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Editorial on Special Issue “Artificial Intelligence in Pathological
Image Analysis”

Masayuki Tsuneki

Medmain Research, Medmain Inc., 2-4-5-104, Akasaka, Chuo-ku, Fukuoka 810-0042, Japan;
tsuneki@medmain.com; Tel.: +81-92-707-1977

The artificial intelligence (AI), especially deep learning models, is highly compatible
with medical images and natural language processing and is expected to be applied to
pathological image analysis and other medical fields. In routine pathological diagnosis,
the histopathological and cytopathological examination of specimens is conventionally
performed under a light microscope. Whole slide images (WSIs) are the digitized counter-
parts of the conventional glass slides obtained using specialized scanning devices. In recent
years, digital pathology has been steadily introduced into clinical workflows, such as intra-
operative consultations and secondary consultations. Pathology diagnosis support systems
(computer-aided detection/diagnosis: CAD) using AI are useful for various classification
tasks, such as histopathological subtyping, tumor grading, immunohistochemical scoring,
and predictions of genetic mutation and protein expression profiles [1]. It is becoming pos-
sible to develop AI that can not only perform image classification and detection tasks, but
also infer histopathological findings from images by combining pathological images with
natural language. In a time of distinct paradigm shifts and novel technological innovations,
it is necessary for us to establish a unified comprehension(s) of AI approaches in experi-
mental and clinical pathology. In this Special Issue “Artificial Intelligence in Pathological
Image Analysis”, we collected a review and thirteen research articles in the areas of AI
models in clinical and experimental pathology and computer vision in pathological image
analysis. The published studies in this Special Issue provide great insights into the latest
knowledge about the application of AI for pathological image analysis.

Kim et al. summarized the current trends and challenges to the application of AI
in pathology [2]. In this review article, the authors described the development of com-
putational pathology (CPATH), its applicability to AI development, and the challenges it
faces, such as algorithm validation and interpretability, computing systems, reimbursement,
ethics, and regulations. Further, the authors presented an overview of novel AI-based
approaches that could be integrated into the pathology laboratory workflow. As the authors
described, explainable AI and ethics and security issues are important topics in CPATH.
To develop safe and reliable AI, the pathology community needs more clinical research
and laboratory practices. This review paper provides the current research status of AI in
pathology and future perspectives for successful applications.

Our research article demonstrated a deep learning model for prostate adenocarcinoma
classification in core needle biopsy WSIs using transfer learning [3]. In routine clinical
practice, diagnosing 12 core biopsy specimens using a microscope is time-consuming,
manual process, and it is limited in terms of human resources. The authors trained deep
learning models capable of classifying core needle biopsy WSIs into adenocarcinoma and
benign (non-neoplastic) lesions and achieved an ROC-AUC of up to 0.978 in the core
needle biopsy test sets for adenocarcinoma. Deep learning-based computational algorithms
might be useful as routine histopathological diagnostic aids for prostate adenocarcinoma
classification in core needle biopsy specimens.

Rakovic et al. conducted a survey of prostate cancer UK supporters for the use of
digital pathology and AI in the histopathological diagnosis of prostate cancer [4]. A total
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of 1276 responses to the online survey were analyzed. It was revealed that most of the
respondents were in favor of advances in prostate cancer diagnosis by means of digital
pathology and AI-assisted diagnostics as adjuncts to current clinical workflows. However,
a small minority of them were not in favor of the use of AI in histopathology for reasons
which are not easily addressed. Importantly, the patients are more comfortable with the
overall responsibility for a histopathology report remaining with the histopathologist and
relying on their decision making to use AI and integrate its findings into the final report.

Baek et al. demonstrated the AI-assisted image analysis of acetaminophen-induced
acute hepatic injury in Sprague-Dawley rats [5]. The aim of this study was to apply
deep learning models for the assessment of toxicological pathology in a non-clinical study.
Authors trained the model for various hepatic lesions, including necrosis, inflammation,
infiltration, and portal triad at the WSI level. The deep learning model achieved an overall
model accuracy of 96.44%. Importantly, the model predicted lesions of portal triad, necrosis,
and inflammation with high correlations with annotated lesions by toxicologic pathologists.
This study suggested that the deep learning algorithm (Mask R-CNN algorithm) can be
applied to implement diagnosis and prediction of hepatic lesions in toxicological pathology.

Zurac et al. developed the AI-based method for identifying mycobacterium tuber-
culosis in Ziehl–Neelsen-stained tissue specimen WSIs [6]. In routine histopathological
diagnosis, detecting mycobacterium tuberculosis in Ziehl–Neelsen-stained slides is difficult
and time consuming because of the bacillus size. The developed deep learning model
achieved an ROC-AUC of 0.977, an accuracy of 98.33%, a sensitivity of 95.65%, and a
specificity of 100% for identifying mycobacterium tuberculosis bacilli on WSIs, which were
better than or similar to those data of a team of pathologists who manually inspected slides
and WSIs. By using the developed deep learning algorithm, the pathologists saved at least
one-third of the total examining time.

Park et al. proposed a new training method called MixPatch, which was designed
to improve a CNN-based classifier by specifically addressing the prediction uncertainty
problem and examine its effectiveness at improving the diagnosis performance in the
context of histopathological image analysis [7]. MixPatch generates and uses a new sub-
training dataset, which consists of mixed patches and their pre-defined ground-truth labels.
Importantly, by specifically considering the mixed region variation characteristics of the
histopathology images, MixPatch augments the extant mixed image methods for medical
image analysis, in which the prediction uncertainty is a crucial issue. MixPatch provides a
new way to systematically alleviate the overconfidence problem of CNN-based classifiers
and improve their prediction accuracy, contributing toward more calibrated and reliable
histopathology image analysis.

Serbanescu et al. demonstrated the morphological difference between nodular (low-
risk subtype) and micronodular (high-risk subtype) basal cell carcinomas using a classical
morphometric approach (a gray-level co-occurrence matrix and histogram analysis) and a
deep learning semantic segmentation approach [8]. The authors identified distinct patho-
logical patterns of the tumor component in random fields of the tumor island that did
not contain peripheral palisading. They demonstrated that the most significant difference
between the morphology of the two (nodular and micronodular) subtypes was represented
by the peritumoral cleft component. Importantly, the deep learning semantic segmenta-
tion approach provided new insight into the morphologies of nodular and micronodular
subtypes of basal cell carcinoma.

Nofallah et al. demonstrated the potential application of the semantic segmentation of
clinically important tissue structures for improving the diagnosis of skin biopsy WSIs [9].
It has been revealed that including a clinically important tissue structure along with WSIs
improves the learning of the model, especially in challenging diagnostic classes, such as
melanoma in situ and invasive melanoma (T1a). The model showed a 6% improvement in
the F-score when whole slide images were used along with epidermal nests and cancer-
ous dermal nest segmentation masks compared to that which was achieved using WSIs
alone in training and testing the diagnosis pipeline. Importantly, comparing scores with
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187 pathologists’ performance on the same test set showed that the model can outperform
or have comparable performance in the cases with the aforementioned diagnostic classes.

Legnar et al. investigated the possibility to predict a final diagnosis based on a written
neuropathological description using various natural language processing (NLP) meth-
ods [10]. Certain diagnoses or groups of diagnoses (e.g., amyloid-deposition-associated
diseases) could be predicted very well; however, in several cases, the morphological de-
scription was apparently not sufficient to make accurate predictions. This is because some
diagnoses are associated with one pattern, but for others, there is a complex pattern com-
bination which makes the prediction difficult without patho-physiological knowledge.
Overall, it has been revealed that the morphological description texts, used as a surrogate
for image analysis, enable the correct diagnosis to be achieved for some entities.

Cazzato et al. trained the fast random forest (FRF) algorithm to be able to support the
specialist to automatically highlight the anomalous pixel regions and to estimate a possible
risk by quantifying the percentage of these regions with atypical morphological features
starting from routine histopathological images [11]. An important tool for melanoma
diagnosis is the probability image estimated by the processed FRF output image. The
probability image is useful to discriminate between information about ambiguous lesions.
The FRF algorithm proved to be successful, with a discordance of 17% with respect to the
results of the dermatopathologist, meaning that this type of supervised algorithm to can
help the dermatopathologist in achieving the challenging diagnosis of malignant melanoma.

VanBerlo et al. developed a deep learning solution for automatic lung ultrasound
view annotation that effectively improves the efficiency of downstream annotation tasks,
which can distinguish between parenchymal and pleural lung ultrasound views with 92.5%
accuracy [12]. The automatic partitioning of a 780 clip lung ultrasound dataset by view
led to a 42 min reduction of the downstream manual annotation time and resulted in the
production of 55 ± 6 extra relevant labels per hour. This deep learning-based automated
tool considerably improved the annotation efficiency, resulting in a higher throughput
relevant to the annotating task at hand, which can be applied to other unannotated datasets
to save considerable manual annotation time and effort.

Kawazoe et al. demonstrated an automated computational pipeline to detect glomeruli
and to segment the histopathological regions inside of the glomerulus in a WSI [13]. The
computational pipeline automatically detects glomeruli on PAS-stained WSIs, followed
by segmenting the Bowman’s space, the glomerular tuft, the crescentic, and the sclerotic
region inside of the glomeruli. To predict the estimated glomerular filtration rate (eGFR) in
cases of immunoglobulin A nephropathy (IgAN), it is important to quantify the sclerotic
region using the developed pipeline. Importantly, the developed automated computa-
tional pipeline could aid in diagnosing renal pathology by visualizing and quantifying the
histopathological feature of the glomerulus and potentially accelerate the research in order
to better understand the prognosis of IgAN.

Fauzi et al. demonstrated a cell detection and classification system based on a deep
learning model for use with the Allred scoring system for breast carcinoma hormone re-
ceptor status testing [14]. The computational pipeline first detects all of the cells within
the specific regions and classifies them into negatively, weakly, moderately, and strongly
stained ones, followed by Allred scoring for the estrogen receptor (ER) status evaluation
on WSIs. The automated Allred scores matches well with pathologists’ scores for both
the actual Allred score and hormonal treatment cases. The proposed system can auto-
mate the exhaustive exercise to provide fast and reliable assistance to pathologists and
medical personnel.

Palm et al. examined the performance of a digitalized and artificial intelligence (AI)-
assisted workflow for HER2 status determination in accordance with the American Society
of Clinical Oncology (ASCO)/College of Pathologists (CAP) guidelines [15]. The HER2
4B5 algorithm in the uPath enterprise software and the HER2 Dual ISH image analysis
algorithm (Roche Diagnostic International, Rotkreuz, Switzerland) were used in this study.
The authors demonstrated the feasibility of a combined HER2 IHC and ISH AI workflow
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in the primary and metastatic breast cancers, with a Cohen’s κ of 0.94 when it was assessed
in accordance with the ASCO/CAP recommendations.

In summary, in this Special Issue, there are wide varieties of valuable scientific papers
including a review article and papers on deep learning models in pathological applications,
human and toxicological pathology, and various methodologies. AI-based computational
algorithms, including deep learning models, are taking digital pathology beyond mere
digitization and telepathology [1]. The incorporation of AI-based computer vision and
natural language processing algorithms in routine clinical workflows is on the horizon,
reducing processing time and increasing the detection rate of anomalies [1]. It is necessary
to continue to share the latest findings and updated methodologies in “Artificial Intelligence
in Pathological Image Analysis” and continue to conduct valuable research.

Funding: This research received no external funding.

Conflicts of Interest: M.T. is the employee of Medmain Inc.
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Determining HER2 Status by Artificial Intelligence: An
Investigation of Primary, Metastatic, and HER2 Low
Breast Tumors
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Quentin Simon 1, Beata Bode 1,2 and Marianne Tinguely 1,2

1 Pathologie Institute Enge, 8005 Zurich, Switzerland
2 Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
* Correspondence: catherine.connolly@patho.ch

Abstract: The expression of human epidermal growth factor receptor 2 (HER2) protein or gene
transcripts is critical for therapeutic decision making in breast cancer. We examined the performance
of a digitalized and artificial intelligence (AI)-assisted workflow for HER2 status determination in
accordance with the American Society of Clinical Oncology (ASCO)/College of Pathologists (CAP)
guidelines. Our preliminary cohort consisted of 495 primary breast carcinomas, and our study
cohort included 67 primary breast carcinomas and 30 metastatic deposits, which were evaluated
for HER2 status by immunohistochemistry (IHC) and in situ hybridization (ISH). Three practicing
breast pathologists independently assessed and scored slides, building the ground truth. Following a
washout period, pathologists were provided with the results of the AI digital image analysis (DIA)
and asked to reassess the slides. Both rounds of assessment from the pathologists were compared
to the AI results and ground truth for each slide. We observed an overall HER2 positivity rate of
15% in our study cohort. Moderate agreement (Cohen’s κ 0.59) was observed between the ground
truth and AI on IHC, with most discrepancies occurring between 0 and 1+ scores. Inter-observer
agreement amongst pathologists was substantial (Fleiss´ κ 0.77) and pathologists’ agreement with
AI scores was 80.6%. Substantial agreement of the AI with the ground truth (Cohen´s κ 0.80) was
detected on ISH-stained slides, and the accuracy of AI was similar for the primary and metastatic
tumors. We demonstrated the feasibility of a combined HER2 IHC and ISH AI workflow, with a
Cohen’s κ of 0.94 when assessed in accordance with the ASCO/CAP recommendations.

Keywords: HER2 immunohistochemistry; HER2 in situ hybridization; artificial intelligence;
digital pathology; breast carcinoma

1. Introduction

Approximately 15–20% of newly diagnosed invasive breast cancers (IBC) overexpress
the human epidermal growth factor receptor 2 (HER2) oncogene, which is associated
with increased tumor progression and metastasis [1–3]. Since HER2 positive tumors
can be targeted with medical therapies, a reliable method is necessary to determine the
HER2 status on both primary and metastatic breast tumors [4,5]. The standard diagnostic
workflow involves immunohistochemistry (IHC) and in situ hybridization (ISH) methods
with manual assessment by pathologists. According to the 2018 American Society of Clinical
Oncology (ASCO)/College of American Pathologists (CAP) guidelines, both completeness
and intensity of HER2 membrane staining must be evaluated to determine the HER2 status
on IHC-stained slides [6]. However, the visual assessment of stained slides is subject to
inter-pathologist variability, and unusual or heterogeneous staining patterns often present
diagnostic challenges [7,8]. Therefore, pathologists may strategically assess relatively more
cases as score 2+, in order to defer them for ISH testing, which, although more conclusive in
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determining HER2 positive and negative cases in the IHC 2+ cohort, is significantly more
cost- and labor-intensive [9].

Recent and emerging evidence provides a strong case for moving away from the
dichotomous ‘positive’ or ‘negative’ reporting of HER2 status, in favor of identifying a
category of IBC with a low HER2 status as they demonstrate a response to new anti-HER2
antibody-conjugate therapy. According to the recently published DESTINY-Breast 04 trial
results, HER2 low tumors were defined as a score of 1+ on IHC or 2+ on IHC with a negative
ISH result, and this cohort of patients demonstrated significantly longer progression-
free and overall survival when treated with trastuzumab deruxtecan in comparison to
chemotherapy [10]. Currently, the DAISY trial is now underway and seeks to further
investigate the efficacy of this drug in three cohorts: HER2 overexpressing (HER2 IHC 3+ or
IHC 2+ with positive ISH) vs. HER2 low-expressing (IHC 1+ or IHC 2+ with negative ISH)
vs. HER2 non-expressing (IHC 0) [11]. Therefore, the ability of pathologists to accurately
classify HER2 IHC scores and interpret ISH in a standardized manner, with minimal
inter-observer variability, is of upmost priority.

Technological advances, specifically in the field of artificial intelligence (AI) and digital
image analysis (DIA), offer the added potential to minimize inter- and intra-pathologist
variability in the scoring process by offering an objective comparative value [12–19]. Several
studies have analyzed the potential role of AI in determining the HER2 status and DIA has
been acknowledged as a possible diagnostic modality in the current ASCO/CAP guidelines.
However, to our knowledge, no research has been published on the AI-assisted assessment
of HER2 status, incorporating both the IHC and ISH methods into a complete workflow.
Since both IHC and ISH supplement each other in the diagnostic process of determining
HER2 status, and are described in this way in the ASCO/CAP guidelines, we aimed to
investigate whether an approach that incorporates algorithms for both methods could offer
the chance of a more effective and objective diagnosis [6]. Additionally, no studies were
identified in the literature that assesses the performance of AI on metastatic or HER2 low
breast tumors. Therefore, we sought to evaluate a novel AI-assisted workflow including
both IHC and ISH for determining the HER2 status of primary and metastatic breast cancer.

2. Materials and Methods

2.1. Setting and Ethics

This study was conducted at Pathologie Institut Enge AG, Switzerland, and was
approved by the Ethics Committee of the Canton of Zurich (BASEC-Nr.: 2021-00210).

2.2. Cohort Selection, Tissue Staining and Interpretation

Core needle biopsies (CNB) of 495 newly diagnosed primary IBCs (category B5b)
and 30 metastatic breast carcinomas consecutively diagnosed at our institute throughout
2020 were identified using the institutional lab informatics system (PathoWin+, Basys
Data, Basel, Switzerland). Existing IHC slides for all primary breast carcinoma cases
in 2020 were retrieved, digitalized, and analyzed (see the method in Section 2.3) as a
preliminary cohort. For further analyses, we included all 30 metastatic tumors and their
matched primaries and a further random selection of primary tumors from the preliminary
cohort (total study cohort, n = 97). The 2 μm (IHC) and 4 μm (ISH) sections were newly
cut from routinely processed formalin-fixed paraffin embedded tissues and mounted
on TOMO Adhesion Microscope Slides (Matsunami Glass, Japan). Both IHC and ISH
were performed using the Ventana BenchMark ULTRA automated slide stainer with the
Ultraview Detection Kit (Roche Diagnostic International, Rotkreuz, Switzerland). IHC and
ISH were performed in accordance with the vendor’s package insert protocols using the
VENTANA anti-HER2/neu (4B5) rabbit monoclonal primary antibody and VENTANA
HER2 Dual ISH DNA Probe Cocktail Assay, respectively (Roche Diagnostic International,
Rotkreuz, Switzerland). ISH was performed on 55/97 samples, corresponding to all cases
with an IHC HER2 score of ≥1+. Both IHC and ISH were interpreted according to the 2018
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ASCO/CAP guidelines and HER2 low tumors were defined as IHC 1+ or IHC 2+ with
negative ISH (Figure 1a) [6,10].

 

Figure 1. Overview of the study protocol for HER2 evaluation. Pathologists performed manual,
light microscopic evaluation of HER2 (a) immunohistochemistry and (c) in situ hybridization in
accordance with the 2018 ASCO/CAP guidelines. Slides were also analyzed with the support of
two AI algorithms: AI-assisted immunohistochemistry analysis (b) was performed by placing three
regions of interest (green) over tumor tissue and (d) AI-assisted in situ hybridization was analyzed
by selecting a region of interest (green) within an area of high HER2 expression, as indicated by the
heatmap (upper right). Within the region of interest, the algorithm calculated the HER2 and CEP17
signals for 20 cells (red).

2.3. AI Analysis of Immunohistochemistry Slides

IHC slides were digitalized using a VENTANA DP200 (Roche Diagnostic International,
Rotkreuz, Switzerland) and analyzed using the HER2 4B5 algorithm in the uPath enterprise
software (Roche Diagnostic International, Rotkreuz, Switzerland). Three regions of interest
(ROI) were selected per slide: two smaller ROIs were placed over separate areas with at
least 100 tumor cells (“area 1” and “area 2”), and a large ROI was placed over all tumor
tissue on the slide (“area 3”). The mean score of these three areas was calculated and taken
to represent the AI-determined HER2 IHC score (Figure 1b). This method was developed
in order to minimize ROI- and user-dependent factors in the AI evaluation.

2.4. AI Analysis of In Situ Hybridization Slides

ISH slides were digitalized using the VENTANA DP200 and analyzed using the HER2
Dual ISH image analysis algorithm (Roche Diagnostic International, Rotkreuz, Switzerland).
The algorithm enables the selection of one ROI, which is aided by a heatmap overlay
highlighting areas of the slide with the highest HER2 expression (Figure 1d). Within
the selected ROI, the algorithm identifies 20 cells with the highest HER2 amplification,
provides HER2 and CEP17 counts for each cell, and calculates the ratio. As our aim
was to understand the performance of an AI image analysis protocol for HER2 status
determination, the manual correction features in both the IHC and ISH algorithms were
not used.
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2.5. Manual Assessment of Slides

To compare the pathologists´ assessments to the AI results, three pathologists were
asked to independently assess the IHC slides by light microscopy as they would in routine
diagnostics (Group: “Pathologists”). Following a minimum washout period of 2 weeks,
they were provided with the AI results and asked to re-evaluate the IHC slides per mi-
croscope (Group: “AI-assisted Pathologists”). The ground truth for the IHC results was
defined as the consensus score reached by the three pathologists for each case. The ground
truth for the ISH results was determined by a single pathologist counting the HER2 signals
per cell and the HER2/CEP17 ratio for 20 cells. Area selection was performed following a
review of the ISH slide and paired IHC slide to determine potential areas of HER2 ampli-
fication. For equivocal results, a second pathologist recounted the ISH signals of 20 cells,
and diagnoses were allocated in accordance with the 2018 ASCO/CAP guidelines [6].

2.6. Statistical Analysis

To assess the accuracy and compare the assessments by AI and pathologists to our
defined ground truth, we calculated the Cohen’s κ. Inter-observer variability was measured
with Fleiss’ κ. The interpretation of agreement was performed according to Landis and Koch:
κ-values 0.01–0.20 = slight agreement, 0.21–0.40 = fair agreement, 0.41–0.60 = moderate
agreement, 0.61–0.8 = substantial agreement, 0.81–1.0 = almost perfect agreement [20]. The
sensitivity and specificity values were calculated for each diagnostic step in HER2 status
determination including the overall workflow and our level of significance was set at
p < 0.05. To assess the significance of difference in kappa between observations, two-sided
pairwise t-tests were performed. The Pearson Chi2 test was used to compare the agreement
levels and their significance. Statistical calculations were performed using IBM software
SPSS Version 27 and Microsoft Excel.

3. Results

3.1. Clinicopathological Features

During 2020, there were 495 cases of B5b IBC diagnosed at our institute, and all cases
were included in our preliminary cohort (Table 1). The average age of patients was 61 years
(range 29–95 years), and all but two were women. The most prevalent tumor type was
invasive carcinoma of no special type (80%) and our estrogen receptor (ER), progesterone
receptor (PR), and HER2 positivity rates were 85%, 75%, and 12%, respectively. The
distribution of tumor grading included: 23% grade 1, 48% grade 2, and 29% grade 3. There
were 97 CNBs (67 primary breast tumors, 30 metastases) included in our study cohort for
further analyses. All tissue samples of this cohort were from women and the mean age
of the study cohort was 60 years (range 30–80 years). The majority of primary tumors
were invasive carcinoma of no special type (82%), and most tumors were classified as
grade 2 (45%), followed by grade 3 (42%) and grade 1 (14%). ER was positive in 87% and
PR in 78%. The reported HER2 positivity rate was 15%. At the time of original diagnosis,
20 tumors were investigated with ISH for HER2 status determination in addition to routine
IHC. Metastatic sites included lymph nodes (n = 22) and liver (n = 8), and the mean size of
the metastatic lymph node deposits was 4.99 mm (range 0.3–12 mm).

3.2. Preliminary Cohort

From our preliminary cohort of 495 cases of B5b primary invasive breast carcinoma,
we retrieved a total of 475 IHC slides with adequate tissue and staining for digitalization
and analysis. The remaining 20 slides were excluded as they were not suitable for further
analysis. The IHC scoring distribution according to manual assessment by pathologists
included 181 cases as IHC score 0 (38.1%), 156 cases as 1+ (32.8%), 87 cases as 2+ (18.3%),
and 51 cases as 3+ (10.7%). In contrast, the AI-IHC algorithm identified 22 cases as 0 (4.6%),
137 cases as 1+ (28.8%), 254 cases as 2+ (53.5%), and 62 cases as 3+ (13.1%). In total, we
observed only 182/475 concordant cases (38.3%) between the AI and pathologists, and the
AI overestimated the number of 2+ cases in comparison to the pathologists (254 cases vs.
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87 cases). In 184/475 cases (38.7%), the discordance observed in scoring would lead to
significant consequences such as the inclusion or omission of HER2 ISH testing, or a change
in the tumors’ HER2 status. Following analysis of our preliminary cohort and discussions
with the vendor, we identified deviations in our round robin tested laboratory HER2 IHC
staining protocol in comparison with the vendor’s recommended protocol for use with the
AI software. Consequently, we made changes to our total Ultra Cell Conditioning Solution
(CC1) incubation time (172 min to 56 min), antibody incubation time (24 min to 12 min),
and counterstaining time (8 min to 4 min) to conform to the vendor’s recommendations.
New sections were prepared from the FFPE tissue for our study cohort (n = 97) and were
stained according to the adjusted protocol, with the results shown in Sections 3.3–3.7. We
observed an overall improvement in concordance between the AI and manual assessment
in our study cohort primary tumors (n = 67), with 77.6% of cases showing full concordance,
and only 4.5% showing discordance with diagnostic consequence. There were 57 cases that
were part of both our preliminary and study cohorts and the comparative results using our
laboratory and amended staining protocols are presented in Supplementary Table S1.

Table 1. Overview of the clinicopathological features for the preliminary (n = 495) and study (n = 97)
cohorts. Tumor data for the study cohort pertain to the 67 primary tumors.

Preliminary Cohort Study Cohort

No. of Cases 495 97 (67 *)
Average Patient Age, yrs 61 60

Range 29–95 30–80
Tumor Type, No. (%)

Ductal 394 (80) 55 (82)
Lobular 75 (15) 6 (9)
Other 26 (5) 6 (9)

Tumor Grade, No. (%)
1 112 (23) 9 (14)
2 237 (48) 30 (45)
3 146 (29) 28 (42)

ER positive, No. (%) 421 (85) 58 (87)
PR positive, No. (%) 371 (75) 52 (78)

HER2 positive, No. (%) 59 (12) 10 (15)
* 67 were primary tumors, and clinicopathological data pertains only to primaries.

3.3. Primary B5b IBC: Immunohistochemistry

In our study cohort, the AI-IHC algorithm had moderate concordance with the ground
truth (Cohen’s κ 0.59, 95% CI 0.43–0.75). When pathologists were asked to score the IHC
slides with the assistance of AI, the “AI-assisted Pathologists” concordance with the ground
truth was almost perfect (Cohen’s κ 0.89, 95% CI 0.77–1.0), with individual concordance
rates of Cohen’s κ 0.71, 0.71, and 0.61. The greatest discrepancies in scoring between
“Pathologists” and AI occurred on the IHC slides with a ground truth score of 0 (Figure 2).
When the “Pathologists” were provided with the AI results, their overall agreement with
the algorithm’s findings increased by 9% (71.6% vs. 80.6%), indicating that pathologists
were likely to adjust their assessment to match that of the algorithm.

We observed substantial inter-observer agreement in the assessment of the IHC slides
within the groups “Pathologists” (Fleiss κ 0.77, 95% CI 0.68–0.86) and “AI-assisted Pathol-
ogists” (Fleiss κ 0.74, 95% CI 0.65–0.82). As shown in Figure 3, inter-observer agreement
was highest for cases rated as score 3+ (Fleiss κ 0.89, 95% CI 0.75–1.0) and lowest for cases
assessed as 1+ (Fleiss κ 0.63, 95% CI 0.50–0.77).
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Figure 2. Heatmap representation of HER2 scoring for primary B5b invasive breast carcinomas. IHC
scores (0, 1, 2, 3) are shown for Pathologists, AI-assisted Pathologists, and AI in comparison to the
ground truth. ISH was designated as negative (−), positive (+), or requiring further assessment
(+/−).

3.4. Primary B5b IBC: In Situ Hybridization

A total of 26/67 cases, corresponding to all cases with an IHC HER2 consensus score
of 1+ or above, were evaluated by ISH. Concordant results were noted between AI and the
ground truth HER2 status in 25/26 cases, and AI demonstrated almost perfect accuracy
(Cohen’s κ 0.92, 95% CI 0.77–1.0). The AI-ISH algorithm classified eight cases into categories
2, 3, or 4 (Figure 1c). As per the ASCO/CAP guidelines, seven of these would be considered
negative following the inclusion of their IHC 1+ scores, and one would require a second
observer to count 20 cells on the ISH slide, as the IHC score was 2+. AI-recounts were
not performed, therefore, our discordant case is depicted as +/− in Figure 2. Notably,
the AI-ISH algorithm occasionally assigned unexpectedly high HER2 counts of up to
74 signs/cell and HER2/CEP17 ratios of up to 15, and on average, the AI counts amounted
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to over three times that from the Pathologists (Figure 4). However, the tendency of AI
to provide exaggerated counts did not significantly affect the outcomes, with only one
negative case being upgraded by the AI, and as per the ASCO/CAP guidelines, this case
would require reassessment by ISH.

 

Figure 3. Evaluation of inter-observer agreement. Fleiss’ kappa for the measurement of inter-
observer agreement amongst Pathologists, AI-assisted Pathologists, and AI on the IHC-stained slides.
Agreement is presented for each IHC score and combined.

 

Figure 4. Comparison of the calculated HER2/CEP17 ratio and the HER2 signals/cell between
Pathologists and AI-assisted DIA on the ISH-stained slides.
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3.5. Primary B5b IBC: HER2 Low Tumors

According to our defined ground truth, the study cohort contained 16 HER2 low
tumors. For this group, the level of concordance between the AI and the ground truth was
moderate (Cohen’s κ 0.54, 95% CI 0.19–0.90). However, the AI classified 20 tumors as IHC
1+ and seven tumors as IHC 2+/ISH negative, totaling 27 HER2 low tumors and increasing
our proportion of HER2 low tumors by 16%. For our ground truth HER2 low tumors,
we observed substantial inter-observer agreement in classification amongst Pathologists
(Fleiss κ 0.78, 95% CI 0.55–1.0), which was slightly lower, but remained substantial, in the
“AI-assisted Pathologists” group (Fleiss κ 0.61, 95% CI 0.40–0.81).

3.6. Primary B5b IBC: Metastatic Breast Cancer

For our cohort of 30 metastatic breast cancers, the accuracies of both the AI algorithms
for IHC (Cohen’s κ 0.43, 95% CI 0.25–0.61) and ISH (Cohen’s κ 0.52, 95% CI 0.08–0.97) were
moderate. The IHC algorithm performed slightly better on metastatic tumors (25/30 cases,
Cohen’s κ 0.48, 95% CI 0.24–0.73) compared to their matched primary tumors (20/30 cases,
Cohen’s κ 0.36, 95% CI 0.07–0.64) (Figure 5). Conversely, inter-observer agreement on IHC
scoring between Pathologists was 4% higher on primary tumors compared to metastatic
deposits (Fleiss’ κ primary 0.77 vs. metastatic 0.73). Of the 25 cases that underwent
ISH assessment, three were positive according to the pathologist and six were positive
according to AI. A conversion of HER2 status between the primary and metastatic lesions
was observed in 1/30 cases, which was confirmed by both pathologists and AI with both
IHC and ISH. A significant difference in the evaluation of metastatic tissue between the
liver and lymph node sites was not observed.

Figure 5. Primary breast cancer (a) IHC scores and (b) ISH status, and matched metastatic breast
cancer (c) IHC scores and (d) ISH status assessed by the Pathologists versus AI. Equivocal ISH scores
refer to groups 2, 3, and 4 in the 2018 ASCO/CAP guidelines.

3.7. Primary B5b IBC: Accuracy of AI-Assisted Digitalized Workflow

We incorporated both the HER2 IHC and ISH results in our assessment of how an
AI-assisted, digitalized workflow compared to the manual assessment by pathologists.
The ground truth HER2 status for all cases in our cohort was determined by consensus
in the Pathologists’ opinions. In accordance with the ASCO/CAP guidelines, we only
considered the ISH results for cases rated as 2+ by IHC. For cases evaluated as a score 0
or 1+ on IHC, we set a final HER2 negative status, and for cases evaluated as HER2 score
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3+ by IHC, we set a final HER2 positive status. In total, 15% of cases were HER2 positive.
When we compared the final HER2 status for each case as determined by the AI-assisted
workflow versus their respective ground truths, we observed almost perfect agreement.
The sensitivity and specificity for the IHC algorithm were 93.8% and 96.1% and for the ISH
algorithm, 100% and 94.7%.

4. Discussion

This feasibility study demonstrates almost perfect agreement between a digitalized
AI-assisted workflow and routine light microscopy for the determination of HER2 IHC
and ISH status in our cohort of primary and metastatic breast carcinomas and accord-
ing to the 2018 ASCO/CAP guidelines. While previous studies have reported on the
performance of digitalizing individual steps in the workup of HER2 status, we have demon-
strated, for the first time, the successful implementation of a complete digital AI-assisted
workflow [17,21,22]. The overall HER2 positivity rate in our study cohort was 15%, which
is consistent with the rates reported in the literature [23,24].

When considering the performance of the IHC algorithm independently, we observed
a moderate concordance rate, which was similar to other algorithms described in the
literature. Several studies assessing the performance of IHC-based AI algorithms have
merged the IHC scores 0 and 1+ into a single ‘negative’ category, which markedly improved
their overall concordance rates [17,21,25]. We also observed significant improvement when
merging these groups, resulting in an almost perfect concordance (Cohen’s κ 0.59 vs.
0.85, p < 0.001 χ2 test). However, we acknowledge that the utility of this methodology
is limited following the results of the DESTINY-Breast 04 trial concerning HER2 low
tumors [10]. In their recent publication, Modi et al. concluded that trastuzumab deruxtecan
prolongs progression-free and overall survival in patients with HER2 low tumors and
called for a review of current HER2 diagnostic practices, given that “more than half of
patients historically categorized as having HER2-negative breast cancer” could now exhibit
improved treatment outcomes [10].

Extending upon these findings, preliminary results from the DAISY trial (due to
be completed in 2025) are suggestive of antitumor activity by directed HER2 therapy in
patients with an IHC HER2 score of 0 [11]. However, as observed in our study and by
countless other groups, the HER2 IHC method and interpretation are plagued by low inter-
rater agreement, particularly in the 0 and 1+ range [26]. Whilst the combined IHC/ISH
method performed well for the detection of amplified and non-amplified HER2 tumors, it
had shortcomings in the classification of HER2 low tumors. Alternative laboratory methods
such as a combined protocol involving immunofluorescence and mass spectrometry may
be capable of systematic and standardized quantification of drug-targetable HER2 ampli-
fication [26]. However, further studies stratifying molar HER2 quantities with response
to therapy are required in order to understand if this approach is fit for purpose. In the
midst of the uncertainty in defining the boundaries for the group with the best benefit–risk
response profile to trastuzumab deruxtecan, it is crucial that the assessment of HER2 is as
objective and standardized as possible.

The ISH-algorithm demonstrated substantial concordance with our ground truth.
Whilst we noted a tendency for AI to provide higher HER2 counts and HER2/CEP17 ratios
than paired manual slides, this did not have a significant impact on the overall diagnostic
performance. Various reasons contributing to the higher counts included misinterpreta-
tion of the cell borders, misinterpretation of dark cytoplasmic staining secondary to cell
shrinkage artefact as HER2 signals, and assigning higher counts to clusters. An advantage
of the ISH algorithm is the heat-map overlay on the whole-slide image, which provides a
continuous graded coloring system to delineate areas of normal and high HER2 signals/cell
or HER2/CEP17 ratios, and thus aids the user in selecting an appropriate ROI. Due to the
small size of HER2 and CEP17 signals, such insight is not possible through low-powered
manual microscopy. The heatmap supports the user to distinguish tumor and non-tumor
tissue, and may also facilitate the identification of clustered-type intratumoral heterogeneity
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in HER2 status [2,27]. This is important because emerging evidence suggests that different
therapeutic approaches should be considered for HER2 heterogeneous breast carcinomas as
they are less responsive to anti-HER2 therapies, display lower rates of pathologic complete
response, and are associated with worse survival outcomes [27].

Before embarking on digitalization and incorporating artificial intelligence in diagnos-
tic pathology, it is important to appreciate the potential impacts on pre-analytical, analytical
and post-analytical procedures. For example, the IHC-algorithm used in this study was
highly dependent on tight adherence to the vendor’s immunostaining protocol and could
not be adapted to perform with the existing local laboratory practices. Therefore, for the
purpose of this study, we deviated from our routine laboratory HER2 IHC staining protocol
in order to match the vendor recommendation for their digital scanner and paired AI
algorithm. In our experience, vendors are reluctant to adapt AI software for end-users on
the basis that this may invalidate their CE-certification status. The changes in IHC staining
protocols made by laboratories should undergo internal and external validation, and be
suitable for both AI and manual interpretation.

Moreover, whilst we chose to analyze the performance of the AI-assisted DIA indepen-
dently, without manual correction, its intended use is as a real-time diagnostic adjunct and
it would therefore necessitate that all users have access and training. Interestingly, we noted
a reduction in the accuracy of our Pathologists’ IHC scoring with the consensus scores after
they had viewed the AI results (Cohen’s κ Pathologists 0.85–0.88 vs. AI-assisted Patholo-
gists 0.61–0.71, t = 4.921, p < 0.05). This observation differs to other studies, which describe
an AI-enhancing effect on diagnostic accuracy [28–30]. We also noted a reduction in the
inter-observer agreement for AI-assisted Pathologists compared to Pathologists, however,
this observation was not statistically significant in our cohort. It would be important to
review and quantify the impact of AI on the existing reporting patterns as well as consider
the time and cost-effectiveness prior to implementing new workflows [29].

A limitation of our work was the small sample size of our study cohort—whilst
this was sufficient to demonstrate feasibility, it limited the statistical significance of our
comparisons. According to recommendations from the CAP, FDA-approved and FDA-
cleared HER2 IHC quantitative image analysis systems should be validated with 20 known
positive and 20 known negative cases, and should show an agreement threshold of 90%
for HER2 positive and 95% for HER2 negative samples [25]. Future studies combining
the results from multiple institutions, and including resection specimens in addition to
CNBs, would be beneficial to understand the impact of inter-laboratory and pre-analytical
specimen processing and sampling on the performance of IHC and ISH methods [31].

In conclusion, this study demonstrates the feasibility of a combined IHC and ISH
digitalized AI-assisted workflow for HER2 status determination in primary and metastatic
breast cancer including the newly recognized group of HER2 low tumors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13010168/s1, Table S1: IHC scores assigned by AI of
57 primary IBCs using laboratory staining compared to amended (vendor recommended) staining
protocols.
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Abstract: Hormone receptor status is determined primarily to identify breast cancer patients who
may benefit from hormonal therapy. The current clinical practice for the testing using either Allred
score or H-score is still based on laborious manual counting and estimation of the amount and
intensity of positively stained cancer cells in immunohistochemistry (IHC)-stained slides. This work
integrates cell detection and classification workflow for breast carcinoma estrogen receptor (ER)-
IHC-stained images and presents an automated evaluation system. The system first detects all cells
within the specific regions and classifies them into negatively, weakly, moderately, and strongly
stained, followed by Allred scoring for ER status evaluation. The generated Allred score relies
heavily on accurate cell detection and classification and is compared against pathologists’ manual
estimation. Experiments on 40 whole-slide images show 82.5% agreement on hormonal treatment
recommendation, which we believe could be further improved with an advanced learning model
and enhancement to address the cases with 0% ER status. This promising system can automate the
exhaustive exercise to provide fast and reliable assistance to pathologists and medical personnel. The
system has the potential to improve the overall standards of prognostic reporting for cancer patients,
benefiting pathologists, patients, and also the public at large.

Keywords: Allred scoring; estrogen receptor; hormone receptor; tumor biomarker; breast carcinoma;
digital pathology

1. Introduction

Breast cancer is the most common cancer occurring in women and is the second
leading cause of cancer-related deaths in women. The majority of breast tumors and breast
cancers are first detected using either mammography, magnetic resonance imaging (MRI),
or ultrasound scans. However, for better diagnosis and prognosis of breast cancer, tissue
samples must be obtained, either through biopsy or surgery, for analysis by pathologists.
In the case of breast cancer treatment, a crucial step is to test the tumor tissue to determine
if it has estrogen receptors (ER), progesterone receptors (PR), and/or human epidermal
growth factor receptor 2 (HER2). These markers provide key information about how the
cancer may behave. Along with tumor grade and cancer stage, tumor marker status helps
determine the best treatment options for breast cancer patients. ER, together with PR, has
been recognized as a “predictive” marker for which women with breast cancer would
respond to hormonal treatment.

Predictive immunohistochemistry (IHC) is commonly used in breast histopathology
practice to determine the expression of hormone receptor proteins. The use of IHC to assess
the ER and PR status of breast cancers in formalin-fixed, paraffin-embedded (FFPE) tissue
sections of cancer samples is now a routine part of pathology practice worldwide and is
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recommended to be performed in all primary invasive breast carcinomas and on recurrent
or metastatic tumors. The hormone receptor status of a breast cancer helps the doctor
to decide whether the patient should be offered hormonal therapy or other treatments.
Hormonal therapy includes medications that either lower the amount of estrogen in the
body or block estrogen from supporting the growth and function of breast cells. If the
breast cancer cells have hormone receptors, then these medications could help to slow or
even stop their growth. Patients with ER-positive cancers are highly receptive to endocrine
therapy and have a higher chance of survival [1]. If the cancer is hormone-receptor-negative
(no hormone receptors are present), then hormonal therapy is unlikely to work. In this case,
other kinds of treatment should be sought.

Valid determination of ER and PR status is thus a prerequisite for establishing adequate
treatment strategies for breast cancer patients, regardless of disease stage. The determi-
nation of these protein expressions, however, is currently carried out manually, which
is not only tedious and time-consuming for the pathologists, but is also prone to errors
and inaccuracies. In this paper, we proposed a system for automated estrogen receptor
status evaluation in breast carcinoma patients which consists of four stages: cell detection,
positive/negative classification, weak/moderate/strong classification, and Allred scoring.
As both ER and PR share similar staining characteristics, the system can be further extended
to determine PR (and possibly HER2) expression in the future with minor modifications to
make for a complete hormone receptor system.

Figure 1 shows the block diagram of our proposed system. In our previous work,
indicated by blue boxes and arrows, we have reported our initial work on cell detection [2],
positively and negatively stained (PN) cell classification [3] and weakly, moderately, or
strongly stained (WMS) cell classification [4] on their own. In this work, we integrated
the three stages into a single system, experimented with each stage with the same set of
images, and evaluated their performances objectively and transitively in order to observe
the overall performance of the integrated system. Positively and negatively stained cells
are quite distinguishable based on their color properties, i.e., negative cells are stained
with a blue/purple hue, while positive cells are stained with a brown hue. Color analysis
based on the weighted hue and value of the cells (from the HSV color model), which we
previously used in p53 expression analysis of brain glioblastoma, can be used.

Cell detection and WMS classification on the other hand, are more challenging. For cell
detection, the challenges lie in detecting the boundaries, in which some cells which are too
close to each other appear as if they belong to single large cells, while some others have
rather weak and unclear boundaries. For WMS classification, the differences between the
weakly, moderately, and strongly stained cells are not very obvious. The moderately stained
cells especially are very tricky as they can easily be classified into either the weak or strong
classes. The convolutional neural network (CNN) excels in these types of challenges by
learning the features end to end while avoiding the manual feature selection in traditional
image classification. Because of this we decided to use a deep convolutional neural network
for both the cell detection and WMS classification stages. Cell detection was carried out
using CNN with regression layer in order to obtain accurate cell boundaries (hence correct
cell detection), while WMS classification utilizes the CNN with the regular classification
layer to classify the cells into the three staining strengths.

The detected and classified cells are then fed to the final stage of the system, indicated
by the red box and arrows, for estrogen receptor status evaluation. By computing the
distribution of the strong, moderate, weak, as well as negatively stained cells within the
slides or regions of interest, the estrogen receptor expression for the slide is determined
by computing the Allred score [5], and compared to the pathologists’ manual scoring.
Alternatively, the H-score [6] can also be used for assessing estrogen receptor status, but in
this project we focus on Allred scoring as we have the ground truth available for evaluation.
To the best of our knowledge, this is the first work of its kind in developing such a system
with the scoring of whole-slide images, which would be a valuable tool for histopatholo-
gists in improving the reliability of tumor marker reporting as well as reducing manual
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intervention workload. There are some similar works found in the literature [7–9] working
on Allred scoring of ER-IHC patches. Since we aim to replicate the pathologists’ process
flow in deciding the score, which is on whole-slide images, the existing work from the
literature is not a fair comparison either in terms of accuracy or computational time.

Figure 1. Flowchart for the overview of the system.

This paper is organized as follows. Section 2 describes all the stages involved in the
proposed automated Allred scoring system in detail. Section 3 explains the experimental
set-up, while Section 4 discusses the experimental observations. Finally, the conclusion and
future works are presented in Section 5.

2. Methods

In this section, the three prior stages to the Allred scoring, which are cell detection,
PN classification, and WMS classification will be described before discussing the Allred
scoring methodology for hormone receptor evaluation.

2.1. Cell Detection

Our cell detection stage is based on the work by [10], where a score map is predicted
based on the Euclidean distance transform for cell centers in a given input image. The pre-
diction of the score map is performed using a regression method trained from cell images
and ground truth cell locations, similar to the work by [11]. The idea is to train the network
to fine-tune the boundary of individual cells regardless of their class, shape, color, and overlap-
ping parts, if any. In constructing the model, we experimented with a network up to 20 layers
by stacking the convolution, rectified linear units (ReLU), and max pooling (maxpool) layers,
followed by the regression layer at the end. Due to the limitation of our workstation, we kept
the design minimal and the footprint smaller. Figure 2 shows the proposed CNN model for
our cell detection stage, together with an example of the score map.
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During training, we asked our collaborating pathologists to mark each cell inside
small regions of around 500 × 500 pixels as the ground truth. Each cell mark is expanded
as a circle with a radius of 32 pixels, and 64 × 64 patches were extracted for use to train
the network. During detection, a score map is generated for the whole image by the CNN-
based regression model, and initial segmentation is obtained by thresholding the score map
(a score of 0.2 and higher constitutes cells). To address the problem of closely connected
cells, watershed-based boundary processing is carried out. Another thresholding is then
applied to remove the non-cells region (an area greater than 240) from the final detection.
As we are more interested in cell detection rather than cell segmentation, the choice of
thresholds does not affect the final outcome much. The centroids of the detected cells are
passed to the next stage for classification.

Figure 2. CNN model for cell detection, with regression layer at the end of the network (top), and the
generated score map at 20× magnification (bottom).

2.2. PN Classification

The classification of cells into positively and negatively stained cells is based on our
earlier work in classifying positive and negative cells in p53 expressions [3,12] of brain
glioblastoma. Similar to p53 images, the positively and negatively stained cells in ER-
IHC stained images are quite distinguishable based on their color. Negative cells are
characterized by their blueish hue and low intensity. Positive cells, on the other hand, are
characterized by their brownish hue and rather high intensity. The classification of the cells
into positive or negative stains can thus be based on the intensity and color of the cells.

For each of the detected cells found in the previous stage, 32 × 32 pixel blocks are
extracted around their centroid, and converted into the HSV (hue/saturation/value) color
model. While most cells fit nicely into this 32 × 32 pixel block, there are some cases where
the cells are too big or too small. For the former, we should still be able to obtain the
color and intensity information from the part of the cells that fit into the block. For the
latter, however, it is possible that some other cells may also be captured by the block, thus
compromising the color and intensity information of that particular cell. To address this,
we used weighted hue and weighted value instead to compute the color and intensity,
respectively. The weights used are inversely proportional to the pixels’ distance to the
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centroid, with those closer to the center of the block receiving higher weight, and those
further from the center receiving less weight.

