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Article

Gradient Ricci Solitons on Spacelike Hypersurfaces of
Lorentzian Manifolds Admitting a Closed Conformal Timelike
Vector Field

Norah Alshehri *,† and Mohammed Guediri †

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
mguediri@ksu.edu.sa
* Correspondence: nalshhri@ksu.edu.sa
† These authors contributed equally to this work.

Abstract: In this article, we investigate Ricci solitons occurring on spacelike hypersurfaces of Einstein
Lorentzian manifolds. We give the necessary and sufficient conditions for a spacelike hypersurface of
a Lorentzian manifold, equipped with a closed conformal timelike vector field ξ̄, to be a gradient Ricci
soliton having its potential function as the inner product of ξ̄ and the timelike unit normal vector
field to the hypersurface. Moreover, when the ambient manifold is Einstein and the hypersurface is
compact, we establish that, under certain straightforward conditions, the hypersurface is an extrinsic
sphere, that is, a totally umbilical hypersurface with a non-zero constant mean curvature. In particular,
if the ambient Lorentzian manifold has a constant sectional curvature, we show that the compact
spacelike hypersurface is essentially a round sphere.

Keywords: gradient Ricci soliton; Einstein manifold; conformal vector field; spacelike hypersurfaces
with constant mean curvature

MSC: 53A10; 53C40; 53C42; 53C50; 53C65

1. Introduction

It is a well-established fact that Ricci solitons are closely linked with Ricci flows, as
outlined in [1]. Essentially, a pseudo-Riemannian metric g defined on M provides a Ricci
soliton on a smooth manifold M if and only if there exists a positive function σ(t) and a
one-parameter family ψ(t) of diffeomorphisms of M such that the one-parameter family of
metrics g(t) = σ(t)ψ(t)∗g satisfies the Ricci flow equation:

∂

∂t
g(t) = −2Ricg(t),

with the initial condition g = g(0). Here, ψ(t)∗ denotes the pullback along the diffeomor-
phism ψ(t), and Ricg(t) represents the Ricci curvature of g(t).

A pseudo-Riemannian manifold (M, g) is called a Ricci soliton if there exists a nonzero
smooth vector field X and a constant λ satisfying

1
2

LX g + Ric = λg, (1)

where LX is the Lie derivative with respect to X and Ric is the Ricci tensor with g. We
denote a Ricci soliton by (M, g, X, λ). The concept of a Ricci soliton was first introduced by
Hamilton [2,3].

Ricci solitons are a type of manifold in differential geometry that generalize the concept
of Einstein metrics, that is, Ric = cg for some constant c. The Ricci soliton is classified as
shrinking, steady, or expanding based on whether λ > 0, λ = 0, or λ < 0, respectively. The

Mathematics 2024, 12, 842. https://doi.org/10.3390/math12060842 https://www.mdpi.com/journal/mathematics1
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vector field X is referred to as the potential field of (M, g, X, λ). If the potential field X is
the gradient of some smooth function f on M, that is X = ∇ f , then (M, g, f , λ) will denote
the gradient Ricci soliton (M, g,∇ f , λ). In this case, Equation (1) takes the form

Ric + Hess( f ) = λg, (2)

where Hess( f ) is the Hessian of the function f . The function f is called a potential function
of the Ricci soliton (M, g, f , λ).

Additionally, if LX g = 0, the Ricci soliton is considered trivial, and from Equation (1),
M is an Einstein manifold.

One of the significant areas of focus in differential geometry and mathematical physics
is the theory of submanifolds, which presents challenging topics related to submanifold
geometry. In many research endeavors, the Gauss, Codazzi, and Ricci Equations for sub-
manifolds play a crucial role as they can be formulated in a manageable manner. The
exploration of Ricci solitons on hypersurfaces has gained traction, particularly in under-
standing the conditions under which hypersurfaces within Riemannian manifolds can
exhibit Ricci soliton structures. While Ricci solitons on hypersurfaces in Riemannian mani-
folds have been extensively investigated, there is a relative scarcity of studies focusing on
Ricci solitons in a Lorentzian manifold ambient space, despite their significance in terms of
geometry and applications in theoretical physics. These circumstances have motivated our
investigation into Ricci solitons on Riemannian hypersurfaces within Lorentzian manifolds.

The fascination with the geometry of Ricci solitons stems from its diverse applications
in various disciplines, particularly in the context of hypersurfaces in Riemannian manifolds,
as exemplified in [4–19]. This paper directs its attention to spacelike hypersurfaces in
Lorentzian manifolds, which, to the best of our knowledge, represent an underexplored
area in the existing literature. More specifically, our investigation centers on the analysis
of gradient Ricci solitons on spacelike hypersurfaces of Lorentzian manifolds. These
hypersurfaces are characterized by the presence of a closed conformal vector field of the
ambient manifold, with the potential function denoted as θ, that is, the inner product
between the closed conformal vector field and the timelike unit normal vector field to
the hypersurface

This paper is organized as follows: the second section revisits essential concepts
and formulas concerning spacelike hypersurfaces in Lorentzian manifolds. Section 3
presents the main results, focusing on characterizing conditions under which a spacelike
hypersurface in a Lorentzian manifold, endowed with a closed conformal vector field,
displays a gradient Ricci soliton structure with θ as the potential function.

The examination then focuses on compact gradient Ricci solitons, particularly when
the ambient manifold is Einstein. We provide sufficient conditions to characterize spacelike
hypersurfaces as extrinsic spheres, that is, totally umbilical hypersurfaces with a nonzero
constant mean curvature. In the special case where the ambient manifold has a constant
sectional curvature, it is deduced that the hypersurface is a round sphere. In the future,
we look forward to generalizing this research in the case where the ambient manifold is a
generalized Robertson Walker (GRW) spacetime.

2. Preliminaries

Let (M, g) be a hypersurface in an orientable Lorentzian manifold (M, g) of dimension
(n + 1). Denote by ∇ and ∇ the Levi-Civita connections of M and M, respectively. Two
fundamental equations apply to all vector fields X and Y that are tangential to M.

∇XY = ∇XY − h(X, Y), (3)

∇X N = −A(X). (4)

2
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Formula (3) is called Gauss’ formula and Formula (4) is called Weingarten’ formula, where
h is the second fundamental form, and A is the shape operator of M derived from a normal
vector field N to M.

There is a relationship between the second fundamental form h and the shape operator
A of M.

g(A(X), Y) = g(h(X, Y), N). (5)

The Codazzi equation describes the normal part of the curvature R(X, Y)Z as follows:

(R(X, Y)Z)⊥ = (∇Yh)(X, Z)− (∇Xh)(Y, Z), (6)

where X, Y, and Z are tangent to M, while N is normal to M, and R is the curvature tensor
of M, defined as follows:

R(X, Y)Z = ∇[X,Y]Z − [∇X ,∇Y]Z.

The covariant derivative of h is denoted as ∇h, and it is defined as follows:

(∇Xh)(Y, Z) = ∇X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ).

The Gauss–Codazzi equation is a mathematical formula that is widely known and used.

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z)), (7)

for all X, Y, Z and W tangent to M, where R and R are the curvature tensors of M and M,
respectively.

Let {e1, . . . , en} be an orthonormal frame of a pseudo-Riemannian manifold (M, g).
Then, the Ricci curvature tensor on M is a symmetric tensor given by

Ric(X, Y) =
n

∑
i=1

εiR(X, ei, Y, ei),

where X and Y are tangent to M, and the scalar curvature S of M is defined by

S =
n

∑
i=1

εiRic(ei, ei).

The divergence of the vector field X of M is defined by

div(X) =
n

∑
i=1

εig(∇ei X, ei), (8)

where εi = g(ei, ei). The trace of the curvature tensor is the Ricci curvature, and the trace of
the Ricci is the scalar curvature.

The mean curvature H of a spacelike hypersurface M in a Lorentzian manifold (M, g)
is define by

H = − 1
n

tr(A),

where tr(A) is the trace of the shape operator A of M derived from a normal vector field
N to M.

Equation (7) results in a relationship between the Ricci curvatures Ric and Ric of M
and M, respectively. Furthermore, it can be expressed as follows:

Ric(X, Y) = Ric(X, Y) + g(R(N, X)Y, N) + g(A(X), nHY + A(Y)). (9)

3



Mathematics 2024, 12, 842

The Hessian Hess( f ) of a smooth function f on a pseudo-Riemannian manifold (M, g)
is a symmetric tensor defined by

Hess( f )(X, Y) = g(S f (X), Y),

where S f is the Hessian operator defined by S f = ∇X∇ f and ∇ f is the gradient of the
function f .

A point p of a pseudo-Riemannian hypersurface M of M is called an umbilical point if
the shape operator A at p, Ap = ΦI, where Φ is scalar. M is called totally umbilical if every
point of M is umbilical. In particular, M is called totally geodesic if A = 0.

A hypersurface M of a pseudo-Riemannian (M, g) is called an extrinsic sphere if it is
a totally umbilical sphere with a non-zero constant mean curvature.

3. Ricci Solitons on Spacelike Hypersurfaces in Einstein Lorentzian Manifolds

Let (M, g) be an orientable spacelike hypersurface of a Lorentz manifold (M, g) of
dimension (n + 1), and let ξ̄ be a timelike closed conformal vector field on M which means

∇X ξ̄ = ψX,

for all X ∈ X(M) (X(M) is the set of all vector fields on M) and ψ is called the conformal
function, a smooth function on M. The restriction of ξ̄ to M is denoted by ξ. Let N be a unit
timeline normal vector field on M, which can be chosen so that θ = g(ξ, N) < 0. Then, we
can write

ξ = ξT − θN, (10)

where ξT is the tangential component of ξ. By using Gauss and Weingarten formulas, it yields

∇XξT = ψX − θA(X), (11)

and
A(ξT) = −∇θ. (12)

From (8), it is straightforward to derive

divξT = n(ψ + θH). (13)

Let Q and Q be Ricci operators on M and M, respectively, where Q and Q satisfy
Ric(X, Y) = g(QX, Y) and Ric(X, Y) = g(QX, Y).

Some of the notation are reviewed, which are needed in our results. It is easy to see
that R(N, X)N is tangent to M for all X ∈ X(M), and, thus, we can define the normal
Jacobi operator RN : TM → TM by

RN(X) = R(N, X)N.

Define the operator (∇A)ξT on M by

(∇A)ξT(X) = ∇A(X, ξT) = (∇X A)(ξT).

The following lemma is crucial for proving the main results.

Lemma 1.

tr((∇A)ξT) = −Ric(ξT , N)− nξT(H).

4
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Proof. Let {e1, . . . , en} denote a local orthonormal frame on M that can be taken as parallel.
By using the Codazzi Equation (6), it yields

tr((∇A)ξT) =
n

∑
i=1

g((∇ei A)(ξT), ei)

= −
n

∑
i=1

g(R(ξT , ei)ei, N)−
n

∑
i=1

g((∇ξT A)(ei), ei)

= −
n

∑
i=1

g(R(ξT , ei)ei, N)−
n

∑
i=1

g(∇ξT (A(ei)), ei) +
n

∑
i=1

g(A(∇ξT )ei), ei)

= −
n

∑
i=1

g(R(ξT , ei)ei, N) + g(R(N, N)ξT , N)− ξT
n

∑
i=1

g(A(ei), ei)

= −Ric(ξT , N)− nξT(H).

Our first result presents the conditions that a spacelike hypersurface must satisfy to be
identified as a gradient Ricci soliton of the particular type (M, g, θ, λ).

Theorem 1. Let (M, g) be an (n+1)-dimensional Lorentzian manifold endowed with a timelike
closed conformal vector field ξ̄. Let (M, g) be a spacelike hypersurface of (M, g), and let ξ, ξT, and
θ be the same as above. (M, g, θ, λ) is a Ricci soliton if and only if the following equation is satisfied:

Q + RN − (∇A)(ξT) + (nH − ψ)A + (1 + θ)A2 = λI. (14)

Proof. By using Equations (3) and (4), it follows that

Hess(θ)(X, Y) = g(∇X∇θ, Y)

= −g(∇X(A(ξT)), Y)

= −g((∇X A)(ξT), Y)− g(A(∇XξT), Y)

= −g((∇X A)(ξT), Y)− g(ψA(X)− θA2(X), Y).

From this last expression, we have

Sθ = −(∇A)ξT − ψA + θA2.

By using Equation (2), it yields

Q = (∇A)ξT + ψA − θA2 + λI. (15)

By substituting (15) into (9), we obtain (14).

The next result outlines a practical condition applicable to a spacelike hypersurface,
establishing its characterization as a gradient Ricci soliton of the type (M, g, θ, λ).

Theorem 2. Let (M, g) be an (n+1)-dimensional Lorentzian manifold with a timelike closed
conformal vector field ξ̄ on M. Let (M, g) be a spacelike hypersurface of (M, g), and let ξ, ξT, and
θ be the same as above. If (M, g, θ, λ) is a Ricci soliton, then

S̄ + 2Ric(N, N) + (ψ − nH)nH + (1 + θ)|A|2 + Ric(ξT , N) + nξT(H) = nλ. (16)

Proof. Formula (16) is obtained just by tracing Equation (14) and using Lemma 1.

In the case of an Einstein ambient manifold, Theorem 2 yields the following implication.

5
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Theorem 3. Let (M, g) be an (n+1)-dimensional Einstein Lorentzian manifold with Ric = nc̄g,
where c̄ is a constant. Let ξ̄ be a timelike closed conformal vector field on M. Let (M, g) be a
spacelike hypersurface of (M, g), and let ξ, ξT, and θ be the same as above. If (M, g, θ, λ) is a Ricci
soliton, then

(1 + θ)(|A|2 − nH2) + n(n − 1)(c̄ − H2) + ndiv(HξT) = nλ. (17)

Proof. Using (13) and (16), it follows that

S̄ + 2Ric(N, N) + (1 + θ)(|A|2 − nH2)− n(n − 1)H2 + nHdiv(ξT)
+Ric(ξT , N) + nξT(H) = nλ.

(18)

Since M is Einstein, then Ric(N, N) = −nc̄, Ric(ξT , N) = 0 and S̄ = n(n + 1)c̄.
It follows that Equation (18) becomes

(1 + θ)(|A|2 − nH2) + n(n − 1)(c̄ − H2) + nHdiv(ξT) + nξT(H) = nλ. (19)

Using div(HξT) = Hdiv(ξT) + ξT(H) yields (17).

A simple consequence of the last theorem is the following result.

Theorem 4. Let (M, g) be an (n+1)-dimensional Einstein Lorentzian manifold with Ric = nc̄g,
where c̄ is a constant, and let ξ̄ be a timelike closed conformal vector field on M. Let (M, g) be a
compact spacelike hypersurface of (M, g), and let ξ, ξT, and θ be the same as above. If (M, g, θ, λ)
is a Ricci soliton, then∫

M
(1 + θ)(|A|2 − nH2)dV = n

∫
M
(λ − (n − 1)(c̄ − H2))dV. (20)

There are interesting results after imposing certain assumptions on the function θ.

Theorem 5. Consider the manifolds (M, g) and (M, g) as defined in Theorem 4, with the additional
assumption that θ < −1 (resp. −1 < θ < 0) everywhere. If (M, g, θ, λ) is a non-trivial Ricci
soliton, then λ ≤ (n − 1)(c̄ − H2) (resp. λ ≥ (n − 1)(c̄ − H2)), with equality holds if and only
if M is an extrinsic sphere. In particular, if (M, g) has a constant sectional curvature, then M is
necessarily a sphere with a constant sectional curvature c = c̄ − H2 > 0. In this case, the Ricci
soliton is shrinking.

Proof. Applying Schwartz’s inequality leads to the conclusion that λ ≤ (n − 1)(c̄ − H2).
It is a well-established fact that when equality is achieved, it indicates that M is totally
umbilical. In [20], Lemma 35 on page 116 implies that M has a constant sectional curvature
c = c̄ − H2. As M is compact, it must be that M is a sphere with a constant positive curva-
ture c = c̄ − H2. This implies that λ > 0. Consequently, the Ricci soliton is shrinking.

Remark 1. In Theorem 5, assuming that M is a space form implies that it is isometric to the de
Sitter Space Sn+1

1 (c̄), where c̄ > 0.

The consequences derived from Equation (20) in Theorem 4 also lead to the following result.

Theorem 6. Let (M, g) be an (n+1)-dimensional Einstein Lorentzian manifold with Ric = nc̄g,
where c̄ is a constant, and let ξ̄ be a timelike closed conformal vector field on M. Let (M, g) be a
compact spacelike hypersurface of (M, g), and let ξ, ξT, and θ be the same as above. If (M, g, θ, λ)
is a Ricci soliton, such that either θ < −1 and λ ≥ (n − 1)(c̄ − H2), or −1 < θ < 0 and
λ ≤ (n − 1)(c̄ − H2), then M is totally umbilical, H is a constant, and M is an extrinsic sphere.

Proof. Clearly, Equation (20) implies |A|2 − nH2 = 0 if θ < −1 and λ ≥ (n − 1)(c̄ − H2)
or −1 < θ < 0 and λ ≤ (n − 1)(c̄ − H2). It is concluded that M is totally umbilical with

6
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a constant mean curvature H, since λ = (n − 1)(c̄ − H2). It must be that H 	= 0 because
otherwise, M will be totally geodesic, a contradiction of the compactness of M.

4. Conclusions

Gradient Ricci solitons have been extensively studied in Riemannian manifolds, as
discussed in the introduction. However, this concept has received limited attention in
the Lorentzian context, with only a few papers published on the topic. In this paper, we
investigate gradient Ricci solitons on spacelike hypersurfaces of Lorentzian manifolds,
marking the first attempt to do so. We believe that our research offers several advantages
and potential impacts compared to the existing literature, thereby advancing knowledge
in Lorentzian geometry. By studying gradient Ricci solitons in Lorentzian manifolds,
particularly on spacelike hypersurfaces, we aim to gain a deeper understanding of their
properties and behavior. This understanding could have significant implications across
various branches of physics, particularly in general relativity, where Lorentzian manifolds
are fundamental. Our research also aims to contribute to the development of a more com-
prehensive theoretical framework applicable to diverse mathematical and physical fields.
Additionally, we hope that our findings will inspire further research and potentially lead
to practical applications in fields such as cosmology, gravitational physics, and geometric
analysis. In summary, we think that our work represents a significant step forward in
understanding gradient Ricci solitons on spacelike hypersurfaces of Lorentzian manifolds,
with implications for both theoretical mathematics and applied physics.
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Abstract: Let (M1, g) and (M2, h) be two Hermitian manifolds. The twisted product Hermitian
manifold (M1 × f M2, G) is the product manifold M1 × M2 endowed with the Hermitian metric
G = g + f 2h, where f is a positive smooth function on M1 × M2. In this paper, the Chern curvature,
Chern Ricci curvature, Chern Ricci scalar curvature and holomorphic sectional curvature of the
twisted product Hermitian manifold are derived. The necessary and sufficient conditions for the
compact twisted product Hermitian manifold to have constant holomorphic sectional curvature are
obtained. Under the condition that the logarithm of the twisted function is pluriharmonic, it is proved
that the twisted product Hermitian manifold is Chern flat or Chern Ricci-flat, if and only if (M1, g)
and (M2, h) are Chern flat or Chern Ricci-flat, respectively.

Keywords: Hermitian manifold; twisted product; holomorphic sectional curvature; Chern flat; Chern
Ricci-flat

MSC: 53C55

1. Introduction

Warped product and twisted product are important methods used to construct new
classes of geometric spaces, and these models are widely applied in theoretical physics.
In 1969, warped product was firstly introduced by O′Neill and Bishop to construct Rieman-
nian manifolds with negative sectional curvature [1]. In 2001, Kozma, Peter and Varga [2]
extended the warped product to real Finsler manifolds. Asanov [3,4] obtained some models
of relativity theory by studying the warped product Finsler metric. In 2018, the notion of
warped product was extended to Hermitian geometry by the work of He and Zhang [5],
and they obtained the necessary and sufficient conditions for the compact nontrivial doubly
warped product (abbreviated as DWP) Hermitian manifold to have constant holomorphic
sectional curvature.

The notion of twisted product, as a generalization of warped product, was first in-
troduced by Chen [6]. In 1993, Ponge and Reckziegel [7] extended twisted product to
pseudo-Riemannian manifolds. Then, Fernández-López showed that a mixed Ricci-flat
twisted product semi-Riemannian manifold can be expressed as a warped product semi-
Riemannian manifold [8]. In 2017, Kazan and Sahin [9] deeply investigated the twisted
product and multiply twisted product semi-Riemannian manifolds, which further pro-
moted the development of twisted product in Riemannian geometry. Kozma, Peter and
Shimada [10] extended the twisted product to real Finsler manifolds and studied some
geometric properties relating to Cartan connection, geodesic and completeness. Recently,
Xiao and He [11] extended the twisted product to complex Finsler manifolds and gave
the formulae of holomorphic curvature and Ricci scalar curvature of the doubly twisted
product (abbreviated as DTP) complex Finsler manifold. In light of the above results, we
shall extend the twisted product to Hermitian manifold, and attempt to derive the Chern
curvature, Chern Ricci curvature, Chern Ricci scalar curvature and holomorphic sectional

Mathematics 2024, 12, 449. https://doi.org/10.3390/math12030449 https://www.mdpi.com/journal/mathematics9
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curvature of the twisted product Hermitian manifold. In addition, we intend to find the
necessary and sufficient conditions for the compact Hermitian manifold to have constant
holomorphic sectional curvature.

One of the most important problems in geometry is to characterize Chern flat or
Chern Ricci-flat manifolds. In 1967, Tani [12] firstly gave the definition of Ricci-flat space
in Riemannian geometry. Later, Bando and Kobayashi [13] constructed Ricci-flat metrics
on Einstein–Kähler manifolds. Liu and Yang [14] obtained the sufficient and necessary
conditions for the Hopf manifold to be Levi-Civita Ricci-flat. Recently, Ni and He [15] gave
the necessary and sufficient conditions for DWP-Hermitian manifold to be Levi-Civita
Ricci-flat. In 2012, Di Scala [16] showed that quasi-Kähler Chern flat almost Hermitian
structures on compact manifolds correspond to complex parallelizable Hermitian structures
satisfying the second Gray identity. Wu and Zheng [17] proved that the compact Hermitian
manifold with complex dimension 3, having vanishing real bisectional curvature, must be
Chern flat. Based on the above mentioned studies, we are interested in the condition under
which the twisted product Hermitian manifold is Chern flat or Chern Ricci-flat.

The structure of this paper is as follows. In Section 2, we briefly recall some basic
concepts of Hermitian geometry and related symbolic conventions. In Section 3, we
shall extend the concept of twisted product to Hermitian geometry, and derive the Chern
connection coefficients of a twisted product Hermitian manifold. In Section 4, we shall give
the formulae of Chern curvature, Chern Ricci curvature and Chern Ricci scalar curvature of
the twisted product Hermitian manifold. In Section 5, we focus on investigating the twisted
product Hermitian manifold with constant holomorphic sectional curvature. In Section 6,
under the condition that the logarithm of the twisted function is pluriharmonic, we shall
show that the twisted product Hermitian manifold is Chern flat or Chern Ricci-flat if and
only if (M1, g) and (M2, h) are Chern flat or Chern Ricci-flat, respectively.

2. Preliminary

In this section, we briefly introduce the definitions and notations which we need in
this paper.

Let (M, J, G) be a n-dimensional Hermitian manifold with complex structure J and
Hermitian metric G. Let TCM denote the complexified tangent bundle of M, which can be
decomposed as

TCM = T1,0M ⊕ T0,1M,

where T1,0M and T0,1M are eigenspaces of J corresponding to eigenvalues
√
−1 and −

√
−1,

respectively.
Let z = (z1, · · · , zn) denote the local holomorphic coordinates on M, then vector fields

{∂α} and {∂ᾱ} form the basis of T1,0M and T0,1M, respectively, where ∂α = ∂
∂zα , ∂ᾱ = ∂

∂z̄α .
On the Hermitian holomorphic tangent bundle T1,0M, the coefficients of Chern connection
∇ are [18]

Γβ
γα = Gβσ∂γGασ, (1)

and their complex conjugate.

Definition 1 ([18]). Let ∇ be the Chern connection, its Chern curvature tensor K on the Hermitian
manifold (M, J, G) is defined by

K = Kαβγσdzα ⊗ dzβ ⊗ dzγ ⊗ dzσ, (2)

where

Kαβγσ = −GεβKε
αγσ, (3)

Kε
αγσ = −∂σΓε

γα. (4)

10
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Definition 2 ([14]). The first and the second Chern Ricci curvature on the Hermitian manifold
(M, J, G) are defined by

K(1) = −
√
−1K(1)

αβ
dzα ∧ dzβ, (5)

K(2) = −
√
−1K(2)

αβ
dzα ∧ dzβ,

respectively, where
K(1)

αβ
= GγσKαβγσ, (6)

K(2)
αβ

= GγσKγσαβ. (7)

Definition 3 ([14]). The Chern Ricci scalar curvature on the Hermitian manifold (M, J, G) is
defined by

SG = GαβK(1)
αβ

= GαβK(2)
αβ

. (8)

For research purposes, we introduce the following two definitions.

Definition 4 ([19]). Let D be open in Cn. A function f ∈ C2(D) is said to be pluriharmonic if it
satisfies the differential equations

∂2 f
∂zα∂zβ

= 0. (9)

Definition 5 ([20]). The complex Laplace operator

L = Gβα ∂2

∂zα∂zβ
(10)

is a second-order elliptic partial differential operator with smooth coefficients.

Clearly, if f is a pluriharmonic function, then L( f ) = 0.

3. Twisted Product Hermitian Manifold

Let (M1, g) and (M2, h) be two Hermitian manifolds with dimCM1 = m and
dimCM2 = n, respectively, then M = M1 × M2 is a Hermitian manifold with dimCM = m + n.

We denote z1 =
(
z1, . . . , zm) ∈ M1 and z2 =

(
zm+1, . . . , zm+n) ∈ M2, so z = (z1, z2) ∈ M.

Let π1 : M1 × M2 → M1, π2 : M1 × M2 → M2 be the natural projection maps, then
π1(z) = z1, π2(z) = z2.

Let T1,0M1 and T1,0M2 be the holomorphic tangent bundle of M1 and M2, respec-
tively. Denote v1 =

(
v1, · · · , vm) ∈ T1,0M1 and v2 =

(
vm+1, · · · , vm+n) ∈ T1,0M2, then

v = (v1, v2) ∈ T1,0M. Let dπ1 : T1,0(M1 × M2) → T1,0M1, dπ2 : T1,0(M1 × M2) →
T1,0M2 be the holomorphic tangent maps induced by π1 and π2, then dπ1(z, v) = (z1, v1),
dπ2(z, v) = (z2, v2), where z is called the base coordinates (or points) on M and v is called
the fiber coordinates (or tangent directions).

For the reader′s convenience, the lowercase Greek indices like α, β, γ,· · · run from 1 to
m + n, the lowercase Latin indices like i, j, k, s, t, · · · run from 1 to m, while the lowercase
Latin indices with a prime like i′, j′, k′, s′, t′, · · · run from m + 1 to m + n. Quantities
associated with (M1, g) and (M2, h) are denoted with upper indices 1 and 2, respectively;

for example,
1

Γi
jk,

2

Γi′
j′k′ are Chern connection coefficients of (M1, g) and (M2, h), respectively.

In the following, we use the Einstein summation convention.

11
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Definition 6. Let (M1, g) and (M2, h) be two Hermitian manifolds. Let f : M1 × M2 → (0,+∞)
be a positive smooth function. The twisted product Hermitian manifold (M1 × f M2, G) is the
product manifold M = M1 × M2 endowed with the Hermitian metric G : TM → (0,+∞):

G(z, v) = g(π1(z), dπ1(v)) + f 2h(π2(z), dπ2(v)), (11)

for z = (z1, z2) ∈ M and v = (v1, v2) ∈ T1,0M. The function f is called the twisted function and
G is called the twisted product Hermitian metric for simplicity.

In particular, if f only depends on M1, then (M1 × f M2, G) is a warped product
Hermitian manifold. If f only depends on M2, then (M1 × f M2, G) is the product Hermi-
tian manifold.

Denote

gij =
∂2g

∂vi∂vj , hi′ j′ =
∂2h

∂vi′∂vj′ . (12)

Then, the fundamental tensor matrix (Gαβ) of G has the following forms

(Gαβ) =

(
gij 0
0 f 2hi′ j′

)
, (13)

its inverse matrix (Gβ̄α) is also given by

(Gβα) =

(
gji 0
0 f−2hj′i′

)
. (14)

Proposition 1. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Then, the Chern
connection coefficients associated with G are given by

Γi
jk =

1
Γi

jk, Γi′
j′k′ = 2 f−1δi′

k′∂j′ f +
2

Γi′
j′k′ , (15)

Γi′
jk′ = 2 f−1δi′

k′∂j f , Γi
j′k = Γi

jk′ = Γi
j′k′ = Γi′

jk = Γi′
j′k = 0. (16)

Proof. By putting α = k′, β = i′, γ = j′ in (1), we have

Γi′
j′k′ = Gi′σ∂j′Gk′σ = Gi′s∂j′Gk′s + Gi′s′∂j′Gk′s′ . (17)

Plunging (13) and (14) into (17), we can obtain

Γi′
j′k′ = f−2hs′i′∂j′( f 2hk′s′)

= 2 f−1δi′
k′∂j′ f + hs′i′∂j′hk′s′

= 2 f−1δi′
k′∂j′ f +

2

Γi′
j′k′ .

Similarly, the other equalities of Proposition 1 can be deduced.

4. Curvatures of Twisted Product Hermitian Manifold

In this section, we shall derive the Chern curvature, Chern Ricci curvature and Chern
Ricci scalar curvature of the twisted product Hermitian manifold.

12
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Proposition 2. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Then, the coeffi-
cients of Chern curvature tensor Kε

αγσ are given by

Kt
kjs =

1
Kt

kjs, Kt′
k′ j′s′ = −2

∂2 ln f
∂zj′∂zs′ δt′

k′ +
2

Kt′
k′ j′s′ , (18)

Kt′
k′ js = −2

∂2 ln f
∂zj∂zs δt′

k′ , Kt′
k′ j′s = −2

∂2 ln f
∂zj′∂zs δt′

k′ , Kt′
k′ js′ = −2

∂2 ln f
∂zj∂zs′ δt′

k′ , (19)

Kt
k′ js = Kt

kj′s = Kt
kjs′ = Kt

k′ j′s = Kt
k′ js′ = Kt

kj′s′ = Kt
k′ j′s′ = 0, (20)

Kt′
kjs = Kt′

kj′s = Kt′
kjs′ = Kt′

kj′s′ = 0. (21)

Proof. By putting α = k′, γ = j′, σ = s′, ε = t′ in (4), we have

Kt′
k′ j′s′ = −∂s′Γ

t′
j′k′ . (22)

Substituting the second equality of (15) into (22), and using (4), we have

Kt′
k′ j′s′ = −∂s′(2 f−1δt′

k′∂j′ f +
2

Γt′
j′k′)

= 2 f−2δt′
k′(∂s′ f )(∂j′ f )− 2 f−1 ∂2 f

∂zj′∂zs′ δt′
k′ − ∂s′

2

Γt′
j′k′

= −2
∂2 ln f
∂zj′∂zs′ δt′

k′ +
2

Kt′
k′ j′s′ .

Similarly, we can obtain other equalities of Proposition 2.

Proposition 3. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Then,

Kkijs =
1

Kkijs, (23)

Kk′i′ js = 2 f 2 ∂2 ln f
∂zj∂zs hk′i′ , (24)

Kk′i′ j′s = 2 f 2 ∂2 ln f
∂zj′∂zs hk′i′ , (25)

Kk′i′ js′ = 2 f 2 ∂2 ln f
∂zj∂zs′ hk′i′ , (26)

Kk′i′ j′s′ = 2 f 2 ∂2 ln f
∂zj′∂zs′ hk′i′ + f 2

2
Kk′i′ j′s′ , (27)

Kk′ijs = Kki′ js = Kkij′s = Kkijs′ = Kk′ij′s′ = Kki′ j′s′ = 0, (28)

Kk′ij′s = Kk′ijs′ = Kki′ j′s = Kki′ js′ = Kkij′s′ = 0. (29)

Proof. By putting α = k′, β = i′, γ = j′, σ = s′ in (3), we have

Kk′i′ j′s′ = −Gεi′K
ε
k′ j′s′ = −Gti′K

t
k′ j′s′ − Gt′i′K

t′
k′ j′s′ . (30)

Plunging (13) and the second equality of (18) into (30), a trivial caculation yields

13
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Kk′i′ j′s′ = − f 2ht′i′(−2
∂2 ln f
∂zj′∂zs′ δt′

k′ +
2

Kt′
k′ j′s′)

= 2 f 2 ∂2 ln f
∂zj′∂zs′ hk′i′ − f 2ht′i′

2

Kt′
k′ j′s′

= 2 f 2 ∂2 ln f
∂zj′∂zs′ hk′i′ + f 2

2
Kk′i′ j′s′ .

Similarly, we can obtain other equalities of Proposition 3.

Proposition 4. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Then, the coeffi-
cients of the first and the second Chern Ricci curvature tensor are given by

K(1)
ki

=

1

K(1)
ki

, K(1)
k′i

= K(1)
ki′

= 0, (31)

K(1)
k′i′

= 2 f 2
1
L(ln f )hk′i′ + 2

2
L(ln f )hk′i′ +

2

K(1)
k′i′

, (32)

and

K(2)
ki

=

1

K(2)
ki

+ 2
∂2 ln f
∂zk∂zi , K(2)

k′i
= 2

∂2 ln f
∂zk′∂zi , (33)

K(2)
k′i′

= 2
∂2 ln f
∂zk′∂zi′ +

2

K(2)
k′i′

, K(2)
ki′

= 2
∂2 ln f
∂zk∂zi′ . (34)

Proof. Letting α = k′, β = i′ in (6), we have

K(1)
k′i′

= GγσKk′i′γσ = GjsKk′i′ js + Gj′sKk′i′ j′s + Gjs′Kk′i′ js′ + Gj′s′Kk′i′ j′s′ . (35)

Substituting (14), (24) and (27) into (35), and noticing that (10), we can obtain

K(1)
k′i′

= 2 f 2gjs ∂2 ln f
∂zj∂zs hk′i′ + f−2hj′s′(2 f 2 ∂2 ln f

∂zj′∂zs′ hk′i′ + f 2
2

Kk′i′ j′s′)

= 2 f 2
1
L(ln f )hk′i′ + 2

2
L(ln f )hk′i′ + hj′s′

2
Kk′i′ j′s′

= 2 f 2
1
L(ln f )hk′i′ + 2

2
L(ln f )hk′i′ +

2

K(1)
k′i′

.

Similarly, we can obtain other equalities of Proposition 4.

Theorem 1. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Then, the Chern Ricci

scalar curvature of G along a nonzero vector v =
(

vi, vi′
)
∈ T1,0M is given by

SG(v) = Sg(v1) + f−2Sh(v2) + 2
1
L(ln f ) + 2 f−2

2
L(ln f ). (36)

Proof. According to (8), we have

SG(v) = GkiK(1)
ki

+ Gk′iK(1)
k′i

+ Gki′K(1)
ki′

+ Gk′i′K(1)
k′i′

. (37)

Substituting (14), (31) and (32) into (37), after a straightfoward computation, we see that

SG(v) = gki
1

K(1)
ki

+ f−2hk′i′ [2 f 2
1
L(ln f )hk′i′ + 2

2
L(ln f )hk′i′ +

2

K(1)
k′i′

]

= Sg(v1) + f−2Sh(v2) + 2
1
L(ln f ) + 2 f−2

2
L(ln f ).

14
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Thus, we complete the proof.

According to Definitions 4 and 5, we can obtain the following.

Corollary 1. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Suppose ln f is a
pluriharmonic function, then SG(v) = Sg(v1) + f−2Sh(v2).

5. Holomorphic Sectional Curvature of Twisted Product Hermitian Manifold

In this section, we would like to derive the holomorphic sectional curvature of the
twisted product Hermitian manifold, and give the necessary and sufficient conditions
for the compact twisted product Hermitian manifold to have constant holomorphic sec-
tional curvature.

Definition 7 ([21]). Let (M, G) be a Hermitian manifold. Then, the holomorphic sectional curva-
ture of G along a nonzero vector v = (vi, vi′) ∈ T1,0M is defined by

KG(v) = − 1
G2(v, v)

Kαβγσvαvβvγvσ. (38)

Theorem 2. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Then, the holomorphic
sectional curvature of G along a nonzero vector v = (vi, vi′) ∈ T1,0M is given by

KG(v) =
1

G2(v, v)
[g2Kg(v1) + f 2h2Kh(v2)− 2 f 2h(

∂2 ln f
∂zj∂zs vjvs

+
∂2 ln f
∂zj′∂zs vj′vs +

∂2 ln f
∂zj∂zs′ vjvs′ +

∂2 ln f
∂zj′∂zs′ vj′vs′)].

(39)

Proof. According to (28), (29) and (38), we have

KG(v) = − 1
G2(v, v)

(Kkijsvkvivjvs + Kk′i′ jsvk′vi′vjvs + Kk′i′ j′svk′vi′vj′vs

+ Kk′i′ js′v
k′vi′vjvs′ + Kk′i′ j′s′v

k′vi′vj′vs′).
(40)

Using (27) and noting that hk′i′v
k′vi′ = h, we have

Kk′i′ j′s′v
k′vi′vj′vs′ = (2 f 2 ∂2 ln f

∂zj′∂zs′ hk′i′ + f 2
2

Kk′i′ j′s′)v
k′vi′vj′vs′

= 2 f 2h
∂2 ln f
∂zj′∂zs′ vj′vs′ − f 2h2Kh(v2). (41)

Similarly, we can obtain

Kkijsvkvivjvs =
1

Kkijsvkvivjvs = −g2Kg(v1), (42)

Kk′i′ jsvk′vi′vjvs = 2 f 2 ∂2 ln f
∂zj∂zs hk′i′v

k′vi′vjvs = 2 f 2h
∂2 ln f
∂zj∂zs vjvs, (43)

Kk′i′ j′svk′vi′vj′vs = 2 f 2 ∂2 ln f
∂zj′∂zs hk′i′v

k′vi′vj′vs = 2 f 2h
∂2 ln f
∂zj′∂zs vj′vs, (44)

Kk′i′ js′v
k′vi′vjvs′ = 2 f 2 ∂2 ln f

∂zj∂zs′ hk′i′v
k′vi′vjvs′ = 2 f 2h

∂2 ln f
∂zj∂zs′ vjvs′ . (45)

Plunging (41)–(45) into (40), we can obtain (39).

According to Definition 4, we can easily obtain

15



Mathematics 2024, 12, 449

Corollary 2. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Suppose ln f is a
pluriharmonic function, then

KG(v) =
1

G2(v, v̄)
(g2Kg(v1) + f 2h2Kh(v2)).

Theorem 3 ([21]). Let (M, G) be a compact Hermitian manifold. Then, M has constant holomor-
phic sectional curvature κ if and only if, at every point of M,

Θαβγσ = −1
2

κ(GαβGγσ + GασGγβ), (46)

where
Θαβγσ =

1
4
(Kαβγσ + Kγσαβ + Kασγβ + Kγβασ). (47)

Proposition 5. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Then,

Θkijs =
1

Θkijs, (48)

Θk′i′ js = Θk′sji′ = Θji′k′s = Θjsk′i′ =
1
2

f 2 ∂2 ln f
∂zj∂zs hk′i′ , (49)

Θk′i′ j′s = Θk′sj′i′ =
1
2

f 2(
∂2 ln f
∂zk′∂zs hj′i′ +

∂2 ln f
∂zj′∂zs hk′i′), (50)

Θk′i′ js′ = Θji′k′s′ =
1
2

f 2(
∂2 ln f
∂zj∂zi′ hk′s′ +

∂2 ln f
∂zj∂zs′ hk′i′), (51)

Θk′i′ j′s′ =
1
2

f 2(
∂2 ln f
∂zj′∂zs′ hk′i′ +

∂2 ln f
∂zk′∂zi′ hj′s′ +

∂2 ln f
∂zj′∂zi′ hk′s′

+
∂2 ln f
∂zk′∂zs′ hj′i′) + f 2

2
Θk′i′ j′s′ , (52)

Θk′ijs = Θki′ js = Θjik′s = Θksji′ = Θk′ij′s = Θki′ js′ = 0. (53)

Proof. By putting α = k′, β = i′, γ = j′, σ = s′ in (47), we have

Θk′i′ j′s′ =
1
4
(Kk′i′ j′s′ + Kj′s′k′i′ + Kk′s′ j′i′ + Kj′i′k′s′). (54)

By using (27), we obtain

Θk′i′ j′s′ =
1
4
(2 f 2 ∂2 ln f

∂zj′∂zs′ hk′i′ + f 2
2

Kk′i′ j′s′ + 2 f 2 ∂2 ln f
∂zk′∂zi′ hj′s′ + f 2

2
Kj′s′k′i′

+ 2 f 2 ∂2 ln f
∂zj′∂zi′ hk′s′ + f 2

2
Kk′s′ j′i′ + 2 f 2 ∂2 ln f

∂zk′∂zs′ hj′i′ + f 2
2

Kj′i′k′s′)

=
1
2

f 2(
∂2 ln f
∂zj′∂zs′ hk′i′ +

∂2 ln f
∂zk′∂zi′ hj′s′ +

∂2 ln f
∂zj′∂zi′ hk′s′ +

∂2 ln f
∂zk′∂zs′ hj′i′) + f 2

2
Θk′i′ j′s′ .

Similar calculations give the rest of the equalities of Proposition 5.

Theorem 4. Let (M1 × f M2, G) be a compact twisted product Hermitian manifold. Then, G has
constant holomorphic sectional curvature κ if and only if κ = 0 and the following equalities hold
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Θkijs = 0, (55a)

1
L(ln f ) = 0, (55b)

∂2ln f
∂zj′∂zs = 0, (55c)

∂2ln f
∂zj∂zs′ = 0, (55d)

2
2
L(ln f ) + hs′ j′hi′k′

2
Θk′i′ j′s′ = 0. (55e)

Proof. According to Theorem 3, (13) and (53), (M1 × f M2, G) has constant holomorphic
sectional curvature if and only if ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θkijs = −1
2

κ(GkiGjs + GksGji), (56a)

Θk′i′ js = −1
2

κGk′i′Gjs, (56b)

Θk′i′ j′s = 0, (56c)

Θk′i′ js′ = 0, (56d)

Θk′i′ j′s′ = −1
2

κ(Gk′i′Gj′s′ + Gk′s′Gj′i′). (56e)

Substituting (13) and (48)–(52) into (56a)–(56e), and noticing that f 2 	= 0, (56a)–(56e) are
thus equivalent to the following equalities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Θkijs = −1

2
κ(gkigjs + gksgji),

∂2ln f
∂zj∂zs hk′i′ = −κhk′i′ gjs,

∂2 ln f
∂zk′∂zs hj′i′ +

∂2ln f
∂zj′∂zs hk′i′ = 0,

∂2 ln f
∂zj∂zi′ hk′s′ +

∂2ln f
∂zj∂zs′ hk′i′ = 0,

∂2 ln f
∂zj′∂zs′ hk′i′ +

∂2 ln f
∂zk′∂zi′ hj′s′ +

∂2 ln f
∂zj′∂zi′ hk′s′ +

∂2 ln f
∂zk′∂zs′ hj

+2
2

Θk′i′ j′s′ = −κ f 2(hk′i′hj′s′ + hk′s′hj′i′).

The above equalities are equivalent to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Θkijs = −1

2
κ(gkigjs + gksgji), (58a)

1
L(ln f ) = −κ, (58b)

∂2ln f
∂zj′∂zs = 0, (58c)

∂2ln f
∂zj∂zs′ = 0, (58d)

2
2
L(ln f ) + hs′ j′hi′k′

2
Θk′i′ j′s′ = −κ f 2. (58e)

In fact, contracting (57b) with hi′k′ and gsj successively, and noticing that
1
L = gik ∂2

∂zk∂zi , we

can obtain (58b). Contracting (57c) and (57d) with hi′k′ , respectively, we can obtain (58c) and
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(58d). Contracting (57e) with hi′k′ and hs′ j′ successively, and noticing that
2
L = hi′k′ ∂2

∂zk′ ∂zi′ ,
we can obtain (58e).

Proof of the necessity.
Let us suppose that κ 	= 0, combining (58a) and (58b), we have

2
1

Θkijs =
1
L(ln f )(gkigjs + gksgji), (59)

since
1

Θkijs, gki depend only on z1, which says that f only depends on M1. These are
contradicted by the fact that (M1 × f M2, G) is a twisted product Hermitian manifold. Thus,

κ = 0. (60)

Plunging (60) into (58a), (58b) and (58e), we can check that (58a)–(58e) can be simplified as
(55a)–(55e).

Next, we prove the sufficiency.
Suppose that κ = 0 and (55a)–(55e) hold; this immediately confirms that (57a)–(57e)

hold, i.e., (M1 × f M2, G) has constant holomorphic sectional curvature κ. Thus, we com-
plete the proof.

6. Chern Flat and Chern Ricci-Flat Twisted Product Hermitian Manifolds

Let (M1, g) and (M2, h) be two Chern flat or Chern Ricci-flat Hermitian manifolds,
respectively. We would like to know under what conditions the twisted product Hermitian
manifold (M1 × f M2, G) is Chern flat or Chern Ricci-flat.

Definition 8 ([22]). A Hermitian manifold (M, G) is called Chern flat if

K = 0,

where K is the Chern curvature tensor.

Definition 9 ([22]). A Hermitian manifold (M, G) is called Chern Ricci-flat if

K(1) = 0,

where K(1) is the first Chern Ricci curvature tensor.

Theorem 5. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Suppose ln f is
pluriharmonic, then (M1 × f M2, G) is Chern flat if and only if (M1, g) and (M2, h) are Chern flat.

Proof. Since ln f is pluriharmonic, then

∂2 ln f
∂zj∂z̄s = 0, (61)

∂2 ln f
∂zj′∂z̄s

= 0, (62)

∂2 ln f
∂zj∂z̄s′ = 0, (63)

∂2 ln f
∂zj′∂z̄s′

= 0. (64)

According to Definition 8 and (2), (M1 × f M2, G) is Chern flat if and only if

Kαβγσ = 0. (65)
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Using Proposition 3 and (61)–(64), and noticing that f 2 	= 0, (65) is equivalent to following
equalities ⎧⎪⎨⎪⎩

1
Kkijs = 0,

2
Kk′i′ j′s′ = 0.

(66)

which means that (M1, g) and (M2, h) are Chern flat.

Theorem 6. Let (M1 × f M2, G) be a twisted product Hermitian manifold. Suppose ln f is
pluriharmonic, then (M1 × f M2, G) is Chern Ricci-flat if and only if (M1, g) and (M2, h) are
Chern Ricci-flat.

Proof. Suppose that ln f is pluriharmonic, then

1
L(ln f ) =

2
L(ln f ) = 0. (67)

By Definition 9 and (5), (M1 × f M2, G) is Chern Ricci flat if and only if

K(1)
αβ

= 0. (68)

Using (31), (32) and (67), (68) is equivalent to the following equalities⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

K(1)
ki

= 0,

2

K(1)
k′i′

= 0.

(69)

Which means that (M1, g) and (M2, h) are Chern Ricci flat.

7. Conclusions

In this paper, we extended the twisted product to Hermitian manifold. Based on
this, we confirmed that the compact twisted product Hermitian manifold has constant
holomorphic sectional curvature if and only if κ = 0 and a system of differential equations
holds. Under the condition that the logarithm of the twisted function is pluriharmonic,
we obtained the necessary and sufficient conditions for the twisted product Hermitian
manifold to be Chern flat or Chern Ricci-flat, respectively, so then we gave an effective way
to construct Chern flat or Chern Ricci-flat Hermitian manifolds.
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Abstract: In the present paper, we investigate the geometry and topology of warped product Leg-
endrian submanifolds in Sasakian space forms D2n+1(ε) and obtain the first Chen inequality that
involves extrinsic invariants like the mean curvature and the length of the warping functions. This
inequality also involves intrinsic invariants (δ-invariant and sectional curvature). In addition, an
integral bound is provided for the Bochner operator formula of compact warped product submani-
folds in terms of the gradient Ricci curvature. Some new results on mean curvature vanishing are
presented as a partial solution to the well-known problem given by S.S. Chern.

Keywords: warped products; Legendrian; Sasakian space form; Ricci curvature; ordinary differential
equations; Riemannian invariants; Bochner operator formula; eigenvalues

MSC: 53C20; 53C21; 53C40; 53C42; 53C80; 53Z05

1. Introduction and Main Motivations

The geometry of warped product manifolds is rich and varied, and their properties
depend crucially on the choice of the warping function. Understanding the behavior of
this function is therefore of fundamental importance in the study of these objects. In recent
years, there has been a surge of interest in the study of warped product manifolds, driven in
part by their wide-ranging applications and their connections to other areas of mathematics.
Therefore, the study of warped product manifolds has many important applications in
geometry and physics. For example, in general relativity, warped product manifolds are
used to model certain types of black hole spacetimes. In algebraic geometry, they arise
in studying moduli spaces of vector bundles on algebraic varieties. In topology, they
have been used to construct examples of exotic manifolds that do not admit a smooth
structure [1–3]. On the other hand, the Chen delta invariant is a numerical invariant in
algebraic topology that measures the extent to which a loop in space fails to be a boundary of
a surface. More precisely, if a loop is the boundary of a surface, then the Chen delta invariant
is zero. Otherwise, it gives a measure of how “far” the loop is from being a boundary.
Applications of the delta-invariant can be found in various areas of mathematics, including
topology, geometry, and algebraic geometry. For example, it has been used to study the
topology of moduli spaces of algebraic curves, the geometry of the Kähler–Einstein metric
on a complex manifold, and the topology of configuration spaces of particles in a Euclidean
space. It has also found applications in physics, particularly in the study of topological field
theories [4–6]. Numerous mathematicians have also investigated product manifolds and
related submanifolds. To address the issues, new forms of Riemannian invariants, distinct
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Mathematics 2023, 11, 4718

from classical invariants, must be introduced. Furthermore, general optimum links between
the essential extrinsic invariants and the new intrinsic invariants for submanifolds must be
established. This was the reason for Chen [7] to introduce a notion that delta-invariants
on Riemannian manifolds and discussed in detail [4,8]. More specifically, they introduced
a novel family of curvature functions on submanifolds in the 1990s. A good isometric
immersion that creates the least amount of tension from the surrounding space at each
point roughly describes the ideal immersion of a Riemannian manifold into a real space
form [9]. Chen proposed that the submanifold satisfying the equality condition is known as
the ideal submanifold and developed numerous inequalities in terms of invariants. Chen’s
submanifolds are a substitute for these submanifolds in [4]. Chen has described the ideal
submanifolds in real space forms and complex space forms [6,7,9–11]. In addition, Dillen,
Petrovic, Verstraelen, Mihai, and Tripathi investigated conformally flat, semisymmetric, and
Ricci-semisymmetric submanifolds obeying Chen’s inequality in real space forms [12–18]
and also (see [10] and references therein) for more information about ideal submanifolds.

It should be noted that there are few studies on the δ-invariant for warped product
structures other than the Chen-derived optimal inequality for CR-warped products in com-
plex space form [19]. Recently, Mustafa et al. [20] constructed the first Chen invariant for
warped product submanifolds in real space forms and discussed the minimality conditions
on submanifolds. From this point of view, by using the Gauss equation instead of the
Codazzi equation in the sense of [13], in the first part of this paper, we provide a sharp
estimate of the squared norm of the mean curvature in terms of a warping function and the
constant holomorphic sectional curvature in the spirit of [21–33], motivated by the historical
development on the study of a warping function of a warped product submanifold [34]. As
the main objective of our study, we present a novel method for establishing inequalities for
δ-invariant curvature inequalities for warped product Legendrian submanifolds isometri-
cally immersed in Sasakian space. This has been discussed in [20,21,35]. As a consequence
of the main results discussed in this paper, we generalize a number of inequalities for
areas on Euclidean spheres and Euclidean spaces. There is another significant group of
Riemannian products in this family.

2. Preliminaries

A (2m + 1)-dimensional manifold D̃2m+1 endowed with an almost-contact structure
(ϕ, ξ, η, g) is called an almost-contact metric manifold when it satisfies the following properties:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, (1)

g(ϕX1, ϕX2) = g(X1,X2)− η(X1)η(X2), and η(X1) = g(X1, ξ), (2)

for any X1,X2 ∈ X(TD̃2m+1), where the Lie algebra of vector fields is on a manifold D̃2m+1.
In this case, ϕ, g, ξ, and η are called (1, 1)-tensor fields, a structure vector field, and dual
1-form, respectively. Furthermore, an almost-contact metric manifold is known to be a
Sasakian manifold (cf. [22,36,37]) if

(∇̃X1 ϕ)X2 = g(X1,X2)ξ − η(X2)X1, ∇̃X1 ξ = −ϕX1, (3)

for any vector fields X1,X2 on D̃2m+1, where ∇̃ denotes the Riemannian connection with
respect to g. An n-dimensional Riemannian submanifold Dn of D̃2m+1 is referred to as
totally real if the standard almost-contact structure ϕ of D̃2m+1 maps any tangent space
of Dn into its corresponding normal space (see [22,35,38,39]). Now, let Dn be an isometric
immersed submanifold of dimension n in D̃2m+1, then Dn is referred to as a Legendrian
submanifold if ξ is a normal vector field on Dn (i.e., Dn is a C-totally real submanifold) and
m = n [22,35,38]. Legendrian submanifolds play a substantial role in contact geometry.
From the Riemannian geometric perspective, studying the Legendrian submanifolds of
Sasakian manifolds was initiated in the 1970s.
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Let D be an n-dimensional Riemannian submanifold of an m-dimensional Riemannian
D̃2m+1 with induced metric g and if ∇ and ∇⊥ are induced connections on the tangent
bundle TM and normal bundle T⊥D of Dn, respectively. Then, the Gauss and Weingarten
formulas are given by

(i)∇̃X1X2 = ∇X1X2 + ζ(X1,X2), (ii)∇̃X1 N = −ANX1 +∇⊥
X1

N, (4)

for each X1,X2 ∈ X(TD) and N ∈ X(T⊥D), where ζ and AN are the second fundamental
form and shape operator (corresponding to the normal vector field N), respectively, for the
immersion of Dn into D̃2m+1, and they are related as follows:

g(ζ(X1,X2), N) = g(ANX1,X2). (5)

Similarly, the equations of Gauss and Codazzi are, respectively, given by

(i)R(X1,X2,X3,X4) = R̃(X1,X2,X3,X4) + g
(
ζ(X1,X4), ζ(X2,X3)

)
− g
(
ζ(X1,X3), ζ(X2,X4)

)
. (6)

(ii)
(

R̃(X1,X2)X3
)⊥

= (∇̃X1 ζ)(X2,X3)− (∇̃X2 ζ)(X1,X3). (7)

For all X1,X2,X3,X4 ∈ X(TM̃), R and R̃ are the curvature tensor of D̃2n+1 and Dn,
respectively. The mean curvature H of Riemannian submanifold Dn is given by

H =
1
n

trace(ζ). (8)

A submanifold Dn of Riemannian manifold D̃2n+1 is said to be a totally umbilical if

ζ(X1,X2) = g(X1,X1)H,

and totally geodesic if
ζ(X1,X2) = 0,

for any X1,X2 ∈ X(TM), respectively, where H is the mean curvature vector of Dn. Fur-
thermore, if H = 0, then Dn is minimal in D̃2m+1. Moreover, the related null space or kernel
of the second fundamental form of Dn at x is defined by

Dx =
{
X1 ∈ TxD : ζ(X1,X2) = 0, f orallX2 ∈ TxD

}
. (9)

In this context, we shall define another important Riemannian intrinsic invariant
called the scalar curvature of D̃2m+1, denoted at τ̃(TxD̃2m+1), which, at some x in D̃2m+1,
is given as

τ̃(TxD̃2m+1) = ∑
1≤i<j≤2m+1

K̃ij, (10)

where K̃ij = K̃
(
ei ∧ ej

)
. It is clear that Equality (10) is congruent to the following equation,

which will be frequently used in a subsequent proof:

2τ̃(TxD̃2m+1) = ∑
1≤i<j≤2m+1

K̃ij, (11)

Similarly, scalar curvature τ̃(Lx) of L−plan is given by

τ̃(Lx) = ∑
1≤i<j≤m

K̃ij, (12)
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Let {e1, · · · en} be an orthonormal basis of the tangent space TxD and er = (en+1, · · · e2m+1)
belonging to an orthonormal basis of the normal space T⊥D, then we have

ζr
ij = g(ζ(ei, ej), er) and ||ζ||2 =

n

∑
i,j=1

g
(
ζ(ei, ej), ζ(ei, ej

)
). (13)

Let Kij and K̃ij denote the sectional curvature of the plane section spanned and ei at
x in the submanifold Dn and in the Riemannian space form D̃2n+1(c), respectively. Thus,
Kij and K̃ij are the intrinsic and extrinsic sectional curvatures of the span {ei, ej} at x, thus
from Gauss Equation (6)(i), we have

2τ̃(TxD̃
n) = Kij = 2τ̃(TxD̃2m+1) = K̃ij +

2m+1

∑
r=n+1

(
ζr

iiζ
r
jj − (ζr

ij)
2
)

. (14)

The second invariant is called the Chen first invariant, which is defined as

δD̃2m+1(x) = τ̃(TxD̃2m+1)− in f
{
K̃(π) : π ⊂ TxD̃2m+1, x ∈ D̃2m+1, dim ζ = 2

}
(15)

Assume that D
s1
1 and D

s2
2 are two Riemannian manifolds with their Riemannian

metrices g1 and g2, respectively. Let f > 0 be a smooth function defined on D
s1
1 . Then,

warped product manifold Dn = D
s1
1 × f D

s2
2 is the manifold D

s1
1 × D

s2
2 furnished by the

Riemannian metric g = g1 + f 2g2 [1]. Assume that Dn = D
s1
1 × f D

s2
2 is a warped product

manifold, then for any X1 ∈ Γ(TDs1
1 ) and X3 ∈ Γ(TDs2

2 ), we find that

∇X3X1 = ∇X1X3 = (X1 ln f )X3. (16)

Similarly, from unit vector fields, X1 and X3 are tangent to D
s1
1 and D

s2
2 , respectively,

thus deriving

K(X1 ∧ X3) =g(R(X1,X3)X1,X3)

=(∇X1X1) ln f g(X3,X3)− g
(
∇X1((X1 ln f )X3),X3

)
= (∇X1X1) ln f g(X3,X3)− g

(
∇X1(X1 ln f )X3 + (X1 ln f )g(∇X1X3,X3

)
= (∇X1X1) ln f g(X3,X3)− (X1 ln f )2 −X1(X1 ln f ). (17)

Suppose that {e1, · · · en} is an orthonormal frame for Dn, then sum up over the vector
fields such that

s1

∑
i=1

s2

∑
j=1

K(ei ∧ ej) =
s1

∑
i=1

s2

∑
j=1

(
(∇ei ei) ln f − ei(ei ln f )− (ei ln f )2

)
,

which implies that

s1

∑
i=1

s2

∑
j=1

K(ei ∧ ej) = s2

(
Δ(ln f )− ||∇(ln f )||2

)
. (18)

But, it was proved [9] that for arbitrary warped product submanifolds,

s1

∑
i=1

s2

∑
j=1

K(ei ∧ ej) =
s2Δ f

f
. (19)

Thus, from (18) and (19), we obtain

Δ f
f

= Δ(ln f )− ||∇(ln f )||2. (20)
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The following remarks are consequences of warped product submanifolds:

Remark 1. A warped product manifold Dn = D
s1
1 × f D

s2
2 is said to be trivial if the warping

function f is constant or simply a Riemannian product manifold.

Remark 2. If Dn = D
s1
1 × f D

s2
2 is a warped product manifold, then D1 is a totally geodesic and

D2 is a totally umbilical submanifold of Dn, respectively.

A Sasakian manifold is said to be Sasakian space form with a constant ϕ-sectional
curvature ε if and only if the Riemannian curvature tensor R̃ can be written as (see [22,38]):

R̃(X1,X2,X3,X4) =

(
ε + 3

4

){
g(X2,X3)g(X1,X4)− g(X1,X3)g(X2,X4)

}

+

(
ε − 1

4

){
η(X1)η(X3)g(X2,X4) + η(X4)η(X2)g(X1,X3)

− η(X2)η(X3)g(X1,X4)− η(X1)g(X2,X3)η(X4)

+ g(ϕX2,X3)g(ϕX1,X4)− g(ϕX1,X3)g(ϕX2,X4)

+ 2g(X1, ϕX2)g(ϕX3,X4)

}
,

(21)

where X1,X2,X3,X4 ∈ X(TD̃2m+1). Moreover, R2m+1 and S2m+1 with standard Sasakian
structures can be given as typical examples of Sasakian space forms. Many geometers have
drawn significant attention to minimal Legendrian submanifolds in particular.
We recall the following important algebraic lemma.

Lemma 1. Let t1, t2 · · · tn, s (n + 1)(n ≥ 2) be a real number such that

n

∑
i=1

(ti)
2 = (n − 1)

( n

∑
i=1

t2
1 + s

)
. (22)

Then, 2t1t2 ≥ s with an equality holds if and only if t1 + t2 = t3 = · · · tn.

Theorem 1. Let φ : Dn = D
s1
1 × f D

s2
2 be an isometric immersion of a warped product Legendrian

submanifold Dn = D
s1
1 × f D

s2
2 into a Sasakian space form D̃2n+1(ε). Then, for each point x ∈ Dn

and each plane section πi ⊂ TxD
ni
i , for i = 1, 2, we obtain

(1) Let π1 ⊂ TxD
s1
1 , then

δ
D̃s1 (x) ≤ n2

2
||H||2 + s2||∇(ln f )||2 − s2Δ(ln f )

+

{
s1

2

(
s1 + 2s2 − 1

)
− 1

}(
ε + 3

4

)
. (23)
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The equality of the above inequality holds at x ∈ Dn if and only if there exists an orthonor-
mal basis {e1 · · · en} of TxD

n and orthonormal basis {en + 1 · · · e2n+1} of T⊥
x such that

(a)π = Span{e1, e2} and (b) shape operators take the following form

(i)Aen+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1 ζn+1
12 0 · · · 01s1 01s1+1 · · · 01n

ζn+1
12 μ2 0 · · ·

...
... · · ·

...

0 0 μ · · ·
...

... · · ·
...

...
...

...
. . .

...
... · · ·

...
0s11 0 0 · · · μ 0s1s1+1 · · · 0s1n

0s1+11 · · · · · · · · · 0s1+1s1 ζn+1
s1+1s1+1 · · · ζn+1

s1+1n
...

. . . . . . . . .
...

...
. . .

...
0n1 · · · · · · · · · 0ns1 ζn+1

ns1+1 · · · ζn+1
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where μ = μ1 + μ2. If r ∈ {n + 2, · · ·m}, then we have the matric

(ii)Aer =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζr
11 ζr

12 0 · · · 01s1 01s1+1 · · · 01n

ζr
21 −ζr

11 0 · · ·
...

... · · ·
...

0 0 033 · · ·
...

... · · ·
...

...
...

...
. . .

...
... · · ·

...
0s11 0 0 · · · 0s1s1 0s1s1+1 · · · 0s1n

0s1+11 · · · · · · · · · 0s1+1s1 ζn+1
s1+1s1+1 · · · ζn+1

s1+1n
...

. . . . . . . . .
...

...
. . .

...
0n1 · · · · · · · · · 0ns1 ζn+1

ns1+1 · · · ζn+1
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(2) If π2 ⊂ TxD
s2
2 , then

δ
D̃s2 (x) ≤ n2

2
||H||2 + s2||∇(ln f )||2 − s2Δ(ln f )

+

{
s2

2

(
s2 + 2s1 − 1

)
− 1

}(
ε + 3

4

)
. (24)

Equalities of the above equation hold if and only if

(iii)Aen+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζn+1
11 · · · · · · ζn+1

1s1
01s1+1 · · · · · · · · · 01n

...
. . .

...
...

. . . . . . . . .
...

...
. . .

...
...

. . . . . . . . .
...

ζn+1
s111 · · · · · · ζn+1

s1s1
0s1s1+1 · · · · · · · · · 0s1n

0s1+11 · · · · · · 0s1+1s1 μ1 ζn+1
s1+1s1+2 0 · · · 0s1+1n

...
. . . . . .

... ζn+1
s1+2s1+1 μ2 0 · · ·

...
...

. . . . . .
... 0 0 μ · · ·

...
...

. . . . . .
...

...
... 0

. . . 0
0n1 · · · · · · 0ns1 0ns1+1 0 · · · 0 μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where μ = μ1 + μ2. If r ∈ {n + 2, · · · , m}, thus we have

(iv)Aer =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζr
11 · · · · · · ζr

1s1
01s1+1 · · · · · · · · · 01n

...
. . .

...
...

. . . . . . . . .
...

...
. . .

...
...

. . . . . . . . .
...

ζr
s111 · · · · · · ζr

s1s1
0s1s1+1 · · · · · · · · · 0s1n

0s1+11 · · · · · · 0s1+1s1 ζr
s1+1s1+1 ζn+1

s1+1s1+2 0 · · · 0s1+1n
...

. . . . . .
... ζn+1

s1+2s1+1 −ζr
s1+1s1+1 0 · · ·

...
...

. . . . . .
... 0 0 0 · · ·

...
...

. . . . . .
...

...
... 0

. . . 0
0n1 · · · · · · 0ns1 0ns1+1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(v) If the equality holds in (1) or (2), then D
s1
1 × f D

s1
2 is mixed totally geodesic in D2n+1

ε . Moreover,
D

s1
1 × f D

s1
2 is both D

s1
1 -minimal and D

s2
2 -minimal. Thus, Ds1

1 × f D
s1
2 is a minimal warped product

submanifold in D2n+1
ε .

Proof. Let π1 ⊂ TxD1 be 2-plane for x ∈ Dn, then we consider the orthonormal basis
{e1 · · · es1 , es1+1, · · · en} of TxD

n such that {e1, · · · es1} is an orthonomal basis for TxD1 and
{es1+1, · · · en} is for TxD2. Similarly, {en+1, · · · e2n+1} is an orthonormal basis for T⊥

x Dn.
Assume that π = Span{e1, e2} such that the normal vector en+1 is in the direction of mean
curvature vector H, thus from (21) and Gauss Equation (6), we obtain

n2‖H‖2 =2τ(TxD
n) + ||ζ||2 − n(n − 1)

(
ε + 3

4

)
. (25)

which implies that

( s1

∑
i=1

ζn+1
ii

)2
=2τ(TxD

n) + ||ζ||2 − n(n − 1)
(

ε + 3
4

)
−
( n

∑
j=s1+1

ζn+1
jj

)2
− 2

s1

∑
A=s1+1

n

∑
B=s1+1

ζn+1
AA ζn+1

BB . (26)

Let us consider the following:

Ω =2τ(TxD
n)− n(n − 1)

(
ε + 3

4

)
− (s1 − 2)

(s1 − 1)

( s1

∑
i=1

ζn+1
ii

)2
−
( n

∑
j=s1+1

ζn+1
jj

)2

− 2
s1

∑
A=s1+1

n

∑
B=s1+1

ζn+1
AA ζn+1

BB . (27)

It follows from (26) and (27), and we find that

( s1

∑
i=1

ζn+1
ii

)2
= (s1 − 1)

(
Ω + ||ζ||2

)
. (28)

The above equation can be expressed as

27



Mathematics 2023, 11, 4718

( s1

∑
i=1

ζn+1
ii

)2
= (s1 − 1)

{
Ω +

s1

∑
i=1

(
ζn+1

ii
)2

+
n

∑
j=s1+1

(
ζn+1

jj
)2

+
n

∑
i 	=j=1

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=1

(
ζn+1

jj
)2
}

(29)

Therefore, we shall apply Lemma 1 on the above equation, i.e.,

tα =ζn+1
αα , ∀tα ∈ {1 · · · , s1}

and

s =Ω +
n

∑
j=s1+1

(
ζn+1

jj
)2

+
n

∑
i 	=j=1

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=1

(
ζn+1

jj
)2

Thus, we obtain that

ζn+1
11 ζn+1

22 ≥ 1
2

{
Ω +

n

∑
j=s1+1

(
ζn+1

jj
)2

+
n

∑
i 	=j=1

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=1

(
ζn+1

jj
)2
}

(30)

Then, from (21) and (14), we derive

K(π1) =

(
ε + 3

4

)
+

2n+1

∑
r=n+1

(
ζr

11ζr
22 − (ζr

12)
2). (31)

If we combine Equations (30) and (31), we obtain

K(π1) ≥
(

ε + 3
4

)
+

1
2

Ω +
1
2

n

∑
j=s1+1

(
ζn+1

jj
)2

+
2n+1

∑
r=n+1

(
ζr

11ζr
22 − (ζr

12)
2)+ 1

2

n

∑
i 	=j=1

(
ζn+1

ij
)2

+
1
2

2n+1

∑
r=n+2

n

∑
i,j=1

(
ζn+1

jj
)2. (32)

We choose the last two terms of the above equation, and we derive

n

∑
i,j=1
i 	=j

(
ζn+1

ij
)2

=
n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+ 2
n

∑
j=3

(
ζn+1

1j
)2

+ 2
(
ζn+1

12
)2

+ 2
n

∑
j=3

(
ζn+1

2j
)2. (33)

Moreover, for the last term, we obtain

2n+1

∑
r=n+2

n

∑
i,j=1

(
ζn+1

jj
)2

=
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζn+1

jj
)2

+ 2
2n+1

∑
r=n+2

n

∑
j=3

(
ζn+1

1j
)2

+ 2
2n+1

∑
r=n+2

n

∑
j=3

(
ζn+1

2j
)2

+ 2
(
ζn+1

12
)2

+
2n+1

∑
r=n+2

(
(ζ11)

2 + (ζ22)
2
)

.

Furthermore, we have
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2n+1

∑
r=n+2

ζr
11ζ2

22 +
1
2

2n+1

∑
r=n+2

(
(ζr

11)
2 + (ζr

22)
2
)
=

1
2

2n+1

∑
r=n+2

(
ζr

11 + ζr
22

)2

, (34)

n

∑
j=3

(
(ζn+1

1j )2 + (ζn+1
2j )2

)
+

2n+1

∑
r=n+2

n

∑
j=3

(
ζn+1

1j
)2

+
2n+1

∑
r=n+2

n

∑
j=3

(
ζn+1

2j
)2

=
2n+1

∑
r=n+2

n

∑
j=3

{(
ζn+1

2j
)2

+
(
ζn+1

2j
)2
}

(35)

After adding (33) and (59), then using (34) and (35), and taking into account that

(ζn+1
12 )2 +

2n+1

∑
r=n+2

(ζn+1
12 )2 =

2n+1

∑
r=n+1

(ζn+1
12 )2.

We obtain

n

∑
i,j=1
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=1

(
ζn+1

jj
)2

=2
2n+1

∑
r=n+2

n

∑
j=3

{(
ζn+1

2j
)2

+
(
ζn+1

2j
)2
}

+
n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζn+1

jj
)2

− 2
2n+1

∑
r=n+2

{
ζr

11ζr
22 − (ζr

12)
2
}

+
2n+1

∑
r=n+2

(
ζr

11 + ζ2
22

)2
. (36)

It follows from (32) and (36) that one derives

K(π1) ≥
(

ε + 3
4

)
+

1
2

Ω +
1
2

n

∑
β=s1+1

(
ζn+1

ββ

)2

+
2n+1

∑
r=n+2

n

∑
j=3

{(
ζn+1

2j
)2

+
(
ζn+1

2j
)2
}

+
1
2

{
n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζn+1

jj
)2
}
+

1
2

2n+1

∑
r=n+2

(
ζr

11 + ζ2
22

)2
,

which implies that

K(π1) ≥
(

ε + 3
4

)
+

1
2

{
Ω +

n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζn+1

jj
)2

+
n

∑
β=s1+1

(
ζn+1

ββ

)2
}

.

From (27), we arrive at

K(π1) ≥
(

ε + 3
4

)
+ τ(TxD

n) +
1

2(s1 − 1)

( n

∑
α=s1+1

ζn+1
αα

)2
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− n2

2
||H||2 − n(n − 1)

2

(
ε + 3

4

)
+

1
2

{
n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζn+1

jj
)2

+
n

∑
β=s1+1

(
ζn+1

ββ

)2
}

. (37)

Using (11) and (19) together in (37), we obtain

K(π1) ≥τ(TxD
s1
1 ) + τ(TxD

s2
2 ) +

s2∇ f
f

− n2

2
||H||2

+

(
1 − n(n − 1)

2

)(
ε + 3

4

)
+

1
2

{
n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζn+1

ij
)2

+
n

∑
β=s1+1

(
ζn+1

ββ

)2
}

.

This implies that

τ(TxD
s1
1 )− K(π1) ≤

n2

2
||H||2 − τ(TxD

s2
2 )− s2∇ f

f

+

(
n(n − 1)

2
− 1
)(

ε + 3
4

)
− 1

2

{
n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζn+1

ij
)2

+
n

∑
β=s1+1

(
ζn+1

ββ

)2
}

. (38)

The Gauss Equation (6)(i) for τ(TxD
s2
2 ) gives us

τ(TxD
s2
2 ) =

s2(s2 − 1)
2

(
ε + 3

4

)
− 1

2

2n+1

∑
r=n+1

n

∑
A,B=s1+1

(
ζn+1

AB
)2

− 1
2

2n+1

∑
r=n+1

(
ζs1+1s1+1 + · · ·+ ζr

nn

)
. (39)

In view of Equations (38) and (39), we find that

τ(TxD
s1
1 )− K(π1) ≤

n2

2
||H||2 − s2(s2 − 1)

2

(
ε + 3

4

)
−1

2

{
n

∑
i,j=3
i 	=j

(
ζn+1

ij
)2

+
2n+1

∑
r=n+2

n

∑
i,j=3

(
ζr

ij
)2

+
n

∑
β=s1+1

(
ζn+1

ββ

)2 −
2n+1

∑
r=n+1

n

∑
A,B=s1+1

(
ζn+1

AB
)2
}

+

(
n(n − 1)

2
− 1
)(

ε + 3
4

)
− s2∇ f

f
. (40)

Then, the last relation turns into
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τ(TxD
s1
1 )− K(π1) ≤

n2

2
||H||2 − s2(s2 − 1)

2

(
ε + 3

4

)
+

(
n(n − 1)

2
− 1
)(

ε + 3
4

)
−1

2

{
s1

∑
k,l=3
k 	=l

(
ζn+1

kl
)2

+ 2
2n+1

∑
k=3

n

∑
l=s1+1

(
ζn+1

kl
)2

+
s1

∑
A,B=s1+1

A 	=B

(
ζn+1

kl
)2

+
2n+1

∑
r=n+2

s1

∑
k,l=3

(
ζn+1

kl
)2

+ 2
2n+1

∑
r=n+2

s1

∑
k=3

n

∑
A=s1+1

(
ζr

kl
)2

+
2n+1

∑
r=n+2

n

∑
A,B=s1+1

(ζr
AB)

2 +
n

∑
β=s1+1

(
ζn+1

ββ

)2

−
2n+1

∑
r=n+1

n

∑
A,B=s1+1

(
ζr

AB
)2
}
− s2∇ f

f
. (41)

With the preceding above equation and the help of the following two relations:

n

∑
A=s1+1

(ζ2
AA)

2 +
n

∑
A,B=3
A 	=B

(
ζn+1

AB
)2

=
n

∑
A,B=s1+1

(
ζn+1

AB
)2.

and
n

∑
A,B=s1+1

(
ζn+1

AB
)2

+
2n+1

∑
r=n+2

n

∑
A,B=s1+1

(
ζr

AB
)2

=
2n+1

∑
r=n+1

n

∑
A,B=s1+1

(
ζr

AB
)2.

Assertion (41) is as follows:

τ(TxD
s1
1 )− K(π1) ≤

{
s1

2

(
s1 + 2s2 − 1

)
− 1

}(
ε + 3

4

)

−1
2

{
s1

∑
k,l=3
k 	=l

(
ζn+1

kl
)2

+
2n+1

∑
r=n+2

s1

∑
k,l=3

(
ζn+1

kl
)2

+ 2
s1

∑
α=3

n

∑
β=s1+1

(
ζn+1

αβ

)2
+ 2

2n+1

∑
r=n+2

s1

∑
A=3

n

∑
B=s1+1

(
ζr

AB
)2
}

+
n2

2
||H||2 − s2∇ f

f
. (42)

The first inequality of Theorem 1 holds from the above equation and (15). For the second
case, if π ⊂ TxD

s2
2 , we consider π2 = Span{es1+1, es1+1}, following same methodology as

first case as:( n

∑
α=s1+1

ζn+1
αα

)2
=2τ(TxD

n) + ||ζ||2 − n(n − 1)
(

ε + 3
4

)
−
( n

∑
β=s1+1

ζ
s1
ββ

)2

− 2
s1

∑
α=1

n

∑
β=s1+1

ζn+1
αα ζn+1

ββ .

Considering the following:

Ψ =2τ(TxD
n)− n(n − 1)

(
ε + 3

4

)
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− (s1 − 2)
(s1 − 1)

( s1

∑
α=s1+1

ζn+1
αα

)2
−
( n

∑
β=s1+1

ζs1
ββ

)2

− 2
s1

∑
α=1

n

∑
β=s1+1

ζn+1
αα ζn+1

ββ .

The last two equation implies that

( n

∑
α=s1+1

ζn+1
αα

)2
= (s2 − 1)

(
Ψ + ||ζ||2

)
,

which implies that

( n

∑
α=s1+1

ζn+1
αα

)2
= (s2 − 1)

{
Ψ +

( s1

∑
α=1

ζn+1
αα

)2
+
( n

∑
β=s1+1

ζn+1
ββ

)2

+
n

∑
α,β=1
α 	=β

(
ζn+1

αβ

)2
+

2n+1

∑
r=n+2

n

∑
α=,β=1

(
ζr

αβ

)2
}

. (43)

Similarly, applying Lemma 1 in the above equation, we obtain

ζn+1
s1+1s1+1ζn+1

s1+2s1+2 ≥ 1
2

{
Ψ +

( s1

∑
α=1

ζn+1
αα

)2
+

n

∑
α,β=1
α 	=β

(
ζn+1

αβ

)2

+
2n+1

∑
r=n+2

n

∑
α=,β=1

(
ζr

αβ

)2
}

(44)

From (21) and (14), we find that

K(π2) =

(
ε + 3

4

)
+

2n+1

∑
r=n+1

(
ζr

s1+1s1+1ζr
s1+2s1+2 −

(
ζr

s1+1s1+2
)2
)

(45)

Equations (44) and (45) are implied such that

K(π2) ≥
(

ε + 3
4

)
+

2n+1

∑
r=n+1

(
ζr

s1+1s1+1ζr
s1+2s1+2 −

(
ζr

s1+1s1+2
)2
)

1
2

{
Ψ +

( s1

∑
α=1

ζn+1
αα

)2
+

n

∑
α,β=1
α 	=β

(
ζn+1

αβ

)2
+

2n+1

∑
r=n+2

n

∑
α=,β=1

(
ζr

αβ

)2
}

. (46)

Following the method from (27) and (42), we obtain the second inequality of Theorem 1.
On the other hand, for the equality condition, we define two different cases whether the 2-plane
πi is tangent to the first factor or to the second factor. In the first case, we consider π1 ⊂ TxD

s1
1 ,

then the equality holds if and only if equalities hold in (30), (32), (38), (39) and (42), and we
obtain the following condition:

ζn+1
11 + ζn+1

22 = ζn+1
33 = · · · = ζn+1

s1s1
(47)

2n+1

∑
r=n+2

n

∑
j=3

((
ζn+1

2j
)2
+
(
ζn+1

2j
)2
)
+

2n+1

∑
r=n+2

(
ζr

11 + ζ2
22

)2
= 0, (48)

2n+1

∑
r=n+1

(
ζs1+1s1+1 + · · ·+ ζr

nn

)
=
( s1

∑
α=1

ζn+1
αα

)2
= 0, (49)
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s1

∑
k,l=3
k 	=l

(
ζn+1

kl
)2

+
2n+1

∑
r=n+2

s1

∑
k,l=3

(
ζn+1

kl
)2
+

s1

∑
α=3

n

∑
β=s1+1

(
ζn+1

αβ

)2

+
2n+1

∑
r=n+2

s1

∑
A=3

n

∑
B=s1+1

(
ζr

AB
)2

= 0. (50)

Equation (49) clearly indicates that the warped product Ds1
1 × f D

s1
2 is both a D

s1
1 -

minimal and D
s2
2 -minimal warped product Legendrian submanifold in D2n+1

ε . It can be
concluded that the warped product Legendrian submanifold D

s1
1 × f D

s1
2 is minimal in

D2n+1
ε . Moreover, we shall classify the other case in two techniques, as they depend on the

vector fields r. Assuming that r = n + 1, we define the following:

ζn+1
11 + ζn+1

22 = ζn+1
33 = · · · = ζn+1

s1s1

and
n

∑
j=3

ζn+1
1j =

n

∑
j=3

ζn+1
2j =

s1

∑
k,l=3
k 	=l

(
ζn+1

kl
)2

=
s1

∑
α=3

n

∑
β=s1+1

(
ζn+1

αβ

)2
= 0.

