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Preface

Digital pathology workflow implementation remains challenging. In laboratories worldwide,

there are growing examples of successful implementation and pathologists acknowledging the

advantages of this new model of practicing pathology.

This Special Issue of Diagnostics is a collection of records of successful digital pathology

implementation for primary diagnosis or secondary applications, that serve as an inspiration to

those readers who are still skeptical about it. These records highlight the advantages of the use

of whole slide images such as sharing and the image analysis, as well as the virtues of the digital

workflow per se. The holistic approach of the digital workflow comprehends practical interventions

in the laboratory workstations that are demonstrated in this Special Issue, as well as their respective

monitorization, quality control and impact on clinical practice.

Catarina Eloy

Editor
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Abstract: The advantages of the digital methodology are well known. In this paper, we provide
a detailed description of the process for the digital transformation of the pathology laboratory
at IPATIMUP, the major modifications that operate throughout the processing pipeline, and the
advantages of its implementation. The model of digital workflow implementation at IPATIMUP
demonstrates that careful planning and adoption of simple measures related to time, space, and
sample management can be adopted by any pathology laboratory to achieve higher quality and easy
digital transformation.

Keywords: digital pathology; workflow; telepathology; implementation

1. Introduction

The Institute of Molecular Pathology and Immunology of the University of Porto
(IPATIMUP) is a non-profit research institution with a pathology laboratory that is double
accredited by the College of American Pathologists (CAP) and by NP EN ISO 15189
standards. It serves as a reference center for second opinions on difficult cases, biomarker
identification, and training of pathologists and laboratory technicians. The experience
with a telepathology project that started in 2013, and the wide use of scanned dark field
images for fluorescent in situ hybridization tests, motivated the quest for digitization of the
laboratory. Successful digital transformations of pathology workflow have been published
in the literature [1–3]. The advantages of the digital methodology are well known and
include time sparing workflows, as well as a reduction in costs [4,5].

The Food and Drug Administration (FDA) approval of the first scanning systems for
primary diagnosis constitutes a relevant driver for the adoption of a digital workflow, rep-
resenting general support of the regulatory institutions on the subject. The use of scanning
systems other than those approved for clinical use by the regulatory institutions should be
performed under strict surveillance by internal/external quality control programs [6].

In this paper, we describe the process for digital transformation of the pathology
laboratory at IPATIMUP, including a detailed description of the modifications operated
throughout the processing pipeline, as well as the advantages of its implementation.

2. Materials and Methods

The process for digital transformation of the laboratory started in 2016 when we de-
cided to start preparing the staff and the respective structure. Pathologists and technicians
underwent sessions of training and courses to understand the best way to start apply-
ing modifications to the laboratory, namely space and time, a new type of management,
equipment renewal/acquisition, information technology infrastructure, and design of the
validation of digital observation by the pathologist. The goal was to introduce whole slide
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images (WSIs) for diagnosis in all bright field tissue-related cases. Dark field fluorescent
in situ hybridization (FISH) and immunofluorescence had already been achieved by a
digital process since 2014 after the optimization of the D-Sight FLUO 2.0 scanner (Menarini
Diagnostics®, Florence, Italy) for capture, matching of the fluorescent and haematoxylin
and eosin (H&E) images, and semi-quantitative analysis, substituting an immunofluores-
cence microscope. At IPATIMUP, only routine cytology is left to be integrated in the digital
workflow. The services provided by the pathology laboratory of IPATIMUP do not include,
at the moment, autopsies or frozen sections.

We choose the Pannoramic®1000 (P1000) scanner (3DHISTECH Ltd.®, Budapest,
Hungary) to obtain WSIs for primary and secondary diagnosis of all slides managed in
the laboratory (100%), except for those of cytology, as mentioned above. Cytology slides
that needed to undergo second revision in another institution or that were estimated to be
consumed by molecular techniques were also scanned.

In July 2019, a P1000 scanner was installed in the center of the main laboratory
surrounded by benches where specimen processing takes place. The scanning process,
including quality control of the WSIs obtained was performed by trained technicians.
All scanned slides were orderly incorporated in the file of the patient for microscopic
observation after the functional integration of the scanner software with the laboratory
information system (LIS) called SISPAT (JSalgado®, Porto, Portugal).

2.1. Digital Workflow

We describe the processing pipeline with emphasis on the major alterations introduced
in the workflow of the pathology laboratory of IPATIMUP. For the successful implemen-
tation of these alterations, close interaction between technicians and pathologists was
mandatory in order that the measures taken had no impact on the turn-a-round time or
quality of the final product. Overall, there was an important investment in space contrac-
tion on the main laboratory area, since no important infrastructure interventions were
done. The parallel benches were organized according to the flow of the sample, following
a Lean approach, and allowing the insertion of a scanner station (Figure 1).
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The scanner station was located in the confluent end of the histology and cytology
lines, away from the paraffin-rich area (Figure 2). The location of the scanner within the
main laboratorial area enabled a better communication process and fast management of
samples. The disadvantages of having the scanner in the main laboratorial area were the
increment in environmental noise produced by the instruments and the exposure of the
scanner to potential particles produced during the entire process.
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Figure 2. Schematic representation of the laboratory organization. The gray areas represent pre-
scanner workstations, the black area represents the scanner workstation, and the blue areas represent
the post-scanner segments. The archive area corresponds to a transitory paraffin block archive. The
stars sign the bottleneck areas. The black arrows comprehend physical traffic of samples, and the
gray arrows represent traffic of digital information.

The same contraction exercise was applied in the management of time. Since the
number of technicians was not increased and the scanning process imposed additional
time spent on the technical side, an effort was made to reduce lost time, redundant tasks,
or uncoordinated efforts, increasing the overall efficacy of the laboratory. Specific goals
related to the time for production of stained and unstained full rack slides were established
to better manage the occupation of the scanner station.

During the preparation period of the laboratory, and before the scanner acquisition,
importantly, we implemented a sample tracking system based on the LIS which facilitated
mobile control of time and operator’s intervention during the entire process. The tracking
system was designed to use QR code readers at each station. Printed QR codes are part of
the sample redundant identification in all phases of processing, from when the sample en-
ters the institution until the report is signed out, including the physical and digital archives.
This decision required the acquisition of computers or tablets for each workstation.

2.2. Sample Management and Macroscopic Examination

Good quality samples are easy to manage in the laboratory as compared with those
with fixation problems that require additional time-consuming procedures to be suitable for
diagnosis. To decrease the time required to manage problematic samples and to increase the
quality of the image for diagnosis, an educational program was elaborated targeting nurses
and physicians and highlighting the importance of controlling pre-analytic conditions. The
administrative team was also trained to be able to identify problems with the packaging
of samples in order to quickly promote their correct fixation by the technical team. The
traffic of labeled samples with QR codes ran from the reception to the macroscopy room
in scheduled batches and was performed to reduce people movements while keeping the
macroscopy station as busy as possible.

3
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After the QR code labeled samples were transferred to the macroscopy room, they were
photographed using MacroPATH (Milestone Medical®, Bergamo, Italy), and fragments
were collected to QR code printed cassettes (Figure 3). The photography system and
cassette printer were connected with the LIS.
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inside the respective labeled cassettes (C).

The size of the fragments collected was adjusted to the area of the slide that was cap-
tured by the scanner, away from the borders. At this station, the cassettes were organized
immediately in the processor racks separating the exams associated with the fast scanner
(usually small biopsies) from those with a prolonged scanner time (usually large surgical
specimens). These two types of exams were kept separated during the subsequent histology
processing so they could be managed easily at the scanner workstation. Prioritization of
urgent samples was also done at this station.

The inking of specimens was always adjusted. The colors selected to ink surgical
margins were those best identified by the scanner, providing a clear image during WSI ob-
servation. Cellblocks and breast cancer biopsies (rich in adipose tissue, nearly transparent
mainly after immunohistochemical stain) were also inked before processing so that the
cores and the pellets of cells were automatically detected by the scanner.

2.3. Processing, Embedding, Cutting, Staining, and Mounting

During the aforementioned steps of specimen handling at the laboratory, traceability
and records from each station were kept in the file of the patient at the LIS. Records of
reagent changes and equipment performances were kept, granting the identification of
causes for poor quality products.

In addition to improving space, time, and sample flow, we organized the histology
pipeline into a continuous production of slides to scan. Embedding was now performed
according to priorities, taking in consideration that fragments must be placed close to each
other and in the center of the paraffin block to decrease the scanner area and avoid placing
tissue in the non-scanned limits of the slide.

We improved the cutting station process by introducing updated microtomes that
allowed a stable thickness of the tissue for an uneventful image capture. The confirmation
of the paraffin block entry at the cutting station with the QR code reader ordered the print of
the respective labeled slide, reducing the transcription errors, accelerating the identification,
and transferring the QR code ID to the slide that would be read by the scanner.

The staining and mounting process was fully automatic and operated with the Tissue-
Tek Prisma® Plus & Tissue-Tek Film® (Sakura®, Nagano, Japan) integrated system, follow-
ing an optimal protocol with daily reviewed reagents and contaminant controls, to obtain
the best and stable staining observed in WSI. The selection of the staining and mounting
equipment took into consideration the compatibility of the racks with those of the scanner;
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the scanner had been calibrated by the manufacturer according to the coverslip film used
to adjust focus distance. Stained and mounted slides were dried in a 60 ◦C oven for 5 min
to guarantee complete drying of the slides.

2.4. Scanning and Quality Control of WSIs

The glass slides were produced in racks, were orderly prioritized, and continuously
arrived at the scanner station.

The scanner workstation consisted of a scanner and two computers. One was an Intel®

Xeon Gold 5120 @ 2.20 GHz (Intel®, Santa Clara, CA, USA) processor, 96 GB of memory, a
240 GB SSD disk for 64-bit OS, 960 GB SSD for SWAP and a 2TB mechanical disk for local
storage that gathered the WSIs, converted them using the 3DHISTECH Slide Converter,
and then stored the slides in the 3DHISTECH CaseCenter server located at the building
data center. The 3DHISTECH Slide Converter compressed all the WSI files by 80%. The
connection to this server was performed by a non-dedicated 1 GB network that served all
infrastructure. The CaseCenter server had an Intel® Xeon E3-1270 v6 (Intel®, Santa Clara,
CA, USA) @ 3.80 GHz, 24 GB of RAM, 2x 240 GB SSD for 64-bit OS in RAID 1, and a 20TB
volume of mechanical disk in RAID5. Through iSCSI, this server connected to the digital
archive IBM FlashSystem 5000 with 220TB storage (that can scale up to 960TB to give extra
volumes to the server) with distributed 6 RAID disk configuration. Another computer was
used for WSI quality control operating in the patient files at the LIS.

At the scanner workstation, slides were transferred from the stainer racks to the
scanner racks, according to the manufacturer’s instructions. The racks were introduced
in the P1000 position that required less movement of the scanner operative arm. After
the scanning process using a 20× adapted protocol (0.25 µm pixel size), the WSIs were
automatically transferred to the patient’s file at the LIS and were available 30 s (average)
after capture. Special protocols, such as those used in breast cancer biopsies and bright
field in situ hybridization, used a 40× lens.

In the same station, all WSIs were opened by the technician and the WSI quality control
process started. In each case, there was a verification of the matching of the identification,
matching the number of fragments per slide in the WSI according to the photo of the slide
captured by the scanner, and a verification of the focus and staining overall quality. If an
irregularity was detected at this verification the technician, assigned for the quality control,
recorded it at the LIS and ordered the return to the analytic phase where the error had
occurred. In this situation, the original WSI was deleted to be substituted by the correct
one. All WSIs used for diagnosis were archived and preserved for future consultation. If
the case was ready for review by the pathologist, the technician released the file to enter
the WSI in the diagnosis phase. The pathologist’s assignment plan was determined daily,
prior to the embedding phase.

Slides generated in the setting of complementary techniques, including histochemical
stains, immunohistochemical stains, and bright field in situ hybridization were prepared
following the aforementioned standards and following specific scanning protocols adjusted
for each type of technique. Immunohistochemical slides required, after the washing step,
extra dehydration and prolonged diaphanization to avoid drying artifacts and residues in
the respective WSIs.

The complimentary technique slides all always included, in addition to the sample, a
set of positive and negative controls (2–5 tissue cores) specific for the technique used in
the slide (Figure 4). The production of traceable and reliable tissue microarray control sets
required the construction of a quality regulated tissue control bank.
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Figure 4. Print screen of a whole slide image representing an immunohistochemistry staining of a
specimen together with the set of 5 control tissue microarrays for routine utilization.

2.5. WSI Review and Diagnosis

We targeted the environment at each pathologist’s office for modifications, with the
purpose of creating comfort/ergonomics for the pathologist who reviewed cases using
a monitor. A larger desk with space to accommodate two monitors was installed and
organized to allow wide-ranging movements of the mouse for navigation. Light regulation
of the environment required the installation of blackout shutters on the windows, to be
used on demand.

The workstation of the pathologist included one Dell Precision Tower 3620 equipped
with an Intel® Core i7-6700 CPU (Intel®, Santa Clara, CA, USA) @ 3.40 GHz, 8 GB of RAM,
ST500DM002-1SB10A ATA Disk with 466 GB and a NVIDIA QuADro M2000 (NVIDIA®,
Santa Clara, CA, USA) with 4 GB. This workstation had two monitors one Sharp PN-
K322BH (3840 × 2160 resolution in dots—QFHD, 32”) for slide analysis and one smaller
monitor for regular tasks, i.e., a Dell (Dell®, Round Rock, TX, USA) P2417H (Full HD, 24”).
The computer was connected to the LIS, CaseCenter, CaseViewer, and to other computers
in the laboratory by a 1 GB network. Remote access to each workstation was available
through a VPN connection that allowed the pathologist to work at a distance whenever it
was required.

Management of all the information belonging to a case/patient was performed at
the pathologist’s workstation using only the LIS, including access to all clinical data,
previous and simultaneous exams, and respective WSIs, pre-analytical data, analytical data
including macroscopic description and photographs, WSIs of the current case (H&E and
complimentary techniques if available), microscopic description and diagnosis templated,
codification system, quality evaluation form, and sign out area, in addition to all the
relevant information regarding deviations from the regular laboratory workflow.

The validation of the digital WSI observation for clinical use was performed using the
CAP guidelines applied to each pathologist [6].

3. Results

The pathology laboratory of IPATIMUP designed a digital transformation of the
workflow that started in 2016 with the introduction of pre- and post-scanner modifications.
The scanner was installed in July 2019, the software functional integration with the LIS was
achieved during October 2019, the quality control program was adapted during November
2019, and the validation for clinical use lasted until July 2020. During this validation process,
a hybrid workflow was maintained, providing both glass slides and respective WSIs to
the pathologists. Since July 2020, 8 out of 14 pathologists have been receiving WSIs for
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primary diagnosis instead of glass slides. The remaining 6 pathologists are not using WSIs
because they are reviewing only cytology cases (n = 1); they are part of the telepathology
project that includes mainly tele-macroscopy and is managed by a different source and
software (n = 2) or they are reporting an average of less than 10 cases per month (n = 3). If
we consider those pathologists that could use, in fact, WSIs for diagnosis, only 3 out of 11
pathologists were missing (27.3%), representing a percentage of adhesion to WSI of 72.7%.
The laboratory activity encompasses about 40,000 paraffin blocks and 60,000 slides per year
reflecting the management of nearly 25,000 cases per year. These numbers do not include
those cases received from other institutions for second opinion and biomarkers evaluation.
The slides produced or arriving from an external source that configure histology, cellblocks,
histochemistry, immunohistochemistry, in situ hybridization (both bright and dark field),
and direct immunofluorescence are all scanned. Table 1 summarizes the WSI bright field
production of the 8 months operating fully digitally (from July 2020 to February 2021).

Table 1. WSI bright field results of the 8 months operating fully digitally.

Month
July
2020

August
2020

September
2020

October
2020

November
2020

December
2020

January
2021

February
2021

Mean
Value

Slides scanned (n) 7047 5818 8159 9099 7807 7135 6349 6004 7177
Cases scanned (n) 1688 1335 1814 1871 1697 1307 1290 1361 1545

Cases re-scanned (n; %) (by
technique order) 30; 1.8 23; 1.7 31; 1.7 27; 1.4 5; 0.3 1; 0.1 5; 0.4 4; 0.3 16; 1.0

Cases with good image (%)
(by pathologist order) 96.3 97.6 99.0 98.9 98.5 99.1 98.5 98.5 98.3

Cases with glass slides
requested (%) 2.1 1.6 1.6 2.1 2.0 2.2 3.3 3.8 2.3

The average number of slides scanned per day is 326 with a total of 57,418 slides
generated in 8 months.

The reasons for rescanning slides are poor focus or incomplete scanning of the frag-
ments and/or difficulties associated with uneven thickness of the tissue. The most frequent
cause of scanner failure is the misprinted QR code, thus, leading to failure to scan sections
placed in the lower limits of the slide. The automation of the mounting process with
restricted human manipulation of slides (wearing gloves), together with the lack of glass
coverslip corners misaligned with the slides, enables clean preparations that are easy to
adjust to the scanner racks.

The cases requesting glass slides for diagnosis include those illustrating breast or
prostate cancer biopsies presenting suboptimal material for nuclear evaluation, cases
suspicious for amyloid deposition with the need of polarized light technique after Congo
Red staining and, mostly, intrinsically difficult cases. The preventive maintenance of the
scanner (single scanner) that occurred in February (Table 1) justifies the increment in the
number of cases needing glass slides during this month. We have no records of slide
breakages so far, nor scanner mal functions due to poor handling by the technicians.

The average size of slides and respective time for scanner concerning the type of
specimen is summarized in Table 2. Cellblock slides have always two sections, an average
of 1400 megabytes in size, and take an average of 100 s to scan. The time to scan a
1.5 × 1.5 cm tissue sample is 51 s.
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Table 2. Average sizes of slides and respective times for scanning concerning the type of specimen.

Type of Preparation
H&E Histochemistry Immunohistochemistry Bright Field In Situ

HybridizationType of Sample

Small biopsy

Mean size
(megabytes) 242 203 266 4767

Mean time
(seconds) 48 43 52 211

Large
specimen

Mean size
(megabytes) 1625 2046 1496 9930

Mean time
(seconds) 109 151 101 392

Validation of all types of preparations by each pathologist using the digital pathology
model was achieved and approved after over 95% concordance rates (using the microscopic
observation at the optical microscope for comparison purposes).

As a result of the measures operated in the workflow, we obtained the following results:

1. A 35% decrease in inadequate samples is recorded after the educational program
targeting nurses and physicians to improve the quality of the pre-analytic conditions.

2. Case assignment is facilitated as it is recorded at the LIS.
3. Less than 24 h is needed from when a sample arrives at IPATIMUP until the respective

(H&E) WSI is ready to review, allowing the establishment of a 48 h benchmark for
turn-a-round time of all exams that do not need complementary techniques.

4. The quality of the laboratory product was not affected by the digital workflow im-
plementation according to the registries in the internal quality control program of
the laboratory.

5. The quality of the diagnosis produced in the laboratory was not affected by the
digital workflow implementation, according to the results on the external quality
control program.

6. During the COVID-19 pandemic lockdown, the pathologists keep working either at
home or at the laboratory using WSIs to diagnose and to share cases, and asking for a
second opinion using digital tools to annotate diagnostic specific questions. Flexibility
in scheduling reviews is facilitated by the remote access; pathologists continued
quality control activities at a distance, by observing WSIs for validation of techniques;
technicians were able to do the quality control of WSIs for diagnosis at a distance.

7. Consultation of WSIs from previous or simultaneous exams from a patient is facilitated
due to easy access to the digital image sparing time in retrieving glass slides from the
physical archives.

8. To archive glass slides becomes easier since the slides travel from the scanner station
to the physical archives in the proper order.

9. Costs with paper and printing were 25% reduced during the last year due to the
transformation of paper records into digital ones, also offering the possibility of an
ecological attitude welcomed by the team.

10. Sharing cases with other institutions for secondary observation using a digital link for
WSIs of patients in 108 cases/629 slides during the first 6 months represents faster and
cheaper communication, which also prevents loss of material and glass slide damage.

11. The digital workflow implementation brought new life to the research initiatives of
the laboratory, as we had previously described [7].

4. Discussion

The digital transformation of the pathology laboratory at IPATIMUP is an example of
successful implementation of the digital methodology for conducting pathology workflow
at the tissue level (including cellblocks) for primary diagnosis. At IPATIMUP, only cytology
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is left to be integrated into the digital workflow. This is due to the very successful and
intense production of smears after fine-needle aspiration that are difficult to manage in
the WSI format. The WSIs of smears are time- and storage-consuming and usually do not
reproduce the entire slide surface, leaving the limits of the slide left to be captured [8,9].

At IPATIMUP, we record a very low percentage of glass slide utilization (2.3% of
cases) and the adoption of the WSI by the majority of pathologists (72.7%), indicating that
pathologists trust the new methodology and understand its benefits. Pathologists must
not be forced to accept this methodology change since it may compromise their diagnostic
performance. The reasons for lack of acceptance may be related to expectations, habits, type
of reported exams, and work conditions (speed of refresh, color calibration, and monitor
quality) [2,10,11]. To prevent the lack of acceptance at our laboratory, we invested in
creating comfort conditions at the office, individual participation in the validation process,
laboratory informatic system (LIS)-centered operability, and diagnosis training under the
new conditions during the extended hybrid workflow. Maintaining the possibility to revise
the glass slides is advised since the sense of “no turning back” is avoided, and also because
the reasons that triggered such requests may represent the need to optimize scanning
protocols or situations in which technology needs to evolve (such as the use of polarized
light for amyloid detection that is only available in some scanners) [3].

The technicians’ trust in the digital methodology is also relevant to keep the team
motivated, something that is measured by the low volume of rescanning (average 1%) and
the high classification attributed to the slides by the pathologists at IPATIMUP (average
98.3% are good). The confidence of the technician in the laborious process of digital trans-
formation may be threatened if a prolonged hybrid workflow is maintained, preventing
the immediate collection of the benefits inherent to the new methodology.

The implementation of the abovementioned measures in the pre-scanner process,
namely those related to the high performance automatic stainer and coverslipper com-
patible with the scanner, are those that motivate the low volume of rescanning, as also
reported in the literature [1]. Furthermore, the scanner was calibrated by the manufacturer
according to the film used in the automatic mounting to adjust focus distance.

The results, herein presented, suggest that the pre- and post-scanner segments of the
workflow adaptations are, at least, as important as the choice of the scanner and can be an
important cause of implementation failure.

Indirectly, digital transformation stimulates an increment in quality control measures
such as the tracking system, improving safety, and stimulating the creation of validation
habits and risk-oriented thinking. Specific features of the digital methodology that are
related to increased quality and safety include the possibility of rapidly sharing cases for a
second opinion at a distance, reducing the distance between people in adverse situations
such as those experienced during the COVID-19 pandemic [12], and the possibility of
archiving WSIs representative of glass slides requested by other institutions or destroyed
by molecular techniques [1].

The time and space contraction measures operated at IPATIMUP, very much inspired
in the Lean approach, are mainly without cost, improve workflow efficacy, and are useful
for digital and non-digital laboratories. The digital pathology model implemented at
IPATIMUP demonstrates that the turn-a-round time can be maintained after the digital
transformation with the same amount of technical and medical staff, provided the workflow
is carefully optimized. Differently, the overnight scanning process adopted by other
laboratories may not be compatible with the preservation of the present turn-a-round time
and occurs, in most instances, during an unsupervised period [1]. The adoption of simple
measures at IPATIMUP such as mounting with film, drying the slides, and careful transfer
of slides between racks, helped to prevent bad functioning of the scanner, loss of time, and
additional costs.

Time and resource control measures include the identification of bottleneck stations
where samples may accumulate. In our laboratory, the bottleneck stations are those of the
macroscopy and scanner. At the macroscopy room, acceleration of the descriptions and
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documentation could only be achieved by the addition of a new technician, a measure that
for now is not yet cost effective. At the scanner station, the benefit of having two scanners
with low capacity instead of one with large capacity has been defended by some authors [1]
and can benefit the general workflow since this possibility also represents the existence of
a backup during malfunctioning or preventive maintenance intervention.

The most frequent reason associated with refusal to implement a digital pathology
workflow is cost related [3]. In the digital pathology model implemented at IPATIMUP, the
requested acquisitions were distributed in time, with the most relevant being related to the
automatic strainer and coverslip, the scanner, and the digital archive. In addition, saving
costs were possible due to a reduction in post office trades, as well as prints and paper
representing an ecological attitude. In the future, the use of image analysis algorithms and
the possibility of operating in a scalable economy, will certainly imbalance the costs.

The digital archive is a hot topic related to digital pathology with both positive and
negative opinions about a permanent archive of WSIs [13]. We agree that the smaller the
archive the better it is to manage and, in our laboratory, with relatively low volume, we
may sustain a privileged position to easily achieve the digital transformation. Again, in
line with the simple adopted measures described above, to use validated 20× scanning
protocols, the concentration of the fragments at the embedding station, image compression
balance, and the substitution of poorly focused WSIs by high quality ones may prevent
unnecessary archive consumption.

The model of digital workflow implementation at IPATIMUP demonstrates that
careful planning and adoption of simple measures related to time, space, and sample
management may be adopted by any pathology laboratory to achieve higher quality and
easy digital transformation. Without digital transformation, pathology laboratories will
not be able to benefit from the advantages provided by the WSIs, namely the application
of computational pathology tools that are transforming the way we integrate molecular
pathology and tissue morphology [14].
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Abstract: Digital pathology for the routine assessment of cases for primary diagnosis has been
implemented by few laboratories worldwide. The Gravina Hospital in Caltagirone (Sicily, Italy),
which collects cases from 7 different hospitals distributed in the Catania area, converted the entire
workflow to digital starting from 2019. Before the transition, the Caltagirone pathology laboratory
was characterized by a non-tracked workflow, based on paper requests, hand-written blocks and
slides, as well as manual assembling and delivering of the cases and glass slides to the pathologists.
Moreover, the arrangement of the spaces and offices in the department was illogical and under-
productive for the linearity of the workflow. For these reasons, an adequate 2D barcode system for
tracking purposes, the redistribution of the spaces inside the laboratory and the implementation of
the whole-slide imaging (WSI) technology based on a laboratory information system (LIS)-centric
approach were adopted as a needed prerequisite to switch to a digital workflow. The adoption of
a dedicated connection for transfer of clinical and administrative data between different software
and interfaces using an internationally recognised standard (Health Level 7, HL7) in the pathology
department further facilitated the transition, helping in the integration of the LIS with WSI scanners.
As per previous reports, the components and devices chosen for the pathologists’ workstations did
not significantly impact on the WSI-based reporting phase in primary histological diagnosis. An
analysis of all the steps of this transition has been made retrospectively to provide a useful “handy”
guide to lead the digital transition of “analog”, non-tracked pathology laboratories following the
experience of the Caltagirone pathology department. Following the step-by-step instructions, the
implementation of a paperless routine with more standardized and safe processes, the possibility to
manage the priority of the cases and to implement artificial intelligence (AI) tools are no more an
utopia for every “analog” pathology department.

Keywords: digital pathology; WSI; LIS; 2D-barcode; primary diagnosis

1. Introduction

A progressively increasing number of pathology departments are deploying, or plan-
ning to deploy, digital pathology systems for all or part of their diagnostic output [1–5].
Some authors already experienced the full transition to a digital workflow [6], eventually
upgrading the scanning procedures at the magnification of 40× and even integrating artifi-
cial intelligence (AI) tools for the assessment of specific specimens (e.g., prostate biopsies)
in routine practice [7]. Moreover, the employment of a secure virtual private network
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(VPN) connection allowed pathologists to work off-site [8], significantly helping during
the recent COVID-19 pandemic [9].

However, despite this revolutionary transition, real world data suggest that a fully
digital approach to the histological workflow has been implemented in only a minority of
pathology laboratories, in Italy as well as worldwide. Several reasons have been advocated
to explain what is holding us to the traditional “analog” workflow [10]. Although some
major benefits of the digital approach (e.g., safety, quality, efficiency, easy and equal access
to expert pathologists/second opinions) are widely recognized, some points may still
cause the reluctance of the pathology community, starting from the costs, the lack of
validation data and the possible “threat” represented by this kind of implementation for
the pathologists [11].

Moreover, the Food and Drug Administration (FDA) approved some but not all of the
available scanning systems (Philips and Leica) for digital primary diagnosis. The current
lack of approval for all the other devices (e.g., 3DHistech, Hamamatsu, Ventana, etc.) is
further slowing down the transition, even in the United States where a widespread imple-
mentation of a fully digital workflow using WSI for primary diagnosis is still in progress.

All these components contribute to the generalized skepticism of the pathologists
towards these innovative paradigms, at least partly explaining the slow implementation of
digital pathology in routine. The adoption of the advocated workflow is further compli-
cated by the substantial lack of an adequate tracking system based on linear or 2D barcodes
in the majority of the laboratories, which could represent an obstacle to benefit from all the
advantages of the digital transition [11].

Based on the previously reported “Catania” experience at the Cannizzaro Hospital [6],
this paper shows the step-by-step process followed by the Pathology department of the
Gravina Hospital in Caltagirone (Sicily, Italy) to switch from a non-tracked system to a fully
digital workflow in a few months, fully embracing all the benefits of digital pathology.

This may exemplify a simple and efficient transition from the glass slides to the WSI,
thanks to the logical implementations made in the Pathology Laboratory of Caltagirone, in
which the introduction of slide scanners represents only the last intuitive step of a complete
digital workflow. Our experience is reported to the benefit of the numerous laboratories
planning or working to implement digital pathology (DP).

2. Materials and Methods

The Gravina Hospital represents the Pathology laboratory hub of the Azienda Sani-
taria Provinciale (ASP) of Catania in Sicily (south of Italy), collecting specimens—mainly
surgical and bioptic samples—from 7 different hospitals distributed in the Catania area
(Figure 1). Starting from 2019, the pathology department of Caltagirone experienced a
profound transformation that required about 4 months to switch from a non-tracked, “con-
ventional” pathology workflow to a fully digital approach. Similar to the previous “Catania
experience” [6], the entire workflow was converted into a digital one, but introducing some
additional “digital” checkpoints through the different steps of the process.

To allow and facilitate this transition, the following implementations were needed:

1. Lean workflow and rearrangement of spaces and offices;
2. Implementation of the information technology infrastructure;
3. Implementation of the tracking system and checkpoint procedures;
4. Implementation of the automation;
5. Implementation of the scanning.

2.1. Lean Workflow and Rearrangement of Spaces and Offices

In order to achieve the best result of the digitization we first solved some logistic
problems in the lab. Following the Lean approach philosophy [12,13], the spaces were
rearranged: this started from a redistribution of the rooms in a linear manner based on the
natural sequence of the sample processing steps. This significantly reduced the personnel
and specimen transfers and optimized the working time through the arrangement of similar

13



Diagnostics 2021, 11, 1916

tasks (e.g., staining and scanning) in the same room and through the creation of inter-room
communications. Thanks to a better distribution of the spaces, these modifications freed
two rooms that were used to create the molecular section, previously absent in the lab
partly due to the inefficient disposition of the spaces.
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Figure 1. (A), Location of the Catania area in Sicily, south of Italy. (B), the different hospitals in the
Catania territory referring to the Caltagirone pathology laboratory at Gravina Hospital.

2.2. Implementation of the Information Technology Infrastructure

Before the implementation of the digital workflow, a dedicated network as well
as servers to store the images and the linked metadata were lacking in the lab. As a
consequence, the spaces and offices were not equipped with the necessary access points
for the network, and the different instruments used for the analog workflow were not
interconnected through the laboratory information system (LIS). Thus, along with the
adoption of a Lean approach to the workflow, we implemented the information technology
infrastructure: this consisted in the creation of internet access points (network access) based
on the position and type of instruments to be connected and a dedicated bandwidth of
100 Mbps.

The entire digital workflow switch has been centered on the implementation of an
anatomic pathology LIS (AP-LIS), Pathox (version 13.22.0, Tesi Elettronica e Sistemi Infor-
mativi S.P.A., Milan, Italy), allowing the integration of the case/sample information from
the accessioning to the reporting phases. The majority of the instruments present in the lab
were integrated with the LIS using the 2D barcode system with interface exchanges handled
through Health Level 7 (HL7) version 2.5 messages. Based on the previous experience [6],
the integration took only a few days of work (including the implementation of the scanner
which took 2 days). This is in contrast to other reported similar implementations that
required more time to deploy [14,15]. Furthermore, the implementation of a secure VPN
connection allowed the pathologists to access and report cases from home (Figure 2).

2.3. Implementation of the Tracking System and Checkpoint Procedures

The Lab lacked a proper tracking system and tissue blocks as well as glass slides
were handwritten. Not all the steps of the workflow were appropriately tracked (i.e., gross
examination, tissue processing and paraffin-embedding) and different/redundant paper
sheets accompanied the workflow from the accessioning to the assembling and delivering
of the glass slides for each phase. This “analog” workflow was abandoned in favor of a
new paperless 2D-barcode tracking system, fully integrated with the LIS.
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Figure 2. One of the “home-made” working stations used by pathologists for the off-site sign-out
and reporting. The smaller monitor (on the left) has a sufficient size and resolution to run the LIS.
The right display allows an adequate visualization of the WSI.

This new system was then implemented through the entire workflow, from acces-
sioning to diagnosis. 2D barcodes were preferred to 1D ones because they are less space-
demanding (fitting well on the tiny surface of both tissue blocks and glass slides), more
easily applicable to the convex surfaces of tissue containers, and generally less prone to
scanning issues. Moreover, we introduced laser printers for blocks in order to obtain a
permanent mark of the barcode on the surfaces (See Grossing section of the Results). The
implementation of the tracking system within the LIS gave us the possibility to monitor
safely and efficiently every step of the workflow through the use of dashboards.

2.4. Implementation of the Automation

To promote the automation of the process following the Lean philosophy, some instru-
mental implementations were introduced in the laboratory, simplifying many laboratory
procedures that were previously performed manually and in a repetitive manner (Table 1).
All of these achievements were made possible mainly thanks to the HL7 connection and the
widespread use of 2D barcodes. However, the prototype of automation was represented
by the automatic assembling and delivering of the slides through the use of scanning
systems together with the 2D barcode–based archiving of blocks and slides. Finally, the
immunohistochemistry instrument (Autostainer Link 48, Agilent, Santa Clara, CA, USA)
was completely interconnected with the LIS (Pathox) through the HL7 connection.

2.5. Imaging Technology

Since the main paradigm chosen for the digital workflow switch was based on the
LIS-centric philosophy, this allowed a perfect integration of different scanning platforms
independently from the vendor, the WSI formats (e.g., .tiff, .svs, .vms, .ndpi) and the
provided platform for slides visualization. This change in the paradigm did not force the
department to employ a specific scanner device, leading to choose a fast (35 s/slide) and
high throughput (60 slides/h) scanner (Pannoramic 250 flash III, 3DHistech, Budapest,
Hungary), with a load capacity of 300 slides and good performances with brightfield
and darkfield applications. The digitization involved standard hematoxylin and eosin
(H&E), special histochemical, immunohistochemical and immunofluorescence slides (for
both conventional immunofluorescence and fluorescence in situ hybridization, FISH). For
the frozen sections and intraoperative procedures, the Aperio LV1 IVD system (Leica
Biosystem, Nussloch, Germany) was employed due to the ability to obtain live images from
up to 4 slides with magnification up to 63×. Digitizing cytology slides was not undertaken
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due to the need for Z-stack image acquisition which increases scan time and file size [16].
The scanning system was operated by technicians who were trained to use these devices
to support routine daily work. To further optimize the workflow, the scanning station
was located in the same room where slides were stained, coverslipped, and prepared
for archiviation (Stainer AUS 240, Bio-optica, Milan, Italy; Leica Coverslipper CV5030,
Leica Biosystems, Nussloch, Germany). Regular maintenance was performed every month
taking into account white/color balance and adjustment of the scanner focus.

Table 1. Automation introduced at every step of the workflow.

Phase Automation Introduced

Accessioning
Adoption of order entry

A4 flat scanner to digitize all the paper documents associated with the cases
(i.e., endoscopic exams, clinical annotations, etc.)

Grossing
Introduction of a laser block printer at grossing

Introduction of a camera device to take pictures at the grossing bench
Possibility to capture the material in the block

Processing/
embedding

Possibility of matching blocks produced at grossing with those sent to
processing by using a real-time multi-barcode scanner

Sectioning
Possibility to capture the cut surface of the block for review purposes

Automated printing of barcodes directly on glass slides rather than on labels

Staining Automation of requests of histochemical and immunohistochemical stains,
which are delivered directly to the stainer

Archiving
Improvement of the archiving of slides and blocks, whose position in the
storage trays is random and tracked automatically by barcode scanning

After the scanning process, the slides were automatically assigned to the proper cases
and “virtually” delivered to the pathologists [6]. The slides appeared in the “virtual tray”
within the LIS and cases with scanning completed for all the slides belonging to them were
considered ready to be reported.

Pathologists’ workstations were composed of one computer with 2 monitors. Different
computer devices have been implemented for the pathologists’ workstations (Table 2), with
central processor units (CPU) of different generations, different clock speed and vendors
(Intel and AMD), random access memory (RAM) with different size (4 and 8 GB) as well as
various video cards, mostly integrated.

Table 2. The different computer devices employed in the Caltagirone digital pathology lab for
the pathologists’ workstations. CPU, central processing unit; RAM, random-access memory; OS,
operating system; W10, Windows 10 (Microsoft, Redmond, WA, USA).

CPU Clock Speed RAM OS Dedicated Video

AMD Ryzen 5Pro 2400 G 3.60 GHz 8 GB W10 64 bit none (CPU-integrated)

Intel Core i3-9100 3.60 GHz 8 GB W10 64 bit none (CPU-integrated)

Intel Core i7-8700 3.20 GHz 8 GB W10 64 bit none (CPU-integrated)

Intel Core i5-4590 3.30 GHz 8 GB W10 64 bit none (CPU-integrated)

Intel Core i3-2120 3.30 GHz 4 GB W10 64 bit none (CPU-integrated)

Intel Celeron 3865U 1.80 GHz 8 GB W10 64 bit none (CPU-integrated)

Two monitors with different roles have been connected to each computer, allowing
the simultaneous evaluation of the case-page in the LIS and the respective WSI from
different displays. As per manufacturer instructions, the employed LIS required a mini-
mum of 17 inches monitor to run, and the department introduced devices with a range of
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17–27 inches. On the other hand, the monitors dedicated to the visualization of the WSI
were 24–27 inches in size (Table 3).

Table 3. Specifications of monitors used for WSI visualization.

Manufacturer Size Resolution Type Refresh Rate (Hz)

Hannstar 23.6 inch 1920 × 1080 pixels LCD 60

Philips 27 inch 1920 × 1080 pixels LED 75

Fujitsu 27 inch 2560 × 1440 pixels LCD 60

WSIs were directly accessed from the AP-LIS. Specifically, a virtual slide tray was
created and incorporated within the AP-LIS, as already described [6]. Accessioning of cases
and real-time tracking of digital slides occurred directly from the AP-LIS. The creation
of a single slide tray within the AP-LIS Pathox, displaying the macroimage (thumbnail)
of several slides simultaneously, allowed the incorporation of WSI acquired from the
Pannoramic 250 Flash III scanner, with the possibility to connect different scanners from
different vendors (by using the image management system of the scanner as a simple
middleware) without disrupting the end-user workflow. All images were saved on network-
attached storage (96 TB Qnap NAS TVS-EC1280U-SAS-RP) using the dedicated 100 Mbps
network connection. All the scanned slides are stored in the server as a digital database
of WSIs, allowing a possible retrospective consultation directly from the AP-LIS. The
eventual re-scan of a slide resulted in the overwriting of the previously scanned one, so that
pathologists always had access to the most recent images. Validation of the WSIs for their
use for primary histological diagnosis was made according to the CAP guidelines [17].

3. Results

In 2019, just before the advent of COVID19, the Caltagirone pathology department
had a yearly workload of 8182 histological cases with a total of 42,245 corresponding slides.
The entire activity of the laboratory has been modified starting from the limitations and
issues related to the previous “analog” and non-tracked workflow, following different
steps (checkpoints), as reported below. This allowed a complete transition towards a
digital pathology approach, leading to the digital primary sign-out of all the cases through
WSIs. Before the implementation of the digital workflow, no standard procedures and
checkpoints were present along the different steps of sample processing. Addressing these
deficiencies was mandatory for the full digital transition, in order to have a more efficient
fully tracked and paperless workflow. Here we report the introduced checkpoints at every
step of the specimen handling that should be followed to obtain a fully integrated system
(Table 4).

3.1. Accessioning

Before: specimens were sent to the Pathology Lab of Caltagirone on specific days
from different hospitals, accompanied by a request without an order entry. During the
accessioning phase, a progressive number was created along with an additional internal
paper (lab sheet), used later on as the working paper for the subsequent phases.

After: the creation of an appropriate checkpoint at this step allowed the laboratory
personnel to complete these accessioning tasks in an unbiased way to minimize the risk of
errors. To reach this aim we employed a combination of barcode printer and reader, as well
as the introduction of a paper flat scanner (A4 format). These technologies helped in the
univocal identification of the case/sample/patient from the accessioning phases (through
the 2D barcode printer/reader), adopting an order entry that facilitates the tracking system
fully integrated with the LIS. The implementation of the order entry gave us the possibility
to monitor the upcoming material from the different hospitals. Moreover, the availability
of scanned documentation linked to the case allowed the pathologist a rapid consultation
of all the sources needed in a paperless way. By introducing these procedures (order entry
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and possibility to scan all the documents) the accessioning errors dropped from 6.3% to
less than 0.5% of the cases, as expected [18,19].

Table 4. Different steps of specimen processing as they are performed before and after the implementation of digital
pathology in the laboratory. DP, digital pathology; LIS, laboratory information system; WSI, whole slide image.

Before DP Implementation After DP Implementation

Accessioning checkpoint

Paper request with handwritten patient and
specimen data

Order entry system, barcode identifying patient,
case, and specimen container, information

imported from the integrated hospital LIS with
digital request (no more transcription errors)

Manual check for correspondence between
request paper and label on the specimen

Progressive number linked to the barcode
generated and used for all sorts of assets

generated for that case (tracking of the sample
through its journey in the laboratory)

Manual insertion of the case in the AP-LIS or
(worse) new internal “working paper” generated

to accompany the specimen in the different
subsequent phases of the process (lab sheet)

The administrative will take a picture of the
container and of the specimen and those photos

will be attached to the case file (medico-legal
registry)

-
Documents attached to the specimen are scanned

and attached to the case file (relevant
information handy)

Grossing checkpoint

The grossing operator (e.g., pathologist) has the
working paper (lab sheet) as the only reference to

the case

Automatic access to the case by scanning the
identification barcode on the sample container

No pictures of the sample as it is when it arrives
at the grossing room are taken.

Photographic documentation of different
grossing steps (specimen in the container, during
grossing and within the cassettes) guarantees the

preservation of the case features and
identification

Manual transcription of macroscopic description
of the sample by the pathologist or the assistant

technician (dictation/transcription errors)

Direct dictation of the macroscopic description of
the sample converted to text through voice

recognition functions of the LIS

Cassettes are labeled manually by the
pathologist/technician

Cassettes are printed with the identification code
of the sample to be tracked in further

workstations

Sectioning checkpoint

The number transcribed by the grossing operator
on the block is copied on the slide, possible

source of errors

The code printed on the paraffin block may be
scanned to open the case file through the

integrated LIS preventing transcription errors

The needed stain for each case is reported on the
working paper (lab sheet) or indicated by the

color of the cassette

The technician can check how many and which
kind of slides are needed for each block directly

on the LIS

The generated slides are manually transcribed by
the sectioning technician, no barcode is printed

on the slide

For each paraffin block, one or more printed
glass slides are generated through a dedicated

printer, including the identification code

After the sectioning phase, the block is archived
and no pictures of the cut surface of the block are

taken

After sectioning, each paraffin block may be
photographed to assess whether all the material

emerged on the glass slide/WSI

The sectioning phase lack strict quality criteria,
the presence of artifacts, folding, inappropriate
coverslipping does not significantly impair the

physical microscope visualization

Sectioning phase should follow high operative
standards, reducing the risk of artifacts that can

impair the scanning phase
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3.2. Grossing

Before: cases were sent to the grossing room with the generated working paper. Here,
the sample grossing was performed by a pathologist with the support of a technician
and the macroscopic description was handwritten on the lab sheet, with obvious conse-
quent transcription and interpretation errors. Moreover, since no barcodes were used and
the cassettes/blocks generated during this phase were handwritten, the risk of possible
subsequent errors was further amplified (Figure 3).
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Figure 3. Comparison of some of the principal checkpoints before and after the implementation of
DP tools. On the left, during the grossing phase the case identification number was handwritten on
every cassette before the introduction of case-specific 2D-barcodes directly generated by the LIS and
laser-printed on the cassettes. Similarly, hand-labeled glass slides were randomly returned to the
technicians and manually archived (right). The introduction of WSI and scanner next to the staining
instrument allowed the direct archiving of physical glass slides using the 2D barcodes.

After: the routine grossing practice radically changed starting from the introduction of
a barcode reader, leading to univocal recall of the correct case in the LIS by the pathologist
after scanning the specimen container. Moreover, a digital camera (MacroPATHOX, Tesi
Elettronica e Sistemi Informativi S.P.A., Milan, Italy) and a BlocDoc (SPOT Imaging, Sterling
Heights, MI, USA) instrument were introduced in the room. The camera is used to take
pictures of the specimen as it is received (before any sectioning has taken place) and then
additional pictures are taken after sectioning to document macroscopic features such as
tumor size and depth of infiltration. The pictures can be marked up to identify where
the samples have been taken. This allows connecting each block—and thus each WSI—
to its original anatomic location. BlocDoc is used to document sampling: each cassette
is photographed before its lid is closed [20]. This serves as the reference standard for
each block, to be compared with the other pictures which are taken post-processing, post-
microtome sectioning, as well as the slide macro and WSI pictures (Figure 4), and is of
crucial importance for surgical and bioptic samples alike. This significantly reduced the
risk of losing precious material, creating a back-up of information useful to cross-check
the adequacy of the specimen in the subsequent steps. Furthermore, inconsistencies can
be traced back to the specific moment in which they happened (Figure 4). Finally, the
employment of a laser printer allowed the automatic production of barcoded cassettes,
further reducing the rate of errors during the subsequent phases (Figure 3).
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Figure 4. Digital pictures taken at each step of the life of the specimen and respective cassettes fully
document the flow of tissue in the lab, allowing global traceability and high-resolution error tracking.
(A) Specimen container as it is received; (B) Cassette at grossing, before closing its lid; (C) Surface of
the FFPE block after microtome sectioning; (D) Macro picture of the glass slide after staining.

3.3. Processing

Before: cassettes containing the specimens were sent to the processing room, manually
checking that all the cassettes generated during the grossing step are present in the rack
that is going to be processed.

After: through the employment of barcode readers, the entire rack is scanned in one
go (with a single picture) before it is processed and a check is performed to verify that all
the produced cassettes are submitted to the subsequent phase, thanks to the integration
with the LIS. The presence of a dedicated dashboard within the LIS, showing all the blocks
produced during the current grossing session, allowed us to implement an automatic
check. At the moment there are several instruments in the market capable of reading all the
barcodes in short time matching the cassettes present in the rack with those produced at
grossing. In the Caltagirone pathology lab, the implementation of MacroPATHOX allowed
the scan of all the produced blocks directly from the rack (Figure 5), matching the material
sent to the processing room with the specimens produced by the grossing operator.

3.4. Embedding

Before: technicians embedded all the material found inside the cassettes without
the possibility to verify the integrity of the specimen after the grossing and processing
phases, with the eventual risk of losing material along the workflow especially in cases
characterized by multiple small fragments of tissue.
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Figure 5. The reading process of barcodes directly from the rack containing the blocks during the
processing phase after the digital transition. In the upper right inset the code extracted from the 2D
barcode directly in the LIS.

After: this issue has been solved by the availability of photographic documentation
obtained in the grossing room, directly available for consultation from the case page in the
LIS by the technician who can compare what was submitted by the pathologist with what
is actually present in the cassette at the embedding station. Moreover, a correct embedding
may prevent poor-quality slides from being produced and thus reduce scanning errors.
Large fragments tend to be hydrated and may have a size difficult to be fully captured by
the scanner. The adjustment of the size of the sample fragments must start at the grossing
station and be verified during embedding. Similarly, well-oriented tissue fragments,
levelled and close to each other in the paraffin lead to a better-quality glass slide. Finally, the
introduction of BlocDoc to capture the content of cassettes/blocks during the embedding
phase can represent a further checkpoint step to control the workflow (Figure 6).

3.5. Sectioning

Before: blocks (handwritten) were consecutively positioned on the microtome, and
sections were collected by the technicians with the corresponding number handwritten on
the glass slide. However, this again exposes to possible risks of misidentification and case
exchange that can be prevented by the introduction of appropriate checkpoints at this step
of the workflow.