The weighted hue and value are calculated for each block and these values are used for
classifying the cells. Negative ER-stained cells tend to be blue (higher hue) and less intense
(higher value), while positive ER-stained cells tend to be brown (lower hue) with varying
intensities. Based on these properties, we propose a two-step classification rule: (1) if the
weighted value (wV) for a block is less than a particular threshold (darker), the block will
be classified as containing a positive cell, regardless of its weighted hue (wH); (2) otherwise,
the classification depends on weighted hue, with wH less than a particular threshold
meaning that the block contains positive cells, and wH more than the threshold meaning it
contains negative cells. From experiment, wH > 40 and wV < 50 were found to be suitable
thresholds for our ER-IHC images. Figure 3 summarizes the proposed positive/negative
cell classification process in a flowchart.

Figure 3. PN classification process.

2.3. WMS Classification

In order to get the best result in learning the features of ER-positive cells, a different
CNN model is proposed, which is based on earlier CNNs such as LeNet [13], ImageNet [14],
GoogLeNet [15], and a few others [10,11,16,17], and their recommendations. These include
the effect of the convolutional network depth on its accuracy in large-scale image recog-
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nition settings; usage of back-to-back convolution layers with padding to maintain more
pixel information in shrinking spatial information but increase model layer depth; usage
of ReLu as the activation layer to reduce training time, and the addition of dropout layer
to reduce overfitting in imbalance dataset. Nevertheless, similar to the model used in cell
detection, the key is to be able to run an optimized CNN model with a small footprint
using our limited hardware capability. Our network for this 3-class classification problem
is made up of nine convolutional layers including the fully connected layer. Figure 4 shows
the proposed CNN model for the WMS classification stage. The input to the network is
32 × 32 patches of positive cells from the previous classification stage, while the output is
one of the strong, moderate, or weak classes.

Figure 4. Our proposed 9-layer convolutional layer including the fully connected layer.

The same regions used for the cell detection experiment were used in generating
training and testing samples and their ground truth. Data augmentation such as horizontal
flipping, random cropping, and normalization is done to increase our training samples.
The network is trained for 600 epochs using Matconvnet [18]. The weight of each layer is
initialized by multiplying a small random number with the zero mean, sampled from Gaus-
sian’s standard deviation. Stochastic gradient descent is used to reduce the objective loss
with a learning rate set in two vectors of logarithmic space: the first 10 epochs are set to 10-2
and the remaining epochs are set to 10-4 increments to improve the network convergence.

2.4. Allred Scoring

In this work, we used the Allred score to express ER, where the evaluation is based
on the proportion of ER-positive cancer cells and the intensity of the reaction product in
most of the positive cells [19]. Table 1 shows how the respective proportion and intensity
scores are derived. Based on the percentage of ER-positive cells, the cancer is assigned
one of six possible proportion scores (0 to 5). Based on the intensity of most of the ER-
positive cancer cells, the cancer is also assigned one of four possible intensity scores (score
of 0 to 3 for negative, weak, moderate, and strong, respectively). The 2 scores are then
added together for a final score with 8 possible values (the Allred score). Allred scores
of 0 and 2 are considered negative for ER (i.e., not actionable), while scores of 3 to 8 are
considered positive (i.e., recommended for hormonal therapy). Note that a score of 1 is not
a possible outcome.

Given an ER-stained whole-slide image, all the cells in the image are first detected and
classified into one of 4 classes: negatively, weakly, moderately, and strongly stained cells
(N, W, M, and S, respectively), as described in the previous three stages. The percentage
of positively stained cells over all cells, as well as the intensity score derived from the
majority class, is then used in computing the Allred score for hormone receptor status for
the particular slide.
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Table 1. Allred score * for estrogen and progestrone receptor evaluation.

ER Status
(Positive Cells %)

Proportion Score Intensity Intensity Score

0 0 None 0
<1 1 Weak 1

1 to 10 2 Intermediate 2
11 to 33 3 Strong 3
34 to 66 4
≥67 5

* Allred score = proportion score + intensity score.

3. Experimental Setup

Our ER-stained whole-slide images (WSI) of breast cancer are scanned using a 3DHis-
tech scanner at 20× magnification with a resolution of 0.243 micrometer/pixel, resulting in
images with a resolution of more than 80,000 by 200,000 pixels. Altogether, 40 whole-slide
ER-stained images are available for use in all our experiments (refer Table 2). All 40 whole-
slide images were uploaded to our in-house Linux lab server which has been installed
with web interface [20] as shown in Figure 5, enabling an easy online WSI viewing and
annotation for the pathologists marking the ground truth. The ground truth for the images
(cell location, class, Allred score, etc.) is provided by pathologists from the Department of
Pathology, University of Malaya Medical Center.

Figure 5. Part of the Cytomine interface, which enabled online annotation on whole-slide images and
convenient working on gigabyte data of images. The different color dots show the different classes:
green for negative, blue for positive-weak, yellow for positive-moderate and red for positive-strong
class nuclei.

For cell detection and classification, the evaluation is based on the ability of the
system to detect and classify cells. For this, comprehensive annotation by the collaborating
pathologists was required. Since it is impossible to annotate all cells in the whole-slide
images, the following approach is observed. For each of the 40 whole-slide images, a small
region (around 500 × 500 pixels) is selected for annotation by the pathologists. However,
due to time constraints, only 37 regions were eventually annotated. Thus 37 regions
will be used in the detection and classification experiments: 30 regions used for training
and 7 regions used for testing. For a particular region to be annotated, the pathologists
were asked to identify all cells, and label them into either negatively, weakly, moderately,
or strongly stained cells. Cells were annotated by marking the center of the cell, followed
by annotating the cells into one of the four classes.
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Table 2. Summary of the images used in the experiments.

Image ID GT Exp A Exp B

01099 Y Train Test
05247 Y Train Test
05255 Y Train Test
05261 Y Train Train
05267 Y Train Train
05273 Y Train Train
05279 Y Train Train
05285 Y Train Train
05293 N NA NA
05299 N NA NA
05305 Y Train Train
05311 Y Train Train
05317 N NA NA
05323 Y Train Train
05329 Y Train Train
05337 Y Train Train
05343 Y Train Train
05349 Y Train Test
05355 Y Train Test
05361 Y Train Test
05367 Y Train Test
05373 Y Train Train
05379 Y Train Train
05385 Y Train Train
05391 Y Train Train
05397 Y Train Train
05403 Y Train Train
05409 Y Train Train
05415 Y Train Train
05421 Y Train Train
05427 Y Train Train
05435 Y Train Train
05441 Y Train Train
05447 Y Test Train
05453 Y Test Train
05459 Y Test Train
05465 Y Test Train
60537 Y Test Train
55522 Y Test Train
78990 Y Test Train

Figure 6 shows a couple of examples for the 37 regions used for this experiment,
together with their annotation. A total of 3445 cells were marked by the pathologists
from 37 annotated regions. Two-fold cross-validation was used, and we refer to these
experiments as Experiments A and B, respectively, as detailed in Table 2. All the marked
cells were later extracted as 32 × 32 augmented image patches. Data augmentation such
as horizontal flipping, random cropping, and normalization is carried out to increase our
training samples. To evaluate the performance of the system in detecting and classifying
the cells, the number of true positives (TPs), false positives (FPs), true negatives (TNs), and
false positives (FPs) were recorded. The performance of the proposed classification system
is presented in terms of the precision and recall for each of the detection, classification,
and quantification.
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Figure 6. Two of the thirty-seven regions used for the cell detection and classification experiments.

For the Allred scoring experiment, the evaluation is done at the whole-slide level,
i.e., to compare the Allred score automatically computed by the system to the ones estimated
by the pathologists. No detailed cell-level annotation is required, instead only the Allred
score from the pathologists’ calculation/estimation for the 40 images is needed as the
ground truth. Note that even though for 30 of the image there is some bias (since there is a
region within the slides that were used in training), these regions are very small (around
500 × 500) compared to the whole slides (less than 0.01%), so the bias is very minimal,
if any. To evaluate the performance of the Allred scoring, cell detection and classification
are applied on each of the 40 whole-slide images (divided into non-overlapping high power
field regions within the tissue area), before Allred scoring is carried out for each image and
compared to the ones manually computed/estimated by the pathologists. Figure 7 shows
one example of the 40 whole-slide images used in this experiment.

Figure 7. Example of the whole-slide image used in the Allred scoring experiment.

4. Results and Discussion

The results are presented in two subsections. In the first subsection, the performances
of cell detection, PN classification, and WMS classification are evaluated at the cell level
objectively and transitively. In the second subsection the performance of Allred scoring is
evaluated at the slide level.

4.1. Cell Detection and Classification

As mentioned in the previous section, 30 regions were used for training and 7 images
were used for testing. Two-fold cross-validation was carried out, named Exp A and Exp
B, respectively. Table 3 shows the true positives, false positives, false negatives, recall,
and precision for cell detection results for each of the 14 test images from the two-fold
experiments. Overall there are 1425 cells from the 14 test images, 1328 of which were
correctly detected. A total of 97 cells were missed, while 62 non-cells were detected as cells,
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giving a precision of 93% and recall of 96%, which shows that the proposed system is able
to carry out its task reliably. Upon closer inspection, of the 62 false positive cells, 46 are
non-tumor cells of the supportive stroma such as stromal cells and epithelial cells, and only
16 are actually non-cells. An improved system that can differentiate between tumor cells
from stromal and epithelial cells would further improve the detection performance.

Table 4 shows the summary of the PN classification and Table 5 shows the clas-
sification of the detected cells into positive and negative cells for each of the 14 test
images. The 62 false positive cases (non-tumor cells and non-cells wrongly detected
in the previous stage) are also included in the classification experiment (last row of
Table 3). As can be seen, only 13 cells were wrongly classified among 1328 correctly
detected cells from the previous stage. The overall accuracy for all the detected cells is
95%, but if the false positive cases are removed (the error actually stemmed from the
previous stage), the accuracy improved to 99%. This is also true for the true positive
rate (correct classification of positive cells) and true negative rate (correct classification
of negative cells). Overall, the proposed color-based classification is very reliable in
classifying cells into positively and negatively stained cells.

Table 6 shows the classification of the detected positive cells into the strong, moder-
ate, and weak classes for the 14 test images. The negative and non-tumor cells wrongly
detected and classified as positive cells in the previous stages are also included in this
experiment. As can be seen, most cells are classified correctly. Of the incorrect classi-
fication, 10 are from strong cells (classified as moderate), 13 are from moderate cells
(6 classified as strong, and 7 as weak), and only 1 from weak cells (classified as moderate).
Most of the negative and non-tumor cells that were classified as positive are classified as
weak. Table 7 summarizes the overall accuracy as well as the positive prediction value
(PPV) and the true positive rate (TPR) for each class. The overall accuracy of 88% is
observed when including the false positive cells from prior stages, which improved to
90% if these cells were excluded.

Table 3. Cell detection results.

Image ID TP FP FN Recall Precision

Exp A

05447 107 4 5 0.96 0.96
05453 100 3 1 0.99 0.97
05459 43 7 4 0.91 0.86
05465 73 0 3 0.96 1.00
60537 112 4 6 0.95 0.97
55522 103 2 5 0.95 0.98
78990 99 3 3 0.97 0.97

Exp B

01099 84 13 13 0.87 0.87
05247 97 0 7 0.93 1.00
05255 80 15 9 0.90 0.84
05349 96 6 6 0.94 0.94
05355 76 0 6 0.93 1.00
05361 128 0 13 0.91 1.00
05367 130 5 16 0.89 0.96

Overall 1328 62 97 0.93 0.96

Table 4. PN classification results.

Positive Negative

Positive 238 12
Negative 1 1077

Non-Tumor 5 57
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Table 5. PN classification results for 14 test images.

Image ID
All Detected Cells Only True Tumor Cells

Acc. TPR TNR Acc. TPR TNR

Exp A

05447 0.96 NA 0.96 1.00 NA 1.00
05453 0.92 0.00 0.97 0.95 0.00 1.00
05459 0.86 0.40 0.91 1.00 1.00 1.00
05465 0.93 0.55 1.00 0.93 0.55 1.00
60537 0.97 0.00 0.97 1.00 NA 1.00
55522 0.97 NA 0.97 0.99 NA 0.99
78990 0.96 0.00 0.97 0.99 0.00 1.00

Exp B

01099 0.87 1.00 0.48 1.00 1.00 1.00
05247 1.00 1.00 1.00 1.00 1.00 1.00
05255 0.84 0.99 0.00 1.00 1.00 NA
05349 0.94 NA 0.94 1.00 NA 1.00
05355 1.00 1.00 1.00 1.00 1.00 1.00
05361 0.99 0.93 1.00 0.99 0.93 1.00
05367 0.96 NA 0.96 1.00 NA 1.00

Overall 0.95 0.93 0.95 0.99 0.95 1.00

The performance of the WMS classification agrees with our previous finding on 1200
extracted individual cells (400 weakly, 400 moderately, and 400 strongly stained cells).
As reported in our previous article [4], 1066 out of 1200 cells have been classified correctly,
which constitutes 88.8% accuracy on average and an overall AUC (area under curve) of
97.5%. The individual PPVs for the strong, moderate, and weak categories were reported as
90.5%, 88%, and 88%, respectively, which is in line with what is observed in this experiment.
The results from this experiment on 14 test regions, as well as the previous experiments
on 1200 individual cells (32 × 32 blocks) proved that the proposed WMS classification
algorithm is reliable in classifying the positive cells into the three staining strengths. Figure 8
shows several visual examples of the final detection and classification results, while Figure 9
shows the proposed algorithms integrated into our ER-IHC breast carcinoma assessment
system, for use in prognostic applications.

Table 6. WMS classification results.

Strong Moderate Weak

Strong 48 10 0
Moderate 6 86 7

Weak 0 1 80
Negative 0 0 1

Non Tumor Cells 1 0 4

Table 7. Accuracy, PPV, and TPR for WMS classification.

All Detected Positive Cells Only True Positive Cells

Accuracy 0.88 0.90
PPV-Strong 0.87 0.89

PPV-Moderate 0.89 0.89
PPV-Weak 0.87 0.92
TPR-Strong 0.83 NA

TPR-Moderate 0.87 NA
TPR-Weak 0.99 NA
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(a) Region 1. (b) Region 2.

(c) Region 3. (d) Region 4.

Figure 8. Examples of the classification results for 4 regions. Legends: blue (negative), green (weak),
yellow (moderate), and red (strong).

Figure 9. Cell detection and classification in ER-IHC breast carcinoma assessment system.

4.2. Allred Scoring

Table 8 shows the computer prediction of the Allred scoring for all 40 whole-slide
images against the pathologist’s estimation. The images were sorted according to the
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pathologist’s estimated Allred score, from lowest to highest. As mentioned in the previous
section, there are eight possible scores for each slide, with scores of 0 and 2 considered
negative, while scores of 3 to 8 are considered positive (actionable for hormonal treatment).
For more than half of the images (23), the computer predicted exactly the same score as
the pathologist’s estimation. Seven other images recorded a difference of only a single
score, while another seven images recorded a difference of two scores. Only three images
recorded a difference of more than two between the pathologist’s estimation and the
computer prediction. Figure 10 illustrates the difference better, where it can be seen that
except for a few images, the computer prediction more or less follows the general pattern
of the pathologist’s estimation.

Figure 10. Pathologist’s estimation vs. computer prediction.

Table 8. Allred scoring results.

Image
ID

Manual Automated
ER

Status
Intensity P

Score
I

Score
Allred
Score

ER
Status

S M W P
Score

I
Score

Allred
Score

05349 0% NONE 0 0 0 0.83% 0.01 0.02 0.8 * 1 1 2
05367 0% NONE 0 0 0 0.19% 0.16 * 0.01 0.02 1 3 4
05305 0% NONE 0 0 0 1.87% 0.02 0.03 1.83 * 2 1 3
55522 0% NONE 0 0 0 0.8% 0.01 0.03 0.77 * 1 1 2
60537 <1% WEAK 1 1 2 0.14% 0.02 0.01 0.12 * 1 1 2
05409 <1% WEAK 1 1 2 0.11% 0.01 0.01 0.09 * 1 1 2
05317 <1% WEAK 1 1 2 1.29% 0.02 0.04 1.23 * 2 1 3
05343 <1% WEAK 1 1 2 0.63% 0.02 0.01 0.6 * 1 1 2
78990 <1% WEAK 1 1 2 0.33% 0.03 0.05 0.25 * 1 1 2
05337 <1% WEAK 1 1 2 0.80% 0.03 0.04 0.74 * 1 1 2
05403 <1% WEAK 1 1 2 1.09% 0.03 0.05 1.01 * 2 1 3
05267 <1% WEAK 1 1 2 0.15% 0.02 0 0.12 * 1 1 2
05385 <1% WEAK 1 1 2 0.5% 0.07 0.12 0.31 * 1 1 2
05329 <1% WEAK 1 1 2 0.35% 0.01 0.03 0.32 * 1 1 2
05447 <1% WEAK 1 1 2 0.56% 0.02 0.01 0.53 * 1 1 2
05459 <1% WEAK 1 1 2 0.56% 0.03 0.1 2.84 * 1 1 2
05441 <1% WEAK 1 1 2 47.54% 1.69 2.76 43.09 * 4 1 5
05397 1–10% WEAK 2 1 3 2.54% 0.02 0.08 2.44 * 2 1 3
05391 1–10% WEAK 2 1 3 3.55% 0.01 0.06 3.47 * 2 1 3
05355 1–10% WEAK 2 1 3 1.99% 0.02 0.04 1.93 * 2 1 3
05421 1–10% WEAK 2 1 3 4.42% 0.05 0.19 4.18 * 2 1 3
05453 1–10% WEAK 2 1 3 4.61% 0.05 0.07 4.49 * 2 1 3
05279 1–10% WEAK 2 1 3 3.38% 0.12 0.19 3.07 * 2 1 3
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Table 8. Cont.

Image
ID

Manual Automated
ER

Status
Intensity P

Score
I

Score
Allred
Score

ER
Status

S M W P
Score

I
Score

Allred
Score

05379 1–10% WEAK 2 1 3 0.76% 0.02 0.03 0.7 * 1 1 2
05373 1–10% WEAK 2 1 3 1.31% 0.01 0.02 1.28 * 2 1 3
05361 1–10% WEAK 2 1 3 2.91% 0.04 0.06 2.81 * 2 1 3
05415 1–10% WEAK 2 1 3 3.67% 0.03 0.09 3.55 * 2 1 3
05285 1–10% WEAK 2 1 3 0.22% 0.03 0.05 0.14 * 1 1 2
05427 1–10% WEAK 2 1 3 7.89% 0.44 0.25 7.2 * 2 1 3
05465 1–10% WEAK 2 1 3 8.41% 0.01 0.05 8.35 * 2 1 3
05273 >95% STRONG 5 3 8 46.39% 9.59 19.65 * 17.15 4 2 6
05299 >80% MODERATE 5 2 7 47.73% 4.97 26.56 * 16.19 4 2 6
05435 >95% MODERATE 5 2 7 77.44% 12.46 36.19 * 28.8 5 2 7
05247 >90% MODERATE 5 2 7 49.84% 12.36 17.87 * 19.6 4 1 5
01099 >95% MODERATE 5 2 7 62.63% 7.55 21.58 33.5 * 4 1 5
05255 >95% STRONG 5 3 8 73.15% 18.02 40.22 * 14.91 5 2 7
05261 >95% STRONG 5 3 8 49.47% 14.65 23.91 * 10.91 4 2 6
05311 >95% MODERATE 5 2 7 73.5% 22.27 40.96 * 10.26 5 2 7
05293 >95% MODERATE 5 2 7 43.75% 16.66 19.54 7.54 4 2 6
05323 >90% STRONG 5 3 8 48.39% 11.65 22.11 14.63 4 2 6

* Highest positive class proportion.

It is interesting to note that for the four images considered to be 0% ER status by the
pathologists (i.e., 100% of the cells were stained negatively), none of them were correctly
predicted by the computer. The reason is, while the computer detection more or less
agrees that the cells are almost entirely negative, it still detected a very small percentage of
brownish objects, which could be either actual positive cells or other artifacts with similar
characteristics to the positive cells such as noise. These images will thus automatically have
a score of at least 1 for the proportional score (a score of 1 for those between 0% and 1%,
and a score of 2 for those between 1% and 2%), and a score of at least 1 for the intensity
score (since the intensity score is still given regardless of how small the positive proportion
is). The final Allred scores for these four images are 2, 2, 3, and 4, respectively. In future
work, we will work with our collaborating pathologists to suggest possible rules for a more
accurate prediction for this kind of images.

It is possible that the pathologist misses some positive cells due to the sheer size of
the images, so the rule may be very useful. The only other image with a score difference of
more than 2 is image 05441, where the pathologists estimated an ER status of less than 1%,
while the computer predicted it to be close to 50%. Upon detailed inspection, it was found
that this particular image was a rather brownish in general compared to other images with
similar status, which could be caused by an error during the staining process. Overall,
the proposed approach managed to predict the scores similar to the pathologists, except for
a few cases explained earlier.

In terms of hormonal treatment (not actionable vs. recommended for hormonal
therapy), 33 out of 40 computer-predicted treatments agree with the pathologist’s recom-
mendation, giving an accuracy of 82.5%. Note that the pathologist’s recommendation
is based on manual computation and/or estimation from sampled regions, while the
computer prediction is based on the counting throughout the whole slides. It is possible
that there may be some bias in the pathologist’s sampling, although this will be very
hard to prove due to the large size of the images. The computer prediction, on the other
hand, is free from this sampling bias, as all regions are considered. Overall this is a very
promising result. Out of the seven disagreements, four are caused by the single differ-
ence between scores 2 and 3, which can be addressed with a more advanced learning
model. The other three were from the 0% ER status and staining error case, as discussed
previously. It is also interesting to note that five out of the seven disagreements are
for the negative treatment cases, meaning the system has more difficulties predicting
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negative treatment cases. Further improvement to the deep learning model can help to
address this problem.

The results demonstrate that the proposed system can be very useful in assisting
pathologists in their predictive tumor marker reporting of breast carcinoma. It helps to
reduce the bias in sampling, reduce inter- and intra-reader variability, provide more consis-
tent reporting, and can reduce pathologists’ workload significantly. Further improvement
to the system will only enhance its performance.

5. Conclusions

We have proposed a cell detection and classification system based on a convolu-
tional neural network model for use with the Allred scoring system for breast carcinoma
hormone receptor status testing. The system classifies each cell in the ER-stained whole-
slide images into negatively, weakly, moderately, and strongly stained cells, before Allred
scoring is carried out to recommend hormonal treatment options. To the best of our
knowledge, this is the first work of its kind in developing such a system, which would
be a valuable tool for histopathologists in improving the reliability of predictive tumor
marker reporting as well as reducing manual intervention workload. The cell detection
and classification were applied on 40 whole-slide images before Allred scoring was
carried out to recommend hormonal treatment options. Experimental result shows very
promising observations for both the detection and classification processes, as well as the
Allred scoring computation. The automated Allred scoring matches well with patholo-
gists scoring, for both the actual Allred score and hormonal treatment cases. Future work
will focus on further improving the accuracy of the system, extending the system on PR
and possibly HER2 expression, as well as reducing the computational load in running
the system on very large whole-slide breast carcinoma images. The improvement to the
accuracy can be either by increasing the training samples, improving the network model,
or by proposing some rules for the 0% ER status images as this proved to be the main
source of error during performance evaluation.
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Abbreviations

The following abbreviations are used in this manuscript:

ER Estrogen receptor
PR Progesterone receptor
HER2 Human epidermal growth factor receptor 2
IHC Immunohistochemistry
PN Positive and negative
WMS Weak, moderate, strong
CNN Convolutional neural network
WSI Whole-slide image
TP True positive
FP False positive
TN True negative
FN False negative
PPV Positive prediction value
TPR True positive rate
AUC Area under the curve
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Abstract: The histopathological findings of the glomeruli from whole slide images (WSIs) of a renal
biopsy play an important role in diagnosing and grading kidney disease. This study aimed to develop
an automated computational pipeline to detect glomeruli and to segment the histopathological regions
inside of the glomerulus in a WSI. In order to assess the significance of this pipeline, we conducted
a multivariate regression analysis to determine whether the quantified regions were associated
with the prognosis of kidney function in 46 cases of immunoglobulin A nephropathy (IgAN). The
developed pipelines showed a mean intersection over union (IoU) of 0.670 and 0.693 for five classes
(i.e., background, Bowman’s space, glomerular tuft, crescentic, and sclerotic regions) against the
WSI of its facility, and 0.678 and 0.609 against the WSI of the external facility. The multivariate
analysis revealed that the predicted sclerotic regions, even those that were predicted by the external
model, had a significant negative impact on the slope of the estimated glomerular filtration rate after
biopsy. This is the first study to demonstrate that the quantified sclerotic regions that are predicted
by an automated computational pipeline for the segmentation of the histopathological glomerular
components on WSIs impact the prognosis of kidney function in patients with IgAN.

Keywords: computer vision; deep learning; digital pathology; whole slide imaging (WSI); object
detection; segmentation; kidney disease; IgA nephropathy; glomerular sclerosis; renal prognosis

1. Introduction

The number of patients who are on dialysis due to end-stage renal failure is increasing
worldwide, which has become a major health economic problem. According to a recent
report [1], the number of patients undergoing chronic dialysis worldwide exceeded two
million in 2010, and this number may double by 2030. The early detection and management
of chronic kidney disease (CKD) is important in order to prevent its progression to end-
stage renal failure. Immunoglobulin A nephropathy (IgAN) is the leading cause of CKD
worldwide. It typically progresses to end-stage renal failure in 15–20% of patients after
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10 years, and approximately 40% of patients after around 20 years [2,3]. Using evidence-
based clinical practice guidelines in Japan [4], the clinical predictors for the progression
of IgAN at the time of the initial renal biopsy include the following: (1) the presence of
hypertension; (2) the amount of proteinuria with a usual cut-off of >1 g/day; (3) the degree
of renal dysfunction; and (4) the histopathological grade, based on renal pathology. Of
these predictors, histopathological findings play a key role but require observation by
experts under a microscope. Patients with IgAN have varied histopathological lesions,
ranging from mild mesangial proliferation, endocapillary hypercellularity, and crescentic
glomerulonephritis to global and segmental sclerosis. For example, sclerosis represents the
final appearance of glomerular injury that is caused by various diseases. When sclerosis
occurs globally, determining the cause of the injury can be difficult.

Two histopathological grading systems are referred to in the clinical guidelines. The
first system is the Oxford classification [5,6], which is based on the score of mesangial
hypercellularity (M: M0, ≤0.5; M1, >0.5), endocapillary hypercellularity (E: E0, absent;
E1, present), segmental sclerosis (S: S0, absent; S1, present), tubular atrophy or interstitial
fibrosis (T: T0, 0–25%; T1, 26–50%; T2, >50%), and cellular or fibrocellular crescents (C: C0,
absent; C1, 0–25%; C2, >25%). The second system is the Japanese histological grade
classification (H-Grade) [7,8], which is based on the presence of acute lesions (i.e., cellular
crescent, tuft necrosis, and fibrocellular crescent) and chronic lesions (i.e., global sclerosis,
segmental sclerosis, and fibrous crescent). Detecting these complex findings among all
of the glomeruli in whole slide images (WSIs) is laborious and time consuming, even for
highly trained pathologists or nephrologists. Furthermore, the assessment is not always
consistent [9,10]. Suppose the findings of all of the glomeruli on a WSI could be quantified
with a computer, it may lead to a more thorough investigation of their impact on the
prognosis of immunoglobulin A nephropathy (IgAN) and accelerate such research.

In the past decade, the number of studies aiming to develop deep learning applications
for nephropathology has increased rapidly. Computational image recognition focusing
on the glomerulus is generally classified into the following three types: the detection of
glomeruli [11–14], the classification of the glomeruli [10,15], and the segmentation of the
glomeruli [16–24]. The glomeruli that are detected in the WSI are localized by drawing
bounding boxes. This approach would be a good application of automation because de-
tecting glomeruli is simple but tedious for humans. Additionally, the development of
such tools is realistic, as previously reported [13]. The classification of glomeruli, such
as the presence or the absence of certain pathological findings, is more challenging be-
cause it requires the interpretation of quantitative histopathological lesions into qualitative
expressions, for which expert assessment is not always consistent [9,10]. The segmenta-
tion of glomeruli localizes and quantifies every glomerulus by identifying the regions of
each glomerulus in the pixels. Several studies have attempted to distinguish between the
entire glomerulus and the background [16,17] or to distinguish between the normal and
the sclerotic glomeruli [20,21,24]. Other studies have focused on the tubules, the blood
vessels, and the interstitium, in addition to the glomerulus [19,23], or on the components
inside of the glomerulus [18,22]. Segmenting the glomerulus and its components would
be more helpful for a better understanding of kidney disease because it will be applied in
the classification of pathological findings and to develop a prognostic model by utilizing
quantified histopathological regions. Table 1 shows the previous studies for glomerular
segmentation from WSI.
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Table 1. Previous studies for glomerular segmentation from WSI.

Author Year Object Method
Subsequent

Analysis
Extrapolation

Evaluation

Kato et al. [16] 2015 Glomerulus S-HOG + SVM - -
Gallego et al. [17] 2018 Glomerulus CNN - -

Ginley et al. [18] 2019

Glomerulus and Internal
components ((1) a nuclear

component; (2) a PAS-positive
component consisting of
mesangium, glomerular

basement membranes, and
Bowman’s capsule; (3) a

luminal component consisting
of Bowman’s space and

capillary lumina)

Deep Lab v2

Tervaert
classification and

classification
scheme defined

by authors

-

Hermsen et al. [19] 2019

Renal structures (glomerulus,
sclerotic glomerulus, empty

Bowman’s capsules, proximal
tubule, distal tubule, atrophic

tubule, undefined tubule, artery,
interstitium, and capsule)

U-Net Banff
classification

Radboud
University and

Mayo Clinic

Bueno et al. [20] 2020 Glomerulus (normal, sclerosed) SegNet and
U-Net - -

Antini et al. [21] 2020 Glomerulus (normal, sclerosed) SegNet and
Deeplab v3+ - -

Zeng et al. [22] 2020

Glomerulus (global sclerosis,
segmental sclerosis, crescent, or

none of the above) and
intraglomerular structures

(mesangial cells, endothelial
cells, and podocytes)

U-Net,
DenseNet,

LSTM-GCNet,
and 2D V-Net

Mesangial
hypercellularity

score
-

Bouteldja et al. [23] 2021

Renal structures (glomerular
tuft, glomerulus including

Bowman’s capsule, tubules,
arteries, arterial lumina, and

veins)

U-Net - -

Jiang et al. [24] 2021
Glomerulus (normal, global

sclerosis, and glomerular with
other lesions)

Mask R-CNN - -

As the configuration of segmentation tasks varies from researcher to researcher, the
high performance of a machine learning model does not necessarily indicate its useful-
ness for subsequent analyses. Previous studies [18,19,22] have assessed the usefulness of
segmentation results in subsequent analyses, whereas other studies have only assessed
the performance of machine learning models. In addition, these previous studies have
only [19] evaluated the performance of machine learning models against external WSI,
whereas the other studies have evaluated a single facility. Due to their high performance,
deep neural networks (DNNs) tend to overfit to minute differences in the images that are
used for training. Furthermore, the pathological specimens differ between facilities due to
the differences in the preparation protocols. These factors have a non-negligible impact
on the generalizability of studies dealing with WSI in DNNs. Therefore, in assessing the
performance of the developed DNNs, an internal evaluation using only the WSIs of a single
facility is not sufficient; external evaluations of the WSIs of different facilities are also impor-
tant. Based on these two points, we propose an automated computational pipeline to detect
the glomeruli from periodic acid-Schiff (PAS)-stained WSI and to segment the Bowman’s
space, the glomerular tuft, and the histopathological components of crescentic and sclerotic
regions. The pipelines were developed using the WSIs of two facilities independently, and
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the performances across the facilities were evaluated. In order to assess the significance of
the quantified histopathological regions, we conducted a multivariate regression analysis
to determine whether the proportion of the sclerotic regions was significantly associated
with the prognosis of kidney function in patients with IgAN.

2. Materials and Methods

2.1. Data Collection

The Institutional Review Board approved all experiments and data collection at the
University of Tokyo Hospital (Tokyo, Japan; approval number: 11455) and Tazuke Kofukai
Medical Research Institute, Kitano Hospital (Osaka, Japan; approval number: P17-05-004).
All of the experiments were conducted following the Ethical Guidelines for Medical and
Biological Research Involving Human Subjects in Japan. Informed consent was obtained
from all participants through opt-out on the website. (See Figure A1 in Appendix A for an
overview of the data collection and selection).

2.1.1. Collection of the WSIs from Two Facilities

The University of Tokyo Hospital (facility T) collected 353 PAS-stained WSIs of renal
biopsy specimens from 2010 to 2016. From Kitano Hospital (facility K), 324 PAS-stained
WSIs were collected from 2005 to 2017. In both facilities, various kidney diseases were
included in the WSIs, and the slide digitization was conducted using a NanoZoomer C9600-
12 slide scanner (Hamamatsu Photonics, Hamamatsu City, Shizuoka, Japan) with a 40×
objective at a resolution of 0.23 μm/pixel.

2.1.2. Eligible IgAN Cases for the Regression Analysis

For the regression analysis for the prognosis of kidney function in IgAN cases, the
data of 71 patients with IgAN, who had undergone a renal biopsy between 2010 and 2016
at facility T, were collected from their electronic health records (EHRs), which included
information on their age, sex, diagnosis, blood, and urine test findings, and clinical records.
Among these patients, those who met the following criteria were excluded: (1) <18 years at
the time of the biopsy, (2) end-stage renal failure (e.g., maintenance hemodialysis, kidney
transplantation, or estimated glomerular filtration rate (eGFR) <15 mL/min/1.73 m2) at the
time of biopsy, and (3) <1 year of eGFR follow-up after the biopsy. The data of 46 patients
with IgAN were ultimately eligible for the regression analysis. Table 2 shows the statistical
summary of the patients with IgAN.

Table 2. Statistical summary of the patients with IgAN.

Facility Case
Age (Median

[IQR])
Sex

(Female:Male)
Hypertension

(Absent:Present)
eGFR (Median

[IQR])
UPCR (Median

[IQR])

T 46 42, [32, 61] 21:25 18:28 65.15 [45.80, 83.88] 1.18 [0.64, 2.39]

IgAN, immunoglobulin A nephropathy; IQR, interquartile range; eGFR, estimated glomerular filtration ratio
(mL/min/1.73 m2); UPCR, urine protein–creatinine ratio (g/g).

2.2. Ground Truth Annotations

An assistant manually annotated the glomerular regions by bounding boxes in the 353
WSIs from facility T and the 324 WSIs from facility K using a computer-based commercial
tool (RectLabel; available at https://rectlabel.com accessed on 19 November 2022) under
the supervision of a nephrologist and a physician. The annotation for glomerular detection
by bounding boxes requires the location of four vertex and class labels as supervised data.
The average number of glomeruli in the WSI from facility T and facility K was 34 per WSI
and 26 per WSI, respectively.

The annotation for segmentation requires assigning each pixel in an image to a specific
class of object. We assigned each pixel of the cropped glomerular images to the following
five classes: Bowman’s space, glomerular tuft, crescentic region, sclerotic region, and
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background. The inner region surrounded by Bowman’s capsule was annotated as a
Bowman’s space, and the area containing the glomerulocapillaries and intraglomerular
mesangium region was annotated as a glomerular tuft. The crescentic and sclerotic regions
were annotated using our previously developed criteria [10]. According to these criteria,
there are three types of crescents, namely the “fibrous crescent,” “fibrocellular crescent,”
and “cellular crescent.” However, we did not distinguish between these crescentic regions
in this study. “Sclerosis” comprises “capillary collapse,” “segmental sclerosis,” and “global
sclerosis”; similarly, we did not distinguish between these sclerotic regions.

A nephrologist and a pathologist depicted paper-based annotation drafts in the 46
WSIs from facility T and the 43 WSIs from facility K. Two assistants also performed the anno-
tations using a computer-based tool (labelme; available at https://github.com/wkentaro/
labelme accessed on 19 November 2022). Figure 1 illustrates examples of annotation for
glomerular detection and segmentation. Table 3 shows the characteristics of the dataset
that was used for glomerular segmentation.

Figure 1. Example of a whole slide image (WSI) (top row). The bounding boxes of a glomerulus
are shown as a rectangle with a yellow border in the second row. The glomerular images cropped
by the bounding boxes are shown in the third row. The annotated images for the segmentation
corresponding to the cropped glomeruli are shown in the bottom row. The examples in the (bottom

row) (1)–(4) include cases with different percentages of sclerotic regions. (1) is an example of global
sclerosis, in which there is no glomerular tuft (red). (2) and (3) are examples without sclerosis, in
which there is no sclerotic region (blue). (4) is an example of segmental sclerosis, in which the
glomerular tuft (red) and sclerotic region (blue) are almost equal in area.
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Table 3. Characteristics of the annotated WSI for glomerular segmentation.

Facility WSI
Number of Glomeruli
(Total; Median [IQR])

Percentage of Crescentic
Regions to Glomerulus

(Median [IQR])

Percentage of Sclerotic
Regions to Glomerulus

(Median [IQR])

T 46 1713; 27.5 [20, 39.5] 3.46 [1.41, 6.47] 2.57 [0.74, 6.49]
K 42 1011; 24.0 [15, 30] 4.78 [1.39, 10.27] 5.37 [1.36, 9.06]

WSI, whole slide image; IQR, interquartile range.

2.3. Computational Pipeline

To segment the histopathological regions inside the glomeruli from a high-resolution
WSI, we developed a computational pipeline comprising the following two steps: (1) the
detection of glomeruli, which draws bounding boxes surrounding the glomeruli in a
WSI using Faster R-CNN, as described by Ren et al. [25], and (2) the segmentation of
glomerular components, which classifies image pixels in bounding boxes into five classes
(i.e., Bowman’s space, glomerular tuft, crescentic region, sclerotic region, and background)
using SegFormer, as described by Xie et al. [26], which is a transformer-based [27] state-of-
the-art segmentation method. All of the pixels that were detected as “not glomerulus” in
the first step were assigned to the background. The labels of each pixel that were calculated
in step 2 were repositioned in the WSI to compose the results of the entire WSI. Figure 2
shows an overview of the computational pipeline.

Figure 2. Overview of the computational pipeline. The parallelograms indicate the input or output
data. The rectangles indicate the process. Faster R-CNN is described by Ren et al. [25], and SegFormer
is described by Xie et al. [26].

2.3.1. Step 1: Detection of Glomeruli

Faster R-CNN with a sliding window, as presented in [13], was applied. All of the
WSIs were downsampled from 40× magnification to 5× magnification to balance the de-
tection accuracy and processing speed. To train the model, images that were cropped by
2000 μm-square windows centered on each annotated glomerulus were used. Incomplete
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glomerular bounding boxes at the boundaries of the windows were ignored. Data aug-
mentation techniques (e.g., flipping, Gaussian blurring, and sharpening) were applied to
train the network to improve its robustness for variations in morphology and staining. The
entire WSI was scanned with a sliding window (row-by-row, left-to-right) to evaluate the
model. Each image of the sliding window was fed into the model. Neighboring windows
overlapped each other by 10% (i.e., 200 μm), such that all of a glomerulus could be included
in a window, even if it was at the boundary of the window. When a detected glomerulus
was in the overlapping region of the neighboring windows, the bounding boxes that were
overlapping by 35% or more were merged into one.

2.3.2. Step 2: Segmentation of the Glomerular Components

SegFormer was used to segment the glomerular components, which classified each
pixel of a glomerular image into the following five classes: Bowman’s space, glomerular
tuft, crescentic region, sclerotic region, and background. To train the model, manually
cropped glomerular images with an added margin of 20 μm were used to facilitate the easy
training of the features outside of the glomerulus. This 20 μm margin width was set to
1/10 of the 200 μm, which is the estimated diameter of a glomerulus. When evaluating the
model after glomerular detection, a 20 μm margin was added to the obtained image so that
it would be similar to the training image. Data augmentation techniques (e.g., flipping,
scaling, cropping, changing contrast, Gaussian blurring, and sharpening) were applied.
The “Method details” section in Appendix G describes the critical aspects of Faster R-CNN
and SegFormer and the evaluation metrics.

2.4. Multivariate Analysis for eGFR Prognosis in IgAN

The WSI and clinical information of 46 eligible patients with IgAN from facility T were
analyzed (see Figure A1(1)). The prognostic variables were as follows: (1) age at biopsy,
(2) sex, (3) presence or absence of prebiopsy hypertension, (4) eGFR at biopsy, (5) urine
protein–creatinine ratio (UPCR) at biopsy, and (6) the mean proportion of the sclerotic
regions compared to the whole glomerular regions in a WSI. For the histopathological
variables, we used the proportion of the area of the sclerotic regions compared to the
combined area of glomerular tuft and sclerotic regions.

The whole glomerular tuft region was obtained by combining the glomerular tuft and
sclerotic regions. Variables 1–5 were obtained from the EHRs, and variable 6 was obtained
with the developed computational pipeline by calculating the proportion of a sclerotic
region to the whole glomerular tuft for all glomeruli in a WSI. The whole glomerular tuft
was calculated as the sum of the glomerular tufts and sclerotic regions in the glomerular
image. For the objective variable, we used the eGFR slope that was calculated from eGFRs
within 2 years after renal biopsy. The eGFR slope was the slope of the univariate linear
regression model of eGFR over time. This outcome represents a more dynamic tendency,
compared to measurements taken at one point [28–33]. Multivariate regression analysis was
conducted to assess the impact of the prognostic factors on the eGFR slope by estimating the
partial regression coefficients and their p-values. Multicollinearity between the prognostic
variables was assessed using VIF statistics.

2.5. Experiment Settings

To consider the mutual applicability between the facilities, computational pipelines
were developed by independently using WSIs from facility T and facility K and evaluating
the performances across the facilities. The details of the cross-validation settings and
evaluation across facilities are described in the Appendix G.1.7.
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3. Results

3.1. Performance of the Computational Pipeline
3.1.1. Glomerular Detection

As for the results of the glomerular detection alone, the F1 score (standard error) of the
model that was trained with the WSIs of facility T (educational university hospital) for the
WSIs of facility T (i.e., T to T) was 0.919 (0.003). The F1 score of the model that was trained
with the WSIs of facility K (general hospital and research center) for the WSIs of facility K
(i.e., K to K) was 0.912 (0.009). No significant difference existed between these F1 scores (p
= 0.08), indicating no difference in the model’s performance against the WSI of its facility,
which has been referred to as “internal performance.” In contrast, the F1 scores of T to K
and K to T were 0.892 (0.005) and 0.875 (0.009), respectively. Significant differences existed
between the scores of T to T and T to K (p < 0.01) and between K to K and K to T (p = 0.01).
These results have revealed that, in both models, the performance decreased against the
external facility’s WSI, which has been referred to as “external performance.” Table A1
in Appendix B shows the performance of glomeruli detection. Figure A2 in Appendix C
depicts an example of the results of glomerular detection on a WSI.

3.1.2. Glomerular Segmentation and the Pipeline

The top of Table 4 presents the segmentation performance. The mean (standard error
(SE)) intersection over union (IoU) of T to T and K to K were 0.741 (0.011) and 0.764
(0.016), respectively. This finding indicated no significant difference between the internal
performance of each model (p = 0.285). However, the external performance of the models
tended to decrease. The mean IoU (SE) of K to T was 0.682 (0.002), which was lower than
the mean IoU (SE) of T to T [0.741 (0.011)], and showed a significant difference (p = 0.003).
The mean IoU of T to K was 0.737 (0.005), which was lower than the mean IoU of K to
K [0.764 (0.016)], but the difference was not significant (p = 0.164). The bottom of Table 4
shows the segmentation performance after the detection (i.e., pipeline). The pipeline results
were generally lower than those of the segmentation alone, owing to the accumulated error
in the detection. As in the cases of segmentation alone, no significant difference existed in
the mean IoU between T to T (0.670) and K to K (0.693), which indicated no difference in
their internal performance (p = 0.395). In addition, the external performance of the models
tended to decrease, as in the case of segmentation alone. The mean IoU of K to T was
0.609 (0.002), which was lower than the mean IoU of T to T [0.670 (0.017)], and showed
a significant difference (p = 0.015). The mean IoU of T to K was 0.678 (0.002), which was
lower than the mean IoU of K to K [0.693 (0.020)], but the difference was not significant
(p = 0.509). Figure 3 depicts an example of the results that were obtained by the pipeline
of T to T and K to T. Some examples of glomeruli with a high or low mean IoU that were
obtained by the pipeline of K to T are shown in Figure 4.

Table 4. Performance of glomerular segmentation.

Evaluation
Scope

Model to WSI Background
Bowman’s

Space
Glomerular

Tuft
Crescentic

Region
Sclerotic
Region

Mean IoU

Segmentation
Alone

T to T
0.965 0.664 0.770 0.596 0.707 0.741

(0.001) (0.009) (0.006) (0.032) (0.021) (0.011)

K to K
0.973 0.696 0.810 0.665 0.674 0.764

(0.002) (0.013) (0.014) (0.033) (0.032) (0.016)

p 0.028 * 0.094 0.037 * 0.160 0.418 0.285

T to T
0.965 0.666 0.770 0.596 0.707 0.741

(0.001) (0.009) (0.006) (0.032) (0.021) (0.011)

K to T
0.956 0.586 0.738 0.523 0.604 0.682

(0.000) (0.016) (0.002) (0.047) (0.006) (0.002)

41



Diagnostics 2022, 12, 2955

Table 4. Cont.

Evaluation
Scope

Model to WSI Background
Bowman’s

Space
Glomerular

Tuft
Crescentic

Region
Sclerotic
Region

Mean IoU

p 0.003 * <0.001 * 0.004 * 0.070 0.004 * 0.003 *

K to K
0.973 0.696 0.810 0.665 0.674 0.764

(0.002) (0.013) (0.014) (0.033) (0.032) (0.016)

T to K
0.963 0.667 0.789 0.629 0.638 0.737

(0.001) (0.004) (0.002) (0.005) (0.007) (0.005)

p 0.008 * 0.077 0.195 0.326 0.312 0.164

Segmentation
after detection
(i.e., pipeline)

T to T
0.999 0.594 0.736 0.497 0.521 0.670

(0.000) (0.014) (0.015) (0.041) (0.023) (0.017)

K to K
0.999 0.626 0.768 0.530 0.540 0.693

(0.000) (0.020) (0.017) (0.039) (0.038) (0.020)

p NA 0.230 0.190 0.568 0.691 0.395

T to T
0.999 0.594 0.736 0.497 0.521 0.670

(0.000) (0.014) (0.015) (0.041) (0.023) (0.017)

K to T
0.999 0.509 0.683 0.412 0.442 0.609

(0.000) (0.005) (0.001) (0.003) (0.003) (0.002)

p NA 0.001 * 0.015 * 0.094 0.019 * 0.015 *

K to K
0.999 0.626 0.768 0.530 0.540 0.693

(0.000) (0.020) (0.017) (0.039) (0.038) (0.020)

T to K
0.999 0.602 0.749 0.516 0.527 0.678

(0.000) (0.002) (0.002) (0.006) (0.003) (0.002)

p NA 0.293 0.323 0.727 0.748 0.509

Unless otherwise specified, the data are presented as the mean (standard error). “T to T” represents the results
from the facility T model against the facility T data. “K to K” represents the results from the facility K model
against the facility K data. “T to K” is the result of the facility T model against facility K data. “K to T” is the result
of the facility K model against the facility T data. * indicates a statistically significant difference (i.e., p < 0.05). The
p value is based on Welch’s t-test for the equality of the means of two samples. WSI, whole slide image; NA not
available; SE standard error.