Thus, the above condition is equivalent to the following matrices:

(i)Aen+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1 ζn+1
12 0 · · · 01s1 01s1+1 · · · 01n

ζn+1
12 μ2 0 · · ·

...
... · · ·

...

0 0 μ · · ·
...

... · · ·
...

...
...

...
. . .

...
... · · ·

...
0s11 0 0 · · · μ 0s1s1+1 · · · 0s1n

0s1+11 · · · · · · · · · 0s1+1s1 ζn+1
s1+1s1+1 · · · ζn+1

s1+1n
...

. . . . . . . . .
...

...
. . .

...
0n1 · · · · · · · · · 0ns1 ζn+1

ns1+1 · · · ζn+1
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where μ = μ1 + μ2 gives the (i) theorem. Similarly, if r ∈ {n + 2, · · · , m}, then the above
condition implies that

ζn+1
11 + ζn+1

22 =
n

∑
j=3

ζn+1
1j =

n

∑
j=3

ζn+1
2j =

s1

∑
k,l=3
k 	=l

(
ζn+1

kl
)2

=
s1

∑
α=3

n

∑
β=s1+1

(
ζn+1

αβ

)2
= 0.

This is equivalent to the second metric:

(ii)Aer =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζr
11 ζr

12 0 · · · 01s1 01s1+1 · · · 01n

ζr
21 −ζr

11 0 · · ·
...

... · · ·
...

0 0 033 · · ·
...

... · · ·
...

...
...

...
. . .

...
... · · ·

...
0s11 0 0 · · · 0s1s1 0s1s1+1 · · · 0s1n

0s1+11 · · · · · · · · · 0s1+1s1 ζn+1
s1+1s1+1 · · · ζn+1

s1+1n
...

. . . . . . . . .
...

...
. . .

...
0n1 · · · · · · · · · 0ns1 ζn+1

ns1+1 · · · ζn+1
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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It is clear that the above two conditions show that D
s1
1 × f D

s1
2 is a mixed totally

geodesic warped product Legendrian submanifold in D2n+1
ε . Furthermore, the equality

sign in (ii) holds if and only if the following two matrices are satisfied:

(iii)Aen+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζn+1
11 · · · · · · ζn+1

1s1
01s1+1 · · · · · · · · · 01n

...
. . .

...
...

. . . . . . . . .
...

...
. . .

...
...

. . . . . . . . .
...

ζn+1
s111 · · · · · · ζn+1

s1s1
0s1s1+1 · · · · · · · · · 0s1n

0s1+11 · · · · · · 0s1+1s1 μ1 ζn+1
s1+1s1+2 0 · · · 0s1+1n

...
. . . . . .

... ζn+1
s1+2s1+1 μ2 0 · · ·

...
...

. . . . . .
... 0 0 μ · · ·

...
...

. . . . . .
...

...
... 0

. . . 0
0n1 · · · · · · 0ns1 0ns1+1 0 · · · 0 μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where μ = μ1 + μ2. If r ∈ {n + 2, · · · , 2n + 1}, thus we have

(iv)Aer =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζr
11 · · · · · · ζr

1s1
01s1+1 · · · · · · · · · 01n

...
. . .

...
...

. . . . . . . . .
...

...
. . .

...
...

. . . . . . . . .
...

ζr
s111 · · · · · · ζr

s1s1
0s1s1+1 · · · · · · · · · 0s1n

0s1+11 · · · · · · 0s1+1s1 ζr
s1+1s1+1 ζn+1

s1+1s1+2 0 · · · 0s1+1n
...

. . . . . .
... ζn+1

s1+2s1+1 −ζr
s1+1s1+1 0 · · ·

...
...

. . . . . .
... 0 0 0 · · ·

...
...

. . . . . .
...

...
... 0

. . . 0
0n1 · · · · · · 0ns1 0ns1+1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

From the above, it is also clear that Ds1
1 × f D

s1
2 is both a D

s1
1 -minimal and D

s2
2 -minimal

warped product Legendrian submanifold in D2n+1
ε ×R, which implies the minimilty of the

warped product Legendrian submanifold D
s1
1 × f D

s1
2 in D2n+1

ε . This completes the proof
of the theorem.

Warped product manifolds have studied themselves to be a profitable ambient space
to obtain a wide range of distinct geometrical properties for immersion. We now find
the inequalities for the Riemannian manifold that has constant sectional curvature ε ∈
{1,−3} and can be expressed as a product manifold of D2n+1

ε . We find the following result
as follows.

2.1. An Application for Warped Product Legendrian Submanifold in S2n+1 with ε = 1

Theorem 2. Assume that φ : Dn = D
s1
1 × f D

s2
2 is an isometric immersion of a warped product

submanifold Dn = D
s1
1 × f D

s2
2 into a Euclidean sphere S2n+1. Then, for each point x ∈ Dn and

each plane section πi ⊂ TxD
ni
i , for i = 1, 2, we obtain the following for

(a) π1 ⊂ TxD
s1
1

δ
D̃s1 (x) ≤ n2

2
||H||2 + s2||∇(ln f )||2 − s2Δ(ln f ) +

{
s1

2

(
s1 + 2s2 − 1

)
− 1
}

.
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The equality of the above inequality holds at x ∈ Dn if and only if there exists an or-
thonormal basis {e1 · · · en} of TxD

n and orthonormal basis {en+1 · · · e2n+1} of T⊥
x such that

(a) π = Span{e1, e2} and (b) shape operators take the following form

(i)Aen+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1 ζn+1
12 0 · · · 01s1 01s1+1 · · · 01n

ζn+1
12 μ2 0 · · ·

...
... · · ·

...

0 0 μ · · ·
...

... · · ·
...

...
...

...
. . .

...
... · · ·

...
0s11 0 0 · · · μ 0s1s1+1 · · · 0s1n

0s1+11 · · · · · · · · · 0s1+1s1 ζn+1
s1+1s1+1 · · · ζn+1

s1+1n
...

. . . . . . . . .
...

...
. . .

...
0n1 · · · · · · · · · 0ns1 ζn+1

ns1+1 · · · ζn+1
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where μ = μ1 + μ2. If r ∈ {n + 2, · · ·m}, then we have the matric

(ii)Aer =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζr
11 ζr

12 0 · · · 01s1 01s1+1 · · · 01n

ζr
21 −ζr

11 0 · · ·
...

... · · ·
...

0 0 033 · · ·
...

... · · ·
...

...
...

...
. . .

...
... · · ·

...
0s11 0 0 · · · 0s1s1 0s1s1+1 · · · 0s1n

0s1+11 · · · · · · · · · 0s1+1s1 ζn+1
s1+1s1+1 · · · ζn+1

s1+1n
...

. . . . . . . . .
...

...
. . .

...
0n1 · · · · · · · · · 0ns1 ζn+1

ns1+1 · · · ζn+1
nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(b) for π2 ⊂ TxD
s2
2

δ
D̃s2 (x) ≤ n2

2
||H||2 + s2||∇(ln f )||2 − s2Δ(ln f ) +

{
s2

2

(
s2 + 2s1 − 1

)
− 1
}

.

The equality of the above equation hold if and only if

(iii)Aen+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζn+1
11 · · · · · · ζn+1

1s1
01s1+1 · · · · · · · · · 01n

...
. . .

...
...

. . . . . . . . .
...

...
. . .

...
...

. . . . . . . . .
...

ζn+1
s111 · · · · · · ζn+1

s1s1
0s1s1+1 · · · · · · · · · 0s1n

0s1+11 · · · · · · 0s1+1s1 μ1 ζn+1
s1+1s1+2 0 · · · 0s1+1n

...
. . . . . .

... ζn+1
s1+2s1+1 μ2 0 · · ·

...
...

. . . . . .
... 0 0 μ · · ·

...
...

. . . . . .
...

...
... 0

. . . 0
0n1 · · · · · · 0ns1 0ns1+1 0 · · · 0 μ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where μ = μ1 + μ2. If r ∈ {n + 2, · · · , 2n + 1}, thus we have

(iv)Aer =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζr
11 · · · · · · ζr

1s1
01s1+1 · · · · · · · · · 01n

...
. . .

...
...

. . . . . . . . .
...

...
. . .

...
...

. . . . . . . . .
...

ζr
s111 · · · · · · ζr

s1s1
0s1s1+1 · · · · · · · · · 0s1n

0s1+11 · · · · · · 0s1+1s1 ζr
s1+1s1+1 ζn+1

s1+1s1+2 0 · · · 0s1+1n
...

. . . . . .
... ζn+1

s1+2s1+1 −ζr
s1+1s1+1 0 · · ·

...
...

. . . . . .
... 0 0 0 · · ·

...
...

. . . . . .
...

...
... 0

. . . 0
0n1 · · · · · · 0ns1 0ns1+1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(v) If the equality holds in (1) or (2), then D
s1
1 × f D

s2
2 is mixed totally geodesic in space form D2n+1

ε .
Moreover, Ds1

1 × f D
s2
2 is both D

s1
1 -minimal and D

s2
2 -minimal. Thus, Ds1

1 × f D
s2
2 is a minimal

warped product submanifold in Sasakian space form D2n+1
ε .

Proof. Now we consider the constant sectional curvature ε = 1 and D2n+1
ε = S2n+1 for the

product manifold S2n+1. Then, inserting the proceeding value in (23) and (24), we obtain
the required result.

2.2. An Application for Warped Product Submanifold in R2n+1 with ε = −3

Theorem 3. Assume that φ : Dn = D
s1
1 × f D

s2
2 is an isometric immersion of a warped product

Legendrian submanifold Dn = D
s1
1 × f D

s2
2 into a Euclidean spaces R2n+1. Then, for each point

x ∈ Dn and each plane section πi ⊂ TxD
ni
i , for i = 1, 2, we obtain the following for

(a) π1 ⊂ TxD
s1
1 or π2 ⊂ TxD

s2
2

δ
D̃s1 (x) ≤ n2

2
‖H‖2 + s2||∇(ln f )||2 − s2Δ(ln f ).

(b) for π2 ⊂ TxD
s2
2

δ
D̃s2 (x) ≤ n2

2
‖H‖2 + s2||∇(ln f )||2 − s2Δ(ln f ).

The equality of the above inequality holds as in Theorem 1.

Proof. Now we assume that D2n+1
ε = R2n+1 and constant sectional curvature ε = −3

for the Euclidean spaces R2n+1. Then, using these values in (23) and (24), we obtain the
required result.

Remark 3. It should be noticed that Theorem 2 coincides with Theorem 4.1 in [20]. If f = 1, then
Theorem 2 is generalized the result in [4]. Therefore, our result is a generalization of [4,20].

2.3. Some Applications to Obtain Dirichlet Eigenvalue Inequalities

Now, if the first eigenvalue of the Dirichlet boundary condition is denoted by
υ1(Σ) > 0 on a complete noncompact Riemannian manifold Dn with the compact do-
main Σ in Dn, then we have

Δσ + υσ = 0, on Σ and σ = 0 on ∂Σ, (51)

where Δ is the Laplacian on Dn, and σ is a non-zero function defined on Dn. Then, υ1(D
n)

is expressed as in f Συ1(Σ).
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From the above motivation, assume that f is the non-constant warping function on
compact warped product submanifold Dn. Then, the minimum principle on υ1 leads to
(see, for instance, [1,9]) ∫

Dn
||∇σ||2dV ≥ υ1

∫
Dn
(σ)2dV (52)

and the equality is satisfied if and only if

Δσ = υ1σ. (53)

Implementing the integration along the base manifold Ds1 in Equations (23) and (24), we
obtain the following result.

Theorem 4. Assume that φ : Dn = D
s1
1 × f D

s2
2 is a compact warped product Legendrian sub-

manifold Dn = D
s1
1 × f D

s2
2 into a Sasakian space form D̃2n+1(ε). If υ1 is an eigenvalue of the

eigenfunction σ = ln f satisfies (53), then we have

∫
D1×{s2}

δDs1 (x)dV ≤ n2

2

∫
D1×{s2}

‖H‖2dV + s2υ1

∫
D1×{s2}

(ln f )2dV

+
∫
D1×{s2}

{(
s1

2

(
s1 + 2s2 − 1

)
− 1

)(
ε + 3

4

)}
dV, (54)

for π1 ⊂ TD1. Moreover, we have

∫
D1×{s2}

δDs2 (x)dV ≤ n2

2

∫
D1×{s2}

‖H‖2dV + s2υ1

∫
D1×{s2}

(ln f )2dV

+
∫
D1×{s2}

{(
s2

2

(
s2 + 2s1 − 1

)
− 1

)(
ε + 3

4

)}
dV, (55)

for π2 ⊂ TD2.

Proof. As we know from the Stokes theorem,
∫

ΔσdV = 0 for a compact support. Then,
we use the proceeding condition in (23) and (24) by replacing σ = ln f , and we easily obtain
the result.

2.4. An Applications for Brochler Formulas

Theorem 5. Assume that φ : Dn = D
s1
1 × f D

s2
2 is a compact warped product Legendrian sub-

manifold Dn = D
s1
1 × f D

s2
2 into a Sasakian space form D̃2n+1(ε). If υ1 is an eigenvalue of the

eigenfunction σ = ln f satisfies (53), then we have

∫
D1×{s2}

Ric(∇ ln f ,∇ ln f )dV ≥ υ1

s2

∫
D1×{s2}

δ
D̃s1 (x)dV − n2υ1

2s2

∫
D1×{s2}

‖H‖2dV

+
υ1

s2

∫
D1×{s2}

{
1 −

(
s1

2
(
s1 + 2s2 − 1

))}( ε + 3
4

)
dV

−
∫
D1×{s2}

‖∇2 ln f ‖2dV, (56)

for π1 ⊂ TD1. Moreover, we have

∫
D1×{s2}

Ric(∇ ln f ,∇ ln f )dV ≥ υ1

s2

∫
D1×{s2}

δDs2 (x)dV − n2υ1

2s2

∫
D1×{s2}

‖H‖2dV
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+
υ1

s2

∫
D1×{s2}

{
1 −

(
s2

2
(
s2 + 2s1 − 1

))}( ε + 3
4

)
dV

−
∫
D1×{s2}

‖∇2 ln f ‖2dV, (57)

for π2 ⊂ TD2.

Proof. If σ is the first eigenfunction of the Laplacian Δσ = div(∇σ) for Dn connected to
the first non-zero eigenvalue υ1, such that, Δσ = −υ1σ, then recalling the Bochner formula
(see [40]) that gives the following relation of the differentiable function σ denoted at the
Riemannian manifold as:

1
2

Δ‖∇σ‖2 = ‖∇2σ‖2 + Ric(∇σ,∇σ) + g
(
∇σ,∇(Δσ)

)
.

By the integration of the previous equation, using the Stokes theorem, we have∫
D1×{s2}

‖∇2σ‖2dV +
∫
D1×{s2}

Ric(∇σ,∇σ)dV +
∫
D1×{s2}

g
(
∇σ,∇(Δσ)

)
dV = 0. (58)

Now, using Δσ = υ1σ and making some rearrangement in Equation (58), we derive

∫
D1×{s2}

‖∇σ‖2dV =
1
υ1

( ∫
D1×{s2}

‖∇2σ‖2dV +
∫
D1×{s2}

Ric(∇σ,∇σ)dV
)

. (59)

Taking the integration in (23) and (24) and inserting the above equation, we obtain the
desired results.

3. Chern’s Problem: Finding the Conditions under Which Warped Products Must
Be Minimal

In this section, we provide the partial answer to the Chern problem [41], that is, the
necessary condition for a warped product Legendrian submanifold to be a minimal in
Sasakian space form D̃2n+1(ε).

Corollary 1. Let φ : Dn = D
s1
1 × f D

s2
2 be an isometric immersion of a warped product Legendrian

submanifold Dn = D
s1
1 × f D

s2
2 into a Sasakian space form D̃2n+1(ε). Then, for each point x ∈ Dn

and each π1 ⊂ TxD
n1
1 , we have

δ
D̃s1 (x) + s2Δ(ln f ) ≤

{
s1

2

(
s1 + 2s2 − 1

)
− 1

}(
ε + 3

4

)
+ s2||∇(ln f )||2. (60)

and if the equality satisfies, then φ is minimal.

The second result is:

Corollary 2. Let φ : Dn = D
s1
1 × f D

s2
2 be an isometric immersion of a warped product Legendrian

submanifold Dn = D
s1
1 × f D

s2
2 into a Sasakian space form D̃2n+1(ε). Then, for each point x ∈ Dn

and each π2 ⊂ TxD
n2
2 , we have

δ
D̃s2 (x) + s2Δ(ln f ) ≤

{
s2

2

(
s2 + 2s1 − 1

)
− 1

}(
ε + 3

4

)
+ s2||∇(ln f )||2. (61)

and if the equality satisfies, then φ is minimal.
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Abstract: This paper aims to explore the metallic structure J2 = pJ + qI, where p and q are natural
numbers, using complete and horizontal lifts on the tangent bundle TM over almost quadratic
φ-structures (briefly, (φ, ξ, η)). Tensor fields F̃ and F∗ are defined on TM, and it is shown that they are
metallic structures over (φ, ξ, η). Next, the fundamental 2-form Ω and its derivative dΩ, with the help
of complete lift on TM over (φ, ξ, η), are evaluated. Furthermore, the integrability conditions and
expressions of the Lie derivative of metallic structures F̃ and F∗ are determined using complete and
horizontal lifts on TM over (φ, ξ, η), respectively. Finally, we prove the existence of almost quadratic
φ-structures on TM with non-trivial examples.

Keywords: metallic structure; tangent bundle; partial differential equations; nijenhuis tensor; mathe-
matical operators; lie derivatives

MSC: 53D15; 58D17; 53C15

1. Introduction

Many ancient societies have made extensive use of the golden mean as a foundation for
proportions, whether for creating music, sculptures, paintings, or buildings, such as temples
and palaces [1]. Fractal geometry has been explained using the silver mean [2]. Some uses
of a class of polynomial structures have been constructed on Riemannian manifolds for
the metallic means family (a generalization of the golden mean) and generalized Fibonacci
sequences in differential geometry. The geometric properties (such as totally geodesic,
totally umbilical hypersurfaces, etc.) in metallic Riemannian manifolds have been explored
in [3]. This manuscript is focused on studying the properties of metallic structures for
tangent bundles over a class of metallic Riemannian manifolds.

A quadratic equation of type
x2 = px + q,

where p and q are natural numbers, whose positive solutions are given by

σ
q
p =

p +
√

p2 + 4q
2

is known as a metallic means family [4]. The most notable member is the well-known
“Golden Mean” for p = q = 1. The metallic means family includes the silver mean for
p = 2, q = 1, the bronze mean for p = 3, q = 1, the copper mean for p = 1, q = 2, and
many others.

Mathematics 2023, 11, 4683. https://doi.org/10.3390/math11224683 https://www.mdpi.com/journal/mathematics41
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Let M be an n-dimensional differentiable manifold and TM be its tangent bundle. Let
�(M) and �(TM) be the algebra of tensor fields of M and TM, respectively. The differential
geometry of tangent bundle has been broadly studied by Davis [5], Sasaki [6], Tachibana
and Okumura [7], Yano and Ishihara [8], and others. Yano and Kabayashi [9] defined the
natural mapping (say complete lift) of �(M) into �(TM) and studied complete lifts of an
almost complex structure and the symplectic structure on TM. Tanno [10] studied complete
and vertical lifts of an almost contact structure on TM and defined a tensor field J̃ of type
(1,1) and proved that it is an almost complex structure on TM. Numerous investigators have
studied various geometric structures on TM—an almost complex structure by Yano [11],
paracomplex structures by Tekkoyun [12], almost r-contact structures by Das and Khan [13],
and many others [14–19].

In [20], Azami explored complete and horizontal lifts of metallic structures and ana-
lyzed the geometric properties of these structures. Salimov et al. [19] studied complete lifts
of symplectic vector fields on tangent and cotangent bundles. Recently, Khan [21] intro-
duced a new tensor field J of type (1,1) and demonstrated that J is a metallic structure (MS)
on the frame bundle FM. Furthermore, the derivative and the coderivative of fundamental
2-form and the Nijenhuis tensor of J on FM are discussed.

On the other hand, Sasaki [6] defined a structure named as an almost contact structure
and demonstrated its basic algebraic properties such as a Riemannian metric, the funda-
mental 2-form, etc., on M. Later on, Sato [22] defined the notion of an almost paracontact
structure and analyzed its geometrical properties.

Debnath et al. [23] defined the notion of a (φ, ξ, η) on a differentiable manifold M
and established its existence. Later on, Gonul et al. [24] developed a relation between MS
and (φ, ξ, η). They proved that the warped product manifold has structure (φ, ξ, η). Most
recently, Gök et al. [25] introduced the notion of f(a,b)(3, 2, 1)-structures and investigated a
necessary condition for these structures to be a (φ, ξ, η).

The main aim of this paper is summarized as:

• Tensor fields F̃ and F∗ are defined on TM over the structure (φ, ξ, η) and we prove that
they are metallic structures, which generalize the notion of almost complex structure J̃
introduced by Tanno [10].

• The basic geometrical properties of fundamental 2-Form and its derivative on TM
over the structure (φ, ξ, η) are studied.

• The integrability conditions and expressions of the Lie derivative of metallic structures
F̃ and F∗ with the help of complete and horizontal lifts, respectively, on TM over the
structure (φ, ξ, η) are investigated.

• The existence of almost quadratic φ-manifolds on TM with non-trivial examples
are proved.

2. Preliminaries

Let M be an n-dimensional differentiable manifold of class C∞ and TM be the tangent
bundle over a manifold M such that TM =

⋃
x∈M Tx M with the projection map π : TM →

M, where Tx M represents the tangent space at a point x of M. Let (U, xh) be a local chart in
M and (xh, yh) be a local coordinate in π−1(U) ⊂ TM and be called the induced coordinate
in π−1(U).

Let f , η, Υ1, and F be a function, a 1-form, a vector field, and a tensor field of type
(1,1) of M, respectively. The vertical lifts f V , ηV , Υ1

V , and FV on TM in terms of partial
differential equations are given by [8,25]

f V = f ◦ π,

ηV = (ηi)
V(dxi)V ,

Υ1
V = xh ∂

∂yh ,

FV = Fh
i

∂

∂yh ⊗ dxi,
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where ηi, xh, and Fh
i , i, h = 1, 2, . . . , n are local components of η, Υ1, and F on M, respectively.

The complete lifts f C, ηC, Υ1
C, and FC on TM in the term of partial differential equa-

tions are given by

f C = yi∂i f = ∂ f ,

ηC = yi∂iη,

Υ1
C = xh ∂

∂xh +
∂xh

∂xi yi ∂

∂yh ,

FC = (Fh
i )

C ∂

∂yh ⊗ dxi + (Fh
i )

V ∂

∂xh ⊗ dxi + (Fh
i )

V ∂

∂yh ⊗ dyh.

By the definition of the lift, we have

(i) Υ1
V f V = 0, Υ1

V f C = (Υ1 f )V ,

(ii) Υ1
C f V = (Υ1 f )V , Υ1

C f C = (Υ1 f )C,

(iii) ηV(Υ1
V) = 0, ηV(Υ1

C) = (ηΥ1)
V ,

(iv) ηC(Υ1
V) = (ηΥ1)

V , ηC(Υ1
C) = (ηΥ1)

C, (1)

(v) FVΥ1
V = 0, FVΥ1

C = (FΥ1)
V ,

(vi) FCΥ1
V = (FΥ1)

V , FCΥ1
C = (FΥ1)

C.

By the definition of the Lie product of the lift, we have

[Υ1
V , Υ2

V ] = 0, [Υ1
V , Υ2

C] = [Υ1, Υ2]
V , [Υ1

C, Υ2
C] = [Υ1, Υ2]

C. (2)

Let f be a function and ∇ is an affine connection on M. The horizontal lift is

f H = f C −∇γ f ,

where ∇ f is a gradient of f on M, γ is an operator, and ∇γ f = γ(∇ f ) is in π−1(U) (see [8],
p. 86).

Let Υ1, η, and S be a vector field, a 1-form, and a tensor field of arbitrary type on M,
respectively. The horizontal lifts Υ1

H , ηH , and SH on TM are given by

Υ1
H = Υ1

C −∇γΥ1, (3)

ηH = ηC −∇γη, (4)

SH = SC −∇γS. (5)

By the definitions of the lifts, we have

Υ1
H f V = (Υ1 f )V , FVΥ1

H = (FΥ1)
V , ηV(Υ1

H) = (η(Υ1))
V . (6)

By the definitions of the Lie product of the lifts, we have

[Υ1
V , Υ2

H ] = [Υ1, Υ2]
V − (∇Υ1 Υ2)

V = −(∇̂Υ2 Υ1)
V , (7)

[Υ1
C, Υ2

H ] = [Υ1, Υ2]
H − γ£Υ1 Υ2,

[Υ1
H , Υ2

H ] = [Υ1, Υ2]
H − γR̂(Υ1, Υ2),

where £Υ1 represents the Lie derivative with respect to Υ1 and R̂ represents the curvature
tensor of ∇̂ given by ∇̂Υ1 Υ2 = ∇Υ2 Υ1 + [Υ1, Υ2].
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In addition, let P and Q be arbitrary elements of �(M), then

(P ⊗ Q)V = PV ⊗ QV ,

(P ⊗ Q)C = PC ⊗ QV + PV ⊗ QC,

(P ⊗ Q)H = PH ⊗ QV + PV ⊗ QH .

Let gC be the complete lift on TM of a Riemannian metric g on M. Then [20]

gC(Υ1
C, Υ2

V) = gC(Υ1
V , Υ2

C) = (g(Υ1, Υ2))
V ,

gC(Υ1
V , Υ2

V) = 0,

gC(Υ1
C, Υ2

C) = (g(Υ1, Υ2))
C,

where Υ1 and Υ2 are vector fields on M.

2.1. Metallic Structure

The quadratic structure J on M satisfying

J2 = pJ + qI, (8)

where J denotes a tensor field of type (1,1), I is the identity vector field, and p, q are
natural numbers, named as a metallic structure. The structure (M, J) is called a metallic
manifold [26–31].

Let g be a Riemannian metric on M such that

g(JΥ1, Υ2) = g(Υ1, JΥ2)

or equally,
g(JΥ1, JΥ2) = pg(JΥ1, Υ2) + qg(Υ1, Υ2),

where Υ1 and Υ2 are vector fields on M. The structure (M, J, g) is said to be a metallic
Riemannian manifold [32,33].

The Nijenhuis tensor of J is denoted by NJ and given by

NJ(Υ1, Υ2) = [JΥ1, JΥ2]− J[JΥ1, Υ2]− J[Υ1, JΥ2] + J2[Υ1, Υ2],

J is integrable if NJ(Υ1, Υ2) = 0.

2.2. Almost Quadratic φ-Structure

Debnath et al. [23] introduced the notion of structure (φ, ξ, η) and discussed some
geometric properties of such structures. Next, Gonul et al. [24] investigated the connection
between MS and almost quadratic φ-structures. Consider a non-null tensor fields φ of type
(1,1), a 1-form η and a vector field ξ on M satisfying

φ2 = pφ + qI − qη ⊗ ξ, p2 + 4q 	= 0, q 	= 0 (9)

η(ξ) = 1, η ◦ φ = 0, φ(ξ) = 0, (10)

where p and q are constants and I is the identity vector field. The structure (φ, ξ, η) is called
an almost quadratic φ-structure on M and the manifold (M, φ, ξ, η) is called an almost
quadratic φ-manifold [23,24,34].

Furthermore,
g(φΥ1, Υ2) = g(Υ1, φΥ2)

or equally,
g(φΥ1, φΥ2) = pg(φΥ1, Υ2) + qg(Υ1, Υ2)− qη(Υ1)η(Υ2).
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The structure (φ, ξ, η, g) is termed as an almost quadratic metric φ-structure and the mani-
fold (M, φ, ξ, η, g) is called an almost quadratic metric φ-manifold.

In addition, the 1-form η associated with g such that

g(Υ1, ξ) = η(Υ1)

and the 2-Form Φ is given by [35]

Φ(Υ1, Υ2) = g(Υ1, φΥ2) (11)

is said to be the fundamental form of an almost quadratic metric φ-manifold.
The Nijenhuis tensor of (φ, ξ, η) is denoted by Nφ and given by

Nφ(Υ1, Υ2) = [φΥ1, φΥ2]− φ[φΥ1, Υ2]− φ[Υ1, φΥ2] + φ2[Υ1, Υ2],

where Υ1 and Υ2 are vector fields on M.

Proposition 1 ([24]). Let (M, φ, ξ, η, g,∇) be a (β, φ)-Kenmotsu quadratic metric manifold such
that (∇Υ1 φ)Υ2 = βg(Υ1, φΥ2)ξ + βη(Υ2)φΥ1. Then the structure (φ, ξ, η) is integrable; that is,
the Nijenhuis tensor Nφ = 0, where ∇ is the Levi-Civita connection.

3. Proposed Theorems for the Complete Lifts of Metallic Structures on the Tangent
Bundle Over (φ, ξ, η)

In this section, we study the structure (φ, ξ, η) geometrically using complete lift on
TM. A tensor field F̃ on the tangent bundle is defined and show that it is an MS by using
the complete lift on TM over (φ, ξ, η). Next, mathematical operators, namely fundamental
2-Form Ω and the derivative dΩ using the complete lift on TM over (φ, ξ, η), are calculated.
Furthermore, the integrability condition and the Lie derivative of an MS(F̃) by using the
complete lift on TM over (φ, ξ, η) are established.

Let M be an n dimensional differentiable manifold and φ, η, and ξ be a tensor field of
type (1,1), a 1-form and a vector field on M, respectively.

Applying complete lifts on (9), (10) and using (1), we obtain

(φC)2 = pφC + qI − q(ηV ⊗ ξC + ηC ⊗ ξV),

ηC(ξC) = ηV(ξV) = 0, ηV(ξC) = ηC(ξV) = 1,

ηC ◦ φC = ηV ◦ φC = ηC ◦ φV = ηV ◦ φV = 0,

φC(ξV) = φV(ξC) = φC(ξC) = φV(ξV) = 0,

where φC, ηC, ξC, φV , ηV , and ξV are complete and vertical lifts of φ, η, and ξ, respectively,
on TM. Azami [20] defined a tensor field J of type (1,1) on TM with an almost paracontact
structure (φ, η, ξ, g) as

J =
p
2

I −
(

2σ
q
p − p
2

)(
φC + ηV ⊗ ξV + ηC ⊗ ξC

)
and proved that it is an MS on TM.

Recently, Khan [21] introduced a tensor J̃ on FM immersed with an almost contact
structure (φ, η, ξ, g) as

J̃ =
p
2

I −
(

2σ
q
p − p
2

)
[φH +

n

∑
α=1

ηHα ⊗ ξ(α+n)

−
n

∑
α=1

ηHα+n ⊗ ξ(α) + ηV ⊗ ξ(2n+1) − ηH2n+1 ⊗ ξH ],
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where φH , ηHα , α = 1, 2, . . . , n and ξH are horizontal lifts of a tensor field φ of type (1,1), a
1-form η and a vector field ξ, respectively, and ξ(α) is α-vertical lift of ξ on FM.

From Azami [20] and Khan [21], let us introduce a new (1, 1)-type tensor field F̃ on
TM as

F̃ =
p
2

I − A
[
φC +

√
q
(

ηV ⊗ ξV + ηC ⊗ ξC
)]

, (12)

where A =
2σ

q
p−p

2
√

pφC+q
. Since p, q are natural numbers and φ is non-singular, therefore

pφC + q > 0 and A 	= 0.

Theorem 1. Let TM be a tangent bundle of M immersed with structure (φ, ξ, η). Then F̃ given
by (12) is a metallic structure on TM.

Proof. Let Υ1 be a vector field on M and Υ1
C and Υ1

V be complete and vertical lifts of Υ1,
respectively, on TM. Applying ξV , ξC, and φC on (12), we obtain

F̃(ξV) =
p
2

ξV − A
√

qξC, (13)

F̃(ξC) =
p
2

ξC − A
√

qξV , (14)

F̃(φCΥ̃1) =
p
2

φCΥ̃1 − A[pφCΥ̃1 + qΥ̃1 − q(ηV(Υ̃1)ξ
C + ηC(Υ̃1)ξ

V)], (15)

where Υ̃1 is a vector field on TM.
In the view of (12)–(15), we obtain

F̃2(Υ̃1) =
p
2

F̃(Υ̃1)− A
[

ϕCΥ̃1 +
√

q(ηV(Υ̃1)F̃(ξV) + ηC(Υ̃1)F̃(ξC))
]
,

= pF̃(Υ̃1) + q(Υ̃1).

This shows that F̃ is an MS on TM.

Corollary 1. Let Υ1 and Υ2 be vector fields on M and F̃ be an MS on TM given by (12) such that
η(Υ1) = 0, then

F̃Υ1
V =

p
2

Υ1
V − A

[
(φΥ1)

V +
√

q(η(Υ1))
VξC

]
,

F̃ΥC
1 =

p
2

ΥC
1 − A

[
(φΥ1)

C +
√

q(η(Υ1))
VξV + (η(Υ1))

CξC
]
.

If η(Υ1) = 0, then

F̃ΥV
1 =

p
2

ΥV
1 − A(φΥ1)

V , (16)

F̃ΥC
1 =

p
2

ΥC
1 − A(φΥ1)

C. (17)

Proof. The proof is obtained by applying ΥC
1 and ΥV

1 on F̃ given by (12) and using η(Υ1) = 0.
Let gC be the complete lift of the metric g on TM. The 2-form on TM defined by

Ω(Υ̃1, Υ̃2) = gC(Υ̃1, Υ̃2), (18)

where Υ̃1 and Υ̃2 are vector fields and F̃ is an MS given by (12) on TM.
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Theorem 2. Let TM be the tangent bundle of M, gC be the complete lift of g and F̃ be an MS
given by (12) on TM, then the 2-form Ω is given by

(i) Ω(ΥC
1 , Υ2

C) =
p
2
(g(Υ1, Υ2))

C − A
√

q{η(Υ1)
Vη(Υ2)

V + η(Υ1)
Cη(Υ2)

C}

− A(g(Υ1, φΥ2))
C,

(ii) Ω(ΥC
1 , Υ2

V) =
p
2
(g(Υ1, Υ2))

V − A
√

qη(Υ1)
Cη(Υ2)

V − A(g(Υ1, φΥ2))
V ,

(iii) Ω(ΥV
1 , Υ2

C) =
p
2
(g(Υ1, Υ2))

V − A
√

qη(Υ1)
Vη(Υ2)

C − A(g(Υ1, φΥ2))
V ,

(iv) Ω(ΥV
1 , Υ2

V) = −A
√

qη(Υ1)
Vη(Υ2)

V ,

where Υ̃1 and Υ̃2 are vector fields on TM.

Proof. (i) Let Υ̃1 = ΥC
1 and Υ̃2 = ΥC

2 in (18) and using (1) and (12), we have

Ω(ΥC
1 , Υ2

C) = gC(ΥC
1 , F̃Υ2

C)

= gC
(

ΥC
1 ,

p
2

Υ2
C − A

[
(φΥ2)

C +
√

q(η(Υ2))
VξV + (η(Υ2))

CξC
])

=
p
2
(g(Υ1, Υ2))

C − A
√

q[(η(Υ1))
V(η(Υ2))

V + (η(Υ1))
C(η(Υ2))

C]

− A(g(Υ1, φΥ2))
C.

(ii) Let Υ̃1 = ΥC
1 and Υ̃2 = ΥV

2 in (18) and using (1) and (12), we have

Ω(ΥC
1 , Υ2

V) = gC(ΥC
1 , F̃Υ2

V)

= gC
(

ΥC
1 ,

p
2

Υ2
V − A

[
(φΥ2)

V +
√

q(η(Υ2))
VξC

])
=

p
2
(g(Υ1, Υ2))

V − A
√

qη(Υ1)
Cη(Υ2)

V − A(g(Υ1, φΥ2))
V .

(iii) Let Υ̃1 = ΥV
1 and Υ̃2 = Υ2

C in (18) and using (1) and (12), we have

Ω(ΥV
1 , Υ2

C) = gC(ΥV
1 , F̃Υ2

C)

= gC
(

ΥV
1 ,

p
2

Υ2
C − A

[
(φΥ2)

C +
√

q(η(Υ2))
VξV + η(Υ2))

CξC
])

=
p
2
(g(Υ1, Υ2))

V − A
√

qη(Υ1)
Vη(Υ2)

C − A(g(Υ1, φΥ2))
V .

(iv) Let Υ̃1 = ΥV
1 and Υ̃2 = Υ2

V in (18) and using (1) and (12), we have

Ω(ΥV
1 , Υ2

V) = gC(ΥV
1 , F̃Υ2

V)

= gC
(

ΥV
1 ,

p
2

Υ2
V − A

[
(φΥ2)

V +
√

q(η(Υ2))
VξC

])
= −A

√
qη(Υ1)

Vη(Υ2)
V .

Theorem 3. Let TM be the tangent bundle of M, gC be the complete lift of g, and F̃ be an MS
given by (12), then the derivative dΩ is given by

(i) 3dΩ(ΥC
1 , Υ2

C, Υ3
V) = p

2 ((Υ1g(Υ2, Υ3))
V − (Υ2g(Υ1, Υ3))

V + (Υ3g(Υ1, Υ2))
V)

− A((Υ1g(Υ2, φΥ3))
V − (Υ2g(Υ1, φΥ3))

V + (Υ3g(Υ1, φΥ2))
V)

− A
√

q(ΥC
1 η(Υ2)

Vη(Υ3)
C − Υ2

C(η(Υ3))
V(η(Υ1))

C

+ Υ3
Cη(Υ2)

Vη(Υ1)
C + Υ3

Vη(Υ2)
Cη(Υ1)

C)− p
2 ((g([Υ1, Υ2], Υ3))

V

− (g([Υ1, Υ3], Υ2))
V + (g([Υ2, Υ3], Υ1))

V) + A((g([Υ1, Υ2], φΥ3))
V
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− (g([Υ1, Υ3], φΥ2))
V + (g([Υ2, Υ3], φΥ1))

V) + A
√

q((η(Υ3))
Vη([Υ1, Υ2])

C

− η(Υ2)
Cη([Υ1, Υ3])

V + η(Υ1)
Cη([Υ2, Υ3])

V).

(ii) 3dΩ(ΥC
1 , Υ2

V , Υ3
V) = p

2 (((Υ3g(Υ1, Υ2))
V − (Υ2g(Υ1, Υ3))

V)

+ A((Υ3g(Υ1, φΥ2))
V − (Υ2g(Υ1, φΥ3))

V)− A
√

q(ΥC
1 η(Υ2)

Vη(Υ3)
V

+ Υ2
Vη(Υ3)

Vη(Υ1)
V + Υ3

Vη(Υ1)
Cη(Υ2)

V).

(iii) 3dΩ(ΥV
1 , Υ2

V , Υ3
V) = −A

√
q(ΥV

1 η(Υ2)
Vη(Υ3)

V + Υ2
Vη(Υ3)

Vη(Υ1)
V

− Υ3
Vη(Υ1)

Vη(Υ2)
V).

(iv) 3dΩ(ΥC
1 , Υ2

C, Υ3
C) = p

2 ((Υ1g(Υ2, Υ3))
C − (Υ2g(Υ1, Υ3))

C + (Υ3g(Υ1, Υ2))
C)

− A((Υ1g(Υ2, φΥ3))
C − (Υ2g(Υ1, φΥ3))

C + (Υ3g(Υ1, φΥ2))
C)

− A
√

q(ΥC
1 η(Υ2)

Vη(Υ3)
V + ΥC

1 η(Υ2)
Cη(Υ3)

C − Υ2
Cη(Υ3)

Vη(Υ1)
C

− Υ2
Cη(Υ3)

Cη(Υ1)
C + Υ3

Cη(Υ2)
Vη(Υ1)

V + Υ3
Cη(Υ2)

Cη(Υ1)
C)

− p
2 ((g([Υ1, Υ2], Υ3))

C − (g([Υ1, Υ3], Υ2))
C + (g([Υ2, Υ3], Υ1))

C)
+ A((g([Υ1, Υ2], φΥ3))

C − (g([Υ1, Υ3], φΥ2))
C + (g([Υ2, Υ3], φΥ1))

C)
+ A

√
q(η(Υ3)

Vη([Υ1, Υ2])
V − η(Υ2)

Cη([Υ1, Υ3])
V + η(Υ1)

Cη([Υ2, Υ3])
V)

+ A
√

q(η(Υ3)
Cη([Υ1, Υ2])

C − η(Υ2)
Cη([Υ1, Υ3])

C + η(Υ1)
Cη([Υ2, Υ3])

C).

Proof. We have

3dΩ(Υ̃1, Υ̃2, Υ̃3) = {Υ̃1(Ω(Υ̃2, Υ̃3))− Υ̃2(Ω(Υ̃1, Υ̃3)) + Υ̃3(Ω(Υ̃1, Υ̃2))

− Ω([Υ̃1, Υ̃2], Υ̃3) + Ω([Υ̃1, Υ̃3], Υ̃2)− Ω([Υ̃2, Υ̃3], Υ̃1)},

called coboundary formula [35]. Here Υ̃1, Υ̃2, Υ̃3 are arbitrary vector fields on TM.
Applying (1)–(7), (12)–(15), Theorem 2 and using η(Υ1) = η(Υ2) = 0, we have

(i) 3dΩ(ΥC
1 , Υ2

C, Υ3
V) = ΥC

1 (Ω(Υ2
C, Υ3

V))− Υ2
C(Ω(ΥC

1 , Υ3
V))

+ Υ3
V(Ω(ΥC

1 , Υ2
C))− Ω([ΥC

1 , Υ2
C], Υ3

V) + Ω([ΥC
1 , Υ3

V ], Υ2
C)

− Ω([Υ2
C, Υ3

C], ΥV
1 ) = ΥC

1 (
p
2
(g(Υ2, Υ3))

V − A(g(Υ2, φΥ3))
V

− Υ2
C(

p
2
(g(Υ1, Υ3))

V − A(g(Υ1, φΥ3))
V − A

√
qη(Υ1)

Cη(Υ3)
V)

+ Υ3
C(

p
2
(g(Υ1, Υ2))

V − A(g(Υ1, φΥ2))
V − A

√
qη(Υ1)

Cη(Υ2)
V)

− (
p
2
(g([Υ1, Υ2], Υ3))

V − A(g([Υ1, Υ2], φΥ3))
V − A

√
qη([Υ1, Υ2])

Cη(Υ3)
V)

+ (
p
2
(g([Υ1, Υ3], Υ2))

V − A(g([Υ1, Υ3], φΥ2))
V − A

√
qη([Υ1, Υ3])

Cη(Υ2)
V)

− (
p
2
(g([Υ2, Υ3], Υ1))

V − A(g([Υ2, Υ3], φΥ1))
V − A

√
qη([Υ2, Υ3])

Cη(Υ1)
V)

=
p
2
((Υ1g(Υ2, Υ3))

V − (Υ2g(Υ1, Υ3))
V + (Υ3g(Υ1, Υ2))

V)

− A((Υ1g(Υ2, φΥ3))
V − (Υ2g(Υ1, φΥ3))

V + (Υ3g(Υ1, φΥ2))
V)

− A
√

q(ΥC
1 η(Υ2)

Vη(Υ3)
C − Υ2

Cη(Υ3)
Vη(Υ1)

C + Υ3
Cη(Υ2)

Vη(Υ1)
C

+ Υ3
Vη(Υ2)

Cη(Υ1)
C)− p

2
((g([Υ1, Υ2], Υ3))

V − (g([Υ1, Υ3], Υ2))
V

+ (g([Υ2, Υ3], Υ1))
V) + A((g([Υ1, Υ2], φΥ3))

V − (g([Υ1, Υ3], φΥ2))
V

+ (g([Υ2, Υ3], φΥ1))
V) + A

√
q(η(Υ3)

Vη([Υ1, Υ2])
C

− η(Υ2)
Cη([Υ1, Υ3])

V + η(Υ1)
Cη([Υ2, Υ3])

V).

Other results were obtained by using similar devices.
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Theorem 4. A metallic structure F̃, defined by (12), is integrable on TM over (φ, ξ, η) if and only
if NF̃ = 0, which is equivalent to the conditions

η([φΥ1, Υ2]) = 0, η([φΥ1, ξ]) = 0, η([Υ1, Υ2]) = 0, η([Υ1, ξ]) = 0,

and (φ, ξ, η) is integrable i.e. Nφ = 0.

Proof. Let NF̃ stand for the Nijenhuis tensor of F̃. Then

NF̃(Υ̃1, Υ̃2) = [F̃Υ̃1, F̃Υ̃2]− F̃[F̃Υ̃1, Υ̃2]− F̃[Υ̃1, F̃Υ̃2] + F̃2[Υ̃1, Υ̃2], (19)

where Υ̃1 and Υ̃2 are vector fields on TM.
Applying (1)–(7), (12)–(15) on (19), and using η(Υ1) = η(Υ2) = 0, we have

NF̃(Υ
V
1 , ΥV

2 ) = 0,

NF̃(Υ
V
1 , ΥC

2 ) = A2(Nφ(Υ1, Υ2))
V + A2√qη([φΥ1, Υ2])

VξC

+ A
√

qη([Υ1, φΥ2])
VξC + qη([Υ1, Υ2])

VξV

+ qη([Υ1, Υ2])
VξC,

NF̃(Υ
C
1 , ΥC

2 ) = A2(Nφ(Υ1, Υ2))
C − A2√qη([φΥ1, Υ2])

VξV

− A2√qη([Υ1, φΥ2])
VξV

− A2√qη([φΥ1, Υ2])
CξC − A2√qη([Υ1, φΥ2])

CξC,

NF̃(Υ
V
1 , ξV) = 0,

NF̃(Υ
V
1 , ξC) = A2(φ2[Υ1, ξ])V + A2q(η[Υ1, Υ2])ξ

V

− A2(φ[φΥ1, ξ])V − A2√q([φΥ1, ξ])VξC,

NF̃(Υ
C
1 , ξV) = A2(φ2[Υ1, ξ])V + A2√q([φΥ1, ξ])C − A2(φ[φΥ1, ξ])V

− A2√qη([φΥ1, ξ])VξC +−A
√

q(φ[Υ1, ξ])C − p2

2
[Υ1, ξ]V

− A2qη([Υ1, ξ])CξC + Ap(φ[Υ1, ξ])V + pA
√

qη([Υ1, ξ])VξC,

NF̃(Υ
C
1 , ξC) = A2(φ2[Υ1, ξ])C + A2q(η[Υ1, ξ]ξ)C + A2√q[φΥ1, ξ]V

− A2(φ[φΥ1, ξ])C + A2√q(η[φΥ1, Υ2])
VξV + A2√q(η[φΥ1, Υ2])

CξC

− A2√q(φ[Υ1, ξ])V − A2q(η[Υ1, ξ])VξC,

NF̃(ξ
V , ξC) = 0.

Let Υ̃1 and F̃ be a vector field and an MS, respectively, on TM. The Lie derivative of F̃
with respect to Υ̃1 is given by ([8], p. 113)(

£Υ̃1
F̃)
)

Υ̃2 = [Υ̃1, F̃Υ̃2]− F̃[Υ̃1, Υ̃2], (20)

where Υ̃2 is a vector field on TM.
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Theorem 5. Let F̃ be an MS on TM given by (12) and Υ1 and Υ2 be vector fields on M such that
η(Υ1) = η(Υ2) = 0, then

(i) (£Υ2
V F̃)ΥV

1 = 0,

(ii) (£Υ2
V F̃)ΥC

1 = A
(
(φ[Υ2, Υ1])

V − [Υ2, φΥ1]
V +

√
q(η[Υ2, Υ1])

V
)

,

(iii) (£Υ2
V F̃)ξV = −Aq[Υ2, ξ]V ,

(iv) (£Υ2
V F̃)ξC = A

(
φ[Υ2, ξ]V −√

q(η[Υ2, ξ])VξC
)

,

(v) (£Υ2
C F̃)ΥV

1 = A
(

φ[Υ2, Υ1]
V − [Υ2, φΥ1]

V −√
q(η([Υ2, Υ1])

VξC
)

,

(vi) (£Υ2
C F̃)ΥC

1 = A
(
(φ[Υ2, Υ1])

C − [Υ2, φΥ1]
C
)

− A
√

q
(
(η(Υ2, Υ1))

VξV − (η(Υ2, Υ1))
CξC

)
,

(vii) (£Υ2
C F̃)ξV = A

(
(φ[Υ2, ξ])V +

√
q(η[Υ2, ξ])VξC −√

q[Υ2, ξ]C
)

,

(viii) (£Υ2
C F̃)ξC = A

(
φ[Υ2, ξ])C −√

q[Υ2, ξ]V
)

+ A
√

q
(
(η[Υ2, ξ]VξV + (η[Υ2, ξ])CξC

)
,

Proof. Applying (1)–(7), (12)–(15), and (20), and using η(Υ1) = η(Υ2) = 0.

(i) £Υ2
V F̃ΥV

1 = £Υ2
V (

p
2

Υ1
V − A

[
(φΥ1)

V +
√

q(η(Υ1))
VξC)

]
(£Υ2

V F̃)ΥV
1 + F̃£Υ2

V ΥV
1 =

p
2

£Υ2
V Υ1

V

− A£Υ2
V (φΥ1)

V − A
√

q(η(Υ1))
V£Υ2

V ξC

= 0.

Others results are obtained by using similar devices.

4. Proposed Theorems for the Horizontal Lift of Metallic Structures on the Tangent
Bundle Over (φ, ξ, η)

In this section, we study (φ, ξ, η) geometrically using a horizontal lift on TM. A tensor
field F∗ on the tangent bundle is defined and shows that it is an MS by using the horizontal
lift on TM over (φ, ξ, η). Furthermore, the integrability condition and Lie derivative of an
MS F∗ by using the horizontal lift on TM over (φ, ξ, η) are established.

Let M be an n dimensional differentiable manifold and φ, η, and ξ be the tensor field
of type (1,1), a 1-form, and a vector field on M. Let φH , ηH , and ξH be horizontal lifts of
φ, η, and ξ, respectively, on TM. Applying horizontal lifts on (9), (10), and using (1), we
obtain

(φH)2 = pφH + qI − q(ηV ⊗ ξH + ηH ⊗ ξV),

ηH(ξH) = ηV(ξV) = 0, ηV(ξH) = ηH(ξV) = 1,

ηH ◦ φH = ηV ◦ φH = ηH ◦ φV = ηV ◦ φV = 0,

φH(ξV) = φV(ξH) = φH(ξV) = φV(ξV) = 0.

From Azami [20] and Khan [21], let us introduced a new tensor field F∗ of type (1,1)
on TM as

F∗ =
p
2

I − B
[
φH +

√
q(ηV ⊗ ξV + ηH ⊗ ξH)

]
, (21)

where B =
2σ

q
p−p

2
√

pφH+q
. Since p, q are natural numbers and φ is non-singular, therefore

pφH + q > 0 and A 	= 0.
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Theorem 6. Let the tangent bundle TM of M be immersed with (φ, ξ, η). Then the metallic
structure F∗, given by (21), is an MS on TM.

Proof. Let Υ1 be a vector field on M and ΥH
1 , ΥC

1 , and ΥV
1 be horizontal, complete, and

vertical lifts of Υ1, respectively, on TM. Applying ξH , ξV , ξC, and φH on (21), we obtain

(i) F∗(ξH) =
p
2

ξH − B
√

qξV ,

(ii) F∗(ξV) =
p
2

ξV − B
√

qξH , (22)

(iii) F∗(ξC) =
p
2

ξC − B[φH(∇γΥ1) +
√

qφC(∇γΥ1)ξ
H ],

(iv) F∗(φHΥ̃1) =
p
2

φH(Υ̃1)− B[pφHΥ̃1 + qΥ̃1 − q(ηV(Υ̃1)ξ
H + ηH(Υ̃1)ξ

V)].

In the view of (21) and (22), we obtain

(F∗)2(Υ̃1) =
p
2

F∗(Υ̃1)− B
[

F∗ϕHΥ̃1 +
√

q(ηV(Υ̃1)F∗(ξV) + ηH(Υ̃1)F∗(ξH))
]
,

= pF∗(Υ̃1) + q(Υ̃1).

This shows that F∗ is an MS.

Corollary 2. Let Υ1 and Υ2 be the vector fields on M and F∗ be an MS on TM given by (21) such
that η(Υ1) = 0. Then

(i) F∗ΥV
1 =

p
2

ΥV
1 − B

[
(φΥ1)

V +
√

q(η(Υ1))
VξH

]
,

(ii) F∗ΥH
1 =

p
2

ΥH
1 − B

[
(φΥ1)

H +
√

q(η(Υ1))
VξV

]
,

(iii) F∗ΥC
1 =

p
2

ΥC
1 − B[(φΥ1)

H + φH(∇γΥ1) (23)

+
√

q((η(Υ1))
VξV + ηC(∇γΥ1)ξ

H)],

(iv) F∗ΥC
1 =

p
2

ΥC
1 − B[(φΥ1)

H + φC(∇γΥ1)

+
√

q((η(Υ1))
VξV + ηC(∇γΥ1)ξ

H)].

If η(Υ1) = 0, then

(i) F∗ΥH
1 =

p
2

ΥH
1 − B(φΥ1)

H ,

(ii) F∗ΥV
1 =

p
2

ΥV
1 − B(φΥ1)

V , (24)

(iii) F∗ΥC
1 =

p
2

ΥC
1 − B[(φΥ1)

H + φH(∇γΥ1)

+
√

qηC(∇γΥ1)ξ
H ].

Proof. The proof is obtained by applying ΥC
1 and ΥV

1 on F∗ given by (21) and using
η(Υ1) = 0.

Theorem 7. The metallic structure F∗ given by (21) is integrable on TM over (φ, ξ, η) if and only
if NF∗ = 0, which is equivalent to the conditions

η([φΥ1, Υ2]) = 0, η([φΥ1, ξ]) = 0, η([Υ1, Υ2]) = 0,

η([Υ1, ξ]) = 0, ∇Υ1 = 0, R̂ = 0,

and (φ, ξ, η) is integrable, i.e., Nφ = 0.
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Proof. Let NF∗ be the Nijenhuis tensor of the metallic structure F∗, then

NF∗(Υ̃1, Υ̃2) = [F∗Υ̃1, F∗Υ̃2]− F∗[F∗Υ̃1, Υ̃2]− F∗[Υ̃1, F∗Υ̃2] + (F∗)2[Υ̃1, Υ̃2], (25)

where Υ̃1 and Υ̃2 are vector fields on TM.
Applying (3)–(7), (21), (23), and (16) on (25), and using η(Υ1) = η(Υ2) = 0.

NF∗(Υ1
V , Υ2

V) = −B2
(
(φ∇Υ2 ξ)V +

√
q(η(∇Υ2 ξ))VξH

)
+ Bq(η[Υ1, ξ])VξH .

NF∗(Υ1
V , Υ2

H) = B2(Nφ(Υ1, Υ2)
)V

+ Bp
(
(φ[Υ1, Υ2])

V +
√

qη([Υ1, Υ2])
VξH

)
− Bp

(
(φ∇Υ1 Υ2)

V +
√

qη(∇Υ1 Υ2)
VξH

)
− B2(∇φΥ1 φΥ2)

− B2√qη([φΥ1, Υ2])
VξH − B2√qη([Υ1, φΥ2])

VξH

+
(
(φ(∇φΥ1 Υ2)

V +
√

qη(∇φΥ1 Υ2)
VξH

)
− p2

4
(∇Υ1 Υ2)

V − q(∇Υ1 Υ2)
V

+ B2
(
(φ(∇Υ1 φΥ2))

V +
√

qη(∇Υ1 φΥ2)
VξH

)
− Bp((φ[Υ1, Υ2])

V

+
√

qη([Υ1, Υ2])
VξH) + B

(
(φ(∇Υ1 Υ2))

V +
√

qη(∇Υ1 Υ2)
VξH)

)
.

NF∗(ΥH
1 , Υ2

H) = B2(Nφ(Υ1, Υ2))
H + B2q

(
(η[Υ1, Υ2]ξ)

H + (η[Υ1, Υ2]ξ)
V
)

− B2(pφH + q)γR̂(Υ1, Υ2) +
p
2

BγR̂(Υ1, φΥ2) +
p
2

BR̂(φΥ1, Υ2)

− B2γR̂(φΥ1, φΥ2)− B
√

q(η[φΥ1, Υ2])
VξV − BF∗γR̂(φΥ1, Υ2)

− B2√q(η[Υ1, φΥ2])
VξV − BF∗γR̂(Υ1, φΥ2).

NF∗(ΥV
1 , ξV) = B2√q

(
[φΥ1, ξ]V − φ[Υ1, ξ]V − (∇φΥ1 ξ)V − (φ∇Xξ)V

)
+ B2q

(
η(∇Υ1 ξ)VξH − (η[Υ1, ξ])VξH

)
.

NF∗(Υ1
V , ξH) = B2

(
(φ2[Υ1, ξ])V − q(∇Υ1 ξ)V

)
.

NF∗(ΥH
1 , ξV) = −B2((pφ + q)[ξ, Υ1])

V + B2((pφ + q)(∇ξΥ1)
)V

+
p
2

B
√

qγR̂(Υ1, ξ) + B2√q
(
[φΥ1, ξ]H − γR̂(φΥ1, ξ)

)
+ B2(φ[ξ, φΥ1])

V + B2√q(η[ξ, φΥ1])
VξH − B2(φ(∇ξ φΥ1))

V

− B2√q(η(∇ξφΥ1))
VξH − B2√qφ[Υ1, ξ]H

− B2q(η[Υ1, ξ])VξV − B
√

qF∗γR̂(Υ1, ξ).

NF∗(ΥH
1 , ξH) = B2φ2[Υ1, ξ]H + B2η[Υ1, ξ]H + B2(η[Υ1, ξ]ξ)V − p2 + 4q

4
(γR̂(Υ1, ξ)

+ pB
√

q[ξ, Υ1]
V +

p
2

BγR̂(φΥ1, ξ)− B2φ[φΥ1, ξ]− B2√q(η[φΥ1, ξ])VξV

− B2√q(φ[ξ, Υ1])
V − B2q(η[ξ, Υ1])

VξH + B2√q(φ∇ξ Υ1)
V

+ B2q(η(∇ξ Υ1))
VξH − Bp

√
q(η[Υ1, ξ])VξV .

NF∗(ξV , ξH) = −(
p2

2
+ q)(∇ξ ξ)V + B2q(∇ξξ)V +

p
2

B
√

q(∇ξξ)H .
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Theorem 8. Let F∗ be a MS in TM given by (21) and Υ1 and Υ2 be vector fields on M such that
η(Υ1) = η(Υ2) = 0, then

(i) (£Υ2
H F∗)ΥH

1 = B
(
[φΥ1, Υ2]

H − γR̂(φΥ1, Υ2)
)
+

p
2

γR̂(Υ1, Υ2)

− B
(
(φ[Υ1, Υ2])

H −√
qη([Υ1, Υ2])

VξV
)
− F∗γR̂(Υ1, Υ2),

(ii) (£Υ2
V F∗)ΥH

1 = B
(
(φ[Υ2, Υ1])

V +
√

q(η([Υ2, Υ1]))
VξH − [Υ2, φΥ1]

V
)

− B
(
(φ(∇Υ2 Υ1))

V +
√

q(η(∇Υ2 Υ1)
VξH −∇Υ2 φΥ1)

V
)

,

(iii) (£Υ2
V F∗)ΥV

1 = 0,

(iv) (£Υ2
H F∗)Υ1

V = B
(
(φ∇Υ1 Υ2)

V +
√

qη(∇Υ1 Υ2)
VξH)− [φΥ1, Υ2]

V
)

− B
(
(φ[Υ1, Υ2])

V =
√

qη([Υ1, Υ2])
VξH −∇φΥ1 Υ2

)
.

Proof. Applying (21), (23), (16), and (20), and using η(Υ1) = η(Υ2) = 0.

(i) £Υ2
V (F∗ΥH

1 ) =
p
2
(£Υ2

V ΥH
1 − B£Υ2

V (φΥ1)
H − B

√
q(ηΥ1)

V£Υ2
V ξV)

(£V
Υ2

F∗)ΥH
1 + F∗(£Υ2

V XH) =
p
2
[ΥH

2 , ΥH
1 ]− B[ΥH

2 , (φΥ1)
H ]

− B
√

q(ηΥ1)
V [Υ2

H
, ξH ]

(£Υ2
H F∗)ΥH

1 = B
(
[φΥ1, Υ2]

H − γR̂(φΥ1, Υ2)
)
+

p
2

γR̂(Υ1, Υ2)

− B
(
(φ[Υ1, Υ2])

H −√
qη([Υ1, Υ2])

VξV
)
− F∗γR̂(Υ1, Υ2),

Others results are obtained by using similar devices.

Example 1. Setting p = q = 1 in (8), then F2 − F − I = 0 is obtained and named as the Golden
Structure. Also, from (21), we have

F∗ =
1
2
− B

[
φH + ηV ⊗ ξV + ηH ⊗ ξH

]
. (26)

Using (22), we infer

(i) F∗(ξH) =
1
2

ξH − BξV ,

(ii) F∗(ξV) =
1
2

ξV − BξH , (27)

(iii) F∗(ξC) =
1
2

ξC − B[φH(∇γΥ1) + φC(∇γΥ1)ξ
H ],

(iv) F∗(φHΥ̃1) =
1
2

φH(Υ̃1)− B[φHΥ̃1 + Υ̃1 − (ηV(Υ̃1)ξ
H + ηH(Υ̃1)ξ

V)].

Apply F∗(Υ̃1) in (26), we infer

(F∗)2(Υ̃1) =
1
2

F∗(Υ̃1)− B
[

F∗ϕHΥ̃1 + ηV(Υ̃1)F∗(ξV) + ηH(Υ̃1)F∗(ξH)
]
,

= F∗(Υ̃1) + (Υ̃1).

This shows that F∗ is a golden structure.

5. Examples of Almost Quadratic φ-Manifolds

In this section, we prove the existence of almost quadratic φ-manifolds on the tangent
bundle with non-trivial examples.
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Example 2. Let M = {(x, y, z) : x, y, z ∈ �, z 	= 0} be a differentiable manifold of dimension 3,
� is a set of real numbers. We suppose that eC

i and eV
i ; i = 1, 2, 3 be complete and vertical lifts on

TM of independent vector fields ei; i = 1, 2, 3 on M, then they form a basis {eC
i , eV

i ; i = 1, 2, 3} for
TM of M. Let gC be the complete lift of a Riemannian metric g such that gij = δij, where δij is
Kronecker delta. That is,

gC(ΥV
1 , eC

3 ) = (g(Υ1, e3))
V = (η(e3))

V ,

gC(ΥC
1 , eC

3 ) = (g(Υ1, e3))
C = (η(e3))

C,

gC(eC
3 , eC

3 ) = 1, gV(ΥV
1 , eC

3 ) = 0, gV(eV
3 , eV

3 ) = 0,

where Υ1 is a vector field on M. If φ represents the (1,1) symmetric tensor on M such that

φV(eV
i ) = (1 +

√
2)ezeV

i , i = 1, 2,

φC(eC
i ) = (1 +

√
2)ezeC

i , i = 1, 2,

φV(eV
3 ) = φC(eC

3 ) = 0,

Then we can easily verify that

(φC)2 = pφC + qI − q(ηV ⊗ ξC + ηC ⊗ ξV),

where p = 2ez, q = e2z ⇒ p2 + 4q = 8e2z 	= 0. This shows that M is an almost quadratic
φ-manifold and the structure (φ, ξ, η) is an almost quadratic φ-structure on M.

Again, from the straightforward calculations, we prove that

gC((φei)
C, eC

j ) = gC(eC
i , (φej)

C),

gC((φei)
V , eC

j ) = gC(eV
i , (φej)

C),

and

gC((φei)
C, (φej)

C) = pgC((φei)
C, eC

j ) + q(gC(eC
i , eC

j )

− (η(ei))
C(η(ej))

V − (η(ei))
V(η(ej))

C), ∀ i, j = 1, 2, 3.

The manifold M is an almost quadratic metric φ-manifold and the structure (φ, ξ, η, g) is an almost
quadratic metric φ-structure on M.

Example 3. A paracontact structure (φ, η, ξ) on M such that [22]

φ2 = I − η ⊗ ξ

is an almost quadratic φ-structure when p = 0, q = 1 in (9). The new tensor F̃ of type (1,1) given
by (12) becomes

F̃ = −φC + ηV ⊗ ξV + ηC ⊗ ξC.

It can be easily proved that F̃ is almost a product structure.

Remark 1. For the horizontal lift, we can obtain the similar examples of almost quadratic φ-manifolds.

6. Conclusions

In this work, we have characterized a metallic structure by using the complete and
horizontal lifts over an almost quadratic φ-structure (φ, ξ, η). Tensor fields F̃ and F∗ are
defined on TM over the structure (φ, ξ, η) and we proved that they are metallic structures,
which generalizes the notion of an almost complex structure J̃ introduced by Tanno [10].
The fundamental geometrical properties of fundamental 2-Form and its derivative on TM
over the structure (φ, ξ, η) were calculated. The integrability conditions and expressions of
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the Lie derivative of metallic structures F̃ and F∗ on TM over the structure (φ, ξ, η) were
determined. Finally, we demonstrated that almost quadratic φ-manifolds exist on TM
with non-trivial examples. Future studies could fruitfully explore this issue further by
considering the polynomial structure Q(F) = Fn + anFn−1 + · · ·+ a2F + a1 I, where F is the
tensor field of type (1,1).
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Abstract: The purpose of the present paper is to study the complete lifts of a QSNMC from an
LP-Sasakian manifold to its tangent bundle. The lifts of the curvature tensor, Ricci tensor, projective
Ricci tensor, and lifts of Einstein manifold endowed with QSNMC in an LP-Sasakian manifold to its
tangent bundle are investigated. Necessary and sufficient conditions for the lifts of the Ricci tensor to
be symmetric and skew-symmetric and the lifts of the projective Ricci tensor to be skew-symmetric
in the tangent bundle are given. An example of complete lifts of four-dimensional LP-Sasakian
manifolds in the tangent bundle is shown.
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non-metric connection; partial differential equations; mathematical operators; curvature tensor;
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1. Introduction

Tangent bundle geometry has long been a source of interest in differential geom-
etry. Tangent bundle investigation introduces several novel challenges to the study of
modern differential geometry. Using the lift function, it is convenient to generalize dif-
ferentiable structures on any manifold M to its tangent bundle. The theory of vertical,
complete, and horizontal lifts of geometrical structures and connections from a manifold
to its tangent bundle was developed by Yano and Ishihara [1]. Numerous researchers
have examined various connections and geometric structures on the tangent bundle like
Yano and Kobayashi [2], Tani [3], Pandey and Chaturvedi [4], and Khan [5,6]. Different
lifts of metallic structures to tangent bundles have been studied in [7–9]. Tangent bundles
immersed with quarter-symmetric non-metric connections, semi-symmetric P-connections,
and semi-symmetric non-metric connections on almost Hermitian manifolds, Kähler man-
ifolds, Kenmotsu manifolds, Sasakian manifolds, para-Sasakian manifolds, Riemannian
manifolds and their submanifolds, and statistical manifolds and their submanifolds have
been studied in [5,10–18]. Recently, Khan et al. [19] studied the tangent bundle of P-Sasakian
manifolds endowed with a quarter-symmetric metric connection (QSMC).

On the other hand, the notion of quarter-symmetric connection in a Riemannian
manifold with affine connection was introduced by Golab in 1975 [20]. This was fur-
ther developed by many geometers like Yano and Imai [21], Rastogi [22,23], Mishra and
Pandey [24], Mukhopadhyay et al. [25], Biswas and De [26], Sengupta and Biswas [27],
Singh and Pandey [28], and others.
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Let ∇ be a linear connection on an n-dimensional differentiable manifold Mn of class
C∞. If the torsion tensor T of ∇ defined by

T(X0, Y0) = ∇X0Y0 −∇Y0 X0 − [X0, Y0], (1)

satisfies
T(X0, Y0) = λ0(Y0)φ0X0 − λ0(X0)φ0Y0, (2)

where λ0 is a 1-form and φ0 is a (1, 1) tensor field, then the connection ∇ is called a
quarter-symmetric connection [21,29,30]. Also, if ∇ satisfies

(∇X0 g)(Y0, Z0) 	= 0, (3)

for all X0, Y0, Z0 ∈ X(Mn), the set of all vector fields on Mn, then ∇ is called a quarter-
symmetric non-metric connection (QSNMC).

We start this paper with Section 1. Section 2 is devoted to preliminaries. In Section 3,
a QSNMC in an LP-Sasakian manifold is studied. The complete lifts of LP-Sasakian
manifolds and QSNMC in an LP-Sasakian manifold to its tangent bundle are investigated in
Sections 4 and 5. In Sections 6 and 7, the complete lifts of the curvature tensor and symmetric
and skew-symmetric condition of the Ricci tensor in an LP-Sasakian manifold endowed
with QSNMC to its tangent bundle are investigated. The skew-symmetric properties of the
projective Ricci tensor and Einstein manifold endowed with QSNMC in an LP-Sasakian
manifold to its tangent bundle are studied in Sections 8 and 9. Lastly, an example of the
lift of four-dimensional LP-Sasakian manifolds to its tangent bundle is shown in Section 9,
followed by a conclusion section.

2. Preliminaries

Let Mn be a differentiable manifold and T0Mn =
⋃

p∈Mn T0p Mn be the tangent bundle,
where T0p Mn is the tangent space at a point p ∈ Mn and π : T0Mn → Mn is the natural
bundle structure of T0Mn over Mn. For any co-ordinate system (Q, xh) in Mn, where (xh)
is a local co-ordinate system in the neighborhood Q, then (π−1(Q), xh, yh) is a co-ordinate
system in T0Mn, where (xh, yh) is an induced co-ordinate system in π−1(Q) from (xh) [1].

2.1. Vertical and Complete Lifts

Let us define a vector field X0, a tensor field F0 of type (1, 1), a function f0, a 1-form
ω0, and an affine connection ∇ in Mn; their vertical and complete lifts are denoted by
f v
0 , Xv

0 , ωv
0, Fv

0 , ∇v, and f c
0 , Xc

0, ωc
0, Fc

0 , ∇c, respectively. The following formulas of
complete and vertical lifts are defined by [1,5]

( f0X0)
v = f v

0 Xv
0 , ( f0X0)

c = f c
0 Xv

0 + f v
0 Xc

0, (4)

Xv
0 f v

0 = 0, Xv
0 f c

0 = Xc
0 f v

0 = (X0 f0)
v, Xc

0 f c
0 = (X0 f0)

c, (5)

ω0( f v
0 ) = 0, ωv

0(Xc
0) = ωc

0(Xv
0) = ω0(X0)

v, ωc
0(Xc

0) = ω0(X0)
c, (6)

Fv
0 Xc

0 = (F0X0)
v, Fc

0 Xc
0 = (F0X0)

c, (7)

[X0, Y0]
v = [Xc

0, Yv
0 ] = [Xv

0 , Yc
0 ], [X0, Y0]

c = [Xc
0, Yc

0 ], (8)

∇c
Xc

0
Yc

0 = (∇X0Y0)
c, ∇c

Xc
0
Yv

0 = (∇X0Y0)
v. (9)

Suppose T0M is the tangent bundle and let X0 = Xi
0

∂
∂xi be a local vector field on M,

then its vertical and complete lifts in the term of partial differential equations are

Xv
0 = Xi

0
∂

∂yi and Xc
0 = Xi

0
∂

∂xi +
∂Xi

0
∂xj yj ∂

∂yi .
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2.2. LP-Sasakian Manifolds

An n-dimensional differentiable manifold Mn is called a Lorentzian para-Sasakian
(briefly LP-Sasakian) [31] of dimension n if it admits a (1, 1)- tensor field φ0, a contravariant
vector field ξ0, a 1-form η0, and a Lorentzian metric g which satisfy

φ0
2(X0) = X0 + η0(X0)ξ0, (10)

η0(ξ0) = −1, (11)

g(φ0X0, φ0Y0) = g(X0, Y0) + η0(X0)η0(Y0), (12)

g(X0, ξ0) = η0(X0), (13)

(∇X0 φ0)(Y0) = g(X0, Y0)ξ0 + η0(Y0)X0 + 2η0(X0)η0(Y0)ξ0, (14)

∇X0 ξ0 = φ0X0. (15)

In an LP-Sasakian manifold, the following relations also hold:

φ0ξ0 = 0, η0 ◦ φ0 = 0, (16)

rank φ0 = n − 1. (17)

If we take a tensor field Φ0(X0, Y0) as

Φ0(X0, Y0) = g(X0, φ0Y0), (18)

for any vector fields X0 and Y0, then the tensor field Φ0(X0, Y0) is a symmetric (0, 2) tensor
field [31]. Since the 1-form η0 is closed in an LP-Sasakian manifold, we have [31,32]

(∇X0 η0)(Y0) = Φ0(X0, Y0), Φ0(X0, ξ0) = 0, (19)

for all X0, Y0 ∈ Mn. In an LP-Sasakian manifold, the following relations hold [32,33]:

g(R0(X0, Y0)Z0, ξ0) = g(Y0, Z0)η0(X0)− g(X0, Z0)η0(Y0), (20)

R0(ξ0, X0)Y0 = g(X0, Y0)ξ0 − η0(Y0)X0, (21)

R0(X0, Y0)ξ0 = η0(Y0)X0 − η0(X0)Y0, (22)

R0(ξ0, X0)ξ0 = X0 + η0(X0)ξ0, (23)

S0(X0, ξ0) = (n − 1)η0(X0), (24)

S0(φ0X0, φ0Y0) = S0(X0, Y0) + (n − 1)η0(X0)η0(Y0), (25)

where R0 is the Riemannian curvature tensor and S0 is the Ricci tensor of the manifold.

3. QSNMC

In an LP-Sasakian manifold (Mn, g), the linear connection ∇̈ on Mn is given by [29]

∇̈X0Y0 = ∇X0Y0 + η0(Y0)φ0X0 + a0(X0)φ0Y0, (26)

where η0 and a0 are 1-form associated with vector field ξ0 and A0 on Mn is given by

η0(X0) = g(X0, ξ0), (27)

a0(X0) = g(X0, A0), (28)

for all vector fields X0 ∈ X0(Mn), where X0(Mn) is the set of all differentiable vector fields
on Mn and the torsion tensor is given by

T̈(X0, Y0) = η0(Y0)φ0X0 − η0(X0)φ0Y0 + a0(X0)φ0Y0 − a0(Y0)φ0X0. (29)
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A linear connection satisfying (29) is called a quarter-symmetric connection. Further, by
using (26), we have

(∇̈X0 g)(Y0, Z0) = −η0(Y0)g(φ0X0, Z0)− η0(Z0)g(φ0X0, Y0)− 2a0(X0)g(φ0Y0, Z0). (30)

A linear connection ∇̈ defined by (26) which satisfies (29) and (30) is called QSNMC.

4. Complete Lifts from an LP-Sasakian Manifold to Its Tangent Bundle

Let the tangent bundle be denoted by T0Mn in an LP-Sasakian manifold (Mn, g).
Taking complete lifts by mathematical operators on (10)–(16) and (18)–(25), we obtain

(φ2
0(X0))

c = Xc
0 + ηc

0(Xc
0)ξ

v
0 + ηv

0 (Xc
0)ξ

c
0, (31)

ηc
0(ξ

c
0) = ηv

0 (ξ
v
0) = 0, ηc

0(ξ
v
0) = ηv

0 (ξ
c
0) = −1, (32)

gc
(
(φ0X0)

c, (φ0Y0)
c
)
= gc(Xc

0, Yc
0) + ηc

0(Xc
0)η

v
0 (Y

c
0) + ηv

0 (Xc)ηc
0(Y

c
0), (33)

gc(Xc
0, ξc

0) = ηc
0(Xc

0), (34)

(∇c
Xc

0
φc

0)Y
c
0 = gc(Xc

0, Yc
0)ξ

v
0 + gc(Xv

0 , Yc
0)ξ

c
0 + ηc

0(Y
c
0)Xv

0 + ηv
0 (Y

c
0)Xc

0

+ 2
{

ηc
0(Xc

0)η
c
0(Y

c
0)ξ

v
0 + ηc

0(Xc
0)η

v
0 (Y

c
0)ξ

c
0 + ηv

0 (Xc
0)η

c
0(Y

c
0)ξ

c
0

}
,

(35)

∇c
Xc

0
ξc

0 = (φ0X0)
c, (36)

φc
0ξc

0 = φv
0ξv

0 = φc
0ξv

0 = φv
0ξc

0 = 0, (37)

ηc
0 ◦ φc

0 = ηv
0 ◦ φv

0 = ηc
0 ◦ φv

0 = ηv
0 ◦ φc

0 = 0, (38)

Φc
0(Xc

0, Yc
0) = gc(Xc

0, φc
0Yc

0), (39)

(∇c
Xc

0
ηc

0)Y
c
0 = Φc

0(Xc
0, Yc

0), (40)

Φc
0(Xc

0, ξc
0) = 0, (41)

gc(Rc(Xc
0, Yc

0)Zc
0, ξc

0) = gc(Yc
0 , Zc

0)η
v
0 (Xc

0) + gc(Yv
0 , Zc

0)η
c
0(Xc

0)

− gc(Xc
0, Zc

0)η
v
0 (Y

c
0)− gc(Xv

0 , Zc
0)η

c
0(Y

c
0),

(42)

Rc(ξc, Xc
0)Y

c
0 = gc(Xc

0, Yc
0)ξ

v
0 + gc(Xv

0 , Yc
0)ξ

c
0 − ηc

0(Y
c
0)Xv

0 − ηv
0 (Y

c
0)Xc

0, (43)

Rc(Xc
0, Yc

0)ξ
c
0 = ηc

0(Y
c
0)Xv

0 + ηv
0 (Y

c
0)Xc

0 − ηc
0(Xc

0)Y
v
0 − ηv

0 (Xc
0)Y

c
0 , (44)

Rc(ξc
0, Xc

0)ξ
c
0 = Xc

0 + ηc
0(Xc

0)ξ
v
0 + ηv

0 (Xc
0)ξ

c
0, (45)

Sc(Xc
0, ξc

0) = (n − 1)ηc
0(Xc

0), (46)

Sc(φc
0Xc

0, φc
0Yc

0) = Sc(Xc
0, Yc

0) + (n − 1)
{

ηc
0(Xc

0)η
v
0 (Y

c
0) + ηv

0 (Xc
0)η

c
0(Y

c
0)
}

. (47)

5. Complete Lifts of QSNMC of an LP-Sasakian Manifold in the Tangent Bundle

In an LP-Sasakian manifold (Mn, g) and its tangent bundle T0Mn, let us take complete
lifts by mathematical operators on Equations (26)–(30), and we have

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Yc

0 + ηc
0(Y

c
0)(φ0X0)

v + ηv
0 (Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v

+ av(Xc
0)(φ0Y0)

c,
(48)
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T̈c(Xc
0, Yc

0) = ηc
0(Y

c
0)(φ0X0)

v + ηv
0 (Y

c
0)(φ0X0)

c − ηc
0(Xc

0)(φ0Y0)
v

− ηv
0 (Xc

0)(φ0Y0)
c + ac

0(Xc
0)(φ0Y0)

v + av
0(Xc

0)(φ0Y0)
c

− ac
0(Y

c
0)(φ0X0)

v − av
0(Y

c
0)(φ0X0)

c,

(49)

ηc
0(Xc

0) = gc(Xc
0, ξc

0), (50)

ac(Xc
0) = gc(Xc

0, Ac
0), (51)

(∇̈c
Xc

0
gc)(Yc

0 , Zc
0) = −ηc

0(Y
c
0)gc

(
(φ0X0)

v, Zc
0

)
− ηv

0 (Y
c
0)gc

(
(φ0X0)

c, Zc
0

)
− ηc

0(Zc
0)gc

(
(φ0X0)

v, Yc
0

)
− ηv

0 (Zc
0)gc

(
(φ0X0)

c, Yc
0

)
− 2ac(Xc

0)gc
(
(φ0Y0)

v, Zc
0

)
− 2av(Xc

0)gc
(
(φ0Y0)

c, Zc
0

)
.

(52)

The connection given by Equation (48) is said to be a QSNMC on an LP-Sasakian manifold in
its tangent bundle if the torsion tensor T̈c of T0Mn endowed with ∇̈c satisfies Equation (49)
and the complete lifts of Lorentzian metric gc fulfill the relation (52).