After: a barcode reader has been added to every microtome station, allowing the
technician to automatically identify the case and block directly on the LIS. Moreover,
thanks to a slide printer, every operator now has the possibility to produce as many glass
slides as required by the specific case without potentially error-prone human interference
(i.e., handwriting). Finally, after the sectioning phase the cut surface of the block can be
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captured with an appropriate device “BlocDoc” (SPOT Imaging, Sterling Heights, Detroit,
MI, USA) to obtain archival documentation that can be useful for the pathologist to assess
the integrity of the material reported on the final virtual slide (Figure 7). The subsequent
manual archival of the blocks is now substituted by a fully automated system based on 2D
barcodes (Figure 5).
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3.6. Staining and Scanning

Before: the staining was manually performed, glasses were assembled on trays and
delivered to the pathologists together with the accompanying lab sheet generated at
the accessioning. The employment of differently colored cassettes indicated the need to
perform special stains, as well as different types of samples or level of urgency.

After: Slides from the sectioning room are unequivocally and individually identified
through the employment of a barcode reader. Thanks to the full LIS integration, this
allowed to obtain all the needed information regarding the required stains transmitted by
the simple barcode scanning without the need of human interpretation (e.g., of the colors
of the cassette). The staining process moved from manual to automated by introduction of
an automatic stainer (Bio-Optica, Milan, Italy) and it now follows the highest qualitative
standards to minimize interferences with the scanning phase (faint or darker staining,
debris/precipitates). For this purpose, the implementation of daily internal controls and/or
external quality control can help in the assessment of the quality of stained slides [21].
After air-drying, stained and coverslipped glass slides are loaded into scanner slide racks
and scanned. Up to 300 slides can be loaded at a time; the scanner can operate continuously
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and more racks can be loaded while it is running. Since the workflow was organized in
the production of small batches in order to obtain a continuous workflow, the scanner
was loaded with glass slides just a few hours after staining (as soon as they were dry)
with a limited use of the overnight batch scanning session. Implementation of continuous
workflow within the laboratory (i.e., cutting, staining, and then immediate scanning
before signout activity) allowed the laboratory to achieve complete slide creation and
digitization of all the produced slides within the same day. We observed a scan failure
rate of approximately 0.5%, mostly due to problems in the recognition of the 2D barcode
printed on the slide, and occasionally due to network connectivity problems.
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3.7. Final Reporting and WSI Viewing

Before: pathologists assessed glass slides using a microscope. The final report was
not written directly into the LIS but manually transcribed on the lab sheet originally
generated at accessioning. The further requirements for the diagnosis (e.g., special stains,
immunohistochemistry, additional recuts) were handwritten and personally delivered by
the technicians through the creation of a new internal lab sheet. Since no administrative
personnel was available, all the information reported on the lab sheets were personally
typed inside the former LIS at the end of the day. The slides used to render the diagnoses
were randomly returned to the technicians to be archived (Figure 3).

After: Today, the AP-LIS digitally presents a work list to the pathologist, as cases ready
to be reported, urgent cases, cases waiting for additional cuts or additional staining, with
clear indication of the presence of digital assets and/or pending status. Pathologists can
then access each case from the work list and can open the respective virtual slides shown in
the virtual tray with a double-click. WSIs appear on the dedicated monitor and are viewed
using the original scanner viewing software. Moreover, the AP-LIS allows to make a direct
and quick comparison with the gross specimen embedded in the paraffin block, thanks
to the availability of BlocDoc (SPOT Imaging, Sterling Heights, Detroit, MI, USA) scans
readily obtainable with a double-click on the tissue block entry in the “virtual tray”.
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Documents (digitized by the A4 flat scanner at the accessioning), and macroscopic
images taken at the grossing were all available with a simple click. This allows fine-grained
error tracking and global traceability. For example, if a fragment is missing in the WSI, the
pathologist can examine the request form and pictures of each stage of the tissue processing
(Figure 4) to identify exactly what went wrong. For example, the fragment might be present
on the slide but missed by the scanner’s tissue finder, or it may be embedded deep in the
tissue block and require further sectioning to be analyzed. It may have been lost during
processing, or it may have been missed at the grossing station, or it may not have been sent
to the pathology lab at all (Figure 4). The pathologist can clearly identify what went wrong,
when and where, without ever leaving his desk. Moreover, the final diagnosis could be
rendered using the traditional narrative style or according to a well-defined synoptic report,
optionally using guided checklists. A selection of images (gross or microscopic) can be
included in the final report for clarity, directly from the LIS.

3.8. Archiving and Retrieval of Tissue Blocks

Before: After microtome sectioning, (handwritten) tissue blocks were manually and
painstakingly reordered and archived consecutively by case number.

Retrieval of a block entailed identifying the correct drawer (by case number), then
searching for the position in the drawer where the block should be, and hoping to find
it there. In case of missing blocks (archival errors due to misreading of the handwritten
label, or blocks retrieved and never re-archived) there was no way to know where the
block was, who took it, or where it was last seen. This process was lengthy and error-prone.
Frequently, the glass slides were delivered to the pathologists before the respective tissue
blocks had been archived. If the pathologist requested a special stain, a painstaking search
for the block in the archive as well as in the sectioning room would ensue, adding friction
and delays.

After: After microtome sectioning, each block is immediately stored in a random
spot in a dedicated rack, barcode facing up. At the end of the sectioning session, the rack
is photographed by a dedicated scanner which, thanks to its integration with the LIS,
automatically marks each block as archived and logs the rack number and the coordinates
within the rack, as well as the operator, date, and time.

Retrieval is fully automated and computer-guided. The operator who wants to retrieve
a block is guided by a handheld personal digital assistant (PDA) to the correct rack, and
then to the position within the rack where he will find the block. Upon withdrawal of the
block, the action is logged and timestamped, and the operator is responsible for re-archival
of the block. If the block is not in the archive (e.g., being recut for additional stains), the
system will indicate who has taken the block and is responsible for its rearchival.

3.9. Archiving and Retrieval of Glass Slides

Before: After staining, coverslipping and air-drying, the technician was responsible
for assembly and delivery of the case to the pathologist. Only after rendering the diag-
nosis, the slides were collected by the technician who had to regroup them and archive
them manually.

After: After staining, coverslipping and air-drying, the slides are placed in the scanner
racks with no particular attention to order. After scanning, virtual slides are stored in a
dedicated database with a storage capability of 96 TB, and glass slides are archived in a
dedicated rack in a random order, in a manner similar to blocks. The rack is then scanned
and archived. The LIS receives data about each slide (rack number, position within the
rack, as well as date and time of the archival and responsible operator).

Retrieval is fully automated and computer-guided, similar to tissue blocks.

3.10. Intraoperative Diagnosis Using Hybrid Instrument

In the Caltagirone example, a particular hybrid instrument (Leica LV1, Leica Biosystem,
Nussloch, Germany) was chosen for its better performance in the live streaming of frozen-
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section slides and was located in the same room where the intraoperative procedures were
performed (grossing room). This is in line with the lean redistribution of the spaces and
offices which had been performed before the fully digital instrumentation was installed in
the lab, thus logically allocating the scanning tools next to the staining facility.

3.11. Molecular Pathology and Fluorescence

The rearrangement of the spaces and offices allowed the creation of an entire section
of the laboratory dedicated to molecular pathology, previously absent in the department,
introducing instrumentation for next-generation sequencing as well as for the “classic”
genetic tests, such as real time PCR and FISH. The results of these exams were directly
integrated in the case-page of the LIS, allowing the association of the standard histopathol-
ogy report with the molecular characterization. Finally, the introduction of a scanner with
optimal performances in darkfield applications (e.g., immunofluorescence), allowed the
digitization of FISH samples that were directly associated to the case as any other WSI.

3.12. Computer-Aided Diagnosis (CAD) and Artificial Intelligence (AI) Tools

The deployment of the digital workflow gave the Caltagirone lab the opportunity to
open the door to the third revolution in pathology, after the advent of IHC and genetics [22]
through the introduction of artificial intelligence (AI) algorithms to aid the routine diag-
nostic assessment of cases. Although in a “futuristic” perspective some authors imagined
a fully digital department in which all the cases/slides are presented to the pathologists
after a first check performed by the AI algorithms, this has already been implemented in
a first experience by one of the authors (FF) [6] and is now in the Caltagirone example
an actual reality with a better concordance of diagnosis among pathologists when the AI
tool Inify (Inify AI tool for prostate, Contextvision, Stockholm, Sweden) was used (92% vs.
98% concordance, personal data).

4. Discussion

In 2019 the Pathology department of Gravina Hospital in Caltagirone (Sicily, Italy)
decided to start using digital slides for routine surgical pathology practice. The intent
was to digitize all the histopathology glass slides, borrowing from the previous successful
experience of Catania [6]. In this further example the digitization process was not merely
limited to the “classic” paraffin block-derived slides (e.g., H&E, histochemical and immuno-
histochemical stains), extending the application to the fluorescence and frozen sections for
intraoperative assessment as well. In the previous Catania experience the frozen sections
were excluded from the scanning process due to logistic reasons and technical problems.
To solve these issues, in the Caltagirone example a particular hybrid instrument (Leica
LV1, Leica Biosystem, Nussloch, Germany ) was chosen for its better performances in the
live streaming of frozen slides and was located in the same room where the intraoperative
procedures were performed (grossing room). This is in line with a lean redistribution of
the spaces and offices which has been performed before the full digital instrumentation
was installed in the lab, helping in the logical location of the scanning tools next to the
staining facility.

As suggested by the guidelines [17], a specific period of time was dedicated to validate
the WSI as a substitute for the glass slides. The digital pathology system was deployed
primarily to support clinical diagnostic work. Additionally, the implementation of this
system allowed the access to WSIs directly from the LIS even during multidisciplinary
team meetings or tumor boards [23]. The ability to work remotely was also made possible
by the implementation of a secure VPN connection.

The required training is far less than one might imagine. With computer-literate staff,
training to use a new tool or machine does not take more than a short tutorial session (a
few minutes to a few hours, depending on the tool) and 2–5 days to get used to it. Even
for the most daunting things (e.g. the scanner, the LIS), complexity stems from the array
of functions and settings, and not from the basic, everyday usage, which is surprisingly
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simple. The Caltagirone pathologists, as well as two of the authors (VL and AC) could
proficiently load the scanner and launch a scanning job after a few minutes’ training.
Similarly, they could confidently use the LIS for all the everyday functions on day two.

There is no dedicated group of individuals for scanning, image storage and digital
infrastructure management. Each technician and each pathologist is taught how to perform
basic tasks (e.g., loading, launching, and unloading the scanner) and is expected to be
able to perform them.Despite the absence of pathology residents and trainees due to the
non-academic nature of the Gravina Hospital, the digital transition allowed us to share
anecdotal and didactic cases with young pathologists belonging to different residency
programs in the Italian territory. This aspect stresses the invaluable educational role of
digital pathology [24,25], especially during the recent COVID19 pandemic [26].

However, to fully benefit from the advantages of the digital transition, the process
should follow a strict optimization of the resources, namely time, space, people and in-
struments, creating the conditions for increased efficiency and consequently decreased
costs. Just like digital pathology is only incidentally about the slide scanner, the digital
transition is only secondarily a matter of instruments. The transition must start from a
strong leadership moving the entire group, motivating all the people to be game-changers.
The transition then goes through the people, changes mindsets, workflows, and finally
converges on new instruments. The Lean approach is an example of a strategy that can fa-
cilitate the management of the staff for the maintenance of turn-around time, starting from
the most appropriate arrangement of the space which allows a more linear workflow, the
reduction of disorganized sample traffic and thus the realization of a less time-consuming
diagnostic process. Although different guidelines have been dedicated to describe the
different steps needed for the digital transition [17,27], they mainly focused on the vali-
dation of the WSI tool without additional recommendations for the optimization of the
pre-analytical steps. As clearly shown by the Caltagirone example, the implementation of
digital pathology cannot be performed without a solid base consisting in a fully tracked
anatomic pathology workflow (e.g., using the order entry and 2D-barcodes), the adoption
of the Lean approach (e.g., through the employment of different automation instruments)
and a fully integrated system with the AP-LIS (Figure 8). This triad further allows the
interoperability of the different devices employed in the laboratory, independently from
the vendor or the software interface adopted by every specific instrument, as demonstrated
by the implementation of a fast and high throughput scanner without any compatibility
problem. Moreover, the customization of the LIS led to the association of WSI deriving from
different devices in the same slide tray, demonstrating the high versatility of this approach.

We are currently working to validate WSI in gynecological liquid-based cytology (LBC)
using a Pannoramic P1000 scanner (3DHistech). Recently, new instruments dedicated to
digitizing the LBC have appeared in the market, with the possibility to run AI tools to
support diagnosis. Even when cytology slides were examined using a conventional light
microscope, in spite of the absence of the “final” part of the digital transition (the WSI),
numerous improvements had spilled over to the workflow of cytology cases. For example,
these cases are fully tracked by the LIS (i.e. no paper worksheets) and benefit from the
linearity, efficiency, and order of the lab.

Another crucial point that should be addressed before the digital transition is repre-
sented by the need of a dedicated, high speed network in the anatomic pathology laboratory
(100 Mbps in the Caltagirone example), to prevent possible network issues that can po-
tentially impair each automated phase of the process, from accessioning to sign-out [28].
Moreover, the availability of a dedicated storage system with an adequate capacity to allow
the archiving of WSI is of paramount importance. In the present experience, a database of
96 TB has been employed, without a significant impact on the overall costs of the digital
transition. Recently, more advanced solutions have been developed. For example, using
the RAID 6 technology (redundant array of independent disks, level 6), one can implement
a local storage solution with redundancy and back-ups at much lower costs than similar
cloud-based solutions (approximately 10,000.00 € for 100 TB).

26



Diagnostics 2021, 11, 1916

Diagnostics 2021, 11, 1916 17 of 21 
 

 

allows the interoperability of the different devices employed in the laboratory, inde-
pendently from the vendor or the software interface adopted by every specific instrument, 
as demonstrated by the implementation of a fast and high throughput scanner without 
any compatibility problem. Moreover, the customization of the LIS led to the association 
of WSI deriving from different devices in the same slide tray, demonstrating the high ver-
satility of this approach. 

 
Figure 8. The importance and relationship of the main points required for the development of a 
reliable, sustainable and safe digital pathology workflow. 

We are currently working to validate WSI in gynecological liquid-based cytology 
(LBC) using a Pannoramic P1000 scanner (3DHistech). Recently, new instruments dedi-
cated to digitizing the LBC have appeared in the market, with the possibility to run AI 
tools to support diagnosis. Even when cytology slides were examined using a conven-
tional light microscope, in spite of the absence of the “final” part of the digital transition 
(the WSI), numerous improvements had spilled over to the workflow of cytology cases. 
For example, these cases are fully tracked by the LIS (i.e. no paper worksheets) and benefit 
from the linearity, efficiency, and order of the lab. 

Another crucial point that should be addressed before the digital transition is repre-
sented by the need of a dedicated, high speed network in the anatomic pathology labora-
tory (100 Mbps in the Caltagirone example), to prevent possible network issues that can 
potentially impair each automated phase of the process, from accessioning to sign-out [28]. 
Moreover, the availability of a dedicated storage system with an adequate capacity to al-
low the archiving of WSI is of paramount importance. In the present experience, a data-
base of 96 TB has been employed, without a significant impact on the overall costs of the 
digital transition. Recently, more advanced solutions have been developed. For example, 
using the RAID 6 technology (redundant array of independent disks, level 6), one can 
implement a local storage solution with redundancy and back-ups at much lower costs 
than similar cloud-based solutions (approximately 10.000,00€ for 100 TB). 

For the pathologists’ workstation requirements, some guidelines proposed the mini-
mum prerequisites that the computers and monitors should have to be employed in the 
WSI visualization for primary diagnosis [29]. Despite these recommendations, different 
subsequent reports demonstrated the feasibility of digital sign-out of the cases (even in 
off-site settings) independently from the workstation solution chosen by each pathologist 
[30] and with a wide variety of combination of CPUs (1.3–3.2 GHz), monitors (13.3 to 25 in) 

Figure 8. The importance and relationship of the main points required for the development of a
reliable, sustainable and safe digital pathology workflow.

For the pathologists’ workstation requirements, some guidelines proposed the mini-
mum prerequisites that the computers and monitors should have to be employed in the
WSI visualization for primary diagnosis [29]. Despite these recommendations, different
subsequent reports demonstrated the feasibility of digital sign-out of the cases (even in off-
site settings) independently from the workstation solution chosen by each pathologist [30]
and with a wide variety of combination of CPUs (1.3–3.2 GHz), monitors (13.3 to 25 in) and
browsers employed [31]. As a further demonstration of the relatively low technological
requirements for digital sign-out, in Caltagirone the introduction of workstations with
different technical specifications did not significantly impact on the final quality of the
WSIs as well as on the end-user experience. This was valid for home working as well,
thanks to the secure VPN connection. In this case home computers and non-medical-grade
devices were used, without significant impact on the final histological diagnosis. Remote
working for pathologists is still a young and underdeveloped concept, but the COVID
pandemic helped boost its adoption. During the lockdowns, more than half of the cases
were signed out remotely, effectively reducing on-site work to the bare minimum (i.e.,
grossing, intraoperative exams, and cytology). Incommensurable individual and social
risks were avoided thanks to remote work.

The implementation of a digital workflow contributes to increase the efficiency and
safety of the different processing phases, through the introduction of specific checkpoints
at every step, allowing a more adequate quality control from the accessioning to the final
reporting (Figure 4). In the present experience, only a minority of slides had scanning
issues, most commonly due to focus problems or in the tissue finding algorithm. For
example, abundant white adipose tissue (as can be seen in lipomas) can sometimes be
ignored by the tissue finder, or some parts of the slide might be out of focus. Some
authors advocate for a routine check of all WSIs by the technician before delivery. In
our experience, these errors are rare (<5%), often affect very small parts of the slide, and
rarely cause diagnostic problems. For these reasons, assigning the manual check of each
WSI scan to the technicians would lead to a significant time-consuming process for less
than 5% of rescan. As an alternative solution, in the proposed workflow the pathologists
can eventually order, if needed, a rescan directly from the LIS (as it would happen for
an additional stain or ancillary tests). Efforts are underway to automate this quality
check phase [17–19]. Furthermore, tissue coverage can be checked by the pathologist by
comparing the WSI to the slide macro image. In this setting, the recent introduction of a
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specific instrument, namely BlocDoc, for the detection of tissue inconsistencies, further
allowed to increase the accuracy of the technicians’ and pathologists’ work. It has been
estimated that the previous documentation time for the comparison of the physical glass
slides and respective tissue blocks took around minutes or even hours for the pathologists
and technicians. The introduction of BlocDoc allowed a significant reduction of the time
required for this task thanks to the possibility of visualizing the tissue block scans directly
from the pathologists’ workstations rather than having to manually search and retrieve the
tissue blocks themselves from the archive. The average turnaround time is significantly
shortened by the digital transition. While apparently more time is required for each case
(e.g., scanning the slides before delivering them generates a small delay compared with
direct delivery to the pathologist), this is more than balanced by the savings in hands-on
time (that is freed up for other tasks) and by the reduction of mistakes, variability and
uncertainty in the tissue processing steps.

The completely agnostic approach to the digital pathology workflow is another im-
portant point to underline. We believe this is a strong point of our approach to implement
the digital workflow. Interoperability is of paramount importance when implementing a
digital workflow with the possibility to use WSI for primary histological diagnosis. Thanks
to the use of a standard communication approach (i.e., HL7 communication standard) it
will be possible not only to interface different machines (different printers for slides, blocks,
labels, stainers, immunostainers, etc.) to the LIS, but also to integrate different scanners
from different vendors.

The interoperability, together with the lean approach, gives to the path lab the pos-
sibility to implement the digital workflow in a very smooth way, without being tied to a
single vendor. This is also in line with the possibility of a dynamic implementation of the
automation or other things.

The dramatic changes of the Anatomic Pathology in Caltagirone significantly impacted
even on the structural disposition of the instruments and offices. This eventually allowed
us to re-allocate some spaces to new applications (e.g., obtaining the molecular pathology
section previously absent in the lab), as well as significantly reducing the transfer of
material and personnel around the laboratory, resulting in time- and cost-effectiveness.

This is further stressed by the relatively low impact of the different novelties intro-
duced (e.g., laboratory reorganization, LIS, slide scanners, dedicated computers/screens,
software, storage system. trained personnel) on the overall costs of the department. In
Italy, it is customary to rent rather than buy instruments, so for example an expensive slide
scanner impacts on the lab balance for only approximately 5000 €/month. The costs of
storage have been discussed earlier, and regarding computers, we show that mid-level
computers with ordinary monitors (500–600€ total) are adequate for WSI viewing and
LIS operations.

Skepticism of technicians towards DP is often cited as a problem to overcome. We
found that some features of the new workload are actually preferred by the technicians, if
compared to the old workflow. Examples include having 2D barcodes printed directly onto
blocks and slides with no need of handwriting, digitizing glass slides by simply loading a
scanner with no need to assemble and deliver them, and archiving blocks and glass slides
by using computers instead of wasting time to put everything in numerical order. This
also demonstrates that the digital workflow corresponds to a decrease in workload for the
technicians which is in contrast with the idea of additional workload.

Finally, the adoption of computer-aided diagnostic and artificial-intelligence tools is
allowing the construction of a digital hub based in Caltagirone (“House of the Science”)
that will coordinate the widest renal pathology network in Italy, collecting cases from an
already established nephropathology service in the North of the country that migrated
all the routine renal biopsy diagnoses to WSI in 2014 [32]. This will further guarantee
an equal access to the best diagnostic renal pathology services without the need to move
patients, glass slides or paraffin blocks around Italy, additionally constructing a reposi-
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tory of non-neoplastic renal diseases that can serve as an educational atlas as well as a
research database.

5. Conclusions

Based on the previous “Catania experience”, the implementation of a fully digital
workflow in the Gravina Hospital of Caltagirone was possible and easy to achieve in about
4 months. Following the step-by-step instructions, the implementation of a paperless
routine with more standardized and safe processes, the possibility to manage the priority
of the cases and to implement artificial intelligence (AI)-tools are no more an utopia for
every “analogic” pathology department. Digitization of the slides is only the last step of the
“digital workflow” that aims to achieve safety and efficiency for pathologists and patients.
Our hope and vision is that ALL labs will switch to this digital workflow believing that this
will become the standard of care in pathology, for a matter of ethics more than economics.
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Abstract: Complete digital pathology transformation for primary histopathological diagnosis is a
challenging yet rewarding endeavor. Its advantages are clear with more efficient workflows, but
there are many technical and functional difficulties to be faced. The Catalan Health Institute (ICS)
has started its DigiPatICS project, aiming to deploy digital pathology in an integrative, holistic, and
comprehensive way within a network of 8 hospitals, over 168 pathologists, and over 1 million slides
each year. We describe the bidding process and the careful planning that was required, followed
by swift implementation in stages. The purpose of the DigiPatICS project is to increase patient
safety and quality of care, improving diagnosis and the efficiency of processes in the pathological
anatomy departments of the ICS through process improvement, digital pathology, and artificial
intelligence tools.

Keywords: digital pathology; computational pathology; artificial intelligence; deep learning;
implementation; workflow; primary diagnosis; LIS; telepathology; network
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1. Introduction

The Catalan Health Institute (Institut Català de la Salut, ICS) is the largest provider
for the Catalan Health Service, the insurer of universal health coverage in Catalonia. It
is the company with the most employees in Catalonia and the largest public company in
Spain with almost 39,000 professionals who provide services to almost six million people
throughout the territory [1]. The ICS manages 283 primary care teams, three large high-tech
tertiary hospitals (Vall d’Hebron, Bellvitge, and Germans Trias), four regional reference
hospitals (Arnau de Vilanova in Lleida, Joan XXIII in Tarragona, Josep Trueta in Girona,
and Verge de la Cinta in Tortosa), and a regional hospital (Viladecans) (Figure 1). The ICS
accounts for 7% of the Catalonian government budget with over 40 million primary visits
and over 100,000 surgical interventions yearly.
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Some laboratories are beginning to deploy successfully digital pathology solutions for
routine diagnosis which we believe will be a growing trend in the next few years [2–10]. In
Catalonia, the DigiPatICS project plans to accomplish a complete digital pathology trans-
formation of primary histopathological diagnosis for over 168 pathologists. Many groups
have reported equivalency between digital pathology and conventional pathology [11–27].

With the DigiPatICS project, we aim to increase patient safety and quality of care,
improving diagnosis and the efficiency of processes in Pathological Anatomy departments
of the ICS through digital pathology and artificial intelligence (AI) tools [28]. With dig-
ital pathology, we aim for a network of eight hospitals to work as one in terms of case
sharing and teaching, putting all our patients on equal footing. This transversal digital
transformation will have an impact on the care of patients treated by all medical and
surgical specialists.

First, we created a network between ICS centers. This helped us increase the repro-
ducibility and quality of diagnoses, as well as offered greater equity and safety to patients.
In turn, this network approach facilitated remote diagnosis, case sharing, subspecializa-
tion, and teaching for pathologists. In addition, we aimed for better working conditions,
impacting the optimization of workflows, productivity, and, finally, turnaround times. We
also intended to improve ergonomics and postural health, as well as to facilitate morpho-
metric tools and the quantification of diagnostic and prognostic biomarkers to involve the
optimization of time and a higher quality in diagnosis.

From a more technical point of view, the aim was to achieve a central digital repository
of images on the network, thereby reducing the burden of slide file management and
integrating medical imaging with SIMDCAT, a digital medical imaging system used in
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Catalonia. It was also intended as a subproject to establish bidirectional communications
with other locations, such as operating rooms.

The project included the development of artificial intelligence tools with machine
learning and deep learning, taking advantage of the availability of whole slide images
(WSIs) that were obtained after digitization. The objectives were to recognize tissue patterns,
select tumor areas, and quantify them, among others. Hopefully, this use of artificial
intelligence tools will contribute to improving the quality of diagnosis and the efficiency
of processes.

2. Materials and Methods

DigiPatICS was created as a European Regional Development Fund (ERDF) project
with European funds for the optimization of anatomopathological diagnosis in a network
of public ICS hospitals in Catalonia through digitalization and artificial intelligence tools.

Subsequently, a market consultation was carried out, and, finally, it was tendered with
the expedient CSE/CC00/1101202869/20/AMUP [29].

2.1. Planning, Scope, and Tender Process

A definition of needs was then carried out. We firmly believe meticulous planning is
essential, taking into account all functional and technological requisites. Failing to detail
such requirements can end in the failure of a digitization project, resulting in expensive
scanners installed in pathology laboratories that are barely used. It is also important to
highlight that going digital is not about acquiring pathology scanners; we focused our
project on the purchase of a service with a shared risk with the bidder to achieve our
objectives. Since this transformation was meant to be a one-way street with no possibility
of going back to microscopes, all planning needed to included sufficient contingencies
to avoid any kind of downtime for pathologists, as well as benefiting from the potential
added value.

The purpose of the DigiPatICS project was to increase patient safety and quality of care,
improving diagnosis and the efficiency of processes in pathological anatomy departments
of the ICS using digital pathology and artificial intelligence tools.

In defining the scope, several questions arose:

• Do we want to save the whole slide images (WSIs) forever? Who will store them?
• Is our laboratory information system (LIS) ready?
• Do we want to (or have to) address pre-analytics?
• Do we want to address dark-field microscopy (direct fluorescence, FISH)?
• Do we want to digitize the macroscopic images?
• Do we need to update the hospital network?
• Do we need to update our pathologists’ workstations?
• Do we want to share cases with the outside world?
• Is teaching important?
• Do we want artificial intelligence (AI) algorithms?
• Do we want to do telepathology?
• What do we do with cytology?
• Do we have money for everything?

Those concerns and how they were resolved will be addressed in the next pages,
but we can already answer some of these. We did want to store all the WSIs forever
and to use that repository to train our own artificial intelligence algorithms, which is
clearly one of the great advantages of such a transformation. We also believed that this
project must be an integral transformation, including routine histopathology, fluorescence,
research, and macroscopic images. Tools for teaching and teleconsultation should be
included, which meant having the option to share images outside our hospitals’ secured
LAN. We realized that our laboratory information system (LIS), preanalytics, network, and
pathologist workstations all needed substantial upgrades to be able to undertake such a
transformation [9].
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What about cytology? Digitizing cytology, even if feasible [30–33], has some partic-
ularities: scanning times can be much longer than in histology (due to the need for more
resolution, larger scan area, zero tolerance of out-of-focus areas, and Z-stacking). That
means needing to install more scanners to be able to take on the same activity, and it impacts
storage needs. Dark-field scanning (FISH) has similar issues, but there was a significant
difference in the volume of slides to scan. Cytology involves a large number of samples to
digitize in our hospitals (over 400,000 each year), which is not affordable currently in this
project due to budgetary constraints.

The activity addressed in our project included all bright-field, routine histopathology,
histochemistry, immunohistochemistry, direct immunofluorescence, ISH, and FISH slides.
Cytology was scanned on an as-needed basis.

In Table 1, we summarize the total number of slides generated during 2019 at our
eight hospitals broken down by type. To that number of over 1 million slides, an expected
growth in activity of 10% to 15% must be added each year. In addition, some resources
were reserved for research and non-strictly routine samples and were not accounted for in
these numbers.

Table 1. Number of slides in 2019.

Routine Histopathology 814,573
Immunohistochemistry 186,453
Histochemistry 64,209
Direct Immunofluorescence 12,392
FISH 2695
CISH 1983
Total 1,082,305

Regarding the amount of personnel involved, DigiPatICS provided service to 107 path-
ologists, 7 biologists, 40 residents, and 14 observers, adding up to a total of 168 professionals
working with digital diagnosis.

In the tender, all relevant aspects were taken into account for bidder evaluation, as
shown in the following list:

Award criteria (Total: 100 points.)

• Automatic evaluation criteria. (51 points)

# Economic valuation. (40 points)

■ Evaluation of the financial offer. (30 points)
■ Evaluation of the maintenance offer. (10 points)

# Automatic technical evaluation. (11 points)

■ Quality management system. Certification of processes and algorithms.
(3 points)

■ Process consulting. (1 point)
■ Image management platform adaptations. (3 points)
■ Storage for research slides. (1 point)
■ Short-term “hot” storage. (3 points)

• Criteria subject to judgment value. (49 points)

# Scanners: deployment and image quality. (17 points)
# Diagnostic viewer. (8 points)
# Image management platform. (4 points)
# Training module. (2 points)
# Built-in tools and algorithms. (3 points)
# Architecture and monitoring. (1 point)
# Definitive storage in SIMDCAT. (4 points)
# Integration of case information in a unified model. (2 points)
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# Server infrastructure requirements and DPCs. Coherence, management model,
virtualization. (2 points)

# Workstations. (2 points)
# Artificial intelligence. (3 points)
# Implementation and additional improvements. (1 point)

However, some aspects were considered very difficult to assess by evaluating their
technical characteristics alone, and that is why three technical tests were defined for the
scanner, viewer, and image management platform.

For the scanner test, a large sample of glass slides from the 8 hospitals was collected
and fed to all the scanners offered by the 3 bidders for a week at 24 h a day. In the fastest
scanner, over 10,000 glass slides were digitized. Real scanning speeds, jamming, incidents,
etc. were recorded to ensure the reliability of the equipment (Figure 2).
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In the second and third tests, we brought together a group of pathologists from all
the involved hospitals, along with IT experts, and they assessed the functionalities of the
viewing software and the image management platform, as well as the image quality offered
by the scanners using images scanned from ICS samples during the first technical test
(Figure 3).

The contract file was definitively awarded by the decision of the Managing Director of
the Catalan Health Institute (ICS) to the Palex Medical, S.A. 3DHISTECH Digital Pathology
solution. This solution stood out for the proposal in the following main aspects:

• Scanners: Technical requirements, deployment requirements, and technical serv-
ice requirements.

• Image Management Platform: Diagnostic Viewer, learning platform, and quantifica-
tion modules.

• Architecture: SIMDCAT interaction (DICOM), unified image management model (for
all slide types), infrastructure management, and coherence model.
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2.2. Scanners and Technology for Obtaining Whole Slide Images (WSIs)

Twenty-four scanners were installed and integrated into the workflow of the eight hos-
pitals. Different scanner models were deployed according to the needs of each institution.
In Table 2, we summarize the number of each scanner type and the capabilities.

Table 2. Scanner deployment and capabilities summary.

Model HT DS FL IN Z S N

PANNORAMIC 1000 Flash DX ✓ ✓ ✓ ✓ 1000 11
PANNORAMIC 300 Flash DX ✓ ✓ ✓ 300 7

PANNORAMIC SCAN II ✓ ✓ 150 5
PANNORAMIC MIDI ✓ ✓ 12 1

Total 24

HT: high throughput capability; DS: double-width slide capability; FL: fluorescent scanning capability;
IN: immersion scanning capability; Z: Z-stack scanning capability; S: slide capacity; N: number of deployed
scanners; ✓: Capabilities available in each scanner.

The PANNORAMIC 1000 Flash DX (3DHISTECH Ltd., Budapest, Hungary) (P1000) is
a large (154 × 100 × 91 cm) and heavy (270 kg) scanner, but it offers the largest slide capacity
on the market at 1000 slides (using Leica slide racks, slide loading capacity could be further
increased to 1200). It is the fastest whole-slide scanner on the market at up to 100 slides
per hour and 2000 slides per day (at 40× resolution, 0.25 µm/pixel, single layer). The
P1000 uses Sakura slide racks that seamlessly integrated with our laboratory workflow and
allowed for priority slide handling and scanning in arbitrary order because it is flexible and
automatic. It is also being used for double-width slides. Regarding image quality, it is able
to scan at 0.25 µm/pixel, which is the 40× resolution equivalent (industry standard), and
also at 0.12 µm/pixel, which is roughly the 80× resolution equivalent. Multilayer (Z-stack)
and extended focus scanning are available, as well as automatic water immersion [34,35].
Furthermore, thanks to its AI-based software control, it is able to automatically rescan
suboptimal slides, adding multilayer scanning if required. The P1000 are used for all
bright-field and double-width slide related imaging.

The PANNORAMIC 300 Flash DX (3DHISTECH Ltd., Budapest, Hungary) (P300) is
a fast bright-field and fluorescence scanner capable of high throughputs as a standalone
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machine in smaller institutions or serving as backup for P1000s in larger hospitals. It has
the capacity for 300 slides, and its use is mainly for fluorescence, scanning FISH and direct
immunofluorescence [36].

Both the PANNORAMIC SCAN II and the PANNORAMIC MIDI (3DHISTECH Ltd.,
Budapest, Hungary), with slide capacities of 150 and 12 slides, respectively, are mainly
focused on fluorescence imaging but are still able to scan bright-field images, even though
they are slower than their high-throughput counterparts [37].

2.3. Macroscopic Imaging

Regarding macroscopic imaging, 13 MacroPATH QX systems (Milestone Medical,
Sorisole, Italy) were installed to obtain and incorporate gross imaging into the workflow.
All the images were stored on the DigiPatICS servers and were fully integrated and available
at the pathologist workstations for making diagnoses.

2.4. WSI Viewing: Hardware

To be able to view WSIs, 183 new workstations were installed (Table 3) for pathologists,
residents, biologists, observers, and meeting rooms. Each pathologist workstation consisted
of two 32-inch 4K UHD (3840 × 2160 pixel) diagnostic medical-grade FDA-approved
monitors (LG 32HL512D) (Figure 4) that could be used indistinctly in flexible ways. Normal
intended use is for a pathologist to have an LIS with all laboratory data, clinical data, and
reporting available on one monitor, while on the other, a microscopic image is displayed.
However, both monitors could be used for microscopic images, or both could be used
for reporting, clinical data, bibliography, or other tasks. Biologist workstations were the
same as those of the pathologists. Residents and observers shared the same workstations;
however, they only consisted of one LG 32HL512D medical-grade monitor due to space
constraints (the dual-monitor setup required over 150 cm of desk surface).

Table 3. Workstation and monitor deployment.

Equipment N

Workstations 183
32′′ 8MP Medical Monitor LG 32HL512D 286
55′′ 4K UHD Monitor 55UH5F-B 6
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Thirteen additional workstations with six 55-inch 4K UHD monitors and seven 4K
UHD DICOM ProBeam LG projectors were installed in small and medium meeting rooms
for teaching and clinical sessions as a replacement for multi-head microscopes (Figure 5).
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Each workstation was comprised of an Intel Core i5-9600K processor (Intel Corpo-
ration, Santa Clara, CA, USA), 16 Gb RAM, 512 Gb SSD, and an RTX 2060 graphics card
(Nvidia Corporation, Santa Clara, CA, USA). All workstations were the same for easier
maintenance, compatibility, and interchangeability of workplaces. Each workstation also
contained a Logitech BRIO 4K UHD webcam (Logitech International, Lausanne, Switzer-
land) and a Jabra Evolve 40 headset with a microphone (GN Group, Ballerup, Denmark).
Both the webcam and microphone aimed to facilitate networking between pathologists
from the same hospital, from different hospitals within the ICS, or even with professionals
outside our network.

Furthermore, each workstation contained a Logitech MX Vertical Ergonomic Wireless
Mouse (Logitech International, Lausanne, Switzerland), since vertical mice seem to put
less strain on the wrist and demonstrate better ratings than conventional mice [38]. Each
pathologist could also choose between two other ergonomic devices: a Kensington Expert
Mouse Wireless Trackball® (Kensington Computer Products Group, Redwood Shores, CA,
USA) and a SlideDriver (3DHISTECH Ltd., Budapest, Hungary) (Figure 6). All devices
were supported by our viewing software. The SlideDriver offers microscope-like navigation
on digital slides for those who prefer a traditional method. Most of our pathologists and
residents selected the SlideDriver as their input device (80% approximately).
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2.5. WSI Viewing: Software

The diagnostic viewer used for all digital images was ClinicalViewer (3DHISTECH
Ltd., Budapest, Hungary). It uses streaming technology to avoid downloading WSIs for
diagnosis. It is capable of opening bright-field, fluorescence, double-slide, Z-stack, and
macroscopic photography, etc. It also includes many positively valued features, such as
the possibility of viewing and navigating up to nine automatically synchronized images at
once. It also has IVD support and quantification algorithms, as well as some more standard
tools, such as free rotation, free zoom, annotation, measuring, and object counting tools
(Figure 7).
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The software also had a telepathology option available and a module to create training
courses. Possessing all the WSI viewing needs, including fluorescence, integrated into
one software system (one viewer) facilitated pathologist ergonomics and also enabled
simplifying the technological model with fewer integrations required.

2.6. ETPAT: Our Laboratory Information System (LIS)

The evolution of information systems in the last ten years has been meteoric. It has
changed the paradigms for accessing and possessing the necessary information at each
point of contact a patient has with a health system.

At the Catalan Health Institute (ICS) and within the ARGOS project, we have spent
15 years directing information towards users and clinical care, and we have progressively
moved from the initial free texts to structured information. The ARGOS project started in
2006. It is a project to integrate in a transversal and transparent way all the information
systems involved in clinical assistance to the citizens of the Catalan Health Institute and
its eight hospitals, including the hospital information system, nursing, pharmacy, clinical
analysis laboratory, pathology laboratory, and critical care units. Currently, ARGOS is the
priority information system in Catalonia and is present in 23 hospitals of the Catalan public
health network.

The SALUT4D project began in 2020 and is the evolution of clinical workstations
within the ARGOS project. Its objective is to provide the necessary information at each
moment of care to different professionals. It is based on four dimensions seeking to present
the necessary data at each point of care:

1. Where am I? Scope of work: emergencies, hospitalization, ambulatory consultation,
operating room, etc.;

2. Who am I? Nurse, surgeon, internist, psychologist, etc.;
3. Whom do I attend? A patient with hypertension, diabetes, bronchitis, etc.;
4. How do I attend to it? With a computer, tablet, smartphone, etc.

The system presents the information that a professional needs clearly and orderly.
The system is based on a clinical dictionary with more than 40,000 variables stored in a
MongoDB-type database called the Global Variables Repository (RGV). This repository
contains data from all sources: laboratory, pathological anatomy, radiology, vital sign
monitors, pharmacy, etc.
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To construct this platform, created and designed for and by the ICS, HTML5 technol-
ogy, SAP® ISH® (Information System Hospital), and SAP® ISHMed® (SAP SE, Walldorf,
Germany) were used. The system connects directly with the Shared Clinical History of
Catalonia (HC3) and provides access to information on all public hospitals and all primary
care facilities in a fully integrated manner.

The work methodology was based on requirements submitted by over three hundred
health professionals who continuously provided their contributions. Through AGILE
methodologies, the new clinical workstation was progressively built.

The new station is already in operation at the eight ICS hospitals and will gradually
come into operation in twenty-three sections of the ARGOS system throughout 2022.

In order to incorporate the peculiarities of the new, fully digital workflow, a new LIS
for our pathology laboratories named ETPAT was developed. It was deemed necessary to
develop and improve pathologist workstations to provide them with tools that allow the
integration of information from all sources and electronic records available. ETPAT has a
fully integrative approach to all processes occurring in our pathology labs, from electronic
requests from clinicians to pathology reports, with full traceability of all steps involved
at the laboratory. Moreover, it enables the optimization of paper management as much
as possible. This software was based on HTML5 and was prepared for 32-inch 4K UHD
monitors, taking advantage of the hardware on hand (Figure 8).
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One of the most relevant aspects was the unification of workflow for all ICS laborato-
ries, which should be able to work seamlessly as a network, or even as one big institution.
The catalogs of techniques and sample types were also more coherent. All traceability data
was integrated and convenient, and we were able to collect information on who carried out
each phase of the diagnostic process to allow the correct attribution of costs and activities.

This new LIS is clearly ready for the digital workflow of macroscopic and microscopic
images and was fully integrated with the image management platform. In addition, the
management of second opinions and case consultations was incorporated.
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2.7. Network Needs, Local Area Network (LAN), and Wide Area Network (WAN)

The main source for generating information by volume of data was the scanners (in
the order of around 2 petabytes yearly), which were located across the different centers
included in the scope of the project.

The systems were connected to a 10 Gbps network between the scanners and the
local storage data processing center (DPC). The same criteria applied to the artificial
intelligence platform.

The network requirements for the DigiPatICS project were high, since access to the
images needed to be instantaneous, as it was on a microscope. Images were accessed via
streaming, but a large bandwidth was still required, making it necessary to adapt cabling
and infrastructure, as well as switches, routers, and other telecommunications equipment.
Each workstation required a 300 Mbps connection to the DPC to be able to stream the
WSIs, but to ensure performance, the connection was established at 1 Gbps. MacroPATHs
required a 100 Mbps connection.

Adjustments were made to the WAN infrastructure to ensure that communications be-
tween the central repository and the centers were capable, on one hand, of transferring daily
information to the central DPC and, on the other hand, of allowing consultation between
hospitals and their corresponding DPCs. This WAN needed to support an approximate
flow of 6 TB each night for the DigiPatICS project activity alone.

To achieve these goals, both the Department of Health and Catsalut public institutions
recognized this need and facilitated the creation of a dedicated network to support the data
traffic requirements mentioned and response times for data recovery.

2.8. On-Premise Data Processing Centers (DPCs)

The project proposal was to provide a good user experience to all users of the image
management platform, as well as to facilitate their work, optimize performance times,
and reduce the time invested in obtaining a correct diagnosis. That is why we considered
infrastructure to be a fundamental technological pillar in this project that needed to be sized
based on performance, scalability, and reliability criteria without excessively oversizing
the system or implementing complex architectures that would create greater difficulties in
maintenance. For the project, the deployment of its own infrastructure was carried out, but
at the same time, it was integrated transversally across the health ecosystem.

A common structure was used at all centers that only changed in terms of local storage
dimensioning, adapting to the number of slides estimated per center. In this way, we made
infrastructure maintenance easier. All the DPCs were provided with the energy and cooling
requirements necessary for correct operation of the various systems, as well as redundant
systems in terms of communications, servers, storage, and a secondary DPC in case of
disaster recovery.

The system at each center was designed to have a high-availability configuration,
meaning, in the event of a disaster in one of the elements of the system, it would be capable
of continuing to offer service with minimum downtime, or even without interruption,
depending on the source of the problem.

The high-availability elements implemented were:

• A host server cluster under VMware vSphere in an active-passive configuration;
• Disk storage configured in RAID;
• Mirrored disk arrays with asynchronous replication.

The various redundant elements of the high-availability scenario were located in a
DPC or complementary technical room that was not the main DPC in order to minimize
the impact of any possible disaster on the main DPC. Artificial intelligence equipment was
excluded from this high-availability policy.

At each center, a virtualization infrastructure was deployed, consisting of a set of
two identical servers under a VMware vSphere infrastructure. This allowed the system to
have the capacity to maintain service quality in an event where it was necessary to activate
a contingency scenario (disaster recovery) in a matter of a few minutes. These servers
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were HPE ProLiant DL325 models dimensioned with AMD EPYC processors that offered
the necessary computing capacity for all DICOM image integration, storage management,
and processing operations that were carried out continuously. They also served as a
virtualization platform for the controller structure of the AI cluster.

As for storage, MSA 1050 cabinets were chosen and presented to the host servers
through iSCSI controllers. These storage cabinets contained a battery of SSD disks intended
exclusively for virtual machine operating system disks. For medical image storage, a pool of
rotational HDD disks was deployed. This decision was made based on the following factors:

• Once the medical image was generated, it was not modified (writing on the disc only
one time);

• Access was completed in blocks through streaming (reduced reading rate);
• Each center had its own local storage (limited number of simultaneous writes).

For all these reasons, the increase in cost of deploying SSD technology for image
storage was not justified for the required performance.

The same storage technology was used in all the centers, including the central DPC,
with only capacity varying as a factor of the number of digitized images estimated per
center. The total storage capacity between the eight hospitals was approximately 500 TB,
which allowed short-term storage of up to 75 days for images.

The deployed server and storage infrastructure had the activation of the HPE IRS
service, which automatically opened a ticket to the manufacturer in the event of a hardware
component failure, guaranteeing proper functioning of the infrastructure.

The entire server infrastructure was backed by a backup policy based on Veeam
Backup that was integrated into existing control panels in each center in order to facilitate
maintenance tasks.

Within the scope of this project, integration with SIMDCAT was included for the
publication of images as a form of definitive storage. Publishing to SIMDCAT was asyn-
chronous under a queue management system that published the images as soon as they
became ready. As the publication to SIMDCAT was continuous, the need to make a backup
copy of all the scanned images outside the same disk array cluster was not considered,
delegating the backup function to the same SIMDCAT. If the need arose to retrieve one
or more images, a small application was implemented that allowed downloading these
images from SIMDCAT and placing them back in local storage. Only in the event of a
major disaster would the procedure be the same as indicated above; however, there may
be a minimal number of scanned images that would not have had the opportunity to be
published in SIMDCAT due to the asynchronous nature of the publication process. In such
a case, the images would be rescanned.

2.9. SIMDCAT and DICOM

SIMDCAT is the Digital Medical Image System of Catalonia. It is currently the unified
system used by the network of entities called SISCAT (Comprehensive Health System of
the Public Utility of Catalonia) to preserve digital medical images and provide services
and digital resources based on the same software architecture using cloud services and to
make information accessible from various electronic medical records. The system is used by
approximately 450 Catalan health centers and by all SISCAT professionals to securely collect
and share digital medical images generated by the centers. SIMDCAT was the definitive
repository of this project in which the images and associated data were stored. SIMDCAT
was set up in 2018 to provide the public health system with a secure and technologically
advanced environment in which to store and share digital medical image services.

The project to develop in SIMDCAT a specific environment for pathological anatomy
medical images presented multiple benefits for agents of the Catalan health system. Profes-
sionals in this specialty were provided with a network work environment based on cloud
technology, and the anatomopathological diagnosis process was optimized so that medical
images were immediately and safely available to professionals. As for patients, the quality
of care was improved, and their safety was increased.
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Finally, the sustainability of resources and costs of health information systems was
promoted by providing a common and shared system for all providers.

SIMDCAT’s cloud-based technology is focused on the use of DICOM as a standard in
the storage and distribution of medical objects. The capacity of standard DICOM beyond
radiology has been demonstrated in recent years, where PACS image storage systems have
evolved into the VNA (Vendor Neutral Archive); SIMDCAT constitutes a VNA that allows
the management of medical objects using the DICOM standard as a reference framework.
In the case of pathology, the DICOM 145 extension is adopted; this extension facilitates
the storage and distribution of medical objects independent of the device that generates
the information. SIMDCAT adopts DICOM 145 natively, incorporating the pyramidal
treatment of images, thus facilitating navigation through an image. SIMDCAT also adopts
the DICOM 122 extension that reflects the representative data model of pathology.

SIMDCAT manages the information in a private cloud model with a high-redundancy
system to guarantee the availability of the information. Saving the information in different
storage systems using data object technology, this model allows growth according to the
needs of the system, optimizing available resources in addition to freeing hospitals from
the custody and distribution of information.