3.1.3. Regression Analysis for Kidney Prognosis

Table 5 shows the results of the multivariate analysis of the estimated glomerular
filtration rate (eGFR) slope within two years after renal biopsy in 46 patients with IgAN.
The column of the ground truth shows the results when manually annotated regions of the
glomerular tuft and the sclerotic region were used. The columns of T to T and K to T show
the results when each pipeline’s predicted sclerotic regions were used. The coefficients of
determination (R2) for the ground truth, T to T, and K to T models were 0.18, 0.17, and 0.16,
respectively. For multicollinearity, no variable had a variance inflation factor (VIF) value of
> 3.0 in the ground truth model. In all of the models, the proportion of the sclerotic regions
had a significant negative impact on the eGFR slope (p < 0.05). However, no other variables
showed a significant impact. The results of the univariate regression analysis showed the
same tendency (see Table A2 in Appendix D).

Table A3 in Appendix E presents the correlation coefficients between the ground truth
regions and the predicted regions by the pipeline for the sclerotic and the semicircular
regions in 46 IgAN cases. The results were high values that exceeded 0.96. The scatter
plots for the sclerotic regions in the T to T and the K to T models are shown in Figure A3 in
Appendix F.
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Figure 3. Example of the results of a whole slide image (WSI) from facility T. Top: manually annotated
glomeruli and their components (i.e., ground truth). Middle: The WSI of the renal sample. The box is
the area depicted in the top and bottom images. Bottom left: The predicted result obtained by model T
(i.e., internal model). Bottom right: The predicted result obtained by model K (i.e., external model). In the
example of the predicted result in the bottom right (K to T), (1) a dilated tubule filled with Tamm–Horsfall
protein is incorrectly detected as glomerulus, and (2) a glomerulus is undetected, both of which are due to
errors that occurred in the detection process in the first step of the computational pipeline.
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Figure 4. Example of the glomerular component segmentation obtained by the pipeline of K to T
(predicted by the external model). The left column shows examples with higher mean intersection
over union (IoU) of (a) 0.894, (b) 0.879, (c) 0.846, (d) 0.818, (e) 0.792, and (f) 0.780. The right column
shows examples with lower mean IoU of (g) 0.377, (h) 0.384, (i) 0.412, (j) 0.417, (k) 0.438, and (l) 0.453.
In the right column (a–f), the Bowman’s space, glomerular tuft, crescentic, and sclerotic region are
correctly segmented. The pairs of the proportions of the sclerotic region of ground truth that are
predicted in left column are (a–c) 0.0 to 0.0, (d) 0.485 to 0.446, (e) 0.451 to 0.518, and (f) 0.085 to 0.101,
which are generally corresponding. (g) Most of the glomerular tuft region is incorrectly segmented
as the sclerotic region, and the left side of the Bowman’s spaces are incorrectly segmented to the
crescentic regions. (h) The left side of the glomerular tuft region is incorrectly segmented to the
sclerotic region, and the upper left Bowman’s space is incorrectly segmented as the crescentic region.
(i) The Bowman’s spaces in the glomerular tuft gaps are incorrectly segmented as the glomerular tuft
areas, and the bottom of the glomerular tuft is incorrectly segmented as the crescentic regions. (j) The
upper and lower left glomerular tuft areas are incorrectly segmented as the sclerotic regions. (k) Most
of the glomerular tuft region from the upper left to the center is incorrectly segmented to the sclerotic
region. (l) The lower left glomerular tuft region near the vascular pole is incorrectly segmented to the
sclerotic region, and several small regions around the Bowman’s space are incorrectly segmented to
the crescentic regions. The pairs of the proportions of the sclerotic region of ground truth that are
predicted in right column are (g) 0.0 to 0.832, (h) 0.0 to 0.282, (i) 0.0 to 0.009, (j) 0.0 to 0.430, (k) 0.247
to 0.967, and (l) 0.0 to 0.158. All scale bars indicate 100 mm.
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Table 5. Results of the multivariate regression analysis.

Ground Truth (R2 = 0.18) T to T (R2 = 0.17) K to T (R2 = 0.16)

Beta p Value VIF Beta p Value VIF Beta
p

Value
VIF

Age −1.289
(1.369) 0.34 1.9 −1.217

(1.376) 0.37 1.9 −1.242
(1.393) 0.36 1.9

Sex (male = 1) −0.604
(1.144) 0.59 1.4 −0.550

(1.149) 0.62 1.3 −0.359
(1.151) 0.75 1.3

Hypertension (presence = 1) −0.926
(1.194) 0.43 1.5 −0.999

(1.199) 0.39 1.5 −1.115
(1.211) 0.35 1.5

eGFR at renal biopsy
(mL/min/1.73 m2)

−2.793
(1.554) 0.071 2.5 −2.727

(1.562) 0.079 2.5 −2.370
(1.540) 0.12 2.4

UPCR at renal biopsy (g/g) 0.211
(1.169) 0.85 1.4 0.024

(1.169) 0.98 1.4 0.069
(1.185) 0.95 1.4

Proportion of sclerotic regions
(%)

−2.885
(1.207) 0.018 * 1.5 −2.732

(1.196) 0.024 * 1.5 −2.333
(1.126) 0.039 * 1.3

The data are presented as the mean (standard error), unless otherwise specified. “T to T” is the result of the facility
T model applied to facility T data. “K to T” is the result of the facility K model applied to facility T data. * indicates
a statistically significant difference (i.e., p < 0.05). The p value is based on Welch’s t-test for the equality of the
means of two samples. Beta, standardized partial regression coefficient; R2, coefficient of determination; eGFR,
estimated glomerular filtration rate; UPCR, urine protein–creatinine ratio; VIF, variance inflation factor.

4. Discussion

In this paper, we describe an automated computational pipeline that can detect
glomeruli in PAS-stained WSI and segment the histopathological components inside of the
glomerulus. Based on multivariate analysis, the predicted sclerotic regions, even the regions
that were predicted by the external model, had a significant negative impact on the eGFR
slope within two years after biopsy. We believe that this study is the first to demonstrate the
usefulness of an automated computational pipeline for segmenting the histopathological
glomerular components on WSIs and demonstrate that quantified sclerotic regions impact
the prognosis of the kidney function in patients with IgAN.

Several studies [18–21] aiming for pixel-level semantic segmentation for WSI of re-
nal tissue sections have set the task of distinguishing between nonsclerotic and sclerotic
glomeruli. Bueno et al. [20] sequentially applied SegNet-VGG19 [34] in order to segment
glomeruli and applied AlexNet to classify them as nonsclerotic or sclerotic glomeruli. The
segmentation accuracies for the nonsclerotic and the sclerotic were 96.06% and 83.22%,
respectively. Hermsen et al. [19] evaluated U-Net-based 11 class segmentation, as described
by Ronneberger et al. [35]. The normal glomeruli, sclerotic glomeruli, empty Bowman’s
capsules, tubules, arteries, interstitium, and the capsules were fully annotated. The Dice
coefficients of the normal and the sclerotic glomeruli were 0.95 and 0.62, respectively. Al-
tini et al. [21] conducted SegNet-based semantic segmentation of nonsclerotic and sclerotic
glomeruli; their IoUs were 0.66546 and 0.49215, respectively. Jiang et al. [24] conducted a
mask region-based convolutional neural network (R-CNN)-based semantic segmentation
for classifying glomeruli with a normal structure, an abnormal structure, and global scle-
rosis; the mean IoU for PAS-stained WSIs were 0.697, 0.544, and 0.646, respectively. The
results of these previous studies could help us to quantify global glomerulosclerosis, the
ratio between sclerotic glomeruli, and the overall number of glomeruli. However, because
glomerular sclerosis does not always occur globally, pixel-level segmentation for partially
sclerosed regions is required for detailed quantification. Such quantification should have
an essential role in understanding kidney diseases.

As shown in Table 4, the performance of the segmentation alone and the pipeline
showed no significant differences in the mean IoU between T to T and K to K. This finding
indicated that their internal performances were comparable. This finding supports that
the annotation for glomerular detection and segmentation was conducted with a constant
quality. Compared to the performance of the models that were trained with internal WSIs,
the performance of the models that were trained with external WSIs tended to decrease in
the segmentation alone and the pipeline. One of the reasons for this finding may be due to
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differences in the slide preparation to the digitization process between the facilities. The
differences in the staining protocols, the manufacturing processes, and the digital scanner
processing between the laboratories caused minute differences in the WSIs; however, the
pathological samples were stained similarly. This difference is imperceptible to the human
eye, but it is sufficient to affect deep learning-based applications [36–38]. We applied
color normalization in the preprocessing step and Gaussian blurring, sharpening, and
contrast changes during the data augmentation. However, extended methods are required
in order to compensate for the minute differences in WSIs between the facilities, which
increases the robustness against external WSI. The successful adaptation of WSI in deep
neural network-based applications depends on each step of high-quality pathology slide
preparation, such as embedding, cutting, staining, and scanning [39,40], as well as color
variations. Using precise and homogeneous WSIs is desirable; however, such a model
may not necessarily be robust against external WSIs that have more diversity. Improving
the interfacility applicability of the developed model is an important issue for the success
of deep learning applications in digital pathology. In addition, the performance of K
to T is significantly lower for both the segmentation alone and the pipeline, while the
performance degradations of T to K are not significant. This may be because a small
number of glomerular images (1011) were used to develop the segmentation in model K,
compared to the number of glomerular images that were used to develop model T (1713).
We used the same number of WSIs from both of the facilities for the segmentation task.
However, the number of images differed because of the different number of glomeruli
that were contained in each WSI. The relatively small number of glomerular images in the
training data for model K may have resulted in less diversity, leading to the significant
performance degradation of K to T.

As shown in Table 5, the manually quantified (ground truth) sclerotic regions were
associated with negatively impacting the eGFR slope in the multivariate analysis. Seg-
mental sclerosis, which is defined by the Oxford Classification [5,6], or the chronic lesions
including segmental sclerosis and global sclerosis, which are defined by the H-Grade [7,8]
have a negative impact on the poor prognosis of IgAN; however, the current study showed
that the quantified sclerotic regions also have a negative impact on the eGFR slope within
two years after biopsy. In our analysis, the effect of the post-biopsy treatment on eGFR
was not adjusted because of the retrospective design, which is a limitation of this analysis.
In addition, other limitations of this analysis were that the 2-year period was relatively
short and the number of IgAN cases (n = 46) was also limited; these may have affected the
relatively low coefficients of determination (0.18 in the ground truth model).

Table 5 also shows the same tendency in the standardized partial regression coefficients
among the ground truth, the T to T (i.e., internal model), and the K to T (i.e., external model)
models. The correlation between the ground truth regions and the predicted regions in
each WSI aids in the understanding of their impact in the regression model. In Table A3 in
Appendix E, the correlation coefficient for the sclerotic regions exceeded 0.96, even when
using the external model. This finding indicated that the estimation of the total amount of
sclerotic and glomerular tuft regions in each WSI was approximately correct. In light of the
previous results, our developed pipeline shows a certain level of robustness for quantifying
the glomerular tuft and sclerotic regions from WSI, even if the model is applied to the WSI
of external facilities.

Another limitation of this study is that the concordance of the ground truth labels that
have been used for developing glomerular detection and segmentation was not evaluated;
however, the experts provided them. Surrounding the glomeruli with bounding boxes and
drawing their histopathological components required distinguishing unclear boundaries with
an understanding of pathology. Such labeling could vary among experts. Well-annotated
examples are important in supervised learning; the main challenge in deep neural network-
based applications for digital histopathology is obtaining high-quality labels. We carefully
conducted the annotation with multiple experts, including a nephrologist and a pathologist,
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however the possibility of errors does exist. Nonetheless, annotation errors are not specific to
this research; however, they should be kept in mind in studies on supervised learning.

5. Conclusions

We developed an automated computational pipeline for detecting glomeruli on PAS-
stained WSIs, followed by segmenting the Bowman’s space, the glomerular tuft, the
crescentic, and the sclerotic region inside of the glomeruli. The internal and external
evaluation of the pipeline using WSIs from two facilities showed that the mean IoU of five
regions, including the background, was 0.670 (T to T) and 0.693 (K to K) in the internal
evaluation, and 0.609 (K to T) and 0.678 (T to K) in the external evaluation. The multivariate
analysis for eGFR prognosis in cases of IgAN showed that the proportion of sclerotic regions
that were quantified by the pipelines, even those that were quantified by the external model,
had a significant negative impact on the eGFR slope, while five other clinical prognostic
factors (i.e., age, sex, hypertension, eGFR at biopsy, and UPCR at biopsy) had no significant
impact. These findings suggest the importance of quantifying the sclerotic region, as well as
the usefulness and the robustness of the developed pipeline, for the purpose of predicting
eGFR in cases of IgAN. The developed pipeline could aid in diagnosing renal pathology
by visualizing and quantifying the histopathological feature of glomerulus. In addition,
this high-throughput approach could potentially accelerate research in order to better
understand the prognosis of IgAN.
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Appendix A.

Figure A1. Overview of the data collection and selection procedure. (1) Eligibility criteria of im-
munoglobulin A nephropathy (IgAN) for regression analysis. (2) Facility T: whole slide image (WSI)
selection for regression analysis and segmentation annotation. (3) Facility K: WSI selection for seg-
mentation annotation. (4) WSI selection for the development of glomerular detection models. (5) WSI
selection for the development of the glomerular segmentation models. Bold boxes indicate the data
used in the experiments described below.

Appendix B.

Table A1. Performance of glomerular detection.

T to T K to K p T to T T to K p K to K K to T p

F1
score

0.919
(0.003)

0.912
(0.009) 0.08 0.919

(0.003)
0.892

(0.005) <0.01 * 0.912
(0.002)

0.875
(0.009) 0.01 *

F1 is the harmonic mean of precision and recall. “T to T” is the result of the facility T model against the WSIs of
facility T. “K to K” is the result of the facility K model against the WSIs of facility K. “T to K” is the result of the
facility T model against the WSIs of facility K. “K to T” is the result of the facility K model against the WSIs of
facility T. * indicates a statistically significant difference (i.e., p < 0.05). The p-value is based on Welch’s t-test for
equality of means of two results. Note: The data are presented as the mean F1 score (standard error).

Appendix C.

 

Figure A2. Example of glomerular detection results from a WSI. The yellow frames indicate the
ground truth of the glomerular. The red frames indicate the predicted glomerular regions proposed
by Faster R-CNN. The regions with overlapped yellow and red frames indicate a true positive (TP),
the regions surrounded by only red frames indicate a false positive (FP), and the regions surrounded
by only yellow frames indicate a false negative (FN).
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Appendix D.

Table A2. Results of the univariate regression analysis.

Ground Truth T to T K to T

Beta p-Value Beta p-Value Beta p-Value

Age −0.652
(1.014) 0.51 −0.652

(1.014) 0.51 −0.652
(1.014) 0.51

Sex (male = 1) −0.368
(1.017) 0.71 −0.368

(1.017) 0.71 −0.368
(1.017) 0.71

Hypertension (present = 1) −0.864
(1.010) 0.38 −0.864

(1.010) 0.38 −0.864
(1.010) 0.38

eGFR at renal biopsy
(mL/min/1.73 m2)

−0.167
(1.018) 0.87 −0.167

(1.018) 0.87 −0.167
(1.018) 0.87

UPCR (g/g) −0.479
(1.016) 0.63 −0.479

(1.016) 0.63 −0.479
(1.016) 0.63

Proportion of sclerotic regions
(%)

−1.865
(0.975) 0.055 −1.786

(0.979) 0.067 −1.764
(0.980) 0.071

Unless otherwise specified, the data are presented as mean (standard error). “T to T” is the result of the facility T
model applied to facility T data. “K to T” is the result of the facility K model applied to facility T data. The p-value
is based on Welch’s t-test for the equality of the means of two samples. Beta, standardized partial regression
coefficient; GFR, estimated glomerular filtration rate; UPCR, urine protein–creatinine ratio.

Appendix E.

Table A3. Correlation coefficients between the ground truth and predicted regions.

Model to WSI
Proportion of the Sclerotic Regions to the

Combined Area of Glomerular Tuft and Sclerotic
Regions

T to T 0.967
K to T 0.963

“T to T” is the result of the facility T model applied to facility T data. “K to T” is the result of the facility K
model applied to facility T data. The correlation coefficient between T and T was derived from one of the six
cross-validations. The correlation coefficient of “K to T” is the average of the six cross-validations.

Appendix F.

Figure A3. Scatter plots of the proportion of sclerotic regions between the ground truth and predicted
regions. (a) Sclerotic regions of T to T. (b) Sclerotic regions predicted by K to T. “T to T” is the result
of the facility T model for the WSIs of facility T. “K to T” is the result of the facility K model for the
WSIs of facility T.
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Appendix G.

Appendix G.1. Method Details

Appendix G.1.1. Faster R-CNN

A faster region-based convolutional neural network (Faster R-CNN [31]) is an object
detection method that is based on convolutional neural networks (CNNs). Faster R-CNN
consists of the following two modules: the region proposal network (RPN), which identifies
the region of an object in an image, and a network that classifies the objects in the proposed
region. Faster R-CNN first processes the input image by performing convolution and pooling
layers in order to obtain feature maps and passes them to the RPN. The RPN then scans over
the feature maps using a sliding window with different scales and aspect ratios and calculates
two scores indicating whether each window contains an object and whether the object is a
background or not. In order to solve the redundancy of the candidate regions that are obtained
by the RPN, non-maximum suppression is used. The candidate regions with different sizes are
converted into fixed-sized vectors through region of interest (ROI) pooling to be input into a
fully connected layer. Finally, the coordinates and class information of the predicted multiple
objects are output by performing fully connected layers.

Appendix G.1.2. SegFormer

SegFormer [34] is a semantic segmentation method that is based on transformers. Multiple
semantic segmentation methods have been proposed. Most of them are based on CNNs, but
recently, those that are based on transformers, which have been used in language models, have
shown higher accuracy and are being used. SegFormer is an efficient and accurate semantic
segmentation architecture among these transformer-based methods. It follows the encoder–
decoder architecture. SegFormer consists of a hierarchical transformer encoder to extract coarse
and fine features, and a lightweight all multi-layer perceptron (MLP) decoder. The performance
of SegFormer may be slightly lower than some of the methods that require larger memory,
such as Vision Transformer (ViT). However, SegFormer is significantly faster, with fewer model
parameters than the other transformer-based architectures, and this feature is important for
medical institutions without rich GPU resources.

Appendix G.1.3. Color Normalizations

In glomerular detection and segmentation, each RGB channel in a WSI was normalized
by dividing the difference between the value of a pixel and the mean value of a pixel by
the variance of the pixels. The mean and the variance were calculated from the training
and validation datasets in order to train the network. The mean and the variance were
calculated from the test dataset in order to test the network.

Appendix G.1.4. Evaluation Metrics

In order to evaluate the accuracy of glomerular detection, we calculated the micro
average F1 score over all of the WSIs for each cross-validation trial. We used the average
of these six cross-validations. If the IoU of the detected glomerulus and the ground truth
were greater than 0.5, we classified the detection as a true positive (TP), and if the IoU
was less than 0.5, we classified the detection as a false positive (FP). If the ground truth
glomerulus had no overlapped predicted glomerulus with IoU ≥ 0.5, we classified the
ground truth glomerulus as a false negative (FN). The equations that were used for the
evaluation metrics were as follows (Equations (A1)–(A3)):

Recall =
TP

TP + FN
(A1)

Precision =
TP

TP + FP
(A2)

F1 score =
2 × Recall × Precision

Recall + Precision
(A3)
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In order to evaluate the accuracy of the glomerular component segmentation, we
calculated the micro average IoU of each class over all of the WSIs for each trial, and we
used the average of these six cross-validations. In this instance, the pixels in which the
estimated label and the correct label matched are denoted as TP, the pixels with only the
estimated class are denoted as FP, and the pixels with only the correct label are denoted
as FN. The mean IoU was determined as the macro average of the IoU for each class
(Equation (A4)) as follows:

IoU =
TP

TP + FP + FN
(A4)

In evaluating the accuracy of the entire computational pipeline, we repositioned the
predicted and correct segmentation labels on the entire WSI. We counted the number of TP,
FP, and FN pixels over all of the WSIs that were included in the evaluation data in order to
calculate the IoU (Equation (A4)). We evaluated the accuracy of the entire pipeline process
using the averages of the six cross-validations.

Appendix G.1.5. Tools for Implementation

In order to develop the pipeline, we used Python, version 3.6.7 (Python Software
Foundation, Wilmington, DE, USA), and the machine learning framework PyTorch version
1.7.1 (Facebook’s AI Research Lab, Menlo Park, CA, USA). We also implemented a Faster
R-CNN that was provided by the PyTorch project and the implementation of SegFormer
was provided by Hugging Face. The statistical analysis was conducted in R version 4.1.1 (R
Foundation, Vienna, Austria), using the packages stats 4.1.1, tidyverse 1.3.1, ppcor 1.1, and
car 3.0.11 cross-validation settings.

We split the entire dataset into training, validation, and test sets. The validation set
was used for the model selection in order to avoid excessively fitting the model to the test
set, which would impair the generalization performance. The test set was used in order
to evaluate the performance. For glomerular detection, 300 WSIs in each facility were
divided into six subsets by stratified splitting based on the number of glomeruli in each
WSI. Six-fold cross-validations were conducted using 200 WSIs for the training, 50 WSIs for
the validation, and 50 were used for the test.

Glomerular detection is a binary classification task that is evaluated by whether Faster
R-CNN can correctly detect the bounding boxes surrounding the glomeruli given as ground
truth. The micro average of the F1 score, which is the harmonic mean of precision and
recall, was employed as an evaluation metric. In order to maximize the F1 score in the
validation set, the threshold to distinguish between the glomerulus and the background
was set. For the glomerular segmentation, 42 WSIs from each facility were divided into six
subsets via stratified splitting based on the total pixels of the crescentic and sclerotic regions.
Six-fold cross-validations were conducted using 28 WSIs for the training, 7 WSIs for the
validation, and 7 WSIs for the test. Glomerular segmentation is a multiclassification task
that is evaluated by whether SegFormer can correctly classify the pixels in an image into
the ground truth labels. Micro averages of intersection over union (IoU) were employed as
the evaluation metrics.

Appendix G.1.6. Hyperparameters

In Faster R-CNN, the hyperparameters are the same as they were in previous studies
by the authors [13]. The optimizer that dynamically changed the learning rate used
Momentum SGD; the learning rate was 0.0003, the momentum was 0.9, and the learning
rate was reduced to 0.00003 after 900,000 iterations. Data augmentation techniques were
also applied in order to train the network, which used a combination of vertical and
horizontal flip. The training iterations were terminated by monitoring the F-measure of the
validation set when the network had been trained sufficiently.

In SegFormer, the hyperparameters inherit those of the original SegFormer; the model
size of SegFormer was mit-b4 [26], which has the second largest number of parameters
due to limited computing resources and computational efficiency. An implementation by
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Hugging Face [41] was used. The batch size was set to 20 when training the model, and the
model was selected at the epoch with the best mean IoU for the validation data, with an
upper limit of 1000 epoch iterations.

Appendix G.1.7. Evaluation across Facilities

For glomerular detection and segmentation, six models that were developed using
six-fold cross-validations were applied to all of the 300 or 42 WSIs of the other facilities.
The average of each of the six times was assessed. For the evaluation of the computational
pipelines, six pipelines consisting of six segmentation models, followed by one detection
model, were applied to all 42 of the WSIs of the other facilities, and the average of the six
times was assessed.
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Abstract: Background: Annotating large medical imaging datasets is an arduous and expensive task,
especially when the datasets in question are not organized according to deep learning goals. Here,
we propose a method that exploits the hierarchical organization of annotating tasks to optimize
efficiency. Methods: We trained a machine learning model to accurately distinguish between one
of two classes of lung ultrasound (LUS) views using 2908 clips from a larger dataset. Partitioning
the remaining dataset by view would reduce downstream labelling efforts by enabling annotators to
focus on annotating pathological features specific to each view. Results: In a sample view-specific
annotation task, we found that automatically partitioning a 780-clip dataset by view saved 42 min
of manual annotation time and resulted in 55 ± 6 additional relevant labels per hour. Conclusions:
Automatic partitioning of a LUS dataset by view significantly increases annotator efficiency, resulting
in higher throughput relevant to the annotating task at hand. The strategy described in this work can
be applied to other hierarchical annotation schemes.

Keywords: computer vision; machine learning; annotation; labelling; lung ultrasound; medical
imaging; deep learning

1. Introduction

Unlike several mainstream computer vision application domains, annotators of medi-
cal imaging datasets must possess a sufficient degree of domain expertise to ensure that
ground truth is clinically correct. In many cases, labels must be reviewed by clinical experts
prior to being officially admitted to a dataset. Given the cost and limited availability of
clinical expertise for such tasks, strategies to accurately automate the labelling of medical
imaging datasets are desirable.

Lung ultrasound (LUS) is a well described, portable, inexpensive, and accurate point of
care technique to assess respiratory disease at the bedside [1–7], with potential deployment
in a wide variety of environments [8,9]. In comparison to the traditional methods used to
image the lungs, such as a CT scan or chest X-ray, LUS displays comparable or improved
diagnostic accuracy at a reduced cost [4,5]. There are two broadly categorized regions, or
views, of the lung that are acquired: parenchymal (anterior and anterolateral chest) and
pleural (posterolateral chest) [3,10,11]. Each of these views interrogate different anatomic
areas of the lung that may contain separate and distinct disease processes [12]. For example,
as seen in Figure 1, if annotating clips for a classifier that identifies A line and B line
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artifacts [13,14], annotators would be interested in parenchymal views only, since these
artifacts are of greatest clinical importance when seen in these views. Conversely, important
findings such as the curtain sign, pleural effusion, or consolidation patterns are sought in the
pleural views of the lungs [15]. Additional examples of how this is reflected in a hierarchical
annotation workflow are shown in Figure 1. The hierarchical nature of LUS interpretation
and annotation provides an opportunity to impose high-level structure by partitioning an
otherwise unstructured dataset into two clinical and radiographic groups. If the view of
every clip in the dataset is known, then the entire dataset can be partitioned by view, and
expert annotators need only be provided with clips for which the view is relevant to the
annotating task (see Figure 1). LUS is a particularly important modality for optimizing
annotation efforts due to the paucity of individuals with sufficient domain expertise to
perform LUS annotation [16,17]. Thus, an approach to automated partitioning based
on view represents a key opportunity to improve annotation throughput and optimize
workforce allocation, while providing a model that is clinically relevant [18,19].

LUS 
Database

View 
Classification

PARENCHYMAL

Classification
A lines/ B lines

Lung sliding
Subpleural consolidation

Shred sign

PLEURAL

Classification

Consolidation
Air bronchograms
Pleural effusion

Curtain sign
Mirror image

Ascites

Segmentation
Consolidation

Pleural effusion
Diaphragm

Figure 1. Summary of the hierarchical annotation workflow. LUS classification tasks are view-specific.
Automation of the view classification step separates LUS clips. Further, segmentation tasks can
subsequently be stratified by classification.

Solutions have been proposed to offset the cost of annotating medical images. Multiple
studies have explored the use of active learning, a special case of machine learning where
the learner can query a user to label new data points [20]. The direct incorporation of
human intervention in the active learning process has been shown to improve both the
annotating accuracy and efficiency [21].

The process of leveraging a small, annotated subset of a larger dataset to generate
new labels that will be added to a training set has also been explored with notable success.
Gu et al. [22] used an annotated training set with 20,000 examples to generate labels for a
100,000-example dataset. This study exhibited a significant improvement in model perfor-
mance when 80,000 automatically generated labels were added to the human-annotated
training set for the purpose of classification [22]. A similar method was used to efficiently
label data in [23], where regions of interest in CT examinations were segmented and
automatically annotated to circumvent annotation costs.

Deep learning approaches that have been trained for automatic annotating have ri-
valled the performance of domain experts [24,25]. In this case, radiology reports were
used to generate chest X-ray labels. The performance of radiologists was used as a bench-
mark for model performance, and the margin between the resulting predictions by their
deep network and the expert annotator was narrow. This evidence suggests that similar
methodologies can be used to rival the annotating accuracy of medical professionals. These
findings are encouraging for our work, as the benchmark for this automatic annotating
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method is also the annotating performance of medical experts. Success in these other
domains provide justification for our current work.

The objective of this work is to develop a deep learning solution for automatic LUS
view annotation that effectively improves the efficiency of downstream annotation tasks. In
particular, a neural network capable of distinguishing parenchymal from pleural LUS views
is developed, validated, and used to partition a sample LUS dataset by view. A downstream
view-specific annotation task is then performed on both the partitioned dataset and an
equally-sized non-partitioned dataset by the same annotation team to investigate whether
automatic view annotation improved their efficiency and throughput. We aim for our
methods to form the foundation for an improved, more cost-effective LUS annotation
workflow that can be applied to other annotation schemes with a hierarchical organization.

2. Materials and Methods

2.1. Data Curation and Annotation

All data in this study were collected retrospectively from our institutional point-of-care
ultrasound database (Qpath E, Port Coquitlam, BC, Canada). To generate ground truth
labels, all clips were uploaded to an online platform (Labelbox, San Francisco, CA, USA),
where they were annotated by a team of medical professionals trained in LUS. Project
oversight, including ambiguous or difficult examples, was provided by an international
expert in LUS. Annotation tasks were divided into 200 clip benchmarks for annotators
and clip-level classifications were applied, including the view (parenchymal vs. pleural),
findings relevant to the respective view (see Figure 1), and quality markers (inappropriate
gain, depth, composition, etc.). Annotators also had the option to discard clips that did
not meet diagnostic or machine learning standards. Examples include inappropriate
ultrasound exams (such as an echocardiogram), user-applied text within the ultrasound
image, and removal of the ultrasound probe from the patient’s chest during the video clip.
Lastly, annotators had a skip option to reserve clips for future annotation. This option was
applied when the clip in question did not match the current annotation goals (e.g., a pleural
clip when the goal was the annotation of parenchymal findings). The labelling platform
automatically tracked the time taken to label or skip clips, which facilitated analysis of
annotator efficiency.

2.2. View (Parenchymal vs. Pleural) Classifier
2.2.1. Clip-Level Data

To train the neural network, a class-balanced dataset of 2908 LUS clips (1454 parenchy-
mal and 1454 pleural clips) was randomly selected from data previously annotated as
described in Section 2.1. By convention, parenchymal and pleural were assigned the neg-
ative and positive class, respectively. The details of our training dataset are provided in
Table 1.

2.2.2. Frame-Based Data

As the view of an individual LUS image (hereafter referred to as “frame”) can typically
be discerned by clinicians, we sought to train a frame-based classification model that
could predict the view of a particular LUS frame, where the ground truth view of the
frame was the view of the clip (determined by the annotator). Dividing the videos into
constituent frames greatly expanded the size of the dataset to 369,832 parenchymal and
330,191 pleural frames. Clip-level predictions could subsequently be inferred from the
frame-level predictions using a clip classification algorithm (see Section 2.2.5).
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Table 1. Characteristics of the datasets used for view classifier training and validation.

Training Data Holdout Data

Clip label Parenchymal Pleural Parenchymal Pleural

Patients 611 342 441 466

Number of clips 1454 1454 457 488

Frames 369,832 330,191 107,205 100,616

Average clips/patient 2.38 4.25 1.04 1.05

Class-patient overlap 303/650 32/875

Age (std) 64.0 (17.2) 64.5 (16.2) 64.1 (18.0) 64.4 (17.4)

Sex
Female: 238 (39%) Female: 134 (39%) Female: 156 (35%) Female: 205 (44%)
Male: 347 (57%) Male: 193 (56%) Male: 269 (61%) Male: 235 (50%)

Unknown: 26 (4%) Unknown: 15 (4%) Unknown: 16 (4%) Unknown: 26 (6%)

2.2.3. Dataset Pre-Processing

After deconstructing the clips into composite frames, all information external to the
ultrasound beam (e.g., vendor logos, depth markers) was removed using ultrasound
masking software (AutoMask, WaveBase Inc., Waterloo, ON, Canada). The frames were
then resized to 128 × 128 pixels using bilinear interpolation and fed to the model in RGB
channel format. During training, the frame dataset was augmented by applying the
following transformations stochastically: random zooming inward/outward by up to 20%,
horizontal flipping, brightness shifting by up to 20%, contrast shift of up to 10%, and
rotation clockwise/counterclockise by up to π

4 radians.

2.2.4. Model Architecture

We employed the EfficientNetB0 architecture as the base model [26], with weights
pre-trained on ImageNet [27]. The head of the EfficientNetB0 network was replaced with a
2D global average pooling layer, followed by dropout (with dropout rate 0.3), a 128-node
fully connected layer with ReLU activation, and a 1-node fully connected output layer
with sigmoid activation. The model’s output was the probability p that a LUS frame was a
pleural view. The predicted frame-level class was taken to be pleural view if p was at least
0.5 and parenchymal view otherwise.

Multiple convolutional neural network architectures were considered for the frame
classification task. The weights of each architecture were initialized with pretrained Im-
ageNet [27] weights. A variable number of the first layers in the architecture were kept
frozen throughout training. We observed significant overfitting with all architectures stud-
ied other than EfficientNetB0: The other architectures achieved an area under the receiver
operating curve (AUC) score of at least 0.999 on training data, but consistently obtained
significantly lower accuracy on the validation set (see Appendix A). Most of these alterna-
tive architectures have more capacity than required for the present task. The EfficientNetB0
architecture, which is more compact, exhibited less overfitting. It was therefore designated
as the frame classification architecture. In addition, EfficientNetB0 offers a significant boost
in training and inference efficiency compared to other contemporary deep convolutional
architectures [26].

2.2.5. Clip Predictions

Since the neural network performed frame-based classification, it was necessary to
devise a method to convert a series of outputs into clip-level predictions. Classifying clips
in this manner facilitates a direct comparison against our expert annotations and more
faithfully resembles clinical, dynamic LUS interpretation. Our approach was based on the
clip classification method described in [28]. In summary, the clip prediction was taken
to be the positive class if there was at least τ ∈ N consecutive frames with a prediction
probability exceeding the classification threshold t ∈ [0, 1]. Such logic is also applicable to
LUS view classification because some frames in pleural clips may resemble parenchymal
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frames due to the curtain sign artifact (created by movement of aerated lung into and out of
view during inspiration and expiration), but not vice versa. To reduce noise in frame-level
predictions, we smoothed the frame-level predictions by computing a moving average with
a window of width w ∈ N before applying the existing clip classification method. A visual
representation of the hyperparameters involved in generating a clip-level prediction from a
series of constituent frame-level predictions is provided in Figure 2.

Figure 2. Visual representation of the clip prediction method. For each clip, the raw frame-level
prediction probabilities outputted from the neural network (blue curve) are smoothed by computing
a moving average (black curve): each point (red dot) on the smoothed prediction curve represents
the average of a set of w consecutive frame-level prediction probabilities (red curve). The clip is
predicted as pleural if τ contiguous smoothed predictions meet or exceed the classification threshold
t, and parenchymal otherwise. A true positive (pleural) clip is shown, as predicted using the optimal
hyperparameter set (τ = 7, t = 0.7, w = 17).

2.2.6. Validation Strategy

To verify the choice of model architecture and clip prediction hyperparameters, 10-fold
cross validation was conducted with the training set. The folds were split by patient ID
to prevent data leakage. Values of τ, t, and w were selected via grid search to maximize
the average validation set accuracy across all folds. All 14,400 parameter combinations
across τ, w ∈ {1, 2, . . . , 40} and t ∈ {0.1, 0.2, . . . , 0.9} were considered in the analysis. We
then completed a final training run with a dedicated test split to estimate how well the clip
classification method would perform on unseen clips from our database.

To evaluate the clip classification method on unseen data, we sampled a disjoint
holdout set of n clips from the unannotated LUS database. The holdout set (described
in Table 1) was annotated by the standard team as outlined in Section 2.1. To determine
the size of the holdout set, we conservatively assumed that the standard annotation team
would achieve 96% accuracy on unseen data when compared with the clinical expert’s
annotations. Given that we require 95% confidence that the accuracy on the holdout set
will lie within ±M of the conservative estimate of A, n can be calculated using Cochran’s
formula for sample size estimation [29].

n =
Z2

α A(1 − A)

M2 (1)
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In the above, Zα is the Z-value corresponding to a α confidence range, and M is the
margin of error. Applying Equation (1) with α = 95%, M = 1.25%, and A = 0.960, we
obtained n = 945 for the size of the holdout set. The accuracy of the clip classification
method was compared with that of the standard annotators, where the ground truth was
taken as the LUS expert’s decision.

A summary of the complete view classification workflow described in Section 2.2,
from pre-processing to classification and analysis, is provided in Figure 3.

Figure 3. Summary of the view classification workflow. Data pre-processing: raw clips were masked
to remove information external to the ultrasound beam, then deconstructed into constituent frames.
Frame classification: processed frames were inputted into the neural network, which predicted the
probability that the input frame was a pleural view. Clip classification: A moving average was
computed over the series of composite frames of a given clip. The smoothed frame-level predictions
were then inputted into the contiguous clip prediction method outlined in [28] to generate a whole
clip-level prediction. Analysis: Clip-level predictions were compared to expert clinical annotations.

2.3. Automating the View Annotation Task
2.3.1. Partitioning a LUS Dataset by View

To investigate the utility of the view classifier as an automatic annotation tool, we
deployed the model on a distinct set of 2000 clips from the unannotated LUS database and
partitioned the data by view prediction. The partitioning criteria was based on the predicted
clip-level class as well as the average frame-level prediction probability. In particular,
parenchymal-predicted clips with an average frame-level (pleural) prediction probability
less than 0.3 were selected to form a parenchymal-specific auto-partitioned dataset. An
average frame-level probability of 0.3 was chosen as the threshold for partitioning given
the optimal classification threshold (t = 0.7) that was observed on the validation set (see
Section 3) as well as to minimize the number of pleural clips that would appear in the
partitioned dataset. In total, 823 clips met the partitioning criteria, from which 780 were
randomly selected for inclusion in the final dataset used for the downstream annotation
task. Details of this dataset are available in Table 2.
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Table 2. Data characteristics of the control and auto-partitioned datasets used for the parenchymal-
specific annotation task.

Control Data Auto-Partitioned Data

Clip Label Parenchymal Pleural Parenchymal Pleural

Patients 339 371 660 34

Number of clips 351 383 701 35

Average clips per patient 1.04 1.03 1.06 1.03

Patient overlap across classes 25/685 5/689

Mean age (std) 63.7 (18.1) 64.0 (16.1) 64.0 (16.6) 63.7 (18.3)

Sex
Female: 117 (35%) Female: 156 (42%) Female: 259 (39%) Female: 12 (35%)
Male: 193 (57%) Male: 201 (54%) Male: 374 (57%) Male: 21 (62%)

Unknown: 29 (9%) Unknown: 14 (4%) Unknown: 27 (4%) Unknown: 1 (3%)

2.3.2. The Annotation Task

To study the effect of automatic view partitioning on annotator efficiency, a down-
stream parenchymal-specific annotation task was performed on the aforementioned auto-
partitioned dataset. The same annotation task was also performed on a 780-clip, distinct,
non-partitioned (control) dataset for comparison (for details, see Table 2). Four experienced
members of our annotation team participated in the task, with each member annotating
195 clips from both the control and auto-labelled set as separate annotation tasks (sprints).
Sprints were completed in a randomized order, with two members completing the control
sprint first, and two completing the auto-partitioned sprint first. Annotators were asked
to label all parenchymal and non-usable clips according to the workflow described in
Section 2.1, while skipping all pleural clips. The effect of automatic view annotation on our
overall annotation workflow is outlined in Figure 4.

Figure 4. Annotation workflow with (green) and without (blue) automatic view annotation for
a parenchymal-specific annotation task. Annotators need only be provided with parenchymal-
predicted clips for a parenchymal-specific labelling task, resulting in more annoated parenchymal
clips per labelling sprint and fewer skipped pleural clips, saving annotation time.
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2.3.3. Statistical Analysis

A one-way paired Student’s t-Test was used to compare control to auto-annotated for
each annotation efficiency metric to test for statistical significance. All data are presented
as mean ± standard deviation.

3. Results

3.1. View Classifier Validation

Table 3 details the results of the 10-fold cross validation experiment as well as the
performance on the holdout set. The model was evaluated in terms of positive (pleural)
and negative (parenchymal) predictive value, given the intended function as an automatic
annotation tool: if partitioning for a parenchymal-specific labelling task, then we would aim
to minimize the number of false negatives in our dataset (maximize the negative predictive
value). If partitioning for a pleural-specific labelling task, then we would aim to minimize
the number of false positives in our dataset (maximize the positive predictive value).

Table 3. Metrics for a 10-fold cross validation experiment and the holdout set inference.

Accuracy
Negative

Predictive Value
Positive

Predictive Value
AUC

Dataset Fold Frames Clips Frames Clips Frames Clips Frames

Training

1 0.944 0.966 0.933 0.972 0.957 0.961 0.973
2 0.930 0.947 0.897 0.938 0.963 0.954 0.969
3 0.938 0.969 0.910 0.952 0.972 0.986 0.972
4 0.913 0.935 0.895 0.921 0.940 0.952 0.941
5 0.907 0.939 0.856 0.908 0.974 0.970 0.963
6 0.851 0.872 0.885 0.855 0.812 0.893 0.931
7 0.914 0.939 0.891 0.935 0.947 0.943 0.956
8 0.922 0.933 0.916 0.951 0.932 0.911 0.971
9 0.917 0.939 0.883 0.926 0.968 0.952 0.966

10 0.890 0.919 0.864 0.891 0.920 0.951 0.940

Mean 0.913 0.936 0.893 0.925 0.935 0.947 0.959
(STD) (0.025) (0.027) (0.022) (0.034) (0.046) (0.027) (0.015)

Holdout − 0.912 0.925 0.869 0.881 0.969 0.975 0.966

3.1.1. Frame-Based Performance

The area under (AUC) the receiver-operator curve (ROC) of our frame-based neural
network averaged 0.959 (±0.015) on our 10-fold cross validation experiment (Figure 5A)
and 0.966 (Figure 5B) on our unseen holdout set. The corresponding frame-level confusion
matrices indicated a low proportion of incorrect predictions (Figure 5C,D). This frame-wise
performance was deemed satisfactory by clinical team members.

3.1.2. Clip-Based Performance

To evaluate our classifier at the clip-level, an optimal clip classification hyperparameter
set was required. The parameter set (τ, t, w) = (7, 0.7, 17) was found to maximize
the average validation set accuracy across each fold for each τ, w ∈ {1, 2, . . . , 40} and
t ∈ {0.1, 0.2, . . . 0.9}. The clip-wise performance metrics reported in Table 3 were obtained
using this designated parameter set. As shown in Figure 5, the corresponding clip level
confusion matrices for both the 10-fold cross-validation experiment (Panel E) and inference
on the holdout set (Panel F) showed a high percentage of correct predictions.

Using the results of the holdout set inference, we then sought to estimate how the
model would perform if deployed on the remainder of our LUS database as an automatic
view annotation tool. By considering the clip-level accuracy obtained on the holdout set
(0.925) as a point estimate of our classifier’s performance, we applied Cochran’s formula
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(Equation (1)) to estimate that the true accuracy on the remaining unannotated database
would lie within a range of 0.925 ± 0.017 with 95% confidence. Therefore, we estimate that
the true accuracy, applied to the entire LUS database, is within [0.908, 0.942] at the clip level
with 95% confidence. The accuracy of our clinical annotation team, as evaluated on the
same holdout set, was 0.991.

Figure 5. Receiver-operator characteristic curves with corresponding frame (green) and clip-based
(blue) confusion matrices for the 10-fold cross validation experiment (A,C,E) and holdout set infer-
ence (B,D,F). (A) AUC of the 10-fold cross validation experiment averaged 0.959 (±0.015) with the
corresponding frame and clip-based confusion matrix results in (C) and (E), respectively. (B) Inference
on the holdout set yielded an AUC of 0.966 with the corresponding frame and clip-based confusion
matrix results in (D) and (F), respectively.

3.1.3. Frame-Based Explainability

To audit the neural network decisions and instill further confidence in our model at
the frame-level, a series of Grad-CAM++ [30] explanations for unseen frames was manually
examined by annotators. Annotators largely agreed that the heatmaps highlighted regions
considered important for discerning the view of a LUS frame. Figure 6 provides some
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illustrative examples of correctly and incorrectly classified frames. A post hoc error analysis
by clinical team members revealed that false negative predictions were most common
for frames where the diaphragm was not visible or obscured. This observation further
supports the model’s decision-making ability, given that for a clinician, the diaphragm is a
critical structure required for the sonographic landmarking of the pleural view.

(A) True positive (B) True negative (C) False positive (D) False negative

Figure 6. Selected Grad-CAM++ explanations for the neural network model view predictions for
single LUS frames. Red regions were the most important to the prediction. The true positive (A) is
confirmed by the heat map highlighting a pleural effusion which is only seen in the pleural view,
and the true negative (B) highlights an A line, or reverberation, artifact seen in parenchymals views.
The false positive (C) highlights the heart likely mistaken as an abdominal organ found in pleural
views, and the false negative (D) highlights transient parenchymal tissue that comes into frame
during inspiration.

3.1.4. Clip-Based Explainability

Although informative, many LUS artifacts cannot be fully captured by static frame-
based explainability methods given the dynamic nature of clip acquisition and interpreta-
tion. Therefore, to investigate these dynamic artifacts in detail and gain further confidence
in our clip-level predictions, we sought to visualize how the predicted frame-level probabil-
ities change over the duration of a given clip. To do so, we generated prediction probability
time series plots and overlaid them onto the respective masked LUS clips. A temporal
indicator was then added to the graph to create an animation. Illustrative examples of
these plots for correctly predicted and incorrectly predicted clips are given in Figure 7, with
corresponding animations linked in the figure caption. A clinical post hoc analysis of these
animations revealed that our clip-prediction method, in general, is successful in generating
accurate clip-level predictions when dynamic artifacts common to LUS interpretation are
observed. In particular, the majority of clips displaying the curtain sign artifact are correctly
predicted as pleural (Figure 7A; Figure A2A), despite the oscillation in frame-level predic-
tion probability that is observed (and expected). Furthermore, analysis of our incorrectly
predicted clips revealed that false positives and negatives were commonly the result of
poor acquisition technique. For example, there were several cases where the LUS user
moved between parenchymal and pleural views during the same clip (for an example, see
Figure A2G). There were also cases where structures indicative of the pleural view, such as
the diaphragm or the liver, were either not visualized or were obscured by rib shadowing
artifacts (Figure A2F) or aerated lung (Figure A2H).
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Figure 7. Pleural prediction probability time series for selected true positive (A), true negative (B),
false positive (C), and false negative (D) clips. The true positive (A) clip displays the curtain sign
artifact which indicates the lack of pleural pathology (consolidated lung or pleural effusion). The true
negative (B) clip displays normal lung parenchyma (A line pattern) bordered by rib shadows. The
false positive (C) clip contains heart tissue, which the model likely mistook for an abdominal organ
usually seen in pleural views. The diaphragm is largely missing from the false negative clip (D), with
only a sliver appearing on a few occasions that correspond to bursts in pleural prediction probability;
however, the average probability does not remain above the classification threshold long enough to
meet the contiguity threshold. Supplementary Videos S1–S4.

3.2. Automating the View Annotation Task
3.2.1. Performance on an Auto-Partitioned Dataset

Of the 780 clips included in our disjoint dataset auto-partitioned by parenchymal view
prediction, 701 were identified as true parenchymal views by our clinical team. Of the
79 clips remaining, 35 were misclassified as pleural views and 44 were discarded for quality
control, as described in Section 2.1. Excluding the discarded clips from the analysis, our
classifier achieved an accuracy of 701/736 = 0.952 on this unseen dataset. This is equivalent
to the negative predictive value, given that no pleural predictions were included in the
dataset. Comparing these results to that of our holdout set and cross validation experiment,
we observed a 7.1% and 2.7% improvement in negative predictive value, respectively. This
increase in performance is likely the result of our partitioning criteria: By selecting clips
with a pleural prediction probability less than 0.3, we reduced the number of false positives
appearing in our final partitioned dataset.