Theorem 1. If an LP-Sasakian manifold (Mn, g) with an almost Lorentzian para-contact metric
structure (φ0, ξ0, η0, g) admitting a QSNMC ∇̈ which satisfies (49) and (52), then the QSNMC in
the tangent bundle is given by

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Y0 + ηc

0(Y
c
0)(φ0X0)

v + ηv
0 (Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v + av(Xc
0)(φ0Y0)

c.

Proof. Let ∇̈c be the complete lifts of a linear connection in Mn given by

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Yc

0 + Hc
0(Xc

0, Yc
0). (53)

Now, we shall determine the complete lifts of the tensor field Hc
0 such that ∇̈c satisfies (49)

and (52). From (53), we have

T̈c(Xc
0, Yc

0) = Hc
0(Xc

0, Yc
0)− Hc

0(Y
c
0 , Xc

0). (54)

We denote
Gc

0(Xc
0, Yc

0 , Zc
0) = (∇̈c

Xc
0
gc)(Yc

0 , Zc
0). (55)

From (53) and (55), we have

gc
(

Hc
0(Xc

0, Yc
0), Zc

0

)
+ gc

(
Hc

0(Xc
0, Zc

0), Yc
0

)
= −Gc

0(Xc
0, Yc

0 , Zc
0). (56)

Using (52), (53), (55), and (56) we have
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gc
(

T̈c(Xc
0, Yc

0), Zc
0

)
+ gc

(
T̈c(Zc

0, Xc
0), Yc

0

)
+ gc

(
T̈c(Zc

0, Yc
0), Xc

0

)
= gc

(
Hc

0(Xc
0, Yc

0), Zc
0

)
− gc

(
Hc

0(Y
c
0 , Xc

0), Zc
0

)
+ gc

(
Hc

0(Zc
0, Xc

0), Yc
0

)
− gc

(
Hc

0(Xc
0, Zc

0), Yc
0

)
+ gc

(
Hc

0(Zc
0, Yc

0), Xc
0

)
− gc

(
Hc

0(Y
c
0 , Zc

0), Xc
0

)
= gc

(
Hc

0(Xc
0, Yc

0), Zc
0

)
− gc

(
Hc

0(Xc
0, Zc

0), Yc
0

)
− Gc

0(Zc
0, Xc

0, Yc
0) + Gc

0(Y
c
0 , Xc

0, Zc
0)

= 2gc
(

Hc
0(Xc

0, Yc
0), Zc

0

)
+ Gc

0(Xc
0, Yc

0 , Zc
0) + Gc

0(Y
c
0 , Xc

0, Zc
0)− Gc

0(Zc
0, Xc

0, Yc
0)

= 2gc
(

Hc
0(Xc

0, Yc
0), Zc

0

)
− 2
{

ηc
0(Zc

0)gc
(
(φ0X0)

v, Yc
0

)
+ ηv

0 (Zc
0)gc

(
(φ0X0)

c, Yc
0

)}
− 2
{

ac
0(Xc

0)gc
(
(φ0Y0)

v, Zc
0

)
+ av

0(Xc
0)gc

(
(φ0Y0)

c, Zc
0

)}
− 2
{

ac
0(Y

c
0)gc

(
(φ0X0)

v, Zc
0

)
+ av

0(Y
c
0)gc

(
(φ0X0)

c, Zc
0

)}
+ 2
{

ac
0(Zc

0)gc
(
(φ0X0)

v, Yc
0

)
+ av

0(Zc
0)gc

(
(φ0X0)

c, Yc
0

)}
,

or,

Hc
0(Xc

0, Yc
0) =

1
2

{
T̈c(Xc

0, Yc
0) +

′T̈c(Xc
0, Yc

0) +
′T̈c(Yc

0 , Xc
0)
}
+ ac

0(Xc
0)(φ0Y0)

v

+ av
0(Xc

0)(φ0Y0)
c + ac

0(Y
c
0)(φ0X0)

v + av
0(Y

c
0)(φ0X0)

c

+ gc
(

φ0X0)
c, Yc

0

)
ξv

0 + gc
(

φ0X0)
v, Yc

0

)
ξc

0

− gc
(

φ0X0)
c, Yc

0

)
Av

0 − gc
(

φ0X0)
v, Yc

0

)
Ac

0,

where ′T̈c is a tensor field of type (1, 2) defined by

gc
(

′T̈c(Xc
0, Yc

0), Zc
0

)
= gc

(
T̈c(Zc

0, Xc
0), Yc

0

)
,

or,

Hc
0(Xc

0, Yc
0) = ηc

0(Y
c
0)(φ0X0)

v + ηv
0 (Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v + av(Xc
0)(φ0Y0)

c,

which gives

∇̈c
Xc

0
Yc

0 = ∇c
Xc

0
Y0 + ηc

0(Y
c
0)(φ0X0)

v + ηv
0 (Y

c
0)(φ0X0)

c + ac(Xc
0)(φ0Y0)

v + av(Xc
0)(φ0Y0)

c.

6. Curvature Tensor of LP-Sasakian Manifolds Endowed with QSNMC to
Tangent Bundle

Let R̈c
0 and Rc

0 be the curvature tensors of the connections ∇̈c and ∇c to tangent bundle
T0Mn, respectively.

R̈c
0(Xc

0, Yc
0)Zc

0 = ∇̈c
Xc

0
∇̈c

Yc
0
Zc

0 − ∇̈c
Yc

0
∇̈c

Xc
0
Zc

0 − ∇̈c
[Xc

0,Yc
0 ]

Zc
0. (57)
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Using (48) in (57), we have

R̈c
0(Xc

0, Yc
0)Zc

0 = Rc
0(Xc

0, Yc
0)Zc

0 + gc
(
(φ0X0)

c, Zc
0

)
(φ0Y0)

v

+ gc
(
(φ0X0)

v, Zc
0

)
(φ0Y0)

c − gc
(
(φ0Y0)

c, Zc
0

)
(φ0X0)

v

− gc
(
(φ0Y0)

v, Zc
0

)
(φ0X0)

c + ηc
0(Y

c
0)η

c
0(Zc

0)Xv
0

+ ηc
0(Y

c
0)η

v
0 (Zc

0)Xc
0 + ηv

0 (Y
c
0)η

c
0(Zc

0)Xc
0

− ηc
0(Xc

0)η
c
0(Zc

0)Y
v
0 − ηc

0(Xc
0)η

v
0 (Zc

0)Y
c
0

− ηv
0 (Xc

0)η
c
0(Zc

0)Y
c
0 + ac

0(Y
c
0)gc(Xc

0, Zc
0)ξ

v
0

+ ac
0(Y

c
0)gc(Xv

0 , Zc
0)ξ

c
0 + av

0(Y
c
0)gc(Xc

0, Zc
0)ξ

c
0

− ac
0(Xc

0)gc(Yc
0 , Zc

0)ξ
v
0 − ac

0(Xc
0)gc(Yv

0 , Zc
0)ξ

c
0

− av
0(Xc

0)gc(Yc
0 , Zc

0)ξ
c
0 + ac

0(Y
c
0)η

c
0(Xc

0)η
c
0(Zc

0)ξ
v
0

+ ac
0(Y

c
0)η

c
0(Xc

0)η
v
0 (Zc

0)ξ
c
0 + ac

0(Y
c
0)η

v
0 (Xc

0)η
c
0(Zc

0)ξ
c
0

+ av
0(Y

c
0)η

c
0(Xc

0)η
c
0(Zc

0)ξ
c
0 − ac

0(Xc
0)η

c
0(Y

c
0)η

c
0(Zc

0)ξ
v
0

− ac
0(Xc

0)η
c
0(Y

c
0)η

v
0 (Zc

0)ξ
c
0 − ac

0(Xc
0)η

v
0 (Y

c
0)η

c
0(Zc

0)ξ
c
0

− av
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)ξ
c
0 + dac

0(Xc
0, Yc

0)(φ0Z0)
v

+ dav
0(Xc

0, Yc
0)(φ0Z0)

c,

(58)

where
Rc

0(Xc
0, Yc

0)Zc
0 = ∇c

Xc
0
∇c

Yc
0
Z0 −∇c

Yc
0
∇c

Xc
0
Z0 −∇c

[Xc
0,Yc

0 ]
Zc

0, (59)

is the curvature tensor of ∇c with respect to the Riemannian connection. Contracting (58),
we obtain

S̈c
0(Y

c
0 , Zc

0) = Sc
0(Y

c
0 , Zc

0)− γcgc
(
(φ0Y0)

c, Zc
0

)
+
[
1 − ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)

+
[
ηc

0 − ac
0(ξ

c
0)
][

ηc
0(Y

c
0)η

v
0 (Zc

0) + ηv
0 (Y

c
0)η

c
0(Zc

0)
]

+ dac
0

(
(φ0Z0)

c, Yc
0

)
,

(60)

and
r̈0

c = rc
0 − (n − 1)ac

0(ξ
c
0) + λc

0 − γc2
, (61)

where S̈c
0 and r̈0

c are the Ricci tensor and scalar curvature with respect to ∇̈c.

λc
0 = trace dac

0

(
(φ0Z0)

c, Yc
0

)
and γc = trace φc

0. (62)

Theorem 2. In an LP-Sasakian manifold (Mn, g) with tangent bundle T0Mn admitting QSNMC,
we have the following:

1. The complete lifts of curvature tensor R̈c
0 are given by Equation (58).

2. The complete lifts of Ricci tensor S̈c
0 are given by Equation (60).

3. The complete lifts of scalar curvature r̈0 are given by Equation (61).

Let us consider that R̈c
0(Xc

0, Yc
0) = 0 in (58), and by contracting it we also obtain

Sc
0(Y

c
0 , Zc

0) = γcgc
(
(φ0Y0)

c, Zc
0

)
−
[
1 − ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)

−
[
ηc

0 − ac
0(ξ

c
0)
][

ηc
0(Y

c
0)η

v
0 (Zc

0) + ηv
0 (Y

c
0)η

c
0(Zc

0)
]

− dac
0

(
(φ0Z0)

c, Yc
0

)
,

(63)
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which gives
rc

0 = (n − 1)ac
0(ξ

c
0)− λc

0 + γc2
. (64)

Theorem 3. In an LP-Sasakian manifold, (Mn, g), with tangent bundle T0Mn endowed with
QSNMC whose curvature tensor vanishes, then the complete lift of rc

0 is given by (64).

From (58), it follows that

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Xc

0, Zc
0, Wc

0) = 0, (65)

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Xc

0, Yc
0 , Wc

0, Zc
0)

= ηc
0(Y

c
0)η

v
0 (Zc

0)gc(Xc
0, Wc

0) + ηv
0 (Y

c
0)η

c
0(Zc

0)gc(Xc
0, Wc

0)

− ηc
0(Xc

0)η
v
0 (Zc

0)gc(Yc
0 , Wc

0)− ηv
0 (Xc

0)η
c
0(Zc

0)gc(Yc
0 , Wc

0)

+ ηc
0(Y

c
0)η

v
0 (W

c
0)gc(Xc

0, Zc
0) + ηv

0 (Y
c
0)η

c
0(W

c
0)gc(Xc

0, Zc
0)

− ηc
0(Xc

0)η
v
0 (W

c
0)gc(Yc

0 , Zc
0)− ηv

0 (Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Y

c
0)η

v
0 (W

c
0)gc(Xc

0, Zc
0) + av

0(Y
c
0)η

c
0(W

c
0)gc(Xc

0, Zc
0)

− ac
0(Xc

0)η
v
0 (W

c
0)gc(Yc

0 , Zc
0)− av

0(Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Y

c
0)η

v
0 (Zc

0)gc(Xc
0, Wc

0) + av
0(Y

c
0)η

c
0(Zc

0)gc(Xc
0, Wc

0)

− ac
0(Xc

0)η
v
0 (Zc

0)gc(Yc
0 , Wc

0)− av
0(Xc

0)η
c
0(Zc

0)gc(Yc
0 , Wc

0)

+ 2
[

ac
0(Y

c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
v
0 (W

c
0) + ac

0(Y
c
0)η

c
0(Xc

0)η
v
0 (Zc

0)η
c
0(W

c
0)

+ ac
0(Y

c
0)η

v
0 (Xc

0)η
c
0(Zc

0)η
c
0(W

c
0) + av

0(Y
c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
c
0(W

c
0)
]

− 2
[

ac
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)η
v
0 (W

c
0) + ac

0(Xc
0)η

c
0(Y

c
0)η

v
0 (Zc

0)η
c
0(W

c
0)

+ ac
0(Xc

0)η
v
0 (Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0) + av

0(Xc
0)η

c
0(Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0)
]

+ 2dac
0(Xc

0, Yc
0)gc

(
(φ0Z0)

c, Wc
0

)
.

(66)

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0)− ′R̈c

0(Zc
0, Wc

0, Xc
0, Yc

0)

= ηc
0(Y

c
0)η

v
0 (Zc

0)gc(Xc
0, Wc

0) + ηv
0 (Y

c
0)η

c
0(Zc

0)gc(Xc
0, Wc

0)

− ηc
0(Xc

0)η
v
0 (W

c
0)gc(Yc

0 , Zc
0)− ηv

0 (Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Y

c
0)η

v
0 (W

c
0)gc(Xc

0, Zc
0) + av

0(Y
c
0)η

c
0(W

c
0)gc(Xc

0, Zc
0)

− ac
0(Xc

0)η
v
0 (W

c
0)gc(Yc

0 , Zc
0)− av

0(Xc
0)η

c
0(W

c
0)gc(Yc

0 , Zc
0)

+ ac
0(Zc

0)η
v
0 (Y

c
0)gc(Xc

0, Wc
0) + av

0(Zc
0)η

c
0(Y

c
0)gc(Xc

0, Wc
0)

− ac
0(W

c
0)η

v
0 (Y

c
0)gc(Xc

0, Zc
0)− av

0(W
c
0)η

c
0(Y

c
0)gc(Xc

0, Zc
0)

+ ac
0(Y

c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
v
0 (W

c
0) + ac

0(Y
c
0)η

c
0(Xc

0)η
v
0 (Zc

0)η
c
0(W

c
0)

+ ac
0(Y

c
0)η

v
0 (Xc

0)η
c
0(Zc

0)η
c
0(W

c
0) + av

0(Y
c
0)η

c
0(Xc

0)η
c
0(Zc

0)η
c
0(W

c
0)

− ac
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)η
v
0 (W

c
0)− ac

0(Xc
0)η

c
0(Y

c
0)η

v
0 (Zc

0)η
c
0(W

c
0)

− ac
0(Xc

0)η
v
0 (Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0)− av

0(Xc
0)η

c
0(Y

c
0)η

c
0(Zc

0)η
c
0(W

c
0)

+ ac
0(Zc

0)η
c
0(Xc

0)η
c
0(Y

c
0)η

v
0 (W

c
0) + ac

0(Zc
0)η

c
0(Xc

0)η
v
0 (Y

c
0)η

c
0(W

c
0)

+ ac
0(Zc

0)η
v
0 (Xc

0)η
c
0(Y

c
0)η

c
0(W

c
0) + av

0(Zc
0)η

c
0(Xc

0)η
c
0(Y

c
0)η

c
0(W

c
0)

− ac
0(W

c
0)η

c
0(Xc

0)η
c
0(Y

c
0)η

v
0 (Zc

0)− ac
0(W

c
0)η

c
0(Xc

0)η
v
0 (Y

c
0)η

c
0(Zc

0)

− ac
0(W

c
0)η

v
0 (Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)− av
0(W

c
0)η

c
0(Xc

0)η
c
0(Y

c
0)η

c
0(Zc

0)

+ dac
0(Xc

0, Yc
0)gc

(
(φ0Z0)

c, Wc
0

)
− dac

0(Zc
0, Wc

0)gc
(
(φ0X0)

c, Yc
0

)
,

(67)
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and

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Zc

0, Xc
0, Wc

0) +
′R̈c

0(Zc
0, Xc

0, Yc
0 , Wc

0)

= dac
0(Xc

0, Yc
0)gc

(
(φ0Z0)

c, Wc
0

)
+ dac

0(Y
c
0 , Zc

0)gc
(
(φ0X0)

c, Wc
0

)
+ dac

0(Zc
0, Xc

0)gc
(
(φ0Y0)

c, Wc
0

)
.

(68)

If the 1-form ac
0 is closed, then from (68) we have

′R̈c
0(Xc

0,Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Zc

0, Xc
0, Wc

0)

+ ′R̈c
0(Zc

0, Xc
0, Yc

0 , Wc
0) = 0,

(69)

where

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) = gc

(
R̈c

0(Xc
0, Yc

0)Zc
0, Wc

0

)
and ′Rc

0(Xc
0, Yc

0 , Zc
0, Wc

0) = gc
(

Rc
0(Xc

0, Yc
0)Zc

0, Wc
0

)
.

Theorem 4. In an LP-Sasakian manifold, (Mn, g) with tangent bundle T0Mn endowed with a
QSNMC, the curvature tensor satisfies relations (65)–(68). In particular, if the complete lift of
1-form ac

0 is closed, then

′R̈c
0(Xc

0, Yc
0 , Zc

0, Wc
0) +

′R̈c
0(Y

c
0 , Zc

0, Xc
0, Wc

0) +
′R̈c

0(Zc
0, Xc

0, Yc
0 , Wc

0) = 0.

7. Symmetric and Skew-Symmetric Condition of the Ricci Tensor of ∇̈c in an
LP-Sasakian Manifold Endowed with a QSNMC to Tangent Bundle

From Equation (60), we have

S̈c
0(Zc

0, Yc
0) = Sc

0(Zc
0, Yc

0)− γcgc
(
(φ0Z0)

c, Yc
0

)
+
[
1 − ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0) +
[
ηc

0 − ac
0(ξ

c
0)
][

ηc
0(Y

c
0)η

v
0 (Zc

0)

+ ηv
0 (Y

c
0)η

c
0(Zc

0)
]
+ dac

0

(
(φ0Y0)

c, Zc
0

)
.

(70)

From (60) and (70), we have

S̈c
0(Y

c
0 , Zc

0)− S̈c
0(Zc

0, Yc
0) = dac

0

(
(φ0Z0)

c, Yc
0

)
− dac

0

(
(φ0Y0)

c, Zc
0

)
. (71)

If S̈c
0(Y

c
0 , Zc

0) is symmetric, then the left-hand side of (71) vanishes, and then

dac
0

(
(φ0Z0)

c, Yc
0

)
= dac

0

(
(φ0Y0)

c, Zc
0

)
. (72)

Moreover, if Equation (72) holds, then from (71), S̈c
0(Y

c
0 , Zc

0) is symmetric.

Theorem 5. In an LP-Sasakian manifold (Mn, g) with tangent bundle T0Mn endowed with
QSNMC ∇̈c, the Ricci tensor S̈c

0(Y
c
0 , Zc

0) with respect to QSNMC is symmetric if and only if
relation (72) holds.
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From (60) and (70), we have

S̈c
0(Y

c
0 , Zc

0) + S̈c
0(Zc

0, Yc
0) = 2Sc

0(Y
c
0 , Zc

0)− 2γcgc
(
(φ0Y0)

c, Zc
0

)
+ 2
[
1 − ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)

+ 2
[
n − ac

0(ξ
c
0)
][

ηc
0(Y

c
0)η

v
0 (Zc

0)

+ ηv
0 (Y

c
0)η

c
0(Zc

0)
]
+ dac

0

(
(φ0Y0)

c, Zc
0

)
+ dac

0

(
(φ0Z0)

c, Yc
0

)
.

(73)

By taking the skew-symmetry of S̈c
0(Y

c
0 , Zc

0), the left-hand side of (73) will vanish and
we have

Sc
0(Y

c
0 , Zc

0) = γcgc
(
(φ0Y0)

c, Zc
0

)
−
[
1 − ac

0(ξ
c
0)
]

gc(Yc
0 , Zc

0)−
[
n − ac

0(ξ
c
0)
]

[
ηc

0(Y
c
0)η

v
0 (Zc

0)− ηv
0 (Y

c
0)η

c
0(Zc

0)
]

− 1
2

[
dac

0

(
(φ0Y0)

c, Zc
0

)
+ dac

0

(
(φ0Z0)

c, Yc
0

)]
.

(74)

Moreover if Sc
0(Y

c
0 , Zc

0) is given by (74), then from (73), we have

Sc
0(Y

c
0 , Zc

0) + Sc
0(Zc

0, Yc
0) = 0.

Theorem 6. The necessary and sufficient condition for the Ricci tensor of ∇̈c in an LP-Sasakian
manifold (Mn, g) endowed with QSNMC ∇̈c in the tangent bundle T0Mn to be skew-symmetric is
that the Ricci tensor of the Levi-Civita connection ∇c is given by (74).

8. Skew-Symmetric Properties of the Projective Ricci Tensor in an LP-Sasakian

Manifold Endowed with QSNMC ∇̈c in the Tangent Bundle

Chaki and Saha defined the projective Ricci tensor in a Riemannian manifold as [34]

P0(X0, Y0) =
n

n − 1

[
S0(X0, Y0)−

r0

n
g(X0, Y0)

]
. (75)

So, the projective Ricci tensor with respect to QSNMC ∇̈ is defined as

P̈0(X0, Y0) =
n

n − 1

[
S̈0(X0, Y0)−

r̈0

n
g(X0, Y0)

]
. (76)

Taking a complete lift by mathematical operators on (76), we have

P̈c
0(Xc

0, Yc
0) =

n
n − 1

[
S̈c

0(Xc
0, Yc

0)−
r̈c

0
n

gc(Xc
0, Yc

0)
]
. (77)

Using (60) and (61) in (77), we have

P̈c
0(Xc

0, Yc
0) =

n
n − 1

[
Sc

0(Xc
0, Yc

0)− γcgc
(
(φ0X0)

c, Yc
0

)
+
(

1 − ac
0(ξ

c
0)
)

gc(Xc
0, Yc

0) +
(

n − ac
0(ξ

c
0)
)(

ηc
0(Xc

0)η
v
0 (Y

c
0)

+ ηv
0 (Xc

0)η
c
0(Y

c
0)
)
+ dac

0

(
(φ0Y0)

c, Xc
0

)
− 1

n

(
rc

0 − (n − 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Xc
0, Yc

0)
]
.

(78)
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Similarly, we have

P̈c
0(Y

c
0 , Xc

0) =
n

n − 1

[
Sc

0(Y
c
0 , Xc

0)− γcgc
(
(φ0Y0)

c, Xc
0

)
+
(

1 − ac
0(ξ

c
0)
)

gc(Yc
0 , Xc

0) +
(

n − ac
0(ξ

c
0)
)(

ηc
0(Xc

0)η
v
0 (Y

c
0)

+ ηv
0 (Xc

0)η
c
0(Y

c
0)
)
+ dac

0

(
(φ0X0)

c, Yc
0

)
− 1

n

(
rc

0 − (n − 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Yc
0 , Xc

0)
]
.

(79)

From (78) and (79), we have

P̈c
0(Xc

0, Yc
0) + P̈c

0(Y
c
0 , Xc

0)

=
n

n − 1

[
2Sc

0(Xc
0, Yc

0)− 2γcgc
(
(φ0X0)

c, Yc
0

)
+ 2
(

1 − ac
0(ξ

c
0)
)

gc(Xc
0, Yc

0) + 2
(

n − ac
0(ξ

c
0)
)

(
ηc

0(Xc
0)η

v
0 (Y

c
0) + ηv

0 (Xc
0)η

c
0(Y

c
0)
)

− 2
n

(
rc

0 − (n − 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Xc
0, Yc

0)

+ dac
0

(
(φ0X0)

c, Yc
0

)
+ dac

0

(
(φ0Y0)

c, Xc
0

)]
.

(80)

If P̈c
0(Xc

0, Yc
0) is skew-symmetric, then the left-hand side of (80) vanishes and we have

Sc
0(Xc

0, Yc
0) =

[
γcgc

(
(φ0X0)

c, Yc
0

)
−
(

1 − ac
0(ξ

c
0)
)

gc(Xc
0, Yc

0)

−
(

n − ac
0(ξ

c
0)
)(

ηc
0(Xc

0)η
v
0 (Y

c
0) + ηv

0 (Xc
0)η

c
0(Y

c
0)
)

+
1
n

(
rc

0 − (n − 1)ac
0(ξ

c
0) + λc

0 − γc2
)

gc(Xc
0, Yc

0)

− 1
2

(
dac

0

(
(φ0X0)

c, Yc
0

)
+ dac

0

(
(φ0Y0)

c, Xc
0

))]
.

(81)

Moreover, if Sc
0(Xc

0, Yc
0) is given by (81), then from (80) we obtain

P̈c
0(Xc

0, Yc
0) + P̈c

0(Y
c
0 , Xc

0) = 0 s.t P̈c
0(Xc

0, Yc
0) = −P̈c

0(Y
c
0 , Xc

0). (82)

which gives a skew-symmetric condition of the projective Ricci tensor of ∇̈c.

Theorem 7. The necessary and sufficient condition for the projective Ricci tensor of ∇̈c in an
LP-Sasakian manifold (Mn, g) endowed with QSNMC ∇̈c in the tangent bundle T0Mn to be
skew-symmetric is that the Ricci tensor of the Levi-Civita connection ∇̈c is given by (81).

9. Lifts of Einstein Manifold Endowed with QSNMC ∇̈c in an LP-Sasakian Manifold
to the Tangent Bundle

A Riemannian manifold (Mn, g) is called an Einstein manifold with respect to Rieman-
nian connection if

Sc
0(Xc

0, Yc
0) =

rc
0

n
gc(Xc

0, Yc
0). (83)

Then, the Einstein manifold with respect to QSNMC ∇̈c is given by

S̈c
0(Xc

0, Yc
0) =

r̈c
0

n
gc(Xc

0, Yc
0). (84)
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Using (60) and (61) in (84), we have

S̈c
0(Xc

0, Yc
0)−

r̈c
0

n
gc(Xc

0, Yc
0)

= Sc
0(Xc

0, Yc
0)−

rc
0

n
gc(Xc

0, Yc
0)− γcgc

(
(φ0X0)

c, Yc
0

)
+ dac

0

(
(φ0Y0)

c, Xc
0

)
+

1
n

[
n + γc2 − λc

0 − ac
0(ξ

c
0)
]

gc(Xc
0, Yc

0)

+
(

n − ac
0(ξ

c
0)
)[

ηc
0(Xc

0)η
v
0 (Y

c
0) + ηv

0 (Xc
0)η

c
0(Y

c
0)
]
.

(85)

If

γcgc
(
(φ0X0)

c, Yc
0

)
+ dac

0

(
Xc

0, (φ0Y0)
c
)

=
1
n

[
n + γc2 − λc

0 − ac
0(ξ

c
0)
]

gc(Xc
0, Yc

0)

+
(

n − ac
0(ξ

c
0)
)[

ηc
0(Xc

0)η
v
0 (Y

c
0) + ηv

0 (Xc
0)η

c
0(Y

c
0)
]
,

(86)

then from (85), we have

S̈c
0(Xc

0, Yc
0)−

r̈c
0

n
gc(Xc

0, Yc
0) = Sc

0(Xc
0, Yc

0)−
rc

0
n

gc(Xc
0, Yc

0). (87)

Theorem 8. In an LP-Sasakian manifold (Mn, g) with tangent bundle T0Mn admitting QSNMC
if Equation (86) holds, then the manifold reduces to an Einstein manifold for the Riemannian
connection if and only if it is an Einstein manifold for the connection ∇̈c.

10. Example

Let M be a four-dimensional manifold defined as

M =
{
(x1, x2, x3, x4) ∈ R4; x4 	= 0

}
, (88)

where R is the set of real numbers. Let x1, x2, x3, x4 be given by

e1 =
x1

x4

∂

∂x1
, e2 =

x2

x4

∂

∂x2
, e3 =

x3

x4

∂

∂x3
, e4 = x4

∂

∂x4
,

where {e1, e2, e3, e4} are a linearly independent global frame on M. Let the 1-form η0 be
given by

η0(X0) = g(X0, e4).

The Lorentzian metric g is defined by

g(ei, ej) =

⎧⎪⎨⎪⎩
−1, i = j = 4
1, i = j = 1, 2, 3
0, otherwise.

Let φ0 be the tensor field defined by

φ0ei =

{
0, i = 4
ei, i = 1, 2, 3.

Using the linearity of φ0 and g, we acquire η0(e4) = −1, φ2
0X0 = −X0 + η0(X0)e4 and

g(φ0X0, φ0Y0) = g(X0, Y0)+ η0(X0)η0(Y0). Thus, for e4 = ξ0, then the structure (φ, ξ0, η0, g)
is an almost para-contact metric structure on M and M is called an almost para-contact
metric manifold. In addition, M satisfies
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(∇X0 φ0)Y0 = g(X0, Y0)e4 + η0(Y0)X0 + 2η0(X0)η0(Y0)e4.

Here, for e4 = ξ0, M is an LP-Sasakian manifold. In tangent bundle T0M, let the complete
and vertical lifts of e1, e2, e3, e4 be ec

1, ec
2, ec

3, ec
4 and ev

1, ev
2, ev

3, ev
4 on M and let gc be the complete

lift of the Lorentzian metric g on T0M such that

gc(Xv
0 , ec

4) =
(

gc(X0, e4)
)v

=
(

η0(X0)
)v

(89)

gc(Xc
0, ec

4) =
(

gc(X0, e4)
)c

=
(

η0(X0)
)c

(90)

gc(ec
4, ec

4) = −1, gv(Xv
0 , ec

4) = 0, gv(ev
4, ec

4) = 0, (91)

and so on. Let φc
0 and φv

0 be the complete and vertical lifts of the (1, 1) tensor field φ0
defined by

φv
0(e

v
4) = φc

0(e
c
4) = 0, (92)

φv
0(e

v
1) = ev

1, φc
0(e

c
1) = ec

1, (93)

φv
0(e

v
2) = ev

2, φc
0(e

c
2) = ec

2, (94)

φv
0(e

v
3) = ev

3, φc
0(e

c
3) = ec

3. (95)

Using the linearity of φ0 and g, we infer that

(φ2
0X0)

c = Xc
0 + ηc

0(X0)ev
4 + ηv

0 (X0)ec
4, (96)

gc
(
(φ0e4)

c, (φ0e3)
c
)
= gc(ec

4, ec
3) + ηc

0(e
c
4)η

v
0 (e

c
3) + ηv

0 (e
c
4)η

c
0(e

c
3). (97)

Thus, for e4 = ξ0 in (89)–(91) and (96), the structure (φc
0, ξc

0, ηc
0, gc) is an almost para-contact

metric structure on T0M and satisfies the relation

(∇c
ec

4
φc

0)e
c
3 = gc(ec

4, ec
3)ξ

v
0 + gc(ev

4, ec
3)ξ

c
0 + ηc

0(e
c
3)e

v
4 + ηv

0 (e
c
3)e

c
4

+ 2
{

ηc
0(e

c
4)η

c
0(e

c
3)ξ

v
0 + ηc

0(e
c
4)η

v
0 (e

c
3)ξ

c
0 + ηv

0 (e
c
4)η

c
0(e

c
3)ξ

c
0

}
.

Thus, (φc
0, ξc

0, ηc
0, gc, T0M) is an LP-Sasakian manifold.

11. Conclusions

The current work investigates the lifts of a QSNMC and LP-Sasakian manifold to the
tangent bundle. First, the LP-Sasakian manifold lifts to the tangent bundle are presented.
The relationship between the Riemannian connection and the QSNMC from an LP-Sasakian
manifold to the tangent bundle is established. An expression of the curvature tensor
of the lifts of an LP-Sasakian manifold associated with QSNMC to its tangent bundle is
given. The Ricci tensor and the scalar curvature lifts to the tangent bundle are provided.
Some theorems regarding the properties of the lifts of the curvature tensor of an LP-
Sasakian manifold endowed with QSNMC in an LP-Sasakian manifold to the tangent
bundle are given.

Necessary and sufficient conditions for the symmetric and skew-symmetric properties
of the lifts of the Ricci tensor are investigated. Sufficient conditions for the skew-symmetric
property of the lifts of the projective Ricci tensor in the tangent bundle are provided.
The lifts of the Einstein manifold associated with QSNMC on an LP-Sasakian manifold to
the tangent bundle are also established. An example of the lifts of LP-Sasakian manifolds
in the tangent bundle is constructed.
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Abstract: In this study, we consider framed curves as regular or singular space curves with an
adapted frame in Euclidean 3-space. We define framed natural mates of a framed curve that are
tangent to the generalized principal normal of the framed curve. Subsequently, we present the
relationships between a framed curve and its framed natural mates. In particular, we establish some
necessary and sufficient conditions for the framed natural mates of specific framed curves, such as
framed spherical curves, framed helices, framed slant helices, and framed rectifying curves. Finally,
we support the concept with some examples.

Keywords: framed curve; spherical curve; helix; slant helix; rectifying curve

MSC: 53A04; 58K05

1. Introduction

A regular space curve has no singular point in Euclidean space. In this case, the curvature
and torsion functions of a regular space curve are well defined at every point. However, this
situation is not applicable to all space curves, as some may have singular points. Therefore,
the Frenet–Serret frame fails at singular points. Honda and Takahashi [1] introduced a framed
curve, which is a regular curve or singular space curve with a moving frame in Euclidean
space. Similar to curvature functions of a regular curve, they also defined the framed curvature
functions, which are well defined even at singular points. Also, Fukunaga and Takahashi [2]
studied the existence conditions of framed curves. Additionally, Wang et al. [3] proposed an
adapted frame as an alternative to the moving frame of a framed curve in Euclidean space,
with its elements referred to as the generalized tangent vector, generalized principal normal
vector, and generalized binormal vector, respectively.

Naturally, the theory of framed curves, which includes regular curves as well, has cap-
tured the interest of researchers. As a result, concepts traditionally belonging to the category
of regular curves (e.g., helix [4,5], slant helix [6,7], rectifying curve [8], Salkowski curve [9],
etc.) have now been extended to the theory of framed curves. In this regard, recently, the
concepts of framed helix [10], framed slant helix [11], framed clad helix [12], framed rectify-
ing curve [3,13], framed normal curve [14], and framed Bertrand and Mannheim curves [15]
have been introduced. References [16–18] are additional noteworthy studies that contribute
to the theory of framed curves. Furthermore, a group of researchers, known as Li et al. and
referenced in [19–24], conducted theoretical research and development on submanifold
theory, soliton theory, etc. We can find more motivations from some papers [25–51]. Their
work has contributed to the advancement of related research topics.

Moreover, Legendre curves are a special case of framed curves. Therefore, Refer-
ences [52–65] are other notable studies that contribute to the field of framed curves, specifi-
cally in the category of frontal or front curves.

Additionally, in the category of curves associated with the Frenet–Serret elements
of regular curves, the concept of the principal direction (binormal direction) curve was
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introduced. It is defined as the integral curve of the principal normal vector (binormal
vector) of a regular Frenet curve by Choi et al. [66]. Moreover, the natural mate (resp.
conjugate mate) is a regular curve that is tangent to the principal normal (resp. binormal)
vector of the base regular curve. These curves were introduced as partner curves of any
regular curve by Deshmukh et al. [67].

On the other hand, natural and conjugate mates correspond to principal direction
and binormal direction curves from the algebraic viewpoint, respectively. But, since the
integral curve is defined only for vector fields on a region that contains a curve (i.e., not
along a curve), it is more suitable to use the terminology of natural and conjugate mate
from a geometric viewpoint. In this sense, as a generalization of the concept of natural
mates of a regular space curve, we introduce framed natural mates of the framed curve
in Euclidean space by using the adapted frame in [3]. After, we give the necessary and
sufficient conditions for framed natural mates of a framed curve when the frame curve
is a framed helix, framed slant helix, framed rectifying curve, or framed spherical curve.
Finally, the concept of framed natural mate with some examples is enriched.

2. Preliminary

Let R3 denote the Euclidean 3-space, that is, the 3-dimensional real vector space

endowed with the standard inner product 〈x, y〉 =
3
∑

i=1
xiyi, for all x = (x1, x2, x3), y =

(y1, y2, y3) ∈ R3. The norm of a vector x ∈ R3 is defined by ‖x‖ =
√
〈x, x〉. Also, the cross-

product of vectors x and y is given by x ∧ y = (x2y3 − x3y2,−x1y3 + x3y1, x1y2 − x2y1).

Framed Curves in Euclidean 3-Space

Let γ: I → R3 be a space curve. If γ̇(t0) = dγ
dt (t0) = 0 at t0 ∈ I, then t0 is called a

singular point of γ. It is easy to see that the Frenet frame of any space curve is not well
defined at any singular of the curve. Now, let us give the following concept about framed
curves, which is a regular curve with linear independent condition or singular space curve
in R3 (see [1–3,10] for more detail and background).

Let us take the set Δ2 =
{

u =(u1, u2) ∈ S2 × S2|〈u1, u2〉 = 0
}

as a 3-dimensional
manifold.

Definition 1. (γ, μ1, μ2): I → R3 ×Δ2 ⊂ R3 ×S2 ×S2 is called a framed curve, if 〈γ̇(t), μi(t)〉 = 0
for all t ∈ I. γ : I → R3 is also called a framed curve (or framed base curve) if there exists
μ = (μ1, μ2): I → Δ2 such that (γ, μ1, μ2) is a framed curve [1].

Now, unlike the Frenet frame, a well-defined moving frame can be constructed along
the framed curve γ, which may have singular points. Let (γ, μ1, μ2) be a framed curve,
and let ϑ : I → S2 be a regular spherical curve such that ϑ(t) = μ1(t) ∧ μ2(t) for all t ∈ I.
Hence, {μ1, μ2, ϑ} is an orthonormal frame, which is a moving frame along the framed
curve γ in R3. Then, the Frenet–Serret-type formulas are given by:

μ̇1(t) = l(t)μ2(t) +m(t)ϑ(t),

μ̇2(t) = −l(t)μ1(t) + n(t)ϑ(t),

ϑ̇(t) = −m(t)μ1(t)− n(t)μ2(t),

and there exists a smooth function a : I → R such that

γ̇(t) = a(t)ϑ(t). (1)

Here, the quadruple smooth functions (l,m, n, a) = (〈μ̇1, μ2〉, 〈μ̇1, ϑ〉, 〈μ̇2, ϑ〉, 〈γ̇, ϑ〉)
are called the curvature of the framed curve γ.
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Remark 1. It is clear that if t0 ∈ I is a singular point of γ, then a(t0) = 0. Moreover, since we
suppose that ϑ is a regular spherical curve (i.e., that ϑ̇(t) 	= 0), then (m(t), n(t)) 	= (0, 0) for all
t ∈ I.

Similar to Bishop frame [68] of regular curves, Wang et al. [3] give the following
adapted frame, which is an alternative to the moving frame of the framed curve:

Let (η1, η2) ∈ Δ2 and θ : I → R be a smooth function such that(
η1(t)
η2(t)

)
=

(
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

)(
μ1(t)
μ2(t)

)
.

It is easy to see that (γ, η1, η2): I → R3 × Δ2 is also a framed curve and ϑ = μ1 ∧ μ2 =
η1 ∧ η2. Now, we assume that m(t) = −p(t) cos θ(t) and n(t) = p(t) sin θ(t) such that
m(t) sin θ(t) + n(t) cos θ(t) = 0, then we have an adapted frame {ϑ, η1, η2} along the
framed curve γ and the following Frenet–Serret-type formulas:

ϑ̇(t) = p(t)η1(t), η̇1(t) = −p(t)ϑ(t) + q(t)η2(t), η̇2(t) = −q(t)η1(t), (2)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p =

〈
ϑ̇, η1

〉
=
∥∥ϑ̇
∥∥ = √m2 + n2 > 0

q = 〈η̇1, η2〉 = l− θ̇ = l+

(
m2

m2 + n2

)( n

m

)̇
a = 〈γ̇, ϑ〉

(3)

The triple smooth functions (p, q, a) are called framed curvature with respect to the adapted
frame {ϑ, η1, η2} along the framed curve γ. Moreover, the vectors ϑ(t), η1(t), η2(t) are
called the generalized tangent vector, the generalized principal normal vector, and the
generalized binormal vector of the framed curve, respectively.

Proposition 1. Let (γ, η1, η2): I → R3 × Δ2 be a framed curve with framed curvature (p, q, a).
If the framed curve γ is a regular curve with curvature κ and torsion τ, then we have κ = p

|a| and
τ = q

a [3].

Now, we introduce the framed Darboux vector (framed centrode) and the framed
co-Darboux vector (framed co-centrode) with respect to the adapted frame {ϑ, η1, η2} of
framed curve γ, respectively.

Definition 2. Let (γ, η1, η2) be a framed curve inR3 ×Δ2 with adapted frame apparatus {ϑ, η1, η2,
(p, q, a)}. Then, the framed Darboux vector of the framed curve γ is defined by Ω(t) = q(t)ϑ(t) +
p(t)η2(t), which satisfies the following equations:

ϑ̇(t) = Ω(t) ∧ ϑ(t), η̇1(t) = Ω(t) ∧ η1(t), η̇2(t) = Ω(t) ∧ η2(t).

Moreover, we call that

Ω0(t) =
q(t)ϑ(t) + p(t)η2(t)√

p2(t) + q2(t)
(4)

is the unit framed Darboux vector of γ.

Definition 3. Let (γ, η1, η2) be a framed curve inR3 ×Δ2 with adapted frame apparatus {ϑ, η1, η2,
(p, q, a)}. Then, the framed co-Darboux vector of the framed curve γ is defined by Ω̂(t) =
−p(t)ϑ(t) + q(t)η2(t). Moreover, we call that
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Ω̂0(t) =
−p(t)ϑ(t) + q(t)η2(t)√

p2(t) + q2(t)
(5)

is the unit framed co-Darboux vector of γ. Also, it is easy to see that Ω̂0 =
η̇1

‖η̇1‖
.

Now, we give the following framed versions (i.e., that generalized versions) of well-
known definitions and characterizations for regular space curves.

Definition 4. Let (γ, η1, η2) be a framed curve in R3 × Δ2. Then, γ is called a framed planar
curve if it lies on a plane in R3 [1].

By using Proposition 3.3 in [1] with Equation (3), we give the following characterization
of framed planar curves with respect to the adapted curvature.

Theorem 1. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q, a). Then,
γ is a framed planar curve if and only if q = 0.

Definition 5. Let (γ, η1, η2) be a framed curve in R3 × Δ2. Then, γ is called a framed spherical
curve if it lies on a sphere with a radius r in R3 [3].

We give Theorem 2 and Corollary 1 by using Proposition 2 and Corollary 1 in [3] with
Equation (3).

Theorem 2. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q = 0, a).
Then, γ is a framed spherical curve, which is a circle in R3 if and only if q = 0 and p

|a| is a constant
such that a 	= 0.

Corollary 1. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q = 0, a).
Then, γ is a framed spherical curve, which is a great circle in S2(r) if and only if q = 0 and p

|a| =
1
r

such that a 	= 0.

Theorem 3. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q 	= 0, a).
Then, γ is a framed spherical curve in S2(r) if and only if(

1
q

(
a

p

)̇)2
+

(
a

p

)2
= r2, (6)

or equivalently, (
1
q

(
a

p

)̇)̇
+

a q

p
= 0.

Ref. [14].

Definition 6. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q, a). Then,
the framed harmonic curvature of γ is given by h = q

p [11].

Definition 7. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with adapted frame {ϑ, η1, η2}. Then,
γ is called a framed helix if its generalized tangent vector ν makes a constant angle with a fixed unit
vector ζ [3,10].

Theorem 4. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q, a). Then,
γ is a framed helix if and only if h = cot φ such that φ is a constant angle [3].
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Definition 8. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with adapted frame {ϑ, η1, η2}. Then,
γ is called a framed slant helix if its generalized principal normal vector η1 makes a constant angle
with a fixed unit vector ζ. That is, 〈η1, ζ〉 = cos φ, where φ 	= π/2 is a constant angle [11].

Theorem 5. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q, a). Then,
γ is a framed slant helix if and only if

σ =
p2
(
q
p

)̇
(p2 + q2)

3/2 =
ḣ

p(1 + h2)
3/2

is a constant function [11].

Definition 9. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with adapted frame {ϑ, η1, η2}. Then,
γ is called a framed rectifying curve if its position vector satisfies

γ(t)=λ1(t)ϑ(t) + λ2(t)η2(t)

for some smooth functions λ1(t), λ2(t) [3].

Theorem 6. Let (γ, η1, η2) be a framed curve in R3 × Δ2 with framed curvature (p, q, a). Then,
γ is a framed rectifying curve if and only if its framed harmonic curvature is given by

h(t) = c1

∫
a(t)dt + c2

for some constants c1 	= 0, and c2 [3].

3. Framed Natural Mates

In this section, we give the concept of framed natural mates of a framed curve as a
regular or singular space curve. This concept is more general than the concept of a natural
mate of a Frenet curve in [67].

Definition 10. Let (γ, η1, η2): I → R3 × Δ2 be a framed curve with an adapted frame {ϑ, η1, η2}.
Then, a framed curve

(
γ�, η1�, η2�

)
: I → R3 × Δ2 with an adapted frame {ϑ�, η1�, η2�} is called

a framed natural mate of (γ, η1, η2), if the generalized tangent vector ϑ� of γ� is tangent to the
generalized principal normal vector η1 of the framed curve γ (i.e., that ϑ�(t) = η1(t) for all t ∈ I).

From now on, we call that the framed curve γ� is a framed natural mate of the framed
curve γ, if (γ, η1, η2) and

(
γ�, η1�, η2�

)
are framed natural mates.

Theorem 7. Let (γ, η1, η2) and
(
γ�, η1�, η2�

)
be framed curves. Then, a framed natural mate γ�

of the framed curve γ is given by

γ�(t) =
∫

a�(t)η1(t)dt (7)

with the following adapted frame apparatus

ϑ� = η1, η1� = Ω̂0, η2� = Ω0, p� =
√

p2 + q2, q� =
ḣ

1 + h2 (8)

where a� : I → R is a smooth function.

Proof. Let (γ, η1, η2) be a framed curve in R3 ×Δ2 with adapted frame apparatus {ϑ, η1, η2,

(p, q, a)}. Then, we see that
{

η1, Ω̂0, Ω0

}
is an orthonormal basis along the framed curve γ
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in R3, where Ω0, Ω̂0 are given by (4) and (5), respectively. Moreover, by using Equation (2),
we have the following equations:

η̇1 = p�Ω̂0, ˙̂
Ω0 = −p�η1 + q�Ω0, Ω̇0 = −q�Ω̂0,

such that

p� =
√

p2 + q2, q� =
ḣ

1 + h2

where h is the framed harmonic curvature of γ. In that case, from the Existence and
Uniqueness Theorems of framed curves in [1], there exists a framed curve

(
γ�, η1�, η2�

)
in R3 × Δ2 with the adapted frame apparatus {ϑ�,η1�, η2�, (p�, q�, a�)} whose elements are
determined by the Equation (8). Also, by using (1), we have γ̇� = a�ϑ�. This equality leads
to the framed curve γ� being given by (7) such that a�: I → R is a smooth function. Finally,
by Definition 10, it is nothing but a framed natural mate of γ.

Remark 2. By Theorem 7, there exists a smooth function a�: I → R such that a framed natural
mate of γ is given by (7). Hence, we see that each smooth function a� generates a different framed
natural mate of γ, and so a framed natural mate of a framed curve is not unique. Moreover, by
Definition 1, it is easy to see that the framed natural mate of (γ, η1, η2) is given by

(
γ�, Ω̂0, Ω0

)
,

which is also a framed curve in R3 × Δ2.

Remark 3. Particularly, when framed curves γ, γ� are regular curves and a(t), a�(t) are their
speed functions, which are equal to 1, then the concept of framed natural mate coincides with the
concept of Frenet natural mate [67] (also, the concept of principal normal direction curve of γ [66]).
So, the concept of framed natural mate is a generalized version of [67].

Now, when γ is a framed helix or slant helix, it is easy to see that the following results
by using Theorems 1, 4, and 5.

Corollary 2. Let γ� be a framed natural mate of the framed curve γ in R3. Then, γ is a framed
helix if and only if γ� is a framed planar curve.

Corollary 3. Let γ� be a framed natural mate of the framed curve γ in R3. Then, γ is a framed
slant helix if and only if γ� is a framed helix.

Now, we give the following relationship between framed curvatures of a framed
rectifying curve and its framed natural mate.

Corollary 4. Let γ and γ� be framed natural mates in R3 with framed curvatures (p, q, a) and
(p�, q�, a�), respectively. Then, γ is a framed rectifying curve if and only if the following equation
holds:

λ a p2 = p2
� q� (9)

where λ is a nonzero constant.

Proof. Assume that γ is a framed rectifying curve in R3 with framed curvature (p, q, a)
and h is its framed harmonic curvature. Then, by using Theorem 6, h(t) = c1

∫
a(t)dt + c2

for some constants c1 	= 0 and c2. Also, let γ� be a framed natural mate of γ with a framed
curvature (p�, q�, a�). Then, by using (8), we have

p2
� = p2(1 + h2), q� =

c1a

1 + h2 .
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Thus, the last equations lead to easily (9). Conversely, let γ and γ� be framed natural mates,
which satisfy the Equation (9). Then, if (8) is taken into account with (9), ḣ(t) = c1a(t),
where c1 is a nonzero constant. Consequently, γ is a framed rectifying curve in R3 with
respect to Theorem 6,

Now, we give a relation with respect to the framed curvatures of a framed spherical
curve and its framed natural mate.

Corollary 5. Let γ and γ� be framed natural mates in R3 with framed curvatures (p, q, a) and
(p�, q�, a�), respectively. Then, γ is a framed spherical curve in S2(r) if and only if the following
equation holds:

ṗ�
p�

= q�h+
ȧ

a
∓ q

a

√
r2p2 − a2. (10)

Proof. Assume that γ is a framed spherical curve in S2(r) with framed curvatures (p, q, a).
Then, by using Theorem 3, we have(

a

p

)̇
= ±q

p

√
r2p2 − a2

and so,

ṗ

p
=

ȧ

a
∓ q

a

√
r2p2 − a2.

Moreover, after using Equation (8) and accordingly, the ratio of ṗ� over p� is

ṗ�
p�

=
ṗ

p
+

hḣ

1 + h2 =
ṗ

p
+ q�h

Thus, it is easy to see that Equation (10) from the last two equations. Conversely, let γ and
γ� be framed natural mates, which satisfy the Equation (10). Then, by taking into account
the Equation (8), we obtain

ṗ

p
=

ṗ�
p�

− q�h =
ȧ

a
∓ q

a

√
r2p2 − a2.

This leads to the following equation

ṗa− pȧ = ∓pq
√

r2p2 − a2,

and after suitable settings, we obtain(
a

p

)̇
= ±q

p

√
r2p2 − a2 (11)

As the first case, if q = 0 in (11), then the proof is clear by Theorem 2. In the other case, if
q 	= 0 in (11), then we reach (

1
q

(
a

p

)̇)2
= r2 −

(
a

p

)2
.

Finally, the desired result is obtained by using Theorem 3.

After that, let us concentrate on the results of some special framed natural mates of γ.

Theorem 8. Let γ and γ� be framed natural mates in R3 with framed curvatures (p, q, a) and
(p�, q�, a�), respectively. If γ is a framed curve with framed curvature (r, q, a) such that r is a
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positive constant, then its framed natural mate γ� is a framed spherical curve in S2(a�r ) such that
a� is a positive constant. The converse is true only when γ� is a framed spherical curve that is not a
circle (i.e., that q� 	= 0) and a� is a positive constant.

Proof. Suppose that the framed curvature of γ is (r, q, a) such that r is a positive constant.
Then, for framed curvature functions of a framed natural mate γ�, we have

p� =
√

r2 + q2, q� =
r q̇

r2 + q2 . (12)

As the first case, if q = 0 in (12), then it is clear that γ� is a framed circle with a radius 1/r
by Theorem 2. In the other case, we suppose that q 	= 0 in (12) and a� = a0 is a positive
constant, then by using (12), we obtain(

1
q�

(
a�
p�

)̇)2
+

(
a�
p�

)2
=

a0
2

r2 .

Thus, by using Theorem 3, γ� is a framed spherical curve in S2(a0
r ).

Conversely, we assume that γ� is a framed spherical curve in S2(a0
r ) such that q� 	= 0,

and a� = a0 is a positive constant. Then, by using Equation (6),

a0
2(ṗ�)

2

q2
� p

4
�

+
a0

2

p2
�

=
a0

2

r2 ,

and after suitable settings and integration, without loss of generality, we obtain

p� = r sec
(∫

q�dt
)

. (13)

Now, if we choose as the framed harmonic curvature h = tan ϕ such that ϕ is a smooth
function, then this choice leads to q� = ϕ̇ by applying Equation (8). Thus, by tak-
ing into account (13), we obtain p� = r sec ϕ. Moreover, by applying Equation (8),
p� = p

√
1 + h2 = p sec ϕ. Hence, we conclude that p = r by the last two equations of

p�.

Let γ be a framed curve with framed curvature (p = λ cos φ, q = λ sin φ, a) such that
λ is a positive constant and φ is a smooth function. Then, by using Equation (8), we see
that its framed natural mate γ� has the framed curvature (p� = λ, q�, a�). Now, let us give
the following theorem for the converse of this statement.

Theorem 9. Let γ� be a framed natural mate of the framed curve γ in R3. If γ� has the framed
curvature (p� = λ, q�, a�) such that λ is a positive constant, then the framed curvature of γ is
given by: (

p = λ cos
(∫

q�dt
)

, q = λ sin
(∫

q�dt
)

, a
)

.

Proof. Assume that the framed curvature of the framed natural mate γ� is (p� = λ, q�, a�)
such that λ is a positive constant. Then, by using (8), we have

p =
√

λ2 − q2.

This leads to h = q/
√

λ2 − q2 and again, by taking into account (8), we obtain

q� =

(
q√

λ2−q2

)̇
1 + q2

λ2−q2

=
q̇√

λ2 − q2
=

( q
λ

)̇√
1 −

( q
λ

)2
.
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After integration, we obtain q = λ sin(
∫
q�dt) and so; it leads to the conclusion that

p = λ cos(
∫
q�dt).

By Theorem 9, we obtain the following results, which are answer to the question:
“When does the framed curve γ become a framed spherical curve for its framed natural
mate γ� with a framed curvature (p� = λ, q�, a�).”

Theorem 10. Let γ and γ� be framed natural mates with framed curvatures (p, q, a = a0) and
(p� = λ, q�, a�) such that a0 and λ are some positive constants, respectively. Then, γ is a framed

spherical curve in S2(r) if and only if γ� has the framed curvature
(

λ,± λ2
√

ρ2−λ2 cos(λt)
λ2+(ρ2−λ2)sin2(λt)

, a�

)
for a positive constant ρ ≥ λ.

Proof. Suppose that γ is a framed spherical curve with framed curvature (p, q, a = a0) in
S2(r) such that a0 is a positive constant, and its framed natural mate γ� has framed cur-
vature (p� = λ, q�, a�) such that λ is a positive constant. Then, by using Theorems 3 and 9,
we have

a0
2

λ4 sec2 f
(

λ2 + ḟ 2sec2 f
)
= r2

where f =
∫
q�dt, and so

λ4r2

a02 cos2 f − λ2 = ḟ 2sec2 f .

We see that there exists a positive constant ρ = λ2r
a0

such that ρ ≥ λ by the last equation.
Accordingly, after suitable settings, we have

λ ḟ sec2 f√
ρ2 − λ2sec2 f

= ±λ

and next step, by applying integration, we obtain

arcsin

(
λ tan f√
ρ2 − λ2

)
= ±λt.

This equation leads to the following equation

f = arctan

(
±
√

ρ2 − λ2

λ
sin(λt)

)
(14)

Finally, the desired result is obtained by q� = ḟ .
Conversely, we suppose that γ has framed curvature (p, q, a = a0) such that a0 is a

positive constant, and γ� has framed curvature(
p� = λ, q� = ± λ2

√
ρ2 − λ2 cos(λt)

λ2 + (ρ2 − λ2)sin2(λt)
, a�

)

such that λ is a positive constant. Now, if we take as f =
∫
q�dt, then by using Theorem 9

and hypothesis, we have

p = λ cos f , q = λ sin f , a = a0. (15)
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Moreover, by using hypothesis, f is given by (14). Now, we must check the Equation (6).
After applying Equations (14) and (15) in Equation (6), we obtain the positive constant
a0

2ρ2

λ4 . Consequently, γ is a framed spherical curve in S2( a0ρ

λ2 ) by Theorem 3.

Corollary 6. Let γ be a framed curve and γ� be its framed natural mate with framed curvature
(p� = λ, q�, a�) such that λ is a positive constant. Then, γ is a framed spherical curve, which is not

a circle in S2(r) if and only if γ� has the framed curvature
(
p� = λ, q� =

−ȧ±q
√

r2p2−a2

ah , a�

)
such that q 	= 0.

Proof. The proof is clear by using Corollary 5 and Theorem 10.

4. Some Examples of Framed Natural Mates

By using the following Frenet-type method (cf. [10]), we can uniquely determine the
adapted frame apparatus of any framed curves as regular or singular space curves in R3.

Let ϑ : I → S2 be a regular spherical curve, and a : I → R be a smooth function. Then,
there exists a framed curve γ : I → R3 with the adapted frame{

ϑ, η1 =
ϑ̇∥∥ϑ̇
∥∥ , η2 = ϑ ∧ η1

}
(16)

such that γ̇ = a ϑ. Thus, the smooth function a corresponds to the speed function of γ.

Example 1. Let ϑ be a small circle in S2 given by:

ϑ(t) =

(
2
√

2
3

cos t,
2
√

2
3

sin t,
1
3

)
.

Then, by integrating (1) for any smooth function a, we obtain a family of framed helices γ with
framed curvature (p(t), q(t), a(t)) =

(
2
√

2
3 , 1

3 , a(t)
)

, which are generated by a and ϑ. Moreover,
by using (7) and (16), framed natural mates γ� of γ are a family of framed planar curves with framed
curvature (p�, q�, a�) = (1, 0, a�) for any smooth function a�. For example, if a(t) = cos(3t),
then the parametrization of framed helix γ is given by

γ(t) =
(

1
12

(
2
√

2 sin(2t) +
√

2 sin(4t)
)

,
1

12

(
2
√

2 cos(2t)−
√

2 cos(4t) + 2
)

,
1
9

sin(3t)
)

(see Figure 1e) and the framed natural mate γ�, which is a framed planar curve, is given by

γ�(t) =
(

1
8
(−2 cos(2t) + cos(4t)− 2),

1
8
(2 sin(2t) + sin(4t)), 0

)
such that a�(t) = cos(3t) (see Figure 2e).

Example 2. Let ϑ be a unit speed spherical helix in S2 given by

ϑ(t) =

(
32t7 − 2352t5 + 51450t3 − 300125t

51450
√

35
,

(
16t4 − 336t2 + 735

)(
35 − t2)3/2

25725
√

35
,

t
6

)

and a(t) = t, then the parametrization of framed slant helix γ is given by

γ(t) =

(
t3(32t6 − 3024t4 + 92610t2 − 900375

)
463050

√
35

,

(
35 − t2)5/2(−16t4 + 112t2 + 245

)
231525

√
35

,
t3

18

)
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with framed curvature (p(t), q(t), a(t)) =
(

1, t√
35−t2 , t

)
and σ = 1√

35
(see Figure 3a). Thus, for

the choice a�(t) = t, a framed natural mate, which is a framed helix of γ is given by

γ�(t) =

(
t2(t2 − 35

)(
8t4 − 280t2 + 1225

)
14700

√
35

,
t3(2t2 − 35

)(
35 − t2)3/2

3675
√

35
,

t2

12

)

with framed curvature (p�, q�, a�) =
( √

35√
35−t2 , 1√

35−t2 , t
)

and h�(t) = 1√
35

(see Figure 3b).

(a) a(t) = 1 (b) a(t) = t (c) a(t) = t2 (d) a(t) = cos t
2

(e) a(t) = cos 3t (f) a(t) = t cos t (g) a(t) = cos t2 (h) a(t) = et/5

Figure 1. Some framed helices with framed curvature
(

2
√

2
3 , 1

3 , a(t)
)

.

(a) a�(t) = 1 (b) a�(t) = t (c) a�(t) = cos t
2 (d) a�(t) = cos 2t

(e) a�(t) = cos 3t (f) a�(t) = t cos t (g) a�(t) = cos t2 (h) a�(t) = et/5

Figure 2. Some framed planar curves with framed curvature (1, 0, a�(t)), which are framed natural
mates of framed helices in Figure 1.

(a) a(t) = t (b) a�(t) = t

Figure 3. (a) Framed slant helix γ; (b) its framed natural mate γ�, which is a framed helix.
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Example 3. Let {ϑ, η1, η2, (p, q, a)} and {ϑ�,η1�, η2�, (p�, q�, a�)} be adapted frame apparatus of
γ and γ�, respectively. According to the Existence and Uniqueness Theorems of framed curves in [1],
if the framed curvature of a framed curve is given, then we can draw a congruent graphic to the
framed curve by applying numerical solution method to Frenet-type differential Equations (1)–(3)
with the initial conditions. Also, the framed curvature of its framed natural mate is determined from
by Theorem 7. Thus, the following graphics of the framed curve and its framed natural mate are
obtained by using the “NDSolve” command in Mathematica [69].

Let γ be a framed curve with framed curvature (p(t), q(t), a(t)) =
(
3, 3t2, 2t

)
. By using

Theorem 6, γ is a framed rectifying curve (see Figure 4a). Thus, we obtain its framed natural mates,
which has the framed curvature (p�(t), q�(t), a�(t)) =

(
3
√

1 + t4, 2t
1+t4 , a�(t)

)
(see Figure 4b–d).

(a) a(t) = t (b) a�(t) = t (c) a�(t) = cos 2t (d) a�(t) = sin t

Figure 4. (a) Framed rectifying curve γ; (b–d) its framed natural mates γ�, which are a spiral-type
framed curve.

Finally, as an application of by Theorem 10, if we choose λ = 2, r = 1, a(t) = 1
5 such that

ρ = 20. Then, γ is a framed spherical curve in S2 with framed curvature (p(t), q(t), a(t)) =(
2√

1+99(sin 2t)2 , 6
√

11 sin 2t√
1+99(sin 2t)2 , 1

5

)
(see Figure 5a). Thus, we obtain its framed natural mates,

which has the framed curvature (p�(t), q�(t), a�(t)) =
(

2, 6
√

11 sin 2t√
1+99(sin 2t)2 , a�(t)

)
(see Figure 5b,c).

(a) a(t) = t (b) a�(t) = cos t
3 (c) a�(t) = cos t

Figure 5. (a) Framed spherical curve γ; (b,c) its framed natural mates γ�.
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Abstract: In this paper, we obtain the necessary and sufficient conditions of a surface pencil pair
interpolating a Bertrand pair as common asymptotic curves in Euclidean 3-space E3. Afterwards, the
conclusion to the ruled surface pencil pair is also obtained. Meanwhile, the epitomes are stated to
emphasize that the proposed methods are effective in product manufacturing by adjusting the shapes
of the surface pencil pair.

Keywords: asymptotic curve; Bertrand mate; ruled surface

MSC: 53A04; 53A05; 53A17

1. Introduction

An asymptotic curve on a surface is an essential geometrical characteristic that plays a
major role in a variety of implementations, such as the design of hulls, car shells, knife rests,
cloths, etc. In the context of geometry, an asymptotic curve is a curve constantly tangent
to an asymptotic trend (direction) of the surface. It is occasionally named an asymptotic
line, although it is not required to be a line. An asymptotic trend is one for which the
normal curvature is identically zero. This means that, for a point on an asymptotic curve,
we take the plane that affords both the surface’s normal and the curve’s tangent at this
point. The intersection curve of the plane and the surface will have zero curvature at this
point. Asymptotic trends can only arise if the Gaussian curvature is negative (or zero).
There will be two asymptotic trends if every point has a negative Gaussian curvature; these
trends are halved by the principal lines [1,2]. In practical applications, essential work has
focused on the reverse problem or backward analysis: given a 3D curve, how can we define
those surfaces that possess this curve as a special curve, rather than finding and assorting
curves on analytical curved surfaces? Wang et al. [3] considered the issue of constructing a
surface pencil from a specified spatial geodesic curve, through which each surface can be
a candidate for style design. They proved the necessary and sufficient conditions for the
coefficients to be content with both the geodesic and the isoparametric requirements. This
scheme has been utilized by numerous researchers (see, for example, [4–16]).

In the context of the theory of special curves, the consistency relationship among the
curves is a fascinating issue. The Bertrand curve is one of the best-known special curves.
Two curves are called a Bertrand pair if there exists a consistency relationship among their
principal normals at the analogical points [1,2]. The Bertrand curve can be evaluated as
the popularization of the helix. The helix, as a certain type of curve, has attracted the
attention of mathematicians as well as scientists because of its diverse implementations; for
instance, the Bertrand curves represent special models of offset curves, which are used in
computer-aided manufacturing (CAM) and computer-aided design (CAD) (see [17–19]).
However, to our knowledge, there is no work that designs a surface pencil pair interpolating
a Bertrand pair to be asymptotic curves in Euclidean 3-space E3. This paper is intended to
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satisfy such a requirement; we evaluate a Bertrand pair as asymptotic curves to model a
surface pencil pair in E3. Moreover, a ruled surface is indispensable for various areas of
CAGD; regarding the aim of this work, the conclusion to the ruled surface pencil pair is
also outlined. Meanwhile, some examples are shown to depict the surface pencil and ruled
surface pencil with common Bertrand asymptotic curves.

2. Preliminaries

In this section, we list the most important notations that we use in this paper [1,2]. A
curve is regular if it possesses a tangent line at each point of the curve. In the following, all
curves are supposed to be regular. Given a spatial curve α(s), it is expressed by arc length
parameter s. We assume

..
α(s) 	= 0 for all s ∈ [0, L], since this would give a straight line. In

this paper,
.
α(s) and α

′
(v) indicate the derivatives of α with respect to arc length parameter s

and arbitrary parameter v, respectively. For each point of α(s), the set {χ1(s), χ2(s), χ3(s)}
is named the Serret–Frenet frame on α(s), where χ1(s) =

.
α(s), χ2(s) =

..
α(s)/

∥∥ ..
α(s)

∥∥ and
χ3(s) = χ1(s)× χ2(s) are the unit tangent, principal normal, and binormal vectors of the
curve at the point α(s), respectively. The arc length derivative of the Serret–Frenet frame
is [1,2] ⎛⎝ .

χ1.
χ2.
χ3

⎞⎠ =

⎛⎝ 0 κ(s) 0
−κ(s) 0 τ(s)
0 −τ(s) 0

⎞⎠⎛⎝ χ1
χ2
χ3

⎞⎠, (1)

where the curvature κ(s) and torsion τ(s) are specified by

κ(s) =
∥∥ ..

α(s)
∥∥, τ(s) =

det(
.
α(s),

..
α(s),

...
α(s))∥∥ ..

α(s)
∥∥2 .

In spite of the fact that the arc length parameter is simple to analyze, in the ma-
jority of feasible situations, the parameter of a specified curve is commonly not in arc
length parametrization. We can symbolize the specified curve by employing arc length
parametrization. Given the curve

α(v) = (α1(v), α2(v), α3(v)), 0 ≤ v ≤ H,

where the parameter v is not the arc length. The synthesis of the Serret–Frenet frame is
specified by [1,2]

χ1(v) =
α
′
(v)∥∥α
′(v)

∥∥ , χ3(v) =
α
′
(v)× α

′′
(v)∥∥∥α

′(v)× α
′′
(v)
∥∥∥ , χ2(v) = χ3(v)× χ1(v), (

′de f
=

d
dv

), (2)

and the Serret–Frenet formula is⎛⎜⎝ χ
′
1(v)

χ
′
2(v)

χ
′
3(v)

⎞⎟⎠ =

⎛⎜⎜⎜⎝
0 κ(v)

∥∥∥α
′
(v)
∥∥∥ 0

−κ(v)
∥∥∥α

′
(v)
∥∥∥ 0 τ(v)

∥∥∥α
′
(v)
∥∥∥

0 −τ(v)
∥∥∥α

′
(v)
∥∥∥ 0

⎞⎟⎟⎟⎠
⎛⎝ χ1(v)

χ2(v)
χ3(v)

⎞⎠. (3)

We utilize basic notation for the Bertrand pair from [1,2]: Let α(s) and α̂(s) be two
curves in E3; χ2(s) and χ̂2(s) are the principal normal vectors of them, respectively; the
pair {α(s), α̂(s)} is named a Bertrand pair if χ2(s) and χ̂2(s) are linearly dependent at the
congruent points. α(s) is named the Bertrand mate of α̂(ŝ), and

α̂(s) = α(s) + f χ2(s). (4)
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where f is steady. Therefore, the associations of the Serret–Frenet frame of α(s) with that of
α̂(s) are ⎛⎝ χ̂1

χ̂2
χ̂3

⎞⎠ =

⎛⎝ cos ϕ 0 sin ϕ
0 1 0

− sin ϕ 0 cos ϕ

⎞⎠⎛⎝ χ1
χ2
χ3

⎞⎠, (5)

where ϕ is a constant angle.
We represent a surface M by

M : y(s, t) = (y1(s, t), y2(s, t), y3(s, t)), (s, t) ∈ D ⊆ R2. (6)

If yj(s, t) = ∂y
∂j , the surface normal is

ζ(s, t) = ys ∧ yt, (7)

which is perpendicular to the vectors ys and yt.

Definition 1 ([1,2]). A curve on a surface is asymptotic if and only if the binormal vector of the
curve is everywhere parallel to the surface normal.

A curve α(s) on a surface y(s, t) is an isoparametric curve if it has a stationary s or
t-parameter value. In other words, there exists a parameter t0 such that α(s) = y(s, t0) or
α(t) = y(s0, t). Given a parametric curve α(s), we call it an isoasymptotic curve of the
surface y(s, t) if it is both an asymptotic and a parameter curve on y(s, t).

3. Main Results

This section presents a new approach to constructing a surface pencil pair interpolating
a Bertrand pair as common asymptotic curves in E3. To do this, we take into consideration
a Bertrand pair, such that the surfaces’ tangent planes are concomitant with the curves’
osculating planes.

Let α(s) be a curve with
∥∥ ..

α(s)
∥∥ 	= 0; α̂(s) is the Bertrand mate of α(s), and {κ̂(s), τ̂(s),

χ̂1(s), χ̂2(s), χ̂3(s)} is the Frenet–Serret apparatus of α̂(s) as in Equation (1). The surface
pencil M interpolating α(s) can be denoted by

M : y(s, t) = α(s) + a(s, t)χ1(s)+ b(s, t)χ2(s); 0 ≤ t ≤ T. (8)

Similarly, the surface pencil M̂ interpolating α̂(s) is denoted by

M̂ : ŷ(s, t) = α̂(s) + a(s, t)χ̂1(s)+ b(s, t)χ̂2(ŝ); 0 ≤ t ≤ T. (9)

Here, a(s, t), b(s, t) ∈ C1 are named marching-scale functions, and b(s, t) 	= 0.
In order to obtain the M̂ interpolating α̂(s) as a mutual asymptotic curve, according to

Equations (8) and (9), we examine what the marching-scale functions should fulfill. To do
this, we have

ŷs(s, t) = (1 + as − bκ̂)χ̂1 + (bs + aκ̂)χ̂2 + bτ̂χ̂3,
ŷt(s, t) = atχ̂1 + btχ̂2,

}
(10)

and

ζ̂(s, t) := ŷs × ŷt = bτ̂(btχ̂1 + atχ̂2) + [(1 + as − bκ̂)bt − (aκ̂ + bs)at]χ̂3(s). (11)

Since α̂(s) is isoparametric on M̂, there exists a value t = t0 ∈ [0, T] such that ŷ(s, t0) = α̂(s);
in other words,

a(s, t0) = b(s, t0) = 0, as(s, t0) = bs(s, t0) = 0. (12)

Thus, as t = t0, i.e., over α̂(s), we have

ζ̂(s, t0) = btχ̂3(s). (13)
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The coincidence of the binormal χ̂3(s) with surface normal ζ̂(s, t0) identifies α̂(s) as an
asymptotic curve. We utilize {M, M̂} to indicate the surface pencil pair. Then, from
Equations (9)–(13), we derive the following theorem.

Theorem 1. {M, M̂} interpolate the Bertrand pair {α(s), α̂(s)} as common asymptotic curves if
and only if

a(s, t0) = b(s, t0) = 0,
bt(s, t0) 	= 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L.

}
(14)

We call M and M̂, expressed by by Equations (8) and (9) and satisfying the condi-
tions (14), an asymptotic surface pencil pair interpolating a Bertrand pair, since the common
asymptotic curves are also a Bertrand pair. Any {M, M̂} satisfying the conditions of Equa-
tion (14) is a member of this surface pencil pair. As reported in [3], for ease of interpretation,
the marching-scale functions a(s, t) and b(s, t) can be displayed as two factors:

a(s, t) = l(s)A(t),
b(s, t) = m(s)B(t).

(15)

l(ŝ), m(ŝ), A(t) and B(t) are C1 functions that do not identically vanish. Then, we can
obtain the below corollary.

Corollary 1. {M, M̂} interpolate the Bertrand pair {α(s), α̂(s)} as common asymptotic curves if
and only if

A(t0) = B(t0) = 0, l(s) = const. 	= 0, m(s) = const. 	= 0,
dB(t0)

dt = const. 	= 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L.

}
(16)

To confirm that {M, M̂} interpolate the Bertrand pair {α(s), α̂(s)}, we can first design
the marching-scale functions in Equation (16), and then use them in Equations (8) and (9) to
specify the parameterization. For suitability in practice, the functions a(s, t) and b(s, t) can
be moreover constrained to be in extra limited forms and still possess sufficient degrees of
freedom to specify a large pencil pair interpolating the Bertrand pair {α(s), α̂(s)} as common
asymptotic curves. Therefore, let us assume that a(s, t) and b(s, t) can be displayed as
follows.

(1) If ⎧⎪⎨⎪⎩
a(s, t) =

p
Σ

k=1
a1kl(s)k A(t)k,

b(s, t) =
p
Σ

k=1
b1km(s)kB(t)k,

(17)

then, {
A(t0) = B(t0) = 0,

b11 	= 0, m(s) 	= 0, and dB(t0)
dt = const. 	= 0,

(18)

where l(s), m(s), A(t), B(t) ∈ C1, aij, Bij ∈ R (i = 1, 2; j = 1, 2, ..., p) and l(s), and m(s) are
not identically zero.

(2) If ⎧⎪⎨⎪⎩
a(s, t) = f (

p
Σ

k=1
a1klk(s)Ak(t)),

b(s, t) = g(
p
Σ

k=1
b1kmk(s)Bk(t)),

(19)

then {
A(t0) = B(t0) = f (0) = g(0) = 0,

b11 	= 0, dB(t0)
dt = const 	= 0, m(s) 	= 0, g

′
(0) 	= 0,

(20)
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where l(s), m(s), A(t), B(t) ∈ C1, aij, bij ∈ R (i = 1, 2; j = 1, 2, ..., p) and l(s), and m(s) are
not identically zero.

Since the parameters aij, bij ∈ R (i = 1, 2; j = 1, 2, ..., p) control the shape of {M, M̂}, we
can adjust these parameters to output {M, M̂}, which represent definite restrictions, such as
conditions on the boundary, curvature, etc. The marching-scale functions in Equations (15),
(17) and (19) are general for {M, M̂} interpolating the given Bertrand curves as common
asymptotic curves. Furthermore, since there are no constraints related to the Bertrand
curves in Equations (16), (18) or (20), the surface pencil pair interpolating the given Bertrand
curves, acting as both isoparametric curves and asymptotic curves, can always be found
by choosing suitable marching-scale functions. Furthermore, some more conditions for
various types of {M, M̂} interpolating the given Bertrand curves can be obtained from
0 ≤ ϕ ≤ π

2 ; in the special cases, if ϕ = 0 (ϕ = π/2), then the pair {M, M̂} are named the
oriented pair and right pair, respectively.

Example 1. If a0 = (0, 0, 0), a1 = (0, 1, 1) and a2 = (1, 2, 0) are points in the Euclidean 3-space
E3, then the quadratic Bézier curve can be specified as

α(v) = b0(v)a0 + b1(v)a1 + b2(v)a2, 0 ≤ v ≤ 1.

where
b0(v) = (1 − v)2, b1(v) = 2v(1 − v), b2(v) = v2,

are the blending functions of the curve α(v). It is easy to show that

κ(v) =
1
2

√
6

5v2 − 4v + 2
, τ(v) = 0.

After simple computation, we obtain

χ1(v) =
(v, 1, 1 − 2v)

ρ
, χ2(v) =

(2(1 − v), 2 − 5v,−(2 + v))√
6ρ

, χ3(v) = (− 2√
6

,
1√
6

,− 1√
6
),

where ρ(v) =
√

5v2 − 4v + 2. Selecting a(v, t) = −4vt, b(v, t) = −t, γ 	= 0, and t0 = 0.
Clearly, Equation (16) is satisfied, and the parametric surface specified by Equation (8) is

M : y(v, t) =
(

v2, 2v, 2v − 2v2
)
+ t(−4v,−1, 0)

⎛⎜⎜⎝
v
ρ

1
ρ

1−2v
ρ

2(1−v)√
6ρ

2−5v√
6ρ

−(2+v)√
6ρ

− 2√
6

1√
6

− 1√
6

⎞⎟⎟⎠.

Let f =
√

6 in Equation (7), and we obtain

α̂(v) = (v2 − 2v
ρ

, 2v − (2 − 5v)
ρ

, 2v(1 − v)− (2 + v)
ρ

).

Via Equation (5), we find

χ̂1 =

⎛⎝ χ11
χ12
χ13

⎞⎠ =

⎛⎜⎝
v
ρ cos ϕ − 2√

6
sin ϕ

1
ρ cos ϕ + 1√

6
sin ϕ

1−2v
ρ cos ϕ + 1√

6
sin ϕ

⎞⎟⎠,

χ̂3 =

⎛⎝ χ31
χ32
χ33

⎞⎠ =

⎛⎜⎜⎝
− v

ρ sin ϕ − 2√
6

cos ϕ

− 1
ρ sin ϕ + 1√

6
cos ϕ

− (1−2v)
ρ sin ϕ + 1√

6
cos ϕ

⎞⎟⎟⎠.

Then, we have
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M̂ : ŷ(v, t) = (v2 − 2v
ρ

, 2v +
2 − 3v

ρ
, 2v − 2v2 − (2 + v)

ρ
) + t(−4v,−1, 0)

⎛⎝ χ11 χ12 χ13
0 1 0
χ31 χ32 χ33

⎞⎠.

For β = γ = −1, the oriented pair and the right pair, respectively, are shown in Figures 1 and 2,
where 0 ≤ r ≤ 1, and −15 ≤ t ≤ 15.

Figure 1. Oriented pair {M, M̂} with α̂(v) blue and α(v) green.

Figure 2. Right pair {M, M̂} with α̂(v) blue and α(v) green.

Example 2. Given a helix

α(s) =
1√
2
(cos s, sin s, s), 0 ≤ s ≤ 2π.

The Serret–Frenet frame is

χ1(s) =
1√
2
(− sin s, cos s, 1), χ2(s) = (− cos s,− sin s, 0), χ̂3(s) =

1√
2
(sin s,− cos s, 1).
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Then, the parametric surface defined by Equation (8) is

M : y(s, t) =
1√
2
(cos s, sin s, s) + (a(s, t), b(s, t), 0)

⎛⎜⎝
− sin s√

2
cos s√

2
1√
2

− cos s − sin s 0
sin s√

2
− cos s√

2
1√
2

⎞⎟⎠.

Let f =
√

2 in Equation (7), and we have

α̂(s) =
1√
2
(− cos s,− sin s, s), 0 ≤ s ≤ 2π.

Via Equation (5), we find

χ̂1 =

⎛⎝ χ11
χ12
χ13

⎞⎠ =

⎛⎜⎜⎝
1√
2
(− cos ϕ + sin ϕ) sin s

1√
2
(cos ϕ − sin ϕ) cos s

1√
2
(cos ϕ + sin ϕ)

⎞⎟⎟⎠,

χ̂3 =

⎛⎝ χ31
χ32
χ33

⎞⎠ =

⎛⎜⎜⎝
1√
2
(sin ϕ + cos ϕ) sin s

1√
2
(− sin ϕ − cos ϕ) cos s

1√
2
(cos ϕ − sin ϕ)

⎞⎟⎟⎠.

Then, we have

M̂ : ŷ(s, t) =
1√
2
(− cos s,− sin s, s) + (a(s, t), b(s, t), 0)

⎛⎝ χ11 χ12 χ13
− cos s − sin s 0
χ31 χ32 χ33

⎞⎠.

(1) If we take a(s, t) = 0, b(s, t) = 1 − cosh t +
4
Σ

k=2
b2k(1 − cosh t)k, where t0 = 0 and

b2k ∈ R, then Equation (18) is satisfied. The oriented pair and the right pair are identical; where b2k
approaches zero, 0 ≤ t ≤ 0.2, and 0 ≤ s ≤ 2π (Figure 3).

