “docking*”) AND (“ASV” OR “unmanned surface vessel”
OR “unmanned surface vehicle” OR “autonomous surface vessel” OR “autonomous
surface vehicle” OR “ship”) NOT (“underwater” OR “ROV” OR “UUV” OR “AUV”
OR “aircraft” OR “drone” OR “car” OR “truck” OR “launch” OR “recovery” OR “cell”
OR “actuator”);

(2) The second step is to go through the collected literature and remove the research that
is out of this work’s scope; 115 papers are retained;

(3) The third step is to supplement studies and papers that are the source of certain
research or cited in the selected papers but not included in the database; finally,
134 papers are added. With the literature collection and filter, a total of 249 articles
consistent with the research scope are collected.

(4) The fourth step is to extract the research objects, methods, contents, and publication
time from the titles, abstracts, and keyword section of the collected references, and
establish a bibliometric database.
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(5) The fifth step is to set up the threshold for the occurrence number in the extraction
database, and then plot the network illustration on automatic berthing studies and
density diagrams of the detailed research methods and techniques.

2.2. Global Analysis

The overall research objective dependency statistic and timeline distribution on the
automatic berthing study are illustrated in Figures 4 and 5. The global network contains
four highly correlated clusters, where the red band relates to the Berthing Maneuver, the
blue group is associated with Control Method, and the collections of green and yellow
knots are in connection with Mathematical Modeling and Safety Factors, respectively. To
some extent, the four aspects with strong relevance indicate that the docking operation
itself is a complicated maneuvering procedure and that the study of automatic berthing
is not isolated, but correlated with other research interests, such as study constraints
or objectives.

 

Figure 4. Overall research objective dependency statistics of the automatic berthing study.

In the database of this work, the earliest study [20] on automatic berthing could date
back to the late 1980s, followed by the work of Kouichi Shouji [21] and Hiroyuki Yamato [22].
As Takeo Koyama stated, the automatic berthing system is a knowledge-based system,
involving the production rules that are mostly acquired from the shipmasters, pilots, and
circumstance-dependent parameters. The subsequent works on automatic berthing adopt
the knowledge-based or expert-based framework as the study constraints.

Systematic studies on automatic berthing started in the 2000s, focusing on the hydro-
dynamic forces and ship motions in the berthing procedure. Then the control method and
system came into sight, followed by neural network and other intelligence algorithms, and
the low-speed low-frequency, and high-accuracy berthing control problem were realized
upon the simulation level. As test methods and measurement accuracy improved by leaps
and bounds, the maneuverability model on ship docking was introduced to describe the
non-linear ship motion responses and mechanism and to elevate the ship motion control
effectiveness. Up until now, multi-factor (trajectory, external disturbance, maneuvering
velocity error, and emission, etc.)-coupled motion control on self-berthing and multi-tug as-
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sistant berthing have been important issues, among which pilot, navigation, and trajectory
refer to the berthing plan, and velocity corresponds to the approaching angle and velocity
in the berthing maneuver. In addition, with the development of learning and identification
algorithms and data processing, the clusters of data are found to play an important role in
motion control and statistical analysis study.

Figure 5. Timeline distribution of the automatic berthing study.

2.3. Correlation Analysis

In conclusion, the study keywords of automatic berthing are Risk Assessment, Schedul-
ing Optimization, Emission Supervision, Perception Utilization, Motion Control, and
Maneuverability Modeling. Scheduling optimization [23] and emission supervision are
studied to relieve the pressure on traffic flow, improve the operation efficiency of the harbor
area, and reduce air pollution. However, these two aspects make little contribution to
the automatic berthing technology, and hence are not discussed here. Detailed statistical
analyses of the other branches are conducted in the following parts.

2.3.1. Risk Assessment, Perception Utilization and Motion Control

Risk assessment extracts the manipulating principles and concerns of berthing opera-
tion, and quantifies the automatic control indices; it is the insurance for automatic berthing.
As illustrated in Figure 6a, the safety factor could be categorized by order of importance
into ‘ship skills’, ‘quay layouts’, ‘external disturbances’, ‘ship characteristics’, ‘traffic flow’,
and ‘port regulation’. Each aspect is interrelated and constrained. Ship skills, wall distance,
approaching angle, and lateral speed, are essential to determine the ship’s safety berthing
principles [24,25], which are affected by ship actuation level and external disturbances [26].
As for under-actuated ships, traditional large ships, or unexpected weather conditions, gen-
erally it is suggested or required that the ship berth with the assistance of tugs. Moreover,
the quay layouts of water depth, berth orientation, and position could also hold up the
berthing process.
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(a) Safety factor. 

 
(b) Perception element and technique. 

 
(c) Motion control methods. 

Figure 6. Density of safety factor, perception element and technique, and motion control methods in
berthing procedure.
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Perception utilization acts as a pilot in automatic berthing, supports berthing strategy
elaboration, environmental and state perception, and is the extra eye [27] and premise of
automatic berthing. As illustrated in Figure 6b, the perception element and acquisition
methods could be categorized by order of importance into ‘berth and obstacle perception’,
‘orientation and position perception’, ‘own-ship state perception’, ‘environmental percep-
tion’, and ‘target-ship perception’. Each aspect is indispensable. In correspondence with
safety berthing principles, approaching angle, lateral speed, and wall distance are the most
significant indices. Among these, the approaching angle, lateral speed, and other own-ship
states are monitored through DGPS (Differential Global Positioning System) and IMU
(inertial measurement unit), the berth and bollard location and target-ship detection are
determined by the camera [28], millimeter wave RADAR [29], and other position sensors,
while in severe weather conditions 3D LIDAR [30], ultrasonic sensor, solar-blind ultraviolet
and other measurement gages are employed to make up the deficiencies.

According to statistics, 70% of accidents are related to the bad ship skills of the drivers
in the port [2,31], and thus ship motion control is of vital importance to the berthing
operation. In the traditional berthing process, ship control is a complicated system with
multi-input sources and multi-output terminals. It requires the officers in charge to collect
and resolve massive data expressing the external conditions and own-ship states, the
shipmaster and pilot to make up a berthing plan and alternative plan, and the chief
officer and chief engineer to convert and supervise the instruction execution conditions of
the shipmaster.

The automatic berthing process [32] is described as the following: move the ship with
low speed from pose A in the proximity of the harbor to pose B lying right next to it, while
simultaneously avoiding all static and dynamic obstacles. The hidden scientific control
problems are to position the target ship to the final pose B with real-time feedback of the
perception elements (wall distance, lateral speed, and approaching angle) in the restricted
water area and with strong environmental disturbances [33]. In the berthing process,
path planning [34,35], trajectory tracking [36,37], stabilization and robustness control are
essential control targets. Furthermore, with regard to multi-tug-assistance berthing control,
it is necessary to exert constant control on the thrust allocation induced by the assistant
tugboats, and to monitor the status of the target ship [38–40]. Whether for the self-berthing
or tug-assisted berthing, wall distance, approaching angle, ship speed, and yaw rate are
the control indices. Accordingly, ship berthing control is a low-speed low-frequency, and
high-accuracy berthing control problem.

The density of motion control methods is illustrated in Figure 6c: model predictive
control [41], fuzzy logic control [42], adaptive control [43], sliding mode control [44], opti-
mal control [45], and artificial neural network-based control [46,47] are the most common
and proven control technologies. Most of the above control methods are only effective on
a specified scene, and once the external conditions change the parameters of the control
system are ineffective. To resolve such deficiencies, artificial neural networks and other
learning algorithms [48,49] are adopted. However, the learning algorithms and intelligent
algorithms are fed on massive data, which represents a high cost; moreover, once the
imported berthing condition is not involved in the training database, the system makes
incorrect decisions, even breaking down. Furthermore, it is reported that most marine
accidents are caused by ship–ship collision and ship–shore collision [50]. In order to reduce
the risk of collision accidents, a collision avoidance algorithm [51] is embedded into the
control system to determine and implement the required safety margin distance between
the moored ships, moving ships, and the obstacles, which increases the system load to
some extent. Thus, it is essential to improve the robustness of the control system.

2.3.2. Maneuverability Modeling

The ship maneuvering model is grounded in the mechanical characteristics, in order
to denote ship responses under different internal and external inputs, and is the foundation
of the automatic berthing control system. There exist two main effects and applications:
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one is to predict the maneuvering characteristics and help ship designers and operators
know about the handling performance and the other is to provide a kinematic and dynamic
foundation for the control system. As illustrated in Figure 7, the modeling methods could be
categorized by intention into the ‘mechanism model’ and ‘control model’. The ‘mechanism
model’ involves the Abkowitz model and MMG model. In the Abkowitz model [52], the
ship is considered as a whole, and the hydrodynamic forces acting on the system are
expressed as the function of ship motion, rudder steerage, and external disturbances, while
the MMG model [16] treats the ship as an organism composed of a ship hull, propeller,
rudder, bow thruster, wind, wave, and current. Additionally, auxiliary devices like tugs,
cables, anchors, and waterway constraints like shallow-water effect, bank effect, and ship–
ship interaction could also be represented in the MMG model. The ‘control model’ treats
the ship as a multiple-input and multiple-output (MIMO) system, mainly containing the
dynamic model, Nomoto model, and model-free model. The dynamic model [53] solves
ship motion control issues with matrix formation obtained from the rigid-body kinetics.
The Nomoto model [54], the so-called ship response model, is introduced to indicate the
relationship between ship turning ability and rudder steerage, and is commonly adopted
in automated rudder exploitation. And the model-free model [55,56] is a new form of
resolving ship motion control in the black box model.

 

Figure 7. Density of modeling method in a berthing procedure.

In the Abkowitz model, the ship hull, propeller, rudder and external disturbances
are treated as a whole: the number of hydrodynamic derivatives exceeds 60, the physical
meaning of some remains unclear, and it takes a lot more captive model tests to obtain the
hydrodynamic derivatives. With regard to the dynamic model and the Nomoto model, the
whole ship is considered as a MIMO control system. These methods are widely used in ship
motion control; however, the hydrodynamic performance is eliminated to a certain extent.
In comparison, the modular MMG model independently describes the hydrodynamic
forces on the ship hull, propeller, thruster, rudder, and external conditions, with few
interaction coefficients forging a bond with each other. Moreover, each coefficient has a
distinct physical meaning, and could be obtained with fewer captive model tests.

In practice, small ships and actuated or over-actuated ships usually perform self-
berthing. Large ships often berth with the assistance of tugs, and, when conditions permit,
could also conduct independent berthing. Normally, the control actuators such as the
propeller and rudder are designed for relatively high speed (design speed, economic
speed, or constant speed). However, during the berthing process the ship undergoes much
more complicated external conditions, such as extreme low speed, high drifting, propeller
reversal, shallow-water effect, bank effect, and heavy traffic flow, which eventually lead
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to distinct changes in the hydrodynamic forces acting on the ship hull, propeller thrust,
and rudder steerage force. It is of great practical significance to study the hydrodynamic
and maneuvering characteristics of the berthing maneuver. Considering the model form,
influencing factors, and manipulating features, the MMG model now is utilized in berthing
maneuvering modeling, and will be discussed in detail in the following sections.

2.4. Discussion of MMG Model

Some studies [57–61] on ship berthing control adopt the conventional MMG mathe-
matical model framework as the foundation of the control algorithm. In these research
studies, a number of assumptions are proposed [16]:

� Hydrodynamic forces acting on the ship are treated quasi-steadily.
� The lateral velocity component is small compared with the longitudinal

velocity component.

Automatic berthing control studies [62–66] considering the berthing maneuver charac-
teristics have shown satisfactory results in comparison of model tests. In these research
studies, the berthing maneuver specifications are discussed:

� Hydrodynamic forces acting on the ship have strong non-linearity; the ship lon-
gitudinal velocity is small, and is of the same order as the lateral velocity and
yaw moment.

� Thrust and steerage forces have four-quadrant characteristics.
� The ship is vulnerable to external disturbances.
� Ship motion is assisted by auxiliary devices like side thrusters, tugs, cables,

and anchors.

In sum, automatic berthing simulation results based on both methods are acceptable.
However, there exist two ambiguous questions on the maneuver modeling framework for
the berthing maneuver motion control:

(1) What are the similarities and differences between the conventional MMG maneuver-
ing model and the automatic berthing maneuvering model?

(2) How can an accurate automatic berthing maneuvering model be established?

To answer the first question, the similarities and differences between the conventional
MMG model and the berthing maneuver model are summarized in Table 2. With regard
to the modeling methods, uniform methods (including the data-based method, system-
based method, and CFD-based method) are adopted to obtain the ship hydrodynamic
performances for both the conventional model and the berthing maneuver model. The
main differences are found in the hull motion characteristics, propulsion and steerage
device performances, external disturbances, and auxiliary devices. In the conventional
MMG model a moderate speed is concerned, the hydrodynamic forces are treated as linear,
and the should be smaller than 20 degrees; the resultant inflow angle to the thruster and
drift-angle rudder is small, and the ship motion is relatively insensitive to the external
disturbances. However, in the berthing maneuver process [67,68] the ship undergoes
conditions like low advance speed, large drifting, four-quadrant thrust and low rudder
effect, and the ship is vulnerable and sensitive to external disturbances.

In brief, there exist distinct differences between the conventional moderate speed
MMG model and the berthing maneuver MMG model, and it is essential to build a
proper and accurate maneuvering model for automatic ship berthing. The kind of ef-
fects the differences lead to and how to establish an accurate model will be answered in the
following sections.
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Table 2. Comparison between conventional MMG model and berthing maneuver model.

Indices Conventional MMG Model MMG Berthing Maneuver Model

Si
m

ila
ri

ti
es

Modeling methods
Data-based

System-based
CFD-based

Data-based
System-based

CFD-based

D
iff

er
en

ce
s

Hull

Ship speed 0.1 < Fr < 0.3 Fr < 0.1

Drifting |β| = [0, 20◦]
|r’| = [0, 0.6]

|β| = [0, 180◦]
|r’| > 0.6Rotation rate

Propulsion,
Steerage devices

Thruster First-quadrant inflow angle Four-quadrant inflow angle

Rudder Small resultant inflow angle
High rudder effect

Large resultant inflow angle
Low rudder effect

External disturbance Insensitive Vulnerable and sensitive

Auxiliary devices None Side thruster, tug, and cable

2.5. Remarks

Taken together, automatic berthing is a coordination of perception utilization, motion
control, and mathematical modeling technologies. Perception is the premise, motion control
is the key, and the maneuverability model is the foundation. A precise mathematical model
is required to make clear ship responses to the internal operations and external disturbances.
The modular MMG mathematical model is now widely adopted in the study of maneuver
modeling, due to its accessible hydrodynamic forces, clear physical meaning, and explicit
and flexible structure. In light of the maneuver specifications, a comparison between
the traditional model and the berthing maneuver MMG model is performed, and the
traditional MMG model is found to differ from the traditional model in the hydrodynamic
forces on the hull, propulsion and steerage devices, external disturbances, and auxiliary
devices. As for the automatic berthing, it is essential to establish a berthing maneuver
mathematical model.

3. Berthing Modeling Methods

3.1. Mathematical Modeling Methods

Grounded in the mechanical characteristics, the ship maneuvering mathematical
model denotes ship responses under different internal and external inputs, and is the
foundation of the automatic berthing control system. There exist two main functions, one
being to assess and predict ship maneuverability, helping ship designers and operators
to know about the handling performances, and the other to provide the kinematic and
dynamic foundation for the control system. Based on the experience of the 25th ITTC
maneuvering committee [69] and insights obtained from the SIMMAN 2008 workshop,
the maneuvering prediction methods are organized into three main parts, the data-based
method, the system-based method, and the CFD-based method. The overview of the
maneuverability prediction methods is shown in Figure 8.

3.2. Data-Based Methods

The data-based method covers the experimental method and empirical method:

(1) The experimental method mainly contains full/model-scale free-running tests, and
captive model tests. The former method establishes a database involving the ship
maneuverability indices of advance, transfer, overshoot, track reach, etc., to charac-
terize the turning, yaw-checking, and stopping abilities, and to evaluate the ship’s
inherent dynamic and course-keeping stabilities (shown in Figure 9a). Meanwhile,
the captive model tests measure the hydrodynamic performance of ships to indicate
the ship response under various external conditions.
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(2) The empirical method makes a quick estimation of the resistance [70] and hydrody-
namic derivatives [71,72] of a target ship. This method conducts regression analysis
on massive captive model test results of ships within a hull-type set; the hydrody-
namic derivatives are expressed as functions of the ship’s main dimensions, and form
parameters (shown in Figure 9b).

 

Figure 8. Overview of maneuverability modeling and prediction methods.

  
(a)  (b)  

Figure 9. Data-based method. (a) Sea trails [73] and Model tests. (b) Regression analysis [16].

The data-based method predicts the resistance and maneuverability of ships with
flexibility. However, there exist some defects: the full-scale trails and model-scale tests
normally come with a high cost; the database and the regression formulas rely heavily on
the ship-type spectrum, and once the studied ship is not involved in the spectrum, or shows
obvious differences in the hull profiles, this method cannot predict the maneuverability
with certain precession. Additionally, the accuracy of this method is also influenced by
scale effects.

3.3. System-Based Methods

The system-based method, also known as the system identification (SI) method, mainly
includes the grey box model and black box model. It is a control strategy that establishes a
mathematical model equivalent to the measuring system based on the system’s input and
output data [74]:

(1) The grey box model sets a prior model structure [75]; some identification algo-
rithms, such as maximum likelihood (ML) [76], Kalman filtering (KF) [77], the least
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squares method (LS) [78] or the improved algorithm are used to identify the experi-
ment/simulation parameters like ship speed, yaw rate, propeller revolution, rudder
angle, and trajectories. The maneuverability of the target ship is then obtained (shown
in Figure 10a). However, these methods have some inherent disadvantages: the
accuracy is sensitive to signal noise and initial estimations, and simultaneous drift is
another critical issue.

(2) To cope with these defects, the black box model is proposed. No prior information is
needed other than the datasets to gain the mapping relationship between system input
variables and output variables [79] (shown in Figure 10b). Machine learning and deep
learning techniques have been successfully applied as tools to establish the identified
model, for example, the least-squares support-vector machine (LS-SVM) [80], the fully
connected neural network [81], the deep neural network [55,82], etc.

  
(a) Grey box model. (b) Black box model. 

Input Layer Hidden Layer Output Layer

Figure 10. System-based methods.

In general, the system identification method is a data-driven modeling method, uti-
lizing the training data collected from simulation results, free-running model tests or
full-scale trials. The accuracy is highly dependent on the training data, and the qualified
and continuous-excitation input signal ensures better identification performance and gener-
alization ability. However, once the training data are insufficient, or the excitation is weak,
the accuracy and efficiency of identification reduces dramatically. Moreover, the specialty
of the SI method in coping with the collected data indicates that this method could not
predict the ship maneuverability at the design stage or in unknown conditions, but that it
could improve the mechanical model accuracy. As for ship berthing maneuver modeling,
an integrated SI-CFD method could be utilized to optimize the mechanical model accuracy
and to provide a basis for the control algorithm.

3.4. CFD-Based Methods

The CFD-based method is the mapping of physical captive model tests and maneuver-
ing model tests. The hydrodynamic forces are solved with the potential flow method or
viscous flow method, and the method itself consists of virtual captive model tests, direct
simulation, and the integrated method:

(1) The virtual captive model tests method conducts specific maneuvering test simula-
tions based on the maneuvering model [83,84] of the target ship, the hydrodynamic
characteristics of which are obtained via the CFD method (shown in Figure 11a,
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where upper left is the dimensionless longitudinal force X’, upper right the propeller
thrust coefficient KT, torque coefficient KQ, and thrust efficiency η0, lower left the
comparisons of the turning maneuver trajectory, and lower right the comparisons
of the heading angle ψ and rudder angle δ time histories). Moreover, the propeller–
rudder interaction, ship–ship interaction, ship–bank interaction, shallow-water effects,
and detailed ship amplitudes and flow field development could also be obtained.
This is the most effective, economical, and widely used method for studying the
maneuverability of a ship.

(2) The direct simulation method indicates that the maneuvering model tests are per-
formed with the CFD method directly (shown in Figure 11b, where the upper part is
the turning maneuver, and lower part the zig-zag maneuver). This method can assess
the maneuverability of a ship under various external conditions and working condi-
tions (calm water, regular and irregular waves, constraint water, wind, propeller rever-
sal, etc.), and observe the response of the target ship to rudder/propeller operations.
However, this method demands longer research periods and stronger computing
power, and it is not the best option for the maneuverability study
at present.

(3) In consideration of the research requirements, efficiency, and rapidity, a hybrid method
that integrates the empirical method and CFD method is constructed, based on the
study experience and solid foundation [85–87]. The hydrodynamic performances of
the ship hull, propeller, and rudder are obtained from the CFD method, and the hull–
propeller–rudder interaction factors are solved by empirical methods. The accuracy of
this method is affected by the ship-type diversity involved in the empirical formula.

  
(a)  (b)  

Figure 11. CFD-based methods. (a) Conventional CFD simulation [87]. (b) Direct CFD simula-
tion [88].

3.5. Remarks

The berthing maneuver modeling methods include data-based, system-based and CFD-
base methods (shown in Table 3). Although the data-based methods are the true reflection
of navigation practice, an enormous amount of time and money are injected into experiment
design and data collection. The system-based methods are very much data-dependent;
however, in the berthing process, the ship hydrodynamic forces, propeller thrust, and
rudder steerage force are strongly non-linear and vulnerable to external disturbances, so
that it is hard to obtain valid data. Moreover, the physical meaning is unclear and the
model structure is unknown in the black box model. The CFD method could intentionally
control and change the study circumstances and the output hydrodynamic forces with
acceptable accuracy. Hence, the CFD-based method could be used to establish the berthing
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maneuvering model. Under certain circumstances, a hybrid method integrates the empirical
method, and the CFD method is introduced to further improve the calculation efficiency.

Table 3. Specifications of various maneuverability prediction methods.

Prediction Methods Advantages Disadvantages

D
at

a-
ba

se
d

Full/model-scale
free-running tests

� Reflection of reality
� Solid and repeatable
� Custom external conditions

� Large basin
� Physical insight loss
� High cost

Captive model tests

� High accuracy
� Solid and repeatable
� Physical insights
� Custom external conditions

� Massive tests
� High sensor precision
� High cost

Empirical methods
� Quick prediction
� High adaptability
� Low cost

� Insufficient for uncovered hull forms
� Physical insight loss
� Reliance on mathematical model type

Sy
st

em
-b

as
ed Grey box

� Full/model-scale model
� Adaptable to various model types
� Low cost

� Reliance on an algorithm and data
accuracy

� Susceptible to noise and external
disturbance

Black box
� Full/model-scale model
� Model-free
� Low cost

C
FD

-b
as

ed

Virtual captive model tests � Full/model-scale model
� Physical insight
� Sufficient accuracy
� Custom external conditions

� Reliance on simulation solver and
algorithm accuracy

� Requirement of high grid density and
computing powerDirect simulation

Integrated method
� Quick prediction
� Sufficient accuracy
� Low cost

� Reliance on existing database and
algorithm accuracy

� High computing power

4. Berthing Maneuver Modeling

In the berthing process, ship motion is determined by the hydrodynamic forces acting
on the ship hull, thrust force induced by the propeller and thruster, steerage force generated
by the rudder, external forces like water-cushion effects, wind, and current, and additional
forces provided by auxiliary devices like the side thruster, tugs, and cables. In conclusion,
the forces could be classified into four hydrodynamic features, within which the most
important factors are as follows:

(1) Low-speed effect, large drifting and yaw rate. Compared with the service speed,
in the berthing process the longitudinal velocity is very low, the lateral speed and
yaw rate are of the same magnitude, the hydrodynamic forces and moments acting
on the ship hull present strong non-linearity, and the ship motion covers the full
drifting conditions.

(2) Four-quadrant propulsion and steerage. Ships in berthing operation need to operate the
main engine frequently to adjust the ship amplitude and maintain the rudder steerage.
Under such circumstances, the propeller and rudder work in four-quadrant conditions,
and their performances are explicitly different from the designed capabilities.

(3) External disturbances. Under berthing maneuver, thrust due to the propeller cannot
counteract the disturbances induced by external environments. To maintain the
steerage of the ship, the external disturbances, including the water-cushion effect
(shallow-water effect, bank effect, ship–ship interaction), wind, and current, should
be considered.
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(4) Auxiliary-device-induced forces. Due to the small velocity and low propeller revolu-
tion, the rudder is affected by the wake, and the crabbing motion and turning motion
of the ship usually count on the assistance of auxiliary devices like side thrusters, tugs,
and anchors.

4.1. Hydrodynamic Forces Acting on the Hull
4.1.1. Ship Speed

In accordance with the ship maneuvering velocity, surface ship motions could be
divided into three categories: low-speed motion, moderate-speed motion, and high-speed
motion [89]. In consideration of ship safety, marine structure safety, and personnel safety,
whether in the wharf design guidelines, or the measured actual operation, the berthing
ships are asked to impact with the dock at a low or extremely low speed and with a parallel
attitude. Namely, the ship berthing maneuver is a typical variable-speed period, ranging
from service speed to low speed, and covering harbor entry to ship docking.

Apart for the speed variation, there exist multiple factors affecting the ship’s maneuver-
ability in the berthing process. For instance, ship dimension and displacement determine
the difficulty of changing/maintaining kinetic states; restricting waters would raise the
squat effect, bank effect, and bank-cushion effect; winds and tidal currents could lead to
drifting and shifting of a ship; and under the assistance of tugs, ship maneuverability could
be greatly improved. To better understand the motion response of ships under different
steerage and internal and external conditions, it is important to perform further studies to
reveal the hydrodynamic mechanism and to characterize the maneuvering indices.

4.1.2. Drifting and Rotation Rate

In the berthing process, ships undergo larger drifting (|β| = [0, 180◦]) and greater
turning angular velocity (|r’| > 0.6); the ship longitudinal velocity component is of the
same dimension as the lateral component velocity and yaw rate, or even far smaller. Thus,
concerns about the hydrodynamic forces move from the friction-dominant longitudinal
force to the pressure-dominant lateral force and yaw moment. Under such states, the
hydrodynamic forces present strong non-linearity, and the traditional linear mathematical
model cannot describe the hydrodynamic forces and moments accurately.

Within the framework of the modular mathematical model, three resolutions are
introduced to express the hydrodynamic forces acting on the ship hull:

(1) The piecewise model [89] involving the small drifting model, moderate drifting model,
and large drifting model. It should be noted that the moderate drifting model is the
interpolation of the small drifting model and the large drifting model.

(2) The unified model [68,90], based on the cross-flow drag theory, to express the ocean
and harbor-area maneuvering.

(3) The table model [91,92], with direct application of the hydrodynamic forces.

The small-drift-angle model [93] is expressed as:⎧⎨⎩
XH = R0 + Xvvv2 + Xvrvr + Xrrr2

YH = Yvv + Yrr + Y|v|v|v|v + Y|v|r|v|r + Y|r|r|r|r
NH = Nvv + Nrr + N|v|v|v|v + Nvvrv2r + Nvrrvr2

, (1)

where XH and YH are the hydrodynamic forces, and NH is the hydrodynamic moment
acting on the ship hull, R0 is the resistance under the straight moving condition, v
the lateral component of ship velocity, r the yaw rate, and Xvv, Yr, Nvvr, et al. the
hydrodynamic derivatives.

Based on cross-flow drag theory, the large-drift-angle model [94] is expressed as:
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⎧⎪⎪⎨⎪⎪⎩
XH = XH(r = 0) + Xvrvr + Xrrr2

YH = YH(r = 0) + Yr|u|r + 1
2 ρdCd

{
Lv|v| − ∫ L/2

−L/2 |v + CrYxr|(v + CrYxr)dx
}

NH = NH(r = 0) + Nr|u|r − 1
2 ρLdCd

{
Lv|v| − ∫ L/2

−L/2 |v + CrN xr|(v + CrN xr)xdx
} , (2)

where XH(r = 0), YH(r = 0), NH(r = 0) represent the hydrodynamic derivatives related to
the lateral speed, u is the longitudinal speed, v the lateral speed, r the yaw rate, Cd the
cross-flow resistance coefficient with drift angle β = 90◦, CrY and CrN the correction factor,
L the ship length, d the ship draft, and x the longitudinal distance from the mid-ship point.

Based on cross-flow drag theory, the unified model [68] is defined as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
XH = 1

2 ρLd
{[

X
′
0(F) + (X

′
0(A) − X

′
0(F))(|β|/π)

]
uU +

(
(m

′
y + X

′
vr)Lvr

)}
YH = 1

2 ρLd
[
Y

′
vv|u|+ (Y

′
r − m

′
x)Lru − (Cd

L )
∫ L/2
−L/2 |v + CrYxr|(v + CrYxr) · dx

]
NH = 1

2 ρL2d
[

N
′
vvu + N

′
r Lr|u| − (Cd

L2 )
∫ L/2
−L/2 |v + CrN xr|(v + CrN xr)x · dx

] , (3)

where X’
0(F) and X’

0(A) are the straight forward and astern resistance coefficients, and mx
and my are the added masses of x and y axis directions, respectively.

And the table model [91] is defined as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
XH = 1

2 ρLd
{[

U2 + (Lr)2
]
CHX(β, αr)− U2R

′
0 cos β

}
YH = 1

2 ρLd
[
U2 + (Lr)2

]
CHY(β, αr)

NH = 1
2 ρL2d

[
U2 + (Lr)2

]
CHN(β, αr)

, (4)

CHX, CHY, and CHN are the hydrodynamic force coefficients represented as functions
of the ship drift angle β and the yaw rate angle αr, β = tan−1(-v/u), αr = tan−1(rL/U). The
hydrodynamic forces XH, YH and NH are non-dimensionalized by 0.5ρLd[U2 + (Lr)2] and
0.5ρL2d[U2 + (Lr)2].

4.2. Propulsion and Steerage Devices

The propeller and rudder are the key elements in ship maneuvering [95]. In the
berthing process, the main engine and rudder are frequently operated to achieve the
turning, braking, and reversing of the ship. Under such operations, the propeller and
rudder work with off-design conditions. With respect to the safety and efficiency concerns
of ship docking/undocking, it is important to fully understand the performances of the
propeller and rudder. The off-design performance refers to the propeller and rudder
characteristics under the following telegraph conditions: ahead ship ahead, ahead ship
astern, astern ship astern, and astern ship ahead. The four-quadrant performance is implied
by the relationship between thrust and inflow angle (KT-βp), or the thrust and propeller
hydrodynamic pitch angle (KT-θp); the diagrams of the four-quadrant propulsion and
steerage are summarized in Figure 12, and the correspondence of ship velocity U and
propeller resolution np is shown in Table 4:
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(a)  (b)  

Figure 12. Four-quadrant steerage of propeller and rudder. (a) Propeller four-quadrant perfor-
mance [67]. (b) Rudder four-quadrant performance [96].

Table 4. Correspondence of U and np to four-quadrant motion and θp.

Motion Quadrant θp U np

ahead ship ahead telegraph I 0–90◦ ahead normal
ahead ship astern telegraph II 90◦–180◦ ahead reverse
astern ship astern telegraph III −180◦–−90◦ astern reverse
astern ship ahead telegraph IV −90◦–0 astern normal

At present, the modeling of the four-quadrant propeller and rudder is mature and
practical, the expression of the four-quadrant propeller mainly relies on the findings of
Van Lammeren [97], and the rudder force is depicted by the work of Yoshimura [98] and
Yasukawa [96]. The four-quadrant propeller performance [97] could be expressed as:⎧⎨⎩

XP = (ρ/2)SPV2
r
[(

1 − tp
)
KT(θP)CT(θP)

]
XP = (ρ/2)SPV2

r CPY(θP)
NP = (ρ/2)SPV2

r CPN(θP)
(5)

where Xp, Yp, Np are the thrust force on the longitudinal, lateral and yaw directions,
respectively, Sp is the area of propeller span, Vr the resultant inflow velocity to the propeller,
KT the thrust coefficient, CT the effect thrust coefficient, θp the propeller pitch angle, and
CPY and CPN are the lateral force and torque moment coefficient, respectively. And the
propeller pitch angle and resultant inflow velocity to the propeller is defined as:⎧⎨⎩ θP = tan−1( VA

0.7πnpDp
)

Vr =
√

V2
A + (0.7πnpDp)

2 , (6)

where VA is the inflow velocity, np the propeller revolution, and Dp the propeller diameter.
The rudder forces [16] on the longitudinal, lateral and yaw directions XR, YR, and NR

are expressed as: ⎧⎪⎪⎨⎪⎪⎩
XR = −(1 − tR)FN sin δ
YR = −(1 + aH)FN cos δ
NR = −(xR + aHxH)FN cos δ
FN = (1/2)ρARU2

R fα sin αR

, (7)

where FN is the rudder normal force, tR the rudder deduction factor, δ the rudder angle,
αH the rudder force increase factor, xR the longitudinal coordinate of rudder position, xH
the longitudinal coordinate of the acting point of the additional lateral force, AR the profile
area of the rudder, UR the resultant inflow velocity to the rudder, fα the rudder lift gradient
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coefficient, and αR the effective inflow angle to the rudder. Under small drifting conditions,
the longitudinal inflow velocity component uR to the rudder is expressed as:

uR = εu(1 − wP)

√√√√η

{
1 + κ(

√
1 +

8KF

π J2
P
− 1)

}2

+ (1 − η), (8)

where JP is the advance ratio. Under large drifting conditions [96], the longitudinal inflow
velocity component to the rudder is expressed as:

uR =

⎧⎪⎨⎪⎩
u∗∗

R u = 0
u∗

R u �= 0, (u∗∗
R − u∗

R)sgn(u) < 0,
u∗∗

R u �= 0, (u∗∗
R − u∗

R)sgn(u) > 0

(9)

⎧⎨⎩
u∗∗

R = 0.7πnpDpCUR

u∗
R = upε

{
ηκ

(
sgn(u)

√
1 + 8KT

π J2
p
− 1

)
+ 1

}
, (10)

where ε is the ratio of wake fraction at propeller and rudder positions, u the ship longitu-
dinal velocity component, ωp the rudder wake fraction ratio, η the propeller-diameter-to-
rudder-span ratio, κ and CUR are experimental constants, and up is the longitudinal inflow
velocity component to the propeller.

The essential issues in the four-quadrant performance are the inflow angle and rela-
tive position of the propeller and rudder. For instance, in straight-ahead conditions, the
propeller is affected by the ship hull wake, and the rudder is affected by the hull wake and
propeller slipstream. In maneuvering conditions, the propeller thrust is impacted by the
hull wake and current, while the rudder steerage force is impacted by the superposition
of hull wake, propeller slipstream, and current. In reverse navigation, the propeller and
rudder are only influenced by the current flow, but the induced forces meet a decrease due
to the relative position of the ship.

In practice, it is very hard for a ship to achieve self-berthing only with the adoption of
an internal combustion engine and bow thrusters. Thus, to improve the thrust efficiency
and ship maneuverability, several new types of propulsion systems are introduced, and
the comparisons of the common propulsion systems are listed in Table 5. With the inves-
tigation [27] of ship masters, pilots, and port managers, the three combined propulsion
systems are considered the most effective methods for self-berthing: an all-electric ship
with azimuth thrusters, a ship with conventional propelling system and jet thrusters, and
a ship with jet propulsion and thrusters. The mathematical descriptions [99–102] of such
propulsion systems differ from the traditional propeller–rudder system, and further studies
are needed to reveal the thrust performances. All things considered, precise expression
of the propeller thrust and the hull–propeller–rudder interaction factors are essential for
accurate maneuverability prediction.

4.3. External Disturbance

In the ship berthing process, the external disturbances mainly refer to the water-
cushion effect (shallow-water effect, bank effect, and ship–ship interaction) (shown in
Figure 13), wind, and current. All these phenomena could be attributed to the pressure
distribution variation upon the ship hull, and finally lead to changes in ship resistance
and attitude. The water-cushion effects occur in confined waters [103], the flow velocity
difference is observed between the bow and stern section, or between the port side and
starboard side, and the asymmetric flow causes pressure difference on a ship and makes
additional resistance and amplitude variation. With regard to the wind, it acts on the
superstructure of the ship, as the larger the windward area, the stronger the wind effect.
And the current normally influences the resultant inflow velocity and angle to the thruster
and rudder.
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Table 5. Overview of propulsion systems.

Propulsion Advantages Disadvantages

Conventional propulsion
� Inexpensive fuel
� Low-cost installation
� Long-lasting

� Heavy
� Valuable space
� Pollutant

Azimuth electric diesel

� Effective design
� Reduced noise and vibration
� Redundancy
� Efficiency
� Maneuverability

� Very Expensive
� Difficult maintenance
� High-quality distributing network
� Significant safety level

Mechanically azimuth thruster
� Maneuverability
� Hardly needs tugs
� No need for rudders

� Gearbox needed
� Expensive
� Less efficient than conventional propulsion

Stern-bow thrusters
� Assistance with ship turning
� Docking without tugs

� Only effective under 3 knots of sailing speed
� Resistance increase

Water-jet propulsion

� Maneuverability
� Improved shallow water

operation
� Reduced noise

� Expensive
� Less efficient than a propeller at low speed
� Risk of intake grill clog.

Water-jet thrusters
� Smaller hull penetration
� More efficient than bow

thrusters at advancing
� In need of powerful pumps

 

 
(a) Influence factors of water-cushion effects. (b) Shallow-water effects on maneuverability. 

Figure 13. Water-cushion effects [104].