2.10. Artificial Intelligence and the Polytechnic University of Catalonia–BarcelonaTech (UPC)

It is now recognized that artificial intelligence represents a turning point for society
that is at least as significant as the Industrial Revolution. The ICS aims to be an autonomous
and primary player in the creation of artificial intelligence algorithms to avoid dependance
on a commercial solution. Therefore, we wished to set up an artificial intelligence platform
tailored to the needs of the ICS. This platform was developed with free software and
needed to be modeled to accommodate other artificial intelligence projects in addition
to DigiPatICS.

Currently, the ICS has signed a collaboration agreement with the Image Process-
ing Group (GPI) of the Polytechnic University of Catalonia–BarcelonaTECH (UPC)
(imatge.upc.edu) for the development of artificial intelligence tools and platforms within
the healthcare field, specifically in the field of medical imaging. The group belongs to the
Intelligent Data Science and Artificial Intelligence Research Center (IDEAI), which is a hub
created at the UPC in 2017 for the development of artificial intelligence. GPI has extensive
experience in image processing and the development of artificial intelligence algorithms
with a long history in the healthcare field.

GPI develops computer vision and deep learning (DL) tools to tackle WSI analysis
tasks in DigiPatICS for stains, such as H&E, HER2, KI67, RE, and RP, as well as other
immunohistochemical stains. DL technology that relies on instance and semantic segmen-
tation architectures has the potential to provide high-quality results when properly trained.
GPI has also introduced strategies, such as:

Dataset annotation: As the training database was limited in the first stage, a more clas-
sical computer vision strategy relying on morphological algorithms and machine learning
(ML) tools produced proposals easier to validate by annotators and generated the ground
truth needed to avoid limiting the performances of DL approaches.

Integration of AI algorithms: Integration into specialist workflow was facilitated by
combining the systematic processing of a large number of WSIs with on-demand assessment
by pathologists for improving the systematic results or for obtaining specific quantifications:

1. Nightly batch processing and inference on the WSIs yielded raw results, such as
segmentation confidences and classification probabilities, as well as potential segmen-
tation masks;

2. The results were integrated into 3DHISTECH ClinicalViewer using a specific plug-in
and offered to the pathologists upon request when examining the slides;

3. The pathologists could select or deselect regions in the WSI to visualize and quantify the
results or to fine-tune inference results (classification and segmentation) using sliders;
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4. Pathologists could also select specific areas for further online analysis on inference
servers to be performed during the session with the viewer at their workstations.

Pathologists in the analysis loop: The strategy in Point 3 allowed not only flexible
interaction for online and on-demand analysis, but also for recovering information about
pathologists by selecting specific regions of interest and tuning inference results for re-
ports. This information represents invaluable data and comments to further improve the
annotated datasets.

Training in the ICS development servers: A specific committee formed by AI special-
ists and clinicians periodically reviewed the comments and data produced by pathologists
using the viewer. This committee decided on the feedback and data and set strategies
for incremental training and improvement of the DL network architecture involved with
continuously improving the inference results.

The former strategies facilitated the usage of AI tools in the daily work of pathologists,
as well as productivity.

As mentioned, all images were stored in a central repository, SIMDCAT, where they
were available for AI training after dissociation. AI training was performed in this cen-
tral repository, where a large number of whole slide images were readily at hand. GPI
researchers did not have direct access to sensitive clinical data, and datasets and whole
slide images always remained within the ICS infrastructure. In fact, it should be noted
that the entire circuit in production moved through an isolated dedicated network in an
intranet environment, and the training environment was in a separate VLAN and intranet
infrastructure. Once the inference algorithms were trained, they were run on-premise at
each hospital DPC. In no case was the information transferred to external DPCs.

3. Results

The digital pathology transformation envisioned in the DigiPatICS project involved
great changes in most of the steps of workflow in our pathology laboratories. As mentioned
above, all the processes were integrated in our LIS ETPAT.

3.1. Laboratory Workflow, Traceability, and Barcode Generation

All incoming samples, biopsies, cytologies, autopsies, and even molecular requests
are accompanied by an e-request generated in our electronic health record system by the
clinicians who input all the necessary clinical data.

At the time of registration, the request receives an identification number that is labeled
with a datamatrix-type barcode. Each sample container is also labeled with a unique
datamatrix-type barcode. The barcode structure is as follows, maintaining logical hierarchy,
as seen in Figure 9. The case or request barcode includes the institution, the year, the sample
type, and the case number (i.e., VH22B051337, for Vall d’Hebron, year 2022, biopsy number
51,337). When labeling a container, the container ID is appended (i.e., VH22B051337A for
container A). When a cassette is required, a datamatrix-type barcode is also printed with
the number of the paraffin block appended (i.e., VH22B051337A014 for block 14). For glass
slides, whether they come from paraffin block sections or are cytologies, another number
is appended, representing the slide number (i.e., VH22B051337A014001 for histological
section 1). The full ID is printed and appears in a datamatrix-type barcode in each slide.

Most of our laboratory equipment, including scanners, is able to read these barcodes and
is integrated with our LIS, providing automatic checkpoints for many steps of processing.

The first checkpoint is when the sample is received with the labeling of the containers,
as described previously. It is a manual step completed by technicians, but in the new LIS,
the process was simplified so it was closer to optimal. The next step, grossing, was also
improved: MacroPATHs were installed inside the pathology fume hoods, and computers
with the LIS were placed next to them. Pathologists, residents, or technicians could print
the cassettes, capture gross examination pictures, and dictate or type the macroscopic
description in a convenient and fully digital way. Pictures of cassette contents are obtained
and are available for verification in the next laboratory steps. After filling a cassette with
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tissue, the barcode is scanned for the first checkpoint of the paraffin block. The next
checkpoint is when the cassette enters the tissue processor, and a technician reads the
barcodes using a handheld device. Unfortunately, this step remained manual because our
tissue processors could not read barcodes. We hope this will change in the future.
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Each embedding station had a computer with a barcode reader within reach. A techni-
cian read the barcode of the paraffin block, and the LIS displayed the tissue type and the
confection notes (if present) and provided access to macroscopic images for verification,
while, in fact, creating another checkpoint.

The next checkpoint is clearly when sectioning. Every microtome station had a barcode
reader, a slide label printer, and a computer with the LIS. When scanning the paraffin block,
the LIS displayed the tissue type and other information on that block, such as how many
and which slides must be obtained from it. At the same time, it printed the slide labels
automatically, which include the datamatrix barcode described previously. This automation
reduced the human error of manual workflow [3].

At this point, the automatic part started. In most hospitals, Sakura Tissue-Tek Prisma
Plus and Tissue-Tek Film (Sakura Finetek Europe B.V., Alphen aan den Rijn, The Nether-
lands) were used. After sectioning, a technician loaded the slides in the Sakura racks. Then,
the racks were stained, coverslipped with film, dried, and scanned using P1000s. Routine
slides did not have to be treated individually until archiving because all the equipment
used the same racks. In terms of traceability, an automatic checkpoint was recorded by
Sakura Tissue-Tek Film, which was integrated with our LIS, and the final checkpoint was
notified by a 3DHISTECH P1000 when the slide was scanned.

Using the same Sakura racks for all equipment enabled us to optimize technician slide
handling time and reduced errors. Immunohistochemistry and histochemistry used the
same Tissue-Tek Film, so checkpoints stayed the same. In cases of double slides, the steps
needed to be conducted manually, but their volume was negligible compared to routine
histology, where workflow optimization was key.

In some hospitals, other automatic stainers were used, such as VENTANA HE 600
(Roche, Basel, Switzerland). Integration was possible, but an extra step of transferring the
slides from HE 600 trays to the scanner rack was needed.

Subprocesses, such as slide allocation and delivery to pathologists, did not exist
anymore, since the digital workflow did not require such manual steps.

Regarding the destruction of containers, a new system was implemented. A tablet
with the LIS, along with a handheld datamatrix barcode reader, was used to scan the
containers. If the containers were ready for elimination, a confirmation message appeared,
and a checkpoint was created.

The whole workflow was designed for optimization and security. We aimed to reduce
the time technicians spent on worthless tasks, allowing them to focus on what was impor-
tant and increase their satisfaction in the workplace. Also, the checkpoints enabled a better
awareness of sample status by all personnel and an obvious increase in safety.

It is also worth mentioning that the transformation was carried out simultaneously as
a radical change with all the pathologists in the same center starting digital work at the
same time. The alternative of making a gradual change implied many more difficulties
by having to maintain two circuits (old and new) in the same laboratory. This measure
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was taken considering the possible reluctance and skepticism of the staff, which would
be lessened if they could quickly see an optimization of circuits despite initial incidents.
No benefits of a gradual approach were seen by the authors if all the infrastructure was
in place.

Regarding validation of WSIs for use in primary diagnosis, the digital pathology
solution provided all necessary legal certifications, but it still was tested and validated
previously by many pathologists using all types of preparations. The solution was also
tested in the scanner and viewer technical tests during the bidding process. When the
pathologists started working with digital slides, all of them could compare digital slides
with glass slides until their grade of confidence was enough. No specific period of time or
amount of resources was dedicated for this purpose; it was a matter of obtaining enough
comfort for the pathologists in their routine workflow. A continuous validation of tissue
detection was performed in every single case, since the pathologists had available the
captured image of the slide next to the slide overview, as seen in Figure 7a, and were thus
certain there was no tissue missing on the WSI.

Furthermore, all the pathology departments involved in DigiPatICS were certified or
accredited for ISO 9001 or ISO 15189. Because the ISO 15189 standard confirms technical
competence of the laboratory and ensures reliability of test results, a continuous validation
strategy was recommended following CAP recommendations [39,40].

The initial reticence on the part of a couple pathologists could not be reversed despite
several talks and explanations to try to make them partners in the transforming project.
However, these reluctances completely disappeared after a few days of working in the
digital flow without the need for any external intervention. The advantages of the new
technology were obvious and sufficient on their own.

3.2. Scanning

Being able to scan slides and obtain WSIs are perhaps the obvious concerns of any
digital pathology project, but, as mentioned, these are not the only relevant points.

It was essential that the scanners did not stop due to jamming, so the glass slides
needed to be optimal. This implied possessing a decent glass or film coverslip; either could
work as long as the quality of the histological slide was good. Labels also needed to fit
perfectly within the boundaries of the glass slide. Anything that protruded could cause
jamming. Slides needed to be fully dried, and under no circumstance could be dripping
glue [20].

Furthermore, we considered crucial for the workflow the presence of automatic
scanning with two objectives and, therefore, two resolutions, 40× (0.25 µm/pixel) and
80× (0.12 µm/pixel), to cover all possible needs. The scanners used different scanning
profiles (40× or 80×, Z-stack, etc.) depending on the sample and the stain type indicated
by our LIS (ETPAT). The process was fully automatic. It was also possible to select profiles
manually or tweak some settings, but manual parameterization was not used for high-
throughput routine scanning. Routine scanner loading needed to be as easy, fast, and
straightforward as possible for the laboratory technicians. In order to have the automatic
profile feature in addition to automatic tissue detection obtained by an AI algorithm in the
scanner control software, it was very important to scan slides at a suitable resolution.

The second concern regarding scanners was their deployment. Correct dimensioning
is essential to address daily routine activity. Individual scanning speed or capacity is
very important, but less relevant than the deployment of equipment meeting the needs of
the center. In the event of a breakdown or maintenance, the remaining equipment must
be able to compensate. Scanner deployment must also take into account the expected
growth of activity (in our case, 10–15% annually). Scanners must not create bottlenecks
in the workflow, and going fully digital cannot involve a delay in turnaround time. In
our daily routine, scanning occurred right after the slides were dried, and the first WSIs
were available during the morning. The scanners were continuously loaded until the end
of the technician shift for each institution (in some cases 16:00, and 21:00 in others), and

46



Diagnostics 2022, 12, 852

the scanners were supposed to finish scanning overnight, around 2:00–3:00 a.m. in our
institutions producing more slides, thus having time until 8:00 a.m. to accommodate this
expected increase in activity before the pathologists started diagnosing. This workflow
guaranteed no delay in turnaround time, even after adding steps to the conventional
system, by completing slide production and digitation of all slides within the same day.
The remaining advantages of digital pathology should optimize our routines and reduce
diagnostic and reporting times.

Another aspect considered was where to physically locate the scanners. The location
needed to be convenient for technicians within their workflow so that the new steps were
not disruptive. Scanners were located near a stainer or coverslipper or next to a glass slide
archive whenever possible.

Fluorescence workflow was taken into account to try to keep the slides cool and to
preserve them from light.

3.3. Monitors

The need for a high-quality monitor is indisputable, although recommendations for
ideal screen size and resolution have changed over time. Currently, a size between 24 and
32 inches with a high resolution is considered necessary, and the trend is probably upwards.
A larger monitor, such as the ones we used, with a smaller pixel size allows for a greater
field of vision, avoiding displacement through digital preparation. However, this means
that objects appear smaller when the original maximum magnification is reached and that
it requires more bandwidth to stream the image [41–43].

It is also important to take into account color fidelity (the panel can be calibrated),
lighting (no backlight bleed), contrast, pixel size, pixel density, brightness, color space
(sRGB, Adobe RGB), color depth, etc. However, a good monitor is not going to make up for
poor digital preparation. A high-quality monitor is important to guarantee image fidelity
and ergonomics, as well as to avoid visual fatigue for the user (Figure 10).
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3.4. Teaching, Telepathology, and Networking

Many of the planned advantages of this project, such as networking between ICS
hospitals, having a teaching platform, and being able to teleconsult cases with external
pathologists, although not available right now, were binding in the contract and will be
implemented in the following months [44]. The system will have an on-demand function
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to publish studies to an Internet environment with previously anonymized data to allow
the sharing of images.

4. Discussion

The DigiPatICS project, as a transformation of the Catalan Health Institute Net-
work of eight hospitals, represented an important technological, organizational, and func-
tional challenge.

We incorporated digital pathology and artificial intelligence in pathology departments
with an organizational change that modified work dynamics, as seen in the previous para-
graphs. This change responded to current and future challenges with the aim of improving
quality, efficiency, effectiveness, equity, speed, systematization, and reproducibility of
diagnoses. These improvements affected other disciplines and increased patient safety
with the following benefits: improvement of diagnostic conditions by incorporating the
digitalization of preparations with maximum guarantees of traceability while minimizing
material losses and identification errors; and improvement of workflow, productivity, and
turnaround times. Moreover, there was also improvement in working conditions in terms
of ergonomics. The viewers also provided tools for morphometry and quantification of
diagnostic and prognostic biomarkers and facilitated the digital access of preparations from
previous patient examinations without interrupting the diagnostic process [4,7].

In the near future, we will enable access to images for decision making between
pathology departments and other facilities (operating rooms, interventional examination
rooms, transplantation, or clinical committees) using bidirectional communication. Also,
the images will be available for clinical sessions, tumor boards, and pre- and postgraduate
teaching. Being able to store pathology images digitally also reduces the workload for
management of histological preparation files. Ergonomics, workflow improvement, and
convenience of access to historical slides also encourage research.

Successfully exchanging whole slide images and artificial intelligence algorithms be-
tween institutions had the following implications: We improved the reproducibility of
diagnoses, both in terms of interpretation and in the way they are reflected in medical
reports, ensuring system-wide equity and fairness. We encouraged an optimal exchange of
information between hospitals, establishing second-opinion strategies according to clinical
practice guidelines that immediately benefitted patients. Thus, we also encouraged the
movement of patients between hospitals in a coordinated way, avoiding the physical move-
ment of biological material with fewer delays and courier costs and ensuring preservation.
Lastly, we aimed to make more efficient use of the existing critical mass in terms of preva-
lent, complex, infrequent, and difficult diseases and guaranteeing equity between hospitals,
regardless of size and geographical location, with the end-goal of organizing references for
pathologies and territories.

From a technological standpoint, innovation also occurred. We stored all images using
DICOM standards in SIMDCAT, a unified system used by the SISCAT network of entities
to preserve digital medical images, provide digital services and resources based on the
same software architecture, and make digital medical images accessible. This repository
can be used independently by different viewers and is also independent of the scanning
system. The transformation of the laboratory information system and all IT infrastructure
is key in this type of project.

In addition, from the technological point of view, we aimed to achieve an improve-
ment in algorithms for the quantification of immunohistochemical biomarkers and for the
assessment of in situ hybridization. In the future, we hope to develop artificial intelligence
algorithms with machine learning and deep learning in order to recognize patterns and
segment tumor areas. We need to look for tools that help pathologists do their jobs with AI
algorithms developed by our researchers. We produced an image repository large enough
for this aim. Artificial intelligence optimizes the reproducibility of diagnoses. The boom in
artificial intelligence will involve very significant changes in the way pathologists work in
the coming years.
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All things considered, it is important to seek a digital pathology system and, therefore,
a manufacturer and a distributor that adapt to the real needs of each particular case.
In the DigiPatICS project, we looked for a complete holistic solution for our pathology
departments. As shown, it was very difficult to compare products according to data sheets
exclusively, and it was very laborious to define a digital pathology project for all technical
and functional implications.

The growing enthusiasm for digital pathology and the new possibilities artificial
intelligence offers indicate an emerging revolution in pathology that will change our way
of working. However, for broad adoption, an integrative approach of digital pathology
across clinicians, pathologists, laboratory information systems, viewers, hardware, research,
and teaching is imperative. Digital pathology must simplify our workflows and not add
complexity. Vast repositories of diagnosed images will allow us to make great strides in
this direction. With our solution meeting these needs, we hope to inspire other pathologists
and to provide useful guidance for their successful digital transformations.

5. Conclusions

The DigiPatICS project aimed to deploy digital pathology in an integrative, holistic,
and comprehensive way within a network of 8 hospitals, incorporating 168 pathologists
and over 1 million slides each year. After careful planning, implementation was carried
out simultaneously for all the pathologists in each institution. A digital pathology system
needed to be integrated with all health information systems, including electronic medical
records. Teleconsultation, teaching platforms, fluorescence, and cytology were taken into
account. The digital transformation of a pathology department represented a technological,
organizational, and functional challenge. It provided an effective and safe diagnostic tool
with clear benefits for diagnosis quality and patient safety.
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Abstract: Digital pathology (DP) is being deployed in many pathology laboratories, but most reported
experiences refer to public health facilities. In this paper, we report our experience in DP transition at
a high-volume private laboratory, addressing the main challenges in DP implementation in a private
practice setting and how to overcome these issues. We started our implementation in 2020 and we are
currently scanning 100% of our histology cases. Pre-existing sample tracking infrastructure facilitated
this process. We are currently using two high-capacity scanners (Aperio GT450DX) to digitize all
histology slides at 40×. Aperio eSlide Manager WebViewer viewing software is bidirectionally linked
with the laboratory information system. Scanning error rate, during the test phase, was 2.1% (errors
detected by the scanners) and 3.5% (manual quality control). Pre-scanning phase optimizations and
vendor feedback and collaboration were crucial to improve WSI quality and are ongoing processes.
Regarding pathologists’ validation, we followed the Royal College of Pathologists recommendations
for DP implementation (adapted to our practice). Although private sector implementation of DP is
not without its challenges, it will ultimately benefit from DP safety and quality-associated features.
Furthermore, DP deployment lays the foundation for artificial intelligence tools integration, which
will ultimately contribute to improving patient care.

Keywords: digital pathology; WSI; LIS; artificial intelligence; routine diagnosis

1. Introduction

Digital pathology (DP) is gaining momentum worldwide as an innovative technology
associated with improved laboratory efficiency and productivity. A progressive growth
in DP deployment in many laboratories across the globe is taking place, but, in spite of
this, real world data indicate that a fully digital transition has been accomplished in only
a minority of pathology departments [1–3]. Moreover, most of the successful implemen-
tations reported in the literature concern public health laboratories and hospitals [1,4–8].
The reasons for low DP adoption in private practice laboratories are mostly related to the
initial high costs of implementation, necessary workflow adjustments and pathologists’
receptivity. This is counterbalanced with future prospects of laboratory expenses reduc-
tion [8,9], easy remote access to cases and simple web-based case consultation by expert
colleagues and improved data security [10,11]. In addition, already available digital tools
to assist diagnosis (such as easy measuring, pinpointing or annotating relevant areas, etc.)

52



Diagnostics 2022, 12, 529

can facilitate some pathologists’ tasks. Furthermore, the possibility to digitize glass slides
enables the advent of artificial intelligence (AI) tools in pathology, which will be key in
aiding pathologists in analysing and interpreting high-volume data [12]. The use of AI
in pathology has clear potential, as recently demonstrated by the recent US Food and
Drug Administration (FDA) approval of Paige Prostate, an AI-based pathology product
for in vitro diagnostic use in detecting prostate cancer in biopsies [13]. Moreover, state-
of-the-art AI approaches can be used for advanced tasks, including survival and therapy
response prediction, which, if rigorously validated, can enhance clinical decision-making
in the future [14]. Herein, we outline the roadmap of our implementation and address the
specific hurdles of DP deployment in a private setting. We suggest how to overcome these
issues so as to fully benefit from all the advantages and opportunities of DP.

2. Materials and Methods
2.1. Our Laboratory

IMP Diagnostics is composed of two laboratories, a central headquarters, based in
Porto, and a Lisbon facility. It is a high-volume laboratory, having handled, in 2021, around
215,000 cases. These corresponded to 108,478 histology cases, 90,482 cytology samples and
18,085 molecular tests. The histology cases corresponded to a total of 296,814 slides (H&Es
and immunostains). We receive cases not only from Portugal but also from other countries,
namely Angola, Cape Verde Islands and Mozambique. There are currently 20 pathologists
(4 full-time) and two dermatologists (with dermatopathology subspecialisation) working at
our institution. We are a comprehensive private laboratory and not only provide pathology
diagnostic services, but we also have a Research and Development (R&D) department,
currently focusing on computational pathology projects.

2.2. Information Technology Infrastructure and Tracking System

Our Laboratory Information System (LIS) and sample tracking software are from
GestPath (Esblada Medical, Barcelona, Spain). GestPath is a pathological anatomy process
management system that digitizes all workflows, covering all areas and users of the service.
Our lab already had an integrated 2D-barcode based tracking system, since 2016, which is
mandatory for fully DP implementation. This enables adequate sample tracking in every
step of the workflow. Patient requests and information arrive to the laboratory in two ways:
paper request or direct digital link with the clinic/hospital. Regarding the paper requests,
we scan these in order to make them available to consult from the LIS in the near future.

2.3. Imaging, Server and Storage Technology

We have two Aperio GT450DX Scanners by Leica Biosystems. These scanners each
have a 450-slide capacity and enable brightfield applications and digitizing at 40× equiva-
lent resolution (0.26 µm/pixel). The scanning in our laboratory includes standard H&E
and special histochemical and immunohistochemical stains. We do not digitize immunoflu-
orescence or cytology slides. The Image Managing System (IMS) we use is the Aperio
eSlide Manager WebViewer viewing software by Leica Biosystems. Our DP server is a
ProLiant DL380 Gen10, with 2× CPU Intel Xeon Silver 4208 CPU-2.10 GHz and 64 GB
RAM, running Aperio eSlide Manager virtualized using 16 vCPU and 32 GB of RAM. Our
data storage is from NetApp FAS2700 Series (FAS2750) and has 600 TB raw capacity plus 9.7
TB Flash Cache. We have 1 Gigabit per second (Gbps) internal and external client networks
and the connection between the server and our internal network is 10 Gbps. Additionally,
we have acquired a 2× CPU Intel DL Boost, 4× NVIDIA Tesla Volta V100, 384 GB RAM
server for research purposes. For now, we are storing all the digitized slides (as well as the
corresponding physical slides) and we do not apply any compression to the files. Regarding
the glass slides, we follow the Best Practices Manual of Anatomical Pathology (defined
in Portuguese law) and store them for at least 10 years (if malignant) or ≥5 years (other
conditions). All tissue blocks are stored for 10 years at least. To date there are no rules in
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Portuguese law regarding the storage of digital pathology images, but we are expecting to
keep in line with physical storage.

2.4. Pathologists’ Workstations

We currently have eight available workstations in the Porto laboratory. Most pathol-
ogists work part time, so all of them have access to the workstations during their work
period. We mainly have two types of workstations (with some variations):

1. Workstation HP Z2 G5 Tower, Intel i7-10700, 16 GB RAM, 512 GB SSD; Radeon Pro
W5500 graphic card; Monitor HP Z24N G3 24” (for reporting on LIS) and LG Clinical
Monitor LED IPS 27” 16:9 8MP 4K 27HJ712C (for WSI viewing);

2. HP ProOne 600 AIO, Intel Core i5-9500, 8 GB RAM, 256 GB SSD; Intel UHD Graphics
630 graphic card; LCD wide screen FHD IPS 21,5” (for reporting on LIS) and LG
Clinical Monitor LED IPS 27” 16:9 8MP 4K 27HJ712C (for WSI viewing).

2.5. LIS and IMS Integration

To allow for this integration, an initial step of requirements definition and vendor
negotiation was undertaken. Bidirectional communication between LIS and IMS was im-
plemented allowing the continuous exchange of information between the two systems.
Communication between the LIS and the IMS is performed by means of a Health Level 7
messaging protocol. As pathologists are expected to mostly open the case images through
the LIS, icons were created on the LIS screen to open the associated paper requests (if avail-
able), to call up the specific case images on the IMS. The worklist enables the pathologists
to recognize completely digitized cases from only partially digitized ones (there is a specific
icon which appears transparent in pending cases and that turns opaque when the case is
completely digitized). In addition, an option for pathologists to request re-digitization or
physical glass slides retrieval when needed is also being created.

2.6. Quality Control

As a way to test the DP system, before full implementation, we took advantage of
our R&D department’s simultaneous AI project in colorectal cancer samples [15] and
we evaluated the quality of 2963 digitized slides (1664 archive cases and 1299 routine
cases). We divided the errors by those detected by the scanners and those detected in the
subsequent pathology QC check. The quality control (QC) was performed by pathologists
and biomedical scientists first by scanning the entire WSI at low magnification (4–10×) and
then zooming in at 40× in multiple areas.

2.7. Validation

It is recommended that pathologists go through a training and validation process to
ensure adequate transition to DP. This process is not unsubstantial as it requires pathologists
to familiarize themselves with a different workflow, learn to handle new software and
diagnose from an on-screen image. We followed an adapted version of the Royal College
Guidelines, consisting of two phases [16]. As many of our pathologists see more than one
diagnostic area, for phase 1 of the validation process, we opted for a mixed initial archive
validation set (15 to 20 cases) with a representation of the most commonly described pitfalls
in analogue to DP transition [17]. These case sets were elaborated in a personalized manner
to each pathologist or small group of pathologists with 2 to 3 diagnostic areas. Then, the
pathologists started to assess their routine workflow digitally, checking the corresponding
glass slides before case sign-out (validation phase 2). This takes a variable amount of time,
according to each pathologist, as it depends on self-assessment, and it is the pathologist’s
decision when to start to analyse digitized cases only.
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3. Results
3.1. Implementation Track, Challenges and Opportunities

Although we can pinpoint the kick-off of our implementation to the scanners instal-
lation (23 September 2020), the process began much earlier, around 2018, from the initial
idea, to planning the project’s feasibility, raising funds and assembling a team (Figure 1).
Scanner installation was followed by an in-house assessment of our requirements for IT
integration and initial vendor negotiation, with the LIS–IMS integration kick-off starting in
January 2021. The integration process then took around 5 to 6 months to be fully completed.
Concomitantly, an initial test scanning phase was undertaken (digitizing 2963 slides, 44%
archive material and 56% routine), followed by the incremental digitization of the routine
workload. We have opted to begin by scanning single subspecialty areas and then scaling
up to full digitization; around 110,000 histology slides have been digitized so far. The
median scan time during the test phase was 98 s per slide, and the median size file was 1077
megabytes (MB). After the test phase, we optimized fragment placement within the slide
(closer positioning of the fragments enabling narrower areas for digitization) and median
scanning times and file size improved (74 s/slide and 792 MB median file dimension). In
July 2021, we started pathologists’ validation, which is still ongoing, and by January 2022,
we reached 100% histology digitization. Our implementation track is further discussed in
the next section.
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The main challenges encountered in DP implementation in our private practice were
the high initial investment, difficulty to reorganize the lab workflow to include the scan-
ning steps and little time availability of pathologists to engage in the initial learning phase.
Moreover, although DP deployment in the private setting has its challenges, it also shows
opportunities: easier and faster case delivery to the pathologists (which is extremely rele-
vant for us, as we have two Porto buildings, as well as two laboratories in different cities,
and physical slides need to be transported between sites); simpler case sharing between
colleagues located in different places; and enabling working from home (for example, we
have recently been able to hire a pathologist that is located in a different city, since he can
easily work remotely). At this time, we still perform manual case distribution to subspe-
cialized pathologists, but DP can also enable using computer-aided solutions, namely, to
perform automatic case distribution. As we are a private laboratory with a Research and
Development Unit, conducting studies in AI solutions for pathology, implementing DP was
paramount. This may also be the case for other institutions/departments with an interest
in investigation and development in this field. The main challenges and opportunities are
outlined in Table 1 and are further addressed in the Discussion section.
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Table 1. Challenges and opportunities in DP deployment in private practice.

Challenges

■ High investment in initial deployment and development.
■ Necessity for workflow adjustments in the technical laboratory.
■ Time constraints in case turnaround time in the private setting make initial learning phase

more difficult for pathologists.
■ Software and hardware glitches and malfunction are more prone to happen, comparing with

conventional microscopy.

Opportunities

■ Easy and fast delivery of cases to pathologists.
■ Diminishes the need for physical slide transport (namely across different laboratories).
■ Facilitates case sharing between colleagues in different locations.
■ Enables easy case consultation by experts in other locations.
■ Allows working from home and a more flexible schedule.
■ Possibility to hire pathologists at different locations of the laboratory.
■ Essential for AI and DP Research and Development projects.
■ Will enable the use of Computer Aided Solutions in routine work.

3.2. Quality Control

Common errors detected by the scanner included an inability to read the QR code on
the slide and image quality issues and tilted slides (the scanner detects slides incorrectly
inserted in the rack). Rarely, internal errors were signalized when the scanner was unable
to pull out the slide from the rack or insert it back in, causing the scanning process to
stop. During our test phase, 46 out of 2172 WSIs, in which this information was available,
showed an error detected by the scanners (2.1%), with “skipped barcode” being the most
common (25 cases). Regarding the other error types presented by the scanners: 14 “low
image quality” cases (14/46 cases); 3 “tilted slide” (3/46 slides); 2 “no tissue” (2 cases, in
which a minute fragment was not detected by the scanner); and 2 “internal errors”. In the
ensuing manual pathology QC, the most commonly encountered issues were out of focus
areas (which could vary between only focal areas to extensive ones), striping (horizontal
stripes are seen across the image) and stitch error/mismatch (most WSI scanners capture
contiguous images from the glass slide as patches and these sub-images are then put
together to create the WSI. Sometimes this process can result in misalignment between the
image patches or visible striping). In Figure 2, examples of errors detected during pathology
QC are shown: 545 of 2963 WSIs had issues detected by the pathology QC (18.4%), but
the majority of these corresponded to only small out-of-focus areas (440; 80.7%), with
no probable impact in case diagnosis. As such, more relevant issues were seen in 105
slides (3.5% of all the analysed slides). Most of these (70 slides) were cases with apparent
pre-scanning hitches, such as bubbles or folds. So, regarding slides in pristine conditions,
only 35 presented significant errors detected on path QC. An additional detected issue
corresponded to cases of duplicate or non-read slides that were only detected during
pathology QC, with no warning message from the scanner (59 cases, 2%).

3.3. Validation

We started the validation process in July 2021, first with only one pathologist to allow
for team and system verification and adjustments without disrupting routine workflow.
We then scaled the validation process to small groups of pathologists at a time. We decided
to start with the Porto headquarters laboratory, and only after will we start Lisbon’s
pathologists’ validation process. Regarding phase 1 of the validation process, it has taken
longer than predicted: around one to two months. For pathologists who have already
initiated validation, most are in the final stage: routine observation of scanned slides and
confrontation with corresponding glass slides before case sign-out. In our experience, the
most commonly reported difficulties have been difficulty to discriminate H. pylori in gastric
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biopsy samples, nuclear detail assessment and mitosis counting. Granulomas and fungi
detection were also considered potential pitfalls.
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4. Discussion
4.1. Implementation Track, Challenges and Opportunities

In Figure 1, we describe our implementation path. One major issue in private settings
is the ability to fund such a high-stake investment. In our case, as our implementation
is part of a wider innovation project, part of our deployment (circa 70%) was financed
by the European Regional Development Fund through an Operational Programme for
Competitiveness and Internationalization. Applying for external funding may help other
institutions in the process of DP deployment. Although DP is described as cost-efficient,
leading to time savings in workflow and costs reduction [8,18,19], there should be no
doubt that implementing DP represents a significant initial expense, as well as ongoing
costs. Importantly, the possibility of future integration with AI solutions and operating in
a scalable economy will introduce additional value [20,21]. In our case particularly, since
we have laboratories in different locations, further relevant savings are expected due to
the decreased transport of slides/blocks between cities. Regarding our implementation
timeline, we were caught in the COVID pandemic and, although this emphasized the
value of easy remote access to the lab, it has negatively impacted our deployment, and
some phases took longer than anticipated. After the scanners installation, and before
the official IT integration request was made, it was necessary to first define our system
requirements in-house and to negotiate our options with the vendors, which took around 2
to 3 months. The integration process between the LIS and IMS then took approximately
5 to 6 months, being concluded in June 2021. Since the LIS provider did not have prior
experience of integration with our IMS vendor, it had to be customized and built from
scratch. Another issue in this process was the fact that the visualization software was not
fully optimized for the 4 K monitors and, as such, we had to lower monitor resolution
to improve performance. This precluded taking full advantage of the 40× high quality
digitization and it is still being addressed with vendors (it is expected to be fixed in the
new version of the software). As stated by Stathonikos N. et al., the process towards
digital implementation is, at times, a “rocky road” and, as such, some issues during this
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undertaking are to be expected [6]. Importantly, turnaround time for case sign-out in
private practice is highly constrained, so the most difficult step of the process was probably
to initiate full capacity digitization (achieved in January 2022), since we had to adjust our
workflow to limit the delay caused by adding the scanning step to the process. The way to
improve this was to maintain a sustained flow, loading both scanners continuously, and
also to optimize pre-scanning bottleneck steps. We opted for an incremental rollout for DP,
firstly just scanning subspecialty areas and then scaling up to full digitization. This gave
us more time to address possible constraints and difficulties. We also tried to diminish
cases to be digitized overnight, since if a significant error occurred, there would not be a
way to fix it timely. As such, we currently digitize almost all slides during the day, leaving
only small batches, if needed, at night. Each laboratory must estimate its needs before
deciding which equipment to acquire. Being a high-volume facility, we need to scan a large
volume of slides daily (around 1000 slides on average), so our choice of having two high
throughput scanners was crucial. After the initial test phase, we also optimized fragment
placement within the slide (closer positioning enabling narrower areas for digitization) and
the average scanning time and slide file size diminished. Regardless, these values are just
a pointer, and will be different across different labs, as they vary according to the sample
types: slides with more material (surgical specimens or dispersed biopsy fragments in the
slide) will result, as expected, in longer scanning times and heavier file sizes.

4.2. Quality Control

Most articles addressing digital QC report a low scanning error rate, usually around
1–1.5%%, and, at most, less than 5% [1,7,9,22]. However, most studies only report the errors
detected by the scanner and not by visual assessment of WSI image quality. Different labs
report different ways to perform pathology QC: from checking all WSIs [5], to a percentage
of cases, or even not performing a WSI QC, since it takes a significant amount of time for
technicians to execute and can be considered unnecessary if the error rate is negligible [1]. In
our experience, significant focus errors were encountered in 3.5% WSIs during the manual
pathology QC in the test phase. On further review, we realized that many of these slides
had some pre-scanning issues, such as bubbles, folds, excess mounting medium, etc. Thus,
it is extremely important to optimize pre-analytical steps. First of all, to ensure adequate
slide labelling; in our lab the slides are engraved with the QR codes, which leads to less
scanning errors (most of the registered “skipped barcode” cases happened in archive slides,
with stick on labels). Another important step is to ensure the slides have correctly aligned
coverslips and are free of excessive mounting media. We use an automated equipment
(HistoCore SPECTRA ST, Leica Biosystems) to obtain consistent staining and coverslipping.
Regardless, sometimes we still have small bubbles appearing or excess mounting medium
and addressing this issue has been a continuous process with the vendor. Some authors
advocate the use of film coverslippers to minimize these problems [7,20]. Other important
aspects to tackle are to make sure slides are clean by waiting until slides are fully dry before
loading them into the scanner, and to ensure that slides are placed flat into the scanner
rack. Regarding duplicate and non-read cases (which occurred in 2% of analysed cases), it
was found to be a random event, in which the scanner did not recognize a rack and would
process it twice (duplicating the slides) or, alternatively, would not scan it. This happened in
two test batches and has occurred again, randomly, and, unfortunately, not so uncommonly,
during the routine implementation phase, requiring multiple technical interventions by the
vendor until the problem was finally solved. Lastly, we would recommend choosing the
scanner location wisely. For a lean streamline, locate the scanners in a way that allows for a
continuous workflow within the technical laboratory. Additionally, make sure scanners
are placed on a flat surface, with as little vibration as possible. A missed issue when
we started implementing DP in our laboratory was that one of the scanners was placed
between two joint tables, causing some instability and probably contributing to scanning
disturbances. After the initial test phase, we decided to register all scanner detected errors
and to perform occasional pathology QC in a percentage of cases (about 5–10% of the
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daily workflow, randomly selected), as a way to address any issues and to give feedback
to vendors if significant errors happened. Despite this, we continue to adjust our quality
control necessities as implementation proceeds, as it requires a balance between necessity
and time availability to perform it. Additionally, our LIS system will allow the pathologists
to request the re-digitization of any slide they consider low quality. The analysis of these
reported cases will give us a best estimation of the true impact of scanning errors on
diagnosis. We expect to be in line with other studies that state that re-scanning requests are
infrequent and do not impact global turnaround time [22], but we must emphasize that the
initial deployment phase has shown more quality issues than anticipated.

4.3. Validation

As previously stated, phase 1 of the validation process has taken pathologists longer
than predicted: around one to two months. The fact that many pathologists work in the
laboratory only part time, alongside a significant workload, made it difficult to evaluate
the archive slide boxes and it was carried out over a gradual period of time. In fact, one of
the biggest issues in deploying DP in a private laboratory is that many pathologists work
only part time and the turnaround time for case sign-out is highly constrained. So, during
the adjustment period, when a two-track observation (analogue and digital) is necessary,
the pathologist’s efficiency can be negatively impacted (having to see the same case twice).
This is a practical handicap of DP implementation in a private setting. One way to ease
this during phase 2 of validation was that pathologists only had to assess a percentage of
daily workload in both digital and glass slides, at their own pace. Additionally, realizing
the added value DP can represent once it is fully implemented (such as possibility to
work remotely, simplicity in second opinion requests, available digital tools to assist
diagnosis and, in the near future, AI driven solutions) has facilitated the pathologists’
engagement to this initial validation phase. Furthermore, many pathologists report an easy
and relatively fast learning curve, and, as such, the two-track period can be shortened and
cause less disruption [23]. Even so, we have decided to maintain the parallel analogue and
digital workflows for a period of about one year, in accordance with other implementation
reports [4–6], to allow a smooth transition to routine use of DP. Moreover, as advised in
the Royal College Guidelines [16,17], it will be up to each pathologist to decide when to
abandon glass slides in favour of WSI visualization. Of note is that the two-track workflow,
although allowing the pathologist to gain more confidence in DP, precludes all users from
taking full advantage of DP benefits, since there is no immediate reduction in time spent and
workload related to assembling and delivering glass slides to the pathologists [24]. Other
laboratories must be aware of this when deciding their validation procedure. As previously
stated, the most common reported difficulties have been difficulty to discriminate H. pylori
in gastric biopsies (even when using immunostains, since the focus may be suboptimal
in the surface area where most of the bacilli are observed); assessing nuclear detail and
counting mitosis. Granulomas and fungi were also more difficult to see on digital versus
conventional slides. These findings are in line with other literature reports [5,6,17]. We
expect further practice and plan additional improvements to the visualization software that
will diminish these issues, as it is currently necessary to check the corresponding physical
slides in doubtful cases. Furthermore, future coupled computer-aided solutions have the
potential to be noninferior or even superior to conventional microscopy regarding some of
these issues: automatic counting mitosis or assessment of the presence of microorganisms,
for example, could potentially be performed by robust AI algorithms, solving these current
challenges.

5. Conclusions

We are currently digitizing 100% of our histology slides and pathologists are per-
forming the validation process for routine diagnosis using WSIs. DP implementation in a
private setting is not without its challenges and has specific difficulties that are important
to draw attention to, namely the high costs of its deployment and the pathologists’ low
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time availability to engage in the initial learning phase. Scanning device selection should
be based on planned use and budget and care should also be given to LIS–WSI integration
and archive requirements. Despite this, we believe the benefits of DP in the long run will
far exceed the initial handicaps in its deployment. DP provides lower costs associated
with slides assembly, retrieval and transport; facilitates remote work and case consultation
(enabling, for example, to hire pathologists from distant locations); and the use of digital
tools to ease many diagnostic tasks. DP’s potential for improvement in patient safety, work
quality and efficiency is, in itself, a sufficient argument for its widespread implementa-
tion [25]. The European Society of Digital and Integrative Pathology (ESDIP) has recently
provided consensus-based recommendations for the implementation of a DP workflow for
the Pathology Laboratory in a practical document that can further assist other practices to
successfully deploy DP in Europe [26]. Additionally, future implementation of AI-based
solutions will provide many advantages over traditional pathology, namely generating
highly precise and consistent readouts that can assist pathologists in their daily decisions.
After all, is there any pathologist who will not be happy to automate PD-L1 counting? We
hope that DP implementation is seen in a holistic approach, as described by Betmouni S. [2],
considering not only technology and pathology laboratories, but also the broad healthcare
team and patients as potential beneficiaries.
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Abstract: Building on a growing number of pathology labs having a full digital infrastructure
for pathology diagnostics, there is a growing interest in implementing artificial intelligence (AI)
algorithms for diagnostic purposes. This article provides an overview of the current status of the
digital pathology infrastructure at the University Medical Center Utrecht and our roadmap for
implementing AI algorithms in the next few years.
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1. Background

In 2007, we started with the first implementation of a digital pathology system, initially
by building up a digital archive for quick revision of cases for and in support of multidisci-
plinary team meetings, research, and teaching [1]. For scanning roughly 137,000 histological
stains and 30,000 immunohistochemical (IHC) stains annually, at that time, we acquired
three Aperio ScanScope XT scanners that provided the desired capacity of 700 slides per
day. Images acquired at 20× were stored in proprietary pyramid multiresolution.svs file
format in a resolution of 0.50 µm/pixel. After the diagnostic process was finished in the
traditional microscopic way, slides were scanned. At the time, no quality control of the
whole slide images (WSI) was performed. Only scanning failures that were seen by chance
were manually corrected. Making use of the vendor’s application programming interface
(API) and software development kit (SDK), we were able to integrate with our pathology
reporting system and laboratory information system.

As to storage, the first iteration was a hierarchical storage management solution (Sun
Microsystems, Santa Clara, CA, USA). Initially, all images were stored on fiber channel
hard disk drives for rapid access and also copied to a scalable tape library in a buffered
way. This storage hardware remained in place until migration to an all object based storage
disk system. Because of performance problems of the first iteration of the all disk storage
system [1], we migrated to the new hospital-wide disk-based bulk storage system with a
superb performance.

The first generation of our digital pathology system started to show signs of aging
by the end of 2014. Scanning capacity was no longer sufficient because of our growing
practice, so we decided to go for a completely new setup to enable fully digital diagnostics,
which was implemented in 2015. It comprised three high throughput Hamamatsu XR
scanners and one Hamamatsu RS scanner (Hamamatsu City, Japan) for fluorescence and
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big slides, and the Sectra Picture Archiving Communication System (PACS) (Sectra AB,
Linkoping, Sweden).

The system has performed adequately for 6 years, signing out >95% of our histology
cases digitally. Occasionally, we revert back to slides for pediatric pathology, mitoses,
microorganisms recognition, birefringence assessments, and hematopathology. We do
cytology still with the microscope because of a lack of scanning capacity and storage for
Z-stack scanning, since this would result in a lack of confidence in digital diagnostics with
current image quality. We have seen several important developments in the PACS, such
as the implementation of tools to support mitoses and Ki67 counting, a bidirectional link
between our reporting system and the PACS, placeholder thumbnails for stains requested
and for lacking images. Also, patient safety increased by magnification-sensitive tracking of
our movements through the slides to preclude missing tissue parts and flagging thumbnails
of unreviewed slides.

2. Current Setup and Activities

We have recently renewed the contracts with Sectra and Visiopharm (the reseller of
Hamamatsu in The Netherlands) and have migrated to a new single pathology reporting
system with LIMS (Delphic AP, Sysmex, New Zealand). In 2022, we expect to incorporate
two regional pathology laboratories into our digital pathology infrastructure. The recent
versions of Sectra PACS and Delphic AP are ready to function as a multicenter digital
pathology workflow system, which will allow us to work as one virtual team of fully
superspecialized pathologists over three locations. In addition, we will be installing four
NanoZoomer S360 Hamamatsu high throughput scanners and one NanoZoomer S60
Hamamatsu scanner for fluorescence and whole mounts.

In 2022, dedicated cytology whole slide scanners are expected to enter the market,
which we hope to evaluate and purchase to make the jump to digital cytology, without
seriously impacting storage.

3. AI Implementation: Current Status and Road Map

At UMC Utrecht, we aspire to implement AI as much and as soon as possible, thereby
unleashing the full potential of digital pathology, with benefits for both patients and
pathologists. Various studies on AI-implementation, both prospective and retrospective,
are currently ongoing within the UMC Utrecht. Examples are the CONFIDENT trials, which
will be discussed below. Several algorithms are available that have been developed through
collaborations with the Radboud University in Nijmegen and the Technical University
of Eindhoven, The Netherlands, that are ready for further testing and validation in daily
practice [2–4]. Besides, we work with several companies bringing AI algorithms to the
market on implementation. We expect to make pathology diagnostics more objective, faster
and intellectually more satisfying, while more importantly our patients will also benefit
from the best tissue diagnostics that forms the basis for personalized treatment.

Pathology has always been a medical specialty that was in the frontline of automa-
tion (e.g., electronic reporting, speech recognition, image analysis, structured reporting).
Although lagged several decades behind radiology in going digital, this was largely due
to lack of affordable and fast scanners and infrastructure to handle big image files. There
is at this moment a big wave in pathology to catch up with going digital, and we expect
AI to be adopted fairly organically. Likely, in view of our inclination towards automation
and use of computers, pathologists will easily learn to use and interpret AI interactively,
so probably not much education will be necessary. This does not take away that using AI
should be user-friendly and integrated into PACS systems [5].

Our Sectra PACS includes an algorithm for assessing the percentage of Ki67 positive
nuclei, which is based on AI. Further, we have integrated an in-house developed AI
algorithm for recognizing mitotic figures. In an interactive way, an area of interest can
within the PACS be demarcated on the WSI after which the algorithm finds mitoses and
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mitosis-like objects and displays them in galleries. Objects can easily be moved between
these galleries to arrive at a final AI-assisted mitotic count (Figure 1).
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Figure 1. In-house developed AI algorithm for mitotic figures recognition. (A) Selecting a region
of interest. (B,C) Interactive Mitosis Detector, with gallery (B) and without gallery (C). The detec-
tor highlights those areas suspicious for mitosis with orange, those negative for mitosis as green.
(D) Close-up of mitotic figure (mitotic figure selected by the pointer on the right in the gallery),
recognized by the algorithm.

At this moment, we are evaluating Qualitopix, a new stain quality control algorithm
from Visiopharm, and Derm-AI, a Proscia algorithm for workflow stratification of der-
matopathology cases. Within the framework of our new contract with Visiopharm, we
will soon implement their breast cancer AI package, consisting of algorithms for ER, PR,
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HER2, Ki67, and lymph node metastases. We aim to run these algorithms entirely in the
background so results will be ready when the pathologist opens up the case.

4. Developing AI-Implementation Studies

AI algorithms might be implemented in various ways, depending on the algorithm.
Some algorithms can be used solely for workflow optimization; for example, for identifying
cases that do not need additional diagnostics, or assigning difficult cases to expert patholo-
gists [6]. It might also improve tumor grading consistency [2,7,8]. Whereas currently most
AI validating studies are designed retrospectively, useful prospective trials are currently
lacking [9].

The design of prospective studies is based on the interests of the many parties involved
in AI-implementation in daily clinical practice. First, patients need an accurate diagnosis.
For example, no tumor cells may be missed, and tumors must be graded accurately and
consistently. While the former is currently achieved in daily clinical practice by using
IHC stainings in all negative cases, the latter is not. Significant inter- and intra-laboratory
variation in grading of various tumor types (colorectal, breast, prostate) has been observed
nationwide [10–14]. As grade can be decisive in treatment choice, the pathologist is pivotal
in guiding treatment of cancer patients, and consistency is warranted [15,16]. [Flach, under
review] Here, AI algorithms may help pathologists grade more accurately and consistently,
and might even serve as a second ‘reviewer’.