(2) If we take a(s, t) = sin(
4
Σ

k=1
tksk), b(s, t) =

4
Σ

k=1
tksk, and t0 = 0, then Equation (20) is

satisfied. The oriented pair and the right pair, respectively, are shown in Figures 4 and 5, where
0 ≤ t ≤ 0.1, and 0 ≤ s ≤ 2π.

Figure 3. Oriented right pair {M, M̂} with α̂(s) blue and α(s) green.
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Figure 4. Oriented pair {M, M̂} with α̂(s) blue and α(s) green.

Figure 5. Right pair {M, M̂} with α̂(s) blue and α(s) green.

Ruled Surface Family Pair with Bertrand Pair as Mutual Asymptotic Curves

Ruled surfaces are simple and common surfaces in geometric designs. Suppose that
ŷ(s, t) is a ruled surface with the base α̂(s) and α̂(s) is also an isoparametric curve of
ŷ(s, t); then, there exists t0 such that ŷ(s, t0) = α̂(s). It follows that the surface can be
represented as

M̂ : ŷ(s, t)− ŷ(s, t0) = (t − t0)ê(s), 0 ≤ s ≤ L, with t, t0 ∈ [0, T], (21)

where ê(s) defines the direction of the rulings. In view of Equation (9), we have

(t − t0)ê(s) = a(s, t)χ̂1(s)+ v(s, t)χ̂2(s), 0 ≤ s ≤ L, with t, t0 ∈ [0, T].
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For a(s, t) and b(s, t), we have

a(s, t) = (t − t0) < ê(s), χ̂1(s) >,
b(s, t) = (t − t0) < ê(s), χ̂2(s) > .

(22)

The above equations are simply the necessary and sufficient conditions for which ŷ(s, t) is
a ruled surface with a base α̂(s).

Now, we examine whether α̂(s) is also asymptotic on M̂ by employing Theorem 1. It
is apparent that, in this case, it follows that

< ê(s), χ̂2(s) >= det(ê, χ̂3, χ̂1) 	= 0. (23)

Then, at any point on α̂(s), the ê should be in the osculating plane. Moreover, the ê and t̂
must not be parallel. It follows that

ê(s) = x(s)χ̂1(s) + y(s)χ̂2(s), 0 ≤ s ≤ L. (24)

Substituting Equation (24) into Equation (22), we obtain

tx(s) = a(s, t), and ty(s) = b(s, t), with y(s) 	= 0. (25)

Then, the ruled surface family with the mutual geodesic α̂(s) can be specified as

M̂ : ŷ(s, t) = α̂(s) + t(x(s)χ̂1(s) + y(s)χ̂2(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T, (26)

where x(s), y(s) 	= 0, 0 ≤ s ≤ L, and 0 ≤ t ≤ T. However, the normal vector to M̂ along
the curve α̂(s)| is

ζ̂(s, t0) = y(s)χ̂3(s), (27)

which shows that α̂(s) is an asymptotic curve on M̂. Then, the following theorem can be
stated.

Theorem 2. The ruled surface family pair {M, M̂} interpolate the Bertrand pair {α(s), α̂(s)} as
common asymptotic curves if and only if there exists a parameter t0 ∈ [0, T], and the functions
x(s), y(s) 	= 0, so that M̂ and M are, respectively, parameterized by Equation (26), and

M : y(s, t) = α(s) + t(x(s)χ1(s) + y(s)χ2(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T. (28)

It must be pointed out that in Equations (26) and (28), there exist two asymptotic
curves crossing every point on the curves α̂(s)(α(s)). One is α̂ itself and the other is a line
in the orientation ê(s) as given in Equation (24). Every constituent of the isoparametric
ruled surface family with the mutual asymptotic α̂ is established by two set functions x(s),
y(s) 	= 0.

Example 3. In view of Example 1, for x(v) = y(v) = −1, the ruled oriented pair {M, M̂} and
the ruled right pair {M, M̂}, respectively, are shown in Figures 6 and 7, where 0 ≤ v ≤ 1, and
−4 ≤ t ≤ 4.

94



Mathematics 2023, 11, 3495

Figure 6. Ruled oriented pair {M, M̂} with α̂(v) blue and α(v) green.

Figure 7. Ruled right pair {M, M̂} with α̂(v) blue and α(v) green.

Example 4. In view of Example 2, for x(s) = y(s) = 1, the ruled oriented pair {M, M̂}, and
the ruled right pair {M, M̂}, respectively, are shown in Figures 8 and 9, where −2 ≤ t ≤ 2, and
0 ≤ s ≤ 2π (Figure 8).
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Figure 8. Ruled oriented pair {M, M̂} with α̂(s) blue and α(s) green.

Figure 9. Ruled right pair {M, M̂} with α̂(s) blue and α(s) green.

4. Conclusions

In this work, we constructed the surface pencil pair and ruled surface pencil pair inter-
polating a Bertrand pair as common asymptotic curves in Euclidean 3-space E3. Moreover,
some curves were selected to organize the surface pencil pair and ruled surface pencil
pair that have the Bertrand pair {α̂(s), α(s)} as common asymptotic curves. Hopefully,
these results will be advantageous for work in computer-aided manufacturing and to those
exploring manufacturing. Our results, presented in this paper, can contribute to the field of
CAGD and have practical applications in CAM. The authors plan to register the study in
different spaces and examine the classification of singularities as reported in [20–22].
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Abstract: The aim of the current article is to formulate sufficient conditions for the Laplacian and a
gradient of the warping function of a compact warped product submanifold Σβ1+β2 in a unit sphere
Sd that provides trivial homology and fundamental groups. We also validate the instability of current
flows in π1(Σβ1+β2 ). The constraints are also applied to the warped function eigenvalues and integral
Ricci curvatures.
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1. Introduction and Main Results

An algebraic description of a manifold can be found in its homology groups, which
are significant topological invariants. This theory has various applications since these
groups carry extensive topological information about the connected components, holes,
tunnels, and dimensions of the manifold. In fact, homology theory has applications in
root construction, protein docking, image segmentation, and gene expression data [1]. It
is generally acknowledged that any non-trivial integral homology class in Hβ2(Σ

n,Z) is
associated with the topological properties of submanifolds in different ambient spaces.
The authors of [2], Federer and Fleming, were the first to demonstrate this idea using the
method of variational calculus to represent the idea of geometric measure spaces. Later
on, Lawson-Simons [3] constructed an escalation for the second fundamental form, which
enforces the vanishing of the homology in a region of intermediate dimensions and the
non-existence of stable current flows in the submanifold of the simply connected space
form, and discovered the following idea, the main motivation for this work:

Theorem 1 ([3,4]). If the following optimization inequality holds for a compact m-dimensional
submanifold in a space form M̃(c) such that the curvature c ≥ 0 and β1 is an integer satisfying
0 < β1 < m,

m

∑
b1=β1+1

β1

∑
b2=1

(
2||A(Eb1 , Eb2)||2 − g

(
A(Eb1 , Eb1), A(Eb2 , Eb2)

))
< β1(m − β1)c, (1)

then no stable β1-currents flow in Σm and

Hβ1(Σ
m,Z) = Hβ2(Σ

m,Z) = 0
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for any integer β2 = m − β1, and Hi(Σm,Z) is the i-th homology group of Σm with integer
coefficients.

The first study of vanishing homology groups on warped product submanifold the-
ory can be found in [5]. By placing appropriate limits on the Laplacian and the gradient
of the warping function, Sahin [5] was able to confirm some conclusions regarding the
nonexistence of stable current and vanishing homology groups into the contact CR-warped
product that was immersed in a sphere with odd dimensions with the implementation
of Theorem 1. In recent years, a significant number of studies have been conducted on
the geometric structure and topological characteristics of submanifolds in various ambi-
ent spaces. These structures and characteristics have been demonstrated in numerous
papers covering numerous applications, such as Euclidean spaces [6], complex projective
spaces [7], CR-warped product submanifolds in Sasakian space forms [5], CR-warped
product submanifolds in Euclidean spaces [8], CR-warped products in nearly Kaeher mani-
folds [9,10], CR-warped products in hyperbolic spaces [11], and many others (see [12,13]).
There is a closed relationship between the absence of stable currents and the vanishing
homology groups of submanifolds in various ambient manifold classes. These conclusions
were reached by applying pinching conditions to the second fundamental form. Many
writers have examined a variety of topological features in response to the lack of stable
currents or stable submanifolds [13,14] motivated by Theorem [3] in the references. In the
above literature, we observed that the topological and geometrical approaches have lately
become useful ideas in machine learning theory due to the need for deep learning models
in curved spaces. The significance of submanifold theory was once again demonstrated
by the notion that the data might be viewed as a submanifold of Euclidean space. It is
obvious that the theory of submanifolds will continue to be studied in light of this new
area of applications.

2. Preliminaries

Let a sphere with a constant sectional curvature, c, be represented by Sd, c = 1 > 0,
and the d-dimension. Given that Sd accepts a canonical isometric immersion in Rd+1, we
use this as our main argument:

Sd = {V2 ∈ Rd+1 : ||V2||2 = 1}.

The Riemannian curvature tensor R̃ of the sphere Sd satisfies

R̃(V2, V3, V4, V5) = g(V2, V5)g(V3, V4)− g(V3, V5)g(V2, V4), (2)

for any V3, V2, V4, V5 ∈ Γ(TM̃), where TM̃ is the tangent bundle of Sd, and g is the Rie-
mannian metric. In other words, the unit sphere Sd is a manifold with a constant sectional
curvature equal to 1.

Let us assume that Σm is an m-dimensional Riemannian submanifold of a Riemannian
manifold M̃. Let us denote Γ(TΣ) for the section of the tangent bundle of Σ and Γ(TΣ⊥)
for the set of all normal vector fields of Σ, respectively. Let us also denote ∇ for the Levi–
Civita connection on tangent bundle TΣ and ∇⊥ for the Levi–Civita connection on the
normal bundle TΣ. If R̃ and R are represented as the Riemannian curvature tensors on
the Riemannian manifold M̃ and submanifold Σm, respectively, then the Gauss equation is
given by

R̃(V2, V3, V4, V5) =R(V2, V3, V4, V5) + g
(
A(V2, V4), A(V3, V5)

)
− g
(
A(V2, V5), A(V3, V4)

)
, (3)
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for any V2, V3, V4, V5 ∈ Γ(TM̃), and A is the second fundamental form of Σm. A local
orthonormal frame’s {E1, E2, · · · , Em} and the mean curvature vector H on Σ is defined by

||H||2 =
1

m2

d

∑
r=m+1

( m

∑
b1=1

Ab1b1

)2

. (4)

The scalar curvature of submanifold Σm, denoted by τ(TxΣm), is formulated as follows:

τ(TxΣm) = ∑
1≤b1<b2≤m

Kb1b2 (5)

where Kb1b2 = K
(
Eb1 ∧ Eb2

)
is the sectional curvature of Σm. The first Equality (5) is

proportionate to the following equation, which will be used often in later proofs:

2τ(TxΣm) = ∑
1≤b1 	=b2≤m

Kb1b2 . (6)

Similarly, the scalar curvature τ(∏x) of a ∏−plane is given by

τ(∏
x
) = ∑

1≤b1<b2≤m
Kb1b2 . (7)

If the plane sections are spanned by Eb1 and Eb2 at x, then the sectional curvatures
of the submanifold Σm and the Riemannian manifold M̃d are denoted by Kb1b2 and K̃b1b2 ,
respectively. If Kb1b2 and K̃b1b2 are spanned by {Eb1 andEb2} at x, respectively, then using
the Gauss Equations (3) and (5), we have

K
(
Eb1 ∧ Eb2

)
= K̃

(
Eb1 ∧ Eb2

)
+

d

∑
r=m+1

(
Ar

b1b1
Ar

b2b2
− (Ar

b1b2
)2
)

. (8)

For more details regarding the above definitions, see [15–17].

3. Warped Product Manifolds

A definition of warped product manifolds was given by Bishop and O’Neill [18] by
taking the negative curvature of the manifold. The product manifold Σn = N1 × N2 of
two Riemannian manifolds, N1 and N2, with matrices g1 and g2, respectively, is defined
as a warped product as Σn = N1 ×μ N2 if the metric of Σn satisfies g = g1 + μ2g2, where
μ stands for the warping function defined on the base N1. Of course, in this case, μ is
constant, and Σn is a usual Riemannian product. Some important formulas were given by
Bishop and O’Neill [18], including the following equations:

∇V1U1 = ∇U1 V1 =
(U1μ)

μ
V1 (9)

R(U1, U2)V1 =
Hμ(U1, V1)

μ
U2, (10)

for any U1, U2 ∈ Γ(TN1) and V1 ∈ Γ(TN2), where Hμ is a Hessian tensor of μ such that

Hμ(V2, V3) = g(∇V2∇μ, V3).

We also have another interesting relationship regarding the connection ∇ on Σn that
will be very useful for our proof in the main results.

g(∇ ln f , V1) = V1(ln f ). (11)

The following remarks are consequences of the definition of warped products:
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Remark 1. A warped product manifold Σn = N1 × f N2 is said to be trivial or simply a Riemannian
product manifold if the warping function f is a constant function along N1.

Remark 2. If Σn = N1 × f N2 is a warped product manifold, then N1 is totally geodesic, and N2
is a totally umbilical submanifold of Σn.

The ||∇μ||2 gradient of the positive differential function μ for an orthonormal frame
{E1, . . . , En} is then defined as

||∇μ||2 =
m

∑
i=1

(
Ei(μ)

)2. (12)

The gradient �∇μ in [19] is given by

g(�∇μ, V2) = V2μ, and �∇μ =
m

∑
i=1

Ei(μ)Ei, (13)

and the Laplacian Δμ of μ is defined as

Δμ = −
m

∑
i=1

{(∇EiEi)μ − Ei(Ei(μ))} =
m

∑
i=1

g(∇Ei∇μ, Ei) = trHess(μ). (14)

Remark 3. It should be emphasized that we take into account Chen’s opposite sign of [19] of the
function’s Laplacian μ, that is, Δμ = div(∇μ). The sign convention for the Laplacian Δ adapted
by the authors is Δ = ∂2

∂t2 on the real line.

In addition, as the vector fields V2 and V4 are tangent to Nβ1
1 and Nβ2

2 , respectively,
we obtain

K(V2 ∧ V4) = g(R(V2, V4)V2, V4) = (∇V2 V2) ln hg(V4, V4)− g
(
∇V2((V2 ln μ)V5), V4

)
= (∇V2 V2) ln hg(V4, V4)− g

(
∇V2(V2 ln μ)V4 + (V2 ln μ)∇V2 V4, V4

)
= (∇V2 V2) ln μg(V4, V4)− (V2 ln μ)2 − V2(V2 ln μ). (15)

By summing the vector fields with respect to the orthonormal frame’s {E1, · · · En}, one
obtains

β1

∑
i=1

β2

∑
j=1

K(Ei ∧ Ej) =
β1

∑
i=1

β2

∑
j=1

(
(∇EiEi) ln μ − Ei(Ei ln μ)− (Ei ln μ)2

)
,

which implies that

β1

∑
i=1

β2

∑
j=1

K(Ei ∧ Ej) = − β2Δμ

μ
. (16)

4. Main Results

We must also use a technique that is an invaluable tool for verifying our results. In the
first case, assuming that the warped product submanifold is embedded in Sd, and utilizing
Theorem 1, we intend to obtain some identical conclusions regarding the warped product
submanifold hypothesis, where pinching criteria on the second fundamental form shall be
replaced by the warping function.

Using Theorem 1, the first significant outcome of this paper is now provided.

101



Mathematics 2023, 11, 3405

Theorem 2. Let Ψ : Σβ1+β2 = Nβ1
1 ×μ Nβ2

2 −→ Sd be an Nβ1
1 -minimal isometric embedding

from a compact warped product submanifold Σβ1+β2 into an d-dimensional sphere Sd. If the
following inequality satisfies

3μΔμ < 2
(

β2‖∇μ‖2 + β1μ2) (17)

where Δμ and ∇μ are the Laplacian and gradient of the warping function, respectively, then the
following are true:

(a) There is no stable integral β1-current flow in a warped product submanifold Σβ1+β2 .
(b) The i-th integral homology groups of Σβ1+β2 vanish, which means

Hβ1(Σ
β1+β2 ,Z) = Hβ2(Σ

β1+β2 ,Z) = 0.

(c) If β1 = 1, then the fundamental group π1(Σ) is null, i.e., π1(Σ) = 0. Moreover, Σβ1+β2 is a
simply connected warped product manifold.

Proof. Suppose dim(N1) = β1 and dim(N2) = β2. Let {E1, E2, · · · , Eβ1}, and
{E∗

β1+1, · · · , E∗
m} be orthonormal frames of TN1 and TN2, respectively. From the Gauss

Equation (3) for the standard unit sphere Sd, we then have

β1

∑
b1=1

β2

∑
b2=1

{
2||A(Eb1 , Eb2)||2−g

(
A(Eb2 , Eb2), A(Eb1 , Eb1)

)}

=
β1

∑
b1=1

β2

∑
b2=1

g
(

R(Eb1 , Eb2)Eb1 , Eb2

)
(18)

−
β1

∑
b1=1

β2

∑
b2=1

g
(

R̃(Eb1 , Eb2)Eb1 , Eb2

)
+

d

∑
r=1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2.

From R(Eb1 , Eb2)Eb1 =
Hμ(Eb1

,Eb1
)

μ Eb2 in (10), by taking the trace over Nβ1
1 and Nβ2

2 , we
derive

β1

∑
b1=1

β2

∑
b2=1

g
(

R(Eb1 , Eb2)Eb1 , Eb2

)
=

β2

μ

β1

∑
b1=1

g
(
∇Eb1

∇μ, Eb1

)
. (19)

Thus, inserting (19) into the first term of the right-hand side of Equation (18), we
derive

β1

∑
b1=1

β2

∑
b2=1

{
2||A(Eb1 , Eb2)||2−g

(
A(Eb2 , Eb2), A(Eb1 , Eb1)

)}

=
β2

μ

β1

∑
b1=1

g
(
∇Eb1

∇μ, Eb1

)
+

d

∑
r=1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2 (20)

−
β1

∑
b1=1

β2

∑
b2=1

g
(

R̃(Eb1 , Eb2)Eb1 , Eb2

)
.

By calculating the Laplacian Δμ on Σβ1+β2 , one obtains

Δμ =
m

∑
i=1

g
(
∇Ei∇μ, Ei

)
=

β1

∑
b1=1

g
(
∇Eb1

∇μ, Eb1

)
+

β2

∑
b2=1

g
(
∇Eb2

∇μ, Eb2

)
.
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We know this from the warped product submanifold. From the hypothesis, Nβ1
1 is a

geodesic submanifold in Σm. This implies that ∇μ ∈ X(TN1), and from the description of
the warped product, we obtain

Δμ =
1
μ

β2

∑
b2=1

g(Eb2 , Eb2)||∇μ||2 +
β1

∑
b1=1

g
(
∇Eb1

∇μ, Eb1

)
.

By multiplying the above equation by 1
μ , we obtain

Δμ

μ
=

1
μ

β1

∑
b1=1

g
(
∇Eb1

∇μ, Eb1

)
+ β2||∇(ln μ)||2.

We rewrite the above equations as follows:

β2

μ

β1

∑
b1=1

g
(
∇Eb1

∇μ, Eb1

)
=

β2Δμ

μ
− β2

2||∇ ln μ||2. (21)

Thus, from (20) and (21), one obtains

β1

∑
b1=1

β2

∑
b2=1

{
2||A(Eb1 , Eb2)||2−g

(
A(Eb2 , Eb2), A(Eb1 , Eb1)

)}

=
d

∑
r=m+1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2 +
β2Δμ

μ
− β2

2||∇ ln μ||2

−
β1

∑
b1=1

β2

∑
b2=1

g
(

R̃(Eb1 , Eb2)Eb1 , Eb2

)
.

Next, using the Gauss Equations (3) and (5) for the unit sphere Sd, we find that

m2||H||2 + m(m − 1) = ||A||2 + ∑
1≤C<B≤m

K(EC ∧ EB). (22)

The warped product manifold Σβ1+β2 can be expressed using the preceding equation,
and using (4) for the mean curvature definition and (8), we obtain

d

∑
r=m+1

(
m

∑
C=1

Ar
CC

)2

=
d

∑
r=m+1

β1

∑
i,j=1

(Ar
ij)

2 +
d

∑
r=m+1

β2

∑
a,b=1

(Ar
ab)

2 + 2
d

∑
r=m+1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2

+
β1

∑
b1=1

β2

∑
b2=1

K(Eb1 ∧ Eb2 ) + ∑
1≤i<j≤β1

K(Ei ∧ Ej) + ∑
1≤a<b≤β2

K(Ea ∧ Eb). (23)

Using (8) in the fourth term and (16) in the last two terms of the above equation, we
derive

d

∑
r=m+1

(
m

∑
C=1

Ar
CC

)2

=
d

∑
r=m+1

β1

∑
i,j=1

(Ar
ij)

2 +
d

∑
r=m+1

β2

∑
a,b=1

(Ar
ab)

2

+ 2
d

∑
r=m+1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2 − β2Δμ

μ
− m(m − 1) (24)

+ ∑
1≤i<j≤β1

K̃(Ei ∧ Ej) + ∑
1≤a<b≤β2

K̃(Ea ∧ Eb)

+
d

∑
r=m+1

∑
1≤i<j≤β1

(
Ar

iiA
r
jj − (Ar

ij)
2
)
+

d

∑
r=m+1

∑
1≤a<b≤β2

(
Ar

aaAr
bb − (Ar

ab)
2
)

.
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Thus, by modifying the previous equation and applying the sphere’s curvature equa-
tion Sd, one can obtain

d

∑
r=m+1

(
m

∑
A=1

Ar
AA

)2

=
d

∑
r=m+1

β1

∑
i,j=1

(Ar
ij)

2 +
d

∑
r=m+1

β2

∑
a,b=1

(Ar
ab)

2 + 2
d

∑
r=m+1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2

− β2Δμ

μ
−

d

∑
r=m+1

∑
1≤i<j≤β1

(Ar
ij)

2 +
d

∑
r=m+1

∑
1≤i<j≤β1

Ar
iiA

r
jj

+
d

∑
r=m+1

(
(Ar

11)
2 + · · ·+ (Aβ1β2)

2
)
−

d

∑
r=m+1

(
(Ar

11)
2 + · · ·+ (Aβ1β2)

2
)

+
d

∑
r=m+1

∑
1≤a<b≤β2

Ar
aaAr

bb −
d

∑
r=m+1

∑
1≤a<b≤β2

(Ar
ab)

2 (25)

+
d

∑
r=m+1

(
(Ar

β1+1β2+1)
2 + · · ·+ (Amm)

2
)

−
d

∑
r=m+1

(
(Ar

β1+1β2+1)
2 + · · ·+ (Amm)

2
)

+ β1(β1 − 1) + β2(β2 − 1)− m(m − 1).

The result of rearranging the preceding equation is

d

∑
r=m+1

(
m

∑
A=1

Ar
AA

)2

=
d

∑
r=m+1

β1

∑
i,j=1

(Ar
ij)

2 +
d

∑
r=m+1

β2

∑
a,b=1

(Ar
ab)

2 + 2
d

∑
r=m+1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2

+
d

∑
r=m+1

{
∑

1≤i<j≤β1

Ar
iiA

r
jj + (Ar

11)
2 + · · ·+ (Aβ1β1)

2

}

−
d

∑
r=m+1

{
∑

1≤i<j≤β1

(Ar
ij)

2 + (Ar
11)

2 + · · ·+ (Aβ1β1)
2

}

+
d

∑
r=m+1

{
∑

1≤a<b≤β2

Ar
aaAr

bb + (Ar
β1+1β1+1)

2 + · · ·+ (Amm)
2

}

−
d

∑
r=m+1

{
∑

1≤a<b≤β2

(Ar
ab)

2 + (Ar
β1+1β1+1)

2 + · · ·+ (Amm)
2

}

− β2Δμ

μ
+ 2β1β2.

Verifying this using the binomial theorem is straightforward, and it is clear that the
base manifold Nβ1

1 of a warped product manifold Nβ1
1 ×μ Nβ2

2 is minimal. Therefore, we
have

d

∑
r=m+1

(
m

∑
A=p+1

Ar
AA

)2

=2β1β2 +
d

∑
r=m+1

β1

∑
i,j=1

(Ar
ij)

2 +
d

∑
r=m+1

β2

∑
a,b=1

(Ar
ab)

2 + 2
d

∑
r=m+1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2

+
d

∑
r=m+1

(
(Ar

11)
2 + · · ·+ (Aβ1β1)

2
)
−

d

∑
r=m+1

β1

∑
i,j=1

(Ar
ij)

2 −
d

∑
r=m+1

β2

∑
a,b=1

(Ar
ab)

2 (26)

+
d

∑
r=m+1

(
(Ar

β1+1β1+1)
2 + · · ·+ (Amm)

2
)
− β2Δμ

μ
.
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Since the base manifold Nβ1
1 of the warped product submanifold Nβ1

1 ×μ Nβ2
2 is known

to be minimal according to the theorem’s hypothesis, that is, the partial mean curvature
H1 on Nβ1

1 vanishes, we can use this knowledge to determine that the Vth term on the
right-hand side of Equation (26) is equal to zero and that the VIIth term is equal to the first
term on the left side. Thus,

2
d

∑
r=m+1

β1

∑
b1=1

β2

∑
b2=1

(Ar
b1b2

)2 =
β2Δμ

μ
− 2β1β2. (27)

From (22) and (27), we have

β1

∑
b1=1

β2

∑
b2=1

{
2||A(Eb1 , Eb2)||2−g

(
A(Eb2 , Eb2), A(Eb1 , Eb1

)}
=

β2Δμ

μ
− β2

2||∇ ln μ||2 + β2Δμ

2μ
− β1β2

−
β1

∑
b1=1

β2

∑
b2=1

g
(

R̃(Eb1 , Eb2)Eb1 , Eb2

)
.

From Equation (2), one then obtains

β1

∑
b1=1

β2

∑
b2=1

g
(

R̃(Eb1 , Eb2)Eb1 , Eb2

)
= −β1β2. (28)

From this, we obtain

β1

∑
b1=1

β2

∑
b2=1

{
2||A(Eb1 , Eb2)||2−g

(
A(Eb2 , Eb2), A(Eb1 , Eb1)

)}
=

3β2Δμ

2μ
− β2

2
μ2 ||∇μ||2. (29)

Assuming (17) and (29), we obtain

β1

∑
b1=1

β2

∑
b2=1

{
2||A(Eb1 , Eb2)||2 − g

(
A(Eb2 , Eb2), A(Eb1 , Eb1)

)}
< β1β2. (30)

By applying Theorem 1 for a constant curvature c = 1, we find that there are no stable
β1-currents in Σβ1+β2 , and Hβ1(Σ

β1+β2 ,Z) = Hβ2(Σ
β1+β2 ,Z) = 0, which satisfies Proofs (a)

and (b) of the theorem. On the other hand, if in (29) we make the substitution β1 = 1, then
we obtain

m

∑
b2=2

{
2||A(E1, Eb2)||2−g

(
A(Eb2 , Eb2), A(E1, E1)

)}
=

3β2Δμ

2μ
− β2

μ2 ||∇μ||2 (31)

If the pinching condition (17) for β1 = 1 and β2 = m − 1 holds, then we obtain

m

∑
b2=2

{
2||A(E1, Eb2)||2−g

(
A(Eb2 , Eb2), A(E1, E1)

)}
< (m − 1). (32)

There are no stable 1-currents in Σ1+β2 and H1(Σ1+β2 ,Z = Hn−1(Σ1+β2 ,Z) = 0. Let
us assume that π1(Σ) does not equal 0. The traditional theorem, which uses the findings of
Cartan and Hadamard, claims that there is a minimal closed geodesic in any non-trivial
homotopy class in π1(Σ), which contradicts itself when applied to the compactness of
Σ1+β2 . Consequently, π1(Σ) = 0. The theorem’s third component can be expressed as
follows. This Riemannian manifold is simply connected if the finite basic group for any
Riemannian manifold is null. Therefore, Σβ1+β2 is simply connected.
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Inspired by geometric rigidity, the second mission of this study is to show a novel
vanishing result for compact warped product submanifolds utilizing the Ricci curvature
and the eigenvalue of the warping function’s Laplacian. The following theorem is de-
tailed below.

Theorem 3. If the warping function μ is an eigenfunction of the Laplacian of Σβ1+β2 associated
with the first positive eigenvalue λ1 under the same language of Theorem 2, together they satisfy the
following inequality:

‖∇2μ‖2 + Ric(∇μ,∇μ) +
λ1(3λ1 + 2β1)μ

2

2β2
> 0. (33)

Thus,

(a) There is no stable integral β1-current flow in a warped product submanifold Σβ1+β2 .
(b) The i-th integral homology groups of Σβ1+β2 with integer coefficients vanish; i.e.,

Hβ1(Σ
β1+β2 ,Z) = Hβ2(Σ

β1+β2 ,Z) = 0.

(c) The fundamental group π1(Σ) is null, i.e., π1(Σ) = 0. Furthermore, Σβ1+β2 is a simply
connected warped product submanifold.

Proof. If μ is the first eigenfunction of the Laplacian Δμ = div(∇μ) of Σβ1+β2 associated
with the first non-zero eigenvalue λ1, that is, Δμ = −λ1μ, then we recall the Bochner
formula (see, e.g., [20]), which declares that the next connection is true for a differentiable
function μ that is defined on a Riemannian manifold:

1
2

Δ‖∇μ‖2 = ‖∇2μ‖2 + Ric(∇μ,∇μ) + g
(
∇μ,∇(Δμ)

)
.

Using the Stokes theorem to integrate the preceding equation, we arrive at∫
Σβ1+β2

‖∇2μ‖2dV+
∫

Σβ1+β2
Ric(∇μ,∇μ)dV

= −
∫

Σβ1+β2
g
(
∇μ,∇(Δμ)

)
dV (34)

Now, using Δμ = −λ1μ and making a change in Equation (34), we derive

∫
Σβ1+β2

‖∇μ‖2dV =
1

λ1

( ∫
Σβ1+β2

‖∇2μ‖2dV +
∫

Σβ1+β2
Ric(∇μ,∇μ)dV

)
. (35)

If (33) holds, then one obtains∫
Σβ1+β2

{
‖∇2μ‖2 + Ric(∇μ,∇μ)

}
dV +

λ1(3λ1 + 2β1)

2β2

∫
Σβ1+β2

μ2dV > 0. (36)

By substituting Equation (36) in (35), we obtain

−λ1(3λ1 + 2β1)

2β2

∫
Σβ1+β2

μ2dV < λ1

∫
Σβ1+β2

‖∇μ‖2dV,

which implies that

−3λ1

∫
Σβ1+β2

μ2dV < 2β1

∫
Σβ1+β2

μ2dV + 2β2

∫
Σβ1+β2

‖∇μ‖2dV. (37)
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Now, using Δ = −λ1μ on the left-hand side of Equation (37), we arrive at

∫
Σβ1+β2

{
3hΔμ − 2β2‖∇μ‖2 − 2β1μ2

}
dV < 0. (38)

One then obtains

3μΔμ < 2β2‖∇μ‖2 + 2β1μ2. (39)

Finally, we arrive at the conclusion of our theorem using the preceding equation as
well as Theorem 2. The theorem’s proof is now complete.

Riemannian manifolds with vanishing Ricci curvatures are known as Ricci-flat mani-
folds. In contrast to Einstein manifolds, Ricci-flat manifolds do not require the cosmological
constant to disappear. For Riemannian manifolds of any dimension, with a vanishing
cosmological constant, Ricci-flat manifolds are vacuum solutions to the physics equivalents
of Einstein’s equations. Hence, we regard the warped product submanifold’s base as
Ricci-flat. We give the following result from Theorem 3.

Theorem 4. If the warping function μ is an eigenfunction of the Laplacian of Σβ1+β2 associated
with the first positive eigenvalue λ1 under the same statement of Theorem 2 with assumptions that
base manifold is Ricci-flat, then the subsequent stringent inequality holds.

‖∇2μ‖2 +
λ1(3λ1 + 2β1)μ

2

2β2
> 0. (40)

Then, Statements (a), (b), and (c) in Theorem 2 are satisfied.

Proof. As we know that the base manifold Nβ1
1 is Ricci-flat, we then have

Ric(∇μ,∇μ) = 0. (41)

Thus, by inserting the above-mentioned condition in (33), we obtain the desired result.

As a quick implementation of Theorem 3, we can provide the following.

Theorem 5. Let us assume that Ψ : Σβ1+β2 = Nβ1
1 ×μ Nβ2

2 −→ Sβ1+β2+k1 is an Nβ1
1 -minimal

isometric embedding from a compact warped product submanifold Σβ1+β2 into an (β1 + β2 + k1)-
dimensional sphere Sβ1+β2+k1 that satisfies the following inequality:

∫
Σβ1+β2

‖∇2μ‖2dV <
∫

Σβ1+β2

β1

∑
i=1

‖A
(
∇μ, Ei

)
‖2dV

+
(β1 − 1 − λ1)(3λ1 + 2β1)

2β2

∫
Σβ1+β2

μ2dV. (42)

Statements (a), (b), and (c) in Theorem 2 are satisfied. Moreover, {Ei} are orthonormal frames
for the base Nβ1

1 .

Proof. As we are aware, Σβ1+β2 is an Nβ1
1 -minimal compact warped product submanifold.

Then, from the Gauss equation, one obtains

Ri
jkl = δikδjl − δilδjk +

k

∑
r=1

(
Ar

ikAr
jl − Ar

ilA
r
jk

)
,
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which implies the following:

Ri
jij = δiiδjj − δijδji +

k

∑
r=1

(
Ar

iiA
r
jj − Ar

ijA
r
ji

)
. (43)

Taking into account that Nβ1
1 is a minimal submanifold and using the argument of the

Ricci curvature for a unit sphere, we obtain

Ric(Ei, Ej) = (β1 − 1)δij −
k

∑
r=1

β1

∑
l=1

Ar
ilA

r
jl

The above equation yields that

Ric(μiEi, Ejμj) = (β1 − 1)δijμiμj −
k

∑
r=1

β1

∑
l=1

Ar
ilA

r
jlμiμj. (44)

Using Equation (44), we obtain

Ric(∇μ,∇μ) = (β1 − 1)‖∇μ‖2 −
β1

∑
i=1

‖A
(
∇μ, Ei

)
‖2.

Putting the preceding equation into practice in (35), we obtain

∫
Σβ1+β2

β1

∑
i=1

‖A
(
∇μ, Ei

)
‖2dV =

∫
Σβ1+β2

‖∇2μ‖2dV + (β1 − 1 − λ1)
∫

Σβ1+β2
‖∇μ‖2dV. (45)

If our assumption in (42) is satisfied, then∫
Σβ1+β2

‖∇2μ‖2dV <
∫

Σβ1+β2

β1

∑
i=1

‖A
(
∇μ, Ei

)
‖2dV +

(β1 − 1 − λ1)(3λ1 + 2β1)

2β2

∫
Σβ1+β2

μ2dV.

The following form can be used to express the previously mentioned equation using
Δμ = −λ1μ:

3(β1 − 1 − λ1)

2β2

∫
Σβ1+β2

μΔμdV+
∫

Σβ1+β2
‖∇2μ‖2dV

<
∫

Σβ1+β2

β1

∑
i=1

‖A
(
∇μ, Ei

)
‖2dV

+
β1(β1 − 1 − λ1)

β2

∫
Σβ1+β2

μ2dV.

Including the previous equation in (45), we derive that

3(β1 − 1 − λ1)

2β2

∫
Σβ1+β2

μΔμdV < (β1 − 1 − λ1)
∫

Σβ1+β2
‖∇μ‖2dV

+
β1(β1 − 1 − λ1)

β2

∫
Σβ1+β2

μ2dV,

which implies the following from the above equation:

3μΔμ < 2β2‖∇μ‖2 + 2β1μ2. (46)

Consequently, it is the same as Equation (17), and we achieve the desired outcome,
i.e., (42). This completes the proof of the corollary.
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Another intriguing outcome that can be attained as a consequence of Theorem 5 is the
following:

Corollary 1. Under the same assumption as Theorem 5, if ∇μ ∈ KerA holds with∫
Σβ1+β2

‖∇2μ‖2dV <
(β1 − 1 − λ1)(3λ1 + 2β1)

2β2

∫
Σβ1+β2

μ2dV, (47)

then the same statements as (a), (b), and (c) in Theorem 2 are satisfied.

Proof. Using the hypothesis of the corollary ∇μ ∈ KerA, we obtain A(∇μ, Ei) = 0. Using
this condition in (42), we can easily obtain the desired outcome.

5. Conclusions Remarks

In the present paper, we have found sufficient conditions that have given us infor-
mation regarding vanishing homology groups and fundamental groups. The homology
groups were initially defined in algebraic topology and are a general way to associate a
sequence of algebraic objects, such as Abelian groups or modules. If the two shapes are
distinguished by examining their holes, this idea can force the definition of the homology
groups and homology; it was originally a rigorous mathematical method for defining
and categorizing holes in a manifold. The most constructive topological invariants for
providing the algebraic summary of the manifold are the homology groups of a manifold.
These homologies have many applications and are helpful in finding deep topological
information regarding the connected components, holes, tunnels, and dimensions of the
manifold. Indeed, homology theory has its applications in gene expression data, protein
docking, image segmentation, and root architecture; see [21–23]. Furthermore, they can
provide some significant examples of singularity structures in liquid crystals, systems in
low-dimensional statistical mechanics, and physical phase transitions [24]. Moreover, the
concept of space–time in general relativity uses warped product manifolds. There are two
well-known product spaces with warped products: standard static space–times and the
generalization of Robertson–Walker space–times [25]. Particularly in mathematical physics,
general relativity relies extensively on differential topological approaches [26]. specifically
how quantum gravity uses space–time homology [27–29]. The results of this work can be
used in physical applications because they are related to the warped product manifold
and homotopy–homology theory. We can extend the above work where the curvature is
positive or zero to generalized spherical structures.
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Abstract: In this paper, we study conformal transformations between two almost regular general
(α, β)-metrics. By using the method of special coordinate system, the necessary and sufficient
conditions for conformal transformations preserving the mean Landsberg curvature are obtained.
Further, a rigidity theorem for regular general (α, β)-metrics is proved.

Keywords: general (α, β)-spaces; mean Landsberg curvature; conformal transformations

MSC: 53C30; 53C60

1. Introduction

In Finsler geometry, the Weyl theorem states that the projective and conformal proper-
ties of a Finsler space determine the metric properties uniquely [1]. Therefore, the conformal
properties of Finsler metrics deserve extra attention. Let F and F̃ be two Finsler metrics
on a manifold M. A conformal transformation between F and F̃ is defined by L: F → F̃,
F̃ = eσ(x)F, where the conformal factor σ := σ(x) is a scalar function on M. The metrics
F and F̃ are conformally related. If σ is a constant, then the conformal transformation is
called a homothetic transformation.

A natural problem is knowing how to determine, given a Finsler metric with some
properties on a manifold M, all conformally related Finsler metrics with the given proper-
ties. Bácsó-Cheng [2] characterized conformal transformations that preserve the Riemann
curvature, the Ricci curvature, the (mean) Landsberg curvature, or the S-curvature, re-
spectively. Chen-Cheng-Zou [3] proved that if both conformally related (α, β)-metrics are
of the Douglas type or of isotropic S-curvature, then the conformal transformations be-
tween them are homothetic. Later, Chen-Liu [4] characterized conformal transformations
between two almost regular (α, β)-metrics that preserve the mean Landsberg curvature. Fur-
thermore, they proved that conformal transformations between non-Riemannian regular
(α, β)-metrics, which preserve the mean Landsberg curvature, must be homothetic.

Li-Shen [5] studied (α, β)-metrics with the mean Landsberg curvature and obtained
its characterizing equation. Cheng–Wang–Wang [6] characterized (α, β)-metrics with the rel-
ative isotropic mean Landsberg curvature. Zou-Cheng [7] explored an (α, β)-metric whose
φ(s) is a polynomial about s, and they proved that it has vanishing mean Landsberg curva-
ture if and only if it is a Berwald metric. Under the condition that the 1-form β is a conformal
field of the Riemannian metric α, Behzadi–Rafiei [8] proved that the general (α, β)-metric
has vanishing mean Landsberg curvature if and only if it is of the Landsberg type. Na-
jafi–Saberali [9] explored the special (α, β)-metric and obtained that it has an isotropic mean
Landsberg curvature that is equivalent to that its isotropic Landsberg curvature.

The general (α, β)-metric was first introduced by Yu-Zhu [10] in the following form:

F = αφ(b2, s), s =
β

α
, (1)
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where φ = φ(b2, s) is a C∞ positive function, α = α(x, y) =
√

aij(x)yiyj is a Riemannian

metric, β = β(x, y) = bi(x)yi is a 1-form, and b := ‖β‖α. It is known that F = αφ(b2, β
α ) is a

Finsler metric with b < b0 if and only if φ(b2, s) is a positive C∞ function satisfying [10]

φ − sφs > 0, φ − sφs + (b2 − s2)φss > 0

for n ≥ 3. If we consider a 1-form β with b ≤ b0 where b0 := supx∈M b, then F = αφ(b2, s)
might be singular in the two extremal directions y ∈ Tx M with β(x, y) = ±b0α(x, y). Such
metrics are called almost regular general (α, β)-metrics. In particular, when φ = φ(s) in (1),
the Finsler metric F = αφ(s) is called an (α, β)-metric.

Note that (.)s denotes the partial derivative of the quantity (.) with respect to s.
In this paper, we mainly study conformal transformations preserving the mean Lands-

berg curvature. It is known that a homothetic transformation must preserve the mean
Landsberg curvature. Thus, we focus on non-homothetic conformal transformations.

Theorem 1. Let F be an almost regular general (α, β)-metric on an n(≥ 3)-dimensional manifold
M. Assume that F and F̃ are two conformally related metrics with the conformal factor σ = σ(x).
Then, F and F̃ have the same mean Landsberg curvature if and only if one of the following cases holds:

(1) φ must be

φ = k2s
1− 1

b2k1 (b2 − s2)
1

2b2k1 ,

where k1 = k1(b2) and k2 = k2(b2)> 0 are arbitrary differential functions. In this case, the
conformal factor is arbitrary;

(2) The conformal factor σ satisfies σi(x) = σb
b2 bi(x), and φ satisfies

Φ =
k3Δ

3
2√

b2 − s2
, (2)

where σi := ∂σ
∂xi , σb := σibi, b2 := aijbibj, Q := φs

φ−sφs
, Δ := 1 + sQ + (b2 − s2)Qs,

Φ := (1 + sQ)(b2 − s2)Qss + (nΔ + 1 + sQ)(Q − sQs), and k3 = k3(b2) is a differential
positive function.

This theorem generalizes the results obtained by Chen-Liu about conformal transfor-
mations preserving the mean Landsberg curvature on (α, β)-spaces [4].

Based on Theorem 1, we obtain a rigidity theorem for regular general (α, β)-metrics
as follows.

Theorem 2. Let F be a regular general (α, β)-metric on an n(≥ 3)-dimensional manifold M.
Assume that F and F̃ are two conformally related metrics. Then, F and F̃ have the same mean
Landsberg curvature if and only if F is Riemannian.

2. Preliminaries

Let F be a non-Riemannian Finsler metric on a manifold M of dimension n(≥ 3). Its
spray coefficients Gi are defined by

Gi :=
1
4

gij
{[

F2
]

xkyj
yk −

[
F2
]

xj

}
,

where gij := 1
2 (F2)yiyj and (gij) := (gij)

−1.

The Cartan tensor is defined by C := Cijkdxi ⊗ dxj ⊗ dxk, where

Cijk :=
1
4

∂3F2

∂yi∂yj∂yk =
1
2

∂gij

∂yk .

112



Mathematics 2023, 11, 3381

The mean Cartan torsion I := Iidxi : Tx M → R is defined by

Ii := gjkCijk.

Deicke’s theorem shows that I = 0 if and only if F is Riemannian.
The Landsberg curvature L = Lijkdxi ⊗ dxj ⊗ dxk is a horizontal tensor on TM\{0},

defined by

Lijk := −1
2

FFyl
∂3Gl

∂yi∂yj∂yk .

The mean Landsberg curvature is defined by

J := Jidxi, Ji := gjkLijk.

Lemma 1 ([10]). For a general (α, β)-metric F = αφ(b2, β
α ), the coefficients of the fundamental

tensor are
gij = ρaij + ρ̄bibj +

1
α

ρ̃(biyj + bjyi)−
1
α2 sρ̃yiyj,

where

yi := aijyj, ρ := φ(φ − sφs), ρ̄ := φφss + φsφs, ρ̃ := (φ − sφs)φs − sφφss.

And (gij) := (gij)
−1 are as follows:

gij = ρ−1[aij + ηbibj + η̄α−1(biyj + bjyi) + η̃α−2yiyj],

where bi := aijbj,

η :=− φ

φ − sφs + (b2 − s2)φss
, η̄ := − (φ − sφs)φs − sφφss

φ[φ − sφs + (b2 − s2)φss]
,

η̃ :=
[sφ + (b2 − s2)φs][(φ − sφs)φs − sφφss]

φ2[φ − sφs + (b2 − s2)φss]
.

Lemma 2 ([11]). For a general (α, β)-metric F = αφ(b2, β
α ), the coefficients of the Cartan tensor

and the mean Cartan torsion are as follows:

Cijk =
1
2
[α−1ρ̃(aijbk + aikbj + ajkbi)− α−2sρ̃(aijyk + aikyj + ajkyi)

+α−4(3sρ̃ − s3ρ̄s)yiyjyk + α−3(s2ρ̄s − ρ̃)(biyjyk + bjyiyk + bkyiyj)

−α−2sρ̄s(bibjyk + bjbkyi + bkbiyj) + α−1ρ̄sbibjbk],

Ii =
1

2α2ρ
A(αbi − syi),

where A := φ2Φ
Δ(1+sQ)2 .

By Deicke’s theorem, a general (α, β)-metric is Riemannian if and only if A = 0.

3. The Proof of Main Theorems

Before proving Theorem 1, we need following Lemmas.

Lemma 3 ([2]). Let F be a Finsler metric on a manifold M. Assume that F and F̃ are two confor-
mally related metrics with the conformal factor σ = σ(x). Then, their mean Landsberg curvature
must satisfy

J̃i = Ji + σ0 Ii + F2σj Ii.j + (σj Ij)yF
i − F2σj IkCk

ij,

113



Mathematics 2023, 11, 3381

where σ0 := σkyk, σi := gikσk, Ii.j := ∂Ii
∂yj , yF

i := gijyj, Ck
ij := gklCijl .

Based on Lemma 3, F and F̃ = eσ(x)F have the same mean Landsberg curvature if and
only if the following holds:

σ0 Ii + F2σj Ii.j + (σj Ij)yF
i − F2σj IkCk

ij = 0.

Assume that F is a general (α, β)-metric. By direct computations, the above equation
is equivalent to

(T1σ0 + αT2σb)yi + α(T3σ0 + αT4σb)bi + α2T5σi = 0, (3)

where

T1 =

[
(s + b2Q)(1 + sQ + 2s2Qs)

(1 + sQ)Δ
+

3s(1 + b2Qs)

Δ
− 2s

1 + sQ
− s(s + b2Q)Δs

Δ2

]
φ2 A

+
2s(b2Q + s)

Δ
φ2 As,

T2 =
[(1 + sQ)sΔs − Δ(sQ + 5s2Qs)]

Δ2 φ2 A − 2s(1 + sQ)

Δ
φ2 As,

T3 =

[
−2Qs(2s2 + b2sQ − b2)

(1 + sQ)Δ
− 2b2Qs + s2Qs − sQ

Δ
+

(s + b2Q)Δs

Δ2

]
φ2 A

−2(b2Q + s)
Δ

φ2 As,

T4 =− [(1 + sQ)Δs − Δ(Q + 5sQs)]

Δ2 φ2 A +
2(1 + sQ)

Δ
φ2 As,

T5 =− sΔ + (s + b2Q)

Δ
φ2 A.

Note that T1 + sT3 + T5 = 0 and T2 + sT4 = 0 hold.

Lemma 4. Let a positive C∞ function φ = φ(b2, s) satisfy sΔ + s + b2Q = 0. Then,

φ = k2s
1− 1

b2k1 (b2 − s2)
1

2b2k1 ,

where k1 = k1(b2) and k2 = k2(b2)> 0 are arbitrary differential functions.

Proof. sΔ + s + b2Q = 0 is equivalent to

(b2 − s2)(Q + sQs) + 2s(1 + sQ) = 0.

It can be rewritten as (
b2 − s2

1 + sQ

)
s
= 0.

Integrating this equation with respect to s yields

Q =
k1(b2 − s2)− 1

s
, (4)

where k1 = k1(b2) is an arbitrary differential function. Since Q := φs
φ−sφs

, the above equation
leads to

φs

φ
=

Q
1 + sQ

.
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It is equivalent to

(ln φ)s =
Q

1 + sQ
.

Integrating the above equation with respect to s yields

φ = k2 exp
(∫ Q

1 + sQ
ds
)

,

where k2 = k2(b2) > 0 is a C∞ function.
Substituting (4) into the above equation yields

φ = k2s
1− 1

b2k1 (b2 − s2)
1

2b2k1 .

This completes the proof of Lemma 4.

Lemma 5. Let a positive C∞ function φ = φ(b2, s) satisfy sT1 + b2T2 = 0. Then,

Φ =
k3Δ

3
2√

b2 − s2
,

where k3 = k3(b2) is an arbitrary positive function.

Proof. The direct computation yields

sT1 + b2T2 =
2s2Δ[1 + sQ − 2(b2 − s2)Qs] + s(1 + sQ)(b2 − s2)Δs

(1 + sQ)Δ2 φ2 A − 2s(b2 − s2)

Δ
φ2 As.

Thus, sT1 + b2T2 = 0 is equivalent to

{2sΔ[1 + sQ − 2(b2 − s2)Qs] + (1 + sQ)(b2 − s2)Δs}A − 2(b2 − s2)(1 + sQ)ΔAs = 0.

It can be rewritten as

As

A
=

Q − sQs

1 + sQ
− Q

1 + sQ
− sQs

1 + sQ
+

2sΔ + (b2 − s2)Δs

2(b2 − s2)Δ
,

i.e.,
As

A
=

ρs

ρ
− φs

φ
− sφss

φ − sφs
+

2sΔ + (b2 − s2)Δs

2(b2 − s2)Δ
.

That means

(ln A)s = (ln ρ)s − (ln φ)s + [ln(φ − sφs)]s +
1
2

(
ln

Δ
b2 − s2

)
s
.

Integrating it with respect to s yields

A = k3
φ2

(1 + sQ)2

√
Δ

(b2 − s2)
,

where k3 = k3(b2) is an arbitrary positive function. This equation is equivalent to

Φ =
k3Δ

3
2√

b2 − s2
.

This completes the proof of Lemma 5.
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Using above Lemmas, we can prove Theorem 1.

Proof of Theorem 1. “Sufficiency”. Assume that φ = k2s
1− 1

b2k1 (b2 − s2)
1

2b2k1 and the con-
formal factor σ is arbitrary. Note that 0 = T1 = T2 = T3 = T4 = T5 and (3) hold. Thus, the
conclusion is obvious. Assume that σi =

σb
b2 bi and φ satisfies (2). Then, (3) holds. Hence, F

and F̃ have the same mean Landsberg curvature.
“Necessity”. In general, it is impossible to solve (3) if φ = φ(s) is an unknown function.

To overcome this difficulty, we choose a special coordinate system at a point x as in [12].
First, we assume that

αx =

√
n

∑
i=1

(yi)2, βx = by1.

Then, we take another special coordinates: (s, ya) → (yi) given by

y1 =
s√

b2 − s2
ᾱ, ya = ya,

where

ᾱ =

√
n

∑
a=2

(ya)2.

We make the following agreement

1 ≤ i, j, k, · · · ≤ n, 2 ≤ a, b, c, · · · ≤ n.

We have
α =

b√
b2 − s2

ᾱ, β =
bs√

b2 − s2
ᾱ.

When we take i = 1 in (3), by the rational and irrational terms of y, (3) is equal to

(sT1 + b2T3)σ̄0 = 0 (5)

and
(sT1 + b2T2)σ1 = 0. (6)

Similarly, when we take i = a in (3), (3) leads to

(sT1 + b2T2)σ1 = 0

and

σ̄0yaT1 +
b2

b2 − s2 ᾱ2σaT5 = 0. (7)

We divide the problem into two cases:
Case 1: sΔ + s + b2Q = 0. By Lemma 4, we have

φ = k2s
1− 1

b2k1 (b2 − s2)
1

2b2k1 ,

where k1 = k1(b2) and k2 = k2(b2) ≥ 0 are any differentiable functions. By direct calcula-
tions, we have T1, T2, T3, T4, T5 all equal to zero. In this case, (3) holds for any conformal
factor σ.

Case 2: sΔ + s + b2Q 	= 0. It implies that T5 	= 0.
Case 2-1: σ̄0 	= 0. Differentiating (7) with respect to yb and yc yields

(σbδac + σcδab)T1 + 2
b2

b2 − s2 σaδbcT5 = 0. (8)
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Contracting it with δbc yields

[T1 + (n − 1)
b2

b2 − s2 T5]σa = 0. (9)

On the other hand, contracting (8) with δac yields(
nT1 +

b2

b2 − s2 T5

)
σb = 0. (10)

For σ̄0 	= 0, by (9) and (10), we obtain T1 = 0 and T5 = 0. This contradicts T5 	= 0.
Thus, it is discarded.

Case 2-2: σ̄0 = 0, σ1 	= 0. In this case, (5) and (7) hold constantly. By (6), we can
obtain sT1 + b2T2 = 0. Then, by Lemma 5, φ satisfies

Φ =
k3Δ

3
2√

b2 − s2
, (11)

where k3 = k3(b2) is a differentiable positive function.
Substituting (11) into (3) yields

[(αsσb − b2σ0)(syi − αbi) + α(b2 − s2)(αsσi − σ0bi)]
sΔ + s + b2Q

Δ(b2 − s2)
= 0.

Since sΔ + s + b2Q 	= 0,

(αsσb − b2σ0)(syi − αbi) + α(b2 − s2)(αsσi − σ0bi) = 0.

Differentiating the above formula with respect to yj yields

2yj(b2σi − σbbi)− 2αsσibj + bj(σ0bi + σbyi) + αs(σjbi + σbaij)− b2(σjyi + σ0aij) = 0.

Contracting it with aij yields

(n − 2)(b2σ0 − σbβ) = 0.

Because n ≥ 3, it means that σi(x) is proportional to bi(x), i.e., σi =
σb
b2 bi.

Case 2-3: σ̄0 = 0, σ1 = 0. Then, conformal transformations between F and F̄
are homothetic.

Remark 1. Note that φ = 1 + s or φ = 1 + s2 does not satisfy (2). Thus, by the definition of
general (α, β)-metrics and Theorem 1, conformal transformations that preserve the mean Landsberg

curvature of Randers metrics F = α + β or square metrics F = (α+β)2

α are homothetic.

Remark 2. Let Q = ∑k
i=0 fi(b2)si + g1(b2)(b2 − s2)

1
2 + g2(b2)(b2 − s2)

2m+1
2 , where k(≥ 0)

and m(≥ 1) are integers. If Q satisfies (2), then Q = f1(b2)s + g1(b2)(b2 − s2)
1
2 . If σi =

σb
b2 bi,

then F and F̃ = eσ(x)F have the same mean Landsberg curvature by Theorem 1.

Before proving Theorem 2, we need the following Lemma.

Lemma 6 ([4]). Let the (α, β)-metric F = αφ(s) be a regular Finsler metric on an n(≥ 3)-
dimensional manifold M. If φ satisfies

Φ =
λΔ

3
2√

b2 − s2
,
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where λ is a constant, then F is Riemannian.

Remark 3. When λ = λ(b2), the conclusion is still right.

Based on Lemma 6, we now give the proof of Theorem 2.

The Proof of Theorem 2. By Theorem 1, we divide the problem into two cases. If

φ = k2s
1− 1

b2k1 (b2 − s2)
1

2b2k1 , the general (α, β)-metric F = αφ(b2, s) constructed by φ, is

non-regular. We do not consider this case. If φ satisfies Φ = k3(b2)Δ
3
2√

b2−s2 , then F = αφ(b2, s) is
Riemannian by Lemma 6.

4. Conclusions

In this paper, we study conformal transformations of general (α, β)-metrics preserving
the mean Landsberg curvature. We obtain the necessity and sufficiency conditions for the
mean Landsberg curvature and a rigidity theorem for the regular general (α, β)-metric case.
The characterization equations for the general (α, β)-metrics with the mean Landsberg
curvature are not yet completely solved, and only formal solutions are obtained.
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Abstract: A class of nearly Sasakian manifolds is considered in this paper. We discuss the geometric
effects of some symmetries on such manifolds and show, under a certain condition, that the class
of Ricci semi-symmetric nearly Sasakian manifolds is a subclass of Einstein manifolds. We prove
that a Codazzi-type Ricci nearly Sasakian space form is either a Sasakian manifold with a constant
φ-holomorphic sectional curvature H = 1 or a 5-dimensional proper nearly Sasakian manifold with a
constant φ-holomorphic sectional curvature H > 1. We also prove that the spectrum of the operator
H2 generated by the nearly Sasakian space form is a set of a simple eigenvalue of 0 and an eigenvalue
of multiplicity 4, and we induce that the underlying space form carries a Sasaki–Einstein structure.
We show that there exist integrable distributions with totally geodesic leaves on the same manifolds,
and we prove that there are no proper nearly Sasakian space forms with constant sectional curvature.

Keywords: nearly Sasakian space forms; locally symmetric manifold; k-nullity distribution;
semi-symmetric manifold; Ricci-symmetric manifold

MSC: 53C15; 53C25

1. Introduction

Blair, Yano, and Showers introduced in [1] the concept of nearly Sasakian structures as
an odd-dimensional counterpart of nearly Kähler structures. They proved that a normal
nearly Sasakian structure is Sasakian, and, hence, is contact in particular. Also, in the same
paper, it was shown that a hypersurface of a nearly Kähler manifold is nearly Sasakian if
and only if it is quasi-umbilical with respect to the (almost) contact form. This result was
supported by an example stating that S5 properly imbedded in S6 inherits a nearly Sasakian
structure, which is not a Sasakian structure. That is why nearly Sasakian manifolds may
also be considered as an odd-dimensional analogue of nearly Kähler manifolds. However,
it is very difficult to find relationships between the two structures, such as for the duo
Sasakian and Kähler structures (see [2] for details).

Nearly Sasakian structures can also be seen as the vanishing of the symmetric part
of Sasakian structures. Several authors have studied these structures in [2–5] and the
references therein. For instance, Olszak in [4,5] gave a good number of properties for nearly
Sasakian structures. He proved that if nearly Sasakian manifolds are not Sasakian, they are
of dimension 5 and of a constant curvature. Olszak also proved some equivalent conditions
for non-Sasakian nearly Sasakian manifolds to be of dimension 5 and showed that such
manifolds are Einstein manifolds.

In Ref. [2], among other results, the authors proved that there are two types of inte-
grable distributions with totally geodesic leaves in a nearly Sasakian manifold, which are
Sasakian and 5-dimensional nearly Sasakian manifolds. Note that a (2n + 1)-dimensional
nearly Sasakian with n ≥ 3 is a Sasakian manifold ([3], Theorem 4.9).

Mathematics 2023, 11, 2634. https://doi.org/10.3390/math11122634 https://www.mdpi.com/journal/mathematics119
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In this paper, we consider the same nearly Sasakian structures by paying attention
to certain foliations and curvature properties. We prove that some of these foliations are
naturally generated by the symmetry properties on curvature and Ricci tensors.

The study of locally symmetric Riemannian manifolds has a long history, and several
authors have worked in this direction. In Ref. [6] and the references therein, a series of
results is presented regarding locally symmetric contact manifolds derived under some
restrictions. In a direct way, Boeckx and Cho, in [7], proved that a locally symmetric contact
manifold is either a Sasakian manifold with a constant sectional curvature 1 or is locally
isometric to a unit tangent sphere bundle of a Euclidean space endowed with its standard
contact metric structure.

A smooth manifold M is locally symmetric if its Riemannian curvature tensor R is
parallel, i.e., ∇R = 0, where ∇ is the Levi–Civita connection on M extended to act on
tensors as a derivation. This class of manifolds contains manifolds of a constant curvature.
The integrability condition of ∇R = 0 is R · R = 0, where again R is extended to act on
tensors as a derivation. Manifolds that satisfy the latter condition are called semi-symmetric
(see [8,9], for more details). A smooth manifold is said to be Ricci semi-symmetric, if
R · Ric = 0. The set of all manifolds that are Ricci semi-symmetric contains the set of
manifolds that are semi-symmetric. This means that semi-symmetric conditions imply
Ricci semi-symmetric conditions, but the converse is not true, in general.

The present paper studies the two foliations stated by Olszak in papers [4,5]. He
proved that, if a proper nearly Sasakian manifold is locally symmetric, then it is of a constant
curvature and of dimension 5. These foliations were also investigated by Cappelletti-
Montano et al. in [2,3].

The organization of the paper is as follows. Section 2 deals with a definition and
properties of a nearly Sasakian manifold and some identity formulas of the underlying
tensors, which are supported by two examples. In Section 3, we discuss the two foliations
as stated in [2,4]. We establish the geometric effects of semi-symmetry and Ricci semi-
symmetry on nearly Sasakian manifolds. Under a certain condition, we show that the class
of Ricci-symmetric nearly Sasakian manifolds is a subclass of Einstein manifolds. We prove
that these foliations exist canonically in a locally symmetric nearly Sasakian manifold of a
constant sectional curvature and k space. Some examples are also established. In Section 4,
we derive some algebraic formulas of the curvature tensor for nearly Sasakian manifolds
(Proposition 3). We prove that a Codazzi-type Ricci nearly Sasakian space form is either
Sasakian with a constant φ-holomorphic sectional curvature H = 1 or a 5-dimensional
proper nearly Sasakian manifold with a constant φ-holomorphic sectional curvature H > 1.
In the same settings, we also prove that the spectrum of the operator H2 has a simple
eigenvalue of 0 and an eigenvalue of multiplicity 4, which therefore induces that such a
Codazzi-type Ricci nearly Sasakian space form carries a Sasaki–Einstein structure. We show
that there exist integrable distributions with totally geodesic leaves (Theorems 9 and 10).
Contrary to ([4], Theorem 6.1), we prove that there are no proper nearly Sasakian space
forms with a constant sectional curvature (Theorem 12).

2. Preliminaries

Let M be a (2n + 1)-dimensional manifold equipped with an almost contact structure
(φ, ξ, η), that is, φ is a tensor field of type (1, 1), ξ is a vector field, and η is a 1-form
satisfying [6]

φ2 = −I+ η ⊗ ξ, η(ξ) = 1. (1)

This implies that φξ = 0, η ◦ φ = 0, and rank(φ) = 2n. In this case, (φ, ξ, η, g) is
called an almost contact metric structure on M if (φ, ξ, η) is an almost contact structure of
M and g is a Riemannian metric of M such that [6]

g(φ X, φ Y) = g(X, Y)− η(X)η(Y) (2)
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for any vector field X, Y of M. It is easy to see the (1, 1)-tensor field φ is skew-symmetric,
and so η(X) = g(ξ, X).

If, moreover,

(∇Xφ)Y + (∇Yφ)X = 2g(X, Y)ξ − η(X)Y − η(Y)X, (3)

where ∇ is the Levi–Civita connection for the Riemannian metric g, then M is called a
nearly Sasakian manifold. From (3), one has

∇Xξ = −φ X − HX, (4)

where
HX = φ

(
∇ξφ

)
X. (5)

This operator is skew-symmetric and also anti-commutes with φ. The tensor field H is
of type (1, 1) and satisfies Hξ = 0, η ◦ H = 0, and

∇ξ H = −∇ξφ = φH = −1
3
Lξ φ, (6)

where Lξ is the Lie derivative with respect to ξ. If H vanishes, then a nearly Sasakian
manifold is Sasakian (see [10] and the references therein).

It is easy to see that
H2X =

(
∇ξ φ

)2X. (7)

The divergence of ξ is given by

div ξ = 0. (8)

Example 1. Let M be a 5-dimensional smooth manifold defined as
M = {(x1, x2, · · · , x5) ∈ R5 : x2 	= 0, x5 	= 0} with standard coordinates (x1, x2, · · · , x5). The
vector fields

X1 = 2
(

x2
∂

∂x3
− ∂

∂x1

)
, X2 =

∂

∂x2
, X3 = ξ = − ∂

∂x3
,

X4 = 2
(

x5
∂

∂x3
− ∂

∂x4

)
, X5 =

∂

∂x5
,

are linearly independent at each point of M. Denote g to be the Riemannian metric of M, defined
as g(Xi, Xj) = δij, for any i, j = 1, 2, · · · , 4, where δij is the Kronecker symbol, and g(ξ, ξ) = 1.
Locally, the metric g takes the form

g = (
1
4
− x2

2)dx2
1 + dx2

2 + dx2
3 + (

1
4
− x2

5)dx2
4 + dx2

5.

We define the 1-form η and (1, 1)-tensor field φ, respectively, by, η = −dx3 and φX1 = X2,
φX2 = −X1, φX3 = 0, φX4 = X5, and φX5 = −X4. The relations (1) and (2) are satisfied for R5

by the linearity of φ and g. Thus, the structure (φ, ξ, η, g) defines an almost contact metric structure
for R5. Let ∇ be the Levi–Civita connection compatible with the metric g. Then, the non-vanishing
Lie brackets are [X1, X2] = [X4, X5] = 2ξ. These lead to the following non-vanishing components
of the covariant derivative

∇X1 X2 = ξ, ∇X1 ξ = −X2, ∇X2 X1 = −ξ, ∇X2 ξ = X1,

∇ξ X1 = −X2, ∇ξ X2 = X1, ∇ξ X4 = −X5, ∇ξ X5 = X4,

∇X4 ξ = −X5, ∇X4 X5 = ξ, ∇X5 ξ = X4, ∇X5 X4 = −ξ.

Using these covariant derivatives, it is easy to see that relation (3) is satisfied, and, therefore,
(φ, ξ, η, g) is a nearly Sasakian structure.
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Throughout this note, manifolds are assumed to be of class C∞ and connected, and
all tensor fields are of class C∞. We will denote the F (M) module of smooth sections of a
vector bundle E with Γ(E).

A vector field V on M is said to be an affine Killing vector field if it satisfies (see [11],
p. 51)

LV∇ = 0. (9)

Relation (9) reduces to

R(V, X)Y +∇X∇YV −∇∇XYV = 0, (10)

where R is the Riemannian curvature tensor R of M defined by

R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z, ∀ X, Y, Z ∈ Γ(TM). (11)

Relation (9) is the integrability condition for the Killing vector field V (see [11], for
more details). If M is nearly Sasakian, then by using (4), it is easy to see that ξ is a Killing
vector. Hence, the vector field ξ is an affine Killing vector field. The converse is not true, in
general. In [11], it was proven that the converse holds when the underlying manifold is
compact and without a boundary.

Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional nearly Sasakian manifold. Through (10),
we obtain

R(X, ξ)Y = ∇X∇Yξ −∇∇XYξ. (12)

Therefore, we have [10]:

R(ξ, X)Y = (∇Xφ)Y + (∇X H)Y

= g(X − H2X, Y)ξ − η(Y)(X − H2X) (13)

= {g(X, Y)− g(H2X, Y)}ξ − η(Y)X + η(Y)H2X,(
∇X H2

)
Y = η(Y)(φ + H)H2X + g((φ + H)H2X, Y)ξ, (14)

g((∇Xφ)Y, HZ) = −η(Y)g(H2X, φZ) + η(X)g(H2Y, φZ) + η(Y)g(HX, Z) (15)

for any X, Y, Z ∈ Γ(TM).
As proven in [10] and using the relations (13)–(15), we have

(∇Xφ)Y = −η(X)φHY − η(Y)(X − φHX) + g(X − φHX, Y)ξ, (16)

(∇X H)Y = η(X)φHY + η(Y)(H2X − φHX)− g(H2X − φHX, Y)ξ, (17)

(∇XφH)Y = η(Y)(φH2X + HX)− η(X)(φH2Y + HY)

− g(HX + φH2X, Y)ξ.
(18)

Now, for any vector fields X and Y of M,

R(X, Y)ξ = η(Y)X − η(X)Y + η(X)H2Y − η(Y)H2X. (19)

Then,
Ric(X, ξ) = (2n − trace H2)η(X), ∀ X ∈ Γ(TM). (20)

By (13), we have, for any X, Y ∈ Γ(TM),

R(X, ξ)Y = −g(X, Y)ξ + η(Y)X − η(Y)H2X + g(H2Y, X)ξ. (21)

3. Foliations of a Nearly Sasakian Manifold

In Refs. [2,4], for instance, the authors showed that there are two foliations in any
nearly Sasakian manifold with leaves that are Sasakian or 5-dimensional nearly Sasakian
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non-Sasakian manifolds. This fact is led by the square of a skew-symmetric operator H,
i.e., H2. The latter plays an important role, as well as its spectrum.

Let (M, φ, ξ, η, g) be a (2n + 1)-dimensional nearly Sasakian manifold. Olszak, in [4],
showed that, if M satisfies the condition

H2 = α{I− η ⊗ ξ} (22)

for a real number α, then dim M = 5. The converse is true if the real number α is non-zero
(see [5], Theorem 4.1 for more details).

We say that M is a proper nearly Sasakian manifold if it is a nearly Sasakian non-Sasakian
manifold.

Let D := ker η denote the contact distribution, and let D⊥ denote the one spanned
structure vector field ξ. Then, the tangent space TM is decomposed as

TM = D ⊕ D⊥, (23)

where ⊕ is the orthogonal direct sum. Through (23), any X ∈ Γ(TM) can be rewritten as

X = QX + Q⊥X, (24)

where Q and Q⊥ are the projection morphisms of TM onto D and D⊥, respectively. Then,
for any vector field X ∈ Γ(TM), Q⊥X = η(X)ξ, and X = QX + η(X)ξ.

If (22) is satisfied, then, for any non-zero vector field X ∈ Γ(D),

−g(HX, HX) = αg(X, X), i.e., α = − g(HX, HX)

g(X, X)
. (25)

This means that there is λ ∈ R such that α = −λ2 ≤ 0, and, therefore, (22) becomes

H2 = −λ2{I− η ⊗ ξ}. (26)

As examples for both Sasakian and proper nearly Sasakian manifolds, we have the
following.

Example 2. Let us recall the 5-dimensional manifold M considered in Example 1. Then, the
components of the tensor field H of the type (1, 1) are given

Hξ = φ
(
∇ξφ

)
ξ = 0,

HX1 = φ∇ξ X2 − φ2∇ξ X1 = φX1 + φ2X2 = X2 − X2 = 0,

HX2 = −φ∇ξ X1 − φ2∇ξ X2 = −X1 + X1 = 0,

HX4 = φ∇ξ X5 − φ2∇ξ X4 = X5 − X5 = 0

HX5 = −φ∇ξ X4 − φ2∇ξ X5 = −X4 + X4 = 0.

This means that H vanishes everywhere. Therefore, in this case, the structure in (3) reduces to
(∇Xφ)Y = g(X, Y)ξ − η(X)Y, ∀X, Y ∈ Γ(TM), which shows that M is a Sasakian manifold.

In [1], the authors showed how to induce a nearly Sasakian structure for S5. In order to
do so, they looked at S5 as a hypersurface in S6 equipped with its nearly Kähler structure.

Example 3. We recall an example of 5-dimensional nearly Sasakian manifolds as detailed in [1,2,6].
Let S6 be the unit sphere in R7 with its cross product × induced by Cayley algebra. Let N =

∑7
i=1 xi

∂
∂xi

denote the unit outer normal. We define an almost complex structure J for S6 as
JX = N × X, which implies,

J2 = N × (N × X) = −X, ∀ X ∈ Γ(TS6).
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It is easy to see that J is almost complex structure and is also nearly Kähler (but non-Kähler)
when associated with the induced Riemannian metric. As detailed in [2], now we consider S5

as a totally umbilical hypersurface of S6 defined by x7 =
√

2
2 , with unit normal at each point x,

which is given by ω = x −
√

2 ∂
∂x7

= ∑6
i=1 xi

∂
∂xi

−
√

2
2

∂
∂x7

and the shape operator is A = −I. Let
(φ, ξ, η, g) be the almost induced contact metric structure with

ξ = −Jω =
√

2
(

x1
∂

∂x6
− x2

∂

∂x5
− x3

∂

∂x4
+ x4

∂

∂x3
+ x5

∂

∂x2
− x6

∂

∂x1

)
,

and η is given by the restriction of
√

2(x1dx6 − x6dx1 + x5dx2 − x2dx5 + x4dx3 − x3dx4) to S5.
This is a nearly Sasakian non-Sasakian structure with a constant sectional curvature of 2. The latter
means that

R(X, Y)ξ = 2{η(Y)X − η(X)Y}, ∀ X, Y ∈ Γ(TS5),

which implies that −φ2X − H2X = 2{X − η(X)ξ}; that is, H2X = −{X − η(X)ξ} with
λ2 = 1.

Next, we present some classes of nearly Sasakian manifolds in which condition (26) is
satisfied.

Suppose M is a semi-symmetric nearly Sasakian manifold. Then, the curvature tensor
R of M satisfies, for any vector fields X and Y of M, R(X, Y) · R = 0, where R(X, Y) operates
on R as a derivation of the tensor algebra at each point (see [8,9] for more details). Now, let
X and Y be vector fields in D such that g(X, Y) = 0. Then, using (19) and (21), we have,

(R(X, ξ) · R)(X, Y)Y = R(X, ξ)R(X, Y)Y − R(X, Y)R(X, ξ)Y − R(R(X, ξ)X, Y)Y

− R(X, R(X, ξ)Y)Y

= −g(X, R(X, Y)Y)ξ + η(R(X, Y)Y)X − η(R(X, Y)Y)H2X

+ g(H2X, R(X, Y)Y)ξ + {g(X, X)− g(H2X, X)}{g(Y, Y)− g(H2Y, Y)}ξ

− g(X, H2Y)g(X, H2Y)ξ.

(27)

Hence,

− g(X, R(X, Y)Y)ξ + η(R(X, Y)Y)X − η(R(X, Y)Y)H2X

+ g(H2X, R(X, Y)Y)ξ + {g(X, X)− g(H2X, X)}{g(Y, Y)− g(H2Y, Y)}ξ

− g(X, H2Y)g(X, H2Y)ξ = 0.

(28)

Thus, considering the ξ-component of (28), we obtain

g(R(X, Y)Y, X) = g(H2X, R(X, Y)Y) + g(X, X)g(Y, Y) + g(X, X)g(HY, HY)

+ g(Y, Y)g(HX, HX) + g(HX, HX)g(HY, HY)

− g(HX, HY)g(HX, HY).

(29)

If condition (26) is satisfied, then, from relation (29), one obtains,

(1 + λ2)g(R(X, Y)Y, X) = (1 + 2λ2 + λ4)g(X, X)g(Y, Y). (30)

That is,
g(R(X, Y)Y, X) = (1 + λ2)g(X, X)g(Y, Y). (31)

Therefore, we have
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Theorem 1. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold satisfying the Nomizu’s condition,
i.e., R(X, Y) · R = 0 for any vector fields X and Y of M. If

H2 = −λ2{I− η ⊗ ξ}

for some real number λ, then M is of a constant curvature 1 + λ2. Moreover, M is either a Sasakian
manifold or a 5-dimensional proper nearly Sasakian manifold.

Let κ be a real constant. Denote N(κ) as the κ-nullity distribution of M. Then, N(κ) is
seen as the function p �−→ Np(κ) with p ∈ M, where Np(κ) is the κ-nullity space at p given
by (see [12,13] for more details and reference therein)

Np(κ) =
{

Z ∈ Tp M : R(X, Y)Z = κ(g(Y, Z)X − g(X, Z)Y), ∀X, Y ∈ Tp M
}

,

where Tp M is the tangent space at p. If the vector field ξ on the nearly Sasakian manifold
M belongs to N(κ), then M is called κ space.

Therefore, we have this result.

Theorem 2. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. Then, M satisfies the condition (26)
if and only if M is a (1 + λ2) space.

Proof. If condition (26) is satisfied, then, for any vector vector fields X and Y of M,

R(X, Y)ξ = η(Y)X − η(X)Y − λ2η(X){Y − η(Y)ξ}+ λ2η(Y){X − η(X)ξ}
= (1 + λ2){η(Y)X − η(X)Y}.

The converse is straightforward and this completes the proof.

If a nearly Sasakian manifold M is Ricci semi-symmetric, then

(R(X, Y) · Ric)(Z, W) = −Ric(R(X, Y)Z, W)− Ric(Z, R(X, Y)W)

= 0, ∀ X, Y, Z, W ∈ Γ(TM). (32)

Using (19) and (20), one has

(R(X, Y) · Ric)(ξ, Z) = −Ric(R(X, Y)ξ, Z)− Ric(ξ, R(X, Y)Z)

= −η(Y)Ric(X, Z) + η(X)Ric(Y, Z)− η(X)Ric(H2Y, Z) (33)

+ η(Y)Ric(H2X, Z)− (2n − trace H2)η(R(X, Y)Z).

Now, through relation (20), we obtain

(R(ξ, X) · Ric)(Y, ξ) = −Ric(R(ξ, X)Y, ξ)− Ric(Y, R(ξ, X)ξ)

= −(2n − trace H2)g(X, Y) + (2n − trace H2)g(H2X, Y) (34)

+ Ric(X, Y)− Ric(H2X, Y).

If condition (26) is satisfied for M, then (34) becomes

(R(ξ, X) · Ric)(Y, ξ) = −2n(1 + λ2)2g(X, Y) + (1 + λ2)Ric(X, Y). (35)

Therefore, we obtain this result.

Theorem 3. A Ricci semi-symmetric nearly Sasakian manifold satisfying (26) is Einstein.
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Proof. If M is a Ricci semi-symmetric nearly Sasakian manifold satisfying (26), then, using
(35), the Ricci tensor is given by Ric(X, Y) = 2n(1 + λ2)g(X, Y) for any vector fields X and
Y of M, and the proof is completed.

In Ref. [4], Olszak proved that if a nearly Sasakian non-Sasakian manifold is locally
symmetric, then it is of a constant curvature and of dimension 5. If we assume that the
nearly Sasakian manifold M is of a constant sectional curvature κ, then the curvature tensor
R of M satisfies the equation in [14,15]:

R(X, Y)Z = κ{g(Y, Z)X − g(X, Z)Y}, ∀ X, Y ∈ Γ(TM). (36)

Then, by putting Z = ξ into (36) and using (19), we obtain

η(Y){(κ − 1)X + H2X} = η(X){(κ − 1)Y + H2Y}. (37)

This implies that
H2X = −(κ − 1){X − η(X)ξ}. (38)

Therefore, we obtain:

Theorem 4. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. If M is of a constant sectional
curvature κ, then M is either Sasakian or satisfies condition (26), with κ = 1 + λ2, λ 	= 0, and a
(1 + λ2) space.

A nearly Sasakian manifold M is locally symmetric if

(∇W R)(X, Y)Z = 0, , ∀ X, Y, Z, W ∈ Γ(TM).

We know that the covariant derivative of R, namely, ∇ R, is defined as

(∇ZR)(X, Y, W) = ∇ZR(X, Y)W − R(∇ZX, Y)W − R(X,∇ZY)W

− R(X, Y)∇ZW.
(39)

By putting W = ξ into (39), one has

(∇ZR)(X, Y, ξ) = {g(φZ, X) + g(HZ, X)}Y − {g(φZ, Y) + g(HZ, Y)}X − {g(φZ, X)

+ g(HZ, X)}H2Y + {g(φZ, Y) + g(HZ, Y)}H2X + η(X)(∇Z H2)Y

− η(Y)(∇Z H2)X + R(X, Y)φZ + R(X, Y)HZ.

(40)

By using (14), the term η(X)(∇Z H2)Y − η(Y)(∇Z H2)X becomes

η(X)(∇Z H2)Y − η(Y)(∇Z H2)X = η(X)g(φH2Z, Y)ξ + η(X)g(H3Z, Y)ξ

− η(Y)g(φH2Z, X)ξ − η(Y)g(H3Z, X)ξ.
(41)

Therefore,

(∇ZR)(X, Y, ξ) = {g(φZ, X) + g(HZ, X)}Y − {g(φZ, Y) + g(HZ, Y)}X

− {g(φZ, X) + g(HZ, X)}H2Y + {g(φZ, Y) + g(HZ, Y)}H2X

+ η(X)g(φH2Z, Y)ξ + η(X)g(H3Z, Y)ξ − η(Y)g(φH2Z, X)

− η(Y)g(H3Z, X)ξ + R(X, Y)φZ + R(X, Y)HZ.