4.3.1. Shallow-Water Effect

In the harbor area, the water depth is relatively shallower, and the ship may be affected
by the shallow-water effect. The shallow-water effect brings ship squat and trim and is
affected by the under-keel clearance, ship speed, and seabed topography. It is commonly
accepted that the shallow-water effect emerges when the water-depth-to-draft ratio (h/T)
is smaller than 4; PIANC [105] made an arbitrary distinction among deep (h/T > 3.0 or
UKC > 200%), medium deep (1.5 < h/T < 3.0), shallow (1.2 < h/T < 1.5), and very shallow
water (h/T < 1.2). Moreover, to indicate the gravity influence on fluid motion or the
characteristics of the wave-making resistance in shallow water, the Froude depth number
Frh is induced [106]: Frh < 1 is called a subcritical flow, Frh ≈ 1 is denoted as a critical flow,
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and Frh > 1 is characterized as a supercritical flow. Generally, the shallower the water
depth, the greater the shallow-water effect, namely the added resistance, ship squat, and
trim amplitude increase with the decrease in water depth [104,107–110]. The decrease in
water depth boosts the damping moment on the ship hull and leads to smaller turning
angular velocity and drift angles, and in turn, the relatively small drift angle reduces
the ship’s turning rate. Accordingly, the hull–propeller–rudder interaction factors are
significantly affected [94,111] with the reduction in water depth; the thrust reduction factor
tp [112], effective wake coefficient ωp [113], and rudder force increase factor αH present
an increasing tendency, the acting point of the rudder-induced additional lateral force
(xH) moves towards the bow slightly, and the flow straightening coefficient γR drops by a
specific point and reverses to growth [112], namely, follows the cubic parabola trend. As
for the steering resistance deduction factor tR [112], it is assumed to be constant, like the
deep-water conditions. As a result, in shallow-water maneuvering conditions, ships obtain
better sailing and heading stability, and worse turning ability.

4.3.2. Bank Effect

The ship berthing maneuver is the process of approaching and stopping near the
quay wall, and the ship is influenced by the bank effect under such conditions. The bank
effect arouses the bow cushion, bank suction, and heel, and is affected by ship–bank
distance, ship speed, water depth, propeller action, and bank geometry [114]. Most of these
parameters and their influence on bank effects are not independent of each other. Generally,
no significant bank influence is observed when the bank proximity distance is greater than
three times the ship breadth [115]; within the ship-to-bank distance spectrum of [0.25B, B],
the bank effects are most significant, and the interaction effects increase dramatically as the
lateral distance decreases [116]. Lataire [117] conducted over 10,000 captive model tests
to investigate the influence of bank characteristics on ship–bank interaction: for instance,
the distance of significant influence of a ship to a vertical piercing bank is introduced
as a function of ship breadth and Froude depth number, and the lateral force and yaw
moment induced by the submerged slop bank is expressed as an exponential function of
that induced by the surface piercing bank [118]. In brief, the closer the ship–bank distance,
the faster the ship speed, and the shallower the water depth, the severer the bank effects.
Furthermore, under extreme shallow-water conditions (1.1 < h/T < 1.25), the bank repulsion
effect is observed on the bare hull; however, due to the propeller revolution, the bank
repulsion changes into bank attraction. With regard to the hydrodynamic derivatives, it is
found to make a relatively small difference, compared to shallow-water conditions [119].
Hence, for safe navigation of self-berthing ships, it is necessary to maintain larger rudder
angles than in the conventional operation [120] and to take the helm to direct the bow
towards the closet bank, to compensate for the bank-induced yaw moment [104].

4.3.3. Ship–Ship Interaction

The ship–ship interaction induces ship attraction, repulsion, and heel, and is affected
by ship status (overtaking, head-on, parallel, and moored-passing), ship–ship distance, ship
speed, water depth, and ship dimension and profile, and by secondary influences from the
propeller and rudder [121]. The hydrodynamic interactions vanish when the longitudinal
distance between adjacent ships is larger than twice the ship length [122]. Generally, for
safety berthing concerns, such a close interval is not supposed to be allowed or observed
in the self-berthing process. As for the tug-assistant berthing, with over four times the
scale, tugs would not exert any significant influence on the own-ship either. Consequently,
the ship–ship interaction could be ignored in the studies on ship berthing, hydrodynamic
performance and maneuverability modeling.

4.3.4. Wind and Current

The external disturbances in the berthing period mainly refer to the wind and current
effects. As shown in Figure 14, ship floating is observed along the wind or current-flow
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direction. The wind acts upon the ship’s superstructure, and the wind load influence
on ship maneuverability becomes much more apparent when the ship’s speed is lower
than the wind speed. Wind forces the ship to drift off course and decreases ship stability.
Knowing the wind load characteristics could help avoid collisions from happening and
improve the feasibility under certain conditions. Refs. [123–125] summarize the wind effect
on ship maneuverability as a function of ship speed, wind speed, wind direction, and
windward area; such a functional relation could be utilized to estimate the wind damping
force. Moreover, the wind has a significant effect on ship speed loss under the scope of
head-to-beam wind direction, and, compared with this, ship stability gradually degrades
within the range from beam wind to quartering wind [126–128]. Furthermore, with the
increase in wind velocity, the rudder becomes less effective [129]. The wind effect on the
ship hull could be expressed as:⎧⎨⎩

Xwind = 0.5ρAoU2
r Cwx(αr)

Ywind = 0.5ρAlU2
r Cwy(αr)

Nwind = 0.5ρAl LoaU2
r Cwn(αr)

, (11)

where Ao is the orthographic projection area above the waterline, Al the lateral projection
area above the waterline, Ur the relative wind speed, Cwx, and Cwy are the wind pressure
force coefficients on the x and y axes, Cwn is the wind pressure moment coefficient around
the z axis, and αr is the relative wind angle.

  
(A)  (B)  

Figure 14. External disturbances on ship maneuverability. (A) Wind effect [92]. (B) Current ef-
fect [130].

Affected by the wind, wave, tide, seabed topography, and obstacles, currents behave
non-uniformly in both the horizontal and vertical direction. However, studies such as [131]
indicated that it is acceptable to concern the horizontal current flow, due to the uncertainty
of which it is hard to directly express the complex and random current flow; hence, present
works are performed on the uniform and steady current. The current flow mainly affects
the flow around the ship, and it is essential to contain the current effect for small ships,
as its impact on speed over the ground outweighs the wind effect [132]. The modeling
of steady current is relatively simple: the ship speed U over ground is resolved into the
current velocity Uc and the ship speed U0 relative to the current, and the hydrodynamic
characteristics and the interactions among the hull, propeller, and propeller are solved
based on the ship’s speed relative to the current. The ship’s longitudinal and lateral speed
relative to the current are expressed as:{

ur = u − uc = u − Uc cos(ψc − ψ)
vr = v − vc = v − Uc sin(ψc − ψ)

, (12)

where, ur and vr are the ship’s longitudinal and lateral speed relative to the current, u and v
are the ship’s longitudinal and lateral speed relative to the ground, uc and vc are the current
speed, ψ is the heading angle, and ψc is the current angle.
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4.4. Auxiliary Devices

The berthing process requires the ship to maintain a low or extremely low speed, and
under such working conditions a larger rudder steerage is utilized to rectify the heading
deviation and keep the course; otherwise, the ship would lose its rudder effects. Resolution
is carried out with the introduction of auxiliary devices such as side thrusters, tugs, and
anchors. The diagram is shown in Figure 15.

 

  
(a)  (b)  (c)  

Figure 15. Auxiliary devices. (a) Side thruster [133]. (b) Pushing of tug [134]. (c) Towing of tug [135].

4.4.1. Side Thruster

The side thruster, especially the bow thruster, is used to provide lateral force and
yaw moment for slewing motions. Normally, for best-turning effects, bow thrusters are
assembled as far forward as possible or under the bottom of the keel. Studies [136,137]
indicated that a ship’s forward speed has a great influence on the effectiveness of the bow
thruster, and that the generated force decreases remarkably with the increase in ship speed.
As for the lateral force induced by the bow thruster, the drifting effect of the ship hull
should be considered when the drift angle is over 10◦, while the yaw moment seems to be
immune to the ship’s drifting.

4.4.2. Tug Assistance

In the berthing process, whether it is for ships with small displacement, or ships
with larger dimensions, the essential indices for ship berthing are the same, namely the
approaching angle, lateral speed, and wall distance. Tugs are utilized to release the berthing
risk and improve efficiency. Based on the survey of 15 ports in China, 120 m of the ship
length is normally regarded as a boundary for tug usage [138], and it is acceptable for ships
with shorter ship lengths to conduct self-berthing. As for ships with greater dimensions,
it is mandatory to change direction, turn around, pull up, and parallel berth with the
assistance of tugboats [139]. However, when it comes to liquid cargo ships, engineering
ships, ships with damage, extreme weather, and other conditions, ships are obliged to berth
with tugs.

Tugs assist the target ship in a direct (pushing) or indirect (towing) way, to lead the
ship to the quay/berthing place, and maintain proper speed and attitude. There are two
methods expressing the tug direct tug pushing in berthing maneuver modeling: one treats
the tug-induced force as an azimuth external force, and the motion and specifications
of the tug itself are eliminated. The other takes the pusher–barge system for reference
and regards the pusher and the barge as integral. Yang [140,141] simplified the tug as a
force and obtained acceptable accuracy on berthing operation mathematical modeling and
harbor area navigation simulations. Series studies [134,142–144] were carried out on an
inland pusher–barge-system maneuvering modeling, which analyzed the effects of barge
ship formation, the profile, numbers, and pusher locations on the system, discussed the
resistance variation and thrust efficiency, and established the mathematical model to predict
the turning and course keeping ability of the system. In conclusion, the modeling method
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of the pusher–barge system is similar to the individual ship, and this method could be
expanded to the modeling study on tug-pushing modeling in the berthing process.

The modeling of indirect towing via cables is complicated. The tug-towed sys-
tem involves three closely related parts, the tug, the towed ship, and the cable line,
which are connected to each other. From the point of view of mathematical modeling,
researchers [126,135,145–148] conducted massive work on the force characteristics of the
system and the individuals in linear and non-linear conditions, indicating that the focuses
of the system are the cable length, towing point locations, cable angles, and cable status.
Considering that the slack towing line evokes impulse forces, which adds risk to the towing
operation, it is suggested that the cables are kept under strain.

The anchor functions through the cables, and the resolution is similar to the tug-towed
system.

4.5. Remarks

As the ship conducts self-berthing or berthing with tug assistance, the force char-
acteristics are completely different from the traditional maneuvers. The hydrodynamic
performance, four-quadrant propulsion and steerage devices, external disturbances, and
auxiliary devices, are the four main aspects. The hydrodynamic performance indicates the
hydrodynamic forces acting on the hull under low-speed, high-drifting and high-yaw-rate
conditions, and the cross-flow drag is the main concern. The four-quadrant propulsion
and steerage performances focus on the propeller thrust and rudder steerage force under
arbitrary resultant inflow angles. Ships in the berthing process are sensitive to external
disturbances, especially the shallow-water and bank effects caused by the water-cushion
effect, wind pressure provoked by the wind, and flow speed variation induced by the tidal
current. Hydrodynamic forces, four-quadrant propulsion and steerage devices are essential
to the berthing maneuver modeling; the external disturbances and auxiliary devices are
supplementary to the model’s scope and accuracy.

5. Conclusions

An autonomous ship is encouraged by the increasing shipping demand and tech-
nology, and automatic berthing control is at the top level of ship autonomy, due to the
complicated and dangerous low-speed operation. A precise berthing maneuver model is
the foundation for the automatic control system, providing a reference for the utilization of
auxiliary devices and offering the responses of the ship’s motion within the berthing aid
system to the steerage operation and external disturbances.

In the present work, a bibliometric study on automatic ship berthing is performed to
search for the important issues, and six specific study fields are obtained: risk assessment,
perception utilization, motion control, maneuverability modeling, scheduling optimization,
and emission supervision. With regard to automatic berthing, risk assessment is the
guarantee, perception utilization is the premise, motion control is the key, and maneuver
modeling is the foundation.

The modular MMG mathematical model is found to better describe ship motion and
responses to internal operation and external disturbances. Both conventional MMG and
berthing maneuver MMG models are adopted in the automatic berthing control studies. To
make clear the similarities and differences, the following difficult questions are discussed:

(1) What are the similarities and differences between the conventional MMG maneuver-
ing model and the automatic berthing maneuvering model?

(2) How can an accurate automatic berthing maneuvering model be established?

Uniform mathematical modeling methods (data-based, system-based, and CFD-based
methods) could be used to establish the conventional MMG model and the berthing
maneuver MMG model. Moreover, four specified characteristics of berthing maneuver are
concluded to exist: low-speed-, high-drifting- and high-yaw-rate-induced hydrodynamic
forces, the arbitrary resultant inflow angle causing four-quadrant thrust and steerage
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performances, external disturbances provoked by the water-cushion effects, wind, and tidal
currents, and the additional forces provided by auxiliary devices.

With the aim of practical use, future work is put on the agenda for establishing the
mathematical model expressing the berthing maneuver and comparing and validating
the applicability and accuracy of the conventional MMG model and berthing maneuver
MMG model.
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Abstract: In recent years, as intelligent ship-navigation technology has advanced, the challenge of
accurately modeling and predicting the dynamic environment and motion status of ships has emerged
as a prominent area of research. In response to the diverse time scales required for the prediction
of ship motion, various methods for modeling ship navigation environments, ship motion, and
ship traffic flow have been explored and analyzed. Additionally, these motion-prediction methods
are applied for motion control, collision-avoidance planning, and route optimization. Key issues
are summarized regarding ship-motion prediction, including online modeling of motion models,
real ship validation, and consistency in modeling, optimization, and control. Future technology
trends are predicted in mechanism-data fusion modeling, large-scale model, multi-objective motion
prediction, etc.

Keywords: intelligent ships; motion prediction; navigation environment modeling; route optimization;
motion control

1. Introduction

As the size and number of ships increase, the maritime navigation environment and
scenarios become increasingly complex, which poses new challenges to maritime safety.
Empowered by the integration of cutting-edge technologies such as artificial intelligence
(AI), machine learning, and big data, the modern ship is poised for a transformative leap in
operational efficiency and decision-making capabilities [1,2]. Autonomous ships represent
the pinnacle of maritime automation, operating with minimal or no human intervention.
The coexistence and mutual influence of intelligent ships and traditional ships are expected
to persist over the long term. Abnormal ship behaviors will increase the risks of collisions,
groundings, and reef encounters. Predicting ship behavior through the prediction of the
ship-navigation trajectory will effectively mitigate these navigation risks [3–6]. According
to statistics from the International Maritime Organization (IMO), approximately 80–85%
of accidents that occurred in the past two decades were attributed to human faults [7,8].
By implementing ship automation or assisted navigation systems, the probability of ship
accidents can be effectively reduced. Accurate prediction of ship motion not only enhances
the intelligence of maritime navigation but also decreases risks during navigation and
energy consumption, thereby reducing pollution and greenhouse gas emissions during
voyages [9–11].

The prediction of ship motion represents the temporal aspect of a ship Guidance,
Navigation, and Control (GNC) system [12]. Ship motion prediction can be divided into
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different time scales during specific applications in the maritime domain. The long-term
prediction is used for traffic-flow management or long-voyage trajectory prediction, short-
term prediction is used for collision avoidance or path planning, and extreme short-term
prediction is used for ship motion control. Ship motion is influenced by both the maritime
environment and ship maneuvering. ship-motion prediction models at different time scales
can be established based on either mechanics or data. These models provide the foundation
for collision-avoidance path planning, path tracking control, traffic flow simulation, and
the optimization of long-distance ship routes. They are integral to the realization of
intelligent navigation. Currently, various researchers are conducting studies on the short-
term prediction of ship motion, collision-avoidance trajectory prediction and planning, and
long-term trajectory prediction [13–15].

To study motion prediction systematically for intelligent navigation, we provide an
overview and analysis of the methods and applications of motion prediction across different
time scales. In previous studies [16–18], motion prediction is taken only as a part of route
planning, motion control, or traffic simulation individually. It is essential to consider the
overall motion-prediction models, algorithms, and systems for different time scales. Many
people are trying to solve this problem in terms of different aspects, and many models
and applications have been presented for the motion prediction and control [19,20]. Since
different types of the weather conditions will affect the ship’s navigating state and safety,
the influence of the environment must be considered, and the high-precision weather
forecast can provide effective data support [21–23]. Meanwhile, with the development of
new technologies, data collection with high-precision sensors, the state of ship motion, and
environmental condition can be measured with high frequency, which will promote motion
prediction [24–27]. More and more new technologies will be used in the shipping industry,
and it is important to analyze the new direction for trends in technological development.

This review investigates the landscape of ship-motion prediction algorithms and
their application in intelligent navigation. This paper is organized as follows: Section 2
systematically analyzes existing algorithms and research advancements through a thor-
ough literature review. Section 3 delves into the environmental factors influencing motion
prediction, exploring diverse methods for their modeling and forecasting. Section 4 intro-
duces a range of motion models and prediction algorithms suitable for various time scales.
Section 5 demonstrates the practical potential of motion prediction through representative
applications. In Section 6, we critically analyze key challenges and emerging research
trends identified in the reviewed literature, and Section 7 provides insights for future
development. Section 8 concludes this paper.

2. Research Progress on Motion Prediction Based on the Literature Review

In order to analyze the current status and trends in research on ship-motion prediction,
this paper conducts a search in the Web of Science (WOS) for literature on methods for
ship-motion prediction from the past decade. Keywords from the relevant literature are
analyzed using visualization tools to identify research hotpots and trends. Figure 1 depicts
a keyword cluster map for the prediction of ship motion. The upper part of the figure
illustrates keyword hotspots, while the lower part displays the evolution of research topics
over time. Through this literature review, it is evident that earlier research tended to
utilize standard ship models, employing methods such as Computational Fluid Dynamics
(CFD) or empirical formulas. These methods use data from towing tank experiments with
scaled ship models to describe mathematical models of ship motion. Mathematical models
are used to characterize the nonlinear motion of ships, taking ship maneuverability and
hydrodynamics into account. Research on ship maneuverability, navigation resistance, and
hydrodynamics is often combined with the ship’s own control and seaworthiness. Over
time, as computational resources advance, and with the accumulation of experimental
data and developments in research methods, recent studies have increasingly incorporated
ship Automatic Identification System (AIS) data. Artificial intelligence, machine learning,
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and deep learning techniques are utilized to predict ship motion and trajectories, which
contribute to enhancing ship navigation safety and collision avoidance applications.

Figure 1. Knowledge graph for the prediction of ship motion.

As shown in Figure 2, the ship’s navigation and motion control system represent a com-
plex framework. This includes the ship-motion model and control algorithms. Moreover, it
requires the utilization of perception, positioning, and observation systems to determine
the ship’s real position relative to other ships. Based on the navigational environment of the
ship’s destination port and sailing area, a safe and rational sailing route is charted. Then,
this route, in turn, integrates with the ship’s power control system for the ship-motion
control by a seafarer or an autonomous system [28].
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Figure 2. Intelligent ship navigation environment perception, motion models, and control systems.

Figure 3 depicts the process of ship-motion prediction. Before the ship embarks on a
voyage, route planners use weather forecasts for the ship’s navigational area, environmental
constraints such as navigational facilities within the waterways, and the ship state model to
establish the ship’s navigation trajectory. During the voyage, the ship receives information
from other ships through AIS, including their navigation trajectories and departure ports.
Ship operators, relying on their navigation experience or traffic-flow-prediction algorithms,
predict the ship’s long-distance voyage, taking into account the ship’s current status, and
then plan a new route if necessary.

In situations where navigation trajectories are insufficient or when encountering
complex traffic scenarios, ship operators traditionally communicate through Very High-
Frequency (VHF) communication to determine navigation priorities and ship routes during
these encounters. For unmanned autonomous ships, however, obtaining navigation pri-
orities and predefined routes directly through VHF is challenging. Instead, these ships
rely on onboard perception systems to sense the navigation environment. They consider
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navigation collision-avoidance rules and the predicted trajectories of other ships to deter-
mine the optimal route and ensure a safe and reasonable collision-avoidance process. Thus,
for unmanned autonomous ships, short-term predictions (approximately 10–30 s) become
especially critical.

Navigation
environment
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constraint

Ship motion
modeling

Extreme-short-
term motion
prediction

Route track and
control

Ship encounter

Ship traffic
flow

Trajectory
prediction

Route planning

Long-term trajectory
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Extreme-short-term trajectory
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AIS Radar Videos

Figure 3. Flowchart showing the process of ship-motion prediction.

During the motion control (trajectory tracking and path following) for the defined
route, an unmanned ship needs to predict the ship’s motion in an extremely short time,
obtain good motion control performance, and guarantee navigation safety, especially for
the model-based control methods, such as model predictive control (MPC) and optimal
control [29,30]. This motion prediction is defined as extremely short-term prediction
(approximately 0–10 s). Extremely short-term prediction should take into account the
ship’s motion states and environmental disturbances with sensors or observers and employ
suitable control algorithms to calculate the steering commands with time delays.

3. Ship-Navigation Environment Modeling and Prediction Methods

3.1. Characterizing Navigational Environmental Factors

The ship-navigation environment typically refers to the hydrological, meteorological,
topographical, and traffic conditions around ships’ navigational waters. For intelligent
ships, it is essential to obtain reliable information about the navigational environment
that can be exported to the navigation control system. This information can be acquired
through the use of AIS, radar, cameras, sonar, depthometer, pitometer, anemometer, and
other sensors and analyzed with the data processing and fusion [31]. Environmental factors
affecting ship navigation include both static and dynamic aspects. Specifically, the static
factors primarily refer to navigational water depth, shorelines, islands, reefs, and obstacles
like sunken ships, which are typically marked on paper or electronic charts and are used to
plan routes before a voyage begins. During the voyage, the ship continuously updates its
position, calculates distances from static obstacles, and ensures that it avoids accidents like
running aground or colliding with obstacles. The dynamic factors mainly involve wind,
waves, currents, visibility, traffic flows, and ship-behavior characteristics in the navigation
area. Dynamic factors are subject to change over time. They can be predicted dynamically
using ocean and weather forecasts, traffic flow predictions, ship behavior detection, or
real-time data collection from onboard sensors. These predictions are commonly used for
dynamic route optimization, collision avoidance, and navigation control.

3.2. Static Environmental Factors

Electronic charts (nautical charts) provide precise information about static obstacles
and can overlay dynamic data from sensors such as the Global Position System (GPS), radar,
and AIS onto the electronic chart. Due to the presence of measurement errors in radar
data, existing electronic charts and radar systems can introduce radar projection distortions
when radar data are directly overlaid on electronic charts. To address this issue, Naus et al.
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associated and matched electronic chart information with radar data, projecting radar echo
vector data into the coordinate system of the electronic chart [32]. This eliminates radar
measurement errors, enhances the accuracy of obstacle identification by radar, and allows
ship operators to better monitor the navigation situation.

During autonomous ship navigation, ships heavily rely on real-time data from sensors
and electronic charts. While electronic charts contain these data, there are relatively few
open-source interfaces for research and development. Blindheim et al. use Python and
Electronic Navigation Chart (ENC), an open-source electronic chart, to create interfaces
displaying water depths, islands, reefs, and shallows within a ship’s navigational area,
facilitating ship-route planning and optimization [33]. Zhang et al. employed machine
learning algorithms to analyze ship AIS data and quantified the risk of ship grounding
using proximity prediction and depth information [34]. This approach is validated on a
Ro-Pax ship in the Gulf of Finland, helping to prevent ship grounding and improving ship
navigation safety.

To study the impact of offshore wind farms on ship-navigation risks, Xue et al. applied
adaptive brainstorming with variable disturbances to collision-avoidance decisions in
encounters near wind farms [35]. This approach considers the safety of nearby ships
when following traditional collision-avoidance rules, and its effectiveness and reliability
have been verified through theoretical calculations and simulations for different encounter
scenarios near wind farms.

Addressing the issue of limited environmental perception for ships under restricted
sensing conditions, Shi proposes a method for modeling the navigation area map of un-
manned ships based on high-resolution satellite imagery [36]. This method employed
high-resolution maps for land-sea segmentation, obstacle detail enhancement, and mor-
phological transformation through image processing. It identifies obstacle areas and edge
points, constructing a navigation map for unmanned ships to aid in route planning. This
approach demonstrated effective recognition of static obstacles in unknown areas but
requires frequent updates of satellite imagery.

Current research has made significant progress in studying natural static obstacles
that ships encounter during navigation and those that may affect normal ship operations.
Various algorithms can reconsider the impact of obstacles and generate reasonable routes.
However, challenges arise when dealing with dynamic obstacles that change over time,
such as sunken ships and fishing nets. Some obstacles can be updated in electronic charts,
but others, like fishing nets, change dynamically with the operating areas of fishing ships.
During ship navigation, mariners often need to combine electronic charts with visual
observations to adaptively plan routes and avoid challenging situations that may affect
normal ship operations.

Let us take an example to illustrate the above issue. Our team conducted a task of
autonomous navigation journey in the East China Sea from July 2023 to August 2023. Since
all the functions of the ship are in the testing stage, some experienced captains were on
the ship during the test, and in emergency situations, the crew has a higher prioritization
than the algorithms and the auto navigation model. In Figure 4, the red route represents
the static route planned for a ship traveling from Zhoushan to Shanwei Port, taking into
account the ship draft and economical cruising speed. The black trajectory represents the
actual navigation route during the voyage, which encountered newly established wind
farms, navigation announcements from the maritime management groups, a cluster of
operational fishing vessels, and dynamic fishing nets during the fishing season. In response
to these real-time conditions, the ship crew adjusted the navigation route based on the
ship’s current status.
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Figure 4. Ship’s static planned route and actual navigation route.

3.3. Dynamic Environmental Factors

Dynamic navigational environmental factors primarily refer to disturbances within
the navigational area, such as wind, waves, and currents. Wind and current data can
be obtained directly through long-term observations and onboard sensors. However,
the accurate modeling and prediction of sea waves is challenging due to their stochastic
and complex nature. The navigational environment not only affects the safe operation
of ships but also introduces uncertainty in fuel consumption, impacting route planning
and optimization for long-distance ship voyages. Vettor et al. analyze different weather
forecast models and compare them with the navigation routes of a container ship traveling
in the North Atlantic [37]. The results show that the fuel consumption error caused by
environmental model variations is approximately 10%.

In high-sea wind conditions, the interaction between waves and currents can signif-
icantly impact ship navigation. Chen et al. use third-generation wave models to study
the effects of waves and currents on ship navigation [38]. Zwolan et al. incorporate wave
models into ship navigation simulators to simulate ships’ attitude and motion in waves,
providing valuable references for crew training and similar purposes [39]. Bingham et al.
used Gazebo simulation in ROS2 (Robot Operating System 2nd) to model ship navigation in
complex sea conditions, offering mathematical models for different wind, wave, and current
conditions to create a simulation test environment for marine robotics [40]. Daisuke et al.,
through the study of AIS data from ship navigation in areas with currents, observed signif-
icant deviations between the ship heading and bow direction [41], effectively predicting
currents within the ship’s navigational area. Yu employed wavelet transformation to de-
compose time series related to ocean wave factors and used the transformation results
for training and predicting significant wave heights using residual neural networks [42].
The results indicate that wavelet transformation can improve the predictability of signifi-
cant wave heights. Remya et al. used genetic algorithms to predict tidal currents, which
proved to be more effective than harmonic analysis and fluid-dynamics-based methods [43].
Kavousi-Fard et al. decomposed current data into harmonic components and used these
components in different Support Vector Regression (SVR) models for current prediction [44].
They tested this approach using data from a bay and found that it could achieve satisfactory
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prediction accuracy. This method, based on wavelet transformation and SVR, demonstrates
effective current prediction.

Chen et al. established a numerical simulation model for different weather conditions
combined with the Manoeuvering Modeling Group (MMG) model of the ship by using a
weather model for the sea area in Japan, and they studied the impact of different models
on the ship’s response to weather conditions [45]. This research is of great significance
for the environmental perception and modeling of ship. Additionally, machine learning
and numerical simulation methods have also been used for the modeling and numerical
prediction of ocean wind, waves, and currents [46–49]. Deep neural network models can
automatically learn and extract feature relationships in complex data. Xie extracted the
spatiotemporal coupled features of ocean currents, captured correlations and dependencies
between adjacent sea areas using the Spatial Channel Attention Module (SCAM), and used
the Gated Recurrent Unit (GRU) to model the temporal relationships of ocean currents [50].
They developed a deep network model called Spatiotemporal Coupled Attention Network
(STCANet), which outperforms traditional models such as History Average (HA) and
Autoregressive Integrated Moving Average (ARIMA). Traditional ocean current prediction
methods have difficulty considering both the temporal and spatial effects of the prediction
of ocean current. Thongniran et al. designed a prediction method that combines spatial
and temporal features [51]. This method uses Convolutional Neural Networks (CNNs) for
spatial prediction of ocean currents and Gated Recurrent Units (GRUs) for modeling
the temporal features of ocean currents. It is compared with traditional models like
ARIMA and K-nearest neighbors (KNN) using data from the Gulf of Thailand. The results
show that the method combining spatial and temporal features had better prediction
accuracy. To study the predictive performance of different machine learning algorithms
on oceanographic parameters, Balogun [52] combined ARIMA, Support Vector Regression
(SVR), and Long short-term Memory (LSTM) neural network models to model and predict
different oceanographic elements. They used data from the Malaysian Peninsula region
for validation. The results indicated that different prediction models had varying levels
of accuracy for different elements. The accurate prediction of specific ocean parameters
requires a reasonable choice of modeling methods and parameters. For the weather factors,
Figure 5 shows the ocean weather conditions, including the bathymetry, current and
significant sea height for the southeast coast of China, the different weather aspects affect
the ship navigation from the motion, fuel consumption, and even safety.

Figure 5. Metocean data for the southeast China Sea.

Different prediction algorithms used in the dynamic environmental factors are com-
pared in Table 1.

355



J. Mar. Sci. Eng. 2024, 12, 107

Table 1. Summarizing the prediction algorithms used in the dynamic environmental factors.

Algorithms Advantages Disadvantages

LSTM [53] A model that inherits characteristics from RNNs
while incorporating gating mechanisms can effec-
tively learn and retain long-term dependencies,
addressing the limitation of traditional RNNs in
capturing lengthy sequences. These mechanisms
assist in gradient preservation, mitigating the is-
sue of vanishing gradients during backpropaga-
tion, which results from a stepwise reduction in
gradient magnitude.

The gradient issues of traditional RNNs have been
partially addressed in LSTM and its variants, but
challenges persist. While LSTM is capable of han-
dling sequences on the order of 100 time steps,
dealing with sequences of 1000 time steps or more
remains a formidable task. Each LSTM cell inher-
ently involves four fully connected layers (Multi-
Layer Perceptrons or MLP). When LSTMs cover
a substantial time span and are deep in terms
of network architecture, the computational load
becomes substantial, resulting in longer process-
ing times.

GRU [54] Thanks to the gating mechanisms that allow for se-
lective information retention and forgetting, mod-
els like LSTM excel in capturing long-term depen-
dencies compared to traditional RNNs. They typ-
ically require less training time than other types
of recurrent neural networks. With fewer parame-
ters than LSTM, they offer quicker training speeds
and are less prone to overfitting.

When modeling complex sequential dependencies,
it may not perform as well as LSTM. Explaining the
gating mechanisms and information flow within
the network can be more challenging compared to
traditional RNNs. Some hyperparameter tuning
may be required to achieve optimal performance.
When dealing with extremely long sequences, it
may encounter issues similar to other types of re-
current neural networks, such as the problem of
vanishing gradients.

ARIMA [55] ARIMA treats the data sequence generated by
the predictive subject over time as a stochastic se-
quence. It utilizes a specific mathematical model
to provide an approximation of this sequence.
Once the model is identified, it facilitates the pre-
diction of future values based on past and present
values within the time series. This approach is
fundamental in time series analysis and forecast-
ing.

The ARIMA model indeed requires data to exhibit
stationarity. As such, data need to undergo dif-
ferencing to achieve stationarity before modeling.
In essence, ARIMA models primarily capture lin-
ear data patterns and may not perform well in
predicting non-linear data. Oceanic factors often
encompass non-linear elements, which can pose
challenges for ARIMA models in effectively mod-
eling and forecasting such data.

STCANet
[50,56]

STCANet, through the integration of spatial and
temporal attention mechanisms, excels in captur-
ing the interactions between variables such as
wind, waves, currents, and tides. This results
in higher predictive accuracy compared to tradi-
tional models. Additionally, STCANet demon-
strates remarkable performance in modeling de-
pendencies in the context of ocean prediction,
which often relies on diverse data sources. It ef-
fectively handles the integration of multi-modal
data, a crucial aspect of ocean forecasting.

Ocean prediction tasks typically involve handling
large-scale spatiotemporal data, which may re-
quire substantial computational resources. While
STCAN can offer insights into which features
are important for prediction through its atten-
tion mechanisms, the inherent complexity of deep
learning models may make it challenging to fully
explain the model’s decision-making process.

3.4. Ship Navigation Behavior, Traffic Flow Modeling and Prediction

Maritime traffic flow is a manifestation of ship behaviors, and it contains a wealth of
information. It is the result of interactions among various elements involved in maritime
traffic according to certain rules. Modeling and analyzing maritime traffic flow can guide
ship-navigation decisions and control. The modeling of traffic flow is primarily based
on analyzing the characteristics and distribution patterns of historical data. It is then
combined with simulation methods to replicate traffic flow. Key aspects of modeling and
simulation involve data collection, processing, and traffic-flow-generation methods [57].
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Maritime traffic flow, as the macroscopic representation of ship behavior, characterizes the
navigational situation of ships in specific areas. Research on modeling maritime traffic
flow and ship behavior is beneficial for safety supervision and traffic flow organization
and planning.

AIS data are commonly used as a data source for maritime traffic flow. They are
utilized for extracting waterway traffic elements, clustering ship behaviors, and predicting
ship behaviors. AIS data have various applications in maritime traffic services and collision
risk assessments [58]. With the continuous accumulation of AIS data and data mining, there
are still many unexplored possibilities [59]. AIS data contain crucial information about
the ship-navigation status. In busy waterways, AIS data can be incomplete or missing.
To improve the accurate monitoring of ship speeds in such areas, Zhao et al. used UAV
(Unmanned Aerial Vehicle) onboard video for ship speed extraction [60]. They employed
a simple linear tracking method with depth correlation metrics to extract ship speeds.
Furthermore, satellite-based AIS stations enable the monitoring of global ship data. Yan
et al. combined support vector machines and random forest methods to classify different
types of ships and identify abnormal behaviors in satellite-based AIS data [61]. Considering
ship behavior features, the ship identification accuracy reached as high as 92.7%.

Due to the presence of anomalies and errors in ship AIS data, it cannot be directly
used for modeling and predicting traffic flows. Guo et al. collect knowledge about ship
movements from the raw AIS data [62]. They use interpolation to estimate potential errors
in the original trajectories. An improved K-means clustering method is then applied to
assign weights to datapoint errors. In another study, the authors analyzed parameters
affecting frequencies of ship encounters [63]. They introduced a method for predicting
traffic-flow behaviors and ship-encounter frequencies with a time constraint, which finds
applications in areas like offshore wind farms and fisheries. Liu et al. proposed a method
that incorporates an attention mechanism into GRU and optimizes the GRU parameters
using intelligent optimization algorithms for the detection of ship anomalies [6]. This ap-
proach trains on ship AIS trajectory data using the TensorFlow framework and reduces the
time required for ship anomaly identification. Han et al. introduced a density-based spatial
clustering method called DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) [64]. They adjusted clustering-algorithm parameters using a data-driven approach
to model ship behavior based on ship AIS trajectory points, identifying abnormal ship
behaviors. The effectiveness of behavior extraction is validated using AIS data from the
Gulf of Mexico and the Great Lakes.

Zhang et al. use an adaptive particle swarm optimization algorithm to adjust the
structure parameters of a BP neural network [65]. They developed an improved Particle
Swarm Optimization-Back Propagation (PSO-BP) prediction model to predict the total
ship traffic flow in a harbor area, which was validated in the Port of Los Angeles and
demonstrated good results. To enhance the accuracy of prediction of the ship’s traffic
flow, Ye et al. leveraged the advantages of the encoder-decoder structure to capture long-
term dependencies in time series data [66], this improvement aims to address the issue of
cumulative errors that traditional iterative methods often face. They proposed a multi-step
prediction method for ships’ traffic flow based on an LSTM encoder, which involves the
statistical analysis of ships’ traffic flow and is validated to be effective. Shi et al. based their
modeling of ships’ abnormal behavior on trajectory data, approaching it from a spatial
information perspective [3]. They modeled the rules of collective ship behavior and use
a graph-based approach to determine abnormal ship behavior from spatial information.
Then, they apply the Isolation Random Forest algorithm to detect abnormal ship behaviors.

For AIS data processing, the data cannot be used directly, as shown in Figure 6, and we
have taken an example of using different algorithms include Bi-directional Long short-term
Memory Recurrent Neural Networks (BLSTM-RNNs), Artificial Neural Network (ANN)
and Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) to restore the lost data;
the BLSTM-RNNs has a good result for the AIS data restoration for the curve and straight
trajectories in Hubei Wuhan, where the RMSE is near about 25 m, which is acceptable for
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the ship trajectories in inland area. Our analysis utilizes approximately one month of AIS
data from August 2022, focused on the Zhoushan region of Zhejiang province. This area
exhibits a highly complex traffic flow, encompassing numerous ferry routes between stops,
cargo ships from diverse ports, and anchorage activities. To analyze these historical AIS
trajectories, we employed a distance-based clustering method. This approach successfully
identified nine distinct groups, with each subgroup characterized by similar trajectory
patterns. Moving forward, we intend to leverage these insights to model individual ship-
navigation behavior, enabling future research endeavors in trajectory prediction, behavioral
discrimination, anomaly detection, and data mining.

Figure 6. Ship trajectory restoration using different algorithms and trajectories clustering using a
distance-based algorithm.

Navigation-environment modeling is relevant to ship route planning and optimiza-
tion, ship-collision-avoidance route design, and the best timing for switching the collision-
avoidance routes in real-time navigation control. The comprehensive modeling of the navi-
gation environment takes into account factors affecting ship navigation control, trajectory
prediction, and route optimization across different time dimensions. The ship-navigation
environment modeling and prediction methods are summarized in Table 2.

Table 2. Methods for characterizing the navigation environment.

Type
Data
Source Impact Mode Scope of Application Perception Modeling Methods

Static
factors ENC

Navigational static objects,
including water depth in the
navigation area, islands and
reefs, bridges, shipwrecks,
navigation rules, and non-
navigable areas

Applied to global optimiza-
tion, local collision avoid-
ance, and navigation control.

Combine ship GNSS, electronic charts,
and perception sensors to sense the
static factors in the navigation area,
and use methods like artificial potential
fields, image recognition, etc., in combi-
nation with electronic charts to model
them [67,68].

Dynamic
factors

Weather
forecast-
ing and
prediction

Weather factors affecting
ship navigation, including
wind, waves, and currents.

Meteorological forecasts are
used for ship route opti-
mization, while short-term,
high-precision weather fore-
casts are applied to ship mo-
tion control.