From a pathologist’s point of view, in a field with an ever growing workload, searching,
for example, for tumor metastases in (sentinel) lymph nodes is a time-consuming task. It
requires meticulous assessment of slides, in general with an overall low yield. Therefore,
looking diligently may not be compelling, and pathologists may be prone to use IHC
stainings in most, if not all cases, thereby putting pressure on the budget of the pathology
department. AI assistance of pathologists on this task may not only save on IHC, but it
may lower pathologists’ workload, as it has been shown that AI-assisted grading is less
time consuming than traditional grading [8].

From the department’s financial point of view, costs of the growing number of IHC
stainings sometimes even exceed the compensation for assessment of the complete resec-
tion specimen. Calculations from our hospital showed, for example, that we spent over
€13,000 to detect nine cases of lymph node metastases in 95 sentinel nodes from 68 breast
cancer patients. The majority of these (6/9) were not even deemed clinically relevant by
medical oncologists, who consider isolated tumor cells in patients without neoadjuvant
treatment irrelevant in relation to treatment strategy [17].

In cervical cancer, IHC identified only three patients with micrometastasis and five
patients with isolated tumor cells undetected with H&E staining in 630 sentinel nodes from
234 patients. To achieve this, 3791 slides were stained with IHC at an estimated additional
cost of €94,775. In 1.4% (95% CI 0.3–4.3%) of patients, routine use of IHC adjusted the
adjuvant treatment [18].

For prostate cancer, performing IHC staining as standard of care is not necessarily
advised when carcinoma is obviously present or absent [19]. However, it does help pathol-
ogists identify small foci, the extent of the tumor and can assist in tumor grading, which
is critical in prostate cancer risk stratification and decision-making for performing pelvic
lymph node dissection [20]. For this purpose, we spent €22,000 on triple p63/CK5/AMACR
IHC staining in a 3-month period in 27 cases.

This financial point of view has to be considered when assessing the viability of
business cases for digital pathology and AI implementation. A complex matter, as digital
pathology is often seen as an ‘add-on’, as it does not replace the physical slides, which
also need to be kept and stored, at least for now. AI, however, may tip this balance to
the side of benefit as it has the potential to improve cancer grading and reproducibility,
thereby improving patient treatment and potentially outcome, while lowering costs. This is
specifically promising, as the current trend in oncology seems to be that improving patient
care may only be realized at higher costs [21].
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Lastly, from a legal perspective, algorithms for clinical use must be certified (FDA-
approved or IVDR-approved). Currently, the first algorithms are reaching this stage,
enabling pathologists to implement and evaluate them in prospective trials (see also below).
Nevertheless, it was presumed too big a step to implement them without a safety net (for
example, IHC-stainings) in the first implementation phase.

Another imperative ethical point to raise, is that it is currently unimaginable that
AI-algorithms will diagnose cases unsupervised or communicate results without human
input. Therefore, previous studies evaluating and comparing independent AI-algorithms
to pathologists may seem nice, but situations simulated in these studies are highly unlikely
to be implemented in current daily clinical practice. Therefore, we strongly feel that the
aim is augmented intelligence, rather than AI independently, since pathologists and AI
together have been shown to outperform either one alone [5,8,22]. For example, it has
been shown that scoring of HER2 IHC staining intensity (which is relevant for treatment
decision in breast cancer patients) is done more accurately by a pathologist using an AI
assisted digital microscope tool compared to a non-AI assisted pathologist [23]. This is
also illustrated by an international survey amongst 718 pathologists in dermatopathology,
that showed that only 6% of the pathologists feared that the human pathologist would be
replaced by AI in the foreseeable future. The vast majority agreed that AI will improve
dermatopathology, while most of these pathologists did not have any experience with AI
in their daily practice [24].

Overall, the hope is that AI will improve the quality of diagnosis, reduce the workload
of pathologist’s performing these diagnostics, and reduce costs of the entire diagnostic
process. However, as pointed out by Van der Laak et al., the hope is still to be distinguished
from the hype in prospective trials [9].

5. Challenges in Trial Designs

A major challenge in prospective implementation trials is implementing a reference
standard in the workflow. Here, it is essential to distinguish assessing biomarkers or other
factors, for which currently no reference standard is implemented (like histologic grading
or scoring percentages of cells), from tumor detection, for which a reference standard is in
place, such as using IHC stainings in all negative cases [17,19].

6. Confident Trials

At the UMC Utrecht, we are currently running two prospective trials on clinical
implementation of AI-assisted tumor detection in digital pathology (CONFIDENT). The
first is the CONFIDENT B-trial which evaluates the detection of sentinel lymph node
metastases in breast cancer. The second is the CONFIDENT-P trial, which evaluates tumor
detection in prostate cancer. These studies aim to safely introduce an AI-assisted workflow,
and should be easy to use for other algorithms in pathology practice as well. Within
these prospective CONFIDENT trials, we investigate the value of AI-assistance in tumor
detection in pathology specimens in the current pathology workflow.

7. Interactive vs. Background Processing

There are basically two forms of deployment for AI algorithms in clinical practice: on-
demand and background batch analysis. The former approach is interactive, fulfilling the
need of the pathologist when encountering a situation during diagnostics (Figure 2). The
advantage of this approach is that analysis can be limited to relevant areas in relevant slides
selected by the pathologist. The disadvantage is that, depending on the model, runtime
might be long, especially if the selected area is too large. Also, the biased nature of interac-
tively selecting certain areas in specific slides (e.g., for mitoses counting) can be considered
a disadvantage. Therefore, running algorithms in the background that process full WSI may
be the default approach for deploying AI models in practice (Figure 3). It is imperative that
results are ready by the time the pathologist opens up the case. However, implementing
such automatic processes is not trivial from a technical and functional perspective.
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In order to trigger an AI system to start analysis on a WSI, it will have to either have
some well-defined criteria to analyze a case, which means that well defined metadata of a
case or advanced text mining of grossing description will be used to start the analysis. In
absence of such information, the alternative is to perform the analysis on all possible WSI
that might fit a broader selection criteria to ensure that the pathologist has access to the
results. That would require an extensive hardware infrastructure to ensure that there is no
latency between the time the case is ready and the time that the results are ready.

8. Hardware Issues

Running AI algorithms requires significant computing, especially when processing
entire WSI, which are easily 10 Gigapixels. Installing and maintaining a local GPU server
cluster for AI purposes at a pathology department is costly and, most of the time, an overkill
since the GPU capacity will need to accommodate peak loads. This means that using an
existing hospital GPU cluster or a cloud solution would be necessary. However, external
cloud solutions can be a security and privacy concern. Analyzing WSI entails transferring
data outside of the hospital firewall which would either have to be anonymized prior
to export or the connection to cloud solution would have to be over a VPN. In addition,

67



Diagnostics 2022, 12, 1042

the security issues related to anonymizing and exporting images outside the firewall and
importing AI algorithm output are not trivial, but can probably be solved.

9. Certification Issues

Historically, healthcare may not be in the frontline of implementing technology tools
that have already transformed other areas of commerce and daily life [25]. One factor,
among others, that hampers the implementation of new technology tools in health care is
the regulation that accompanies medical products. With the promising developments in
AI software technology that will assist pathologists in making a more accurate diagnosis,
pathologists will in the future increasingly depend on software technology to make their
diagnosis. Implementing such AI software tools in clinical practice will improve diagnosis
accuracy and therapy response prediction. Therefore, the development and implementation
of these tools must not be hampered by unnecessary regulation.

However, these software tools will process sensitive personal medical data, and
therefore regulation on the use of this data is necessary to prevent unconsented and
secondary use of personal data. In May 2021, the new European regulation on software
as a medical device (Medical Device Regulation, MDR) came into effect. This regulation
changed the definition of software as a medical device and the risk classification of software.
AI software tools that will help pathologists make a more accurate diagnosis now fall in a
higher risk score and must be assessed by an officially appointed organization [26]. The
MDR aims to improve the regulation and safety of the software used for diagnosing and
treating patients. The GDPR (General Data Protection Regulation) from the European
Union reduces the obligations regarding administrative formalities before accessing health
data. They aim to make data actors more accountable rather than restricting their ability
to develop new tools in the first place [27]. The FDA also proposes that the regulation
of software development and design for health care needs a different approach than
the traditional regulation of hardware-based medical devices [25]. They have therefore
proposed a software pre-certification program where they assess organizations that perform
high-quality software design, testing, and monitoring. The FDA program aims to develop
effective medical device software, drive faster innovation, and enable timely patient access
while keeping pragmatic and least burdensome regulatory oversight to verify the continued
safety and performance of software tools in the real world [25]. To date, several companies
have obtained CE-IVD, IVDR, or FDA approval of their algorithms. For locally developed
algorithms, thorough local validation will probably be required in many countries.

10. Deployment of Models in Clinical Practice

The development and training of AI models that can reach decent performance has
become increasingly easier in practice thanks to frameworks released by major companies
like Google and Facebook (PyTorch and Tensorflow) [28,29] as well as libraries like FastAI,
which offer tools to rapidly train new models in a matter of days [30]. However, despite
the rapid development tools and resources available, the deployment of such models have
proven much more challenging in practice. Apart from the regulatory framework needed
to validate a model for clinical practice, the effort required to develop a model into a
full-fledged product is a multiple of the effort to train the model. In order to effectively
deploy a model in production, there has to be:

• The necessary infrastructure to retrain the model if and when performance drops.
• Records of data versions used with every version of the model released.
• Monitoring infrastructure.
• Serving infrastructure—infrastructure needed to deploy the model.

The AI field is rapidly developing, which means that the technology developed
around it is also developing with the same rate. Top-performing models dating from
2 years ago, will be outdated today and will have suffered from model drift. Computer
vision models trained on a first generation platform (for example Tensorflow v1), would be
almost impossible to port to the latest version without redeveloping/rewriting. That rapid
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development, which has served as a boom for AI proliferation, has brought along long
standing issues found in the rapid software development community namely technical
debt [31].

Another issue in deploying AI-models in practice, is trust of the application of AI
models. Recently, a lot of discussion and efforts have gone into the topic of explainable AI
for medical image analysis. Explainability methods are seen as a tool that can enable or
increase the transparency of AI models thus addressing some of the ethical and regulatory
concerns of their use [32]. Ghassemi et al. have recently expressed scepticism about
state-of-the-art explainability methods and argued that more effort should be put toward
proper validation of AI methodology [33]. We generally agree with this sentiment and
see explainability methods as just another tool in the toolbox of AI development and
validation methods.

11. The Business Case

For patients, implementation of AI algorithms might result in an improved diagnostic
process. However, Ho et al. already stated that digital pathology is not likely to be
implemented, unless a viable business case is presented, as digital pathology diagnostics
workflow comes with significant costs [34]. Next to high acquisition costs, also additional
histopathology, IT personnel and costs for integrating with other medical devices and
system raise costs, which laboratories cannot easily afford without external help, especially
when considering future developments outlined below [34]. Ho et al. found that improving
speed and quality of pathology diagnostics, which is necessary for digital pathology,
comes with significant savings elsewhere in the healthcare system. The same holds for AI
implementation. However, Ho et al. made their financial projections for digital pathology
implementation in an integrated health care organization, serving as both a health care
provider and the payor [34]. In organizations where this is not the case, it is challenging
to turn budget silos into communicating vessels, so it will mostly be the pathology labs
themselves that need to build a business case for AI implementation. Bluntly, time savings
will likely make pathologists go home earlier, but those will rarely be on such a scale
that fewer pathologist FTEs will suffice. Therefore, tangible, straightforward cost savings
associated with some key AI algorithms will have to pave the budgetary way for larger-
scale AI implementation. For instance, the Visiopharm company claims that their HER2
IHC algorithm reduces the 2+ category, comprising about 20% of breast cancer cases
and for which expensive reflex FISH testing is indicated, by some 75%, which would
amount to saving €3600 per 100 random breast cancer cases. Second, a prostate cancer
algorithm facilitating finding cancer spots may obviate the need for the expensive triple
p63/CK5/AMACR IHC staining, besides saving much time with regard to measurements
and grading. Third, an AI algorithm that finds micro metastases and isolated tumor cells
in sentinel nodes may obviate the need for cytokeratin IHC on step sections, saving up to
€100 per sentinel node.

12. AI 2.0

With our experiences in implementing a fully digital pathology workflow, including
the first AI algorithms used in daily practice, where do we see AI in pathology going in
the future? Considering the current rise of genetic and proteomic methods in pathology
diagnostics and the development of spatially-resolved molecular imaging modalities, i.e.,
spatial transcriptomics and spatial proteomics, it becomes evident that advanced machine
learning algorithms will play a key role in making sense of the ever growing amount of data.
Especially in the context of precision medicine in a personalized care setting, leveraging
on the full potential of all data available is of the utmost importance to select the proper
treatment for each patient and prevent unwanted treatments, thus saving overtreatment
for the patient, and costs for society. Again, as detailed in the example of the introduction
of digital pathology and AI in the UMC Utrecht, careful and stepwise introduction of
algorithms will be needed in the future for both quality control and financial reasons.
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The following years we will see a rise in research that will try to stratify patient and
treatment options based on models that include classical histology, IHC, DNA- and RNA
sequencing in bulk, and spatially-resolved molecular imaging methods. Models that will
be generated will rely on tabular data (sequencing) and potentially multiscale image data,
making an integration and assessment of classifiers without machine learning algorithms
unlikely [35,36].

However, as with digital pathology itself, the basis will initially be a well-organized
data infrastructure/repository for tabular and image data on which the algorithms can
work. In a modest step towards digital pathology 2.0/AI 2.0 at the UMC Utrecht, we are
working towards integrating (spatially)-resolved proteomics into our diagnostics routines.
We use matrix assisted laser desorption/ionization-based mass spectrometry imaging
(MALDI-MSI) in various research projects using patient tissues. MALDI-MSI can provide a
molecular profile of thousands of molecules at each image pixel without the loss of tissue
architecture. This opens the way, for example, to assess molecular tumor heterogeneity
or to look at amyloid composition together with classical histology on the same image,
by carefully selecting peaks from the measured mass spectra [37]. Integrating these data
into our digital pathology environment/PACS system seems natural, as pathologists are
already used to annotating different regions for diagnostics. Eventually, AI algorithms will
annotate regions of interest and, from these regions, pick peaks on the mass spectrum to
assess molecular composition. As this example shows, there are many hows, buts, and
ifs associated with such projects, ranging from file/data framework issues to acceptance
by pathologists [36]. However, as our “road-trip” from fully glass-based pathology to
“fully-digital” pathology at the UMC Utrecht shows, early investment into the future
eventually pays off, and we believe that multiscale integration of molecular and image
data—pathomics—is the future of pathology.
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Abstract: Diagnostic devices, methodological approaches, and traditional constructs of clinical
pathology practice, cultivated throughout centuries, have transformed radically in the wake of
explosive technological growth and other, e.g., environmental, catalysts of change. Ushered into
the fray of modern laboratory medicine are digital imaging devices and machine-learning (ML)
software fashioned to mitigate challenges, e.g., practitioner shortage while preparing clinicians
for emerging interconnectivity of environments and diagnostic information in the era of big data.
As computer vision shapes new constructs for the modern world and intertwines with clinical
medicine, cultivating clarity of our new terrain through examining the trajectory and current scope of
computational pathology and its pertinence to clinical practice is vital. Through review of numerous
studies, we find developmental efforts for ML migrating from research to standardized clinical
frameworks while overcoming obstacles that have formerly curtailed adoption of these tools, e.g.,
generalizability, data availability, and user-friendly accessibility. Groundbreaking validatory efforts
have facilitated the clinical deployment of ML tools demonstrating the capacity to effectively aid
in distinguishing tumor subtype and grade, classify early vs. advanced cancer stages, and assist in
quality control and primary diagnosis applications. Case studies have demonstrated the benefits of
streamlined, digitized workflows for practitioners alleviated by decreased burdens.

Keywords: computer vision; digital pathology; whole slide imaging (WSI); artificial intelligence (AI);
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1. Introduction

Nearly 2000 years have passed since Emperor Marcus Aurelius sought reinforcement
for a society decimated by the first wave of the deadliest pandemic to impact ancient
Rome. The same factors lauded as strengths for the seemingly impenetrable empire, e.g.,
expansive trade networks and large, crowded populations, were those which ultimately
led to its demise. These precarious elements had long lingered as a silent plague within
a territorial superpower fully primed to combat the fiercest of invaders, yet one which
succumbed to those overlooked behind its volcanic rock fortifications. A hidden tinderbox
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of similar proportion was ignited to plume within many pathology departments upon
inception of the 2019 coronavirus (COVID-19) pandemic [1]. New safety and practice
restrictions following the wake of the pathogen’s propagation increased the demand for
digital pathology (DP) solutions and remote services. Issues that had lingered throughout
many departments were fervently exacerbated, e.g., specialist deficits and demands of
shorter turnaround times (TAT) amidst increasing caseloads and complexity of pathology
reports for aging patient demographics harboring higher disease incidence. New solutions
were necessitated upon the exhumation of long withstanding problems [2,3]. Diagnostic
surgical pathology remains the ‘gold standard’ for cancer diagnosis despite substantial
inter-observer variability from human error, e.g., bias and fatigue, leading to misdiagnosis
of challenging histological patterns and missed identification of small quantities of cancer
within biopsy material. Digital (whole slide) imaging, now synonymous with DP, has
achieved significant milestones within the last 20 years, with whole slide image (WSI)
scanning devices evolving in tandem with challenges pervasive throughout the modern
pathology landscape. Batch-scanning and continuous or random-access processing capa-
bilities enabling the concurrent uploading of glass slides during the image capture and
digitization processes of others have improved laboratory efficiency [4,5]. Many WSI de-
vices can now handle an array of mediums cast on slides of varying dimensions, with single
slide load capacity of some devices reaching up to 1000 [2]. WSI scanning cameras and
image sensors deliver superior sensitivity, resolution, field-of-view (FOV), and frame rates
for optimal capture and digitization of glass slide specimens [2]. Newer scientific CMOS
(sCMOS) sensors are featured in many current WSI scanning devices, often as adjunctive to
multiple CCD and CMOS sensors for optimization of image quality.

The Ohio State University (Columbus, OH, USA) was among the first academic institu-
tions to invest in DP devices initially purposed for research and archival, i.e., retrospective
scanning of oncology cases [6]. Complete transition to a fully integrated digitized workflow
for primary diagnosis followed one year after initial steps toward DP adoption in 2016
(Figure 1).

Beneficial returns from the preemptive digital transformation were evidenced through-
out the first wave of the coronavirus pandemic in 2020, during which the department was
well positioned to continue educational and research activities with minimal disruption [6].
Clinical services persisted with relative fluidity with digital workflow emerging as a pillar
of stability during an otherwise catastrophic downtime event for many. Temporary remote
sign-out authority issued by the Centers for Medicare and Medicaid Services (CMS) empha-
sized a growing acknowledgment of the utility that digital practice may afford during such
times. The substantial percentage of pathologists (71.4%) who were already trained and ap-
proved for on-site WSI for primary diagnosis at the department increased to 90.6% during
the pandemic (reflecting a conglomerate percentage of pathologists using WSI exclusively
for primary diagnosis and those using WSI in conjunction with glass slides). Diagnostic
quality assurance (QA) evaluation noted little discrepancy pertaining to the percentage
of major and minor diagnostic errors accrued prior to and following the viral catalyza-
tion of digital workflow. Intraoperative consultation services also remained considerably
unaffected from digital deployment. Real-time rerouting of slides to available patholo-
gists in different locations increased staffing flexibility. Loosening of work-from-home
restrictions including sign-out fostered greater pathologist latitude. Reduction in in-person
interactions and the number of individuals handling case materials served to reduce viral
transmission while also reducing glass slide contamination potential. An aging population
of pathologists at the department, reflective of US specialist demographics, reported greater
satisfaction from improved office ergonomics following DP implementation, e.g., forward
screen-viewing fostered a more natural reading position in comparison to microscopy
techniques requiring bending movements [3]. Lastly, WSI viewing software equipped with
tools for WSI annotation, precision measurements, and side-to-side WSI viewing programs
with virtual magnification and annotation tools enabled pathologists to effectively collabo-
rate via image sharing and real-time slide examination mimicking laboratory conditions
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despite working from remote locations. WSI viewing software also facilitated comparison
of H&E images to corresponding immunohistochemistry (IHC) or special stained slides,
further aiding the ease and efficiency of intradepartmental consultations.

Diagnostics 2022, 12, x FOR PEER REVIEW 2 of 26 
 

 

territorial superpower fully primed to combat the fiercest of invaders, yet one which suc-
cumbed to those overlooked behind its volcanic rock fortifications. A hidden tinderbox of 
similar proportion was ignited to plume within many pathology departments upon in-
ception of the 2019 coronavirus (COVID-19) pandemic [1]. New safety and practice re-
strictions following the wake of the pathogen’s propagation increased the demand for 
digital pathology (DP) solutions and remote services. Issues that had lingered throughout 
many departments were fervently exacerbated, e.g., specialist deficits and demands of 
shorter turnaround times (TAT) amidst increasing caseloads and complexity of pathology 
reports for aging patient demographics harboring higher disease incidence. New solu-
tions were necessitated upon the exhumation of long withstanding problems [2,3]. Diag-
nostic surgical pathology remains the ‘gold standard’ for cancer diagnosis despite sub-
stantial inter-observer variability from human error, e.g., bias and fatigue, leading to mis-
diagnosis of challenging histological patterns and missed identification of small quantities 
of cancer within biopsy material. Digital (whole slide) imaging, now synonymous with 
DP, has achieved significant milestones within the last 20 years, with whole slide image 
(WSI) scanning devices evolving in tandem with challenges pervasive throughout the 
modern pathology landscape. Batch-scanning and continuous or random-access pro-
cessing capabilities enabling the concurrent uploading of glass slides during the image 
capture and digitization processes of others have improved laboratory efficiency [4,5]. 
Many WSI devices can now handle an array of mediums cast on slides of varying dimen-
sions, with single slide load capacity of some devices reaching up to 1000 [2]. WSI scan-
ning cameras and image sensors deliver superior sensitivity, resolution, field-of-view 
(FOV), and frame rates for optimal capture and digitization of glass slide specimens [2]. 
Newer scientific CMOS (sCMOS) sensors are featured in many current WSI scanning de-
vices, often as adjunctive to multiple CCD and CMOS sensors for optimization of image 
quality.  

The Ohio State University (Columbus, OH, USA) was among the first academic in-
stitutions to invest in DP devices initially purposed for research and archival, i.e., retro-
spective scanning of oncology cases [6]. Complete transition to a fully integrated digitized 
workflow for primary diagnosis followed one year after initial steps toward DP adoption 
in 2016 (Figure 1). 

   
(a) (b) (c) 

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 26 
 

 

  
(d) (e) 
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example of scanning error (“Venetian blinding”); (e) Histology laboratory. 
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Diagnostic merits of WSI are evidenced in scores of investigations reporting sig-
nificantly high concordance rates with conventional microscopy throughout numerous
disciplines and increasingly for arenas formerly posing hurdles curtailing digital adoption,
e.g., cytopathology [7–10]. Obstacles in modeling business viability for laboratory digitiza-
tion are surmounted as advanced technology enables a similar roadmap to ubiquitous DP
diagnostics already traversed by radiology [10]. The interconnectivity of pathologists, staff,
and resources observed following WSI implementation at The Ohio State University reflect
a primary endpoint of laboratory digitization. Augmentation of DP tools with artificial
intelligence (AI)-based algorithms reflect another. As the university’s primary diagnostic
novelty recedes amongst a growing global normalcy of automated workflows, increased
efforts for diagnostic quality, and the creation of integrated ecosystems supportive of
computational pathology [2,11–13], further capitalization from digital integration is now
within reach for digitized departments primed to actuate the clinical potential of predictive
diagnostic AI-technology for WSI.

2. Development of Computer Vision for Pathology

Computer-aided image processing and pattern recognition, e.g., classification, of histo-
logical and cytological structures for pathology has developed from the early 1970s [14,15].

Primordial AI tools for pathology classification tasks typically find genesis at the same
vantage point from which modern machine learning (ML) tools began their evolution.
Pixel-based analysis, e.g., computer-recognition of a unique series of numerical values that
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form a shape of interest, is used for classification, e.g., segmentation, tasks that are now
among the most essential applications included within integrative workflow image analysis
(IA) tools. Traditional morphometric feature evaluation entailed calculation of object size
via computational counting of pixels occupied by an object followed by calibration for
magnification [16]. Description of object shape resulted from computer determination of a
specific shape from a rigid set of preprogrammed rules. Traditional programming directives
utilized shape descriptors, e.g., elongation factor and nuclear roundness factor, to identify
structures such as peripheral blood erythrocytes. Substantial focus has been directed
toward development of computational IA for genitourinary (GU) pathology. Prototypal
quantitative light microscopy applications for urological oncology were initially applied to
histological sections for rudimentary tumor recurrence and grading predictions [16].

As evidenced from early explorations in computer vision for pathology, traditional
programming methods were inherently prone to rapid devolution when image shapes did
not adhere to specific pre-programmed rules/definitions, thereby confounding the narrow
window of computational interpretability allotted through the ridged training modus. For
example, nuclear roundness factor (NRF), defined as the ratio of an area to a perimeter, was
observed to decrease when an object shape, e.g., ellipse, deviated from congruence with a
perfect circle. The restrictive nature of the programmed code for NRF had predisposed it to
conflating “roundness” with “circularity”.

ML techniques have widened the window of interpretability through algorithmic mod-
eling via the use of images rather than preprogrammed rules as input data for algorithm
training, allowing computers to correctly visualize shapes regardless of their size, symme-
try, or rotation. ML for computational pathology has enabled the interpretive ability of
algorithmic tools to extend beyond the limited output yielded from cast-iron programming
codes to a system that is able to deduce patterns with increasing accuracy through training.
Most current ML approaches utilize methods such as “Random Forest classification”, an
algorithmic approach developed in 2001 (the same year as the Leica Aperio T1 gained
distinction as the first WSI device released for commercial use) by which a series of decision
trees are employed to make an aggregated prediction (Figure 2) [17].

Machine learning allows computers to recognize patterns and make predictive deci-
sions without explicit, step-by-step programming. Trial, error, and extensive “practice”
are the core elements of model building for ML, the essence of which follows an iterative
approach akin to flashcard memorization. Algorithms are fashioned from a point of zero
training data through learning from an output set. A preselected group of image/shape
descriptors are chosen by a computer, initially at absolute random, to describe input data
fed into the system by a developer. An incorrect label ascribed to an input image by a com-
puter will be amended to display the correct image description from which a machine may
demonstrate its learning capacity via correct attribution of the label to a future input image.
The ML system takes account of every image pixel and its surrounding pixels with each
estimation to ultimately build its own set of rules/algorithms, progressively fashioning an
adroit apparatus for predictive accuracy and precision as the cycle continues. Predictive
classification models may be tuned and optimized via additional data input providing
more opportunities for improvement through trial-and-error for increased accuracy of
pattern recognition within new images.

Deep learning (DL) has further expounded upon the cognitive model of ML algorithms,
achieving remarkable mimicry to the neural network of the human brain. Artificial neural
networks (ANNs) consisting of weighted, interconnected nodes comprise the scaffolding
of DL modeling for pathology (Figure 3).
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Figure 2. Traditional Programming vs. Machine Learning for Computer Vision (original figures). 
Squares are representative of pixels comprised of binary graphical indicators for computer recogni-
tion, with blue squares comprising a pixelated “input” shape to be recognized by a preset formula 
that may direct the computer to correctly identifying the shape in its output determination.  Green 
circles are indicative of computer-recognized elements of the pixelated input shape per input pro-
gramming rules.  Red circles represent areas in which programming rules neglected to recognize 
blue input image elements. Computer programmed rules for defining shapes in figures (a) through 
(e) are (1) shape is “X” if the center and corner pixels are full and “O” if the center and corner pixels 
are empty: (a) Pathologist/human interpretation of image: shape is “X”. Computer interpretation of 
image: shape is “X”, as dictated by rule. Outcome: concordant with pathologist visual interpretation; 
(b) Pathologist interpretation of image: shape is “O”. Computer interpretation of image: Shape is 
“O”, as dictated by rule. Outcome: concordant with pathologist visual interpretation; (c,d) 
Pathologist interpretation of image: shape is “X”. Computer interpretation of images: shape is “O”, 

Figure 2. Traditional Programming vs. Machine Learning for Computer Vision (original figures).
Squares are representative of pixels comprised of binary graphical indicators for computer recognition,
with blue squares comprising a pixelated “input” shape to be recognized by a preset formula that
may direct the computer to correctly identifying the shape in its output determination. Green circles
are indicative of computer-recognized elements of the pixelated input shape per input programming
rules. Red circles represent areas in which programming rules neglected to recognize blue input
image elements. Computer programmed rules for defining shapes in figures (a) through (e) are (1)
shape is “X” if the center and corner pixels are full and “O” if the center and corner pixels are empty:
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(a) Pathologist/human interpretation of image: shape is “X”. Computer interpretation of image:
shape is “X”, as dictated by rule. Outcome: concordant with pathologist visual interpretation;
(b) Pathologist interpretation of image: shape is “O”. Computer interpretation of image: Shape is
“O”, as dictated by rule. Outcome: concordant with pathologist visual interpretation; (c,d) Pathologist
interpretation of image: shape is “X”. Computer interpretation of images: shape is “O”, as dictated
by rules. Outcome: discordant with pathologist visual interpretation; (e) Pathologist interpretation
of image: shape is “X”. Computer interpretation of image: image is not recognized, as complete
criteria are not fulfilled for either rule. Outcome: discordant with pathologist visual interpretation,
i.e., unidentifiable image.
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Figure 3. Artificial Neuron Model (ShadeDesign/Shutterstock.com, accessed on 27 April 2022).

Powerful neural networks contain up to millions of nodes arranged in layers including
input layers, hidden layers, and output layers (Figure 4).

Outputs from one layer of a neural network act as inputs which feed into the nodes
of another layer. Convolutional neural networks (CNNs) are a complex derivative from
the ANN model fashioned for outcome prediction from WSI data inputs without the
assistance of a predefined output set. CNNs for WSI analysis have demonstrated substantial
capacity to effectively aid in primary diagnostic and quality control (QC) applications.
Other DL models such as the recurrent neural network (RNN) may be used to enhance
CNN analysis through provision of spatial and contextual modeling enabled from a bi-
directional framework equipped to process high-resolution gigapixel WSIs without image-
patch modeling techniques suggested to compromise overall tumor size and sub-structures
present within a WSI (Figure 5).
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Figure 5. Recurrent Neural Network (ShadeDesign/Shutterstock.com, accessed on 27 April 2022).

CNN models may use WSIs ascribed individual diagnostic target-labels per associated
pattern, e.g., Gleason grade, or up to millions of unlabeled WSI image-patches for auto-
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didactic training during which the AI-model will learn to identify and extract important
features without developer assistance (Figure 6).
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region of interest for patch selection; (c) patch selection; (d) extracted patches used for algo-
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“End-to-end” methods for training DL models for WSI have greatly mitigated and out-
performed highly supervised, effort-intensive methods of algorithmic training dependent
upon manually annotated, pixel-based feature extraction techniques (Figure 7).

Algorithm development is typically divided into a series of steps beginning with
procurement of clinically annotated samples followed by WSI annotation. An algorithm is
developed via a training set and tested via an independent validation set (Figure 8).

A clinical cause pertaining to a relevant population of interest formulates the origin
and endpoint for algorithm development driven by a computational pathology team.
Pathologists act to direct the genesis and culmination of clinical algorithms while data
scientists, e.g., statisticians and bio-informaticians, assist in algorithm design and training.
Engineers maintain hardware and software for the operating environment. Pathologists
invoke downstream development though providing context through clinically relevant
questions that spearhead algorithmic solutions. They are essential for the verification and
validation processes for application and monitoring of the algorithm prior to and following
clinical deployment, such that feedback is relayed to developers for optimization (Figure 9).
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3. Realizing the Clinical Potential of AI

The potential for AI to catalyze clinical transformation has been exemplified through
recent research, academic, and translational investigations in algorithm development for
predictive diagnostic and prognostic analysis made directly from H&E-stained WSIs [18].
Such studies, indicative of the potential for AI to enhance pathologist understanding of dis-
ease and improve patient quality of care, encourage further investigations where algorithms
may be deployed and evaluated within standardized settings. AI for primary diagnostic
and quality control applications may be optimized through clinical trials. Algorithmic
development for prostate cancer needle biopsies [19–28], radical prostatectomies [29,30],
and tissue microarrays [21,31–33], has held the brunt of focus for the transition of such tools
into utilization within clinical forums thus far. Though such investigations have shown
promise for AI-assisted grading for prostate cancer and pathologist-review, many have been
susceptible to biases and limitations during both development and validation processes,
many of which affect the clinical translatability of algorithms developed within non-clinical,
e.g., research, settings. The most prominent hurdles affecting clinical implementation of
ML and DL tools stem from data availability, generalizability, and transparency (“black
box”) concerns (Figure 10).
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3.1. Overcoming Inter-Observer Variability for Challenging Diagnosis with AI

Challenging histology and morphology is often met with enduringly high rates of inter-
and intra-observer variability and increased time-to-diagnosis from pathologists using light
microscopy [34]. Discordance is further emphasized within the focuses of genitourinary
and renal pathology, where interpretation of complex grading systems, e.g., Fuhrman and
Gleason, and prognostic patterns, e.g., cribriform and glomerulosclerotic, is concerningly
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incongruent even amongst specialists [35–48]. Inter-pathologist grading assessments for
prostate cancer grading have elicited concerning results, with kappa values reported as
low as 0.3 [38,49]. The last 7 years of ML development for prostatic adenocarcinoma has
yielded results demonstrating potential for greater diagnostic objectivity.

2016 marked the first account of DL network development for the detection of prostate
adenocarcinoma in core needle biopsy (CNB) tissue. Slide patches extracted from H&E-
stained prostate biopsy tissue slides from 254 patients were separated into training, testing,
and validation sets. Mean ROC for the median analysis was 0.98–0.99 for the 90th percentile
analysis [19].

An advanced CNN derivative was trained for prostate cancer grading using 0.6 mm
diameter cores from primary prostate carcinomas in TMAs from 641 patients and tested
using TMA cores from 245 prostatectomy cases from another cohort graded indepen-
dently by two pathologists. Agreement between the DL model and each pathologist was
0.75 and 0.71, respectively, per Cohen’s quadratic kappa statistic, with an inter-pathologist
agreement of 0.71. Furthermore, the model demonstrated significantly greater accuracy in
distinguishing low-risk from intermediate-risk (p = 0.098) cancer than either pathologist
(p = 0.79 and p = 0.29, respectively) [32].

A total of 752 tissue biopsies from multiple sites were used to train a DL system for
Gleason grade (GG) identification. Model agreement with pathologists was 72% (68–75%)
for specialists and 58% (54–61%) for general pathologists. The model was less likely to
over-grade WHO grade group 1 than grade group 2 and more likely to undergrade higher
grades in comparison to general pathologists. ROC curves distinguished model-based
grade groups 1 and 2 from grade groups 3 through 5 (AUC = 0.97) [50].

Another study in which a CNN was trained for GG classification using 5759 biopsies
from 1243 patients yielded a kappa value of 0.85 when compared to three genitourinary
pathologists, superior to the kappa of 0.82 obtained from a pathologist panel [51].

Corroborating the potential for AI to improve pathologist grading of prostate biopsies,
Bulten et al. recruited fourteen genitourinary specialists to evaluate 160 biopsies with and
without assistance of AI algorithms. Using AI, the panel of pathologists demonstrated
significantly greater agreeability, yielding kappa values of 0.87 vs. 0.799 when graded
independently [52].

ML tools have recently seen development for the automated detection of cribriform
pattern in prostate WSIs [41,46,47]. The first instance of ML applications applied to inves-
tigate the prognostic utility of invasive cribriform adenocarcinoma (ICC) within specific
Gleason grade groups provided insight on the strong prognostic role of ICC morphology
fraction of tumor area (cribriform area index(CAI)) in patients with Gleason grade 2 cancer
due to the morphology conferring a higher concordance index for biochemical recurrence
than patients without evidence of ICC. A CAI increase by a factor of two was determined to
be prognostic in patients with ICC morphology after controlling for Gleason grade, surgical
margin positivity, preoperative prostate-specific antigen level, pathological T stage, and
age (hazard ratio: 1.19) [47].

AI-approaches have demonstrated the capacity identify subtle morphological differ-
ences, e.g., sarcomatoid vs. spindle cell pattern, in clinical groups of patients with clear cell
renal cell carcinoma (ccRCC) [34]. ML-models have demonstrated the ability to classify
early vs. advanced stages of ccRCC, with recent algorithms using gene expression profiling
to classify ccRCC stages. One study analyzed gene expression of 523 samples to identify
genes differentially expressed in early and late stages of ccRCC, achieving a maximum
accuracy of 72.64% and 0.81 ROC using 64 genes on validation dataset [53].

Fenstermaker et al. [54] developed a CNN model to detect, grade (Fuhrman 1–4), and
distinguish RCC subtypes (clear cell, chromophobe, papillary). The model was trained on
3000 normal and 12,168 RCC H&E-stained tissue samples of RCC from 42 patients (acquired
from the Cancer Genome Atlas). The model classified normal parenchyma vs. RCC tissue
with 99.1% accuracy, demonstrating an additional 97.5% accuracy in distinguishing RCC
subtypes. Model accuracy in predicting Fuhrman grade was 98.4%.
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Two studies using ML models developed from features extracted from single and multi-
omics data for classification of early and late stages of papillary RCC emphasized the utility
of model-training from multiple data sources. Gene expression and DNA methylation data
were used in the later (2020) study, demonstrating slightly better predictive performance
than the former (2018) study (MCC 0.77, PR-AUC 0.79, accuracy 90.4) [55–57]. A total of
104 genes from Cancer Genome Project expression profiles of 161 patients were used as
data in both studies.

Misdiagnoses may lead to delays in appropriate treatment regimens for patients pre-
senting with challenging morphology that is often misidentified. The subtle morphologic
characteristics which differentiate the TFE2 Xp11.2 translocation variant of RCC (TFE3-RCC)
from other RCC subtypes often leads to the misdiagnosis of this aggressively progressive
form of RCC and was the basis for a recent ML development for its identification. An
automated ML pipeline was developed to extract TFE3-RCC features and used to differen-
tiate subtle morphological differences between TFE3-RCC and ccRCC with high accuracy.
AUCs ranged from 0.84 to 0.89 when evaluating classification models against an external
validation set [58].

3.2. Exploring AI Development for Nephropathology Applications

Glomerulosclerosis and IFTA are histologic indicators of irreversible kidney injury,
with cortical fibrosis holding distinction as the single greatest morphologic predictor of
chronic kidney disease, regardless of disease etiology [59]. Quantification of glomeruli and
glomerulosclerosis on kidney biopsy are among the constituents of a standard renal pathol-
ogy report, yet the prevailing methods for glomerular assessment remain manual, labor
intensive, and non-standardized [60]. Although manual evaluation of glomerulosclerotic
percentage has consistently demonstrated high inter-observer concordance, traditional
visual quantitation of renal cortical involvement incurred by IFTA results in higher vari-
ability among pathologists due to the innately complex histology and diverse morphology
of the region [59].

The first CNN fashioned for multiclass segmentation of digitized periodic acid-Schiff
(PAS) stained nephrectomy samples and transplant biopsies indicated the necessity for more
studies interrogating quantitative diagnostic tools for routine kidney histopathology [61].
Significant correlation between pathologist-scored histology vs. the CNN was noted
for glomerular counting in whole transplant biopsies (0.94 mean intraclass correlation
coefficient). The CNN yielded the best segmentation results for glomeruli in both internal
and external validation sets (Dice coefficient of 0.95 and 0.94, respectively), with the model
detecting 92.7% of all glomeruli in nephrectomy samples.

The nephropathology landscape has provided fertile grounds for the development of
ML tools fashioned to parse and delineate various complex morphological structures, as
demonstrated in a slew of recent investigations suggesting the clinical merit of AI within the
medical kidney arena [62]. CNN-directed segmentation of morphologically complex image
structures, e.g., interstitial fibrosis and tubular atrophy (IFTA), has improved throughout
recent years as advances in annotation speed, predictive capacity, and breadth of utility
have provided strong arguments for clinical applicability [59].

Recent studies have studied predictive AI-modeling for morphologically complex
structures of the kidney using WSIs of human renal biopsy samples [62]. One such study
explored the use of CNNs in semantic segmentation of glomerulosclerosis and IFTA from
renal biopsies, in which assessment of CNN performance spanned three morphologic
areas: IFTA, non-sclerotic glomeruli, and sclerotic glomeruli [59]. Per these respective areas,
CNN demonstrated a balanced accuracy of 0.82/0.94/0.86 and MCC of 0.6/0.87/0.68 for
intra-institutional holdout cases. For inter-institutional holdout cases, balanced accuracy
was 0.70/0.93/0.84 with MCC of 0.49/0.79/0.64 per respective area. Investigators noted
the CNN model demonstrating the best performance used a smaller network and low reso-
lution for image analysis. In multiple cases, the CNN demonstrated the capacity to learn to
predict IFTA boundaries with greater precision than the ground-truth annotations used for
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its training. Significant correlation was noted when comparing IFTA and glomerulosclero-
sis estimations via CNN with ground truth annotations, with IFTA yielding a correlation
coefficient of 0.73 (95% CI [0.31, 0.91]) and glomerulosclerosis that of 0.97 (95% CI [0.9, 0.99]).
No substantial difference was noted in score agreement concerning comparisons of IFTA
grades as per visual assessment conducted by pathologists vs. CNN predictions against
ground truth annotations, with inter-rater reliability for pathologists measured to have a
kappa value of 0.69 with 95% CI [0.39, 0.99] and that of the CNN to have a kappa value of
0.66 with 95% CI [0.37, 0.96]. The CNN also demonstrated learning capacity in identifying
segmental sclerosis, despite having not been trained to identify findings of this nature.
Results strongly indicate the feasibility of DL-tools for high-performance segmentation of
morphologically complex image structures, e.g., IFTA, by CNN.

Another CNN developed for the identification and segmentation of glomeruli on WSI
of human kidney biopsies demonstrated accurate discrimination of non-glomerular images
from glomerular images that were either normal or partially sclerosed (NPS) or globally
sclerosed (GS) (Accuracy: 92.67% ± 2.02%, Kappa: 0.8681 ± 0.0392) [60]. The segmentation
model derived from the CNN classifier demonstrated accuracy in marking GS glomeruli
on test data (Matthews correlation coefficient = 0.628).

As tissue volume requirements and annotation quality often mar adoption of CNN
training for quantitative analysis, investigators seeking to reduce annotation burden ex-
perimented with development of a Human AI Loop (H-AI-L), e.g., “human-in-the-loop”
pipeline for WSI segmentation. Annotation speed and accuracy were noted to perform
faster than traditional methods limited by data annotation speed [63].

Another ML pipeline was developed for glomerular localization in whole kidney sec-
tions for automated assessment of glomerular injury [64]. Average precision for glomerular
localization was reported as 96.94%, with an average recall of 96.79%. The localizer did
not demonstrate bias in identifying healthy or damaged glomeruli nor did it necessitate
manual preprocessing.

Reduced variability from AI-assisted analysis of fine pathologic structures at high reso-
lution may provide accurate quantitative assessment of WSIs for IFTA grade prediction, as
demonstrated by a DL framework developed at the Ohio State University Wexner Medical
Center using trichrome-stained WSIs. Strong inter-rater reliability was noted regarding IFTA
grading between the pathologists and the reference estimate (κ = 0.622 ± 0.071). The accuracy
of the DL model was 71.8% ± 5.3% on The Ohio State University Wexner Medical Center
and 65.0% ± 4.2% on Kidney Precision Medicine Project WSI data sets (from which model
performance was evaluated) [65].

The first CNN-based model relevant to kidney transplantation within the literature
was developed to address significant intra- and inter-observer variability reported during
donor biopsy evaluation [66]. The DL model is the first to have been developed for the
identification and classification of non-sclerosed and sclerosed glomeruli in WSI of donor
kidney frozen section biopsies. When trained on only 48 WSIs, the model demonstrated
slide-level performance in evaluation that was noted to be on par with expert renal pathol-
ogists. The model also significantly outperformed, in both accuracy and speed, another
CNN model trained using only image patches of isolated glomeruli. Investigators noted
that while model training with WSI patches has demonstrated efficacy in WSI classification
tasks, this is only when applied to the classification of WSI patches and did not work as
effectively for WSI segmentation in the setting of their study. Authors postulated, per
results achieved from this CNN model, a future in which its utilization is deemed essential
for clinical evaluations of donor kidney biopsies.

A recent publication explored the development of a pipeline for the classification and
segmentation of renal biopsies from patients with diabetic nephropathy [67]. The pipeline
consisted of a CNN used to detect glomerular features reflective of glomerulopathic struc-
tural alteration and a Recurrent Neural Network (RNN) used for analysis of glomerular
features for final diagnosis of the biopsy. The pipeline was designed to be extendable to
any histologically interpreted glomerular disease, e.g., IgA nephropathy, lupus nephritis,
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and is trainable for the prediction of any label with a numerically associated indicator of
severity such as proteinuria. Strong comparison to traditional, e.g., visual classification
methods was noted. The pipeline detected glomerular boundaries from whole slide images
with 0.93 ± 0.04 balanced accuracy, glomerular nuclei with 0.94 sensitivity and 0.93 speci-
ficity, and glomerular structural components with 0.95 sensitivity and 0.99 specificity.
Results were congruent with ground truth classifications annotated by a senior pathologist
(κ = 0.55 with a 95% confidence interval (0.50, 0.60) and two additional renal pathologists
κ1 = 0.68, 95% interval (0.50, 0.86) and κ2 = 0.48, 95% interval (0.32, 0.64).

Percentage assessment for normal and sclerotic glomeruli is vital in determining
renal transplant eligibility, with percentage of normal and sclerotic regions serving as,
respectively, good or poor indicators for transplant outcome [68]. DL has been leveraged to
improve stratification of kidney disease severity via combining patient-specific histologic
images with clinical phenotypes of chronic kidney disease (CKD) stage, serum creatinine,
and nephrotic-range proteinuria at time of biopsy and afterward [69]. CNN models were
demonstrated to outperform score assessments for pathological fibrosis undertaken by
pathologists for all clinical CKD phenotypes. In comparison to pathologist estimation, CNN
prediction for CKD stage yielded greater accuracy (κ = 0.519 vs. 0.051). CNN demonstrated
an AUC of 0.912 vs. an AUC of 0.840 measured for pathologist estimations for creatinine.
For proteinuria estimation, CNN AUC was 0.867 vs. 0.702. CNN estimations for 1-, 3-, and
5-year renal survival yielded respective AUC values of 0.878, 0.875, and 0.904 vs. 0.811,
0.800, and 0.786 via pathologist assessment.

Histopathological images are ripe with information exploitable for clinical survival and
therapy response prediction. Such information may be buttressed with supplementation of
categorical pathology-report data, as indicated in the previous examples. Histopathological
data typically analyzed from WSIs for the prediction of survival and therapy response
may also be effectively supplemented with pathology images from multiple sources, as
demonstrated in a recent study evaluating an AI-pipeline developed for the prediction of
neoadjuvant chemotherapy (NAC) response for patients with breast cancer.

3.3. Optimizing Machine Learning for Neoadjuvant Chemotherapy Response

Immunohistochemistry (IHC) WSIs are replete with data that may be utilized as a
powerful adjunctive to histopathology WSIs. IHC images may be quantified for biomarker
results, e.g., PD-L1, ER, PR, HER2, Ki67, and distribution of biomarker expression, e.g., PD-
L1 (tumor and inflammatory cells), CD8 (cytotoxic tumor-infiltrating lymphocytes/TILs),
and CD163 (type 2 macrophages), both metrics of which are important in predicting tumor
response to chemotherapy.

3.3.1. Modeling Predictive Response for Neoadjuvant Chemotherapy in Breast Cancer

Up to 50% of HER2-positive breast cancers and a subset of triple-negative breast
cancers (TNBCs) achieve pathologic complete response (pCR) following neoadjuvant
chemotherapy (NAC), thereby allowing NAC response to act as corollary for disease-free
survival in TNBC and HER2+ breast cancer patients [70–72]. Many factors are associated
with pCR in breast cancer, e.g., higher mitotic activity and tumor (Nottingham) grade
are associated with higher frequency of pCR [73]. Tumor-associated lymphocytes (TIL)
occur with greater frequency in TNBC and HER2+ breast cancer subtypes [74]. PD-L1
expression, particularly in HER2+ patients, has demonstrated association with pCR in
breast cancer [75,76]. Hormone receptor level is also associated with pCR, with ER-/PR-
/HER2+ breast cancers demonstrating the greatest likelihood for pCR amongst all HER2+
tumors [77]. Higher intensity of HER2 IHC expression is associated with significantly higher
likelihood for pCR in HER2+ breast cancer than for cases with incomplete pathological
response [78]. Intratumoral heterogeneity is independently associated with incomplete
response to anti-HER2 NAC in HER2+ breast cancer.