(42)

If a nearly Sasakian manifold M is locally symmetric, then (42) leads to
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0 = {g(φZ, X) + g(HZ, X)}g(Y, W)− {g(φZ, Y) + g(HZ, Y)}g(X, W)

− {g(φZ, X) + g(HZ, X)}g(H2Y, W) + {g(φZ, Y) + g(HZ, Y)}g(H2X, W)

+ η(X)g(φH2Z, Y)η(W) + η(X)g(H3Z, Y)η(W)− η(Y)g(φH2Z, X)η(W)

− η(Y)g(H3Z, X)η(W) + g(R(X, Y)φZ, W) + g(R(X, Y)HZ, W)

(43)

for any vector field X, Y, Z, and W of M. As a result,

g(R(X, Y)φZ, W) + g(R(X, Y)HZ, W) = −g(R(X, Y)W, φZ)− g(R(X, Y)W, HZ)

= −g(R(X, Y)W, φZ + HZ).
(44)

Relation (43) becomes

0 = g(Y, W)g(φZ + HZ, X)− g(X, W)g(φZ + HZ, Y)

− g(H2Y, W)g(φZ + HZ, X) + g(H2X, W)g(φZ + HZ, Y)

+ η(X)η(W)g(φZ + HZ, H2Y)− η(Y)η(W)g(φZ + HZ, H2X)

− g(R(X, Y)W, φZ + HZ).

(45)

Thus,

R(X, Y)W = g(Y, W)X − g(X, W)Y − g(H2Y, W)X + g(H2X, W)Y

+ η(X)η(W)H2Y − η(Y)η(W)H2X

= {g(Y, W)− g(H2Y, W)}X − {g(X, W)− g(H2X, W)}Y (46)

+ η(W){η(X)H2Y − η(Y)H2X}.

Therefore, we have the following.

Theorem 5. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. If M is locally symmetric, then the
curvature tensor R of M is given by, for any vector fields X, Y, and Z of M,

R(X, Y)Z = g(Y − H2Y, Z)X − g(X − H2X, Z)Y

+ η(Z){η(X)H2Y − η(Y)H2X}.
(47)

Moreover, the Ricci tensor Ric and scalar curvature Scal are given, respectively, by

Ric(X, Y) = 2ng(X − H2X, Y)− η(X)η(Y)trace H2, (48)

and Scal = (2n + 1)
{

2n − trace H2
}

. (49)

Proof. Let {Ei}1≤i≤2n+1 be an orthonormal frame with respect to g. Then, the scalar
curvature is given by

Scal =
2n+1

∑
i=1

Ric(Ei, Ei) = (2n + 1)
{

2n − trace H2
}

,

which completes the proof.

Note that the geometric information of relations (47)–(49) depends on the information
of the operator H2. Let M be a locally symmetric nearly Sasakian manifold. Then, the
curvature tensor R of M satisfies Equation (47). In addition, if M is of a constant curvature
κ, then, by comparing both (36) and (47), one has,

127



Mathematics 2023, 11, 2634

(κ − 1){g(Y, Z)X − g(X, Z)Y} = −g(H2Y, Z)X + g(H2X, Z)Y

+ η(Z){η(X)H2Y − η(Y)H2X}.

By letting Y = Z = ξ, this equation reduces to H2X = −(κ − 1){X − η(X)ξ}. This
means that M is either Sasakian (when κ = 1) or non-Sasakian (when κ 	= 1), thus satisfying
H2X = −λ2{X − η(X)ξ}, with κ = 1 + λ2 and λ 	= 0. The converse is straightforward;
that is, if H2X = −(κ − 1){X − η(X)ξ}, then, using (47), the curvature tensor R satisfies

R(X, Y)Z = κ{g(Y, Z)X − g(X, Z)Y};

that is, M is of a constant curvature κ. Thus, according to [5], Theorem 4.1 we have the
following.

Theorem 6. Let (M, φ, ξ, η, g) be a locally symmetric nearly Sasakian manifold. Then, M is of a
constant curvature κ if and only if M is either Sasakian or is a 5-dimensional proper nearly Sasakian
manifold.

As a consequence to this theorem, we remark the following.

Corollary 1. There exist no locally symmetric nearly Sasakian manifolds of constant sectional
curvature such that, for some real number λ,

H2 	= −λ2{I− η ⊗ ξ}.

4. Curvature Tensor Properties

First of all, we shall prove the following propositions.

Proposition 1. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold and R be the Riemannian curva-
ture tensor of M. Then,

R(X, Y)φZ − φR(X, Y)Z = 2{g(φX, Y) + g(HX, Y)}φHZ − η(Z){η(X)(φH2Y + HY)

− η(Y)(φH2X + HX)} − g(Y − φHY, Z){φX + HX}+ g(X − φHX, Z){φY + HY}
− {g(φY, Z) + g(HY, Z)}{X − φHX}+ {g(φX, Z) + g(HX, Z)}{Y − φHY}
+ {η(X)g(HY + φH2Y, Z)− η(Y)g(HX + φH2X, Z)}ξ,

(50)

for any vector fields X, Y and Z on M.

Proof. The proof follows from straightforward calculations.

From (2), one obtains the following

g(R(X, Y)φZ, φW)− g(R(X, Y)Z, W) = −η(W)g(R(Z, ξ)X, Y) + 2g(φX, Y)g(HZ, W)

+ 2g(HX, Y)g(HZ, W)− η(X)η(Z)g(H2Y, W)− η(X)η(Z)g(HY, φW)

+ η(Y)η(Z)g(H2X, W) + η(Y)η(Z)g(HX, φW)− g(φY, Z)g(X, φW)

+ g(φY, Z)g(HX, W)− g(HY, Z)g(X, φW) + g(HY, Z)g(HX, W) + g(φX, Z)g(Y, φW)

− g(φX, Z)g(HY, W) + g(HX, Z)g(Y, φW)− g(HX, Z)g(HY, W)− g(Y, Z)g(X, W)

+ η(X)η(W)g(Y, Z)− g(Y, Z)g(HX, φW) + g(φHY, Z)g(X, W)− η(X)η(W)g(φHY, Z)

+ g(φHY, Z)g(HX, φW) + g(X, Z)g(Y, W)− η(Y)η(W)g(X, Z) + g(X, Z)g(HY, φW)

− g(φHX, Z)g(Y, W) + η(Y)η(W)g(φHX, Z)− g(φHX, Z)g(HY, φW).

(51)

By using the equality, g(R(X, Y)φZ, φW) = g(R(φZ, φW)X, Y), the relation (51) re-
duces to
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g(R(φZ, φW)X, Y)− g(R(Z, W)X, Y) = −η(W)g(R(Z, ξ)X, Y) + 2g(φX, Y)g(HZ, W)

+ 2g(HX, Y)g(HZ, W)− η(X)η(Z)g(H2Y, W)− η(X)η(Z)g(HY, φW)

+ η(Y)η(Z)g(H2X, W) + η(Y)η(Z)g(HX, φW)− g(φY, Z)g(X, φW)

+ g(φY, Z)g(HX, W)− g(HY, Z)g(X, φW) + g(HY, Z)g(HX, W) + g(φX, Z)g(Y, φW)

− g(φX, Z)g(HY, W) + g(HX, Z)g(Y, φW)− g(HX, Z)g(HY, W)− g(Y, Z)g(X, W)

+ η(X)η(W)g(Y, Z)− g(Y, Z)g(HX, φW) + g(φHY, Z)g(X, W)− η(X)η(W)g(φHY, Z)

+ g(φHY, Z)g(HX, φW) + g(X, Z)g(Y, W)− η(Y)η(W)g(X, Z) + g(X, Z)g(HY, φW)

− g(φHX, Z)g(Y, W) + η(Y)η(W)g(φHX, Z)− g(φHX, Z)g(HY, φW).

(52)

Therefore, we have the following.

Proposition 2. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold and R be the Riemannian curva-
ture tensor of M. Then,

R(φX, φY)Z − R(X, Y)Z = −η(Y)g(H2X, Z)ξ + η(Y)η(Z)H2X + 2g(HX, Y)φZ

+ 2g(HX, Y)HZ − η(Z)η(X)H2Y − η(Z)η(X)φHY + η(X)g(H2Z, Y)ξ

+ η(X)g(HZ, φY)ξ + g(Z, φY)φX − g(HZ, Y)φX + g(Z, φY)HX − g(HZ, Y)HX

+ g(φZ, X)φY + g(φZ, Y)HY + g(HZ, X)φY + g(HZ, X)HY − g(Z, Y)X

− g(HZ, φY)X − g(Z, Y)φHX + η(Z)η(Y)φHX − g(HZ, φY)φHX + g(Z, X)Y

+ g(Z, X)φHY − g(φHZ, X)Y + η(Y)g(φHZ, X)ξ − g(φHZ, X)φHY,

(53)

for any vector fields X, Y, and Z of M.

Next, we deal with the φ-holomorphic sectional curvature on a nearly Sasakian mani-
fold. A plane section σ in Tp M of a nearly Sasakian manifold M is called a φ section if there
exists a vector field X for M that is orthogonal to ξ such that the basis {X, φX} spans σ.
The sectional curvature K(X, φX) of a φ section is called the φ-sectional curvature, and it is
denoted by H. If M has a pointwise constant φ-holomorphic sectional curvature H = H(p),
p ∈ M, then, for any vector fields X and Y ∈ D = ker η, we have

g(R(X, φX)X, φX) = −Hg(X, X)2. (54)

By taking the g-dot with φW of (2) and for any X, Y, and Z of D, we have

g(R(X, Y)φZ, φW) = g(R(X, Y)Z, W) + 2{g(φX, Y) + g(HX, Y)}g(HZ, W)

− {g(φY, Z) + g(HY, Z)}g(X − φHX, φW) + {g(φX, Z)

+ g(HX, Z)}g(Y − φHY, φW)− g(Y − φHY, Z)g(φX + HX, φW)

+ g(X − φHX, Z)g(φY + HY, φW).

(55)

By putting the vector fields Y = φY, Z = φX, and W = Y into (55), one obtains

g(R(X, φY)X, φY) = g(R(X, φY)Y, φX) + g(X, Y)2 − g(HX, φY)2 + g(X, φY)2

− g(HX, Y)2 − g(X, X)g(Y, Y).
(56)

Likewise, for any X, Y ∈ Γ(D), we have,

g(R(X, φX)Y, φX) = g(R(X, φX)X, φY). (57)

By substituting X + Y in (54), and by using (57), the left-hand side of relation (54)
becomes
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g(R(X + Y, φX + φY)(X + Y), φX + φY) = g(R(X, φX)X, φX) + g(R(Y, φY)Y, φY)

+ g(R(Y, φX)X, φX) + g(R(X, φY)X, φX) + g(R(Y, φY)X, φX) + g(R(X, φX)Y, φX)

+ g(R(Y, φX)Y, φX) + g(R(X, φY)Y, φX) + g(R(Y, φY)Y, φX) + g(R(X, φX)X, φY)

+ g(R(Y, φX)X, φY) + g(R(X, φY)X, φY) + g(R(Y, φY)X, φY) + g(R(X, φX)Y, φY)

+ g(R(Y, φX)Y, φY) + g(R(X, φY)Y, φY).

(58)

By using (56) and (57), the Bianchi Identity, i.e., g(R(Y, φY)X, φX) = g(R(X, φY)Y, φX)
+ g(R(φX, φY)X, Y) and g(R(X, φX)Y, φY) = g(R(X, φY)Y, φX) + g(R(φX, φY)X, Y), one
has

g(R(X + Y, φX + φY)(X + Y), φX + φY)

= 4g(R(X, φY)Y, φX) + 4g(R(Y, φY)Y, φX) + 4g(R(X, φX)X, φY)

+ 2g(R(φX, φY)X, Y) + g(R(Y, φX)Y, φX) + g(R(X, φY)X, φY)

+ g(R(X, φX)X, φX) + g(R(Y, φY)Y, φY).

(59)

Now, by using (54), the relation (59) becomes, for any X and Y of D,

g(R(X + Y, φX + φY)(X + Y), φX + φY)

= 4g(R(X, φY)Y, φX) + 4g(R(Y, φY)Y, φX) + 4g(R(X, φX)X, φY)

+ 2g(R(φX, φY)X, Y) + g(R(Y, φX)Y, φX) + g(R(X, φY)X, φY)

−Hg(X, X)2 −Hg(Y, Y)2.

(60)

By substituting X + Y in (54), the right-hand side of relation (54) yields

−Hg(X, X)2 = −H{g(X, X)2 + 4g(X, X)g(X, Y) + 2g(X, X)g(Y, Y)

+ 4g(X, Y)2 + 4g(X, Y)g(Y, Y) + g(Y, Y)2}.
(61)

By calculating equality of (60) and (61), we obtain

1
2
{4g(R(X, φY)Y, φX) + 4g(R(Y, φY)Y, φX) + 4g(R(X, φX)X, φY)

+ 2g(R(φX, φY)X, Y) + g(R(Y, φX)Y, φX) + g(R(X, φY)X, φY)}
= −H{2g(X, Y)2 + 2g(X, X)g(X, Y) + 2g(X, Y)g(Y, Y)

+ g(X, X)g(Y, Y)}.

(62)

By putting X = φY, Y = X, and Z = Y into (2), we have

−g(R(Y, φX)Y, φX)− g(R(φY, X)Y, φX) = g(HY, φX)2 − g(Y, φX)2

+ g(HY, X)2 + g(Y, Y)g(X, X)− g(X, Y)2.
(63)

Therefore, we have

g(R(Y, φX)Y, φX) = g(R(X, φY)Y, φX) + g(X, Y)2 − g(HY, φX)2

+ g(Y, φX)2 − g(HY, X)2 − g(X, X)g(Y, Y).
(64)

By adding (56) and (64), one obtains

g(R(X, φY)X, φY) + g(R(Y, φX)Y, φX) = 2g(R(X, φY)Y, φX)

+ 2g(X, Y)2 − 2g(HX, φY)2 + 2g(X, φY)2 − 2g(HX, Y)2

− 2g(X, X)g(Y, Y).

(65)
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By putting (65) into (62), we have

3g(R(X, φY)Y, φX) + 2g(R(Y, φY)Y, φX) + 2g(R(X, φX)X, φY)

+ g(R(φX, φY)X, Y) + g(X, Y)2 − g(HX, φY)2 + g(X, φY)2

− g(HX, Y)2 − g(X, X)g(Y, Y)

= −H{2g(X, Y)2 + 2g(X, X)g(X, Y) + 2g(X, Y)g(Y, Y)

+ g(X, X)g(Y, Y)}.

(66)

Since

g(R(φX, φY)X, Y) = g(R(X, Y)X, Y) + g(HX, Y)2 − g(X, φY)2

− g(X, Y)2 + g(HX, φY)2 + g(X, X)g(Y, Y),
(67)

the relation (66) becomes

3g(R(X, φY)Y, φX) + 2g(R(Y, φY)Y, φX) + 2g(R(X, φX)X, φY) + g(R(X, Y)X, Y)

= −H{2g(X, Y)2 + 2g(X, X)g(X, Y) + 2g(X, Y)g(Y, Y)

+ g(X, X)g(Y, Y)}.

(68)

By replacing Y with −Y in (68), one obtains

3g(R(X, φY)Y, φX)− 2g(R(Y, φY)Y, φX)− 2g(R(X, φX)X, φY)

+ g(R(X, Y)X, Y) = −H{2g(X, Y)2 − 2g(X, X)g(X, Y)

− 2g(X, Y)g(Y, Y) + g(X, X)g(Y, Y)}.

(69)

By summing the relations (68) and (69), we have

3g(R(X, φY)Y, φX) + g(R(X, Y)X, Y) = −H{2g(X, Y)2 + g(X, X)g(Y, Y)}. (70)

By replacing Y with φY in (70) and using curvature identities, we obtain,

3g(R(φY, φX)Y, X) + g(R(X, φY)X, φY) = −H{2g(X, φY)2 + g(X, X)g(Y, Y)}. (71)

Through the relations (56) and (67), the left-hand side of relation (71) becomes

3g(R(φY, φX)Y, X) + g(R(X, φY)X, φY) = 3g(R(X, Y)X, Y) + g(R(X, φY)Y, φX)

+ 2g(HX, Y)2 − 2g(X, φY)2 − 2g(X, Y)2 + 2g(HX, φY)2

+ 2g(X, X)g(Y, Y).

(72)

By putting the pieces (71) and (72) together, we have

g(R(X, φY)Y, φX) = −3g(R(X, Y)X, Y)−H{2g(X, φY)2 + g(X, X)g(Y, Y)}
− 2g(HX, Y)2 + 2g(X, φY)2 + 2g(X, Y)2 − 2g(HX, φY)2

− 2g(X, X)g(Y, Y).

(73)

Substituting (73) into (70) leads to

−8g(R(X, Y)X, Y)− 3H{2g(X, φY)2 + g(X, X)g(Y, Y)} − 6g(HX, Y)2

+ 6g(X, φY)2 + 6g(X, Y)2 − 6g(HX, φY)2

− 6g(X, X)g(Y, Y) = −H{2g(X, Y)2 + g(X, X)g(Y, Y)}.

(74)
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Therefore, we have

4g(R(X, Y)X, Y) = (H+ 3){g(X, Y)2 − g(X, X)g(Y, Y)}
− 3(H− 1)g(X, φY)2 − 3g(HX, Y)2 − 3g(HX, φY)2.

(75)

By replacing X and Y with X + Z and Y + W, respectively, in both sides of (75), one
has,

8g(R(X, Y)Z, W) + 8g(R(Z, Y)X, W) = −4(H+ 3)g(X, Z)g(Y, W)

+ 2(H+ 3){g(X, Y)g(Z, W) + g(X, W)g(Z, Y)}
− 6(H− 1){g(X, φY)g(Z, φW) + g(X, φW)g(Z, φY)}
− 6{g(HX, Y)g(HZ, W) + g(HX, W)g(HZ, Y)

+ g(HX, φY)g(HZ, φW) + g(HX, φW)g(HZ, φY)}.

(76)

In addition, by replacing Y with Z and Z with Y in (76) and then multiplying both
sides by −1, we have

− 8g(R(X, Z)Y, W)− 8g(R(Y, Z)X, W) = 4(H+ 3)g(X, Y)g(Z, W)

− 2(H+ 3){g(X, Z)g(Y, W) + g(X, W)g(Z, Y)}+ 6(H− 1){g(X, φZ)g(Y, φW)

+ g(X, φW)g(Y, φZ)}+ 6{g(HX, Z)g(HY, W) + g(HX, W)g(HY, Z)

+ g(HX, φZ)g(HY, φW) + g(HX, φW)g(HY, φZ)}.

(77)

By adding (76) and (77), we have

8g(R(X, Y)Z, W) + 16g(R(Z, Y)X, W)− 8g(R(X, Z)Y, W)

= 6(H+ 3){g(X, Y)g(Z, W)− g(X, Z)g(Y, W)} − 6(H− 1){g(X, φY)g(Z, φW)

− g(X, φZ)g(Y, φW) + 2g(X, φW)g(Z, φY)} − 6{g(HX, Y)g(HZ, W)

− g(HX, Z)g(HY, W) + 2g(HX, W)g(HZ, Y) + g(HX, φY)g(HZ, φW)

− g(HX, φZ)g(HY, φW) + 2g(HX, φW)g(HZ, φY)}.

(78)

By using the Bianchi identity, that is, R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0 and
g(R(Z, Y)X, W) = g(R(X, W)Z, Y), the relation ((78) becomes

24g(R(X, W)Z, Y) = 6(H+ 3){g(X, Y)g(Z, W)− g(X, Z)g(Y, W)}
− 6(H− 1){g(X, φY)g(Z, φW)− g(X, φZ)g(Y, φW) + 2g(X, φW)g(Z, φY)}
− 6{g(HX, Y)g(HZ, W)− g(HX, Z)g(HY, W) + 2g(HX, W)g(HZ, Y)

+ g(HX, φY)g(HZ, φW)− g(HX, φZ)g(HY, φW) + 2g(HX, φW)g(HZ, φY)}.

(79)

By exchanging W and Y in (79), we obtain

24g(R(X, Y)Z, W) = 6(H+ 3){g(X, W)g(Z, Y)− g(X, Z)g(Y, W)}
− 6(H− 1){g(X, φW)g(Z, φY)− g(X, φZ)g(W, φY) + 2g(X, φY)g(Z, φW)}
− 6{g(HX, W)g(HZ, Y)− g(HX, Z)g(HW, Y) + 2g(HX, Y)g(HZ, W)

+ g(HX, φW)g(HZ, φY)− g(HX, φZ)g(HW, φY) + 2g(HX, φY)g(HZ, φW)}

(80)

for any X, Y, Z, and W ∈ Γ(D). Now, by considering a vector field X of M as X =
QX + η(X)ξ, where Q is the projection onto D, one has, for any X, Y , Z, and W ∈ Γ(TM),

g(R(QX, QY)QZ, QW) = g(R(X, Y)Z, W)− η(X)η(W){g(Y, Z)− g(H2Z, Y)}
+ η(X)η(Z){g(W, Y)− g(H2W, Y)} − η(Y)η(Z){g(W, X)− g(H2W, X)}
+ η(Y)η(W){g(Z, X)− g(H2Z, X)}.

(81)
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From (80), and by using (81), we have the following

24g(R(X, Y)Z, W) = 6(H+ 3){g(X, W)g(Z, Y)− η(Z)η(Y)g(X, W)

− η(X)η(W)g(Z, Y)− g(X, Z)g(Y, W) + η(Y)η(W)g(X, Z)

+ η(X)η(Z)g(Y, W)} − 6(H− 1){g(X, φW)g(Z, φY)− g(X, φZ)g(W, φY)

+ 2g(X, φY)g(Z, φW)} − 6{g(HX, W)g(HZ, Y)− g(HX, Z)g(HW, Y)

+ 2g(HX, Y)g(HZ, W) + g(HX, φW)g(HZ, φY)− g(HX, φZ)g(HW, φY)

+ 2g(HX, φY)g(HZ, φW)}+ 24η(X)η(W){g(Y, Z)− g(H2Z, Y)}
− 24η(X)η(Z){g(W, Y)− g(H2W, Y)}+ 24η(Y)η(Z){g(W, X)− g(H2W, X)}
− 24η(Y)η(W){g(Z, X)− g(H2Z, X)}.

(82)

Therefore, one has the following.

Proposition 3. Let (M, φ, ξ, η, g) be a nearly Sasakian manifold. Then, the necessary and sufficient
condition for M to have a pointwise constant φ-holomorphic sectional curvature H is

R(X, Y)Z =
H+ 3

4
{g(Z, Y)X − g(X, Z)Y}+ H− 1

4
{η(X)η(Z)Y

− η(Z)η(Y)X + η(Y)g(X, Z)ξ − η(X)g(Z, Y)ξ + g(Z, φY)φX

+ g(X, φZ)φY + 2g(X, φY)φZ} − 1
4
{g(HZ, Y)HX + g(HX, Z)HY

+ 2g(HX, Y)HZ − g(HZ, φY)φHX − g(HX, φZ)φHY

− 2g(HX, φY)φHZ}+ η(Z){η(X)H2Y − η(Y)H2X}
+ {η(Y)g(H2Z, X)− η(X)g(H2Z, Y)}ξ

(83)

for all vector fields X, Y, and Z of M.

From relation (83), the Ricci tensor Ric associated with the Riemannian metric g yields

Ric(X, Y) =
n(H+ 3) +H− 1

2
g(X, Y)− (n + 1)(H− 1)

2
η(X)η(Y)

− 5
2

g(X, H2Y)− η(X)η(Y)trace H2.
(84)

Moreover, we have the identity for the Ricci curvature:

Ric(φX, φY) = Ric(X, Y)− (2n − trace H2)η(X)η(Y). (85)

Let τ be the scalar curvature of g. Then, τ is given by

τ =
1
2
{n(2n + 1)(H+ 3) + n(H− 1)} − 7

2
trace H2. (86)

Lemma 1. In a nearly Sasakian manifold, the eigenvalues of the operator H2 are constant.

Proof. The proof follows from a direct calculation using (14).

For any vector field X, Y, Z, and W, one has
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(∇XRic)(Y, Z) =
n + 1

2
X(H)g(Y, Z)−

{
(n + 1)(H− 1)

2
+ trace H2

}
{η(Z)(∇Xη)Y

+η(Y)(∇Xη)Z}+ 5
2
{g((∇X H)Y, HZ) + g(HY, (∇X H)Z)}

=
n + 1

2
X(H)g(Y, Z) +

{
(n + 1)(H− 1)

2
+ trace H2

}
{η(Z)g(φX, Y)

+η(Z)g(HX, Y) + η(Y)g(φX, Z) + η(Y)g(HX, Z)}

+
5
2

{
η(Y)g(H2X, HZ)− η(Y)g(φHX, HZ) + η(Z)g(H2X, HY)

−η(Z)g(φHX, HY)}.

(87)

Let {Ei}1≤i≤2n+1 be an arbitrary local orthonormal frame field on M. Then,

∇Xτ = 2
2n+1

∑
i=1

(∇Ei Ric)(X, Ei) = (n + 1)X(H). (88)

On the other hand, by using (86) and Lemma 1, one obtains

∇Xτ =
1
2
{n(2n + 1)X(H) + nX(H)} − 1

2
X(trace H2) = n(n + 1)X(H). (89)

From the relations (88) and (89), we have

n(n + 1)X(H) = (n + 1)X(H), ∀ X ∈ Γ(TM).

This leads to (n − 1)X(H) = 0. If n > 1, and the nearly Sasakian manifold M is
connected, then H is constant for M. Therefore, according to Ogiue [16], we obtain the
following theorem.

Theorem 7. Let M be a (2n + 1)-dimensional nearly Sasakian manifold (n > 1). If the
φ-holomorphic sectional curvature at any point of M is independent of the choice of the φ-holomorphic
section, then it is constant for M, and the curvature tensor R is given by

R(X, Y)Z =
H+ 3

4
{g(Z, Y)X − g(X, Z)Y}+ H− 1

4
{η(X)η(Z)Y − η(Z)η(Y)X

+ η(Y)g(X, Z)ξ − η(X)g(Z, Y)ξ + g(Z, φY)φX + g(X, φZ)φY + 2g(X, φY)φZ}

− 1
4
{g(HZ, Y)HX + g(HX, Z)HY + 2g(HX, Y)HZ − g(HZ, φY)φHX

− g(HX, φZ)φHY − 2g(HX, φY)φHZ}+ η(Z){η(X)H2Y − η(Y)H2X}
+ {η(Y)g(H2Z, X)− η(X)g(H2Z, Y)}ξ

(90)

for any vector fields X, Y, and Z of M.

Note that a complete and simply connected nearly Sasakian manifold with a constant
φ-holomorphic sectional curvature H is said to be a nearly Sasakian space form. Thus, we
obtain the following result.

Theorem 8. Let M be a (2n + 1)-dimensional complete and simply connected nearly Sasakian
manifold (n > 1). Then, M is a nearly Sasakian space form if and only if the curvature tensor R is
given by (90).

Next, we introduce another class of nearly Sasakian manifolds with a Codazzi-type
Ricci tensor in which the condition (26) is naturally derived.

134



Mathematics 2023, 11, 2634

With regard to a Codazzi-type Ricci tensor, we mean a Ricci tensor Ric satisfying the
Codazzi equation; that is,

(∇XRic)(Y, Z) = (∇YRic)(X, Z), ∀ X, Y, Z ∈ Γ(TM). (91)

A manifold with such a tensor is called a Codazzi-type Ricci manifold.
Now, from (87) and (91), one has{

(n + 1)(H− 1)
2

+ trace H2
}
{2η(Z)g(φX, Y + 2η(Z)g(HX, Y)

+η(Y)g(φX, Z)− η(X)g(φY, Z) + η(Y)g(HX, Z)− η(X)g(HY, Z)}

+
5
2

{
η(Y)g(H2X, HZ)− η(X)g(H2Y, HZ) + η(X)g(φHY, HZ)

−η(Y)g(φHX, HZ) + 2η(Z)g(H2X, HY)− 2η(Z)g(φHX, HY)
}
= 0.

(92)

Letting X = ξ in this equation yields{
(n + 1)(H− 1)

2
+ trace H2

}
{−g(φY, Z)− g(HY, Z)}

+
5
2

{
−g(H2Y, HZ) + g(φHY, HZ)

}
= 0.

(93)

If Z = φY, then this equation becomes

2
5

{
(n + 1)(H− 1)

2
+ trace H2

}
{g(Y, Y)− η(Y)η(Y)}+ g(HY, HY) = 0. (94)

We set

μ =
2
5

{
(n + 1)(H− 1)

2
+ trace H2

}
. (95)

Then, relation (94) leads to

H2 = μ{I− η ⊗ ξ}. (96)

In accordance with Lemma 1 and Theorem 8, the function μ defined in (95) on a nearly
Sasakian space form is a constant. This is achieved by taking into account the reasoning
that led to (26), μ = −λ2. This means that μ is non-positive. According to Theorem 4.1
in [5], we have the following result.

Theorem 9. A Codazzi-type Ricci nearly Sasakian space form is either a Sasakian manifold with a
constant φ-holomorphic sectional curvature H = 1 or is a 5-dimensional proper nearly Sasakian
manifold with a constant φ-holomorphic sectional curvature H > 1.

Proof. The last assertion follows from (95), (96), and the sign of μ.

Note that Hξ = 0, i.e., 0 is an eigenvalue of H2. Also, since the operator H is skew-
symmetric, the non-vanishing eigenvalues of H2 are negative, as proven by (26). Thus, the
spectrum of H2 is of the type

Spec(H2) = {0,−λ2, · · · ,−λ2}, λ 	= 0.

Let Rξ, D(0), and D(−λ2) denote the distribution of dimension 1 generated by ξ
and the distributions of the eigenvectors corresponding to the eigenvalues 0 and −λ2,
respectively.
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If X is an eigenvector of H2 with a corresponding eigenvalue of −λ2, then, from (4),
we have

H2∇Xξ = −(∇X H2)ξ = −(φ + H)H2X = −λ2∇Xξ. (97)

This means that ∇Xξ is an eigenvector corresponding to the eigenvalue −λ2. Given
that the relation (14) leads to ∇ξ H2 = 0, we have

H2∇ξ X = ∇ξ H2X = −ξ(λ2)X − λ2∇ξ X = −λ2∇ξ X. (98)

Thus, ∇ξ X is also an eigenvector corresponding to the eigenvalue −λ2. If vector fields
X and Y are both eigenvectors with the eigenvalue −λ2 and are orthogonal to ξ, then, from
(14), one obtains

H2(∇XY) = ∇X H2Y − (∇X H2)Y = −λ2∇XY + λ2g(φX + HX, Y)ξ. (99)

If λ = 0, the ∇XY belongs to D(0). If λ 	= 0, one obtains

H2(φ2∇XY) = φ2(H2∇XY) = −λ2φ2(∇XY), (100)

and, thus,
∇XY = −φ2∇XY + η(∇XY)ξ ∈ Rξ ⊕ D(−λ2).

Note that, if X is an eigenvector of H2 with an eigenvalue −λ2, then the vector fields
X, φX, HX, and HφX are mutually orthogonal, and they are also eigenvectors of H2 with
the corresponding eigenvalue −λ2. By using Theorem 9, 0 becomes a simple eigenvalue,
and the multiplicity of the eigenvalue −λ2 is 4. Therefore, we obtain the following result.

Theorem 10. Let M be a Codazzi-type Ricci nearly Sasakian space form. Then, the spectrum of
H2 has the form

Spec(H2) = {0,−λ2, −λ2, −λ2, −λ2}, λ 	= 0,

where 0 is a simple eigenvalue, and −λ2 is an eigenvalue of multiplicity 4. Moreover, the distribu-
tions D(0) and Rξ ⊕ D(−λ2) are integrable with totally geodesic leaves.

Cappelletti-Montano and Dileo proved in ([Theorem 4.3] in [2]) that there is a one-
to-one correspondence between a nearly Sasakian space form and SU(2) structures. The
latter induces a Sasaki–Einstein structure (see [2] for more details). Therefore, we have the
following result.

Theorem 11. A Codazzi-type Ricci nearly Sasakian space form carries a Sasaki–Einstein structure.

A similar conclusion from Theorem 11 can also be induced from some of the results
found in Section 3. In [Theorem 6.1] in [4], Olszak proved, under the condition (22), that
a proper nearly Sasakian space form is a 5-dimensional manifold of a constant sectional
curvature. Next, we prove otherwise using the projectively flat notion. First of all, we note
that the class of Codazzi-type Ricci manifolds is a subclass of projectively flat manifolds
(see [Proposition 5] in [17] for more details). The concept of projectively flat is defined via
a tensor called the projective curvature tensor. This plays a role as an important tensor
in differential geometry. A manifold M is said to be locally projectively flat if there is a
one-to-one correspondence between each coordinate system of M and a subspace of a
Euclidean space E such that any geodesic of M corresponds to a straight line in E. As
known in ([17], p. 411), the Levi–Civita connection of a non-degenerate metric g is locally
projectively flat if and only if g has a constant sectional curvature.

For n ≥ 1, a nearly Sasakian manifold M is locally projectively flat if and only if the
projective curvature tensor P vanishes, where P is given by (see [17])

P(X, Y)Z = R(X, Y)Z − 1
2n

{Ric(Y, Z)X − Ric(X, Z)Y} (101)
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for any vector fields X, Y, and Z of M.

Theorem 12. A proper nearly Sasakian space form is not of constant sectional curvature.

Proof. Let M be a proper nearly Sasakian space form. If we assume that M is of a constant
sectional curvature, then it is locally projectively flat; that is, the projective curvature tensor
P in (101) vanishes. A direct calculation of (101) leads to

2nR(X, Y)Z − {Ric(Y, Z)X − Ric(X, Z)Y} = −H− 1
2

{g(Z, Y)X − g(X, Z)Y}

+

{
trace H2 +

H− 1
2

}
{η(Y)η(Z)X − η(X)η(Z)Y}+ n(H− 1)

2
{η(Y)g(X, Z)ξ

− η(X)g(Z, Y)ξ + g(Z, φY)φX + g(X, φZ)φY + 2g(X, φY)φZ}
− n

2
{g(HZ, Y)HX + g(HX, Z)HY + 2g(HX, Y)HZ − g(HZ, φY)φHX

− g(HX, φZ)φHY − 2g(HX, φY)φHZ}+ η(Z){η(X)H2Y − η(Y)H2X

+ 2n{η(Y)g(H2Z, X)− η(X)g(H2Z, Y)}ξ − 5
2

g(HY, HZ)X +
5
2

g(HX, HZ)Y.

(102)

Now, by putting Y = Z ∈ Γ(D) into (102) and considering X ∈ Γ(D) such that
g(X, Y) = 0, we have

2ng(P(X, Y)Y, Y) =
5
2

g(HX, HY)g(Y, Y). (103)

Since M is locally projectively flat, then (103) vanishes; that is,

0 = g(HX, HY)g(Y, Y), ∀ X ∈ Γ(D).

This implies that H2Y = 0, as g(Y, Y) 	= 0, ∀Y ∈ Γ(D). Since Hξ = 0, thus H2 = 0 for
M, which is a contradiction, as M is non-Sasakian. This completes the proof.
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Abstract: Recently, we studied CR-slant warped products B1 × f M⊥, where B1 = MT × Mθ is
the Riemannian product of holomorphic and proper slant submanifolds and M⊥ is a totally real
submanifold in a nearly Kaehler manifold. In the continuation, in this paper, we study B2 × f Mθ ,
where B2 = MT × M⊥ is a CR-product of a nearly Kaehler manifold and establish Chen’s inequality
for the squared norm of the second fundamental form. Some special cases of Chen’s inequality
are given.
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1. Introduction

A submanifold M of an almost Hermitian manifold M̃ is called a complex submanifold
of M̃ if its tangent space remains the same under the action of almost complex structure
J. On contrary, M is called a totally real submanifold if J carries each tangent space of M
into the corresponding normal space (see [1]). A submanifold M of M̃ is called a CR-
submanifold (or Cauchy–Riemann submanifold) [2] if there exists a complex distribution D

on M whose orthogonal complementary distribution D⊥ is a totally real distribution,
i.e., JD⊥

p ⊂ T⊥
p N, ∀p ∈ M.

A CR-submanifold is called a CR-product [3] if it is a Riemannian product of a complex
submanifold MT and a totally real submanifold M⊥. For basic properties of CR-products
in Käher manifolds, see, e.g., [2–5]. In [6,7], the second author introduced and investigated
fundamental properties of a much larger class of CR-submanifolds; namely, the class of CR-
warped product submanifolds. It was proved in [6] that there are no CR-warped product
submanifolds in a Kaehler manifold M̃ which are of the form M⊥ × f MT , where M⊥ is
totally real and MT is complex in M̃. On the other hand, a CR-submanifold M is called a
CR-warped product [6] if it is the warped product MT × f M⊥ of a complex submanifold MT
and a totally real submanifold M⊥, where f is the warping function.

The second author proved in [6] that every CR-warped product MT × f M⊥ in an
arbitrary Kaehler manifold satisfies the basic inequality,

‖h‖2 ≥ 2p‖∇(ln f )‖2,

where p is the dimension of M⊥, ‖h‖2 is the squared norm of the second fundamental
form h, and ∇(ln f ) is the gradient of ln f . The second author also classified all CR-warped
products in complex space form satisfying the equality of the inequality in [6,7]. For further
results in this respect, see [4,5,8–14].
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CR-slant warped product submanifolds of the form B1 × f M⊥ in a nearly Kaehler
manifold M̃ were studied in [14], where B1 = MT × Mθ is the Riemannian product of a
complex submanifold and a proper slant submanifold of M̃. In fact, the following Chen
type inequality was established in [14].

Theorem 1 ([14]). Let M = B1 × f M⊥ be a CR-slant warped product submanifold of a nearly
Kaehler manifold M̃, where B1 = MT × Mθ is the Riemannian product of complex and proper slant
submanifolds of M̃. If M is D⊥ ⊕Dθ-mixed totally geodesic in M̃, then:

(i) The second fundamental form h satisfies

‖h‖2 ≥ 2s‖�∇T(ln f )‖2 + s cot2 θ‖�∇θ(ln f )‖2 (1)

where s = dim M⊥ and �∇T(ln f ) and �∇θ(ln f ) denote the gradient components of ln f
along MT and Mθ , respectively.

(ii) If the equality sign in (1) holds identically, then MT and Mθ are totally geodesic, B1 is mixed
totally geodesic in M̃ and M⊥ is totally umbilical in M̃.

In the sequel, we study in this paper CR-slant warped product submanifolds of
the form M = B2 × f Mn3

θ , where B2 = Mn1
T × Mn2

⊥ is a CR-product and Mn3
θ is an n3-

dimensional proper θ-slant submanifold in a nearly Kaehler manifold M̃2m. We prove that
the second fundamental form h of M satisfies the following inequality

‖h‖2 ≥ 1
9

n3 cos2 θ‖�∇⊥(ln f )‖2 + 2n3

(
1 +

10
9

cot2 θ

)
‖�∇T(ln f )‖2

where �∇⊥(ln f ) and �∇T(ln f ) are the gradients of ln f along M⊥ and MT , respectively.
In this paper, we also discuss the equality case of this inequality. Several immediate
consequences of this inequality are also given.

2. Basic Definitions and Formulas

Let M̃2m be an almost Hermitian manifold endowed with an almost complex structure
J and a Riemannian metric g̃, such that

J2(X) = −X, g̃(JX, JY) = g̃(X, Y) (2)

for any X, Y ∈ Γ(TM̃2m), where Γ(TM̃2m) denotes the Lie algebra of vector fields on M̃2m.
In addition, an almost Hermitian manifold is called Kaehler manifold if

(∇̃X J)Y = 0, ∀ X, Y ∈ Γ(TM̃2m),

where ∇̃ is the Levi–Civita connection on M̃2m. Furthermore, an almost Hermitian manifold
M̃2m is nearly Kaehler if (∇̃X J)X = 0, ∀ X ∈ Γ(TM̃2m), equivalently

(∇̃X J)Y + (∇̃Y J)X = 0, ∀ X, Y ∈ Γ(TM̃2m). (3)

Clearly, every Kaehler manifold is nearly Kaehler but the converse is not true in general.
The best known example of a nearly Kaehler non-Kaehlerian manifold is 6-dimensional
sphere S6. For further results on nearly Kaehler manifolds, see, e.g., [15–19].

Let M be a Riemannian manifold isometrically immersed in M̃2m. We denote the
metric g̃ and the induced metric g on M by the same symbol g. The Gauss and Weingarten
formulas are, respectively, given by (see, e.g., [4,5])

∇̃XY = ∇XY + h(X, Y), (4)

∇̃Xξ = −Aξ X +∇⊥
X ξ, (5)
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for vector fields X, Y ∈ Γ(TM) and ξ ∈ Γ(T⊥M), where Γ(T⊥M) denotes the set of all
vector fields normal to M and ∇ and ∇⊥ denote the induced connections on the tangent
and normal bundles of M, respectively, and h is the second fundamental form A is the
shape operator of M; and they are related by

g(Aξ X, Y) = g(h(X, Y), ξ) (6)

for any vector fields X, Y ∈ Γ(TM) and any normal vector ξ ∈ Γ(T⊥M). A submanifold M
in M̃2m is called totally geodesic if the second fundamental form h vanishes identically on M.
Furthermore, M is called totally umbilical if h satisfies

h(X, Y) = g(X, Y)H, (7)

where H is the mean curvature vector M defined by H = 1
n trace h, n = dim M.

For each vector field X tangent to M, we write

JX = PX + FX, (8)

where PX and FX are the tangential and normal components of JX.

Definition 1 ([20,21]). A submanifold M of an almost Hermitian manifold M̃ is called slant if
for each p ∈ M, the Wirtinger angle θ(X) between JX and Tp M is constant on M, i.e., it does not
depend on the choice of X ∈ Tp M and p ∈ M. In this case, θ is called the slant angle of M.

Complex and totally real submanifolds are slant submanifolds with slant angle θ = 0
and θ = π

2 , respectively. A slant submanifold is called proper if it is neither complex nor
totally real.

More generally, a distribution D on M is called a slant distribution if the angle θ(X)
between JX and Dp is independent of the choice of p ∈ M for any 0 	= X ∈ Dp. The second
author shown that a submanifold M of M̃ is slant if, and only if, we have [20]

P2X = −(cos2 θ)X, X ∈ Γ(TM). (9)

Clearly, it follows from (8) and (9) that

g(PX, PY) = (cos2 θ)g(X, Y), g(FX, FY) = (sin2 θ)g(X, Y), (10)

for any vector fields X, Y tangent to M.

Definition 2. A submanifold M of an almost Hermitian manifold M̃ is called CR-slant if there
exist mutually orthogonal distributions D, D⊥ and Dθ , such that the tangent bundle is spanned by

TM = D⊕D⊥ ⊕Dθ , (11)

where D, D⊥ and Dθ are complex, totally real, and proper slant distributions.

The normal bundle of a CR-slant submanifold M is decomposed by

T⊥M = JD⊥ ⊕ FDθ ⊕ ν, (12)

where ν is an invariant normal sub-bundle of the normal bundle T⊥M. A CR-slant product
submanifold M is called semi-slant mixed-totally geodesic (resp., hemi-slant mixed-totally
geodesic) if its second fundamental form satisfies

h(X1, X2) = 0 ∀ X1 ∈ Γ(D), ∀ X2 ∈ Γ(Dθ)

(resp., h(X2, X3) = 0 ∀ X2 ∈ Γ(Dθ), ∀ X3 ∈ Γ(D⊥)).
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3. CR-Slant Warped Products (MT × M⊥)× f Mθ

In this section, first we recall the definition of warped product manifolds which are
the generalizations of Riemannian products. In 1969, Bishop and O’Neill [22] introduced
the notion of warped product manifolds as follows:

Definition 3. A warped product B × f F of two Riemannian manifolds (B, gB) and (F, gF) is the
product manifold M = B × F equipped with the product structure

gM(X, Y) = gB(π1∗X, π1∗Y) + ( f ◦ π1)
2gF(π2∗X, π2∗Y),

where f : B → (0, ∞) and π1 : M → B, π2 : M → F are projection maps given by π1(p, q) = p
and π2(p, q) = q for any (p, q) ∈ B × F and ∗ denotes the symbol for tangent map.

The function f is called warping function, if f is constant, then M is simply a Rieman-
nian product. It is known that, for any vector field X on B and a vector field Z on F, we
have [22,23]

∇XZ = ∇ZX = X(ln f )Z, (13)

where ∇ is the Levi–Civita connection on M. Further, it is well known that the base
manifold B is totally geodesic and the fiber F is totally umbilical in M.

Next, we define CR-slant warped products (MT × M⊥)× f Mθ as follows.

Definition 4. A submanifold M of an almost Hermitian manifold M̃ is said to be CR-slant warped
product submanifold if it is a warped product of CR-product MT × M⊥ and a proper θ-slant
submanifold Mθ of M̃.

In [14], we studied CR-slant warped product submanifolds of the form B1 × f M⊥,
where B1 = MT × Mθ . In this section, we study CR-slant warped products of the form
B2 × f Mθ , where B2 = MT × M⊥. For this, we use the following conventions, X1, Y1, · · ·
are vector fields on D and X2, Y2, · · · are vector fields on Dθ , while X3, Y3, · · · are vector
fields on D⊥.

First, we have the following preparatory lemmas.

Lemma 1. On a CR-slant warped product submanifold M = B2 × f Mθ of a nearly Kaehler
manifold M̃, we have

(i) g(h(X1, Y1), FX2) = 0,
(ii) 2g(h(X3, Y3), FX2) = g(h(X2, X3), JY3) + g(h(X2, Y3), JX3).

for any X1, Y1 ∈ Γ(TMT), X2 ∈ Γ(TMθ) and X3, Y3 ∈ Γ(TM⊥), where B2 = MT × M⊥ is the
CR-product submanifold in M̃.

Proof. The first part is easy to prove by using (3), (4) and (13). For the second part, we have

g(h(X3, Y3), FX2) = g(∇̃X3Y3, JX2) + g(∇̃X3 PX2, Y3)

− g(J∇X3Y3, X2) + g(∇X3Y3, PX2)

for any X2 ∈ Γ(TMθ) and X3, Y3 ∈ Γ(TM⊥). Since ∇X3Y3 ∈ Γ(TM⊥), then using orthogo-
nality of vector fields and covariant derivative property of J with (13), we find

g(h(X3, Y3), FX2) = g((∇̃X3 J)Y3, X2)− g(∇̃X3 JY3, X2) + X3(ln f )g(PX2, Y3)

= g((∇̃X3 J)Y3, X2) + g(h(X2, X3), JY3). (14)
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Similarly, by interchanging X3 with Y3 in (14), we brain

g(h(X3, Y3), FX2) = g((∇̃Y3 J)X3, X2) + g(h(X2, Y3), JX3). (15)

Hence, the second part immediately follows from (14) and (15).

Lemma 2. Let M = B2 × f Mθ be a CR-slant warped product submanifold of a nearly Kaehler
manifold M̃, such that B2 = MT × M⊥ is the CR-product submanifold in M̃. Then, we have

g(h(X1, X3), FX2) =
1
2

g(h(X1, X2), JX3), (16)

for any X1 ∈ Γ(TMT), X2 ∈ Γ(TMθ) and X3 ∈ Γ(TM⊥).

Proof. For any X1 ∈ Γ(TMT), X2 ∈ Γ(TMθ) and X3 ∈ Γ(TM⊥), we have

g(h(X1, X3), FX2) = g((∇̃X3 J)X1, X2)− g(∇̃X3 JX1, X2) = g((∇̃X3 J)X1, X2). (17)

On the other hand, we know that

g(h(X1, X3), FX2) = g((∇̃X1 J)X3, X2)− g(∇̃X1 JX3, X2) + g(X3, ∇̃X1 PX2). (18)

Then, the lemma follows from (17) and (18) with the help of (3) and (13).

Lemma 3. For a proper CR-slant warped product M = B2 × f Mθ , such that B2 = MT × M⊥ in
a nearly Kaehler manifold M̃, we have

g(h(JX1, X2), FY2) = X1(ln f )g(X2, Y2) +
1
3

JX1(ln f )g(X2, PY2), (19)

for any X1 ∈ Γ(TMT), X2, Y2 ∈ Γ(TMθ).

Proof. From (4) and (13), we have

g(h(X1, X2), FY2) = g((∇̃X2 J)X1, Y2)− JX1(ln f )g(X2, Y2), (20)

for any orthogonal vector fields X1 ∈ Γ(TMT), X2, Y2 ∈ Γ(TMθ). On the other hand,
we derive

g(h(X1, X2), FY2) = g((∇̃X1 J)X2, Y2)− X1(ln f )g(PX2, Y2) + g(h(X1, Y2), FX2). (21)

Then, from (20) and (21), we find

2g(h(X1, X2), FY2) = X1(ln f )g(X2, PY2)− JX1(ln f )g(X2, Y2) + g(h(X1, Y2), FX2). (22)

Interchanging X2 by Y2, we obtain

2g(h(X1, Y2), FX2) = X1(ln f )g(PX2, Y2)− JX1(ln f )g(X2, Y2) + g(h(X1, X2), FY2). (23)

Then, from (22) and (23), we derive

g(h(X1, X2), FY2) = −JX1(ln f )g(X2, Y2) +
1
3

X1(ln f )g(X2, PY2). (24)

Hence, (19) follows immediately by interchanging X1 with JX1 in (24), which proves the
lemma completely.
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The following relations are immediate consequences of (19).

g(h(JX1, PX2), FY2) = X1(ln f )g(PX2, Y2) +
1
3

cos2 θ JX1(ln f )g(X2, Y2), (25)

g(h(JX1, PX2), FPY2) = cos2 θX1(ln f )g(X2, Y2) +
1
3

cos2 θ JX1(ln f )g(X2, PY2), (26)

g(h(JX1, X2), FPY2) = X1(ln f )g(X2, PY2)−
1
3

cos2 θ JX1(ln f )g(X2, Y2). (27)

Lemma 4. Let M = B2 × f Mθ be a CR-slant warped product submanifold of a nearly Kaehler
manifold M̃ such that B2 = MT × M⊥ is the CR-product submanifold in M̃. Then, we have

g(h(X2, Y2), JX3) = g(h(X2, X3), FY2) +
1
3

X3(ln f )g(X2, PY2) (28)

for any X2, Y2 ∈ Γ(TMθ) and X3 ∈ Γ(TM⊥).

Proof. From the definition of covariant derivative with (4) and (8), we have

g(h(X2, X3), FY2) = g((∇̃X3 J)X2, Y2)− g(∇̃X3 PX2, Y2)− g(∇̃X3 FX2, Y2)− g(∇̃X3 X2, PY2).

Again, using (4), (5), and (13), we find

g(h(X2, X3), FY2) = g((∇̃X3 J)X2, Y2) + g(h(Y2, X3), FX2). (29)

On the other hand, we derive

g(h(X2, X3), FY2) = g((∇̃X2 J)X3, Y2)− g(∇̃X2 JX3, Y2)− g(∇̃X2 X3, PY2)

= g((∇̃X2 J)X3, Y2) + g(h(X2, Y2), JX3)− X3(ln f )g(X2, PY2). (30)

Then, from (29) and (30), we obtain

2g(h(X2, X3), FY2) = g(h(X2, Y2), JX3) + g(h(Y2, X3), FX2)− X3(ln f )g(X2, PY2). (31)

Interchanging X2 by Y2, we obtain

2g(h(Y2, X3), FX2) = g(h(X2, Y2), JX3) + g(h(X2, X3), FY2) + X3(ln f )g(X2, PY2). (32)

Then, from (31) and (32), we obtain (28); which proves the Lemma completely.

4. Chen’s Inequality and Its Consequences

In this section, first we prove the following main result by using Lemma 3.

Theorem 2. Let M = B2 × f Mθ be a proper CR-slant warped product submanifold of a nearly
Kaehler manifold M̃. Then, M is a Riemannian product if, and only if, either M is semi-slant mixed-
totally geodesic, (i.e., h(X1, X2) = 0, ∀ X1 ∈ Γ(D), X2 ∈ Γ(Dθ)) or h(D,Dθ) is orthogonal
to FDθ .

Proof. From Lemma 3, we find

g(h(JX1, X2), FY2) =
1
3

JX1(ln f )g(X2, PY2) + X1(ln f )g(X2, Y2), (33)

for any X1 ∈ Γ(D), X2, Y2 ∈ Γ(Dθ). Then, from (27) and (33), we derive

g(h(JX1, X2), FY2) +
1
3

g(h(X1, X2), FPY2) =

(
1 − 1

9
cos2 θ

)
X1(ln f )g(X2, Y2). (34)
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If M is semi-slant mixed totally geodesic or h(D,Dθ) is orthogonal to FDθ then from (34),
we find (

1 − 1
9

cos2 θ

)
X1(ln f )g(X2, Y2) = 0.

Since g is a Riemannian metric and −1 ≤ cos θ ≤ 1, then from above equation we obtain
X1(ln f ) = 0, i.e., f is constant along MT .

Conversely, if f is constant then again from (34), we obtain

g(h(JX1, X2), FY2) +
1
3

g(h(X1, X2), FPY2) = 0. (35)

Interchanging X1 by JX1 and Y2 by PY2 in (35), we derive

g(h(X1, X2), FPY2) +
1
3

cos2 θg(h(JX1, X2), FY2) = 0. (36)

Then, from (35) and (36), we obtain(
1 − 1

9
cos2 θ

)
g(h(JX1, X2), FY2) = 0. (37)

Since −1 ≤ cos θ ≤ 1 for any value of θ ∈ R, thus we find either h(D,Dθ) = {0} or
h(D,Dθ) is orthogonal to FDθ , which completes the proof.

Next, we derive the Chen’s inequality for CR-slant wanted products M = B2 × f Mθ ,
where B2 = MT × M⊥ is a CR-product in a nearly Kaehler manifold.

Theorem 3. Let M =
(

Mn1
T × Mn2

⊥
)
× f Mn3

θ be a CR-slant warped product submanifold of a
nearly Kaehler manifold M̃, such that M is hemi-slant mixed-totally geodesic. Then, the squared
norm of the second fundamental form satisfies

‖h‖2 ≥ 1
9

n3 cos2 θ‖�∇⊥(ln f )‖2 + 2n3

(
1 +

10
9

cot2 θ

)
‖�∇T(ln f )‖2 (38)

where �∇T(ln f ) and �∇⊥(ln f ) denote the gradient components of ln f along MT and M⊥,
respectively.

Furthermore, if the equality holds in (38), then MT × M⊥ is totally geodesic and Mθ is totally
umbilical in M̃. Moreover, M is not a semi-slant mixed totally geodesic submanifold of M̃.

Proof. If we denote the tangent bundles of MT , M⊥ and Mθ by D, D⊥ and Dθ , respectively;
then we use the following frame fields for the CR-slant warped product

D = Span{e1, · · · , ep, ep+1 = Je1, · · · , en1 = e2p = Jep},

D⊥ = Span{en1+1 = ê1, · · · , en1+n2 = ên2},

Dθ = Span{en1+n2+1 = e∗1, · · · , en1+n2+q = e∗q , en1+n2+q+1 = sec θPe∗1, · · · ,

en = e∗2q = sec θPe∗q}.

Additionally, the normal bundle frame will be

JD⊥ = Span{en+1 = ẽ1 = Jê1, · · · , en+n2 = ẽn2 = Jên2},

FDθ = Span{en+n2+1 = ẽn2+1 = E∗
1 = csc θFe∗1, · · · , en+n2+q = ẽn2+q = E∗

q = csc θFe∗q ,

en+n2+q+1 = ẽn2+q+1 = E∗
q+1 = csc θ sec θFPe∗1, · · · ,

en+n2+n3 = ẽn2+n3 = E∗
n3

= csc θ sec θFPe∗q},

ν = Span{en+n2+n3+1 = ẽn2+n3+1, · · · , e2m = ẽ2m−n−n2−n3}.
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From the definition of h, we find

‖h‖2 = ‖h(D,D)‖2 + ‖h(D⊥,D⊥)‖2 + ‖h(Dθ ,Dθ)‖2

+ 2
(
‖h(D,D⊥)‖2 + ‖h(D,Dθ)‖2 + ‖h(D⊥,Dθ)‖2

)
. (39)

Using the frame fields and preparatory lemmas, we expand each term of (39) as follows:

‖h(D,D)‖2 =
n2

∑
k=1

n1

∑
i,j=1

(
g(h(ei, ej), Jêk)

)2
+

n3

∑
k=1

n1

∑
i,j=1

(
g(h(ei, ej), E∗

k )
)2

+
2m−n−n2−n3

∑
k=1

n1

∑
i,j=1

(
g(h(ei, ej), ẽk)

)2.

Leaving the ν-components terms and the is no warped product relation for the first term,
then from Lemma 1 (i), we obtain

‖h(D,D)‖2 ≥ 0. (40)

Similarly, for the second term of (39), we derive

‖h(D⊥,D⊥)‖2 =
n2

∑
k=1

n2

∑
i,j=1

(
g(h(êi, êj), Jêk)

)2
+

n3

∑
k=1

n2

∑
i,j=1

(
g(h(êi, êj), E∗

k )
)2

+
2m−n−n2−n3

∑
k=1

n2

∑
i,j=1

(
g(h(êi, êj), ẽk)

)2.

Using Lemma 1 (ii) with the given hemi-slant totally geodesic condition and leaving the
first and last positive terms, we find

‖h(D⊥,D⊥)‖2 ≥ 0. (41)

For the third term of (39), we find

‖h(Dθ ,Dθ)‖2 =
n2

∑
k=1

n3

∑
i,j=1

(
g(h(e∗i , e∗j ), Jêk)

)2
+

n3

∑
k=1

n3

∑
i,j=1

(
g(h(e∗i , e∗j ), E∗

k )
)2

+
2n−n2−n3

∑
k=1

n3

∑
i,j=1

(
g(h(e∗i , e∗j ), ẽk)

)2
.

Leaving the last two positive terms and using Lemma 4 with mixed totally geodesic
condition, we obtain

‖h(Dθ ,Dθ)‖2 ≥ 2q
9

cos2 θ
n2

∑
k=1

(ek(ln f ))2 =
1
9

n3 cos2 θ‖�∇⊥(ln f )‖2. (42)

Similarly, we derive the other terms of (39) as follows

‖h(D,D⊥)‖2 =
n2

∑
k,j=1

n1

∑
i=1

(
g(h(ei, êj), Jêk)

)2
+

n3

∑
k=1

n1

∑
i=1

n2

∑
j=1

(
g(h(ei, êj), E∗

k )
)2

+
2m−n−n2−n3

∑
k=1

n1

∑
i=1

n2

∑
j=1

(
g(h(ei, êj), ẽk)

)2.
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There is no relation for the first positive term in terms of warped products and leaving the
last ν-components term. Then, using Lemma 2, we derive

‖h(D,D⊥)‖2 ≥ 1
4

n2

∑
j=1

n1

∑
i=1

n3

∑
k=1

(
g(h(ei, e∗k ), Jêj)

)2 ≥ 0. (43)

On the other hand, we also have

‖h(D,Dθ)‖2 =
n2

∑
k=1

n3

∑
j=1

n1

∑
i=1

(
g(h(ei, e∗j ), Jêk)

)2
+

n3

∑
k,j=1

n1

∑
i=1

(
g(h(ei, e∗j ), E∗

k )
)2

+
2m−n−n2−n3

∑
k=1

n1

∑
i=1

n3

∑
j=1

(
g(h(ei, e∗j ), ẽk)

)2
.

For the first term we use (43) and omit the ν-components terms and using frame fields of
Dθ and FDθ , we derive

‖h(D,Dθ)‖2 ≥ csc2 θ
q

∑
k,j=1

n1

∑
i=1

(
g(h(ei, e∗j ), Fe∗k )

)2

+ csc2 θ sec2 θ
q

∑
k,j=1

n1

∑
i=1

(
g(h(ei, Te∗j ), Fe∗k )

)2

+ csc2 θ sec2 θ
q

∑
k,j=1

n1

∑
i=1

(
g(h(ei, e∗j ), FTe∗k )

)2

+ csc2 θ sec4 θ
q

∑
k,j=1

n1

∑
i=1

(
g(h(ei, Te∗j ), FTe∗k )

)2
.

Using Lemma 3 with (24)–(27), we obtain

‖h(D,Dθ)‖2 ≥ 2q csc2 θ
p

∑
i=1

[
(Jei(ln f ))2 + (ei(ln f ))2]

+
2q
9

cot2 θ
p

∑
i=1

[
(Jei(ln f ))2 + (ei(ln f ))2]

= 2q csc2 θ
n1

∑
i=1

(ei(ln f ))2 +
2q
9

cot2 θ
n1

∑
i=1

(ei(ln f ))2

= n3

(
csc2 θ +

1
9

n3 cot2 θ

)
‖�∇T(ln f )‖2. (44)

Last term of (39) is identically zero by the hemi-slant mixed totally geodesic condition.
Then, for all values of h from (40)–(44), finally we obtain the required inequality (38).

For the equality case, since M is D⊥ ⊕Dθ-mixed totally geodesic, i.e.,

h(D⊥,Dθ) = {0}. (45)

Form the leaving and vanishing terms, we also find

h(D,D) = {0}, h(D⊥,D⊥) = {0}, h(D,D⊥) = {0},

h(Dθ ,Dθ) ⊆ JD⊥, h(D,Dθ) ⊆ FDθ . (46)

Then, MT × M⊥ is totally geodesic and Mθ is totally umbilical in M̃ due to the fact that
MT × M⊥ is totally geodesic and Mθ is totally umbilical in M [6,22] with equality holding
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case of (46). Furthermore, due to Theorem 2 and Lemma 2, we observe that M is not a
D⊕Dθ-mixed totally geodesic submanifold of M̃. Hence, the proof is complete.

Now, we give the following consequences of Theorem 3.
A warped submanifold of the form M = Mθ × f M⊥ in a nearly Kaehler manifold M̃ is

called hemi-slant if M⊥ is a totally real submanifold and Mθ is a proper slant submanifold.
If dim MT = 0 in Theorem 3, then we have

Theorem 4. Let M = Mn1
⊥ × f Mn2

θ be a mixed totally geodesic hemi-slant warped product
submanifold in a nearly Kaehler manifold M̃. Then

(i) The second fundamental form h of M satisfies

||h||2 ≥ 1
9

n2 cos2 θ ||�∇⊥(ln f )||2, (47)

where �∇⊥(ln f ) is the gradient of ln f along M⊥.
(ii) If the equality sign of (47) holds identically, then M⊥ and Mθ are totally geodesic and totally

umbilical submanifolds of M̃, respectively.

On the other hand, if M⊥ = {0}, we have the following special case of Theorem 3.

Theorem 5 ([24]). Let M = Mn1
T × f Mn2

θ be a semi-slant warped product submanifold in a nearly
Kaehler manifold M̃. Then, we have

(i) The second fundamental form h and the warping function f satisfy

‖h‖2 ≥ 2n2

(
1 +

10
9

cot2 θ

)
‖�∇T(ln f )‖2. (48)

where �∇T ln f is gradient of ln f along MT.
(ii) If the equality sign in (48) holds identically, then MT is totally geodesic and Mθ is totally

umbilical in M̃. Moreover, M is a minimal submanifold in M̃.

Furthermore, if dim M⊥ = 0 and θ = π
2 in Theorem 3, then M = Mn1

T × f Mn2
⊥ is a

CR-warped product submanifold of a nearly Kaehler manifold M̃ and they were studied
in [25] and, hence, the main Theorem 4.2 of [25] is a special case of Theorem 3.
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Abstract: We study the quarter-symmetric metric A-connection on a cosymplectic manifold. Observ-
ing linearly independent curvature tensors with respect to the quarter-symmetric metric A-connection,
we construct the Weyl projective curvature tensor on a cosymplectic manifold. In this way, we ob-
tain new conditions for the manifold to be projectively flat. At the end of the paper, we define
η-Einstein cosymplectic manifolds of the θ-th kind and prove that they coincide with the η-Einstein
cosymplectic manifold.

Keywords: almost-contact manifold; cosymplectic manifold; co-Kähler manifold; quarter-symmetric
connection; η-Einstein manifold

MSC: 53B05; 53B35; 53C05; 53C15

1. Introduction

This paper deals with almost-contact metric manifolds and cosymplectic manifolds. A
cosymplectic manifold is an almost-contact metric manifold with a normality condition
and with the 2-form F and 1-form η both closed, according to Blair’s definition [1]. Lately,
the name co-Kähler manifolds has also been used for such manifolds, since they are odd-
dimensional analogs of Kähler manifolds [2]. A trivial example of cosymplectic manifolds
is given by a product of a Kähler manifold with a circle or line (for instance, see [1,3]).
Moreover, there is an example of a compact cosymplectic manifold that is not a global
product of a compact Kähler manifold with a circle [4]. In [5], the author studied contact,
concircular, recurrent, and torse-forming vector fields on cosymplectic manifolds. Note
that a different definition of cosymplectic manifolds was used in some papers (for instance,
see [2,6,7]).

Here, we investigate the application of quarter-symmetric metric connections on
almost-contact metric manifolds and cosymplectic manifolds. The quarter-symmetric
connection in differentiable manifolds was introduced by S. Golab [8]. The systematic
study of the quarter-symmetric metric connection was continued by S. C. Rastogi in [9,10].
Many authors studied the quarter-symmetric metric connection on almost-contact metric
manifolds and their special manifolds. The properties of the torsion tensor of the quarter-
symmetric metric connection on almost-contact metric manifolds were studied in [11].
In [12], the authors studied the existence of almost-pseudo-symmetric and Ricci-symmetric
Sasakian manifolds admitting a quarter-symmetric metric connection. The existence of
weakly symmetric and weakly Ricci-symmetric Sasakian manifolds admitting a quarter-
symmetric metric connection was studied in [13]. The papers [14–16] are devoted to
studying some special types of K-contact manifolds with respect to the quarter-symmetric
metric connection.

Mathematics 2023, 11, 2209. https://doi.org/10.3390/math11092209 https://www.mdpi.com/journal/mathematics150
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Among other things, the ∗-conformal η-Ricci–Yamabe soliton admitting a quarter-
symmetric metric connection on α-cosymplectic manifolds was studied in [17]. If α = 0,
then the α-cosymplectic manifold reduces to the cosymplectic manifold. Additionally, if
the characteristic vector field ξ is projective on an α-cosymplectic manifold, then it is a
cosymplectic manifold [18]. On the other hand, if α ∈ R \ {0}, then the α-cosymplectic
manifold is α-Kenmotsu (see [19]). On the α-Kenmotsu manifold, the characteristic vector
field ξ is never projective [18].

If M is an n-dimensional locally symmetric Kenmotsu manifold with respect to
the quarter-symmetric metric connection, then the scalar curvature of the Levi–Civita
connection of M is a negative constant (see Theorem 2 in [20]). In the 3-dimensional
Kenmotsu manifold, the η-parallel and cyclic-parallel Ricci tensor with respect to the
quarter-symmetric metric connection and the Levi–Civita connection are equivalent [21].

The present paper can be considered a continuation of [22,23], where some curvature
properties of quarter-symmetric metric connections on a generalized Riemannian manifold
and Kähler manifold were studied. Our goal is to continue to determine new results and
geometric structures on cosymplectic manifolds, as well as to apply these results to obtain
special examples of the mentioned manifold.

2. Almost-Contact Metric Manifolds

Let (M, G = g + F) be a generalized Riemannian manifold, where M is an n-
dimensional differentiable manifold, G is a non-symmetric (0,2) tensor (the so-called gener-
alized Riemannian metric), g is the symmetric part of G, and F is the skew-symmetric part
of G. The tensor A is defined as a tensor associated with the tensor F, i.e.,

F(X, Y) = g(AX, Y). (1)

Depending on the properties of (1,1) tensor A, we can observe various examples of the
generalized Riemannian manifold, such as the almost-Hermitian, almost-para-Hermitian,
almost-contact, and almost-para-contact manifolds (see [24]).

An almost-contact metric manifold(M, g, A, η, ξ) is an n-dimensional differentiable
manifold M (where n = 2k + 1) equipped with an almost-contact structure A and a
characteristic (or Reeb) vector field ξ dual to η with respect to g, η(ξ) = 1, η(X) = g(X, ξ),
which satisfies

A2 = −I + η ⊗ ξ, Aξ = 0, η ◦ A = 0 (2)

and
g(AX, AY) = g(X, Y)− η(X)η(Y). (3)

The symmetric metric g that satisfies the previous relationship is called compatibly
metric with the almost-contact structure. The fundamental 2-form F, defined by (1), is a
degenerate of F(X, ξ) = 0 and has a rank of 2k. It can be easily shown that the generalized
metric G = g + F and the fundamental 2-form F satisfy the following relationships:

G(X, ξ) = η(X), G(ξ, ξ) = 1,

F(AX, Y) = −F(X, AY), F(AX, AY) = F(X, Y),

G(AX, Y) = −G(X, AY), G(AX, AY) = G(X, Y)− η(X)η(Y).

An almost-contact manifold is said to be normal if the corresponding complex structure
on M×R is integrable, which is equivalent to the condition Nac = N + dη ⊗ ξ = 0, where
N denotes the Nijenhuis tensor of structure tensor A and d denotes the exterior derivative.
An almost-contact metric manifold is said to be an almost-cosymplectic manifold if the 2-
form F and 1-form η are both closed, i.e., dF = 0 and dη = 0 [3]. If an almost-cosymplectic
manifold is normal, then it is called a cosymplectic (or a co-Kähler) manifold [2,3]. An

almost-contact metric manifold is cosymplectic if and only if
g
∇A = 0 (for instance, see

p. 95 in [25]).
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The present paper deals with applying quarter-symmetric connections on almost-

contact metric manifolds. A linear connection
1
∇ is said to be quarter-symmetric if its

torsion tensor is of the form

1
T(X, Y) = η(Y)AX − η(X)AY.

The quarter-symmetric connection
1
∇ preserving the generalized Riemannian metric

G,
1
∇G = 0, is called the quarter-symmetric G-metric connection, and it is determined by the

following equations (see [22]):

1
∇XY =

g
∇XY − η(X)AY (4)

and
1
∇g = 0,

1
∇A =

g
∇A = 0, (5)

where
g
∇ is a Levi–Civita connection. The symmetric connection

0
∇ and the dual connection

2
∇ of the quarter-symmetric connection (4) are given by

0
∇XY =

g
∇XY − 1

2
η(X)AY − 1

2
η(Y)AX, (6)

2
∇XY =

g
∇XY − η(Y)AX. (7)

In [24], it is proved that for the G-metric connection
1
∇ on the almost-contact metric

manifold,
1
∇η =

1
∇ξ = 0 holds. Taking into account Equation (5), it follows that on

the almost-contact metric manifold, the torsion tensor is parallel to the connection
1
∇,

i.e.,
1
∇

1
T = 0. In the paper [11], quarter-symmetric metric connections (4) are studied on

almost-contact metric manifolds, and the properties of the torsion tensor
1
T are presented.

From Equation (5), we see that structure tensor A is parallel with respect to the
Levi–Civita connection, and it implies the following statement.

Theorem 1. The almost-contact metric manifold (M, g, A, η, ξ) with a quarter-symmetric con-
nection (4) preserving the generalized Riemannian metric G is a cosymplectic (co-Kähler) manifold.

Following the previous theorem, further consideration can be given to the cosymplectic
(i.e., co-Kähler) manifold. The term “generalized metric (i.e., G-metric) connection” is
equivalent to the term “metric A-connection”.

In the cosymplectic manifold, it also holds that
g
∇η =

g
∇ξ = 0 (see [3]). Moreover, the

Reeb vector ξ is Killing, and its dual 1-form η is harmonic (see Lemma 1.2 in [26]). The

Riemannian curvature tensor
g
R of the Levi–Civita connection on the cosymplectic manifold

(M, g, A, η, ξ) satisfies the following relationships (for instance see [3,7,27,28]):

g
R(X, Y)AZ = A

g
R(X, Y)Z,

g
R(AX, AY)Z =

g
R(X, Y)Z, (8)

η(
g
R(X, Y)Z) = 0,

g
R(X, Y)ξ =

g
R(X, ξ)Z = 0, (9)

g
Ric(AX, AY) =

g
Ric(X, Y),

g
Ric(X, ξ) = 0,

g
Qξ = 0, (10)
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where
g
Ric(Y, Z) = Trace{X →

g
R(X, Y)Z} is the Ricci tensor and

g
Q is the Ricci operator

defined by
g
Ric(X, Y) = g(

g
QX, Y). Additionally, the Ricci operator

g
Q commutes with the

structure tensor A, i.e., A
g
Q =

g
QA (see [7] or [27]).

3. Curvature Properties of Quarter-Symmetric Metric A-Connection on
Cosymplectic Manifold

The six linearly independent curvature tensors can be observed with respect to a

non-symmetric connection [29]. The curvature tensors
0
R,

1
R, . . . ,

5
R with respect to the

quarter-symmetric connection (4) on the generalized Riemannian manifold are presented
in [22] by Equations (2.6), (2.9)–(2.13). Considering cosymplectic manifold properties (more

precisely, Equation (2) and
g
∇η = 0), the curvature tensors with respect to the quarter-

symmetric connection (4) take the following form:

γ

R(X, Y)Z =
g
R(X, Y)Z, γ = 1, 2, 3, (11)

0
R(X, Y)Z =

g
R(X, Y)Z +

1
4

η(Z)(η(Y)X − η(X)Y), (12)

4
R(X, Y)Z =

g
R(X, Y)Z + η(Z)(η(Y)X − η(X)Y), (13)

5
R(X, Y)Z =

g
R(X, Y)Z +

1
2

η(Y)(η(Z)X − η(X)Z). (14)

Since the curvature tensors
1
R and

2
R of the connections

1
∇ and

2
∇, respectively, coincide

with the Riemannian curvature tensor
g
R of the Levi–Civita connection (see Equation (11)),

the following theorem holds.

Theorem 2. Let (M, g, A, η, ξ) be a cosymplectic manifold, let
g
∇ be a Levi-Civita connection, let

1
∇ be a quarter-symmetric metric A-connection (4), and let

2
∇ be its dual connection given by (7).

The Riemannian curvature tensor
g
R is invariant under connection transformations

g
∇ →

1
∇ and

g
∇ →

2
∇.

On the other hand, for the transformation of connections
g
∇ →

0
∇, we will prove the

following theorem.

Theorem 3. Let (M, g, A, η, ξ) be a cosymplectic manifold, let
g
∇ be a Levi–Civita connection,

and let
0
∇ be a symmetric connection given by (6). The Riemannian curvature tensor

g
R cannot be

invariant under the connection transformation
g
∇ →

0
∇.

Proof. If we assume that
g
R is invariant under the connection transformation

g
∇ →

0
∇, then

0
R =

g
R holds. Based on Equation (12), we have η(Y)X − η(X)Y = 0. Furthermore, by

contracting, we obtain (n − 1)η(Y) = 0, which is impossible.

From Equations (11)–(14), we can easily conclude that all curvature tensors are skew-

symmetric by X and Y, except tensor
5
R. On the other hand, all curvature tensors

0
R,

1
R, . . . ,

5
R

have the cyclic-symmetry property. Since tensors
1
R,

2
R and

3
R coincide with

g
R, it is clear that

they have the same properties. In the further discussion, we will study only the properties
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of the curvature tensors
0
R,

4
R, and

5
R. Using the properties satisfied by the Riemannian

curvature tensor
g
R, the following relationships can be easily proven:

η(
θ
R(X, Y)Z) = 0,

θ
R(AX, AY)Z =

g
R(X, Y)Z, θ = 0, 4, 5,

0
R(X, Y)AZ =

4
R(X, Y)AZ =

g
R(X, Y)AZ,

5
R(X, AY)Z =

g
R(X, AY)Z

and

A
0
R(X, Y)Z =

0
R(X, Y)AZ +

1
4

η(Z)
1
T(X, Y),

A
4
R(X, Y)Z =

4
R(X, Y)AZ + η(Z)

1
T(X, Y),

A
5
R(X, Y)Z =

5
R(X, Y)AZ +

1
2

η(Y)η(Z)AX.

The curvature tensors
0
R,

4
R, and

5
R and the Reeb vector field ξ satisfy

4
0
R(X, Y)ξ =

4
R(X, Y)ξ = 2

5
R(X, ξ)Y = η(Y)X − η(X)Y,

4
0
R(X, ξ)Y =

4
R(X, ξ)Y = 2

5
R(X, Y)ξ = −η(Y)A2X,

0
R(ξ, ξ)X =

4
R(ξ, ξ)X =

5
R(ξ, X)ξ = 0.

By contracting with respect to X in Equations (12)–(14), we obtain the corresponding
Ricci tensors, as follows:

0
Ric =

g
Ric +

n − 1
4

η ⊗ η, (15)

4
Ric =

g
Ric + (n − 1)η ⊗ η, (16)

5
Ric =

g
Ric +

n − 1
2

η ⊗ η. (17)

We see that all Ricci tensors are symmetric and satisfy the following properties:

θ
Ric(AX, AY) =

g
Ric(X, Y), θ = 0, 4, 5, (18)

4
0
Ric(X, ξ) =

4
Ric(X, ξ) = 2

5
Ric(X, ξ) = (n − 1)η(X), (19)

4
0
Ric(ξ, ξ) =

4
Ric(ξ, ξ) = 2

5
Ric(ξ, ξ) = n − 1. (20)

Using the above results, we prove the following theorem.

Theorem 4. Let (M, g, A, η, ξ) be a cosymplectic manifold with a quarter-symmetric metric A-

connection (4). Then, the Ricci operators
θ
Q,

θ
Ric(X, Y) = g(

θ
QX, Y) commute with the structure

tensor A.

Proof. From Equations (15)–(17), we obtain the corresponding Ricci operators,

0
Q =

g
Q +

n − 1
4

η ⊗ ξ,
4
Q =

g
Q + (n − 1)η ⊗ ξ,

5
Q =

g
Q +

n − 1
2

η ⊗ ξ. (21)
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Taking into account Equation (2), we have

A
θ
Q = A

g
Q and

θ
QA =

g
QA.

Considering that the Ricci operator
g
Q commutes with A, we have thus proved

the statement.

From the relationship (21), we obtain corresponding curvature scalars, which satisfy

4(
0
r −

g
r) =

4
r −

g
r = 2(

5
r −

g
r) = n − 1 (22)

and with this, we have proved the following theorem.

Theorem 5. Let (M, g, A, η, ξ) be a cosymplectic manifold with a quarter-symmetric metric A-

connection (4). Then, the differences
θ
r −

g
r are constant, where

θ
r and

g
r denote curvature scalars,

θ = 0, 4, 5.

Using the equations of the curvature tensors
0
R,

4
R, and

5
R and the properties of the

Riemannian curvature tensor
g
R, we can easily prove that these tensors cannot be zero.

Theorem 6. Let (M, g, A, η, ξ) be a cosymplectic manifold with a quarter-symmetric metric

A-connection (4). The curvature tensors
0
R,

4
R, and

5
R given by (12)–(14) are non-zero.

Proof. If we assume that
0
R = 0, then from Equation (12), we have

g
R(X, Y)Z =

1
4

η(Z)(η(X)Y − η(Y)X).

If we use the equation
g
R(X, Y)ξ = 0, we obtain that η(X)Y − η(Y)X = 0, which is

impossible. The same is proved for the tensors
4
R,

5
R.

4. Projectively Flat Cosymplectic Manifold

In this section, we will study the Weyl projective curvature tensor of the Levi–Civita
connection on a cosymplectic manifold. Namely, using curvature tensors of a quarter-
symmetric connection (4), we will construct tensors that coincide with the Weyl projective
curvature tensor.

Theorem 7. Let (M, g, A, η, ξ) be a cosymplectic manifold with a quarter-symmetric metric
A-connection (4). The following holds:

θ
W(X, Y)Z =

g
W(X, Y)Z, θ = 0, 4, (23)

5
W(X, Y)Z =

g
W(X, Z)Y +

g
R(Z, Y)X, (24)

where
g

W is the Weyl projective curvature tensor of the Levi–Civita connection given by

g
W(X, Y)Z =

g
R(X, Y)Z +

1
n − 1

(
g
Ric(X, Z)Y −

g
Ric(Y, Z)X), (25)
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and
0

W,
4

W, and
5

W are given by

θ
W(X, Y)Z =

θ
R(X, Y)Z +

1
n − 1

(
θ
Ric(X, Z)Y −

θ
Ric(Y, Z)X), θ = 0, 4, (26)

5
W(X, Y)Z =

5
R(X, Y)Z +

1
n − 1

(
5
Ric(X, Y)Z −

5
Ric(Z, Y)X). (27)

Proof. We prove the equality for tensor
5

W. From Equation (17), we have

1
2

η ⊗ η =
1

n − 1
(

5
Ric −

g
Ric).