Incorporate weather forecasts and on-
board sensors for prediction, utilizing
LSTM, CNN, ARMA, hydrodynamic
simulation, and more [43,44,69].

Traffic
flow

Ship radar,
AIS, vessel
traffic ser-
vices (VTS)
system.

Applied to global optimiza-
tion, local collision avoid-
ance, and navigation control.

At the level of maritime nav-
igation organization, mod-
eling traffic flows will im-
pact ships

Combining historical data with algo-
rithms such as random number genera-
tion, probability space modeling, spatial
clustering, CNN, DBSCAN, and LSTM
to model traffic flow. In the short term,
onboard sensors predict and anticipate
ship trajectories, which serve as inputs
for navigation decisions [41,45,63,64,70].
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4. Ship Motion Modeling and Prediction Methods

4.1. Ship Motion Model

The motion of a ship in the water involves six degrees of freedom, with a typical
consideration of sway, heave, and yaw as the primary three degrees of freedom. The
propulsion methods for ships mainly involve propellers and rudders. The number of
independent control variables is usually less than the number of motion degrees of freedom,
resulting in underactuated characteristics in ship motion. Additionally, since ships are
affected by external factors like wind, waves, and currents during navigation, predicting
unmanned ship motion is a complex task. The ship coordinate system and motion models
are illustrated in Figure 7.

6 Degrees of freedom model (6DOF)

Waves Wind

Current

WavesWW

Disturbances(winds, current and wave)

3 Degrees of freedom model (3DOF)

Figure 7. Six-DOF and three-DOF ship motion models.

ship-motion models are generally classified into hydrodynamic models and respond-
ing models [71]. Hydrodynamic models include multiple linear and nonlinear hydrody-
namic parameters and disturbance coefficients and can be further divided into Abkowitz
models and Maneuvering Modeling Group (MMG) models [12,72]. Abkowitz models
analyze and solve the forces acting on the ship hull, propellers, and rudders as a whole,
while MMG models create separate hydrodynamic models for the ship hull, propellers,
and rudders to analyze the individual hydrodynamic effects.

Responding models represent another form of mathematical ship-motion model.
Starting from an engineering control perspective, Nomoto views a ship as a dynamic
system, with the rudder angle as the system input and the heading angle or yaw rate as
the system output [73]. These models can be classified into first-order and second-order
linear models and nonlinear models. Depending on the level of simplification of the
mathematical model, they can be categorized as single-degree-of-freedom, three-degree-
of-freedom, four-degree-of-freedom, and six-degree-of-freedom models [73–76]. Different
mathematical motion models contain various dynamic parameters, which are estimated
through maneuvering experiments or derived from model-scale tests of hydrodynamic
parameters; the CFD can also be used for parameter calculations [12]. A three-degree-of-
freedom (DOF) Abkowitz motion model is shown in Equation (1).⎧⎪⎨⎪⎩

m(u̇ − ru − xGr2) = X
m(v̇ + rv + xGṙ) = Y
Izzṙ + mxG(v̇ + rv) = N

, (1)

where m represents the actual mass of the ship; xG is the longitudinal coordinate of the
ship’s center of gravity along the x axis; and X, Y, and N represent the components of
hydrodynamic forces and moments acting on the ship in the three degrees of freedom u, v,
and r, respectively. Iz is the moment of inertia of the ship around the vertical axis through
its center of gravity, which governs its resistance to rotation around that axis. In the context
of ship navigation, when considering the impact of external factors such as wind, waves,
and currents on a ship’s motion, a coupled superposition approach is applied. The model
(1) involves combining the forces acting on the ship in these environmental conditions and,
guided by empirical formulas, integrating the ship’s dynamic state. This process is used to
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assess how the interference from these environmental factors affects the navigational state
of the ship.

Accordingly, a three-degree-of-freedom (DOF) MMG motion model is shown in
Equation (2). ⎧⎪⎨⎪⎩

m(u̇ − rv − xGr2) = XH + XP + XR

m(v̇ + rv + xGṙ) = YH + YP + YR

Izzṙ + mxG(v̇ + rv) = NH + NP + NR

, (2)

where the ship’s inertia force term is included on the left side of the equation. On the right
side of the equation, XH , XP, and XR represent the hydrodynamic forces in the forward
direction caused by the viscous fluid, the propulsion force from the propeller, and the force
from the rudder, respectively. YP and YR represent the hydrodynamic forces in the lateral
direction caused by the viscous fluid, the propulsion force from the propeller, and the
force from the rudder, respectively. NH , NP, and NR represent the hydrodynamic moments
(causing rotation) in the yawing direction (yaw) caused by the viscous fluid, propulsion
torque from the propeller, and the torque from the rudder, respectively. When a ship is
affected by wind and waves, it is necessary to analyze the forces exerted on the ship by
these environmental factors. These forces are then decomposed into the ship’s direction of
motion, allowing for the quantification of the interference experienced by the ship.

Accordingly, a responding motion model is shown in Equation (3).

T1T2r̈ + (T1 + T2)ṙ + αr + βr3 = K(δ + δr) + KT3δ̇, (3)

where δ represents the rudder angle or steering angle. r represents the yaw rate, which
is the change rate of the ship heading. K, T1, T2, and T3 are control parameters related
to the control system. δr represents the rudder deflection angle. α and β are constant
coefficients or parameters. As the parameters of responsive models are typically derived
from ship-maneuvering experiments to describe the influence of steering on a ship heading,
it becomes challenging to directly superimpose external disturbances from the maritime
environment onto the ship-motion model. When considering the effects of wind and
waves on a ship heading, it is common to simulate them using stochastic noise. As for
the influence of ocean currents, it is addressed by vectorially superimposing the current’s
velocity direction directly onto the ship’s navigational state.

Alongside the accumulation of ship maneuvering control and navigation data, apart
from the model (1)–(3) mentioned earlier, black-box models based on neural networks, data,
and similar techniques are gradually finding applications in ship motion prediction and
navigation control [77–80]. Black-box models can take into account a wider range of inputs,
leading to higher predictive accuracy. However, these models are typically trained using
complex mathematical algorithms, and their internal structure is typically composed of
a large number of parameters, making them difficult to understand and explain, so these
models are less amenable to mathematical representation and heavily rely on the accuracy
of input data.

Three types of ship handling models are commonly used for ship motion control.
Model (1) is relatively complex and provides high accuracy. It is based on Taylor’s expan-
sions of the forces acting on the ship in different directions. Each hydrodynamic parameter
in this model has a clear mathematical interpretation. However, this model has many
hydrodynamic derivatives that lack direct physical meaning, making them challenging
to measure directly. Parameter-identification methods are often used to determine these
non-measurable hydrodynamic parameters, allowing for the accurate simulation of ship
handling. While it provides high accuracy, the modeling and parameter identification can
be demanding in simulation environment.

The model (2) differentiates the effects of the hull, rudder, and propeller on ship
handling performance. Model parameters can often be obtained directly through towing
tank experiments, free-running model tests, or CFD. However, high requirements are
placed on the hydrodynamic derivatives and the disturbance coefficients between the hull
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and the rudder/propeller. Models (1) and (2) are frequently used with model-scale ship
tests, and their parameters correlate strongly with model accuracy. However, it may not
fully capture environmental disturbances to the ship’s motion.

Model (3) only considers the relationship between control inputs and state outputs.
The parameters for this model can be obtained directly through full-scale ship maneuvering
experiments, and it does not suffer from scale effects. Model (3) is commonly employed in
automatic steering systems and heading controllers in the operations of real ships.

Due to the need for extensive data accumulation and model training, black-box models
are currently less commonly applied in practical ship state and navigation control. Most
algorithms are still in the research and testing phase. However, as ships become more
intelligent and accumulate a growing amount of navigation data, this trend will likely
promote the application of data-driven black-box models in ship motion prediction and
navigation control.

The choice of model depends on the specific application, the level of precision required,
and the available data and experiments. Different mathematical models are suitable for
different scenarios. It is essential to choose the appropriate model based on the specific
research requirements. Ship motion models are valuable for studying ship handling and
seaworthiness. They are used to investigate ship control maneuvers and navigation attitude
control, often in combination with the impact of marine environments on ship motion and
disturbances. These models find applications in simulation studies, where they can help to
analyze and understand various aspects of ship behavior under different conditions.

4.2. Ship Extreme Short-Term Motion Prediction

Ship motion models encompass the ship motion states and control inputs. Precise
motion models can accurately describe the ship’s state and predict its motion trends. high-
precision modeling and parameter identification of ship motion models are especially
important. The identification of ship maneuvering motion relies on mathematical models
of ships, parameter-identification methods, and maneuvering motion data. Mathematical
models of ships’ maneuvering motion include the models mentioned above. Common
parameter identification methods include least squares [81,82], Kalman filtering [83,84],
support vector machines [85,86], neural networks [87,88], least squares support vector
machine methods [89–91], particle swarm optimization algorithms [92,93], and Bayesian
methods [94,95], among others. Several scholars have conducted in-depth research on
this [96–98]. Maneuvering motion data are primarily obtained through zigzag tests and
turning trials.

In extremely short-term prediction periods, due to the brief prediction duration,
variations in the ship navigation environment can be ignored. These methods only focus
on the immediate impact of the current environment on the ship’s motion to predict its
state. Methods using mathematical models for the prediction of ship motion mainly consist
of linear and nonlinear predictive methods. Prediction methods based on mathematical
models of ship motion can predict certain aspects of a ship’s motion state. However,
due to the nonlinear and time-varying nature of ship-motion models, complex motion
states require more sophisticated and accurate motion models. For example, the ship-
heading prediction, which represents a single-degree-of-freedom motion prediction, often
employs the responsiveness model proposed by Nomoto [99]. Large ships on long-distance
ocean voyages use different heading directions planned along the route for long-distance
course-keeping. Early automatic steering is used to control the heading.

For the speed control in unmanned ships, a data-driven model-free elastic speed
control method is presented in [100]. This method learns the rules of elastic speed control
from a neural network predictor, determining the optimal input for motor control. The
effectiveness of the algorithm is validated through simulation testing. Xu et al. applied a
physics-informed neural network for parameter identification of a three-degree-of-freedom
motion model in unmanned ships [101]. By combining data-driven and physical model
advantages, they constructed a loss function for predicting the motion attitude of unmanned
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ships based on velocity and steering models. Compared to traditional neural network
models, this approach shows better predictive performance.

In [102], a black-box motion model for unmanned ships is established. They employed
a weighted Least-squares support vector machine based on the Sparrow search algorithm
for parameter identification of unmanned ship motion models. To enhance the algorithm’s
stability and robustness, they introduced weighted least squares and the Sparrow Search
Algorithm (SSA) for parameter optimization. The results show that the proposed black-box
motion model has good generalization ability and could effectively predict the motion state
of unmanned ships. Wang et al. collected data on the changes in ship steering angle input
and ship heading change during ship operations [103]. They compared seven different
regression algorithms and selected the best one to establish a ship-heading prediction
model. They introduced an Antlion Optimizer (ALO) algorithm to search for the optimal
weights for the prediction model, which was used in ship-course-keeping control.

The navigation attitude of unmanned ships is a complex, time-varying, and nonlinear
system. Traditional algorithms for predicting unmanned ship attitudes could suffer from
low accuracy, poor robustness, and limited practical application. Zhang et al. combined
CNN with LSTM to build a data-driven neural network model for predicting the roll
attitude changes in unmanned ships [104]. They used CNN to extract time series features
and LSTM to predict the attitude at the next time step, which showed good prediction
accuracy when validated on a real dataset of unmanned ship motion.

The extreme short-term motion-prediction performance with different methods is
compared in [105], which can be seen in Figure 8. Some algorithms used for the extremely
short-term ship-motion prediction were summarized in Table 3.

Figure 8. Extremely short-term trajectory prediction [105].
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Table 3. Summarizing the algorithms used for extremely short-term ship-motion prediction.

Algorithms Description Advantages Disadvantages

CNN [53]
Extracts spatial features
from data like
wave patterns.

Effective for capturing
wave-induced motions
and good for
short-term prediction.

May require additional data
preprocessing, black-box
nature can
hinder interpretability.

SSA [102]
Uses a black-box model
and a nature-
inspired metaheuristic.

Simple and easy
to implement.

May not be as efficient as other
metaheuristics for
complex problems.

Kalman
filtering
[83,84]

Estimates system states
with noise
and uncertainties.

Robust to noise, can
handle
non-linear systems.

Requires accurate system
model, and computational cost
increases with
model complexity.

LSTM
[104]

Captures temporal
dependencies and
learns
complex dynamics.

High accuracy,
handles nonlinearities.

Requires large datasets,
computationally expensive.

4.3. Short-Term Ship-Motion Prediction

During a ship’s voyage, it needs to perceive dynamic and static obstacles using var-
ious sensors and, based on its navigation status, avoid these obstacles. For intelligent
autonomous ships, the generation of collision-avoidance paths often depends on collision-
avoidance planning algorithms, especially for short-time and short-distance navigation
re-planning. For the planning of collision-avoidance trajectories, time sensitivity is cru-
cial. When dealing with the problem of collision avoidance among multiple autonomous
ships, a distributed multi-unmanned collaborative ship-planning algorithm based on deep
reinforcement learning has been proposed in [106]. This approach uses an improved recip-
rocal velocity obstacle as the reinforcement learning reward function and plans collision-
avoidance routes for different obstacles based on gated recurrent unit neural networks.
Xie et al. combined the Model Predictive Control (MPC) algorithm with a three-degree-of-
freedom ship-motion model [107]. The improved Turn-Neyman algorithm is integrated
with maritime collision-avoidance rules to solve the ship predictive collision-avoidance
problem. The algorithm’s reliability was validated through simulations using the KRISO
Very Large Crude Carrier no. 2 (KVLCC2) standard ship model.

Existing ship-collision-avoidance planning methods are primarily based on the Time
to Closest Point of Approach (TCPA) and Distance to Closest Point of Approach (DCPA)
between one’s ship and the target ship. They often do not consider the uncertainty of ship
positions and velocities. In [108], a ship-prediction probability collision0avoidance method
is proposed based on the Kalman filter, which combines an Unscented Kalman Filter to
predict the ship state and obtain the probability of ship positions. This information is then
used to plan the optimal collision-avoidance route. Zhang et al. represent a ship’s time
and path during collision avoidance using space reconstruction and describe the ship’s
nonlinear motion with the MMG model [109]. It combines Nonlinear Model Predictive
Control (NMPC) with an Extended Kalman Filter to address the ship motion prediction
problem during the collision avoidance process, demonstrating the timeliness and reliability
of the algorithm through simulations. The popular algorithms employed for short-term
motion prediction are summarized in the Table 4.

Table 4. Summarizing the algorithms used for the ship’s short-term motion prediction.

Algorithms Description Advantages Disadvantages

MPC
[106,107]

Optimizes future trajectory based on
predicted motions and constraints.

Accounts for control
limitations and
environmental disturbances.

High computational cost, requires
accurate model and prediction.

NMPC
[108,109]

Extends MPC with non-linear models for
improved accuracy.

Handles complex dynamics
and uncertainties.

Increases computational cost
and complexity.
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He et al. transformed the ship collision avoidance motion planning problem into a
multi-constrained nonlinear optimization problem with controllability, navigation envi-
ronment, and navigation rules [110]. A novel Model Predictive Artificial Potential Field
(MPAPF) motion-planning method is proposed to generate the ship-collision-avoidance
path. The different collision avoidance methods include the Dynamic Anti-collision A-
star(DAA*), COLREGS-RRT, and Asexual Reproduction Optimization-Artificial Potential
Field (ARO-APF) based on short-term prediction are compared in Figure 9.

Figure 9. Different collision-avoidance methods based on motion prediction.

4.4. Ship Traffic-Flow Modeling and Long-Term Trajectory Prediction

Predicting long-distance ship trajectories based on estimated ship traffic flow, histor-
ical trajectories, and time series data can contribute to enhancing the safety of maritime
environments, organizing ship traffic, and optimizing resource allocation in special water
areas. It is beneficial for ship-route planning and optimization, ultimately improving a
ship’s navigational capabilities. Ships’ navigation trajectories contain various characteris-
tics of traffic flow. The accurate prediction of ship navigation trajectories can facilitate the
statistical analysis and modeling of traffic flow.

To fully exploit the traffic flow information contained in ship AIS data and accurately
predict ship trajectories, ref. [111] employs a prediction model called the MHA-BiGRU
model, which is based on multi-head attention mechanisms and bidirectional recurrent
units (BiGRUs). This model filters and modifies historical ship data, retaining more infor-
mation and making predictions on time series data. The model correlates information from
both historical and future ship trajectories, providing high precision, reliability, and ease
of implementation.

Ref. [70] uses various machine learning and deep learning algorithms to predict and
analyze the historical movement trajectories of ships in different navigational environ-
ments. This analysis supports decision making for intelligent ship route planning, collision
avoidance, and traffic management operations. Ref. [112] utilizes historical AIS data from
the Świnoujście port in Poland to establish ship traffic spatial distribution and probability
models. These models analyze factors influencing the safe distance between ships, aiming
to enhance maritime safety and reduce collision risks.
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Ref. [113] proposes three trajectory-similarity search models for historical trajectory
points, trajectory databases, and historical trajectories, which are used for short-term and
long-term ship-trajectory prediction and are tested for algorithm reliability using ships’
AIS data. Ref. [66] constructs a Long short-term Memory Encoder (LSTM-ED) for training
ship AIS data to develop and validate ship traffic-flow models. This approach shows better
performance than traditional traffic-flow statistical baseline methods. Considering the
presence of abnormal jump values in long-distance trajectory data, ref. [114] integrates
the LSTM structure into the deep learning Transformer framework, which leverages the
strengths of Transformer and LSTM in dealing with long-distance dependencies in temporal
and spatial features. The method employs time-window shifting and smoothing filtering
to maintain trajectory smoothness, enabling the model to predict long-distance trajectories.
Ref. [115] utilizes a hierarchical clustering method to extract behavioral features from
AIS data. This approach is more efficient than traditional Douglas-Peucker (DP) and
Least-squares methods. The LSTM algorithm is then used to predict ship trajectories,
resulting in lower prediction errors compared to traditional RNN algorithms. The Temporal
Convolutional Network (TCN) has strong time memory capabilities and performs well in
time series prediction. Ref. [116] combines the attention mechanism with ship-trajectory
time series (TTCN). They utilize one-dimensional convolutional units to extract high-
dimensional features from the data and introduce mechanisms to enhance the learning of
important features. This enables the training and learning of ultra-long time series data for
ship trajectories. They use AIS data to construct a ship traffic flow dataset and compare it
with traditional prediction methods, achieving better accuracy.

In order to investigate the efficiency of the trajectory prediction with different men-
tioned algorithms, we take some AIS data to implement the prediction algorithms. In
Figure 10, we show different algorithms contains the LSTM, attention-based LSTM(ATT-
LSTM), transformer with deep embedded clustering(TRFM DEC), CNN-LSTM, and Bi
LSTM that we tested for long-term and short-term trajectory prediction; for the long and
curved trajectories, the LSTM method has good performance in prediction, while for the
short-term prediction, the CNN-based LSTM has good results for prediction, and the
average error is 0.5 m for short-term prediction.

Figure 10. Long- term and short-term trajectory prediction based on different algorithms.

To summarize, the ship-motion-prediction methods can be broadly categorized into three
types based on different prediction lead times, prediction intervals, and prediction accuracy.

(1) Extremely short-term motion prediction: This type of prediction is used for ship
motion control, where high demands are placed on the prediction lead time, accuracy,
and update frequency. It is employed throughout the entire voyage, repeatedly, until the
journey is complete.

(2) short-term motion prediction: This type of prediction is applied to avoidance of
ship collision, planning, and decision making. When ships encounter each other, it is
necessary for them to react accordingly until the specific encounter scenario ends. After
ensuring there is no risk of collision, a short-term motion prediction cycle is completed.
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(3) long-term trajectory prediction: This type of prediction is used in ship traffic
organization and voyage-route optimization. It primarily serves voyage planning, taking
into account the origin of the voyage task and the dynamic characteristics of the route. An
optimal route is established for safe navigation. If the navigation conditions change during
the voyage, the long-term motion predictions may need to be adjusted accordingly.

Different prediction types use different data sources, methods, and time frames. The
choice of the most suitable prediction method for ship motion depends on factors like the
actual ship situation, the sailing environment, and specific characteristics.

5. Applications of Ship Motion Prediction

5.1. Motion Control

Automated ship control takes into account the maneuverability of ships in complex
environments and the influences of wind, waves, and currents on ship handling. Besides
these disturbances, there might be other unknown disturbances to be considered, and
observers need to be used to estimate these unknown disturbances. In trajectory-tracking
control, it is essential to compensate for the effects of environmental disturbances. In order
to improve the accuracy of navigation control, many methods are gradually applied in
navigation tests and simulations.

MPC is a method that balances modeling, prediction, and control. It can use historical
data to create a simple model of a ship’s maneuverability for trajectory prediction. By
incorporating an extended observer, it can perceive the actual sailing conditions of the ship.
For example, ref. [117] proposes a guidance strategy based on NMPC for path following in
unmanned ships. This strategy overcomes the limitations of Line-Of-Sight (LOS) navigation
and uses an established state observer for tracking control of heading and speed.

To address the shortcomings of a ship motion control framework, which typically
plans before tracking, ref. [118] proposes an improved artificial potential field method
combined with the MPC algorithm. This approach generates control trajectories for ship-
collision avoidance. In complex navigational environments, it allows ships to navigate
around obstacles safely, serving as the algorithmic foundation for controlling unmanned
ships in complex sea areas.

The sailing environment can impact the ship’s motion model and control. For uncertain
wave disturbances on ships, ref. [119] introduces a parameter identification method using
Least-squares support-vector Machines (LS-SVMs) to identify parameters for a four-degree-
of-freedom MMG model. They also designed an online sliding-window modeling method
to predict ship motion under wave interference.

To achieve real-time high-precision and anti-interference motion control for unmanned
ships in complex scenarios, a study [120] designed a NMPC trajectory tracking controller
based on a three-degree-of-freedom hydrodynamic model for unmanned ships. This
controller considers disturbances like wind, waves, and currents and uses a nonlinear
disturbance observer to provide online compensation for the control model. The study’s
findings confirm the effectiveness of the control algorithm.

5.2. Collision Avoidance Planning

Predicting collision-avoidance trajectories for ships requires considering the sailing
status of both the ship and other ships. The ship’s sailing status can be directly obtained
through positioning or inertial navigation. In contrast, information about other ships’
sailing statuses must be perceived using sources like AIS (Automatic Identification System),
radar, video, and electronic charts to determine the motion of target obstacles [121]. The
acquired information regarding other ships’ motions often contains errors and uncertainties.
Hence, it needs the use of short-range prediction algorithms to predict their movement
trends and calculate minimum encounter distance and closest encounter time. These
algorithms must meet high standards for short-term ship-state prediction and encounter-
situation assessment.
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To address the challenge of accurately estimating the DCPA and TCPA of encountering
ships, ref. [122] decomposes ship AIS trajectory data into linear and nonlinear components.
They then employed ARIMA and LSTM methods to model these two components. This
modeling is utilized for trajectory prediction and collision-avoidance route planning.

Refs. [123,124] combined the principles of MPC with maritime collision avoidance
rules (COLREG) to design a trajectory-based collision-avoidance planning method. They
constructed window functions to reduce tracking errors and cost acceleration, which
improved the algorithm’s reliability. This method predicts the sailing trajectories of en-
countering ships, uses convex free sets and maritime collision avoidance rules to develop
collision-avoidance strategies, and generates planned routes.

To mitigate dangerous situations caused by abrupt changes in ship speed during tra-
jectory prediction, ref. [125] proposed an improved ant colony algorithm using an artificial
potential field. This modification enhances the convergence speed and global optimiza-
tion of the algorithm, resulting in smoother collision-avoidance planning trajectories and
reducing the probability of accidents.

Zhu and Ding [126] introduced a method for determining the optimal collision-
avoidance point, which helps in defining the most effective collision-avoidance route
based on the relative velocity and kinematic parameters between unmanned ships and
obstacles. It calculates the ship’s best collision point, using the speed and heading-angle
increments that can be reached by the ship to constrain dynamic window sampling. Simu-
lation testing demonstrates that the proposed optimal collision-avoidance point method is
more efficient and robust.

In a real-world navigation scenario, ships have to contend with the motion of other
ships and various uncertainties caused by interference. To address these challenges, we
implemented the virtual potential field and dynamic ship field methods for planning
collision-avoidance paths. In October 2022, we specifically selected ships encountered in
sheltered waters for testing, as shown in Figure 11, and we built a software platform and
implemented the algorithms with Qt (verison 5.2), C++ (version 11), Python (version 3.10),
and ENC (s57 standard) map for the automatic control for a 40 m length USV. We tested
the collision avoidance and control algorithms by using an intelligent ship equipped with
radar, AIS, and an optoelectronic system. In the open sea environment, we designed a pre-
determined route for the ship, which subsequently navigated along this planned trajectory.
Meanwhile, the target ship, located ahead and on a directly opposing heading, maintained
its course throughout the encounter. To avoid collisions, the ship dynamically replanned
its route based on the relative velocity between the vessels. Aiming to prevent entering the
target ship’s domain, the ship adjusted its speed to approximately 7 knots, maintaining a
horizontal separation of approximately 120 m-roughly four times the ship’s length.

5.3. Ship Voyage Optimization

In ship route optimization, various factors need to be considered, including sail-
ing speed, water depth in the sailing area, disturbances like wind and currents, ship
loading, fuel prices, and more. The goal is to achieve the lowest fuel consumption, min-
imize operations, reduce sailing time, maximize fuel efficiency, and minimize leasing
costs [127–130]. Ships at sea can optimize their routes based on the influence of wind and
currents, aiming to save fuel and ensure safe navigation. When sailing near the coast,
factors such as islands and tides also need to be considered. The sailing environment
significantly affects a ship’s movement. By combining a ship’s current status with historical
traffic flow data and meteorological information specific to the sailing area, long-distance
trajectories can be predicted and optimized, thus enhancing navigation safety and reducing
the impact of the environment on navigation.
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Figure 11. Dynamic domain-based collision avoidance sea trial in Zhoushan.

Ship-route optimization mainly consists of environmental modeling and optimization
searching. To reduce the complexity of environmental modeling, the planning space is
typically structured and transformed into a state-space search problem, which is further
converted into a state-space path-search problem. These problems are addressed using
search algorithms to obtain optimal solutions. Common ship-route-optimization algo-
rithms include A*, Dijkstra, artificial potential fields, Rapidly Exploring Random Tree (RRT,
RRT*), Isochrone, Dynamic Programming, 3D Dynamic Programming, genetic algorithms,
simulated annealing, particle swarm optimization, neural networks, and more [131–141].

Taking into account the influence of ocean currents and marine environments, ref. [142]
uses reinforcement learning in combination with ship motion models and map information
to optimize ship routes. For unmanned ships operating in complex and dynamic environ-
ments, ref. [143] combines the accelerated A* algorithm with the visibility graph algorithm,
using a quadtree to perform fast searches on the visibility graph and improving trajectory
update efficiency. Many optimization and planning algorithms apply to optimizing ship
routes in nearshore waters, considering aspects like maritime safety, avoiding grounding
or collisions, and fuel savings [144].

In traditional RRT algorithms, the planned trajectories may suffer from issues like
lack of smoothness and excessive travel distances. Guo et al. [145] employed quadratic
Bézier curves and the Dijkstra algorithm for trajectory pruning within the RRT algorithm,
making the generated trajectories smoother. They also used Morphin for global trajectory
pruning, and simulations confirmed its suitability for route planning for unmanned ships
in complex navigation environments.

Route-optimization algorithms each have their pros and cons. In the application
of route optimization for unmanned ships, it is also necessary to incorporate maritime
collision-avoidance rules, consider the maneuverability of the ship, and take into account
the navigation environment. To address the shortcomings of optimization algorithms, it is
possible to improve them by combining and using different algorithms, all in alignment
with the ship’s objective functions.

Route-optimization algorithms can be used in voyage planning for long-distance
routes based on objective optimization functions. In actual ship navigation, when encoun-
tering other ships, it is essential to follow maritime collision-avoidance rules according to
the current collision situation. Different collision scenarios require considering maritime
collision avoidance rules, the ship’s collision responsibility, and the necessary actions to be
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taken. When a collision-avoidance maneuver is needed, it involves adjusting the ship route
based on the ship’s current state, considering factors such as ship maneuverability, target
ship length, width, DCPA, TCPA, the ship domain, and navigation conditions. This new
route is followed for a certain period while implementing maneuvers such as altering the
course, reducing the speed, or a combination of both [146].

In dynamic encounter scenarios, it is necessary to consider the motion state of other
ships. To ensure safe navigation, path-planning algorithms are applied to dynamically re-
plan routes in local areas, generating new collision-avoidance trajectories that are both safe
and efficient. Common collision-avoidance planning algorithms include A*, the artificial
potential field method, velocity obstacle method, and RRT, among others [147–150].

The ship’s navigation environment significantly affects the accurate prediction of
ship motion. The traditional modeling of motion models and parameter identification can
adequately describe a ship’s motion status through mathematical modeling. However,
achieving the real-time prediction of a ship’s motion status in complex navigation envi-
ronments requires the rational selection of motion modeling and state prediction based
on the specific focus of ship-motion control. By incorporating motion models into the
modeling process, short-term and long-term trajectories of the ship can be predicted, pro-
viding insights into the ship’s motion response in the navigation environment. The accurate
prediction of ship-motion status and practical application necessitates selecting appropriate
prediction methods based on the application scenarios and ensuring the proper application
of the prediction results.

6. Analysis of the Key Issues

Ship navigation research has tackled factors affecting sailing, traffic flow, motion mod-
els, and route optimization as separate modules. The focus now shifts toward integrating
these for the better modeling and prediction of ship-navigation environments. In current
research, simulation models are widely used to investigate existing problems and explore
methods in depth. However, in practical engineering applications, the time-varying and
nonlinear nature of the navigation environment and motion models present limitations in
simulation-based methods. Unmanned ships highlight the need for the integrated model-
ing of navigation environments, dynamic traffic flow, and context-aware motion models,
paving the way for automatic route planning and control decisions. The challenge lies in
seamlessly integrating the navigation environment, traffic flow, and ship motion models for
autonomous ships, enabling intelligent route planning and control in complex situations.
These areas have seen relatively limited research. The specific limitations are as follows.

6.1. Online Modeling of Ship Motion

Due to the influence of the navigation environment, the motion models and model
parameters of ships exhibit time-varying and uncertain characteristics. The accuracy of
mathematical models of ship motion, based on the CFD simulations, empirical formulas,
and experimental ship handling, is no longer suitable for precise ship control. Leveraging
data from diverse sources like environment, traffic flow, and sensor readings can enhance
the observation and modeling of disturbances impacting ship motion. By incorporating
these disturbances into the model-building and parameter-identification process, intelli-
gent ship-control systems can achieve higher accuracy and minimize errors. Combining
environmental models within the navigational area with ship-motion-control models for
online model establishment and parameter identification is essential for path optimization
and control decision-making in intelligent ships. This approach effectively addresses navi-
gation, decision-making, and control issues in intelligent ships and is a key indicator of the
autonomous driving level and degree of automation in intelligent ships.

Figure 12 shows the prediction of ship speed during navigation using the xG-Boost
(Extreme Gradient Boosting) machine learning algorithm. In the upper part of the figure,
the blue curve represents the prediction of ship speed based solely on the ship propeller
RPM (revolutions per minute). The red curve, on the other hand, takes into account
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additional factors such as the wind encountered during navigation and ocean current data
specific to the navigational area. By comparing these two curves, it becomes evident that
increasing the number of input parameters in the model significantly enhances the accuracy
of ship speed prediction.

Figure 12. Ship navigation speed prediction with different input characters and parameters based on
the xG-Boost method in complex sea conditions.

6.2. Limitations of Simulation Validation

Based on the existing literature, most scholars primarily use simulation to study the
modeling of ship motion in response to the effects of navigation environments, parameter
identification, model development, and control. Environmental influences are often gener-
ated using random methods, while real navigation environments are complex, dynamic,
and nonlinear, making it challenging to directly describe key factors affecting ship-motion
modeling and control with mathematical equations. It can be challenging for simulated
environments to replicate the actual navigation state of ships accurately. Additionally,
conducting real ship testing for large ships is costly. Current research often relies on scale
models for experiments, which can reflect essential issues to some extent. However, due to
scale effects, the results may vary for medium and large ships. There is a considerable gap
between ship-simulation research and engineering applications. Precise data collection,
historical playback, and specific ship-modeling and testing methods tailored to particular
ships are required to meet the needs of motion prediction and control. For the implementa-
tion of these planning, collision avoidance, and control algorithms, many steps need to be
tested before the final application in real conditions, these algorithms will not perform as
well as the simulation tests.
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As shown in Figure 13, prior to the final sea trials of our collision-avoidance algorithms
for unmanned surface vessels (USVs), we conducted extensive simulations to validate their
performance under safe and controlled conditions. These simulations comprised four
key stages:

(1) Virtual collision avoidance with geographic information system (GIS) data in
Figure 13a: We established a virtual environment using GIS data, where a virtual ship
navigated directly toward a virtual USV in the open sea. This initial step assessed the
robustness of the algorithm under predictable conditions.

(2) Virtual collision avoidance with static obstacles in Figure 13b: This stage introduced
virtual static obstacles alongside sea trials, further challenging the algorithm’s ability to
navigate complex environments.

(3) Virtual dynamic collision avoidance in Figure 13c: Building on the previous stages,
we implemented virtual dynamic obstacles within sea trial simulations, simulating encoun-
ters with moving objects. This provided a more realistic test of the algorithm’s adaptability.

(4) Real ship encounter in Figure 13d: The final stage involved a real ship navigating
toward the USV, allowing us to observe the algorithm’s performance in a live setting and
verify its ability to generate optimal collision-avoidance paths.

It is important to acknowledge that significant effort is required to bridge the gap be-
tween simulation and real-world testing. Sea trials often present unforeseen circumstances
that cannot be fully replicated in simulated environments. Consequently, the transition
from simulation to sea trials necessitates iterative refinement and validation. In essence,
while simulations offer valuable insights, their limitations necessitate real-world testing for
comprehensive performance evaluation.p p

1

2

Figure 13. Ship-trajectory tracking and collision-avoidance control simulation, virtual test, and sea
trial in a real condition.
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6.3. Consistency in Modeling, Optimization, and Control

In the existing body of literature, the prevailing trend in current research leans towards
the independent development of ship motion models, optimization algorithms, and various
other aspects. A notable drawback of this approach is the absence of a unified standard
interface for both input and output data across these models. This deficiency gives rise to a
lack of general and consistent models, particularly in the realms of ship-route optimization,
collision-avoidance planning, and navigation-motion control.

From the vantage point of intelligent ship navigation and control, there emerges a
critical need to amalgamate diverse systems. This integration should aim to simplify
the complex processes involved in motion modeling, motion prediction, and navigation
control. The ultimate goal is to achieve a higher degree of automation and intelligence in
the domain of ship navigation control. The absence of a standardized interface impedes the
seamless exchange of information among different modules, hindering the establishment
of a cohesive and interoperable framework for ship navigation.

In the shipping industry, there are many aspects that need to be considered between
the planning and the final navigation or ship control. As shown in Figure 14, before
the ship leaves the ports, the planners will draw up a route according to the departure,
destination, and navigation task. Sometimes, the route will not be the best option for every
ship, and the researchers will optimize the route based on the forecasted weather and the
ship-performance model, while the performance model is summarized by the empirical
formula or the historical data. For the ship’s operation, once the route is designed or
optimized, the ship operators will drive it based on their experience or the maneuverability
of the ship, wile the maneuverability is changed based on the different navigate status. For
intelligent navigation, all the aspects need to be considered using the performance model,
maneuverability, and control algorithms.

Weather
forecasts

Planning Routing

Modeling

Control

Performance
model

Maneuvering
model

Ship
performance model

Ship
maneuvering model

Optimization
route

Optimizate

Figure 14. Ship route planning, optimization, and control system.

To address this challenge, future research efforts should concentrate on the develop-
ment of a standardized interface that can serve as a common language for communication
among various ship-navigation systems. This unified interface would facilitate the inte-
gration of motion models, optimization algorithms, and other components, fostering a
more cohesive and interoperable approach to ship route optimization, collision-avoidance
planning, and navigation motion control. Such an integrated and standardized framework
holds the potential to streamline the development and implementation of intelligent navi-
gation and control systems for ships, paving the way for enhanced safety, efficiency, and
automation in maritime operations.

7. Trends in Technological Development

With the development of computer technology, artificial intelligence technology, ma-
rine environmental observation technology, and ship motion prediction technology, great
progress has been made. In the future, ship-motion-prediction technology will develop in
the following directions.
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7.1. Trajectory Prediction Based on the Fusion of Multi-Source Sensor Data

In complex navigation scenarios requiring collision avoidance, a single sensor has limi-
tations on target recognition. Ship operators need to combine the information from different
sensors manually or according to their experience, making it difficult to perceive obstacles
effectively. This necessitates data fusion from multiple sensors for trajectory prediction
to provide more accurate assessments of ship-navigation encounters. Existing perceptual
environment modeling primarily focuses on the recognition and tracking of static and
dynamic obstacles in collision-avoidance decision-making scenarios. This research com-
bines the ship’s navigation status with the recognition and tracking of obstacles. With the
advancement of ship intelligence and unmanned navigation, unmanned ships adhere to
maritime collision avoidance rules designed for manned ships. Nevertheless, unmanned
ships typically exhibit superior maneuverability and increased levels of automation. In
the context of autonomous navigation, it becomes crucial to autonomously and accurately
perceive the surrounding navigation environment. Combining navigation-environment
modeling with route planning for unmanned ships can enhance the reliability of route
selection and navigation control, harnessing the advantages of intelligent navigation deci-
sions. The fusion of multi-source shipboard data with route planning plays a crucial role in
optimizing navigation routes and navigation control. The fusion of AIS, radar, and GPS
data is applied for different navigation trajectories, which is used in Figure 15.pp g j , g

Figure 15. Trajectory fusion from AIS, radar and GPS based on the straight and curved conditions.