A recent groundbreaking effort compiled multiple image-based features extracted
from multiple sources, i.e., H&E-stained WSIs and IHCs (PD-L1, CD8, CD163), quantita-
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tive and qualitative breast cancer biomarker results (ER, PR, HER2), and patient demo-
graphic and clinical features, e.g., age, to develop a predictive ML model for NAC response
in TNBCs and HER2+ breast cancers. An automatic WSI feature extraction pipeline in
which H&E-stained WSI tissue segmentation utilized a well-trained neural network model
(DeepLabV2) to generate stromal, tumor, and aggregated lymphocyte areas (distinguished
by computerized colorization). Multiplexed IHC WSI (CD8, CD163, PD-L1) segmenta-
tion was performed using color-based K-means segmentation, in which entire WSIs were
segmented into three different IHC areas, then followed by an automatic, multi-step, and
non-rigid (changing image size, but not shape) histological image alignment (“registration”)
of H&E and IHC, upon which an algorithm selected the best non-rigid transformations.
Three categories of quantitative IHC image features (CD8, CD163, PD-L1) were extracted
from the registered WSIs for subsequent evaluation of expression and distribution within
different cellular components/regions (stroma, tumor, lymph) including an overall evalu-
ation of all tissue components. Area ratio, proportion, and purity of IHC image features
within cellular regions was evaluated. Breast biomarker results, e.g., positivity/negativity,
percentage, were evaluated within inclusion of additional demographic characteristics
in relation to different IHC markers, with data pooled from individual and combined
H&E/IHC sources.

The ML model predicted NAC outcomes using the various extracted image features
using a form of logistic regression. Four groups of image features were compared using
AUC, F-1 score, precision, and recall measurements for HER2+ and TNBC patient cohorts:

1. All pipeline-extracted features (36 total) and clinical data patient features, e.g., includ-
ing biomarker results, age, and additional demographic factors)

2. Automated/pipeline-extracted H&E-stained WSI and clinical patient data features
3. Automated/pipeline-extracted IHC WSI and clinical patient data features
4. Pathologist-extracted WSI features and clinical patient data features

Algorithmic models were developed per each group of pipeline-extracted WSI fea-
tures/clinical features (with the ML model from the fourth group trained using manually
extracted features by pathologists). For both the HER2+ and TNBC cohort, the first group
performed best in each measurement, especially for the HER2+ cohort. A feature impor-
tance analysis was conducted in which favorable and unfavorable features predictive of
pCR or residual tumor, respectively, were determined for both patient cohorts. Favorable
features for the HER2+ cohort were determined by the ML model as the independent ratios
of CD8, CD163, and PD-L1 in the lymphocytic region, CD163 ration in the tumor area, and
the HER2/CEP17 ratio. Unfavorable features for the HER2+ cohort included age, ER and
PR ratios, PR positivity, and the stromal CD8 proportion. Overall results demonstrated the
effective capacity of the AI-pipeline to automatically extract H&E and IHC image features
with accuracy. ML models developed based upon the pipeline-extracted WSI features and
clinical features demonstrated the potential for NAC response prediction in breast cancer
patients while outperforming the algorithm trained by pathologist-extracted features. The
AI-pipeline also generated image features that could be used to predict residual cancer
burden in breast cancer cases with residual tumor.

3.3.2. ML for Subspecialty Practice Survival Modeling

Tabibu et al. [34] provided encouraging data following the development of a CNN for
the automated subtype classification of renal cell carcinoma (RCC) and identification of
features predictive of patient survival outcome. A total of 1027 ccRCC, 303 Papillary RCC,
and 254 Chromophobe WSIs with corresponding clinical information were selected for
model training from the Cancer Genome Atlas, with 379, 47, and 83 normal tissue images
per each respective RCC subtype. An accuracy of 99.39% and 87.34% was recorded for
classification of ccRCC from normal tissue and chromophobe RCC from normal tissue,
respectively. The AI-model classified ccRCC, chromophobe, and papillary RCC with
94.07% accuracy. High-probability tumor regions identified by the CNN were targeted for
morphological feature extraction used for prediction of ccRCC patient survival outcome.
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Significant association with patient survival was found after generated risk index was
derived based upon tumor shape and nuclei from the extracted regions.

Prediction of RCC recurrence following nephrectomy has also seen focus for ML
development, as outlined in a recent study assessing recurrence probability 5- and 10-years
post-nephrectomy. Analytical data from 2814 RCC patients were used for model testing,
which yielded AUC values of 0.836 and 0.784 5- and 10-years following nephrectomy [79].

4. Actuating Clinical Implementation through Achieving Generalizability

The essence of generalizable AI for clinical pathology lies within the capacity for an
AI-tool to remain robust in its precision, accuracy, and efficiency in executing a diagnostic
function when confronted with a broad range of tissue variations potentially encountered
within a daily clinical workload.

Small, localized cohorts, insufficient ground-truth determination from expert patholo-
gists, non-standardization of training methods and materials and lack of external validation
are only some of many risks which have hampered the clinical generalizability of studies
that have otherwise presented highly encouraging data. Circumvention of this key barrier
to achieving deployment of AI within clinical practice requires equal applicability of an
ML tool to different patient populations, pathology labs, WSI scanning device models, and
reference standards derived from intercontinental specialist pathologist panels [80].

The largest collective effort for generalizable AI for prostate cancer diagnostics was
reached during the Prostate Cancer Grade Assessment (PANDA) challenge, in which
12,625 prostate biopsy WSIs sourced from six international sites were used for model-
development, performance evaluation, internal, and external validation [80]. Histological
preparation and scanning of WSI data used for external validation was performed by
multiple independent laboratories and was compared to pathologist reviews. On United
States and European external validation sets, the algorithms achieved agreements of 0.862
(quadratically weighted κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 (95% CI,
0.835–0.900) with expert uropathologists [80].

Well documented accounts of AI-model development for pathology during the last
two years have involved large numbers of patient cases for training, testing, and validation
data sets, interpretations by multiple expert pathologists to establish ‘ground truth’ for
diagnosis, use of slides from multiple institutions, and use of differing scanners including
scanners from external institutions [23,26,28,30,81].

WSIs of 12,132 prostate needle core biopsies digitized by two different WSI device
models at Memorial Sloan Kettering (MSK) were used to train a DL system that was tested
on 12,727 prostate needle core biopsies from institutions around the world [23]. Inves-
tigators found that approximately 10,000 slides were necessary for effective training of
their system [82]. Authors noted a 3% difference in AUC recorded between WSI devices
used for image capture and digitization attributed to variations in brightness, contrast,
and sharpness between the devices. Investigators postulated that the AI-model could
remove >75% of slides from a standard pathologist workload without compromising sensi-
tivity and facilitate an increased user-base of non-subspecialized (non-GU pathologists)
who may diagnose prostate cancer with greater confidence and efficacy when aided by
the algorithmic tool. Weakly supervised AI-model training linking every WSI to synop-
tic data elements, e.g., benign vs. adenocarcinoma, provided a scalable mechanism of
dataset creation circumventing data limitations which often mar the capacity and clinical
implementation of highly supervised DL algorithms. Through using only label-based
diagnoses for training WSIs, investigators were able to eschew any form of labor-intensive
and time-consuming data curation including pixel-wise manual annotations used in highly
supervised model training.

High-volume model training using 36,644 WSIs, 7514 of which had cancerous foci,
was used in early development of diagnostic software for prostate adenocarcinoma recently
granted de novo marketing authorization for in vitro diagnostic (IVD) use, signifying the
first ever FDA-approved AI product for clinical pathology [83]. A total of 304 expertly-
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annotated prostate CNB WSIs were used to establish ground truth for evaluation of the DL
system (Paige Prostate Alpha®, Paige AI, New York, NY, USA) [27]. An average diagnostic
sensitivity of 74% and specificity of 97% was recorded for general pathologists prior to
use of the DL system. When aided by the AI-tool, sensitivity increased to 90% while
specificity remained the same. Results suggested the utility of the tool for second-read
applications, e.g., quality assurance. Such a device could be deployed in settings where
GU pathology subspecialists are not commonly, if at all, present, e.g., underserved climates
with substantial healthcare disparity.

The Paige Prostate® system, successor to prototypal version Paige Prostate Alpha®,
was subject to extensive multinational validation spanning ≥150 different institutions
and a diversity of clinical and demographic characteristics from ≥7000 patients including
differing tumor sizes, grades, and patient ethnicities [23,83–87]. The system achieved a
sensitivity of 97.7% and a specificity of 99.3% in detecting cancer in 1876 prostate CNB
WSIs, also demonstrating 99% sensitivity and 93% specificity at part-specimen level while
upgrading pathologist-ascribed benign/suspicious patient diagnosis to malignant after
identification [84,85].

The strengths of many high-volume studies for the validation of Paige Prostate®

and other software systems which have since seen clinical deployment throughout the
globe now may serve as guidelines for appropriate model evaluation for clinical general-
izability. Large cohort sizes, testing sections containing substantial pre-analytic artifacts,
e.g., thick cuts, fragmentation, and poor staining, abundance of challenging histological
patterns including those seen in benign-mimicking malignant prostatic adenocarcinoma,
e.g., pseudo hyperplastic and atrophic pattern variants, along with benign histology that
may be mistaken for prostatic adenocarcinoma, all are variables which may confound
the appropriate detection and grading of prostatic adenocarcinoma for an insufficiently
trained AI-model, yet did not pose hurdles for the DL-models that would later see clinical
implementation [88–90].

Clinical Integation of AI

AI tools have demonstrated real-world merit for quality control (QC) support and first
read applications for primary diagnostic use within clinical settings. The Paige Prostate®

solution notably reduced time-to-diagnosis by 65% when applied to diagnostic histopatho-
logic data from 682 TRUS prostate needle biopsy WSIs acquired from 100 consecutive
patients at a laboratory unassociated with its original development and validation [87].
The AI-system notably demonstrated 100% sensitivity and negative predictive values for
patient-level diagnostics.

CorePlus (CorePlus Servicios Clínicos y Patológicos LLC, a high complexity CLIA-
certified clinical and anatomic pathology laboratory is the first U.S. laboratory to integrate
an AI-platform for diagnostics, lab efficiency, and quality control [91]. The Galen™Prostate
solution (CE-marked; Ibex Medical Analytics) was integrated into the fully digitized
laboratory for routine clinical second-read diagnostic applications. The AI-solution was
previously clinically validated for routine clinical diagnostics involving detection, grading,
and evaluation of clinically relevant findings within WSIs of prostate CNBs in an extensive
study demonstrating the utility of the AI-solution for routine clinical practice [28].

The study was the first to evaluate the performance of a prostate histopathology algo-
rithm deployed within routine clinical practice for assessment of cancer detection, Gleason
grading (GG), and proportion of tumor extent in addition to detection of perineural inva-
sion, demonstrating the multifaceted merits of the AI-solution which may fulfil a gamut of
clinical reporting needs. Algorithmic interpretation of perineural invasion (PNI) within
CNB WSIs, a typically small and relatively uncommon finding bearing large clinical and
prognostic significance, presented unique focus for investigators as previous studies had
not reported AI-based detection for the feature. The algorithm’s capacity to simultane-
ously evaluate CNBs for PNI (AUC: 0.96 external validation dataset) while interpreting a
battery of standard metrics for prostate CNB, e.g., cancer detection, grading, and tumor
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extent, highlighted the ability of the AI-platform to execute a multitude of functions with
high performance.

The second-read application of the AI-platform was again clinically validated for a
unique patient population bearing high rates of prostate cancer-specific mortality at the
CorePlus laboratory and assessed via comparison to pathologists diagnoses for ground
truth, yielding encouraging results including accurate identification of benign vs. cancerous
tissue (AUC: 0.994; Specificity: 96.9%; Sensitivity; 96.5%) and GG 1 vs. GG 2+ (AUC: 0.901;
Specificity: 81.1%; Sensitivity: 82.0%).

Following clinical implementation of the Galen™Prostate solution at the CorePlus
laboratory for primary application in QC, the AI-tool has discovered and corrected 1.97%
of over 4000 cases (encompassing over 54,000 WSIs since deployment of the AI platform
in June 2020) incorrectly identified as false-negatives. During this period, the second-read
application identified 51.4% of cases as benign, 18.16% as GG1, 29.83% as GG2+, while
providing technical alert notifications for 1.79% of WSIs. In total, 100% of PCNBs at the
laboratory are analyzed with the assistance of AI prior to sign-out.

The Galen™ platform (including Galen™Prostate and Galen™Breast, CE-marked for
clinical breast cancer diagnostics) was also integrated into the clinical workflow for second-
read applications at Maccabi Healthcare Services (Israel), a large, centralized pathology
institute that receives samples from 350 surrounding clinics and hospitals. A significant
proportion of yearly histopathology workload at the institution consists of PCNBs (700 cases
per year; >8000 slides). Alerts from the second-read application, viewable from the case list
and outlined by heatmaps displayed in a slide-viewing module, were raised in 10.1% of
PCNB WSIs (583) taken from 232 cases initially given benign diagnoses by pathologists.
Gleason 7+ alerts were raised in 5.3% of slides (93) taken from 137 cases initially given
diagnoses of Gleason grade 3 + 3. Alerts from the AI-system significantly streamlined the
review process and required minimal review time from pathologists (approximately 1%
of FTE).

The value of AI-assisted QC was again demonstrated in an earlier study assessing the
performance of the Galen™ Prostate algorithm after its validation at Maccabi [92]. Results:
Following deployment in four laboratories within the Medipath network, the largest system
of pathology institutes in France (averaging an annual workload of 5000 PCNB cases), the
AI-solution was noted to have identified 12 cases misdiagnosed as benign, some of which
the system identified as having high-grade cancer.

AI-assistance for first read applications offered by the Galen™Prostate solution under-
went clinical validation in which superior outcomes were yielded from pathologists using
the AI-tool in comparison to those using only light microscopy during interpretation of
100 PCNBs. Results demonstrate a 32% reduction in major discrepancy rate with use of the
first read application [93].

Improvements in productivity, clinical-grade accuracy, TAT, and case-level discrepancy
resolution were observed after clinical integration of the Galen™first read AI-system at
Maccabi Healthcare Services. A 27% overall reduction in time-to-diagnosis and 37% overall
gain in productivity compared to manual microscopy followed deployment of the AI-
tool, which yielded a 32% reduction in time-to-diagnosis for benign cases and a 25%-time
reduction for those with prostate cancer [94]. Diagnostic accuracy did not suffer from
increased efficiency, as results for case-level diagnostic accuracy were congruent between
AI and manual microscopy. A similar trend was also observed for resolution of case-level
discrepancies, of which the Galen algorithm was able to deliver a 97.8% agreement with
ground truth following discrepancy resolution in comparison to the almost equivalent 97.5%
for diagnosis via microscopy [94]. In total, 160 cases (1224 slides) were used to evaluate
case-level agreement for primary diagnosis. A 95.3% agreement was noted between the
AI-solution and microscopy diagnosis for 378 cancerous and 789 benign WSIs in a study
evaluating the performance of the AI-solution against 310 PCNB cases (totaling 2411 H&E
slides) [94]. A total of 99.7% of pathologists using AI-assistance in the study agreed with
classifications provided by the adjunctive tool, including reclassifications of three false-
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negative slides initially classified as benign. It was observed that the use of AI did not
yield any false negative diagnosis throughout the duration of the study. Examples of cases
misdiagnosed via manual microscopy and detected with AI included high-grade prostate
adenocarcinoma (GG4 + GG3) and a case in which only one slide demonstrated findings of
prostate cancer [94].

Turnaround time, e.g., total time from first to last review and sign out of one pa-
tient case, was also demonstrably reduced with AI-assistance, markedly reducing TAT by
1–2 days while enabling a single review for almost all cases. A total of 80% of cases analyzed
via standard microscopy included additional ordering of IHC. Only 0.6% of cases inter-
preted via AI involved additional IHC ordering to those already automatically pre-ordered
based upon AI-classification. In evaluation of 238 cases interpreted via microscopy vs.
AI-assistance, the mean sign out time for pathologists using standard microscopy was
reported as 1.8 days in comparison to 9.4 min via AI.

5. Discussion

DP technology has revolutionized laboratory practices through enabling the digitiza-
tion and viewing of entire laboratory histopathological glass slide workloads at microscope
resolution. Four generations of WSI scanning instruments have passed since the 2001
release of the Leica Aperio T1, with each generation marking successive improvements in
scanning speed, image quality, and batch scanning capacity. Yet, although mature tech-
nology to support WSI and laboratory digitization is now readily available, supportive of
high-volume laboratory integration, and more cost-effective for implementation than ever
before, few laboratories to date have undergone complete digital transformation for routine
clinical practice [11,95]. Commercial AI-tools for diagnostic pathology are primed for
adoption, offering “plug-and-play”, user-friendly systems which now include applications
for case triaging, worklists, slide viewing, IHC pre-ordering, tumor grading, sample mea-
surements, reporting, and identification of non-cancerous findings. An increasing number
of vendors offer dedicated software with algorithms for WSI image analysis, e.g., estrogen
receptor, progesterone receptor, and human epidermal growth factor receptor 2 scoring,
including automated multi-class segmentation of H&E stained WSIs demonstrated via
‘heatmapping,’ i.e., colorized pixel wise classification of tissue (Figure 11) [96].
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Commercial vendors are now utilizing modern DL techniques including multiple
instance learning (MIL) to generate cell-by-cell data, quantify within subregions, and
perform feature-based analysis for multiple applications in brightfield and fluorescent
WSIs, with recent solutions facilitating the accurate prediction of genomic status from
H&E-stained slides [97]. An increasing number of commercially available AI solutions
support the construction of bespoke AI models, e.g., custom assay development, whereby
pathologists are enabled to train models via annotations rather than complex coding,
with some vendors offering built-in learning tools to further assist the annotation process
for faster training and increased accuracy. Commercial solutions are capable of high
throughput with fast turnaround from rapid generation, visualization, and export of
spatial, morphological, and increasingly precise histology data from WSI, e.g., tumor
area, cell counts, cell size, staining intensity, collagen area, and blood vessel density [98].
Yet, only 22% of laboratories enrolled in a 2016 College of American Pathologists (CAP)
quality improvement survey for histology reported using quantitative tools for image
analysis tasks [99].

Following the introduction of IHC and next generation sequencing for clinical practice,
AI has been deemed the third revolution of pathology [99]. Such a revolution and the
magnificent potential it holds for clinical pathology, as evidenced in our review, may only
be unleashed through WSI adoption. Improvements in clinical-grade accuracy, increased
productivity, robust QC, and shorter TAT realized through AI-augmented DP laboratories
have driven a case for full laboratory digitization as seen in Maccabi Healthcare Services.
Integration of AI into clinical workflow at the healthcare network yielded low risks while
producing high returns. These findings, in conjunction with increased efficiency, decreased
IHC ordering, and increased practitioner satisfaction supported the decision for complete
digitization from both practical and financial vantage points.

Van Der Poel et al. had noted in their 1992 review of computational applications in
“quantitative light microscopy” for the diagnosis of prostatic adenocarcinoma, transitional
cell carcinoma, and renal cell carcinoma, that the purpose for investigating the application
of such techniques stemmed from the highly inconsistent nature of visual tumor grading
lending to high interobserver variability reported at the time [16]. Authors also noted
changes in grading systems that were often descriptively subjective therefore resulting in
“disturbingly low reproducibility”, further compounding the highly subjective nature of
pathologist-directed quantification of histological, cellular, and nuclear features pertaining
to malignant potential. The comprehensive review of primordial computational applica-
tions for GU pathology concluded with noting that such techniques were valuable in aiding
diagnosis only when confined to research settings. The need for standardized automated
fixation, embedding, staining, selection, and measuring techniques was emphasized, as the
extensive data analyzed within the review had been obtained with varying preparation
methods and therefore differed too greatly to support any consistent conclusions.

Twenty years later, Egevad et al. reported on their investigation concerning the shifting
approach to Gleason grading following the 2005 change in guidelines by the International
Society of Urological Pathologists [36]. New encouragement to incorporate poorly formed
glands and cribriform patterns into Gleason pattern (GP) 4 had led to high inter-observer
variability amongst even specialist urologic pathologists (κ = 0.34), who expressed concern
regarding the compromised significance of GS 7 in the wake of the amended guidelines [35].

Modern computational pathology tools have facilitated the standardization of work-
flow components highlighted by Van Der Poel et al., yet most current studies involving
the interrogation of AI-development for pathology are still relegated to academia while
lacking any consistent methodical standardization that may be utilized for clinical rele-
vancy. Though the performance of AI algorithms for GU pathology has, within the cohort
of research studies included in our review, demonstrated equivalency to the diagnostic
interpretations of GU specialists while surpassing those of general pathologists, training
materials and methods for individual AI-models varied when evaluated as a conglomerate.
Variations in tissue samples and WSI patch sizes used for model training are two such
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examples. Firm conclusions pertaining to the clinical relevancy of these investigations
were also unreachable, in some instances, due to lack of model-development for correlating
cancer grade with clinical outcome.

In his wake, Aurelius left scores of stoic prose directing those seeking understanding
almost two millennia later to “look back over the past, with its changing empires that rose
and fell . . . ” to foresee the future. Those pursuing additional directives towards fomenting
solutions for change may turn to Socratic texts encouraging avoidance of conflict with the
old to build upon the new, words which predated Aurelius’ reign by centuries.

Realization of objective diagnostic reproducibility has been a coveted goal for clin-
ical pathology long before the concept of computer vision, or computers in any respect.
Newer studies featured in our review have highlighted instances of clinical implementation,
groundbreaking generalizability, and MIL methods for algorithm development incorporat-
ing data from entire clinical pathology reports into training for enhanced clinical relevancy.
Newer CNN derivatives and methods for model training have emerged to combat data
concerns which have been a primary limitation to algorithmic clinical implementation.

Integration of a fully digitized, LIS-centric laboratory was a response to overwhelming
workload burdens at the Gravina Hospital in Caltagirone (Sicily, Italy) [95]. Such problems
had been compounded by the Coronavirus pandemic, though were omnipresent in similar
departments throughout the globe struggling to combat long withstanding problems that
had fervently resurged after lying dormant for years. Digital transformation of all workflow
steps through departmental LIS allowed practitioners and staff at the Gravina Hospital to
alleviate burdens through a completely interconnected, easily streamlined workflow. DP
transformation of the laboratory would later be followed by augmentation of the digitized
workflow processes with AI-tools. Superior diagnostic concordance amongst pathologists
and increased WSI quality was observed shortly following implementation of AI, as al-
gorithmic adjuncts to digital workflow processes created a cause for upholding a high
standard of workflow quality. Through shining a light upon areas for improvement within
the existing workflow it was embedded within, AI had uncovered problem areas otherwise
overlooked existing prior to its arrival, which would then be amended to optimize the
conjunctive potential of both diagnostic utilities.

Unearthed depths of clinical potential embedded within millions of WSI pixels has
driven the development of effective, accurate, and precise AI algorithms purposed for
transforming such potential into meaning. The same prospects have inspired the evolution
of four generations of WSI devices to extract and present data from glass slides with greater
efficacy, accuracy, and precision with each successive iteration. Driving forward and fueled
through shared inspirations of clinical prospect and potential, WSI has met AI at a road
converged where both may continue to a destination of enhanced clinical understanding
and optimized patient care. As the night turns and AI embeds itself within the digital
bedrock of clinical pathology, Rushmore-esque pillars form to cast monumental gazes of
computer vision to an infinitely opportune landscape ahead.
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Abstract: Background: The usage of whole-slide images has recently been gaining a foothold in
medical education, training, and diagnosis. Objectives: The first objective of the current study was to
compare academic performance on virtual microscopy (VM) and light microscopy (LM) for learning
pathology, anatomy, and histology in medical and dental students during the COVID-19 period.
The second objective was to gather insight into various applications and usage of such technology
for medical education. Materials and methods: Using the keywords “virtual microscopy” or “light
microscopy” or “digital microscopy” and “medical” and “dental” students, databases (PubMed,
Embase, Scopus, Cochrane, CINAHL, and Google Scholar) were searched. Hand searching and
snowballing were also employed for article searching. After extracting the relevant data based
on inclusion and execution criteria, the qualitative data were used for the systematic review and
quantitative data were used for meta-analysis. The Newcastle Ottawa Scale (NOS) scale was used
to assess the quality of the included studies. Additionally, we registered our systematic review
protocol in the prospective register of systematic reviews (PROSPERO) with registration number
CRD42020205583. Results: A total of 39 studies met the criteria to be included in the systematic review.
Overall, results indicated a preference for this technology and better academic scores. Qualitative
analyses reported improved academic scores, ease of use, and enhanced collaboration amongst
students as the top advantages, whereas technical issues were a disadvantage. The performance
comparison of virtual versus light microscopy meta-analysis included 19 studies. Most (10/39) studies
were from medical universities in the USA. VM was mainly used for teaching pathology courses
(25/39) at medical schools (30/39). Dental schools (10/39) have also reported using VM for teaching
microscopy. The COVID-19 pandemic was responsible for the transition to VM use in 17/39 studies.
The pooled effect size of 19 studies significantly demonstrated higher exam performance (SMD: 1.36
[95% CI: 0.75, 1.96], p < 0.001) among the students who used VM for their learning. Students in
the VM group demonstrated significantly higher exam performance than LM in pathology (SMD:
0.85 [95% CI: 0.26, 1.44], p < 0.01) and histopathology (SMD: 1.25 [95% CI: 0.71, 1.78], p < 0.001).
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For histology (SMD: 1.67 [95% CI: −0.05, 3.40], p = 0.06), the result was insignificant. The overall
analysis of 15 studies assessing exam performance showed significantly higher performance for both
medical (SMD: 1.42 [95% CI: 0.59, 2.25], p < 0.001) and dental students (SMD: 0.58 [95% CI: 0.58, 0.79],
p < 0.001). Conclusions: The results of qualitative and quantitative analyses show that VM technology
and digitization of glass slides enhance the teaching and learning of microscopic aspects of disease.
Additionally, the COVID-19 global health crisis has produced many challenges to overcome from a
macroscopic to microscopic scale, for which modern virtual technology is the solution. Therefore,
medical educators worldwide should incorporate newer teaching technologies in the curriculum for
the success of the coming generation of health-care professionals.

Keywords: digital pathology; dental students; education; medical students; medical school; virtual
microscopy; whole-slide imaging; systematic review; meta-analyses

1. Introduction

The advent of the COVID-19 pandemic and physical distancing posed an unprece-
dented challenge to the world of medical education. How do you teach medicine, a
human-centered subject that requires active interaction and engagement with people,
without face-to-face contact? In response to this challenge, medical schools worldwide
have implemented various changes such as online lectures and virtual classrooms in their
education during the last two years to adapt to the new norm [1–3].

1.1. Whole-Slide Imaging (WSI)

Even before the pandemic, however, digital pathology using digital whole-slide imag-
ing (WSI) was steadily gaining a foothold in medical education, training, and diagnosis [4,5].
Cumulative validations of the outstanding diagnostic concordance between WSI and glass-
slide diagnoses prompted constant development and establishment of guidelines regarding
WSI, thus progressively broadening the scope of its use [6,7]. Following the release of the
guideline on the validation of WSI for diagnostic purposes by the Pathology and Laboratory
Quality Center for Evidence-Based Guidelines of the College of American Pathologists
(CAP) in 2013, WSI later gained approval from the Food and Drug Administration (FDA)
for its use in primary diagnosis in 2017 and continues to be updated, the latest being the
Guideline Update from the College of American Pathologists in Collaboration with the
American Society for Clinical Pathology and the Association for Pathology Informatics in
2022 [6,8].

WSI technology is readily utilized by virtual microscopy (VM), a computerized conver-
sion of light microscopy images in full resolution and their presentation over a computer
network [9]. VM software can reproduce a digitized, high-resolution image of a traditional
glass slide and allows the users to highlight, annotate, pan, and zoom. With the ease of use,
added features, and reliability, interest in the exciting potential of VM continues to be on
the rise [7,10,11].

1.2. Virtual Microscopy and COVID-19

Numerous literature reviews and meta-analyses reported the advantages of vir-
tual microscopy before the global wave of digitization from the COVID-19 pandemic
in 2019 [12–15]. Researchers have endlessly highlighted advantages of digital pathology
using VM in medical practice [16–19]. These advantages include:

1.2.1. General

• No risk of deterioration of staining quality or breakage of slides, no fading or stored
slides, shorter sign-out time, access from any device, better flexibility, easy image
sharing in clinical communication
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1.2.2. Telepathology

• Quick access, elimination of physical slide transfer, better availability of service for
remote and understaffed areas

1.2.3. Cost and Efficiency

• Better archiving, sharing, and easy retrieval; faster turnaround times, reduced cost of
equipment, lab maintenance, and auxiliary techniques (less immunohistochemistry).

Advantages of VM use for medical educational are observed as well. Learners benefit
from VM through remote teaching, multiple user access, the comfort of use amongst the
modern “digital native” generation with prior computer knowledge, and better interaction
between teachers and students by viewing the same image at the same time [17,20]. A
meta-analysis by Wilson et al. also found that learners prefer VM to conventional light
microscopy as well [13].

One notable advantage of using VM worth acknowledging is the benefit of access to
slide images without restricting time and space. This unique characteristic of VM came
into the spotlight upon facing the lockdowns during the coronavirus global health crisis.
To ensure undisrupted quality education for students, lecturers adjusted their teaching
methods to social distancing and disease-prevention regulations accordingly. In addition,
the massive shift in medical education towards remote learning and digitization of the
learning materials granted researchers an abundant opportunity and data to investigate VM
more deeply. With the already known benefits of using digital slides, additional positive
effects such as self-paced learning, improved tissue recognition due to better access to
slides, improved understanding, and better academic performance have been reported
during COVID-19 lockdown-adapted online classes [2,21,22].

In this review, we aim to compare the academic performance of medical students by
using VM technology to learn the microscopic aspect of the disease. In addition, this study
intends to include recent data on VM and WSI to present the most updated synthesis on
VM and to explore any differences in usage, benefits, and drawbacks of VM that may have
been newly discovered during the COVID-19 era.

2. Materials and Methods

This review reports the systematic findings according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [23]. The systematic re-
view protocol was registered in the prospective register of systematic reviews (PROSPERO;
https://www.crd.york.ac.uk/prospero (accessed on 21 September 2020)) with registration
number CRD42020205583.

The review questions were “Does virtual or digital microscopy enhance student exam
performance?” along with secondary qualitative assessment: “Is virtual microscopy a
reliable and a better method for teaching and learning in medical education?” and “What
are the student preferences for this newer technology?”

2.1. Literature Review

One author (NN) performed a literature search to identify if any systematic reviews
were available or protocols registered as to our study objective. We identified three similar
reviews [13,14,24]. However, these reviews had major limitations, such as not including
studies that measured the efficacy of VM during or after the COVID-19 pandemic period.
One of these previous studies included both medical students and pathology residents [24].
Its literature search was performed in a limited number of databases and failed to report
comprehensive search criteria. Furthermore, these studies had narrow selection criteria,
including only the pathology course at medical school, despite existing papers demonstrat-
ing VM or LM use in cytopathology, anatomy, histology, or hematopathology courses in
medical, dental, and veterinary schools.
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2.2. Eligibility Criteria

Only original research articles assessing the performance of LM and VM through
the process of any data type—academic scores, student feedback, questionnaires, and
surveys—were included for this review. Additionally, we included articles assessing the
performance or perception of medical or dental students using VM or traditional LM. Arti-
cles were included irrespective of use for pathology, histology, anatomy or histopathology.
The meta-analysis included comparative studies of LM versus VM or crossover studies.
Studies with data on the students’ performance measured as a percentage or score on a
definitive scale and clear mention of method of evaluating students’ perceptions were
included. Studies published in English were included (or others if the translation in English
was available).

Studies mentioning a VM resource or description of the technology used in medical or
dental schools were also included. Along with this information, studies describing VM use
due to the transition toward online teaching during COVID-19 were included.

2.3. Exclusion Criteria

Studies that described VM used for pathological diagnosis or involving perceptions
of pathology residents were excluded from this review. Literature reviews (systematic,
meta-analyses, narrative), editorial letters, book chapters, and case reports were excluded.
Publications in which the modality of WSI was unclear/unspecified or no data (qualitative
or quantitative) in the form of survey or comparison were available were also excluded.

2.4. Search Criteria and Database

A comprehensive database search was performed on 15 December 2021 and again
on 15 March 2022 (to include updates) from the date of inception in Scopus, PubMed,
CINAHL, Web of Science, Embase, Cochrane Library and Google Scholar. Various search
terms such as “virtual microscopy/microscop*,” “digital microscopy/microscop*,” “virtual
slides,” “whole slide imaging,” “students,” and “medical education” in combinations of
Boolean operators and truncation were used to ensure comprehensive inclusion of relevant
articles. Search criteria were adjusted to the selected database. In addition, we manually
searched recent reviews or eligible studies to identify any potential studies.

2.5. Article Screening and Eligibility Evaluation

For a fair screening process, two teams (SM, SN, and ShN; JW, TC, and SH) of re-
searchers independently performed title and abstract screening based on study inclusion
criteria. In addition, we performed a full-text analysis if the potentially relevant article’s
abstract did not contain sufficient information. The inclusion and exclusion criteria were
used to select the eligible studies and access the full-text articles. Zotero software was
used as the reference manager to import the search results from the database and exclude
duplicates [25]. Google Sheets was used to screen the articles and register a primary
reason for exclusion. Disagreements were resolved by collective discussion involving
both teams, which ensured that appropriate publications were selected according to the
eligibility criteria.

2.6. Extraction of Qualitative and Quantitative Data

One author (SM) independently extracted the available data from the eligible studies,
followed by the second author (SN) reviewing the extracted data. Finally, we designed a
standardized data collection Google sheet to organize the qualitative and quantitative data.

For each selected study, the following information was extracted (when available):
year and country of publication, which variable was analyzed (performance, perception or
both), number of participants, students’ educational level, type of equipment and software
used to assess WSI, types of workstation, digital slide accessibility, equipment training,
LM availability and its specification, number and Scope of used samples, and how the
students’ performance and/or perception were assessed and their results. The outcome of
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interest for this meta-analysis was focused on estimating overall exam performance based
on discipline and subject.

2.7. Quality Assessment

Two authors independently (SM and RN) used the original version of the Newcastle
Ottawa Scale (NOS) for the quality appraisal of the included studies [26]. The NOS scale
is a star-based system that evaluates the study based on three major perspectives: the
selection of the study groups, comparability of the groups, and the ascertainment of either
the exposure or outcome of interest for non-RCTs. For case–control studies, a study was
awarded a maximum of one star for each numbered item within the selection and exposure
categories. A maximum of two stars were given for comparability. For cohort studies, a
study was awarded a maximum of one star for each numbered item within the selection
and outcome categories. For comparability, a maximum of two stars were given (see
Supplementary File S1). Finally, each study was categorized as good, fair or poor quality. A
subgroup quantitative analysis of the studies was done after classifying them as good, fair
or poor quality according to Agency for Health Research and Quality (AHRQ) standards
(see Supplementary File S2). Any discrepancies were resolved by discussion with the third
reviewer (SN).

2.8. Statistical Analyses

The Google sheet was cleaned and organized to conduct qualitative and quantitative
analysis. Qualitative results were organized and included in the systematic review, whereas
the quantitative data were analyzed further to estimate the overall better educational
technique (VM versus LM). Review Manager version 5.4 calculated mean differences,
pooled effect size, and heterogeneity. Only the studies with data on comparative exam
scores went to the quantitative analytical stage (meta-analyses). Since the overall analysis
demonstrated considerable heterogeneity, the random effect model to generate forest plots
and publication bias was used. The choice of a random effect model was made due to the
heterogeneity that was observed for different countries, different year of study, different
faculty, different discipline, different teaching technique, different technical setup, and
pre/COVID-19. Included studies used different scales to measure the same outcome, i.e.,
the units for the outcome of interest were different across studies. For such cases, the
mean differences (MD) cannot be directly pooled and analyzed. Thus, MD was divided
by the respective standard deviations (SDs) to yield a statistic known as the standardized
mean difference (SMD) [27]. Therefore, the extracted data were computed and organized
as continuous data followed by an inverse variance analysis method to estimate the SMD
and 95% confidence interval. The heterogeneity was assessed using Higgins square I2

or Q-statistic. I2 can be interpreted as minimal (0–40%), moderate (30–60%), substantial
(50–90%) and considerable (75–100%) [28]. Begg and Mazumdar’s rank correlation and
Egger’s test were used to confirm the publication bias [29]. Subgroup analyses according
to the subject (pathology, histology or histopathology) and faculty (medical or dental) were
also performed.

In the qualitative data review of included articles, themes that referred to the appli-
cations, advantages, and disadvantages of VM were identified. In addition, perceptions,
surveys, or questionnaire data related to student experiences with VM were extracted from
the Google sheet.

3. Results
3.1. Search Results and Study Characteristics

A total of 1627 studies were identified from the selected database search. After removal
of 676 duplicates, there were 951 eligible studies, of which those conducted before year
2019 were further excluded. Thus, a final number of 263 articles were screened for title and
abstract and 39 full-text articles were reviewed to be included in the systematic review. The
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meta-analysis of the performance comparison of VM versus LM included 19 studies (see
flowchart in Figure 1).
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 Figure 1. Included 19 studies (PRISMA flow diagram).

The included articles were published from 2019 to 2022, and originated from North
America, South America, Europe, Australia, the United Kingdom and Asia. Most (10/39)
were from medical universities in the USA. VM was mostly used for teaching pathology
(25/39) at medical schools (30/39). Dental schools (10/39) also reported using VM for
teaching microscopy. The most commonly used VM software reported by the studies
(6/39) was Aperio ImageScope [30]. Only three studies in this review collected data using
a randomized controlled trial protocol, whereas most collected data were based on group
performance comparison without randomization. COVID-19 was responsible for transition
to VM use in 17/39 studies. A detailed synthesis of included studies in this review is
provided in Table 1.
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Using Table 1, we performed thematic analyses for the advantages/disadvantages
reported by various studies on using VM or LM. Thematic analyses revealed various codes
describing the advantages and disadvantages from the included articles (Supplementary
Table S1). The top themes highlighting advantages that emerged were improvements in
academic performance of the students, ease of use of VM, a positive student perception
and acceptability of VM, and enhanced cooperation and student collaboration. In addition,
one of the generated themes highlighted a positive impact on the teaching faculty.

Results from various studies revealed significantly improved academic test scores
[20,31,32,36–38,46,48,50,52,53,58,62,63] along with improvements in the medical knowledge
of students [22,34,38,44–46,48,55,58,61,63,64,67].

Development of diagnostic and practical skills during laboratory sessions was an
important finding [33,39,48,53,56,58,59,64]. Studies also reported that VM promotes self-
directed learning [31,35,38,41,48,58,59,64] and thus an overall better method of learning for
exam preparation for the students [32,38,52,53,56].

Accessibility to the slide images outside classroom [35,44,47–49,52–54,59,64,67], ability
to annotate slides [20,35] and availability of ample free resources led to a more efficient and
feasible method of learning [20,34,40,41,44,48,54,67].

An overall positive acceptance for VM with a higher student satisfaction for VM-
based teaching in addition to increased levels of subject interest was another reported
advantage [20,22,35–37,39,41,47,49,50,53–55,59,60,64,66,67].

Improved student and faculty rapport [33,34,42,45,51,52,56,60] as well as better
cooperation and participation amongst students was another interesting finding
[20,31–34,36,43,52,57,60,61,66,67].

The teaching faculty also reported higher levels of satisfaction with VM use [20,35,42,57,59]
and also reported VM as a time-saving and cost-effective teaching method [20,31–33,35,36,
42,57,67].

Technical and internet issues while accessing the slides were the main disadvan-
tages [22,33,38,41,44,57,67]. Few studies reported less interaction and impaired social
connections along with a lack of faculty feedback as main disadvantages [22,41,44].

3.2. Quality Assessment of Included Studies Using NOS

The final included articles were predominantly of cross-sectional design, and thus an
adapted version of the NOS scale was applied for quality assessment of cross-sectional
studies. Others were evaluated using the original NOS scale. To evaluate each study, a n
asterisk was assigned to any of the fulfilled criteria in the selected scale parameter. Table 2
represents the summary of quality assessment using the NOS scale for cohort studies.

Table 3 represents the summary of quality assessment using the NOS scale for cross-
sectional studies (total nine articles).

Table 4 represents the summary of quality assessment using the NOS scale for ran-
domized controlled studies (total three articles).

Table 5 represents the summary of quality assessment using the NOS scale for case–
control studies (total seven articles).

The pooled effect size of 19 studies significantly demonstrated higher exam perfor-
mance (SMD: 1.36 [95% CI: 0.75, 1.96], p < 0.001) among the students who studied by VM
method than the LM method with considerable heterogeneity (I2: 100%, p-value <0.001) as
shown in Figure 2.

Students in the VM group demonstrated significantly higher exam performance than
LM in pathology (SMD: 0.85 [95% CI: 0.26, 1.44], p < 0.01) and histopathology (SMD: 1.25
[95% CI: 0.71, 1.78], p < 0.001). For histology (SMD: 1.67 [95% CI: −0.05, 3.40], p = 0.06), the
result was insignificant (Figure 3).

The overall analysis of 15 studies assessing exam performance showed significantly
higher performance for both medical (SMD: 1.42 [95% CI: 0.59, 2.25], p < 0.001) and dental
students (SMD: 0.58 [95% CI: 0.58, 0.79], p < 0.001) under VM learning than the conventional
method (Figure 4).
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A subgroup analysis on studies of low risk or bias compared to higher risk of bias was
also performed based on the results of the NOS scale (Figure 5).
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In sum, 11/19 studies were categorized as good quality, whereas 3/19 were fair and
5/19 were of poor quality. The result showed a clear significance for the “good” subgroup
(SMD: 1.01 [95% CI: 0.52, 1.50], p < 0.001) as well as the “fair” subgroup (SMD: 1.39 [95%
CI: 0.79, 1.99], p < 0.001). The result was not significant for the “poor” rated studies (SMD:
1.86 [95% CI: −0.80, 4.52], p = 0.17).

The studies in the funnel plot are distributed asymmetrically, which suggests publica-
tion bias. Begg’s and Mazumdar’s for rank correlation have a p-value of 0.19, suggesting
publication bias. Eggers test for a regression intercept of 10.36 resulted in p-value (one-
tailed) of 0.06, which confirms the presence of publication bias (Figure 6).
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4. Discussion

In this review article, the authors compared the utility of VM for teaching medical sub-
jects in medical and dental schools. The results of our qualitative and quantitative analyses
show a comparison of student performance after using VM technology. The digitization of
glass slides undoubtedly enhances the ease of teaching and learning of microscopic aspects
of disease. Additionally, the COVID-19 global health crisis has produced many challenges
to overcome from a macroscopic to microscopic scale, for which modern virtual technology
has been the solution [1].

The authors performed a systematic review considering how to remove existing
literature limitations. A well-designed study criterion to include more studies, including
the articles published during COVID-19 pandemic to analyze available evidence on the
usage of VM for the learning process for medical and dental school learners compared to
the traditional LM, was developed.

The results from the systematic review clearly show a preference for using VM. In
contrast, the meta-analysis results statistically prove that overall student performance on
the examination is better when using such technology for learning.
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As the use of virtual learning platforms and virtual meeting spaces proliferated,
educators of undergraduate and preclinical sciences adapted to using VM with remote
students [2]. The use of VM in education is not unprecedented, of course, but its application
and scope has significantly expanded over the last two years [21,32,36,68,69]. Much like
modern students are more likely to have experience editing a digital photograph than de-
veloping an analogue photograph, the technology offers a more intuitive experience to the
novice user. Clinical medicine, too, has shown VM to be a ready solution for histopathology
diagnosis, supported by double-blind evidence of no inferiority to traditional modalities of
diagnosis [70–72].

Various researchers around the globe have highlighted the advantages of such digital
technologies when used for histopathology diagnosis, including diagnosis for such spe-
cialties as dermatology, neurology, gastrointestinal, cancer pathology and hematological
diagnosis [73–78]. The advent of newer artificial intelligence (AI) and machine learning
technologies that are being embedded into digital pathology and VM software have ex-
tended a pathologist’s diagnostic capabilities beyond the scope of the tissue section on a
glass slide [79].

The newer applications and ever-increasing usage of VM software and WSI systems
propel the need to integrate such technologies for medical education, especially at the
undergraduate level, as students may encounter such technology during their residency
years and during medical practice.

VM has gained increasing interest in the last four decades. The benefits over traditional
LM include the practical, such as storage and maintenance of slides on a hard drive with
backup, and the user experience, where an entire classroom can work with a single slide.
For many years, however, this resource had severe limitations due to limited data storage
and image magnification technology. Using WSI technology, starting in the early 2000s, VM
has allowed the user to choose the magnification of the image with the stroke of a mouse
and with less technical skill than traditional LM [9,17].

Results of this systematic review highlighted findings with a focus on advantages of
VM use for both students and medical teachers. Most of the included articles mentioned
various advantages, such as ease of use of digital slides. Easy access and constant availabil-
ity with online access were the top advantages, whereas cost of implementation was the
most discussed disadvantage of VM. The current COVID-19 pandemic has clearly given a
boost to the field, so more robust real-world data from larger-scale VM implementations
can be expected soon.

While students have largely returned to in-person learning in the pandemic’s third
year, many of the innovations and remote learning adaptations of the pandemic are being
integrated rather than discarded [80]. Prevailing tides of change in the digital era were
already moving academic histopathology away from traditional LM in favor of a modern
approach [19]. Digitizing the workspace has been a welcome improvement for learners. In
one survey of pathology students utilizing VM in a remote clerkship, respondents reported
greater interest and understanding of the material [22]. While some larger organizations
have been able to produce and maintain their own VM database, smaller organizations
have been able to benefit from the free access many institutions have offered.

An interesting aspect of the review findings in this study were the areas of VM use in
medical education. Various VM-based learning activities have been employed by medical
educators. Such activities include active learning activities such as group discussions,
collaborative discussions, podcasts and clinical case discussions. In this review, the results
show an overall positive impact of VM in a digitized learning environment and evidence
indicates high acceptability and adaptability by medical learners.

Educators at the University of Eastern Finland initiated a curricular reform for his-
tology education focused on development of a student-centered WSI platform [66]. A
“gamification” histology learning model was developed that is based on incorporation of
game mechanics and game theory into education [81,82].
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Introduction of such a learning system into dental and medical histology courses
stimulated learning and improved student satisfaction [66].

Another interesting application of VM by Sakthi-Velavan et al. involved the blending
of histology content using podcasts into an integrated curriculum [32]. VM-based podcasts
are narrative recordings of digital histology images. Results of the study showed a positive
association between podcast viewing and improved overall class performance. The students
reported a better learning experience after using the podcast-based VM. The findings align
with the current review and previous studies on exploring the effectiveness of VM podcast-
based teaching in medical schools [83].

During the COVID-19 pandemic, educators were forced to transition to an online
distance learning pedagogy. Westfälische-Wilhelms-University, Germany and the Univer-
sity of California San Francisco are a couple of many such universities that successfully
transitioned the entire VM-based courses to a completely online distance learning histology
and pathology curriculum. Researchers at these universities used customized VM univer-
sity databases and reported that the implementation of a curricular histology course in
an online format was technically realizable, effective and well accepted among students.
While distance learning models are insufficient for career progression in pathology, VM
can still be adapted to enhance collaboration and microscopic learning of disease [40,41].

High costs of WSI scanners and VM software pose a significant challenge for adoption
of digital microscopy in medical schools. Ample alternative options are available for imple-
mentation of VM for teaching and learning microscopy. Such resources include free online
websites or cloud-based servers that can be accessed via the internet freely for educational
purpose. Results from the analysis of the studies included in this review highlight the use
of such free websites and cloud-based servers for VM resources [20,31,36,38,43].

One of the most used VM apps in this review was Aperio ImageScope, which allows
viewing online or local network WSI [30]. The Biolucida viewer [84] is another such VM
viewer that connects to the digital slide cloud library at the University of Iowa and can be
viewed freely worldwide without any cost involved. The University of Michigan Virtual
Slide Box [85] and Virtual Pathology at the University of Leeds [86] offer many WS images
that can be viewed over the internet by any available web browser.

Another interesting aspect of VM implementation in medical education is the develop-
ment of competence in students. American accreditation agencies such as the Accreditation
Council for Graduate Medical Education (ACGME) [87] and Liaison Committee on Medical
Education (LCME) [88] have outlined core skills that need to be addressed by medical
schools to meet the required educational standards, including medical knowledge, patient
care, communication skills, professionalism, lifelong learning and social context of health
care [89]. Due to the accreditation body requirements along with the ongoing transition
towards remote or distance learning, implementation of VM can help in addressing such
competence and ensuring development of competent physicians for the society [9,20].