By substituting the previous equation in (14), the curvature tensor of the fifth kind
takes the form

5
R(X, Y)Z =

g
R(X, Y)Z +

1
n − 1

(
5
Ric(Y, Z)X −

g
Ric(Y, Z)X −

5
Ric(X, Y)Z +

g
Ric(X, Y)Z),

and after rearranging, we obtain

5
W(X, Y)Z =

g
R(X, Y)Z +

1
n − 1

(
g
Ric(X, Y)Z −

g
Ric(Z, Y)X)

=
g
R(X, Z)Y +

1
n − 1

(
g
Ric(X, Y)Z −

g
Ric(Z, Y)X)−

g
R(X, Z)Y +

g
R(X, Y)Z

=
g

W(X, Z)Y +
g
R(Z, X)Y +

g
R(X, Y)Z =

g
W(X, Z)Y +

g
R(Z, Y)X,

where
5

W is given by (27) and where we used the skew-symmetry and cyclic-symmetry

properties of
g
R.

Tensor
0

W is the projective curvature tensor with respect to the connection
0
∇, and since

it coincides with the Weyl projective curvature tensor of the Levi–Civita connection, we
can formulate the following statement.

Theorem 8. Let (M, g, A, η, ξ) be a cosymplectic manifold, let
g
∇ be a Levi–Civita connection,

and let
0
∇ be a symmetric connection given by (6). The Weyl projective curvature tensor

g
W is

invariant under the connection transformation
g
∇ →

0
∇.

Additionally, since the Riemannian curvature tensor
g
R coincides with

1
R and

2
R, the

Weyl projective curvature tensor is invariant under connection transformations
g
∇ →

1
∇

and
g
∇ →

2
∇.

Given that we have constructed the Weyl projective curvature tensor
g

W on a cosym-
plectic manifold, we will examine what happens when this manifold is projectively flat. If

we assume that
g

W = 0, then it holds that

g
R(X, Y)Z =

1
n − 1

(
g
Ric(Y, Z)X −

g
Ric(X, Z)Y). (28)
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Based on the properties of the Riemannian curvature tensor
g
R and the Ricci tensor

g
Ric

on the cosymplectic manifold, i.e., using Equations (9) and (10), we have

0 =
g
R(X, ξ)Z =

1
n − 1

(
g
Ric(ξ, Z)X −

g
Ric(X, Z)ξ) = − 1

n − 1

g
Ric(X, Z)ξ

from where we obtain
g
Ric = 0. By substituting the last equality in (28), we obtain

g
R = 0. In

this way, we have proved the following assertion.

Theorem 9. A cosymplectic manifold is projectively flat if and only if it is flat.

Considering the previous results for the quarter-symmetric metric A-connection (4),
we have the following corollary.

Corollary 1. Let (M, g, A, η, ξ) be a cosymplectic manifold with a quarter-symmetric metric

A-connection (4). The manifold is projectively flat if and only if the tensors
θ

W, θ = 0, 4, 5, given
by (26) and (27), vanish.

Proof. Considering that
0

W and
4

W coincide with
g

W, the statement is clear for those two

tensors. Let us now prove the statement for tensor
5

W. If the manifold is projectively flat,

then it is also flat, so it follows that
g

W =
g
R = 0. Furthermore, from Equation (24), we

obtain
5

W = 0.

On the other hand, if
5

W = 0, then from Equation (24), we have
g

W(X, Z)Y +
g
R(Z, Y)X = 0,

from where it follows that

g
R(X, Y)Z =

1
n − 1

(
g
Ric(Z, Y)X −

g
Ric(X, Y)Z). (29)

Taking into account Equations (9) and (10), we obtain

0 =
g
R(X, Y)ξ =

1
n − 1

(
g
Ric(ξ, Y)X −

g
Ric(X, Y)ξ) = − 1

n − 1

g
Ric(X, Y)ξ,

from which it follows that
g
Ric = 0. By substituting this equality in (29), we obtain that the

manifold is flat, which implies that it is also projectively flat. This completes the proof of
the theorem.

Remark 1. Theorem 9 can be considered as a consequence of the statements from [1,30]. Namely,
the manifold is projectively flat if and only if it is of constant curvature (see pp. 84–85 in [30]). A
cosymplectic manifold of constant curvature is flat (see [1,3]). Therefore, we can conclude that a
projectively flat cosymplectic manifold is flat. Here, we have given explicit proof.

5. η-Einstein Cosymplectic Manifold

A cosymplectic manifold is η-Einstein if

g
Ric = ag + bη ⊗ η, (30)

where a, b are smooth functions. If we use the Ricci tensor property
g
Ric(X, ξ) = 0, then

from the previous equation, we have a + b = 0, and the Ricci tensor takes the form
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g
Ric = a(g − η ⊗ η). By contracting the last equality, we obtain that

g
r = a(n − 1). Thus, the

η-Einstein cosymplectic manifold satisfies the following equation (see [31,32]):

g
Ric =

g
r

n − 1
(g − η ⊗ η). (31)

We see that the η-Einstein cosymplectic manifold is Ricci flat if and only if
g
r = 0 [31].

Moreover, in [32], it has been proved that the curvature scalar
g
r is constant in the case

of the η-Einstein cosymplectic manifold of a dimension of 5 or higher. An example of
the η-Einstein cosymplectic manifold is the cosymplectic manifold of constant φ-sectional

curvature c, whose Ricci tensor is given by
g
Ric = c(k+1)

2 (g − η ⊗ η) (see Equation (2.4)
in [33]). Additionally, any 3-dimensional cosymplectic manifold is η-Einstein [34,35] and
of quasi-constant curvature [31]. For b = 0 in (30), we have an Einstein manifold. Any
Einstein cosymplectic manifold is Ricci flat [36].

Considering that the Ricci tensors
0
Ric,

4
Ric,

5
Ric given by (15)–(17) are symmetric, we

will now define special classes of the cosymplectic manifold with a quarter-symmetric
metric A-connection (4).

Definition 1. Let (M, g, A, η, ξ) be a cosymplectic manifold with a quarter-symmetric metric
A-connection (4). The manifold is η-Einstein of the θ-th kind, θ = 0, 4, 5 if

θ
Ric =

θ
ag +

θ
bη ⊗ η, θ = 0, 4, 5,

where
θ
a and

θ
b are smooth functions.

By contracting the previous equation, we obtain

θ
r =

θ
an +

θ
b, θ = 0, 4, 5.

Based on the properties of the Ricci tensor
0
Ric (see Equation (20)), we have 4(

0
a +

0
b) =

n − 1. By solving the system of equations

0
r =

0
an +

0
b, 4(

0
a +

0
b) = n − 1,

we obtain
0
a =

4
0
r − n + 1
4(n − 1)

,
0
b =

n(n − 1)− 4
0
r

4(n − 1)
.

Similarly,

4
a =

4
r − n + 1

n − 1
,

4
b =

n(n − 1)− 4
r

n − 1
,

5
a =

2
5
r − n + 1
2(n − 1)

,
5
b =

n(n − 1)− 2
5
r

2(n − 1)
.
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Consequently, the η-Einstein cosymplectic manifold of the θ-th kind θ = 0, 4, 5 takes
the form

0
Ric =

4
0
r − n + 1
4(n − 1)

g +
n(n − 1)− 4

0
r

4(n − 1)
η ⊗ η,

4
Ric =

4
r − n + 1

n − 1
g +

n(n − 1)− 4
r

n − 1
η ⊗ η,

5
Ric =

2
5
r − n + 1
2(n − 1)

g +
n(n − 1)− 2

5
r

2(n − 1)
η ⊗ η.

Using Equation (22), the η-Einstein cosymplectic manifold of the θ-th kind θ = 0, 4, 5

can be written in terms of the scalar curvature
g
r

0
Ric =

g
r

n − 1
g +

(n − 1)2 − 4
g
r

4(n − 1)
η ⊗ η, (32)

4
Ric =

g
r

n − 1
g +

(n − 1)2 −
g
r

n − 1
η ⊗ η, (33)

5
Ric =

g
r

n − 1
g +

(n − 1)2 − 2
g
r

2(n − 1)
η ⊗ η. (34)

Theorem 10. Let (M, g, A, η, ξ) be a cosymplectic manifold with a quarter-symmetric metric
A-connection (4). The manifold is η-Einstein if and only if it is η-Einstein of the θ-th kind,
θ = 0, 4, 5.

Proof. We prove the theorem for θ = 0. If the manifold is η-Einstein, then by substituting
Equation (31) in (15), we obtain Equation (32), and therefore the manifold is η-Einstein of
the zeroth kind. On the other hand, if the manifold is η-Einstein of the zeroth kind, then
from Equations (15) and (32), we have

g
r

n − 1
g +

(n − 1)2 − 4
g
r

4(n − 1)
η ⊗ η =

g
Ric +

n − 1
4

η ⊗ η,

from which we obtain
g
Ric =

g
r

n − 1
(g − η ⊗ η),

which means that the cosymplectic manifold is η-Einstein with respect to the Riemannian
metric g.

6. Results and Discussion

The paper discussed the application of a quarter-symmetric connection on almost-
contact metric manifolds. We proved that an almost-contact metric manifold with a quarter-
symmetric G-metric connection is actually a cosymplectic manifold. Based on the properties
of the Riemannian curvature tensor, we also observed the properties of the curvature
tensor with respect to the quarter-symmetric metric A-connection. Invariants for certain
connection transformations were also found. For example, the Riemannian curvature tensor
is invariant under the transformation of the Levi–Civita connection to a quarter-symmetric
metric A-connection (4) or to its dual connection (7).

The Weyl projective curvature tensor
g

W is well known as a geodesic mapping invariant
of Riemannian manifolds (for instance, see [37]). We found a way to construct it on a
cosymplectic manifold. More precisely, using the curvature tensors with respect to the
quarter-symmetric metric A-connection on the cosymplectic manifold, we constructed
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tensors that coincide with the Weyl projective curvature tensor
g

W. We proved that a
cosymplectic manifold is projectively flat if and only if it is flat.

At the end of the paper, we constructed examples of η-Einstein cosymplectic manifolds.
Namely, with respect to the Ricci tensors on the cosymplectic manifold with a quarter-
symmetric metric A-connection, we defined the η-Einstein manifold of the θ-th kind,
θ = 0, 4, 5, and we demonstrated that these manifolds coincide with the η-Einstein (with
respect to the Riemannian metric).
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Abstract: We studied the random variable Vt = volS2 (gtB ∩ B), where B is a disc on the sphere
S2 centered at the north pole and (gt)t≥0 is the Brownian motion on the special orthogonal group
SO(3) starting at the identity. We applied the results of the theory of compact Lie groups to evaluate
the expectation of Vt for 0 ≤ t ≤ τ, where τ is the first time when Vt vanishes. We obtained an
integral formula using the heat equation on some Riemannian submanifold ΓB seen as the support of
the function f (g) = volS2 (gB ∩ B) immersed in SO(3). The integral formula depends on the mean
curvature of ΓB and the diameter of B.

Keywords: Brownian motion; Lie group; heat kernel; Riemannian manifold

MSC: 53C42; 60J65; 60B15; 47D07; 43A80; 22E15

1. Introduction

We studied the behavior of the shape of a body under random transformations.The
random motion of a particle on the unit sphere S2 in R3 can be used to model the tracking of
animals equipped with a transmitter, which has a range given by a disc B of a certain radius
depending on the power of the signal issued by a radar. The most-common way to model an
erratic motion at least for a sufficiently small body is the Brownian motion on the sphere S2.
The reason for that is the property that such processes have no memory, which means that
the motion in the future only depends on the present, not on the past. There are at least two
ways to simulate a Brownian motion on the sphere [1]. The most-natural one is to use the
Brownian motion of the sphere S2; its exact density is well-known and has been computed
explicitly by Yosida [2]. Another way to simulate a Brownian motion on the sphere is by
using the group action point of view. Indeed, we fix a point, say the north pole N, then
choose a Brownian motion valued in the group of direct isometries of the sphere S2, namely
the group SO(3). The required Markov process Xt = rt(N) will give rise to a random
motion on the sphere, which differs from the Brownian motion on the sphere, which starts
from N. The second point of view requires the exact density of the Brownian motion of
SO(3). Fortunately, this theory is well-developed now and can be recast in the Fourier
theory of compact Lie groups using unitary representations and Peter–Weyl decomposition.
This point of view has been used by M. Liao in order to deduce the stochastic property of
the random motion of a rigid body subject to white noise perturbation [3]. It is possible to
use Levy processes instead of the Brownian motion, but those have points of discontinuity,
while we are considering continuous motions. This was recently performed by S. Albeverio
and M. Gordina for matrix Lie groups such asthe special linear group and the Heisenberg
group [4]. In our case, we deal with the compact Lie groups for which the complete picture
is completely understood using unitary representations and their characters.
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Set Up and Main Result

Let (Ω,A,P) be a probability space and ω ∈ Ω �→ (rt(ω))t≥0 be a continuous Brow-
nian motion starting at identity and valued in the group SO(3) of rotations in R3. Here,
SO(3) is seen as a compact Lie group acting on S2, the unit sphere in R3, and the action is
transitive. We equip S2 with a volume area measure denoted as volS2, which has density
f (θ, ϕ) = sin φdϕdθ with respect to the Lebesgue measure on [0, 2π)× [−π/2, π/2]. This
measure is invariant under the action of SO(3). We studied the following real-valued
continuous stochastic process:

Vt(ω) := volS2(rt(ω)B ∩ B)

where B is a Borel subset of S2 with volS2(B) > 0. In particular, V0(ω) = volS2(B) since
r0(ω) = I3.

For each g ∈ SO(3), let us consider the function on SO(3) corresponding to (Vt)t≥0
given by

f (g) = volS2(gB ∩ B).

Thus, the random process (Vt)t≥0 is just the image of the Brownian process (gt)t≥0
under the map f : SO(3) → R≥0. We are more particularly interested in the Brownian
motion (gt) valued in SO(3), but stopped at the boundary of the support of f . Namely, if
τ = inf{t > 0 : volS2(gtB ∩ B) = 0} is the corresponding stopping time, then (gt)t≥0 will
be the Brownian motion valued in SO(3), which starts at identity and stops at time τ. The
unit sphere S2 can be equipped with the spherical distance given by

dS2(x, y) = arccos(〈x, y〉)

where 〈x, y〉 is just the Euclidean inner product in R3. Until the end, we assume that B is
the spherical disc with the north pole N = (0, 0, 1) as its center and with diameter diam(B).
Using the property of (gt∧τ)t≥0, we are able to prove a closed formula for the expectation
of (Vt)t≥0.

Theorem 1. Let B be the spherical disc with the north pole N = (0, 0, 1) as its center in S2, and let
(gt)t≥0 be a Brownian motion on SO(3), which starts at the identity and stops at τ = inf{t > 0 :
volS2(gtB ∩ B) = 0}. Then, the expectation of Vt∧τ = volS2(gt∧τ B ∩ B) is given by

E[Vt∧τ ] =
4

π2
√

πt

∫ π

0
J (t, θ)eLt(θ) sin2(θ/2)dθ

where, for each 0 ≤ t ≤ τ, J (t, θ) = J0 + ∑
n≥1

(2n + 1)e−n(n+1)t/2χn(θ)Jn with

Jn =
∫ diam(B)

0
f (β)χn(β) sin2(β/2) dβ

and χn(u) =
sin((2n + 1)u/2)

sin(u/2)
for all n ≥ 0 and where Lt is a function that depends on the mean

curvature of the support of f .

2. Motivation and Literature Review

The Brownian motion is the most-natural way to encode a random motion. It has all
the properties that make it the most-unpredictable behavior possible, and it is the most-
suitable candidate to model molecular rotations in fluids (FPL model). The probability
density function of a Brownian motion satisfies the heat equation. We are interested in
the rotational Brownian motion, that is the Brownian motion on the sphere. This kind of
random process has been well-studied in the past, and it is still an active area of research.
For instance, let us mention the work of Furry [5], Favro [6], Ivanov [7], and Hubbard [8].
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For nice surveys on rotational Brownian motions, we invite the reader to read the survey of
Valiev and Ivanov [9] and McClung [10] for the rotational Fokker–Planck equation. The
problem we are interested in is geometrical. Given a subset B on the two-dimensional
sphere, say a cloud, one can use Brownian rotation to move the cloud B. The question is
to give the expectation of the volume of the intersection of the cloud with its translation.
To treat this question, we need to introduce the Brownian motion on the Lie group SO(3)
corresponding to the group of positively oriented rotations on the sphere; this is the aim
of Section 3. The point of view taken is to treat a Lie group as a Riemannian manifold; for
such a class of spaces, the Brownian motion was studied for instance by Graham [11], van
Kampen [12], and Risken [13]. For the general theory of the Brownian motion on manifolds,
we refer to the classical book of Elworthy ([14]). The study of such stochastic models has
many applications in physics. Let us mention the work of Castro-Villarreal et al. [15,16],
Novikov et al. [17], Gómez et al. [18] and Yang-Li [19].

3. The Heat Kernel in SO(3)

In this section, we review the spectral theory of the Laplace operator of SO(3) within
the theory of compact Lie groups (see, e.g., [20–23]).

3.1. The Lie Group SO(3)

The group of isometries of the sphere S2 is the group of all the space transformations
g such that 〈gx, gy〉S2 = 〈x, y〉S2 for any x, y ∈ S2. Using duality, such isometries have to
satisfy the relation gtg = 1. The group of all such transformations is denoted O(3) and
is called the orthogonal group in three dimensions. The orthogonality relation gtg = 1
implies that det g = ±1. The elements of O(3) such that det g = 1 preserve the orientation
(i.e., act with the positive Jacobian) and form what we call the special orthogonal group
given by

SO(3) = {g ∈ SL3(R) | gtg = I3}.

The group SO(3) is a maximal Lie compact subgroup of SL3(R); in particular, it has
a Lie group structure. The Lie algebra of SO(3), namely the tangent space at g = I3, is
given by

so(3) = {X ∈ M3(R) | Xt = −X}
which consists of skew-symmetric matrices. A basis of so(3) is given by the following
three matrices:

X1 =

⎛⎝ 0 0 0
0 0 −1
0 1 0

⎞⎠ X2 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠ X3 =

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠.

It can be seen that so(3) is closed under the Lie bracket by noting the following
commutation relations:

[X1, X2] = X3 [X2, X3] = X1 [X3, X1] = X2.

A Lie group closely related to SO(3) is the group SU(2) of unitary matrices of size two:

SU(2) =
{(

z1 z2
−z2 z1

)
: z1, z2 ∈ C, |z1|2 + |z2|2 = 1

}
.

The Lie algebra of SU(2) is denoted su(2), and it is generated by the Pauli matrices:

σ1 =

(
i 0
0 −i

)
σ2 =

(
0 1
−1 0

)
σ3 =

(
0 i
i 0

)
which satisfy the commutation relations [σ1, σ2] = 2σ3, [σ2, σ3] = 2σ3, and [σ3, σ1] = 2σ2.
The SU(2) group is homeomorphic to the unit sphere in C2. As a consequence, SU(2) is
simply connectedand compact. The group SO(3) is not simply connected; its universal
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covering is given by SU(2). More precisely, SO(2) has a two-sheet universal covering
realized by the adjoint representation of SU(2):

Ad : SU(2) → SO(3)

given by Ad(X)g = X−1gX. The kernel of this map is given by the center of SU(2), which is
{±I2}. It is less trivial to find the image of this map, and it can be proven that it is surjective.
The latter fact can be checked by working on the Lie algebra level. Indeed, the differential
of the adjoint map at the identity is given by ad : su(2) → so(3), X �→ adX = [X, .].
In particular,

SO(3) � SU(2)/{±I2}.

3.2. Euler Parametrization and Haar Measure on SO(3)

For our purposes, we need a precise description of the group SO(3) in terms of the
Euler angles. This will give a well-suited parametrization of the elements of the group in
order to perform the analysis. The group SO(3) is a compact Lie group, which is given by

SO(3) = {g ∈ SLn(3) | gtg = I3}.

The tangent space of G at some g ∈ G is just the set of matrices of the form gX, where X
is some element in so(3). The exponential map exp : so(3) → SO(3) is surjective. We use
the polar coordinate for an element X of the Lie algebra so(3); indeed, such an X can be
written as X = θT(u, v, w) with (u, v, w) ∈ S2 and where

T(u, v, w) =

⎛⎝ 0 −w v
w 0 −u
−v u 0

⎞⎠.

Any element of g ∈ SO(3) can be written in the form:

g = eψX3 eθX1 eφX3 =

⎛⎝ cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎞⎠⎛⎝ 1 0 0
cos θ − sin θ 0
sin θ cos θ 0

⎞⎠⎛⎝ cos φ − sin φ 0
sin φ cos φ 0

0 0 1

⎞⎠. (1)

The normalized Haar measure is, therefore, given by (see [20])

μSO(3)(dθ, dψ, dφ) =
2

π2 sin2(
θ

2
) sin ψdψdφ. (2)

3.3. Brownian Motion on a Riemannian Manifold

For an introduction to Brownian motion on manifolds, we refer to the book of El-
worthy [14]. There are several ways to construct the Brownian motion on a Lie group G.
An elegant one consists of defining the density function of the Brownian motion as the
solution of the heat equation on G. In fact, only the underlying structure of the Riemannian
manifold on G is needed. Let us assume more generally that we are given an n-dimensional
Riemannian (M, h), where the metric h is a symmetric bilinear form on the tangent bundle

h. Given local coordinates (x1, . . . , xn) of a point x ∈ M with a local frame (
∂

∂x1
, . . . ,

∂

∂xn
),

which forms a basis of Tx(M), the metric is then locally determined by its coefficients
hij = h(∂/∂xi, ∂ ∂xj) giving the length element:

ds2 = ∑
i,j

hijdxi ⊗ dxj.

Let C(TM) denote the space of smooth sections of the tangent bundle, then one can define a
covariant derivative using a connection ∇ : C(TM)× C(TM) → C(TM) depending on the
metric h. This connection assigns to a pair of vectors fields X, Y ∈ C(TM) the vector field
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∇XY, which may be seen as the derivative of Y. The torsion associated with the connection
is the quantity defined by

T‘(X, Y) = ∇XY −∇YX − [X, Y]. (3)

In local coordinates, the connection is essentially characterized by its values on the basis
(∂x1 , . . . , ∂xn) of TM:

∇∂xi
∂xj = ∑

1�k�n
Γk

ij∂xk

where the coefficients Γk
ij of the connection, known as the Christoffel symbols, can be

computed explicitly by using the first derivatives of the metric components hij. The
gradient of a smooth function f associated with the metric h is defined by the relation
h(X, grad f ) = d f (X) for any X ∈ C(TM). The central role in the theory of heat diffusion is
played by the Laplace–Beltrami operator on (M, h), which is defined in local coordinates by

ΔM,h =
1√
h

∑
i,j

∂

∂xi

[√
hhij ∂

∂xj

]

where h and hij are, respectively, the determinant and the inverse of the coordinates of the
metric tensor (hij) in the local chart. With the Laplace–Beltrami operator one can associate
the heat equation on M with an initial condition f :⎧⎪⎨⎪⎩

1
2

ΔMu(t, x) + ∂tu(t, x) = 0

u(0, x) = f (x) on M.

(4)

In the compact case, which is our main concern, this equation always has a smooth solution
denoted by pt(x). The Brownian motion (Xt)t≥0 on M is just a Feller process, which has a
transition operator of the form:

Pt f (x) = E[ f (Xt)|X0 = x]

for any f continuous with compact support on M. The kernel associated with this operator
is given by pt(x, y); this quantity is the probability that the Brownian is at y at time t
conditioned on the fact that it started at x. It satisfies the relation:

Pt f (x) = E[ f (Xt)|X0 = x] =
∫

M
pt(x, y) f (y)dy.

3.4. The Density Probability of the Brownian Motion in SO(3)

The notion of Brownian motion on a compact Lie group will be directly derived from
the setting of the previous section, in that a Lie group has a structure of the Riemannian
manifold. The aim is to find an explicit formulation of the solution of the heat equation
in SO(3). Before, we need to find the expression of the Laplace operator. The fact that the
Brownian motion in a compact Lie group can be constructed from a solution of the heat
kernel was developed by K. Ito [24]. In this case, one can do much better than proving the
existence; indeed, using Fourier analysis on SO(3), it is possible to give an explicit formula
for the density (pt)t>0. Let us first recall that the Lie algebra of SO(3) is generated by three
matrices X1, X2, and X3, which give rise to the three corresponding differential operators
X̃i (i = 1, 2, 3), which act on the set of functions on SO(3) via the rule:

(X̃i. f )(x) =
d
ds

f (esXi x)|s=0 i = 1, 2, 3.
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The kth iteration of an operator X is just written X̃k. The Levi-Civita connection on SO(3)
is given by

∇XY =
1
4
[X, Y]

for any two vector fields X, Y [25]. This defines a Riemannian metric on SO(3), which is
just the identity. This gives the simple expression for the Laplace operator:

ΔSO(3) = X̃1
2
+ X̃2

2
+ X̃3

2
.

The density of the Brownian motion on G starting at identity is given by the solution in
L2(G) ∩ C2

c (G) of the heat equation with initial data in L2:⎧⎪⎨⎪⎩
1
2

ΔSO(3)u(t, x) = −∂tu(t, x)

u(idG, x) = f (x) on G.

(5)

3.5. Root Decomposition of the Lie Algebra of a Compact Lie Group

The explicit description of a solution to the problem (5) is well understood in the
setting of compact Lie groups, which consists of a vast generalization of the L2-theory of n-
dimensional tori Rn/2πZn. Let us be given a compact Lie group G. Let g be the Lie algebra
of G over the complex numbers and h be a Cartan subalgebra of g. In particular, since h

is abelian, the operators ad(H) = [H, .] commute with each other for all h ∈ h. A general
fact from linear algebra implies that all the operators ad(H) (H ∈ h) are diagonalizable
over the same basis. Thus, for any X ∈ g and H ∈ h, there exists a not necessarily real
eigenvalue α(H) such that

ad(H)X = [H, X] = α(H)X.

This gives rises to a well-defined map α : h → C, which is linear and, thus, can be seen as
an element of the dual of h. The set of roots of g with respect to h is the set of all α ∈ h∗

coming this way. We denote by R the set of all roots of g with respect to h. One can define a
definite negative bilinear on g× g, by the following rule B(X, Y) = tr(adX ◦ adX). For each
root α ∈ R and any H ∈ h, there exists a unique Hα ∈ h such that α(H) = B(H, Hα). Let us
set h0 = ⊕α∈RQHα as the Q-span of Hα (α ∈ h). One can define a positive definite inner
product on h∗0, by the rule:

(α, β) = B(Hα, Hβ) for every α, β ∈ R.

If we fix a set H1, . . . , Hs that spans h0, we say that an element α of h0 is positive if there
exists an integer 1 � j � s such that α(H1) = . . . , α(Hj−1) = 0 and α(Hj) > 0. We denote
α > 0, and we denote by R+ the set of positive roots. If α ∈ R, then −α ∈ R. We have the
following decomposition into eigenspaces:

g = a⊕ n+ ⊕ n−.

where n+ (respectively n−) is the direct sum ⊕α∈R+gα (respectively, ⊕α ∈ R+gα). For
any given irreducible representation ρ : g → gl(V), there exists a nonzero vector v ∈ V

and Λ ∈ h∗0 such that ρ(H)v = Λ(H)v and
2(Λ, λ)

(λ, λ)
is a nonnegative integer for each

λ ∈ R+. The vector v is called the highest weight vector, and Λ is the highest weight
of the representation ρ. Actually, the highest weights of an irreducible representation
characterize completely the equivalence class of an irreducible representation of g. For
connected compact Lie groups, Abelian subgroups are just tori in the usual sense, and
Cartan subgroups are replaced by the notion of maximal tori. In particular, this opens the
way to the the generalization of Fourier analysis to compact Lie groups. In tori, the key role
is played by irreducible characters, which are traces of the irreducible representations rather
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than the highest weights. The reason behind this is that maximal tori are conjugate in G, i.e.,
they form a unique orbit under the conjugation action. Thus, the trace of a representation
restricted to any maximal torus is constant on the conjugacy class.

Since any element of G is contained in a maximal torus, central functions on G are
completely characterized by their restriction to a maximal torus. In particular, this applies
to the characters of irreducible representations. A character is characterized by the sets of
highest weight of a maximal torus, that is for each highest weight λ, one has a corresponding
irreducible character χλ of G.

3.6. Computation of the Characters

Since all maximal tori are conjugate under G, the action of G on the set of all maximal
tori is transitive. If we fix a representative torus T for this action, the Weyl group is by
definition W(T) = N(T)/T, where N(T) = {g ∈ G : g−1Tg = T} is the normalizer of T.
Concretely, the elements of the Weyl group are generated by a finite set of reflections with
respect to the hyperplanes Fα = {β ∈ R : (α, β) = 0}. The set Cα = {β ∈ R : (α, β) > 0} is
called the Weyl chamber associated with the root α. An important fact is that the Weyl group
permutes Weyl chambers. For each w ∈ W, let us denote by Nw the number of reflections
in the decomposition of w. The irreducible character corresponding to the highest weight λ
evaluated for H ∈ Lie(T) is as follows:

χλ(eH) =
∑w∈W(−1)Nw eiw(λ+ρ)H

∑w∈W(−1)Nw eiwρH

where ρ is the half sum of the positive roots. The dimension of the corresponding irreducible
representation is given by

dλ =
∏α∈R+(λ + ρ, α)

∏α∈R+(ρ, α)
.

For each highest root λ and g ∈ G, one has

ΔGχλ(g) = c(λ)χλ(g) (6)

with the corresponding eigenvalues being

c(λ) = (λ + ρ, λ + ρ)− (λ, λ). (7)

3.7. Solution of the Heat Equation for Compact Lie Groups

We solve Equation (5) for an initial data f , which is a trace class function in L2(G),
that is f (hgh−1) for any g, h ∈ G. Under this assumption, the Peter–Weyl theorem gives us
the Fourier expansion of f , which takes the following nice form

f (g) = ∑
λ∈Λ+

√
dλχλ(g)

where the equality is to be considered in the L2 sense. Now, we set the following map
pt : G × G → R for each t > 0.

pG
t (k, g) = ∑

λ∈Λ+

1√
dλ

χλ(k)χλ(g)e−tc(λ) (k, g ∈ G). (8)

We claim that this function is a solution of (5). Indeed,

ΔG pG
t (k, g) = ∑

λ∈Λ+

1√
dλ

χλ(k)ΔG(χλ(g))e−tc(λ).
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Using (6), one can deduce that

ΔG pG
t (k, g) = ∑

λ∈Λ+

1√
dλ

χλ(k)χλ(g)c(λ)e−tc(λ) = − ∂

∂t
[pG

t (k, g)].

The solution is called the heat kernel of the compact Lie group G. We also call the heat
kernel the one variable function pt(g) = pt(I3, g), the only ambiguity being that kernels
in operators theory are defined on the product of the space with itself; indeed, the kernel
defines an operator of L2(G) called the heat operator:

Pt f (k) =
∫

G
pt(k, g) f (g)dg.

A notation of common use for pt(I3, g) is pt(g), which is also called the heat kernel, and we
employ both terms with no risk of confusion.

3.8. Solution of the Heat Equation for SO(3)

Now, we are able to give the explicit form of the heat kernel for G = SO(3). In most
of the presentations in the literature, it is always derived from the case G = SU(2), for
which the situation is much clearer due to the fact that it is simply connected. Here, we
follow the presentation of M. Liao (Liao gives the formula for Levy processes, and it is
easy to deduce the Brownian case, which corresponds to continuous Levy trajectories,
which have a null Levy measure and the infinitesimal generator L, being the half of the
Laplacian of G.) (Example 4.20 [23]). We recall that this construction is only valid if f is a
conjugate invariant, which is the case for us. The equivalence classes of irreducible unitary
representations of SO(3) are indexed by the set of nonnegative integers {n = 0, 1, 2, 3, . . .},
and the corresponding characters are trace class functions depending only the conjugacy
class of a rotation depending only on an angle θ and given by

χn(g) = χn(θ) =
sin((2n + 1)θ/2)

sin(θ/2)
.

The expanded form of the heat kernel of SO(3) is given by

pSO(3)
t (g) = pSO(3)

t (θ) = 1 + ∑
n≥1

(2n + 1)e−atn(n+1) sin((2n + 1)θ/2)
sin(θ/2)

. (9)

with the corresponding kernel given by

pSO(3)
t (h, g) = pSO(3)

t (β, θ) = 1 + ∑
n≥1

(2n + 1)e−n(n+1)t/2χn(θ)χn(β). (10)

For a such that the infinitesimal generator is L = aΔG, for the Brownian motion, we took
a = 1/2. Thus, the density distribution of the Brownian motion on G is

pSO(3)
t (θ) = 1 + ∑

n≥1
(2n + 1)e−n(n+1)t/2 sin((2n + 1)θ/2)

sin(θ/2)
. (11)

The action of the heat operator relative to L = 1
2 Δ on the space of the L2-integrable function

of G are conjugate invariant. Thus, using (2), it takes the following form:

PG
t f (I3) =

∫
SO(3)

pSO(3)
t (g) f (g)μSO(3)(dg) =

2
π

∫ π

0
pSO(3)

t (θ) f (θ) sin2(θ/2) dθ. (12)
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In other terms, this means that if (gt)t≥0 is a Brownian motion on SO(3) starting at the
identity, which is conjugate invariant, we have

E[ f (gt)] =
2
π

∫ π

0
pSO(3)

t (θ) f (θ) sin2(θ/2) dθ. (13)

4. The Brownian Motion on the Support of f
4.1. The Support of f

We introduce the support of f , which for us will be the following set:

ΓB = supp f = {g ∈ SO(3)| f (g) = volS2(gB ∩ B) ≥ 0}.

The function f vanishes as soon as dS2(gN, N) � diam(B), which amounts to saying that f
is supported by those g such that arccos〈gN, N〉 < diam(B). Noting that cos is decreasing
in the interval [0, π], the latter condition is equivalent to 〈gN, N〉 > cos diam(B). The
support of f is

ΓB = {g ∈ SO(3)|〈gN, N〉 � cos diam(B)}.

The support of f , namely ΓB, is then a closed subset of SO(3), but not a Lie subgroup. The
boundary of ΓB is denoted ΣB and is simply given by

ΣB = {g ∈ SO(3)|〈gN, N〉 = cos diam(B)}.

The subset ΣB can be seen as a smooth hypersurface of SO(3) of equation θ(g) = 〈gN, N〉 =
cos diam(B). Reminding that N is the north pole, we readily obtain that θ(g) = g33. Thus,

ΣB = {g ∈ SO(3)|g33 = cos diam(B)}.

Using the Euler parametrization of the rotations (θ(g), ϕ(g), ψ(g)), we know that

g33 = cos θ(g).

This shows that the boundary of the support of f is then given by

ΣB = {g ∈ SO(3)|θ(g) = diam(B)}.

4.2. The Support Γ Seen as Submanifold Embedded in SO(3)

There are several ways to construct a Brownian process on a Lie group viewed as a
Riemannian manifold. The more suitable way in our case is to introduce the density of such
a process, which is given by the solution of the heat equation on the support of f viewed as
a Riemannian manifold. Indeed, the support ΓB can be endowed with a structure of the
Riemannian submanifold embedded in G with the induced metric of SO(3). In particular,
from this induced metric, one is able to extract the Laplace–Beltrami operator ΔΓB . The
reason we are interested in this operator is that it encodes the property of the Brownian
motion killed outside ΓB, in that the density of a Brownian process on such a submanifold
is the solution of the heat operator associated with ΓB. In other words, one can say that the

infinitesimal generator of (gt)t≥0 stopped outside the support of f is just
1
2

ΔΓB.

Tangent Space of the Submanifold ΓB.

The set ΓB is the set of all g ∈ G such that

θ(g) = 〈gN, N〉 � cos diam(B).
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Since we are going to work locally, it is more suitable to look at ΓB as a union of level sets
of φ, namely

ΓB =
⋃

0�γ�cos diam(B)

{g ∈ G|θ(g) = γ}.

For each γ ∈ [0, cos diam(B)], we first need to show that the level set:

ΓB[γ] := θ−1(γ) = {g ∈ G|θ(g) = γ}

is a smooth submanifold in G. A sufficient condition is that θ is a submersion, i.e., the
differential is surjective at any point (see [26]). We check this fact in the following lemma.

Lemma 1. The map θ : G → R is submersion, in particular the level sets of θ are smooth immersed
submanifolds of G.

Proof. Let us compute the differential of θ at a point g ∈ Γ f in the direction given by a
vector field X ∈ Tg(G). This is given by

(dθ)gX = (X̃.θ)(g) =
d
dt

θ(etX g)|t = 0.

Thus,

(dθ)gX = lim t → 0
θ(etX g)− θ(g)

t
= lim

t→0
〈 (e

tX − I3)

t
gN, N〉.

One has,

lim
t→0

etX − I3

t
= lim

t→0

1
t

(
tX +

(tX)2

2
+

(tX)3

3!
+ . . .

)
= X.

Therefore, we obtain
(dθ)gX = 〈XgN, N〉 = θ(Xg).g33.

The kernel is given by

Ker(dθ)g = {X ∈ Tg(G)) | θ(Xg) = 0}

= {X ∈ Tg(G)) | 〈XgN, N〉 = 0}

= {X ∈ Tg(G)) | (Xg)33 = 0}.

Thus,
Ker(dφ)g = {X ∈ Tg(G) | X31g13 + X32g23 + X33g33 = 0}.

This Ker(dθ)g is a hyperplane of Tg(G) being of codimension one as the kernel of a linear
form on Tg(G). In particular,

rank(dθ)g = dim Tg(G)− dim Ker(dθ)g = 1.

Hence, for every g ∈ G, (dθ)g is surjective since it is real-valued.

Proposition 1. There exists a vector field Z such that, for every g ∈ G,

Tg(G) = Tg(Γ)⊕RZ3.

In particular, ΓB is a smooth hypersurface in G with the normal direction given by Z3.

Proof. Since
θ(g) = 〈gN, N〉 = 〈gN, N〉
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the tangent space of ΓB is given by

Tg(ΓB) = {X ∈ Tg(G) | (Xg)33 = 0}.

A vector field X ∈ Tg(G is then in Tg(ΓB) if X = Yg for some Y ∈ g and, thus, if
(Xg)33 = (g2Y)33 = 0. The later condition gives

(g2)31Y13 + (g2)32Y23 + (g2)33Y33 = 0.

Since Y ∈ so(3), it is skew-symmetric, hence of the form:

Y =

⎛⎝ 0 −Y21 −Y31
Y21 0 −Y32
Y31 Y32 0

⎞⎠
In particular, Y33 = 0, and therefore, one has the equation

(g2)31Y31 + (g2)32Y32 = 0.

This gives the relation Y31 = −ρ(g)Y32, where

ρ(g) =
(g2)32

(g2)31
=

g31g12 + g32g22 + g33g32

g31g11 + g32g21 + g33g31
.

By recasting in Y, one obtains

Y =

⎛⎝ 0 −Y21 ρ(g)Y32
Y21 0 −Y32

−ρ(g)Y32 Y32 0

⎞⎠ = Y21

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠+ Y32

⎛⎝ 0 0 ρ(g)
0 0 −1

−ρ(g) 1 0

⎞⎠.

Thus, we obtain that the elements X of the tangent space Tg(ΓB) are of the form:

X = RZ1 +RZ2

where Z1 and Z2 are two vector fields given by Z1(g) = gX3 and Z2(g) = gX1 + ρ(g)gX2;
here, (Xi)1�i�3 is the basis of g = so(3) given in §2.1. Hence, the tangent space at the point
g of the submanifold ΓB is given by

Tg(ΓB) = span{Z1(g), Z2(g)}.

The normal bundle N (ΓB) is the orthogonal complement of the tangent bundle in T(G)
with respect to the Killing inner product given by β(X, Y) = Tr(XY)

T(G) = T(ΓB)⊕N (ΓB).

We already know that, for every g ∈ ΓB, dimN g(ΓB) = 1. Its generator Z3 satisfies the
two conditions:

Tr(Z3Z1) = 0 and Tr(Z3Z2) = 0.

4.3. Laplace–Beltrami Operator on ΓB.

As remarked earlier, the support of f , ΓB, is not a Lie group, but only a submanifold
of G. For this reason, we cannot write the Laplace operator of ΓB as squares of differential
operators afforded to the basis of so(3). The structure of the Riemannian manifold on ΓB
allows overcoming this issue. Indeed, there is a canonical way to obtain an expression of
the Laplace–Beltrami operator of a submanifold as a function of the Laplace operator of the

172



Mathematics 2023, 11, 1958

underlying manifold and the coefficients of the second fundamental form of ΓB embedded
in G.

There is a useful formula that allows expressing the Laplace operator of a submanifold
as function of the following.

Lemma 2. Let us assume that we have an n-dimensional Riemannian manifold M and a k-
dimensional Riemannian submanifold N immersed in M. Let us denote by ∇M, ΔM (respectively,
∇N, ΔN) the connections and the Laplace operator on M (respectively, N). Suppose (Xk+1, . . . , Xn)
is an orthonormal basis of the normal bundle of N, and H denotes the mean curvature vector of N
in M.
Then, for any f ∈ C∞(M), one has

ΔN f|N = (ΔM f )|N + H f −
n

∑
i=k+1

∇2
M f (Xi, Xi). (14)

Proof. See, e.g., Lemma 2 in [27].

We applied the lemma to the case when M = SO(3) and N = ΓB and with Z3 as the gener-
ator of the normal bundle of N = ΓB (here n = 3 and k = 2), then for any f ∈ C∞(SO(3)),
we have

ΔΓB f|ΓB
= (ΔSO(3) f )|ΓB

+ HB f −∇(2)
SO(3) f (Z3, Z3) (15)

where HB denotes the mean curvature of ΓB in SO(3). The last term can be simplified;
indeed, the second covariant derivative is by definition equal to

∇(2)
SO(3) f (Z3, Z3) = ∇Z3∇Z3 f −∇∇Z3 Z3 f .

The Levi-Civita connection on SO(3) is just ∇XY =
1
2
[X, Y] for any vector fields X, Y. Thus,

∇(2)
SO(3) f (Z3, Z3) = Z2

3 f −∇ 1
2 [Z3,Z3]

f = Z2
3 f .

Let us denote by CG the Casimir operator of G, the unique generator of the center of the
enveloping algebra U(g), which is nothing but the Laplace operator on G. To sum up, we
obtained the following.

Proposition 2. The Laplace operator of the submanifold ΓB takes the following form:

ΔΓ = CG + HΓ − Z2
3.

4.4. The Heat Kernel on ΓB.

The density probability distribution of the Brownian motion in ΓB is determined by
the heat kernel of the Markov semi-group operator PΓt = e−tΔΓ acting on L2(ΓB). The
Casimir operator CG lies in the center of the enveloping algebra U(g); in particular, it
commutes with Z2

3, i.e., [CG, Z2
3 ] = 0. Thus, the commutation relation and Proposition 2

give the identity:
PΓ

t = e−tCG etZ2
3 e−th (16)

where h is the mean curvature scalar of ΓB seen as the embedded Riemannian submanifold
in G. The diffusion operator PΓt has a heat kernel function pΓ

t : G × G → R characterized
by the following relation:

PΓ
t f (g) =

∫
Γ

pΓ
t (k, g) f (k)dk

for every g ∈ Γ and f ∈ L2(Γ). The value pΓ
t (k, g) gives exactly the probability of the

Brownian motion in Γ to be at k at time t provided it started at g. We need to make this
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probability transition explicit as a function ofthe one in G and in the normal direction
given by the operator Z2

3. Recall that the normal direction is given by the vector field Z3,
and thus, the normal direction at the point g ∈ G is just given by Z3(g) and π(g) is the
normal component of g ∈ G onto the geodesic Z = {etZ3 : t ∈ R}. The element α(g) is a
unique element of Lie (Z) such that eα(g) = π(g). Since Z is a one-dimensional one, the
element α(g) = log(π(g)) can be seen as an element of R. To compute α(g), it suffices to
consider the vector fields Z1, Z2, and Z3, which form the basis of g. Indeed, let g ∈ G be
given; since the exponential is surjective onto G, there exists a X ∈ g such that g = eX.
Now, writing the decomposition of X with respect to the basis {Zi, i = 1, 2, 3}, we get that
X = z1Z1 + z2Z2 + z3Z3 for some real numbers zi (i = 1, 2, 3). Thus, we have

α(g) = α(eX) = z3.

The relation (16) gives

PΓt f (γ) =
∫

Γ
pΓ

t (k, γ) f (k)dk =
∫

G
pG

t (γ, g)e−th(g)
(∫

R
pZ

t (s, α(g)) f (esZ3)ds
)

dg.

Finally, taking f = δI3 , we obtain the solution of the heat equation in Δ with the initial
condition u(0+, x) = δI3(x). Thus, the heat kernel of ΔΓ is given by

pΓ
t (γ) = pΓ

t (I3, γ) =
∫

G
pG

t (γ, g)e−th(g)pZ
t (0, α(g))dg. (17)

Now, Z is a the trajectory of a both-sided geodesic with initial velocity Z3 in SO(3). In
particular, it is a totally geodesic submanifold and, therefore, minimal in SO(3). Hence, the
heat kernel on Z is just the one-dimensional heat kernel:

pZ(z) =
1√
πt

ez2/2t.

The heat kernel of ΔΓ takes the following form:

pΓ
t (γ) =

1√
πt

∫
G

pG
t (γ, g)e−th(g)eα(g)2/2tdg. (18)

Proof of Theorem 1. Now, we come to our initial problem, namely the study of the random
process Vt = volS2(gtB ∩ B) for t ≥ 0, where (gt)t�0 is the Brownian motion, which is
stopped when it hits the boundary of the support of f . More precisely, we define the
stopping time:

τ = inf{t > 0 : gt ∈ ∂ΓB}.

Thus, the Brownian motion starting at identity and killed outside Γ = supp f has its density
given by

pΓ
t (k) =

1√
πt

∫
G

pG
t (k, g)e−th(g)eα(g)2/2tdg. (19)

The expectation of (Vt∧τ)t≥0 = ( f (gt∧τ)) is

E[Vt∧τ ] = E[Vt | t < τ] =
∫

Γ
pΓ

t (k) f (k)dk.

Using (19), we obtain

E[Vt∧τ ] =
1√
πt

∫
Γ

∫
G

pG
t (k, g) f (k)eLt(g)dg dk
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where Lt(g) = −th(g) + α(g)2/2t for every g ∈ G. The function Lt defines a map that
is SO(3) invariant. Furthermore, the function f is conjugate invariant; indeed, for any
g, h ∈ G, we have

f (hgh−1) = volS2(hgh−1B ∩ B) = volS2(gh−1B ∩ h−1B) = volS2(gB ∩ B) = f (g).

The last equality is justified by volS2 being SO(3) invariant. Thus, f is entirely determined
by its values at a rotation of a given axis, thus depending only on the angle β,

f (β) = f (Rβ).

The support of f is, thus, given by the interval 0 ≤ β ≤ diam(B).

E[Vt∧τ ] =
4

π2
√

πt

∫ diam(B)

β=0

∫ π

α=0
pG

t (β, θ) f (β)eLt(θ) sin2(θ/2) sin2(β/2)dθ dβ.

Let us set

J (t, θ) =
∫ diam(B)

β=0
pt(β, θ) f (β) sin2(β)dβ.

Then, using the heat kernel expansion (9):

J (t, θ) =
∫ diam(B)

β=0

(
1 + ∑

n≥1
(2n + 1)e−n(n+1)t/2χn(θ)χn(β)

)
f (β) sin2(β/2)dβ.

Let us denote Jn =
∫ diam(B)

0
f (β)χn(β) sin2(β/2) dβ for n ≥ 0; therefore,

J (t, θ) = J0 + ∑
n≥1

(2n + 1)e−n(n+1)t/2χn(θ)Jn.

Finally, using Fubini’s theorem, one has

E[Vt∧τ ] =
4

π2
√

πt

∫ π

0
J (t, θ)eLt(θ) sin2(θ/2)dθ.

This proves Theorem 1.

5. Conclusions

Using all the variety of mathematical tools coming from the theory of the Brownian
motions on manifolds, we were able to derive an integral expression for the expectation of
the volume intersection of a subset of the sphere S2 with its translation. Such results could
be applied to concrete problems in physics and dynamical 3D image processing. A natural
generalization of our result would be to try to find an analog of Theorem 1 by replacing
Brownian motions on Lie groups by Levy processes, which are stochastic processes, which
can have jump discontinuities using the recent results of Albeverio and Gordina [4].
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Abstract: A conformally flat GRW space-time is a perfect fluid RW space-time. In this note, we
investigated the influence of many differential curvature conditions, such as the existence of recurrent
and semi-symmetric curvature tensors. In each case, the form of the Ricci curvature tensor, the
energy–momentum tensor, the energy density, the pressure of the fluid, and the equation of state
are determined and interpreted. For example, it is demonstrated that a Ricci semi-symmetric RW
space-time reduces to Einstein space-time or a Ricci recurrent RW space-time, and the perfect fluid
space-time is referred to as Yang pure space-time or dark matter era.
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1. Introduction

One of the most significant areas of research in both mathematics and physics is the
geometry of generalized Robertson–Walker (or GRW) space-times. A warped product
manifold with a one-dimensional base manifold serves as the representation of a GRW
space-time. The term Friedmann–Lemaitre–Robertson–Walker metrics, which accurately
captures the contributions of different scientists to this issue, is currently used in physics
for Robertson–Walker-type metrics. There are many exciting decomposition theorems on
Lorentzian manifolds. The author of [1] described a particularly remarkable decomposition
of a Lorentzian manifold to a GRW space-time. The existence of a time-like concircular
vector field is sufficient for a Lorentzian manifold to be a GRW space-time. This condition
becomes weaker as follows in the presence of another condition [2]. If a unit time-like torse-
forming vector field ωi that is an eigenvector of the Ricci tensor Sij exists on a Lorentzian
manifold M, then M is a GRW space-time. By a unit time-like torse-forming, we mean that
there is a scalar function ϕ on M such that

∇kωj = ϕ
(

ωkωj + gkj

)
, (1)

ωiωi = −1. (2)

The factor ϕ coincides with the Hubble’s parameter H on a GRW space-time M. How
rapidly the universe is expanding is determined by Hubble’s parameter H (for a description
of H and further information, see [3]). This torse-forming vector field is also an eigenvector
of the Ricci tensor Sij, that is, ωiSij = ψωj where ψ is the corresponding eigenvalue of
ωj [1,2,4]. In [5], a GRW space-time Ricci tensor has been established to be
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Sij =
S − ψ

n − 1
gij +

S − nψ

n − 1
ωiωj + (n − 2)ωkωlCkijl (3)

where Ckijl is the Weyl conformal curvature tensor and S is the scalar curvature. The
classical Robertson–Walker (or RW) space-time is a conformally flat GRW space-time,
which allows the Ricci curvature form to change as

Sij =
S − ψ

n − 1
gij +

S − nψ

n − 1
ωiωj. (4)

On the other hand, the Ricci tensor of a perfect fluid space-time has the form

Sij = αgij + βτiτj. (5)

Accordingto this equation, an RW space-time is a perfect fluid space-time where

α =
S − ψ

n − 1
, β =

S − nψ

n − 1
, τi = ωi. (6)

For further information about perfect fluid space-times and characterization of GRW
space-times and RW space-times, the reader is recommended to read [2,4–7]. An algebraic
curvature condition is that a space-time is a perfect fluid space-time [8]. Manifolds having
this algebraic curvature criterion are known as quasi-Einstein manifolds in differential
geometry [9]. However, there are additional types of differential curvature conditions that
can be used, such as the existence of recurrent and semi-symmetric curvature tensors. Many
alternative differential curvature conditions are examined in this article by using Riemann
and Ricci curvature tensors. In each case, the form of the Ricci tensor, energy–momentum
tensor, pressure, energy density and equation of state of the perfect fluid is given.

2. Notes on RW Space-Times

It is easy to obtain the scalar curvature of RW space-time, the eigenvalue of the Ricci
tensor corresponding to ω and the divergence of the one form ω as

S = nα − β, ψ = α − β (7)

∇jωj = (n − 1)ϕ (8)

It should be observed that the form (5) on an RW space-time has a perfect fluid
structure that is unique up to a sign. For this, we assume that there exists a vector field υ
that is time-like and

Sij = ᾱgij + β̄υiυj.

Then,

ωiSij = ᾱωj + β̄
(

ωiυi

)
υj

(ψ − ᾱ)ωj = β̄
(

ωiυi

)
υj.

Since any two time-like vectors can not be orthogonal to each other, ψ − ᾱ = β̄ = 0;
that is, M is Einstein, or ωj = ±υj.

Einstein’s field equations without cosmological constant are

Sij −
S
2

gij = kTij

where Tij is the energy–momentum tensor, and k is the gravitational constant. Thus,

αgij + βωiωj −
S
2

gij = kTij(
α − S

2

)
gij + βωiωj = kTij. (9)
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However, the energy–momentum tensor for a perfect fluid space-time with velocity
vector field ω is given by

Tij = pgij + (p + μ)ωiωj (10)

where p and μ are pressure and energy density, respectively [10]. Equations (9) and (10)
show that

kp = α − S
2
=

S − ψ

n − 1
− S

2
=

(3 − n)S − 2ψ

2(n − 1)
(11)

k(p + μ) = β =
S − nψ

n − 1
(12)

kμ =
S − nψ

n − 1
− (3 − n)S − 2ψ

2(n − 1)
=

S − 2ψ

2
. (13)

3. Ricci Curvature Conditions on RW Space-Times

3.1. Semi-Symmetric Ricci Curvature

A space-time is called Ricci semi-symmetric if [11]

∇l∇kSij −∇k∇lSij = 0.

Taking the covariant derivative of Equation (5) twice, one obtains

∇l∇kSij −∇k∇lSij = ∇l∇k
(
αgij + βωiωj

)
−∇k∇l

(
αgij + βωiωj

)
= β∇l∇k

(
ωiωj

)
− β∇k∇l

(
ωiωj

)
= β

[
ωi(∇l∇k −∇k∇l)ωj + ωj(∇l∇k −∇k∇l)ωi

]
. (14)

It is clear that this equation implies that an RW space-time is Ricci semi-symmetric
if and only if either β = 0 or ∇l∇kωj = ∇k∇lωj. Let us consider the first condition. It
is noted that β = 0 implies that an RW space-time is Einstein. The converse is also true.
Assume that the space-time is Einstein, then

S
n

gij = αgij + (nα − S)ωiωj,

S
n

ωj = (α − nα + S)ωj,

S
n

= α − nα + S,

that is, α = S
n . Equation (5) yields β = nα − S and consequently β = 0. The second

condition is equivalent to ωhSh
ilk = 0

Theorem 1. An RW space-time M is Ricci semi-symmetric if and only if M is Einstein or ωhSh
ilk = 0.

Now, assume that β = 0. Then an RW space-time is Einstein and the eigenvalue is
ψ = S

n . Let us rewrite the Ricci tensor and the energy–momentum tensor for a perfect fluid
space-time in the case β = 0 as

Sij =
S
n

gij (15)

Tij = pgij + (p + μ)ωiωj (16)

where
α = ψ =

S
n

. (17)
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The equation of state in this case

k(p + μ) = 0, (18)

kp = −
(

n − 2
2n

)
S, (19)

kμ =

(
n − 2

2n

)
S. (20)

kTij = −
(

n − 2
2n

)
Sgij. (21)

That is, the perfect fluid is referred to as the dark energy. On the other hand, if
∇l∇kωj = ∇k∇lωj, then

ωhSh
ilk = 0.

This equation yields
ωhSh

k = 0.

Using Equation (5), it is
0 = (α − β)ωj

and consequently ψ = 0, α = β, and in this case, it is

Sij =
S

n − 1
(

gij + ωiωj
)
. (22)

Equations (9) and (10) show that

kTij = − (n − 3)
2(n − 1)

Sgij +
S

n − 1
ωiωj, (23)

kp = − (n − 3)
2(n − 1)

S, (24)

kμ =
S
2

, (25)

k(p + μ) =
S

n − 1
. (26)

Theorem 2. Let M be a Ricci semi-symmetric RW space-time. Then, M satisfies one of the following:

1. (β = 0) M is Einstein. The Ricci tensor and the equation of state take the form of Equation
(15) and Equations (18)–(21). The perfect fluid is referred to as dark matter era.

2. (α = β) The Ricci tensor, the energy–momentum tensor, and the equation of state take the
form of Equations (22)–(26).

Remark 1. Notably, an RW space-time is a perfect fluid space-time. Dark matter era refers to
perfect fluid space with the equation of state p + μ = 0 [12]. However, so far, according to [13], a
four-dimensional perfect fluid space-time with p + μ 	= 0 is RW space-time if and only if it is a Yang
pure space-time. These space-times are identified by a Ricci tensor, which is a Codazzi tensor [13].

Corollary 1. A four-dimensional Ricci semi-symmetric RW space-time is a Yang pure space-time
given that β 	= 0.

3.2. Generalized Recurrent Ricci Curvature

A space-time M is called generalized Ricci recurrent if there are two 1−form a and b
such that

(∇XS)(Y, Z) = a(X)S(Y, Z) + b(X)g(Y, Z) (27)
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where X, Y, Z ∈ X(M) and a, b are called the corresponding recurrence 1−forms. In local
coordinates, one may write

∇lSij = alSij + bl gij. (28)

Two contractions of this equation by gij and gli yield

∇lS = Sal + nbl (29)
1
2
∇jS = alSl

j + bj. (30)

A third contraction with ωi infers

ωi∇lSij = al

(
ωiSij

)
+ blωj. (31)

Since ωi is an eigenvector of the Ricci tensor, it is

∇l

(
ωiSij

)
− Sij∇lω

i = (ψal + bl)ωj (32)

∇l
(
ψωj

)
− Sij∇lω

i = (ψal + bl)ωj. (33)

Now, we may insert the definition of the Ricci tensor as

∇l
(
ψωj

)
−
(
αgij + βωiωj

)
∇lω

i = (ψal + bl)ωj (34)

∇l
(
ψωj

)
− α∇lωj = (ψal + bl)ωj (35)

(∇lψ)ωj + (ψ − α)∇lωj = (ψal + bl)ωj. (36)

By multiplying both sides by ω j, one obtains

(∇lψ) = ψal + bl . (37)

Back substitution in Equation (36) results in

(ψ − α)∇lωj = 0. (38)

Thus, we have two cases, namely, ψ − α = 0 and ∇lωj = 0. The first case ψ − α = 0
implies that β = 0 and so M is Einstein, and the Ricci tensor and the equation of state take
the form of Equation (15) and Equations (18)–(21). To consider the second case ∇lωj = 0, it
is clear that ϕ = 0. In this case, the perfect fluid is called static. One may use the fact that

ψ = (n − 1)
(

ϕ2 + ϕ̇
)

where ϕ̇ = ωk∇k ϕ to obtain ψ = 0, that is α = β. In this case, the Ricci tensor, the
energy–momentum tensor, and the equation of state take the form

Sij =
S

n − 1
(

gij + ωiωj
)
,

kTij =
S

2n − 2
(
−(n − 3)gij + 2ωiωj

)
,

k(p + μ) =
S

n − 1
,

kp = − (n − 3)S
2(n − 1)

,

kμ =
S
2

.

181



Mathematics 2023, 11, 1440

The covariant derivative of the Ricci tensor is now given by

∇lSij =
∇lS

n − 1
(

gij + ωiωj
)
.

Using the defining property of the generalized Ricci recurrent tensor, it is

alSij + bl gij =
∇lS

n − 1
(

gij + ωiωj
)
.

Now, the definition of the Ricci tensor yields

al
S

n − 1
(

gij + ωiωj
)
+ bl gij =

∇lS
n − 1

(
gij + ωiωj

)
.

One may simplify this equation as

0 =

( ∇lS
n − 1

− al
S

n − 1
− bl

)
gij +

( ∇lS
n − 1

− al
S

n − 1

)
ωiωj

0 = (∇lS − Sal − (n − 1)bl)gij + (∇lS − Sal)ωiωj.

Different contractions of this equation infer

bl = 0,

0 = ∇lS − Sal − nbl .

Sal = ∇lS

The defining equation of the generalized Ricci recurrent RW space-time reduces to

∇lSij = alSij

For a non-zero scalar curvature S, it is

∇lSij = ∇l(ln S)Sij.

Theorem 3. Let M be a generalized Ricci recurrent RW space-time. Then M reduces to be Einstein
or to a Ricci recurrent RW space-time of the form

∇lSij = ∇l(ln S)Sij.

Moreover, M satisfies one of the following:

1. M is Einstein. The Ricci tensor and the equation of state take the form of Equations (15) and
(18)–(21).

2. M is a static perfect fluid, and the Ricci tensor, the energy–momentum tensor, and the equation
of state take the form of Equations (22)–(26).

A space-time M is called Ricci recurrent if there is a 1−form a such that

(∇XS)(Y, Z) = a(X)S(Y, Z)

where X, Y, Z are vector fields on M and a is called the recurrence 1−form. In local
coordinates, one may write

∇lSij = alSij.
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It should be noted that a Ricci recurrent space-time is a generalized Ricci recurrent
space-time. Let M be a Ricci recurrent RW space-time. Then M reduces to be Einstein or to
a Ricci recurrent RW space-time of the form

∇lSij = ∇l(ln S)Sij.

Moreover, M is either Einstein and Equations (15)–(21) hold or M is a static perfect
fluid and the Ricci tensor, the energy–momentum tensor, and the equation of state take the
form of Equations (22)–(26).

A space-time M is called Ricci symmetric if [14]

(∇XS)(Y, Z) = 0

where X, Y, Z are vector fields on M. In local coordinates, one may write

∇lSij = 0.

It should be noted that a Ricci symmetric space-time is a Ricci recurrent space-time. In
the Ricci flat case, it is easy to show that only one case of the above result will hold, namely,
M is Einstein.

Corollary 2. Let M be a Ricci symmetric RW space-times. Then M reduces to be Einstein, and the
Ricci tensor and the equation of state take the form of Equations (15) and (18)–(21).

3.3. Codazzi Type of Ricci Tensor

The RW space-time is of Codazzi type of Ricci tensor if

(∇XS)(Y, Z) = (∇YS)(X, Z) (39)

where X, Y, Z are vector fields on M. In local coordinates, it is

∇kSij = ∇iSkj. (40)

To obtain contraction of this equation by ωiωk, let us first evaluate both sides as

ωiωk∇kSij = ωi(α̇gij + β̇ωiωj + βω̇iωj + βωiω̇j
)

= α̇ωj − β̇ωj − βω̇j

= ψ̇ωj − βω̇j (41)

and

ωiωk∇iSkj = ωi∇i

(
ωkSkj

)
− ωiSkj∇iω

k

= ωi∇i
(
ψωj

)
− ωiSkj∇iω

k

= ψ̇ωj + ψω̇j − ωi ϕSkj

(
δk

i + ωiω
k
)

= ψ̇ωj + ψω̇j − ωi ϕ
(
Sij + ψωiωj

)
= ψ̇ωj + ψω̇j − ωi ϕ

(
ψωj − ψωj

)
= ψ̇ωj + ψω̇j (42)

The above equations imply

ψ̇ωj − βω̇j = ψ̇ωj + ψω̇j

(ψ + β)ω̇j = 0

183



Mathematics 2023, 11, 1440

Therefore, ψ + β = 0 or ω̇j = 0. The first case infers α = 0 ψ = −β = S and
consequently

Sij = −Sωiωj. (43)

Space-times with this form of Ricci curvature are called Ricci simple space-times [15].
The energy–momentum tensor, the pressure and energy density are consequently given by

kTij = −S
2

gij −
3S
2

ωiωj, (44)

kp = −S
2

, (45)

kμ = −S, (46)

k(p + μ) = −3S
2

. (47)

The second condition implies that the fluid acceleration is zero and the velocity vector
field is geodesic.

Theorem 4. Let M be an RW space-time admitting a Codazzi type of Ricci tensor. Then, the
velocity vector field is geodesic or M is Ricci simple and

Sij = −Sωiωj, (48)

kTij = −S
2

gij −
3S
2

ωiωj, (49)

k(p + μ) = −3S
2

, (50)

kp = −S
2

, (51)

kμ = −S. (52)

4. Riemann Curvature Tensor on RW Space-Times

The Riemann curvature tensor of an RW space-time is completely determined by the
vector ω as follows. It is clear that the conformal curvature tensor is null and so

0 = Cjklm

= Sjklm +
1

n − 2

[
gjmSkl − gkmSjl + gklSjm − gjlSkm

]
− S
(n − 1)(n − 2)

[
gjmgkl − gkmgjl

]
. (53)

Now, the Riemann curvature tensor has the form

Sjklm =
S

(n − 1)(n − 2)

[
gjmgkl − gkmgjl

]
− 1

n − 2

[
gjmSkl − gkmSjl + gklSjm − gjlSkm

]
(54)

Using the form of the Ricci curvature tensor, one obtains

Sjklm =
S − 2(n − 1)α
(n − 1)(n − 2)

[
gjmgkl − gkmgjl

]
− β

n − 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
. (55)
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It is clear that

∇r(ωkωl) = ∇r(ωk)ωl + ωk∇r(ωl)

= ϕ(grk + ωrωk)ωl + ϕ(grl + ωrωl)ωk

= ϕ(grkωl + grlωk + 2ωrωkωl)

After lengthy computations using this equation, the covariant derivative of the Rie-
mann curvature tensor may be finally rewritten as

∇rSjklm =
∇rS − 2(n − 1)∇rα

(n − 1)(n − 2)

[
gjmgkl − gkmgjl

]
− ∇rβ

n − 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
− ϕβ

n − 2
[
gjmgrkωl + gjmgrlωk + 2gjmωrωkωl − gkmgrjωl

]
− ϕβ

n − 2
[
−gkmgrlωj − 2gkmωrωjωl + gkl grjωm + gkl grmωj

]
− ϕβ

n − 2

[
2gklωrωjωm − gjl grkωm − gjl grmωk − 2gjlωrωkωm

]
(56)

4.1. Locally Symmetric RW Space-Time

Assume that an RW space-time is symmetric, that is, ∇rSjklm = 0 [16], and conse-
quently, the scalar curvature is constant and n∇α = ∇β. Thus,

0 =
−2∇rα

(n − 2)

[
gjmgkl − gkmgjl

]
−n∇rα

n − 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
− ϕβ

n − 2
[
gjmgrkωl + gjmgrlωk + 2gjmωrωkωl − gkmgrjωl

]
− ϕβ

n − 2
[
−gkmgrlωj − 2gkmωrωjωl + gkl grjωm + gkl grmωj

]
− ϕβ

n − 2

[
2gklωrωjωm − gjl grkωm − gjl grmωk − 2gjlωrωkωm

]
.

By multiplying this equation by gjl , it is

0 = ∇rα[nωkωm + gkm] + ϕβ[grkωm + grmωk + 2ωrωkωm]. (57)

A last contraction with ωkωm gives us ∇rα = 0. Back substitution in the above
equation yields

0 = ϕβ[grkωm + grmωk + 2ωrωkωm] (58)

= ϕβ[ωm∇ruk + ωk∇rum] (59)

= ϕβ[ωm∇rωk + ωk∇rωm] (60)

From this equation, it is easy to show that either β = 0 or ∇rωm = 0. The first case
implies that the space-time is Einstein, and the second case infers the space-time is static.
In the first case, the Riemann curvature tensor becomes

Sjklm =
S − 2(n − 1)α
(n − 1)(n − 2)

[
gjmgkl − gkmgjl

]
(61)

=
S

n(n − 1)

[
gkmgjl − gjmgkl

]
. (62)
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Therefore, RW space-time has constant curvature. A simple contraction of this equation
implies α = 0. Now, the manifold is Ricci flat and consequently is flat.

Theorem 5. Let M be a locally symmetric RW space-time. Then,

1. M has a constant curvature. The Riemann tensor, the Ricci tensor, and the equation of state
take the form

Sjklm =
S

n(n − 1)

[
gkmgjl − gjmgkl

]
.

Sij =
S
n

gij,

kTij = −
(

n − 2
2n

)
Sgij,

kp = −kμ = −
(

n − 2
2n

)
S,

k(p + μ) = 0.

2. M is a static space-time.

4.2. Recurrent RW Space-Times

A space-time is called recurrent if there is one form a such that

(∇US)(X, Y, Z, W) = a(U)S(X, Y, Z, W).

In local coordinates, it is
∇rSjklm = arSjklm.

Thus, an RW space-time is recurrent if

arSjklm = ∇rSjklm

=
∇rS − (n − 1)∇rα

(n − 1)(n − 2)

[
gjmgkl − gkmgjl

]
− ∇rβ

n − 2

[
gjmωkωl − gkmωjωl + gklωjωm − gjlωkωm

]
− ϕβ

n − 2
[
gjmgrkωl + gjmgrlωk + 2gjmωrωkωl − gkmgrjωl

]
(63)

− ϕβ

n − 2
[
−gkmgrlωj − 2gkmωrωjωl + gkl grjωm + gkl grmωj

]
− ϕβ

n − 2

[
2gklωrωjωm − gjl grkωm − gjl grmωk − 2gjlωrωkωm

]
Using the calculations in the above subsection, one obtains

arSkm = − ∇rα

n − 2
gkm +∇rβωkωm + ϕβ[grkωm + grmωk + 2ωrωkωm].

Using two contractions with gkm and ωkωm, this equation infers

arS = −n∇rα

n − 2
−∇rβ

arψωk = − ∇rα

n − 2
ωk −∇rβωk + ϕβ[−grk − ωrωk]

arψ = − ∇rα

n − 2
−∇rβ

186



Mathematics 2023, 11, 1440

The subtraction of these two equations implies

ar(S − ψ) = −n − 1
n − 2

∇rα

ar(n − 1)α = −n − 1
n − 2

∇rα

arα = − 1
n − 2

∇rα.

Theorem 6. Let M be a recurrent RW space-time. Then, M is Ricci simple or the recurrence form
is given by

ar = − 1
n − 2

1
α
∇rα.

4.3. Harmonic RW Space-Time

A contraction of ∇rSjklm with grj infers

∇jSjklm =
∇mS − (n − 1)∇mα

(n − 1)(n − 2)
gkl −

∇lS − (n − 1)∇lα

(n − 1)(n − 2)
gkm

−∇mβ

n − 2
ωkωl +

β̇

n − 2
gkmωl −

β̇

n − 2
gklωm +

∇l β

n − 2
ωkωm

− ϕβ

n − 2
[gkmωl + glmωk + 2ωmωkωl − ngkmωl ] (64)

− ϕβ

n − 2
[−gkmωl + 2gkmωl + ngklωm + gklωm]

− ϕβ

n − 2
[−2gklωm − glkωm − glmωk − 2ωlωkωm]

Thus, the divergence of the Riemann tensor is give by

∇jSjklm =
1

(n − 1)(n − 2)
((∇mψ)gkl − (∇lψ)gkm)

+

(
β̇

n − 2
+ ϕβ

)
(gkmωl − gklωm) (65)

− 1
n − 2

((∇mβ)ωkωl − (∇l β)ωkωm).

Assume that M is harmonic, that is,

0 = ∇jSjklm

=
1

(n − 1)(n − 2)
((∇mψ)gkl − (∇lψ)gkm)

+

(
β̇

n − 2
+ ϕβ

)
(gkmωl − gklωm) (66)

− 1
n − 2

((∇mβ)ωkωl − (∇l β)ωkωm).
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Therefore, one obtains

0 =
1

n − 2
(∇mψ +∇mβ) +

(
−β̇ + ϕβ(1 − n)

)
ωm

0 =
n∇mα

n − 2
−
(

β̇ + (n − 1)ϕβ
)
ωm

0 =
nα̇

n − 2
+
(

β̇ + (n − 1)ϕβ
)

(67)

0 = nα̇ + (n − 2)
(

β̇ + (n − 1)ϕβ
)

However, a harmonic RW space-time has a divergence free Ricci tensor, that is,

0 = ∇jSjk

0 = ωk∇jSjk = ∇j
(

ωkSjk

)
− Sjk∇jωk

= ∇j(ψωj
)
− ϕSjk

(
gjk + ω jωk

)
= ψ∇j(ωj

)
+ ωj∇j(ψ)− ϕ(S − ψ) (68)

= ψϕ(n − 1) + ψ̇ − ϕ(nα − β − α + β)

= ψ̇ − (n − 1)ϕα + ψϕ(n − 1)

= ψ̇ − (n − 1)ϕβ.

Thus, ψ̇ = (n − 1)ϕβ. Equation (68) now becomes

0 = nα̇ + (n − 2)
(

β̇ + ψ̇
)

= (2n − 2)α̇.

Hence, α̇ = 0, β̇ = −ψ̇ = −(n − 1)ϕβ and Equation (67) reduce to

0 =
1

(n − 1)
((∇mψ)gkl − (∇lψ)gkm)

− 1
n − 2

ϕβ(gkmωl − gklωm) (69)

−((∇mβ)ωkωl − (∇l β)ωkωm).

A contraction by gkl implies

0 = ∇mψ +
n − 1
n − 2

ϕβωm +∇mβ + β̇ωm

= ∇mα +

(
1 − 1

n − 2

)
β̇ωm (70)

= ∇mα +
n − 3
n − 2

β̇ωm

Again, transfecting this equation by ωm yields

0 = α̇ − n − 3
n − 2

β̇ = −n − 3
n − 2

β̇ =
n − 3
n − 2

(n − 1)ϕβ.

Therefore, β = 0 or ϕ = 0.

Theorem 7. Let M be a harmonic RW space-time. Then, M is Einstein or M is a static space-time.

5. Conclusions

A conformally flat GRW space-time satisfies an algebraic curvature condition; namely,
it is a perfect fluid RW space-time. The existence of one of the differential curvature
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conditions (i.e., semi-symmetric Ricci curvature, generalized recurrent Ricci curvature
tensor, recurrent Ricci curvature tensor, parallel Ricci curvature tensor, Codazzi Ricci tensor,
locally symmetric, and harmonic Riemann curvature tensor) implies the RW space-time
has a constant curvature or is a static space-time.
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Abstract: In this article we derive a Li–Yau-type gradient estimate for a generalized weighted
parabolic heat equation with potential on a weighted Riemannian manifold evolving by a geometric
flow. As an application, a Harnack-type inequality is also derived in the end.
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1. Introduction

The gradient estimation for both elliptic and parabolic equations plays a significant
role in geometric analysis. Harnack estimation is also one of the powerful tools in heat
kernel analysis. The local and global behavior of positive solutions of nonlinear elliptic
equations on Rn (n > 2) near an isolated singularity were studied by Gidas and Spruck [1].
In [2], Hamilton proved a Harnack estimate on the Riemannian manifold for Ricci flow
with a weakly positive curvature operator, which was later used in solving the Poincaré
conjecture. Li and Yau [3] established parabolic gradient estimates on solutions to the linear
heat equation

(Δ − ∂t)u = q(x, t)u (1)

on Riemannian manifold having Ricci curvature bounded from below, where q(x, t) is C2

in first variable x and C1 in second variable t, where C2 and C1 denote the space of all twice
differentiable and one-time differentiable functions, respectively. After a remarkable work
by Perelman [4–6] in Ricci flow, this topic gained massive importance. Thus, this topic
becomes one of the important tools in geometric analysis and modern PDE theory. In [7],
Jiyau Li considered the heat-type equation

(Δ − ∂t)u(x, t) + h(x, t)uα(x, t) = 0 (2)

on M × [0, ∞), where h(x, t), is a function on M × [0, ∞), which is C2 in the first variable
and C1 in the second variable, α ∈ R and derived the gradient estimates and Harnack
inequalities for a positive solution to the above nonlinear parabolic equation. This equa-
tion represents a simple ecological model for population dynamics, where u(x, t) is the
population density at time t.

Wu [8] studied gradient estimates for the nonlinear parabolic equation

(Δφ − ∂t)u + μ(x, t)u + p(x, t)uα + q(x, t)uβ = 0, (3)

Mathematics 2023, 11, 1364. https://doi.org/10.3390/math11061364 https://www.mdpi.com/journal/mathematics190
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where Δφ is the weighted Laplacian, p(x, t), q(x, t) are C2 in x and C1 in t.
Abolarinwa et al. [9–12] studied gradient and Harnack estimates for various nonlinear
parabolic equations. In [13], Dung et al. studied various gradient estimations for solutions
of the following f -heat type equations

ut = Δ f u + au log u + bu + Cup + Du−q (4)

and ut = Δ f u + Cepu + De−pu + E, (5)

where a, b ∈ R and C, D, E are smooth functions, on a complete smooth metric measure
space (M, g, e− f dν) with Bakry–Émery Ricci curvature bounded from below. In [14], Azami
studied gradient estimates for a weighted parabolic equation

(Δφ − ∂t)u(x, t) = q(x, t)ua+1(x, t) + p(x, t)A(u(x, t)) (6)

evolving under the geometric flow, where p(x, t), q(x, t), A(u(x, t)) are C2 in x and C1 in
t. Thereafter many authors studied the geometric aspect of analysis on the Riemannian
manifold, see [15–23] and the references therein. Recently, Hui et al. studied Hamilton-
Souplet-Zhang type gradient estimation for nonlinear weighted parabolic equation in [24],
the same estimation for a system of equations in [25] and Saha et al. [26] studied first
eigenvalue of weighted p-Laplacian along the Cotton flow.

Motivated by the above works in this paper we consider a generalized non-linear
parabolic equation with potential by

Δφu =
∂u
∂t

+ A(u)p(x, t) + B(u)q(x, t) + ξ(x, t)u(x, t), (7)

where p(x, t), q(x, t) and ξ(x, t) are C2 functions of x, t. We derive a Li–Yau-type gradient
estimate for a positive solution of (7) on a weighted Riemannian manifold which evolves
under an abstract geometric flow.

In particular, if we consider A(u) = uα, B(u) = uβ, ξ = μ(x, t) then (7) reduces to (3),
which was studied by Wu [8]. If we take A(u) = u log u, B(u) = u, ξ = Cup + Duq then (7)
reduces to (4) and if A(u) = Cepu, B(u) = De−pu, ξ = E

u then (7) reduces to (5), both of
which were studied by Dung et al.[13]. The generalized Lichnerowicz type equation studied
by Dung [13] comes from our Equation (7) by considering A(u) = uα log u, B(u) = uβ and
p, q, ξ are suitable constants. Finally for B(u) = ua+1 and ξ = 0 we have (6), which was
studied by Azami [14]. Thus, our Equation (7) generalizes all the cases.

2. Preliminaries

Let us consider an n-dimensional closed weighted Riemannian manifold (Mn, g, e−φdμ),
where e−φdμ is the weighted volume measure, g is Riemannian metric and φ ∈ C2(M).
Choose {e1, e2, · · · , en} as an orthonormal frame on M. Let g(t) be a one-parameter family of
Riemannian metrics evolving along the following abstract geometric flow

∂

∂t
gij(t) = 2Sij(t), (8)

where Sij(t) := S(ei, ej)(t) is smooth symmetric (0, 2)-type tensor on (M, g(t)). Let
us define one parameter family of functions S(t) = trace(S)(t) = gij(t)Sij(t) on M.
The weighted Laplacian operator is defined by

Δφ = Δ −∇φ∇,

where Δ is the Laplace operator and ∇ is the gradient operator. Let u = e f be a positive
solution of (7), then Equation (7) transforms to

Δφ f = ∂t f − |∇ f |2 + Â( f )p + B̂( f )q + ξ, (9)
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where Â( f ) = A(u)
u , B̂( f ) = B(u)

u . We define

Â f = A′(u)− A(u)
u

, Â f f = uA′′(u)− A′(u) +
A(u)

u
. (10)

Example 1. Let u = e f and A(u) = |u|α−1u. Therefore Â( f ) = A(u)
u = e(α−1) f , which gives

1. Â f = (α − 1)e(α−1) f

2. Â f f = (α − 1)2e(α−1) f

3. ∇Â = (α − 1)e(α−1) f∇ f = Â f∇ f
4. ΔÂ = (α − 1)2e(α−1) f |∇ f |2 + (α − 1)e(α−1) f Δ f = Â f f |∇ f |2 + Â f Δ f .

Let f̄ = Âp + B̂q + ξ so that Equation (9) reduces to

Δφ f = −|∇ f |2 + ft + f̄ . (11)

Definition 1 ([27] Bakry–Émery Ricci tensor). For any integer m > n, an (m − n)− Bakry–
Émery tensor is defined by

Ricm−n
φ := Ric + Hess φ − ∇φ ⊗∇φ

m − n
,

where Hess is the Hessian operator. The case when m = n occurs if and only if φ is a constant
function. Furthermore, when m → ∞ the ∞−Bakry–Émery Ricci tensor is defined by

Ricφ := Ric + Hess φ.

Lemma 1 ([14] Weighted Bochner Formula). For any smooth function u on a weighted Rieman-
nian manifold (M, g, e−φdμ), we have the weighted version of Bochner formula

1
2

Δφ|∇u|2 = |Hess u|2 + 〈∇Δφu,∇u〉+ Ricφ(∇u,∇u),

where 〈·, ·〉 is the induced inner product by the Riemannian metric g.

Lemma 2 ([14]). Under the geometric flow Equation (8) and for any smooth function u on a
weighted Riemannian manifold (M, g, e−φdμ) we have the following evolution formulas

1. ∂
∂t |∇u|2 = −2S(∇u,∇u) + 2〈∇u,∇ut〉,

2. ∂
∂t (Δφu) = Δφut − 2Sij∇i∇ju− 〈2div S −∇S,∇u〉+ 2S(∇φ,∇u)− 〈∇u,∇φt〉, where
div S denotes the divergence of S and Sij = gikgjlSkl .