In adverse weather conditions, it is essential to consider factors like wind, waves, and
currents that can significantly impact the navigation of unmanned ships, particularly in
high-sea conditions. In such scenarios, it is about not only planning collision-avoidance
routes but also optimizing navigation-control strategies based on the current sea conditions.
This is crucial for reducing the impact of waves on the ship, thereby enhancing both the
efficiency and safety of ship navigation.

7.2. Integration of Environmental Modeling, Route Optimization, and Motion Control

Traditional navigation and control systems have three relatively independent modules:
guidance, navigation, and control. With the development of intelligent navigation and
unmanned technologies in ships, these modules become more closely intertwined. From
a planning perspective, static and dynamic environmental models of navigation will
significantly influence route planning for ships. In actual navigation, weather conditions
and environmental modeling can impact route optimization and control for local ship
encounters. Starting with the establishment of environmental models and extending to
route optimization and control decision making, integrated system models should be
created. The integration spans from perception systems to decision systems, utilizing
optimization algorithms to select and establish the best models that are suitable for decision
making and control in intelligent and unmanned ships.
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In the context of intelligent and unmanned ships, route optimization is focused on long-
distance, extended-time motion planning, where factors like distance, energy consumption,
and voyage duration are considered. On the other hand, ship motion control emphasizes
short-distance, short-term motion tracking control, accounting for navigation risks and
collision avoidance decisions during the voyage. Both aspects need to be effectively
combined. It is necessary to choose appropriate routes while also considering the current
encounter scenarios and selecting the right collision avoidance routes and control decision-
making methods to ensure the economic efficiency and safety of navigation.

The issue of transitioning between global, long-distance route optimization and local,
short-distance collision-avoidance decision making will be a focal point of research for
intelligent ships and unmanned ships in autonomous navigation control. This transition
impacts not only the economic effectiveness of ships but also their navigational safety. As
illustrated in Figure 16, we have employed both 2D Dynamic Dijkstra and 3D Dynamic
Dijkstra by considering the variable speed of each sub-route, to optimize the path from
America to the English Channel across the North Atlantic Ocean. The optimized route not
only saves more distance but also yields a significantly lower wave height compared to the
original route.

Figure 16. Route planning with different weather models and optimization methods.

7.3. Mechanism and Data-Fusion-Driven Modeling

As ships evolve toward increased automation and intelligence, traditional ships are
adopting advanced sensors to support navigational decision making and control. In open
sea areas, these technologies serve as valuable assistants for ship operators, yet in complex
navigation scenarios, the precision of models and algorithms may fall short of expectations.
Shipping companies, armed with extensive operational and navigational data, possess
valuable experience for decision making and operations. Leveraging this wealth of data
and experience is pivotal for enhancing navigation safety and precision while reducing the
labor intensity for operators.

The volume of data related to navigational environments and decision-making control is
anticipated to surge as accumulation continues. high-precision, large-scale operational data
play a pivotal role in propelling the advancement of intelligent and unmanned ships, as well as
contributing to the digitization of the maritime industry. Extracting valuable insights from this
extensive data pool, especially regarding key factors influencing navigational decision making
and control for intelligent and unmanned ships, promises substantial advancements.
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The increasing utilization of machine learning and deep learning algorithms is poised
to significantly augment perception and decision-making capabilities during ship naviga-
tion. This shift toward advanced algorithms is expected to result in enhanced autonomy for
intelligent ships, leading to reduced human intervention, heightened efficiency and safety,
and lowered operating costs. The continuous evolution through data-driven modeling,
accumulation, iteration, and updates will contribute to the increased accuracy of ships’
navigational environment and motion-control models. The principle of the mechanism and
the data fusion-driven modeling method is shown in Figure 17.

Maneuvering tests

CFD / Parameter
identificaiton

Mechanism
model

Data-driven
model

Machine learning
Deep learning

Fusion
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Sea trail

Maneuvering
data

Navigation
data

Figure 17. Mechanism and data-driven model fusion.

7.4. Time Series Modeling and Multi-Objective Prediction

Conventional predictions of a ship’s motion state heavily rely on precise mathematical
models dedicated to a ship’s motion. These models are intricately integrated with a
ship’s responses in diverse settings, utilizing model-prediction methods to anticipate a
ship’s motion. The intricate challenge lies in the time-varying nature of ship motion and
navigational environments, rendering the use of mathematical models complex. Hence, the
establishment of time series models derived from high-precision data emerges as a critical
necessity to seamlessly integrate data-driven ship motion prediction and control.

Moreover, deploying sensitivity-analysis methods allows for a comprehensive exami-
nation of key factors influencing ship motion control and their corresponding impacts. By
identifying these critical factors, one can effectively model and predict navigational envi-
ronment data. This process not only facilitates ship-route optimization but also contributes
to the enhanced control of navigational environments, further emphasizing the importance
of a data-driven approach in refining ship-motion prediction and control mechanisms. The
performance of time series modeling and multi-objective prediction is shown in Figure 18.
In Figure 18a the correlation of each state is presented with different shades of color, and
Figure 18b,c shows the speed and roll angle prediction based on the input time series
with the weather and control command information. The speed and roll can be predicted
very precisely.

Figure 18. Time series modeling and multi-objective prediction.
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8. Conclusions

The vast reach of the oceans has, throughout history, ignited a flame of discovery and
advancement. This dedication to progress extends to the field of ship navigation, which is
currently experiencing a significant evolution in the wake of technological advancements.
This transformation is fueled by several key trends and active research areas that are
reshaping the future of intelligent ship navigation.

(1) Dawn of the autonomous age: Intelligence takes the helm. The most conspicuous
transformation lies in the burgeoning field of ship autonomy and intelligence. Cutting-edge
technologies like artificial intelligence are no longer futuristic fantasies; they are being
strategically implemented in unmanned ships. Sophisticated navigational environment
sensing and modeling prediction methods act as catalysts, paving the way for ever-more
intelligent vessels. This synergistic integration is not just about automation; it is about
reshaping the maritime industry, ushering in an era of unparalleled efficiency and safety.
Imagine unmanned ships seamlessly navigating complex waterways, optimizing routes
in real time, and evading dangers with preternatural precision. This is the future that
intelligent ship navigation promises.

(2) Precision takes center stage: Modeling the seas with mathematical elegance. At the
heart of intelligent navigation lies the power of precise mathematical modeling. Accurate
models of the navigational environment and ship motion are the bedrock upon which
robust algorithms are built. The future holds exciting advancements in simulation, virtual
testing, and digital twinning-revolutionary methodologies that will redefine the validation
and testing of design and control algorithms for unmanned ships. Think of it as pushing a
virtual ship through a simulated ocean, testing its responses to every wave and current,
all before it ever sets sail. This iterative refinement process will lead to more robust and
reliable autonomous ships that are ready to conquer the real-world seas.

(3) Conquering time: A holistic approach to navigational prediction. The future of
intelligent ship navigation isn’t confined to a single time horizon. A holistic approach
that encompasses long-term, mid-term, and short-term ship motion prediction methods
is rapidly emerging. This multi-temporal perspective addresses the multifaceted chal-
lenges faced by ships, from voyage planning and route optimization to real-time collision
avoidance and dynamic decision making. Imagine a ship that can predict not only its
immediate path but also anticipate potential hazards and weather patterns hours and even
days in advance. This level of foresight will revolutionize maritime safety and operational
efficiency, paving the way for a truly intelligent and autonomous future at sea.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AIS Automatic Identification System
ALO Antlion Optimizer
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
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ARO-APF Asexual Reproduction Optimization-Artificial Potential Field
ATT-LSTM Attention-based LSTM
BiGRU Bidirectional gate recurrent unit
BLSTM-RNNs Bi-directional Long short-term Memory Recurrent Neural Networks
BP Back Propagation
CDF Computational Fluid Dynamic
CNN Convolutional neural network
DAA* Dynamic Anti-collision A-star
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DCPA Distance to Closest Point of Approach
DOF Degrees of Freedom
DP Douglas-Peucker
ENC Electronic Navigation Chart
GIS Geographic Information System
GNC Guidance, Navigation and Control
GNSS Global Navigation Satellite System
GPS Global Position System
GRU Gated Recurrent Unit
HA History Average
IMO International Maritime Organization
KNN K-nearest neighbors
LOS Line of Sight
LSTM Long short-term Memory
LSTM-ED Long short-term Memory Encoder
LS-SVM Least-squares support-vector machine
MHA-BiGRU multi-head attention mechanism and bidirectional gate recurrent unit
MMG Maneuvering Modeling Group
MLP Multilayer Perceptron
MPC Model Predictive Control
MPAPF Model Predictive Artificial Potential Field
NMPC Nonlinear Model Predictive Control
PCHIP Piecewise Cubic Hermite Interpolating Polynomial
PSO Particle Swarm Optimization
PSO-BP Particle Swarm Optimization-Back Propagation
ROS2 Robot Operation System 2nd
RPM Revolutions Per Minute
RRT Rapidly exploring Random Tree
SCAM Spatial Channel Attention Module
SSA Sparrow Search Algorithm
STCANet Spatiotemporal Coupled Attention Network
SVR Support Vetor Regression
TCN Temporal Convolutional Network
TCPA Time to Closest Point of Approach
TRFM DEC Transformer with Deep Embedded Clustering
TTCN Tiered Temporal Convolutional Network
UAV Unmanned Aerial Vehicle
VHF Very High Frequency
KVLCC2 KRISO Very Large Crude Carrier no. 2
USV Unmmanned Surface Vessels
VTS Vessel Traffic Service
WOS Web of Science
xG-Boost eXtreme Gradient Boosting
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Abstract: Ship course-keeping control is of great significance to both navigation efficiency and
safety. Nevertheless, the complex navigational conditions, unknown time-varying environmental
disturbances, and complex dynamic characteristics of ships pose great difficulties for ship course-
keeping. Thus, a PSO-based predictive PID-backstepping (P-PB) controller is proposed in this paper to
realize the efficient and rapid course-keeping of ships. The proposed controller takes the ship’s target
course, current course, yawing speed, as well as predictive motion parameters into consideration. In
the design of the proposed controller, the PID controller is improved by introducing predictive control.
Then, the improved controller is combined with a backstepping controller to balance the efficiency
and stability of the control. Subsequently, the parameters in the proposed course-keeping controller
are optimized by utilizing Particle Swarm Optimization (PSO), which can adaptively adjust the value
of parameters in various scenarios, and thus further increase its efficiency. Finally, the improved
controller is validated by carrying out simulation tests in various scenarios. The results show that it
improves the course-keeping error and time-response specification by 4.19% and 9.71% on average,
respectively, which can efficiently achieve the course-keeping of ships under various scenarios.

Keywords: ship course-keeping; MMG; PID control; predictive control; backstepping control; particle
swarm optimization

1. Introduction

Maritime transportation holds a pivotal share of international trade [1,2]. As the most
economical and effective tool of marine transport, it is essential that shipping increases
constantly with the development of the national economy and international trade [3–5].
However, complex navigational conditions and unknown time-varying environmental
disturbances pose a significant difficulty in the operation of ships [6–8]. Meanwhile, the
complex dynamic characteristics (e.g., multiple degrees-of-freedom (DOF), nonlinearity,
limitation in rudder angle) further increase the uncertainty of the ship’s motion [9–14]. As
a result, it is difficult to lead ships moving along a target course efficiently and accurately,
especially under harsh environmental conditions [9,15–17]. Thus, it becomes indispensable
to carry out research related to ship course-keeping.

To date, research on the course-keeping of ships mainly focuses on (a) improved
traditional controllers and (b) data-driven controllers.

Improved traditional controllers are considered an effective approach to realize the
course-keeping of ships. Some common methods include improved sliding mode con-
trollers [18–21], improved PID controllers [20,22–24], improved backstepping
controllers [9,25–27], and improved bipolar sigmoid functions [28,29]. These methods
mainly improve traditional controllers by introducing adaptive control, synergetic control,
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control formula improvement, and parameter optimization. However, these methods
contain limitations such as a lack of course-keeping accuracy under environmental dis-
turbances and inefficiency in reaching the target course, which may lead to additional
course-keeping errors in some scenarios. At the same time, some controllers are complex to
build and therefore less available.

Data-driven controllers become feasible for ship course-keeping control with the de-
velopment of data acquisition and processing technologies. Methods adopted are known
as expert knowledge controllers [30], artificial neural networks [31–35], neuro-fuzzy sys-
tems [36], and multi-agent systems [37]. These controllers are established based on em-
pirical knowledge or navigation data. Researchers fused ship motion and operation data
and processed it using various statistical and intelligent modeling methods to establish
automatic ship course-keeping controllers. To improve the accuracy of course-keeping,
these controllers have high requirements for the amount and quality of data in particular
scenarios. As a result, such controllers are more effective in scenarios with a large amount
of data on similar ships. Conversely, it is hard to realize accurate ship course-keeping in
scenarios with less navigation data. Meanwhile, the selection of empirical knowledge or
navigation data has a substantial impact on the effectiveness of ship course-keeping control,
which further increases the uncertainty of the controller.

The above-mentioned controllers for the course-keeping of ships have been applied
and validated. Nevertheless, difficulties such as obtaining the data required to train, and the
high complexity to establish, limit the accuracy of the course-keeping controllers mentioned
above. Additionally, some of the studies lack accuracy in establishing ship motion and
environmental disturbance models for simulation tests, which prevents the effectiveness of
those course-keeping controllers from being effectively verified [24,27].

Given these research gaps, in this paper, a PSO-based predictive PID-backstepping
(P-PB) controller is introduced for the course-keeping of ships. The P-PB controller is
designed on the basis of PID and backstepping controllers, thus retaining the simplicity
and interpretability of traditional controllers. At the same time, course-overshoot of the
controller is avoided by introducing a predictive PID control, which improves the accuracy
of course-keeping. Subsequently, the parameters in the P-PB controller are optimized via
PSO, which is characterized by its efficiency, and is widely used in the field of ship control
to improve its applicability in various scenarios [38–40].

In Section 2, a nonlinear ship model is first introduced, which is adapted for ship
motion prediction and simulation tests. Then, the improved PID controller and the back-
stepping controller are combined to design the P-PB controller. Further, PSO is introduced
to optimize parameters in the proposed controller. Section 3 provides comparison tests
with other controllers, demonstrating the effectiveness of our approach in various scenarios
by using a case ship called KVLCC2. Section 4 serves as the conclusion, which engages in a
discussion concerning the distinctive features and advantages of our proposed method, as
applied to the field of ship course-keeping.

2. Methodology

The framework of the proposed P-PB controller for ship course-keeping (Figure 1)
comprises three steps:

Step (i): Nonlinear ship model. A nonlinear ship model is established based on the
MMG model. Consequently, an environmental disturbance model is introduced to simulate
ship motion under time-varying disturbance conditions.

Step (ii): Course-keeping controller design. First, the PID control is improved based
on a predictive control method. Then, the ship course-keeping controller is established by
combining the improved PID and backstepping controllers, thus combining the advantages
of both.

Step (iii): Parameter optimization of the ship course-keeping controller. The parame-
ters in the proposed controller are adopted as input, and the minimization of the cumulative
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course-keeping error is used as a fitness index. Then, the optimal control parameters for
course-keeping in a particular scenario are obtained based on PSO.

Figure 1. The framework of the proposed P-PB control method for ship course-keeping.

2.1. Nonlinear Ship Model

To simulate ship motion accurately, the ship motion model is established based on
the MMG model. Then, the environmental disturbance model is introduced to simulate
ship motion under various scenarios. A ship is typically considered a rigid body with
six degrees of freedom (DOF) in motion. However, a three-degrees of freedom (3-DOF)
ship dynamic model can be used when it comes to the control of ship motion along the
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horizontal plane [41–43]. The course-keeping controller mainly changes the ship’s motion
along the horizontal plane; therefore, this paper is based on a 3-DOF nonlinear ship model.

The establishment of a nonlinear ship model contains three steps: the establishment of
a ship motion coordinate system, kinematic modeling, and environmental disturbance modeling.

2.1.1. Ship Motion Coordinate System

The space-fixed coordinate system O0 − x0y0 and the ship-fixed coordinate system
O − xy are established, respectively, where the x0 axis points directly north and the y0 axis
points directly east. In terms of the ship-fixed system, the x and y axes point towards the
ship’s bow and starboard, respectively.

u, v, and r are the ship’s surge speed, sway speed, and yawing speed, respectively. ψ
is the ship’s course, which is defined as the angle between the x0 and x axes. ψT is the wind
direction. Finally, the ship-motion coordinate system is set up as in Figure 2.

Figure 2. Coordinate system of ship motion.

2.1.2. Kinematic Model

The MMG model divides a ship into hull, propeller, and rudder. In addition, the effect
of environmental disturbances on the ship’s motion is also considered. Thus, the motion of
a ship can be expressed as Equation (1):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxt/dt = u cos(ψ)− v sin(ψ)
dyt/dt = u sin(ψ) + v cos(ψ)
dψ/dt = r
(m + mx)

.
u − (

m + my
)
vr = XH + XP + XR + Xwind(

m + my
) .
v + (m + mx)ur = YH + YP + YR + Ywind

(IZZ + JZZ)
.
r = NH + NP + NR + Nwind

(1)

where xt and yt are the position coordinates of origin in time t in the earth-fixed coordinate
system. m is ship’s mass. mx and my are the added masses of the x and y axis directions.
IZZ is the inertia moment of the ship, JZZ is the added moment of inertia. XH , YH , and NH
are the surge force, sway force, and yaw moment acting on the ship’s hull, respectively. XP,
YP, and NP are the surge force, sway force, and yaw moment generated by the propeller.
XR, YR, and NR are the surge force, sway force, and yaw moment generated by the rudder.
Xwind, Ywind, and Nwind are the wind load in the surge, sway, and yaw direction.

The calculation method of hull fluid force is shown in Equation (2).⎧⎪⎪⎨⎪⎪⎩
XH = X(u) + Xvvv2 + Xvrvr + Xrrr2

YH = Yvv + Yrr + Y|v|v
∣∣∣v∣∣∣v + Y|v|r

∣∣∣v∣∣∣r + Y|r|r
∣∣∣r∣∣∣r

NH = Nvv + Nrr + N|v|v
∣∣∣v∣∣∣v + Nvvrv2r + Nvrrvr2

(2)

X(u), Xvv, Xvr, Xrr, Yv, Yr, Y|v|v, Y|v|r, Y|r|r, Nv, Nr, N|v|v, Nvvr, and Nvrr are the hydro-
dynamic factors, which are determined by the empirical formulas proposed by Kijima [44].
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By combining the methods proposed by Jia, Yang, and Brogliacan [45,46], the propeller
force is calculated using Equation (3):⎧⎨⎩

XP = ρn2
pD4

P(1 − tP)KT(JP)

YP = ρn2
pD4

PKT sin(arccos(u/v))/3
NP= 0.083YP

(3)

where ρ is the density of water, tP is the thrust deduction factor, DP is the propeller
diameter, JP is the propeller advanced ratio, np is the propeller revolution, and KT is the
thrust coefficient of the propeller.

Subsequently, the rudder force is determined using Equation (4) [45]:⎧⎨⎩
XR = (1 − tR)FN sin δ
YR = (1 + αH)FN cos δ
NR = (xR + αHxH)FN cos δ

(4)

where tR is the steering resistance deduction factor, αH is the rudder force increase factor,
xR is the longitudinal coordinate of rudder position, xH is the longitudinal coordinate of
the acting point of the additional lateral force, FN is the rudder normal force, and δ is the
current rudder angle.

Additionally, due to the large resistance to movement, the turning speed of the rudder
is limited [47]. Thus, the ship’s rudder movement is characterized in Equation (5).

TE
.
δ = δE − δ (5)

where TE is the time constant,
.
δ is the rudder turning speed, and δE is the command

rudder angle.

2.1.3. Environmental Disturbance Model

The operational performance of a ship is significantly vulnerable to external distur-
bances induced by wind, waves, and currents. However, a disturbance by currents mainly
changes a ship’s surge and sway speed and has less effect on its yawing moment, thus it
can be ignored when it comes to control of a ship’s course. In terms of waves, their height
and frequency are closely related to the interference of wind. Therefore, the performance of
a ship’s course-keeping controller under wind disturbance represents a control effect under
waves, to a certain extent. Moreover, it is difficult to accurately simulate the effect of wave
disturbance on a ship’s motion [48]. Consequently, the environmental disturbance model is
established based on wind disturbance.

Wind disturbance can be divided into average wind and pulse wind. Between them,
average wind is calculated according to the empirical formula in Equation (6) [49],⎧⎪⎪⎪⎨⎪⎪⎪⎩

αR = −arctan( −v−VR sin(ψT−ψ)
−u−VR cos(ψT−ψ)

)− υ

FXwind = 0.5Cx(αR)ρaV2
R AF

FYwind = 0.5Cy(αR)ρaV2
R AL

Nwind = 0.5Cm(αR)ρaV2
R ALL

(6)

where αR is the angle between the ship’s course and the wind direction; υ is the compen-
sation angle of wind; Cx(αR), Cy(αR), Cm(αR) is the wind load factor in surge, sway, and
yaw direction; ρa is the density of air; VR is the wind speed; AF, AL is the area of the ship
exposed to wind in surge and sway direction; and L is the length of ship.

Then, white noise is introduced to calculate the pulse wind, which is calculated in
Equation (7) [50]:

H(s) = 0.4198s/(s2 + 0.3638s + 0.3675) (7)

where s is the Laplace operator.
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2.2. P-PB Course-Keeping Controller Design

The PID controller and the backstepping controller have their own advantages in
various scenarios. In this paper, both the PID controller and the backstepping controller
are taken into account when building the P-PB controller; thus, the advantages of the two
controllers can be combined. The framework for the course-keeping controller is shown in
Figure 3.

Figure 3. Framework of the P-PB course-keeping controller.

The inputs and outputs are defined first in order to design the course-keeping con-
troller. The main principle of a course-keeping controller is to minimize course-keeping
error by adjusting the rudder angle. Therefore, course-keeping error and target rudder
angle are selected as the input and output of the proposed controller, respectively.

The course-keeping error is expressed in Equation (8),

e(t) = ψm − ψ (8)

where e(t) is the course-keeping error in time t, and ψm is the target course.
Then, the improved PID controller and the backstepping controller are combined to

design the P-PB controller.

2.2.1. Improved PID Controller

PID control is a simple and reliable method that is widely adopted in the motion
control of ships [22]. The basic formulation of the PID controller can be expressed as
Equation (9),

u(t) = KP[e(t) +
∫ t

0
e(t)dt/Ti + Td(de(t)/dt)] (9)

where u(t) is the output of the PID controller. KP, Ti, and Td are the proportional parameter,
integral parameter, and derivative parameter, respectively.

To integrate the PID controller with the ship’s rudder control, Equation (9) is modified
as Equation (10):

δE = δ + KP[e(t) +
∫ t

0
e(t)dt/Ti + Td(de(t)/dt)] (10)

Then, to prevent control overshooting caused by the delayed ship motion, the PID
controller is improved by introducing predictive control based on the MMG model [5,48].
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Synthesizing the simplicity and interpretation of the controller, the improved PID
controller is expressed as Equation (11),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δEP = δ + KP[e(tx3) +
∫ t

0 e(tx3)dt/Ti + Td(de(t x3

)
/dt)]

−KP[e(tx2) +
∫ t

0 e(tx2)dt/Ti + Td(de(t x2

)
/dt)] e(tx3) >c f 2e(t0)

+KP[e(tx1) +
∫ t

0 e(tx1)dt/Ti + Td(de(t x1

)
/dt)]

δEP = δ + c f 1KP[e(tx3) +
∫ t

0 e(tx3)dt/Ti + Td(de(t x3

)
/dt)]

−c f 1KP[e(tx2) +
∫ t

0 e(tx2)dt/Ti + Td(de(t x2

)
/dt)] c f 2e(t0) > e(tx3) >c f 3e(t0)

+c f 1KP[e(tx1) +
∫ t

0 e(tx1)dt/Ti + Td(de(t x1

)
/dt)]

δEP = 0 e(tx3) <c f 3e(t0)

(11)

where δEP is the target rudder angle calculated by the improved PID controller, e(tx) is the
course-keeping error predicted by the MMG model after x seconds, and c f is the control
factor with a value between 0 and 1.

2.2.2. Backstepping Controller

The formula of the backstepping controller is expressed as Equation (12),{
uBS = mBS

..
xBS + cBS

.
xBS + dBS

yBS = xBS
(12)

where mBS, cBS, and dBS are the variable parameters, uBS is the input of the controller, and
yBS is the output of the backstepping controller.

Using the set x1,BS = xBS, x2,BS =
.
xBS, Equation (12) can be changed to Equation (13).⎧⎨⎩

.
x1,BS = x2,BS.
x2,BS = 1/mBS(uBS − cBSx2,BS − dBS)
yBS = x1,BS

(13)

Next, the systematic error z1,BS is calculated.

z1,BS = yBS − yd,BS (14)

where yd,BS is the desired output.
Subsequently, the Lyapunov function V1,BS is defined in Equation (15).

V1,BS = z2
1,BS

/2 (15)

Then, the first order derivative of V1,BS can be expressed as Equation (16).

.
V1,BS = z1,BS

.
z1,BS = z1,BS(

.
yBS −

.
yd,BS) (16)

Consequently, the virtual control volume a1,BS is introduced to make
.

V1,BS ≤ 0.

a1,BS = −λ1,BSz1,BS +
.
yd,BS (17)

where λ1,BS ≥ 0 is the constant.
After that, the error variable is defined.

z2,BS =
.
yBS − a1,BS =

.
x1,BS − a1,BS = x2,BS − a1,BS (18)

Substituting Equations (17) and (18) into Equation (16), the value of
.

V1,BS.is expressed
as Equation (19).

.
V1,BS = z1,BS

.
z1,BS = z1,BS(z2,BS + a1,BS − .

yd,BS) = z1,BSz2,BS − λ1,BSz2
1,BS

(19)
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Then, set the Lyapunov function V2,BS as Equation (20).

.
V2,BS =

.
V1,BS + z1,BSz2,BS = z1,BSz2,BS

−λ1,BSz2
1,BS

+ z2,BS[(uBS − cBSx2,BS − dBS)/m − .
a1,BS]

(20)

Thus, the first order derivative of V2,BS can be calculated as Equation (21).

.
V2,BS = z1,BSz2,BS − λ1,BSz2

1,BS
+ z2,BS[(uBS − cBSx2,BS − dBS)/m − .

a1,BS]

= −(λ1,BSz2
1,BS

+ λ2,BSz2
2,BS

)
(21)

Finally, the backstepping control law uBS is determined using Equation (22).

uBS = mBS(
.
a1,BS − λ2,BSz2,BS − z1,BS) + cBSx2,BS + dBS (22)

By combining the backstepping controller with the rudder control, the improved
backstepping controller for the course-keeping of the ship [9] is shown in Equation (23),⎧⎨⎩

H(r) = (α + β)r
b = K/T
δEB = 1/b[−bH(r) + KC sin(ωe(t))]

(23)

where α, β, K, and T are the ship’s maneuvering indexes, which can be determined in
Ref [51]. KC and ω are the variable parameters of the controller. δEB is the target rudder
angle calculated by the improved backstepping controller.

The backstepping controller has the advantage of a shorter time required to approach
the target course, but its course-keeping stability is relatively poor [25]. Meanwhile, it is
less accurate under harsh environmental disturbances affected by the dependence of r.

2.2.3. Design of the P-PB Controller

The improved PID and backstepping controller are combined to establish the P-PB
controller. The main control law of the P-PB controller is designed using Equation (24),

δPPB = KwδEP + (1 − Kw)δEB (24)

where δPPB is the target rudder angle calculated by the proposed P-PB controller. Kw is the
control factor, with a value between 0 and 1.

By changing the value of Kw, the weights of the improved PID and backstepping
controllers can be adjusted adaptively. Therefore, the P-PB controller combines the features
of both controllers to achieve better control efficiency in various scenarios.

2.3. Parameter Optimization of the Ship Course-Keeping Controller

PSO was presented by Kennedy and R. Eberhart in 1994 and it is adopted as an effective
approach to solving dynamic and multi-objective optimizing problems [52]. Therefore,
PSO is adopted to optimize parameters in the proposed P-PB controller. The flowchart for
optimizing the parameters of the proposed P-PB course-keeping controller is shown in
Figure 4.

The values of KP, Ti, Td, KC, ω, and Kw are defined as the key parameters to be
optimized. To generate the particle swarm for each parameter, the population size of PSO
is set as N, the learning factors are set as c1 and c2. The inertia weight value is set as w, and
the maximum iteration number is set as T.

After initializing the population, the initial position (value) of each parameter
xPSO = [KP, Ti, Td, KC, ω, Kw] and velocity vPSO of the particle group is generated, which
makes up the initial particle.
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Figure 4. Flowchart of course-keeping controller parameter optimization.

Subsequently, the fitness function is defined to calculate the fitness value of each
particle using Equation (25):

J = 1/∑step
s=1 (ψm − ψ) (25)

where J is the fitness value, and step is the time duration of the optimization.
By using the MMG model to predict the ship’s motion state, the value of J is deter-

mined when adopting the current parameters.
Subsequently, more particles are generated and compared to find the maximum fitness

value. The position and velocity of each particle which contains different values of the
key parameters are updated as Equation (26). Then, the fitness value of each particle is
compared with the historical optimal fitness value. Then, the global optimal position g and
global optimal fitness value gbest are obtained:{

vk+1
i = wvk

i + r1c1(g − xk
i ) + r2c2(gbest − xk

i )

xk+1
i = xk

i + vk+1
i

(26)

where r1, r2 is a random value between 0 and 1, and i is the current particle number.
Finally, the value of each parameter can be continuously optimized until it meets the

termination condition, and the value of key parameters with the max fitness value can
be achieved.

3. Application of the P-PB Ship Course-Keeping Controller

3.1. Simulation Preliminaries

A ship named KVLCC2 is selected as the case ship to verify the effectiveness of the
P-PB controller. The main parameters of KVLCC2 are shown in Table 1, other parameters
are shown in Ref [53].

After establishing the nonlinear ship model of KVLCC2 in Section 2.1, the simulation
results of the turning test, with an initial ship speed of 15.5 kn/h, rudder angle of ±35◦,
and initial course of 0◦, are compared with the results of Yasukawa and Yoshimura [53]. A
comparison of ship’s trajectory is shown in Figure 5.

392



J. Mar. Sci. Eng. 2024, 12, 202

Table 1. Parameters of KVLCC2.

Parameter Value Unit

Length 320 m
Breadth 58 m

Draft 20.8 m
Displacement 312,622 m3

Open water speed 15.5 kn/h
Initial course 0 deg

Max steering speed of rudder 2.34 deg/s
Max rudder angle 35 deg

Figure 5. Comparison of ship trajectory; Yasukawa & Yoshimura, 2015 [53].

The accuracy of the ship’s turning test can be verified using the formula below [54]:

CM =
min(SD, RD)

max(SD, RD)
100% (27)

where SD is the simulation result, RD is the experimental result, and CM is the consistency
evaluation indicator.

Finally, a comparison of the ship’s turning test is shown in Table 2. The consistency
between simulation results in this study and Yasukawa [53] is 97.52%. The simulation
results are in line with the valid experimental results.
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Table 2. Comparison of simulation results.

Turning Test Ad/L(δ = 35◦) Td/L(δ = 35◦) Ad/L(δ = −35◦) Td/L(δ = −35◦)

Yasukawa & Yoshimura
(2015) [53] 3.67 3.71 3.56 3.59

Simulation 3.64 3.90 3.49 3.49
CM 99.18% 95.13% 98.03% 97.72%
CM 97.52%

Ad and Td are the advance and tactical diameter of the turning test, respectively.
To verify the efficiency of the P-PB controller under various environmental distur-

bances, simulation scenarios were established, as described in Table 3.

Table 3. Simulation scenarios for the course-keeping test.

Simulation
Scenario

Wind Speed
(m/s)

Wind
Direction (◦)

Target Course (◦)
0–900 s 900–1800 s 1800–2700 s 2700–3600 s

No wind 0 / 30 10 −5 20
Low speed wind 10 30 30 10 −5 20
High speed wind 20 30 30 10 −5 20

Then, to balance the efficiency and accuracy of PSO when optimizing the P-PB con-
troller, the main parameters of PSO were set, as described in Table 4.

Table 4. Main parameters of PSO.

Parameter Value

N 20
T 40
c1 2
c2 2
w 0.5

The change curve of the fitness value for iterations under each stage is shown in
Figure 6. The fitness value increased with each iteration and eventually stabilized in each
stage, which ensured the effectiveness and completeness of the optimization.

(a) 

Figure 6. Cont.
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(b) 

(c) 

 
(d) 

Figure 6. Change curves of fitness values for iterations in (a) 0–900, (b) 900–1800, (c) 1800–2700, and
(d) 2700–3600 s.

3.2. Comparison and Analysis of Simulation Results

The P-PB controller was valid when compared to the improved PID controllers pro-
posed by Diabac and He [22,23] and the controller based on backstepping control proposed
by Zhang [9]. The change in ship’s course under these three models and the proposed P-PB
controller is compared in various scenarios, as shown in Figure 7.
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(a) 

(b) 

(c) 

Figure 7. Comparison of the ship’s course under (a) no wind, (b) low-speed wind, and (c) high-speed
wind scenarios; Dlabac et al. (2019) [22], He et al. (2020) [23], Zhang et al. (2020) [24].
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As seen in Figure 7, all the controllers kept the ship on course under various envi-
ronmental disturbances. When comparing the four controllers, it is obvious that the P-PB
controller and the controller proposed by Dlabac [22] and Zhang [24] responded more
quickly and tracked the target course satisfactorily in the initial stage when the target
course was changing.

However, the overshoot of the backstepping controller proposed by Zhang [24] in-
creased rapidly as the environmental disturbances became harsher. This is because the
yawing speed of the ship is considered one of the inputs of the improved backstepping
controller proposed by Zhang [24]. When an environmental disturbance is lower, consider-
ation of the ship’s yawing speed is an effective way to improve the stability and accuracy
of the course-keeping controller. Conversely, when an environmental disturbance is larger,
external factors significantly interfere with the ship’s yawing speed, which causes the ship’s
course-keeping error to increase rapidly.

The proposed P-PB controller also considers the ship’s yawing speed to achieve
efficient course-keeping control when environmental disturbances are lower. Furthermore,
when environmental disturbances gradually increase, an overshoot of ship course-keeping
is avoided by adjusting the value of Kw using PSO. Therefore, a smaller course-keeping
error can be obtained under various scenarios.

The accumulated course-keeping error is compared in Figure 8.

(a) 

(b) 

Figure 8. Cont.
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(c) 

Figure 8. Comparison of the accumulated course-keeping error under (a) no wind, (b) low-speed
wind, and (c) high-speed wind scenarios; Dlabac et al. (2019) [22], He et al. (2020) [23], Zhang et al.
(2020) [24].

The mean course-keeping error, which is calculated by dividing the accumulated
course-keeping error by time, is shown in Figure 9. It illustrates the mean course-keeping
error for each controller as a percentage of the accumulated mean course-keeping error for
the four controllers, and each circle represents one percent. For example, when under a high-
speed wind scenario, the accumulated mean course-keeping error of the four controllers is
8.77◦, and the mean course-keeping error of the P-PB controller is 1.67◦, which accounts for
19.04% of the mean course-keeping error and therefore occupies 19 circles.

Figure 9. Comparison of the mean course-keeping error; Dlabac et al. (2019) [22], He et al. (2020) [23],
Zhang et al. (2020) [24].

The smaller the number of circles corresponding to the controllers, the smaller the
average error of the controllers compared to the other controllers, and therefore the more
efficient the controller is.

As indicated by Figures 7–9, it is clear that the P-PB controller and the controller
proposed by Dlabac [22] achieved course-keeping with the lowest and second-lowest
accumulated course-keeping error, respectively, throughout the simulation tests under
the three scenarios. Meanwhile, compared to the controller proposed by Dlabac [22], the
P-PB controller had a larger advantage in terms of accumulated course-keeping error when
environmental disturbances were lower.

The accumulated course-keeping error of the controller proposed by Zhang [24]
performed better under lower environmental disturbances. However, its accumulated
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course-keeping error increased significantly under extreme environmental disturbances.
The improved PID controller proposed by He performed stably in various scenarios, but
was slightly slower to reach the target course.

The course-keeping error when the ship’s course is stabilized is shown in Figure 10.

Figure 10. Comparison of the stabilized course-keeping error; Dlabac et al. (2019) [22], He et al.
(2020) [23], Zhang et al. (2020) [24].

When there was no environmental disturbance, the stabilized course-keeping error
of all four controllers was extremely small. Among them, the controller proposed by
Dlabac [22] and the P-PB controller had the lowest stabilized course-keeping error. How-
ever, with the gradual increase in environmental disturbances, the course-keeping error
of Zhang’s [24] proposed controller increased rapidly, and the errors of the P-PB and
Dlabac’s [22] proposed controllers also increased. He’s proposed controller maintained a
lower error than the other controllers under environmental disturbances.

The average rudder angle in the various scenarios is shown in Figure 11. The average
rudder angles of all ship course-keeping controllers increased when the wind disturbance
became harsher.

Figure 11. Comparison of average rudder angle; Dlabac et al. (2019) [22], He et al. (2020) [23],
Zhang et al. (2020) [24].

When comparing the four controllers, the controllers proposed by Zhang [24] and
He [23] achieved course-keeping with a smaller rudder angle under all scenarios. Con-
versely, the P-PB controller and the controller proposed by Dlabac [22] had a larger
average rudder angle and therefore required relatively more energy for control. Fur-
thermore, when comparing the above-two controllers with lower course-keeping errors,
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the P-PB controller had a relatively small average rudder angle, especially under lower
environmental disturbances.

Finally, the mean course-keeping error for the four controllers is shown in Table 5.
Compared to other controllers, the P-PB controller improved course-keeping error by 4.19%
on average.

Table 5. Course-keeping controller performance.

Course-Keeping Controller
Mean Course-Keeping Error (◦)

No Wind Low Speed Wind High Speed Wind

Dlabac et al. [22] 1.76 1.75 1.73
He et al. [23] 2.20 2.18 2.12

Zhang et al. [24] 1.88 1.88 3.23
P-PB 1.67 1.67 1.68

Improvement 5.11% 4.57% 2.89%
Average improvement 4.19%

When environmental disturbances increased, the reduction in the ship course-keeping
error of some controllers was due the fact that the disturbance matched the direction of the
ship’s course, and therefore the ship achieved the target course in a shorter period of time.