Limitations of this Review

A significant limitation of our study is the presence of a considerable level of hetero-
geneity. This could be due to the methodological (differences in study design, risk of bias,
etc.) and statistical (variation in intervention effects or results) differences from the diverse
geographical population with different cultures. For example, Lee et al. (2020) reported
academic scores as percentages to compare LM and VM groups. However, Chen et al. (2019)
reported academic scores on a five point scale to compare the academic improvement by
using the VM. The quality of published articles can be further improved by standardizing
of the research design and methodology for such an educational intervention. The NOS
scale resulted in only four studies with a high score (six or seven stars) and 15 studies had
a score above three stars. A total of 24 out of 39 studies had poor research design according
to the NOS scale. As most educators and medical schools around the world use a wide
spectrum of teaching methods along with diverse curricular designs, results for educational
intervention impact will continue to be heterogeneous.
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Nonetheless, this meta-analysis provides strong evidence that students prefer VM over
LM (although it cannot be replaced completely) and exam performance also increased by
using VM. The heterogeneity of results and different outcomes posed could be resolved in
the future by introducing more subgroup analysis that would still need some homogeneous
data set to work on.

5. Conclusions

This review highlights various advantages of VM compared to traditional LM for
medical education. Most studies in this meta-analysis were pilot projects and first-time
implementation of digital technology at various medical universities. Globally, VM and
WSI technology have undoubtedly reshaped pathology teaching and learning in medical
and dental schools. Use of VM in medical education has provided a venue for stimulated
learning, improved student satisfaction and an overall better learning experience. Easy
access to educational content and constant availability with online access are amongst the
top advantages, whereas cost of implementation and access to the internet are still the most
discussed disadvantages of such technology.

Availability of numerous free online VM resources has fueled global access to edu-
cational materials geared towards learning microscopy of normal tissue and pathological
features of various human diseases. The ongoing COVID-19 pandemic has further fu-
eled the need for digitization of teaching methods, particularly increased use of VM in
medical education worldwide. As much of the current work on VM usage outcomes is
from early technology implementation, a certain degree of enthusiastic bias in favor of VM
is inevitable.
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Abstract: The COVID-19 pandemic shifted pathology education in medical schools worldwide
towards online delivery. To achieve this goal, various innovative platforms were used by pathology
educators and medical students, facilitating both synchronous and asynchronous learning. The
aim of this study was to review the published evidence regarding remote pathology teaching at the
medical school level during this period, present our own experience, and provide some perspectives
regarding the best mode of pathology teaching post-pandemic. Among its advantages, virtual
pathology education was considered among students and educators as convenient, flexible, and
engaging, while learning outcomes were met and students’ academic performance was in general
satisfactory. However, several challenges were faced. For instance, suboptimal internet connection
compromised the flow of classes and was even associated with a lower academic performance. The
lack of hands-on laboratory activities, such as operating the light microscope and tissue grossing,
and the reduced student interactions among themselves and their instructors, were also pointed out
as significant drawbacks of remote pathology education. Whereas online education has multiple
advantages, experiencing the physical university environment, in-person interactions and teamwork,
exposure to the “hidden curriculum”, and hands-on activities are vital for medical school education
and future student development. In conclusion, the implementation of a blended approach in
pathology education—where online and face-to-face sessions are jointly used to promote students’
engagement, interaction with their instructors and peers, and learning—could be the most optimal
approach to pathology teaching in medical schools post-pandemic.

Keywords: digital pathology; online education; laboratory medicine; histopathology; medical
students; distance learning; emergency remote teaching; e-learning; virtual microscopy; anatomy
and histology

1. Introduction

Pathology teaching in medical schools worldwide focuses on the study of disease,
being the bridge between basic science and clinical practice [1]. Medical students learn the
basics of pathology through various teaching modalities including lectures, small group ses-
sions, and assignments as well as traditional and/or virtual microscopy. Recently, there has
been a tendency to include more case studies and exercises highlighting clinicopathological
correlations into pathology teaching, in order to integrate with other courses within the
medical school curriculum and emphasize pathology’s clinical significance in medicine’s
multidisciplinary setting [1–3]. In general, pathology courses run for a whole semester
or more when designed for preclinical medical students [3–6]. Notably, in some medical
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schools, senior medical students can additionally choose to attend a more advanced pathol-
ogy elective which could be 2- to 4- weeks duration. In such electives and in contrast to the
preclinical pathology courses, participants are exposed more to pathology as a profession,
in addition to the role of pathologists in today’s medical practice, by shadowing residents
and attendings, attending grand rounds, and participating in daily sign-out sessions [7–11].

In the pre-pandemic era, most pathology teachings were performed conventionally
within the medical schools’ premises [12,13]. However, due to the unprecedented chal-
lenges to medical schools worldwide induced by the COVID-19 pandemic, pathology
teaching around the world largely shifted towards remote delivery, and whole courses
needed to be re-designed to fit the online environment. In addition, pathology educators
had to adjust their teaching style, learn novel technologies, and create new material suitable
to teach remotely during the unprecedented period they were facing [4,8,11,14,15]. Various
innovative platforms were used, designed to facilitate both synchronous and asynchronous
learning, as well as small group sessions. Examples of such platforms include Zoom (Zoom
Video Communications, Inc., San Jose, CA, USA), Blackboard Learn (Blackboard Inc.,
Washington, DC, USA), Microsoft Teams (Microsoft Corporation, Albuquerque, NM, USA),
Google Classroom (Google LLC., Mountain View, CA, USA), and Google Meet (Google
LLC., Mountain View, CA, USA) [8,11,14,16]. Notably, digital pathology was exclusively
utilized for the microscopic slide sessions [8,11]. In our pathology sessions and during
this period, we used a combination of modalities such as synchronous interactive lectures,
laboratory sessions with static images (gross and microscopic) and digital pathology, asyn-
chronous assignments highlighting clinicopathological correlations, and quizzes providing
immediate feedback to the students. Furthermore, our exams were administered online
using proctoring software [3].

As several pathology educators worldwide have published their experience teaching
pathology online to medical students during the pandemic period as well as the reported
learning experience of their students, the aims of this review were to:

• Summarize the existing evidence in the literature regarding the advantages and chal-
lenges of remote pathology education in medical schools;

• Describe our students’ experience with online pathology education and compare it
with what has been reported in the literature;

• Provide some perspectives regarding the best mode of pathology teaching post-
pandemic in medical schools.

2. Methods

This was a combined study, including both a review of the literature and our own
experience regarding remote pathology education—at the medical school level—during
the COVID-19 period.

2.1. Literature Review

The PubMed database was searched for studies describing changes in pathology
education at medical schools worldwide during the pandemic. The following search
algorithm was applied: (Pathology OR Histopathology OR Histology) AND medical
education AND COVID-19. Initially, the database was searched on 28 January 2022, yet
the search was updated on 21 June 2022. Studies describing the pathology education
of residents or fellows, pathology practice implications in general, or focusing solely
on histology education were outside the scope of this review and were excluded. The
article selection was first performed in a title-abstract fashion, followed by a full-text
evaluation of articles that fitted the selection criteria. Data extraction was performed
by three authors (I.P.N, A.I., and M.M.A.), while any disagreement was resolved by
reaching a consensus.
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2.2. Our Own Experience

To describe our own experience, we mostly used data from our recent survey in
addition to a few personal observations from our remote sessions. This anonymous e-survey
was delivered to our medical students via Google Forms (Google LLC, Mountain View, CA,
USA). The survey was kept open for four weeks, and following its completion, we received
and analyzed the answers from 173/255 (68%) of the enrolled students (100 females and
73 males) that participated. Although its quantitative results (including the complete
demographic data, predictors of the virtual learning experience, and perceived stress) have
recently been published by our team [3], this survey also included some unpublished
qualitative data derived from the students’ answers to its five open-ended questions
(Table 1) which we aimed to include in the current study and evaluate together with the
literature review findings. Analysis of these qualitative data followed a thematic analysis
approach [17,18], during which, data were coded and clustered as themes.

Table 1. Open-ended questions of the survey delivered to our students.

• Were there any aspects of virtual learning that you found better than campus-based learning?
• Were there any aspects of virtual learning which were impossible or impractical to follow?
• What was your biggest concern/worry related to COVID-19 and its impact on your

performance in this course?
• What particular difficulties emerged in relation to the remote attendance of this course?
• What opportunities for improving the teaching and learning of this course have emerged as

a result of it being offered at-distance?

Regarding the following chapters of this study, the “Results” section presents the
advantages and challenges of virtual pathology education, giving a brief “literature re-
view” coupled with “our own experience” while teaching pathology remotely during the
COVID-19 period. “Our own experience” chapters begin by briefly describing the main
quantitative findings published in our previous study [3], followed by a summary of the
unpublished qualitative data derived from the survey in addition to a few of our personal
observations while teaching pathology remotely. The “Discussion” section attempts to
interpret the findings presented in the “Results” and provide some perspectives regarding
the best mode of pathology teaching post-pandemic in medical schools.

3. Results
3.1. Literature Search

Figure 1 shows the flowchart of our study, following the PRISMA guidelines [19]. A
search of the PubMed database revealed 988 articles, the title and abstract of which were
screened for eligibility with the objectives of our study. This screening step resulted in
37 articles, and their full text was evaluated by three authors of this study (I.P.N., A.I., and
M.M.A.). At this step, 14 articles were additionally excluded; 10 of them described training
at the level of residents, fellows, or implications in pathology practice, while 4 focused only
on histology education. Subsequently, 23 studies were included in our literature review,
and their findings are discussed in the following chapters.
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3.2. Advantages of Virtual Pathology Education: Literature Review

Our literature review revealed that the remote delivery of pathology courses world-
wide was generally followed by highly positive student evaluations, as reported by several
authors [3,5,9,10]. Notably, evaluation scores were often improved, compared to the pre-
vious years when traditional on-site delivery had taken place [5,9]. Medical students
regarded the remote delivery of classes as flexible and less time-consuming, while they ap-
preciated that teaching materials (e.g., session recordings and virtual slides) were available
to access anytime and from anywhere [4,10]. On this subject, a group reported creating a
YouTube channel containing all the high-quality recordings from their pathology sessions,
which was very much appreciated by their students [20]. Furthermore, virtual small group
teaching using digital pathology slides was considered a very convenient, engaging, and
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effective teaching modality by the learners [9]. Similarly, instructors also reported that
virtual laboratory sessions were effective in a recent study [21]. Of interest, some students
often found the online sessions more interactive, engaging, and better structured compared
to the conventional ones, finding it easier to participate and ask questions [4,6]. A study
by Rodrigues et al. reported that, although both sexes were asking more questions during
virtual classes, female students felt significantly more comfortable doing so than males
(48.9 vs. 33%, p < 0.03) [4]. Our recent study also showed that the female sex was an
independent predictor associated with an enhanced virtual learning experience [3]. Apart
from student satisfaction, pathology instructors often addressed that their teaching and
even diagnostic skills were improved during the unprecedented period of the COVID-19
pandemic [9]. Furthermore, many of them reported creating new materials and innovative
tools to fit their students’ needs while shifting to virtual classes [8]. For instance, Tóth
et al. successfully developed 3D autopsy models, using photogrammetry, for their online
forensic pathology sessions [22].

In addition to pathology teaching early on in the preclinical medical school curriculum,
a number of pathology electives—designed for more senior medical students—were suc-
cessfully organized around the world during the pandemic period. Parker et al. pointed out
the high number of students enrolling in their virtual elective, especially when compared
to its conventional equivalent in the previous years (nearly a 10-fold increase); they also
addressed the improved attitude of their students towards pathology, as well as their un-
derstanding of pathology basics, after they finished this elective [23]. Fu et al. commented
on the flexibility of virtual electives to host more students compared to the traditional
ones, enhancing their exposure to pathology as a potential future specialization and their
understanding of pathology’s crucial role in patient care [8]. In addition, in their survey
which was administered pre- and post-rotation, participants claimed they were significantly
more likely to choose pathology as their future medical specialty, and reported an improved
understanding of what pathologists do or confidence to ask specific questions to them,
when their post-rotation survey answers were compared with their pre-rotation answers [8].
Similarly, as shown in another study, students expressed an increased interest in pursuing
forensic pathology as their future profession after completing a relevant elective [24]. Of
interest, in a study published by Tanaka and Ramachandran [25], their virtual pathol-
ogy elective received higher evaluation scores than the conventional on-campus elective
(4.88 vs. 4.73/5), even from all advanced clinical clerkships (mean = 4.51; range 2.63–5.00),
implying that pathology may be a discipline more suitable to virtual learning than other
courses. Another elective, organized by the pathology faculty at Weill Cornell Medicine-
Qatar, highlighted the virtual elective’s flexibility in place and time, allowing synchronous
and asynchronous interactions among students and faculty from multiple institutions
and countries, while it was praised by the participants for its high overall quality and
versatility [10]. White et al. addressed that their virtual pathology elective was more
intensive than their traditional in-person one, and their students got exposed to the same
representative cases per rotation regardless of the department’s workload, emphasizing the
standardization of teaching, feedback, and student assessment with virtual electives [11].
Lastly, a new website (PathElective; https://www.pathelective.com/, accessed on 7 June
2022) was developed to facilitate pathology e-learning. With PathElective, medical students
worldwide can enroll in an organized virtual pathology elective at their own time and pace;
multiple modules are included on the website and each contains its objectives, a to-do
list, videos, recommended study resources, assignments, and assessments. PathElective
received excellent reviews from participants taking this course in a recent survey delivered
by its creators [26].

To evaluate a new teaching model, and despite students’ perceptions and virtual
experience, a very important parameter is to assess if the learning outcomes are fulfilled
and if students’ academic performance is satisfactory. The latter is most commonly as-
sessed by evaluating the examination scores and contrasting them with a gold standard
(e.g., examination scores in an already established teaching model). Although the litera-
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ture is still limited, pathology learning outcomes’ acquisition and academic performance
at the medical school level were found to be satisfactory during the pandemic-induced
remote course delivery, compared to the gold standard of on-campus teaching. A study
by Waugh et al. compared two student cohorts completing the same pathology curricu-
lum, one with remote delivery (during the pandemic) and a prior one taught face-to-face;
there was a significant improvement in the mean practical examination overall mark
(65.36% ± 13.12% to 75.83% ± 14.84%, p < 0.05) for the online student cohort [6]. Like-
wise, in another study, pathology students attending a virtual pathology course performed
significantly better in their practical questions devoid of images (96.5 ± 7.0 vs. 91.2 ± 15.2;
p = 0.004) and on questions coupled with gross pathology images (88.4 ± 7.5 vs. 84.4 ± 10.3;
p = 0.007), as compared to students completing the on-campus course the previous year [5].
Lastly, Krasowski et al. reported similar examination scores among three consecutive years
of preclinical pathology teaching, the last of which was conducted virtually [27].

3.3. Advantages of Virtual Pathology Education: Our Own Experience

The shift to virtual classes was perceived very positively by our medical students who
were satisfied by the organization, lecture and laboratory session delivery, the resources
provided, and the overall support they received. They also claimed they appreciated
the value of histology and/or pathology to understand disease and that the knowledge
obtained was crucial for their future profession. Female sex, better performance in the final
exam, lower stress levels, and previous degree-holders were all independent predictors
associated with an enhanced virtual learning experience [3].

Unpublished results, resulting from our students’ answers to the open-ended questions
of the survey delivered to them, revealed that many enjoyed the virtual pathology sessions,
as there was “a lot less fuss” and “fewer distractions” compared to the on-campus sessions.
This made it easier for the instructor to lecture without being “constantly disrupted by the
noises made by fellow students” and for students to concentrate on the lecture without
“any disturbances”. Students could “regulate the volume” and thus could listen clearly
to everything the instructor was saying. In addition, many of them found the virtual
sessions more engaging and interactive than the face-to-face ones. They argued that
the various technological tools used (e.g., virtual laboratory sessions, electronic voting,
chats, and discussion forums) enhanced their active participation and learning during the
online sessions, while they also made it easier to interact with their instructors and with
one another. Others stressed the flexibility accompanying virtual learning, noting that
attending courses via online platforms was more convenient and less time-consuming,
since “there was no need for time wasted traveling back and forth from the university”.
This enabled them to better organize their studying schedule (“we were gaining time”).

Similar to the study by Samueli et al. [28], several of our students stressed the value
of the available session recordings (the latter were unavailable during our on-campus
sessions), a modality that students found to be extremely useful for study purposes. Of
interest, our histology students more often appreciated access to the online recordings
and their impact on their studying, compared to the pathology ones, exhibiting a stronger
need to re-check the materials after their online delivery. In addition, whereas pathology
students reported more commonly that virtual learning was convenient, flexible, and
time-efficient, histology students more often claimed that they preferred on-campus
than online laboratory sessions, emphasizing the importance of microscopy hands-on
exercises and the use of glass slides. Lastly, in accordance with the literature previously
presented [4], we also personally observed that some of our students were asking more
questions (especially using the chat function) during our virtual, compared to the on-
campus, sessions the previous years, often making our sessions lengthier and more
interactive. A selection of our students’ comments regarding the advantages of virtual
education is shown in Table 2.
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Table 2. Selection of comments from our students regarding the advantages of virtual education
during the COVID-19 pandemic.

More engaging and interactive

• “Participation was easier for all students during online sessions as well as asking questions.”
• “I could engage more during the lectures and search fast the net.”
• “Polls made the experience more engaging.”
• “In the virtual labs although they were not in the microscope the professor explained us and

we could see all the things he was describing much clearer.”
• “ . . . . being able to type any questions in the chat was definitely helpful for students who are

more shy or find it difficult to speak in front of the whole . . . .”

Fewer distractions/Easier to concentrate

• “We could listen more clearly and concentrate to what the professor was saying. . . . ”
• “It was easier in the sense of having less distractions since friends weren’t there to distract

nor was there excess sound from the class.”

Flexibility, comfort, and improved time management

• “Attending from home is very convenient and less time-consuming.”
• “Less time consuming overall as we were able to divide the time to study/focus for each

class according to our personal needs.”
• “The freedom of not having to be formal when attending class was nice, meaning we could

be in pyjamas and no one would have a clue.”

Access to high-quality recordings

• “Being able to go back to previous lecture recordings was one of the biggest pros with online
classes.”

• “While studying for exams, it was EXTREMELY useful to have access to the recordings.”

First-hand experience that high-quality online teaching is feasible

• “You showed that you can do it remotely, keep it and don’t go back to stone age!!”

Adaptability skills

• “Learned to be flexible in respect of a pandemic.”

3.4. Challenges Faced during Virtual Pathology Education: Literature Review

A number of studies reported the presence of technical issues hindering the online
delivery of pathology classes, such as the suboptimal internet connection. A high inter-
net speed and bandwidth are necessary, especially while examining digital pathology
slides [5,9,10,21,29]. Notably, our recent study revealed that a suboptimal internet con-
nection was associated with a worse final examination performance (p = 0.04), while
the former was also independently associated with enhanced perceived stress levels [3].
Samueli et al. reported that a few of their students reported technical issues while eval-
uating the digital pathology slides [28]. In some countries, limited access to computers
was also addressed [29]. Considering other challenges, students often found it hard to stay
attentive during the online classes [6], facing difficulty in separating work from home [4],
or experiencing anxiety [21]. Furthermore, others found remote education hampered
peer-to-peer teaching and their motivation in general [4,5].

Regarding remote laboratory sessions, and as shown in various studies, a high number
of students expressed their preference to return to their on-campus pathology activities the
soonest. A common complaint was the lack of conventional microscopy exercises, and many
emphasized the importance of learning how to operate the light microscope [2]. Others
mentioned their inability to participate in surgical pathology grossing or the laboratory
facilities in general, due to the social distancing measures induced by the pandemic [11,25].
Another drawback of virtual education reported was the decrease in interactions and
collaborative work among students and instructors during pathology sessions and the
teachers’ inability to observe, interact, and provide feedback the same way, compared to
what was happening during the on-site delivery [21,25]. Lastly, organizing and conducting
virtual laboratory activities and small-group teaching sessions were reported to occupy a
significant amount of time for the educators involved [9,11].
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3.5. Challenges Faced during Virtual Pathology Education: Our Own Experience

In accordance with the literature, the results of our recent study also pointed out
that the internet connection quality was also a significant issue for a few of our students
while attending the virtual pathology and histology classes. As stated before, a suboptimal
internet connection was associated with a worse final examination performance (p = 0.04),
while the former was found to be an independent predictor of elevated perceived stress [3].

Based on unpublished data resulting from the participant’s answers to the open-ended
questions of our survey, a few of our students addressed the concentration issues they faced
during the remote sessions. Specifically, they pointed out that “it was tiring to always be
sitting in front of the laptop”, and that this had a negative effect on their focus span and their
physical wellbeing (e.g., tiredness, headaches, and eye fatigue). They found it “impossible
to concentrate on the screen the whole day” and, as a result, they “couldn’t follow the
lecture, as much as in the on-campus classes”. In addition, others reported a few technical
issues hampering their learning experiences, such as a weak internet connection or sound
problems. According to them, these issues were “tiring” and “particularly frustrating”,
or even a “really big problem”, since it led them to be frequently “kicked out of sessions”
or even their online exams. Some felt that it was more difficult to ask questions during
the virtual sessions, while others did not find virtual labs as useful as those conducted on
campus. These particular students noted that virtual labs were “uncomfortable and less
useful”, stressing that “the microscope part of lab” cannot be replaced virtually. Lastly, a
few participants noted that, due to the lack of face-to-face interaction, engagement in online
sessions and communication among each other and with their instructors were much more
challenging compared to the on-campus sessions.

In addition, our students often listed various sources of concern they experienced
during remote learning, which could have a direct impact on their perceived stress levels.
Some mentioned anxiety about exams as a major issue. At the beginning of the lockdown,
these students had been worried about the format and procedure of the examinations,
and whether these would be different from the type of exams previously administered
on-campus. The possibility of proctoring issues during the online exams, falsely perceiving
a movement (e.g., looking outside the window) as an attempt to cheat, had also been a
source of anxiety for some of them. The possibility of technical issues, not only during
the exams, but also during the teaching sessions, was a constant source of concern for
a few students, while others reported emotional issues stemming from the COVID-19
pandemic itself, such as anxiety about family members’ health and well-being, uncertainty
about family members’ jobs, and lack of motivation to study. Lastly, some participants
addressed their concerns regarding the impact of the COVID-19 lockdown on their overall
academic progress and performance. A selection of our students’ comments, regarding the
challenges faced during the remote delivery of our pathology and histology courses during
the COVID-19 pandemic, is shown in Table 3.

Table 3. Selection of comments from our students regarding the challenges faced while attending the
virtual classes during the COVID-19 pandemic.

Technical issues

• “Sometimes, it was particularly frustrating when my internet would disconnect in the
middle of a session.”

• “And of course, any technical issues during important classes . . . .”
• “The stress during the examinations because of possible technical problems.”
• “That based on my poor internet connection, my online exams would crash.”

Laboratory sessions and lack of hands-on training

• “The lab sessions weren’t as helpful as they were on campus.”
• “I think the microscope part of lab is really important and I think it can’t be replaced.”

134



Diagnostics 2022, 12, 1578

Table 3. Cont.

Difficulties in asking questions during the online sessions

• “I felt it was difficult to ask questions during the online labs and lectures.”
• “.... it’s much easier in real life since I can easily raise my hand and just ask or quickly go find

you upstairs in your office/after lab.”

Screen fatigue and concentration issues

• “Focusing for a long period of time in front of a screen was difficult.”
• “It was impossible being in front of a screen literally all day; my eyes were hurting, I

constantly had headache, I couldn’t study on my computer more hours etc.”
• “It’s just too comfortable at home and I need the university area to concentrate properly.”
• “Long hours in front of a laptop made it unbearable to focus after some point.”
• “I lived in a place full of family so sometimes it was hard to concentrate.”

Missing interaction with instructors and peers

• “The lack of personal interaction makes it really hard to focus and listen to classes.”
• “Not having interaction and discussions with my classmates and professors.”
• “The absence of a face-to-face, more “human” relationship with my instructors.”

4. Discussion

Both the “literature review” and our “own experience” showed that virtual pathol-
ogy education during the COVID-19 period exhibited some advantages, yet significant
challenges in its implementation as well. A summary of this information is shown in
Table 4.

Table 4. A summary of advantages, challenges faced, and perspectives regarding virtual pathology
education, as shown in the “literature review” and “our own experience”.

Advantages:

• Flexibility and improved time management
• Sessions/teaching materials are available anywhere and anytime
• Interactivity, more questions asked by some students
• High-quality recordings
• Use of innovative teaching platforms
• New teaching materials and technologies
• Instructors improving their teaching skills
• Enhanced enrolment rates in pathology electives
• Improved attitude towards pathology
• Enhanced consideration of pathology as a future medical specialty
• Satisfactory academic performance

Challenges Faced:

• Technical issues
• Screen fatigue
• Reduced engagement by some students during classes
• Instructors’ difficulty in appraising students’ engagement
• Hard to separate work from home
• No light microscopy exercises and/or grossing during laboratory sessions
• Reduced student interactions with instructors and peers
• Reduced student exposure to the “hidden curriculum” (e.g., role modeling and professionalism)

Perspectives:

• Shift towards a blended approach

As briefly described in the aforementioned chapters and outlined in Tables 2 and 4,
the pandemic-induced virtual pathology education exhibited many advantages for both
students and faculty. In general, online education was considered to be very convenient,
flexible, and engaging, allowing lectures, both big and small group/breakout room ses-
sions, and virtual microscopy labs, while supporting both synchronous and asynchronous
teaching modalities [3,8,16]. Several free pathology teaching resources exist online which
could be directly implemented into virtual education—for example, the PathElective, Path-
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Presenter, Iowa Virtual Slidebox, Leeds Virtual Pathology Library, and Virtual Microscopy
Database (VMD)—while educators worldwide have constantly been creating new material,
particularly during the pandemic [3,10,26,30,31]. Especially through the chat function, we
and others noticed that some students engage and ask more questions in general [4]; this
may result in more interactive and lengthier sessions. Notably, virtual pathology education
resulted in students’ satisfactory learning outcomes acquisition and overall academic per-
formance, as shown by comparing pathology exam scores before and during the pandemic
in a few published studies [5,9]. However, as evidence is still sparse and these findings
could be the result of confounding factors (e.g., different exam structure, level of difficulty,
and online setting) other than the virtual teaching itself, more studies are needed to reach
reliable conclusions on this matter.

Regarding the use of digital pathology in medical school education, various studies
have pointed out its advantages over traditional microscopy, including its flexibility, versa-
tility, efficiency, standardization of both laboratory sessions and exams using high-quality
slides, and cost-effectiveness. These support a switch to virtual microscopy, at least for
the medical school level [11,31–34]. Of importance, digital pathology seems to enhance
student engagement and collaboration among one another [23,32,33]. In addition, multiple
authors have stated that the use of virtual over traditional microscopy does not negatively
affect the academic performance of students; in fact, it has been shown to boost it in sev-
eral studies [35–39]. One common disadvantage of using exclusively digital pathology in
medical school education is that students do not learn how to operate the conventional
light microscope [32]; this was also pointed out by a few of our students. However, the vast
majority of medical students will never have to operate optical microscopy after the first
years of medical school or as future physicians. For the ones that exhibit special interest,
pathology electives or clerkships could be an alternative option. Consequently, educators
and students may best focus on the content (acquisition of pathology knowledge), rather
than the tool itself, during pathology sessions [32].

Apart from the advantages of remote pathology education, the implementation of
the latter was also followed by several challenges for the stakeholders, including technical
problems, screen fatigue, and diminished student interactions among themselves and their
instructors, besides their limited exposure to the “hidden curriculum” (Tables 3 and 4).
Regarding remote education, others emphasized the lack of hands-on practical sessions
(e.g., traditional microscopy exercises, as mentioned before), specific issues regarding
online examinations in general, and the reduced engagement of some of them during the
virtual classes [40,41]. Notably, both enhanced and reduced engagement was reported
within student surveys in different studies as well as our own [4,6,40,41]. We suspect
it could be a matter of learning preference among the medical student community, yet
cofounding factors (especially during the COVID-19 period) may have also played a
significant role. Parker et al. attempted to enhance student engagement during their online
classes by encouraging them to turn on their cameras and speak up throughout the sessions
or by providing the session handouts only after the end of the sessions [23]. Others
prompted the use of interactive polling software such as Mentimeter (Mentimeter AB,
Stockholm, Sweden) and Slido (Slido s.r.o., Bratislava, Slovakia), or gaming applications
such as Kahoot! (Kahoot! A.S., Oslo, Norway) in their online sessions [24,42]. However,
the benefits of participating in traditional on-campus pathology education in this regard
may be impossible to reach simply by its remote delivery while experiencing the physical
university environment, in-person interactions, and hands-on activities are undoubtedly
crucial for medical school education [43,44].

Given the aforementioned evidence, a few authors have proposed the implementation
of a blended approach regarding pathology education in medical schools, attempting
to incorporate the best practices of both remote and on-campus teaching. This way, the
advantages offered by both could be maximized and the challenges minimized [3,10,45].
Notably, a recent meta-analysis within the spectrum of health education supported blended
learning which was reported to result in superior learning outcomes [46]. In a blended

136



Diagnostics 2022, 12, 1578

model, online learning would complement face-to-face learning rather than replace it, en-
hancing medical students’ learning experience and academic performance [45]. Bryant et al.
utilized a blended approach to teach gross pathology during the COVID-19 pandemic,
which was positively welcomed by medical students and staff. In their flipped model,
short videos were provided before the laboratory sessions to students, familiarizing them
with the teaching material. Then, laboratory sessions took place using small student co-
horts, where students rotated through different stations to examine the gross specimens,
emphasizing active learning [47]. A few authors have recently pointed out the preference
of students for blended learning. For instance, Manou et al. stated in their recent study
that most pathology students in their institute exhibited a preference for the integration of
e-learning into their conventional on-campus teaching post-pandemic [48]. Similarly, when
our students were asked about the best delivery mode of the pathology course as soon as
the pandemic finishes, the majority preferred a blended rather than an entirely on-campus
or online approach [3]. It is clear to us that all the knowledge and experience gained
throughout this pandemic period should not be considered just a short-term adaptation
and get discarded to go back to the way things were; they can be used post-pandemic, as
they have proved to be beneficial for both learners and instructors. For instance, a few
of our students noted in our survey that the at-distance offering of the course provided
first-hand experience on how high-quality online teaching and learning is feasible in case
the need for at-distance instruction arises again or even as a permanent change. Others
saw a great opportunity for a more constructive use of technology in pathology education,
noting that the technological tools and applications that had been utilized in our online
course (e.g., high-quality session recordings, digital pathology, online polls and quizzes,
online case studies, discussion forums, and chat) could also be used in the future to enhance
students’ participation, communication, collaboration, and learning [3].

In a pathology teaching blended approach, online learning could focus, for example,
on delivering the introductory material and digital slide sessions; this could offer flexibility,
innovative teaching solutions, and high-quality recordings, boosting students’ academic
performance [3,39,49,50]. On the other hand, on-campus sessions could focus on small
group teaching, hands-on exercises, and teamwork, in addition to exposure to the “hidden
curriculum” (role modeling and professionalism) [27,51]. Selected tools could also be
used for on-campus exercises, for example, gross dissection or fine-needle aspiration
biopsy simulation models [52,53]. Our opinion is that student assessment also needs to
be conducted on-campus rather than online whenever possible. A few studies dealing
with medical or non-medical education have shown that, with online examinations, the
prevalence of cheating may increase among students [54,55]. Various institutions, therefore,
asked their students to sign academic integrity documents before exams and used certain
proctoring programs; however, potential cheating attempts may still be very hard to detect,
whereas students often report such programs increase their stress levels [6,55,56]. Lastly,
as evidence has so far shown the overwhelmingly positive impact of virtual pathology
electives worldwide [8,11,23,26], which are typically conducted later on during medical
studies, we believe they should keep their current form with potential minor modifications
on a case-by-case basis, according to the feedback instructors receive from their students.

5. Conclusions

This study summarizes the existing evidence regarding the advantages of remote
pathology education in medical schools worldwide during the COVID-19 pandemic, the
challenges faced, and opportunities that have arisen for future implementation. As both
online and on-campus pathology education have pros and cons, a blended approach could
highlight the best practices of both and minimize the challenges in order to offer the best
pathology education to the medical student community. Whereas online education is
convenient, flexible, and efficient, experiencing the physical university environment, in-
person interactions and teamwork, exposure to the “hidden curriculum”, and hands-on
activities are vital for medical school education and future student development. The main
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challenge in the post-COVID medical education era would be to re-design our pathology
courses—including the structure, didactic methodology, and resources—and offer a mixture
of student-centered activities, maximizing our students’ engagement, interaction with
their instructors and peers, and learning. The technologies employed and experience
gained from teaching remotely during the COVID-19 period would need to continue
being used and shared among educators worldwide, rather than being discarded and
simply returning to the pre-pandemic era and the way things were. The application of
state-of-the-art technological tools that promote engagement (e.g., simulations, gaming,
and interactive polling) would need to be emphasized in modern medical schools, in
addition to the implementation of social media to encourage both on-campus and remote
interactions whenever possible [24,42,52,53,57,58]. A number of challenges related to online
learning, such as the lack of reliable electronic devices or internet connection for some
students, could be potentially overcome with the support of Universities themselves, for
instance, by ensuring each student with accessibility issues is provided with a suitable
computing device and/or by investing in their library services (e.g., physical space with
adequate hardware infrastructure and a reliable internet connection and access to variable e-
resources). Lastly, pathology educators would also have to transform themselves digitally,
become familiar with novel interactive tools, and develop a creative mindset to teach
efficiently and effectively in the challenging post-COVID medical school education era.
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Abstract: Colorectal cancer (CRC) is the second most common cancer in women and the third
most common in men, with an increasing incidence. Pathology diagnosis complemented with
prognostic and predictive biomarker information is the first step for personalized treatment. The
increased diagnostic load in the pathology laboratory, combined with the reported intra- and inter-
variability in the assessment of biomarkers, has prompted the quest for reliable machine-based
methods to be incorporated into the routine practice. Recently, Artificial Intelligence (AI) has made
significant progress in the medical field, showing potential for clinical applications. Herein, we aim to
systematically review the current research on AI in CRC image analysis. In histopathology, algorithms
based on Deep Learning (DL) have the potential to assist in diagnosis, predict clinically relevant
molecular phenotypes and microsatellite instability, identify histological features related to prognosis
and correlated to metastasis, and assess the specific components of the tumor microenvironment.

Keywords: colorectal cancer; CRC; histopathology; microscopy images; deep learning; DL; convolutional
neural networks; CNN

1. Introduction

Colorectal cancer (CRC) is one of the most common types of gastrointestinal cancer, the
second most common cancer in women and the third in men [1]. Despite existing variations,
such as geographical distribution, age and gender differences, the CRC incidence, overall,
is estimated to increase by 80% in the year 2035, worldwide [2]. This rising incidence of
CRC is mainly due to changes in lifestyle, particularly dietary patterns [3]. Most CRCs are
sporadic (70–80%), while approximately one third have a hereditary component [4]. Within
the term CRC, a wide range of carcinoma subtypes is included, characterized by different
morphological features and molecular alterations.

The cornerstone of CRC diagnosis is the pathologic examination (biopsy or surgical
excision) [5]. With the advent of screening methods, many precursor lesions are also
detected and biopsied. Consequently, a wide range of pre-malignant lesions have been
identified, and occasionally, a differential diagnosis between pre-malignant and malignant
lesions is quite challenging [6]. The histopathological examination of the tissue remains
the “gold standard” for diagnosis, with the first step being the optimal preparation of the
histological section, stained with Hematoxylin and Eosin (H&E) [7]. Further examination
with special in situ methods, such as immunohistochemistry (IHC) and in situ hybridization
(ISH), and other molecular techniques follows [8]. There are published guidelines for pre-
analytical, analytical and post-analytical procedures in a pathology laboratory [9]. As
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expected, due to the high incidence of CRC, the diagnostic load in a routine pathology
laboratory is very heavy and the introduction of an ever-growing list of morpho-molecular
features to be examined and noted has made the diagnosis a time-consuming process [10].
All these factors, in combination with the shortage of pathologists worldwide, have led to
delays in diagnosis, with consequences to the optimal healthcare of the patient.

It has been shown that pathologists make a diagnosis based mainly on image-based
pattern recognition [6]. With this strategy, architectural and cellular characteristics conform
to already known features of a disease [11]. In several instances, an accurate diagnosis or
estimation of prognostic and predictive factors is subject to personal interpretations, leading
to inter- and intra-observer variability [12,13]. In a continuous effort to improve the accuracy
of the pathology diagnosis, combined with the timely delivery of all vital information for
optimal patient treatment, the new and breakthrough technologies can be of great value.
Thus, in the last 5 years, the development of reliable computational approaches, using
machine learning based on pattern recognition, has exponentially increased, as reflected in
the plethora of published papers [14,15].

The recent World Health Organization (WHO) classification for malignant epithelial
tumors of the colorectum includes four main categories: adenocarcinoma (ADC) not other-
wise specified (NOS), neuroendocrine tumor NOS, neuroendocrine carcinoma NOS and
mixed neuroendocrine-non-neuroendocrine neoplasm (MiMEN) [16]. Of these, colorectal
ADC is the most common (90%) and, by definition, it shows glandular and mucinous
differentiation. Colorectal ADC has several histopathological subtypes, with specific mor-
phologic, clinical, and molecular characteristics, i.e., serrated ADC, adenoma-like ADC,
micropapillary ADC, mucinous ADC, poorly cohesive carcinoma, signet-ring cell carci-
noma, medullary ADC, adenosquamous carcinoma, carcinoma undifferentiated NOS and
carcinoma with sarcomatoid component.

The diagnosis of CRC is only the first step for a complete pathology report. Accord-
ing to best-practice guidelines, the specific histologic subtype, the histologic grade, the
TNM staging system, the lymphovascular and perineural invasion, and the tumor bud-
ding should be reported [9,16]. In recent years, the molecular pathological classification
of CRC has been proposed, aiming to compliment the traditional histopathologic classi-
fication [4]. An integrated molecular analysis performed by the Cancer Genome Atlas
Network, has classified CRC into three groups, including highly mutated tumors (~13%),
ultra-mutated tumors (~3%) and chromosomal instability (CIN) tumors (~84%). In 2015,
an expression-signature-based classification was proposed with four consensus molecular
subtype (CMS) groups: CMS1 subtype (MSI-immune, 14%), CMS2 subtype (canonical,
37%), CMS3 subtype (metabolic, 13%) and CMS4 subtype (mesenchymal, 23%). In addi-
tion, molecular alterations are prevalent in CRC, consisting of Chromosomal Instability
(CIN), Microsatellite Instability (MSI) and a CpG Island Methylator phenotype (CIMP).
Defective mismatch repair (MMR) DNA mechanisms lead to increased mutations and,
consequently, to MSI [17,18]. The majority of sporadic CRCs are characterized by CIN
(~84%), and ~13–16% are hypermutated with an MSI status. The immunohistochemical
detection of either an abnormal expression or a loss of expression of the mismatch repair
proteins, MLH1, MSH2, MSH6, and PMS2, is of significant diagnostic and prognostic value
in CRC, as well as for the detection of hereditary nonpolyposis colorectal cancer (HNPCC),
also known as Lynch syndrome, which constitutes approximately 2% to 3% of all colorectal
carcinomas [19–21].

Histopathology image generations start with the standard procedure of tissue prepara-
tion. Biopsy or surgical specimens (representative sections) are formalin-fixed and paraffin-
embedded. Then, the 4µm tissue sections are prepared and stained with H&E dye [22]. The
images are extracted after a scanning procedure. Several scanning systems can be used
to digitize the whole slide [23], such as the Hamamatsu NanoZoomer series, the Omnyx
scanner, the Zeiss scanners, the Pannoramic 250 Flash II, and the Leica Biosystems Aperio
systems [24]. Most of the above scanners provide two optical magnifications, 20× and 40×,
however, the user can also digitally undersample the image in different magnifications.
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A scanner needs several minutes for the scanning of the whole slide, while most of the
system can deal with tens or hundreds of slides that are scanned automatically one-by-one.
According to the digitalization, each pixel of a Whole Slide Image (WSI) corresponds to
a physical area of several decades nm2. For example, in the 40× magnification mode, a
Hamamatsu NanoZoomer scanner extracts an image, where the size of each pixel edge cor-
responds to 227 nm [25]. The latter image digitization provides an appropriate resolution
for most of the histological findings, which presents a physical size of microns [26]. In most
of the cases, the extracting images are storage either in a compressed JPEG-based format
or an uncompressed TIFF format. Figure 1 presents the resolution of a WSI, scanned by a
Hamamatsu NanoZoomer 210.
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Machine learning is a branch of AI which is based on the concept that machines could
have access to data and be able to learn on their own. AI has a broader scope and involves
machines that are capable of carrying out tasks requiring intelligence. Machine learning
techniques focus on the creation of intelligent software using statistical learning methods
and require access to data for the learning procedure [27]. A branch of machine learning,
which has drawn a lot of attention over the last few years, is DL. DL involves training
artificial neural networks (ANNs) with multiple layers of artificial neurons (nodes). Neural
networks are inspired from the human physiology of the brain, comprising a simplified
artificial model of the human neural network. An ANN is a collection of connected artificial
neurons. The simplest ANN architecture is the single layer feed forward neural network.
In these types of networks, the information moves in one direction only, from the inputs’
nodes to the hidden layer nodes and then to the output nodes. The success and wide
acceptance of ANNs relies on their capability to solve complex mathematical problems,
nonlinear or stochastic, by using very simple computational operations. In contrast to a
conventional algorithm, which needs complex mathematical and algorithmic operations
and could only apply to one problem, an ANN is computationally and algorithmically very
simple and its structure allows it to be applied in a wide range of problems [28].

DL has rapidly developed during the last decade due to the significant increase
in processing power and to the fact that, for the first time, artificial models are able to
achieve more accurate results than humans in classification tasks [29]. Both DL and
machine learning techniques in general affect our everyday life in various ways. From
the simple-looking face recognition program used in Facebook, to the classification of
abnormal/normal human cells in bioinformatics. For image analysis problems, such as the
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histological lesions’ detections, prognosis and diagnosis, DL approaches mainly employ
Convolutional Neural Networks (CNNs) for segmentation and classification, while few
studies employ another DL approach, called Generative Adversarial Networks (GANs), to
improve the training set of images before classification.

CNNs have produced high classification rates in modern computer vision applications.
The term “convolutional” suggests that a deep neural network applies the mathematical
convolution operation to at least one of its multiple hidden layers. Many CNN model
variations have been implemented in recent years, which are based on a common layer
pattern: (a) 1 input layer, (b) L-1 convolution layers and (c) 1 classification layer. The
key feature of a sequential CNN is that it transforms the input data through neurons
that are connected to neurons of the previous convolution layer. Initially, the raw image
is loaded at the input layer, which is usually set to accept a three-dimensional spatial
form of an image file (width × height × depth), with the depth, in this case, indicating
the RGB (Red, Green, Blue) color channels. More technically, each of the convolution
layers calculates the dot product between the area of the neurons in the input layer and
the weights in a predetermined size of a filtering kernel (e.g., 3 × 3). In this way, local
features can be detected through K declared kernels. As a result, all nodes (neurons)
of each convolution layer calculate their activation value based on only one subset of
spatially adjacent nodes on the filtered feature maps of each previous convolution layer.
The most common deep network architectures, such as AlexNet and GoogleNet, use the
same neuron type at each hidden layer [30,31]. These architectures achieve very high
accuracy in classification problems, while their training is a computationally intensive and
time-consuming process. Currently, many different architectures, such as VGG, DenseNet,
ResNet, Inception.v3, etc., have been proposed, performing well under different conditions
and problem parameters [31–33].

GANs are also a DL approach applied on digital image analysis [34]. GANs are
a smart way to train a model as a supervised learning problem, even if based on their
principles they are unsupervised machine learning procedures. A typical GAN consists of
two sub-models: (a) the generator network, where the training generates new samples with
similar characteristics to the real ones and (b) the discriminator network, which provides a
binary classification of the generating samples, discriminating the real (approved) samples
from the fake ones. GANs have been rapidly evolved, especially in image processing and
classification, providing a sophisticated approach to simulate images for CNN training,
avoiding overtraining and overfitting. It is an alternative method of image augmentation
which extracts simulated images using simple transformations such as rotation, shearing,
stretching, etc.

In this paper, a systematic review for the application of DL in colorectal cancer, using
digital image analysis in histopathological images, is presented. The aim of the manuscript
focuses on the investigation from both medical and technical viewpoints. The innovative
contribution of this systematic review is the combination of the two viewpoints provided,
presenting a more comprehensive analysis of AI-based models in CRC diagnosis. A
deeper understanding on both medical and technical aspects of DL will better reveal the
opportunities of implementing DL-based models in clinical practice, as well as overcome
several challenges occurring for the optimal performance of the algorithms. According to
the PRISMA guidelines [35], an expanded algorithm was used for searching the literature
works. Specific inclusion and exclusion criteria have been defined to result in the final
studies of interest, which have been categorized for both medical and technical points
of views. In the next sections, significant backgrounds for both the clinical practice and
the details about DL in image analysis are outlined, the method for the study selection is
analyzed, and results are extensively discussed.
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2. Materials and Methods
2.1. Search Strategy

We systematically searched PubMed from inception to 31 December 2021 for pri-
mary studies developing a DL model for the histopathological interpretation of large
bowel biopsy tissues and CRC. For this purpose, we used the following algorithm: (con-
volutional neural networks OR CNN OR deep learning) AND ((cancer AND (colon OR
colorectal OR intestin* OR bowel)) OR (adenocarcinoma AND (colon OR colorectal OR
intestin* OR bowel)) OR (carcinoma AND (colon OR colorectal OR intestin* OR bowel))
OR (malignan* AND (colon OR colorectal OR intestin* OR bowel))) AND (biop* OR micro-
scop* OR histolog* OR slide* OR eosin OR histopatholog*). The search was conducted on
14 January 2022.

2.2. Study Eligibility Criteria

The study was conducted according to the PRISMA guidelines and registered to PROS-
PERO 2020. Eligible articles were considered based on the following criteria. We included
studies presenting the development of at least one DL model for the histopathological
assessment of large bowel slides and CRC. Eligible applications of the DL models included
diagnosis, tumor tissue classification, tumor microenvironment analysis, prognosis, sur-
vival and metastasis risk evaluation, tumor mutational burden characterization and, finally,
microsatellite instability detection. We excluded articles that presented in vitro models,
used endoscopic or radiological images instead of histological sections, and involved non-
photonic microscopy. Furthermore, eligible articles should report original studies and not
reviews/meta-analyses, concern humans and be written in English. Additionally, articles
referring to organs other than the large bowel and benign entities were deemed ineligible.

2.3. Study Selection

All citations collected by the previously mentioned methodology were independently
screened by four researchers, who were properly trained before the process started, using
the online software Rayyan. Three of the researchers were scientifically capable of evalu-
ating the medical aspect of the query and one of them was a CNN expert, able to assess
the technical part. During the screening period, the researchers would meet regularly to
discuss disagreements and continue training. Conflicts were resolved by consensus. The
full texts of potentially eligible articles were later retrieved for further evaluation.

2.4. Data Extraction

To facilitate the data extraction process, we specially designed a spreadsheet form,
which all researchers could access to import data from all the eligible articles. From each
paper, we extracted information on first author, year and journal of publication, PubMed
ID, title, aim of medical research, technical method, classification details, dataset and
performance metrics.

3. Results

Our systematic search returned 166 articles, 92 of which were selected for full-text
screening. Finally, 82 articles were considered eligible for our systematic review according
to our criteria of eligibility. A detailed description of the study selection process can be
found in the PRISMA flow-chart presented in Figure 2. The selected works are presented
both through the medical and technical point of view (Figure 3), while Table 1 includes
the characteristics of each study, regarding the medical scope, the technical approach, the
employed datasets, and finally, the performance of the proposed method.

3.1. Medical Viewpoint

According to the medical scope of view, there are five categories: (a) studies for
diagnostic purposes, (b) the classification of the tumor tissue, (c) the investigation of the
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tumor microenvironment, (d) the role of histological features to prognosis, metastasis and
survival, and finally, (e) the identification of microsatellite instability.
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Figure 2. Systematic review flow-chart illustrating systematic search and screening strategy, including
number of studies meeting eligibility criteria and number of excluded studies. Last search carried
out on 14 January 2022.
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3.1.1. Diagnosis

DL techniques can assist in the process of pathology diagnosis [14]. The algorithms per-
form a binary classification, for instance, cancer/non-cancer, colon benign tissue/colon ADC.