Let T > 0 be any real number. For any two points x, y ∈ M and for any t ∈ [0, T],
the quantity d(x, y, t) denotes the geodesic distance between x and y under the metric g(t).
For any fixed x0 ∈ M and R > 0 we define a compact set

Q2R,T = {(x, t) : d(x, x0, t) ≤ 2R, 0 ≤ t ≤ T} ⊂ Mn × (−∞,+∞). (12)

Now for u > 0 we define some non-negative real numbers
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λ1 := sup
Q2R,T

|Â| λ2 := sup
Q2R,T

|Â f | λ3 := sup
Q2R,T

|Â f f |

Λ1 := sup
M×[0,T]

|Â| Λ2 := sup
M×[0,T]

|Â f | Λ3 := sup
M×[0,T]

|Â f f |

b1 := sup
Q2R,T

|B̂| b2 := sup
Q2R,T

|B̂ f | b3 := sup
Q2R,T

|B̂ f f |

B1 := sup
M×[0,T]

|B̂| B2 := sup
M×[0,T]

|B̂ f | B3 := sup
M×[0,T]

|B̂ f f |

σ1 := sup
Q2R,T

|q| σ2 := sup
Q2R,T

|∇q| σ3 := sup
Q2R,T

|Δφq|

Σ1 := sup
M×[0,T]

|q| Σ2 := sup
M×[0,T]

|∇q| Σ3 := sup
M×[0,T]

|Δφq|

γ1 := sup
Q2R,T

|p| γ2 := sup
Q2R,T

|∇p| γ3 := sup
Q2R,T

|Δφ p|

Γ1 := sup
M×[0,T]

|p| Γ2 := sup
M×[0,T]

|∇p| Γ3 := sup
M×[0,T]

|Δφ p|

θ1 := sup
Q2R,T

|∇φ| θ2 := sup
Q2R,T

|∇φt| Θ1 := sup
M×[0,T]

|∇φ|

Θ2 := sup
M×[0,T]

|∇φt| m1 := sup
Q2R,T

|∇ξ| m2 := sup
Q2R,T

|Δφξ|

m3 := sup
Q2R,T

|ξ| M1 := sup
M×[0,T]

|∇ξ| M2 := sup
M×[0,T]

|Δφξ|

M3 := sup
M×[0,T]

|ξ|

Lemma 3 ([14]). For any smooth function f on an n-dimensional Riemannian manifold (Mn, g, e−φ

dμ) and m > n we have the following relation connecting Hessian and weighted Laplacian

|Hess f |2 ≥ (Δφ f )2

m
− 1

m − n
〈∇ f ,∇φ〉2. (13)

Proof. Let m > n. Then we see that

0 ≤
(√

m − n
mn

Δ f +
√

n
m(m − n)

〈∇ f ,∇φ〉
)2

= (
1
n
− 1

m
)(Δ f )2 +

2
m

Δ f 〈∇ f ,∇φ〉+ (
1

m − n
− 1

m
)〈∇ f ,∇φ〉2

≤ |Hess f |2 − 1
m

(
(Δ f )2 − 2Δ f 〈∇ f ,∇φ〉+ 〈∇ f ,∇φ〉2

)
+

1
m − n

〈∇ f ,∇φ〉2

= |Hess f |2 − (Δφ f )2

m
+

1
m − n

〈∇ f ,∇φ〉2.

Thus |Hess f |2 ≥ (Δφ f )2

m − 1
m−n 〈∇ f ,∇φ〉2.

Lemma 4 ([28] Young’s inequality). If a, b are nonnegative real numbers and p > 1, q > 1 are
real numbers such that 1

p + 1
q = 1 then

ab ≤ ap

p
+

bq

q
.

Let α > 0 be any real number. Put a = αa and b = b
α in the above expression we get

Peter-Paul type inequality

ab ≤ αp ap

p
+

bq

αqq
. (14)
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If we put a = a
√

2α, b = b√
2α

, p = q = 2 in Young’s inequality then we have the well
known Peter-Paul inequality

ab ≤ αa2 +
b2

4α
. (15)

In this paper we use these inequalities with a suitable choice of α.

3. Li-iYau-Type Gradient Estimation

In this section, we are going to derive a bound for the quantity |∇u|2
u2 on a compact

domain Q2R,T of M, where u satisfies (7). This estimation is known as local Li–Yau-type
estimation. After that, we derive global Li–Yau-type estimation on the whole of M. This
method enables us to find the heat ratio between two points on a manifold by deriving a
Harnack-type inequality. For this, we fix a point x0 ∈ M and let R > 0 be a real number.
Let u be a positive solution to (7) in Q2R,T .

Theorem 1. If k1, k2, k3, k4 are positive constants such that

Ricm−n
φ ≥ −(m − 1)k1g, −k2g ≤ S ≤ k3g, |∇S| ≤ k4

on Q2R,T, then for any solution u of (7), any λ > 1 and δ ∈ (0, 1) we have

|∇u|2
u2 − λ

(
ut

u
+

A(u)
u

p +
B(u)

u
q + ξ

)
≤ mλ2

2t(1 − λε)
+

mλ2

2(1 − λε)
D̃1 + Ẽ1, (16)

where

D̃1 =
c0

R
(m − 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2 +
mλ2c1

4(1 − λε)(λ − 1)R2 +
1
λ

,

Ẽ1 =

(
mλ2

2(1 − λε)
E1

) 1
2

,

E1 =
mλ2

4(1 − λε)(1 − δ)(λ − 1)2 C̄1
2
+ 2λk2εθ2

1 +
nλ

2ε
(k2 + k3)

2

+
9
8

nλ2k4 + (λ1γ3 + b1σ3) +
3
4

(
2mλ2

(1 − λε)(λ − 1)δ

) 1
3

(2λ2γ2

+ 2b2σ2)
4
3 + m2 +

3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

λ
4
3 θ

4
3
2

+
3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

(λ1γ2 + b1σ2 + m1)
4
3 ,

C̄1 =
λk2

2ε
+ 2k4 + λ3γ1 + b3σ1 + 2(λ − 1)k3 +

λ − 1
λ

+ γ1λ2 + σ1b2

+2(1 − λε)(m − 1)k1.

To prove the theorem we need the following lemma.

Lemma 5. If u = e f is a positive solution to (7) and F := t(|∇ f |2 − λ( ft + f̄ )), where
f̄ = Âp + B̂q + ξ then for any ε ∈ (0, 1

λ ) and assuming conditions of Theorem 1 we have
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(Δφ − ∂t)F ≥ 2t(1 − λε)
(Δφ f )2

m
− λtk2

2ε
|∇ f |2 − 2λtk2ε|∇φ|2

− 2t(1 − λε)(m − 1)k1|∇ f |2 − 2∇F∇ f − F
t
− 2t(λ − 1)k3|∇ f |2 (17)

− nλt
2ε

(k2 + k3)
2 − 3λt

√
nk4|∇ f |2 +H,

where H = −2t(λ − 1)∇ f̄∇ f − λt∇ f∇φt − λtΔφ f̄ .

Proof. Let u be a solution of (7) and consider F := t(|∇ f |2 − λ( ft + f̄ )),
where f̄ = Âp + B̂q + ξ. Hence

F
t

= |∇ f |2 − λ( ft + f̄ ) (18)

and applying Lemma 1 (Weighted Bochner formula) we have

ΔφF = 2t|Hess f |2 + 2t〈∇Δφ f ,∇ f 〉+ 2tRicφ(∇ f ,∇ f )− λtΔφ ft

− λtΔφ f̄ . (19)

Now Δφ f = − F
t − (λ − 1)( ft + f̄ ), so ∇Δφ f = −∇F

t − (λ − 1)(∇ ft +∇ f̄ ).
Hence

ΔφF = 2t|Hess f |2 − 2∇F∇ f − 2t(λ − 1)(∇ ft +∇ f̄ )∇ f + 2tRicφ(∇ f ,∇ f )

− λtΔφ ft − λtΔφ f̄ . (20)

Furthermore,

∂t(Δφ f ) =
F
t2 − Ft

t
− (λ − 1)( ftt + f̄t). (21)

Using (21) on (20) we get

ΔφF = 2t|Hess f |2 − 2∇F∇ f − 2t(λ − 1)(∇ ft +∇ f̄ )∇ f + 2tRicφ(∇ f ,∇ f )

− λF
t

+ λFt + λ(λ − 1)t( ftt + f̄t)− 2λt〈S , Hess f 〉 − 2λt〈divS − 1
2
∇S,∇ f 〉 (22)

+ 2λtS(∇φ,∇ f )− λt〈∇ f ,∇φt〉 − λtΔφ f̄ ,

and
∂tF =

F
t
+ t(∂t|∇ f |2 − λ( ftt + f̄t)). (23)

From (22) and (23) we get

(Δφ − ∂t)F = 2t|Hess f |2 − 2∇F∇ f − 2t(λ − 1)(∇ ft +∇ f̄ )∇ f

+ 2tRicφ(∇ f ,∇ f )− 2t(λ − 1)S(∇ f ,∇ f )

+ 2t(λ − 1)∇ f∇ ft − 2λt〈S , Hess f 〉 (24)

− 2λt〈div S − 1
2
∇S,∇ f 〉+ 2λtS(∇φ,∇ f )− λt∇ f∇φt

− λtΔφ f̄ − F
t

.

or, (Δφ − ∂t)F = 2t|Hess f |2 + 2tRicφ(∇ f ,∇ f )− 2∇F∇ f − F
t

− 2t(λ − 1)S(∇ f ,∇ f ) + 2λtS(∇φ,∇ f )− 2λt〈S , Hess f 〉 (25)

− 2λt〈div S − 1
2
∇S,∇ f 〉+H,
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where H = −2t(λ − 1)∇ f̄∇ f − λt∇ f∇φt − λtΔφ f̄ .
Given that

−(k2 + k3)gij ≤ Sij ≤ (k2 + k3)gij, (26)

which implies
|S|2 ≤ n(k2 + k3)

2, (27)

as Sij is a symmetric tensor.

Following [14], for any ε ∈ (0, 1
λ ) using Young’s inequality, we have

〈S , Hess f 〉 ≤ ε|Hess f |2 + n
4ε

(k2 + k3)
2, (28)

2λtS(∇φ,∇ f ) ≥ −λtk2

2ε
|∇ f |2 − 2λtk2ε|∇φ|2. (29)

Also
|div Sij −

1
2
∇S| ≤ 3

2
√

nk4. (30)

Using Lemma 3, Equations (26)–(30) and bounds of Ricm−n
φ , S in (25) we have (17).

Proof of Theorem 1. Consider a C2-function ψ on [0, ∞),

ψ(s) =

{
1, s ∈ [0, 1],
0, s ∈ [2, ∞),

and it satisfies ψ(s) ∈ [0, 1], −c0 ≤ ψ′(s) ≤ 0, ψ′′(s) ≥ −c1 and |ψ′′(s)|2
ψ(s) ≤ c1, where c1 is a

constant and for R ≥ 1 we defined a function

η(x, t) = ψ

(
r(x, t)

R

)
,

where r(x, t) = d(x, x0, t). Applying the same argument as in [3] we can apply a maximum
principle and use Calabi’s trick [29] to assume everywhere smoothness of η(x, t), as ψ(s)
is Lipschitz.

By generalized Laplacian comparison theorem [14], we have

1. Δφr(x) ≤ (m − 1)
√

k1 coth(
√

k1r(x)),
2. Δφη ≥ − c0

R (m − 1)(
√

k1 +
2
R )−

c1
R2 ,

3. |∇η|2
η ≤ c1

R2 .

Let G = ηF. Fix any T1 ∈ (0, T] and assume G achieves maximum at (x0, t0) ∈ Q2R,T1 .
If G(x0, t0) ≤ 0 then the result is trivial and hence nothing to be proved, so assume that
G(x0, t0) ≥ 0.

Thus, at (x0, t0) we have

∇G = 0, ΔG ≤ 0, ∂tG ≥ 0.

Therefore
∇F = − F

η
∇η (31)

and
0 ≥ (Δφ − ∂t)G = F(Δφ − ∂t)η + η(Δφ − ∂t)F + 2〈∇η,∇F〉. (32)

By [16], there is a constant c2 such that

−Fηt ≥ −c2k2F. (33)
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Using (31) and (33) in (32) we get

0 ≥ −
(

c0

R
(m − 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2

)
F + η(Δφ − ∂t)F. (34)

Following [14,20,23], we set

ξ =
|∇ f |2

F

∣∣∣∣
(x0,t0)

≥ 0,

then at (x0, t0) we have

|∇ f | =
√

ξF, (35)

(ξ − t0ξ − 1
λt0

)F = |∇ f |2 − ( ft + f̄ ), (36)

η〈∇ f ,∇F〉 ≤
√

c1

R
η

1
2 F|∇ f |, (37)

3λ
√

nk4|∇ f | ≤ 2k4|∇ f |2 + 9
8

nλ2k4. (38)

Using Lemma 5 in (34) we have

0 ≥ −
(

c0

R
(m − 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2

)
F +

2ηt0(1 − λε)

m
(Δφ f )2 − ληt0k2

2ε
|∇ f 2|

− 2λt0ηk2ε|∇φ|2 − 2ηt0(1 − λε)(m − 1)k1|∇ f |2 − 2η∇F∇ f − ηF
t0

(39)

− 2t0(λ − 1)ηk3|∇ f |2 − nηλt0

2ε
(k2 + k3)

2 − 3ηλt0
√

nk4|∇ f |+ ηH.

Multiplying (39) with ηt0 and using results from (35)–(38) we get

0 ≥ −
(

c0

R
(m − 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2

)
Gt0 +

2η2t2
0(1 − λε)

m
(Δφ f )2

− ληt2
0k2ξ

2ε
G − 2λη2t2

0k2ε|∇φ|2 − 2ηξt2
0(1 − λε)(m − 1)k1G − 2t0

√
c1

R
G

3
2 ξ

1
2

− ηG − 2η2t2
0(λ − 1)k3|∇ f |2 − nη2t2

0λ

2ε
(k2 + k3)

2 − 2k4t2
0ξGη (40)

− 9
8

nλ2η2k4t2
0 + η2t0H.

Now we use Young’s inequality by choosing suitable values for a, b, α, p, q as in Lemma 4.
Set a =

2
√

c1
R G

1
2 , b = Gξ

1
2 , p = 2, q = 2, α = mλ2

4(1−λε)(λ−1) and apply Lemma 4 (Young’s
inequality) we get

2t0

√
c1

R
G

3
2 ξ

1
2 ≤ 4(1 − λε)

mλ2 (λ − 1)ξG2t0 +
mλ2c1t0G

4(1 − λε)(λ − 1)R2 . (41)

Cauchy–Schwarz inequality gives

η2λ〈∇ f ,∇φt〉 ≤ η2λ|∇ f ||∇φt|
≤ λθ2G

1
2 ξ

1
2 .
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Set a = λθ2, b = ξ
1
2 G

1
2 , p = 4

3 , q = 4, α =
(

mλ2

2(1−λε)(1−δ)(λ−1)2

) 1
4 and apply Lemma 4 we get

η2λ〈∇ f ,∇φt〉 ≤ (1 − λε)(1 − δ)

2mλ2 (λ − 1)2ξ2G2 +
3
4

(
mλ2

2(1 − ελ)(1 − δ)(λ − 1)2

) 1
3

λ
4
3 θ

4
3
2 ,

for all δ ∈ (0, 1). (42)

We have f̄ = Âp + B̂q + ξ. Hence

∇ f̄ = pÂ f∇ f + qB̂ f∇ f + Â∇p + B̂∇q +∇ξ,

Δ f̄ = ∇∇ f̄

= (ÂΔp + B̂Δq) + p(Â f f |∇ f |2 + Â f Δ f ) + q(B̂ f f |∇ f |2 + B̂ f Δ f )

+ 2(Â f 〈∇ f ,∇p〉+ B̂ f 〈∇ f ,∇q〉) + Δξ.

Hence

Δφ f̄ = η2(Δ f̄ −∇φ∇ f̄ )

= (ÂΔφ p + B̂Δφq) + (pÂ f + qB̂ f )Δφ f + (pÂ f f + qB̂ f f )|∇ f |2 (43)

+ 2(Â f 〈∇p,∇ f 〉+ B̂ f 〈∇q,∇ f 〉) + Δφξ.

Again

2η2 Â f 〈∇p,∇ f 〉 ≤ 2λ2η2|∇p||∇ f |, using Cauchy-Schwarz inequality

≤ 2λ2γ2η2|∇ f | (44)

≤ 2λ2γ2ξ
1
2 G

1
2 .

Similarly

2η2B̂ f 〈∇q,∇ f 〉 ≤ 2b2σ2ξ
1
2 G

1
2 . (45)

Adding (45) and (45) gives

2η2(Â f 〈∇p,∇ f 〉+ B̂ f 〈∇q,∇ f 〉) ≤ 2(γ2λ2 + b2σ2)ξ
1
2 G

1
2 . (46)

Using (46) in (43) and applying Young’s inequality with a = 2(γ2λ2 + b2σ2), b = ξ
1
2 G

1
2 ,

p = 4
3 , q = 4 and α =

(
2mλ2

(1−λε)δ(λ−1)

) 1
4 we obtain

η2Δφ f̄ ≤ (λ1γ3 + b1σ3) + (γ1λ2 + σ1b2)η
2Δφ f

+ (λ3γ1 + b3σ1)ξG +
2(1 − λε)δ

mλ2 (λ − 1)2ξ2G2 (47)

+
3
4

(
2mλ2

(1 − λε)δ(λ − 1)

) 1
3

(2λ2γ2 + 2b2σ2)
4
3 + m2.
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Similarly we get

η2〈∇ f̄ ,∇ f 〉 ≤ (1 − λε)(1 − δ)(λ − 1)2

2mλ2 ξ2G2

+
3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

(λ1γ2 + b1σ2 + m1)
4
3 (48)

+ (γ1λ2 + σ1b2)ξG.

Equations (47) and (48) are the quantities that estimates H.
From (36) we have

Δφ f = |∇ f |2 − ( ft + f̄ )

=

(
ξ − t0ξ − 1

λt0

)
F.

Thus

2η2t2
0(1 − λε)

m
(Δφ f )2 =

2(1 − λε)

mλ2 G2 − 4ξt0(1 − λε)(λ − 1)
mλ2 G2

+
2(1 − λε)

mλ2 ξ2t2
0(λ − 1)2G2 (49)

and

η2Δφ f = − 1
λt0

G − t0(λ − 1)
λt0

ξG. (50)

Set

C̄1 :=
{

λk2

2ε
+ 2k4 + λ3γ1 + b3σ1 + 2(λ − 1)k3 +

λ − 1
λ

+ γ1λ2 + σ1b2 + 2(1 − λε)(m − 1)k1

}
and apply Peter-Paul inequality with a = ξG, b = C̄1, α = mλ2

(1−ελ)(1−δ)(λ−1)2 we get

C̄1ξG ≤ (1 − ελ)(1 − δ)(λ − 1)2

mλ2 ξ2G2 +
mλ2

4(1 − λε)(1 − δ)(λ − 1)2 C̄1
2. (51)

Set

D1 := 1 + t0

(
c0

R
(m − 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2 +
mλ2c1

4(1 − λε)(λ − 1)R2 +
1
λ

)
, (52)

E1 :=
mλ2

4(1 − λε)(1 − δ)(λ − 1)2 C̄1
2
+ 2λk2εθ2

1

+
nλ

2ε
(k2 + k3)

2 +
9
8

nλ2k4 + (λ1γ3 + b1σ3) +
3
4

(
2mλ2

(1 − λε)(λ − 1)δ

) 1
3

(2λ2γ2

+ 2b2σ2)
4
3 + m2 +

3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

λ
4
3 θ

4
3
2 (53)

+
3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

(λ1γ2 + b1σ2 + m1)
4
3 .
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Using (41) to (52) in (40) we obtain

0 ≥ 2(1 − λε)

mλ2 G2 − D1G − t2
0E1. (54)

For a positive number p and two non-negative numbers q, r, the quadratic inequality of the
form px2 − qx − r ≤ 0 implies that x ≤ q

p +
√

r
p .

So at (x0, t0) we have

G ≤ D1
mλ2

2(1 − λε)
+ t0

√
mλ2E1

2(1 − λε)
. (55)

Since η(x, t) = 1 whenever d(x, x0, T1) ≤ R, hence

F(x, T1)

T1
= (|∇ f |2 − λ( ft + f̄ ))

∣∣∣∣
(x,T1)

≤ G(x0, t0)

T1
≤ 1

T1

(
D1

mλ2

2(1 − λε)
+ t0

√
mλ2E1

2(1 − λε)

)
.

Since t0 ≤ T1, so

1
T1

(
D1

mλ2

2(1 − λε)
+ t0

√
mλ2E1

2(1 − λε)

)
≤ mλ2

2T1(1 − λε)
+

D̃
T1

mλ2

2(1 − λε)
+

√
mλ2E1

2(1 − λε)
,

where D̃ = t0D̃1 and D̃1 =

(
c0
R (m − 1)(

√
k1 +

2
R ) +

3c1
R2 + c2k2

)
+ mλ2c1

4(1−λε)(λ−1)R2 + 1
λ

satisfying D̃
T1

≤ D̃1. Since T1 is arbitrary so

|∇ f |2 − λ( ft + Âp + B̂q + ξ) ≤ mλ2

2t(1 − λε)
+

mλ2

2(1 − λε)
D̃1 + Ẽ1, (56)

where Ẽ1 =

(
mλ2

2(1−λε)
E1

) 1
2

.

Substituting f = log u on (56) and using the definition of Â, B̂, we get (16). This completes
the proof.

Corollary 1. If k1, k2, k3, k4 are positive constants such that

Ricm−n
φ ≥ −(m − 1)k1g, −k2g ≤ S ≤ k3g, |∇S| ≤ k4

on M, then for any λ > 1 and δ ∈ (0, 1) we have

|∇u|2
u2 − λ

(
ut

u
+

A(u)
u

p +
B(u)

u
q + ξ

)
≤ mλ2

2t(1 − λε)
+

mλ2

2(1 − λε)
D̃2 + Ẽ2, (57)

200



Mathematics 2023, 11, 1364

where

D̃2 = c2k2 +
1
λ

,

Ẽ2 =

(
mλ2

2(1 − λε)
E2

) 1
2

,

E2 =
mλ2

4(1 − λε)(1 − δ)(λ − 1)2 C̄2
2
+ 2λk2εΘ2

1 +
nλ

2ε
(k2 + k3)

2

+
9
8

nλ2k4 + (Λ1Γ3 + B1Σ3) +
3
4

(
2mλ2

(1 − λε)(λ − 1)δ

) 1
3

(2Λ2Γ2 + 2B2Σ2)
4
3

+ M2 +
3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

λ
4
3 Θ

4
3
2

+
3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

(Λ1Γ2 + B1Σ2 + M1)
4
3 ,

C̄2 =

(
λk2

2ε
+ 2k4 + Λ3Γ1 + B3Σ1 + 2(λ − 1)k3 +

λ − 1
λ

+ 2(1 − λε)(m − 1)k1

)
.

Proof. We know g(t) is uniformly equivalent to the initial metric g(0). For a fixed δ ∈ (0, 1)
if we let R tend to +∞ then we obtain our result.

Theorem 2. If k1, k2, k3, k4 are positive constants such that

Ricm−n
φ ≥ −(m − 1)k1g, −k2g ≤ S ≤ k3g, |∇S| ≤ k4

on M and let u be a positive solution to (7) under the flow (8) then we have the Harnack inequality

u(y1, s1) ≤ u(y2, s2)(
s2

s1
)

mλ
2(1−λε) exp

{
λ

4
I(s1, s2) + (s2 − s1)(Λ1Γ1 + B1Σ1 + M3 +

1
λ

F̃2)

}
, (58)

where I(s1, s2) = inf
ζ

∫ s2
s1

|ζ ′(t)|2dt and ζ : [s1, s2] → M is a path joining the points (y1, s1),

(y2, s2) in M × [0, T] and F̃2 = mλ2

2(1−λε)
D̃2 + Ẽ2.

Proof. Set F̃2 = mλ2

2(1−λε)
D̃2 + Ẽ2 then (57) becomes

|∇u|2
u2 − λ

(
ut

u
+

A(u)
u

p +
B(u)

u
q + ξ

)
≤ mλ2

2t(1 − λε)
+ F̃2. (59)

For u = e f we have

|∇ f |2 − λ

(
ft + Âp + B̂q + ξ

)
≤ mλ2

2t(1 − λε)
+ F̃2. (60)

Let (y1, s1), (y2, s2) ∈ M × [0, T] be such that s1 < s2. Take a geodesic path ζ : [s1, s2] → M
satisfying ζ(s1) = y1, ζ(s2) = y2. Using (60) we obtain
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f (y1, s1)− f (y2, s2) = −
∫ s2

s1

d
dt

f (ζ(t), t)dt

= −
∫ s2

s1

∂t f dt −
∫ s2

s1

〈∇ f , ζ ′(t)〉dt

≤ mλ

2(1 − λε)
ln(

s2

s1
) + (s2 − s1)(Λ1Γ1 + B1Σ1 + M3 +

1
λ

F̃2) (61)

−
∫ s2

s1

1
λ
|∇ f |2dt −

∫ s2

s1

〈∇ f , ζ ′(t)〉dt.

Now using the relation −ax2 − bx ≤ b2

4a , we set x = ∇ f , a = 1
λ and b = ζ ′(t) we get

f (y1, s1)− f (y2, s2) ≤ mλ

2(1 − λε)
ln(

s2

s1
)−

∫ s2

s1

λ|ζ ′(t)|2
4

dt

+ (s2 − s1)(Λ1Γ1 + B1Σ1 + M3 +
1
λ

F̃2). (62)

Take infimum of (62) over all possible curves ζ on M and put f = ln u to obtain (58).

4. Conclusions

In this paper, we have established Li–Yau-type estimate for a positive solution of
the equation

Δφu =
∂u
∂t

+ A(u)p(x, t) + B(u)q(x, t) + ξ(x, t)u(x, t),

along the flow ∂tgij = 2Sij and related Harnack type inequality. In particular if ξ(x, t) = 0,
B(u) = ua+1 then the results are same as in Section 2 of [14]. Thus, our paper generalizes
some results of [14].

Further A(u) = B(u) = ξ(u) = 0 gives the classical Li–Yau-type estimate for positive
solution of the weighted heat equation

Δφu = ∂tu (63)

under the geometric flow ∂tgij = 2Sij. To obtain this estimate we put

1. A(u) = B(u) = ξ(x, t) = 0
2. λ1 = λ2 = λ3 = 0
3. b1 = b2 = b3 = 0
4. p(x, t) = q(x, t) = 0

in (16) and get

|∇u|2
u2 − λ

ut

u
≤ mλ2

2t(1 − λε)
+

mλ2

2(1 − λε)
D̃3 + Ẽ3, (64)

where

D̃3 =
c0

R
(m − 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2 +
mλ2c1

4(a − λε)(λ − 1)R2 +
1
λ

,

Ẽ3 =

(
mλ2

2(1 − λε)
E3

) 1
2

,
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E3 =
mλ2

4(1 − λε)(1 − δ)(λ − 1)2 C̄3
2
+ 2λk2εθ2

1 +
nλ

2ε
(k2 + k3)

2 +
9
8

nλ2k4

+
3
4

(
mλ2

2(1 − λε)(1 − δ)(λ − 1)2

) 1
3

λ
4
3 θ

4
3
2 ,

C̄3 =
λk2

2ε
+ 2k4 + 2(λ − 1)k3 +

λ − 1
λ

+ 2(1 − λε)(m − 1)k1.

Here if we let R → +∞ then we get the classical Li–Yau-type global gradient estimate for
(63) along the flow ∂tgij = 2Sij. The key ingredient in this estimation is the assumption
of bounds for the weight function φ and its derivative |∇φ| (see Preliminaries section), it
would be interesting if one can derive Li–Yau-type estimation for a positive solution u of
(7) without assuming bounds for φ, |∇φ|. One can consider this problem as a future work
for this article.
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Abstract: The λ-point map between two Legendre plane curves, which is a map from the plane into
the plane, is introduced. The singularity of this map is studied through this paper and many known
plane map singularities are realized as special cases of this construction. Precisely, the corank one and
corank two singularities of the λ-point map between two Legendre plane curves are investigated and
the geometric conditions for this map to have corank one singularities, such as fold, cusp, swallowtail,
lips, and beaks are obtained. Additionally, the geometric conditions for the λ-point map to have a
sharksfin singularity, which is a corank two singularity, are obtained.

Keywords: Legendre curve; singularity; cusp; fold; swallowtail; lips; beaks; sharksfin
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1. Introduction

The singularity theory is useful for studying the differential geometry of curves
and surfaces and lots of geometric features can be studied from the singularity theory
viewpoint (cf. [1–3]). One of the main subjects in the singularity theory of smooth maps is
the classifications of the singularities of maps germs from the plane into the plane. This
is because of its applications in several areas. For the applications of plane maps we refer
the reader to [1–4]. In 1955, Whitney proved that, in general, maps from the plane into the
plane have fold and cusp singularities. The classification of maps germ (R2, 0) → (R2, 0)
with a corank one singularities was studied by J.H. Rieger in [5]. Some of these singularities
are shown in Table 1. In 2010, K. Saji obtained the criteria for lips, beaks, and swallowtail
singularities of smooth maps germ (R2, 0) → (R2, 0) with a corank one singularities.

Table 1. Classification of (R2, 0) → (R2, 0).

Name Normal Form

fold (x, y2)
cusp (x, xy + y3)
lips (x, x2y + y3)
beaks (x, x2y − y3)
swallowtail (x, xy + y4)

The criteria for sharksfin and deltoid singularities, which are corank two singularities,
of maps germ from the plane into the plane was investigated by Kabata and Saji [6]. In this
paper, we introduce the λ-point map between two Legendre plane curves (Definition 6).
Additionally, we study the classification of corank one (respect corank two) singularities
of this map. In the beginning, we review some basic definitions and results through the
second section which will be used in this paper. In the third section, we give the geometric
conditions for the λ-point map between two Legendre plane curves to have fold, cusp, lips,
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beaks and swallowtail singularities when γ1 (respect γ2) is regular at s1 = 0 (respect s2 = 0)
(Theorem 2). Additionally, we give the geometric conditions for the λ-point map between
two Legendre plane curves to have fold and beaks singularities when one of the two
curves is singular (Theorem 3). In the forth section, we give the geometric conditions for
the λ-point map between two Legendre plane curves with a corank two singularity to
have sharksfin singularity (Theorem 6). In the final section, we give three examples to
illustrate some obtained results in this research. Precisely, for corank one singularity we
give two examples for the λ-point map between two Legendre plane curves to have fold
and beaks singularities and the third example deals with the sharksfin, which is a corank
two, singularity of this map.

Throughout this paper, the definitions and results are provided for smooth maps.

2. Preliminaries

In this section, we review some definitions and results for Legendre plane curves
and the singularity of maps from the plane into the plane. Additionally, we introduce the
λ-point map between two Legendre plane curves.

Definition 1. Let I be an interval of R. The map (γ, ω) : I → R2 × S1 is called a Legendre curve
if γ′(s) · ω(s) = 0 for all s ∈ I, where S1 is the unit circle and ω : I → S1 is a smooth unit
vector field.

The Frenet formula of a Legendre plane curve is given by

ω′(s) = 	(s)μ(s),

μ′(s) = −	(s)ω(s),

where prime is the derivative with respect to the parameter s, 	(s) = ω′(s) · μ(s) and

μ(s) = J(ω(s)), such that J is the counterclockwise rotation by
π

2
. We call the pair

{ω(s), μ(s)} a moving frame of a Legendre plane curve γ. Furthermore, there exists
a smooth function β(s), such that β(s) = γ′(s) · μ(s). We call the pair (	(s), β(s)) the
curvature of this curve. For more information about the Legendre plane curves, we refer
the reader to [7–12].

Definition 2. A singular point of a map germ h : (U ⊆ Rl , 0) → (Rm, 0) is a point p ∈ U which
satisfies that rank(dh)(p) < min(l, m), where dh is the Jacobin matrix of h.

The set of singular points of h is denoted by S(h) ⊂ Rl . We say that q ∈ S(h) is of
corank α if the rank of the Jacobin matrix of h at q is equal to min(l, m)− α.

Definition 3. Two map germs h1, h2 : (Rl , 0) → (Rm, 0) are said to be A-equivalent if there
exist smooth diffeomorphisms ϕ1 : (Rl , 0) → (Rl , 0) and ϕ2 : (Rm, 0) → (Rm, 0), such that the
following diagram commutes.

(Rl , 0) (Rm, 0)

(Rl , 0) (Rm, 0)

h1

ϕ1 ϕ2

h2

In other words, h2 ◦ ϕ1 = ϕ2 ◦ h1 holds.

Definition 4 ([13]). For a positive integer n, the n-jet of a differentiable map F at point p is the
Taylor expansion at p truncated to the degree n which is denoted by jnF .
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Definition 5 ([14]). A map germ h : (U ⊆ Rl , q) → (Rm, 0) is said to be n-determined whenever
jnh(q) = jnk(q) for any k : (U ⊆ Rl , q) → (Rm, 0), then k is A-equivalent to h.

For example, the lips and beaks are three-determined, whereas swallowtail is four-
determined (see [5]). Let h : (U ⊆ R2, q) → (R2, 0) be a map germ with a corank one
singularity at a point q ∈ U. Then there exist a neighborhood C of q and a non-zero
vector field (null vector field) ρ, such that dh(ρ)(q) = 0 holds for any q ∈ S(h) ∩ C.
Let (s1, s2) be coordinates of U. We define the discriminant function Ω of h by Ω(s1, s2) =

det
(

∂h
∂s1

,
∂h
∂s2

)
(s1, s2). A singular point q ∈ S(h) is a non-degenerate if dΩ(q) 	= 0 and it

is a degenerate if dΩ(q) = 0. Note that a non-degenerate singular point is of corank one.
The normal forms of some simple generic singularities of corank one of maps from the
plane into the plane are shown in Table 1.

We end this section by introducing the λ-point map between two Legendre plane curves.

Definition 6. Let γi : Ii ⊆ R → R2 × S1 (i = 1, 2) be two Legendre plane curves. The λ-point
map between γ1 and γ2 is a map M : U ⊆ R2 → R2 defined by

M(s1, s2) = (1 − λ)γ1(s1) + λγ2(s2),

where U = I1 × I2 and λ ∈ (0, 1).

Note that M in the above definition is more general than the midpoint map of a smooth

plane curve γ which is defined by M(s1, s2) =
1
2
(γ1(s1) + γ2(s2)), where γ1 and γ2 are

two smooth parts of γ parametrized by s1 and s2, respectively. For more details on the
midpoint map, we refer the reader to [15].

3. Classification of Corank One Singularities of λ-Point Map between Two Legendre
Plane Curves

The classification of corank one singularities of the λ-point map between two Legendre
curves in plane breaks naturally into two cases depending on the regularity of γ1 and γ2.

Lemma 1. Let M be the λ-point map between two Legendre plane curves γ1 and γ2. Then M is
parametrized by a corank one singularity at (s10 , s20) if, and only if, one of the following cases holds:

1. β1(s10) 	= 0 , β2(s20) 	= 0 and ω1(s10) = ±ω2(s20).
2. β1(s10) 	= 0 or β2(s20) 	= 0.

First, we will review the criteria for the fold, the cusp, the beaks, the lips and the
swallowtail singularities which are the generic singularities of corank one of maps from the
plane into the plane.

Theorem 1 ([14]). Let h : (U ⊆ R2, q) → (R2, 0) be a map germ and q ∈ S(h). Then at q

1. h is A-equivalent to fold if, and only if, ρΩ(q) 	= 0.
2. h is A-equivalent to cusp if, and only if, q is non-degenerate, ρΩ(q) = 0 and ρ2Ω(q) 	= 0.
3. h is A-equivalent to lips if, and only if, q is of corank one, dΩ(q) = 0 and Ω has a Morse type

critical point of index 0 or 2 at q, namely det(HΩ(q)) > 0.
4. h is A-equivalent to beaks if, and only if, q is of corank one, dΩ(q) = 0 and Ω has a Morse

type critical point of index 1 at q, namely det(HΩ(q)) < 0 and ρ2Ω(q) 	= 0.
5. h is A-equivalent to swallowtail if, and only if, dΩ(q) 	= 0, ρΩ(q) = ρ2Ω(q) = 0 and

ρ3Ω(q) 	= 0.

The expression ρΩ means the directional derivative of Ω in the direction of the vector
field ρ and HΩ is the Hessian matrix of Ω.
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3.1. The Case When β1(0) �= 0, β2(0) �= 0 and ω1(0) = ±ω2(0)

In this section, we study the corank one singularity of the λ-point map between two
Legendre plane curves when γ1 (respect γ2) is regular at s1 = 0 (respect s2 = 0), that means
β1(0) 	= 0, β2(0) 	= 0, and ω1(0) = ±ω2(0).

Lemma 2. Let M be the λ-point map between two Legendre plane curves γ1 and γ2, such that
β1(0) 	= 0, β2(0) 	= 0 and ω1(0) = ±ω2(0). The singular point (0, 0) is a non-degenerate if, and
only if, 	i(0) 	= 0, i = 1, 2.

Proof. The proof of this lemma is obvious.

We now give the main result of this section.

Theorem 2. Let M be the λ-point map between two Legendre plane curves γ1 and γ2. Suppose that
β1(0) 	= 0, β2(0) 	= 0 and ω1(0) = ±ω2(0). Then at (0, 0)

1. M is A-equivalent to fold if, and only if,
(

λ

1 − λ

)
β2(0)
β1(0)

	1(0) 	= ∓	2(0).

2. M is A-equivalent to cusp if, and only if,
(

λ

1 − λ

)
β2(0)
β1(0)

	1(0) = ∓	2(0) and

β2

(
β1

	1

)′
	= β1

(
β2

	2

)′
at (0, 0).

3. M is A-equivalent to lips if, and only if, 	i(0) = 0, i = 1, 2, and 	′1(0)	
′
2(0) < 0.

4. M is A-equivalent to beaks if, and only if, 	i(0) = 0, i = 1, 2, 	′1(0)	
′
2(0) > 0 and(

λ

1 − λ

)2 β2
2(0)

β2
1(0)

	′1(0) 	= 	′2(0).

5. M is A-equivalent to swallowtail if, and only if,
(

λ

1 − λ

)
β2(0)
β1(0)

	1(0) = ∓	2(0), 	i(0) 	= 0

(i = 1, 2), β2

(
β1

	1

)′
= β1

(
β2

	2

)′
at (0, 0) and

− β′′
1 β2	

3
2

	2
1

− 3
β′

1β′
2	

2
2

	1
+ β1β′′

2 	2 − 3
β′

1β2	2	
′
2

	1
+

β1β2	
′′
1 	

3
2

	3
1

+ 6
β1β′

2	
′
1	

2
2

	2
1

− 3β1β′
2	

′
2 − β1β2	

′′
2 + 3

β1(β′
2)

2	2

β2
	= 0 at (0, 0).

Proof. Let M(s1, s2) = (1 − λ)γ(s1) + γ(s2) be the λ-point map between two Legendre
plane curves. Suppose that β1(0) 	= 0, β2(0) 	= 0 and ω1(0) = −ω2(0).

We choose vector field ρ, such that dM
∣∣
(0,0)(ρ) = 0, thus we take ρ =

λβ2(0)
(1 − λ)β1(0)

∂

∂s1
+

∂

∂s2
. We can prove that Ω(s1, s2) = −β1(s1)β2(s2)ω1(s1) · μ2(s2).

For simplicity we omit s1 and s2, hence Ω = −β1β2ω1 · μ2. By a straightforward
calculations at (0, 0), we have

∂Ω
∂s1

∣∣
(0,0) = β1(0)β2(0)	1(0),

∂Ω
∂s2

∣∣
(0.0) = −β1(0)β2(0)	2(0),

ρΩ
∣∣
(0,0) = β2(0)

(
λ

1 − λ
β2(0)	1(0)− β1(0)	2(0)

)
,

ρ2Ω
∣∣
(0,0) =

−2λ

1 − λ

β′
1(0)β2

2(0)	2(0)
β1(0)

+
λ2

(1 − λ)2
β3

2(0)	
′
1(0)

β1(0)
+

3λ

1 − λ
β2(0)β′

2(0)	1(0)

+
λ2

(1 − λ)2
β′

1(0)β3
2(0)	1(0)

β2
1(0)

− 2β1(0)β′
2(0)	2(0)− β1(0)β2(0)	′2(0),
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ρ3Ω
∣∣
(0,0) =

2λ3

(1 − λ)3
β′′

1 (0)β4
2(0)	1(0)

β3
1(0)

+
−3λ3

(1 − λ)3
(β′

1)
2(0)β4

2(0)	1(0)
β4

1(0)
+

6λ2

(1 − λ)2
β′

1(0)β′
2(0)β2

2(0)	1(0)
β2

1(0)

+
3λ2

(1 − λ)2
β3

2(0)	
2
1(0)	2(0)

β1(0)
− λ3

(1 − λ)3
β4

2(0)	
3
1(0)

β2
1(0)

− 3λ

1 − λ
β2

2(0)	1(0)	2
2(0)

+
4λ

1 − λ
β2(0)β′′

2 (0)	1(0)−
3λ2

(1 − λ)2
β′′

1 (0)β3
2(0)	2(0)

β2
1(0)

+
3λ2

(1 − λ)2
(β′

1)
2(0)β3

2(0)	2(0)
β3

1(0)

− 3λ

1 − λ

β′
1(0)β2

2(0)	
′
2(0)

β1(0)
− 9λ

1 − λ

β2(0)β′
1(0)β′

2(0)	2(0)
β1(0)

+
λ3

(1 − λ)3
β4

2(0)	
′′
1 (0)

β2
1(0)

+
6λ2

(1 − λ)2
β2

2(0)β′
2(0)	

′
1(0)

β1(0)
+

3λ

1 − λ
(β′

2)
2(0)	1(0) + β1(0)β2(0)	3

2(0)

− 3β1(0)β′′
2 (0)	2(0)− 3β1(0)β′

2(0)	
′
2(0)− β1(0)β2(0)	′′2 (0),

and

HΩ(0, 0) =

⎛⎜⎜⎝
2β′

1(0)β2(0)	1(0) + β1(0)β2(0)	′1(0) β1(0)β′
2(0)	1(0)− β′

1(0)β2(0)	2(0)

β1(0)β′
2(0)	1(0)− β′

1(0)β2(0)	2(0) −(2β1(0)β′
2(0)	2(0) + β1(0)β2(0)	′2(0))

⎞⎟⎟⎠.

Hence,

det(HΩ(0, 0)) =− (2β′
1(0)β2(0)	1(0) + β1(0)β2(0)	′1(0))(2β1(0)β′

2(0)	2(0) + β1(0)β2(0)	′2(0))

− (β1(0)β′
2(0)	1(0)− β′

1(0)β2(0)	2(0))2.

Therefore, applying Theorem 1 the results of this theorem hold. By a similar argument,
we prove the case when ω1(0) = ω2(0) by choosing

ρ =
λβ2(0)

(1 − λ)β1(0)
∂

∂s1
− ∂

∂s2
.

Note that The results in [15] related to the midpoint map are special cases of Theorem 2.

3.2. The Case When β1(0) = 0 and β2(0) �= 0

In this section, we study the case when one of the two curves is singular. Precisely, β1(0) = 0
and β2(0) 	= 0. We give the conditions for the λ-point map between two Legendre plane curves to
have fold and beaks singularities in the following theorem.

Theorem 3. Let M be the λ-point map between two Legendre plane curves γ1 and γ2, such that
β1(0) = 0 and β2(0) 	= 0.

1. If ω1(0) 	= ±ω2(0), then at (0, 0) M is A-equivalent to fold if, and only if, β′
1(0) 	= 0.

2. If ω1(0) = ±ω2(0), then at (0, 0) M is A-equivalent to beaks if, and only if, β′
1(0) 	= 0 and

	i(0) 	= 0, i = 1, 2.

Proof. Let M(s1, s2) = (1 − λ)γ1(s1) + γ2(s2) be the λ-point map between two Legendre
plane curves. Suppose that β1(0) = 0 and β2(0) 	= 0. We prove this theorem by using

Theorem 1. Now we choose vector field ρ, such that dM
∣∣
(0,0)(ρ) = 0, so we take ρ =

∂

∂s1
.

Then, by a straightforward calculations, we have

∂Ω
∂s1

= −β′
1β2ω1 · μ2 − β1β2	1ω1 · ω2,

∂Ω
∂s2

= −β1β′
2ω1 · μ2 + β1β2	2ω1 · ω2,

209



Mathematics 2023, 11, 997

ρΩ = −β′
1β2ω1 · μ2 − β1β2	1ω1 · ω2, ρ2Ω = (β1β2	

2
1 − β′′

1 β2)ω1 · μ2 − (2β′
1β2	1 + β1β2	

′
1)ω1.ω2,

ρ3Ω = (3β′
1β2	

2
1 + 3β1β2	1	

′
1 − β′′′

1 β2)ω1 · μ2 + (β1β2	
3
1 − β1β2	

′′
1 − 3β′′

1 β2	1 − 3β′
1β2	

′
1)ω1 · ω2

and

det(HΩ) =
(
(β1β2	

2
1 − β′′

1 β2)ω1 · μ2 − (2β′
1β2	1 + β1β2	

′
1)ω1 · ω2

)(
(β1β2	

2
2 − β1β′′

2 )ω1 · μ2

+ (2β1β′
2	2 + β1β2	

′
2)ω1 · ω2

)
−
(
− (β′

1β′
2 + β1β2	1	2)ω1 · μ2 + (β′

1β2	2 − β1β′
2	1)ω1 · ω2

)2.

Thus, we have

∂Ω
∂s1

∣∣
(0,0) = −β′

1(0)β2(0)ω1(0) · μ2(0),
∂Ω
∂s2

∣∣
(0,0) = 0,

ρΩ
∣∣
(0,0) = −β′

1(0)β2(0)ω1(0) · μ2(0), ρ2Ω
∣∣
(0,0) = −β′′

1 (0)β2(0)ω1(0) · μ2(0)− 2β′
1(0)β2(0)	1(0)ω1(0).ω2(0),

ρ3Ω
∣∣
(0.0) =

(
3β′

1(0)β2(0)	2
1(0)− β′′′

1 (0)β2(0)
)
ω1(0) · μ2(0)− 3

(
β′′

1 (0)β2(0)	1(0) + β′
1(0)β2(0)	′1(0)

)
ω1(0) · ω2(0)

and

det(HΩ(0, 0)) = −(−β′
1(0)β′

2(0)ω1(0) · μ2(0) + β′
1(0)β2(0)	2(0)ω1(0) · ω2(0))2.

Therefore, applying Theorem 1 we obtain the result.

Given proof of the above theorem, we have the following theorem.

Theorem 4. Let M be the λ-point map between two Legendre plane curves γ1 and γ2 satisfy-
ing β1(0) = 0 and β2(0) 	= 0. Then at (0, 0), M cannot be A-equivalent to cusp, or lips or
swallowtails singularity.

4. Classification of Corank Two Singularities of λ-Point Map between Two Legendre
Plane Curves

The criteria for sharksfin and deltoid singularities, which are generic singularities of
corank two of maps from the plane into the plane (cf. [16]), have been obtain by kabata and
Saji in [6].

Let h : (U ⊆ R2, 0) → (R2, 0) be a map germ with a corank two singularity at (0, 0).

We call the function Ω : (R2, 0) → (R, 0)which is defined by Ω(s1, s2) = det
(

∂h
∂s1

,
∂h
∂s2

)
(s1, s2)

a discriminant of singularities. The zeros of Ω are all the singular points of h. We define
non-zero vector fields ρ1, ρ2 at a non-degenerate critical point of Ω which is a solution of
the Hesse quadric of Ω at (0, 0). Recall that a vector field (ρ11, ρ12) is a solution of the Hesse
quadric of Ω (

ρ11 ρ12
)
HΩ(0, 0)

(
ρ11
ρ12

)
=

(
0
0

)
.

Our goal in this section is to give the geometric conditions for the λ-point map between
two Legendre plan curves to have sharksfin singularity. The normal forms of sharksfin and
deltoid singularities are (xy, x2 + y2 + x3) and (xy,−x2 + y2 + x3), respectively. We state
the criteria for sharksfin and deltoid singularities.

Theorem 5 ([6]). Let h : (R2, 0) → (R2, 0) be a map germ with a corank two singularity at (0, 0)
and suppose that Ω have a non-degenerate critical point at (0, 0).

Then h is a sharksfin (respectively, deltoid) at (0, 0) if, and only if, det(HΩ(0, 0)) < 0
(respectively, det(HΩ(0, 0)) > 0), det(ρ2

1h, ρ3
1h)(0, 0) 	= 0 and det(ρ2

2h, ρ3
2h)(0, 0) 	= 0. Here,

ρΩ means the directional derivative of Ω in the direction of the vector field ρ, and ρih = ρ(ρi−1h).

Lemma 3. Let M be the λ-point map between two Legendre plane curves γ1 and γ2. Then M is
parametrized by a corank two singularity at (0, 0) if, and only if, βi(0) = 0, i = 1, 2.
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Proof. The proof of this lemma is obvious.

Lemma 4. Let M be the λ-point map between two Legendre plane curves γ1 and γ2, such that
βi(0) = 0, i = 1, 2. Then

1. (0, 0) is a critical point of Ω.
2. (0, 0) is a non-degenerate critical point of Ω if, and only if, β′

1(0) 	= 0, β′
2(0) 	= 0 and

ω1(0) 	= ±ω2(0).

Proof. We define the discriminant of singularities Ω : R2 → R of M by

Ω(s1, s2) = det
(

∂M
∂s1

,
∂M
∂s2

)
= −β1(s1)β2(s2)ω1(s1) · μ2(s2).

It is easy to check that (0, 0) is a critical point of Ω. A point (0, 0) is a non-degenerate
if, and only if, det(HΩ(0, 0)) 	= 0. Now

HΩ(0, 0) =

⎛⎜⎜⎜⎜⎝
∂2Ω
∂2s1

∣∣∣
(0,0)

∂2Ω
∂s1∂s2

∣∣∣
(0,0)

∂2Ω
∂s1∂s2

∣∣∣
(0,0)

∂2Ω
∂2s2

∣∣∣
(0,0)

⎞⎟⎟⎟⎟⎠ =

⎛⎝ 0 −β′
1(0)β′

2(0)ω1(0) · μ2(0)

−β′
1(0)β′

2(0)ω1(0) · μ2(0) 0

⎞⎠

Thus,
det(HΩ(0, 0)) = −(β′

1(0)β′
2(0)ω1(0) · μ2(0))2 	= 0

if and only if β′
1(0)β′

2(0)ω1(0) · μ2(0) 	= 0.

Now we introduce the main theorem of this section.

Theorem 6. Let M be the λ-point map between two Legendre plane curves γ1 and γ2 with a
corank two singularity at (0, 0) and let (0, 0) be non-degenerate critical point of Ω. Then M is
A-equivalent to a sharksfin if, and only if, 	i(0) 	= 0, i = 1, 2.

Proof. Let M(s1, s2) = (1 − λ)γ1(s1) + λγ2(s2) be the λ-point map between two Legendre
plane curves γ1 and γ2, such that rank(dM)

∣∣
(0,0) = 0.

We will use Theorem 5 to prove this theorem. From Lemma 3 we have β1(0) =
β2(0) = 0. Now we have

HΩ(0, 0) =

⎛⎝ 0 −β′
1(0)β′

2(0)ω1(0) · μ2(0)

−β′
1(0)β′

2(0)ω1(0) · μ2(0) 0

⎞⎠.

Thus, det(HΩ(0, 0)) = −(β′
1(0)β′

2(0)ω1(0) · μ2(0))2 < 0.

Now we choose vector fields ρ1 =
∂

∂s1
and ρ2 =

∂

∂s2
which satisfy the Hesse quadric

of Ω at (0, 0). Calculations show that

ρ2
1M
∣∣
(0,0) = (1 − λ)β′

1(0)μ1(0),

ρ3
1M
∣∣
(0,0) = (1 − λ)(β′′

1 (0)μ1(0)− 2β′
1(0)	1(0)ω1(0)),

ρ2
2M
∣∣
(0,0) = λβ′

2(0)μ2(0)

and
ρ3

2M
∣∣
(0,0) = λ(β′′

2 (0)μ2(0)− 2β′
2(0)	2(0)ω2(0)).
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Now, det(ρ2
1M, ρ3

1M) 	= 0 if, and only if, β′2
1(0)	1(0) 	= 0. Additionally, det(ρ2

2M, ρ3
2M)

	= 0 if, and only if, β′2
2(0)	2(0) 	= 0.

Given the proof of the above theorem, we have the following theorem.

Theorem 7. The λ-point map between two Legendre plane curves γ1 and γ2 with a corank two
singularity at (0, 0) cannot be A-equivalent to a deltoid at (0, 0).

5. Examples

In this section, we present three examples for the λ-point map between two Legendre
plane curves to have fold, beaks, and sharksfin singularities.

Example 1. We give an example for part 1 of Theorem 2. Take γ1(s1) = (2s1, 4s2
1 + s4

1),
γ2(s2) = (−s2, s2

2 − s5
2), and λ = 1

4 . Then, the λ- point map between γ1 and γ2 is given

by M(s1, s2) =
(

3
2 s1 − 1

4 s2, 3
4 (4s2

1 + s4
1) +

1
4 (s

2
2 − s5

2)
)

. Clearly, M is singular at (0, 0), and di-

rect calculation shows that β1(s1) = 2
√

1 + (4s1 + 2s3
1)

2, 	1(s1) =
4 + s2

1
1 + (4s1 + 2s3

1)
2

, ω1(s1) =(
4s1+2s3

1√
1+(4s1+2s3

1)
2
, −1√

1+(4s1+2s3
1)

2

)
, β2(s2) =

√
1 + (2s2 − 5s4

2)
2, 	2(s2) =

20s2
2 − 2

1 + (2s2 − 5s4
2)

2
,

and ω2(s2) =

(
2s2−5s4

2√
1+(2s2−5s4

2)
2
, 1√

1+(2s2−5s4
2)

2

)
. Now at s1 = 0 and s2 = 0, we have β1(0) = 2,

β2(0) = 1, 	1(0) = 4, 	2(0) = −2, ω1(0) = (0,−1) = −ω2(0), and
(

λ
1−λ

)
β2(0)	1(0)

β1(0)
= 2

3 	=
	2(0). Thus, M is A-equivalent to fold at (0, 0).

Example 2. This example is dedicated to part 2 of Theorem 3. Let γ1(s1) = (s2
1, s3

1), γ2(s2) =

(s2, s2
2), and λ = 1

5 . Then the λ-point map between γ1 and γ2 is given by M(s1, s2) = ( 4
5 s2

1 +

1
5 s2, 4

5 s3
1 +

1
5 s2

2). Direct calculation shows that β1(s1) = s1

√
4 + 9s2

1, β2(s2) =
√

1 + 4s2
2,

	1(s1) =
6

4+9s2
1
, 	2(s2) =

2
1+4s2

2
, ω1(s1) =

(
3s1√
4+9s2

1
, −2√

4+9s2
1

)
, and ω2(s2) =

(
2s2

1+4s2
2
, −1

1+4s2
2

)
.

At (s1, s2) = (0, 0), M as a corank one singularity and β1(0) = 0, β′
1(0) = 2, β2(0) = 1,

	1(0) = 3
2 , 	2(0) = 2, and ω1(0) = (0, 1) = ω2(0). Therefore, M is A-equivalent to beaks at

(0, 0).

Example 3. This example illustrates the result in Theorem 6. Let γ1(s1) = ( 1
2 s2

1, 1
3 s3

1), γ2(s2) =

(2s3
2,−s2

2), and λ = 1
3 . The λ- point map between γ1 and γ2 is given by M(s1, s2) = ( 1

3 s2
1 +

2
3 s3

2, 2
9 s3

1 − 1
3 s2

2) and Ω(s1, s2) = −2s1s2(1 + 3s1s2). It is clear that (0, 0) is a non-degenerate
critical point of Ω and M has a corank two singularity at (0, 0). Calculation shows that β1(s1) =

s1

√
1 + s2

1, 	1(s1) = 1
1+s2

1
, ω1(s1) =

(
s1√
1+s2

1
, −1√

1+s2
1

)
, β2(s2) = −2s2

√
1 + 9s2

2, 	2(s2) =

3
1+9s2

2
, and ω2(s2) =

(
1√

1+9s2
2
, 3s2√

1+9s2
2

)
. At (s1, s2) = (0, 0), we have 	1(0) = 1 and 	2(0) = 3.

Therefore, M is A-equivalent to sharksfin at (0, 0).

6. Conclusions

Throughout this paper we introduce the λ-point map between two Legendre plane
curves. The classifications of this map have been investigated for corank one and two
singularities. All results obtained in this research are more general and many known plane
map’s singularities are realized as special cases of these results. Moreover, three non-trivial
examples are given throughout this research to illustrate some of the obtained results.
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Abstract: In the present paper, we characterize m-dimensional ζ-conformally flat LP-Kenmotsu
manifolds (briefly, (LPK)m) equipped with the Ricci–Yamabe solitons (RYS) and gradient Ricci–
Yamabe solitons (GRYS). It is proven that the scalar curvature r of an (LPK)m admitting an RYS
satisfies the Poisson equation Δr = 4(m−1)

δ {β(m − 1) + ρ}+ 2(m − 3)r − 4m(m − 1)(m − 2), where
ρ, δ( 	= 0) ∈ R. In this sequel, the condition for which the scalar curvature of an (LPK)m admitting an
RYS holds the Laplace equation is established. We also give an affirmative answer for the existence
of a GRYS on an (LPK)m. Finally, a non-trivial example of an LP-Kenmotsu manifold (LPK) of
dimension four is constructed to verify some of our results.

Keywords: Lorentzian manifolds; Ricci–Yamabe solitons; gradient Ricci–Yamabe solitons; perfect
fluid spacetime; Einstein manifolds

MSC: 53C25; 53C21; 53C50; 53E20

1. Introduction

The Ricci solitons (RS) and Yamabe solitons (YS) correspond to self-similar solutions of
the Ricci flow, 2S + ∂

∂t g = 0, and the Yamabe flow, ∂
∂t g = −rg, g(0) = g0 (where S denotes

the Ricci tensor and r is the scalar curvature of the metric g); they are given by [1,2]

£E g + 2ρg + 2S = 0, (1)

and

£E g = −2(ρ − r)g, (2)

respectively, where ρ ∈ R (set of real numbers) and £E stands for the Lie derivative operator
along the smooth vector field E on a semi-Riemannian manifold M of dimension m.

Recently, a scalar combination of Ricci and Yamabe flows was established by Güler
and Crasmareanu [3]. This class of geometric flow was named a Ricci–Yamabe (RY) flow of
type (β, δ) and was defined by

∂

∂t
g(t) + 2βS(g(t)) + δr(t)g(t) = 0, g(0) = g0 (3)

for some scalars β and δ.
A solution to the RY flow is called a Ricci–Yamabe soliton (RYS) if it depends only on

one parameter group of diffeomorphism and scaling. An M is said to admit an RYS if

£E g + 2βS + (2ρ − δr)g = 0, (4)
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where β, δ, ρ ∈ R. If E is the gradient of a smooth function u on M, then Equation (4) is
called a gradient Ricci–Yamabe soliton (GRYS) and then Equation (4) transforms to

∇2u + βS + (ρ − δr
2
)g = 0, (5)

where ∇2u is the Hessian of u and is denoted by Hess(u) = ∇∇u. Moreover, we note that
a RYS of type (β, 0) and of type (0, δ) are known as β-Ricci soliton and δ-Yamabe soliton,
respectively. An RYS is said to be shrinking, steady or expanding if ρ < 0,= 0 or > 0,
respectively. An RYS is said to be a

• Ricci soliton (RS) [4] if β = 1, δ = 0;
• Yamabe soliton (YS) [5] if β = 0, δ = 1;
• Einstein soliton [6] if β = −δ = 1;
• �-Einstein soliton [7] if β = 1, δ = −2�.

On the other hand, the Lorentzian manifold which is one of the most important
subclass of pseudo-Riemannian manifolds plays an important role in the development of
the theory of relativity and cosmology [8]. In 1989, Matsumoto [9] introduced the notion of
LP-Sasakian manifolds, while in 1992, the same notion was independently studied by Mihai
and Rosca [10], and they obtained several results on this manifold. Later, such manifolds
were studied by many authors. Recently, Haseeb and Prasad defined and studied the
Lorentzian para-Kenmotsu manifold [11] as a subclass of Lorentzian paracontact manifold.
For more details about the related studies, we recommend the papers [12–26] and the
references therein.

As a continuation of this study, we propose a study of the RYS and GRYS in the
framework of a ζ-conformally flat (LPK)m. In Section 2, we include some basic results and
definitions which are required to study an (LPK)m. Sections 3 and 4 are concerned with the
study of a RYS and a GRYS on a ζ-conformally flat (LPK)m, respectively. In Section 5, we
construct a non-trivial example of an (LPK)4 and proved that an (LPK)4 is ζ-conformally
flat and that a GRYS on an (LPK)4 is trivial.

2. Preliminaries

A differentiable manifold M (where the dimension of M is m) with the structure
( f , ζ, ω) is named a Lorentzian almost paracontact manifold, where f , ζ and ω represent
a (1, 1)-type tensor field, a contravariant vector field and a one-form, respectively, on M
satisfying [27]

ω(ζ) = −1 and f 2 = ω ⊗ ζ + I, (6)

which yields
f ζ = 0, ω ◦ f = 0, rank( f ) = m − 1. (7)

Let the Lorentzian metric g of M fulfill

g(·, ζ) = ω(·) and g( f ·, f ·) = g(· , ·) + ω(·)ω(·). (8)

Then, the structure ( f , ζ, ω, g) is said to be an almost paracontact structure and M is
called an almost paracontact metric manifold.
Define the second fundamental form Φ as

Φ(E1, E2) = Φ(E2, E1) = g(E1, fE2) (9)

for any vector fields E1, E2 ∈ X(M), where X(M) is the Lie algebra of vector fields on M. If

dω(E1, E2) = Φ(E1, E2), (10)

where d is an exterior derivative, then (M, f , ζ, ω, g) is termed as a paracontact
metric manifold.
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If the vector field ζ is a Killing vector field, then the (para)contact structure is called a
K-(para)contact. In such a situation, we have

∇E1 ζ = fE1. (11)

Definition 1. A Lorentzian almost paracontact manifold M is called an (LPK)m if [11]

(∇E1 f )E2 = −g( fE1, E2)ζ − ω(E2) fE1 (12)

for any E1, E2 on M.

In an (LPK)m, we have

∇E1 ζ + E1 + ω(E1)ζ = 0, (13)

(∇E1 ω)E2 + g(E1, E2) + ω(E1)ω(E2) = 0, (14)

where ∇ stands for the Levi–Civita connection with respect to g.
Furthermore, in an (LPK)m, the following relations hold [11]:

g(R(E1, E2)E3, ζ) = ω(R(E1, E2)E3) = g(E2, E3)ω(E1)− g(E1, E3)ω(E2), (15)

R(ζ, E1)E2 = −R(E1, ζ)E2 = g(E1, E2)ζ − ω(E2)E1, (16)

R(E1, E2)ζ = ω(E2)E1 − ω(E1)E2, (17)

R(ζ, E1)ζ = E1 + ω(E1)ζ, (18)

S(E1, ζ) = (m − 1)ω(E1), S(ζ, ζ) = −(m − 1), (19)

Qζ = (m − 1)ζ, (20)

for any E1, E2, E3 on an (LPK)m, where R is the curvature tensor and Q is the Ricci operator
of (LPK)m.

Definition 2. An (LPK)m is said to be a perfect fluid spacetime if its (0, 2)-type Ricci tensor
S( 	= 0) satisfies the following condition

S(E1, E2) = σ1g(E1, E2) + σ2ω(E1)ω(E2), (21)

for smooth functions σ1 and σ2, where ω is a one-form such that g(E1, ζ) = ω(E1), for all vector
field E1, associated to the unit timelike vector field ζ. The one-form ω is called the associated
one-form and ζ is called the velocity vector field. For more details, we refer the reader to [28–34] and
the references therein.

An (LPK)m is said to be ζ-conformally flat if the conformal curvature tensor C [35]
defined by

C(E1, E2)E3 = R(E1, E2)E3 − 1
m−2{S(E2, E3)E1 − S(E1, E3)E2 + g(E2, E3)QE1

−g(E1, E3)QE2}+ r
(m−1)(m−2){g(E2, E3)E1 − g(E1, E3)E2},

(22)

∀ E1, E2, E3 on the (LPK)m satisfies the relation C(E1, E2)ζ = 0.

Setting E2 = E3 = ζ in Equation (22) and then following Equations (6), (8), (17), (19)
and (20), we infer that

Q =

(
r

m − 1
− 1
)

I +
(

r
m − 1

− m
)

ω ⊗ ζ, (23)
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which yields that an (LPK)m is a perfect fluid spacetime. Thus, we write

Proposition 1. Every ζ-conformally flat (LPK)m is a perfect fluid spacetime.

Lemma 1. In a ζ-conformally flat (LPK)m, we have

ζ(r) = 2(r − m(m − 1)), (24)

E1(r) = −2(r − m(m − 1))ω(E1), (25)

ω(∇ζ Dr) = 4(r − m(m − 1)) (26)

for any E1 on the (LPK)m.

Proof. The covariant differentiation of Equation (23) with respect to E2 and the use of
Equations (13) and (14) lead to

(∇E2Q)E1 =
E2(r)
m − 1

(E1 + ω(E1)ζ) (27)

− (
r

m − 1
− m)(g(E1, E2)ζ + ω(E1)E2 + 2ω(E1)ω(E2)ζ).

Taking the inner product of Equation (27) with E3, we have

g
(
(∇E2Q)E1, E3

)
= E2(r)

m−1 (g(E1, E3) + ω(E1)ω(E3))

− ( r
m−1 − m)(g(E1, E2)ω(E3) + ω(E1)g(E2, E3) + 2ω(E1)ω(E2)ω(E3)).

(28)

Let {	1, 	2, 	3. . . 	m−1, 	m = ζ } be the orthonormal basis of the tangent space at each
point of an (LPK)m. By putting E2 = E3 = 	i and taking the summation over i(1 ≤ i ≤ m),
we find

E1(r) =
2(m − 1)

m − 3
{ ζ(r)

m − 1
− (r − m(m − 1))

}
ω(E1), (29)

where the trace {E2 → (∇E2Q)E1} = 1
2E1(r) is used.

Replacing E1 by ζ in Equation (29) and using Equation (6) gives Equation (24). Next,
by using Equation (24) in Equation (29), we easily obtain Equation (25). By the covariant
differentiation of Equation (24) with respect to ζ and using Equation (13), Equation (26)
follows.

Remark 1. From the relation (24), it is noticed that if a ζ-conformally flat (LPK)m has a constant
scalar curvature, then r = m(m − 1).

3. RYS on a ζζζ-Conformally Flat (LPK)m(LPK)m(LPK)m

Let the metric of a ζ-conformally flat (LPK)m be an RYS, then, in view of Equation (23),
Equation (4) takes the form

(£E g)(E1, E2) = −2{β( r
m−1 − 1) + (ρ − δr

2 )}g(E1, E2)

−2β( r
m−1 − m)ω(E1)ω(E2)

(30)

for any E1, E2 on (LPK)m.
Taking the covariant derivative of Equation (30) with respect to E3, we find

(∇E3 £E g)(E1, E2) = −2(
β

m − 1
− δ

2
)E3(r)g(E1, E2)−

2β

m − 1
E3(r)ω(E1)ω(E2)

+2β(
r

m − 1
− m)(g(E1, E3)ω(E2) + g(E2, E3)ω(E1) (31)

+2ω(E1)ω(E2)ω(E3)).
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Since ∇g = 0, then the formula [36]

(£E∇E1 g −∇E1 £E g −∇[E ,E1]
g)(E2, E3) = −g((£E∇)(E1, E2), E3)− g((£E∇)(E1, E3), E2) (32)

becomes

(∇E1 £E g)(E2, E3) = g((£E∇)(E1, E2), E3) + g((£E∇)(E1, E3), E2). (33)

Moreover, since £E∇ is symmetric, then we have

2g((£E∇)(E1, E2), E3) = (∇E1 £E g)(E2, E3) + (∇E2 £E g)(E1, E3)− (∇E3£E g)(E1, E2). (34)

By using Equation (31) in the the last equation, we arrive at

2g((£E∇)(E1, E2), E3) = −E1(r){2( β
m−1 − δ

2 )g(E2, E3) +
2β

m−1 ω(E2)ω(E3)}
−E2(r){2( β

m−1 − δ
2 )g(E1, E3) +

2β
m−1 ω(E1)ω(E2)}

+E3(r){2( β
m−1 − δ

2 )g(E1, E2) +
2β

m−1 ω(E1)ω(E2)}
+4β( r

m−1 − m){ω(E1)ω(E2)ω(E3) + g(E1, E2)ω(E3)},

(35)

and from Equation (35), it follows that

2(£E∇)(E1, E2) = −E1(r){2( β
m−1 − δ

2 )E2 +
2β

m−1 ω(E2)ζ}
−E2(r){2( β

m−1 − δ
2 )E1 +

2β
m−1 ω(E1)ζ}

+D(r){2( β
m−1 − δ

2 )g(E1, E2) +
2β

m−1 ω(E1)ω(E2)}
+4β( r

m−1 − m){g(E1, E2)ζ + ω(E1)ω(E2)ζ}.

(36)

Putting E1 = ζ in Equation (36), then using Equations (6), (8) and (24), we find

2(£E∇)(E2, ζ) = δg(Dr, E2)ζ − δD(r)ω(E2)

−2(r − m(m − 1)){2( β
m−1 − δ

2 )E2 +
2β

m−1 ω(E2)ζ}.
(37)

The covariant differentiation of Equation (37) along E1 and the use of
Equations (6), (8) and (37) give

2(∇E1 £E∇)(E2, ζ) = −3g(Dr, E1){2(
β

m − 1
− δ

2
)E2 +

2β

m − 1
ω(E2)ζ}

− 2β

m − 1
g(Dr, E2)(E1 + ω(E1)ζ) +

2β

m − 1
D(r){g(E1, E2)

+ω(E1)ω(E2)}+
4(r − m(m − 1))

m − 1
{βω(E2)E1 (38)

−(β − δ(m − 1)
2

)ω(E1)E2 + 2βg(E1, E2)ζ + 2βω(E1)ω(E2)ζ}
+δg(∇E1 Dr, E2)ζ − δ(∇E1 Dr)ω(E2).

Again, from [36], we have

(£ER)(E1, E2)E3 = (∇E1 £E∇)(E2, E3)− (∇E2 £E∇)(E1, E3). (39)
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By putting E3 = ζ and using Equation (38), Equation (39) takes the form

2(£ER)(E1, E2)ζ = g(Dr, E1){(3δ − 4β

m − 1
)E2 −

4β

m − 1
ω(E2)ζ}

−g(Dr, E2){(3δ − 4β

m − 1
)E1 −

4β

m − 1
ω(E1)ζ}

−4(r − m(m − 1))
m − 1

{(2β − δ(m − 1)
2

)ω(E1)E2 (40)

−(2β − δ(m − 1)
2

)ω(E2)E1}+ δg(∇E1 Dr, E2)ζ

−δg(∇E2 Dr, E1)ζ + δ(∇E2 Dr)ω(E1)− δ(∇E1 Dr)ω(E2).

Taking the inner product of Equation (40) with E4, we have

2g
(
(£ER)(E1, E2)ζ, E4

)
= g(Dr, E1){(3δ − 4β

m−1 )g(E2, E4)− 4β
m−1 ω(E2)ω(E4)}

−g(Dr, E2){(3δ − 4β
m−1 )g(E1, E4)− 4β

m−1 ω(E1)ω(E4)}
− 4(r−m(m−1))

m−1 {(2β − δ(m−1)
2 )ω(E1)g(E2, E4)

−(2β − δ(m−1)
2 )ω(E2)g(E1, E4)}+ δg(∇E1 Dr, E2)ω(E4)

−δg(∇E2 Dr, E1)ω(E4) + δg((∇E2 Dr), E4)ω(E1)

−δg((∇E1 Dr), E4)ω(E2).

(41)

Let {	1, 	2, 	3. . . 	m−1, 	m = ζ } be the orthonormal basis of the tangent space at each
point of (LPK)m. By putting E1 = E4 = 	i and taking the summation over i(1 ≤ i ≤ m),
we find

2(£ES)(E2, ζ) = {4β(m − 2)
m − 1

− 3(m − 1)δ}E2(r)

+2(r − m(m − 1)){4β(m − 2)
m − 1

− (m − 1)δ}ω(E2) (42)

+δg(∇ζ Dr, E2)− δ(Δr)ω(E2),

where Equation (24) is used and Δ appears for the Laplacian of g. By putting E2 = ζ in
Equation (42), then using Equations (6), (24) and (26), we find

2(£ES)(ζ, ζ) = −4(m − 2)(r − m(m − 1))δ + δ(Δr). (43)

Taking the Lie derivative of Equation (19) along E , we have

(£ES)(ζ, ζ) = −2(m − 1)ω(£E ζ). (44)

By putting E2 = ζ in Equation (30), we have

(£E g)(E1, ζ) = −{2β(m − 1) + 2ρ − δr}ω(E1). (45)

The Lie derivative of g(ζ, ζ) + 1 = 0 leads to

(£E g)(ζ, ζ) = −2ω(£E ζ) (46)

Now combining Equations (43)–(46), we deduce

Δr = Ψ, (47)

where Ψ = 4(m−1)
δ {β(m − 1) + ρ}+ 2(m − 3)r − 4m(m − 1)(m − 2), δ 	= 0.

An M of dimension m satisfies Poisson’s equation if Δϑ = Ψ holds for smooth func-
tions ϑ and Ψ on M. Poisson’s equation reduces to the Laplace equation if Ψ = 0.
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This definition, together with Equation (47), states the following:

Theorem 1. Let the metric of a ζ-conformally flat (LPK)m be an RYS (g, E , ρ, β, δ). Then, the
scalar curvature of (LPK)m satisfies the Poisson Equation (47).

Corollary 1. The scalar curvature of a ζ-conformally flat (LPK)m, m(> 3) admitting an RYS
(g, E , ρ, β, δ) satisfies the Laplace equation if and only if r = 2(m−1)

m−3 [m(m − 2)− (β(m−1)+ρ)
δ ].

Let a ζ-conformally flat (LPK)m, m(> 3) admit an RYS (g, E , ρ, β, δ). If r satisfies the
Laplace equation, then r = 2(m−1)

m−3 [m(m − 2) − (β(m−1)+ρ)
δ ] = constant. This equation

together with Remark 1 gives ρ = (m − 1)( δm
2 − β). Thus, we state:

Corollary 2. Let the metric of a ζ-conformally flat (LPK)m, m(>3) be an RYS (g, E , ρ, β, δ) and
suppose that its scalar curvature satisfies the Laplace equation. Then, we have:

Values of β, δ Soliton type Conditions for (g, E , ρ, β, δ) to be expanding, shrinking or steady

β = 0, δ = 1 Yamabe soliton (g, E , ρ, β, δ) is expanding.

β = 1, δ = −1 Einstein soliton (g, E , ρ, β, δ) is shrinking.

4. GRYS on a ζζζ-Conformally Flat (LPK)m(LPK)m(LPK)m

Let the metric of a ζ-conformally flat (LPK)m be a GRYS. Then Equation (5) can be
written as

∇E1 Du + βQE1 + (ρ − δr
2
)E1 = 0 (48)

for all E1 on (LPK)m, where D appears for the gradient operator of g. The covariant
derivative of Equation (48) along E2 leads to

∇E2∇E1 Du = −β{(∇E2Q)E1 +Q(∇E2E1)}+ δ
E2(r)

2
E1 − (ρ − δr

2
)∇E2E1. (49)

Interchanging E1 and E2 in Equation (49), we have

∇E1∇E2 Du = −β{(∇E1Q)E2 +Q(∇E1E2)}+ δ
E1(r)

2
E2 − (ρ − δr

2
)∇E1E2. (50)

On account of Equations (49) and (50), we easily find

R(E1, E2)Du = β{(∇E2Q)E1 − (∇E1Q)E2}+
δ

2
{E1(r)E2 − E2(r)E1}. (51)

Taking the inner product of Equation (51) with E3, we have

g(R(E1, E2)Du, E3) = β{g((∇E2Q)E1, E3)− g((∇E1Q)E2, E3)}
+ δ

2{E1(r)g(E2, E3)− E2(r)g(E1, E3)}.
(52)

Let {	1, 	2, 	3. . . 	m−1, 	m = ζ } be the orthonormal basis of the tangent space at each
point of an (LPK)m. By putting E1 = E3 = 	i and taking the summation over i(1 ≤ i ≤ m),
we find

S(E2, Du) =
{ β − (m − 1)δ

2
}
E2(r). (53)

From Equation (23), we can write

S(E2, Du) = (
r

m − 1
− 1)E2(u) + (

r
m − 1

− m)ω(u)ζ(u). (54)
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From Equations (53) and (54), we find

(β − (m − 1)δ)E2(r) = 2(
r

m − 1
− 1)E2(u) + 2(

r
m − 1

− m)ω(E2)ζ(u). (55)

By putting E2 = ζ in Equation (55), then using Equations (6) and (24), we find

ζ(u) = { β − (m − 1)δ
m − 1

}(r − m(m − 1)). (56)

By the use of Equation (56) in Equation (55), we have

(β − (m − 1)δ)E2(r) = 2( r
m−1 − 1)E2(u)

+2(β − (m − 1)δ)( r
m−1 − m)2ω(E2).

(57)

Taking the covariant derivative of Equation (57) along E1, we find

(β − (m − 1)δ)g(∇E1 Dr, E2)

= 2E1(r)
m−1 E2(u) + 2( r

m−1 − 1)g(∇E1 Du, E2)

+ 2(r−m(m−1))(β−(m−1)δ)
(m−1)2 E1(r)ω(E2)

− 2(r−m(m−1))2(β−(m−1)δ)
(m−1)2 {g(E1, E2) + ω(E1)ω(E2)}

(58)

Interchanging E1 and E2 in Equation (58), we have

(β − (m − 1)δ)g(∇E2 Dr, E1)

= 2E2(r)
m−1 E1(u) + 2( r

m−1 − 1)g(∇E2 Du, E1)

+ 2(r−m(m−1))(β−(m−1)δ)
(m−1)2 E2(r)ω(E1)

− 2(r−m(m−1))2(β−(m−1)δ)
(m−1)2 {g(E1, E2) + ω(E1)ω(E2)}

(59)

The equality of Equations (58) and (59) yields

(m − 1)E1(r)E2(u) + 2(r − m(m − 1))(β − (m − 1)δ)E1(r)ω(E2)

−(m − 1)E2(r)E1(u)− 2(r − m(m − 1))(β − (m − 1)δ)E2(r)ω(E1) = 0,
(60)

from which, by substituting E2 = ζ and following Equations (6), (24) and (56), from
Equation (60), we infer

(r − m(m − 1)){(β − (m − 1)δ)E1(r) + 2(m − 1)E1(u)

+4(r − m(m − 1))(β − (m − 1)δ)ω(E1)} = 0.
(61)

Thus, we have either (β− (m− 1)δ)E1(r) + 2(m− 1)E1(u) + 4(r−m(m− 1))(β− (m−
1)δ)ω(E1) = 0, or r = m(m − 1). For the second case r = m(m − 1), Equations (56) and (57)
yield that u is constant and hence the GRYS on a ζ-conformally flat (LPK)m is trivial.
Moreover, a ζ-conformally flat (LPK)m is an Einstein manifold and its scalar curvature
is constant. On the other hand, if r is non-constant, that is, r 	= m(m − 1) and (β −
(m − 1)δ)E1(r) = −2(m − 1)E1(u) − 4(r − m(m − 1))(β − (m − 1)δ)ω(E1), in view of
Equation (57), it becomes

(r + (m − 1)(m − 2)){(m − 1)E1(u) + (r − m(m − 1))(β − (m − 1)δ)ω(E1)} = 0. (62)

From Equation (62), it follows that either (m − 1)E1(u) + (r − m(m − 1))(β − (m −
1)δ)ω(E1) = 0 or r = −(m − 1)(m − 2) = constant, which is inadmissible (by hypothesis).
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Thus, we have,

E1(u) = − 1
m − 1

(r − m(m − 1))(β − (m − 1)δ)ω(E1) ⇐⇒

Du = − 1
m − 1

(r − m(m − 1))(β − (m − 1)δ)ζ = −ζ(u)ζ. (63)

This shows that the gradient of u is pointwise collinear with the velocity vector field ζ.
Now, taking the covariant derivative of Equation (63) with respect to E1, then using

Equations (13) and (48), we find

βQE1 + (ρ − δr
2
)E1 = E1(ζ(u))ζ − ζ(u)(E1 + ω(E1)ζ), (64)

which forms a perfect fluid spacetime.
Now, by replacing E1 by ζ in Equation (64), then using Equations (6), (20) and (56),

we find

ρ =
(4β − 3(m − 1)δ)r

2(m − 1)
− {(3m − 1)β − 2m(m − 1)δ}, (65)

which yields that the scalar curvature of the (LPK)m is constant. This contradicts our
hypothesis that r is non-constant. Thus, the only possibility is r = m(m− 1). By considering
the above facts, we have the following results:

Theorem 2. An (LPK)m admitting a GRYS is an Einstein spacetime and the GRYS is trivial.