To provide a comprehensive analysis of the control effectiveness of the P-PB controller,
time-response specifications have been compared. Among them, rise time is the time
required to adjust the ship’s course to 90% of the target course, which represents the
rapidity of the controller’s response. Overshoot characterizes the maximum deviation of
the controller, and the smaller its value the better the stability of the controller. Settling
time refers to the time it takes to maintain a course-keeping error within 2% and is a key
factor of control stability. The mean value of each specification in the various scenarios is
shown in Table 6.

Table 6. Comparison of time response specifications.

Course-Keeping Controller
Time-Response Specification

Rise Time (s) Settling Time (s) Overshoot (%)

Dlabac et al. [22] 134.83 209.92 0.01
He et al. [23] 191.17 312.17 0.01

Zhang et al. [24] 186.67 195.77 5.35
P-PB 117.42 158.17 0.16

Improvement 12.91% 19.21% −2.99%
Average improvement 9.71%

As seen in Table 6, the proposed P-PB controller saw a 9.71% improvement on average
in terms of time-response specification. Analyzing the time-response specification, the
proposed controller has a faster response speed and better control stability compared to the
other controllers, providing further confirmation of the controller’s effectiveness. However,
some overshoot remains. This is attributed to the fact that the PSO-optimized controller
retains a partial dependence on r to reduce the course-keeping error.

In summary, the P-PB controller proposed in this paper can realize a stabilized course-
keeping of ships with lower error and better time-response performance, providing a new
approach for the automatic control of ships.

4. Conclusions

This study proposes a PSO-based predictive PID-backstepping controller for the
course-keeping of ships, taking target course, current course, yawing speed, and predictive
motion parameters into consideration. The proposed controller is designed based on the
predictive PID controller and backstepping controller. The parameters in the proposed
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controller are optimized via PSO. Finally, the proposed controller’s efficacy was demon-
strated by comparing it with other ship controllers in various scenarios. Comparison results
illustrate that the proposed controller can achieve the target course more quickly and more
precisely under various environmental disturbances, which provides a new approach for
the course-keeping of ships. However, the proposed method has a larger average rudder
angle, which may lead to higher energy consumption. In future research, improvements
can be made to improve energy consumption in ship course-keeping.

Although the research in this study revealed some important findings, there are still
some limitations that need to be further researched in the future. Firstly, the hydrodynamic
coefficients in this paper were mainly calculated using empirical formulas, which could be
further optimized to improve the accuracy of the ship motion model. Second, the current
study does not consider the effect of obstacles on course-keeping during navigation.
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Abstract: Cargo transfer vessels (CTVs) are designed to transfer cargo from a floating production
storage and offloading (FPSO) unit into conventional tankers. The dynamic positioning system allows
the CTV to maintain a safe position relative to the FPSO unit using a flexible cargo transmission pipe,
and the CTV tows the tanker during operating conditions. The operation mode can be considered
a synchronization tracking control problem. In this paper, a synchronization control strategy is
presented based on the virtual leader–follower configuration and an adaptive backstepping control
method. The position and heading of the following vessel are proven to be able to globally exponen-
tially converge to the virtual ship by the contraction theorem. Then, the optimization problem of the
desired thrust command from the controller is solved through an improved firefly algorithm, which
fully considers the physical characteristics of the azimuth thruster and the thrust forbidden zone
caused by hydrodynamic interference. To validate the effectiveness of the presented synchronous
following strategy and thrust allocation algorithm, a scale model experiment is carried out under
a sea state of 4 in a seakeeping basin. The experimental results show that the CTV can effectively
maintain a safe distance of 100 m with a maximum deviation of 3.78 m and an average deviation of
only 0.99 m in the wave heading 180◦, which effectively verifies that the control strategy proposed in
this paper can achieve safe and cooperative operation between the CTV and the FPSO unit. To verify
the advantages of the SAF algorithm in the thrust allocation, the SQP algorithm and PSO algorithm
are used to compare the experimental results. The SAF algorithm outperforms the SQP and PSO
algorithms in longitudinal and lateral forces, with the R-squared (R2) values of 0.9996 (yaw moment),
0.9878 (sway force), and 0.9596 (surge force) for the actual thrusts and control commands in the wave
heading 180◦. The experimental results can provide technical support to improve the safe operation
of CTVs.

Keywords: dynamic positioning; virtual leader–follower; backstepping; synchronization; contraction
theory; control allocation; model experiment

1. Introduction

With the development of deep-sea oil and gas resource development technology, a
brand-new concept of a deep-water dynamic positioning cargo transfer vessel has been
proposed. The vessel is composed of a CTV equipped with a dynamic positioning (DP)
system and a cargo transfer device onboard the CTV. The CTV performs the same role as a
tanker and maintains position within the floating production storage and offloading (FPSO)
unit. The offloading hose is passed from the FPSO to the CTV and it is connected. The
cargo is then pumped to the tanker via the CTV using booster pumps. A corresponding
safe working distance must be maintained between the CTV and the FPSO unit due to
the limitations of the transfer device. The design of a strategy to synchronously control
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the CTV and the FPSO unit under a towing state is important for improving the efficient
operation of the CTV. A schematic diagram of the CTV operation is shown in Figure 1.

 
Figure 1. Schematic diagram of CTV operation with an FPSO unit and a tanker.

During cargo transfer between the CTV and the FPSO unit, the whole operation
process can be regarded as a formation coordination control problem. At present, formation
control strategies are mainly categorized into hybrid behavior-based formation control
methods [1], virtual structure-based formation control methods [2] and leader–follower
formation control methods. In actual operation processes, leader–follower formation
control methods are widely used. Wu et al. [3] combined a leader–follower control strategy
with a path planning strategy based on an artificial potential field method to propose a
formation motion control method for unmanned surface vehicles (USVs) and designed
a set of control laws for underactuated USVs. Wang et al. [4] proposed a fixed-time
controller strategy based on the leader–follower mechanism and finite time disturbance
observer. Shojaei et al. [5] proposed a leader–follower formation control method for
underactuated surface vessels with actuator saturation. Cui et al. [6] proposed a leader–
follower formation control for multiple underactuated autonomous underwater vehicles. To
improve the tracking performance under uncertain sea conditions, a backstepping control
with compensation control was designed [7]. Witkowska et al. [8] designed a course-
keeping control system using a genetic algorithm and adaptive backstepping method. In
recent years, with the development of intelligent technology, a variety of adaptive swarm
formation control methods for unmanned vessels have emerged [9–11].

Most of the above research results are focused on underactuated control systems.
Ships equipped with DP systems are generally equipped with tunnel thrusters, azimuth
thrusters, and rudder propeller systems. When only used to control the three degrees of
freedom in the ship’s horizontal plane, the DP system is an overactuated system. Therefore,
it can simultaneously control the horizontal, longitudinal, and heading positions in the
horizontal plane. Sørensen [12] systematically summarized the DP control methods. In
recent years, various improved algorithms for H-infinity control [13], backstepping con-
trol [14], sliding mode control [15], and nonlinear model predictive control [16,17] have
emerged, and some control strategies have been applied to target point positioning models
or full-scale ship experiments [18–20]. To achieve the synchronous control of DP vessels,
Erick et al. [21] proposed a synchronization control strategy for underway replenishment,
which realized the synchronization control of the supply vessels and the supplied vessels.
However, hydrodynamic interactions between the two ships are crucial for the design of
their automatic motion control systems; Miller [22] studied the interference of the forces
and yaw moments between the two ships through the model tests. To achieve robustness
to sea conditions, a leader–follower-based formation control problem was proposed for the
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collision avoidance study of fully driven USVs, and adaptive control technology was used
to estimate the uncertain parameters of environmental disturbances [23].

At present, most of the above existing DP control methods use Lyapunov stability
theory to prove the stability of closed-loop systems [15–23]. However, the designed con-
troller method has high requirements for the system equilibrium state information. With
the emergence and perfection of contraction theory, the concept of virtual displacement
has gradually been used to solve the problem of system stability. Guttorm [24] designed
a DP vessel observer based on contraction theory, determined that the system is glob-
ally contracting, and verified the robustness of the control system by simulation. Zhang
et al. [25] designed a DP control law based on contraction theory to address DP vessels
being disturbed by the environment (such as wind, waves, and currents) and verified
that the designed adaptive backstepping controller has good robustness to sea conditions
through numerical simulation. Alamir et al. [26] proposed a nonlinear model predictive
control method based on contraction theory and verified the convergence of the closed-loop
system. Traditional DP control methods have shown poor adaptation to the wave direction
and sea conditions [20], while the backstepping method has been shown to have strong
robustness [25,27].

Due to the overactuated characteristics of the DP propulsion system, for horizontal
lateral force, longitudinal force, and yaw moment control commands, there are multiple
combinations of forces and thrust directions in the multiple thrusters. Therefore, opti-
mization techniques are usually used to obtain the optimal solution to match the expected
control commands generated by the DP controller, thereby ensuring the safe operation
of the DP vessels. Many linear and nonlinear optimal thrust allocation methods for DP
vessels have been proposed [28]. However, the constraints of the physical characteristics of
the thrusters must be considered. Therefore, in engineering applications, control allocation
is actually an optimization problem under constraint conditions [29]. The SQP method
has been widely used in DP thrust allocation due to its simplicity and efficiency [30–33].
To avoid the reduction in the thrust efficiency due to the thruster–thruster and thruster–
ship interference, most researchers reduced the problem of severe thrust loss by setting
forbidden zones [30,34,35]. A small number of researchers have introduced an efficiency
function to achieve azimuth thruster operation over 0–360 degrees with a modified SQP
algorithm [36,37]. However, for azimuth thrusters and rudders, when using the SQP al-
gorithm, Taylor expansion must be performed on the force and torque balance equations
to construct the SQP solution form, and second-order and higher-order terms must be
truncated. Therefore, the turning angle speed for azimuth thrusters or steering speed for
rudders is strictly limited. The recommended value in the literature is generally 1 deg/s for
full-scale ships [28], but the actual turning angle speed and rudder turning speed can reach
12 deg/s and 5 deg/s, respectively, making it difficult for azimuth thrusters and rudders
to respond quickly to control commands and even posing a risk of reducing the thrust
allocation accuracy. Therefore, to improve the accuracy of DP thrust allocation, the use of
algorithms (for example, genetic algorithms [38] and particle swarm optimization (PSO)
algorithms [39]) has been verified through numerical simulations. The firefly algorithm
(FA), which was developed by Xin-She Yang at Cambridge University in 2007 [40], has
a strong local search ability and can find the optimal solution in a small area [41]. This
algorithm is easy to operate, is simple to implement, has fewer parameters, and there is less
impact of parameters on the algorithm. However, due to the high dependence of the search
method on excellent individuals, the convergence speed is reduced; therefore, to achieve
engineering applications, we make some improvements to enhance the self-adaptive ability.

In view of the new concept of CTV engineering operation requirements, a DP ship
synchronous following control strategy and a thrust allocation method are proposed, and
relevant model experimental techniques are established. First, we took an FPSO unit as
the leader vessel and a CTV as the follower vessel and proposed a synchronous following
control strategy for a DP vessel based on virtual leader–follower and adaptive backstep-
ping methods. Next, we achieved feedforward compensation of the external disturbance
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caused by waves and the towing force, verified the global exponential convergence of the
position and heading angle of the DP vessel based on contraction theory, and solved the
nonuniversal parameter setting problem of the vessel DP system controller. A self-adaptive
firefly (SAF) algorithm was proposed to optimize multiple thrusters considering forbidden
zones in thrust allocation. Then, we embedded the control strategy in an independently
developed DP control system, established a model experimental setup for a CTV syn-
chronously following an FPSO unit while towing a tanker in irregular waves, and verified
the effectiveness of the synchronous following control strategy proposed in this paper.

This article is organized as follows: Section 2 presents the virtual leader–follower
strategy, low-frequency DP mathematical model, controller design, and contraction analy-
sis. Section 3 describes the scaled model, experimental environment conditions, and test
contents. Section 4 presents the experimental results of the scaled model, and the results
are analyzed and discussed. Finally, conclusions are summarized and drawn in Section 5.

2. Mathematical Model and Methods

2.1. Virtual Leader–Follower Strategy

The dynamic positioning of a vessel DP only considers the motion of three degrees of
freedom in the horizontal plane: surge, sway, and yaw. To better describe the motion of the
DP vessel in the horizontal plane, we established Earth-fixed frame and Ship-fixed frame
as the two coordinate frames of the leader vessel, virtual leader vessel, and follower vessel
(as shown in Figure 2).

mψ

sψ

rψ
mγ

Figure 2. Schematic diagram of the virtual leader–follower strategy.

In Figure 2, XEOEYE is the Earth-fixed coordinate system, XmOmYm and XsOsYs are
the Ship-fixed coordinate systems of the leader vessel and the follower vessel, respectively,
and XrOrYr is the Ship-fixed coordinate system of the virtual leader vessel.

The tracking strategy based on the virtual leader–follower method (as shown in
Figure 2) assumes a virtual FPSO unit as the leader, and the position of the virtual vessel
relative to the leader is used as the feedback information of the closed-loop DP system.
By designing the control strategy, the CTV and the FPSO unit maintain a certain target
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distance D, and the virtual leader–follower method is adopted. The position and heading
of the leader vessel and the virtual leader vessel should meet the following requirements:

ηr = ηm + R(ψm)L

R(ψm) =

⎡⎢⎢⎣
cos ψm − sin ψm 0

sin ψm cos ψm 0

0 0 1

⎤⎥⎥⎦ (1)

where ηm = [xm, ym, ψm]
T represents the position and heading of the leader vessel,

ηr = [xr, yr, ψr]
T represents the position and heading of the virtual vessel, R(ψm) is the

transformation matrix between the Earth-fixed coordinate system and the Ship-fixed coor-
dinate system, L = [D cos γm, D sin γm, 0]T, and γm is the angle between the longitudinal
direction of the leader vessel and the line connecting the centers of gravity of the leader
vessel and the virtual vessel.

Then, the speed relationship between the virtual vessel and the leader vessel is as
follows [21]:

.
ηm = R(ψm)vm
.
ηr =

.
ηm + R(ψm)S(rm)L + R(ψm)

.
L

(2)

where vm = [um, vm, rm]
T and is composed of the longitudinal and lateral velocities and

the heading angular velocity in the hull coordinate system of the leader vessel, and

S(rm) =

⎡⎣ 0 −rm 0
rm 0 0
0 0 0

⎤⎦.

2.2. Mathematical Model

The CTV operates at low speed when synchronously following the FPSO unit with
the DP system, so the nonlinear damping term is ignored, and its mathematical model can
be expressed as [12]: { .

ηs = R(ψs)vs

M
.
vs + DLvs = τ + Td

(3)

where ηs = [xs, ys, ψs]
T is composed of the trajectory and heading angle of the follower ves-

sel in the geodetic coordinate system; vs = [us, vs, rs]
T is composed of the surge, sway, and

yaw angular velocities of the follower vessel in the hull coordinate system; τ= [τx, τy, τz
]T

is composed of the resultant force and moment under the action of waves and the tow-
ing force; Td is composed of the longitudinal and lateral control forces and the heading
control moment generated by multiple thrusters; M is the inertia matrix with added mass
(M = MT > 0); and DL is the linear damping matrix.

M =

⎡⎣m − X .
u 0 0

0 m − Y .
v −Y.

r
0 −N .

v Iz − N.
r

⎤⎦, DL = −
⎡⎣Xu 0 0

0 Yv Yr
0 Nv Nr

⎤⎦ (4)

where m is the mass of the vessel; Iz is the moment of inertia; X .
u, Y .

v and Y.
r are added

masses; N.
r is the added moment of inertia; Xu, Yv, Yr, and Nr are hydrodynamic derivatives.

2.3. Controller Design

Based on contraction theory, a backstepping control strategy for the DP vessel to
synchronously follow the virtual leader vessel is designed. The main steps are as follows:
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First, define the position and heading error between the follower vessel and the virtual
vessel as

s1 = ηs − ηr (5)

From Formula (5), the time derivative of s1 is obtained as

.
s1 = R(ψs)vs − .

ηr = R(ψs)vs − (
.
ηm + R(ψm)S(rm)L + R(ψm)

.
L) (6)

Let the speed vector vs of the follower vessel be a virtual control quantity to design a
virtual control function:

α = RT(ψs)(−K1s1 +
.
ηr) (7)

where K1 = diag(k11, k12, k13) > 0 and is the design parameter matrix.
Define the speed error between the follower vessel and the virtual vessel as s2 = vs − α.

From Formulas (6) and (7), Formula (8) can be obtained:

.
s1 = R(ψs)s2 − K1s1 (8)

Second, according to Formula (3), we can obtain the time derivative of S2:

.
s2 = −M−1DLvs + M−1τ + M−1Td − .

α (9)

Then, the synchronous following control law for the DP vessel is designed as follows:

τ = M[−K2s2 + M−1DLvs − M−1T̂d +
.
α − RT(ψs)s1] (10)

where K2 = diag(k21, k22, k23) > 0 and T̂d are the estimated vectors of the disturbance of the
wave force and towing force, respectively. Then, Formula (11) can be obtained:

.
s2 = −K2s2 − RT(ψs)s1 − M−1(T̂d − Td) (11)

During actual operation, the interference of the DP vessel Td is bounded. To estimate
the bounded interference Td, the adaptive law is designed:

.
T̂d = Ms2 (12)

Based on contraction theory, the virtual dynamic connection form of Formulas (8), (11)
and (12) can be expressed as

d
dt

⎛⎝ δs1
δs2
δT̂d

⎞⎠ =

(
J11 J12
J21 0

)⎛⎝ δs1
δs2
δT̂d

⎞⎠ (13)

where the Jacobian matrix J11 =

( −K1 R(ψ)

−RT(ψ) −K2

)
, and J21 = −JT

12 = [0 −M−1].

From the above formula, the matrix J11 is uniformly negative definite, and M−1 is
smooth, so the error variables s1 and s2 globally and asymptotically converge to 0, and the
estimated value of uncertain environmental disturbance is bounded.

Finally, from Formula (A5) in the Appendix A and Formulas (7) and (10), the virtual
dynamic formula of the closed-loop control system can be obtained as

d
dt

(
δηs
δvs

)
= J

(
δηs
δvs

)
(14)
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In the formula,

J =

[
J11 J12

J21 J22

]
,

J11 = ∂[R(ψs)vs ]

∂ηT
s

,

J12 = R(ψs),

J21 = K2
∂α

∂ηT
s
+ ∂

.
α

∂ηT
s
− ∂[RT(ψs)(ηs−ηr)]

∂ηT
s

, and J22 = −K2 − ∂
.
α

∂ηT
s

.

If it can be proven that the Jacobian matrix J < 0, then all solution trajectories of the
closed-loop system exponentially converge to the desired trajectory, and the whole system
is contracting.

According to the defined state error variable, the coordinate transformation can be
obtained as [

δs1
δs2

]
= Θ

[
δηs
δvs

]
(15)

In the formula, δs1 and δηs are the virtual displacements, δs2 and δvs are the virtual
velocities, and the invertible matrix Θ is

Θ =

(
I3×3 0

−∂α/∂ηT
s I3×3

)
(16)

The transformation matrix P = ΘTΘ is

P =

⎡⎢⎣I3×3 + [ ∂α
∂ηs

]
T ∂α

∂ηs
−[ ∂α

∂ηs
]
T

− ∂α
∂ηs

I3×3

⎤⎥⎦ (17)

Formula (7) indicates that by selecting a reasonable value for the controller parameter
K1, the transformation matrix P is guaranteed to be positive definite.

From Formulas (14) and (17), we obtain

d
dt

(
δs1
δs2

)
= J̃

(
δs1
δs2

)
(18)

where the Jacobian matrix J̃= (
.

Θ + ΘJ)Θ−1 =

[
J̃11 J̃12

J̃21 J̃22

]
.

Formula (13) indicates that the error system composed of Formulas (8) and (11) is
contracting; that is, if the Jacobian matrix J̃ is uniformly negative definite, then all the
solutions of the original closed-loop system exponentially converge to a certain trajectory,
and the system is contracting, thus ensuring that the position and heading angle of the
follower vessel globally exponentially converge to and remain on those of the virtual
vessel ηs.

2.4. Thrust Allocation

The thrust allocation algorithm should be optimized for lower power consumption
and wear and tear of the thruster devices. To ensure safe operation, the ability of thrust
allocation to always generalize an optimal solution in time is very important, and can be
taken as an optimization problem with cost functions and constraints.
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The cost functions can be formulated as follows [15].

J(α, f , s) =
m

∑
i=1

( f TP f + ( f − f0)
TM( f − f0) + (α − α0)

TQ(α − α0) + sTWs) (19)

where P is a diagonal matrix, f ∈ Rn is a vector of thruster forces, α ∈ Rn is a vector of
azimuth angles at sample time k, f 0 and α0 are the force and angle at time k − 1, respectively,
and s ∈ R3 is a vector of slack variables introduced to ensure the existence of a solution.
M ∈ Rn×n and Q ∈ Rn×n are weighting matrices, and the matrix W ∈ R3×3 is significantly
larger to force the optimal solution s ≈ 0.

The equality constraint is most important to ensure that the controlled forces and
moments are produced:

s + B(α) f = T (20)

where B is the thruster configuration matrix, T = [Fx, Fy, Mz]T, Fx is the surge force, Fy is
the sway force, and Mz is the moment in the yaw direction.

Assuming that there are nf tunnel thrusters and np azimuth thrusters and that each
thruster k is located at (xi, yi), the thruster configuration matrix can be expressed as follows:

B(αi=1:n f ) =

⎛⎜⎜⎝
0

1

−yi · cos αi + xi · sin αi

⎞⎟⎟⎠, B(αi=n f +1:n f +np) =

⎛⎜⎜⎝
cos αi

sin αi

−yi · cos αi + xi · sin αi

⎞⎟⎟⎠ (21)

The physical constraints on the power limitation, saturation of the RPM input, and
turning rate of the azimuth angle can be expressed as follows:

fmin − f0 ≤ Δf ≤ fmax − f0

Δfmin ≤ Δf ≤ Δfmax

αmin − α0 ≤ Δα ≤ αmax − α0

Δαmin ≤ Δα ≤ Δαmax

sxmin ≤ sx ≤ sxmax

symin ≤ sy ≤ symax

symin ≤ sz ≤ szmax

(22)

where fmax∈ Rn is a vector of maximum thrust, fmin∈ Rn is a vector of minimum thrust,
and the maximum Δfmax∈ Rn and minimum Δfmin∈ Rn are the rates of change of thrust.
The maximum Δαmax∈ Rn and minimum Δαmin∈ Rn are the rates of change in the thrust
direction; si (i = x, y and z) denotes the slack variable.

In this paper, the above formulated optimization problem can be solved by the FA,
which was proposed by Yang for solving optimization problems [40].

In the FA, the brightness and attractiveness are two main parameters; brightness
guides the direction of fireflies and attractiveness indicates the forward momentum of
fireflies with low brightness. Since the brightness of fireflies gradually weakens with
distance, absolute and relative brightness are used for characterization.

For any two fireflies i and j in the group, the Ii represents the brightness of ith firefly.
The relative brightness Iij can be expressed as follows:

Iij(rij) = Iie
−γr2

ij

rij = ‖xi − xj
∥∥ =

√
D
∑

k=1
(xi,k − xj,k)

2
(23)
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where γ is light absorption coefficient, rij is the distance between firefly i and firefly j, D is
spatial location dimension, xi,k is the kth component of the spatial location xi of ith firefly.

The firefly’s attractiveness is defined as follows:

βij(rij) = β0e−γr2
ij (24)

where β0 is attractiveness at rij = 0.
The firefly i will be attracted to another more brighter firefly j, and the spatial location

xi is defined as:

xNiteration+1
i (t) = xNiteration

i (t) + βij × (xNiteration
j (t)− xNiteration

i (t)) + α × (rand − 1/2) (25)

where t is the sampling time, Niteration is the number of generations, and xi and xj are the
firefly i and j positions in the D-dimensional space, respectively, α is the step size factor,
and rand is a uniformly distributed random number.

To reduce the complexity of the FA and avoid the generation of local optimal solutions,
the Nth generation of the FA with strong brightness at spatial position x is selected to attract
the movement of other fireflies. While ensuring that the firefly search process is affected by
the spatial distance, the attraction model is improved to make the search direction more
reasonable. The improved attraction model is as follows:

βij(rij) = θ · β0e−γr2
ij

θ = 1 − Niteration
Nmax

(26)

where Nmax is the maximum number of generations.
In the position update formula of the standard FA, the constant step factor a will not

be conducive to the convergence of the optimal solution of the population. Therefore, to
improve the convergence of the FA, an adaptive step size factor that varies with the number
of iterations is adopted, and its expression is as follows:

αNiteration = α0(1 − e−(1− Niteration
Nmax )) (27)

The pseudocode of the thrust allocation-based SAF algorithm is shown in Algorithm 1.

Algorithm 1 SAF algorithm

Inputs:

Maximum number of iterations Nmax;
The population number Npop;
The cost functions f (x) = min{J(α, f , s)}, x = [ f1, f2, . . . , fn, α1, α2, . . . αn,]T

Initial boundary limits Lb and Ub; the dimension D, which is twice the number of thrusters.
Initial x = Lb + (Ub − Lb) × rand(D,1)
Initialize parameters α0, β0, γ

Initialize firefly population xi (i = 1, 2, . . ., Npop), number of fireflies.
Calculate the f (x), optimal solution xGbest is determined for initialize firefly population
While (Niteration << Nmax)

for i = 1: Npop

calculate the distance ri,Gbest = ‖xi − xGbest‖ =

√
D
∑

k=1

(
xi,k − xGbest,k

)2

update the position xi by Equations (25)–(27)
boundary treatment xi ∈ [xi,Lb

, xi,Ub
] xi,Lb

, xi,Ub
are the upper and lower bounds

end
obtain a new xNiteration+1

i (t)
end while
Outputs: the optimal solution xGbest(t)
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3. Test Overview

3.1. Test Objects

The test object is an 8000-ton CTV. By comprehensively considering the tank testing
and wave-making capacity, the installation and arrangement requirements of the model
thruster, and the adjustment of the center of gravity and inertia of the test model, the scale
ratio of the model is taken as 1:22. The main parameters of the CTV, FPSO unit, and tanker
are shown in Table 1. Restricted by the main scale of the basin, the actual scale ratio of the
FPSO unit model is 1:68.

Table 1. Model particulars of the CTV, FPSO unit, and tanker.

Parameter Symbol Unit FPSO Model Tanker
CTV

Full-Scale Model

Length Overall LOA m 4.1590 6.8158 89.00 4.0455

Breadth B m 0.6820 1.1461 20.00 0.9091

Depth D m 0.3320 0.5394 10.50 0.4773

Displacement � t 0.2270 1.3511 8030 0.7357

Mean draft T m 0.1310 0.2994 6.50 0.2955

The CTV is equipped with four azimuth thrusters and one tunnel thruster at the
bottom of the bow. The thrusters are simulated according to geometric similarity and
power similarity. The main parameters are shown in Table 2. The thruster numbers and
layout are shown in Figure 3.

Table 2. Main parameters of the thrusters (scale ratio is 1:22).

Parameter Unit
T1&T2 T3&T4 T5

Full-Scale Model Full-Scale Model Full-Scale Model

Thrust kN 745.56 0.0700 345.312 0.0324 107.91 0.0101

Diameter m 3.900 0.1636 2.600 0.1182 1.700 0.0773

Thrust from 0 to Tmax kN/s 33.0 0.1454 23.0 0.0101 10.80 0.0048

Azimuth angle from 0 deg
to 180 deg deg/s 12 56.28 12 56.28 / /

Figure 3. Schematic diagram of the thruster number and layout.

Before the DP model experiment, thruster-hull and thruster-thruster interaction tests
were carried out. The thrust forbidden zones are set to [−60◦, 30◦], [110◦, 150◦], [200◦, 290◦]
and [70◦, 170◦], corresponding to thrusters 1, 2, 3 and 4, respectively.
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3.2. Simulation of the Flexible Link System with Multiple Floating Bodies
3.2.1. Simulation of the Mooring System of the FPSO Unit

Because the scale ratio of the FPSO unit is different from those of the tanker and the
CTV, the stiffness of the mooring system of the FPSO unit cannot be determined according
to the scale ratio. Therefore, this test does not simulate the mooring system of the FPSO
unit and only simulates the statistical characteristics of the motion of the FPSO unit.

3.2.2. Simulation of the Mooring System of the Tanker

The tanker is connected to the CTV through two mooring cables, which are each
composed of a 150 m-long nylon rope and a 9 m-long iron chain. The cables are simulated
according to diameter similarity, weight similarity, and stiffness similarity.

3.3. Test Environment Conditions and Contents

The JONSWAP spectrum is adopted in the model test to simulate an irregular wave
environment. The JONSWAP spectral density is defined as follows:

Sζ(ω) = αH2
1/3ω4

Pω−5 exp
{
−1.25(ω/ωP)

−4
}
× γ

exp {−(
ω/ωp−1√

2σ
)

2
} (28)

where H1/3 is the significant wave height, ωp is the spectrum peak frequency, ω is the
circular wave frequency, and γ is the peak enhancement factor (for this test, γ = 2.2). When
ω < ωp, σ is 0.07, and when ω > ωp, σ is 0.09; α = 0.0624

0.230+0.0336γ−0.185/(1 .9+γ)
.

The headings against waves are defined as follows: The wave coming from the bow is
defined as 180◦ (head sea), and that coming from the starboard is defined as 90◦ (beam sea).
The significant wave height and spectral peak period combinations are listed in Table 3.

Table 3. Test contents for synchronous following control of the CTV in the towing state.

Test No. Wave Heading (
◦
)

H1/3 Tp
γ

Full-Scale (m) Model (mm) Full-Scale (s) Model (s)

F01 180
2.00 90.91 9.21 1.964 2F02 135

Irregular waves are generated by an L-type shaking plate wave generator with ap-
proximately 200 oscillating flaps.

Before the experiments, the JONSWAP spectrum of irregular waves was calibrated,
and the calibrated results (model scale) are shown in Figure 4. The significant wave height
(H1/3) and spectral peak period (Tp) are within 5% of the theoretical values under the two
headings against waves.

3.4. Test Setup

The scaled experiments are carried out in the seakeeping basin of China Ship Scientific
Research Center (CSSRC) with dimensions of 69 m × 46 m × 4 m (length × width × water
depth). The initial state of the test is set as the longitudinal tandem mode of the FPSO
unit, the CTV, and the tanker. According to the CTV operation requirements, the distance
between the stern end of the FPSO unit and the bow end of the CTV should be 4.545 m
(corresponding to 100 m at full scale), the distance between the stern end of the CTV and the
bow end of the tanker should be 6.818 m (corresponding to at full scale), and the heading
angles of the three vessels should all be 0◦. A schematic diagram and photographs of the
tank layout are shown in Figures 5 and 6, respectively.
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ω

Figure 4. Calibrated wave spectrum.

Figure 5. Schematic diagram of the FPSO unit, CTV, and tanker layout.

 

Figure 6. Photographs of the FPSO unit, CTV, and tanker in the experiment.
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4. Experimental Results and Analysis

In the experimental verification, all the results are transformed to full-scale according
to Froude number similarity. The added mass and added moment of inertia in the inertia
matrix M and the linear damping matrix DL are obtained by numerical calculation:

M =

∣∣∣∣∣∣∣∣
8.68907 × 105 0 0

0 1.44489 × 107 0

0 0 5.74462 × 109

∣∣∣∣∣∣∣∣, DL =

∣∣∣∣∣∣∣∣
5.19397 × 103 0 0

0 3.26129 × 104 −8.94123 × 103

0 5.98832 × 105 1.38939 × 107

∣∣∣∣∣∣∣∣
4.1. Simulation of the Motion Characteristics of the FPSO Unit

To ensure the successful simulation of the statistical characteristics of the FPSO unit
motion, a multifloating body model mooring test was carried out before this test (the
scale ratios of the FPSO unit, the CTV, and the tanker were all 1:80). The CTV counteracts
the influence of second-order wave forces through horizontal mooring during the model
experiment. The statistical results of the sway, surge, and yaw motions of the FPSO unit in
the multifloating body model mooring test and the synchronous following test with the
DP system are shown in Table 4. As can be seen from Table 4, the motion results of the
FPSO unit in this test are slightly larger; Figure 7 shows the time history curves of FPSO for
acceleration in the x and y directions and the angular velocity of the heading. Figure 7a,c
show the results of the synchronous following control test in the wave headings 0◦ and
135◦, respectively. Figure 7b,d show the multifloating body model mooring test in the wave
headings 0◦ and 135◦, respectively. As can be seen from Figure 7, the acceleration and
angular velocity of FPSO are obviously larger during the synchronous following test, so
the results can more effectively verify the ability of the designed synchronous following
control strategy to maintain a safe operating distance between the FPSO unit and the CTV.

Table 4. Statistical motion results of the FPSO unit under the horizontal mooring system.

Test No. Wave Heading (◦) Item
FPSO (CTV with Mooring) FPSO (CTV with DP System)

Surge (m) Sway (m) Yaw (◦) Surge (m) Sway (m) Yaw (◦)

F01 180

Max 0.815 0.342 0.05 2.442 0.528 1.863

Min −1.145 −0.798 −0.206 −1.254 −0.418 −1.147

Mean −0.008 0.002 −0.069 0.523 0.065 0.361

SD 0.543 0.072 0.035 0.710 0.155 0.386

F02 135

Max 2.529 −2.352 0.783 −2.064 −2.184 2.434

Min −4.983 −4.314 1.459 −6.533 −5.982 −2.451

Mean −1.481 −3.238 0.035 −4.268 −4.025 −0.133

SD 1.129 0.303 0.268 0.780 0.623 0.700

4.2. Analysis of the Capability of the CTV to Synchronously follow the FPSO Unit

Table 5 shows the statistical values of the sway, surge, and yaw motions of the CTV
under different wave heading conditions. All the results in the table are converted into
the full-scale vessel state, and the time–history curves of the CTV motion trajectories
and heading errors corresponding to different wave heading conditions are shown in
Figures 8 and 9.
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(a) (b) 

 

(c) (d) 

Figure 7. Time–history curves of the FPSO acceleration: (a) DP test in wave heading 180◦; (b) mooring
test in wave heading is 180◦; (c) DP test in wave heading 135◦; (d) mooring test in wave heading 135◦.

Table 5. Statistical results of the motion of the CTV synchronously following the FPSO unit.

Test No. Wave Heading Motion Unit Mean Min Max Error

F01 180◦
Yaw deg −0.55 −2.63 2.15 1.65

Surge m −1.52 −3.23 0.29 /

Sway m 0.89 −3.28 4.86 /

F02 135◦
Yaw deg 1.28 −5.89 1.04 2.45

Surge m −3.26 −14.70 7.50 /

Sway m −0.72 −13.44 8.68 /

The results in Table 5 show that when the wave heading is 180◦, the control effects for
surge and sway of the CTV are equivalent, and the average error of the heading control is
only −0.55◦. At 1400 s and 3400 s in the test (as shown in Figure 9a), the lateral tracking
error of the CTV is slightly larger since the CTV is towing the tanker, which leads to a greater
deviation in the heading. At this time, the maximum heading error of the CTV following
the FPSO unit is 1.65◦. When the wave heading is 135◦, the capability of the CTV to
synchronously follow the position and heading of the FPSO unit is slightly reduced, but the
synchronous following error of the heading is still controlled within 2.45◦, which effectively
verifies that the control strategy in this paper can achieve a synchronous following response
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of the heading motion and confirms the robustness of the control strategy to different wave
heading conditions.

 

(a) (b) 

Figure 8. Time–history curves of the CTV trajectory: (a) wave heading is 180◦; (b) wave heading
is 135◦.

(a) (b) 

Figure 9. Time–history curves of the heading tracking error of the CTV: (a) wave heading is 180◦;
(b) wave heading is 135◦.

Figure 10 shows the time–history curves of the distance between the CTV and the
FPSO unit under two wave heading conditions, 180◦ and 135◦. As observed in the figure,
when the wave heading is 180◦, the CTV and the FPSO unit can effectively maintain a safe
distance of 100 m with a maximum deviation of 3.78 m and an average deviation of only
0.99 m (95% CI = [0.96, 1.03]); when the wave heading is 135◦, due to the reduced heading
control accuracy, the distance between the CTV and the FPSO unit is slightly larger, with a
maximum deviation of 14.38 m and an average deviation of 2.53 m (95% CI = [2.42, 2.64]),
which effectively verifies that the control strategy proposed in this paper can achieve safe
and cooperative operation between the CTV and the FPSO unit.
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(a) (b) 

Figure 10. Time–history curves of the distance between the CTV and the FPSO unit: (a) wave heading
is 180◦; (b) wave heading is 135◦.

To verify the advantages of the SAF algorithm, the SQP algorithm and PSO algorithm
are used to compare the experimental results. When using the SQP algorithm, to reduce the
truncation error of second-order and higher-order terms produced by Taylor expansions,
the rotation speed of the azimuth thruster is selected as 1 deg/s (corresponding to full
scale), whereas the rotation speed for the corresponding PSO algorithm is similar to that
for the SAF algorithm, which is 12 deg/s (corresponding to full scale).

In order to demonstrate how the firefly algorithm works, consider the maximum
number of iterations Nmax = 150, the population number Npop = 60, and initialization
parameters α0 = 1, β0 = 1, γ = 0.1. Figure 11 shows the comparison results of the longitudinal,
transverse, and heading thrust allocation commands and control commands for the three
degrees of freedom in the horizontal plane under the 180◦ wave heading. Due to the
principle of heading control priority (slack variable matrix W = diag [103,103,104]), the
thrust allocation priority satisfies the heading moment control command. The optimal
solution of the yaw moment is almost identical to the control command, and due to the
small environmental force under the wave heading of 180◦, the lateral and longitudinal
control forces are also in good agreement with the control command. Figure 12 shows
the comparison results of thrust allocation when the wave heading is 135◦. Under this
condition, the wave force acting on the CTV in the lateral and yaw directions significantly
increases, and its sway, surge, and yaw motions also significantly increase, resulting in a
larger error between CTV thrust allocation commands and control commands. However,
the optimal solution and control commands for the yaw moment are still better than those
in the lateral and longitudinal directions.