3.2.2. Annotation Efficiency

Automatically partitioning by view significantly increased the efficiency of a down-
stream parenchymal-specific annotation task—the number of relevant (parenchmal) clips
included in the 780-clip datasets increased from 351 to 701, while the number of irrelevant
(pleural) clips decreased from 383 to 35. The number of clips discarded for quality control
was similar (44 in the auto-partitioned dataset and 46 in the control dataset). The lower
prevalence of pleural clips in the auto-partitioned dataset (−45%) resulted in significant
time savings for annotators, as the average time required to skip a pleural clip was 8.5 s
(averaged over the combined 1560-clip dataset). As shown in Figure 8A, the annotators
produced more relevant parenchymal labels/hour in the auto-partitioned sprints (176 ± 30)
than in the control sprints (121 ± 24; p = 0.04). The increase in parenchymal labels/hour
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corresponded with a decrease in the number of irrelevant pleural clips being skipped
per hour (Figure 8B; 131 ± 11 (control) vs. 9 ± 4 (auto-partitioned); p < 0.001) and the
time spent skipping pleural clips (Figure 8C; 12.6 ± 5.3 min (control) vs. 2.1 ± 0.8 min
(auto-partitioned); p = 0.02).

Figure 8. Efficiency analysis of control (non-partitioned) and auto-partitioned (parenchymal-
predicted) sprints from the parenchymal-specific labelling task. Time metrics exported from the
labelling platform were used to determine the rate of parenchymal labels/hour (A), skipped pleural
clips/hour (B), and the time spent skipping pleural clips (C) for each of the four annotators. The
diamond represents the mean, and error bars represent standard deviation

4. Discussion

In this work, a method capable of distinguishing between parenchymal and pleural
LUS views with 92.5% accuracy was developed, validated, and deployed as an automated
view annotation tool. The automatic partitioning of a 780-clip LUS dataset by view led to a
42 minute reduction in downstream manual annotation time and resulted in the production
of 55 ± 6 extra relevant labels per hour. Our methods form the foundation for an improved
annotation workflow that is more efficient, more cost-effective, and applicable to similar
hierarchical labelling tasks.

The performance of our clip prediction method on unseen data (displayed in Table 3)
was deemed acceptable for internal annotation purposes. Although the accuracy trailed
6.5% behind the clinical annotation team, we demonstrated that implementing an auto-
matic annotation workflow resulted in significant time savings on a sample downstream
annotation task. In particular, by not examining the extra 348 irrelevant pleural clips
screened out by the view classifier in our sample 780-clip datasets, the annotation team
saved 42 min. Extrapolating these results to our remaining unannotated 100,000-clip LUS
database, we estimate that automatic view annotation would save the annotation team
over 4 days (8.5 s × (0.49 − 0.04)× 100, 000 clips × 1 day/86 400 s) when accumulating a
dataset of 45,000 parenchymal clips (assuming the same false positive rate of our sample
auto-partitioned dataset (0.04), pleural frequency of our sample control dataset (0.49), and
average time to skip a pleural clip (8.5 s, see Section 3.2.2)). Expensive expert annotation
efforts could then be reallocated to more challenging annotation tasks.

Our approach differs from other automated workflow-enhancing annotation strategies,
due to the hierarchical nature of the annotation task at hand. First, we require image-level
LUS data only, whereas many others [23–25] rely on the presence of additional text data
from corresponding clinical reports. Secondly, unlike other methods that seek to minimize
the number of annotations required for a specific supervised learning task [20,21], we
sought to minimize the time required to annotate a dataset of fixed size with multiple
relevant labels downstream in the hierarchy (Figure 1). The resultant annotated dataset is
more versatile, since it can be used in the development of multiple classifiers. Further, a
similar approach could be taken to automatically partition all parenchymal clips into sets
containing either A lines or B lines [28]. Annotation tasks deeper in the hierarchy include
lung sliding identification (for clips containing A lines) and B line severity classification
(for clips containing B lines).
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Despite the aforementioned novelties, the present study is not devoid of limitations.
The frame classifier was trained on data from one healthcare institution, hindering applica-
tion to datasets gathered from external institutions. For most of the downstream annotation
tasks, external validation is central to the establishment of model generalizability. In fu-
ture work, this could be addressed by fine-tuning our classifier on data from external
healthcare institutions.

Another future investigation could focus on retraining the frame classifier with an
augmented training set that includes automatically annotated LUS clips. Gu et al. [22]
witnessed an improvement in model performance using the above procedure. Second,
given the comparatively lower metrics for pleural views (likely due to the greater diversity
of both radiographic and clinical findings compared to parenchymal views), increasing the
proportion of pleural clips in the training set may improve performance.

The classifier developed in this work has utility beyond automatic view annotation.
Firstly, it may form the foundation for novel classifiers capable of identifying unique
temporal LUS signatures. For example, by visualizing frame prediction probabilities over
time, we identified a signature oscillatory pattern that could potentially be used to identify
the curtain sign pattern (for examples, see Figures 7A and A2A). In terms of clinical utility,
the step-wise deployment of relevant classifiers (view, A line vs. B line, lung sliding, B line
severity, etc.) could form the backbone of completely automated LUS interpretation at the
bedside. View classification would act as the first step in this hierarchy, ensuring that a
potentially novice user has the ultrasound probe in the correct location.

5. Conclusions

We describe the development of a deep learning model to accurately partition a
large LUS dataset by view. To our knowledge, this is the first description of a method
wherein a relatively small subset of a dataset was used to develop a classifier that can
automatically partition the rest of an unannotated dataset. Our automated approach
considerably improved annotation efficiency, resulting in higher throughput relevant to the
annotating task at hand. We propose that this approach can be applied to other unannotated
datasets to save considerable manual annotation time and effort. In the clinical environment,
view classification could form the backbone of a completely automated LUS interpretation
system, where clips are triaged to appropriate classifiers based on the predicted view.
Future work involves automatically partitioning the remaining unannotated portion of
our LUS database based on other clinical findings downstream in the hierarchy to further
optimize annotation resource allocation.
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Appendix A. Alternative Model Architectures

Five neural network architectures were initially investigated. Initial training exper-
iments were conducted for random subsets of the training data, with a smaller subset
apportioned for validation. As shown in Table A1, highly parameterized architectures
tended to overfit to the training set. EfficientNetB0 was selected due to its lightweight
architecture and least observed overfitting.

Table A1. Performance metrics for model alternatives during initial experimentation, along with
number of parameters. Highly parameterized models exhibited overfitting.

Base
Accuracy AUC

Parameters
Train Validation Train Validation

Inceptionv3 [31] 0.9996 0.9207 1.0000 0.9362 2.18 × 107

ResNet14v2 [32] 0.9976 0.9307 0.9999 0.9600 1.45 × 106

ResNet50v2 [32] 0.9995 0.9465 1.0000 0.9648 2.36 × 107

EfficientNetB0 [26] 0.9471 0.9021 0.9887 0.9595 4.21 × 106

EfficientNetB7 [26] 0.9981 0.9194 0.9999 0.9438 6.44 × 107

Appendix B. Training Details

Here we provide further details regarding the training of the EffientNetB0 convolu-
tional neural network described in Section 2.2.4.

Multiple measures were applied to combat overfitting. Dropout regularization [33]
(with dropout rate 0.3) was applied prior to the penultimate fully connected layer, and
L2 regularization was included in the loss (with λ = 10−4). Bayesian optimization was
conducted to refine the hyperparameters [34]. The hyperparameters explored and their
corresponding ranges were as follows: learning rate in [10−6, 10−3], dropout regularization
rate in [0.0, 0.6], λ in [10−9, 10−5], and the number of nodes in the second-last fully connected
layer in {16, 32, 64, 128}.

The model was trained for up to 15 epochs to minimize the binary cross entropy loss
function. The Adam optimizer [35] was employed with an initial learning rate of 10−6,
which was halved if the loss on a validation set did not decrease for 3 consecutive epochs.
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Further, early stopping was employed if the loss on a validation set did not decrease over 5
consecutive epochs.

All code was written in Python 3.8.5 and the model was implemented using Ten-
sorFlow 2.5. The hardware used for training experiments contained an Intel® Core™

i9-10900K CPU at 3.7 GHz and a NVIDIA® GeForce RTX® 3090 GPU. Using this hardware,
the inference runtime of the model, averaged over 1000 trials, was 48 ms.

Appendix C. Explainability

Here we provide extra examples of both frame-based (Grad-CAM++; Figure A1) and
clip-based (pleural probability time series; Figure A2) explanations.

(A) True positive (B) True positive (C) True negative (D) True negative

(E) False positive (F) False negative (G) False negative (H) False negative

Figure A1. Additional Grad-CAM++ heatmaps from true positive (A,B), true negative (C,D), false
positive (E), and false negative (F–H) example frames. Red regions were the most important to the
prediction. True positive frames demonstrate activation on abdominal organs (A) and areas featuring
pleural effusion, consolidation, and diaphragm (B). True negative frames demonstrate activation on
the bat wing sign (pleural line bordered by rib shadows), A line artefacts (C) and B line artefacts (D).
The false positive frame (E) shows activation proximal to the pleural line, likely because the clip was
under-gained and lacked appreciable features of typical parenchymal clips. False negative frames
showed activation in areas of aerated lung despite the presence of abdominal organs (F,H) and
features found in parenchymal clips (pleural line and A lines) due to the probe being positioned
superiorly during the first part of the acquisition (G).
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Figure A2. Additional Pleural predication probability time series for selected true positive (A,B),
true negative (C,D), false positive (E), and false negative (F–H) clips. Only one additional false
positive example is displayed due to the relatively low number of false positives encountered.
(A) True positive example displaying the curtain sign, with corresponding predictions oscillating
between parenchymal and pleural as expected. (B) True positive example with strong pleural
predictions throughout, corresponding to a clip that demonstrated the diaphragm and liver on screen
right, with pleural effusion and consolidated lung on screen left. (C,D) True negative examples
corresponding to an A-line pattern clip with absent lung sliding (C) and a B-line pattern clip (D).
(E) False positive example, corresponding to a clip that was under-gained and relatively deep for a
parenchymal acquisition, which hindered visibility of normal parenchymal artefacts and landmarks.
(F,G) False negative examples corresponding to clips where: (F) abdominal organs were visible, but
the diaphragm was obscured by a rib shadow; (G) the first part of the clip was parenchymal, then the
operator moved the probe inferiorly to the level of a pleural view (though the predictions still did not
meet threshold for pleural classification); (H) abdominal contents were obscured by aerated lung, but
come into view at the end of the clip, corresponding to an increase in pleural prediction probability
that met the classification, but not the contiguity threshold. Supplementary Videos S5–S12.
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Abstract: The application of artificial intelligence (AI) algorithms in medicine could support diag-
nostic and prognostic analyses and decision making. In the field of dermatopathology, there have
been various papers that have trained algorithms for the recognition of different types of skin lesions,
such as basal cell carcinoma (BCC), seborrheic keratosis (SK) and dermal nevus. Furthermore, the
difficulty in diagnosing particular melanocytic lesions, such as Spitz nevi and melanoma, considering
the grade of interobserver variability among dermatopathologists, has led to an objective difficulty in
training machine learning (ML) algorithms to a totally reliable, reportable and repeatable level. In
this work we tried to train a fast random forest (FRF) algorithm, typically used for the classification
of clusters of pixels in images, to highlight anomalous areas classified as melanoma “defects” fol-
lowing the Allen–Spitz criteria. The adopted image vision diagnostic protocol was structured in the
following steps: image acquisition by selecting the best zoom level of the microscope; preliminary
selection of an image with a good resolution; preliminary identification of macro-areas of defect
in each preselected image; identification of a class of a defect in the selected macro-area; training
of the supervised machine learning FRF algorithm by selecting the micro-defect in the macro-area;
execution of the FRF algorithm to find an image vision performance indicator; and analysis of the
output images by enhancing lesion defects. The precision achieved by the FRF algorithm proved
to be appropriate with a discordance of 17% with respect to the dermatopathologist, allowing this
type of supervised algorithm to be nominated as a help to the dermatopathologist in the challenging
diagnosis of malignant melanoma.

Keywords: artificial intelligence; AI; malignant melanoma; skin; software; algorithms; fast random
forest (FRF)
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1. Introduction

After the foundations of artificial intelligence (AI) were established, as postulated by
the mathematician Alan Mathison Turing [1], the study and the analysis of AI underwent
an important halt under the weight of expectations until the end of the last century; from
these years, indeed, a new wave of technological development allowed the functional
enhancement of computers, which became more and more powerful and complex [2]. Even
today it is not clear whether a machine (computer) could be able to think, but certainly
the development of increasingly complex systems, such as convolutional neural networks
(CNNs) [3], has allowed a rapid increase in performance not only in fields of computer
science, but also in different fields, such as medical, pathological and even subclassified
dermatopathological fields [4,5].

The first attempts based on convolutional neural networks (CNNs) have already
proven to be up to expectations, but the objective difficulty in reproducibility of the criteria
for labeling a lesion as malignant or benign has also been reflected in the training of
AI applied to differential diagnostics of atypical pigmented lesions. [3,4]. Indeed, it is
not always easy to diagnose melanoma by analyzing the images with a “naked eye”
approach. The problem has been known for some time and is classically defined as the
“gray zone” of dermatopathology: in fact, beyond the extremes of the spectrum of benign
and malignant, there is a fairly large number of atypical pigmented lesions that it is
not easy to define “tout-court“ as having benign or malignant biological behavior. This
uncertainty is the consequence of the fact that the criteria normally used to define a lesion
as malignant melanoma become conflicting and blurred in certain situations; for example,
nevi with severe dysplasia, Spitz nevi with dysplastic aspects (so-called SPARK nevus)
or melanocytic lesions with an uncertain potential for malignancy such as MELTUMP or
SAMPUS. The loss of criteria defined and recognized by all, as well as the interpretative
subjectivity, has repercussions on the reduction or, sometimes, loss of agreement between
dermatopathologists, and also (as some studies have highlighted) even on intraobserver
agreement over time [2–4].

In this work we tried to train the proposed fast random forest (FRF) algorithm to be
able to support the specialist to highlight automatically the “anomalous pixel regions” and
to estimate a possible risk by quantifying the percentage of these regions with atypical
morphological features starting from routine histopathological images (digital pathology).

2. Materials and Methods

2.1. Data Acquisition

For training, validation and testing, we used a dataset of 125 photomicrographs of
63 patients suffering from malignant melanoma, originally taken at 1280 × 1080 pixels
(SONY® Sensor IMX185, Tokyo, Japan) at 10× magnification, obtained from blocks of ma-
terial fixed in formaldehyde and embedded in paraffin (FFPE) from 1 January 2020 to 1 Jan-
uary 2021. For each patient, demographic and clinical characteristics, including the Breslow
thickness and other histopathological features, were recorded for routine clinical practice.
Informed consent was obtained from all patients involved and the study was approved
by the local ethical committee. In total, 63 specimens (mean length ± SD 1.64 ± 0.93 cm)
were processed. For all specimens, hematoxylin and eosin (H&E) staining was used for
histopathological analysis and, in some cases, ancillary immunohistochemical techniques
were performed for a final correct diagnosis. For each of them, each individual case
was analyzed and a more representative slide was chosen by two dermatopathologists
with a lot of experience in skin histopathology (G.C. and A.C.). After collecting all the
slides, we proceeded to identify at least 5 potential defects (hotspots) normally used in
routine dermatopathological diagnostics to differentiate a dysplastic nevus from a malig-
nant melanoma. The defects analyzed were divided into architectural (disposition of the
single and aggregates of melanocytes, symmetry/asymmetry of the lesion in question)
and cytological (nuclear atypia, pagetoid spreading of the melanocyte, possible necrosis)
groups following the Spitz–Allen criteria [6] (Table 1).
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Table 1. Summary of these criteria.

Dysplastic Nevus Malignant Melanoma

Architectural criteria (mandatory, major)

Lentiginous or contiguous melanocytic
hyperplasia

Poor circumscription of the intraepidermal
melanocytic component of the lesion

Focal melanocytic atypia

Increased number of melanocytes, solitary and
in nests, within and above the epidermal basal
cell layer and within adnexal epithelia
(pagetoid spreading)

Marked variation in size and shape of the
melanocytic nests

Absence of maturation of melanocytes with
descent into the dermis

Melanocytes in mitosis

Architectural criteria (minor, at least 2)

“Shoulder phenomenon” Melanocytes with nuclear atypia

Fusion of epithelial cones Necrosis or degeneration of melanocytes

Subepidermal concentric lamellar fibrosis

2.2. Fast Random Forest (FRF) Image Classification

The artificial intelligence image processing algorithm used to classify and to enhance
anomalies contained in the microscope image is the fast random forest (FRF) algorithm. The
algorithm was designed by using a Java-based script framework. The learning process of the
algorithm is based on a preliminary classification of clusters of pixels of the same image [5]
including possible melanoma areas: the preliminary identification of melanoma morpho-
logical features represents the labeling approach typical of machine learning-supervised
algorithms. The FRF testing provides as output the processed image with color-enhanced
melanoma pixel clusters (each class selected in the learning step is represented by a color),
probabilistic maps (high probability highlighted with white to identify an anomaly in a
specified image region) and algorithm performance indicators (precision, recall, and re-
ceiver operating characteristic (ROC) curves [5]). The FRF algorithm executes an ensemble
of decision trees able to classify clusters of pixels constituting an image with good accuracy,
low computational cost and performing a multiclass segmentation [7–12]. The classification
process is addressed by labeling clusters of pixels defined by the same features (clusters of
gray pixel intensities). At the beginning, decision trees randomly select clusters of pixels
by splitting the features at each node. The final classification of image areas are a result of
the average classification of all the trees constructed during the algorithm iterations. The
method is sketched in Figure 1, where it is possible to distinguish the following phases:

• Different clusters of pixels (features) are used for the training model;
• A marked region is distinguished as the features to find in the same image to process;
• The RF is executed by finding similar features in the same image (similar features of

similar clusters having a similar gray pixel intensity distribution).

The training model can be constructed by setting the following tools or procedures
(algorithm parameters):

• Gaussian blur filtering, obtaining a blurred image to process;
• Sobel filtering, which is able to approximate the image by a gradient of the intensity;
• Hessian filtering, defined as:

H =

(
h1 h2
h3 h4

)
(1)
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where h1, h2, h3 and h4 are the elements of the Hessian matrix formed by the second-order
partial derivatives stating the variation of the intensity of each pixel (derivative at the pixel
point) in the x, y and xy direction (plane directions of the 2D image).

Figure 1. Image processing procedure based on pixel feature training and random forest classifier.

Defined by a Trace, a determinant (Det), a first eigenvalue (Fe), a second eigenvalue (Se),
an orientation (Or; angle of the maximal second derivative), a Gamma, and a Square Gamma:

Trace = h1 + h4 (2)

Det =
√

h1
2 + h2h3 + h4

2 (3)

Fe =
h1 + h4

2
+

√
4h22 + (h1 − h4)

2

2
(4)

Se =
h1 + h4

2
−

√
4h22 + (h1 − h4)

2

2
(5)

Or =
1
2

arccos(4h2
2 + (h1 − h4)

2) (6)

Gamma = t4(h1 − h4)
2((h1 − h4)

2 + 4h2
2) with t = 13/4 (7)

Square Gamma = t2((h1 − h4)
2 + 4h2

2) with t = 13/4 (8)

• Difference of Gaussian functions;
• Membrane projections due to the rotation of the original image kernel;
• Main pixel parameters (mean, minimum, maximum, etc.);
• Anisotropic diffusion filtering preserving sharp edges;
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• Bilateral filtering preserving edges;
• Lipschitz filtering (preserving edges and decreasing noise);
• Gabor filtering (mainly adopted for texture analysis);
• Derivative filtering estimating high order derivatives;
• Structured filtering estimating the eigenvalues;
• Shifting of the image in different directions.

The optimized hyperparameters and filter properties applied for the image FRF pro-
cessing (feature training) are: the Gaussian blur filter, Hessian matrix filter, membrane
projections, membrane thickness equal to 1, membrane patch size equal to 19, minimum
sigma equal to 1, and maximum sigma equal to 16.

In the proposed approach, the same image is adopted both for the training and for
the testing: each image is converted into a grayscale image, and in the same image [12] the
classes training the model are identified (classes of similar features including those of the
Spitz nevi).

Different algorithms can be applied to calculate automatically the different areas [13].
In order to enhance classified clusters in the probabilistic image, a threshold filtering adjust-
ing the intensities of the output grayscale image was adopted (see example of Appendix A):
this setting is important to estimate with good precision the areas enclosing dermatological
defects. The testing images were preliminary selected, taking into account images with
certain defects in order to train the FRF algorithm efficiently.

The adopted method is summarized by the following steps:

- A preliminary selection of images focusing the attention on the characteristics of
dysplastic nevi and malignant melanoma (validation of the training model focusing
on this classification);

- Performing of a training of the selected images (FRF training model based on the classi-
fication of anomalous image areas embedding features of dysplastic nevi and MM, and
the identification of other no-risk areas as structures of clusters of grayscale pixels);

- Setting the optimization of the FRF algorithm parameters for the best identification of
classes of the testing dataset;

- Testing the execution of the FRF algorithm’s detection and estimation of anomalous
areas by applying, after the analysis, image threshold filters (for the calculus, all the
images have the same dimension of 1000 pixels × 2000 pixels);

- Verification of the algorithm performance by estimating its precision.

3. Results

For five pixel clusters of the same dimensions (closest to the particular anomaly), a
number of about 300 instances (computational cycles) occurs to achieve the maximum
precision (equal to 1), with a computational cost of about 2 min using a processor, the
Intel(R) Core(TM) i5-7200U CPU, 2.71 GHz. The minimum recall performance parameter
(near to 0) is achieved in about 392 instances. The ROC curve (representing the true positive
rate versus the false positive rate in the plane) is matched with the ideal curve of a perfect
classifier (Figure 2). The performance indicators confirm the correct setting of the FRF
hyperparameters.

Appendix B illustrates the FRF probabilistic images of some of the classified areas.
The algorithm performance is estimated by the precision parameter representing the metric
of the FRF score (probability of algorithm error). A maximum precision of 1 is achieved
after about 250 iteration steps (see Figure 2).
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Figure 2. This figure illustrates the error metric (precision parameter [5]) of the adopted FRF algorithm
versus iteration number (instance number) by proving that the final results are characterized by the
maximum precision.

An example of image classification is illustrated in Figure 3 where C1, C3 and C4 are
the four classes used to construct the learning model (areas having similar characteristics).

Figure 3. Example of analysis and selection of defects (such as architectural and cytological atypia,
pagetoid spreading, possible ulceration) in the macro-area of an image of malignant melanoma. Note
the different colors of the circles/ellipses used to subclassify the anomalies (defects).

In Tables 2 and 3 the FRF enhancement of possible classified defects are shown by
estimating the percentage coverage in 1 mm × 2 mm images.
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Table 2. Example of analysis of two micrographs of malignant melanoma in which some constituent
elements of the Allen–Spitz criteria have been analyzed, such as: symmetrical or asymmetrical lesion,
clustering of melanocytes in nests or presence of single melanocyte, and eventual pagetoid spreading.

Original Image Defect Type (Name)
Defect Cluster (Enhanced

Probability Image)
Percentage Presence
on the Whole Image

Extension [mm2]

IMG00131 EE // 5.3% 0.106

IMG00132 EE // 4.1% 0.082

Table 3. Example of two other images whose cytological characteristics were studied, including:
cellular atypia, eventual pagetoid spreading, mitosis and nuclear pleomorphism.

Original Image Defect Type (Name)
Defect Cluster (Enhanced

Probability Image)
Percentage Presence
on the Whole Image

Extension [mm2]

IMG00150 // 6.6% 0.132

IMG00151 // 8.8% 0.176

Analyzing the discrepancy between the performance of the FRF algorithm and the
diagnosis by the dermatopathologist, a value of 17% was found, which is slightly lower
than that described in the interobserver variability (about 25–26%).

4. Discussion

Historically, the histopathological diagnosis of malignant melanoma has always fluc-
tuated from rather simple and easy to classify cases up to very complex and difficult to
interpret cases [14], considering that, in the context of human pathology, MM is defined as
the “great mime” [15]. For example, in a recent 2017 paper, Elmore G.J. et al. [15] analyzed
the diagnostic results of 187 practicing pathologists in 10 states by comparing them with
each other and with a consensus diagnosis reached by a group of three experienced der-
matopathologists. The authors asked the 187 pathologists to interpret the same skin lesions
after a certain time range (8 months) in order to have an estimate of the intraobserver read-
ability. The degree of accuracy was very high (about 92%) in the case of diagnosing slightly
atypical pigmented lesions and reached about 72% in the case of invasive melanomas.
Conversely, diagnostic accuracy became much lower in the case of lesions in the spectrum
between these two extremes. For example, fewer than half of diagnoses agreed with expert
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consensus for cases classified as severely atypical lesions, melanoma in situ, or early stage
invasive melanoma. Similarly, over time, the diagnoses of the so-called “gray zone” of
dermatopathology lost intraobserver reproducibility [16].

In this context, the development of artificial intelligence methods applied to pathologi-
cal anatomy [17] had the merit of offering a possibility to understand if the evaluation of a
melanocytic lesion that represented a malignant melanoma could be made more “objective”
compared to lesions not endowed with the potential for malignancy “tout-court”.

This work is based on the definition of the steps to follow to classify malignant
melanoma defects. A metric estimating the precision of the applied FRF algorithm is
applied to estimate the error of the classification. The low computational cost related the
image processing and the use of the same image for the algorithm training allow us to
apply the FRF algorithm to new images without constructing a training model based on
historical images. In this way, we used a set of images of lesions previously diagnosed by
two board-certified dermatopathologists to understand how much the FRF algorithm was
able to assist the pathologist in the decision-making process.

The precision achieved by the FRF algorithm proved to be appropriate, allowing
this type of supervised algorithm to be nominated as a help in the dermatopathological
diagnosis of MM. In particular, analyzing the discrepancy between the performance of the
FRF algorithm and the diagnosis by the dermatopathologist, a value of 17% was found,
which is slightly lower than that described in the interobserver variability (about 25–26%).
These data are similar to that reported by Hekler et al. [18] who, in their paper, trained a
CNN according to a binary model of classification of nevi and melanoma, and reported
a discrepancy value between the trained CNN and dermatopathologist equal to 18% for
melanoma, 20% for nevi and 19% overall. On the other hand, it is important to underline
that any AI algorithm is trained on diagnostic criteria chosen “a priori” by the pathologist
and, therefore, there can similarly be false-positive misdiagnoses: this is the case with
Spitz nevi. Indeed, Hart S.N. et al. [19] trained a CNN for binary classification between
conventional nevi and Spitz nevi. Their algorithm was tested on WSIs of Spitz nevi and
conventional nevi, producing a classification accuracy of 92% overall, based on a sensitivity
of 85% and specificity of 99%. In a second phase of their study, the authors demonstrated
how important it was to improve the diagnostic performance values of the AI algorithm
to allow a dermatopathologist to preselect the areas of interest of the entire WSI, as in the
absence of this, the validation accuracy was unacceptable at only 52%.

All these data agree in allowing us to consider the inclusion of the FRF algorithm in
the normal workflow of histopathological diagnostics. The framework of the FRF algorithm
used in this work is based on Weka [20] libraries implemented in the Java language.

The main motivation is in the novel approach adopted for the algorithm training.
Other studies use a traditional approach based on the discrimination of the training model
and of the testing model, which are performed by adopting different images [21]. In the
proposed approach, it adopts the same image both for the training and for the testing: each
image is converted into grayscale images, and in the same image [12] the classes training the
model are identified (classes of similar features, including those of the Spitz nevi). In this
way the doctor can circle the areas (classes) without having a historical dataset of images.
The algorithm versatility gives an idea of the anomalous distribution (enhancing anomalous
groups of pixels) of malignant areas quickly by estimating the covering percentage.

Furthermore, from a clinical point of view, there have already been numerous papers
published in the literature that have attempted to correlate, specifically, dermoscopic
characteristics with clinical diagnosis. A very interesting contribution by Argenziano
et al. [22] in 2003 evaluated the sensitivity, specificity and, therefore, diagnostic accuracy of
criteria commonly used for the diagnosis of MM. In the paper, 108 melanocytic lesions were
evaluated by 40 experienced dermoscopists in an attempt to evaluate the interobserver and
intraobserver agreement by using four algorithms such as the pattern analysis, ABCD rule,
Menzies method and 7-point checklist. Of all these, there was a good agreement except for
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with the dermoscopic criteria, demonstrating how important it is also in dermoscopy to
adopt more “accurate” parameters.

Limitations

It is important to note that in our paper we used exclusively histopathological (mor-
phological) criteria and, therefore, were subject to limitations including the different sizes
of cancer cells, a concept intrinsic to tumor heterogeneity [23].

5. Conclusions

The FRF images were processed by following a specific image diagnostic protocol,
oriented on reading and algorithm error minimization. An important tool for melanoma
diagnosis is the probability image estimated by the processed FRF output image. The
probability image is useful to better discriminate information about ambiguous lesions. A
single probability image refers to a particular class of “defect” and enhances, by the white
color, the defect distribution in the whole analyzed image. By knowing the dimension of the
acquired microscope image, it is also possible to estimate the defect distribution percentage.
All the adopted approaches are suitable to create a specific image vision platform for
telemedicine digital pathology.
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Appendix A

The enhancement of the classified areas by the FRF algorithm can be performed
by adopting different image processing filters. In Figure A1 different image filtering
approaches enhancing classes and the probabilistic image are shown. The probabilistic
image refers to a particular class related to a defect.
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Figure A1. (a) Original image. (b,c) Images with all detected classes defined by different colors. (d,e)
Probabilistic image and (f) related 3D reconstruction.

Figure A1 indicates possible alternative color schemes to highlight dangerous areas:
the red color of the classified output image (b, c), the white color of the probabilistic images
(d) and the red color of the probabilistic image in a 2D (f) and 3D scheme (g).

Appendix B

The probabilistic images are the output of the FRF algorithm. In Figure A2 some pixel
cluster classifications of the original image of Figure 3 are shown.

Figure A2 is an example that represents different classes, where each one is a proba-
bilistic image with the white color representing the higher probability value to find specific
class features. Alternatively, all classes are identified in the same image by different colors.
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Figure A2. Example of distribution of the probability classes from C1 (low probability of recognition
of the anomaly, black shade) to C4 (high probability of recognition of the anomaly, white shade).
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Abstract: Introduction: This study investigates whether it is possible to predict a final diagnosis based
on a written nephropathological description—as a surrogate for image analysis—using various NLP
methods. Methods: For this work, 1107 unlabelled nephropathological reports were included. (i) First,
after separating each report into its microscopic description and diagnosis section, the diagnosis
sections were clustered unsupervised to less than 20 diagnostic groups using different clustering
techniques. (ii) Second, different text classification methods were used to predict the diagnostic group
based on the microscopic description section. Results: The best clustering results (i) could be achieved
with HDBSCAN, using BoW-based feature extraction methods. Based on keywords, these clusters
can be mapped to certain diagnostic groups. A transformer encoder-based approach as well as an
SVM worked best regarding diagnosis prediction based on the histomorphological description (ii).
Certain diagnosis groups reached F1-scores of up to 0.892 while others achieved weak classification
metrics. Conclusion: While textual morphological description alone enables retrieving the correct
diagnosis for some entities, it does not work sufficiently for other entities. This is in accordance with a
previous image analysis study on glomerular change patterns, where some diagnoses are associated
with one pattern, but for others, there exists a complex pattern combination.

Keywords: NLP; text analysis; nephropathology; text classification; topic modelling; BERT;
transformer encoder; machine learning; deep learning

1. Introduction

Due to complex histomorphological change patterns and diagnoses, nephropathology
is a challenging sub-discipline of surgical pathology [1]. This field is hard to learn for
beginners, which is reflected, among other things, in a steep learning curve. However,
after such a learning process, many assessments by experts in the field show strong inter-
observer agreement between results. The high-level specialization of such pathologists
is achieved by long, tedious training, which makes them as rare as they are necessary [2].
One idea for assisting novices in the learning process is to utilise machine learning (ML)
tools to assist in reaching plausible differential diagnoses or even the correct diagnosis [3,4].
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For instance, there were several works from the field of image analysis or respectively
computational pathology published by many different groups in recent years [5,6]. In
this context, we have also recently published a paper on the classification of glomerular
changes in histological images by means of convolutional neural networks (CNNs). Based
on a defined small number of change patterns, we were able to diagnose entities defined
by only a small number of patterns [7]. For instance, on the basis of images of a patients
glomeruli, amyloidosis and diabetic glomerulopathy are easy to predict [1,7,8]. A diagnosis
like lupus nephritis, which can show a plethora of patterns over time and space (within one
biopsy), is in contrast not predicable solely based on one glomerular change pattern [1,7,8].
Demonstrating that only a part of kidney tissues (in our case glomeruli) is not enough to
make a correct diagnosis is not surprising. It seems logical that at least the entire tissue
needs to be taken into account; if not, disease models or pathophysiological contexts would
have to be included in the diagnostic classification task.

An analysis tool for all kidney tissue compartments, e.g., by combination of a segmen-
tation model to obtain the compartments of interest and subsequent classification, needs to
be trained on larger and diverse data sets. Typically, such image data sets are very sparse or,
respectively, not easy to create. The problem is not so much the preparation of a compilation
of final diagnoses and images, but rather the laborious generation of correct annotations.
As an example, in our recent publication, three experts spent several weeks classifying
individual images in order to generate a sufficiently large data set [7]. For a segmentation
task, where every part of the images needs to be labelled, the effort is significantly higher.

In contrast to this image data scarcity, there is plenty of high-quality text data in the
field of nephropathology. For every kidney biopsy, there is a medical report that contains a
short description of the histology. These texts are each written by a professionally trained
but most likely not-always-available nephropathologist. Furthermore, as mentioned above,
for many entities, there is high agreement between these experts. In summary, most image
data is not very well annotated; however, the quality of most diagnosis text is presumably
very high.

This leads to the idea of using the diagnosis text for analysis, in contrast to our recent
work on image data [7]. In a sense, this text analysis is a surrogate for non-existent image
data and image analysis tools. Analysing texts instead of images, of course, requires
methods of natural language processing (NLP).

Like image analysis, NLP includes a wide range of methods for many different areas
of application. In the medical field, the analysis and especially classification of surgical
pathology report texts is a well-known application. For instance, there are cancer registries
that rely on information extraction from pathology reports or on the classification of such
reports. The manual information extraction from (bio-)medical free-text documents and
especially pathology reports is very time consuming and requires the commitment of
specialists. Automatic, pre-existing NLP-approaches provide a solution to overcome this
obstacle. For the described cancer registry task, Schulz et al. combined several different
classification techniques to extract a particularly large quantity of different information
such as cancer type (by e.g., support vector machine (SVM) or tumor morphology (by e.g.,
convolutional neural network (CNN) with embeddings) from German texts [9]. Besides
this mentioned example, there are already numerous other works for the classification
of medical texts. Fabacher et al. trained an SVM as a binary text-classfier for French
texts [10]. And Oleynik et al. trained an SVM to classify pathology reports according to
the International Classification of Diseases for Oncology (ICD-O) code [11,12]. The aim in
a recent work by Lopprich et al. [13] was to make a manual documentation process more
efficient by using methods of NLP for multiclass classification of diagnostic reports to
automatically document the diagnosis and status of disease of myeloma patients.

Against this background, the main aim of this work was to test if the textural descrip-
tion of the entire kidney tissue in (German) nephropathology reports can be used to make
a diagnosis or respectively assign the report text to the correct diagnosis. For this purpose,
each nephropathological report was divided into two parts, each of which belonged to each
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other: Part one is the microscopic description section; and part two is the corresponding
diagnosis section. As for image data, manual annotation of the cases is sparse. There-
fore, we use a two step approach: (i) First, the text-classification task was preceded by a
topic modelling task in order to summarize the many given, each individually formulated
diagnosis sections into less than 20 diagnosis clusters, where each cluster is a collection
of thematically related documents, representing a certain diagnostic group. By doing so,
we avoid manual labelling. (ii) Second, different text classification methods were used to
predict the corresponding diagnostic group, obtained in step (i), on the basis of the given
description section. This tests whether the text description (as a surrogate of the image
analysis) contains all the information necessary to generate the correct diagnosis.

For the steps (i) and (ii), different text clustering- and text classification-methods
were applied. Overall, we experimented with simple Bag-of-Words (BoW)-based methods
(Sections 2.3.1 and 2.5.1) as well as with techniques based on distributed representations
(Sections 2.3.2 and 2.5.2) to solve the given NLP problems.

2. Materials and Methods

2.1. Data Collection

Anonymized medical reports (n = 1185 from the years 2018–2021, memory size: 5 MB)
were retrieved from the electronic archive of the Institute of Pathology, Medical Faculty
Mannheim, Heidelberg University. Only the plain texts are used without information on
patient age, gender, clinical course, etc. The data collection and all experiments were con-
ducted in accordance with a vote of the ethics commission II of the Heidelberg University
(vote 2020-847R). The total corpus consists of 152,650 words, with each report consisting of
136 words on average.

2.2. Overview

An overview of what has been done in the underlying work is provided by Figure 1.
We started with a corpus consisting of 1185 nephropathological reports. Each report

was then divided into its diagnosis section and microscopic description section (Figure 1:
data preparation). This was done based on German section tags or keywords usually placed
at the beginning of a section, like “Klinische Angaben” (Engl. clinical information) for the
clinical information section, “Mikroskopie” (Engl. microscopy) for the description section,
and “Beurteilung” (Engl. conclusion) for the diagnosis section. The diagnosis section is
later used for the text clustering task (i), and the description section is later used for the
text classification task (ii).

Below is an example of a conclusion text with its associated microscopic descrip-
tion section:

Example of a microscopic description section (translated from German to English):
Renal medulla and cortex with 18 glomeruli. These were inconspicuous by light microscopy, specifically
without evidence of necrosis or extracapillary proliferation. Arcuate artery and interlobular artery with mild
subendothelial fibrosis. Arterioles unremarkable.
Tubulointerstitium with only small areas of atrophic tubules and interstitial matrix proliferation. Percentage of
chronically damaged tubulointerstitium: 5%.

Example of corresponding diagnosis section (translated from German to English):
Mild arteriosclerosis. Unremarkable chronic tubulointerstitial damage (5% of the cortex). Conventional
microscopy moreover an unremarkable finding with no evidence of glomerular necrosis or extracapillary
proliferation. The results of the further immunohistochemical examination will be reported afterwards.

UMLS! (UMLS!) [14] was used for the translation (German to English) in order to use
internationally standardized medical terms if possible.
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Figure 1. Flowchart, describing the general procedure of the project. After splitting each nephropatho-
logical report into its diagnosis and description section (data preparation), we first applied the cluster-
ing task (i) to the diagnosis texts in order to summarize them into less than 20 clusters. After labelling
each cluster of diagnosis texts with a corresponding diagnostic group, we applied the classification
task (ii) to the description texts in order to find out if it’s possible to predict the correct diagnostic
group of a given description text with NLP techniques.

Some reports (78) did not meet all requirements and could therefore not be divided
into the two sections and were excluded. After that, 1107 reports are left, consisting of one
diagnosis and one description text.

After data preparation, two main tasks were performed: In the clustering task (i),
diagnoses were assigned to the description texts. In the second step, the classification task
(ii), the aim was to predict the correct diagnosis for each (morphological) description text,
using different text classification methods.

Here are more detailed descriptions of the two main tasks:

(i) Clustering and topic modelling
The diagnostic segments (example above) are clustered using different approaches (as
described below in Section 2.3). The results of the various clustering methods are then
compared to select the best method, which can be used for the topic modelling task
of the corpus. The clusters of the winner are then analyzed in more detail to assign
a suitable diagnostic group name for each cluster. After that, we obtained a labelled
corpus, where each report is labelled with one diagnostic group that can be identified
using the associated cluster index.
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(ii) Classification
The classification part (Section 2.5) involves testing how accurately the labelled micro-
scopic description texts can be classified using different text classification methods
(as described below in Section 2.5). The aim is to find out whether the descriptive
texts contain enough information to predict the diagnosis. For the classification task,
different text classification methods were tested, to compare how they differ from each
other in terms of performance.

All text processings, analyses, and evaluations performed in this thesis were conducted
with German texts. In principle, the analyses shown here can be applied to reports written
in any other language. More about this is mentioned in Section 4.3. Furthermore, only
freely available software was used in this work. All python libraries used are referenced in
the appropriate places (via hyperlink and or citation). The code for this work is available
on GitLab (see section Data Availability Statement).

2.3. Clustering and Topic Modeling

We tested and compared seven different clustering approaches to cluster the diagnosis
sections of the given reports. The resulting clusters were then used as labels for the classifi-
cation task (ii). Here, a trade-off was necessary between too few clusters (or respectively
labels or diagnostic groups) having a high intra-cluster heterogeneity and too many clusters
with low intra-cluster heterogeneity but only a few cases. Too few clusters would generally
be easier for a prediction model. With too many, on the other hand, the low number of
cases per group would be problematic. To balance this, the amount of clusters was set to a
minimum of 10 and a maximum of 20.

The used clustering methods can be divided into two main categories: BoW-based
approaches (Section 2.3.1) and approaches with distributed representations (Section 2.3.2),
where we make use of word embeddings and pre-trained transformer encoder models.

2.3.1. Clustering with Bag-of-Words Approaches

The clustering methods used in the underlying work, which are based on BoW repre-
sentations [15], are listed here:

• k-means
K-means clustering, using scikit-learn’s [16] python implementation.

• LDA
LDA! (LDA!) clustering, using the implementation shown in [17]

• HDBSCAN
HDBSCAN! (HDBSCAN!), as shown in [18], using the supplied python library hdb-
scan. Before applying HDBSCAN, we first reduced the dimensionality of the doc-
ument vectors as the HDBSCAN clustering algorithm handles high dimensionality
poorly. We used Uniform Manifold Approximation and Projection (UMAP) [19] for
the dimensionality reduction.

• GSDPMM
GSDPMM! (GSDPMM!) model for text clustering [20].

For text vectorization, term frequency–inverse document frequency (tf–idf) has been
used (using scikit learn’s implementation). Moreover, the text has been pre-processed inten-
sively to keep the vocabulary small, which results in smaller document vectors. We used
stop word filtering, with general purpose German stop words, using the nltk.corpus [16]
package (slightly customized by removing words like “no” or “none” from the prede-
fined stop words list and adding words like “approx”), as well as lemmatization with
the (German) Hanover Tagger [21]. We expanded this lemmatizer with custom word
replacements, to adapt it to our specific nephropathological language. Moreover, we used
a multi-word expression tokenizer (nltk.tokenize.mwe), to merge multi-word expressions,
like “Lupus␣Nephritis” (Engl. lupus nephritis) or “tubulointerstitieller␣Schaden”
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(Engl. tubulo-interstitial damage), into single tokens. We used an elbow-method-based
approach to find the optimal number of clusters (k) for each cluster method. We removed
numbers like dates, quantities, or report identification numbers to prevent reports from
being clustered only by irrelevant numerical values. Furthermore, we used uncased texts,
and we removed punctuation.

2.3.2. Clustering with Distributed Representations

Distributed representations of documents and words led to a considerable break-
through in NLP due to their ability to capture the semantics of words or even word
sequences. Word embeddings, or contextual word embeddings from transformer encoder
models, can provide a certain language or textual context understanding, which is required
for many NLP tasks and is also useful for clustering and topic-modelling problems [22–24].

• top2vec
top2vec [24], uses distributed representations, obtained with word2vec [25] and
doc2vec [26], to measure the semantic similarity of documents.

• BERT-based clustering
Since the break through of the Bidirectional Encoder Representations from Transform-
ers (BERT) model [27], a huge collection of pre-trained transformer encoder models
have become available for various domains. Most of them are freely available on
platforms such as huggingface.co [28]. We used different pre-trained transformer
encoder models to embed the diagnostic texts in 512-dimensional document vectors
(as shown in [29], using the supplied sentence_transformers library). After reducing
the dimensionality of the document vectors (bidirectional, contextual embeddings)
with UMAP [19], we clustered the documents using HDBSCAN! [18].
The following BERT-based models were used in this work:

– German-BERT
There are some promising pre-trained transformer encoder models for the bio-
medical domain [30–32], but these models have only been trained with English
texts. Since we are dealing with German bio-medical language, we used bert-base-
german-cased (henceforth called German-BERT) which has been pre-trained with
German wikipedia articles, the OpenLegalData dump and news articles. German-
BERT comes with BERTs WordPiece tokenizer [27] (30,000 token vocabulary) which
is able to divide unknown words into known subwords. Therefore it can be
used for a wide range of domain-specific languages without getting many OOV!

(OOV!) cases. Only one OOV case appeared during the tokenization of the entire
corpus with German-BERT with OOV! token “q:”.

– Patho-BERT
In order to adapt German-BERT to our specific nephropathological vocabulary,
we pre-trained it with a masked language modelling) (MLM) objective, using
the whole nephropathological corpus and 1607 additional nephropathological
reports as training data. The resulting model was then saved as ger-patho-bert
(henceforth called Patho-BERT) and used as another transformer model for further
clustering attempts as well as for classification tasks in Section 2.5.

When working with distributed representations, little to no text pre-processing is
usually required [33]. However, irrelevant numbers have been filtered out to prevent
clustering based on numerical values only, as explained in Section 2.3.1.

2.4. Evaluation of Clustering Results

Each clustering method divides the included 1107 diagnosis texts into less than 20 clusters.
In other words, each clustering method generates a set of clusters, henceforth called cluster-set.
Now the question arises how we can evaluate the quality of such a cluster-set. For this we
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have taken into account the shape of the cluster-set as well as its texts contained in each cluster
in order to find the most homogeneous and diagnostically meaningful clusters.

2.4.1. Clustering Metrics

There is still no perfect standard way to evaluate the quality of a cluster-set. In
some publications, metrics like purity or NMI! (NMI!) are used to evaluate and compare
clustering results [20,34–36]. However, a so-called golden cluster-set is required for such
metrics, which is not available in our case. The present work generated clusters using
different methods without ground truth data. This significantly limits the number of
cluster metrics that can be used. The following methods were used to measure the overall
clustering quality:

• silhouette score
The mean silhouette coefficient of all samples, using scikit-learn’s implementation.
This metric is generally higher for convex clusters and is therefore not suitable for
every cluster-set.

• relative entropy
The entropy of the documents, relative to the clusters. It is a measure of how much
the documents differ from all other documents in the same cluster (regarding term
frequency). A small value means that the documents of a cluster are similar in terms
of vocabulary (on average). We calculated the relative document entropy as follows:

meanm
j=1(mean

n
i=1(entropy(tf(doci,j), tf(clusterj))))

where tf is the term frequency (calculated with scikit learn’s CountVectorizer) and
entropy(tf(doci,j), tf(clusterj)) is the entropy of the i-th document of cluster j,
relative to all other documents of cluster j. The entropy was calculated with scipy’s
entropy function, which uses the Kullback–Leibler divergence.

• classification accuracy (cls accuracy)
The idea is to test how well a simple SVM! (SVM!) can classify a given cluster-set, as it
was also done in [35] to compare different topic models. The diagnosis sections of the
reports are the input of the SVM and the labels to be guessed are the corresponding
clusters.

2.4.2. Visual Presentation of Clustering Results

We visualized the data points of each cluster-set with UMAP! (UMAP!) [19] in order to
get an impression of how well the clusters are separated from each other.

2.4.3. Keywords Extraction

In order to determine the topics of the individual clusters, the most relevant words
(henceforth called keywords, or topic words) have to be extracted from the clusters. Two
methodologically different approaches were used for this purpose. First, term frequency–
inverse document frequency (tf–idf) as term frequency-based method was used. Here,
keywords are identified based on their different frequencies in the clusters. Second, we used
an “SVM-based” topic words extraction method, which is based on the model explainability
of an SVM!. After training a linear SVM to predict the clusters of each diagnosis text, we
applied a weight analysis to the SVM, in order to get the ten words which make the SVM
most likely to predict a particular cluster (using the eli5 module). Only the documents
predicted correctly by the SVM were included in the analysis.