Corollary 3. If the metric of an (LPK)m is a gradient Ricci soliton, then the (LPK)m has a constant
scalar curvature.

Equations (23) and (64) together with Theorem 2 reduce to

Q = (m − 1)I, (66)

and

βQ+ ρ − δm(m − 1)
2

= ω ⊗ ζ. (67)

The above Equation (66) and Equation (67) lead to ρ = m−1
2 {δm − 2β − 2

m−1}. Thus,
the GRYS on the manifold is expanding, shrinking or steady if mδ > 2β + 2

m−1 , mδ <

2β + 2
m−1 or mδ = 2β + 2

m−1 . Now, we state:

Corollary 4. A GRYS on an (LPK)m is either expanding or shrinking or steady if either mδ >
2β + 2

m−1 , mδ < 2β + 2
m−1 or mδ = 2β + 2

m−1 .

Corollary 5. Let the metric of an (LPK)m be a GRYS (g, Du, ρ, β, δ). Then, we have

Values of β, δ Soliton type Soliton constant (g, Du, ρ, β, δ) to be expanding, shrinking or steady

β = 1, δ = 0 Ricci soliton ρ = −m (g, Du, ρ, β, δ) is shrinking

β = 0, δ = 1 Yamabe soliton ρ = (m−2)(m+1)
2 , provided m > 2 (g, Du, ρ, β, δ) is expanding

β = 1, δ = −1 Einstein soliton ρ = − 1
2 m(m − 3), provided m > 3 (g, Du, ρ, β, δ) is shrinking

β = 1, δ = −2ρ ρ-Einstein soliton ρ = −m(m − 1)[� + 1
m−1 ]

(i) (g, Du, ρ, β, δ) is shrinking if �(m − 1) + 1 > 0
(ii) (g, Du, ρ, β, δ) is expanding if �(m − 1) + 1 < 0
(iii) (g, Du, ρ, β, δ) is shrinking if �(m − 1) + 1 = 0
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5. Example of Lorentzian Para-Kenmotsu Manifold

Let M4 =
{
(x, y, z, κ) ∈ R4 : κ > 0

}
be a manifold of dimension four, where (x, y, z, κ)

are the standard coordinates in R4. Let 	1, 	2, 	3 and 	4 be the vector fields on M4 given by

	1 = κ
∂

∂x
, 	2 = κ

∂

∂y
, 	3 = κ

∂

∂z
, 	4 = κ

∂

∂κ
= ζ, (68)

which are linearly independent at each point of M4. Let g be the Lorentzian metric de-
fined by

g(	i, 	j) =

⎧⎪⎨⎪⎩
1, 1 ≤ i = j ≤ 3,
−1, i = j = 4,
0, 1 ≤ i 	= j ≤ 4.

(69)

Let the one-form ω be defined by ω(E1) = g(E1, 	4) = g(E1, ζ) for all E1 ∈ X(M4),
and let f be the (1, 1)-tensor field defined by

f 	1 = −	1, f 	2 = −	2, f 	3 = −	3, f 	4 = 0. (70)

By using the linearity of f and g, we have

ω(ζ) = g(ζ, ζ) = −1, f 2E1 = E1 + ω(E1)ζ and g( fE1, fE2) = g(E1, E2) + ω(E1)ω(E2) (71)

for all E1, E2 ∈ X(M4). Thus, for 	4 = ζ, the structure ( f , ζ, ω, g) defines a Lorentzian
almost paracontact metric structure on M4.

Then, we have

[	i, 	4] =

{
−	i, for 1 ≤ i ≤ 3,
0 otherwise.

(72)

By using Koszul’s formula, we can easily find

∇	1	1 = −	4, ∇	1	2 = 0, ∇	1	3 = 0, ∇	1	4 = −	1,

∇	2	1 = 0, ∇	2	2 = −	4, ∇	2	3 = 0, ∇	2	4 = −	2, (73)

∇	3	1 = 0, ∇	3	2 = 0, ∇	3	3 = −	4, ∇	3	4 = −	3,

∇	4	1 = 0, ∇	4	2 = 0, ∇	4	3 = 0, ∇	4	4 = 0.

Moreover, one can easily verify that

∇E1 ζ + E1 + ω(E1)ζ = 0 and (∇E1 f )E2 + g( fE1, E2)ζ + ω(E2) fE1 = 0. (74)

Therefore, M4 is an LP-Kenmotsu manifold.
The non-vanishing components of R are obtained as follows:

R(	1, 	2)	1 = −	2, R(	1, 	2)	2 = 	1, R(	1, 	3)	1 = −	3, R(	1, 	3)	3 = 	1,

R(	1, 	4)	1 = −	4, R(	1, 	4)	4 = −	1, R(	2, 	3)	2 = −	3, R(	2, 	3)	3 = 	2, (75)

R(	2, 	4)	2 = −	4, R(	2, 	4)	4 = −	2, R(	3, 	4)	3 = −	4, R(	3, 	4)	4 = −	3.
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Moreover, we calculate S as follows:

S(	1, 	1) = 3 = S(	2, 	2) = S(	3, 	3), S(	4, 	4) = −3. (76)

Therefore, we have

r = S(	1, 	1) + S(	2, 	2) + S(	3, 	3)− S(	4, 	4) = 12. (77)

Let 	1, 	2, and 	3 be the vector fields given by⎧⎪⎨⎪⎩
E1 = a1	1 + a2	2 + a3	3 + a4	4,
E2 = b1	1 + b2	2 + b3	3 + b4	4,
E3 = c1	1 + c2	2 + c3	3 + c4	4,

(78)

where ai, bi, ci ∈ R, for all i = 1, 2, 3, 4.
Putting E3 = ζ and n = 4 in Equation (22), we have

C(E1, E2)ζ = R(E1, E2)ζ − 1
2{S(E2, ζ)E1 − S(E1, ζ)E2 + g(E2, ζ)QE1

−g(E1, ζ)QE2}+ r
6{g(E2, E3)E1 − g(E1, E3)E2}.

(79)

By using the above listed values of R, S and r, we have

R(E1, E2)ζ = (a4b1 − a1b4)	1 + (a4b2 − a2b4)	2 + (a4b3 − a3b4)	3, (80)

S(E2, ζ)E1 = −3(a1b4	1 + a2b4	2 + a3b4	3 + a4b4	4), (81)

S(E1, ζ)E2 = −3(b1a4	1 + b2a4	2 + b3a4	3 + b4a4	4), (82)

g(E1, ζ) = −a4, g(E2, ζ) = −b4, (83)

g(E2, ζ)QE1 = −3(a1b4	1 + a2b4	2 + a3b4	3 − a4b4	4), (84)

g(E1, ζ)QE2 = −3(b1a4	1 + b2a4	2 + b3a4	3 − b4a4	4). (85)

It can be easily seen that C(E1, E2)ζ = 0. Thus, an (LPK)4 is ζ-conformally flat.
Now, by taking Du = (	1u)	1 + (	2u)	2 + (	3u)	3 + (	4u)	4, we have

∇	1 Du = (	1(	1u)− (	4u))	1 + (	1(	2u))	2 + (	1(	3u))	3 + (	1(	4u)− (	1u))	4, (86)

∇	2 Du = (	2(	1u))	1 + (	2(	2u)− (	4u))	2 + (	2(	3u))	3 + (	2(	4u)− (	2u))	4, (87)

∇	3 Du = (	3(	1u))	1 + (	3(	2u))	2 + (	3(	3u)− (	4u))	3 + (	3(	4u)− (	3u))	4, (88)

∇	4 Du = (	4(	1u))	1 + (	4(	2u))	2 + (	4(	3u))	3 + (	4(	4u))	4. (89)
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Thus, by virtue of Equation (48), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	1(	1u)− 	4u = −(ρ + 3β − 6δ),
	2(	2u)− 	4u = −(ρ + 3β − 6δ),
	3(	3u)− 	4u = −(ρ + 3β − 6δ),
	4(	4u) = −(ρ + 3β − 6δ),
	1(	2u) = 	1(	3u) = 0,
	2(	1u) = 	2(	3u) = 0,
	3(	1u) = 	3(	2u) = 0,
	4(	1u) = 	4(	2u) = 	4(	3u) = 0,
	1(	4u)− (	1u) = 	2(	4u)− (	2u) = 0,
	3(	4u)− (	3u) = 0.

(90)

Thus, the equations in Equation (90) are, respectively, equal to

k2 ∂2u
∂x2 − k

∂u
∂k

= −(ρ + 3β − 6δ), (91)

k2 ∂2u
∂y2 − k

∂u
∂k

= −(ρ + 3β − 6δ), (92)

k2 ∂2u
∂z2 − k

∂u
∂k

= −(ρ + 3β − 6δ), (93)

k2 ∂2u
∂k2 + k

∂u
∂k

= −(ρ + 3β − 6δ), (94)

∂2u
∂x∂y

=
∂2u
∂y∂z

=
∂2u

∂x∂z
= 0, (95)

k2 ∂2u
∂k∂x

+ k
∂u
∂x

= k2 ∂2u
∂k∂y

+ k
∂u
∂y

= k2 ∂2u
∂k∂z

+ k
∂u
∂z

= 0. (96)

k2 ∂2u
∂x∂k

− k
∂u
∂x

= k2 ∂2u
∂y∂k

− k
∂ f
∂y

= k2 ∂2u
∂z∂k

− k
∂u
∂z

= 0. (97)

From the above equations, it is observed that u is constant for ρ = −3β + 6δ. Hence,
Equation (48) is satisfied. Thus, g is a GRYS with the soliton vector field E = Du, where u
is constant and ρ = −3β + 6δ. This verifies Theorem 2 and Corollary 3.

6. Conclusions

The Ricci flow has been applied as a tool to prove the Poincaré conjecture, geometriza-
tion conjecture, differentiable sphere conjecture, uniformalization theorem, etc. It can also
be applied to study cancer invasion, avascular tumor growth and decay control, brain
surface conformal parameterization, medical imaging (such as the parameterization of a
surface, the matching of a surface, splines of a manifold and the formation of a geometric
structure on general surfaces), computer graphics, geometric modeling, computer vision,
wireless sensor networking, mathematics and physics, etc. It is well known that the Laplace
operator is used to study celestial mechanics and measure the flux density of the gradient
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flow of a function [37]. Several differential equations are expressed in terms of the Lapla-
cian, used to explain various physical problems. The Laplacian appears in problems of
computer vision and image processing, electrical and gravitational potentials, the diffusion
equation for fluid and heat flow, the de Rham cohomology, the Hodge theory, etc. This
manuscript dealt with the study of the Laplacian, and the equations of Poisson and Laplace.
We also addressed the existence of a proper gradient Ricci–Yamabe soliton on an (LPK)m.
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3 Department of Mathematics, Faculty of Arts and Sciences, Çukurova University, 01330 Adana, Turkey
4 Department of Mathematics and Informatics, Faculty of Applied Sciences, University Politehnica of Bucharest,

Splaiul Independenţei 313, 060042 Bucharest, Romania
5 Romanian Academy, “Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied

Mathematics, 050711 Bucharest, Romania
6 Research Center in Geometry, Topology and Algebra, Faculty of Mathematics and Computer Science,

University of Bucharest, Academiei Str. 14, 010014 Bucharest, Romania
* Correspondence: gvilcu@upg-ploiesti.ro
† These authors contributed equally to this work.

Abstract: In the present paper, we establish some basic inequalities involving the Ricci and scalar
curvature of the vertical and the horizontal distributions for hemi-slant submersions having the
total space a complex space form. We also discuss the equality case of the obtained inequalities and
provide illustrative examples.

Keywords: Chen–Ricci inequality; Riemannian submersion; hemi-slant submersion; complex space
form; Kähler manifold

MSC: 53C15; 53B20

1. Introduction

As a dual notion to the isometric immersions, O’Neill and Gray introduced inde-
pendently the concept of Riemannian submersions in [1,2], respectively. Riemannian
submersions play an important role in mathematical and theoretical physics, especially due
to their usage in the superstring, Yang–Mills, Kaluza–Klein and supergravity theories [3–8].
For more information on Riemannian submersions, we refer to the monographs [9,10].

In [11], Taştan, Şahin and Yanan introduced and investigated hemi-slant submersions
from almost Hermitian manifolds onto Riemannian manifolds. This class of submersions
appears as a natural generalization of invariant, anti-invariant, semi-invariant and slant
submersions, four families of Riemannian submersions with remarkable geometric proper-
ties thoroughly investigated by Şahin [12–15]. Later, these submersions were studied for
different ambient spaces by various authors who obtained several results regarding their
geometry (see, e.g., [16–23]).

One of the most important curvature invariants for a Riemannian manifold (M, g)
was introduced by Chen [24] as follows:

δM = τ(p)− inf(K)(p), (1)

where τ(p) is scalar curvature of M and

inf(K)(p) = inf{K(Π) : Π is a plane section of TpM}. (2)

In ref. [25], B.-Y. Chen established a general optimal inequality involving the intrinsic
invariant δM and the squared mean curvature of a submanifold M isometrically immersed
in a real space form R(c) of constant sectional curvature c. This result gave rise to a
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whole theory, known as the theory of Chen’s invariants, which gained an exponential
development in the following years (see the monograph [26] and the recent articles [27–32],
as well as the references cited therein). The main purpose of this new theory is to prove
answers to a fundamental problem in the geometry of submanifolds, namely “establish
simple relationships between the main extrinsic invariants and the main intrinsic invariants of a
submanifold” [26]. Recently, Chen-like inequalities have been investigated in the setting of
Riemannian submersions (see, e.g., [19,33–36]).

Motivated by the studies indicated above, we obtain in this work various Chen-
like inequalities for hemi-slant Riemannian submersions from complex space forms onto
Riemannian manifolds and discuss the equality case of the obtained inequalities. The
paper is organized as follows. In Section 2, we recall the definition and some fundamental
properties of hemi-slant submersions. In Section 3, we derive the main inequalities: we
first establish a Chen-like inequality involving the Ricci curvature and then state a Chen–
Ricci inequality for the vertical and the horizontal distributions of hemi-slant Riemannian
submersions with total space a complex space form, and with base an arbitrary Riemannian
manifold. We also discuss the equality case of the obtained inequalities. In Section 4 , we
provide examples of hemi-slant Riemannian submersions to show that the equality cases of
the main inequalities can be attained.

2. Hemi-Slant Riemannian Submersions

In this study, manifolds, mappings, vector fields, sections, and so on, will always be
supposed of class C∞. We first recall the following definition.

Definition 1 ([11]). Let (M, J, g) be an almost Hermitian manifold and (N, gN) be a Riemannian
manifold. A Riemannian submersion σ : (M, J, g) → (N, gN) is said to be a hemi-slant submersion
if there is a distribution D⊥ ⊂ ker σ∗ such that

ker σ∗ = D⊥ ⊕Dθ , J
(
D⊥
)
⊆ (kerσ∗)⊥,

and the angle θ = θ(X) between JX and the space
(
Dθ
)

q is constant for nonzero X ∈
(
Dθ
)

q

and q ∈ M, where Dθ is the orthogonal complement of D⊥ in kerσ∗. In this case, θ is called the
hemi-slant angle of σ. Moreover, the hemi-slant submersion σ is called proper if D⊥ 	= {0} and
θ 	= 0, π

2 .

Throughout this paper, we will assume all horizontal vector fields as basic vector fields.
Let σ : (M, g, J) → (N, gN) be a hemi-slant submersion. For U ∈ kerσ∗, we obtain

JU = φU + ωU, (3)

where φU ∈ ker σ∗ and ωU ∈ (ker σ∗)⊥. For Z ∈ (ker σ∗)⊥, we obtain

JZ = BZ + CZ (4)

where BZ ∈ ker σ∗ and CZ ∈ (ker σ∗)⊥. We have

(ker σ∗)
⊥ = JD⊥ ⊕ ωDθ ⊕ μ,

where μ is the orthogonal complement of JD⊥ ⊕ ωDθ in (kerσ∗)⊥ and is invariant under J.
Let us consider the O’Neill’s tensors T and A given by [1]

Tξη = v∇vξhη + h∇vξvη, Aξη = v∇hξhη + h∇hξvη (5)
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for any vector fields ξ and η on M, where v and h denote the vertical and horizontal
projections of the submersion, and ∇ is the Levi-Civita connection of g. On the other hand,
for any X, Y ∈ Γ((kerσ∗)⊥) and V, W ∈ Γ(kerσ∗), from (5), we obtain

∇VW = TVW + ∇̂VW, (6)

∇V X = TV X + h∇V X, (7)

∇XV = AXV + v∇XV, (8)

∇XY = h∇XY +AXY, (9)

where ∇̂VW = v∇VW.
We denote by R, R

′
, R̂ and R∗ the Riemannian curvature tensors of Riemannian

manifolds M, N, the vertical distribution kerσ∗ and the horizontal distribution (kerσ∗)⊥,
respectively. Then, the Gauss–Codazzi type equations are given by [1]

R(U, V, F, W) = R̂(U, V, F, W) + g(TUW, TV F)− g(TVW, TU F) (10)

R(X, Y, Z, H) = R∗(X, Y, Z, H)− 2g(AXY,AZ H)

+ g(AYZ,AX H)− g(AXZ,AY H) (11)

R(X, V, Y, W) = g((∇XT )(V, W), Y) + g((∇VA)(X, Y), W)

− g(TV X, TWY) + g(AYW,AXV) (12)

where
σ∗(R∗(X, Y)Z)) = R

′
(σ∗X, σ∗Y)σ∗Z (13)

for all U, V, F, W ∈ Γ(kerσ∗) and X, Y, Z, H ∈ Γ((kerσ∗)⊥).
Moreover, the mean curvature vector field H of any fiber of Riemannian submersion σ

is given by

H =
1
r

r

∑
j=1

TUj Uj, (14)

where {U1, . . . , Ur} is an orthonormal basis of the vertical distribution kerσ∗. Furthermore,
σ has totally geodesic fibers if T vanishes identically.

Let M be an almost Hermitian manifold with an almost complex structure J and a
Hermitian metric g. If J is parallel with respect to the Levi–Civita connection ∇ on M,
that is

(∇X J)Y = 0.

for all vector fields X and Y on M, then (M, J, g,∇) is called a Kähler manifold. A complete
and simply connected Kähler manifold M is said to be a complex space form if it has
constant holomorphic sectional curvature c. In this case, the complex space form is denoted
by M(c). The curvature tensor of the complex space form M(c) is given by

R(X, Y)Z =
c
4
{g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY + 2g(X, JY)JZ} (15)

for any X, Y, Z ∈ Γ(TM).
The following theorem gives us a characterization of hemi-slant submersions (see [11]).

Theorem 1. Let σ be a Riemannian submersion from an almost Hermitian manifold (M, g, J) onto
a Riemannian manifold (N, gN). Then, σ is a hemi-slant Riemannian submersion with hemi-slant
angle θ if and only if there exist a distribution D ⊂ ker σ∗ and a constant λ ∈ [0, 1] such that

(i) D = {U ∈ ker σ∗|φ2U = −λU};
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(ii) φV = 0, for all V ∈ D⊥, where D⊥ is the orthogonal complement of D in ker σ∗.

Furthermore, we have cos2 θ = λ.

By virtue of (3) and (4), we have the following result.

Lemma 1. Let (M(c), g), (N, gN) be a complex space form and a Riemannian manifold, respec-
tively. If σ : M(c) → N is a hemi-slant Riemannian submersion, then the following relations
are valid

g(φU, φV) = cos2 θg(U, V),
g(ωU, ωV) = sin2 θg(U, V),

for any U, V ∈ Γ
(
Dθ
)
.

3. Chen–Ricci Inequality

In the present section, we aim to obtain some inequalities involving the Ricci curva-
ture and the scalar curvature on the vertical and horizontal distributions for hemi-slant
Riemannian submersions from a complex space form to a Riemannian manifold. We will
also discuss the equality cases of these inequalities.

Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN) and dim(ker σ∗) = r = k1 + 2k2.
For every q ∈ M, we consider

{U1, . . . , Uk1 , Uk1+1, Uk1+2, . . . , Uk1+2k2−1, Uk1+2k2}

an orthonormal basis of (ker σ∗) and {X1 . . . , Xn} an orthonormal basis of (ker σ∗)⊥, re-
spectively, such that {U1, U2, . . . , Uk1} is an orthonormal basis of D⊥, while

{Uk1+1, Uk1+2 = sec θφUk1+1, . . . , Uk1+2k2−1, Uk1+2k2 = sec θφUk1+2k2−1}

is an orthonormal basis of Dθ . We will call this basis an adapted hemi-slant basis of (ker σ∗).
Obviously, we have

g2(JUi, Ui+1) =

{
0, for i ∈ {1, . . . , k1 − 1},
cos2θ, for i ∈ {k1 + 1, . . . , k1 + 2k2 − 1}

and

r

∑
i,j=1

g2(JUi, Uj) = 2k2cos2θ. (16)

Besides from (10), (11) and (15), we have

R̂(U, V, F, W) =
c
4
{g(V, F)g(U, W)− g(U, F)g(V, W) + g(U, JF)g(JV, W)

− g(V, JF)g(JU, W) + 2g(U, JV)g(JF, W)}
− g(TUW, TV F) + g(TVW, TU F), (17)

for all vector fields U, V, F, W ∈ Γ(ker σ∗) and

R∗(X, Y, Z, H) =
c
4
{g(Y, Z)g(X, H)− g(X, Z)g(Y, H) + g(JY, Z)g(JX, H)

− g(JX, Z)g(JY, H) + 2g(X, JY)g(JZ, H)}+ 2g(AXY,AZ H)

− g(AYZ,AX H) + g(AXZ,AY H) (18)

for all vector fields X, Y, Z, H ∈ Γ((ker σ∗)⊥).

231



Mathematics 2022, 10, 3993

Theorem 2. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then, we have

R̂ic(U) ≥ c
4
(r − 1 + 3 cos2 θ)− rg(TUU,H) (19)

for a unit vector field U ∈ Γ(Dθ), where r is the dimension of the vertical distribution. The equality
case of (19) holds identically for any unit vector field U ∈ Γ(Dθ) if and only if each fiber is
totally geodesic.

Proof. From (17), we obtain

R̂ic(U) =
c
4

[
(r − 1)g(U, U) + 3

r

∑
i=1

g2(U, JUi)

]

−rg(TUU,H) +
r

∑
i=1

‖TUUi‖2
(20)

where

R̂ic(U) =
r

∑
i=1

R̂(U, Ui, Ui, U). (21)

If U ∈ Γ(Dθ), then choosing an adapted hemi-slant basis

{U1, . . . , Uk1 , Uk1+1, Uk1+2, . . . , Uk1+2k2−1, Uk1+2k2}

of ker σ∗, one derives

r

∑
i=1

g2(U, JUi) = cos2θ. (22)

Using last equation in (20), we derive (19). On the other hand, it is clear that the equality
case of (19) holds identically for any unit vector field U ∈ Γ(Dθ) if and only if

TUUi = 0, i = 1, . . . , r

which means that the fibers are totally geodesic (see [9]).

In a similar way, using an adapted hemi-slant basis of ker σ∗, we obtain the follow-
ing results.

Theorem 3. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then, we have

R̂ic(U) ≥ c
4
(r − 1)− rg(TUU,H) (23)

for a unit vector field U ∈ Γ(D⊥). The equality case of (23) holds identically for any unit vector
field U ∈ Γ(D⊥) if and only if each fiber is totally geodesic.

Theorem 4. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then, we have

R̂ic(U, V) =
c
4
(r − 1 + 3 cos2 θ)g(U, V)− rg(TUV,H) +

r

∑
i=1

g(TUi V, TUUi) (24)

for U, V ∈ Γ(Dθ).
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Theorem 5. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then we have

2r̂ =
c
4
{r2 − r + 6k2 cos2 θ} − r2‖H‖2 +

r

∑
i=1

∥∥TUi Ui
∥∥2. (25)

As a consequence of the last theorem, we derive the following.

Corollary 1. Let π : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then, we have

2r̂ ≥ c
4
{r2 − r + 6k2 cos2 θ} − r2‖H‖2 (26)

The equality case of (26) holds if and only if each fiber is totally geodesic.

Proof. The inequality (26) is clear from (25). On the other hand, the equality case of (26)
holds if and only if

TUi Ui = 0, i = 1, . . . , r

which implies
TUU = 0, (27)

for all U ∈ Γ(ker σ∗). Replacing U by U + V in (27), where U, V ∈ Γ(ker σ∗), and using the
symmetry of the O’Neill tensor T for vertical vector fields, we obtain TUV = 0. Hence, the
fibers of the submersion are totally geodesic.

Now, if {U1, . . . , Ur} is an orthonormal basis of ker σ∗ and {X1 . . . , Xn} is an orthonor-
mal basis of (ker σ∗)⊥, we denote

T s
ij = g(TUi Uj, Xs), (28)

where 1 ≤ i, j ≤ r and 1 ≤ s ≤ n, and

Aα
ij = g(AXi Xj, Uα), (29)

where 1 ≤ i, j ≤ n and 1 ≤ α ≤ r. From [35], we use

δ(N) =
n

∑
i=1

r

∑
k=1

g((∇XiT )Uk Uk, Xi). (30)

We also define

‖C‖2 =
n

∑
i,j=1

g2(CXi, Xj), (31)

‖B‖2 =
n

∑
i=1

r

∑
k=1

g2(BXi, Uk) (32)

and
τ∗ = ∑

1≤i<j≤n
R∗(Xi, Xj, Xj, Xi). (33)

Moreover, if X ∈ Γ((ker σ∗)⊥), then

‖CX‖2 =
n

∑
i=1

g2(CX, Xi) (34)
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and

Ric∗(X) =
n

∑
i=1

R∗(X, Xi, Xi, X). (35)

From the Binomial theorem, we have the following relation between the components
of the O’Neill tensor field T and the squared mean curvature H:

n

∑
s=1

r

∑
i,j=1

(T s
ij )

2 =
1
2

r2‖H‖2 +
1
2

n

∑
s=1

(T s
11 − T s

22 − · · · − T s
rr)

2

+ 2
n

∑
s=1

r

∑
j=2

(T s
1j)

2 − 2
n

∑
s=1

∑
2≤i<j≤r

[
T s

ii T s
jj − (T s

ij )
2
]
. (36)

Theorem 6. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Suppose U is a unit vertical vector
field. Then:

(i) If U ∈ Γ(D⊥), we have

R̂ic(U) ≥ c
4
(r − 1)− 1

4
r2‖H‖2. (37)

(ii) If U ∈ Γ(Dθ), we have

R̂ic(U) ≥ c
4
(r − 1 + 3 cos2 θ)− 1

4
r2‖H‖2. (38)

Moreover, the equality cases of (37) and (38) hold if and only if there exist two orthonormal
bases {U1 = U, U2, . . . , Ur} and {X1 . . . , Xn} of ker σ∗ and (ker σ∗)⊥, respectively, such that
T α

12 = · · · = T α
1r = 0 and T α

11 = T α
22 + · · ·+ T α

rr , for α = 1, . . . , n.

Proof. Let {U1, . . . , Uk1 , Uk1+1, Uk1+2, . . . , Uk1+2k2−1, Uk1+2k2} be an adapted hemi-slant ba-
sis of (ker σ∗).
(i) Due to the fact that one can choose the above adapted hemi-slant basis such that U1 = U,
it suffices to prove (38) for U = U1.

Using (28) in (25), we can write

2r̂ =
c
4
{r2 − r + 6k2 cos2 θ} − r2‖H‖2 +

n

∑
α=1

r

∑
k,s=1

(T α
ks)

2. (39)

If (36) is used in (39), then (39) can be rewritten as

2r̂ =
c
4

(
r2 − r + 6k2 cos2 θ

)
− 1

2
r2‖H‖2 +

1
2

n

∑
α=1

(T α
11 − T α

22 − · · · − T α
rr )

2

+2
n

∑
α=1

r

∑
s=2

(T α
1s)

2 − 2
b1

∑
α=p+1

r

∑
2≤k<s≤r

[
T α

kkT α
ss − (T α

ks)
2
]
. (40)

Thus, from (40) we derive

2r̂ ≥ c
4
(r2 − r + 6k2 cos2 θ)− 1

2
r2‖H‖2

− 2
n

∑
α=1

∑
2≤i<j≤r

[T α
ii T α

jj − (T α
ij )

2]. (41)
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Furthermore, taking U = W = Ui, V = F = Uj in (10), we obtain

2 ∑
2≤i<j≤r

R(Ui, Uj, Uj, Ui) = 2 ∑
2≤i<j≤r

R̂(Ui, Uj, Uj, Ui)

+ 2
n

∑
α=1

∑
2≤i<j≤r

[
T α

ii T α
jj − (T α

ij )
2
]
. (42)

Using (42) in (41), we derive

2r̂ ≥ c
4

(
r2 − r + 6k2 cos2 θ

)
− 1

2
r2‖H‖2

+ 2 ∑
2≤k<s≤r

R̂(Uk, Us, Us, Uk)− 2 ∑
2≤k<s≤r

R(Uk, Us, Us, Uk). (43)

Furthermore, we have

2r̂ = 2 ∑
2≤i<j≤r

R̂(Ui, Uj, Uj, Ui) + 2
r

∑
j=1

R̂(U1, Uj, Uj, U1). (44)

Considering (44) in (43), we derive

2R̂ic(U1) ≥
c
4

(
r2 − r + 6k2 cos2 θ

)
− 1

2
r2‖H‖2 − 2 ∑

2≤k<s≤r
R(Uk, Us, Us, Uk). (45)

On the other hand, since M(c) is a complex space form, its curvature tensor R satisfies (15)
and we get

∑
2≤k<s≤r

R(Uk, Us, Us, Uk) =
c
4

[
(r − 2)(r − 1)

2
+ 3 ∑

2≤k<s≤r
g2(JUk, Us)

]
. (46)

As U1 ∈ Γ(D⊥), we obtain immediately

∑
2≤k<s≤r

g2(JUk, Us) = k2 cos2 θ

and therefore (46) can be written as

∑
2≤k<s≤r

R(Uk, Us, Us, Uk) =
c
4

[
(r − 2)(r − 1)

2
+ 3k2 cos2 θ

]
(47)

Considering now the last equation in (45), we get

R̂ic(U1) ≥
c
4
(r − 1)− 1

4
r2‖H‖2

and the conclusion is now clear.
(ii) Due to the fact that in this case one can choose the adapted hemi-slant basis

{U1, . . . , Uk1 , Uk1+1, Uk1+2, . . . , Uk1+2k2−1, Uk1+2k2}

such that Uk1+1 = U, it suffices to prove (38) for U = Uk1+1.
With similar arguments as in case (i), we obtain

2R̂ic(Uk1+1) ≥
c
4
{r2 − r + 6k2 cos2 θ} − 1

2
r2‖H‖2

−2 ∑
1≤k<s≤r; k,s 	=k1+1

R(Uk, Us, Us, Uk). (48)
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and

∑
1≤k<s≤r; k,s 	=k1+1

R(Uk, Us, Us, Uk) =
c(r − 2)(r − 1)

8

+
3c
4 ∑

1≤k<s≤r; k,s 	=k1+1
g2(JUk, Us). (49)

As Uk1+1 ∈ Γ(D⊥), we obtain immediately

∑
1≤k<s≤r; k,s 	=k1+1

g2(JUk, Us) = (k2 − 1) cos2 θ

and therefore (49) can be written as

∑
1≤k<s≤r; k,s 	=k1+1

R(Uk, Us, Us, Uk) =
c
4

[
(r − 2)(r − 1)

2
+ 3(k2 − 1) cos2 θ

]
. (50)

Considering now the last equation in (48), we get

R̂ic(Uk1+1) ≥
c
4
(r − 1 + 3 cos2 θ)− 1

4
r2‖H‖2

and inequality (38) is clear.
Now, we remark that the equality case of (37) holds if and only if the equality is

attained in (41). However, this happens if and only if T α
11 = T α

22 + · · ·+ T α
rr and T α

1s = 0,
for s = 2, . . . , r and α = 1, . . . , n. On the other hand, the equality case of (38) holds if
and only, with respect to the hemi-slant adapted basis considered in the proof, we have
T α

k1+1,k1+1 = ∑
i 	=k1+1

T α
ii and T α

k1+1,s = 0, for α = 1, . . . , n and s ∈ {1 . . . , r}− {k1 + 1}. Using

a reordering of the vectors in the basis of ker σ∗, we derive the conclusion.

Theorem 7. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then, we have

τ∗ ≤ c
8

[
n(n − 1) + 3‖C‖2

]
. (51)

Moreover, the equality holds in (51) if and only if the horizontal distribution (ker σ∗)⊥ is integrable.

Proof. Using the anti-symmetry of A and (18), we obtain

2τ∗ =
c
4

[
n(n − 1) + 3

n

∑
i,j=1

g(CXi, Xj)g(CXi, Xj)

]
− 3

n

∑
i,j=1

g(AXi Xj,AXi Xj), (52)

where {X1, . . . , Xn} is an orthonormal basis of (ker σ∗)⊥. Now, using (31) in (52) we obtain

2τ∗ =
c
4

[
n(n − 1) + 3‖C‖2

]
− 3

n

∑
i,j=1

‖AXi Xj‖2. (53)

and inequality (51) follows immediately. Moreover, it is clear that the equality case of (51)
holds if and only if AXi Xj = 0, for i, j = 1, . . . , n and the proof is now complete due to
the fact that the vanishing of the O’Neill tensor A is equivalent to the integrability of the
horizontal distribution (see, e.g., [9]).
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Theorem 8. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). If {X1, . . . , Xn} is an orthonormal
basis of (ker σ∗)⊥, then we have

Ric∗(X1) =
c
4

[
(n − 1) + 3‖CX1‖2

]
− 3

r

∑
α=1

n

∑
j=2

(Aα
1j)

2. (54)

Proof. By using (29) in (53), we have

2τ∗ =
c
4

[
n(n − 1) + 3‖C‖2

]
− 3

r

∑
α=1

n

∑
i,j=1

(Aα
ij)

2. (55)

Thus, (55) can be written as

2τ∗ =
c
4

[
n(n − 1) + 3‖C‖2

]
− 6

r

∑
α=1

n

∑
j=2

(Aα
1j)

2 − 6
r

∑
α=1

∑
2≤i<j≤n

(Aα
ij)

2. (56)

Moreover, taking X = H = Xi, Y = Z = Xj in (11), we obtain

∑
2≤i<j≤n

R(Xi, Xj, Xj, Xi) = ∑
2≤i<j≤n

R∗(Xi, Xj, Xj, Xi) + 3
r

∑
α=1

∑
2≤i<j≤n

(Aα
ij)

2. (57)

Using (57) in (56), we derive

2τ∗ =
c
4

[
n(n − 1) + 3‖C‖2

]
− 6

r

∑
α=1

n

∑
j=2

(Aα
1j)

2

+ 2 ∑
2≤i<j≤n

R∗(Xi, Xj, Xj, Xi)− 2 ∑
2≤i<j≤n

R(Xi, Xj, Xj, Xi). (58)

Since M(c) is a complex space form, its curvature tensor R satisfies the equality (15) and
we obtain

∑
2≤i<j≤n

R(Xi, Xj, Xj, Xi) =
c
8

[
(n − 2)(n − 1) + 6 ∑

2≤i<j≤n
g2(CXi, Xj)

]
. (59)

Then, from (58) and (59), taking into account that

‖C‖2 − 2 ∑
2≤i<j≤n

g2(CXi, Xj) = 2‖CX1‖2 (60)

we get

2Ric∗(X1) =
c
2

[
(n − 1) + 3‖CX1‖2

]
− 6

r

∑
α=1

n

∑
j=2

(Aα
1j)

2 (61)

and equality (54) follows immediately.

As an outcome of the above result, we have the following.

Theorem 9. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). If X is a unit horizontal vector field,
then we have

Ric∗(X) ≤ c
4

[
(n − 1) + 3‖CX‖2

]
. (62)

Moreover, the equality case of the above inequality holds identically for all unit horizontal vector
fields if and only if the horizontal distribution is integrable.
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Proof. Inequality (62) is clear from Theorem 8 because in (54) we can select X1 = X to be
any arbitrary unit horizontal vector field. This is due to the fact that one can always choose
in Theorem 8 an orthonormal basis {X1, . . . , Xn} of (ker σ∗)⊥ with X1 = X.

Now, if the horizontal distribution is integrable, then AXi Xj = 0, for i, j = 1, . . . , n,
and it is clear that we have equality in (62). Conversely, if the equality case of (62) holds
identically for all unit horizontal vector fields, then it follows that Aα

ij = 0, for α = 1, . . . , r
and i, j = 1, . . . , n, i 	= j, which means AXi Xj = 0, for all i 	= j. However, due to the
skew-symmetry of A for horizontal vector fields, it is obvious that AXi Xi = 0. Hence,
AXi Xj = 0 for i, j = 1, . . . , n, and therefore the horizontal distribution is integrable.

Now, we are going to state the Chen–Ricci inequality between the vertical and horizon-
tal distributions for a hemi-slant Riemannian submersion σ : M(c) → N from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Suppose {U1, U2, . . . , Ur} is an
orthonormal basis of ker σ∗ and {X1 . . . , Xn} is an orthonormal basis of (ker σ∗)⊥. Then,
for the scalar curvature τ of M(c), we have

2τ =
r

∑
k=1

Ric(Uk, Uk) +
n

∑
s=1

Ric(Xs, Xs). (63)

Further, we can write

2τ =
r

∑
j,k=1

R(Uj, Uk, Uk, Uj) +
n

∑
i=1

r

∑
k=1

R(Xi, Uk, Uk, Xi)

+
n

∑
i,s=1

R(Xi, Xs, Xs, Xi) +
n

∑
s=1

r

∑
j=1

R(Uj, Xs, Xs, Uj). (64)

Next, let us denote as usual (see [35]):∥∥∥T V
∥∥∥2

=
n

∑
i=1

r

∑
k=1

g(TUk Xi, TUk Xi), (65)

∥∥∥T H
∥∥∥2

=
r

∑
k,j=1

g(TUk Uj, TUk Uj), (66)

∥∥∥AV
∥∥∥2

=
n

∑
i,j=1

g(AXi Xj,AXi Xj), (67)

∥∥∥AH
∥∥∥2

=
n

∑
i=1

r

∑
k=1

g(AXi Uk,AXi Uk). (68)

Theorem 10. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Suppose {U1, U2, . . . , Ur} is an
orthonormal basis of ker σ∗ and {X1 . . . , Xn} is an orthonormal basis of (ker σ∗)⊥.

(i) If U1 ∈ Γ(D⊥), then

c
2

[
nr + n + r − 2 + 3

(
‖B‖2 + ‖CX1‖2

)]
≤ R̂ic(U1) + Ric∗(X1) +

1
4

r2‖H‖2 + 3
r

∑
α=1

n

∑
s=2

(Aα
1s)

2

− δ(N) +
∥∥∥T V

∥∥∥2
−
∥∥∥AH

∥∥∥2
. (69)
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(ii) If U1 ∈ Γ(Dθ), then

c
2

[
nr + n + r − 2 + 3

(
2 cos2 θ + ‖B‖2 + ‖CX1‖2

)]
≤ R̂ic(U1) + Ric∗(X1) +

1
4

r2‖H‖2 + 3
r

∑
α=1

n

∑
s=2

(Aα
1s)

2

− δ(N) +
∥∥∥T V

∥∥∥2
−
∥∥∥AH

∥∥∥2
. (70)

The equality case of (69) and (70) holds if and only if

T s
11 = T s

22 + · · ·+ T s
rr,

T s
1j = 0,

for s = 1, . . . , n, j = 2, . . . , r.

Proof. Since M(c) is a complex space form, using (64) and (32) we get

2τ =
c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 6‖B‖2 + 3‖C‖2]. (71)

On the other hand, using the Gauss–Codazzi type Equations (10)–(12), we derive

2τ = 2τ̂ + 2τ∗ + r2‖H‖2 −
r

∑
k,j=1

g(TUk Uj, TUk Uj) + 3
n

∑
i,s=1

g(AXi Xs,AXi Xs)

+
n

∑
i=1

r

∑
k=1

{g(TUk Xi, TUk Xi)− g(AXi Uk,AXi Uk)− g((∇XiT )Uk Uk, Xi)}

+
n

∑
s=1

r

∑
j=1

{g(TUj Xs, TUj Xs)− g(AXs Uj,AXs Uj)− g((∇XsT )Uj Uj, Xs)}. (72)

Therefore, using (30) and (36) in (72), we obtain

2τ = 2τ̂ + 2τ∗ +
1
2

r2‖H‖2 − 1
2

n

∑
s=1

(T s
11 − T s

22 − · · · − T s
rr)

2 − 2
n

∑
s=1

r

∑
j=2

(T s
1j)

2

+ 2
n

∑
s=1

∑
2≤i<j≤r

(T s
ii T s

jj − (T s
ij )

2) + 6
r

∑
α=1

n

∑
s=2

(Aα
1s)

2 + 6
r

∑
α=1

∑
2≤i<s≤n

(Aα
is)

2

+
n

∑
i=1

r

∑
k=1

{g(TUk Xi, TUk Xi)− g(AXi Uk,AXi Uk)} − 2δ(N)

+
n

∑
s=1

r

∑
j=1

(g(TUj Xs, TUj Xs)− g(AXs Uj,AXs Uj)) (73)
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Using now (42), (57) and (71) in (73), we get

c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3‖C‖2 + 6‖B‖2]

= 2R̂ic(U1) + 2Ric∗(X1) +
1
2

r2‖H‖2

− 1
2

n

∑
s=1

(T s
11 − T s

22 − · · · − T s
rr)

2 − 2
n

∑
s=1

r

∑
j=2

(T s
1j)

2

+ 6
r

∑
α=1

n

∑
s=2

(Aα
1s)

2 +
n

∑
i=1

r

∑
k=1

{g(TUk Xi, TUk Xi)− g(AXi Uk,AXi Uk)}

− 2δ(N) +
n

∑
s=1

r

∑
j=1

{g(TUj Xs, TUj Xs)− g(AXs Uj,AXs Uj)}

+ 2 ∑
2≤i<j≤r

R(Ui, Uj, Uj, Ui) + 2 ∑
2≤i<j≤n

R(Xi, Xj, Xj, Xi). (74)

Hence, in view of (65)–(68), the equality (74) implies

c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3‖C‖2 + 6‖B‖2]

≤ 2R̂ic(U1) + 2Ric∗(X1) +
1
2

r2‖H‖2

+ 6
r

∑
α=1

n

∑
s=2

(Aα
1s)

2 + 2(
∥∥∥T V

∥∥∥2
−
∥∥∥AH

∥∥∥2
)− 2δ(N)

+ 2 ∑
2≤i<j≤r

R(Ui, Uj, Uj, Ui) + 2 ∑
2≤i<j≤n

R(Xi, Xj, Xj, Xi). (75)

If U1 ∈ Γ(D⊥), then considering (47) and (59) in (75), in view of (60) we obtain (69).
Similarly, if U1 ∈ Γ(Dθ), then using (50), (59) and (60) in (75), we obtain (70). Finally,
the equality of (69) and (70) holds if and only if we have equality in (75), which happens if
and only if T s

11 − T s
22 − · · · − T s

rr = 0 and T s
1j = 0, for all s = 1, . . . , n and j = 2, . . . , r. This

completes the proof.

Remark 1. If σ : M(c) → N is a proper hemi-slant Riemannian submersion from a complex space
form (M(c), g) onto a Riemannian manifold (N, gN), then from (71) and (72) we get

c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3(‖C‖2 + 2‖B‖2)]

= 2τ̂ + 2τ∗ + r2‖H‖2 −
∥∥∥T H

∥∥∥2
+ 3
∥∥∥AV

∥∥∥2
(76)

− 2δ(N) + 2
∥∥∥T V

∥∥∥2
− 2
∥∥∥AH

∥∥∥2
.

From (76) we derive immediately that

2τ̂ + 2τ∗ ≤ c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3(‖C‖2 + 2‖B‖2)]

− r2‖H‖2 +
∥∥∥T H

∥∥∥2
+ 2δ(N)− 2

∥∥∥T V
∥∥∥2

+ 2
∥∥∥AH

∥∥∥2
, (77)

and

2τ̂ + 2τ∗ ≥ c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3(‖C‖2 + 2‖B‖2)]

− r2‖H‖2 + 2δ(N)− 2
∥∥∥T V

∥∥∥2
+ 2
∥∥∥AH

∥∥∥2
− 3
∥∥∥AV

∥∥∥2
. (78)
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Moreover, it is clear that the equality case of (77) holds for all p ∈ M if and only if the
horizontal distribution (kerσ∗)⊥ is integrable, while the equality cases of (78) hold for all p ∈ M if
and only if the fibers of σ are totally geodesic submanifolds of M(c). In particular, we deduce the
following result.

Theorem 11. Let σ : M(c) → N be proper a hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN) with totally geodesic fibers. Then,
we have

2τ̂ + 2τ∗ ≤ c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ

+ 3(‖C‖2 + 2‖B‖2)] + 2
∥∥∥AH

∥∥∥2
. (79)

Moreover, the equality case of (79) holds for all p ∈ M if and only if the horizontal distribution
(kerσ∗)⊥ is integrable.

We now recall the following result, which we will use a little later.

Lemma 2 ([37]). Let a1, a2, . . . ., an be n real numbers (n > 1). Then

1
n

(
n

∑
i=1

ai

)2

≤
n

∑
i=1

a2
i

with equality iff a1 = a2 = . . . . = an.

Theorem 12. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then we have

c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3(‖C‖2 + 2‖B‖2)]

≤ 2τ̂ + 2τ∗ + r(r − 1)‖H‖2 + 3
∥∥∥AV

∥∥∥2
− 2δ(N) + 2

∥∥∥T V
∥∥∥2

− 2
∥∥∥AH

∥∥∥2
. (80)

Equality case of (80) holds for all p ∈ M if and only σ has totally umbilical fibers.

Proof. From (76) we have

c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3(‖C‖2 + 2‖B‖2)]

= 2τ̂ + 2τ∗ + r2‖H‖2 −
n

∑
s=1

r

∑
j=1

(T s
jj )

2 −
n

∑
s=1

r

∑
j 	=k

(T s
jk)

2

+ 3
∥∥∥AV

∥∥∥2
− 2δ(N) + 2

∥∥∥T V
∥∥∥2

− 2
∥∥∥AH

∥∥∥2
. (81)

Applying Lemma 2 in (81), we get

c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3(‖C‖2 + 2‖B‖2)]

≤ 2τ̂ + 2τ∗ + r2‖H‖2 − 1
r

n

∑
s=1

(
r

∑
j=1

T s
jj )

2 −
n

∑
s=1

r

∑
j 	=k

(T s
jk)

2

+ 3
∥∥∥AV

∥∥∥2
− 2δ(N) + 2

∥∥∥T V
∥∥∥2

− 2
∥∥∥AH

∥∥∥2
, (82)

which gives (80). Equality case of (80) holds for all p ∈ M if and only if the components
of the O’Neill tensor T satisfy T s

11 = T s
22 = · · · = T s

rr and T s
jk = 0, for s = 1, . . . , n,

j, k = 1, . . . , r, j 	= k. The conclusion is now clear.
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Using a similar proof as in Theorem 12, we deduce the following result.

Theorem 13. Let σ : M(c) → N be a proper hemi-slant Riemannian submersion from a complex
space form (M(c), g) onto a Riemannian manifold (N, gN). Then we have

c
4
[(n + r)(n + r − 1) + 6k2 cos2 θ + 3(‖C‖2 + 2‖B‖2)] ≥ 2τ̂ + 2τ∗

+ r2‖H‖2 −
∥∥∥T H

∥∥∥2
+

3
n

tr(AV)2 − 2δ(N) + 2
∥∥∥T V

∥∥∥2
− 2
∥∥∥AH

∥∥∥2
(83)

The equality case of the above inequality holds for all p ∈ M if and only if the components
of the O’Neill tensor A with respect to some suitable orthonormal bases of the horizontal and
vertical distributions satisfy As

11 = As
22 = · · · = As

nn and As
ij = 0, for s = 1, . . . , r and

i, j ∈ {1, 2, . . . , n}, i 	= j.

4. Examples

In this section, we provide examples of hemi-slant Riemannian submersions, illustrat-
ing the main results stated above.

From [11], we know that the concept of hemi-slant submersion generalizes in a natural
way the notions of invariant, anti-invariant, semi-invariant and slant submersions. More
precisely, if we denote the dimension of D⊥ and Dθ by p1 and p2, respectively, then we
have the following:

• If θ = 0, then M is a semi-invariant submersion [12].
• If θ = 0 and p1 = 0, then M is an invariant submersion [15,38].
• If θ = 0 and p2 = 0, then M is an anti-invariant submersion [13].
• If p1 = 0, then M is a slant submersion with slant angle θ [14].

We would like to point out that there is a special type of anti-invariant submersion,
called Lagrangian submersion, for which the almost complex structure of the total space
of the submersion reverses ker σ∗ and (ker σ∗)⊥ (see [39]). Examples of invariant, anti-
invariant, Lagrangian, semi-invariant, slant and hemi-slant submersions, as well as various
interesting results regarding the geometry of these submersions, can be found in [11–15,39].
At this point, we would just like to note that according to Theorem 4.5 of [39], it follows
that the horizontal distribution of a Lagrangian submersion with total space a complex
space form is integrable. However, such submersions do not provide us suitable examples
to illustrate the equality case of the inequalities stated in Theorems 7, 9 and 11, because a
Lagrangian submersion is not a proper hemi-slant submersion.

Next, we will construct the first example of proper hemi-slant submersion satisfying
the equality case of all inequalities established in the above section.

Example 1. Consider the Kähler manifold (R6, J, g1) equipped with the canonical Euclidean metric
g1 and the complex structure J given by:

J(x1, x2, x3, x4, x5, x6) = (−x4, x6, x5, x1,−x3,−x2).

Define now a map σ : (R6, J, g1) →)(R3, g2) by

σ(x1, x2, x3, x4, x5, x6) = (
x1 + x4√

2
,−−x2 + x5√

2
, x3 cos α + x6 sin α),

where α ∈ (0, π
2 ) and g2 is the standard canonical Euclidean metric on R3. Then, it is easy to check

that σ is a hemi-slant submersion such that

D⊥ = Sp{V1 = − 1√
2

∂

∂x1
+

1√
2

∂

∂x4
},
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Dθ = Sp{V2 = − 1√
2

∂

∂x2
− 1√

2
∂

∂x5
, V3 = − sin α

∂

∂x3
+ cos α

∂

∂x6
}

and

(kerσ∗)⊥ = Sp{H1 =
1√
2

∂

∂x1
+

1√
2

∂

∂x4
, H2 = − 1√

2
∂

∂x2
+

1√
2

∂

∂x5
,

H3 = cos α
∂

∂x3
+ sin α

∂

∂x6
}.

Moreover, the hemi-slant angle of σ is θ = arccos( sinα+cosα√
2

). A straightforward computation
shows that fibers of the submersions are totally geodesic and the horizontal distribution is integrable.
Hence, we conclude that the inequalities stated in Theorems 2, 3, 6, 7, 9–11 and 13 are satisfied with
equality sign.

Similarly, the following map illustrates the equality case of the above-mentioned
inequalities.

Example 2. Consider the Euclidean space R10 equipped with the standard metric (denoted by g1)
and the compatible almost complex structure J given by

J(x1, x2, . . . , x9, x10) = (x7, x3,−x2, x10, x8,−x9,−x1,−x5, x6,−x4).

Then, (R10, J, g1) is a Kähler manifold and we define a map σ : (R10, J, g1) → (R5, g2) by

σ(x1, x2, . . . , x10) = (t1, t2, t3, t4, t5)

where

t1 = x5, t2 =

√
1

1 + 7
√

2−1
x1 +

√
1

1 + 71−
√

2
x7, t3 = x2

t4 = x4 tanh α + x10sechα, t5 =

√
5

3
x3 +

2
3

x6,

α ∈ (0, π
2 ) and g2 is the standard canonical Euclidean metric on R5. A direct computation shows

that σ is a hemi-slant submersion with the hemi-slant angle θ = arccos(
√

5
3 ) such that

D⊥ = Sp{V1 = −
√

1

1 + 71−
√

2

∂

∂x1
+

√
1

1 + 7
√

2−1

∂

∂x7
,

V2 = − tanh α
∂

∂x10
+ sechα

∂

∂x4
, V3 =

∂

∂x8
},

Dθ = Sp{V4 = −2
3

∂

∂x3
+

√
5

3
∂

∂x6
, V5 =

∂

∂x9
}.

and

(kerσ∗)⊥ = Sp{H1 = −
√

1

1 + 71−
√

2

∂

∂x1
−
√

1

1 + 7
√

2−1

∂

∂x7
,

H2 = tanh α
∂

∂x4
+ sechα

∂

∂x10
,

H3 = −2
3

∂

∂x3
−

√
5

3
∂

∂x6
, H4 =

∂

∂x2
, H5 =

∂

∂x5
}.
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We derive immediately that fibers of the submersions are totally geodesic and the horizontal distribu-
tion is integrable. Hence, we have again that σ satisfies the equality case of the inequalities stated in
Theorems 2, 3, 6, 7, 9–11 and 13.

5. Conclusions

(Semi-)Riemannian submersions are mathematical objects of high interest in theo-
retical physics (see, e.g., [9]). A particular class of such submersions was introduced by
Taştan et al. [11], as a natural generalization of some important families of Riemannian
submersions: invariant, anti-invariant, semi-invariant and slant submersions. In this paper,
we prove various optimal inequalities involving basic curvature invariants for hemi-slant
Riemannian submersions having as total space a complex space form and discuss the
equality case of the obtained inequalities. Finally, we provide examples of hemi-slant
Riemannian submersions to show that the equality cases of the main inequalities can be
attained. For further research, it would be interesting to obtain Chen-like inequalities for
lightlike submersions (see [40]). In this case, it could be necessary to use not only techniques
from submanifold theory, but also from singularity theory (see, e.g., [41–44]).
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35. Gülbahar, M.; Meriç, Ş.; Kılıç, E. Sharp inequalities involving the Ricci curvature for Riemannian submersions. Kragujev. J. Math.

2017, 41, 279–293. [CrossRef]
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Abstract: In the present article, some geometric and physical properties of MG(QE)n were in-
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1. Introduction

A Riemannian or a semi-Riemannian manifold (Mn, g) of dimension n(> 2) is termed
as an Einstein manifold if its (0, 2)-type Ricci tensor Ric( 	= 0) satisfies Ric = r

n , where r
stands for the scalar curvature [1]. In addition to Riemannian geometry, Einstein manifolds
also have a vital contribution to the general theory of relativity (GTR).

Approximately two decades ago, Chaki and Maity introduced and studied quasi-
Einstein manifolds [2]. An (Mn, g), (n > 2) is said to be a quasi-Einstein manifold (QE)n if
its Ric ( 	= 0) realizes the following condition:

Ric(U1, U2) = ag(U1, U2) + bA(U1)A(U2), (1)

where a, b ∈ R such that b 	= 0 and A( 	= 0) is the 1-form such that

g(U1, ρ) = A(U1), g(ρ, ρ) = A(ρ) = 1, ′′ (2)

for any vector field U1, and a unit vector field ρ called the generator of (Mn, g). In addition,
A is named the associated 1-form. Einstein manifolds form a natural subclass of the class
of (QE)n.

Under the study of exact solutions of the Einstein field equations, as well as under the
consideration of quasi-umbilical hypersurfaces of semi-Euclidean spaces, (QE)n came into
existence. For instance, the Robertson–Walker spacetimes are (QE)n. Thus, (QE)n have
great importance in GTR.

An (Mn, g), (n ≥ 2) is said to be a generalized quasi-Einstein manifold G(QE)n [3] if
its Ric( 	= 0) realizes the following condition:

Ric(U1, U2) = ag(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2), (3)
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where a, b, c are non-zero scalars and A, B are two non-zero 1-forms such that

g(U1, ρ) = A(U1), g(U1, σ) = B(U1), (4)

where ρ and σ are mutually orthogonal unit vector fields, i. e., g(ρ, σ) = 0. The vector fields
ρ and σ are called the generators of the manifold. If c = 0, then the manifold reduces to a
quasi-Einstein manifold.

In 2007, Bhattacharya, De and Debnath [4] introduced the notion of a mixed gener-
alized quasi-Einstein manifold. A non-flat Riemannian manifold is said to be a mixed
generalized quasi-Einstein manifold and is denoted by MG(QE)n, if its Ric( 	= 0) satisfies
the following condition:

Ric(U1, U2) = ag(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2)

+ d[A(U1)B(U2) + B(U1)A(U2)],
(5)

where a, b, c, d are non-zero scalars and A, B are two non-zero 1-forms such that

g(U1, ρ) = A(U1), g(U1, σ) = B(U1), (6)

where ρ and σ are mutually orthogonal unit vector fields and are called the generators of
the manifold. Recently, MG(QE)n have been studied by various geometers in several ways
to a different extent, such as [5–8] and many others.

Putting U1 = U2 = ei in (5), where {ei} is an orthonormal basis of the tangent space at
each point of the manifold, and taking summation over i( 1 ≤ i ≤ n), we obtain

r = na + b + c. (7)

A Lorentzian four-dimensional manifold is said to be a mixed generalized quasi-
Einstein spacetime with the generator ρ as the unit timelike vector field if its Ric( 	= 0)
satisfies (5). Here, A and B are non-zero 1-forms such that σ is the heat flux vector field
perpendicular to the velocity vector field ρ. Therefore, for any vector field U1, we have

g(U1, ρ) = A(U1), g(U1, σ) = B(U1),

g(ρ, ρ) = A(ρ) = −1, g(σ, σ) = B(σ) = 1.′′
(8)

Further, we know that if the Riemannian curvature tensor K of type (0, 4) has the form

K(U1, U2, U3, U4) = k[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)], (9)

then the manifold is said to be of constant curvature k. The generalization of this manifold
is the manifold of quasi-constant curvature and, in this case, the curvature tensor has the
following form:

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U2, U3)A(U1)A(U4)− g(U2, U4)A(U1)A(U3)

+ g(U1, U4)A(U2)A(U3)− g(U1, U3)A(U2)A(U4)],

(10)

where g(K(U1, U2)U3, U4) = K(U1, U2, U3, U4), K is the curvature tensor of type (1, 3) and
f1, f2 are scalars, and ρ is a unit vector field defined by

g(U1, ρ) = A(U1),

It can be easily seen that, if the curvature tensor K is of the form (10), then the manifold
is conformally flat [3]. Thus, a Riemannian or semi-Riemannian manifold is said to be of
quasi-constant curvature if the curvature tensor K satisfies the relation (10); we denote such
a manifold of dimension n by (QC)n.
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A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n ≥ 3) is said to be a
manifold of generalized quasi-constant curvature if the curvature tensor K of type (0, 4)
satisfies the condition [3]

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U1, U4)A(U2)A(U3)− g(U2, U4)A(U1)A(U3)

+ g(U2, U3)A(U1)A(U4)− g(U1, U3)A(U2)A(U4)]

+ f3[g(U1, U4)B(U2)B(U3)− g(U2, U4)B(U1)B(U3)

+ g(U2, U3)B(U1)B(U4)− g(U1, U3)B(U2)B(U4)],

(11)

where f1, f2, f3 are scalars and A, B are two non-zero 1-forms. ρ and σ are orthonormal
unit vectors corresponding to A and B such that g(U1, ρ) = A(X), g(U1, σ) = B(X) and
g(ρ, σ) = 0. Such a manifold is denoted by G(QC)n.

In [9], Bhattacharya and De introduced the notion of mixed generalized quasi-constant
curvature. A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n ≥ 3) is said to
be a manifold of mixed generalized quasi-constant curvature if the curvature tensor K of
type (0, 4) satisfies the condition

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U1, U4)A(U2)A(U3)− g(U2, U4)A(U1)A(U3)

+ g(U2, U3)A(U1)A(U4)− g(U1, U3)A(U2)A(U4)]

+ f3[g(U1, U4)B(U2)B(U3)− g(U2, U4)B(U1)B(U3)

+ g(U2, U3)B(U1)B(U4)− g(U1, U3)B(U2)B(U4)]

+ f4[{A(U2)B(U3) + B(U2)A(U3)}g(U1, U4)

− {A(U1)B(U3) + B(U1)A(U3)}g(U2, U4)

+ {A(U1)B(U4) + B(U1)A(U4)}g(U2, U3)

− {A(U2)B(U4) + B(U2)A(U4)}g(U1, U3)],

(12)

where f1, f2, f3, f4 are scalars. A, B are two non-zero 1-forms. ρ and σ are orthonormal
unit vectors corresponding to A and B such that g(U1, ρ) = A(X), g(U1, σ) = B(X) and
g(ρ, σ) = 0. Such a manifold is denoted by MG(QC)n.

The spacetime of general relativity and cosmology is regarded as a connected
four-dimensional semi-Riemannian manifold (M4, g) with Lorentzian metric g with signa-
ture (−,+,+,+). The geometry of the Lorentz manifold begins with the study of a causal
character of vectors of the manifold. Due to this causality, the Lorentz manifold becomes
a convenient choice for the study of general relativity. Spacetimes have been studied by
various authors in several ways, such as [10–14] and many others.

2. MG(QE)n Admitting the Generators ρ and σ as Recurrent Vector Fields

Let us consider the generators ρ and σ corresponding to the associated recurrent
1-forms A and B. Then, we have

(DU1 A)(U2) = η(U1)A(U2),

(DU1 B)(U2) = ϕ(U1)B(U2),

where η and ϕ are non-zero 1-forms.
A non-flat Riemannian or semi-Riemannian manifold (Mn, g), (n > 2) is said to be

Ricci-recurrent [15,16] if its Ric( 	= 0) satisfies the following condition:

(DU1 Ric)(U2, U3) = α(U1)Ric(U2, U3), (13)
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where α is in non-zero 1-form. Since we know that

(DU1 Ric)(U2, U3) = U1Ric(U2, U3)− Ric(DU1U2, U3) (14)

−Ric(U2, DU1U3),

using (14) in (13), it follows that

α(U1)Ric(U2, U3) = U1Ric(U2, U3)− Ric(DU1U2, U3) (15)

−Ric(U2, DU1U3).

Using (5) in (15), we obtain

α(U1)[ag(U2, U3) + bA(U2)A(U3) + cB(U2)B(U3)

+ d{A(U2)B(U3) + A(U3)B(U2)}] = U1[ag(U2, U3) + bA(U2)A(U3)

+ cB(U2)B(U3) + d{A(U3)B(U2) + A(U2)B(U3)}]
− [ag(DU1U2, U3) + bA(DU1U2)A(U3) + cB(DU1U2)B(U3)

+ d{A(DU1U2)B(U3) + A(U3)B(DU1U2)}]
− [ag(U2, DU1U3) + bA(U2)A(DU1U3) + cB(U2)B(DU1U3)

+ d{A(U2)B(DU1U3) + A(DU1U3)B(U2)}].

(16)

Putting U2 = U3 = ρ in (16), we obtain

U1(a + b)− α(U1)(a + b) = 2(a + b)A(DU1 ρ) + 2dB(DU1 ρ). (17)

By using the fact that A(DU1 ρ) = 0 and (6) in (17), we have

U1(a + b)− α(U1)(a + b) = 2dg(DU1 ρ, σ), (18)

which can be written as

U1(a + b)− α(U1)(a + b) = −2dA(DU1 σ).

Thus, we have A(DU1 σ) = 0 if and only if U1(a + b)− α(U1)(a + b) = 0. This implies
that either DU1 σ ⊥ ρ or σ is a parallel vector field.

Again, putting U2 = U3 = σ in (16), we have

U1(a + b)− α(U1)(a + b) = 2(a + c)B(DU1 σ) + 2dA(DU1 σ). (19)

Again, using the fact that B(DU1 σ) = 0 and (6) in (19), we have

U1(a + b)− α(U1)(a + b) = 2dg(Dvσ, ρ), (20)

or, U1(a + b)− α(U1)(a + b) = −2dB(Dvρ).

Thus, we have B(DU1 ρ) = 0 if and only if U1(a + b) − α(U1)(a + b) = 0. This
implies that either DU1 ρ ⊥ σ or ρ is a parallel vector field. Hence, we can state the
following theorem:

Theorem 1. Let a mixed generalized quasi-Einstein manifold MG(QE)n be Ricci-recurrent; then,
the following statements are equivalent:
(i) ρ and σ are parallel vector fields;
(ii) U1(a + b)− α(U1)(a + b) = 0 if and only if DU1 σ ⊥ ρ;
(iii) U1(a + b)− α(U1)(a + b) = 0 if and only if DU1 ρ ⊥ σ.
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3. MG(QE)n Admitting the Generators ρ and σ as Concurrent Vector Fields

A vector field π is said to be concurrent if it satisfies the following condition [17,18]:

DU1 π = ξU1, (21)

where ξ is constant.
Let us consider the generators ρ and σ corresponding to the associated concurrent

1-forms A and B. Then, we have

(DU1 A)(U2) = λg(U1, U2), (22)

and (DU1 B)(U2) = μg(U1, U2), (23)

where λ and μ are non-zero constants.
Taking the covariant derivative of (5) with respect to U3, we obtain

(DU3 Ric)U2 = b[(DU3 A)(U1)A(U2) + A(U1)(DU3 A)(U2)]

+ c[(DU3 B)(U1)B(U2) + B(U1)(DU3 B)(U2)]

+ d[(DU3 A)(U1)B(U2) + A(U1)(DU3 B)(U2)

+ (DU3 B)(U1)A(U2) + B(U1)(DU3 A)(U2)].

(24)

Using (22) and (23) in (24), it follows that

(DU3 Ric)(U1, U2) = b[λg(U1, U3)A(U2) + λg(U2, U3)A(U1)]

+ c[μg(U1, U3)B(U2) + μg(U2, U3)B(U1)]

+ d[λg(U1, U3)B(U2) + μg(U1, U3)A(U2)

+ λg(U2, U3)B(U1) + μg(U2, U3)A(U1)].

(25)

Contracting (25) over U1 and U2 leads to

∂r(U3) = A(U3)[2bλ + 2dμ] + B(U3)[2cμ + 2dλ]. (26)

From (7), it follows that
∂r(U1) = 0. (27)

In view of (27), (26) turns to

A(U3)[2bλ + 2dμ] + B(U3)[2cμ + 2dλ] = 0. (28)

Thus, by virtue of (28), (5) takes the form

Ric(U1, U2) = ag(U1, U2) +
[
b + c

( (bλ + dμ)

(cμ + dλ)

)2
− 2d

(bλ + dμ)

(cμ + dλ)

]
A(U1)A(U2) (29)

which is a quasi-Einstein manifold. Thus, we can state the following theorem:

Theorem 2. Let MG(QE)n be a mixed generalized quasi-Einstein manifold. If the associated
vector fields of MG(QE)n are concurrent and the associated scalars are constants, then the manifold
reduces to a quasi-Einstein manifold.

4. MG(QE)n Admitting Einstein’s Field Equations

The Einstein’s field equations with and without cosmological constants are given by

Ric(U1, U2)−
r
2

g(U1, U2) + λg(U1, U2) = κT(U1, U2), (30)
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and
Ric(U1, U2)−

r
2

g(U1, U2) = κT(U1, U2), (31)

respectively; κ is a gravitational constant, λ is a cosmological constant, and T is the energy–
momentum tensor.

Using (6) in (31), it follows that(
a − r

2

)
g(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2)

+ d[A(U1)B(U2) + A(U2)B(U1)] = κT(U1, U2).
(32)

Now, taking the covariant derivative of (32) with respect to U3, we arrive at

b[(DU3 A)(U1)A(U2) + A(U1)(DU3 A)(U2)]

+ c[(DU3 B)(U1)B(U2) + B(U1)(DU3 B)(U2)]

+ d[(DU3 A)(U1)B(U2) + A(U1)(DU3 B)(U2)

+ (DU3 B)(U1)A(U2) + B(U1)(DU3 A)(U2)] = κ(DU3 T)(U1, U2).

(33)

Thus, we have a result.

Theorem 3. Let MG(QE)n admit Einstein’s field equation without a cosmological constant. If the
associated 1-forms A and B are covariantly constant, then the energy–momentum tensor is also
covariantly constant."

5. MG(QE)4 Spacetime Admitting Space-Matter Tensor

In 1969, Petrov [19] introduced and studied the space–matter tensor P of type (0, 4)
and defined by

P = K +
κ

2
g ∧ T − νG, (34)

where K is the curvature tensor of type (0, 4), T is the energy–momentum tensor of type
(0, 2), κ is the gravitational constant, and ν is the energy density. Furthermore, G and g ∧ T
are, respectively, defined by

G(U1, U2, U3, U4) = g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4), (35)

and

(g ∧ T)(U1, U2, U3, U4) = g(U2, U3)T(U1, U4) + g(U1, U4)T(U2, U3)

− g(U1, U3)T(U2, U4)− g(U2, U4)T(U1, U3),
(36)

for all U1, U2, U3, U4 on M.
Using (35) and (36) in (34), it follows that

P(U1, U2, U3, U4) = K(U1, U2, U3, U4) +
κ

2
[g(U2, U3)T(U1, U4)

+ g(U1, U4)T(U2, U3)− g(U1, U3)T(U2, U4)

− g(U2, U4)T(U1, U3)]− ν[g(U2, U3)g(U1, U4)

− g(U1, U3)g(U2, U4)].

(37)

If P = 0, then (37) gives

K(U1, U2, U3, U4) = −κ

2
[g(U2, U3)T(U1, U4) + g(U1, U4)T(U2, U3)

− g(U1, U3)T(U2, U4)− g(U2, U4)T(U1, U3)]

+ ν[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)].

(38)
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In view of (5), from (31), it follows that

κT(U1, U2) =
(

a − r
2

)
g(U1, U2) + bA(U1)A(U2) + cB(U1)B(U2)

+ d[A(U1)B(U2) + A(U2)B(U1)].
(39)

Thus, from (38) and (39), we obtain

K(U1, U2, U3, U4) = f1[g(U2, U3)g(U1, U4)− g(U1, U3)g(U2, U4)]

+ f2[g(U1, U4)A(U2)A(U3)− g(U2, U4)A(U1)A(U3)

+ g(U2, U3)A(U1)A(U4)− g(U1, U3)A(U2)A(U4)]

+ f3[g(U1, U4)B(U2)B(U3)− g(U2, U4)B(U1)B(U3)

+ g(U2, U3)B(U1)B(U4)− g(U1, U3)B(U2)B(U4)]

+ f4[g(U1, U4){A(U2)B(U3) + B(U2)A(U3)}
− g(U2, U4){A(U1)B(U3) + B(U1)A(U3)}
+ g(U2, U3){A(U1)B(U4) + B(U1)A(U4)}
− g(U1, U3){A(U2)B(U4) + B(U2)A(U4)}],

(40)

where f1 = (ν − a + r
2 ), f2 = − b

2 , f3 = − c
2 , f4 = − d

2 . Thus, we can state the follow-
ing theorem:

Theorem 4. For a vanishing space–matter tensor, MG(QE)4 spacetime satisfying Einstein’s field
equation without a cosmological constant is a MG(QC)4 spacetime.

Next, we investigate the existence of a sufficient condition under which MG(QE)4 can
be a divergence-free space–matter tensor.

From (31) and (37), we obtain

(divP)(U1, U2, U3) = (divK)(U1, U2, U3) +
1
2
[(DU1 Ric)(U2, U3)

− (DU2 Ric)(U1, U3)]− g(U2, U3)[
1
4

∂r(U1) + ∂ν(U1)]

+ g(U1, U3)[
1
4

∂r(U2) + ∂ν(U2)].

(41)

By using (divK)(U1, U2, U3) = (DU1 Ric)(U2, U3)− (DU2 Ric)(U1, U3) in (41), we obtain

(divP)(U1, U2, U3) =
3
2
[(DU1 Ric)(U2, U3)− (DU2 Ric)(U1, U3)]

− g(U2, U3)[
1
4

∂r(U1) + ∂ν(U1)]

+ g(U1, U3)[
1
4

∂r(U2) + ∂ν(U2)].

(42)

Let (divP)(U1, U2, U3) = 0; then, contracting (42) over U2 and U3, we obtain ∂ν(U1) =
0, where (27) is used. Hence, we can state the following theorem:

Theorem 5. For a divergence-free space–matter tensor, the energy density in MG(QE)4 spacetime
satisfying Einstein’s field equation without a cosmological constant is constant.

Now, by using (5) in (42), we obtain
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(divP)(U1, U2, U3) =
3
2
[∂a(U1)g(U2, U3)− ∂a(U2)g(U1, U3)]

+
3
2
[∂b(U1)A(U2)A(U3)− ∂b(U2)A(U1)A(U3)]

+
3b
2
[(DU1 A)(U2)A(U3) + A(U2)(DU1 A)(U3)

− (DU2 A)(U1)A(U3)− (DU2 A)(U3)A(U1)]

+
3
2
[∂c(U1)B(U2)B(U3)− ∂c(U2)B(U1)B(U3)]

+
3c
2
[(DU1 B)(U2)B(U3) + B(U2)(DU1 B)(U3)

− (DU2 B)(U1)B(U3)− (DU2 B)(U3)B(U1)]

+
3
2
[∂d(U1){A(U2)B(U3) + B(U2)A(U3)}

− ∂d(U2){A(U1)B(U3) + B(U1)A(U3)}]

+
3d
2
[(DU1 A)(U2)B(U3) + A(U2)(DU1 B)(U3)

+ (DU1 A)(U3)B(U2) + A(U3)(DU1 B)(U2)

− (DU2 A)(U1)B(U3)− A(U1)(DU2 B)(U3)

− (DU2 A)(U3)B(U1)− A(U3)(DU2 B)(U1)]

− g(U2, U3)[
1
4

∂r(U1) + ∂ν(U1)]

+ g(U1, U3)[
1
4

∂r(U2) + ∂ν(U2)].

(43)

By assuming that ν, a, b, c, and d are constants and the generator ρ is a parallel vector
field, i.e., DU1 ρ = 0, we obtain

∂r(U1) = 0, ∂ν(U1) = 0, (DU1 A)(U2) = 0. (44)

In view of (44), we derive

a + b = 0, c = 0, d = 0. (45)

Using (44) and (45), (43) reduces to

(divP)(U1, U2, U3) = 0.

Thus, we can state the following theorem:

Theorem 6. In MG(QE)4 spacetimes admitting parallel vector field ρ satisfying Einstein’s field
equation without a cosmological constant, if the energy density and associated scalars constant are
constants, then the divergence of the space–matter tensor vanishes.

6. MG(QE)4 Spacetime Admitting General Relativistic Viscous Fluid

Ellis [20] defined the energy–momentum tensor for a perfect fluid distribution with
heat conduction as

T(U1, U2) = ωg(U1, U2) + (ν + ω)A(U1)A(U2) + B(U1)B(U2)

+ A(U1)B(U2) + A(U2)B(U1),
(46)

where g(U1, ρ) = A(U1), g(U1, σ) = B(U1), A(ρ) = −1, B(σ) > 0, g(ρ, σ) = 0, and ν, ω
are called the isotropic pressure and the energy density, respectively. σ is the heat conduc-
tion vector field perpendicular to the velocity vector field ρ. Assuming a mixed generalized
quasi-Einstein spacetime satisfying Einstein’s field equation without a cosmological con-
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stant whose matter content is viscous fluid, then, from (31) and (46), the Ricci tensor takes
the form

Ric(U1, U2) = (κω +
r
2
)g(U1, U2) + κ(ν + ω)A(U1)A(U2)

+ κB(U1)B(U2) + κ[A(U1)B(U2) + A(U2)B(U1)].
(47)

By comparing (5) and (47), we obtain

a = κω +
r
2

, b = κ(ν + ω), c = κ, d = κ. (48)

Taking a frame field to contract (48) over U1 and U2, we obtai

r = κ(ν − 3ω). (49)

In view of (49), (47) turns to

Ric(U1, U2) =
κ(ν − ω)

2
g(U1, U2) + κ(ν + ω)A(U1)A(U2)

+ κB(U1)B(U2) + κ[A(U1)B(U2) + A(U2)B(U1)].
(50)

Now, let R be the Ricci operator given by g(R(U1), U2) = Ric(U1, U2) and
Ric(R(U1), U2) = Ric2(U1, U2). Then, we have A(R(U1)) = g(R(U1), ρ) = Ric(U1, ρ)
and B(R(U1)) = g(R(U1), σ) = Ric(U1, σ). Thus, we obtain

Ric(R(U1), U2) =
κ(ν − ω)

2
Ric(U1, U2) + κ(ν + ω)Ric(U1, ρ)A(U2)

+ κRic(U1, σ)B(U2) + κ[Ric(U1, ρ)B(U2)

+ A(U2)Ric(U1, σ)].

(51)

Now, contracting (51) over U1 and U2, we obtain

Ric(U1, U1) = ||R||2 =
κ(ν − ω)r

2
+ κ(ν + ω)Ric(ρ, ρ)

+ κRic(σ, σ) + κ[Ric(ρ, σ) + Ric(σ, ρ)].
(52)

For a mixed generalized quasi-Einstein spacetime, from (5), it follows that

Ric(U1, ρ) = (a − b)A(U1)− dB(U1), Ric(U1, σ) = (a + c)B(U1) + dA(U1). (53)

In view of (48), (49), and (53), we find that

Ric(ρ, ρ) =
κ(ν + 3ω)

2
, Ric(σ, ρ) = Ric(ρ, σ) = −κ, Ric(σ, σ) =

κ(ν − ω + 2)
2

. (54)

By making use of (54), from (52), it follows that

||R||2 = κ2(ν3ω2 + ν + ω − 3). (55)

Thus, we can state the following theorem:

Theorem 7. If MG(QE)4 spacetime admitting viscous fluid satisfies Einstein’s field equation
without a cosmological constant, then the square of the length of Ricci operator is κ2(ν3ω2 + ν +
ω − 3).

7. Example of MG(QE)4 Spacetime

In this section, we constructed a non-trivial concrete example to prove the existence of
a MG(QE)4 spacetime.
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We assume a Lorentzian manifold (M4, g) endowed with the Lorentzian metric g
given by

ds2 = gijduiduj = (1 + 2p)[(du1)2 + (du2)2 + (du3)2 − (du4)2], (56)

where u1, u2, u3, u4 are standard coordinates of M4, i, j = 1, 2, 3, 4, and p = eu1
k−2, and k is

a non-zero constant. Here, the signature of g is (+,+,+,−), which is Lorentzian. Then, the
only non-vanishing components of the Christoffel symbols and the curvature tensors are{

1
11

}
=

{
1

44

}
=

{
2

12

}
=

{
3

13

}
=

{
4

14

}
=

p
1 + 2p

,
{

1
22

}
=

{
1

33

}
=

−p
1 + 2p

. (57)

K1212 = K1313 =
−p

1 + 2p
, K1414 =

p
1 + 2p

,

K3232 =
−p2

1 + 2p
, K4242 = K4343 =

p2

1 + 2p

and the components are obtained by the symmetry properties.
The non-vanishing components of the Ricci tensors are

R11 =
3p

(1 + 2p)2 , R22 = R33 =
p

(1 + 2p)2 , R44 =
−p

(1 + 2p)2 ,

Thus, the scalar curvature r is 6q(1+q)
(1+2q)3 .

Let us consider the associated scalars a, b, c, and d defined by

a =
p

(1 + 2p)3 , b =
1

(1 + 2p)
, c =

−1
(1 + 2p)3 , d =

−p
(1 + 2p)2

and the 1-forms are defined by

A1 = B1 =
√

1 + 2p, Ai = Bi = 0 ∀ i = 2, 3, 4,

where the generators are unit vector fields; then, from (5), we have

R11 = ag11 + bA1 A1 + cB1B1 + d(A1B1 + A1B1), (58)

R22 = ag22 + bA2 A2 + cB2B2 + d(A2B2 + A2B2), (59)

R33 = ag33 + bA3 A3 + cB3B3 + d(A3B3 + A3B3), (60)

R44 = ag44 + bA4 A4 + cB4B4 + d(A4B4 + A4B4). (61)

Now, R.H.S. o f (58) = ag11 + bA1 A1 + cB1B1 + d(A1B1 + A1B1)

=
3p

(1 + 2p)2

= R11

= L.H.S. o f (58).

Similarly, it can easily be show that (59), (60), and (61) are also true. Hence, (IR4, g) is a
MG(QE)4.
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