To test the effectiveness of the proposed thrust allocation algorithm, R-squared (R2) is
introduced to evaluate the accuracy of the actual thrusts and control commands.

R2 = 1 −

N
∑

i=1
(x_command(i)− x_allocation(i))2

N
∑

i=1
(x_command(i)− x̂(i))2

(29)

where x_command(i) and x_allocation(i) denote the control command and actual allocation
result, respectively, and x̂(i) represents the average of the control commands. When the
allocation values perfectly match the control commands, R2 is 1.
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Figure 11. Time–history curves of the control command and thrust allocation under a 180◦ wave heading.
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Figure 12. Time–history curves of the control command and thrust allocation under a 135◦ wave heading.

Figures 13 and 14 show the accuracy and total power consumption comparisons
between the SAF algorithm proposed in this paper, the SQP algorithm and the PSO algo-
rithm. According to Figure 13a, when the wave heading is 180◦, the actual optimal torque
command issued by the propulsion system is almost identical to the control command
for the three algorithms, with R2 values of 0.9727 (SQP), 0.9993 (PSO), and 0.9996 (SAF).
The SAF algorithm outperforms the SQP and PSO algorithms in longitudinal and lateral
forces. However, compared to the SAF algorithm and PSO algorithm, the SQP algorithm is
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limited by a rotation angle speed of only 1 deg/s, resulting in a large error in lateral and
longitudinal forces. From Figure 13b, the proposed SAF algorithm has higher accuracy
under a 180◦ wave heading, while the power consumption is lower than that for the PSO
algorithm. The reason for the lower power consumption of the SQP algorithm is that the
smaller force and moment errors result in the first term of Equation (19) being smaller.
When the wave heading is 135◦, from Figure 8b, Figure 9b, and Figure 12, the wave force
and coupled motion significantly increase. Due to the principle of prioritizing heading
control, the three allocation algorithms can still meet the control requirements for the
yaw torque, and the SQP algorithm even has a slightly higher accuracy in yaw control
allocation than the PSO and SAF algorithms, with R2 values of 0.9876 (SQP), 0.9087 (PSO),
and 0.9694 (SAF). However, the accuracy of the SQP algorithm is significantly decreased
for lateral and longitudinal forces because the SQP algorithm can only achieve the optimal
solution by quickly adjusting the thrust, and the power significantly increases compared to
the PSO and SAF algorithms due to the strict limitation of the lower rotation angle speed.

(a) (b) 

Figure 13. R2 and total power comparison of different thrust allocation algorithms under a 180◦ wave
heading: (a) R2; (b) total power comparison.

(a) (b) 

Figure 14. R2 and total power comparison of different thrust allocation algorithms under a 135◦ wave
heading: (a) R2; (b) total power comparison.
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From Figures 13b and 14b, we can see that due to limitations of the SQP algorithm for
azimuth thrusters in thrust allocation and the different rotation angle speeds, comparing the
power consumption of the SQP, PSO, and SAF algorithms is no longer meaningful. Table 6
shows the total power consumption of the CTV. From Table 6, when the wave heading
is 180◦, compared with the PSO algorithm, the SAF algorithm has lower maximum and
average power consumption. When the wave direction is 135◦, due to the intensification
of coupled motion, to satisfy the yaw moment, the higher thrust allocation accuracy leads
to smaller relaxation variable errors. Although the SAF algorithm has higher accuracy,
this causes an increase in power compared to the PSO algorithm, with the maximum and
average power increased by 8.53% and 7.80%, respectively. Actually, the first and fourth
terms in Equation (19) are inherently contradictory, and the allocation accuracy and power
consumption trade-off can be solved by adjusting the matrix weight.

Table 6. Statistical results of power consumption for all thrusters of the CTV.

Wave Heading Control Allocation
Power (kW)

Max Mean SD 95% Confidence Interval on Mean

180◦
PSO 5850 2557 989 [2526, 2588]

SAF 4802 1193 734 [1170, 1216]

135◦
PSO 7541 3526 1155 [3490, 3562]

SAF 8184 3801 1489 [3755, 3847]

Tables 7 and 8 show the statistical occurrence results for the power utilization of all
thrusters under the two wave heading conditions. The results in Tables 7 and 8 show that
when the wave heading is 180◦, except for thrusters 1 and 2, the power utilization rate of
each thruster is basically within 20%; when the wave heading is 135◦, due to the increases
in the control force, moment, and allocation accuracy, the power utilization (>40%) of all
thrusters significantly increases with the SAF algorithm compared to the PSO algorithm.

Table 7. Occurrence of power utilization for each thruster of the CTV under a wave heading of 180◦.

Power
Utilization

Thrust
Allocation

Occurrence (%)

No. 1 No. 2 No. 3 No. 4 No. 5

0~20%
PSO 4.72 14.81 90.04 99.95 96.61

SAF 28.83 52.97 92.18 100.00 89.44

20~40%
PSO 17.41 20.72 8.84 0.05 1.75

SAF 40.80 33.45 6.67 0.00 5.81

40~60%
PSO 28.55 22.31 1.12 0.00 0.70

SAF 21.19 9.15 1.15 0.00 2.66

60~80%
PSO 25.31 24.56 0.00 0.00 0.47

SAF 7.48 2.27 0.00 0.00 1.07

80~100%
PSO 24.01 17.596 0 0 15.98

SAF 1.69 2.164 0 0 5.18
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Table 8. Occurrence of power utilization for each thruster of the CTV under a wave heading of 135◦.

Power
Utilization

Thrust
Allocation

Occurrence (%)

No. 1 No. 2 No. 3 No. 4 No. 5

0~20%
PSO 3.96 14.73 59.25 90.75 81.86

SAF 0.76 31.23 8.79 66.27 30.50

20~40%
PSO 9.38 23.51 28.36 8.06 6.05

SAF 3.86 17.31 27.48 10.97 16.76

40~60%
PSO 18.20 24.06 9.18 1.12 5.24

SAF 14.57 11.57 24.50 9.83 13.84

60~80%
PSO 29.35 18.64 2.16 0.08 3.62

SAF 36.13 19.42 22.81 8.24 19.29

80~100%
PSO 39.1 19.06 1.04 0 18.53

SAF 44.68 20.46 16.42 4.69 20.26

4.3. Analyzing the Motion of the Tanker When Towed by the CTV

The tanker is connected to the CTV only through the mooring cables during the oper-
ation process in which the CTV synchronously follows the FPSO unit. Figures 15 and 16
show the time–history curves of the relative position and motion of the tanker and the
CTV when the headings against waves are 180◦ and 135◦, respectively. Figure 15 shows
that when the wave heading is 180◦, the tanker moves from the initial position along the
starboard direction, and the maximum lateral and longitudinal displacements are 30.64 m
and 8.16 m, respectively. Figure 17a shows the test photograph of the slow oscillating
motion of the tanker about the initial longitudinal position after the lateral position of the
tanker is stabilized near 25 m. Figure 16 shows that when the wave heading is 135◦, the
tanker moves along the larboard direction, and the maximum lateral and longitudinal dis-
placements of the tanker are 76.65 m and 31.88 m, respectively. The tanker finally stabilizes
left and posterior to the CTV under the action of waves and the towing force, as shown by
the test photograph in Figure 17b.

 
(a) (b) 

Figure 15. Relative position and trajectory of the tanker and the CTV under a wave heading of 180◦:
(a) relative position in the fixed basin coordinate system; (b) motion trajectory.
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(a) (b) 

Figure 16. Relative position and trajectory of the tanker and the CTV under a wave heading of 135◦:
(a) relative position in the fixed basin coordinate system; (b) motion trajectory.

  
(a) (b) 

Figure 17. Test photographs of the CTV and the tanker under the towing state: (a) wave heading is
180◦; (b) wave heading is 135◦.

5. Conclusions

In this paper, an adaptive backstepping synchronous following control strategy based
on a virtual leader–follower was proposed for CTV with DP system. A proof was given
of the globally exponentially convergence of the closed-loop DP control system by the
contraction theorem. In order to generate forces and moments from the DP controller, the
thrust allocation of multiple thrusters was considered with an optimal solution method
based on the SAF algorithm.

To validate the effectiveness of the proposed control method, model experiments were
conducted in irregular waves with different headings against waves. The results verified
the capability of the synchronous following control strategy to maintain a safe distance and
heading between the FPSO unit and the CTV and clarified the motion characteristics of the
tanker under the towing state. Additionally, the results also verified that the DP adaptive
backstepping control strategy had strong robustness to different headings against waves.
When the wave heading was 180◦, the CTV could better maintain a safe working distance
from the FPSO unit compared with a wave heading of 135◦.

Then, the optimization problem of the desired control commands from the controller
was solved through the SAF algorithm, which fully considered the physical characteristics
of the azimuth thruster and the thrust forbidden zone caused by the interference between
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the thrusters and the ship. The proposed thrust allocation method could fully utilize the
rotation rate of the azimuth thruster and effectively solve the high-order truncation error
caused in the traditional SQP algorithm through Taylor expansion. When the wave heading
was 180◦, the actual optimal torque command from the SAF algorithm was almost identical
to the control command, with R2 values of 0.9596 (lateral force), 0.9878 (longitudinal force),
and 0.9996 (yaw moment), and the SAF algorithm reduced the maximum and average
power consumption compared to the PSO algorithm. When the wave heading was 135◦,
the wave force and coupled motion significantly increased; however, due to the principle
of prioritizing heading control, the SQP, PSO, and SAF allocation algorithms could still
meet the control requirements for the yaw moment. Although the power consumption was
slightly increased, at this time, the SAF allocation accuracy for the lateral and longitudinal
forces significantly increased, with R2 values of 0.8975 (lateral force), 0.6104 (longitudinal
force), and 0.9694 (yaw moment).
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Nomenclature

Abbreviation Full Name
CSSRC China Ship Scientific Research Center
DP Dynamic positioning
CTV Cargo transfer vessel
FA firefly algorithm
FPSO floating production storage and offloading
PSO particle swarm optimization
R2 R-squared
SQP Sequential Quadratic Programming
SAF self-adaptive firefly
USV unmanned surface vehicles
Symbol Description
DL linear damping matrix
H1/3 significant wave height
Iz the moment of inertia
M the mass of the vessel
N .

r added moment of inertia
Nr hydrodynamic derivative
Tp spectral peak period
X .

u added masse in x direction
Y .

v added masse in y direction
Y.

r added masses in yaw direction
Xu hydrodynamic derivative in x direction
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Yv hydrodynamic derivative in y direction
Nr hydrodynamic derivative in yaw direction
Nmax the maximum number of generations
Npop the population number
α0 the step size factor
β0 attractiveness
γ light absorption coefficient

Appendix A

Consider a nonlinear system
.
x = f (x, t) (A1)

where f (x, t) is a continuously differentiable nonlinear function and x ∈ Rn is a state vector.
Based on the concept of virtual displacement of the system trajectory, if δx denotes the
minimum virtual displacement in state x, then the virtual dynamics of system (A1) can be
expressed as

δ
.
x = (∂ f /∂x)δx (A2)

Then,

d
dt
(δxTδx) = 2δxT ∂ f

∂x
δx ≤ 2λmax(x, t)δxTδx (A3)

where the Jacobian matrix J is J = ∂ f /∂x and λmax(x, t) represents the largest eigenvalue
of the matrix (JT + J)/2.

If λmax(x, t) is uniformly negative definite, then by integrating the two ends of
Formula (A3), the length of any infinitesimal virtual displacement ‖δx‖ is found to ex-
ponentially converge to 0. If δxTδx is expressed as the squared distance of the adjacent
trajectories of the system, then all solution trajectories of system (A1) exponentially con-
verge to a certain trajectory, independent of the initial conditions of the system.

Definition A1. For the system
.
x = f (x, t), if there is a region in the state space such that

J = ∂ f /∂x is uniformly negative definite, then the region is called a contracting region.

Definition A2. For the system
.
x = f (x, t), if any two trajectories starting from different initial

conditions exponentially converge to each other, then the system is said to be contracting.

Lemma A1 ([42]). For the system
.
x = f (x, t), if there is a positive definite matrix ΘTΘ that makes

the Jacobian matrix (
.

Θ + Θ(∂ f /∂x))Θ−1 uniformly negative definite, then all solution trajectories
of the system converge to a certain trajectory, and the system is contracting.

The results of contraction theory can be extended to various connection systems, and
the contractibility of a whole system can be studied through different connection modes
of contracting subsystems. Existing connection modes include feedback connections and
hierarchical connections. In this paper, the feedback connection mode is used to design the
vessel DP contraction controller, so the feedback connection mode will be briefly introduced.

Consider two systems of different dimensions:

.
x1 = f1(x1, x2, t)
.
x2 = f2(x1, x2, t)

(A4)

If coordinate transformation δz = Θδx is used, then the following form is satisfied:

d
dt

(
δz1

δz2

)
=

(
F1 G

−GT F2

)(
δz1

δz2

)
(A5)

If each subsystem is contracting, then the whole system is contracting.
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Lemma A2 ([43]). If the virtual dynamics of system (A1) satisfy the form

d
dt

(
δx

δψ

)
=

(
∂ f /∂x G

−GT 0

)(
δx

δψ

)
(A6)

and if ∂ f /∂x is negative definite and G is smooth, then system (A1) is asymptotically stable, and ψ
is bounded.
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Abstract: Over the past few decades, unmanned surface vehicles (USV) have drawn a lot of attention.
But because of the wind, waves, currents, and other sporadic disturbances, it is challenging to
understand and collect correct data about USV dynamics. In this paper, the Modified backpropagation
neural network (BPNN) is suggested to address this issue. The experiment was conducted in the
Qinghuai River, and the receiver collected the data. The modified BPNN outperforms the conventional
BPNN in terms of ship trajectory forecasting and the rate of convergence. The updated BPNN can
accurately predict the rotational velocity during the propeller’s acceleration and stability stages at
various rpms.

Keywords: underwater surface vehicle (USV); backpropagation neural network (BPNN); additional
momentum method; adaptive learning rate method; vehicle dynamics

1. Introduction

Unmanned surface vehicles (USVs) have recently garnered significant interest from
researchers and developers. Compared to traditional manned vehicles, the USV’s ability
to operate in severely hazardous environments is one of its most remarkable advantages.
USVs can perform tasks that conventional ships cannot achieve in terrible ocean environ-
ments and other situations. At the same time, these types of ships are of great importance
for national defense security and environmental monitoring. However, controlling Un-
manned surface vehicles is a notoriously challenging task that remains poorly understood
due to various uncontrollable phenomena, including wind, wave, current, and other ran-
dom disturbances. The unpredictability and dynamic nature of these external forces render
the control of USVs particularly intricate. This is further compounded by the complex
interactions between these disturbances and the vehicle’s dynamic characteristics. To
compound the matter even further, USVs are often required to perform precise maneuvers
in cluttered environments, which requires a high level of control authority and adaptability.
To address these challenges, researchers have been exploring innovative control strategies
that can enhance USV performance in hostile environments. These strategies often combine
traditional control techniques with advanced algorithms and machine learning methods
to develop more robust and adaptive control systems. Additionally, the use of simulation
platforms has become an essential tool for testing and validating these control strategies
before deploying them in real-world scenarios. In Antonelli’s research, it has been shown
that using artificial intelligence algorithms for data processing has certain pattern recog-
nition capabilities and can be analyzed without a physical model. However, this method
currently lacks a comprehensive scientific explanation and cannot be falsified. However,
he believes that data-driven artificial intelligence algorithms are still very worthwhile to
study [1].

Numerous studies have been conducted to explore the control methods of Unmanned
Surface Vehicles (USVs). The identification of the dynamic coefficient of the unmanned
vessel plays a decisive role in the accurate motion control and automatic driving of the
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unmanned vessel, especially in the case of external interference. At present, no unmanned
vessel can have accurate control ability in complex waters, which is also one of the prob-
lems of dynamic identification of hydrodynamic coefficients. The most common technique
for handling an indescribable system from input–output data is system identification. In
the process of system identification, Nagumo and Noda utilized continuous least squares
estimation with error-correcting training [2]. Holzhuter employed recursive least square
estimation to identify ship dynamics [3]. Kallstrom and Astrom demonstrated the use
of recursive estimation of maximum likelihood in ship steering motion in 1981 [4], yield-
ing well-predicted outcomes. To anticipate motion variables, hydrodynamic force, vehicle
speed, and current direction, Yoon and Rhee suggested the extended Kalman filter approach
and modified Bryson–Frazier smoother [5]. Shin et al. combined Particle Swarm Optimiza-
tion (PSO) with an adaptive control technique to anticipate the trajectory of autonomous
surface vehicles [6]. Additionally, Selvam described a frequency domain identification
system for linear steering equations in ships’ maneuvering under calm seas [7].

Daniele’s research shows that it is very difficult to establish the dynamics model of both
USV and ROV. The system delay problem of the dynamic system and the interference of
the external environment lead to the failure of accurate control. Therefore, adaptive control
algorithms, especially data-driven algorithms, are needed to solve these problems [8].
The dynamic model of ship dynamics poses a formidable nonlinear challenge due to the
influence of wind, ocean currents, and various arbitrary disturbances. The nonlinear issue
that emerged last year was successfully addressed through the application of Artificial
Neural Networks (ANN). In order to tackle the system identification challenges posed
by large oil tankers, Rajesh and Bhattacharyya proposed an artificial neural network
approach [9]. The network was trained using the Levenberg–Marquardt algorithm, and
multiple hidden neuron densities were evaluated to determine the optimal configuration.
Oskin et al. introduced Recurrent Neural Networks (RNN) for identifying both linear and
nonlinear behaviors in ship dynamics [10]. Additionally, Pan et al. employed an effective
Neural Network (NN) method to track the movements of autonomous surface vehicles
with unknown ship dynamics [11]. This series of studies provides crucial insights and
innovative approaches for understanding and addressing the complexity of ship dynamics.

This study utilized a Back Propagation Neural Network (BPNN) to address the non-
linear dynamics problem of Autonomous Underwater Vehicles (AUVs). The benefit of the
BPNN is that it has a robust non-linear mapping capability and a flexible network topology,
making it ideally suited to the problem of vessel dynamic system identification. However,
the traditional bp neural network has the ability of self-adaptation and self-learning and
has strong nonlinear mapping ability, but it also has some defects such as slow convergence
and easy fall into the local optimal solution. The additional inertia method and the adapted
learning rate method are also chosen to improve the BPNN method in order to minimize
these shortcomings. The training data comes from actual experiments that were conducted
in the Qing-Huai river.

In order to study the motion control ability of the BPNN algorithm in USV, the
algorithm is designed to take the speed of the left and right thrusters as input and output
the surge velocity, swing velocity, rotation velocity, and trajectory through black box
calculation, which can realize the motion control solution of USV. The above parameters
are selected as input and output because these data can be obtained on the experimental
model or can be calculated. This study includes two hidden layers. Through the expert
experience method, the weight of the hidden layer is assigned, and the various parameters
are correlated.

2. USV Dynamic System

2.1. Deepsea Warriors uBoat (YL1300M)

We propose the following development requirements for the USV to be able to perform
algorithm verification in a real environment. The real ship is shown in Figure 1.
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Figure 1. The design of the YL1300M.

a. The body of the YL1300M is shaped to be more streamlined in order to reduce
resistance.

b. The YL1300M must have good stability in order for the USV to function in a freshwater
and inshore environment.

c. The vessel features a sizable storage area for carrying a variety of tools and supplies.
d. The boat’s upper deck features a sizable cover that can be used to disassemble and

repair equipment.
e. There are two electric propulsion modules in the car. Due to the lack of a rudder and

gimbaled thruster on the YL1300M, the steering motion can be produced by altering
the RPM (revolutions per minute) of the two primary thrusters.

The YuanLi-1300M measures 1.3 m in length, 0.64 m in width, and 0.55 m in height.
The vehicle is equipped with various sensors, including two differential GPS units located
at the bow and stern, respectively, as well as an electronic compass capable of measuring
position, speed, and heading angle.

2.2. USV Dynamic Model

In Marco’s paper, the rigid-body dynamics equations for the UUV are described.
He described the motion of the vehicle as an equation of six degrees of freedom. When
considering the influence of the external environment, the coupling relationship is ignored
and only the simplified uncoupling model is considered [12]. In order to characterize the
motion of the USV in a simple manner, the three degrees of freedom (surge, sway, and yaw)
in horizontal planar motion are taken into account in this work. The USV and its coordinate
frame are described in Figure 2 using the nomenclature proposed by Fossen [13].

Figure 2. A schematic representation of the USV’s differential thrust.

The u, v, and V indicate the upsurge, swing, and overall speed of the USV in a body-
fixed frame, respectively while the xi, yi denote the north and east direction of the USV in
the inertial frame, respectively. In addition, ψ and β denote the heading angle and course
angle of the USV, respectively while X represents the side slip angle.

431



J. Mar. Sci. Eng. 2024, 12, 297

The kinematic model of the USV can be expressed as follows [14]:

.
η = R(η) · v, (1)

v = (u, v, r)T , (2)

η = (xi, yi, ψ), (3)

R(η) =

⎡⎣cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤⎦, (4)

where indicates the velocity vector v, the position vector η, and the rotation matrix R(η)
that maps the vector from the object’s fixed coordinate system to the inertial coordinate
system.

The surface vehicle’s planar dynamic model can be explained as follows:

M
.
v + C(v)v + D(v)v = f , (5)

where M indicates the mass matrix, which consists of the body’s mass and included mass,
C(v) indicates the Coriolis and centripetal matrices, D(v) indicates the damping coefficient
matrix and the present matrix Equation (6). Given that the YL1300M ‘s propulsion system
is a differential thruster type, Sonnenburg et al. describe it as follows [15]:

f =

⎡⎣τX
τY
τN

⎤⎦ =

⎡⎣ Tport + Tstbd
0(

Tport − Tstbd
)

B/2

⎤⎦, (6)

where Tport and Tstbd denote the port side thruster’s thrust force and the starboard side
thruster, respectively. B the beam of the YL1300M.

Consequently, the following is an illustration of the three degrees of freedom nonlinear
dynamic motion equations:

(m − X .
u)

.
u − m(xGr2 + vr) + Y .

vvr +
Y.

r + N.
r

2
r2 + Xuu + Xu|u||u|u = τX , (7)

(m − Y .
v)

.
v + (mxG − Y.

r)
.
r + (m − X .

u)ur + Yvv + Yrr + Y|v|v|v|v + Y|r|r|r|r = τY, (8)

(mxG − N .
v)

.
v − (Izz − N.

r)
.
r + mxGur − Y .

vuv − Y.
r + N.

r
2

ur + X .
uuv + Nvv + Nrr + N|v|v|v|v + N|r|r|r|r = τN , (9)

where X(·), Y(·), and N(·) in Equations (7)–(9) represent constant hydrodynamic coefficients,
which are partial derivatives of surge, sway force, and yaw moment, respectively.

3. Neural Network

3.1. The Back Propagation Neural Network Principle

In 1986, the back propagation neural network (BPNN) was proposed by Rumelhart
and colleagues and McClelland. The input layer, hidden layer, and output layer of the
BPNN are depicted in Figure 3. The relationship between the number of the input layer,
hidden layer, and output layer may be understood using the empirical formula given by
Li et al. [16]:

M =
√

N + K + ϕ, (10)

where indicates the hidden layer’s unit number, N the input layer’s unit number, K the
output layer unit number, and ϕ a constant number that falls within the (1, 10). ϕ is set to 5.

432



J. Mar. Sci. Eng. 2024, 12, 297

Figure 3. A BP neural network.

Back propagation and forward propagation are two of the methods used in BPNN. The
outcome of the neural network can be obtained during this process to be contrasted with
the intended data; this discrepancy is regarded as an error and is employed in the backward
propagation process to generate the loss function valve. The input data is propagated from
the input layer to the output layer. Using optimization techniques, the link weights and
threshold can be changed to reduce the loss function.

As can be demonstrated in Figure 4, Assume n input signals are propagated in a neural
unit j, and the following is the way the result can be determined:

Oj = f

(
n

∑
i=1

xiwij − θj

)
, (11)

where wij represents the value of the weight coefficient of friction, θj the neural unit’s
threshold, f (·) an activation function, and the Sigmoid function are used, as shown below:

f (X) =
1

1 + exp(−X)
, (12)

Figure 4. A neural unit.

Substituting Equation (12) into Equation (11) and the output Oj can be expressed as:

Oj =
1

1 + exp
(

n
∑

i=1
xiwij − θj

) . (13)
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The neural network’s i-th output value is compared to the real value, and the difference
is known as the unit error of the output layer. Its error function is depicted below:

Ei =
1
2

k

∑
k=1

(yd,k − yk)
2, (14)

where yd,k and yk denote expected value and real value of neural unit k, respectively, within
the output layer. The entire mistake E for m samples of training is expressed as follows:

E =
1
m

i

∑
i=1

Ei. (15)

The malfunction indicator is obtained layer-by-layer via recursive propagation and
the weights will be adjusted to reduce the error. The next will show that how to adjust
weights to decrease the error. In the p-th iteration, the mistaken indioncate of the output
layer of neuronal cells unit k is as follows:

ek(p) = yd,k(p)− yk(p). (16)

Then the error will be utilized to modulate the weight in the next iteration and can be
shown as:

wjk(p + 1) = wjk(p) + Δwjk(p). (17)

However, Equation (17) is not able to maintain the accumulation of the learning
experience which means the velocity of the convergence is slow. This paper adopts the
additional momentum method, which is as follows:

wjk(p + 1) = wjk(p) + Δwjk(p) + α
[
wjk(p)− wjk(p − 1)

]
, (18)

where α denotes the rate of the momentum learning.
The adjusting part of the weight Δwjk(p) can be calculated as:

Δwjk(p) = η × yi(p)× λk(p), (19)

where η denotes the learning rate, yi(p) the output signal of neuron unit j, and λk(p) the
error gradient of neuron unit k.

The standard η is belonging to (0, 1), but the η is difficult to determine, if the η is too
large which result in generating the oscillation in the learning process while the η is too
small which cause the velocity of convergence become slowly. The adaptive learning rate
method is adopted which can be shown as follow:

η(t) = ηmax − (ηmax − ηmin)× t
tmax

, (20)

where ηmax indicates the highest rate of learning, ηmin the lowest possible rate of learning,
tmax the greatest quantity of iteration, and t the current number of iteration.

The error gradient can be calculated as:

λk(p) =
∂yk(p)
∂Xk(p)

× δk(p), (21)

where Xk(p) denotes the neural unit’s weighted input k, δk(p) the error of the neural unit k.
If neural unit k is in the output layer,

δk(p) = ek(p). (22)
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Figure 5 demonstrates the error gradient’s back-propagation process for a unit and the
error of the neuron can be written as:

δK(P) =
l

∑
i=1

(δi(p)× wki(p)), (23)

where l denotes the result of the layer’s neural unit count.

Figure 5. The procedure of mistake the gradient backpropagation for a unit.

In Equation (21):

∂yk(p)
∂Xk(p)

=
∂
{

1
1+exp[−Xk(p)]

}
∂Xk(p)

=
exp[−Xk(p)]

{1 + exp[−Xk(p)]}2 = yk(p)× [1 − yk(p)]. (24)

Substitute Equations (21)–(23) into Equation (24):
When the output layer’s neural unit k:

λk(p) = yk(p)× [1 − yk(p)]× ek(p). (25)

When the hidden layer’s neural unit k:

λk(p) = yk(p)× [1 − yk(p)]×
l

∑
i=1

δi(p)wki(p). (26)

3.2. BPNN for Dynamic Model Identification

According to Equations (7)–(9), The thruster force determines the surge velocity, sway
velocity, rotational velocity, and trajectory. The RAND function in Matlab is used to assign
random weight values and thresholds in the range of −1 to 1. The magnitudes of the
thruster forces are contingent upon the rotational velocity of the propeller. Hence, the
variables included as inputs in this study are the left RPM and right RPM, whereas the
variables considered as outputs are the surge velocity, sway velocity, rotational velocity,
and trajectory. The Levenberg–Marquardt (LM) backpropagation algorithm is utilized for
the purpose of error minimization. The LM backpropagation algorithm is a very efficient
technique utilized in neural networks and has gained significant recognition in academic
research (Hagan and Menhaj, 1994; Suri et al., 2002) [17,18]. The threshold values and
weight values are updated using the additional momentum method in conjunction with
the LM backpropagation algorithm. In the context of computer simulation, a training set
consisting of 70% of the available data is employed to train the Backpropagation Neural
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Network (BPNN), while a separate testing set comprising 30% of the data is used to evaluate
the performance of the trained BPNN.

This article uses the LM algorithm as a calculation method to minimize errors in
the improved BPNN algorithm, which is an estimation method for minimizing regres-
sion parameters in nonlinear regression. This method is a combination of the steepest
descent method and linearization method. When facing the identification of hydrodynamic
coefficients for USVs, it has better calculation speed and the ability to solve nonlinear
equations.

4. Experimental Setup and Simulation Results

In order to realize the experimental demonstration of the improved BPNN algorithm,
we prepared a USV, which is equipped with a propeller that can feedback the speed.
At the same time, it is also equipped with a wealth of sensors, including GPS, attitude
sensors, electronic compass, and other sensors, which can provide us with track, heading
Angle, speed, Roll, Pitch, Yaw, and other data. The USV ship is equipped with a radio
communication radio, which can transmit these data to the shore control software at
a frequency of 5 Hz in real time and can display and store the data in real time. The
topological relationship of the ship control system is shown in Figure 6.

Figure 6. Topology diagram of USV control system.

The investigation was carried out in Nanjing’s Qing-Huai River, as shown in Figure 7.
It is worth noting that wind and current were consistently present at this particular site.
Figure 8 displays the YL1300M expeditions throughout the Qing-Huai river. The turning
experiments for the unmanned surface vehicle were conducted by varying the revolution
speed of the propeller. The selection of distinct revolution speeds for the left and right
propellers is evident in Table 1. Initially, the vehicle came to a halt on the water, utilizing
the distinct revolutions per minute (RPM) of both the left and right propellers to push
the YL1300M. This enabled the acquisition of rotation performance data under intricate
circumstances. The neural network was trained using 70% of the available data, while the
remaining 30% was reserved for testing purposes.

Table 1. The different revolution speeds of the propeller were operated in experiments.

Left (RPM) Right (RPM) Left (RPM) Right (RPM) Left (RPM) Right (RPM)

−100 0 0 −100 −100 −100
−200 0 0 −200 −200 −200
−300 0 0 −300 −300 −300
−400 0 0 −400 −400 −400
−500 0 0 −500 −500 −500
−600 0 0 −600 −600 −600
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Table 1. Cont.

Left (RPM) Right (RPM) Left (RPM) Right (RPM) Left (RPM) Right (RPM)

−700 0 0 −700 −700 −700
−800 0 0 −800 −800 −800
−900 0 0 −900 −900 −900
−1000 0 0 −1000 −1000 −1000

100 0 0 100 100 100
200 0 0 200 200 200
300 0 0 300 300 300
400 0 0 400 400 400
500 0 0 500 500 500
600 0 0 600 600 600
700 0 0 700 700 700
800 0 0 800 800 800
900 0 0 900 900 900

1000 0 0 1000 1000 1000

 

Figure 7. The Qing-huai river in google map.

 

Figure 8. YL1300M expedition on the Qing-Huai River.

Figure 9 provides a visual representation of the YL1300M ‘s trajectory under varying
propeller revolution speeds. The insightful depiction allows us to observe how the left
and right propellers contribute to the vehicle’s movement at rotational speeds of 100 rpm,
500 rpm, and 1000 rpm. In the left column, a sequence of three images elucidates the
trajectory of the left propeller, while the right column concurrently showcases the trajectory
of the right propeller at the same rotational speeds. It becomes evident that the YL1300M‘s
path deviates from the anticipated conventional circular trajectory. The images in the
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left column exhibit the subtle nuances in the trajectory as the propeller revolution speeds
increase. At 100 rpm, the trajectory seems relatively stable, maintaining a certain symmetry.
However, as the rotational speed escalates to 500 rpm and 1000 rpm, we begin to observe
deviations in the circular path, hinting at the influence of external factors or system dynam-
ics. Interestingly, the right column reveals a complementary set of images illustrating the
trajectory under negative rotational speeds (−100 rpm, −500 rpm, and −1000 rpm). This
adds a layer of complexity to the analysis, as negative rotational speeds might introduce
counteracting forces, potentially affecting the overall stability and direction of the YL1300M.
The visual representation in Figure 8 not only captures the expected circular trajectory
but also unveils subtle deviations and nuances induced by varying propeller revolution
speeds. This nuanced analysis provides valuable insights into the dynamic behavior of
the YL1300M, shedding light on potential factors influencing its trajectory under different
operational conditions.

 

 

 

Figure 9. The trajectory of the YL1300M.
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Due to the influence of wind and current, the actual trajectory deviates from a circular
path and instead takes the form of a linear or spiral trajectory. When the propellant’s velocity
of rotation is low, the trajectory of the vehicle resembles a straight line. The lateral velocity
is significantly smaller in comparison to the velocity of the current, resulting in the current
exerting a dominant influence on the vehicle’s motion. Consequently, the ship moves in
accordance with the current, leading to a linear trajectory. When the rotational velocity
of the propeller reaches a high magnitude, the resulting path followed by the ship can be
described as a spiral progression. The surge speeds and sway speeds exceed the magnitude
of the current velocity, resulting in a ship’s motion characterized by a combination of
circular trajectory and forward movement. Furthermore, the overall trajectory of the
movement aligns with the direction of the current, as depicted in Figure 7. The predictive
trajectory determined by the modified BPNN is represented by the blue dotted lines, while
the traditional BPNN is represented by the yellow dotted lines. Table 2 demonstrates that
the modified Backpropagation Neural Network (BPNN) has superior predictive capabilities
for trajectory estimation compared to the conventional BPNN. This approach also exhibits
a strong compatibility with the actual trajectory of the vehicle in the presence of wind
and current. Furthermore, the modified backpropagation neural network (BPNN) exhibits
a higher rate of convergence compared to the original BPNN. Hence, the utilization of
the additional momentum method and adaptive learning rate method in enhancing the
BPNN yields superior results in predicting the motion of vehicles. There are three types
of track types in the experiment: smooth curve without turning, one turning circle, and
multiple turning circles. After the experimental demonstration, BPNN can still predict more
accurately in the first two working conditions, but when encountering multiple groups
of rotation or the greater the curvature, BPNN will completely predict out of control. In
contrast, the modified BPNN algorithm has better adaptability, and the effect is far superior
to the traditional BPNN.

Table 2. The standard deviation of error at different RPM.

100 RPM 500 RPM 1000 RPM

X (m) Y (m) X (m) Y (m) X (m) Y (m)

Traditional BPNN 0.055 0.033 0.139 0.151 0.147 0.325

Modified BPNN 0.048 0.028 0.121 0.147 0.133 0.287

−100 RPM −500 RPM −1000 RPM

X (m) Y (m) X (m) Y (m) X (m) Y (m)

Traditional BPNN 0.062 0.103 0.118 0.103 0.138 0.289

Modified BPNN 0.044 0.088 0.105 0.096 0.115 0.244

Figure 10 offers a comprehensive visualization of the interplay between empirical
observations and predictive data, meticulously acquired through the sophisticated applica-
tion of a refined Backpropagation Neural Network (BPNN) operating across a spectrum of
propeller revolution speeds. The deliberate alignment of the six images in Figure 9 mirrors
the arrangement in Figure 8, facilitating a detailed comparative analysis. The discernible
rhythmic behavior captured in the data is a consequence of the inherent noise introduced
during the meticulous process of data collection. In response to this challenge, the Gaussian
filter technique emerges as a pivotal tool, systematically employed to mitigate and filter
out noise from the dataset. The outcome is depicted graphically by the red line, unveiling a
nuanced narrative delineated by two distinctive phases: acceleration and stability.
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Figure 10. Real and estimated outputs of the different rotation speeds.

Within the intricate interplay of data and model predictions, it becomes evident
that the forecasted data elegantly conforms to the intricate dynamics of both acceleration
and stabilization stages. However, an analytical eye acknowledges a peak in the error
rate, reaching a maximum of 11.33%. This nuanced observation underscores the inherent
complexity of the system and hints at potential areas for refinement in the predictive
modeling process. Nevertheless, the overall accuracy of the improved Backpropagation
Neural Network (BPNN) in delineating the complete rotational speed process across the
diverse spectrum of propeller revolution speeds remains notably high, showcasing the
model’s capacity for capturing and interpreting the intricate dynamics of the propulsion
system. The data and curves in Figures 9 and 10 and Table 2 significantly show that the
improved BPNN algorithm is relatively reliable in predicting different propeller speeds
and track stability.

Transitioning to Figures 11–13, these visual representations intricately dissect the
surge velocities and sway velocities observed across varying propeller revolution speeds.
The rhythmic patterns discernible in both surge and sway velocities are attributed to the
intricate interplay of factors, intertwined with the rotational speed of the propeller. The
meticulous projection of these patterns is encapsulated by the green dotted lines, serving
as visual overlays that encapsulate the predicted values and patterns extrapolated from the
empirical data obtained under distinct propeller revolution speeds. The analysis extends to
the amplitude of the predicted values, revealing an admirable alignment with the actual
observed values. The meticulous calibration of the predictive model is further emphasized
by the recorded maximum inaccuracy rate of 8.9%. This attests to the model’s robustness,
demonstrating a commendable efficacy in navigating the complexities of forecasting surge
and sway velocities even under dynamically intricate conditions. The multifaceted analysis
presented in Figures 10–13 encapsulates the synergy between empirical data and predictive

440



J. Mar. Sci. Eng. 2024, 12, 297

modeling, shedding light on the intricate dynamics of the propulsion system under varying
operational conditions. The nuances observed in the rhythmic behavior and predictive
accuracy offer valuable insights for future refinements, emphasizing the perpetual pursuit
of precision and understanding in the realm of marine propulsion systems.

 

 

Figure 11. The surge velocities and sway velocities in left propeller and right propeller at 100 rpm
and −100 rpm.

 

 
Figure 12. The surge velocities and sway velocities in the left propeller and right propeller are at
500 rpm and −500 rpm.
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Figure 13. The surge velocities and sway velocities in left propeller and right propeller are at 1000 rpm
and −1000 rpm.