The classification of the tumor regions in WSIs by AI-based models could assist in
the time-consuming process of a microscopical examination. The suggested models in the
study by Gupta et al. classified normal and abnormal tissue in CRC slides and localized
the cancer regions with good performance metrics [36]. Zhou et al. used global labels
for tumor classification and localization without the need for annotated images [37]. In
the same framework, DL algorithms performed a binary classification of CRC images for

146



Diagnostics 2022, 12, 837

detecting cancerous from non-cancerous regions, achieving good performance metrics and
supporting the potential for use in clinical practice [38–42]. A recent study evaluating the
segmentation performance of different DL models, showed that AI-patch-based models
had great advantages, although this segmentation approach could result in lower accuracy
when more challenging tumor images are included [43]. Moreover, AI-based models
could be combined to persistent homology profiles (PHPs) and effectively identify normal
from tumor tissue regions, evaluating the nuclear characteristics of tumor cells [44]. A
patch-cluster-based aggregation model, including a great number of WSIs developed by
Wang et al., performed the classification of CRC images (cancer, not cancer) assessing
the clustering of tumor cells, and the results were comparable to pathologists’ diagnosis,
revealing no statistical difference [45]. The acceleration of tumor detection by CNNs could
be obtained by reducing the number of patches, taking care to select the most representative
regions of interest [46]. Both proposed methods in the study of Shen et al. performed with
good accuracy and efficiency in detecting negative cases. Lastly, Yu et al., using a large
dataset, demonstrated that SSL, with large amounts of unlabeled data, performed well at
patch-level recognition and had a similar AUC as pathologists [47].

Colon benign tissue and colon ADC were classified with good accuracy by DL models
developed by Toğaçar et al. and Masud et al. [48,49]. The study of Song et al. showed
that the DL model and the pathologists’ estimation were in agreement in diagnosing
CRC [50]. However, the binary classification algorithm for adenoma and non-cancerous
(including mucosa or chronic inflammation) tiles showed a proportion of false predictions
in challenging tiles consisting of small adenomatous glands.

The accurate identification of benign from malignant tissues achieved a sensitivity
of 0.8228 and specificity of 0.9114 by a DL model trained with Multiphoton microscopy
(MPM) images, although images were lacking biomarkers such as colonic crypts and goblet
cells [51]. Holland et al. used the same classification model and 7 training datasets consist-
ing of a descending number of images [52]. The mean generalization accuracy appeared to
rely on the number of images within the different training sets and CNNs, although the
larger datasets did not result in a higher mean generalization accuracy, as expected.

3.1.2. Tumor Tissue Classification (Non-Neoplastic, Benign, Malignant, Grade, Architecture
and Cellular Characteristics)

Lizuka et al. conducted a classification of CRC into adenocarcinoma, adenoma or
normal tissue on three different test sets, revealing great performance metrics and promising
results for clinical practice [53]. The progression of CRC could be assessed by CNN,
designed to identify benign hyperplasia, intraepithelial neoplasia, and carcinoma using
multispectral images, however, the contribution of the pathologist’s assessment and a bigger
dataset were required [54]. Another study demonstrated that colorectal histological images
could be classified into normal mucosa, an early preneoplastic lesion, adenoma and cancer
with good accuracy, although these four classes may occasionally overlap and result in
uncertainty in labeling [55]. Moreover, the ARA-CNN model was designed for an accurate,
reliable and active tumor classification in the histopathological slides, aiming to minimize
the uncertainty of mislabeled samples [56]. The model achieved great performance metrics
not only in the binary, but also in the multiclass tumor classification, such as the proposed
CNN by Xu et al. and Wang et al. [57,58]. Three studies by Papadini et al., Jiao et al. and
Ben Hamida et al. proposed CNN approaches for multi-class colorectal tissue classification
in a large dataset number, underlining the great potential of AI-based methods to efficiently
perform multiple classifications of tumor regions [59–61]. Repurposing a stomach model
trained in poorly differentiated cases of gastric ADC using a transfer learning method, DL
algorithms could perform the classification of poorly differentiated adenocarcinoma in
colorectal biopsy WSIs, benefiting from histological similarities between gastric and colon
ADC [62].

The challenging task of gland segmentation was approached by Xu et al. and Graham
et al., developing CNNs for gland segmentation and achieving a good performance in
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statistical metrics as well as generalization capability [63,64]. In addition, Kainz et al.
trained two networks to recognize and separate glands which achieved 95% and 98%
classification accuracy in two test sets [65]. Further research, both in H&E-stained and IHC
images of colorectal tissue, was performed for glandular epithelium segmentation [66].

Grading into normal, low-grade and high-grade CRC was approached by Awan et al.
and Shaban et al. with 91% and 95.7% accuracy, respectively, using the same dataset [67,68].
Lastly, the grading of colorectal images was performed by an unsupervised feature extractor
via DL, showing great accuracy, although, as expected, the subcategorization of low-grade
tissue images had reduced the accuracy [69].

3.1.3. Tumor Microenvironment

An automated assessment of the CRC tumor microenvironment was carried out,
including the stroma, necrosis and lymphocytes associated with progression-free intervals
(PFI) [70]. Jiao et al. demonstrated that a higher tumor–stroma ratio was a risk factor, whilst
high levels of necrosis and lymphocytes features were associated with a low PFI. Pham’s
et al. proposed a DL model for binary and 8-class tumor classification in CRC images, as
well as, for the prediction and prognosis of the protein marker, DNp73 in IHC rectal cancer
images provided perfect results and outperformed other CNNs [71]. Pai et al. conducted
a tumor microenvironment analysis in colorectal TMAs [72]. The algorithm efficiently
detected differences between MMRD and MMRP slides based on inflammatory stroma,
tumor infiltrating lymphocytes (TILs) and mucin, and the quantified proportion of tumor
budding (TB), and poorly differentiated clusters (PDCs) associated with lymphatic, venous
and perineural invasion. A Desmoplastic Reaction (DR) could be also classified by DL
algorithms in CRC histopathological slides containing the deepest tumor invasion area [73].
The classification of a DR based on a myxoid stroma could be a significant prognostic
marker for patients’ survival.

Comprehensive analysis of the tumor microenvironment proved to show a great
performance by the ImmunoAIzer, a DL model for cell distribution description and tumor
gene mutation status detection in CRC images, proposed by Bian et al. [74]. Optimal results
were achieved in accuracy and precision for biomarker prediction, including CD3, CD20,
TP53 and DAPI. Additionally, the suggested DL framework could effectively quantify
TILs, PD-1 expressing TILs in anti-PD-1 immunofluorescence staining images, as well as
detect APC and TP53. Lymphocytes could be detected in colorectal IHC images stained
positive for CD3 and CD8 biomarkers by 4 different CNNs, with U-Net showing the best
performance according to the F1 score [75]. In the same framework, Xu et al. proposed a
DL model for the quantification of the immune infiltration (CD3 and CD8 T-cells’ density)
within the stroma region using IHC slides [76]. The CNN-IHC model performed with
high accuracy and was efficient in predicting survival probability, which was increased
when patients had a higher stromal immune score. Predictions of genetic mutation genes,
such as APC, KRAS, PIK3CAM SMAD4, TP53 and BRAF, could be followed through the
DL algorithms to support the clinical diagnosis and better stratify patients for targeted
therapies [77,78]. Schrammen et al. proposed the Slide-Level Assessment Model (SLAM) for
simultaneously tumor detection and predictions of genetic alterations [79]. In a 2017 study,
recognizing the molecular tumor subtype based on histopathology image data, Popovici
et al. proposed a challenging approach utilizing a DCNN, which was effective in predicting
relapse-free survival [80]. Xu et al. compared a DCNN to handcraft feature representation
in IHC slides of CRC, stained for an Epidermal Growth Factor Receptor (EGFR), and
demonstrated that the DCNN showed a better performance versus the handcrafted features
in classifying epithelial and stromal regions [81]. In addition, Sarker et al. developed a DL
approach for the identification and characterization of an Inducible T-cell COStimulator
(ICOS) biomarker, which achieved high accuracy in the ICOS density estimation and
showed potential as a prognostic factor [82]. Tumor budding could be quantified in CRC
IHC slides stained for pan-cytokeratin, whereas a high tumor budding score was correlated
to a positive nodal status [83].
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Analysis for cell nuclei types (epithelial, inflammatory, fibroblasts, “other”) by a CNN
model trained on 853 annotated images showed a 76% classification accuracy [26]. All
four cell types were associated with clinical variables, for instance, fewer inflammatory
cells were related to mucinous carcinoma, while metastasis, residual tumors, as well
as venous invasion were related to lower numbers of epithelial cells. A similar study, by
Sirinukunwattana et al., described a CNN method for the detection and classification of four
cell nuclei types (epithelial, inflammatory, fibroblast and miscellaneous) in histopathological
images of CRC [84]. Höfener et al. used the same dataset as Sirinukunwattana et al.
for nuclei detection from Cthe NNs based on the PMap approach [85]. A novel CNN
architecture, Hover-net, was proposed by Graham et al. for the simultaneous segmentation
and classification of nuclei, as well as for the prediction of 4 different nuclear types [86]. In
2017, the deep contour-aware network (DCAN) was developed by Chen et al. for accurate
gland and nuclei segmentations on histological CRC images [87].

3.1.4. Histological Features Related to Prognosis, Metastasis and Survival

A peri-tumoral stroma (PTS) score evaluated by CNNs was significantly higher in
patients with positive lymph nodes compared to the Lymph Node Metastasis (LNM)-
negative group [88]. However, due to the small dataset and the selection of classes used,
the PTS score for LNM and extramural tumor deposits in early-stage CRC was not detected.
Kiehl et al. and Brockmoeller et al. showed that LNM could be predicted by DL models
with a good performance [89,90]. Furthermore, the incidence of metastasis in histologic
slides with one or more lymph nodes was predicted by CNN, with good accuracy, both for
micro- and macro-metastases [91].

Bychkov et al., using TMAs of the most representative tumor area of CRC, proved the
efficiency of a DL model to predict the 5-year disease-specific survival (DSS), while Skrede
et al. reported data for the prediction of cancer-specific survival [92,93]. Similarly, DSS was
predicted by a DL model and clinicopathological features, such as poorly differentiated
tumor cell clusters, were associated with high DL risk scores [94]. A Crohn-like lymphoid
reaction (CLR) density at the invasive front of the tumor was a good predictor of prognosis
in patients with advanced CRC, independent of the TNM stage and tumor–stroma ratio [95].
Determining the ratio of the desmoplastic and inflamed stroma in histopathological slides
by DL models could be of great value in predicting the recurrence of disease after rectal
excision and a lower desmoplastic to inflamed stroma ratio was associated with a good
prognosis [96]. Tumor–stroma ratio (TSR) measures could be an important prognostic factor
and, as shown by Zhao et al. and Geesink et al., a stroma-high score was associated with
reduced overall survival [97,98]. The “deep stroma score” by Kather et al., a combination
of non-tumor components of the tissue, could be an independent prognostic factor for
overall survival, especially in patients with advanced CRC [99]. IHC slides stained for
pan-cytokeratin from patients with pT3 and pT4 colon ADC were used to train a DCNN
to predict the occurrence of distant metastasis based on tumor architecture [100]. Another
study showed that IHC-stained images of the amplified breast cancer 1 (AIB1) protein from
CRC patients could operate as a predictive 5-year survival marker [101].

3.1.5. Microsatellite Instability

Deploying the dataset of the MSIDETECT consortium, Echle et al. developed a DL
detector for the identification of MSI in histopathological slides [102]. High MSI scores were
accompanied by the presence of a poorly differentiated tumor tissue, however, false MSI
scores were also noted in necrotic and lymphocyte infiltrated areas. The binary classification
of DL algorithms for predicting MSI and MSS status in CRC images was performed in
studies by Wang, Yamashita, Bustos and Cao et al., with the latter study associating MSI
with genomic and transcriptomic profiles [103–106]. Another MSS/MSI-H classifier model
was trained on tumor-rich patch images for better classification results, although some
images were misclassified indicating that a larger dataset was required [107]. Generating
synthesized histology images could also be utilized by DL models for detecting MSI in
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CRC, as demonstrated by Krause et al. [108]. A synthetic dataset achieved an almost similar
AUC in predicting MSI compared to real images, although the best performance was noted
when a combination of synthetic and real images was generated. Image-based consensus
molecular subtype (CMS) classification in CRC histological slides from 3 datasets showed
a good performance, and the slides having the highest prediction confidence were in
concordance with the histological image features [109]. In another study, CMS classification
was associated with mucin-to-tumor area quantification, and revealed that CMS2 CRC
had no mucin and MUC5AC protein expression was an indication for worse overall
survival [110]. Lastly, a CNN for predicting tumor mutational burden-high (TMB-H) in
H&E slides was developed by Shimada et al. and showed an AUC of 0.91, while high
AUC scores were also noted in the validation cohorts [111]. TMB-H was associated with
TILs, although further development is important for this CNN model to be included in
clinical practice.

3.2. Technical Viewpoint

The presented DL methods for image analysis in colorectal histopathology images
could follow a categorization close to the one presented, which is presented in the back-
ground section. The systematic review indicates a rapid implementation of the field,
presenting DL applications that cover many technical approaches. Most of the presented
works in the literature employ a Convolution Neural Network in different segmentation
and classification problems (i.e., binary classification for the diagnosis or prognosis of
cancer, multiclass problems to characterize different tissue types, segmentation problems
for the detection of the microenvironment of the tissue). According to the scope of the
study, the authors proposed an appropriate architecture, providing the performance of their
method and perhaps comparing with other already developed CNNs. Few studies used
GANs to improve the training of the network, while several of them extended architectures
for encoding and decoding, such as U-Net. Recent studies took the advantage of a high
classification performance, developing retrospective or cohort studies based on the DL
results. Technically, almost all the studies utilized popular machine learning environments,
such as PyTorch, TensorFlow, Keras, Fastai, etc., which provided robust implementations
of DL approaches. The main category of CNN application can be divided into three subcat-
egories: (i) custom CNN architectures, (ii) popular architectures with transfer learning, and
finally, (iii) novel architectures, ensemble CNNs or frameworks.

3.2.1. Custom CNN Architecture

Custom CNN architectures denote those approaches where the authors built, from
scratch, all the layers of the network, visualizing in detail the feature extraction layers, the
fully connected layers of the classifier, as well as all the layers between of them. Commonly,
these architectures consisted of few layers and a small number of parameters, instead of the
well-known architectures where the networks expanded and were deeper than custom ones.
In several cases, custom CNNs performed well for typical simple problems, where it was
probably meaningful to avoid complex architectures and networks with a high consuming
computational effort. Several proposed custom CNNs were constructed, containing up
to 4 convolution layers for feature extraction and up to 2 fully connected layers for the
classifier [38,45,53,66,80]. For example, one of the first presented methods by Xu et al.
classified the regions of the image as the epithelium or stroma, employing a simple CNN
within a total of 4 layers (2 convolution and 2 fully connected) [81]. Other research teams
implemented deeper architectures than the latter, including at least 8 layers [40,83,98].
For example, one of the most recent studies used a custom architecture of 15 layers (12
convolutional and 3 fully connected) for diagnosis purposes [40]. Finally, the most complex
custom CNN, proposed by Graham et al. and called MilD-Net+, provides simultaneous
gland and lumen segmentation [64].
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3.2.2. Popular Architectures with Transfer Learning

The most comfortable way to apply CNNs on imaging problems is the utilization of
the machine learning environments, where researchers can easily call already developed
architecture. Such architectures gradually became very popular due to their standard im-
plementation as well as their ability to transfer learning from the training in other datasets.
According to the concept of transfer learning, it is less computationally expensive to employ
a pre-trained deep network instead of a network with randomly generated weights, even if
the training set includes images with different characteristics and classes. As a result, in
most of the cases, the popular models were trained on the ImageNet dataset, which con-
tained many images of different sources [27]. The most common pre-trained model used for
CRC is based on the VGG architectures. Four of the studies, presented by Zhao et al. [95,97],
Xu et al. [76] and Jiao et al. [70], employed the VGG-19, while two of the studies employed
the VGG-16 [41,101]. Furthermore, two other studies compared different parameters of the
general VGG architecture [38,80]. The second and third mostly used CNN for CRC is the
Inception.v3 [39,45,53,77,111], the Resnet (ResNet-50 used by Chuang et al. [91], ResNet-18
used by Kiehl et al. [90] and Bilal et al. [78], and ResNet-34 used by Bustos et al. [105] and
Bilal et al. [78]), or the combination of them called the InceptionResNet.v2 [100]. These
architectures introduced the Inception and the residual blocks, which made the model less
sensitive to overfitting. Interesting approaches [67,70,88] were developed using either the
U-Net model, where the initial image was encoded to a low resolution and then decoded,
providing images with similar characteristics or the ShuffleNet [80,91,103]. Finally, other
well-known models were also used, such as AlexNet [57], the YOLO detector [75], the
CiFar Model [25], the DenseNet [73], the MobileNet [94], LSTM [71], Xception [51], the
DarkNet [48] and EfficientNetB1 [62].

In the category with the pre-trained popular models, all the comparative works
could be included. These studies employed either the well-known models referenced
above [36,61], or other models such as GoogleNet [99], SqueezeNet [52] and ResNeXT [43].
Finally, two studies utilized [72] or proposed [103] cloud platforms where the user can fine
tune several hyper-parameters of popular pre-trained architectures.

3.2.3. Novel Architectures

Many research teams focus on the technical innovation evaluating their proposed
methodologies in colorectal image datasets. The studies of these categories are mostly (a)
modifications of popular architectures, (b) combinations of techniques into a framework, or
(c) ensemble approaches.

Several modified architectures were the HoVer-Net [64] based on the Preact-ResNet-
50, the KimiaNet [112] based on the DenseNet, the architecture proposed by Yamashita
et al. [104] based on the MobiledNet, and finally, the modification of the loss functions on
the ResNet proposed by Medela et al. [113]. Finally, Bian et al. [74] proposed an CNN based
on the Inception.v3, adding several residual blocks.

Several studies engaged a CNN architecture with other sophisticated methods and
concepts of artificial intelligence. One of the first attempts in the field was developed by
Sirinukunwattana et al., proposing a combination of a custom CNN architectures with
the Spatial Constrain Regression [84]. A similar concept developed two custom CNN
architectures with PMaps approaches [85]. Chen et al. presented a novel deep contour-
aware network for the detection and classification of the nuclei [87]. A Deep Belief Network
for feature extraction, followed by the Support Vector Machines for classification, was
deployed by Sari et al. [69]. A recent work employed a Deep embedding-based Logistic
Regression (DELR), which also used active learning for sample selection strategy [60].
In two other studies, the DenseNet was combined with Monte Carlo approaches [46],
while the Inception.v3 was cooperated with Adversarial Learning [109]. Finally, Kim
et al. [114] combined the InceptionResNet.v2 with Principal Component Analysis and
Wavelet Transform.
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Some other research teams combined two or more CNNs on a single framework. Two
different approaches combined the VGG architectures with the concept of the ResNet [66,92],
while the ARA-CNN, proposed by Raczkowski et al. [56], combined the ReSNet with the
DarkNet. Lee et al. [107] proposed a framework of an initial custom architecture followed
by the Inception.v3. Furthermore, three frameworks based on the ResNet were developed
by Zhou et al. [37]. Shaban et al. [68] developed a novel context-aware framework consist-
ing of two stacked CNNs. Finally, another combination between different architectures,
which was presented in the literature, is the DeepLab.v2 with ResNet-34 [50].

In recent years, voting systems are increasingly used for classification purposes. These
ensemble approaches engage two or more algorithms, where the prediction of the highest
performance finally prevails. The first ensemble pipeline was presented by Cao et al. in
2020, which votes according to the likelihood extracted from ResNet-18 [106]. Nguyen
et al. [42,110] proposed an ensemble approach with two CNNs (VGG and CapsuleNet),
while Kheded et al. deployed an approach with three CNNs as combination backbones:
(a) the U-Net with the ResNet, (b) the U-Net with the InceptionResNet.v2 and (c) the
DeepLab.v3 with Xception [115]. Another ensemble framework was developed by Skrede
et al. [93], with ten CNN models based on the DoMore.v1. The most extended voting
systems were presented by Paladini et al. [59], who introduced two ensemble approaches
using the ResNet-101, ResNeXt-50, Inception-v3 and DenseNet-161. In the first one, called
the Mean-Ensemble-CNN approach, the predicted class of each image was assigned using
the average of the predicted probabilities of the four trained models, while in the second
one, called the NN-Ensemble-CNN approach, the deep features corresponding to the last
FC layer are extracted from the four trained models.

3.2.4. Improving Training with GANs

Apart for the segmentation and classification, DL in CRC has also been applied for the
improvement of the training dataset using GANs. There have been three works with GANs’
applications presented during the past two years. In the first attempt [108], a Conditional
Generative Adversarial Network (CGAN), consisting of six convolution layers for both
the generator and the discriminator network, was employed to train the ShuffleNet for
the classification. Finally, a very recent study presented a novel GAN architecture, called
SAFRON [116], which enabled the generation of images of arbitrarily large sizes after
training on relatively small image patches.
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ğa

ça
r

[4
8]

C
om

pu
tB

io
lM

ed
D

ia
gn

os
is

D
ar

kN
et

-1
9

m
od

el
ba

se
d

on
th

e
Y

O
LO

ob
je

ct
de

te
ct

io
n

m
od

el

Bi
na

ry
(b

en
ig

n/
co

lo
n

A
D

C
)

10
.0

00
im

ag
es

C
ol

on
A

D
C

:A
C

C
:9

9.
96

%
C

ol
on

be
ni

gn
:A

C
C

:9
9.

96
%

O
ve

ra
ll

A
C

C
:9

9.
69

%

Z
ha

o
[9

5]
C

an
ce

r
Im

m
un

ol
Im

m
un

ot
he

r
Ly

m
ph

N
od

e
M

et
as

ta
si

s
(L

N
M

)p
re

di
ct

io
n

Sa
m

e
C

N
N

as
Z

ha
o

et
al

.,
20

20
(V

G
G

-1
9

pr
e-

tr
ai

ne
d

on
th

e
Im

ag
eN

et
us

in
g

tr
an

sf
er

le
ar

ni
ng

w
it

h
SG

D
M

)

7-
cl

as
s:

tu
m

or
ep

it
he

liu
m

,
st

ro
m

a,
m

uc
us

,d
eb

ri
s,

no
rm

al
m

uc
os

a,
sm

oo
th

m
us

cl
e,

ly
m

ph
oc

yt
es

,a
di

po
se

Tr
ai

ni
ng

27
9

H
/E

W
SI

s
an

d
V

al
id

at
io

n
19

4
H

/E
W

SI
s

H
ig

h
C

LR
de

ns
it

y
O

S
in

th
e

di
sc

ov
er

y
co

ho
rt

H
R

:0
.5

8
H

ig
h

C
LR

de
ns

ity
O

S
in

th
e

va
lid

at
io

n
co

ho
rt

H
R

:0
.4

5

K
ie

hl
[8

9]
EJ

C
Ly

m
ph

N
od

e
M

et
as

ta
si

s
(L

N
M

)p
re

di
ct

io
n

R
es

N
et

18
pr

e-
tr

ai
ne

d
on

H
&

E-
st

ai
ne

d
sl

id
es

of
th

e
C

A
M

EL
Y

O
N

16
ch

al
le

ng
e

Bi
na

ry
(L

N
M

po
si

ti
ve

/L
N

M
ne

ga
ti

ve
)

D
A

C
H

S
co

ho
rt

(2
,4

31
pa

tie
nt

s)
T

C
G

A
(5

82
pa

ti
en

ts
)

A
U

R
O

C
on

th
e

in
te

rn
al

te
st

se
t:

71
%

A
U

R
O

C
on

th
e

T
C

G
A

se
t:

61
.2

%

X
u

[7
6]

C
an

er
C

el
lI

nt
Q

ua
nt

ifi
ca

ti
on

of
tu

m
or

–s
tr

om
a

ra
ti

o
(T

SR
)f

or
pr

og
no

si
s

V
G

G
-1

9
w

it
h

or
w

/o
tr

an
sf

er
le

ar
ni

ng

9-
cl

as
s:

ad
ip

os
e,

ba
ck

gr
ou

nd
,

de
br

is
,l

ym
ph

oc
yt

es
,

m
uc

us
,m

us
cl

e,
no

rm
al

m
uc

os
a,

st
ro

m
a,

tu
m

or
ep

it
he

liu
m

28
3.

00
0

H
/E

til
es

,1
54

.4
00

IH
C

ti
le

s
fr

om
24

3
sl

id
es

fr
om

12
1

pa
ti

en
ts

,2
2.

50
0

IH
C

ti
le

s
fr

om
11

4
sl

id
es

fr
om

57
pa

ti
en

ts

Te
st

da
ta

se
t:

A
C

C
0.

97
3,

95
%

C
I0

.9
71

–0
.9

75

Yu [4
7]

N
at

C
om

m
un

D
ia

gn
os

is
N

o
de

ta
ils

fo
r

de
ep

le
ar

ni
ng

Bi
na

ry
(c

an
ce

r/
no

tc
an

ce
r)

13
.1

11
W

SI
s,

62
,9

19
pa

tc
he

s
Pa

tc
h-

le
ve

ld
ia

gn
os

is
A

U
C

:0
.9

80
±

0.
01

4
Pa

ti
en

t-
le

ve
ld

ia
gn

os
is

A
U

C
:0

.9
74

±
0.

01
3

Ji
ao

[6
0]

C
om

pu
tM

et
ho

ds
Pr

og
ra

m
s

Bi
om

ed
Tu

m
or

ti
ss

ue
cl

as
si

fic
at

io
n

D
ee

p
em

be
dd

in
g-

ba
se

d
lo

gi
st

ic
re

gr
es

si
on

(D
EL

R
),

us
in

g
ac

ti
ve

le
ar

ni
ng

fo
r

sa
m

pl
e

se
le

ct
io

n
st

ra
te

gy

8-
cl

as
s:

ad
ip

os
e,

de
br

is
,

ly
m

ph
oc

yt
es

,m
uc

us
,

sm
oo

th
m

us
cl

e,
no

rm
al

m
uc

os
a,

st
ro

m
a,

tu
m

or
ep

it
he

liu
m

18
0.

08
2

pa
tc

he
s

A
U

C
:>

0.
95

162



D
ia

gn
os

tic
s

20
22

,1
2,

83
7

Ta
bl

e
1.

C
on

t.

Ye
ar

Fi
rs

tA
ut

ho
r

Jo
ur

na
l

A
im

of
M

ed
ic

al
R

es
ea

rc
h

Te
ch

ni
ca

lM
et

ho
d

C
la

ss
ifi

ca
ti

on
D

et
ai

ls
D

at
as

et
Pe

rf
or

m
an

ce
M

et
ri

cs

Br
oc

km
oe

lle
r

[9
0]

JP
at

ho
l

Ly
m

ph
N

od
es

M
et

as
ta

si
s

(L
N

M
)

pr
ed

ic
ti

on

Sh
uf

fle
N

et
w

it
h

tr
an

sf
er

le
ar

ni
ng

fo
r

en
d-

to
-e

nd
pr

ed
ic

ti
on

(A
)P

re
di

ct
io

n:
A

ny
Ly

m
ph

N
od

e
M

et
as

ta
si

s
(B

)>
1

ly
m

ph
no

de
po

si
ti

ve

K
øg

e/
R

os
ki

ld
e

an
d

Sl
ag

el
se

H
os

pi
ta

ls
/p

T
2

co
ho

rt
(3

11
H

/E
se

ct
io

ns
)R

et
ro

sp
ec

ti
ve

D
an

is
h

St
ud

y/
pT

1
co

ho
rt

(2
03

H
/E

se
ct

io
ns

)

pT
1

C
R

C
>1

LN
M

A
U

R
O

C
:0

.7
33

A
ny

LN
M

A
U

R
O

C
:0

.5
67

pT
2

C
R

C
>1

LN
M

A
U

R
O

C
:0

.7
33

A
ny

LN
M

A
U

R
O

C
:0

.7
11

M
it

ta
l

[4
0]

C
an

ce
rs

D
ia

gn
os

is
C

us
to

m
ar

ch
it

ec
tu

re
w

it
h

12
C

N
an

d
3

FC
Bi

na
ry

(c
an

ce
r/

no
rm

al
)

15
T

M
A

s
A

C
C

:9
8%

,S
P:

98
.6

%
,

SE
:9

8.
2%

K
im

[1
14

]
Sc

iR
ep

Tu
m

or
ti

ss
ue

cl
as

si
fic

at
io

n

C
om

bi
na

ti
on

of
In

ce
pt

io
nR

es
N

et
.v

2
w

it
h

PC
A

an
d

W
av

el
et

tr
an

sf
or

m

5-
cl

as
s:

A
D

C
,h

ig
h-

gr
ad

e
ad

en
om

a
w

it
h

dy
sp

la
si

a,
lo

w
-g

ra
de

ad
en

om
a

w
it

h
dy

sp
la

si
a,

ca
rc

in
oi

d,
hy

pe
rp

la
st

ic
po

ly
p

Ye
ou

id
o

St
.M

ar
y’

s
H

os
pi

ta
l

39
0

W
SI

s
D

ic
e:

0.
80

4
±

0.
12

5
A

C
C

:0
.9

57
±

0.
02

5
Ja

c:
0.

69
0
±

0.
17

4

Ts
un

ek
i

[6
2]

D
ia

gn
os

ti
cs

Tu
m

or
ti

ss
ue

cl
as

si
fic

at
io

n

Th
e

au
th

or
s

us
e

th
e

Ef
fic

ie
nt

N
et

B1
m

od
el

st
ar

ti
ng

w
it

h
pr

e-
tr

ai
ne

d
w

ei
gh

ts
on

Im
ag

eN
et

4-
cl

as
s:

po
or

ly
di

ff
er

en
ti

at
ed

A
D

C
,w

el
l-

to
-m

od
er

at
el

y
A

D
C

,a
de

no
m

a,
no

n-
ne

op
la

st
ic

)

1.
79

9
H

/E
W

SI
s

A
U

C
0.

95

Bu
st

os
[1

06
]

Bi
om

ol
ec

ul
es

Tu
m

or
ti

ss
ue

cl
as

si
fic

at
io

n/
M

SI
pr

ed
ic

ti
on

R
es

ne
t-

34
pr

e-
tr

ai
ne

d
on

Im
ag

eN
et

(A
)9

-c
la

ss
:a

di
po

se
,

ba
ck

gr
ou

nd
,d

eb
ri

s,
ly

m
ph

oc
yt

es
,m

uc
us

,s
m

oo
th

m
us

cl
e,

no
rm

al
co

lo
n

ep
it

he
liu

m
,c

an
ce

r-
as

so
ci

at
ed

st
ro

m
a,

co
lo

re
ct

al
A

D
C

ep
it

he
liu

m
(B

)B
in

ar
y

(M
SI

-H
/M

SS
)

72
T

M
A

s
(A

)V
al

id
at

io
n

te
st

:A
U

C
0.

98
(B

)M
SI

A
U

C
0.

87
±

0.
03

Bi
la

l
[7

8]
La

nc
et

D
ig

it
H

ea
lt

h
Pr

ed
ic

ti
on

of
m

ol
ec

ul
ar

pa
th

w
ay

s
an

d
m

ut
at

io
ns

2
×

pr
e-

tr
ai

ne
d

m
od

el
s

(1
)

R
es

N
et

-1
8,

(2
)a

da
pt

iv
e

R
es

N
et

-3
4

Bi
na

ry
:

(1
)H

ig
h/

lo
w

m
ut

at
io

n
de

ns
it

y
(2

)M
SI

/M
SS

(3
)C

hr
om

os
om

al
in

st
ab

ili
ty

(C
IN

)/
G

en
om

ic
st

ab
ili

ty
(4

)C
IM

P-
hi

gh
/C

IM
P-

lo
w

(5
)B

R
A

Fm
ut

/B
R

A
FW

T
(6

)T
P5

3m
ut

/T
P5

3W
T

(7
)K

R
A

Sm
ut

/K
R

A
SW

T

TC
G

A
(5

02
sl

id
es

)P
at

ho
lo

gy
A

rt
ifi

ci
al

In
te

lli
ge

nc
e

Pl
at

fo
rm

(P
A

IP
)c

ha
lle

ng
e—

47
sl

id
es

(1
2

m
ic

ro
sa

te
lli

te
in

st
ab

le
an

d
35

m
ic

ro
sa

te
lli

te
st

ab
le

)

M
ea

n
A

U
R

O
C

H
yp

er
m

ut
at

io
n:

(0
.8

1
[S

D
0.

03
]v

s.
0.

71
),

M
SI

(0
.8

6
[0

.0
4]

vs
.0

.7
4)

,
C

IN
(0

.8
3

[0
.0

2]
vs

.0
.7

3)
,

BR
A

F
m

ut
at

io
n

(0
.7

9
[0

.0
1]

vs
.0

.6
6)

,
T

P5
3m

ut
(0

.7
3

[0
.0

2]
vs

.0
.6

4)
,

K
R

A
S

m
ut

at
io

n
(0

.6
0

[S
D

0.
04

]
vs

.0
.6

0)
,

C
IM

P-
hi

gh
st

at
us

0.
79

(S
D

0.
05

)

163



D
ia

gn
os

tic
s

20
22

,1
2,

83
7

Ta
bl

e
1.

C
on

t.

Ye
ar

Fi
rs

tA
ut

ho
r

Jo
ur

na
l

A
im

of
M

ed
ic

al
R

es
ea

rc
h

Te
ch

ni
ca

lM
et

ho
d

C
la

ss
ifi

ca
ti

on
D

et
ai

ls
D

at
as

et
Pe

rf
or

m
an

ce
M

et
ri

cs

N
gu

ye
n

[4
2]

Sc
iR

ep
D

ia
gn

os
is

Sa
m

e
ap

pr
oa

ch
w

it
h

N
qu

ye
n

et
al

.,
20

21
,p

re
se

nt
ed

in
M

od
Pa

th
ol

3-
cl

as
s:

Tu
m

or
/N

or
m

al
/O

th
er

ti
ss

ue
54

T
M

A
sl

id
es

SV
EV

C
:

Tu
m

or
:R

ec
al

l:0
.9

38
,

Pr
ec

is
io

n:
0.

97
6,

F1
-s

co
re

:
0.

95
7,

A
C

C
:0

.9
39

N
or

m
al

:R
ec

al
l:

0.
86

4,
Pr

ec
is

io
n:

0.
87

3,
F1

-s
co

re
:

0.
91

5,
A

C
C

:0
.9

82
O

th
er

ti
ss

ue
:R

ec
al

l:
0.

96
4,

Pr
ec

is
io

n:
0.

77
2,

F1
-s

co
re

:
0.

85
8,

A
C

C
:0

.9
47

O
ve

ra
ll

(a
ve

ra
ge

):
R

ec
al

l:
0.

92
2,

Pr
ec

is
io

n:
0.

90
7,

F1
-s

co
re

:0
.9

10
,A

C
C

:0
.9

56

Sh
en

[4
6]

IE
EE

/A
C

M
Tr

an
s

C
om

pu
tB

io
l

Bi
oi

nf
or

m
D

ia
gn

os
is

A
D

en
se

N
et

ba
se

d
ar

ch
it

ec
tu

re
of

C
N

N
,i

n
an

ov
er

al
lf

ra
m

ew
or

k
w

hi
ch

em
pl

oy
s

a
M

on
te

C
ar

lo
ad

ap
ti

ve
ly

sa
m

pl
in

g
to

lo
ca

liz
e

pa
tc

he
s

3-
cl

as
s:

lo
os

e
no

n-
tu

m
or

ti
ss

ue
/d

en
se

no
n-

tu
m

or
ti

ss
ue

/g
as

tr
oi

nt
es

ti
na

l
ca

nc
er

ti
ss

ue
s

(i
)T

C
G

A
-S

TA
D

43
2

sa
m

pl
es

(i
i)

TC
G

A
-C

O
A

D
46

0
sa

m
pl

es
(i

ii)
TC

G
A

-R
EA

D
17

1
sa

m
pl

es

D
P-

FT
D

:A
U

C
0.

77
9,

FR
O

C
0.

81
7

D
C

R
F-

FT
D

:A
U

C
0.

78
6,

FR
O

C
0.

82
1

20
22

Sc
hr

am
m

en
[7

9]
JP

at
ho

l
D

ia
gn

os
is

/P
re

di
ct

io
n

of
IH

C
bi

om
ar

ke
rs

N
ov

el
m

et
ho

d
ca

lle
d

Sl
id

e-
Le

ve
lA

ss
es

sm
en

tM
od

el
(S

LA
M

),
us

es
an

en
d-

to
-e

nd
ne

ur
al

ne
tw

or
k

ba
se

d
on

Sh
uf

fle
N

et

3-
cl

as
s:

Po
si

ti
ve

tu
m

or
sl

id
es

,
N

eg
at

iv
e

tu
m

or
sl

id
es

,
N

on
-t

um
or

sl
id

es
(A

)B
in

ar
y:

BR
A

F
st

at
us

(m
ut

at
ed

or
no

n-
m

ut
at

ed
)

(B
)B

in
ar

y
(M

SI
/M

M
R

)
(C

)B
in

ar
y:

H
ig

h
gr

ad
e

(g
ra

de
3–

4)
/L

ow
gr

ad
e

(g
ra

de
1–

2)

(A
)D

ar
m

kr
eb

s:
C

ha
nc

en
de

r
Ve

rh
üt

un
g

du
rc

h
Sc

re
en

in
g

(D
A

C
H

S)
2.

44
8

H
/E

sl
id

es
B)

Yo
rk

sh
ir

e
C

an
ce

r
R

es
ea

rc
h

Bo
w

el
C

an
ce

r
Im

pr
ov

em
en

tP
ro

gr
am

(Y
C

R
-B

C
IP

)8
89

H
/E

sl
id

es

D
A

C
H

S
co

ho
rt

Tu
m

or
de

te
ct

io
n

A
U

R
O

C
:0

.9
80

Tu
m

or
gr

ad
in

g
A

U
R

O
C

:0
.7

51
M

SI
/M

M
R

D
or

M
SS

/M
M

R
P

A
U

R
O

C
:0

.9
09

BR
A

F
st

at
us

de
te

ct
io

n
A

U
R

O
C

:0
.8

21
Y

C
R

-B
C

IP
co

ho
rt

M
SI

/M
M

R
D

st
at

us
de

te
ct

io
n

A
U

R
O

C
:0

.9
00

H
os

se
in

za
de

h
K

as
sa

ni
[4

3]
In

tJ
M

ed
In

fo
rm

D
ia

gn
os

is

A
co

m
pa

ra
ti

ve
st

ud
y

be
tw

ee
n

po
pu

la
r

ar
ch

it
ec

tu
re

s
(R

es
N

et
,

V
G

G
,M

ob
ile

N
et

,I
nc

ep
ti

on
v3

,
In

ce
pt

io
nR

es
ne

tv
2,

R
es

N
eX

t,
SE

-R
es

N
et

,S
E-

R
es

N
eX

t)

Bi
na

ry
(C

an
ce

ro
us

/
H

ea
lt

hy
re

gi
on

s)
D

ig
es

tP
at

h,
25

0
H

/E
W

SI
s,

1.
74

6
pa

tc
he

s

D
ic

e:
82

.7
4%

±
1.

77
A

C
C

:8
7.

07
%

±
1.

56
F1

sc
or

e:
82

.7
9%

±
1.

79

D
es

hp
an

de
[1

16
]

M
ed

Im
ag

e
A

na
l

D
ia

gn
os

is

N
ov

el
G

A
N

ar
ch

it
ec

tu
re

,
ca

lle
d

SA
FR

O
N

,i
nc

lu
di

ng
lo

ss
fu

nc
ti

on
w

hi
ch

en
ab

le
s

ge
ne

ra
ti

on
of

im
ag

es
of

ar
bi

tr
ar

ily
la

rg
e

si
ze

s
af

te
r

tr
ai

ni
ng

on
re

la
ti

ve
ly

sm
al

l
im

ag
e

pa
tc

he
s

Bi
na

ry
(b

en
ig

n/
m

al
ig

na
nt

)

(A
)C

R
A

G
(G

ra
ha

m
et

al
.,

20
19

,A
w

an
et

al
.,

20
17

)2
13

co
lo

re
ct

al
ti

ss
ue

im
ag

es
(B

)
D

ig
es

tP
at

h
46

im
ag

es

R
es

N
et

m
od

el
m

ed
ia

n
cl

as
si

fic
at

io
n

A
C

C
:9

7%
w

it
h

ge
ne

ra
te

d
im

ag
es

ad
de

d
to

th
e

Ba
se

lin
e

se
t,

an
d

93
%

w
it

ho
ut

A
D

C
:A

de
no

ca
rc

in
om

a,
A

C
C

:A
cc

ur
ac

y,
A

U
C

:A
re

a
un

de
r

th
e

R
O

C
C

ur
ve

,C
N

N
:C

on
vo

lu
tio

na
lN

eu
ra

lN
et

w
or

k,
IH

C
:I

m
m

un
oh

is
to

ch
em

is
tr

y,
SE

:S
en

si
tiv

ity
,S

P:
Sp

ec
ifi

ci
ty

,T
C

G
A

:T
he

C
an

ce
r

G
en

om
e

A
tla

s,
SV

M
:S

up
po

rt
Ve

ct
or

M
ac

hi
ne

,C
L:

C
on

vo
lu

tio
na

ll
ay

er
s,

FC
:F

ul
ly

-C
on

ne
ct

ed
(o

ut
pu

t)
la

ye
r,

C
R

C
:C

ol
or

ec
ta

lC
an

ce
r,

TM
A

:T
is

su
e

m
ic

ro
ar

ra
y,

W
SI

s:
W

ho
le

-s
lid

e
im

ag
es

,H
/E

:H
em

at
ox

yl
in

an
d

Eo
si

n,
M

SI
:M

ic
ro

sa
te

lli
te

In
st

ab
ili

ty
,M

M
R

:M
is

m
at

ch
R

ep
ai

r,
M

SS
:M

ic
ro

sa
te

lli
te

St
ab

le
,K

R
A

S:
K

ir
st

en
ra

ts
ar

co
m

a
vi

ru
s,

C
IN

:C
hr

om
os

om
al

in
st

ab
ili

ty
,

TP
53

:T
um

or
Pr

ot
ei

n
53

,I
C

O
S:

In
du

ci
bl

e
T-

ce
ll

C
O

St
im

ul
at

or
,A

PC
:A

de
no

m
at

ou
s

Po
ly

po
si

s,
PI

K
3C

A
:P

ho
sp

ha
ti

dy
lin

os
it

ol
-4

,5
-B

is
ph

os
ph

at
e

3-
K

in
as

e
C

at
al

yt
ic

Su
bu

ni
tA

lp
ha

.

164



Diagnostics 2022, 12, 837

4. Discussion

A pathology diagnosis focuses on the macroscopic and microscopic examination of hu-
man tissues, with the light microscope being the valuable tool for almost two centuries [11].
A meticulous microscopic examination of tissue biopsies is the cornerstone of diagnosis
and is a time-consuming procedure. An accurate diagnosis is only the first step for pa-
tient treatment. It needs to be complimented with information about grade, stage, and
other prognostic and predictive factors [4]. Pathologists’ interpretations of tissue lesions
become data, guiding decisions for patients’ management. A meaningful interpretation
is the ultimate challenge. In certain fields, inter- and intra-observer variability are not
uncommon [12,13]. In such cases, the interpretation of the visual image can be assisted
by objective outputs. Many data have been published over the last 5 years exploring the
possibility of moving on to computer-aided diagnosis and the measurement of prognostic
and predictive markers for optimal personalized medicine [117,118]. Furthermore, the
implementation of AI is now on the horizon. In the last 5 years, extensive research has
been conducted to implement AI-based models for the diagnosis of multiple cancer types
and, in particular, CRC [14,15,119]. The important aspects in a CRC diagnosis, such as
histological type, grade, stromal reaction, immunohistochemical and molecular features
have been addressed using breakthrough technologies.

The traditional pathology methods are accompanied by great advantages [120]. The
analytical procedures in pathology laboratories are cost-effective and, during recent years,
have become automated, eliminating the time and errors of procedures, while maintain-
ing high levels of sensitivity and specificity of techniques, such as IHC [119]. Despite
the widespread availability, challenges and limitations of traditional pathology methods
remain, such as the differences between laboratories’ protocols and techniques, as well
as the subjective interpretation between pathologists, resulting in inconsistency in diag-
noses [12,13]. Novel imaging systems and WSI scanners promise to upgrade traditional
pathology, preserving the code and ethics of practice [119]. The potential of DL algorithms
is expanding all over the fields in histopathology. In clinical practice, such algorithms could
provide valuable information about the tumor microenvironment quantitative analysis
of histological features [76]. Better patient stratification for targeted therapies could be
approached by DL-based models predicting mutations, such as MSI status [77,78,107].
More than ever, AI could be of great importance for a pathologist in daily clinical practice.
AI is consistently supported by extensive research, which is followed by good perfor-
mance metrics and potential. Several studies have shown that many DL-based models’
predictions did not differ in terms of statistical significance when compared to pathologists’
predictions [45,104]. Thus, DL algorithms could provide valuable results for diagnoses in
clinical practice, especially when inconsistencies occur. The available scanned histological
images can be reviewed and examined by the collaboration of pathologists simultaneously,
from different locations [121,122]. For an efficient fully digital workflow, however, the
development of technology infrastructure, including computers, scanners, workstations
and medical displays is necessary.

Summarizing the presented DL studies from the medical point of view, 17 studies
focus on diagnosis, classifying the images as cancer/not cancer, benign/colon ADC or
benign/malignant, 17 studies classify tumor tissues, 19 studies investigate the microenvi-
ronment of tumors, 14 studies extract histological features related to prognosis, metastasis
and survival, and finally, 10 studies detect the microsatellite instability status. The remain-
ing 5 studies that were not described mainly concerned the technical aspects of DL in
histological images of CRC. Summarizing the presented DL works from the technical point
of view, 80 studies are applications of CNNs, either for image segmentation or classification,
and 2 studies employ GANs for the simulation of histological images. The unbalanced
distribution between CNN-based and GAN-based studies is an expected result due to the
objectives of these two deep learning approaches. CNNs directly classify the images into
different categories (e.g., cancer/not cancer). In contrast, GANs just improve the dataset to
avoid overtraining and overfitting during the training procedure, without dealing directly
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with the main medical question. From the CNN-based studies, 10 studies proposed a
custom CNN architecture, which was developed from scratch, 42 studies employed already
developed architectures, often using transfer learning, and finally, 26 studies implemented
novel architectures, such as (a) the modification of those already developed (5 studies),
(b) a combination between CNNs or CNNs with other AI techniques (15 studies) and
(c) ensemble methods (6 Studies). Finally, two (2) of the studies did not provide any detail
about the DL approach.

The application of DL methods in the diagnosis of CRC over the last 5-years seems
to be evolving rapidly, faster than other fields of histopathology. However, it seems that
there is an expected gradual evolution, starting from the simple techniques of CNNs,
then employing transfer learning to the networks, and finally attempting to develop new
architectures, focusing on the requirements of the medical question. Additionally, in the
last two years, alternative deep learning techniques such as GANs have started to be used.
The contribution of such methods will be significant, since DL requires a sufficient size of
the training set to perform well and provide generalization. Large data sets may not always
be available from the annotations of pathologists and, therefore, need to be enriched with a
simulated training set.

It is expected that CNN’s application directly in histopathological images will present
a better performance compared to traditional techniques. CNNs are advantageous over
traditional image processing techniques due to the training procedure, while they are also
more robust than the traditional AI techniques because they automatically extract features
from the image. In this systematic review, different studies use a variety of performance
metrics, while the natures of each classification problem are also different to each other.
Therefore, it is not meaningful to calculate the average performance value for all the studies.
For this reason, only the accuracy (Acc) and area under the curve (AUC), which were
used more than the other metrics, have been used to evaluate each different classification
problem. The mean value and Standard Error of Mean have been computed for binary
classification problems (Acc = 94.11% ± 1.3%, AUC = 0.852 ± 0.066), 3-class classification
problems (Acc = 95.5% ± 1.7%, AUC = 0.931 ± 0.051), and finally 8-class classification
problems (Acc = 94.4% ± 2.0%, AUC = 0.972 ± 0.022), which provides sufficient samples of
these metrics. The above performance values confirm that DL in colorectal histopathological
images can achieve a reliable prediction.