2.4.4. Cluster Naming Based on Keywords

After keyword extraction, medical experts (JNB and CAW) then mapped proper
diagnostic group names for each cluster (see Section 3.1.2).

90



Diagnostics 2022, 12, 1726

2.5. Classification

In the previous section, we clustered the diagnosis sections of the reports into different
cluster-sets with different clustering methods (bag of word-based and embedding-based).
The hypothesis is that each cluster represents a diagnostic group (e.g., Lupus nephritis),
which should hypothetically result from the associated microscopic description section of
the same report.

To test this hypothesis, we tested how well these microscopic descriptions can be
classified to the corresponding diagnostic group (represented by the clusters of a given
cluster-set), with machine learning techniques. Therefore, we trained and tested different
text classifiers which are typically used in NLP! (NLP!). These again include simple
BoW! (BoW!)-based methods (Section 2.5.1) as well as more advanced techniques, based
on embeddings and transformer encoder models (Section 2.5.2).

2.5.1. Classification with Bag-of-Words Approaches

First, the description texts are pre-processed and tokenized with the same techniques,
as for the BoW!-based clustering in Section 2.3.1. The tf–idf-vectorized description-texts
are then passed to one of four different classifiers for the final prediction:

• SGD-classifier
SVM! (SVM!) with SGD! (SGD!) learning.

• MLP-lassifier
MLP! (MLP!) classifier with Adam optimization.

• Logistic Regression
Logistic regression (aka logit, MaxEnt) classifier with regularization and multinomial
loss fit.

• Multinomial NB
Multinomial NB! (NB!) classifier.

All BoW!-based classifiers are implemented with scikit-learn [16].

2.5.2. Classification with Distributed Representations

In addition to BoW!-based classification, we also made use of classification methods,
which are based on distributed representations. Bidirectional recurrent neural networks and
convolutional neural networks with word embeddings, as well as BERT-based transformer
encoder models were tested:

• RNN + embeddings:
RNN! (RNN!), consisting of a bidirectional LSTM! (LSTM!) layer, trained together
with word2vec word embeddings as input.

• CNN + embeddings:
CNN! (CNN!), trained together with word2vec word embeddings as input, as shown
in [37]. The 1D convolution layer has been trained with 32 kernels with a size of
3, followed by a max pooling layer and two fully connected layers to get one final
prediction value for each class. We used the ReLU! (ReLU!) activation function for the
convolution layer, as well as for the first dense layer. For the last dense layer, we used
a softmax activation function.

• German-BERT:
The transformer model bert-base-german-cased, fine-tuned with our text classification
problem.

• Patho-BERT:
Our pre-trained Patho-BERT transformer, as introduced in Section 2.3.2.

Both, the RNN!- and the CNN!-approaches are implemented with tensorflow [38].
We used the transformers package from huggingface [28] for the implementation of all
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transformer-based methods and trained the models with the included pytorch [39] Trainer
API, which uses an adam optimizer with weight decay regularization as introduced in [40].

The texts were pre-processed using the same techniques, as mentioned in Section 2.3.2.

2.6. Evaluation of Classification Results

To evaluate and compare different classifiers with one another, we measured various
metrics such as accuracy, precision, recall, F1-score (the harmonic mean of precision and
recall), and the cohen’s kappa coefficient [41]. Each metric value was determined using
ten-fold cross-validation. In order to examine the classification ability of a classifier in more
detail, confusion matrices were plotted and analyzed.

3. Results

3.1. Topic Moelling Based on Text Clustering on the Diagnosis Section of Nephropathological
Reports (Ad Task I)

Before documents can be classified, the number of possible classes should be reduced.
To accomplish this, the text-classification task was preceded by a topic modelling task
(task i). This was done by testing different text-clustering approaches to find the one
resulting in the most homogeneous and diagnostically meaningful clusters.

3.1.1. What Are the Differences of the Tested Clustering Methods?

In the present work, BoW!-based approaches and embedding-based approaches were
used to cluster the given diagnosis texts into several diagnostic groups. As a metric for the
clustering quality, we used the s-score! (s-score!), relative entropy, and the classification
accuracy. The silhouette-score assumes convex cluster shapes and is therefore not well-
suited for clusters of other shapes. To be independent of the cluster shape, the SVM!-
classification-based cls accuracy! (cls accuracy!) (as described in Section 2.4 above) is
used as additional clustering metric. Table 1 shows the measured metric values for each
clustering approach and Figure 2 shows the UMAP-representations of the respective cluster-
sets.

Table 1. Metrics of different cluster-sets.

Cluster Method s-Score cls Accuracy rel Entropy Clusters Corpus Size

HDBSCAN 0.587 0.951 0.588 16 906
German-BERT 0.576 0.856 0.618 13 759
top2vec 0.545 0.372 0.780 18 1026
Patho-BERT 0.536 0.848 0.531 17 757
LDA 0.517 0.581 0.611 7 1107
k-means 0.038 0.905 0.612 10 1107
GSDPMM 0.033 0.805 0.675 14 1107

We used the silhouette score (s-score), relative entropy (rel entropy) and the SVM! (SVM!)-based classification
performance (cls accuracy) to evaluate and compare different cluster-sets, generated with different cluster methods
(far left column). The entry clusters indicate how many clusters were generated by which method. Corpus size
indicates how many reports remained after clustering, since several reports were identified as outliers and sorted
out. HDBSCAN! (HDBSCAN!) has the best silhouette score as well as the best cls accuracy score. Although
top2vec has an acceptable silhouette score, it is notable for its very poor predictability (cls accuracy: 0.372).
Although k-means and GSDPMM! (GSDPMM!) have low silhouette scores, they are well predictable.

Compared by visual inspection to all other tested clustering methods, the clusters of
k-means (Figure 2g) and GSDPMM! (Figure 2h) seem to be much more poorly separated,
which is also reflected in their low silhouette scores in Table 1. Interestingly, HDBSCAN!,
a BoW!-approach, achieved the highest silhouette-score, the highest cls accuracy and the
second best entropy value. Moreover, it turned out that a reasonably shaped cluster-set
is not necessarily easier to predict with a support vector machine: Although top2vec has
achieved a good silhouette-score (s-score: 0.545) and shows well separated clusters in
its UMAP!-representation (Figure 2d), an SVM! can’t predict the clusters very well (cls

92



Diagnostics 2022, 12, 1726

accuracy: 0.372). Top2vec has with 0.780 the highest relative entropy value, which hints
to a low intra-cluster heterogeneity. This heterogeneity could be one reason why top2vec-
clusters are so difficult to predict. On the other hand, k-means and GSDPMM achieved
the lowest silhouette-scores, but are quite well predictable with a cls-accuracy of 0.905
(k-means) and respectively of 0.805 (GSDPMM). Both methods also have lower entropy
values with 0.612 and respectively 0.675 than top2vec.

For LDA, k-means and GSDPMM, no outlier detection has been implemented. Con-
trary, outliers can be detected for the other clustering techniques and subsequently be
removed from the further analysis. Especially in the case of Patho-BERT and German-
BERT, several documents were identified as outliers, which reduced the amount of left
documents-the corpus size-noticeably from 1107 documents to less than 760.

A fairly imbalanced cluster distribution can be found in almost every cluster-set.
However, such uneven distributions of cases is nothing unusual in this domain, as some
diseases occur much less frequently than others.

Figure 2. UMAP! (UMAP!) and PCA! (PCA!) of different cluster-sets. UMAP representations
of the cluster-sets generated with (a) LDA! (LDA!), (c) HDBSCAN! (HDBSCAN!), (d) top2vec,
(e) German-BERT, (f) Patho-BERT, (g) k-means and (h) GSDPMM! (GSDPMM!). The LDA! cluster-
set is also shown as PCA! (PCA!) in (b). Each data point represents a diagnosis section of a report.
The data points are coloured according to the respective clusters. Black points represent outliers
that were not assigned to any cluster. Above all, the clusters of top2vec and HDBSCAN! appear
particularly tidy and separated. The clusters of k-means and GSDPMM! appear less well separated,
which is probably also due to the fact that no data points are sorted out here.
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3.1.2. Can the Clusters Be Named on Basis of Keywords?

All cluster metrics used so far have the disadvantage that one cannot derive diag-
nostically comprehensible clusters from them. These methods only give a metric for the
intra-cluster homogeneity.

To give the produced clusters meaningful names, we first used different keyword
extraction methods (described in Section 2.4.3 above). The extracted topic words of the
HDBSCAN cluster-set (translated from German to English) can be found in Tables 2 and 3.
The original (German) topic word tables can be found in Appendix A and the extracted topic
words of all other cluster-sets can be found at https://doi.org/10.11588/data/KS5W0H
(accessed date 14 July 2022). As explained in Section 2.4, the ten (by each keyword extraction
approach identified) most relevant words per cluster are shown in these topic word tables.

Second, two medical experts (JNB as medical student and CAW as board-examined
pathologist) analyzed these tables to find out how well the topic words of each cluster fit
together and whether the topic words of a cluster fit to a certain diagnostic or topic group
(henceforth called cluster name).

The medical experts annotated the topic word tables as follows: If a suitable name
was found for a cluster, the cluster name can be found next to the corresponding cluster
index (see Table 2, left column). A particularly large number of topic words strongly refer
to cluster names highlighted in green (strong cluster names). In the case of cluster names
marked in orange, only a few topic words indicated the specified cluster name (weak cluster
name). The same applies to the colour-coded topic words: topic words that strongly indicate
a cluster name are highlighted in green (strong topic words). Orange highlighted topic words
only weakly indicate a cluster name (weak topic words).

Especially in the case of HDBSCAN!, for many clusters the extracted keywords fit
thematically well together. In this case, diagnostically meaningful and comprehensible
cluster names based on the keywords could be assigned to 14 out of 16 detected clusters
(as shown in Tables 2 and 3). For instance, keywords like “lupus nephritis” or “chronicity
index” are characteristic for documents in the cluster “systemic lupus erythematosus”. Or
for “IgA-nephritis” words like “oxford” or “IgA” are typical.

3.1.3. Do the Authors of the Nephropathological Reports Have an Impact on
the Clustering?

With only three authors (CAW, SP and ZVP) writing in different combinations the
included reports, we wondered if the clustering is influenced by the different authors. It is
conceivable, for example, that one of the authors is an expert in a particular diagnosis and
at the same time has a characteristic wording. In this case, the clustering methods would
possibly be influenced by the wording.

To look for the authors, Figure A1 (see Appendix B) shows the same UMAP! plots as
Figure 2, but coloured according to the authors who wrote the respective reports. Some of
the reports were written by multiple authors, these are represented by black points. When
examining these figures, especially HDBSCAN!, k-means and GSDPMM! tend to form a
group for author 1 (orange dots) and author 2 (green dots) that is separate from author 0
(blue dots). This group is always located in the upper left area. Based on this, the question
arises whether these separations are due to the different writing styles of some authors or
whether the authors worked on different subject areas. In the manual cluster word analysis,
some clusters could be identified, which were probably mainly grouped according to the
language style of author 1, e.g., cluster 2 of the HDBSCAN cluster-set. The topic words of
this cluster refer only weakly to the topic tubulo-interstitial nephritis (see Tables 2 and 3).
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Table 2. Annotated topic words (translated from German to English), extracted from the HDBSCAN!

(HDBSCAN!) cluster-set, using the tf–idf based extraction method. A particularly large number of
topic words strongly refer to cluster names (left column) highlighted in green (strong cluster names).
In the case of cluster names marked in orange, only a few topic words indicated the specified cluster
name (weak cluster name). The same applies to the colour-coded topic words: topic words that
strongly indicate a cluster name are highlighted in green (strong topic words). Orange highlighted
topic words only weakly indicate a cluster name (weak topic words).

Cluster Index-Cluster Name Keywords According to tf–idf

0-systemic lupus erythematosus scale, chronicity_index, class, activity_index, nih, lupus_nephritis , iv, who, glomerular,
iii

1-rapid progressive glomerulonephritis
quantity, glomeruli, scarred , necrosis , fresh , proliferating_glomerulonephritis , ap-

prox, segmental_necrotizing, extracapillary , concerning

2-tubulo-interstitial nephritis approx, concerning, cortex, minor, immunostaining, damage, included, moderate, chronic,
supplementary

3-pauci immune glomerulonephritis
of_this, glomeruli, total_amount, intact, extracapillary , scarred , global, necrosis ,

proliferating_glomerulonephritis , tubulointerstitial_damage

4-IgA nephritis oxford , m1, e0, s1, t0, c0, classification, iga , glomerulonephritis, cell_count

5-FSGN
fsg , primary, distinction, focal, secondary, collapsing, chronic, glomerulosclerosis,

take_place, hint

6-thrombotic microangiopathy
microangiopathy , thrombotic , active, reparation, preglomerular , glomerular, located,

chronic, tubulointerstitial_damage, hypertension

7-multiple myeloma
nephropathy, kappa , cast , amyloidosis , myeloma_kidney , lcdd, a_notice, chronic,
no, tubulointerstitial_damage

8-kidney transplant
rejection , routinely, chronic, success, immunohistochemical, examination, toxicity, hint,

nephrosclerosis, mild

9-unremarkable finding
renal_parenchyma, unremarkable , left_over, mainly , normal , special, acute, tubu-
lar_damage, histological, glomerulonephritis

10
cut_level, hardly, noteworthy, chronic, tubulointerstitial_damage, deep, so_far, processing,
nephrosclerosis , mild

11 microscopy, conventional, requirement, result, renal_parenchyma, foresee, chronic,
nephrosclerosis, mild, examination

12 - membranous glomerulonephritis
pla2r , membranous, honorable, glomerulonephritis, stage, churg, chronic, tubulointersti-

tial_damage, positive, nephrosclerosis

13-diabetic glomerulosclerosis
diabetic_glomerulosclerosis , chronic, tubulointerstitial_damage, nodular,

light_microscopic, picture, nephrosclerosis , difficult, examination, consist

14-glomerulosclerosis
glomerulosclerosis , global, tubulointerstitial_damage, chronic, nephrosclerosis ,

focal_segmental , focal, moderate, take_place, secondary

15-tubulo-interstitial nephritis
a_mild, tubular_damage , acute, chronic, nephrosclerosis , tubulointerstitial_damage ,

mild, a_moderate, moderate, potentially_reversible
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Table 3. Annotated topic words (translated from German to English), extracted from the HDBSCAN!

(HDBSCAN!) cluster-set, using the SVM! (SVM!) based extraction method. A particularly large
number of topic words strongly refer to cluster names (left column) highlighted in green (strong
cluster names). In the case of cluster names marked in orange, only a few topic words indicated the
specified cluster name (weak cluster name). The same applies to the colour-coded topic words: topic
words that strongly indicate a cluster name are highlighted in green (strong topic words). Orange
highlighted topic words only weakly indicate a cluster name (weak topic words).

Cluster Index-Cluster Name Keywords According to SVM

0-systemic lupus erythematosus
scale, chronicity_index, activity_index, class, -nih, iv, lupus_nephritis , component, iii,
who

1-rapid progressive glomerulonephritis
quantity, sclerosing, glomeruli, scarred , glomerulus, fresh , of_which1,
proliferating_glomerulonephritis , necrosis , sclerosed

2-tubulo-interstitial nephritis
tubular_epithelial_damage , moderate, minor, damage, none, completion, fibrosis, finally,

known, tubulointerstitial

3-pauci immune glomerulonephritis
of_this, total_amount, intact, pauci_immune_glomerulonephritis , necrotizing, glomeruli,

scarred , *, remaining, extracapillary

4-IgA nephritis oxford_classification, e0, s1, m1, t0, c0, iga_glomerulonephritis, s0, applicable, e1

5-FSGN
fsg , primary, distinction, look_together, secondary, segmental_glomerulosclerosis, col-

lapsing, at_most, continuing, patient

6-thrombotic microangiopathy
microangiopathy , thrombotic , reparation, preglomerular , glomerular, located, active,

glomerular_thrombotic, hypertension, overwhelmingly

7-multiple myeloma
cast_nephropathy, myeloma_kidney , lcdd, lambda, kappa , amyloidosis , followed_by,
light_chains, al-amyloidosis, light_chain_nephropathy

8-kidney transplant
rejection , routinely, success, examination, calcineurin_inhibitor_toxicity , ascending,

humorous, bacterial, urinary_tract_infection, follow-up_report

9-unremarkable finding
renal_parenchyma, unremarkable , normal , largely , left_over, for_now, furthermore,
special, iga-, pathological

10 hardly, cut_level, noteworthy, deep, so_far, processing, using, congo_red_coloring,
to_exclusion, cellularor

11 microscopy, conventional, requirement, foresee, mild, membranous, early,
cell_proliferation, result, g

12 - membranous glomerulonephritis
membranous, proteinuria, as_a_result, glomerulonephritis, pla2r , stage, churg, honor-
able, electron_microscopy, pla2r_positive

13-diabetic glomerulosclerosis
diabetic_glomerulosclerosis , consist, immune_complex_glomerulonephritis, nodular,

picture, light_microscopic, partly, arteriolohyalinosis, diabetic_glomerulosclerosis, addi-
tionally

14-glomerulosclerosis
global, focal_segmental , segmental_glomerulosclerosis, glomerulosclerosis , fo-
cal_global, diffusesegmental, incl, focal, tubulointerstitial_damage, scarring

15-tubulo-interstitial nephritis
tubular_damage , a_mild, mild, tubulointerstitial_damage , change, a_moderate, mild,

constantly, acute, malignancy

3.1.4. Which Clustering Method Is the Best?

Since the HDBSCAN!-clustered data set has a good clustering accuracy according
to the applied metrics (compare Section 2.4), since it has less outliers than German-BERT
or Patho-BERT, and, since it achieved decent results in the manual topic word analysis
(compare Section 2.4.3), it has been rated as the best clustering approach. Therefore, it, or
rather its cluster-set, has been used as the target for the classification task described in the
next section.
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3.2. Assignment of Nephropathological Description Sections to Specific Diagnostic Groups
(Ad Task Ii)

The second task is mapping the histomorphological descriptions to the diagnosis
sections or, more specifically, to the previously defined topics (task ii). Based on Section
3.1.1, HDBSCAN! was selected as the preferred clustering method on which basis different
classifications methods were tested.

3.2.1. Which Methods Can Be Used to Map Descriptive Sections to the Correct
Diagnostic Groups?

In summary, eight different text classification methods were used. Four of the classifi-
cation methods (here abbreviated called SGD-classifier, MLP!-classifier, logistic regression
and multinomial NB!) are bag-of-words approaches (compare Section 2.5.1). The other
four classification methods (here abbreviated as RNN + embeddings, CNN + embed-
dings, German-BERT and Patho-BERT) are in contrast based on distributed representations
(compare Section 2.3.2).

In Table 4 the performance of the different approaches for mapping the description
sections to the HDBSCAN clustered data set is shown. The performance is quantified by
calculating the F1-score and the Cohen’s kappa coefficient with ten-fold cross-validation,
as mentioned in Section 2.6.

Table 4. Performance of different classification models, trained with the HDBSCAN cluster-set.

Classifier F1-Score Cohen’s Kappa Coefficient

Patho-BERT 0.667 0.631
SGD-classifier 0.644 0.598
MLP-classifier 0.639 0.599
German-BERT 0.610 0.572

Logistic Regression 0.589 0.567
CNN + embeddings 0.523 0.450
RNN + embeddings 0.464 0.394

Multinomial NB 0.442 0.370
F1-score and Cohen’s kappa coefficient of the tested classification methods, which were trained to predict the
HDBSCAN! clustered data set. Each score is determined with ten-fold cross-validation. The transformer based
model Patho-BERT and the SVM! (SVM!)-based SGD-classifier performed best.

Interestingly, according to the different metrics used, there is no clear winner when
comparing embedding-based approaches to BoW!-based approaches. There are poorly-
performing and better-performing models on both sides. Patho-BERT performed higher
(best F1-score and Cohen’s kappa coefficient) compared to the other classifiers. So the
time-consuming pre-training of a BERT model with MLM! (MLM!) seems to be worth-
while in this case. But surprisingly, the SGD-classifier, a BoW-based classifier, achieved a
significantly better F1-score than German-BERT. In return, German-BERT achieved a better
Cohen’s kappa coefficient.

3.2.2. Can Certain Diagnoses Be Better Predicted than Others? And If So, What Are
the Reasons?

Besides the overall classification performance, as shown above, the performance with
view to the single classes was of interest. To visualize this, in Figure 3 the confusion matrices
of the four best classification methods are shown. In addition, the F1-scores per cluster can
be read in Table 5, which were achieved using Patho-BERT as classifier.
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Figure 3. Confusion matrices of the classification models. (a) German-BERT, (b) Patho-BERT, (c) the
SVM! (SVM!)-based SGD-classifier, and (d) the MLP! (MLP!)-classifier. The brightness of a cell
indicates how many times the class on the x-axis was predicted by the classifier. The true class
is indicated by the index of the y-axis. Interestingly, there are classes that could be recognized
well by all classifiers, including the weaker ones, e.g., class 1 (rapid progressive glomerulonephritis), 2
(tubulo-interstitial nephritis) and 3 (pauci immune glomerulonephritis). Although the transformer-based
classifiers (a,b) generally performed better, the BoW!-based methods were able to detect class 0
(systemic lupus erythematosus) or 5 (fsgn) better (c,d).

First, it can be observed that the HDBSCAN! cluster-set contains some clusters that
can be recognized well by all classifiers, even the weaker ones. Especially the clusters 1
(systemic lupus erythematosus), 2 (tubulo-interstitial nephritis), and 3 (pauci immune glomeru-
lonephritis) could be recognized well by all classifiers, according to the confusion matrices
(Figure 3). The Patho-BERT model was able to achieve F1-scores of over 0.8 for these three
diagnostic groups, with group 3 (pauci immune glomerulonephritis) performing best with an
F1-score of 0.892 (see Table 5). The clusters 4 (iga nephritis), 8 (kidney transplant), 13 (diabetic
glomerulosclerosis) and 15 (tubulo-interstitial nephritis) could be recognized moderately good,
with F1-scores of over 0.5. Interestingly, although Patho-BERT has the best overall F1-score
(Table 1), the BoW!-based methods were able to detect class 0 (systemic lupus erythematosus)
and 5 (FSGN) better, according to the confusion matrices (Figure 3). Table 5 also lists
the support of each cluster. The support indicates how many documents (microscopic
description texts) were available for a cluster (or a diagnostic group). Cluster 2 in particular
is significantly more supported than all other clusters, while there are some particularly
small clusters consisting of less than 20 documents. Such imbalanced datasets can lead
classification algorithms to ignore the minority class entirely, as seems to be the case for
clusters 0, 5, and 6 in Table 5. Table 5 shows clearly that the lower the support, the more
difficult it is to recognize the cluster. Presumably, these diagnostic groups could have been
recognized better if more training data had been available or if each cluster had been large
enough, respectively.
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Table 5. Classification performance of the Patho-BERT-classifier, predicting the HDBSCAN cluster-set.

Cluster/Diagnostic Group F1-Score Support

3 0.892 72
2 0.880 324
1 0.847 51
8 0.728 76
4 0.601 71
15 0.545 78
13 0.529 56
12 0.417 26
10 0.367 23
9 0.364 31
7 0.333 19
14 0.312 19
11 0.160 17
0 0.000 18
5 0.000 14
6 0.000 11

Cluster-Predictability of the HDBSCAN! cluster-set, using Patho-BERT as classifier. The cluster predictability
was determined with the F1-score and the table is sorted by descending F1-scores. Each F1-score is the result of
a 10 fold cross validation (average of 10 test measurements). Cluster 3 has the highest F1-score. Cluster 2 has
a particularly strong support, which means this cluster is particularly large (324 documents) and was therefore
often seen during training. The support specifies how many documents a cluster consists of. It can be observed
that especially the smaller clusters could be recognized with difficulty or not at all.

3.2.3. Which Classification Approach Is the Best?

Overall, the best classification results were obtained using our custom BERT model
(Patho-BERT) as well as using a simple SVM! (SGD-classifier). However, the description
sections of the HDBSCAN!-clustered reports could not be classified passably: An F1-score
of more than 0.7 could not be achieved, even with our custom pre-trained BERT! (BERT!)
model (Patho-BERT). In many other medical text classification problems, significantly higher
F1-scores could be achieved [9,11,13]. Nevertheless, the problem presented here can hardly be
compared with such classification problems, due to the fact that no human-labelled data was
available. Instead, we clustered the diagnosis sections to label the data. During development
it could be observed that the classification performance was strongly related to the quality
of the cluster-set. Moreover, not much training data was available, which resulted in several
small clusters consisting of only 10 to 20 documents. In particular, predicting small clusters
was hard to accomplish in most cases. Nevertheless, certain clusters are well distinguishable,
as mentioned earlier.

4. Discussion

Digital medical reports can be found in many different medical sub-disciplines. They
usually represent a condensate of one or a combination of the many different, complex,
available medical data types such as radiological images, molecular profiles, clinical ex-
amination findings, etc. On the one hand, it is of great research interest to obtain usable
information for further analyses from medical reports, which are often written in a non-
standardized way. On the other hand, the relationship between the underlying data (e.g.,
histological images) and the text is also of great interest. Against this background, we
examined diagnostic texts from the field of nephropathology by means of natural language
processing (NLP!). In this sub-field of pathology, among others, we were able to show
in a recent publication that images of glomeruli can be mapped by means of machine
learning to some diagnoses (such as amyloidosis), whereas for other diagnoses (such as
lupus nephritis) prediction based on glomerular changes alone does not work well. To
test without extensive image processing efforts, if the morphological information in the
entire kidney tissue is enough for diagnosis prediction, we examined nephropathological
reports. By doing so, we were able to show the following points: (i) First, we could show
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that long-known NLP!-tools like bag-of-word-based techniques and newer embedding
techniques likes BERT can be applied to different parts of histological reports written in
German (see Section 4.1 below). (ii) Second, we could demonstrate that different text
parts like the description or the diagnosis section can be clustered without supervision
to diagnostic groups (see Section 3.1.1 above and Section 4.1 below). In contrast to the
unsupervised clustering of images, this is much easier and numerous methods are known
here from various other fields (see Section 4.1 below). (iii) Third, we could show that these
diagnostic groups can be predicted by machine learning models based on the description
section (see Section 3.2 above and Section 4.1 below).

4.1. Natural Language Processing and Image Processing Techniques in Nephrology
and Nephropathology

In this work, we applied a wide range of different NLP!-techniques to the histological
reports from the field of nephropathology. These medical reports are composed of several
sections, with the descriptive and diagnostic sections being particularly relevant for us.
We can show that there is a correlation between the morphological description and the
final diagnosis by predicting the diagnosis on basis of the description with our custom
Patho-BERT transformer encoder model or even with less complex support vector machines
(Section 3.2). After a previous work on glomerular change patterns in histological images [7],
we used the morphological description by nephropathological experts as surrogate for
image analysis. This would have the advantage of eliminating the need to establish a
reliable image analysis. For such image analysis, the amount of large, properly annotated
datasets is a common bottleneck that we tried to avoid by using textual data [42–44].

Of course, textual data must also be prepared or annotated for analysis. We have
reduced this workload here in part by using unsupervised clustering methods Section 3.1.1.
These clusters or diagnostic groups can then be predicted by a classifier like a support
vector machine or with a domain specific pre-trained BERT!-based model. Furthermore, by
examining the keywords relevant for the respective clusters, one can establish a relationship
to diagnostic groups and give the clusters umbrella names such as those in standard
nephropathology textbooks [1,8]. The establishment of a relationship between the results
of an unsupervised approach and the real-world labels is also a common issue in image
analysis. There, the main solution is also to have names assigned to the labels by human
experts. For other, also machine-learning-based approaches, such as extending models
with a re-mapping block, we were recently unable to show any benefit for lung carcinoma
[45].

Our previous focus on image analysis fits quite well into the overall context. In
nephropathology, machine learning seems to be mainly used in the form of image anal-
ysis [3,4,46,47], but rarely in the form of NLP!, although NLP! is recognized as a topic of
interest [48,49]. This is indeed surprising, since nephropathology seems to be predestined
for text analysis due to various standardization efforts. There are, for instance, well written
and extensive recommendations on how to write and structure a report [50–53]; albeit
somehow controversial and not followed by everyone. There are also efforts on creating
common ontologies, taxonomies, or at least vocabularies for nephropathology [53,54]. The
clustering of diagnosis texts or the reduction of different diagnoses to diagnostic groups,
which we show here (Figure 2), can be seen in the context of stratification procedures. Since
we have not investigated the relationships between clusters here (no ontological approach),
nor have we investigated hierarchical relationships (no taxomic approach), our work can be
seen as the automatic generation of a vocabulary. In the works dealing with stratification or
unification approaches, common vocabularies are described as the basis for more complex
tasks like creating a taxonomy or ontology [53,54].

4.2. How Do Our Results Fit into the Big Picture?

Even though the method of the present work differs significantly from our previous
work, and even though, in contrast to our previous work, the entire kidney tissue or its
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descriptor was included in the study, the results fit together surprisingly well [7]. Again,
certain diagnoses or groups of diagnoses can be predicted very well. For example, amyloid-
deposition-associated diseases are again among the best predicted diagnoses. This is not
very surprising, since in images it is characterized by typical, amorphous deposits, and in
texts it is characterized by the word “amyloid”. In the same way, the IgA nephropathies,
for example, are characterized by the description of the typical finding of granular IgA
deposits in the mesangium. Since in the previous work only glomeruli without additional
staining were analyzed, text analysis is significantly better for diagnoses that are defined
by certain, specific findings.

Nevertheless, in several cases the morphological description is apparently not suffi-
cient to make accurate predictions. The combination of image analysis and text analysis
as well as the additional integration of patient data or other clinical features could help to
identify more correlations and improve the prediction accuracy. Moreover, such diagnosis
prediction models could also be used to select and revise potentially incorrect diagnoses.

4.3. Other Languages

All text analyses shown in this work have been applied to German reports only. In
principle, all methods shown can be applied to documents written in other languages
without much additional effort. For the shown BoW!-based analyses, some (keyword-
based) text pre-processing steps would have to be adapted to the used language. For
example, a different stop word list, as well as a different lemmatizer would have to be
used. Especially for all transformer encoder based approaches (BERT-classification and
BERT-clustering), other pre-trained transformer models would have to be used. Depending
on the language, more or less suitable models are freely available. For example, there are
many large transformer models for the English medical domain [30–32].

4.4. Technical Weaknesses and Possible Improvements

One drawback of this work is that the cluster naming (Section 3.1.2) could almost not
be evaluated and refined. For this, not enough experts were available. Moreover, only
experts trained by the same instructors were available. Therefore, no detailed inter-observer
variability studies could be performed to measure the reliability of the cluster topics. For
this we would need to recruit more experts from different institutions for future projects.

Moreover, the examined dataset was unfortunately too small to find enough text data
for each diagnosis group. This resulted in some particularly small clusters that could hardly
or not at all be predicted by any of the tested classification approaches. Resampling-based
solutions for imbalanced data (e.g., SMOTE! (SMOTE!) [55]) could not be successfully
implemented in this work because of the text complexity and the different text vectorization
methods used. Another possibility to improve the classification results could be the use of
optimization methods for imbalanced classification problems, such as using the dice loss
as done in [56]. However, it is also questionable whether this would be effective for the
smallest clusters.

In this work we used German-BERT’s word-piece tokenizer for our BERT-based
models, since it fits well for German languages and is able to divide unknown medical
terms into several known subwords, resulting in very less OOV! cases. Although this
worked out in principle, using a custom tokenizer, which is specialized to the German
nephropathological vocabulary might produce even better classification and or clustering
results.

5. Conclusions

Overall, it can be said that the morphological description texts, as surrogate for image
analysis, enable the correct diagnosis to be achieved for some entities. For other entities,
this associative approach does not work adequately. As in our previous image analysis-
based study on glomerular change patterns [7], it can be said here that some diagnoses are
associated with one pattern, and for others, there is a complex pattern combination which
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makes the prediction difficult without patho-physiological knowledge. This raises the
consideration of including disease models in the analysis to improve accuracy. However,
methods such as semantic graphs should perhaps be tested beforehand, as they are much
easier to implement.

Besides the only associative approach here, one major issue of this work was the inad-
equate amount of labelled training data, which is why we performed a time-consuming
topic-modelling task first. In general, with more, manually-labelled, balanced data, better
text classification results could have been possible. In addition, the classification perfor-
mance depends on the properties of the given data and on the text pre-processing methods
used. These influences were not examined in detail.

The combination of text-based and image-based analysis could be worthwhile in order
to be able to take into account additional features regarding the whole tissue in addition to
the glomerular changes, which is mainly extracted in the image analysis.

The use of VL-PTMs! (VL-PTMs!) [57], e.g., ViLBERT [58] or Unicoder-VL [59], could
be a good opportunity to combine image analysis with text analysis in nephropathology.
Therefore, sufficient image-text data pairs would be needed. The benefit would be that
time-consuming image-labelling would not be necessary.
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BoW Bag-of-Words
SVM support vector machine
NLP natural language processing
OOV out of vocabulary
MLM masked language modeling
LSTM long short-term memory
ICD-O International Classification of Diseases for Oncology
CNN convolutional neural network
RNN Recurrent Neural Network
BERT Bidirectional Encoder Representations from Transformers
UMAP Uniform Manifold Approximation and Projection
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise
GSDPMM Gibbs Sampling algorithm for the Dirichlet Process Multinomial Mixture
SGD Stochastic Gradient Descent
PCA Principal Component Analysis
tf-idf term frequency–inverse document frequency
NMI normalized mutual information
ReLU rectified linear unit
VL-PTMs Vision-Language Pre-Trained Models
s-score silhouette score
cls accuracy classification accuracy
ML machine learning
LDA Latent Dirichlet Allocation
NB naive bayes
MLP multilayer perceptron
UMLS Unified Medical Language System
SMOTE synthetic minority over-sampling technique
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Appendix A. Additional Annotated Topic Word Tables

Table A1. Annotated German topic words, extracted from the HDBSCAN! (HDBSCAN!) cluster-set,
using the tf–idf based extraction method. A particularly large number of topic words strongly refer to
cluster names (left column) highlighted in green (strong cluster names). In the case of cluster names
marked in orange, only a few topic words indicated the specified cluster name (weak cluster name).
The same applies to the colour-coded topic words: topic words that strongly indicate a cluster name
are highlighted in green (strong topic words). Orange highlighted topic words only weakly indicate a
cluster name (weak topic words).

Cluster Index-Cluster Name Keywords according to tf-idf

0-Systemischer Lupus erythematodes
skala, chronizitätsindex, klasse, aktivitätsindex, nih, lupus_nephritis , iv, who,
glomerulärer, iii

1-Rapid progressive Glomerulonephritis
anzahl, glomeruli, vernarbten , nekrosen , frisch ,
proliferierende_glomerulonephritis , ca, segmental_nekrotisierend, extrakapillär ,

betreffend

2-Tubulo-interstitielle Nephritis ca, betreffend, cortex, leicht, immunfärbung, schädigung, miterfasst, mäßig, chronisch,
ergänzend

3-Pauci-Immun-Glomerulonephritis
hiervon, glomeruli, gesamtzahl, intakt, extrakapillär , vernarbt , global, nekrosen ,

proliferierende_glomerulonephritis , tubulointerstitieller_schaden

4-Ig A Nephritis oxford , m1, e0, s1, t0, c0, klassifikation, iga , glomerulonephritis, zellzahl

5-FSGN
fsg , primär, unterscheidung, fokal, sekundär, kollabierend, chronisch, glomeru-

losklerose, erfolgen, hinweis

6-Thrombotic microangiopathy
mikroangiopathie , thrombotisch , floride, reparation, präglomerulär , glomeruläre,

befindlich, chronisch, tubulointerstitieller_schaden, hypertonie

7-Multiples Myelom
nephropathie, kappa , cast , amyloidose , myelomniere , lcdd, hinweis, chronisch,
kein, tubulointerstitieller_schaden

8-Nierentransplantat
abstoßung , routinemäßig, chronisch, erfolg, immunhistochemisch, untersuchung, toxiz-

ität, hinweis, nephrosklerose, leichtgradig

9-Unauffälliger Befund
nierenparenchym, unauffällig , übrig, weitgehend , normal , speziell, akut, tubuluss-
chaden, histologisch, glomerulonephritis

10
schnittstufe, kaum, nennenswert, chronisch, tubulointerstitieller_schaden, tief, bislang,
aufarbeitung, nephrosklerose , leichtgradig

11 mikroskopie, konventionell, maßgabe, ergeben, nierenparenchym, absehen, chronisch,
nephrosklerose, leichtgradigen, untersuchung

12- Membranöse Glomerulonephritis
pla2r , membranöse, ehrenreich, glomerulonephritis, stadium, churg, chronisch, tubu-

lointerstitieller_schaden, positiv, nephrosklerose

13- Diabetische Glomerulosklerose
diabetische_glomerulosklerose , chronisch, tubulointerstitieller_schaden, nodulär, licht-

mikroskopisch, bild, nephrosklerose , schwer, untersuchung, bestehen

14-Glomerulosklerose
glomerulosklerose , global, tubulointerstitieller_schaden, chronisch, nephrosklerose ,

fokal_segmental , fokal, mäßiggradig, erfolgen, sekundär

15-Tubulo-interstitielle Nephritis

leichtgradiger, tubulusschaden , akut, chronisch, nephrosklerose ,

tubulointerstitieller_schaden , leichtgradig, mäßiggradiger, mäßiggradig,

potentiell_reversibel
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Table A2. Annotated German topic words, extracted from the HDBSCAN! (HDBSCAN!) cluster-
set, using the SVM! (SVM!) based extraction method. A particularly large number of topic words
strongly refer to cluster names (left column) highlighted in green (strong cluster names). In the case
of cluster names marked in orange, only a few topic words indicated the specified cluster name (weak
cluster name). The same applies to the colour-coded topic words: topic words that strongly indicate a
cluster name are highlighted in green (strong topic words). Orange highlighted topic words only
weakly indicate a cluster name (weak topic words).

Cluster Index-Cluster Name Keywords according to SVM

0-Systemischer Lupus erythematodes
skala, chronizitätsindex, aktivitätsindex, klasse, -nih, iv, lupus_nephritis , komponente,
iii, who

1-Rapid progressive Glomerulonephritis
anzahl, sklerosieren, glomeruli, vernarbten , glomerulus, frisch , davon1,
proliferierende_glomerulonephritis , nekrosen , sklerosierten

2-Tubulo-interstitielle Nephritis
tubulusepithelschaden , mäßig, leicht, schädigung, keine, komplettierung, fibrose, ab-

schließend, bekannt, tubulointerstitiell

3-Pauci-Immun-Glomerulonephritis
hiervon, gesamtzahl, intakt, pauci-immun-glomerulonephritis , nekrotisierend,

glomeruli, vernarbt , *, restlich, extrakapillär

4-Ig A Nephritis oxford-klassifikation, e0, s1, m1, t0, c0, iga-glomerulonephritis, s0, anwendbar, e1

5-FSGN
fsg , primär, unterscheidung, zusammenschau, sekundär, segmen-

tale_glomerulosklerose, kollabierend, allenfalls, weiterführend, patient

6-Thrombotic microangiopathy
mikroangiopathie , thrombotisch , reparation, präglomerulär , glomeruläre, befind-

lich, floride, glomerulärethrombotisch, hypertonie, überwiegend

7-Multiples Myelom
cast-nephropathie, myelomniere , lcdd, lambda, kappa , amyloidose , anschließen,
leichtketten, al-amyloidose, leichtkettennephropathie

8-Nierentransplantat
abstoßung , routinemäßig, erfolg, untersuchung, calcineurininhibitor-toxizität , auf-

steigend, humorale, bakteriell, harnwegsinfekt, nachbericht

9-Unauffälliger Befund
nierenparenchym, unauffällig , normal , weitgehend , übrig, vorbehaltlich, imübrigen,
speziell, iga-, pathologisch

10 kaum, schnittstufe, nennenswert, tief, bislang, aufarbeitung, mittels, kongorot-färbung,
zumausschluss, zelluläreoder

11 mikroskopie, konventionell, maßgabe, absehen, leichtgradigen, membranösen, früh,
zellvermehrung, ergeben, g

12-Membranöse Glomerulonephritis
membranöse, proteinurie, infolge, glomerulonephritis, pla2r , stadium, churg, ehrenre-
ich, elektronenmikroskopie, pla2r-positiv

13-Diabetische Glomerulosklerose
diabetische_glomerulosklerose , bestehen, immunkomplexglomerulonephritis, nodulär,

bild, lichtmikroskopisch, teils, arteriolohyalinose, diabetische_glomeruloskleros, zusät-
zlich

14-Glomerulosklerose
global, fokal_segmental , segmentaleglomerulosklerose, glomerulosklerose , fokalglob-
ale, diffussegmental, einschl, fokal, tubulointerstitieller_schaden, vernarbung

15-Tubulo-interstitielle Nephritis tubulusschaden , leichtgradiger, leichtgradig, tubulointerstitieller_schaden , verän-
derung, mäßiggradiger, leichtgradige, andauernd, akut, malignität
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Appendix B. UMAP Representations of the Cluster-Sets, Colored According to the

Authors

Figure A1. UMAP! (UMAP!) of the cluster-sets generated with (a) LDA! (LDA!), (c) HDBSCAN!

(HDBSCAN!), (d) top2vec, (e) German-BERT, (f) Patho-BERT, (g) k-means and (h) GSDPMM!

(GSDPMM!). The LDA! (LDA!) cluster-set is also shown as PCA! (PCA!) in (b). Each dot colour
represents a different author. The authors of the reports marked in black are unknown (e.g. because
multiple authors were involved).
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Abstract: Invasive melanoma, a common type of skin cancer, is considered one of the deadliest.
Pathologists routinely evaluate melanocytic lesions to determine the amount of atypia, and if the
lesion represents an invasive melanoma, its stage. However, due to the complicated nature of
these assessments, inter- and intra-observer variability among pathologists in their interpretation
are very common. Machine-learning techniques have shown impressive and robust performance
on various tasks including healthcare. In this work, we study the potential of including semantic
segmentation of clinically important tissue structure in improving the diagnosis of skin biopsy images.
Our experimental results show a 6% improvement in F-score when using whole slide images along
with epidermal nests and cancerous dermal nest segmentation masks compared to using whole-slide
images alone in training and testing the diagnosis pipeline.

Keywords: whole slide imaging; skin biopsy; melanoma diagnosis; machine learning; semantic
segmentation; transformers; accuracy

1. Introduction

Melanoma is one of the deadliest types of skin cancer, and its incidence has been
increasing faster than any other cancer [1–3]. If Melanoma is caught in its earlier stages, it
is highly curable; however, because of the complexity of skin biopsies and the subjectivity
of visual interpretation, there is significant uncertainty in the accuracy of pathology reports.
Studies have shown that pathologists’ diagnoses of moderately dysplastic nevi to thin
invasive melanomas are neither accurate nor reproducible in some cases [4]. These reports
raise concerns about appropriate treatment and the consequences of both under- and
over-diagnosis. Deep learning has shown excellent performance on various tasks, and
healthcare is not an exception [5–8]. Using deep-learning techniques to provide prognostic
and diagnostic information for pathologists during screening and treatment stages can be
an aid in clinical care.

Deep learning and artificial intelligence (AI) have achieved unparalleled success in
various tasks such as classification, segmentation, detection, etc. However, though the
state-of-the-art approaches in this field show fast and accurate performance, they face
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challenges in dealing with medical datasets. Medical datasets usually are small in sample
size, have large images, and do not have many examples of perfect annotations. As the
field of AI in healthcare has grown significantly in recent years, more robust methods in
this area have emerged.

In addition, demand for diagnostic models and classification tools based on histopatho-
logical images has increased due to inter- and intra-observer variability in pathology and
the potential solution that AI methods can produce. Providing prognostic and diagnostic
information at the time of cancer diagnosis has important implications on patient outcomes,
as automated machine-learning methods on whole-slide images provide a promising way
forward for efficient and robust pathology analysis.

Various studies have introduced diagnosis models based on whole slide images
(WSIs). In [9], the authors introduced a CNN-based deep feature extraction framework
to build slide-level feature representations via weighted aggregation of the patch repre-
sentations and overcome the challenge of working with variable-sized regions of interest.
Li et al. [10] extracted relevant patch representation using self-supervised contrastive learn-
ing and introduced a dual-stream architecture with trainable distance measurement to
train an MIL model called the dual-stream multiple instance learning network (DSMIL).
Chikontwe et al. [11] proposed a multiple instance learning (MIL) method based on a trans-
former that first selects the top-k patches, and then used these patches for instance-learning
and bag-representation learning. In addition, this method uses a center loss that maps
embeddings of instances from the same bag to a single centroid and reduces intra-class
variations for final diagnosis.

Segmentation-based methods are another approach that has been studied in the field
of histopathology image analysis, as different tissues and entities in these images might
play an important role in the diagnosis of the case. Several works with this approach first
generate semantic segmentation masks on WSIs, and using the extracted information from
those masks, produce an image-level diagnosis [12–14]. While this approach is a valuable
study direction, the challenge of dealing with imperfect annotation or lack of annotation is
not addressed in such studies.

In our prior AI-based diagnosis work in pathology, our studies utilize regions of
interest (ROI) rather than the larger whole slide images (WSI) [9,13,15]. There are two main
reasons we used the full WSI for the current study. First, Mercan et al. [16], in the effort to
find diagnostically relevant ROIs on breast biopsy WSI, reported that 74% of the output
probability map overlapped with the actual ROIs from pathologist viewing behavior, while
26% did not. If such early probability maps are utilized for diagnosis tasks, there is a chance
that important diagnostic information is missed or misused. The second reason behind
our approach using WSI relates to the interpretive process used by pathologists as they
view, assess, and interpret WSI of skin biopsies using current published definitions for
clinical classification. The pathologists’ clinical process and classification systems vary by
tissue type—for breast biopsy cases, a single ROI of an area within a duct might suffice to
allow the pathologists to come to a diagnosis. However, the process used by pathologists
of reviewing skin biopsy image data and the information within skin biopsies used to
determine a diagnosis is different—information on the image from larger structural data in
addition to image data within small clusters of cells is important to both rule in and rule
out different diagnoses. Thus, for a diagnosis of melanoma and its precursors, reviewing
information from the larger WSI is required in current clinical practice by pathologists
before they can provide a diagnosis.

In this work, we therefore incorporate tissue segmentation masks that were generated
based on sparse and coarse annotations of the full skin biopsy WSIs. The goal is to inves-
tigate the potential of providing this information in the process of skin biopsy diagnosis
using WSI. Our experimental results show that including a clinically certain important
tissue structure along with WSIs improves the learning of the model, especially in chal-
lenging diagnostic classes such as melanoma in situ (MIS) and invasive melanoma (T1a).
Examples of tissue structures that show the highest improvements are Epidermal Nests
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and melanoma dermal nests (cancerous). These tissues are considered clinically important
in the decision-making process by human pathologists. Comparing our results with 187
pathologists’ performance on the same test set shows that our model can outperform or
have comparable performance on the cases with the aforementioned diagnostic classes.

2. Materials and Methods

2.1. M-Path Dataset

Our dataset comes from the M-Path study [4] that was approved by the Institutional
Review Board at the University of Washington (protocol number STUDY00008506) and
was conducted by a Bellevue, Washington dermatopathology laboratory. Two-hundred-
and-forty hematoxylin and eosin (H&E)-stained slides of digitized skin biopsy images from
this study are included in our project and can be classified into five different MPATH-Dx
(melanocytic pathology assessment tool and hierarchy for diagnosis) simplified categories
based on presumed risk of the lesion and suggested treatment recommendations [17].
Example diagnostic terms for each MPATH-Dx class are as follows: (I) mildly dysplastic
nevi, (II) moderately dysplastic nevi, (III) melanoma in situ and severely dysplastic nevi,
(IV) invasive melanoma stage T1a, and (V) invasive melanoma stage ≥ T1b. Table 1 shows
the distribution of the diagnostic categories of the M-path dataset. Figure 1 shows examples
of three different WSIs in the M-Path dataset.