5. Conclusions

This study focused on the identification of a three-degree-of-freedom unmanned sur-
face vehicle named YL1300M. Due to the influence of wind, ocean currents, and various
unpredictable disruptions, researchers decided to employ a neural network in order to
accurately discern and analyze the dynamics of ships. The Backpropagation Neural Net-
work (BPNN) is a valuable approach for addressing complex nonlinear problems, while it
does possess certain limitations. The traditional backpropagation neural network (BPNN)
was enhanced by using the additional momentum method and the adaptive learning rate
approach. Avoiding local minima is a challenging task that can enhance the convergence
speed and precision of conventional Backpropagation Neural Networks (BPNNs). The
findings indicate:

(1) The modified BPNN exhibits enhanced convergence speed and superior ship trajectory
prediction capabilities compared to the conventional BPNN. The calculated trajectories
of the propeller at various rotational speeds exhibit a strong correlation with the actual
trajectories.

(2) The improved BPNN demonstrates effective estimation capabilities for the rotational
velocity throughout both the acceleration and stability stages at various revolutions
per minute (rpm) of the propeller. Furthermore, reliable predictions have been made
for the acceleration of an increase and sway, in comparison to their actual values.

For the dynamic coefficient of the USV, the trajectory of the receiver and the main
engine rotation speed are predicted by the improved BPNN algorithm. Compared with the
traditional BNPP algorithm, the proposed algorithm has a larger lift, but still has a higher
error when compared with the actual data of the real ship. By analysis, it is thought that
there may be unreliable data when acquiring real-time data, or the weight allocation of the
algorithm needs to be adjusted. Further studies could be made on this basis in the future.
At the same time, the improved idea of this algorithm can be extended to other engineering
fields, such as unmanned aerial vehicles, and inverted pendulums, especially in the scenes
where the coefficients of nonlinear kinematic equations need to be recognized. The future
identification algorithm based on data-driven dataless models will inevitably have more
and wider applications.
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Abstract: A fuzzy control improvement method is proposed with an integral line-of-sight (ILOS)
guidance principle to meet the needs of autonomous navigation and high-precision control of
ship trajectories. Firstly, a three-degree-of-freedom ship motion model was established with the
battery-powered container ship ZYHY LVSHUI 01 built by the COSCO Shipping Group. Secondly,
a ship path-following controller based on the ILOS algorithm was designed. To satisfy the time-
varying demand of the look-ahead distance parameters during the following process, especially
under different navigation conditions, fuzzy logic controllers were designed for different navigation
conditions to automatically adjust the look-ahead distance parameters. Thirdly, a controller was
applied that uses a five-state extended Kalman filter (EKF) to estimate the heading, speed, and
heading rate based on the ship’s motion model with the assistance of Global Navigation Satellite
System (GNSS) position measurements. This provides the necessary navigational information,
reduces the algorithm’s dependence on sensors, and improves its generalizability. Finally, path-
following experiments were carried out in the MATLAB experimental platform, and the results were
compared with different following algorithms. The simulation results showed that the new algorithm
has a better following performance, and it can maintain a smooth rudder angle output. The research
results provide a reference for the path-following control of ships.

Keywords: path following; ILOS guidance law; fuzzy control; extended Kalman filter

1. Introduction

With the fast-paced growth of the economy and trade, there has been a surge in de-
mand for freight transportation services. Waterborne transportation plays an indispensable
role in efficiently transporting goods due to its cost-effectiveness and large capacity [1].
Container ships and other large vessels, crucial for waterway transportation, are continu-
ously evolving towards digitization, autonomy, and intelligence to meet the ever-increasing
demand for trade [2]. Autonomous ship navigation technology represents a fundamental
feature of smart ships, and it also embodies the future direction of shipping technology [3].
Autonomous navigation technology needs to control the propulsion power unit according
to the current position of the ship so that the ship navigates along the predetermined route,
and ship path-following technology is critical to realizing this autonomous navigation of
the ship, meaning it has important research significance [4].

In recent studies, there have been several approaches taken to build a simulation
model for a real ship. Fossen [5] utilized a first-order model to represent the motion of the
vessel. The first-order model [6] simulates the ship’s course angle dynamics by mapping the
rudder angle to the course angle derived from the data of the ship’s maneuverability test.
Song [7] employed an integral-type Abkowitz model [8] to describe the ship’s motion. The
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Abkowitz model approximates ship hydrodynamics by considering the vessel as an entirety
and deriving third-order hydrodynamic derivatives from the Taylor expansion of motion
equations. Qu [9] used a ship motion model proposed by Fossen [10], which is represented
in the state space format and integrates hydrodynamic-component-based modeling with
control design models based on vectors and matrices. Sandeepkumar [11] used a ship
model of a KVlCC2 tanker. This modeling approach, proposed by the ship maneuvering
mathematical model group (MMG) in Japan [12], is characterized by modeling the hull,
propeller, and rudder separately and calculating their respective hydrodynamic forces.

In the study of path-following control, several researchers have suggested viable con-
trol strategies and addressed the related issues to different extents. Guo Jie [13] developed
an Active Disturbance Rejection Controller by using the Fast Non-singular Terminal Sliding
Mode. A simulation test was conducted with Dalian Maritime University’s “Yulong” ship
as the subject, which revealed that the controller could efficiently and accurately follow
both straight and curved paths. In [14], a control law for tracking the trajectory of underac-
tuated ships was developed by integrating the output redefinition method, an extended
state observer (ESO), and the dynamic inversion control method. The design accounts for
uncertainties in dynamics, external disturbances of unknown time-varying nature, and
unavailable ship velocities. Ren [15] developed a time-scale decomposition method to
solve the RRS control issue in path following. The resulting path-following performance
is more stable and smoother. Zhu Kang [16] incorporated a deep reinforcement learning
method into the LOS algorithm to suit complex control surroundings. They tested this
approach using a 7 m KVLCC2 ship model, achieving a commendable tracking effect even
for variable trajectories. Ghommam [17] developed a fuzzy-adaptive observer to estimate
the state by solely utilizing the USVs’ global position information and local measurement
of the orientation angle. Le [18] integrated the Antenna Mutation Beetle Swarm Prediction
Learning Algorithm into the line of sight (LOS) algorithm to address the ship parameter
uncertainty issue. The algorithm’s efficacy was verified through a simulation using a con-
tainer ship as the test object. Renxiang Bu [19] combined a radial basis neural network with
sliding mode control to accurately approximate the total unknown term and achieve precise
trajectory tracking control in the presence of wind and wave currents. Huang [20] proposed
an observer using internal model control (IMC), to rapidly estimate the sideslip angle in the
line-of-sight guidance law, and demonstrated the efficacy of the proposed sideslip angle
observer in enhancing the path-following accuracy. Xunwen Liu [21] introduced adaptive
neural network and event-triggered control technology to reduce the physical damage
of actuators. In recent years, linearized ship models have often been used in studies of
ship path following, but actual ships have strong model and disturbance uncertainties [22],
meaning that these models do not accurately reflect actual ship navigation. Meanwhile,
some control algorithms are designed with idealized control inputs, which assume that
theoretical values are equivalent to the real control inputs of the ship. The ship’s maneu-
verability will be influenced by physical constraints, including limitations on the ship’s
rudder angle and propeller rotation speed during the voyage. Exceeding the working range
limit or producing frequent jerks during maneuvering can result in significant physical
damage to the ship’s control mechanism. However, this approach does not align with actual
engineering practice. Most researchers have focused on improving the anti-disturbance
capability of an algorithm, but they have neglected the influence of the ship’s maneuvering
characteristics on the tracking performance under different sailing conditions. For instance,
if a ship navigates along a curvilinear or twisting course, an algorithm that functions
effectively on a straight trajectory will face issues such as intensified overshooting and
biased oscillations, resulting in dreadful tracking performance.

In this paper, an integral line-of-sight navigation method with fuzzy control of the
forward-looking distance is proposed to achieve precise path tracking in various sailing
conditions. A 700 twenty-foot equivalent unit (TEU) container ship ZYHY LVSHUI 01 that
operates on battery power, constructed by the COSCO Shipping Group, is chosen as the
control object. Ultimately, simulation and experimental results demonstrate that the motion
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controller designed for the 700 TEU container ship effectively achieves path-following
objectives under various conditions.

The main contributions and the key features of this paper are summarized as follows.
Using line-of-sight (LOS) navigation and fuzzy controllers, a ship motion controller is

designed based on the ILOS guidance method with fuzzy control of the variable forward-
looking distance. Fuzzy controllers designed for different navigational conditions can
improve the performance of the algorithm by correcting the forward-looking distance
parameter of the algorithm.

In this paper, a three-degree-of-freedom ship motion model is developed using the
sailing data of container ship ZYHY LVSHUI 01. Furthermore, the extended Kalman filter
algorithm is developed to accurately estimate speed, heading, and other states utilizing the
ship’s GNSS position information. This can enhance the general applicability of the control
algorithm and decrease its reliance on costly sensors.

The rest of this paper is organized as follows: Section 2 introduces the ship motion
model. Section 3 presents the design of the control system, including the introduction of the
ILOS navigation method and its improvement. Section 4 illustrates the control algorithm’s
effectiveness through simulation experiments. Finally, Section 5 presents the conclusion
and future work.

2. Preliminaries and Problem Statement

In this paper, a three-degree-of-freedom (DOF) mathematical model for ship ma-
neuvering is presented, which incorporates surge, sway, and heave, based on the pa-
rameters of a 700 TEU container ship ZYHY LVSHUI 01. The 700 TEU container ship is
equipped with twin engines, twin propellers, and twin rudders. See Table 1 for details of the
ship parameters.

Table 1. Ship parameters.

Parameters Values

Length 119.8 m
Draught 5.5 m

Displacement 12,600,000 kg
Rudder Area 13.02 m2

Diameter of Propeller 2.8 m
Breadth 23.6 m

Block Coefficient 0.835
Molded Depth 9 m

Aspect Ratio of Rudder 1.355
Propulsion Power 900 kW

The equation for the ship model can be expressed as⎧⎨⎩
.
x = ucosϕ + vsinϕ
.
y = usinϕ + vcosϕ
.
ϕ = r⎧⎪⎪⎨⎪⎪⎩

(m + mx)
.
u − (

m + my
)
vr = XH + XP + XR + XW + XC(

m + my
) .
v − (m + mx)ur = YH + YP + YR + YW + YC

(Izz + Jzz)
.
r = NH + NP + NR + NW + NC

T
.
δ = Kδc − δ

(1)

where ( x, y) are the position coordinates of the ship, ϕ is the heading angle, m is the ship’s
mass, mx, my is the added mass component along the respective direction, Izz is the moment
of inertia, Jzz represents the added moment of inertia, X, Y, and N are the external sway,
surge forces, and yaw moments acting on the ship in the body reference frame, and the
subscripts H, P, R, W, and C denote the forces and moments of the hull, oars, rudder, wind,
and currents applied to the ship, respectively. The kinetic parameters in the equations
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above were calculated utilizing the empirical formulas supplied in [23]. The forces and
moments on the hull are⎧⎨⎩

XH = X(u) + Xvvv2 + Xνrνr + Xrrr2

YH = Yνν + Yrr + Y|ν|ν|ν|ν + Y|ν|r|ν|r + Y|r|r|r|r
NH = Nνν + Nrr + N|ν|ν|ν|ν + Nννrν

2r + Nνrrνr2
(2)

Table 2 shows the hydrodynamic coefficients calculated with empirical equations.

Table 2. Hydrodynamic coefficients.

Parameters Values Parameters Values

Xvv −0.0519 Y|r|r −0.0126
Xνr −1.3107 × 106 Nν −0.0737
Xrr −0.065 Nr −0.0443
Yν −0.3509 N|ν|ν −0.0112
Yr −0.0399 Nννr −0.2879

Y|ν|ν −0.1937 Nνrr −0.0562
Y|ν|r −0.3299

In this paper, we maintain a constant value for the propeller speed while controlling
the ship through the manipulation of the rudder. The rudder characteristics are represented
using a first-order system [24]. The recommended rudder angle is indicated by δc, while the
current rudder angle is δ. K and T represent the control gain and time constant, respectively.
The maximum rudder angle is restricted to δ ≤ ±35◦. The forces and moments generated
by the rudder are as follows: ⎧⎨⎩

XR = (1 − tR)FNsinδ
YR = (1 + aH)FNcosδ
NR = (xR + aHxH)FNcosδ

(3)

where FN is the rudder positive pressure and the rudder parameters are as displayed in
Table 3.

Table 3. Rudder parameters.

Parameters Values

tR 0.1844
aH 0.8788
xR 60
xH −0.4835

Then, the disturbance force on the hull is divided into two parts, wind and current,
and is calculated using empirical equations. The equations below are used to calculate the
disturbance forces and moments generated by the wind and the current on the hull.⎡⎣XW

YW
NW

⎤⎦ =
1
2
ρaV2

w

⎡⎣ CX(θw)AFw
CY(θw)ALw

CN(θw)AFwL

⎤⎦ (4)

⎡⎣XC
YC
NC

⎤⎦ =
1
2
ρLdV2

C

⎡⎣ CX(θC)
CY(θC)

CN(θC)L

⎤⎦ (5)

where Vw, Vc is the relative speed of wind and current, θw, θc is the relative angle of wind
and current, ρa,ρ is the density of air and water, L is the length of the ship, d is the draft of
the ship, AFw and ALw are the wind areas of the front and side of the hull, respectively, and
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CX(θw), CY(θw), CN(θw) and CX(θC), CY(θC), CN(θC) are the wind force and current force
coefficient, generally obtained from ship testing results.

The objective of this article is to design an LOS-based path-following control scheme
for the target ship that enables it to travel the desired path with high accuracy, regardless
of model uncertainty and unknown environmental disturbances.

3. Control System Design

The basic block diagram of the control system is shown in Figure 1. The ship features
a GNSS, which obtains the ship’s current location in real-time and estimates its condition
through an extended Kalman filter. The ship’s desired heading is calculated by ILOS with
a fuzzy controller. This calculation is based on both pre-set path points and the real-time
ship position. Then, the PD controller is utilized to control the rudder rotation, such that
the ship can be guided to follow the pre-set path point.

Figure 1. Basic block diagram of control system.

3.1. ILOS Guidance Method

A commonly utilized algorithm for following a path is the line-of-sight (LOS) algo-
rithm. In Figure 2, we indicate some primary variables utilized in the ILOS algorithm.

 
Figure 2. An illustration of the integral line-of-sight guidance.
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The straight line between points Pk−1(xk−1, yk−1) and Pk(xk, yk) is the line path to
be followed. P(x, y) represents the ship’s current location while P0(x0, y0) is the point
where the ship’s location intersects the path. Then, the direction angle of the path can be
calculated using

α = atan2
(

yk − yk−1
xk − xk−1

)
(6)

Following this, we could compute the along-track and cross-track errors (ye, xe)
by using {

ye = −(x − xk)sin α + (y − yk)cos α
xe = (x − xk)cos α + (y − yk)sin α

(7)

When the along-track distance xe is less than R, the LOS algorithm goes to the next
waypoint. In the traditional LOS algorithm [10], the desired heading χ is calculated
based on

χ = α − atan2
(ye

Δ

)
(8)

where Δ is the looking-ahead distance. However, conventional LOS guidance is not
equipped to manage an environmental disturbance, such as wind or current. Accord-
ingly, Borhaug [25] proposed the ILOS algorithm:

χ = α − atan2
(

ye+κyeint
Δ

)
.
yeint =

Δye

Δ2+(ye+κyint)
2

(9)

where κ > 0 is a designed integral gain. In [26], a different version of the integral LOS
algorithm is proposed as follows:

χ = α − atan2
(

ye+κyeint
Δ

)
.
yeint =

Uye√
Δ2+(ye+κyint)

2

(10)

where U is the absolute speed. From Figure 2 with Equations (9) and (10), the integral term
indicates that the desired heading angle will be a non-zero constant when ye = 0. This
enables the use of a portion of the ship’s forward speed to counteract the effects of the flow
disturbance. Algorithm 1 provides the pseudo-code for the LOS/ILOS algorithm.

Algorithm 1: LOS/ILOS

Inputs: ship location (x, y); waypoint (wp.x,wp.y)
Output: desired heading angle χ

1. k ← 1 (initialization); set R; set LOS/ILOS parameter Δ, κ

2. Initialization starting point (xk, yk) ← (wp.x(k), wp.y(k)), and end point
(xk_next, yk_next) ← (wp.x(k + 1), wp.y(k + 1))

3. Compute the path angle α

4. Compute the along-track and cross-track errors (x_e, y_e)
5. If x_e < R_switch, then k=k+1, end
6. Compute the desired heading angle χ

If the ship’s position is far from the intended path, the accumulation of error can
easily lead to integration saturation and result in overshoot. Therefore, this study employs
a combination of the ILOS and LOS navigation methods [27], as illustrated in Figure 3.
If ye < Lpp, the controller employs the ILOS navigation method, and if ye ≥ Lpp, the
controller shall utilize the LOS navigation method.
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Figure 3. Area schematic.

3.2. Fuzzy-Rule-Based Lookahead Distance Selection Method

The performance of the ILOS algorithm can be enhanced by modifying the parameter
for lookahead distance. A shorter lookahead distance typically leads to more aggressive
steering and faster attainment of the desired path, but it may also cause unwanted oscil-
lations around it. Conversely, a longer lookahead distance results in smoother steering
that prevents such oscillations but has the disadvantage of slower convergence to the path.
The fuzzy controller is designed to dynamically adjust the forward-looking distance of the
ILOS navigation method by using fuzzy rules based on the deviation e and the difference in
the deviation Δe. The process of formulating the mapping from a given input to an output
using fuzzy logic is known as the fuzzy inference system (FIS). The fuzzy inference system
type utilized in this paper is the “Sugeno Fuzzy Inference System” [28]. The first step is to
define the inputs and outputs of the system and determine the degree to which they belong
to each corresponding fuzzy set using Gaussian membership functions. In this paper, the
inputs to the system include the deviation e = [−50, 50] and the difference in the deviation
de = [−0.3, 0.3], while the output is the look-ahead distance Δ = [100, 300]. Then, in the
second step, the center-of-area approach, also known as the center-of-gravity method, is
the most widely used defuzzification procedure in fuzzy logic control. Essentially, it is

u =
∑N

i=1 wizi

∑N
i=1 wi

(11)

where N is the number of quantization levels of the output, zi is the value of the output at
quantization level, and wi represents its membership value in the output fuzzy set. The
final step is to define fuzzy rules for different navigational conditions.

Overall, when the ship moves away, we decrease the forward-looking distance to
accelerate steering. Conversely, when the ship moves closer, we increase the forward-
looking distance to minimize overshooting. In the line condition, the target ship follows a
predetermined path on a straight course from a distant position, and the fuzzy controller
determines the motion trend of the ship using the deviation e and the difference in the
deviation de. If both the deviation e and the difference in the deviation de are positive, it
indicates that the ship is moving away from the reference path. In this case, even if e is
small, the look-ahead distance Δ needs to be reduced. Conversely, if the deviation e and the
difference in the deviation de are in opposite directions, it means that the ship is close to
the reference path. Therefore, the value of L needs to be increased appropriately to prevent
overshooting. The resulting fuzzy rule table for the line condition is shown in Table 4.

Table 5 shows the design of fuzzy rules for curvilinear conditions, which follows the
same logic as that of line conditions. In curvilinear conditions, a ship will make multiple
turns. The curvature of the route and the disturbance of the flow will cause a larger
deviation. To decrease steering bias, the ship’s lookahead distance should be reduced even
more, prompting the ship to steer more assertively and ultimately reducing steering bias.
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Table 4. Components of fuzzy rules for the line condition.

de
e

NB NM NS ZO PS PM PB

NB PVS PS PS PM PB PM PVS
NS PVS PS PM PB PM PS PVS
ZO PVS PM PS PB PM PS PVS
PS PVS PS PM PB PM PS PVS
PB PVS PM PB PM PS PVS PVS

Table 5. Components of fuzzy rules for the curvilinear condition.

de
e

NB NM NS ZO PS PM PB

NB PVS PVS PVS PS PVS PVS PVS
NS PVS PS PM PM PM PS PVS
ZO PVS PM PS PB PM PS PVS
PS PVS PS PM PM PM PS PVS
PB PVS PVS PVS PS PVS PVS PVS

In a turning condition, the ship’s heading angle is constantly adjusted, resulting in
changing environmental disturbances and deviations that make it difficult for the error to
converge to zero. To counter the effects of environmental disturbances, the change in the
difference in the deviation de determines the magnitude of the disturbances and adjusts the
lookahead distance dynamically. The ultimate components of the fuzzy rules are shown
in Table 6.

Table 6. Components of fuzzy rules for the turning condition.

de
e

NB NM NS ZO PS PM PB

NB PVS PVS PS PS PB PM PVS
NS PVS PS PM PM PM PS PVS
ZO PVS PS PS PB PS PS PVS
PS PVS PS PM PM PM PS PVS
PB PVS PM PB PS PS PVS PVS

3.3. Extended Kalman Filter

Researchers sometimes assume that the ship navigation subsystem is available as the
perception system, and that the ship control system can access the necessary information
directly. To obtain precise navigational information, such as speed and course, ships
require costly sensory equipment. So, to improve the generalizability of control algorithms
and eliminate the need for sensing equipment, it is necessary to accurately estimate the
information required for control. To achieve a precise estimation of variables such as
speed and direction and enhance the robustness of the algorithm, in this study, a five-state
extended Kalman filter algorithm [29] is employed to estimate the ship’s speed, course
angle, and other variables utilizing positional data from the GNSS. The dynamics of a ship
following a path can be modeled by using a combination of the CV and CA models [30,31]
according to ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

.
xn

= Ucos(χ)
.
yn

= Usin(χ)
.

U = −α1U + ω1.
χ = ωχ.
ωχ = −α2ωχ + ω2

(12)

451



J. Mar. Sci. Eng. 2024, 12, 586

where (xn, yn) is the north-east position of a ship, ω1 and ω2 are Gaussian white-noise
processes, and two constants (α1,α2) from the Singer model [32] have been incorporated
into the model so that U and ωχ converge to zero during stationkeeping [33]. The discrete
form of the equation is ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xn[k + 1] = xn[k] + hU[k]sin(χ[k])
yn[k + 1] = yn[k] + hU[k]sin(χ[k])
U[k + 1] = (1 − hα1)U[k] + hω1[k]
χ[k + 1] = χ[k] + hω1[k]
ωχ[k + 1] = (1 − hα2)ωχ[k] + hω2[k]

(13)

where h is the sampling time. Then, the GNSS measurement equations are{
y1 = xn + ε1
y2 = yn + ε2

(14)

where ε1 and ε2 are Gaussian white-noise measurement noise. The discrete-time forms are{
y1[k] = xn[k] + ε1[k]
y2[k] = yn[k] + ε2[k]

(15)

The discrete-time state–space model becomes

x[k + 1] =Adx[k] + Edω[k]
y[k] =Cdx[k] + ε[k]

(16)

where x = [xn, yn, U, χ, ωχ]
T , y = [xn, yn]T , ω = [ω1, ω2]

T , and

Ad =

⎡⎢⎢⎢⎢⎣
1 0 cos(χ̂)h −hÛ[k]sin(χ̂) 0
0 1 sin(χ̂)h hÛ[k]cos(χ̂) 0
0 0 1 − hα1 0 0
0 0 0 1 h
0 0 0 0 1 − hα2

⎤⎥⎥⎥⎥⎦

Ed =

⎡⎢⎢⎢⎢⎣
0 0
0 0
h 0
0 0
0 h

⎤⎥⎥⎥⎥⎦, Cd =

[
1 0 0 0 0
0 1 0 0 0

] (17)

Extended Kalman filter algorithms based on motion models then become [33]
Initial values:

x̂−[0] = x0

P̂
−
[0] = E

[(
x[0]− x̂−[0]

)(
x[0]− x̂−[0]

)T
]
= P0

(18)

Kalman filter gain:

K[k] = P̂
−
[k]CT

d [k]
(

Cd[k]P̂
−
[k]CT

d [k] + Rd[ k])
−1 (19)

Corrector:

x̂[k] = x̂−[k] + K[k]
(
y[k]− h

(
x̂−[k]

))
P̂[k] = (I − K[k]Cd[k])P̂

−
[k](I − K[k]Cd[k])

T + K[k]Rd[k]KT[k]
(20)

Predictor:
x̂−[k + 1] = Adx̂[k] + Bdu[k]

P̂
−
[k + 1] = AdP̂[k]AT

d + EdQd[k]E
T
d

(21)
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where h
(
x̂−[k]

)
= Cd[k]x̂

−[k], and where Qd[k]and Rd[k] are the process covariance and
measurement matrices, respectively.

4. Simulations

In this section, the 700ETU motion model is used as the test object to verify the
effectiveness of the modified ILOS algorithm. The motion mathematical model’s dynamic
parameters are extensively outlined in Section 2. The ship motion model and Kalman
filter estimation algorithm were tested using the Zig-Zag and turning tests. Simulation
tests were also performed using the traditional LOS algorithm, Borhaug’s ILOS algorithm,
Lekkas’ ILOS algorithm, and the modified ILOS algorithm, respectively, to demonstrate the
advantages of the modified ILOS algorithm. The test algorithms utilized the PD controller
for heading control, while the other three control algorithms used a fixed lookahead
distance parameter, which was set to twice the length of the ship.

4.1. Test Simulation Model

In this section of our work, the Zig-Zag test and turning test were conducted to verify
the maneuverability and applicability of the 700 TEU container ship simulation model. In
addition, the extended Kalman filter from Section 3 was used for parameter estimation
during the test.

First, the 20◦/20◦ Zig-Zag test procedure involves the following steps: (1) Initially,
the container ship is sailing at a speed of 12 n mile/h (about 6 m/s). After approaching
steadily, it rapidly steers 20◦ to starboard and maintains the rudder angle. (2) When the
ship’s heading is 20◦ off the initial course, the rudder is rapidly turned to the port side at
20◦ and maintained. (3) Finally, this process is repeated until the end of the test. In Figure 4,
the test results show that the first overshoot angle is about 4.5◦ which is in accordance with
the maneuvering standards. This also confirms that the EKF can estimate the speed and
course angle with great precision during the Zig-Zag test.

  

(a) (b) (c) 

Figure 4. The Zig-Zag simulation test: (a) speed estimate; (b) ship’s trajectory; (c) course estimate.

For the turning test, the process begins with the ship maintaining a constant speed of
12 n mile/h (about 6 m/s). Next, the rudder is turned to the maximum right angle of 35◦
and remains in this position until the ship completes a full turning circle beyond 360◦.

Figure 5 shows that in the turning test, the ship’s advance distance (Ad) at 90◦ is
approximately 323 m, and the tactical diameter distance (DT) at 180◦ is 616 m. It is
important to note that the Ad of the turning circle is less than three times the Lpp (length of
perpendicular) of the ship, which is about 120 m; and the DT of the turning circle is about
six times the Lpp. During the turning test, the EKF obtains accurate estimates of the speed
and the course angle.
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(a) (b) (c) 

Figure 5. The turning simulation test: (a) speed estimate; (b) ship’s trajectory; (c) course estimate.

From the results of the tests above, it can be concluded that the vessel has good
maneuverability, while the performance of the EKF is generally acceptable for engineer-
ing application.

4.2. Line Path-following Test

In the line path-following test, the desired path begins at the coordinates (1500, 0) and
concludes at (1500, 9000). The ship’s initial position is (0, 0) and it is heading east. The
ship’s speed is set at 10 n mile/h, while the wind speed is 1.5 m/s with a wind angle of 45◦,
and the current speed is 2.2 m/s with a current angle of 45◦. The simulation results using
the modified ILOS algorithm are illustrated by the red line in Figure 6. Figure 6a,b show
that the ship under the modified ILOS algorithm can follow the reference path with satis-
factory control performance. The algorithm’s final following error is 1 m, with only 5 m of
overshoot during the following process. In Figure 6c,d, the controlled ship displays a more
reasonable and smooth change in rudder angle and speed. Moreover, the simulation results
under the other three algorithms are also shown in Figure 6. Figure 6b illustrates that the
traditional LOS algorithm is susceptible to environmental disturbances, resulting in a fixed
error of approximately 15 m that cannot be eliminated. Meanwhile, the rest of the ILOS
algorithms offset the influence of the environmental interference, and the final convergence
error reaches within 1 m. However, the two ILOS algorithms produce overshoots of 117 m
and 22 m under the influence of the fixed lookahead parameters and the integral term,
respectively. Then, Figure 6c,d show that the control inputs of the other algorithms for
the rudder angle have reached the maximum limit of the rudder, resulting in a significant
reduction in speed. Consequently, the simulation comparison results indicate that the pro-
posed algorithm can achieve a satisfactory following performance. Moreover, it maintains a
reasonable rudder angle and speed. Table 7 compares the performance metrics of different
algorithms, including the overshooting, the final following error, and the time required for
the error to converge. The modified algorithm has improved convergence speed, reduced
tracking error, and significantly decreased overshooting during the convergence process.

Table 7. Comparison of line path-following performance.

Overshooting/m Errors/m Time/s

LOS none 15 300
Borhaug’s ILOS 117 1 190
Lekkas’s ILOS 22 1 200
Modified ILOS 5 1 200
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(a) (b) 

  

(c) (d) 

Figure 6. Line path-following simulation results: (a) path-following performance; (b) cross-tracking
errors; (c) rudder angles; (d) speeds.

4.3. Curvilinear Path-Following Test

In the curvilinear path-following test, the reference path is{
X = 500a

Y = 500 cos(a)
(22)

where a = [0, 4π], the ship’s initial position is (−100, 500), and it is heading east. The
ship’s speed is set at 10 n mile/h, while the wind speed is 1.5 m/s with a wind angle of
45◦, and the current speed is 2.2 m/s with a current angle of 45◦. The simulation results
using the modified ILOS algorithm are illustrated by the red line in Figure 7. Figure 7a
shows the performances of the four algorithms, which are all capable of following the
reference path. Based on Figure 7b it can be observed that the proposed algorithm has
the smoothest convergence process, completing convergence in 220 s with a following
error of 1 m. Figure 7c,d exemplify the changes in the rudder angle and ship speed during
the following process. The proposed algorithm can maintain stability during the ship’s
multiple course adjustments by adjusting the lookahead distance through the fuzzy rule.

In Figure 7c, the regulation of the rudder angle displays minimal fluctuations, indi-
cating a consistent and stable control. In Figure 7d, the ship’s speed shows a steady cyclic
variation. Table 8 presents a comparison of the performance indices of the algorithms.
It can be observed that the proposed algorithm has the smoothest convergence process,
completing convergence in 220 s with a following error of 1 m. The proposed modified
ILOS algorithm can maintain stability during the ship’s multiple course adjustments by
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adjusting the lookahead distance through the fuzzy rule. This contrasts with the other
algorithms, which produce large jitter due to heading changes.

 

(a) (b) 

 
(c) (d) 

Figure 7. Curvilinear path-following simulation results: (a) path-following performance; (b) cross-
tracking errors; (c) rudder angles; (d) speeds.

Table 8. Comparison of Curvilinear path-following performance.

Overshooting/m Errors/m Time/s

LOS 7.5 8 1160
Borhaug’s ILOS 9.6 8 580
Lekkas’s ILOS 8.3 4 190
Modified ILOS 4.2 1 220

4.4. Turning Path-Following Test

In the turning path-following test, the reference path is{
X = 1500sin(a)

Y = 1500 cos(a)
(23)

where a = [0, 4π], the ship’s initial position is (−100, 1500), and it is heading east. The
ship’s speed is set at 10 n mile/h, while the wind speed was 1.5 m/s with a wind angle
of 45◦, and the current speed is 2.2 m/s with a current angle of 45◦. The simulation
results are shown in Figure 8 and the performance quantification indices are summarized
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in Table 9. Figure 8a shows that the proposed algorithm can drive the ship along the
desired path with a high-precision process. Figure 8b shows that the proposed algorithm
can converge the error quickly, whereas the other algorithm has an obvious oscillation
during the process. Under turning conditions, the ship is subject to continuously changing
environmental disturbances and the influence of path curvature. This makes a portion of
the following error difficult to converge. The LOS algorithm conventionally has a constant
following error of 7 m when following the reference slewing trajectory and is unable to
converge. While Borhaug’s ILOS algorithm can slowly reduce the following error to 3 m
in 2000 s under the effect of the integral term, Lekkas’s ILOS algorithm has a much faster
error convergence and converges the following error to 1 m in 1500 s. The algorithm
mentioned above cannot be adjusted according to the actual navigation situation as it uses
a fixed lookahead distance parameter. Therefore, there is still room for improvement in
its performance. The fuzzy rule enables the algorithm to use lower lookahead parameters
during turning conditions compared to straight line conditions. This prompts the ship to
perform more aggressive steering to eliminate errors. The following error is reduced to
1 m at 500 s without generating unstable oscillations. In Figure 8c,d, the controlled ship
displays a more reasonable and smooth change in rudder angle and speed. Hence, in this
case, the modified ILOS algorithm path-following control method is more effective and
robust according to these simulation results.

(a) (b) 

  
(c) (d) 

Figure 8. Turning path-following simulation results: (a) path-following performance; (b) cross-
tracking errors; (c) rudder angles; (d) speeds.
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Table 9. Comparison of Turning path-following performance.

Overshooting/m Errors/m Time/s

LOS 7.9 7 2000
Borhaug’s ILOS 7.9 3 2000
Lekkas’s ILOS 7.8 1 1500
Modified ILOS 7.5 1 500

5. Conclusions

In this paper, a fuzzy-controlled-variable forward-looking-distance ILOS guidance law
has been presented to meet the needs of autonomous ship navigation and high-precision
ship trajectory control. Fuzzy rules designed for various navigation conditions can im-
prove the accuracy and convergence speed by adjusting the algorithm’s lookahead distance
parameter. In addition, the algorithm does not rely on accurate ship models or sensing
devices, but rather utilizes the EKF algorithm to estimate the ship’s state via GNSS position
data, making the algorithm both generalizable and universal. Simulation and experimental
results have demonstrated that that a ship under the modified ILOS algorithm has sat-
isfactory following results for line, curvilinear, and turning paths, and it performs more
reasonable maneuvers compared to when using other algorithms. Meanwhile, it was con-
cluded from Tables 7–9 that the proposed control algorithm can converge the tracking error
to within 1 m under the three working conditions with high tracking accuracy, and it also
has a faster and better convergence process compared to other comparative algorithms. The
results attest to its comprehensive advantages, which are of great significance for achieving
autonomous navigation and high-precision control of ship trajectories.

In future research, obstacles and automatic collision avoidance should be consid-
ered in path following. Furthermore, since the ship motion model is calculated by using
mainly empirical formulas, it can be further optimized to improve the accuracy of the ship
motion model.
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Abstract: The unmanned surface vessel (USV) is an emerging marine tool with its advantages of
automation and intelligence in recent years; the good trajectory tracking performance is an important
capability. This paper proposes a novel prescribed performance fixed-time fault-tolerant control
scheme for an USV with model parameter uncertainties, unknown external disturbances, and actuator
faults, based on an improved fixed-time disturbances observer. Firstly, the proposed observer can not
only accurately and quickly estimate and compensate the lumped nonlinearity, including actuator
faults, but also reduce the chattering phenomenon by introducing the hyperbolic tangent function.
Then, under the framework of prescribed performance control, a prescribed performance fault-tolerant
controller is designed based on a nonsingular fixed-time sliding mode surface, which guarantees the
transient and steady-state performance of an USV under actuator faults and meets the prescribed
tracking performance requirements. In addition, it is proved that the closed-loop control system has
fixed-time stability according to Lyapunov’s theory. Finally, upon conducting numerical simulations
and comparing the proposed control scheme with the SMC and the finite-time NFTSMC scheme,
it is evident that the absolute error tracking performance index of the proposed control scheme is
significantly lower, thus indicating its superior accuracy.

Keywords: unmanned surface vessel; fixed-time; fault-tolerant control; prescribed tracking
performance

1. Introduction

In recent years, the unmanned surface vessel (USV) has been extensively utilized in
ocean sampling, ocean mapping, and maritime rescue owing to its compact size, exceptional
maneuverability, and effective concealment [1]. A requirement of the USV in performing
the above tasks is to be able to arrive and remain precisely on the desired trajectory within
the specified time. However, there are significant challenges in achieving precise trajectory
tracking for the USV. Firstly, the dynamics of the USV exhibit highly nonlinear behavior.
Secondly, the exact model of the USV system is unknown, and working conditions are
often harshly affected by sea winds, waves, and currents [2]. Accurate trajectory tracking is
crucial for the safe and efficient autonomous operation of the USV in different scenarios
and thus has important research value and practical significance.

At present, the trajectory tracking control methods of the USV mainly include the
following: PID control [3], backstepping control [4,5], fuzzy control [6], adaptive control [7,8],
and sliding mode control (SMC) [9–11]. In particular, SMC has been proven to be highly
robust to uncertainties and disturbances in nonlinear systems, and it is widely used in
ship trajectory tracking control. For example, by introducing a disturbance observer to
estimate the disturbance and compensate it in the control law and combining it with SMC,
the trajectory tracking of the USV was implemented in [12]. Similarly, Piao et al. [13]
proposed an adaptive backstepping SMC strategy that used the adaptive law to estimate
the bounds of the external unknown disturbance. But the upper bound of the disturbance
is known and constant. Furthermore, Chen et al. [14] designed an adaptive sliding mode
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controller by combining radial basis function neural networks (RBFNNs), which were used
to approximate and compensate modeling uncertainties, and a disturbance observer to
estimate and compensate external disturbances. However, these SMC methods all choose
a linear sliding surface, which can only guarantee that the tracking error converges to
zero asymptotically, and the convergence rate can be adjusted by adjusting the sliding
mode surface parameters, while the system tracking error cannot converge to zero in finite
time regardless.