5. Conclusions

When dealing with human disease, particularly cancer, we need in our armamentar-
ium all available resources, and AI is promising to deliver valuable guidance. Specifically
for CRC, it appears that the recent exponentially growing relevant research will soon trans-
form the field of tissue-based diagnoses. Preliminary results demonstrate that AI-based
models are further applied in clinical cancer research, including CRC, and breast and lung
cancer. However, to overcome several limitations, larger numbers of datasets, quality image
annotations, as well as external validation cohorts are required to establish the diagnostic
accuracy of DL models in clinical practice. Given the available collected data, a part of
the current systematic review could be extended to meta-analysis, especially utilizing the
data from retrospective studies and survival analysis. The latter could provide us with a
comprehensive status for the contribution of DL methods to the diagnosis of CRC.
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Abstract: The interest in implementing digital pathology (DP) workflows to obtain whole slide image
(WSI) files for diagnostic purposes has increased in the last few years. The increasing performance of
technical components and the Food and Drug Administration (FDA) approval of systems for primary
diagnosis led to increased interest in applying DP workflows. However, despite this revolutionary
transition, real world data suggest that a fully digital approach to the histological workflow has been
implemented in only a minority of pathology laboratories. The objective of this study is to facilitate
the implementation of DP workflows in pathology laboratories, helping those involved in this process
of transformation to identify: (a) the scope and the boundaries of the DP transformation; (b) how to
introduce automation to reduce errors; (c) how to introduce appropriate quality control to guarantee
the safety of the process and (d) the hardware and software needed to implement DP systems in-
side the pathology laboratory. The European Society of Digital and Integrative Pathology (ESDIP)
provided consensus-based recommendations developed through discussion among members of the
Scientific Committee. The recommendations are thus based on the expertise of the panel members
and on the agreement obtained after virtual meetings. Prior to publication, the recommendations
were reviewed by members of the ESDIP Board. The recommendations comprehensively cover every
step of the implementation of the digital workflow in the anatomic pathology department, empha-
sizing the importance of interoperability, automation and tracking of the entire process before the
introduction of a scanning facility. Compared to the available national and international guidelines,
the present document represents a practical, handy reference for the correct implementation of the
digital workflow in Europe.
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1. Introduction

The interest in implementing digital pathology (DP) workflows to obtain whole slide
image (WSI) files for diagnostic purposes has increased in the last few years. This is due
to the opportunities offered by WSI, e.g., telepathology and image analysis, including
computational pathology tools based on artificial intelligence [AI] methods. The increas-
ing performance of technical components and the Food and Drug Administration (FDA)
approval of systems for primary diagnosis [1] led to increased interest in applying DP
workflows. Moreover, in the last few years, several studies evaluating performance demon-
strated the non-inferiority of WSI compared to conventional light microscopy [2–4] for
primary histological diagnosis. This may help to alleviate concerns about the possible risk
of DP-related diagnostic errors [5]. Indeed, the restrictions suffered during the COVID-19
pandemic, the reduction in the number of pathologists and the increase in workload, with
rising number and complexity of cases, also raised the interest in DP. Several definitions
for DP have been proposed so far [6,7], a common opinion being that DP encompasses the
photographic documentation of the macroscopy of the specimens (“gross pathology”), the
digitization of glass slides (virtual microscopy) and telepathology. By some definitions,
DP involves merely the digitization of glass slides. In this study, “DP” is significantly
distanced from the reductive paradigm of only glass slide digitization, moving towards
a more integrative approach that comprises interventions in all stations of work in the
pathology laboratory, introducing and supporting innovation. DP implicitly consists of all
the associated technologies to allow improvements and innovations in workflow, including,
for instance, laboratory management systems (LIS), digital dictation, dashboards and work-
flow management, electronic specimen labelling and tracking, and synoptic reporting tools.
The objective of this study is to facilitate the implementation of DP workflows in pathology
laboratories, helping those involved in this process of transformation to: (a) identify the
scope and the boundaries of the DP transformation; (b) introduce automation to reduce
errors; (c) introduce appropriate quality control to guarantee the safety of the process and
(d) implement the hardware and software needed to implement DP systems inside the
pathology laboratory. Since several recommendations and guidelines have already been
proposed, primarily focusing on the validation of WSI for clinical purposes or on the tech-
nical environment, this paper mainly covers DP implementation and all the prerequisites
for a pathology laboratory to change from an analogue to a digital workflow [8]. Consid-
ering all that has been reported about DP workflow implementation and its associated
benefits, it is anticipated that this new methodology has many advantages that should be
attractive and convenient for all pathology laboratories worldwide, independently of their
dimension, workload, number of pathologists or type of activity (academic/nonacademic,
private/public) [6,7,9–11].

So far, there are several possibilities to transit and to manage “images” in a digital
workflow: an LIS-based approach [12,13], a scanner vendor approach [7] or an intermediate
software approach (e.g., Linköping University [14]). Independently of the type of strategy
chosen to switch towards a digital visualization of images (LIS-centric, vendor based or
third-party software), the new system should be able to integrate every possible instrument
(e.g., one or more scanners from same or different vendors with the possibility to manage
different images from a variety of sources), preferably associated with a tracking system
because of automation and innovation. The cost-effectiveness of DP has already been
documented in implementation models that discuss the scope of investment, the potential
return on investment, and cost-savings of DP, as well as any proposed income deriving from
the adoption of WSIs [15]. Moreover, the adequate adaptation of a routine clinical workflow
can finally lead to an optimization of resources (e.g., space, time, personnel, and equipment).
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These are intended as recommendations and suggestions for the implementation of the
full DP workflow in the routine clinical practice of anatomic pathology laboratories. The
introduction of a DP workflow even allows the implementation of computational pathology
tools, i.e., artificial intelligence (AI). The following sections explain, point-by-point, the
steps needed for the progressive, secure, and efficient transition into a DP workflow.
Regarding cytopathology, there are several barriers that still need to be overcome for routine
cytopathology to go digital and support wider adoption and sustainability. Therefore, the
present study mainly focuses on histopathology and its transition to the DP workflow
Box 1.

Box 1. Digital pathology workflow implementation—Step by Step.

Summary
Digital pathology is pathology—A holistic approach that comprehends interventions in all stations
of work at the pathology laboratory, introducing innovation.
Digital pathology is attractive and convenient for pathology laboratories worldwide.
Digital pathology represents a safer and more efficient way of working and should be considered
the new standard in pathology.
Implementation of a digital pathology workflow is the milestone to fully benefit from the
potential of WSI and a prerequisite for the application of AI in routine diagnostics.

2. Involvement of the Team in the Digital Pathology Transformation of the Laboratory

The implementation of digital pathology requires a multidisciplinary approach from
the very beginning. The leading team should involve in-house participants (pathologists,
laboratory technicians, administrative staff) and the hospital’s IT and technical services [6].
IT services might be organized in different ways depending on the size of the department
and depending on local or national policies. For example, the IT services may be provided
by individuals, by a separate department or by a subcontractor. The most important
thing is that these groups work together and that they form a team. Subsequently, close
collaboration with companies providing the digital pathology system and the laboratory
information system will become necessary. Especially in larger departments, digital trans-
formation will usually be organized as a project that includes a project manager, a steering
group and different working groups. There are several ways of introducing the topic
and designing the appropriate options for the laboratory at hand, and it might be useful
to visit pathology departments with digital workflows to learn from their successes and
failures. There are a couple of papers that share experiences and provide valuable informa-
tion [6,7]. Describing user scenarios is another method to understand the needs of one’s
own laboratory and communicate these to the IT and technical departments and possible
suppliers. In addition, before starting a tender, it is helpful to gather information about
suppliers and products. To obtain a successful implementation of the “DP” and to avoid
deficiencies, the multidisciplinary team that is going to lead the “digital revolution” in
each department should follow some crucial steps, as previously reported. In particular,
for the correct and rapid implementation of DP in every department, it is advisable to
create awareness, participation, appropriate work conditions, communication among the
team members, and monitor the outcomes of this revolution. This approach could help
in facing the heterogeneous patterns of reactions that different actors of the team could
express, including the “enthusiasts”, the “sceptics”, and the “undecideds”. All the possible
measures to increase the trust and involvement of pathologists should be applied to all
staff members. To establish a successful DP workflow, a thorough stakeholder analysis
should be carried out, and a communication strategy should be established based on
this analysis. The team must ensure that all internal stakeholders (pathologists, labora-
tory personnel and administrative staff) are continuously informed from the beginning.
In this setting, sharing the vision of DP with laboratory and administrative personnel,
encouraging them to provide feedback, expressing potential concerns and suggestions
(e.g., using frequent meetings on-site) and providing appropriate discussion during all
phases of the deployment will facilitate a safe and effective implementation. The team
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must be aware that DP should be perceived as an integral part of the laboratory workflow
rather than an “add-on” [6]. The contingent situation due to the COVID-19 pandemic
can be further leveraged to boost the implementation of DP in the laboratories, stressing
the need to maintain pathology services by making it possible for pathologists to work
from home [16]. Implementing DP as the standard laboratory practice requires learning
new technical skills to capture all the advantages of this technology. Just as significant
as the internal stakeholders is the involvement of IT services. IT will be crucial in many
aspects of the project (LIS adaptations, integrations, storage, testing etc.). The involvement
should start in the early phases. For example, consider a laboratory office tour to establish
communication with the other components of the project in clear language, understand
what is expected and what is potentially achievable from your deployment, and what each
professional group will be expected to contribute in terms of time and staff. Explain your
ideas for future digital workflows and see what potential dependencies and solutions your
IT colleagues can generate.

3. Optimization of Resources in the DP Workflow

In a fully digital laboratory, the processes and records are electronic file-based, the
environment is paperless, with glass slides being substituted at the end of the workflow
by WSIs. The optimization of resources, namely time, space, people and instruments,
creates conditions for increased efficiency and, consequently, decreased costs. The LEAN
approach represents a valuable strategy to optimize the workflow, leading to a more logical
distribution of the spaces to minimize staff and sample traffic inside the laboratory. It also
allows for a more harmonic and well-planned articulation between human resources and
available instruments, which results in time and cost-effectiveness. Although it is not a strict
prerequisite for adopting DP, it could further allow for better allocation of resources [17].
This can start from a more rational disposition of the spaces/offices inside the pathology
laboratory. An inefficient arrangement of the physical spaces, typical of the old, “analogue”
workflow, can partly impair the smooth crosstalk among the different components of
the process. Previous experiences in implementation models stress the need to analyze
the pre-existing workflow before implementing DP [6,7]. A careful analysis of the pre-
existing analogic workflow before the transition should consider the flow of the samples
(workstation location) in the laboratory and time intervals (hands-on and waiting times)
for each workstation, verifying the information technology support and establishment
of adequate quality control checkpoints. The lack of structural organization of some
pathology laboratories, including the physical placement of the different workstations,
may contribute negatively to the desirable, efficient crosstalk between workstations. The
reorganization of such a laboratory structure with the intent to decrease unnecessary
movements of the staff, and time loss, can be useful for every laboratory, independently
of DP implementation. For instance, the scanning workstation should be located near
the staining and mounting instruments, accelerating the production line but far from the
microtome area to avoid the interference of paraffin with the scanning mechanisms. After
this retrospective analysis and reorganization of the structure, the optimal choices for the
automation of each workstation must be made, namely by the introduction of a reliable
tracking system, and different instruments would preferably work in a coordinated fashion,
connected (mono-or bi-directionally) to the LIS (or LIMS).

4. The Role and Potentialities of Laboratory Information (Management) System
(LIS/LIMS) and Informatics Resources

Independently of the system employed to manage the WSI (LIS, scanner or third
party), pathology laboratories mainly depend on laboratory information systems (LISs)
to support their operations and, ultimately, carry out their patient care mission. For these
reasons, one of the crucial points is to ensure the full integration of the systems involved
in the digital transition. Although many LISs have evolved with sophisticated and more
user-friendly software over the past few decades, supporting a broader range of functions,
many others have not evolved, thus preventing possible integration with other technologies
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deployed in the laboratories. Modern LISs play different roles in all phases of patient testing,
including specimen and test order entry, specimen processing and tracking. They track and
organize the laboratory’s workflow, mainly through event logs and histology protocols.
The maintenance of such logs can follow the default configurations of the system or can be
customized by each laboratory to display the most useful information. A typical example
of the system’s default configuration for a log (e.g., routine histology) includes accession
number, timestamp, patient and specimen data, histology protocol(s) ordered, other stains
ordered and comments about the specimen or the request. LISs now incorporate multiple
features that, until recently, were either unavailable or required a significant customization
effort to be obtained. The Association for Pathology Informatics produced a comprehensive
list of basic and advanced LIS features that may be used to evaluate LIS capabilities [18].
Moreover, the next generation LIS should be able to link digital images to the respective
cases appropriately. With the rising use of whole slide imaging (WSI) for clinical purposes,
a consensual increase in capabilities to connect and integrate WSI systems and LIS is to be
expected (e.g., open WSI from the LIS, log the viewed areas/magnification on all WSI or
even apply image analysis and store result data). Further advances in the development of
LISs are expected in the future, starting from the integration of more sophisticated tools
to support data mining and the analysis of pathology and clinical data sets. The LIS may
evolve into a multimodality “pathologist cockpit” that not only provides LIS functions
but also displays pathology imaging and other medical imaging, supplies analytical tools,
provides access to clinical data (e.g., Electronic Health Record [EHR]) [19] as well as other
data sources [20]. A more recent guideline paper [21] underlined the importance of digital
pathology interoperability, with a LIS being able to connect all the instruments present in
the laboratory to support critical DP use cases. Moreover, increasing requests for molecular
and genetic tests on pathology specimens (e.g., next-generation sequencing) impose further
innovation in LISs to integrate and optimize these data with the traditional pathology report
for optimal patient management [22] in an integrative model. Finally, the transition will
allow information integration from grossing, enable collaborative work and incorporate
quality control results.

5. Automation of Workflow and Tracking System

Automation and using a robust tracking system can significantly reduce errors related
to handwriting transcription and misspelling that can cause samples to be dissociated
from a particular patient (“mismatching”). Automation is a “strong recommendation”
emanating from these recommendations, as it can benefit both pathology laboratories
using DP and those using glass slides for diagnosis. Besides the introduction of a suitable
LIS/LIMS that can help monitor the instruments’ performance connected to each sample,
further automation can be introduced in the workstations. This includes the reagents
used and tracking all the staff that were at any point involved in sample processing by
differential log-ins or scanning of individual ID codes at all workstations. The possible
automation of workstations obviously depends on budget, existing instruments, and the
experience of the technical staff. Devices such as a robotic stainer and a cover-slipper will
bring consistent slide quality, avoiding frequent re-staining and ongoing readjustments
to scanning protocols. The same is true for the automation of embedding and cutting
processes, for which available systems on the market appear promising. However, these
are not yet widely used in practice [23]. The goals of a tracking system are to keep the
sample automatically, correctly, and permanently labelled during the time that it circulates
in the laboratory. The identification of the sample, using labels on the containers, printed in
the cassettes/paraffin blocks, printed on the glass slides and then present in the WSI files,
is a best practice rule that is recommended to be adopted for the use of the WSI. In this
setting, the perfect compatibility (interoperability) of the instrumentation used to label and
to process the samples within the AP laboratory, and with the other laboratories in the same
institution, is crucial to avoid possible issues (e.g., blurring or shading of the labels during
subsequent processing of specimens/slides). The sample identifiers, of which there are usu-
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ally several (see Section 5), should be managed automatically and electronically connected
to the patient’s LIS entry. The integration between the tracking system and LIS with an
electronic interface between the LIS and the printers is essential to maintaining continuity
of identification. The link established between the asset (tissue container/cassette/block)
and the LIS will help reduce errors and can be achieved by printing different data types
on the assets, such as barcodes or 2D (QR) codes. These can be linked to different types
of data in the LIS. Eventually, other systems with code reader compatibility will be able
to read them [24]. The introduction of radiofrequency identification (RFID) technologies
is a promising method to track the assets, although cost and system integration barriers
still limit their implementation [25,26]. In the case of pathology laboratories, introducing at
least one barcode reader per workstation is recommended. Tracking an individual sample
with the combined use of printers and code readers accelerates the work at the microtome
stations, helping histotechnologists track each block and slide, ensuring the adequate
identification and concordance between the individual block and slide labels [27]. The
LISs typically offer the laboratories some capability to customize the format and content
of their slide labels. As will be further explained in the subsequent sections of the docu-
ment, the employment of unequivocal 2D barcodes can have a multitude of applications
in the proposed digital workflow, significantly reducing the operations time and error
rates. The impact of such implementation can be noted starting from the accessioning
phases, where the sample is assigned its unequivocal code that will be used later during
the processing and reporting steps. This can further help in the creation of tissue cassettes,
in the production of tissue glass slides, in the automatic request of additional histochemical
and immunohistochemical (IHC) stains, as well as in the double check that should be
carried out at every checkpoint to ensure correspondence among received material, grossed
specimen, embedded sample and cut sections. This is facilitated by the additional use of
barcode readers and by the implementation of newly introduced instruments to capture the
cut surface directly from the paraffin block [28], which is at this point essential to guarantee
a sustainable and reliable quality control process (see Section 5).

As will be further explained in the following sections of this paper, the use of unequivo-
cal 2D barcodes can have many applications in the proposed digital workflow, significantly
reducing the operations time and error rates. The impact of such implementation can be
noted starting from the accessioning phases, where the sample is assigned its unequivocal
code that will be used later during the processing and reporting steps. This can further
help in the creation of tissue cassettes, the production of glass slides, automatic requests for
additional histologic and IHC stains, as well as in the double-check that should be carried
out at every checkpoint to ensure the correspondence among arrived material, grossed
specimen, embedded sample and cut sections. This is facilitated by the additional use of
barcode readers and by implementing instruments capable of capturing the cut surface
directly from the paraffin block (see Section 5).

6. Quality Control Program and Definition of Checkpoints

Quality control of products from a pathology laboratory is essential to guarantee
that a patient receives a correct diagnosis. In Europe, the certification and accreditation
of laboratories are not equally and uniformly performed across the territory. Instead,
many laboratories design their own quality control program, more or less simplified, often
involving only segments of sample processing adequate to their intent. Although adopting
a quality management system is not strictly required in all countries as a prerequisite for
implementing DP workflow, laboratories with a robust system of quality management
may find the DP workflow easier to implement as they are already aware of the critical
control checkpoints through the analogue workflow. To support those laboratories that are
not yet familiar with quality control programs, a detailed description of some suggested
checkpoints suitable for adaptation to each laboratory are provided. The checkpoints
described here derive from the need to control the performance of a new instrument in
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the pipeline—the scanner. They also originate from introducing new standard operative
procedures (SOPs), tools/instruments and quality control of the processes (Figure 1).

Simultaneously, per each workstation, some technical modifications are discussed
to facilitate the scanning process and increase the quality of the WSI. We highlight that
time loss within the laboratory is frequently motivated by a mismatch of samples and poor
sample quality (either due to a pre-analytical or analytical factor). Investing in a workflow
with a good quality of samples that are easy to track decreases the time lost, considering
that this loss is very difficult to estimate because it is not generally recorded.
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6.1. Accessioning Checkpoints

During the accessioning phase, samples that arrive at the pathology laboratory are
registered in the LIS and given a case number. Analyzing the classical analog accessioning
procedures allows for a critical evaluation of the potential issues that can and do happen.
Mistakes can occur in the compilation of paper requests from the submitting department
or outside hospital (for internal and external cases, respectively). The staff responsible for
the accessioning phase can miss discrepancies between the sample/slide and the request
or even mismatch this pair. The manual insertion of the specimen/patient data into the LIS
can impair the link with the patient profile present in the hospital information system (HIS),
generally due to an inappropriate transcription of a patient’s identification data, eventually
causing a duplication of patients’ profile, and consuming time. In a laboratory with a DP
workflow, laboratory personnel have the possibility of completing these accessioning tasks
automatically to minimize the risk of errors. The different identification codes (IDs) used
in the various subsequent steps play a crucial role here. Similar to a pyramid or hierarchy,
different types of IDs are attributed to the patient, and everything associated with this
accessioning event, as follows:

• Patient ID
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• C ID
• Specimen container ID (entry lab)
• Sample IDs
• Block IDs
• Slide IDs

For DP, a mechanism is needed to get the following types of required case informa-
tion to the administrative and the pathologist: patient ID and demographic information,
description of the specimen, clinical history and questions or requests for the pathologist.
In the digital pathology laboratory, the accessioning is modified and may include some or
all of the following (Table 1):

• Sample/slides arrive in the pathology laboratory with a label containing a code (entry
lab, preferentially 2D type) associated with patient and case data.

• By scanning the code on the label of the case, the administrative is able to open the
digital request on pathology LIS automatically, allowing the automatic synchroniza-
tion of the information from the hospital system or creating the specific page for
cases/patients coming from outside.

• A case ID for the sample is generated.
• The case ID is then used in all sorts of assets generated for that case (cassettes, new

slides, special stains, digital slides).
• The administrator can take pictures of both the container and the specimen, and these

photos will be attached to the case file.
• All of the documents received together with the specimen are scanned and attached

to the case file or directly transmitted to the LIS digitally (Optical Character Recogni-
tion, OCR).

Table 1. Suggested checkpoints at the accessioning workstation.

Accessioning Checkpoints

1. Samples/slides are accessioned, using an order entry system, after the scanning of a code
that identifies the patient/case, imports all the necessary information from the integrated
HIS and opens the digital request: a procedure that introduces automation and consequent
reduction of transcription errors.

2. A number and the respective identification code are generated for each sample, and the
identification code is used for various assets generated for that case: procedure that allows
the tracking of the sample while it is circulating in the laboratory.

3. Dedicated personnel take a picture of the container and of the specimen, and those photos
are attached to the case file: procedure that documents the product entering the laboratory
as well as the respective identification; this may represent an important
medico-legal registry.

4. The documents that may be received with the specimen are scanned and attached to the
case file or directly transmitted digitally (OCR): a procedure that facilitates access to
relevant information that is prevented from being lost in a workstation.

6.2. Grossing Checkpoints

After accessioning, cases are ready to be macroscopically analyzed, described and
grossed by the pathologist or trained technical staff. As this happens in accessioning, the
grossing workstation may be a source of human errors. These errors may include some
of the following: wrong assignment of the macroscopic description and grossing of one
patient in the paperwork of another patient, loss of manual transcription of specimen
descriptions, deterioration of the numbers on the cassettes and incongruences among the
sample received, grossed and subsequently processed in the absence of step-by-step picture
documentation.

As in the other workstations, through automation the DP workflow can help reduce to
a minimum the human interference needed in the grossing phase. The previously described
process would be as follows (Table 2):
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• The grossing operator (e.g., pathologist/resident/pathologist’s assistant) can access
the case/patient file by directly scanning the code on the sample container.

• Pictures are taken of the sample before it is described and grossed, as well as during
grossing, and finally of all tissue cassettes with slices; those images are directly linked
to the case using the software integration paths between the LIS and the image
capture instrument.

• The grossing operator performs a macroscopic description of the sample through
automated speech recognition systems that report the text in the appropriate section
of the case/patient file using the software integrations paths between the LIS and the
dictation system instrument.

• The operator can produce cassettes by using a specific printer (preferably laser printer)
to assign an identification code corresponding to the particular case, as established
during the accessioning and using the software integration paths between the LIS
and the printer. The cassettes and marker media should be appropriately tested
to demonstrate the indelibility or impossibility of washing away or removing the
identification code. The suggested code is 2D (e.g., QR code), which can include a
greater character count (higher data density), require a smaller footprint, and have
fewer scan and printer failures than 1D codes.

• An image of the cassette with the grossed specimen should be obtained at the bench,
allowing retrieval of this at the following steps.

Table 2. Suggested checkpoints at the grossing workstation.

Grossing Checkpoints

1. Scanning the identification code on the sample container allows for automatic access to the
patient/case data, preventing transcription errors.

2. The photographic documentation of the sample as it is in the container, during grossing and
within the cassettes (for comparison to what is arrived at the embedding station) guarantees
the preservation of the case features and identification. The automatic introduction of the
photographs into the patient/case file at the LIS prevents mismatches and time loss.

3. The macroscopic description of the sample is dictated and converted to text through voice
recognition functions of the LIS or of an instrument connected to the LIS preventing
transcription errors and time loss.

4. Cassettes are printed with the identification code of the sample to be tracked in subsequent
workstations.

5. The material inserted in the cassette during grossing can be captured to obtain retrievable
pictures at the following steps.

6.3. Grossing-to-Processing and Processing Checkpoints

After the grossing phase, cassettes containing the specimens are ready to be processed.
At this stage, further checkpoints may be needed to verify that all the cassettes generated
at the grossing workstation are present in the rack to be processed. This double-check
is still routinely and primarily done manually in most pathology laboratories. In a DP
workflow, this task may be carried out by scanning the codes printed in the cassettes of the
rack before they are processed and checking if all the produced cassettes are submitted to
the subsequent phase, integrating the information in the LIS. During the processing phase,
both the instruments and programs used should be preferentially recorded through the
employment of an appropriately integrated LIS, allowing for tracking the specimens/cases
at this workstation. This system can be further deployed to track the usage of reagents
for processing, helping in the safe disposal of these reagents. Moreover, the integration
with the LIS can further help aggregate specimens and cassettes in different racks based
on their processing time and scanner time/protocol requirements (e.g., fast vs. standard
processing), or even separate specimens processed in different instruments.
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6.4. Embedding Checkpoints

Once the processed specimen inside the cassettes have arrived at the embedding room,
operators (technicians) should be able to access the pictures taken during the grossing
phase by simply scanning the barcode (Table 2). This will allow them to compare them
with the content of cassettes after processing, checking their correspondence to rule out the
loss of biological material. Correct embedding may prevent the creation of poor-quality
virtual slides. One of the possible issues during the scanning phase is represented by the
presence of large fragments, which are more prone to be hydrated during the processing
steps and thus more complicated to be captured by the scanner. To address this problem,
the fragments should be reduced during the grossing phase, and the embedding checkpoint
is essential to control this point. Similarly, tissue fragments well oriented, levelled, and
close to each other in paraffin, may constitute good substrates for better-quality glass slides.
If the sample to be analyzed is too large to be fitted in a regular glass slide, the recent
introduction of dedicated scanners for “macro” glass slides provides the possibility of this
solution directly from the grossing room [29].

6.5. Sectioning Checkpoints

The sectioning workstation is a time-consuming phase of the laboratory flow where
errors are frequent. Here, the automation can facilitate the technician’s work bringing
increased control, fewer errors, and resulting in less time spent. The sectioning worksta-
tion is complex and requires the rapid manipulation of specimens and instruments in a
consecutive way. The introduction of a slide printer, a code reader, a desktop interface, and
similar devices can be initially perceived as a further complication of this step. Checkpoints
can be installed at this workstation depending on the laboratory’s needs and may prevent
important errors (Table 3). Moreover, the employment of a slide printer (e.g., laser) at the
sectioning station connected to the tracking system should be preferred on the “classic”
handwritten or printed labels to reduce the risk of mismatches. The LIS should also be
the source of all the information regarding the types of stains to be performed (i.e., IHC or
“special” tinctorial stains) from a specific block. Moreover, the introduction of dedicated
instruments to capture the cut surface of each paraffin block [28] could represent an addi-
tional checkpoint, helping to further reduce tissue inconsistencies among the blocks and
the final glass/virtual slides. The sectioning process should follow the highest operative
standards to minimize errors and poor quality in the subsequent scanning phase. Indeed,
the irregular thickness of a tissue section, and the presence of holes or scratches and debris
erroneously collected from the bath can impair the correct scan of the final glass slide
product. The same is true for sections located at the edges of the slides, which may pass
undetected by the scanner. Thus, the sections should be thin enough during the cutting
phase and preferentially located in the middle of the physical glass slides to ensure the
most appropriate scanning quality. Automatic microtomes may contribute to decreased
tissue thickness variations.

Table 3. Suggested checkpoint at the sectioning workstation.

Sectioning Checkpoints

1. The code printed on the paraffin block may be scanned to open the case file through the
integrated LIS preventing transcription errors.

2. The technician can check how many and which kinds of slides are needed for each block
directly on the LIS.

3. For each paraffin block, one or more printed glass slides are then generated through a
dedicated printer, with all the slides having a unique identifier.

4. After sectioning, each paraffin block may be photographed to assess whether all the
material emerged on the glass slide/WSI.

5. The sectioning phase should follow high operative standards, reducing the risk of artifacts
that can impair the scanning phase.
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6.6. Staining and Mounting Checkpoints

Once in the staining workstation, the slides produced in the digital workflow are
identified through their code to define which staining protocol they should follow, as
per internal LIS prerecorded indications, using automated staining platforms. As in the
previous step, the staining process should follow the highest qualitative standards to reduce
possible modifications that can interfere with the scanning phase (faint or darker staining,
debris/precipitates). For this purpose, implementing an internal checkpoint with daily
controls and/or external quality control can help assess the quality of stained slides [30].
Automating the staining may contribute to a stable result, allowing the design of a scanning
protocol applicable to most of the slides, avoiding restaining and rescanning slides. The
production of consistent staining with a clean background is relevant because it decreases
the size of the produced digital slides. A final word is needed to address the mounting
process and respective automation. To minimize the interference of the mounting medium
in the scanning process, the laboratory must select the mounter, the coverslip type, and
respective mounting medium to be used in all sorts of glass slides so that the scanner can be
calibrated accordingly. Before the scanning phase, it is of paramount importance to check
whether the slide is in an adequate state for scanning. After the staining/cover-slipping
phase, it should be dry to prevent scanning problems (e.g., stitching, blurring, out of focus
areas). Moreover, the scanning phase can be either affected by the different positions of
the coverslips, leading to a misalignment of the slides in the rack. Differences in the type
of coverslip can be responsible for a high rate of WSIs being out of focus. The use of
automatic mounters obviates variations in the quality of the mounting and prevents errors
if an adequate revision of the mounter is provided.

6.7. Correct Assigning of the WSI to the Case Checkpoints

Please refer to Section 7 of the present document.

6.8. Archiving Checkpoints

After the sectioning and scanning phases, blocks and slides can be appropriately
archived to be retrieved whenever is necessary. This task has been historically performed
manually by operators (technicians or laboratory assistants), leading to loss and misplace-
ment of blocks/slides, with obvious medico-legal consequences. Moreover, the wide
practice of consulting archival material by all the laboratory workers, including residents
and students for didactic purposes, can further complicate the correct positioning of these
specimens. Based on these observations, the full integration with the LIS and the presence
of unique identifiers, both on the blocks and glass slides, allow an automated archiving of
all the biological material, as well as its safe and unbiased retrieval if needed (e.g., request
of external consultation). For archiving of the WSI, please refer to the data retention policy
(Section 8 of the present document).

7. Scanner for Slide Digitization

This section contains some considerations and recommendations for selecting and
managing the most appropriate digital slide scanner (Table 4). As in other medical special-
ties, which have been dramatically changed by the introduction of a wide variety of digital
devices for the routine daily work [31], it is not the focus of the present recommendations to
draw a meticulous review of the technical characteristics of a scanner, since several studies
have already been published on this subject [32,33].
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Table 4. Recommendations for the scanning phase.

Scanning Checkpoints

1. At any given time, two scanners digitise twice the number of slides compared to a single
scanner, and three scanners triple this (e.g., for a caseload of 300 slides per day, employing
three scanners with 100-slide capacity could be better than using a single scanner with a
300-slide capacity).

2. It is advisable to scan during the daytime, with the lab personnel present to solve
unexpected problems.

3. Scanning sessions during the night might be problematic in some already established
workflows; thus, if there are problems with the scanning process, it might be better to avoid
scanning after working hours.

4. A single-scanner approach is not recommended when contemplating a daily routine
diagnostic workflow.

5. Consider the possibility of a continuous loading and eventual prioritisation of a batch
of slides.

The most appropriate scanner should be selected based on the needs of the specific
laboratory (e.g., primary diagnosis, consultation, education, and research). The following
section focuses on the possible impact of such a choice on DP workflow implementation.
According to the LEAN approach, as previously stated in chapter 2, the positioning of the
scanners should follow the logic of an automated workflow and thus be placed as close as
possible to the staining and cover-slipping stations, making their implementation in the
entire process easier and smooth [6,7]. The transition to digital pathology also includes
choosing the most appropriate types and numbers of scanners for the lab. Although it is
highly dependent on the needs of each specific laboratory, one way to estimate the number
of scanners is to review previous DP experiences [6,7]. In this context, each department
should be aware of the expected application of the scanners, the total time required for the
scanning process, and the time that can be dedicated to this part of the workflow. Some
formulas to calculate the numbers of scanners needed in the lab have been proposed [6,7].
However, many variables must be considered when calculating the number of scanners
required to digitize the entire slide volume within the same workday, thus not interfering
with the TAT. These variables are limited by the technical specifications of the scanners and
the informatics networks (including bandwidth and switches), type and location of storage,
together with the existing workflow within the lab (i.e., availability of the personnel 24/7).
One of the possible pitfalls in calculating the actual scanning time per slide/batch, and thus
the number of scanners required per lab, could be represented by the reported scanning
times by each vendor, generally calculated on a sample tissue of 1.5 cm × 1.5 cm in size
and with a local storage solution. However, this is far away from the routine practice
of an anatomic pathology laboratory that must accommodate very small pieces of tissue
(e.g., biopsies) as well as large surgical samples, and that may even have the possibility of
storing the WSI remotely or in the cloud. Moreover, since the implementation of scanners
should not impact the existing workflow and eventually lead to its improvement, there is a
need to evaluate a continuous loading capability to preserve the same or similar workloads
over time compared to the conventional analogue counterpart. This should be coupled
with the possibility of prioritizing a specific batch of slides.

However, a few comments are needed. Overall, scanning during working hours
should be preferred for practical and logistical reasons. If there are problems with the
scanning process, it might be better to avoid scanning after working hours. For example, it
has been reported that the mean scanning time in a routine environment is about 6 min for
scanning a slide at an equivalent of 40 × magnification [34]. Therefore, it takes about 4 h
for one rack of 40 slides and up to 40 h to digitize all of the slides that fit inside the scanner
(using an AT2, Leica Biosystems, Nussloch, Germany). However, it is well known that the
scanning process may stop for several reasons, including sticky glass, connection problems
or software and hardware problems. The result may be an incomplete digitization of slides,
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with consequent interruption of routine workflow in the subsequent morning. Based on the
previous observations, and since the scanning process should be a continuous workflow
in the lab, scanning during the day should be preferred to the overnight approach. This
could enable lab personnel to react to the possible technical issues mentioned above. This
could even lead to modifications in other parts of the pathology workflow to adapt routine
specimen processing to the loading schedules required by the scanners. In this setting, the
laboratory can choose to switch from bulk production of slides at the end of the day to a
more continuous production of samples. Once the number of scanners needed and the
required scanning time has been defined, the laboratory should verify whether the number
of working operators employed in the department is sufficient to run the instruments
for the specified length of time. Otherwise, the calculation of the necessary personnel is
required, considering both:

1. The scanning process.
2. Virtual slide quality control.

The first part mainly consists of loading/unloading slides in the scanner and taking
snapshots to ensure that the instrument captures all the material on the glass. On the
other hand, the quality control phase is equally important and may be time-consuming,
encompassing all the quality check procedures of the final WSI and related data. The
points discussed above pertain to “regular” scanners for bright field microscopy. Other
“special” scanners exist, e.g., those for dark field microscopy (immunofluorescence and
fluorescence in-situ hybridization, FISH), as well as those for whole mount slides (macro
slides). Because of their highly specific fields of application [35], they are not the object of
these recommendations.

8. Validation of WSI for Clinical Use

Several validation studies for WSI have been published, and most show broad concor-
dance between the conventional microscope and the digital diagnosis [3,36]. Regarding
staining and sample types applicable to WSI-based diagnosis, most basic tissue slides
stained with hematoxylin and eosin (H&E), as well as most special stains and IHC stains,
are expected to be usable. However, they require appropriate validation studies, followed
by trial periods until the users have reached an adequate learning level. The recommended
validation period for the clinical use of WSI should allow each pathologist to follow a
training phase with parallel access to glass and digital slides for each case, with different
wash-out intervals of time proposed.

This path for the implementation of WSI for primary diagnosis has been followed
by different laboratories worldwide [8,37,38]. Some pathologists’ professional societies
(e.g., College of American Pathologists) have proposed detailed guidelines for this valida-
tion process [32,39]. These have recently been updated, although they are mainly centered
on validating WSIs in the diagnostic setting, not considering all the preanalytical phases
of the digital workflow [40]. Here we discuss further critical points that have recently
emerged as impactful in the implementation and validation of WSI. They include the most
appropriate visualization devices, assessment of scan quality, tissue coverage of the block,
glass slide and virtual slide and the proper assignment of the WSI to the case and/or
the patient.

8.1. The Visualization Chain: The Most Appropriate Monitor and Display. The
Pathologist Workstation

The typical pathologist workstation is composed of one computer and two monitors.
One monitor displays the LIS showing patient data and different dashboards with the
possibility to access the patient’s documents or slides. The other monitor is dedicated to
the visualization of the WSIs or other images. Several documents have already described
all of the features needed to implement the visualization instruments in DP, namely,
monitor quality, brightness and contrast, color depth, fidelity and profiles [32,41]. Many
pathology departments already operate with workstations equipped with high-contrast
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(e.g., minimum contrast ratio of 1000:1), high–resolution (e.g., 16:10, 27′′ diagonal matrix,
2560 × 1600), and bright displays (e.g., a maximum brightness of 300 cd/m2). Some
FDA-approved built-in solutions for digital pathology employ medical-grade displays.
However, the minimum requirements for DP monitors are still debated, and there is no
consensus on how to assess their quality. External sources of variability further complicate
this matter, such as the distance from the monitor and the illumination conditions of the
room, which makes unbiased comparisons among the different devices available more
difficult. This heterogeneity, and the large variety of supply in the digital market, has been
recently reviewed [41], stressing the need for appropriate information of pathologists on
this topic due to the complexity of the available technologies, which are changing at a fast
pace. Alternatively, an easy-to-access and point-of-use quality assessment tool has been
proposed, which tests color accuracy and may be a valuable indicator of the suitability
of a particular screen for digital pathology diagnostics. Further validation is needed for
its definitive employment in this setting [42]. Many comments could be made to identify
the minimum computer technical requirement at the pathologist’s workstation. Dedicated
random access memory (RAM) allows pathologists to visualize the WSI correctly. However,
there is no standard in selecting CPU or RAM, as the management of WSIs may be affected
by several parameters (i.e., network connection, switches etc.). A recent mid-range gaming
computer will undoubtedly exceed the technical requirements to approach DP.

8.2. Scan Quality Assessment

After digitization, the produced WSI should be checked to ensure appropriate image
quality to avoid any technical interference with the final diagnosis. Although most of the
routine slides (about 90%), if properly processed, should not present scanning problems,
some special slides (e.g., IHC or FISH) would benefit from dedicated scanning protocols
and could be affected by more digitization issues. On the other hand, a minority of the
“routine” slides (about 10%) could still be affected by scanning issues, stressing the need to
adopt alternative protocols to obtain WSI from these challenging samples. This is based
mainly on the assessment of focus quality, which can be partly assisted by the automated
metric implemented in some available scan systems but should be performed on every
slide to decide whether to rescan the sample. This can be done systematically by the lab
personnel (e.g., technicians) for every scanning set before assigning the case to a pathologist.
Alternatively, the pathologist can perform this check once after case review, requesting
a rescan of a glass slide similar to the way that an additional recut or a special stain is
ordered in the LIS. However, under real-life conditions, the entire manual check could be
rather time-consuming and troublesome, especially in light of the need for subsequent
deployment of image analysis algorithms. For this reason, automation of this phase is
highly recommended. It can further speed up the digital transition process, ensuring an
adequate quality of the scanned slide for potential subsequent AI analyses [43]. Suppose
pathologists review a slide with blurry areas. In that case, it is up to their judgment
to decide whether these artefacts will interfere with their safe diagnosis of the image,
and order rescans as necessary. However, even in this case, it can be challenging for the
human naked eye to unmask potential slight imperfections of the scanned slides that can
impair the employment of AI algorithms. Even in these cases, the introduction of focus
quality assessment [44] and quality control computational tools have been developed.
In this setting, further validations are needed to implement such algorithms in routine
practice [43,45].

8.3. Tissue Coverage

A critical assumption with using WSI in clinical settings is that scanned slides are
completely accurate digital representations of glass slides. Therefore, it is of paramount
importance that all tissue fragments present on glass slides be recognized and captured for
review on the resulting digital slides.

Typically, two main different images are generated during the digitization process:
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• The overview (rendering the macro/slide label files) that is a low-resolution snapshot
of the entire glass slide.

• The “digital image” of the glass slide generated by a microscope camera (rendering
baseline tiled image, thumbnail and multiple intermediate tiled images stacked in a
pyramid) often acquired at the chosen magnification.

Many WSI devices include systems to detect tissue samples on a slide to limit scanning
to relevant tissue-containing areas. For example, some scanners are programmed to omit
the blank areas on the slide during the scanning process, where tissue is presumed to be
absent, to speed up the process and generate files of smaller size. However, sometimes the
tissue detection mechanism can fail to identify small or pale pieces of tissue automatically
(e.g., label them as blank areas), or the user may not appropriately select the region
containing the entire tissue analyzable. This may lead to potential errors that can cause
serious discrepancies between the tissue present on the glass slide and the WSI. In this
setting, overview images can help avoid such errors and represent a valuable tool for
quality assessment purposes [46]. The macro image provides a low-magnification overview
of all the tissue pieces and empty space on the glass slide. It serves mainly to guide the
scanner’s tissue detection system, focus-point selection, and subsequent high-resolution
digitization of tissue recognized and/or manually selected by an operator. However, the
macro image is not necessarily displayed by default by all WSI vendors. Pathologists and
laboratory personnel should be adequately trained on how to find and use the macro image
as part of essential quality control. An alternative way to ensure that all the available tissue
is present on the WSI is to compare the obtained digital slide with the original glass slide.
However, this process could be time-consuming and represent a continuing additional
workload for the lab personnel (e.g., histotechnologists), avoidable with the proposed
double-check practice with the macro images made by each pathologist when the virtual
cases are assigned [46].

Other possible sources of tissue coverage errors can result from inappropriate place-
ment of tissue sections on the glass slide (e.g., below the label or on the external frame of
the slide), which can fall outside the area recognized by the scanner. To address this issue,
it is also essential to check the technical specifications of the scanner, specifically regarding
the predefined detectable area that could be insufficient to cover the entirety of the physical
glass slide containing tissue. These issues can be addressed by following the point-by-point
indications reported above on the sectioning and cover-slipping checkpoints. Finally, very
few cases with concordant WSI and macro images can still hide discrepancy issues with
the entire amount of tissue sent for the analysis in the lab. This could be addressed by
the manual, analog comparison of the tissue block with the macro images and the WSI,
as suggested in the relative checkpoint in Section 5. However, the use of appropriate
instruments to take a picture of the cut surface of the block can represent a valuable digital
cost-effective alternative to reduce the error rate further. The pathologist can then readily
check the three-way concordance among digitized cut surface of the block, macro images
and WSI for every assigned case, reducing the error rate close to zero.

8.4. Assignment of Images to the Correct Case/Patient File

At the end of the scanning process, one of the most important steps is correctly
assigning the digitized slides to the appropriate case/patient. As already mentioned,
during the scanning phase a macro image is generated representing a snapshot of the entire
glass slide that usually includes the slide label with identifiers (e.g., case accession number,
barcode, text showing a patient name, and slide level or stain details). As per other steps
mentioned in Section 5, a 2D barcode is crucial here as well to allow the scanning system,
adequately integrated with the LIS, to link the scanned slides to specific specimens and
patients. In some cases, according to institute policies, the dedicated personnel can perform
a double-check after the automatic assignment of slides. It has been reported that errors in
recognizing the printed barcode on the slide (or barcodes printed in the label) may occur,
thus preventing the WSI to be matched with the corresponding case. This is due mainly
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to the poor quality of the printed barcode (or because it is missing a part of the barcode).
This ultimately results in a case that is not ready to be reported, with a consequent delay
in diagnosis. A checkpoint should be performed at this step to verify that all the stained
slides have been digitized and assigned to the correct cases. Usually, scanner vendors
create specific folders of “unassigned” (or barcode-less) slides for this purpose.

9. Open Topics (Not Fully Addressed in This Document)
9.1. Data Retention Policies and Image Storage Solutions

Data retention policies and image storage solutions for WSIs still represent open
and debated topics, and no strict recommendations have been provided yet, although
some suggestions and indications can be found in different documents and guidelines [32].
General recommendations, including those from the College of American Pathologists
(CAP), currently advise retaining glass slides for at least ten years [47], with suggested
periods of retaining digital pathology storage for a period ranging from a few years up to
several years [48]. However, regulation on the retention of virtual slides, when used for
primary diagnosis, is still lacking. Some documents suggest applying the same indications
used for glass slides for WSIs, too [31]. Other recommendations are to keep the digital
image for a period of two laboratory inspection cycles in case of any need to review it
(e.g., for audits, quality control, medico-legal reasons) [32]. However strict and precise
European guidelines are still needed to define the minimum period of time for WSI storage.
Until then, pathology departments should determine an appropriate retention policy for
the digital images [49].

Closely related to the retention policy is the appropriate storage of the images: where,
how, and which slides must be stored is still an unresolved issue with multiple possibilities
that can be adapted to each laboratory’s needs. Regarding the solutions available on the
actual storage of the WSIs, organized and redundant storage solutions (e.g., Network
Attached Storage, NAS, or Redundant Array of Independent Disks, RAID) are preferred
to simple external/internal hard drives, considered negligent by some authors [31]. The
possibility of multiple backup copies and disaster recovery procedures should also be kept
in consideration [48]. Moreover, the issue related to the file extension of the WSIs that
should be employed during the back-up is still unsolved. One of the essential requirements
is represented by the capability of ensuring the changelessness, the guaranteed future and
future-proofing of the data (e.g., the unity of patient or case data and the actual image
content), as well as the easy accessibility of the WSIs, even after years. This can be obtained
by the use of a DICOM-capable archive, although the eventual loss of quality related to the
compression/conversion from one image extension to another is still a matter of debate.
Finally, identifying the amount and type of storage needed is important, as it is one of the
highest costs when implementing DP and needs to be adapted to the calculated yearly
needs of each laboratory [15].

It has to be underlined that digital pathology storages need to be built to be interop-
erable and useful. This requires high-quality datasets, seamless communication across
IT systems and standard data formats [50]. Interoperability is of paramount importance
for achieving the full potential of digitization in healthcare and medicine to avoid the
risk of having data difficult to exchange, process and interpret. Interoperability should be
technical, syntactic, semantic and organizational [50]. In this line, it has been suggested
that enterprise Vendor Neutral Archiving, composed of hardware and software, could
be used to accumulate images directly from various image acquisition sources with the
possibility to manage images and other end-user applications such as electronic health
records, laboratory information systems, and other health-related information systems and
databases [51].

9.2. Evaluation of the Results Obtained with the Digital Transition

The process of DP implementation has designs and consequences that are distinct
in each pathology laboratory. Monitoring the effects of the digital transformation of the
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laboratory is good practice. It may include an analysis of the following parameters before
and after the implementation: results of quality control, turn-around time, workload for
technicians and pathologists, ergonomics of each workstation, and the general satisfaction
of the staff. For validation and quality control of the implemented digital workflow, we
direct the reader to the recommendations already in use [32,33,40].

9.3. Preparing for the Subsequent Steps after Implementing the Digital Workflow

Having a digital repository that contains clinical and histological information can lay
the foundation for using numerous computational pathology tools. The application of im-
age analysis algorithms can allow the identification of specific cell or tissue compartments
(e.g., nuclei, mitosis, glands, stroma, among others) for quantification (e.g., cell or mitosis
counting) as well as for classification purposes (e.g., grading) [52]. Some practical applica-
tions of these tools range from helping in the more rigorous scoring of some IHC-stained
sections (e.g., programmed death-ligand 1 [PD-L1] and human epidermal growth factor
receptor 2 (HER2) scoring) to the quantification of the proliferation index (Ki-67) in many
neoplasms (e.g., breast, lymphomas and neuroendocrine tumours) [53,54]. Moreover, the
recent introduction of more sophisticated elaboration algorithms allows further information
starting from the digitized images and integrating the clinical, laboratory and radiological
data to obtain diagnostic, classification and prognostic hints through the application of the
so-called artificial intelligence (AI) [55,56]. Further simplifications in the work of patholo-
gists are possible in the future, such as the automation of time-consuming repetitive tasks
and the extraction of more data from the tissue to support precision medicine.

10. Closing Remarks

The present recommendations represent a European guidance for transitioning from
a classic, “analogue” to a completely digital workflow in every anatomic pathology de-
partment. Ten basic principles (Table 5) resulted from the discussion among international
experts after implementing the available updated national guidelines. Based on the present
document, the anatomic pathology societies of every European country should be able to
direct the departments towards DP transition. Updates in the future will provide dedicated
indications on the adoption of computer-aided diagnosis and AI tools.

Table 5. Summary of the recommendations for the implementation of the digital workflow.

Principles Type of Action

1. The transformation of a laboratory toward Digital Pathology requires a multidisciplinary approach
(pathologists, technicians, IT). Recommendation

2. Involve all the team in the transition process toward Digital Pathology (Educational phase). Recommendation
3. Spare valuable resources (e.g., spaces, time and people) employing the LEAN approach to optimize

the process. Suggestion

4. Analyze the potentialities of the laboratory information (management) system (LIS/LIMS) and be
aware of the information resources. Recommendation

5. Start the automation of all the possible processes, implementing a tracking system and defining the
appropriate checkpoints for every phase. Recommendation

6. Design a quality control program mapping the necessary quality control steps. Recommendation
7. Choose an appropriate scanner. Suggestion
8. Validate WSI for clinical use. Recommendation
9. Evaluate the impact and results of the digital transformation and other members of the team to

perform the same analysis. Recommendation

10. Prepare the next steps for digital pathology implementation after the workflow is well established. Recommendation
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