Table 1. Distribution of diagnostic categories in M-Path data.

Diagnostic Category Number of Cases

Class I (e.g., Mildly Dysplastic Nevi) 25
Class II (e.g., Moderately Dysplastic Nevi) 36

Class III (e.g., Melanoma in Situ) 60
Class IV (e.g., Invasive Melanoma Stage T1a) 72

Class V (e.g., Invasive Melanoma Stage ≥ T1b) 47

Total 240

Figure 1. Three examples of WSIs in the M-Path dataset. The left image is a case with class IV
diagnosis (invasive melanoma stage T1a), the middle image is a case with class V diagnosis (invasive
melanoma stage ≥ T1b), and the right image is a case with class IV diagnosis (invasive melanoma
stage T1a).

Using the MPATH-Dx classification tool [18] that is described above, a consensus panel
of three dermatopathologists with internationally recognized expertise made a consensus
diagnosis for all cases. Following these meetings, the expert panel, as well as an additional
dermatopathologist (S. Knezevich), assigned one rectangular area as a region of interest
(ROI) per case. These ROIs represent an important area of the WSI for diagnosis. Since there
was a limitation of one ROI per case, there might have been other diagnostically important
regions on WSIs that are not included in the final ROI. However, assigned regions have
valuable information that can be used for various purposes. These variable-sized ROIs
(Figure 2) can be extracted using their coordinates.
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Figure 2. Examples of variable-sized region of interests (ROI) assigned by pathologists that contain
important diagnostic information are shown in red boxes: (a) a case with class II diagnosis (moderately
dysplastic nevus), (b) a case with class V diagnosis (invasive melanoma stage ≥ T1b), (c) a case with
class IV diagnosis (invasive melanoma stage T1a).

To reduce the input image size and eliminate the unnecessary information from the
slides’ orientation (since this information is not relevant to the diagnosis of a case), we used
extracted slices from the WSIs. An example of a WSI and its corresponding extracted slices
is shown in Figure 3.

Figure 3. An example of a WSI (left) and its corresponding slice extraction (right).

2.1.1. Segmentation Masks

In a previous study [19], using coarse and sparse annotations, we trained a two-stage
segmentation pipeline that generates tissue segmentation masks on whole slide images
of skin biopsies. The segmentation masks include epidermis (EP), dermis (DE), stratum
corneum (COR), epidermal nests (EPN), dermal nests (DMN), and background (BG). In the
first stage, using a U-Net model, a model is trained that is able to segment large entities
such as dermis, epidermis, stratum corneum, and background. In the second stage, two
models are trained on the smaller tissue structures of the skin biopsy images. This stage
includes two branches that are trained separately: (1) stage 2-dermis, which uses a U-Net to
train a model on the dermis portion of the image (i.e., DMN); (2) stage 2-epidermis, which
trains a U-Net on the epidermis portion of the image (i.e., EPN).

Using this pipeline, we were able to generate segmentation masks for both large
entities (i.e., dermis, epidermis) and smaller entities (dermal nests, epidermal nests) with
high-quality performance. However, since the annotations of DMN and EPN were coarse,
we observed over-labeling of these entities in segmentation results as well. Figure 4 shows
some examples of segmentation masks generated from WSIs.
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Figure 4. Examples of original WSIs and their corresponding segmentation mask. The segmentation
images contain the dermis, epidermis, stratum corneum, background, dermal, and epidermal nests.
The model was trained on coarse and sparse annotations.

2.2. Dermal Nest Classification

Pathologists investigate structural entities in digitized whole-slide images of melanocytic
skin lesions and assign a diagnosis class to the case based on the various factors, including
morphological characteristics of the cells present in the biopsy images. Assessment of the archi-
tecture and cytomorphology of junctional (epidermal) melanocytes and dermal melanocytes
is necessary to classify and risk-stratify melanocytic lesions.

The evaluation of dermal nests is key in distinguishing a melanocytic nevus from
invasive melanoma. It can also represent one of the most challenging tasks for a pathologist,
especially in the absence of additional lab testing. Generally, dermal nests are categorized
into the two sub-groups of nevus nests and melanoma nests. Dysplastic melanocytic
nevi and severely dysplastic nevi may contain benign dermal melanocytic nests, but only
invasive melanoma contains malignant dermal melanocytic nests.

In [19], we proposed a two-stage segmentation pipeline in which epidermal nests
(EPN) and dermal nests (DMN) were segmented in its second stage. However, since not
enough examples of nevus dermal nests (DMN-N) were available, especially compared to
other entities such as melanoma dermal nests (DMN-M) and epidermal nests (EPN), we
decided to combine nevus dermal nests (DMN-N) and melanoma dermal nests (DMN-M)
into one class of dermal nests (DMN) in that project. In this paper, we propose an additional
step to the output of our segmentation model that allows us to classify segmented DMNs
into two sub-categories of nevus or melanoma. We train a CNN model that is able to
segment dermal nest into melanoma dermal nest and nevus dermal nest. The classes of
epidermal nests, melanoma dermal nests, and nevus dermal Nests can now be used in our
experimental pipeline.

2.2.1. Dermal Nest Dataset

To train a dermal nest classifier, some ground truth on different categories of dermal
nests is required. The ground-truth annotations in this project are a subset of the coarse
and sparse annotations that were introduced in Section 2.1.1. The original set contained a
small number of examples of nevus dermal nests on ROIs with the diagnostic classes of
I, II, and III, while there was a relatively larger number of examples of melanoma dermal
nests on ROIs belonging to cases with diagnostic classes IV and V. The main challenges
in working with these annotations were two-fold: (1) There was a huge gap between the
sample size of nevus dermal nests and melanoma dermal nests in which melanoma dermal
nests contained ~400 M pixels, which is eight times the size of nevus dermal nests with
~50 M pixels and (2) no examples of nevus dermal nests on any invasive melanoma cases
were annotated. The only examples of dermal Nest annotation in these classes belonged to
melanoma dermal nests, while in reality, both types of nests can be present in one invasive

113



Diagnostics 2022, 12, 1713

melanoma case. Hence, in the segmentation model of [19], all dermal nest annotations were
combined into a single class of dermal nests (DMN). Figure 5 shows example annotations of
nevus dermal nests (DMN-M) (Figure 5b) and melanoma dermal nests (DMN-M) (Figure 5e)
and their conversion to dermal nests (DMN) ((Figure 5c) and (Figure 5f)), which were used
for the dataset of [19].

Figure 5. Examples of input ROI images and their corresponding annotations. (a) shows a moderate
Nevi ROI image, (b) shows the original Nevus dermal nest annotation in purple, (c) is the converted
version of (b) in which purple annotations of nevus dermal nests (DMN-N) are converted to green
markings of dermal nest (DMN), (d) shows an invasive melanoma stage ≥ T1b ROI image, (e) shows
the original melanoma nests annotation in red, (f) is the converted version of (e) in which red annotation
of melanoma dermal nests (DMN-M) are converted to green markings of dermal nest (DMN).

In this paper, instead of combining the two types of dermal nests, we kept them
separate and extracted them into two categories of nevus dermal nests (DMN-M) (Figure 5b)
and melanoma dermal nests (DMN-M) (Figure 5e). For the nest extraction step, after
masking out everything other than dermal nests in the ROIs, we sampled the nests into two
classes of “nevus” and “melanoma”. The sampling window size is 100 × 100. As expected,
there was a noticeable imbalance in the final dataset between the two classes of “nevus”
and “melanoma” nests. The number of extracted nevus nests was 604 samples, while the
number of extracted melanoma nests was 5732 samples. To solve this imbalanced dataset
issue, we used the result of our previous segmentation model as explained in Section 2.2.2.

2.2.2. Solving Nest Sample Imbalance in the Training Dataset

After acquiring the segmentation model output, the opportunity of overcoming the
annotation imbalance in dermal nests arises. It is known that cases with a diagnosis class of
I, II, and III only contain nevus dermal nests, while both nevus dermal nests and melanoma
dermal nests can appear in a case with diagnostic class IV or V. Although the segmentation
model of [19] does not distinguish between nevus dermal nests and melanoma dermal
nests, we know that all the nests on class I, class II, and class III cases are nevus dermal
nests. The reason is that if there is any appearance of a melanoma dermal nest on a case,
that case will move to one of the invasive melanoma diagnostic categories. Figure 6a shows
an example of segmented dermal nests on a class II case in which we assume all nests are of
nevus type based on the diagnosis of the case. Figure 6b shows an example of segmented
dermal nests on a class V case. Such a case would not be usable for training in this project
since it is not specified which parts of the segmented dermal nests are nevus and which
parts are melanoma.
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(a) 

(b) 

Figure 6. Example of dermal nest segmentation (in light green) on WSI: (a) a moderate nevi case; all
the dermal nests are nevi type. (b) An invasive melanoma stage ≥ T1b case; the segmented dermal
nests might contain both nevi and melanoma dermal nests.

Since the training and testing split of the dataset is consistent throughout all the
projects, in addition to the fact that all the dermal nests in cases with diagnosis classes of I,
II, and III must be nevus dermal nests, it is only logical to apply the trained segmentation
model from [19] to WSI of cases I, II, and III to detect dermal nests (DMN); extract them; and
re-label them as nevus dermal nests. Using the new nevus dermal nests, we can randomly
extract DMN-N samples and add them to the nest classification training set to reach a
balanced number of samples for both classes of DMN-N and DMN-M in the training set.

2.2.3. Dermal Nest Classifier

Since convolutional neural networks (CNNs) have shown good performance in various
computer vision and machine-learning tasks, we used this approach in training our dermal
nest classifier. We trained three different architectures, using PyTorch torchvision [20]
pre-trained CNN models, trained on the ImageNet dataset [21]:

• DenseNet: Huang, G., et al. [22], introduced a densely connected convolutional neural
network that improves the flow of information between different stacked convolutional
layers. In our experiments, we used a pre-trained torchvision densenet161 architecture
as a nest classifier model.

• ShuffleNet: ShuffleNet [23] is a convolutional neural network that utilized two new
operations, point-wise group convolution, and channel shuffle, to reduce computation
cost while maintaining accuracy. We used a pre-trained torchvison shufflenet_v2 for
our experiments.

• ResNet: A residual neural network [24] is a CNN that utilizes skip connections to
jump over some layers. We used a pre-trained torchvison resnet18 for two of our
experiments with different training datasets.

In the preprocessing step, we included random cropping, random rotation, horizon-
tal flip, and normalization in the Dataloader function. All the models were trained for
20 epochs with cross-entropy [25] as a loss function, and Adam optimizer [26] with a learn-
ing rate of 0.001. After the training, we evaluated each model’s performance on the same
testing dataset and compared the results.

2.3. WSI Diagnosis Using Tissue Segmentation

In this section, we study the impact of adding each tissue mask to the WSIs in the
classification of our dataset into diagnostic categories. The M-path dataset described in
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Section 2.1 with five diagnostic classes of (1) Class I: mild dysplastic nevi, (2) class II: moderate
dysplastic nevi, (3) Class III: (e.g., melanoma in situ and severely dysplastic nevi), (4) Class
IV: invasive melanoma stage T1a, and (5) Class V: invasive melanoma stage ≥ T1b. The only
difference is that since the clinical risk for progression of both Class I and Class II is extremely
low, and we have a limited sample size in the aforementioned classes, we regrouped the five
classes to four diagnostic classes by combining samples from class I and II into one class. The
final four classes will be (1) Class I–II: mild and moderate dysplastic nevi (MMD), (2) Class III:
(e.g., melanoma in situ, severely dysplastic nevi) (MIS), (3) Class IV: invasive melanoma stage
T1a (T1a), and (4) Class V: invasive melanoma stage ≥ T1b (T1b).

As mentioned in Section 2.1, we used extracted slices to train and evaluate our diagno-
sis models. The main resolution that we used to extract individual slices was 20×. Using
this resolution, we extracted lower resolutions of 7.5×, 10×, and 12.5×, which we later
used for our experimental studies.

2.3.1. Binarized Segmentation Masks

The segmentation masks generated by the proposed pipeline in Section 2.1.1 were
used in the current project. Each tissue mask from that project (epidermis (EP), dermis
(DE), epidermal nest (EPN), and dermal nest (DMN)) was separated into a single binary
mask in order to have more control over tissue combination in our experimental studies on
the diagnosis accuracy. In addition to the aforementioned tissue masks, we included the
two types of dermal masks from 2.2 as two separate binary masks of nevus dermal nest
(DMN-N) and melanoma dermal nest (DMN-M). Figure 7 shows examples of binary masks
for two classes of mild and moderate nevi (MMD) and invasive melanoma stage ≥ T1b
(T1b). Note that the moderate nevi (MMD) case does not include any DMN-M; hence, the
corresponding mask is all zeros.

Figure 7. Examples of binarized segmentation masks: (a) a moderate nevi case; (b) an invasive
melanoma stage ≥ T1b. From top to bottom, one extracted slice from a WSI, all segmentation masks
in one mask (containing EP, DE, EPN, and DMN), binary Epidermis (EP) mask, binary dermis (DE)
mask, binary epidermal nest (EPN) mask, binary dermal nest (DMN) mask, binary melanoma dermal
nest (DMN-M), and binary nevus dermal nest (DMN-N) mask are shown.

2.3.2. Dataset Split

The dataset of WSIs before the extraction of slices was divided in half, conserving the
original set’s diagnostic class distribution over both subsets. One-half of the dataset was
used for training and validation subsets, and the other half of the dataset was kept unseen
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from the model during the training and solely used for the final evaluation of the trained
model. This split was kept fixed over all the experiments. After splitting the dataset, the
extraction step that is explained in Section 2.1 was applied to all the WSIs in the training,
validation, and testing subsets.

2.3.3. Soft Labels

Usually, each WSI has multiple slices from the same skin biopsy; however, not all the
slices contain related information to the assigned diagnostic class of the case. In clinical
practice, if a pathologist detects invasive melanoma in just one or two slices on one case,
the overall biopsy is diagnosed as invasive melanoma to guide clinical care and treatment.
In our dataset, the ROIs (some examples in Figure 2) that helped pathologists in diagnosis
belong to one or two tissue slices, while the other tissue slices may correspond to other
diagnostic categories. If all the extracted slices from a WSI are assigned to one diagnostic
class, there is the risk of false representation of that diagnostic class, which can interfere
with the learning process of a model. To handle this issue, we used a method that was
previously developed by our group in which, using a singular-value decomposition (SVD),
soft labels are assigned to the slices that do not have an ROI on them. For more information
about the details of this method, refer to [27].

2.3.4. Combining WSI and Segmentation Masks

We tried various methods to combine the information from WSIs and corresponding
segmentation masks. The final method that we chose to implement and run our experiments
is as follows: Each WSI has three channels of RGB: red (R), green (G), and blue (B). In order
to add segmentation mask information to our data, we concatenate each mask as a new
channel to the image. For example, if we add a DMN channel to the WSI, we will have a
new input with four channels: R, G, B, and DMN. This approach gives the flexibility of
investigating any combination of tissue masks that are of interest. In addition, the feature
extractor obtains the information of appended tissue masks along with the original WSI,
which might result in a more representative feature set.

2.3.5. Feature Extraction

We used MobileNetv2 [28] pre-trained on the ImageNet dataset [21] as a feature
extractor on our extracted patches. MobileNetv2 outputs 1280-dimensional patch-wise
features after global average pooling. Since the pre-trained network on the ImageNet
dataset is essentially a network with three input channels of RGB, we modified the first
layer of the network by replacing it with a Conv2d layer that has input channels equal
to the number of input image channels. The number is not fixed since, as explained in
Section 2.3.4, the number of input image channels depends on the tissue mask combination
in a specific experiment. Changing the first layer of the network, which is not pre-trained on
any image, has the potential of negatively impacting the feature extraction step; however,
as we will see in the next sections, the results do not show any clear effect of such. The
reason might be the nature of CNNs in which the first few layers are focused on low-level
features, while the middle layers mainly extract high-level and fine detailed features.

2.3.6. Scale-Aware Transformer Network (ScATNet)

In previous work, Wu et al. [27] proposed scale-aware transformer network (ScATNet)
for diagnosing melanocytic lesions using WSIs. ScATNet uses local and global represen-
tations from various scales. In this architecture, the first step is to learn local patch-level
embeddings on each scale using a pre-trained CNN. Then, using a transformer, the model
learns the contextualized patch embeddings for each scale. In the last step, scale-aware
embeddings across various scales are trained to the model [27].

ScATNet projects extracted patch-wise features explained in Section 2.3.5 linearly to a
128-dimensional space. In the second and third steps of the ScATNet pipeline, a stack of
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two transformer units is used. Each transformer unit has four heads in the self-attention
layer with a feed-forward dimension of 512.

2.3.7. Experimental Studies

In order to investigate the impact of different tissue types, we designed several ex-
periments with various combinations of tissue segmentation masks, using ScATNet as
the basic model. In each experiment, we included specific segmentation masks along
with the WSI; extracted the features as explained in Section 2.3.5; and using the extracted
features, we trained and tested a diagnosis model. We ran the experiments with various
resolution scales (7.5×, 10×, 12.5×, combination of two scales, and all three scales), with
different hyperparameters, and after finding the best setting, we ran all the experiments
with different random seeds.

Figure 8 shows an overview of our approach.

Figure 8. Overview of our diagnosis pipeline. The WSI goes to the segmentation pipeline to generate
a tissue segmentation mask. Then, four clinically important tissue structures: epidermis (EP), dermis
(DE), epidermal nest (EPN), and dermal nest (DMN) will be extracted into four corresponding binary
masks. Extracted Dermal Nests will go through a dermal nests classification step to generate two
sub-categories of melanoma dermal nest (DMN-M) and nevus dermal nest (DMN-N). Then, the
selected tissue masks based on the experiment will be concatenated to the RGB channels of the WSI
image. Each image will be cropped into smaller patches afterward. The patches go through the
ScATNet pipeline that extracts patch embeddings, then, using contextualized patch-embedding and
scale-aware embedding across available scales, chooses the diagnostic class of the case from mild
and moderate dysplastic nevi (MMD), melanoma in situ and severely dysplastic nevi (MIS), invasive
melanoma T1a (T1a) and melanoma invasive ≥ T1b (T1b). Note that the concatenated masks to
the WSI (DMN-M and EPN) and ScATNet scales (7.5× and 12.5×) shown in this figure are just one
example of our multiple experimental studies.

2.3.8. Hyperparameters

ScATNet was trained for 200 epochs in an end-to-end fashion using the ADAM
optimizer with a linear learning rate warm-up strategy and step learning rate decay. The
best result in our experimental studies was achieved using a single scale of 7.5×.

3. Results

3.1. Dermal Nest Classification Results

All the models from both approaches were evaluated by a testing set of ROI images
that was kept unseen from the model during the training process. Note that in the testing
dataset, no nest samples from the segmentation model are included. The testing dataset
only contains extracted nests from ROIs in which we had a pathologist’s annotation as
ground-truth to compare model prediction against them. Using the model with the best
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performance on ROI images, we generate DMN-M and DMN-N on extracted slices of
the WSI.

3.1.1. Quantitative Results on ROIs

All the trained models were evaluated on the same ROI testing set. Each nest classi-
fier’s performance was measured using these metrics: F-score, precision, sensitivity (recall),
and specificity. The results of this evaluation are summarized in Table 2.

Table 2. Quantitative nest classification results on ROIs-CNN models.

Method F-Score Precision Sensitivity Specificity

DenseNet 0.88 0.87 0.89 0.82
ShuffleNet 0.78 0.80 0.76 0.74

ResNet 0.96 0.95 0.97 0.93

As a model selection step after training each experiment for 200 epochs, and to
improve the model’s robustness against stochastic noise, we averaged the best five model
checkpoints within a single training process inspired by [29]. Then we evaluated all our
experiments over the same testing set. A WSI might contain multiple tissue slices, which
were extracted into single slices, and each of these slices might have a different diagnostic
class prediction. To decide on the final diagnosis of a specific WSI, we used max-voting,
which means if one of the tissue slices in a WSI is invasive melanoma, then the entire
WSI corresponds to invasive melanoma and cannot be MMD or MIS. This approach was
inspired by how pathologists make their diagnosis decision on skin biopsy images.

3.1.2. Qualitative Results on WSIs

After acquiring our best nest classifier (ResNet), we ran the model on all the dermal
nests (DMN) extracted from the previous segmentation mask of invasive melanoma stage
T1a and ≥ T1b WSIs to generate melanoma dermal nests (DMN-M). Any segmented DMN
samples in these classes that were not classified as a DMN-M by the nest classifier model
are assigned to nevus dermal nest (DMN-N). Figure 9 shows examples of an extracted slice
of invasive melanoma WSI, corresponding dermal nest mask generated by our previous
segmentation model, melanoma dermal nest (DMN-M) portion of the dermal nest (DMN)
as a result of nest classifier output, and nevus dermal nest (DMN-N) portion of dermal nest
(DMN) as a result of the complement of DMN-M on DMN.

(a) WSI (b) DMN (c) DMN-M (d) DMN-N 

Figure 9. Examples of our best nest classifier, ResNet’s results on WSI: (a) extracted slices of invasive
melanoma WSIs; (b) dermal nest results of segmentation model; (c) melanoma dermal nest (DMN-M)
portion of DMN; (d) nevus dermal nest (DMN-N) portion of DMN.

3.2. Diagnosis Experiment Results

We evaluated all the models based on micro F-score, sensitivity (recall), and specificity.
Note that in dealing with a multi-class classification, where every test datum should belong
to only 1 class and not multi-label, we cannot use the same F-score as in binary class
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classification (i.e., macro F-score in multi-class classification). The correct way to report an
F-score in multi-class classification is to calculate the micro-averaged F-score (AKA micro
F-score) based on micro-precision and micro-recall. Micro-precision measures the precision
of the aggregated contributions of all classes, and micro-recall measures the recall of the
aggregated contributions of all classes.

• Micro_precision = TPsum/(TPsum + FPsum)
• Micro_recall = TPsum/(TPsum + FNsum)
• Micro F-score = 2 × (micro_precision × micro_recall)/(micro_precision + micro_recall)
• Sensitivity (recall) = TPsum/(TPsum + FNsum)
• Specificity = TNsum/(TNsum + FPsum)

3.2.1. Experimental Results

The summary of the results is shown in Table 3. The F-score of each experiment is
reported based on 10 different random seeds, along with average sensitivity and specificity
over the 10 random seeds per experiment. In our experiments, the (average, max) F-scores
were (0.54, 0.58) for the raw WSI with no segmentation masks, which improved to a high
of (0.60, 0.62) for the raw WSI plus the epidermis mask and the dermal melanoma mask
(i.e., the cancerous nests in the dermis). The addition of the dermal melanoma mask was
important as it gave a significant gain over just providing dermal nests. Note that we
started with a rather low F-score for the raw WSI and fixed those parameters to achieve
stability, so it is possible that even higher values [27] can be achieved by starting with a
different set of parameters for the WSI run. However, we favored stability, and the (0.54,
0.58) scores were stable, in that they could be achieved repeatably.

Table 3. Experimental results of WSI diagnosis along with segmentation masks.

Experiments
F-Score *

Sensitivity ** Specificity **
Average Min Max Median

WSI + EPN + DMN-M 0.60 0.58 0.63 0.59 0.60 0.87
WSI + EPN + DMN 0.57 0.54 0.61 0.56 0.57 0.85

WSI + EPN + DMN-M + DMN-N 0.56 0.53 0.60 0.55 0.56 0.85
WSI + EP + DE + EPN + DMN 0.55 0.53 0.59 0.54 0.55 0.85

WSI 0.54 0.53 0.58 0.54 0.54 0.85
WSI + EPN 0.54 0.52 0.58 0.53 0.54 0.85

WSI + DMN 0.54 0.51 0.56 0.54 0.54 0.85
WSI + DMN-M + DMN-N 0.54 0.52 0.55 0.54 0.54 0.86

WSI + DMN-M 0.52 0.50 0.55 0.51 0.52 0.84

* F-score is reported for 10 random seeds; ** sensitivity and specificity are average scores over 10 random seeds
per experiment.

3.2.2. Comparison of Confusion Matrices

Table 4 shows a comparison of two experiments’ confusion matrices. Table 4a is an
example of a multi-class confusion matrix of experiments that only contain RGB channels
of the WSI in the dataset, while Table 4b shows an example of an experiment in which we
had R, G, and B channels of the WSI along with two extra channels of epidermal nest (EPN)
binary segmentation mask and melanoma dermal nest (DMN-M) binary segmentation
mask (a total of five channels per image).

As shown in the tables, the number of true positives (TP) of classes MIS, T1a, and
T1b increased in the experiment in which we included segmentation masks along with
WSI. Another important finding is that the misclassified cases of MIS when we have EPN
and DMN-M information are mostly on T1b. In the real world, MIS is a challenging case
for pathologists to make a definite diagnosis. The comparison of confusion matrices in
Table 4 and tissue experiments’ results in Table 4b shows that the model is able to learn
more information when segmentation masks are introduced along with the WSI, which can
be an assistance to pathologists in challenging cases.
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Table 4. Comparison of two confusion matrices. Rows are defined by expert consensus and columns
are by model predictions. (a) An example experiment with only WSI and no segmentation mask.
(b) An example experiment of WSI + EPN + DMN-M.

MMD MIS T1a T1b MMD MIS T1a T1b

MMD 17 8 4 0 MMD 17 9 3 0
MIS 7 12 9 2 MIS 3 16 10 1
T1a 0 9 18 4 T1a 5 2 18 4
T1b 0 2 9 12 T1b 0 0 8 15

(a) WSI (b) WSI + EPN + DMN-M

3.2.3. Single-Scale vs. Multi-Scale

In our experiments, we ran each setting of tissue experiments with single scale,
two scales, and three scales. A summary of results for one example tissue experiment
(WSI + EPN + DMN-M) in comparison with a raw WSI, which has the exact same parame-
ters and scales, are summarized in Table 5. These results suggest that having segmentation
masks does not improve the performance when ScATNet is trained on multiple scales,
and the gain of improvement is lower when the higher resolution of WSI along with
segmentation masks is used.

Table 5. Comparison of F-score results of raw WSI and tissue experiment (WSI + EPN + DMN-M) on
single-scale experiments and multi-scale experiments.

Scale WSI WSI + EPN + DMN-M

7.5× 0.54 0.60
12.5× 0.56 0.57

7.5× & 12.5× 0.57 0.56
7.5× & 10× & 12.5× 0.57 0.55

This behavior can be explained by the specific strategy of ScATNet in patching in-
put images on different scales. For example, images in 7.5× resolution are divided into
5 × 5 = 25 crops while 12.5× images are divided into 9 × 9 = 81 crops. In addition, the
transformer unit in the ScATNet architecture includes a self-attention module that learns to
pay more attention (i.e., assign higher weight) to specific patches in an image. When we
introduce a WSI along with its corresponding dermal nests and epidermal nests, the model
learns during the training process that these structures are important in decision making.
Hence, when these tissue structures appear in a testing case’s segmentation mask, the model
assigns higher weights to the patches that contain those structures. If a segmentation mask
of a testing case is inaccurate, especially when some important structures are over-labeled,
it can negatively impact the model’s decision-making and lead to a false prediction. The
possibility of such an impact could be higher in higher resolutions since there will be more
patches with inaccurate tissue labels; hence, higher weights on irrelevant patches. Figure 10
shows an example of a test set WSI and corresponding segmentation mask (Figure 10a)
that includes dermis, epidermis, melanoma dermal nest, epidermal nest, corneum, and
background. The segmentation of epidermal nests is inaccurate and over-labeled, and
potentially led to a wrong prediction on resolution 12.5× (Figure 10c), since the number of
patches with noise at that resolution is more than at resolution 7.5× (Figure 10b).
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(a) 

 

(b) (c) 

Figure 10. Low-resolution vs. high-resolution patching when there is an inaccurate segmentation
mask in the testing case. (a) A WSI and corresponding segmentation mask that includes dermis,
epidermis, melanoma dermal nest, epidermal nest, corneum, and background. In this example
case, epidermal nests are inaccurately segmented and over-labeled. (b) The segmentation mask
in 7.5× scale divided into 25 crops as input patches for ScATNet. (c) The segmentation mask in
12.5× scale divided into 81 crops as input patches for ScATNet. There is a higher number of patches
with inaccurate and noisy segmentation on the 12.5× scale compared to the 7.5× scale, which possibly
led to a false prediction on the 12.5× scale using ScATNet.

3.2.4. Comparison to US Pathologists

We have access to the interpretation of 187 US pathologists on the same testing set that
we used in our experimental studies. Table 6 shows the comparison of the F-score, sensitiv-
ity, and specificity of pathologists’ performance and our best model (WSI + EPN + DMN-M)
performance. We observe that our model either outperforms the pathologists’ results on
the challenging classes of MIS and T1a or has a comparable performance. This finding
shows the potential that providing an assistant tool can have in the time of cancer diagnosis
and treatment.

Table 6. Comparison of class-based F-score, sensitivity, and specificity of 187 US pathologists and our
best model (WSI + EPN + DMN-M) on the same testing set.

Class
F-Score Sensitivity Specificity

Pathologists Ours Pathologists Ours Pathologists Ours

MMD 0.71 0.67 0.92 0.76 0.76 0.81
MIS 0.49 0.50 0.46 0.44 0.85 0.89
T1a 0.62 0.57 0.51 0.64 0.95 0.79
T1b 0.72 0.67 0.78 0.57 0.97 0.96

3.2.5. Comparison to Other Baselines

We compared our results with several other methods developed to make a diagnosis
based on histopathology images.

• Weighted Feature Aggregation: Deep Feature Representations for Variable-Sized Re-
gions of Interest was introduced by [9]. In this method, a CNN-based deep feature
extraction framework builds slide-level feature representations via weighted aggre-
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gation of the patch representations. In this pipeline, the patch-wise feature will be
extracted by a VGG16 pre-trained CNN, then using two different approaches of
either penultimate layer features (penultimate-weighted) or hypercolumn features
(hypercolumn-weighted), the features are concatenated in a weighted manner. As the
last step, using average pooling, a slide-level representation is generated, which is
later used for training and testing the diagnosis CNN model.

• Dual-stream Multiple Instance Learning Network (DSMIL): In this work, Li et al. [10]
used self-supervised contrastive learning to extract good representations from patches
and using an aggregator that models the relations of the instances in a dual-stream
architecture with trainable distance measurement, trained a MIL model.

• Multiple Instance Learning with Center Embeddings (ChikonMIL): [11] proposed a
multiple instance learning (MIL) method that first selects the top-k patches, and then
uses these patches for instance-learning and bag-representation learning. In addition,
this method uses a center loss that maps embeddings of instances from the same bag
to a single centroid and reduces intra-class variations for the final diagnosis.

The results of all the baseline methods and their comparison with our best model are
summarized in Table 7. Our model using the epidermal nests and dermal melanoma nests
is able to beat all of them.

Table 7. Comparison of baseline methods with our best model (WSI + EPN + DMN-M).

Method F-Score Sensitivity Specificity

penultimate-weighted [9] 0.44 0.44 0.81
hypercolumn-weighted [9] 0.43 0.43 0.81

DSMIL [10] 0.50 0.50 0.83
ChikonMIL [11] 0.56 0.56 0.85

Ours * 0.60 0.60 0.87

* Our model is the tissue experiment with (WSI + EPN + DMN-M).

4. Discussion

The rapidly growing number of melanoma cases along with inter- and intra-observer
variability of diagnosis by human pathologists is of concern in this field. On the other
hand, advances in machine learning and artificial intelligence methods have presented
the potential to provide assistant tools for the pathologists to analyze whole-slide images
(WSIs) for diagnosis and prognosis objectives.

In recent years, interest in artificial intelligence research in various fields including
healthcare has been increasing rapidly. Deep-learning methods have shown impressive
and robust performance on various tasks and hold promise for providing assistant tools in
healthcare research including pathology. Dermatopathology research is not an exception
in benefiting from the advancement of artificial intelligence [30–32]. In the time of cancer
monitoring and treatment, AI-developed tools have the potential to assist dermatopatholo-
gists especially with challenging cases. In addition, the educational and research aspects
of AI-developed methods in tutoring practicing pathologists introduce new prospects for
reducing the diagnostic errors in clinical care.

In recent years, deep-learning methods have proven to have excellent performance in
different tasks such as image classification. However, most of the state-of-the-art methods
either require a fairly large dataset to train a model or a large amount of pixel-level annota-
tion. Both of these requirements are a challenge in dealing with medical datasets as these
datasets are usually small, especially compared to general datasets such as ImageNet [21],
and obtaining fine manual annotation on them is not a time or cost-effective task.

In this work, we proposed an approach that uses the segmentation masks that we
previously obtained using sparse and coarse annotation [19], and adds information to
WSI from a dataset of skin biopsy images. In this work, we first designed a dermal nest
classifier that can classify segmented dermal nests (DMN) into two sub-categories of nevus
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dermal nests (DMN-N) and melanoma dermal nests (DMN-M). Using the previous and
new masks, the goal was to investigate the potential of each important tissue mask in skin
biopsy images to improve the results of a multi-class diagnosis model.

Our experiments showed that including certain segmentation masks along with WSIs
yields a better diagnosis output with one scale. One of the foremost tissue types in skin
biopsy images are nests that contain various types such as epidermal nests (EPN), nevus
dermal nests (DMN-N), and melanoma dermal nest (DMN-M). We observed significant
improvement when including EPN and DMN-M (which is considered the cancerous type
of dermal nests) along with the corresponding WSI, compared to the experiments that do
not include any segmentation masks. Further analysis showed that including the aforemen-
tioned entities improved the learning of the model on invasive melanoma and melanoma
in situ, which are challenging classes on which to make a consensus decision. Improvement
in the challenging classes proves the potential AI has in healthcare and pathology.

As mentioned in Section 2, each WSI in the M-path dataset has an expert-assigned
ROI that carries either important diagnostic or prognostic information. However, since
(1) experts were limited to one ROI per case, and (2) the diagnosis of some skin biopsies
requires review of the full whole slide image, we designed our diagnosis pipeline to utilize
full WSIs rather than a single ROI per case. One might wonder if multiple ROIs would be
sufficient in place of the WSI, and perhaps more efficient. For example, if multiple ROIs
were generated by an AI program for use in diagnosis, these may actually slow down
the diagnosis process if provided to human pathologists who are used to their own way
of examining slides. If multiple ROIs were identified by expert pathologists and were
provided to a computer program classifier, it would not know which (if any) were more
important, and thus, looking at the WSI is still the best course for the computer diagnosis
for skin biopsy specimens.

Certain limitations need to be considered. The dataset that we used in this project is
small and of melanocytic skin lesions, and while the cases included were carefully selected
to represent the full spectrum of cases in clinical practices in the US, we are not certain
how well the method would perform on the full spectrum of skin biopsies (e.g., including
non-melanocytic lesions). In addition, the sparse annotations for the segmentation project
were provided on ROIs on the WSI, which means there was prior knowledge of which part
of the WSI contained valuable information. Not all medical datasets benefit from having
ROI assigned to each case.

The unique strengths of this work include the ability to compare our results to the
diagnostic interpretations given to the cases by actively practicing U.S. pathologists. This
comparison showed that our model could outperform or have comparable performance
to pathologists in some challenging classes. Ours is the first deep-learning model to add
segmentation data of the clinically important tissue structure to the raw images to improve
melanoma diagnosis. Since our segmentation model was trained on a sparse and coarse
annotation set, providing a diagnosis pipeline that improves the outcome by leveraging the
imperfect segmentation masks highlights the potential of AI approaches in dealing with
challenges and shows a promising future for AI in healthcare.
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Abstract: Basal cell carcinoma (BCC) is the most frequent cancer of the skin and comprises low-
risk and high-risk subtypes. We selected a low-risk subtype, namely, nodular (N), and a high-risk
subtype, namely, micronodular (MN), with the aim to identify differences between them using a
classical morphometric approach through a gray-level co-occurrence matrix and histogram analysis,
as well as an approach based on deep learning semantic segmentation. From whole-slide images,
pathologists selected 216 N and 201 MN BCC images. The two groups were then manually segmented
and compared based on four morphological areas: center of the BCC islands (tumor, T), peripheral
palisading of the BCC islands (touching tumor, TT), peritumoral cleft (PC) and surrounding stroma
(S). We found that the TT pattern varied the least, while the PC pattern varied the most between the
two subtypes. The combination of two distinct analysis approaches yielded fresh insights into the
characterization of BCC, and thus, we were able to describe two different morphological patterns for
the T component of the two subtypes.

Keywords: basal cell carcinoma; Haralick texture features; histogram moments; semantic segmentation;
peritumoral cleft

1. Introduction

Basal cell carcinoma (BCC) is the most frequent type of skin cancer in humans [1,2].
Histopathology is considered the “gold standard” in the diagnosis of oncological skin
pathology [3–5]. The origin of BCC cells is currently believed to be the basal cells located
in the interfollicular epidermis or the follicular bulges [5,6]. Although BCC histology has
a wide range of morphological characteristics, constant features are the islands and nests
with peripheral palisading basaloid cells with scant cytoplasm and hyperchromatic nuclei,
often with stromal retraction and fibromyxoid stroma [6].

The latest version of the WHO Classification of Skin Tumors recognizes 10 different sub-
types of BCC and divides them into lower- and higher-risk groups based on recurrence [6].
However, some studies showed poor inter-observer reproducibility when classifying these
subtypes, emphasizing the practical challenges pathologists face in everyday practice when
using the present criteria [7,8]. A study by Nedved et al. showed fair agreement (k 0.301,
p < 0.001) in BCC subtyping by six dermatopathologists, but substantial agreement (k 0.699,
p < 0.001) in dividing them into low- and high-risk groups [8].

Pathologists usually report BCC by subtype, and afterward, clinicians decide the
patient management [8]. Thus, in the context of significant inter-observer reproducibility
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amongst pathologists [7,8] and frequent admixture of multiple subtypes within a single
tumor [9,10], confusion may arise.

However, according to some authors, the most problematic definition is that of the
micronodular subtype because the definition does not take into consideration the tangential
sections of other subtypes or irregularity near the margin of large nodules, which can also
mimic micronodules [11,12]. Moreover, because the previous definition of micronodules
states that they should be smaller than 0.15 mm but did not offer a minimal number of those
small nodules in order for the tumor to be classified as micronodular, some authors implied
that the presence of a single solitary micronodule in a typical nodular subtype can warrant
classification as micronodular BCC [7] or a mixed-type tumor. However, the definition
of the micronodular subtype improved in the fourth edition of the WHO Classification
of Skin Tumors, where alongside the required size of micronodules (less than 0.15 mm in
diameter), it also states that they should make up to more than 50% of the tumor [13].

This study focused on the most common low-risk subtype, namely, nodular BCC, and
a high-risk subtype, namely, micronodular BCC. Deep learning showed promising results
in image comprehension, reconstruction and reasoning, and particular convolutional neural
network techniques were widely used for classification and segmentation tasks across a
wide range of applications [14–16], allowing for better visualization of histology images,
sometimes finer than the human eye [17]; therefore, digital pathology has advantages in
terms of time savings and performance [18] and can improve diagnostic efficiency and
accuracy [19].

Various aspects were studied in BCC diagnosis via deep learning methods using
several network architectures as follows. By using U-Net for pixel segmentation and a
proprietary algorithm for classification, van Zon et al. aimed to distinguish normal tissue
from BCC for margin control in Mohs surgery and obtained an area under the curve
(AUC) of 90% [20]. Campanella et al. also distinguished between normal and BCC tissue
using a different deep learning convolutional network architecture, namely, ResNet34, and
obtained high sensitivity, correctly identifying all sections with BCC and a lower specificity
of 94% with four false-positive results [21]. Using GoogLeNet Inception v3, Jiang et al.
studied BCC detection from images captured using using smartphones from microscope
ocular lens and attained a similar performance to those captured from slides and even from
whole-slide images [22]. Using the VGG11 network architecture, Kimeswenger et al. offered
an artificial neural network that can identify and classify BCC on whole-slide images by
comparing the network results with the eye movements of pathologists and concluded that
software can improve the diagnostic quality of the human eye [23]. They also recognized
BCC with a specificity and sensitivity of 95% [23]. In a previous study, the present group of
authors designed a deep learning convolution-based software using transfer learning from
three general-purpose image classification networks: AlexNet, GoogLeNet and ResNet-18.
This software was able to classify subtypes of BCC, such as superficial, nodular (with
adenoid, nodulo-cystic and keratotic variants), pigmented, with adnexal differentiation,
micronodular and infiltrating [24].

To our knowledge, there are no studies in the literature that compared nodular and
micronodular subtypes of BCC using deep learning techniques.

The two subtypes can be characterized using histological aspects, such as the tumor
stroma, stromal retraction, peripheral palisading cells and tumor island without palisad-
ing cells. Therefore, in the following paragraphs, we consider the current literature on
these aspects.

1.1. Tumor Stroma

In the process of tumorigenesis, not only cancer cells play an essential role, but also
the tumor microenvironment [25], thus creating a habitat that protects the tumor from the
immune system [26].

The vast majority of BCC have a fibro-myxoid stroma [6], which is composed of
glycosaminoglycan-based ground substance with a complex network of collagen, elastin
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and fibronectin [27], along with inflammatory cells and fibroblasts that interact with tumor
cells via growth factors or extracellular matrix proteins secretion, thus influencing tumor
growth and progression, as well as angiogenesis or metastasis [28–30]. In the inflammatory
infiltrate of BCC, stroma lymphocytes are dominant, having both a pro- and an anti-tumoral
effect, though the anti-tumoral effect prevails, where some studies showed an increase
in IL-4 and IL-10 Th2 cytokines in BCC stroma involved in tumor proliferation [31,32].
Fibroblasts present in the stroma have a particular phenotype and markers [33], thus
participating in the promotion of tumor growth [34] and progression [33,35] through the
production of cytokines and extracellular matrix components [34]; the presence of these
fibroblasts was demonstrated in both the tumor and peritumoral stroma of BCC [36].

Nonetheless, when the high-risk and low-risk subtypes were compared, changes in the
stroma component were observed. Immunoreactivity to beta-catenin, which is a protein in-
volved in the expression of membrane type-matrix 1 metalloproteinase (MT1-MMP) [37,38],
is increased at the invasion front of the micronodular versus nodular subtype [39]. In
terms of the amount of inflammatory infiltrate, high-risk subtypes were found to have a
more abundant infiltrate [40]. Furthermore, Th1 and Th2 are more abundant in high-risk
subtypes [41].

Although the functional role of the peritumoral stroma is not clearly elucidated in
BCC, it was observed that there are qualitative and quantitative differences between sub-
types [28,42]. In a comparison between micronodular and nodular subtypes, a difference
in the presence of actin was found. Actin was present in most cases of the micronodular
subtype and was absent in the nodular subtype [43], which could explain the aggressive-
ness of the invasion of the micronodular subtype compared with the nodular one since the
microfilaments responsible for cell motility are mainly composed of actin [44]. In terms of
the histological appearance of the stroma, high-risk subtypes show more intense hyaliniza-
tion, while a more fibrous stroma is associated with low-risk subtypes of BCC [45,46]. In
the micronodular subtype, some researchers report a loss of stromal response [47], while
others show the presence of a fibromyxoid stroma [40]. Therefore, there are some different
opinions in the literature on the micronodular stroma subtype, which we aimed to study
using different methods than those studied so far, namely, by using artificial intelligence.

1.2. Tumor Island (Including Peripherally Palisaded Basaloid Cells)

According to an X-chromosome inactivation study, BCC is a monoclonal neoplas-
tic development of basaloid epithelial cells embedded in a polyclonal connective tissue
stroma [48]. As previously mentioned, BCCs originate in the basal cells of the interfollicular
epidermis or follicular bulges [5,6], and therefore, will have properties specific to this origin,
such as cell adhesion specific to epithelial tissues. Although matrix metalloproteinases
(MMPs) are involved in modulating the tumor microenvironment, they are also engaged in
activating cell adhesion molecules [49], one of which is E-cadherin [50,51], which is essential
in the cell-to-cell adhesion of epithelial tissues. Moreover, together with beta-catenin, it
creates a protein complex that is involved in the mesenchymal–epithelial transition, and
thus, the two are directly involved in tumor progression [52]. The presence of beta-catenin,
especially in the membrane of tumor cells of the micronodular subtype of BCC, suggests
another mechanism involved in this subtype [53].

Although there are common characteristics of all BCC subtypes, such as originating
from the same cell type, these subtypes have different histological morphologies and
biological behaviors [54,55]. Low-risk BCC types have a slow and indolent growth pattern
with high bcl-2 protein labeling, while those with an aggressive subtype, either mixed or
pure, display heterogeneous bcl-2 labeling [56].

Given the differences in bcl-2 protein expression, beta-catenin and MMP-1 expression
in tumor islands between the nodular and micronodular subtypes, we believe that an
evaluation via deep learning methods using transfer learning could provide additional
information that is not visible to the human eye or available using immunohistochemi-
cal staining.
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1.3. Peritumoral Cleft

The presence of peritumoral clefts or retraction spaces at the periphery of BCC tumor
islands is frequent and can be a diagnostic clue when present [6,57]. The exact mechanism
by which these peritumoral clefts form remains unknown; however, various hypotheses
were proposed. Although in the past, it was stipulated that these retractions are actually
a processing artifact due to fixation and dehydration [57], this was refuted by the studies
of several authors that demonstrated the involvement of the tumor microenvironment.
Levin et al. and Ghita et al. demonstrated the presence of in vivo peritumoral clefts using
reflectance confocal microscopy. Ghita et al. observed dark spaces that surrounded tumor
islets [58,59]. These findings were corroborated by Ulrich et al.’s research, which went even
further to state that in the peritumoral clefts, there are mucin deposits [60]. Another study
concluded that the origin of these spaces comes from the extracellular matrix degradation
that occurs during tumor growth [61].

Another theory is that peritumoral retraction is caused by epithelial membrane dis-
integration. Some studies demonstrated the lack of laminin-5 in the area surrounding
tumor nests and suggested an improper structure or an absence of the hemidesmosome-
anchoring filament complex in BCC, which leads to cleavage of the basal membrane [62,63].
Breakdown of the basal membrane was also demonstrated using staining for Ep-CAM and
cytokeratins by Rios-Martin et al. [57]. However, not all authors agree with this result, with
some suggesting that laminin does not play a substantial part is cleft formation [64].

More recent studies reflected on the effects of MMPs, such as MMP-2 and MMP-
9, and stated that extracellular matrix remodeling plays a significant part alongside a
decreased expression of adhesion molecules [65], although other metalloproteinases, such
as stromelysin-3, were believed to be involved in tumor invasion via degradation of the
matrix of the stroma [66]. Some researchers demonstrated an increased expression of
MMP-2 in the stroma of high-risk compared to low-risk BCC subtypes, suggesting a role in
tumor invasiveness [67]; however, when the presence of MMP-2 and MMP-9 was studied
in the peritumoral space, no statistically significant correlations were observed between
these and the space [65].

Peritumoral clefts are common in nodular BCC [6], but some studies stated that they
are uncommon in the micronodular subtype [68–70].

Hence, there are several theories regarding why and how these peritumoral clefts exist
and whether they are present or not in the micronodular BCC subtype. These differences of
opinion in the literature prompted us to study these spaces using deep learning methods.

Through this study, we aimed to identify the morphological differences that occur
in these two subtypes, using, on one hand, the classical morphometric approach with
gray-level co-occurrence matrix features and histogram moments, and, on the other, an
approach based on deep learning segmentation.

2. Materials and Methods

2.1. Materials

The dataset included consecutive cases of N (n = 46), MN (n = 12) and mixed (n = 31)
subtypes of BCC that were presented at the Cluj-Napoca Clinical Municipal Hospital in
Romania between 2019 and 2021.

Prior to data collection, approval from the Research Ethical Committee (approval no.
7749/21 September 2021) was obtained.