In order to speed up the error convergence, finite-time control methods [15–17] have
been widely used in the field of USV motion control. Also of relevance, Xu et al. [18]
proposed a nonsingular fast terminal SMC scheme based on a finite-time extended state
observer (ESO). In [19], the universal approximation property of RBFNNs was used to
estimate the uncertainty of the system, and event-triggered control (ETC) and finite-time
control were combined to solve the problem of system uncertainty and asymmetric input
saturation. Then, Rodriguez et al. [20] designed a finite-time control strategy by combining
adaptive boundary estimation and the integral SMC method. Furthermore, Huang et al. [21]
used RBFNNs to approximate the uncertain system dynamics and used the minimum
learning parameter (MLP) algorithm to reduce the computational complexity. At the same
time, by introducing a finite-time SMC algorithm, the finite-time formation control of the
USV was realized. Notably, it should be pointed out that the tracking error convergence
time in the above control method depends on the control parameters and the initial state of
the system, which indicates that when the control parameters are unchanged and the initial
error of the system tends to infinity, the error convergence time will also increase unbounded.
In order to make the upper bound on the convergence time of the system independent
of the initial state, the fixed-time control was first proposed by the researcher Polyakov
in [22]. Inspired by this, Yao et al. [23] proposed a fixed-time terminal SMC scheme, and the
trajectory tracking error of USV can converge in a fixed time, but this fixed-time terminal
sliding mode surface will produce singularity. In view of this, a nonsingular fixed-time
terminal SMC strategy was proposed in [24]. Additionally, Chen et al. [25] proposed a
nonsingular fixed-time fractional order sliding mode controller and introduced RBFNNs
to estimate external disturbances. However, when using neural networks to approximate
unknown external disturbances, it is a difficult problem to select the weighting matrix and
the number of hidden layer nodes.

In practical engineering applications, it is necessary to consider actuator faults in
order to ensure the performance and reliability of USV tracking control. Actuator fault is
known as one of the most typical cases of input constraints, which may degrade the control
performance, especially for USV motion control systems that require high safety. Therefore,
fault-tolerant control (FTC) techniques must be considered. In [26], actuator faults of the
USV are addressed by auxiliary systems integrated with adaptive techniques. In addition,
Zhang et al. [27] transformed the dynamic model with actuator faults and uncertainties
into a nominal model with equivalent disturbances and tracked by a robust compensator.
In [28], a fault efficiency estimator is constructed based on a fuzzy-aided nonlinear observer.

The above studies have achieved certain results in improving the steady-state accuracy
of USV trajectory tracking, but less consideration has been given to the transient performance
and output constraints of trajectory tracking errors, especially for the transient performance
(such as overshoot) of trajectory tracking under actuator faults. Heshmati-Alamdari
et al. [29] proposed a prescribed performance control (PPC) strategy to achieve trajectory
tracking under prescribed transient and steady-state responses without considering the
model’s uncertainties and external disturbances.

In summary, in order to highlight the difference between this paper and existing related
studies, Table 1 indicates that the controller considers multiple factors. Note that if the
controller satisfies the factor in Table 1, it is marked by �, otherwise, by �.
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Table 1. Advantages and disadvantages of related literature.

Related
Literature

Model
Uncertainties

External
Disturbances

Actuator
Faults

Prescribed
Performance

Limited
Convergence

Time

Convergence
Time Is

Independent
of Initial States

[12] � � � � � �

[13] � � � � � �

[14] � � � � � �

[18] � � � � � �

[19] � � � � � �

[20] � � � � � �

[23] � � � � � �

[24] � � � � � �

[25] � � � � � �

[26] � � � � � �

[27] � � � � � �

[28] � � � � � �

[29] � � � � � �

This paper � � � � � �

In this work, an improved fixed-time disturbances observer-based prescribed perfor-
mance fixed-time fault-tolerant control (IFxDO-PPFxFC) scheme is proposed to solve the
problem that the tracking control results of the USV are susceptible to the initial states of
the system, unknown external disturbances, model parameter uncertainties, and actuator
faults. Then, the main contributions of this paper are as follows:

(1) An improved fixed-time disturbances observer is proposed. The proposed technique
is significant in that it not only provides faster convergence but also effectively reduces
the chattering phenomenon by introducing the hyperbolic tangent function. In
addition, the bound of the convergence time value can be predicted in advance.

(2) Combining fixed-time SMC, FTC, and PPC theories, a novel IFxDO-PPFxFC scheme
is proposed in this paper. Unlike the finite-time stable control scheme [18–20], The
proposed control scheme enables the USV to accurately track the desired trajectory in
a fixed time, and the convergence time is independent of initial states. Meanwhile, the
advantage of this control scheme is its singularity-free. Furthermore, it can guarantee
the transient and steady-state performance of output errors of trajectory tracking
controller even in the presence of actuator faults; this is of great significance for the
safe navigation of USV.

This paper is organized as follows. Section 2 gives the preliminaries and problem
formulation. Section 3 presents the controller design and stability analysis. Section 4
verifies it through simulation experiments. Finally, Section 5 gives the conclusions.

2. Preliminaries and Problem Formulation

In this section, in order to facilitate the subsequent controller design and stability
proofs, we present the needed notations, definitions, and lemmas for the controller design,
introducing the detailed mathematical model of the USV.

2.1. Preliminaries

Notations: Rn denotes an n × 1 column vector, Rn×m denotes an n × m dimensional ma-
trix, λmax(·) and λmin(·) denote the minimum and maximum eigenvalue of a matrix,
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diag{·} denotes the diagonal matrix, |·| denotes the modulus of a vector, and ‖·‖ de-
notes the 2-norm of a vector or the induced norm of a matrix, respectively. For a vector
x = [x1, x2, · · · · · · xn]

T ∈ Rn and a positive scalar a, sign(x) = [sign(x1), sign(x2) · · · sign(xn)]
T

[x]a = [|x1|a sign(x1), |x2|a sign(x2) · · · |xn|asign(xn)]
T and xa = [x1

a, x2
a · · · · · · xn

a)]T,
where sign(x) denotes the signum function.

Definition 1. Consider the following system:

.
y = f (y), y(0) = y0, y ∈ Rn (1)

The origin of the system (1) is said to be fixed-time stable if there exists a bounded constant T∗
which is independent of the initial value such that

lim
t→T∗

∥∥∥y
∥∥∥ = 0,

∥∥∥y
∥∥∥ = 0 f or t > T∗ (2)

Lemma 1 ([30]). For the system (1), assume that there exists a positive definite continuous Lyapunov
function that satisfies

.
V(y) ≤ −λ1Vα(y) − λ2Vβ(y) (3)

where λ1 > 0, λ2 > 0, 0 < α < 1, and β > 1. The system (1) is globally fixed-time stable, ensuring
that the convergence time T∗ satisfies

T∗ ≤ T∗(α, β,λ1,λ2) =
1

λ1(1− α) +
1

λ2(β− 1)
(4)

Lemma 2 ([31]). For the system (1), assume that there exists a positive definite continuous Lyapunov
function that satisfies

.
V(y) ≤ −aVp(y) − bVq(y) + ε (5)

where a and b are positive constants, 0 < p < 1, q > 1, and 0 < ε < ∞. Then, the system (1) is
practically fixed-time stable, and the system state can converge to the residual set at fixed time⎧⎪⎪⎨⎪⎪⎩ lim

y→T∗
y

∣∣∣∣∣∣V(y) ≤ min

⎧⎪⎪⎨⎪⎪⎩a−
1
p

(
ε

1− θ
) 1

p
, b−

1
p

(
ε

1− θ
) 1

q

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (6)

where θ is a positive constant and satisfies 0 < θ < 1. The system convergence time T∗ satisfies

T∗ ≤ T∗(a, b, p, q) =
1

a(1− p)
+

1
b(q− 1)

(7)

Lemma 3 ([32]). If ε1, ε2, . . . , εn ≥ 0, there exists

n∑
i=1

εi
p ≥

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

εi

⎞⎟⎟⎟⎟⎟⎠
κ

, 0 < κ < 1 (8)

n∑
i=1

εi
p ≥ n1−p

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

εi

⎞⎟⎟⎟⎟⎟⎠
κ

,κ > 1. (9)

2.2. USV Mathematical Model

In general, the motion of the USV in the horizontal plane is regarded as the 3-DOF
motion, namely surge, sway, and yaw. As shown in Figure 1, the kinematic model
parameters of the USV are established based on the earth-fixed OXY and the body-fixed
OEXEYE coordinate frames.
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Figure 1. The definition of the earth-fixed OXY and the body-fixed OEXEYE frames.

The kinematic and dynamic models of the USV are defined as follows [33]:{ .
η = R(ψ)v
M

.
v = −C(v)v−D(v)v + τ+ b (10)

where η =
[
x y ψ

]T ∈ R3 is the position and heading of the USV in the earth-fixed frame.

v =
[
u v r

]T ∈ R3 is the surge, sway, and yaw velocities of the USV in the body-fixed

frame. τ =
[
τ1 τ2 τ3

]T ∈ R3 is the control input. b =
[
bu bv br

]T ∈ R3 is the external
environmental unknown time-varying disturbance. The rotation matrix R(ψ) ∈ R3×3 is
given as follows:

R(ψ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (11)

The matrix R(ψ) has the following properties:
.

R(ψ) = R(ψ)S(r), RT(ψ)S(r)R(ψ) =

R(ψ)S(r)R(ψ)T = S(r),
∥∥∥R(ψ)

∥∥∥ = 1. The matrix S(r) is given as follows:

S(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 −r 0
r 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (12)

M ∈ R3×3 is the positive definite matrix, and it satisfies M = MT > 0. Its expression is

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
m11 0 0

0 m22 m23
0 m32 m33

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (13)

where m11 = m−X .
u, m22 = m−Y .

v, m23 = mxg −Y .
r, m32 = mxg −N .

v, and m33 = Iz −N .
r.

C(v) ∈ R3×3 is the Coriolis and centripetal matrix, and it satisfies C(v) = −C(v)T > 0.
D(v) ∈ R3×3 is the damping matrix. They are expressed as follows:

C(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 c13(v)
0 0 c23(v)

−c13(v) −c23(v) m33

⎤⎥⎥⎥⎥⎥⎥⎥⎦, D(v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
d11(v) 0 0

0 d22(v) d23(v)
0 d32(v) d33(v)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (14)

where c13(v) = −m11v − m23r, c23(v) = −m11u, d11(v) = −Xu − X |u|u |u| − Xuuuu2,
d22(v) = −Yv−Y|v|v|v| −Y|r|v|r|, d23(v) = −Yr−Y|v|r|v|−Y|r|r|r|, d32(v) = −Nv−N|v|v|v| −N|r|v|r|,
and d33(v) = −Nr −N|v|r|v| −N|r|r|r|, where m is the mass of the USV, Iz is the moment of
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inertia, and xg is the distance from the center of gravity to the origin on the Y. X∗, Y∗, and
N∗ are the hydrodynamic parameters acting on the USV.

According to the research of Zhang et al. [27], the control input of the USV with
actuator faults can be expressed by the following mathematical method:

τi = τci + f(t−T0i)
((ei − 1)τci + τi) (15)

where τi(i = u, v, r) represents the actual control input acting on the USV, τci is the desired
control forces and moments, τi is the additive uncertain fault input, ei is the thruster efficiency
factor with 0 ≤ ei ≤ 1, and f(t−T0i)

represents the time-varying fault. Its expression is

f(t−T0i)
=

{
0, t < T0i

1− e−ai(t−T0i), t ≥ T0i
(16)

where ai is the unknown fault change rate, and T0i is the fault occurrence time of each
degree of freedom.

In summary, the equivalent control forces and moments of the USV propulsion system
considering the thruster fault constraint is expressed as follows:

τ = τc + F(t−T0)

(
(E− I3)τc +

¯
τ
)

(17)

where F(t−T0) = diag
{

f(t−T0u), f(t−T0u), f(t−T0r)

}
∈ R3×3 is the time-varying fault matrix of the

propulsion system. E = diag{eu, ev, er} ∈ R3×3 is the efficiency matrix of the propulsion

system, τc =
[
τcu τcv τcr

]T ∈ R3 is the desired control forces and moments vector, and
¯
τ =

[
τu τv τr

]T ∈ R3 is the additive fault vector.
In addition, consider the model parameter uncertainties:{

C(v) = C0(v) + ΔC(v)
D(v) = D0(v) + ΔD(v) (18)

where C0(v) and D0(v) denote the nominal values of the Coriolis and centripetal matrix
and the damping matrix, respectively. ΔC(v) and ΔD(v) denote the uncertainty values of
the Coriolis and centripetal matrix and the damping matrix, respectively.

Define an auxiliary velocity vector and let

ω = R(ψ)v (19)

where ω =
[
ω1 ω2 ω3

]T ∈ R3.
Combining Equations (17) and (18), the mathematical model of the USV can be

redefined as follows: { .
η = ω
.
ω = H(η, v) + RM−1τc + d

(20)

where H(η, v) ∈ R3 is the total nominal component, d =
[
d1 d2 d3

]T ∈ R3 is the unknown
lumped nonlinearity (model parameter uncertainties, unknown external disturbances, and
actuator faults) of the system. They are given as follows:

H(η, v) = RM−1(MSv−C0(v)v−D0(v)v) (21)

d = RM−1
(
F(t−T0)

(
(E− I3)τc +

¯
τ
)
+ b− ΔC(v)v− ΔD(v)v

)
(22)
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Assumption 1. The unknown lumped nonlinearity d (22) is limited by ‖d‖ < a, where a is an
unknown constant. The first-order derivative of d is bounded by

∥∥∥∥ .
d
∥∥∥∥ < b, where b is a known

positive constant.

3. Controller Design and Stability Analysis

In this section, Figure 2 presents the trajectory tracking controller framework diagram
for the USV. It is mainly made up of the performance function, an improved FxDO, and a
PPFxF controller. The performance function provides the tracking error transformation. The
improved FxDO can accurately estimate lumped disturbances and faults in a fixed time. The
PPFxF controller makes trajectory tracking errors reach zero at a fixed time and ensures that
the transient performance and steady-state performance meet the specified requirements.

Figure 2. Trajectory tracking controller framework diagram for USV.

3.1. Improved Fixed-Time Disturbances Observer

Notably, when the USV performs its mission in the actual ocean environment, its
stability can be seriously affected by unknown disturbances such as wind, waves, and
currents. At the same time, the faults of the actuator cannot be ignored. In view of this, by
combining the mathematical model of the USV, a fixed-time disturbances observer (FxDO)
is applied to estimate and compensate the lumped nonlinearity, including actuator faults,
and the observer is designed accordingly as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ω̃ = ω−�ω, d̃ = d−�d
.
�
ω = H(η, v) + RM−1τc +

�
d + ς1

∣∣∣ω̃∣∣∣α1sign(ω̃) + σ1
∣∣∣ω̃∣∣∣β1 sign(ω̃)

.
�
d = ς2

∣∣∣ω̃∣∣∣α2sign(ω̃) + σ2
∣∣∣ω̃∣∣∣β2 sign(ω̃) + γsign(ω̃)

(23)

Remark 1. In Equation (23), ς1
∣∣∣ω̃∣∣∣α1 sign(ω̃), σ1

∣∣∣ω̃∣∣∣β1 sign(ω̃), ς2
∣∣∣ω̃∣∣∣α2 sign(ω̃), and

σ2
∣∣∣ω̃∣∣∣β2sign(ω̃) are continuous regardless of the sign function; however, γsign(ω̃) is discon-

tinuous, leading to a chattering phenomenon. The fixed-time observer’s estimate of the centralized
uncertainty will be compensated for in the control input, so the discontinuity term in Equation (23)
will cause discontinuities in the control input, which will lead to the chattering phenomenon.
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To avoid the problem of the chattering phenomenon, the signum function is approx-
imated in this paper by the hyperbolic tangent function. An improved FxDO can be
expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ω̃ = ω−�ω, d̃ = d−�d
.
�
ω = H(η, v) + RM−1τc +

�
d + ς1

∣∣∣ω̃∣∣∣α1sign(ω̃) + σ1
∣∣∣ω̃∣∣∣β1 sign(ω̃)

.
�
d = ς2

∣∣∣ω̃∣∣∣α2sign(ω̃) + σ2
∣∣∣ω̃∣∣∣β2 sign(ω̃) + γtanh(ω̃)

(24)

Theorem 1. If Assumption 1 is satisfied, the improved FxDO (24) is designed to achieve an accurate
estimation of unknown lumped nonlinearity within a fixed time Td.

The estimated errors are given as follows:

⎧⎪⎪⎨⎪⎪⎩
.

ω̃ = −ς1
∣∣∣ω̃∣∣∣α1sign(ω̃) − σ1

∣∣∣ω̃∣∣∣β1 sign(ω̃) + d̃
.

d̃ = −ς2
∣∣∣ω̃∣∣∣α2 sign(ω̃) − σ2

∣∣∣ω̃∣∣∣β2 sign(ω̃) − γtanh(ω̃) +
.
d

(25)

where 0 < α1 < 1, 0 < α2 < 1, β1 > 1, β2 > 1, and γ > b. The options for ς1, ς2, σ1, and σ2 are
as follows:

A =

[−ς1 1
−ς2 0

]
, B =

[−σ1 1
−σ2 0

]
(26)

Matrices A and B satisfy the Hurwitz matrix, and it has been proved in [34] that the
estimation error of the system converges to zero at fixed time Td, and it is given as follows:

Td ≤ λ
1−a1
max (P1)λmax(P1)

(1− a1)λmin(Q1)
+

λmax(P2)

(b1 − 1)λb1−1
min (P1)λmin(Q2)

(27)

where 1 − c1 < a1 < 1, 1 < b1 < 1 + c2, 0 < c1 < 1, and c2 > 0. P1, P2, Q1, and Q2 are
symmetric positive definite matrixes and satisfy AT

1 P1 +P1A1 = −Q1, AT
2 P2 +P2A2 = −Q2.

3.2. Errors Transformation via Performance Function

The trajectory tracking errors of the USV are defined as follows:{
ηe = η− ηd
ωe =

.
η− .
ηd

(28)

where ηe =
[
ηeu ηev ηer

]T ∈ R3, ωe =
[
ωeu ωev ωer

]T ∈ R3.
Taking the derivative of Equation (28), the mathematical equation of the tracking errors

of the USV can be written as follows:{ .
ηe = ωe
.
ωe = H(η, v) + RM−1τc + d− ..

ηd
(29)

where ηd =
[
xd yd ψd

]T ∈ R3. ηd is the desired trajectory,
.
ηd and

..
ηd are the first-order

and second-order derivatives of the desired trajectory.

Assumption 2. The desired trajectory of the USV ηd is bounded and derivable, and its derivatives
.
ηd and

..
ηd are smooth and bounded.

In order to ensure that the transient and steady-state performance of the trajectory error
ηei is as shown in Figure 3, a prescribed performance function is introduced to constrain the
tracking error. Select the following performance function

δi(t) = (δ0i − δ∞i) exp(−ξt) + δ∞i, (i = u, v, r) (30)
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where ξ is the index of the rate of convergence; researchers can change this index to obtain
the prescribed transient and steady-state performance according to the specific needs of the
task. δ0i denotes the initial value of the prescribed performance function δi(t), and δ∞i is
the stabilized value after the convergence of the prescribed performance function δi(t).

t

0i

i

0i

i

( )i t

( )i t
ei

Figure 3. Prescribed performance control diagram.

Then, a boundary function is constructed from the performance function to limit the
tracking error of the system as follows:{− f1δi(t) < ηei < δi(t), ηei(0) ≥ 0

−δi(t) < ηei < f2δi(t), ηei(0) ≤ 0 , (i = u, v, r) (31)

From Equation (31), one has⎧⎪⎪⎨⎪⎪⎩− f1 <
ηei
δi(t)

< 1, ηei(0) ≥ 0

−1 < ηei
δi(t)

< f2, ηei(0) ≤ 0
(32)

Assumption 3. ([35]). The initial states of the USV satisfy −δi(0) < ηei(0) < δi(0).

The transformation is achieved by rewriting the tracking error to the following
equivalent form

ηei = δi(t)Γ(σei) (33)

where Γ(σei) is the unconstrained transformation function, σei is the transformed error, and
δi(t), Γ(σei) need to satisfy the following requirements:

• δi(t) is a monotonically decreasing function;
• Γ(σei) ∈ (−1, 1), Γ(σei) is a strictly increasing function;
• δi(t) > 0, ∀t ≥ 0;
• lim

σei→∞
Γ(σei) = 1, lim

σei→−∞
Γ(σei) = −1.

The transformation function in the form of a hyperbolic tangent is defined as follows:

Γ(σei) =

⎧⎪⎪⎨⎪⎪⎩
eσei− f1e−σei

eσei+e−σei , σei ≥ 0
f2eσei−e−σei

eσei+e−σei , σei ≤ 0
(34)

According to the properties of the hyperbolic tangent function, the transformed error
can be expressed as

σei = Γ−1
(
ηei

δi(t)

)
=

1
2

ln
1 + ηei

δi

1− ηei
δi

(35)
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The first-order derivative and the second-order derivative of σei are calculated as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
.
σei =

1
2

( .
δi+

.
ηei

δi+ηei
+

.
δi− .

ηei
δi−ηei

)
..
σei =

1
2

( ..
δi(δi+ηei)−(δi+ηei)

2

(δi+ηei)
2 −

..
δi(δi−ηei)−(δi−ηei)

2

(δi−ηe i)
2

)
+ 1

2

(
δi+ηei

(δi+ηei)
2 − δi−ηei

(δi−ηei)
2

)
.
ωei

(36)

For the convenience of the subsequent control design, let

..
σei = �i + �i

.
ωei (37)

where⎧⎪⎪⎨⎪⎪⎩ �i =
([ ..
δi(δi + ηei) − (δi + ηei)

2
]
/2(δi + ηei)

2 −
[ ..
δi(δi − ηei) − (δ− ηei)

2
]
/2(δi − ηei)

2
)

�i =
(
(δi + ηei)/

[
2(δi + ηei)

2
]
− (δi − ηei)/

[
2(δi − ηei)

2
]) . (38)

Remark 2. The error transformation by means of a prescribed performance function and the error
ηei also converges if the error σei converges. Meanwhile, −δi(t) and δi(t) limit the maximum
overshooting of ηei , and the decreasing speed of δi(t) affects the convergence speed of ηei. δ∞i
and −δ∞i limit the steady state error of ηei, so that the prescribed performance control ensures the
transient and steady state performance of the error ηei at the same time.

3.3. Fixed-Time Fault-Tolerant Controller Design

In order to realize the accurate tracking of the desired trajectory in a fixed time,
the sliding surface is constructed according to the errors after the transformation of the
prescribed performance function. A nonsingular fixed-time sliding surface s is designed as
follows [36]:

s = σe +
1
λ1

α

[ .
σe + λ2[σe]

β
] 1
α (39)

where s =
[
s1 s2 s3

]T ∈ R3, σe =
[
σeu σev σer

]T ∈ R3, 1/2 < α < 1, β > 1, λ1 > 0, and
λ2 > 0.

Theorem 2. For the nonlinear USV dynamics system (20), in the presence of actuator faults and
model parameter uncertainties given by Equations (17) and (18), if the sliding mode surface is
designed as (39), then the closed-loop system is stable, and the errors σe and

.
σecan converge to zero

at a fixed time Ts.

Proof. When the sliding mold surface s = 0 is reached, which yields

.
σe = −λ1[σe]

α − λ2[σe]
β (40)

Select the Lyapunov function as follows:

V1 =
1
2
σe

Tσe (41)

The derivative of Equation (41) is taken as follows:

.
V1 = 1

2σe
T .
σe

= σe
T
(
−λ1[σe]

α − λ2[σe]
β
)

= −λ1|σe|α+1 − λ2|σe|β+1

= −λ12(α+1)/2V1
(α+1)/2 − λ22(β+1)/2V1

(β+1)/2

≤ −λ12α/2V1
(α+1)/2 − λ22β/2V1

(β+1)/2

(42)
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Due to 1/2 < α < 1, β > 1, according to Lemma 1, σe,
.
σe will converge to zero at a fixed

time Ts, as shown in the following:

Ts ≤ 21−α/2

λ1(1− α) +
21−β/2

λ2(β− 1)
(43)

Then, taking the derivative of Equation (39), the following can be obtained:

.
s =

.
σe +

1
αλ1

α diag
{∥∥∥∥ .
σe + λ2[σe]

β
∥∥∥∥ 1
α−1

}( ..
σe + λ2βdiag

{
‖σe‖β−1

} .
σe

)
(44)

Let F(σe,
.
σe) = diag

{∥∥∥∥ .
σe + λ2[σe]

β
∥∥∥∥}, substituting Equation (37) into Equation (44), the

following can be obtained:

.
s =

.
σe +

1
αλ1

α F(σe,
.
σe)

1
α−1(h + diag{�i} .

ωe + λ2βdiag
{
‖σe‖β−1

} .
σe

)
(45)

where h =
[
�u �v �r

]T ∈ R3, diag
{
‖σe‖β−1

}
= diag

{
|σeu|β−1, |σev|β−1, |σer|β−1

}
, and

diag{�i} = diag
{
�u �v �r

}
. �

According to Equation (29), Equation (45) can be transformed into

.
s =

.
σe +

1
αλ1

α F(σe,
.
σe)

1
α−1(h + diag{�i}

(
H(η, v) + RM−1τc + d− ..

ηd

)
+ λ2βdiag

{
‖σe‖β−1

} .
σe

)
(46)

Based on Equation (46), the control inputs to the controller can be expressed in terms
of the equivalent control input τeq and the switching control input τsw, thus τc = τeq + τsw.
They are given as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τeq = −MR−1
(
H(η, v) +

�
d − ..
ηd

)
− (diag{�i})−1MR−1

(
λ2βdiag

{
‖σe‖β−1

} .
σe + αλ1

αdiag
{∥∥∥F(σe,

.
σe)

∥∥∥ 1
α−1

}
σe + h

)
τsw = −(diag{�i})−1MR−1

(
ϕ1[s]

μ1 + ϕ2[s]
μ2

) (47)

where diag
{∥∥∥F(σe,

.
σe)

∥∥∥ 1
α−1

}
= diag

{∣∣∣F(σeu,
.
σeu)

∣∣∣ 1
α−1

,
∣∣∣F(σev,

.
σev)

∣∣∣ 1
α−1

,
∣∣∣F(σer,

.
σer)

∣∣∣ 1
α−1

}
.

0 < μ1 < 1, μ2 > 1, ϕ1 > 0, and ϕ2 > 0.

Remark 3. In Equation (47), τeq contains diag
{∥∥∥F(σe,

.
σe)

∥∥∥ 1
α−1

}
, but this will not produce

singularity; in fact, when
.
σei = 0, σei � 0, we can obtain

∣∣∣ .
σei

∣∣∣1− 1
α .
σei ≥ .

σei
2− 1

α , 2− 1
α > 0.

Theorem 3. If Assumptions 1–3 are satisfied, the IFxDO-PPFxFC scheme (47) is designed, which
can make the USV track the desired trajectory quickly and accurately, ensuring that the position and
velocity tracking errors are stable to a small neighborhood around the equilibrium point at a fixed
time, and the convergence time is independent of the initial state of the system, and the convergence
time is satisfied Tmax ≤ Td + Ts + Tr + Tc; Tr and Tc are given as follows:⎧⎪⎪⎨⎪⎪⎩ Tr ≤ 21−μ1/2

ϕ1n(1−μ1)/2(1−μ1)
+ 21−μ2/2

ϕ2(μ2−1)

Tc = (λ1
α)

α
α−1

(48)
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3.4. Stability Analysis

Proof of Theorem 3. Substituting Equation (47) into Equation (46), the following can
be obtained:

.
s =

1
αλ1

α F(σe,
.
σe)

1
α−1(−ϕ1[s]

μ1 −ϕ2[s]
μ2 + diag{�i}̃d

)
(49)

Let χ = diag{χ1,χ2,χ3} = 1
αλ1

α F(σe,
.
σe)

1
α−1 ∈ R3×3, then one has

.
s = χ

(
−ϕ1[s]

μ1 −ϕ2[s]
μ2 + diag{�i }̃d

)
(50)

Select the Lyapunov function as follows:

V2 =
1
2

3∑
1

si
2 (51)

Take the derivative of Equation (51), then one has

.
V2 =

3∑
1

si
.
si

= χi
3∑
1

si
(
−ϕ1[si]

μ1 −ϕ2[si]
μ2 + �id̃i

)
≤ χi

3∑
1

(
−ϕ1|si|μ1+1 −ϕ2|si|μ2+1 + |si||�i|

∣∣∣∣d̃i

∣∣∣∣)
≤ χi

3∑
1

(
−ϕ1|si|μ1+1 −ϕ2|si|μ2+1 + Θi

)
(52)

where Θi = |si||�i|
∣∣∣∣d̃i

∣∣∣∣, 0 < Θi < ∞.
According to Lemma 3, one has

3∑
i=1

|si|
μ1+1

≥ n(1−μ1)/2

⎛⎜⎜⎜⎜⎜⎝
3∑

i=1

|si|2
⎞⎟⎟⎟⎟⎟⎠
(μ1+1)/2

,
3∑

i=1

|si|
μ2+1

≥
⎛⎜⎜⎜⎜⎜⎝

3∑
i=1

|si|2
⎞⎟⎟⎟⎟⎟⎠
(μ2+1)/2

(53)

By substituting Equations (51) and (53) into Equation (52), the following can be obtained:

.
V2≤ χ

⎛⎜⎜⎜⎜⎜⎜⎜⎝−ϕ1n(1−μ1)/2

⎛⎜⎜⎜⎜⎜⎝
3∑

i=1

|si|2
⎞⎟⎟⎟⎟⎟⎠
(μ1+1)/2

−ϕ2

⎛⎜⎜⎜⎜⎜⎝
3∑

i=1

|si|2
⎞⎟⎟⎟⎟⎟⎠
(μ2+1)/2

+ Θi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
≤ χ

(
−ϕ1n(1−μ1)/22(μ1+1)/2V1

(μ1+1)/2 −ϕ22(μ2+1)/2V1
(μ2+1)/2 + Θi

) (54)

It is worth noting that when F(σei, σei) � 0, χi > 0. The working state space can be

divided into two areas, namely Ω1 =
{(
σei,

.
σei

)∣∣∣∣χi > 1
}

and Ω2 =
{(
σei,

.
σei

)∣∣∣∣0 < χi < 1
}

for

the above two cases, which we will talk about later.
Step 1. Obviously, when the system states meet Ω1, the following can be obtained:

.
V2 ≤ −ϕ1n(1−μ1)/22(μ1+1)/2V1

(μ1+1)/2 −ϕ22(μ2+1)/2V1
(μ2+1)/2 + Θi (55)

Due to μ1 > 1 and 0 < μ2 < 1, according to Lemma 2, the system satisfies the fixed-time
convergence, and the convergence time Tr is bounded by Equation (48).

Step 2. When the system states meet Ω2, F(σei, σei) � 0 can be obtained, and the sliding
mode surface si will approach si = 0. We need to prove that F(σei, σei) = 0 is not attractive
except for the origin. This is proved in [37], so no matter where the initial state is, As soon
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as the s sliding mode surface si = 0 is reached, the system states will reach the origin within
the fixed time T = Tr + Tc, where the convergence time Tc is given by Equation (48).

The total convergence time of the USV trajectory tracking system is satisfied:
Tmax ≤ Td + Ts + Tr + Tc. �

Remark 4. In summary, in terms of controller design, this paper reports two novelties compared to
recent work in the field. (1) An improved fixed-time disturbances observer is designed. The proposed
technique is significant in that it not only provides faster convergence but also effectively reduces
the chattering phenomenon. (2) A prescribed performance fixed-time fault-tolerant controller is
proposed. In fact, the application of fixed-time control in the field of USV trajectory tracking control
is not new, but we consider the case of actuator faults in the model and incorporate the prescribed
performance control to ensure the transient and steady-state performance of the output errors while
meeting the prescribed tracking performance requirements. The whole proposed control scheme is
new to the previous design methods of USV controllers.

4. Numerical Simulations and Analysis

In this section, the simulation study is performed on CyberShip II [33], a 1:70 scale
ship model provided by the Marine Cybernetics Laboratory of the Norwegian University
of Science and Technology. The vessel is 1.255 m long, and the detailed parameters are
given in Table 2.

Table 2. Hydrodynamic parameters of CyberShip II.

m = 23.8000 Yv = −0.8612 X .
u = −2.0

Iz = 1.7600 Y|v|v = −36.2823 Y .
v = −10.0

xg = 0.0460 Yr = 0.1079 Y .
r = −0.0

Xu = −0.7225 N|v|v = 5.0437 N .
v = −0.0

X|u|u|u| = −1.3274 Nv = 0.1052 N .
r = −1.0

Xuuu = −5.8664

In the simulation, the model uncertainties are chosen to be ΔC(v) = 10%C0(v) and

ΔD(v) = 10%D0(v). b =
[
18 sin(0.9t + π/2) 7 sin(0.8t + π/3) 3 sin(0.5t + π/5)

]T
is

used to describe the effect of the wind, waves, and current on the USV. The reference

trajectories are chosen to be ηd =
[
2 sin(0.1t) 2 cos(0.1t) 0.1t

]T
, and the initial position

and initial velocity are chosen as η(0) =
[
1 1 π/4

]T
and v(0) =

[
0 0 0

]T
. The observer

gains and parameters are chosen as ς1 = σ1 = 16, ς2 = σ2 = 64, α1 = 5/7, β1 = 7/5,
α2 = 3/7, and β2 = 39/35. The parameters for the controller are chosen as δ0i = 2, δ∞i = 0.1,
ξ = 1.3, λ1 = 3.5, λ2 = 10, α = 0.8, β = 1.4, ϕ1 = ϕ2 = 10, μ1 = 4/7, and μ2 = 7/4.

The actuator faults parameters are chosen as E = diag
{
0.85 0.85 0.7

}
, τ =

[
25 25 5

]T
,

a =
[
15 10 5

]T
, and T0 =

[
30 30 30

]T
.

The FxDO and the improved FxDO are numerically simulated in MATLAB R2018b.
Figures 4–6 show that the designed improved FxDO is able to accurately and quickly
estimate and compensate for the closed-loop nonlinearity of the system and converge.
Even when the actuator starts to fail at T0u = T0v = T0r = 30 s, the observer is still able to
accurately track the closed-loop disturbances. In addition, the use of the hyperbolic tangent
function instead of the sign function reduces the chattering phenomenon from the local
zoomed-in plot.
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Figure 4. The lumped disturbance d1 and the observer’s estimated output.

Figure 5. The lumped disturbance d2 and the observer’s estimated output.

Figure 6. The lumped disturbance d3 and the observer’s estimated output.

In order to better prove the superiority and effectiveness of the proposed IFxDO-
PPFxFC scheme, we compare it with Wan et al. [37] proposed SMC scheme and Xu et al. [18]
proposed finite-time NFTSMC scheme. The three control schemes are numerically simulated
in MATLAB R2018b. First, through the circular trajectory tracking experiment, whether
the USV stays on the predetermined circular path with stability ensures the accuracy and
stability of navigation. Second, during the autonomous navigation of the USV, it will
encounter various external disturbances and changes, such as wind and waves, currents,
etc. In addition to this, it may encounter actuator faults, which can test the coping ability
and trajectory retention ability of the USV under these conditions. The simulation results
are shown in Figures 7–13.
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Figure 7. Tracking performance results.

 

Figure 8. Position x of ship’s motion.

 

Figure 9. Position y of ship’s motion.

 

Figure 10. Heading ψ of ship’s motion.
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Figure 11. Tracking error of position x.

 

Figure 12. Tracking error of position y.

 

Figure 13. Tracking error of heading ψ.

The tracking performance results of the actual and desired trajectories for the three
control schemes are presented in Figure 7. It is evident from the local zoomed-in figure
that our proposed control scheme exhibits a faster convergence rate and higher accuracy.
The tracking of the actual position and heading of the USV are illustrated in Figures 8–10.
All three control strategies successfully achieve a reference position and heading tracking.
In comparison to the other two control strategies, the designed control strategy exhibits
superior tracking speed and robustness during both position and heading tracking processes,
particularly for heading of the USV. The variations in position errors and the heading
error with time are illustrated in Figures 11–13. In comparison to the other two control
strategies, even when considering lumped nonlinearity, including actuator faults, the
tracking error can converge to the specified range more rapidly and meet the designated
tracking performance requirements. The convergence curves of the other two control
schemes may exhibit slight oscillations and a slower convergence rate.
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For further verifying the advantages of the proposed control scheme, IAE indicators
are used to quantify the tracking error, which are expressed as follows:

IAE =

∫ t

0

∣∣∣ie(τ)∣∣∣dτ, (i = x, y,ψ) (56)

where t denotes the simulation time, and the calculation results are shown in Table 3.

Table 3. Performance index IAE of three control schemes.

Control Scheme IAE

SMC IAE (xe ) = 5.7809, IAE (ye ) = 5.4068, IAE (ψe ) = 17.7117
NFTSMC IAE (xe ) = 1.4199, IAE (ye ) = 1.0694, IAE (ψe ) = 7.9170

IFxDO-PPFxFC IAE (xe ) = 0.9943, IAE (ye ) = 1.0003, IAE (ψe ) = 0.7680

In order to more intuitively reflect the superiority of the proposed control scheme, we
transform the absolute error tracking performance index IAE into the histogram shown in
Figure 14.

 
Figure 14. Performance index IAE.

5. Conclusions

The trajectory tracking control of the USV is an important research direction in ship
motion control that has important research value and practical significance. In this paper,
we studied the problem of the prescribed performance trajectory tracking control of the
USV under complex conditions, and a novel IFxDO-PPFxFC scheme was proposed based
on the 3-DOF USV mathematical model.

First, we addressed the trajectory tracking problem of the USV under model parameter
uncertainties, unknown external time-varying disturbances. We introduced an improved
FxDO to realize accurate estimation the lumped nonlinearity of system in a fixed-time, and
effectively reduce the chattering phenomenon of the observer’s estimation of the lumped
nonlinearity compensation in the control input. This technique improved the performance
of the controller.
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Second, we addressed the trajectory tracking problem of the USV with prescribed
tracking performance even in the presence of actuator faults. Based on mathematical
model of USV, and by combining fixed-time SMC, FTC, and PPC theories, a prescribed
performance fixed-time fault-tolerant controller was designed to ensure accurately and
safely tracking of the USV with actuator faults in a fixed time, and the proposed controller
was made robust by adding the improved FxDO.

Third, we chose the other two controllers to compare through numerical simulation
experiments, from the circular trajectory tracking experiment results, it can be seen that
the designed control law had a better control effect than the traditional SMC scheme and
finite-time NFTSMC scheme. In addition, for further verifying the advantages of the
proposed control scheme, the performance of the controller was described by adding the
performance index IAE, which is the lowest compared with the other two methods.

Fourth, the constraints of the control inputs of the system had not been considered
yet. in the future, we will consider the case where the input is constrained and extend
the method proposed in this paper to an underactuated USV and combine it with other
state-of-the art control techniques.
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