The surgically removed tissue was histologically treated, and the slides were stained
with standard hematoxylin and eosin staining. All the slides were scanned using the 20×
objective of the Pannoramic SCAN II, 3DHISTECH (Budapest, Hungary), resulting in
whole-slide images (WSI).

Representative BCC images with 1920 × 1017 pixels in 32-bit RGB (red, green, blue)
color space, representing 0.038 square microns per pixel, were extracted from WSIs by
pathologists with experience in dermatopathology. From the total of 417 images, 201 images
were labeled as the micronodular subtype, while the remaining 216 images were labeled as
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the nodular subtype. Even in mixed-subtype WSIs, the images that were selected presented
one of the specified subtypes exclusively.

2.2. Methods
2.2.1. Dataset Preparation

Pathologists labeled images as either nodular (N) or micronodular (MN) based on the
definitions from the 4th edition of WHO Classification of Skin Tumors [6]. When assessing
the micronodular subtype, the invasive character in the deeper part of the tumor was also
taken into consideration.

In our assertion, the BCC interaction with the surrounding tissue creates four distinct
morphological components (patterns):

• Tumor (T)—representing the center of the BCC islands, where interactions with the
surrounding stroma are limited (Section 1.2);

• Touching tumor (TT)—representing the peripherally palisaded part of the tumor
where the interactions with the surrounding stroma are maximal (Section 1.2);

• Peritumoral cleft (PC)—representing the peritumoral clefts where the interactions with
the tumor are maximal (Section 1.3);

• Stroma (S)—representing the surrounding stroma where interactions with the tumor
are limited (Section 1.1).

Each image was manually segmented by a trained pathologist with regard to the four
components introduced in the first section (T, TT, PC, S). Using the segmentation mask,
four different images were generated that contained only the selected component’s pixels.
A sample of two-subtype segmentation, with the resulting segmented images, is presented
in Figure 1.

Figure 1. Proposed image segmentation. From (A–F)—N subtype; from (G–L)—MN subtype;
(A,G)—original image; (B,H)—segmentation mask; (C,I)—T; (D,J)—TT; (E,K)—PC; (F,L)—S.

After preparing the dataset, the analysis was split into two different components: (1) a
classical morphometric approach with Haralick texture features and histogram moments
and (2) a semantic segmentation approach with deep learning. Both approaches aimed to
quantify whether there were any textural differences between the two subtypes.

2.2.2. Morphometric Analysis

A common approach for texture analysis is to use the gray-level co-occurrence ma-
trix (GLCM).
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The GLCM counts how many times the value i occurs horizontally adjacent to a pixel
with the value j [71]. The offset (distance between the pixel of interest and its neighbor)
was set to 1 and no symmetry was considered [71].

For the GLCM computation, the four segmented images were converted to their
grayscale (8-bit) version. The number of levels in GLCM was empirically set to 9. Due to
the fact that the background was represented as black in the segmented images, the first
line and row of the resulting GLCM were removed, thus obtaining an 8 × 8 GLC matrix.

The following Haralick [72,73] texture features were computed for each image of the
segmented dataset: angular second moment (energy), contrast, correlation, variance, in-
verse difference moment (homogeneity), sum average, sum variance, sum entropy, entropy,
difference variance, difference entropy, information measure of correlation I, information
measure of correlation II and maximal correlation coefficient.

The resulting values were grouped by image segment and BCC subtype. Using
Student’s t-test, the (statistically) different values of each segment were compared and are
presented in Table 1.

Another approach for texture analysis is using the histogram moments [74,75]. The
formula for computing moments is given by

mk =
n

∑
i=1

(xi − m)k

n
(1)

where mk is the computed moment value, xi is the value of pixel i, m is the average pixel
value of the image and n is the number of pixels in the image.

Considering the histogram as a distribution, the first moment is the expected value
(k = 1), the second moment is the variance (k = 2), and the third and fourth moments are
the skewness (k = 3) and the kurtosis (k = 4), respectively. The variance, skewness, and
kurtosis were computed for each image of the segmented dataset.

Similar to the analyzed Haralick texture features, the average moment values of each
segment were compared using Student’s t-test.

2.2.3. Semantic Segmentation Analysis

Semantic segmentation is the concept of grouping parts of an image that belong to the
same object class. A semantic segmentation classifier labels all the pixels in an image, thus
obtaining an image that is segmented by class. Many semantic segmentation techniques
were described [76], with the best performing ones being convolution-based [16].

For our experiment, a DeepLab v3+ segmentation network [77] with weights initialized
from a pre-trained ResNet-18 [78] network was used. For this, several layers from a ResNet-
18 network trained on ImageNet were transferred (both architecture and weights) in
the DeepLab v3+ network. Only the classification layer of the network was replaced to
match the new number of output classes. The network was initialized using the MATLAB
(Mathworks, Natick, MA 01760-2098, Portola Valley, CA, USA) built-in function [79].

Several of the default training parameters used for training the network were changed.
Thus, the learning rate schedule (LearnRateSchedule) was set to “piecewis”, the learn-
ing rate drop period (LearnRateDropPeriod) to 10, the learning rate drop factor to 3
(LearnRateDropFactor to 0.3), the momentum (Momentum) to 0.9, the initial learning
rate (InitialLearnRate) to 0.001 and the L2 regularization (L2Regularization) to 0.005. All
the parameters were set with the aim to accelerate the network’s convergence without a
premature convergence. The training was set to perform a maximum of 30 epochs, with
a mini batch size of 4 and a validation patience of 10. Parameters left unchanged were
initialized with their default (Mathworks-proposed) values.

Due to their stochastic characteristic, DL algorithms must be independently run several
times with different input data and the evaluation result must be presented as a mean and
SD. For this, the segmentation algorithm was run 100 times, where at each step, the dataset
was split into subsamples of 70% training, 15% validation and 15% testing.
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The network’s performance was assessed in terms of accuracy, intersection over union
(IoU), and F1 score. Considering a binary choice and a two-class intersection, a classified
object could fall in one of four classes: true positive (TP), true negative (TN), false positive
(FP) and false negative (FN).

Accuracy is defined as

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

IoU is defined as
IoU score = TP/(TP + FP + FN) (3)

In order to compute the F1 score, the precision and recall are first defined as:

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

Based on Equations (4) and (5), the F1 score is defined as:

F1 score = (2× Precision × Recall)/(Precision + Recall) (6)

The average results for the semantic segmentation are presented in Table 2.
The best performing network was selected and used for further assessment. Thus, the

whole dataset was tested and the resulting confusion matrix is presented in Table 3.

2.2.4. WSI Automatic Segmentation

Using PMA.start’s API, which is free software offered by pathomation.com (accessed
on 30 May 2022) [80], WSI images were brought into the MATLAB workspace and were
segmented using the best performing network obtained in Section 2.2.3. The average time
for segmenting a WSI was about 6 minutes on an Intel In(R) Silver 4216 CPU @ 2.10 GHz
processor with 128 GB RAM and a Quadro RTX 6000 video adapter. A sample of two
segmented WSIs is present in Figure 2.

3. Results

The results of the morphometric analysis assessment in terms of the Haralick texture
features are presented in Table 1. The more the features were significantly different between
the two subtypes, the more different their texture was.

All computed histogram moments showed statistically different values for all the
components (T, TT, PC, S), except for the variance (second moment) of the S component.

Table 1. Number of Haralick texture features with statistically different averages between subtypes.

Segment Component Number of Statistically Different Features 1

T 4
TT 2
PC 12

S 5
1 The theoretical maximum was 14, representing all the computed texture features.

The results of the semantic segmentation assessment are presented in Table 2. As
seen in Table 2, the best accuracy score was for the S-MN component, which also had the
best IoU score with 0.92, while the best F1 score was for PC-N. The lowest performance
regarding accuracy was for the T-N component, regarding IoU for TT-N, and regarding the
F1 score for PC-MN.

Table 2 refers to the average performance of 100 network runs, while Table 3 refers to
the best performing network applied to the whole dataset. The same network was used for
the WSI segmentation, with an example shown in Figure 2.
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Looking at the confusion matrix in Table 3, we note that the highest confusion rate for
the network was between the classes T-N and TT-N, and also for the classes S-N and PC-N,
while the lowest confusion was for the S-MN class.

When comparing the patterns of the N and MN subtypes, we discovered that the PCs
were quite different (12/14 Haralick texture features), while the TTs were rather similar
(2/14 Haralick texture features). However, all the computed histogram moments showed
statistically different values for the two subtypes on both the PC and TT components.

The WSI image with a zoomed-in detail focusing on a mixed zone containing both
nodular and micronodular subtypes is presented in Figure 2.

Figure 2. WSI segmentation using the best performing network. (A)—WSI with MN subtype,
(B)—WSI with both N and MN subtypes, (C)—detail of the selection from (B,D)—detail of the
selection from (C). Color labels for the segmented objects are available in the top-right corner.
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Table 2. Semantic segmentation performance.

Segment Component Accuracy IoU F1 Score

T-N 0.75 0.70 0.56
TT-N 0.79 0.47 0.63
PC-N 0.76 0.61 0.76

S-N 0.85 0.75 0.66
T-MN 0.88 0.81 0.64

TT-MN 0.83 0.34 0.39
PC-MN 0.86 0.59 0.54

S-MN 0.94 0.92 0.69
AVERAGE 0.83 0.65 0.61

Table 3. Normalized confusion matrix of the best performing semantic segmentation network on the
whole dataset.

T-N TT-N PC-N S-N T-MN TT-MN PC-MN S-MN

Target
Classes

T-N 0.75 0.12 0.01 0.00 0.10 0.00 0.00 0.00
TT-N 0.09 0.79 0.08 0.00 0.00 0.03 0.00 0.00
PC-N 0.01 0.10 0.76 0.10 0.00 0.00 0.03 0.00

S-N 0.00 0.00 0.12 0.85 0.00 0.00 0.01 0.01
T-MN 0.04 0.00 0.00 0.00 0.88 0.05 0.01 0.00

TT-MN 0.00 0.01 0.00 0.00 0.06 0.83 0.09 0.00
PC-MN 0.00 0.00 0.01 0.00 0.00 0.06 0.86 0.07

S-MN 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.94
Predicted Classes

4. Discussion

4.1. Results Analysis—General Remarks

After running the experiment, we ended up with two types of measurements. The first
type of measurement fell into the “descriptive concept” category, as it showed how many
of the Haralick texture features were different between the two BBC subtypes and the four
defined classes (Table 1). The second type of measurement fell into the “inferential concept”
category, as the resulting segmentation networks decided which pixel fell into which class
based on the information learned in the training phase. The aim of training a segmentation
network that was capable of segmenting four different components of two BCC subtypes
was not to obtain an accurate segmentation (though an average accuracy of 83% is good),
but to assess the inter-class performances as markers for similitude between patterns.

The classical morphometric analysis produced a lot of information. The numbers of
Haralick texture features that differed for T and TT were 4/14 and 2/14, respectively. This
showed a high similitude between the classes, and the fact that TT had the lowest value
could indicate that the palisading had a similar function/mechanism. Twelve out of the
fourteen Haralick texture features had statistically different values on the PC classes of
the two subtypes. The value was more than double those found for T and TT. This could
indicate that the possible difference between the output of the two malignancies could have
its origin in the cleft formation. Last but not least, S had five significant different Haralick
texture features (5/14). This fell in line with our expectation, as the normal tissue that is far
enough from the tumor is actually similar (the same) between the subtypes, as any kind of
signaling is unlikely.

The semantic segmentation analysis produced a lot more information that was partly
in line with the morphometric analysis.

The first observation of the performance assessments (Table 2) showed that MN
outperformed N in the matter of accuracy and IoU and had opposite results for the F1
score. This could be explained in part by a lower in-class variation of the MN subtype and
a larger pixel representation for the N one.
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The T component has a similar behavior for accuracy and IoU, with values above
0.7 for N and above 0.8 for MN (Table 2). This would translate to relatively high inter-class
differentiation. From the confusion matrix (Table 3), we can observe that it was more likely
that T was mistakenly classified as TT than that the two subtypes were misclassified with
one another: (T-N vs. TT-N = 0.12) vs. (T-N vs. T-MN = 0.10) and (T-MN vs. TT-MN = 0.05)
vs. (T-MN vs. T-N = 0.04).

The TT component had better accuracy in both subtypes than T but showed a lower
performance in the matter of IoU (Table 2). Corroborating the information with the data
from the confusion matrix (Table 3), it stands out that the TT is being misclassified as T and
PC, and the confusion between the two BBC subtypes (TT-M and TT-MN) was relatively
low. Nevertheless, in the matter of IoU, TT fell under T, in agreement with the classical
morphological analysis (Table 1).

On one hand, the PC component had a similar behavior with the TT in regard to
confusing nearby patterns in both subtypes; thus misclassifications were made with PC
and S. On the other hand, inter-subtype confusion was more present, e.g., PC-N was
misclassified as PC-NM 3% of the time while PC-MN was misclassified as PC-N 1% of
the time (Table 3). The performance values, though smaller, were comparable with the
ones from the TT, which was in opposition with the findings on the classic morphometric
approach where the differences were large, i.e., 14 vs. 5 statistically different Haralick
texture features.

4.2. Results Analysis of Tumor Stromas

The S component had the best performance for both the accuracy and IoU metrics
(Table 2). Following Table 3, we observed that the common misclassification on both
subtypes was with PC. For some reason, the classifier rarely mistook the S subtype; this
was in opposition to classical morphometric assessment. When assessing the number of
Haralick texture features with statistically different averages between the two subtypes,
we found 5 out of 14 distinctive features, while the only similar moment (the variance)
was on the S component, meaning that in our data set, the stromas were relatively similar
between the two subtypes. However, the literature states that an intensely hyalinized
stroma is associated with high-risk BCC and a fibrous stroma with low-risk BCC [45,46].
In our analysis, the distance of the surrounding stroma to the tumor was not taken in
consideration; thus, normal tissue probably made up most of the analyzed area, resulting in
a similar pattern [45,46]. In our research, in the analyzed images, we did not differently label
the non-tumoral stroma from the tumor stroma; therefore, the software analyzed everything
surrounding the tumor in the image. Given this, we do not consider it appropriate that our
results should be considered for any literature comparison.

In the WSI analysis, the stromal inflammatory infiltrate between the N and MN
subtype were different: we found scattered inflammatory infiltrate in the stroma closely
surrounding the MN subtype, while for the N subtype, the infiltrate was abundant, but
it was not as close to the tumor island as the one surrounding the MN islands. This is
consistent with other studies in literature, such as the one done by Kaur et al., where they
described a loss of inflammation in micronodular growth pattern (r = 0.2/0.5, p ≤ 0.001) and
the mean inflammatory infiltrate was lower in high-risk groups but with more abundant
plasma cell and lymphoid follicle formation when compared with the low-risk group [47].
On the other hand, Dunham et al. studied the immune response in various BCC subtypes
and observed a dense peritumoral inflammatory infiltrate in the majority of the high-risk
subtypes (including micronodular) and a mild one in the low-risk ones [40]. In regard to
the type of inflammatory response, Lefrançois et al. demonstrated a difference in the type
of inflammatory cells depending on the risk group, where a macrophage-rich inflammatory
infiltrate was more representative of the high-risk group and a predominantly lymphocytic
infiltrate was more representative of the low-risk group [41].
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4.3. Results Analysis of Tumor Islands (Including Peripheral Palisaded Basaloid Cells)—T and TT

Looking at Figure 2C, we can see the network produced a good performance when
segmenting the image and that it correctly identified the two different BCC subtypes that
were present on the same WSI. This led us to the idea that pathologists should also be able
to find textural differences between the tumors and, in particular, within the T component.
To support our theory, we selected 100 × 100-pixel patches from all the images in the
dataset where the network uniformly segmented the area with only the correct label. A
random sample of the resulting patches is presented in Figure 3.

Figure 3. Randomly selected crops from the T component dataset, where the network uniformly
segmented the area with only the correct label. The left group represents the N subtype and the right
group represents the MN subtype. The first image of each group with overlaid labels represents
samples from the nodule in Figure 2D.

Looking at the pictures in Figure 3, pattern differences between the two groups of
images can be observed. In the left group (representing cells from the tumor island of the
N type), the cells were more elongated and the intercellular matrix was better represented,
i.e., the cells were more separated from each other. The right group, representing cells from
the tumor island of the MN type, had more round or polygonal cells and the intercellular
matrix appeared to be sparse. It was previously noted that in other malignancies, different
intercellular differences within different patterns of the same tumor were present [81,82].
Furthermore, the elongated cells from the left group appeared to be oriented in one direction
and were positioned one after another, while those from the right group had no clear
orientation. These observations are important given that the images were from outside the
TT zone, and thus, the influence of the surrounding stroma was improbable.

Another interesting observation can be made regarding Figure 2C,D, where a single
BCC nodule was highlighted from a mixed tumor containing both N and MN subtypes.
According to the definition of nodule size (an MN nodule is required to be smaller than
0.15 mm), the pathologists labeled the nodule as being part of the N subtype, but the
software labeled the same nodule as part MN and part N. Without the information provided
by the segmentation network, this nodule would only have been labeled as N. Going further
into the details from Image 2D, we note that the network correctly predicted the TT, TS and
S surrounding the islands of different types within the same nodule.

In addition to these morphological distinctions, authors such as Oh et al. also observed
discrepancies in beta-catenin expression, which is increased in the micronodular subtype
relative to the nodular subtype [39]. In the same study, they raised questions about a
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dysregulation mechanism of the beta-catenin E-cadherin complex in this MN BCC because
of the nuclear location of the beta-catenin expression in this subtype [39]. Although the
results were not statistically significant, beta-catenin was more expressed in the peripheral
palisading portion of tumor islets than in the center of tumor islands [39]. In regard to
MT1-MMP, Oh et al. found the same expression in both the peripheral palisading part of
BCC tumor islets and in the central part of BCC tumor islands [39]. However, Son et al.
observed that marked expression of MMP-1 in the tumor stroma also causes structural
changes at the periphery of the tumor through a loss of peripheral palisading, which
in turn leads to a poorly differentiated histological appearance that is correlated with a
poor prognosis [83]; this finding has a particular significance in our study regarding the
MN subtype.

4.4. Results Analysis of Peritumoral Clefts

Researchers have attempted to find an explanation of peritumoral clefts for years,
and even in the 1990s, researchers such as Crowson, Sexton and Hendrix saw a difference
in peritumoral clefts of the micronodular subtypes, stating that they are an uncommon
finding in this subtype [68–70].

The texture analysis showed that the most significant differences between the two
subtypes were in terms of the peritumoral cleft (Table 1). We find it important to note
that the differences observed were primarily qualitative. Thus, we showed that, when
present, these clefts were qualitatively different in the nodular and micronodular subtypes.
Using Alcian blue stain, Ulrich et al. demonstrated the presence of mucin deposits in
the PC in some subtypes of BCC, such as the nodular subtype [60]. However, in their
study, they did not have cases of MN BCCs. Sahu et al. described the presence of mucin
and amyloid deposits in less-aggressive nodular BCCs; however, they also did not study
any MN BCCs [84]. Another hypothesis is that epithelial membrane breakdown causes
peritumoral retraction, with laminin-5 perhaps playing a role [62,63]. On the other hand,
other researchers disagree [64]. Newer studies, such as the one by Mentzel et al., showed
that the extracellular matrix breakdown that happens during tumor growth is the source of
such clefts [61].

In regard to quantity, out of the 201 MN images, 191 showed partial, focal or all-
around peritumoral clefts. Although as previously stated, even though PCs are a common
characteristic of BCC [6,57], they are usually uncommon in MN BCC [68,70]. A possible
explanation for their abundance in our dataset was the fact that the majority of micron-
odular images from our cases were obtained from mixed tumors with both nodular and
micronodular patterns. In our practice, we often find mixed patterns in BCC, and the most
common mixed pattern we find is nodular combined with micronodular. Of course, in this
situation, it is of great importance to consider tangential sectioning and irregular margins
of large nodules, as researchers such as LeBoit et al. and the Australian Cancer Network
also suggest [6,12]. However, the mixture of a micronodular pattern with nodular pattern is
quite common, as stated in the latest edition of the WHO Classification of Skin Tumors [13].

From the confusion matrix in Table 3, we see that PC-MN was rarely confused with
PC-N, but it was confused with TT-MN and S-MN. The same went for PC-N, which
was confused with TT-N and S-N. This could, in part, be explained by the imperfect
pathologist’s annotation used for model training, where similar pixels were classified into
different classes.

4.5. Future Work

As we demonstrated that the two variants were different cancers with regard to their
morphologies, the next step is to uncover the possible epigenetic modifications that are
responsible for these differences. Laser capture microdissection (LCM) is a technology that
uses a laser to cut and extract portions of tissue at a microscopic level that can be later used
for further analysis. LCM can be applied to almost all fields of molecular investigation,
including proteomics and transcriptomics [85]. A review of epigenetic modifications in
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skin [86] highlighted possible uses of LCM in skin tumors and identified some specific
diseases where the results are promising, such as in melanoma [87] and cutaneous T-cell
lymphoma [88], but did not identify any relevant BCC study.

Furthermore, the resulting specimens from the LCM could also be transferred to a
mass analyzer [89], thus obtaining mass spectra profiles for the selected cancer samples. A
step forward was made in this direction and the separation of normal vs. BCC tissue was
done with high accuracy with an aim toward real-time margin assessment during BCC
surgery [90].

Analyzing the two tumor variants with respect to the four components (T, TT, PC and
S) taken into consideration in our study by using these new approaches could produce new
information that can be used to further identify the differences.

4.6. Brief Summary

In order to evaluate the similarities and differences between patterns of the four com-
ponents (T, TT, PC, S) amongst the two subtypes of BCC (N and MN), two measurements
were used: a descriptive one (Haralick texture features and histogram moments) and an
inferential one (which pixels fell into which class based on the semantic segmentation).

Tumor stroma analysis revealed that both accuracy and IoU metrics performed well for
S. The Haralick texture features and histogram variance indicated that the stromas in our
data set were generally similar across the two subtypes. Although studies have described
differences in stromas between N and MN subtypes, since we did not distinguish between
the non-tumoral and tumoral stroma, normal tissue most likely made up the majority of the
examined area, resulting in a similar pattern. With this being the case, we do not believe it
is proper to compare the outcomes. On the other hand, the WSI analysis showed distinct
stromal inflammatory infiltrate between the two subtypes, with scattered inflammatory
infiltrate in the stroma intimately enclosing the MN subtype and was abundant, although
it was not as close to the tumor island inflammation in the N subtype.

The results analysis of the tumor islands (including peripheral palisaded basaloid cells)
showed similarities between TT components, suggesting a similar mechanism and some
dissimilarities between the T components. Randomly selected crops from the T component
presented morphological differences in the cell shape, orientation and intercellular matrix
between N and MN BCCs. The N subtype cells were more elongated, had a similar
orientation and had a more abundant intercellular matrix when compared with the rounder
and unorganized MN cells. Furthermore, the semantic segmentation network was able to
highlight the MN subtype within a tumor island that was labeled as N by the pathologists
(Figure 2C,D).

Out of the four analyzed components, the most significant difference between the
morphology of the two subtypes was represented by the PC component. We found that
these clefts, when present, were fundamentally distinct in the N and MN subtypes. These
differences were mostly qualitative and need further study to highlight the exact origin of
those morphological differences.

5. Conclusions

The coupling of the standard morphometric approach with Haralick texture features
and histogram moments and the semantic segmentation with deep learning analysis of
BCC MN and N subtypes provided new insights into the characterization of these two
subtypes. PC’s pattern varied the most between the two subtypes, while the tumor cells in
the palisading zone (TT) had the most similar pattern of the two groups.

We identified distinct pathological patterns of the T component in random fields of the
tumor island that did not contain peripheral palisading. The N subtype had more elongated
nuclei that followed the same directions and were positioned one after the other as opposed
to the MN subtype, which has rounded nuclei with no visible alignment. Moreover, the
intercellular matrix was more abundant in the N subtype T component as opposed to the
MN subtype.
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Deep learning techniques brought new insight into the morphologies of nodular and
micronodular subtypes of BCC.
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Abstract: CNN-based image processing has been actively applied to histopathological analysis
to detect and classify cancerous tumors automatically. However, CNN-based classifiers generally
predict a label with overconfidence, which becomes a serious problem in the medical domain. The
objective of this study is to propose a new training method, called MixPatch, designed to improve a
CNN-based classifier by specifically addressing the prediction uncertainty problem and examine its
effectiveness in improving diagnosis performance in the context of histopathological image analysis.
MixPatch generates and uses a new sub-training dataset, which consists of mixed-patches and their
predefined ground-truth labels, for every single mini-batch. Mixed-patches are generated using a
small size of clean patches confirmed by pathologists while their ground-truth labels are defined
using a proportion-based soft labeling method. Our results obtained using a large histopathological
image dataset shows that the proposed method performs better and alleviates overconfidence more
effectively than any other method examined in the study. More specifically, our model showed
97.06% accuracy, an increase of 1.6% to 12.18%, while achieving 0.76% of expected calibration error,
a decrease of 0.6% to 6.3%, over the other models. By specifically considering the mixed-region
variation characteristics of histopathology images, MixPatch augments the extant mixed image
methods for medical image analysis in which prediction uncertainty is a crucial issue. The proposed
method provides a new way to systematically alleviate the overconfidence problem of CNN-based
classifiers and improve their prediction accuracy, contributing toward more calibrated and reliable
histopathology image analysis.

Keywords: histopathology image analysis; deep learning; prediction uncertainty; confidence calibration

1. Introduction

For the past decade, deep learning (DL) has been widely applied in computer vision
tasks and achieved impressive performance, primarily due to the rapid development of
convolutional neural network (CNN) techniques. The automatic diagnosis of heterogeneous
diseases that can lead to loss of life is a challenging application for DL techniques. Cancer
is a highly heterogeneous disease and one of the leading causes of death, ranking second in
deaths per year in the world [1]. To diagnose the presence of cancer, pathologists usually
examine whole-slide images (WSIs) to identify abnormal cells. The growth in the number
of yearly cancer cases has led to expert pathologists working long hours, thereby increasing
the chance of human errors, which has been found to be approximately 3% to 9% in
anatomical pathology [2]. To alleviate this problem, DL-based frameworks for WSI analysis
have been developed to assist pathologists [3–6].

DL-based WSI analysis involves the handling of large WSIs [6,7], each of which
consists of many gigapixels (typically 50,000 × 50,000 pixels). Given such a large size, it is
difficult to input a WSI into a CNN model due to computational constraints. Additionally,
reducing the resolution of a WSI for CNN model training can negatively affect model
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performance because the WSI information is distorted [8]. To overcome this challenge,
researchers have proposed patch-based frameworks for WSI analysis using DL [9–12].
Such frameworks commonly consist of three phases for WSI analysis: (1) splitting the
target WSI into patches, (2) extracting features from these patches using a patch-level
classifier, and (3) identifying abnormalities in the WSI by aggregating the extracted features
of patches [13]. Prior research on patch-based analysis focused on how to design an overall
framework. In particular, previous studies concentrated on how to aggregate the extracted
features of patches to identify abnormalities in WSIs. However, in addition to the proper
design of an overall framework, the effective training of a patch-level classifier is of critical
importance because the performance of the patch-level classifier is the foundation of an
overall framework.

To extract the features of patches, patch-level classifiers have been trained based on
transfer learning, with little attention given to the characteristics of patches [3–5,14–17].
Additionally, to improve the performance of a CNN model as a patch-level classifier, prior
studies employed image modification techniques such as data augmentation [18,19], color
transformation [20,21], and stain normalization [22–24]. The goals of image modification
techniques are to amplify the number of patch images, extract the morphological features,
and reduce the deviations across WSI scan devices. Despite these diverse efforts, prediction
uncertainty has not received much attention in patch-based analysis even though it is
a serious issue, particularly in the medical domain. In this study, we propose a novel
method, called MixPatch, that actively considers prediction uncertainty associated with
histopathology patches.

Prediction uncertainty is largely indicated by the confidence level of the prediction
output from a CNN model. A critical issue in the current baseline approach is that the
confidence level is given on a binary scale of 0 or 1, thus creating overconfidence prob-
lems [25,26]. More specifically, most abnormal histopathology patches are mixed with
benign regions and nonbenign regions [27]. Extracted patches are labeled by pathologists
to build a training dataset for patch-level classifiers. In this process, if an extracted patch
includes various class regions, the extracted patch is labeled according to the most serious
diagnosis by a pathologist. However, most of the abnormal patches are mixed with benign
regions and nonbenign regions to varying degrees. This mixed-region variation property
is difficult for patch-level classifiers properly to consider. For example, if a small area of
a patch is nonbenign, the prediction uncertainty of the case should be high, as most of
the cell is benign. However, because of the overconfident nature of CNN, a patch-level
classifier trained with a traditional method will produce a confidence value of 1 or very
close to 1, even for this highly uncertain case. To alleviate this overconfidence problem, a
patch classifier needs to be trained by properly incorporating the mixed-region variations
in histopathology images. If prediction uncertainty information for mixed regions could be
properly applied in the training process, the parameters of the CNN model would be more
effectively trained, effectively enriching the extracted features of patch-based information
and ultimately contributing to enhanced overall performance of the framework.

The objective of this study is to propose a new training method, called MixPatch, to
improve patch-level classifiers by specifically addressing the prediction uncertainty prob-
lem and to examine its effectiveness in improving diagnosis performance in the context of
histopathological image analysis. The central objective of the proposed MixPatch method
is to build a new subtraining dataset that has a predefined mix of benign vs. nonbenign
patches in certain ratios and the associated ground-truth labels. MixPatch is designed to ex-
plicitly consider the mixed-region variations in histopathological patch images. The dataset
is generated using a small size of confirmed, clean (benign and nonbenign) histopathologi-
cal patches. To define a new ground-truth label, proportion-based soft labeling [28] is used.
MixPatch is a novel method applicable to the training of CNN models in the domain of
digital pathology. As described in Figure 1, MixPatch prevents or limits the overconfidence
problem by explicitly addressing the high level of prediction uncertainty associated with
highly mixed-region cases in histopathological images.
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Figure 1. Baseline vs. MixPatch. A single WSI generates multiple patches. The process of tiling
creates certain case patches and uncertain case patches. Most parts of a certain patch are covered by
a single label, but those of an uncertain patch are mixed. The baseline methods are overconfident,
even for uncertain patches and incorrect outputs. The proposed method, MixPatch, overcomes these
problems by explicitly incorporating the mixed-region variations in histopathological images into the
training process.

The major contributions of this paper are as follows:

• We propose a new method designed to train a CNN-based histopathology patch-level
classifier. The method is applicable to many medical domains in which patch-based
images are used.

• The proposed method estimates prediction uncertainty to varying degrees to enrich the
extracted features of patch-based information and improve the overall performance of
the framework for WSI analysis.

• The proposed method is tested based on histopathology stomach datasets to assess
the performance improvements achieved in comparison with other state-of-the-art
methods at the patch level and slide level.

2. Literature Review

2.1. Patch-Based WSI Analysis

Participation in grand challenges for digital pathology (https://grand-challenge.org/,
accessed on 13 June 2022) has led to remarkable developments in automatic diagnosis. In
particular, WSI classification has received extensive attention from research communities.
Most researchers have relied on patch-based classification approaches due to the computa-
tional limitations of directly applying CNN models for WSI analysis. In each competition,
patch-based approaches have been among the best performers.
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The existing patch-based digital pathology frameworks consist of patch-level classifiers
and WSI-level classifiers. A patch-level classifier is responsible for classifying each patch
based on a respective class label. In contrast, the WSI-level classifier considers various
information, such as the features extracted from patches, the locations of patches, and
the number of patches in aggregation, to obtain a final decision with regard to the slide
in question. Thus, given the complexity of this approach, the current frameworks are
primarily concerned with the design of the WSI-level classifier. For example, a study
focused on developing a framework that enabled CNNs to efficiently analyze WSIs by
incorporating multiple instance learning was proposed [29]. Additionally, a top-performing
team in the grand challenge proposed a binary classification framework in which 11 types
of features were first extracted based on the available morphological and geometrical
information, and then these features were used for classification with a random forest
classifier [30]. Although their study relied on traditional machine learning approaches for
classification modeling, recent studies have predominantly proposed frameworks using
DL. Wang et al. [13] proposed a DL-based WSI multiclassification framework that first
selects discriminative patches, extracts features for each class using a patch-level classifier,
and then utilizes the extracted features to diagnose diseases using a multi-instance deep
learning network. Dov et al. [31] proposed weakly supervised instance learning for whole-
slide cytopathology images with unique slide structures. Duran-Lopez et al. [32] proposed
a novel aggregated CNN model for slide-level classification using the patch-level classes
obtained from a CNN. Li et al. [33] proposed a multiresolution multi-instance learning
model to detect suspicious regions for fine-scale grade prediction.

The design of an overall framework is an important issue, and the tiling process (i.e.,
creating patches from a WSI) and patch-level classification are the fundamental building
blocks of these frameworks. To implement the tiling process, the extant frameworks
employed image modification methods [6,30]. The goals of such methods are to increase
the amount of data using rotation, to extract morphological features using different color
scales, and to reduce the variation in dyeing or scanning. Additionally, most existing
studies trained patch-level classifiers by applying transfer learning, metric learning, and
fine-tuning methods based on existing CNN architectures such as ResNet, VGG, and
DenseNet [33–38]. These studies focused on improving the performance of patch-level
classifiers in different ways, but did not pay attention to the issue of prediction uncertainty.
It is important to address prediction uncertainty because a patch-level classifier is utilized
as a feature extractor. Properly incorporating prediction uncertainty into the training
process can substantially enrich the extracted features of patch-based information, thereby
positively influencing the performance of the applied WSI analysis framework.

2.2. Uncertainty in Deep Learning

CNN models have displayed state-of-the-art performances in many image classifica-
tion tasks [39–42]. Although CNN-based approaches have achieved superior performance
in various applications over the past decade, CNN models tend to predict labels with
overconfidence [43,44]. For example, CNN models often produce a high confidence prob-
ability of 91%, even for ambiguous cases and public datasets [45]. Incorrect predictions
with overconfidence can be harmful. It is essential for the probability of the predicted label
to reflect the corresponding likelihood of ground-truth correctness. This consideration is
especially important when a CNN model is applied to a medical dataset [26].

As a remedy to this problem, two approaches have been proposed: uncertainty quan-
tification and confidence calibration. The first approach estimates uncertainty based on a
probability density over all outcomes. Bayesian probabilistic deep learning [43] and MC
(Monte Carlo) dropout with ensembles [44] are two common uncertainty quantification
approaches. However, such methods have not been widely adopted due to implementa-
tion challenges and long training times [46]. The second approach measures prediction
uncertainty with values of confidence. The confidence level is the highest value from
a probability distribution that can be extracted from the softmax layer. Methods based
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on the second approach can provide appropriately calibrated confidence information to
limit the overconfidence issue. The second approach, the confidence-based uncertainty
measurement approach (also called the confidence calibration approach), is more suitable
for medical applications than is the first approach. In general, the classification of labels
for medical applications are associated with the N-stage in pathology. Although the first
approach separately produces a predicted label and the corresponding uncertainty, the
second approach tries to produce a confidence probability for each stage and selects the
predicted label with the highest confidence probability. The confidence probability for
each label is helpful for computer-aided diagnosis. Additionally, the second approach is
more straightforward than the first approach, and some methods that rely on the second
approach, such as excessive dropout, do not use intentional random noise. Thus, robust
CNN models can be established.

Noise distributions are commonly used in confidence calibration [28,47,48]. However,
applying intentional random noise can cause problems for histopathological patch classi-
fication. Taking a different approach without intentional random noise, several methods
utilize an additional subtraining dataset to increase variability in the training process [49].
The basic objective of this approach is to build a new subtraining dataset that consists of
mixed images and their new ground-truth labels. Specifically, a new mixed image is a
combination of two or more images, and the corresponding ground-truth label is defined
using a label smoothing method based on the mix combination. For example, if images A
and B are mixed at the same ratio, the ground-true label is based on a weight of 0.5 for both
categories of A and B. Multiple methods have been proposed to mix images, including
MixUp [50], CutMix [51], and RICAP [52]. MixUp combines two images by overlaying
them and redefining a new ground-truth label to create a new subtraining dataset. CutMix
replaces part of an image with a cropped patch from another training image and redefines
a new ground truth label based on the proportions of the respective image areas. RICAP
combines four images randomly cropped according to boundary positions and redefines a
new ground-truth label with the same image area proportions.

The performance of these image mixing methods has been evaluated using public
image datasets such as MNIST [53], CIFAR10 [54], and ImageNet [55]. In public image
datasets, the main target is placed over the center of the image so that most of the main
target exists during the cropping process [56]. However, these methods have the potential
to cause problems when applied to histopathological images. Specifically, the cropping
process can easily produce mislabeled data if nonbenign areas are all cropped from an
uncertain abnormal patch. This paper proposes a novel method that produces improved
performance in handling prediction uncertainty by considering the mixed-region variation
in histopathological patches. The new method builds and uses an additional subtraining
dataset as a patch-level classifier. The dataset consists of mixed patches, each of which is a
set of mixed small images, and no cropping is required; additionally, the corresponding
ground-truth labels are determined based on the mixing ratio.

3. Method

The primary goal of the proposed method is to address the problem of prediction
uncertainty by utilizing a prearranged set of mixed patches. This method generates a
new subtraining dataset consisting of randomly drawn mixed patches and their ground-
truth labels and applies them to the model training process, which is further illustrated in
Figure 2.
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Figure 2. The overall process of the proposed method. In the existing methods, the patch-level
classifier is trained using a CNN model and a cleaned patch dataset, Doriginal , which pathologists
previously confirmed. The proposed method, MixPatch, additionally uses a new subtraining dataset,
which consists of image xmixed and label ymixed. xmixed is built by combining randomly selected images
from the minipatch dataset. ymixed is defined according to the ratio of abnormal mini-patches. In the
figure, a minibatch is a randomly built mix of samples from Doriginal and samples from Dmixed−patch.

3.1. A New Subtraining Dataset: Mixed Patches and Their Ground-Truth Labels

The essential component of the proposed method is a new subtraining dataset. The
dataset consists of mixed patches and their ground-truth labels. The generation process
for the mixed patches and their ground truth labels is as follows. Let (x, y) ∈ Doriginal ,
(xmixed, ymixed) ∈ Dmixed−patch, and (xmini, ymini) ∈ Dmini denote the original dataset, a new
subtraining dataset, and a minipatch dataset, respectively. To build a new subtraining
image xmixed, minipatches xmini are concatenated. We use Dmini to eliminate the cropping
process and build a new mixed patch because the cropping process is not appropriate
for histopathological images; this approach reduces the probability that noise affects the
dataset. We initialize the number of minipatch images k to build a single xmixed. The sizes
of xmini and xmixed can be adjusted according to the parameter k. The number of cases for a
single xmixed is |Dmin|Pk = |Dmini|!/(|Dmini| − k)!, indicating that an enormous number of
xmixed values can be generated. Thus, a data augmentation effect is achieved.

After generating a new subtraining image xmixed, we define a new ground-truth label
ymixed. As demonstrated by several existing methods [50–52], new ground-truth labels
play an important role in achieving high performance and producing high calibration
confidence. In prior work, new ground-truth labels were defined based on the proportions
of the regions of the images. For example, prior studies defined a new ground label
with a weight of 0.5 for each class if a mixed image included cats and dogs in the same
proportion. However, histopathological images differ from the images found in public
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datasets. Histopathological images have to be diagnosed as abnormal if any proportion of
the mixed image contains abnormalities. Additionally, even if a mixed image is diagnosed
as abnormal, the confidence should not be fixed at 1, because the underlying composition
of the classes in the image is diverse, reflecting the mixed-region variation property. Thus,
to overcome the overconfidence problem, for any abnormal mixed patch, the value of
abnormality in a new ground-true label needs to be defined from 0.5 to 1 according to the
proportions of normal and abnormal minipatches in a mixed patch.

3.2. Training Process

The subtraining dataset generated from the above process is used to train a patch-level
classifier. Many existing methods for confidence calibration generate new subtraining
datasets, divide the data into multiple minibatches, and periodically insert selected mini-
batches into the training process (e.g., [51]). However, given the context of medical image
analysis, our method takes a more cautious, conservative approach of mixing the newly
generated subtraining dataset with the original dataset (as opposed to using only the newly
generated subtraining dataset) for every minibatch. Specifically, our approach builds a set
of minibatches, each of which is based on a combination of the randomly sampled original
dataset and the newly generated subtraining dataset in a certain prefixed proportion ac-
cording to the parameter γ(0 ≤ γ ≤ 1). Additionally, the combined minibatches are used
throughout the whole training process. Furthermore, we define loss functions as follows:

L original = ∑|B|×(1−γ)

i=1 DKL( f (xi)||yi) (1)

LMixed−Patch = ∑|B|×γ

i=1 DKL( f
(

xMixed−Patch
i

)
||yMixed−Patch

i ) (2)

LTotal = wL original + (1 − w)L Mixed−Patch (3)

where |B| is the size of the minibatch; f is a classifier; DKL is the Kullback–Leibler diver-
gence function; (xi, yi) ∈ Doriginal is the original training dataset; and w (0 ≤ w ≤ 1) is the
weight for the loss of the raw training data.

3.3. Data Rebalancing

A new ground-truth label for a mixed patch is defined as abnormal even if a single
abnormal minipatch is included. When four minipatches are used to form a single mixed
patch, the probability of the new ground-truth label being defined as normal is one in
sixteen (24) because all four minipatches must be normal, meaning that most of the mixed
patches are likely to be designated as abnormal, resulting in a data imbalance problem.
Techniques for solving data imbalance problems have been presented in various studies [57].
In this study, we employ a data resampling technique to solve the data imbalance problem.
This method involves creating a balanced minibatch based on the probability of extracting
an individual class from an existing dataset.

4. Experiment

4.1. Dataset

We constructed a new large histopathology dataset extracted from stomach WSIs
obtained at Seegene Medical Foundation, which is one of the largest diagnosis and pathol-
ogy institutions in South Korea. These slides were stained with hematoxylin and eosin
and scanned by a Panoramic Flash250 III scanner at 200× magnification. The data were
collected by the Seegene Medical Foundation, and their use for research was approved by
the Institutional Review Board (SMF-IRB-2020-007) of the organization as well as by the
Institutional Review Board (KAIST-IRB-20-379) of the Korea Advanced Institute of Science
and Technology (KAIST), the university that collaborated with the medical foundation.
Informed consent to use their tissue samples for clinical purposes was obtained from
the medical foundation’s designated collection centers. All experiments were performed
in accordance with the relevant guidelines and regulations provided by the two review
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boards. All patient records were completely anonymized, and all the images were kept and
analyzed only on the company server.

For an original training dataset, we collected 486 WSIs from different patients, and
the images consisted of 204 normal and 282 abnormal slides that were classified and inde-
pendently confirmed by two pathologists (Table 1). The extracted patch dataset consisted
of 32,063 normal and 38,492 abnormal patches. For a minipatch dataset, we used the
same WSIs used for the original training dataset, but the tiling size was one-quarter. The
minipatch dataset consisted of 3500 randomly selected normal and 3500 abnormal mini-
patches. For a test dataset, we collected 98 WSIs from different patients, and the images
included 48 normal and 50 abnormal slides. The test dataset consisted of 3733 normal and
3780 abnormal patches.

Table 1. Compositions of datasets.

Original Training Dataset
(256 × 256)

Minipatch Dataset
(128 × 128)

Test Dataset
(256 × 256)

Class Normal Abnormal Normal Abnormal Normal Abnormal

WSIs 204 282 204 282 48 50
Patches 32,063 38,492 3500 3500 3733 3780

4.2. Implementation Details

The proposed method was implemented in Python with the PyTorch library on a
server equipped with 2 NVIDIA RTX 2080 TI GPUs. We used ResNet-18 as the backbone
CNN architecture. The primary goal of this study was to analyze the impact of the proposed
methodology, not to produce the highest performance. Thus, we thought it would be better
to compare the effects of the proposed methodology by adopting a contemporary, light
CNN architecture. The CNN classifier was trained with the Adam optimizer [58] and
β1, β2 , and the decay coefficient were set to 0.9, 0.999, and 0.001. We trained models with
2 GPUs and set the minibatch size to 128. The models were trained for 60 epochs and used
an initial learning rate of 0.1, which was divided by 10 at 20 and 40 epochs.

4.3. Comparison of Methods

To assess the effectiveness of the proposed method, we compared five models, each
of which was trained using a different method (Table 2): Baseline, Label Smoothing (LS),
Cutout, CutMix, and MixPatch (proposed method). Table 2 provides a summary of key
differences of these methods, each of which is further detailed below.

Table 2. Summary of the compared methods.

Baseline LS Cutout CutMix MixPatch

Data augmentation X X O O O

Soft labeling X O X O O

Ratio reflection X X X O O

All correct labeling O O X X O

Image

   

 

  

Label Normal 1.0 Normal 0.9
Abnormal 0.1 Abnormal 1.0 Normal 0.8

Abnormal 0.2
Normal 0.4

Abnormal 0.6

Actual label Normal Normal Abnormal Abnormal Abnormal
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Baseline: The baseline method uses transfer learning and fine-tuning, which are
commonly utilized by patch-level classifiers. The baseline method trains a model using
hard labeling with a one-hot-encoded label vector, for which the ground-truth label value is
specified as 1 and other labels are 0; thus, the model is designed to predict a label with 100%
certainty [59]. For this reason, a model trained with the baseline method has the possibility
of experiencing overconfidence issues. No data augmentation is employed in this method.

Label smoothing (LS) is a simple regularization method designed to alleviate the
overconfidence problem. The LS method assigns the highest value of confidence (lower
than 1) to the ground-truth class and low values from noise distributions (higher than 0) to
all of the classes with a parameter α, as shown below:

yls
k = yk(1 − α) + α/K

where k is the kth class, K is the total number of classes, and α is the smoothing parameter.
For evaluation, α was set to 0.2 in this study. As in the baseline method, no data

augmentation is employed in this method.
Cutout is a region dropout-based regularization method. Cutout randomly masks

square regions of an image during training. This training method exhibited excellent
robustness and performance [60]. However, Cutout may remove informative regions from
training images. Thus, this method may generate mislabeled data. Cutout must define the
size of pixels that are removed from an input image. This study defined the pixel size as a
quarter of the image size based on the setting used in a previous study [60].

CutMix has been used as a state-of-the-art method for region dropout. CutMix per-
forms data augmentation for improved accuracy and implements soft labeling for confi-
dence calibration. CutMix builds a new training image by attaching a cropped portion of
another image to a region of image that is removed and uses the soft labeling technique
in consideration of the mix proportion of the new training image. Based on the labeling
rules in histopathology, CutMix may generate mislabeled data. For example, as shown in
Table 2, an image with small abnormal regions is attached to a base normal image, and it
will be predicted as normal when the true label is abnormal.

MixPatch is the proposed method. MixPatch achieves a data augmentation effect sim-
ilar to that of other region dropout methods, and ratio-based soft labeling is employed for
confidence calibration. However, MixPatch will not accidently produce mislabeled training
data, which is a strength when compared with other region dropout methods. MixPatch in-
corporates a soft labeling technique for confidence calibration and considers unique image
combinations and labeling rules, which are specifically established for histopathological
images. In our experiment, the value of abnormality for a new ground-truth label is defined
as a constant that increases from 0.6 to 0.9 according to the abnormal patch ratio in a mixed
patch (Table 3). Weighted random sampling, a data resampling technique, is employed for
data rebalancing. We set the parameter γ to 0.3. There is no difference between the weights
of the original data and the weights of the new subtraining data used to calculate the loss
value, meaning that the parameter w was set to 0.5.

Table 3. Labeling strategy for a mixed patch.

Abnormal Patch Ratio
in a Mixed Patch

New Ground-Truth Label
for a Mixed Patch

0/4 [0.9, 0.1]

1/4 [0.4, 0.6]

2/4 [0.3, 0.7]

3/4 [0.2, 0.8]

4/4 [0.1, 0.9]
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4.4. Evaluation Metrics

For evaluation, this study uses accuracy, sensitivity, specificity, area under a receiver
operating characteristic curve (AUROC), and expected calibration error (ECE). Accuracy is
the main metric for the performance of image classifiers, but it is not informative enough
for medical systems. AUROC is a metric for binary classification in consideration of
sensitivity and specificity. This study defined confidence value as the variable for AUROC
analysis, as in prior research [61]. AUROC is a vital evaluation criterion for understanding
the performance of models for automatic diagnosis systems as it shows how good the
diagnostic model is at distinguishing between positive and negative classes by considering
net benefit (sensitivity) over diagnostic cost (1-specificity). ECE has been used as the
primary empirical metric to measure confidence calibration. ECE is a metric of how
much confidence in predictions reflects actual model accuracy and a small value of ECE
indicates a small difference between output confidence and model accuracy—small degree
of miscalibration.

True positive (TP) is the correct classification of the positive class (Table 4). For
example, the model classifies the patch as abnormal if a patch contains cancerous cells. True
negative (TN) is the correct classification of the negative class. For example, when there
is no cancerous cell present in the patch, the model predicts the patch as normal. False
positive (FP) is the incorrect prediction of the positives. For example, the patch does have
cancerous cells, but the model classifies the patch as abnormal. False negative (FN) is the
incorrect prediction of the negatives. For example, there are cancerous cells present in the
patch, and the model predicts the patch as normal.

Table 4. The confusion matrix for outcome of predictions.

Actual

Abnormal (Positive) Normal (Negative)

Prediction
Abnormal (Positive) True positive (TP) False positive (FP)

Normal (Negative) False negative (FN) True negative (TN)

Accuracy

It is the rate of correct identification of all items:

Accuracy =
TP + TN

TP + TN + FP + FN

Specificity

It is the rate of correct identification of negative items:

Specificity =
TN

TN + FP

Sensitivity

It is the rate of correct identification of positive items:

Sensitivity =
TP

TP + FN

Receiver Operating Characteristic Curve (ROC-Curve)

The receiver operating characteristic curve (ROC-curve) represents the performance
of the proposed model based on a threshold. In this study, we defined the confidence score
of positive defined as the threshold. It is the graph of True Positive Rate (TPR) vs. False
Positive Rate (FPR).

TPR =
TP

TP + FN
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FPR =
FP

FP + TN
Area Under the ROC Curve (AUROC)

AUROC provides the area under the ROC-curve integrated from (0, 0) to (1, 1). It
measures performance based on all classification thresholds. AUROC has a range from 0 to 1.

Expected Calibration Error (ECE)

ECE is approximated through partitioning predictions into equally spaced bins B and
taking a weighted average of the bins’ accuracy vs. confidence difference. More precisely,

ECE =
M

∑
m=1

|Bm|
n

|accuracy(Bm)− con f idence(Bm)|

where n is the number of samples, and M is the number of bins, Bm is the set of samples
whose prediction confidence falls into the interval Im =

(
m−1

M , m
M

]
.

5. Results

The performances of the training methods were assessed by analyzing the mean and
standard deviation of accuracy, sensitivity, specificity, AUROC, and ECE obtained from the
five models trained in each method. The performance results for the trained models are
shown in Table 5, ROC curve is shown in Figure 3, and detailed information on the ECE is
shown in Figure 4.

Figure 3. ROC curve for the different methods.
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Figure 4. Integrated reliability diagram for patch-level classifiers trained using each method.

Table 5. Performance comparison of the alternative methods.

Training
Methods

Accuracy ↑
(In Percent)

Sensitivity ↑
(In Percent)

Specificity ↑
(In Percent)

AUROC ↑ ECE ↓
(In Percent)

Baseline 95.46 ± 0.79 96.96 ± 1.15 93.95 ± 0.71 0.9914 ± 0.0027 1.83 ± 0.43

LS 94.76 ± 0.94 96.15 ± 1.43 93.35 ± 0.51 0.9861 ± 0.0038 6.62 ± 0.34

Cutout 84.88 ± 0.47 82.33 ± 0.86 87.46 ± 0.31 0.9289 ± 0.0027 7.06 ± 0.28

CutMix 93.70 ± 0.91 94.30 ± 1.19 93.11 ± 0.92 0.9826 ± 0.0041 1.36 ± 0.22

MixPatch 97.06 ± 0.27 97.65 ± 0.23 96.46 ± 0.48 0.9958 ± 0.0006 0.76 ± 0.18

As shown in Table 5, the proposed method, MixPatch, yields the best performance
in accuracy, sensitivity, specificity, AUROC, and ECE among the five models examined.
The LS method does not show any advantage compared to the baseline method. The LS
method attempts to fit training cases with a 0.9 confidence level, thus producing many test
cases distributed in the bin of 0.85–0.95 (Table 6); the results suggest that the model is 90%
sure about the results of most cases, even for cases that are very clear. This phenomenon
is not suitable from the perspective of confidence calibration, so it is understandable that
ECE performance deteriorates. The Cutout method uses one-hot encoding, similar to the
baseline method. Cutout exhibits a higher ECE than the baseline approach because the
Cutout method does not use a confidence calibration method, although the accuracy of this
approach is comparatively low. The CutMix method yields a slightly higher ECE result than
the baseline method, probably because of the influence of ratio-based soft labeling; however,
the accuracy and AUROC decrease slightly because of the possibility of mislabeling. The
proposed method, MixPatch, shows increased classification performances and decreased
ECE, which are both desirable. Thus, applying soft labeling combined with the mix ratio of
the images according to the MixPath labeling rules makes a positive contribution to both
classification performance and confidence calibration.
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Table 6. Confidence distributions of each method.

Methods
Confidence Distributions

False Predictions True Predictions

Baseline

  

Label smoothing

  

CutMix

  

Cutout

  

MixPatch
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Furthermore, we illustrate the specific ECE results of the compared methods with a
reliability diagram. In Figure 4, ground truth represents the ideal scores for the confidence
calibration methods. The confidence value of a prediction should reflect its accuracy.
Among the compared methods, CutMix and MixPatch yield similar values that are closest
to the ground truth, indicating that ratio-based soft labeling methods are effective for
confidence calibration.

In addition to the quantitative analysis using the ECE metric, we examine confidence
distributions by quantifying true and false predictions for test cases to determine how
well the proposed method considers prediction uncertainty (Table 6). A skew to a high
confidence value is desired for the confidence distribution in the cases of true predictions.
In contrast, a skew to a low confidence value is desired for the confidence distribution in
the cases of false predictions. We need to carefully examine confidence distributions for
cases with false predictions to understand the effects of the proposed methods in terms of
prediction uncertainty.

The models trained with the baseline and Cutout methods exhibit an overconfidence
issue (see red bins in Table 6). The two models produce high confidence values, even for
false predictions. Thus, these methods should not be used when the confidence value
is used as a threshold for decision making and are not suitable as patch-level classifiers,
particularly in the context of histopathological image analysis. The model trained using
LS or CutMix yields a flatter distribution than the baseline model for false predictions,
indicating that this method better alleviates overconfidence and produces lower confidence
values for uncertain cases. The model trained using MixPatch produces a flat distribution
that is similar to the distribution obtained with LS or CutMix, indicating that the proposed
method can effectively deal with overconfidence issues. Additionally, the proposed method,
MixPatch, exhibits better performance than the other methods, confirming that the method
is more suitable than the other methods for building histopathology patch-level classifiers.

For further analysis of the effect of applying confidence calibration, we construct
confusion matrixes according to the relevant threshold values (Table 7). We define the
confidence value for abnormalities as an indicator. The baseline classification threshold is
0.5 because binary classification is used. Typical methods for WSI classification are based on
counting the labels of patch-level predictions. For this method, a threshold for a patch-level
classifier plays an important role in WSI classification. For example, if a low threshold is
applied, a WSI classification framework will be very sensitive to positive results.

For all of the compared methods, the lower the threshold is, the lower the false-
negative ratio, and the higher the false-positive ratio, with some notable differences in
accuracy. For example, in the MixPatch model, if 0.1 is defined as the threshold value,
the WSI classification framework is very sensitive to positive (i.e., abnormal) values while
maintaining high accuracy. Conversely, in the LS model, if the threshold is defined as 0.1,
it is sensitive to positive values, but the model predicts most of the results as abnormal,
resulting in low accuracy.

For qualitative analysis, we applied Grad-CAM to uncertain patch images. In the first
case (see Figure 5), it seems that all models can find the abnormal locations and predict
them correctly. Overall, the activation map of other methods other than the baseline method
is dispersed widely. However, in the case of MixPatch, the size of the activation map does
not increase, which we believe is due to the confidence calibration effect. As MixPatch uses
an image that combined normal and abnormal patches, it seems that MixPatch method
wants to train a model more clearly to distinguish between normal regions and abnormal
regions. Therefore, the activation map appears to be smaller than other methods.
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Table 7. Confusion matrix for each method with a threshold approach (X = prediction, Y = true).

Threshold (If CofindenceAB ≥ Threshold, Then Prediction = Abnormal)

Model 0.5 (Baseline) 0.4 0.3 0.2 0.1

Baseline

LS

CutMix

Cutout

MixPatch

The second case is more difficult than the first case. All models except MixPatch have
activations on both of the normal and abnormal regions. Especially difficult regions in the
second case are the second and third quadrants. The second quadrants contain the dark
and cellular areas, mimicking poorly differentiated carcinoma; however, it is lymphoid
aggregates. The third quadrant shows a very small part of suspicious glandular epithelium,
and slightly distorted normal parietal cells. All models predict this patch as abnormal.
However, in the activation map, such difficult regions made the comparison models all
confused about separating abnormal regions from normal regions. On the other hand, the
MixPatch model shows noticeable improvement in clearly distinguishing abnormal regions
from normal regions.
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Figure 5. The Grad-Cam [62] visualization examples for uncertain patch images.
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The objective of the patch-level classifier is to extract important information from
patches for WSI classification. MixPatch not only increases the performance of patch-level
prediction, but also produces appropriate prediction uncertainty values through confidence
calibration. Therefore, for WSI classification, we applied an existing method [63] that
uses confidence values rather than a simple method of counting patch-level predictions.
This method uses a CNN model and a feature cube. A feature cube is generated using
the predicted confidence scores of each label from patches. A CNN model is used as
a slide-level classifier, and feature cubes are used as inputs for the slide-level classifier.
In this study, we trained five CNN models under the same conditions as considered
for the patch-level classifier, and Resnet-18 was used in each approach. Slides used to
train patch-level classifiers were also used to train slide-level classifiers. Additionally, to
analyze the performance of the slide-level classifiers using an independent set of slides at a
large scale, we used separately collected, annotated test slides, including 459 normal and
604 abnormal slides.

As presented in Table 8, MixPatch produced a 1.5% performance improvement com-
pared to the baseline at the slide level. The difference of 1.5% is notable when this approach
is practically applied in the medical domain. LS yields a higher ECE than the baseline,
but its WSI classification performance is similar to that of the baseline. The reason why
LS yields a high ECE value is that many cases are assigned a high confidence value close
to 0.9, which is the maximum confidence level for the LS slide-level classifier. Further,
as shown in Table 6, LS generates more alleviated confidence scores for uncertain cases
(false predictions). Thus, despite the increased ECE, it seems that the WSI classification
performance of LS did not deteriorate much compared to that of the baseline, due to the
more effective control of overconfidence. For CutMix, the accuracy of the patch-level
classifier is lower than that of the baseline, but the slide-level classification performance
is higher, probably due to better handling of overconfidence. Consistent with the study
results obtained at the patch level, MixPatch exhibits the best performance at the slide level
among the five classification methods considered.

Table 8. Performance in WSI classification.

WSI Classifiers WSI-Level Accuracy ↑ (In Percent)

Baseline 97.06 ± 0.29

LS 97.15 ± 0.18

Cutout 95.82 ± 0.57

CutMix 97.46 ± 0.18

MixPatch 98.53 ± 0.16

6. Discussion

The objective of this study was to explore the possibility of improving the performance
of a patch-level classifier by developing a new DL training approach called MixPatch,
which employs a set of mixed patches in predefined mixing ratios and their associated
labels, within the context of histopathological image analysis. The study results confirm
the superiority of the proposed approach when compared to the existing approaches, not
only at the patch level but also at the slide level. Prior studies have proposed two-step
frameworks, each of which consists of a patch-level classifier and a slide-level classifier.
The performance of a patch-level classifier is the foundation of those frameworks. How-
ever, such frameworks utilize transfer learning and well-known CNN architectures for
patch-level classifiers without considering the specific characteristics of patches or the
corresponding prediction uncertainty. In this study, we propose a new method for training
a patch-level classifier specifically designed to address the mixed-region variation inherent
in histopathological images and the derived patches.

160



Diagnostics 2022, 12, 1493

A significant factor that underlies the performance of MixPatch is the effect of per-
forming data augmentation without mislabeled data. A small number of minipatches can
be used to build a vast number of single mixed patches, resulting in numerous different
mixed patches. In general, deep learning models perform better as the amount of available
data increases. Furthermore, the proposed method can solve the overconfidence issue
related to prediction uncertainty when a patch-level classifier is trained. Addressing the
prediction uncertainty of patch-level classification should be an important part of WSI
classification frameworks. The WSI-level classifier determines whether to trust each patch’s
prediction based on its estimation of prediction uncertainty. Therefore, a patch-level classi-
fier that appropriately handles prediction uncertainty should be used in a WSI classification
framework to help it make more calibrated decisions.

The method proposed in this study has some limitations and boundary conditions that
need to be noted. To build a single mixed patch, we utilized 128 × 128 pixel minipatches;
this size is the minimum required for pathologists to make diagnosis decisions at the patch
level. Additionally, we utilized four minipatches to build a single mixed patch. In future
studies, a sensitivity analysis could be conducted using various subtraining datasets that
consist of mixed patches with 9 or 16 minipatches or different pixel sizes. To define new
ground-truth labels, we considered a constant increase in labels from 0.6 to 0.9 based on the
proportion of abnormal minipatches in a mixed patch. However, labels could be defined
differently by employing a different labeling scheme, such as an exponential scheme. In
this study, we defined the proportion of the new subtraining dataset in the minibatch to be
0.25. In future studies, this percentage could be adjusted, and a sensitivity analysis could
be performed to find the optimal value.

7. Conclusions

In this study, we have proposed a new method, MixPatch, designed to train a CNN-
based histopathological patch-level classifier. The proposed method is the first that consid-
ers confidence calibration for prediction uncertainty when training a patch-level classifier.
Given that the performance of the patch-level classifier is the foundation of overall frame-
work performance, the proposed method should be used to improve the performance of
existing frameworks. Moreover, it should be noted that the proposed method improves
the performance of the patch-level classifier by addressing prediction uncertainty, which
is particularly important in the domain of medical image analysis, where prediction un-
certainty is a crucial issue. The proposed approach provides a new way to systematically
alleviate overconfidence problems without a performance degradation, compared with the
extant methods. The confidence calibration method proposed in this study is an important
step toward securing a completely reliable diagnose performance of histopathological
image analysis.
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Abstract: Mycobacteria identification is crucial to diagnose tuberculosis. Since the bacillus is very
small, finding it in Ziehl–Neelsen (ZN)-stained slides is a long task requiring significant pathologist’s
effort. We developed an automated (AI-based) method of identification of mycobacteria. We prepared
a training dataset of over 260,000 positive and over 700,000,000 negative patches annotated on scans
of 510 whole slide images (WSI) of ZN-stained slides (110 positive and 400 negative). Several
image augmentation techniques coupled with different custom computer vision architectures were
used. WSIs automatic analysis was followed by a report indicating areas more likely to present
mycobacteria. Our model performs AI-based diagnosis (the final decision of the diagnosis of WSI
belongs to the pathologist). The results were validated internally on a dataset of 286,000 patches and
tested in pathology laboratory settings on 60 ZN slides (23 positive and 37 negative). We compared
the pathologists’ results obtained by separately evaluating slides and WSIs with the results given by
a pathologist aided by automatic analysis of WSIs. Our architecture showed 0.977 area under the
receiver operating characteristic curve. The clinical test presented 98.33% accuracy, 95.65% sensitivity,
and 100% specificity for the AI-assisted method, outperforming any other AI-based proposed methods
for AFB detection.

Keywords: artificial intelligence; tuberculosis; Mycobacterium tuberculosis; Ziehl–Neelsen

1. Introduction

Tuberculosis (“consumption”, “phthisis”, or “white plague”) is one of the ancient
infectious diseases of humankind. It is produced by Mycobacterium tuberculosis, several
other species of mycobacteria are pathogenic in humans (Mycobacterium bovis, Mycobac-
terium avium intracellulare, Mycobacterium leprae and, in special circumstances, a few
others). In 2020, 10 million people had tuberculosis (TB) worldwide, with a yearly death
rate of approximately 1.5 million people, thus it is in the top 13 causes of death and second
cause of death by an infectious disease after COVID-19 [1].
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1.1. Rationale for Automatic Detection of Mycobacteria

Diagnosis of TB relies on several methods; mycobacteria identification is one of the
most important. In histopathology, identification of mycobacteria requires specific acid-
fast stains; the most common one is the Ziehl–Neelsen (ZN) stain, the bacillus appearing
red on a blue background. Fluorescent tests such as auramine (golden bacilli on black
background) may be also performed but they are more expensive and more difficult to
use than ZN [2]. The main problem is that Mycobacterium tuberculosis is a tiny bacillus
(length 2–4/width 0.2–0.5 microns) and it must be searched for in a 2 × 3 cm fragment of
tissue (6,000,000,000,000 square microns) by thoroughly examining hundreds or thousands
of microscopic fields 0.5 mm in diameter.

A pathologist will experience fatigue, diminished attention, and may end by postpon-
ing examination. In fact, a pathologist will not examine the whole slide but those areas with
lesions more suspicious to present bacilli (necrotic areas and epithelioid granulomatous
inflammatory infiltrate with or without Langhans multinucleated giant cells), in order to
reduce the time of examination. Attempts of automatic detection of mycobacteria represent
the logical answer to this problem.

1.2. Literature Review

The first method of artificial intelligence (AI) detection of AFB was developed by
Veropoulos et al., in 1999 on smears stained with auramine [3]. Several other studies propos-
ing methods of automated detection of AFB on ZN stains evaluated smears. Other than
delCarpio et al., and Law et al. (who evaluated scans of slides containing the whole section
present on the slide whole slide images (WSIs)) [4,5], all the other studies evaluated images
captured with cameras (small parts of slides) [6–14]. The specificity and sensibility varied
from study to study as shown in Table 1.

Table 1. Studies of automated detection of AFB on ZN stains on smears.

Studies on Smears Year Precision Sensitivity Specificity

Ayas et al. [6] 2014 N/A * 89.34 96.97
delCarpio et al. [4] 2019 N/A 93.67 89.23

Costa et al. [5] 2008 N/A 76.65 N/A
Costa Filho et al. [7] 2015 N/A 96.8 N/A
El-Melegy et al. [8] 2019 82.6 98.3 N/A
Khutlang et al. [9] 2010 N/A 97.77 N/A

Kuok et al. [10] 2019 N/A 98.06 91.65
Law et al. [11] 2018 N/A 70.4 76.6

Panicker et al. [12] 2018 78.40 97.13 N/A
Vaid et al. [13] 2020 88.4 92.1 N/A

Veropoulos et al. [3] 1999 N/A 94.1 97.4
Zhai et al. [14] 2010 N/A 89.34 96.97

* N/A—not available.

There are other studies published on automatic AFB detection on tissue using WSIs [15–19].
Analyzing tissue is more difficult than analyzing smears. No matter how small a bacillus
is, by the mere sectioning of paraffin blocks the bacillus will be cut in different incidences,
in various relationships with the adjacent cells/structures. Additionally, artifacts created
by sectioning are more complex with a special emphasis on conglomerated red blood
cells—the membranes of adjacent red blood cells compressed one on top of the other is a
very close mimic of AFB in a ZN stain.

Xiong et al. (2018) developed a convolutional neural network (CNN) model pretrained
on the CIFAR-10 dataset [15]. They used a training set of 45 slides (30 positive and
15 negative) digitalized as WSIs with a KF-PRO-005 Digital Section Scanner (Ningbo
Jiangfeng Bio-information Technology Co., Ltd., Ningbo, China). Annotations were made
with ASAP software, the dataset consisting of 96,530 positive and 2,510,307 negative
32 × 32 pixels patches. Several augmentation techniques were used, extending the positive
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dataset to 578,191 patches. The test set consisted of 201 slides (108 positive and 93 negative).
The test slides were divided into 32 × 32 pixels patches that were then fed to the algorithm.
The model analyzed patches from slides and labeled them as positive when the probability
score was over 0.5. Only one positive patch is necessary to label the entire WSI as positive.
Xiong’s et al., method of diagnosis is completely automated—the classification of WSIs
is performed by the algorithm and does not involve a human examiner. The test was
performed twice. After the first run, the false positive and false negative cases (labeled as
such based on human evaluation) were reevaluated by two pathologists; seven cases were
primarily missed by pathologists and six cases were not suitable for analysis due to the
poor quality of the scans. In the end, the performance metrics of the model are 97.94% for
sensitivity and 83.65% for specificity. Based on the data available in their paper, the accuracy
of Xiong et al.’s model is 90.55%. The model has a very good sensitivity, catching most
of the bacilli but the specificity is too low to give many false positive results. The dataset
includes a relatively small number of cases possibly restricting the color variability of the
input space that is modeled.

Yang et al. (2020) [16] constructed a pipeline that consists of combining a CNN model
(Inception-V3) for tile-based classification and a logistic regression (LR) model for WSI
classification. The CNN model was trained to identify tiles (patches) with AFB initially
using a dataset of patches of 256 × 256 pixels originating from 14 WSIs (6 positive and
8 negative slides digitized with an Aperio AT Turbo scanner (LeicaBiosystems, Vista, CA,
USA)). Then, the model was retrained using a semi-supervised active learning framework
that employed the initial dataset completed with new patches originating from 19 negative
WSIs. The models were validated on a separate validation set of patches with F1 scores
of 99.03% and 98.75%. Then, the retrained CNN model was used to classify patches (in
positive and negative) from a set of 134 WSIs (46 positive and 88 negative), the results
being used by the LR model to classify the digitized slides. Yang et al., developed an
AI-assisted diagnostic method. Their pipeline of analysis creating a score heatmap of AFB
probability tiles overlaid onto the WSI. The pathologist examines the areas within the
heatmap and confirms the positivity of the WSI. The WSI-level metrics of the pipeline were
above 80%: sensitivity 87.13%, specificity 87.62%, and F1 80.18%. The analysis produces a
score heat map overlaid on the WSI, guiding the pathologist in the analysis of the probable
positive tiles. However, the low specificity (87.62%) indicates that the model identifies
numerous patches as false negatives and forces the pathologist to examine thousands of
patches suggested as positive. The model yields approximately 4,500 tiles false positive in
a 1 × 1 cm2 section of tissue. In the end, the time and energy spent analyzing the results
might end up more than in the classical (“manual”) microscopic examination. Additionally,
the diversity of the dataset is limited. The patches are selected from 14 cases (only 6 positive)
with a further addition of 19 negative ones.

Lo et al. (2020) [17] developed a CNN model to detect mycobacteria based on a dataset
of 1815 patches (blocks) of 20 × 20 pixels (613 positive and 1202 negative) out of which
80% were randomly selected for training, the remaining 20% being kept for validation. Ad-
ditionally, another 1383 negative patches mimicking AFB (mast cells, background stain, etc.)
were selected. The annotations were performed on nine positive slides digitized with the
help of a ScanScope XT whole-slide scanner (Aperio, Vista, CA, USA). The model used
in the process was a pretrained CNN—AlexNet [20] of five convolution layers. The final
three layers were fine-tuned for the target tasks and the blocks from the dataset were resized
to 227 × 227 pixels to match the AlexNet architecture. The level of cut-off was established
at 0.5. The performance metrics of Lo et al.’s model were 95.3% accuracy, 93.5% sensitivity,
and 96.3% specificity. The dataset is significantly smaller than the one we used and was
extracted from only nine slides. The results on the validation set are reported at patch level;
no WSI analysis is provided.

Pantanowitz et al. (2021) [18] developed an algorithm based on a dataset created
from 441 slides scanned with two types of scanners: Aperio AT2 (Leica Biosystems) and
Hamamatsu Nanozoomer XR. The dataset included 1,117,586 patches (5678 positive and
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1,111,918 negative) selected from 441 WSIs (62 positive and 379 negative) and was separated
in three groups: the dataset used for training consisting of 1,054,395 patches (4629 positive
and 1,049,766 negative) selected from 418 slides (47 positive and 371 negative); the dataset
used for analytical validation (40,957 patches (449 positive and 40,508 negative) selected
from 12 WSIs (9 positive and 3 negative)); and the dataset used for testing (22,244 patches
(600 positive and 21,644 negative) selected from 11 WSIs (6 positive and 5 negative)).
The annotations were made using the aetherSlide application. Two deep CNNs were used
in the process, one with high sensitivity and the other with high specificity. The model with
the highest accuracy (0.960 at the image patch level—calculated as area under the receiver
operating characteristic (ROC) curve (AUC)) in the validation test was selected and used in
further clinical validation. Pantanowitz et al., developed an AI-assisted screening method.
Their tool displays a gallery of patches with their corresponding probability scores and
the WSI to give the possibility of examining the suspicious patches in context. The clinical
validation was performed on 138 slides. It consisted of a blind evaluation performed
by two pathologists with different levels of expertise by classical “manual” microscopic
evaluation of the slides, evaluation of the WSIs, and algorithm-assisted evaluation versus
a gold standard represented by the signed-out assessment. The performance metrics of
Pantanowitz et al.’s model were 84.6% accuracy, 64.8% sensitivity, and 95.1% specificity.

Zaizen et al. (2022) [19] developed an algorithm to detect AFB using a pre-trained
HALO AI CNN. The dataset consisted of 506 AFB annotated on two autopsy cases with TB;
the negative ones including two types of artifacts (nuclei of type I epithelial cells as well
as fibrin and hyaline membrane) originating from 40 negative biopsies. The slides were
digitized using a Motic EasyScan scanner (Motic, Hong Kong, China) and the annotations
were performed using the HALO platform (version 3.0; Indica Lab, Albuquerque, NM,
USA). Zaizen et al., also developed an AI-supported diagnosing method. Each patch
identified as probably positive by the algorithm was evaluated by six pathologists by
consensus. The clinical test included 42 cases, the 16 positive ones were either patients
diagnosed with mycobacteriosis by bacteriological tests performed on material harvested
during bronchoscopy, or patients who developed mycobacteriosis during the follow-up.
The performance metrics of Zaizen et al.’s model were 86% sensitivity and 100% specificity.

There is another study presenting an algorithm of automated AFB detection on tissue,
but it was developed on pictures (24-bit RGB images at a resolution of 800 × 600 pixels
acquired using a digital camera) and not on WSIs. The accuracy obtained was 77.25% [21].

1.3. Novelty of Our Method

We propose an automatic method of identifying AFB using deep neural networks.
These will be trained to process WSIs and indicate the AFB location. The pathologist
analyzes the patches suggested as positive and decides if the slide is positive or not (AI-
assisted diagnosis).

Our algorithm has several advantages compared to previous works. Our dataset is
much larger, more diverse, and more carefully selected than the other datasets.

1.3.1. Dimension

Its positive component is almost 3 times bigger than the next largest one (263,000 posi-
tive patches in ours vs. 96,530 in Xiong et al.’s dataset [15]), which is 429 times bigger than
the smallest ones (506 in Zaizen et al.’s set [20]). Our negative patches are 7 times more
numerous than the second largest one of Pantanowitz et al. [18] (7,000,000 vs. 1,111,918).
Further applied augmentation techniques (both as position—rotations, shifts, crops, etc.—
and in image properties—brightness, contrast, saturation, etc.) expanded our positive
group of patches to more than 2,500,000.

1.3.2. Diversity

Our dataset resulted from annotation of a total of 510 WSIs; 110 WSIs were positive.
The other datasets were constructed based on 2 up to 47 positive WSIs, the variability
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of the positive images being much lower. Additional consideration of the variability in
tinctoriality of ZN staining shows that the diversity of our dataset is significantly increased.
We included bacilli in more numerous and diverse backgrounds and in a greater variety of
ZN stains.

1.3.3. Model and Augmentations

We used a large set of composable augmentations from which we generated both
hard-labeled and soft-labeled training samples. We proposed specific modifications to the
original RegNet-X architecture that was adapted such that it better models the domain task.

1.3.4. Case Selection

Our dataset was built after a strict confirmation of positive cases. Additionally, to pre-
vent the situations when the human examiner is not able to identify few bacilli in a pau-
cibacillar TB, cases with specific TB morphology but with negative ZN stains were excluded.
One author had to reclassify several cases [15] and another reported a very high number of
cases identified as positive after AI-assisted examination (seven newly identified cases out
of a total of nine positive ones) [19].

2. Materials and Methods

We started by selecting ZN-stained slides originating from positive and negative cases.
(Section 2.1). The ZN-stained slides were scanned and annotated, in the end more than
260,000 positive and more than 7,000,000 negative patches of 64 × 64 pixels were selected.
(Section 2.2). The dataset was further expanded by different augmentation techniques.
(Section 2.3). We identified and customized a deep learning architecture suitable for
our task. (Section 2.4). The model was validated on a validation dataset consisting of
286,000 patches (validation set) different from the dataset used for training. (Section 2.5).
The model configuration with the best results in validation was further tested in clinical
trials. (Section 2.6). In this phase, the scanned image of the ZN-stained slide was uploaded
on a platform, divided in 64 × 64 pixels patches, and each patch was analyzed by the
algorithm. The algorithm returned a score for each patch and the pathologist received a
list of patches sorted in descending order by their corresponding score. The pathologist
analyzed the patches, both separately and in context on the slide and decided if the patch
was positive or not. Based on this evaluation, the pathologist decided if the slide was
positive (one single positive patch is sufficient to diagnose the slide as positive) or not
(AI-assisted diagnosis).

The pipeline’s performance was measured twice:

- First evaluation (“validation”) was performed using patches from pre-selected regions
on the slides. On the one hand, the validation gave us the possibility to evaluate
the performance of several architectures and allowed us to choose the best model for
further use. On the other hand, the results obtained on other pre-selected patches
(from slide areas used for active learning) were analyzed one by one by pathologists in
order to establish errors (positive patches labeled as negative and vice versa; negative
ones falsely labeled as positive). The mislabeled patches were correctly re-labeled and
used for re-training and finetuning the model, thus improving its performance.

- Second evaluation (“clinical testing”) was performed using WSIs. Each WSI was
segmented in 64 × 64 pixels patches and all patches were fed to our model for
analysis. The model examined each patch and gave a score of probability (0 to 1)—the
probability of the patch to belong to the positive group of patches used for training
= to present mycobacteria. The results were displayed as a column of patches with
their class score, arranged in descending order of the score (i.e., the patch with the
maximum score was listed first). A threshold must be established for a patch to be
considered positive; the obvious choice should be 0.5. However, in our testing data
we noticed that almost all patches with scores between 0.5 and 0.7 were negative.
Our model was not classifying the WSI as positive or negative, instead it revealed
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to the pathologist the patches that are more probable to harbor bacilli, leaving the
final decision of the diagnosis of WSI to the human examiner. (This is considered
AI-assisted diagnosis).

2.1. Case Selection

We analyzed the archives of the Department of Pathology of Colentina University
Hospital from 2010 to 2022. We selected 2187 cases with ZN stains mentioned in the
histopathology report. Consultation cases were excluded.

All the cases were re-evaluated both on H&E and ZN stains available in the archive by
SZ (a senior pathologist with 23 years of expertise). Cases with discordances between the
initial histopathological report and SZ’s re-evaluation were excluded.

- Positive cases group: cases reported as diagnosed with TB with ZN-stain slides
positive and reconfirmed as such by microscopic reevaluation.

- Negative cases group: cases without AFB bacilli in ZN stain (both primary—at the
moment of diagnosis) and confirmed diagnosis of other illnesses than tuberculosis.
Cases with histopathologic appearance highly suggestive of tuberculosis (epithelioid
granulomatous inflammatory infiltrate with multinucleated giant cells and coagulative
necrosis conserving reticulin network in Gömöri stain—specific morphological aspect
of caseating necrosis) and negative ZN stain were NOT included.

All the cases were tissue fragments (either biopsies or surgical specimens) received
by our department as fresh or formalin-fixed tissue. After the macroscopic examination
(grossing), the fragments were immersed in 10% buffered formalin until the next day
(18–24 h), routinely processed to paraffin (automatic tissue processors Leica ASP 200S (see
Table S1 Supplementary Material) and Leica Peloris 3 (see Table S2 Supplementary Material)
were used), embedded in paraffin blocks (embedding stations ThermoFisher Microm EC
1150 H, Leica EG 1150H, Sakura Tissue Tek and Leica Arcadia), sectioned at 3 microns
thick (semi-automated Rotary Microtome Leica RM2255 and RM2265) and stained with
ZN staining kit (Ziehl–Neelsen for mycobacteria—microbiology, BioOptica Italy) (see Table
S3 Supplementary Material).

H&E slides were used only for analyzing the morphologic lesions, to confirm the
diagnosis in positive cases, and to exclude from the negative group the cases with high-
morphology suggestive of TB but without AFB in the ZN stain. For our study we use only
the ZN-stained slides classified as positive and negative as previously described.

ZN-stained slides were scanned using both manual and automatic scanners, each slide
being entirely scanned as whole slide image (WSI) in “.svs” format. The manual scanner
was provided by Microvisioneer, Esslingen am Neckar, Germany, and consisted of a Camera
Basler Ace 3.2 MP (acA2040-55uc) with Sony IMX265 Sensor and Microvisioneer manual
WSI Software Professional Edition. The automatic scanner was a Leica Aperio GT450.

Finally, we obtained 570 WSIs: 133 positive and 437 negative; 510 WSIs—group A
(110 positive WSIs and 400 negative WSIs)—were used for training purposes while the
remaining 60 WSIs—group B (23 positive WSIs and 37 negative WSIs)—were used for
testing (Table 2).

Table 2. Structure of the study group.

Group Positive Negative Total

A (training) 110 400 510

B (testing) 23 37 60

Total 133 437 570

2.2. Annotation Process

The WSIs from group A were annotated by 7 pathologists with various experience
(Table S4 Supplementary Material) using an in-house platform for annotation and Cytomine
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application (Cytomine Corporation SA, Liège). Positive areas were identified either as
patches (less than 64 × 64 px) in our in-house annotation platform or point-like annotations
of the bacillus in Cytomine platform. Negative samples were drawn either from WSIs
labeled as negative or from manually annotated negative areas inside WSIs labeled as
positive. Patches selection from negative WSIs was performed in two steps: firstly, the WSI
area was filtered to contain a sufficient amount of tissue (versus background); secondly,
a 64 × 64 patch was sampled via a uniform distribution from this area. In the end, we ob-
tained a pool of negative samples containing more than 700 million patches before applying
any augmentations. Examples of positive and negative areas are depicted in Figures S1–S6
(Supplementary Material).

2.3. Image Augmentation Techniques

Even though the dataset obtained via the annotation process contains more than
260,000 positive examples, there is a large diversity that the staining process induces to the
color space of both positive and negative WSIs. In order to mitigate this, we have employed
extensive augmentation techniques to cover a wider variety in WSIs. The augmentation
transformations were applied to all training patches. These included random rotations
in the range of 0 to 90 degrees (clockwise and counterclockwise); random shifts; random
crops; and random brightness, contrast and saturation changes. In addition to these specific
transformations, we also extracted positive patches around the annotated AFBs by shifting
a maximum of 24 pixels in any of the two axes. Since all transformations were applied in a
chain, specific to sample interpolation techniques, we considered that training examples
have diversified by at least one order of magnitude.

2.4. Deep Learning Model Development and Training

Our patch-based classifier for AFB detection is based on RegNetX4 architecture.
This deep convolutional neural network manages to yield state-of-the-art performance
while preserving simplicity and speed. It has the advantage of requiring less hyperparam-
eter tuning, which is an important consideration when dealing with the large amount of
data and data manipulation techniques used in our setting. In order to better fit the task at
hand, we have adapted the architecture through various custom modifications:

• We reduced the kernel size in the stem layer (plausible morphology of bacillus can be
constrained in a 3 × 3 convolution filter or 5 × 5 convolution filter);

• We reduced the number of strided convolutions, as an overall larger receptive field in
the final stages is not necessarily helpful due to the low spatial size of the target class;

• We employed parallel dilated convolutions (i.e., selective kernel convolutions [22],
atrous convolutions [23]) in order to accommodate morphologies that are not necessarily
captured in a 3 × 3 filter while still keeping a reasonable amount of trainable parameters;

• We opted for reflection padding instead of zero padding in all padded convolution
layers to reduce locality bias learned by the network in order to be more robust to
bacillus positioning inside boxes served at inference or testing time.

The network variant we used contains less than 160 million learnable parameters, al-
lowing for adequate inference speed even when not using high-end hardware, without any
degradation of the performance metrics.

We trained our model in a distributed fashion using parameter replicas for each Graph-
ics Processing Unit (GPU) and gradient averaging before broadcasting parameter updates.
We used a batch size of about 2048 per GPU with positive and negative examples roughly
evenly split in order to mitigate the severe class imbalance. We experimented with various
proportions (positive vs. negative) starting from 25–75% up to 75–25% using 5% incre-
ments. We limited our learning procedure to a maximum of 100 million samples seen
(including augmented patches). The optimizer used was AdaBound where the step size α

is provided by a linear warm-up cosine scheduler with periodic restarts [24]. Inference is
performed only on the parts of the WSI containing a relevant amount of tissue. Filtering
the WSI was performed using the same method as for filtering the training areas used for
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extracting patches. Depending on the WSI size and CPU threads used for WSI patch area
extraction our baseline processing pipeline (i.e., 1 CPU thread) manages to process a WSI
in 5 to 15 min.

2.5. Model Validation

We constructed a set of validation patches by annotating several areas collected from
37 WSIs; obviously, none of the areas selected for validation were previously used for
training. The areas thus collected have been divided in non-overlapping patches of
64 × 64 pixels, which were subsequently annotated by the team of pathologists as either
positive or negative. We have obtained 286,000 validation patches of which 15,000 are
positive and 271,000 negatives. The class imbalance is intentional, as it is much more likely
for the model to generate false positives than false negatives and this data distribution is
much closer to real conditions than a balanced one.

2.6. Testing Process

For the testing process four teams of two pathologists each were involved; each team
included pathologists of similar experience (Table S5 Supplementary Material). We com-
pared three types of results: B1—results obtained by examining slides with a bright-field
light microscope; B2—results obtained by examining the WSIs scanned with a Leica Aperio
GT450 automated scanner; and B3—results obtained by algorithm-aided WSIs evaluation.
A wash-out period of 2 weeks between each type of evaluation was respected. For each case,
in each scenario (B1, B2, and B3), the pathologist registered the status (positive or negative)
and the time required to reach the diagnosis. No time limit was established for examination
of either slides or WSIs. All the results were compared with the “gold standard”—the
original histopathological report reconfirmed by H&E and ZN stains reexamination (see
Section 2.1).

2.7. Statistical Analysis

Model validation was performed using the validation set that the team of pathologists
had produced. A receiver operating characteristic (ROC) curve was plotted to describe the
diagnostic ability of the model to classify patches as containing AFB or not. The imbalance
we have imposed between the number of positive and negative patches in the validation
dataset has led us to select the Precision–Recall curve as a useful measure to compute
the area under the receiver operating characteristic curve (AUC) for (AUPR). Due to the
same reason, we also computed the F1 score and Matthew’s correlation coefficient (MCC).
All metrics were computed using Python libraries scikit-learn and matplotlib.

The performance metrics used to evaluate our proposed method in clinical tests are
listed in Table S6 (Supplemental Material).

Statistical significance of the difference between two groups was analyzed using the
χ2 test, where applicable. Statistical significance was defined as p < 0.05, and all statistical
analyses were performed using the EXCEL program.

3. Results

3.1. Internal Validation

We have evaluated the model on the validation set. Accurately validating on entire
WSIs would require slides that are completely annotated (to have each AFB indicated
by an expert). The cost of obtaining such data is prohibitive and requires compromising
on staining diversity, tissue morphology, and artifact types, as opposed to performing
validation on selected interest areas from multiple WSI.

The evaluation of the configurations has been performed on the best checkpoint iden-
tified during the training process. We have obtained an AUC for the ROC curve (Figure 1)
of 0.977 and an AUPR for the Precision-Recall curve of 0.843 (Figure 2). The sensitivity,
specificity, F1-score and MCC curves are described in Figure 2. It is important to note
that the AUC value the model obtained for the ROC curve is considered to be excellent
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for models used in medical testing [25–27]. By setting an arbitrary value of 0.5 for the
decision threshold during validation (patches over the threshold are considered positive
while under the threshold they are negative) we obtained an accuracy of 0.969, a sensitivity
of 0.877, a specificity of 0.974, an F1-score of 0.923, and MCC of 0.745 (Figure 3).

Figure 1. ROC curve obtained by the model on the validation set.

Figure 2. Precision-recall curve obtained by the model on the validation set.

Most frequent false positive findings during validation (at patch level) were given by
red blood cells, mast cells, and fibrotic septa. Parts of red blood cells mimic AFB (Figure 4).
In fact, even in classical microscopic examination of ZN stained slides, the pathologist
has difficulties in differentiating between bacilli and the periphery of red blood cells,
especially in case of congestion (when several red blood cells are compressed within a
narrow capillary). In addition, since ZN stain has quite important variation, the level of
acid–alcohol discoloration can be low, thus preserving a more intense coloration of red
blood cells (red or bright pink instead of pale pink)—the internal control for a proper ZN
stain is a pale-pink color of red blood cells.
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Figure 3. Sensitivity, specificity, F1-score, and MCC of the model computed for various thresholds.

Granules from the cytoplasm of mast cells are colored in purple in ZN by methylene
blue that is used for staining the background (see Table S3 Supplementary Material for the
protocol of ZN stain). Additionally, parts of a mast cell cytoplasm can be confused for an
AFB when the patch includes a very small part of the cell (Figure 5).
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Figure 4. Patch of 64 × 64 pixels (in green) with a positive score (probability of similarity with
positive dataset used for training) of 0.96 due to the presence in the upper left margin of the green
square of a red blood cell. Lymph node with toxoplasmosis ZN × 400.

 

Figure 5. Patch of 64 × 64 pixels (in green) with a positive score of 0.96 due to the presence in the
inferior right margin of the green square of several purple mast cell granules with linear arrangement
mimicking an acid-fast bacillus. Hodgkin’s lymphoma, nodular sclerosis variant. ZN × 400.

All patches with scores over 0.7—either positive or negative—were re-evaluated by
pathologists. This analysis revealed that very few patches with a negative score over 0.7 (i.e.,
“more likely similar with negative training data set”) were a false negative. Several patches
with a positive score over 0.7 (i.e., “more likely similar with positive training data set”)
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were erroneously labeled as such. We employed an active learning strategy for training
and fine-tuning the model. To this end, we selected a fine-tuning holdout set consisting
of several areas from the training WSIs that were non-overlapping with the annotations
(either positive or negative). First, the model was trained from scratch with the available
data. Then, inference was performed on the validation set, and the validation metrics were
assessed (e.g., sensitivity, specificity, F1-score, etc.). The model then was used to classify
the areas in the holdout set (which contain both positive and negative patches). The results
obtained for the holdout set classification were analyzed by the pathologist team, and the
mislabeled patches are correctly relabeled as negative or positive. In the end, the model
was retrained for fine-tuning with these new patches. Performance was further improved
by performing several iterations of this active learning cycle for the data. Given this process,
as described in Figure 6, the model can be easily adapted to new conditions and variations
when we obtain new WSIs.

Figure 6. Active learning process for iteratively improving the model performance.

3.2. Clinical Testing

Our test group included 37 males (61.67%) and 23 females (38.33%) with a median
age of 42.25 years (the youngest patient was 1 year old and the oldest was 80 years old).
The specimens were represented by: lymph nodes—35 cases (58.33%), lung—10 cases
(16.67%), skin—7 cases (11.67%), striated muscle—5 cases (8.33%), and intestine—3 cases
(5.00%). A total of 23 cases were diagnosed as tuberculosis (38.33%) while 37 cases (61.67%)
were inflammation other than tuberculosis or cancer (Figure 7): cat scratch disease 5.00%,
sarcoidosis 6.67%, unspecific granulomatous inflammation 8.33%, Kikuchi 3.33%, toxoplas-
mosis 1.67%, unspecific inflammation 8.33%, reactive lymphadenitis 10.00%, non-Hodgkin’s
lymphoma 6.67%, Hodgkin’s lymphoma 6.67%, and carcinoma 5.00%. All the cases of
tuberculosis had AFB present in ZN stain; obviously, no AFB were present on ZN stain in
the other cases. In order to avoid a possible bias in evaluating AFB presence due to correct
identification of the lesion (i.e., diagnosing other disease than TB based on morphology
alone), all the negative cases were selected to present either necrotizing granulomatous
inflammation (cat scratch disease or unspecific granulomatous inflammation), granulo-
mas (sarcoidosis), epithelioid histiocytes (toxoplasmosis), necrosis (Kikuchi, unspecific

176



Diagnostics 2022, 12, 1484

inflammation, lymphomas, or carcinomas), or florid histiocytosis (reactive lymphadenitis,
or unspecific inflammation). No clinical data were available to the pathologists when
examining either slides or WSIs.

 

Figure 7. Repartition of the test group according to diagnosis.

3.2.1. WSIs Analysis

The results of analyzing WSIs by pathologists showed interesting results (Table 3).
Accuracy (capacity to identify closer to the true value) was, with one exception, higher than
0.8333 (varied from 0.6167 to 0.9333). Sensitivity (capacity to identify true positives) varied
from 0.3913 to 0.9565 and specificity (capacity to identify true negatives) varied from 0.7567
to 0.9459.

Table 3. Statistical measures of the pathologists’ performance on whole slide images.

Senior
Pathologist

1A

Senior
Pathologist

1B

Senior
Pathologist

2A

Senior
Pathologist

2B

Pathologist
A

Pathologist
B

Resident A Resident B Our model

Sensitivity 0.8261 0.8261 0.9565 1 0.4782 1 0.5652 0.3913 0.9565

Specificity 0.9459 0.9730 0.9189 0.8648 1 0.8378 1 0.7567 1

Precision 0.9048 0.9500 0.8800 0.8214 1 0.7931 1 0.5000 1

Negative
predictive

value
0.8974 0.9000 0.9714 1 0.7551 1 0.7872 0.6667 0.9737

False
negative rate 0.1739 0.1739 0.0435 0 0.5217 0 0.4348 0.6087 0.0435

False
positive rate 0.0541 0.0270 0.0811 0.1351 0 0.1622 0 0.2432 0

Accuracy 0.9000 0.9167 0.9333 0.9167 0.8000 0.9000 0.8333 0.6167 0.9833

F1 0.8636 0.8837 0.9167 0.9019 0.6471 0.8846 0.7222 0.4390 0.9778

Exposure to
WSI (years) 1.5 1.5 1.5 1 0.25 0.5 0 0 -

Experience
(decades) 1.2 1.4 0.7 0.9 0.4 0.4 0 0 -
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The accuracy (p = 0.1), precision (p = 0.09), and specificity (p = 0.06) had a general
tendency to increase as the experience of the pathologist increases, but there was no
uniformity towards an increase in the sensitivity with experience (p = 0.25) (Figure 8a–d).

  
(a) (b) 

  
(c) (d) 

Figure 8. Variation of sensitivity, specificity, accuracy, and precision in correlation to pathologists’
experience. (a) Variation of sensitivity in correlation to pathologists’ experience. (b) Variation
of specificity in correlation to pathologists’ experience. (c) Variation of accuracy in correlation to
pathologists’ experience. (d) Variation of precision in correlation to pathologists’ experience.

When looking at sensitivity, specificity, precision, and accuracy in correlation with
experience in analyzing WSI (exposure to WSI) we identify a statistically significant associ-
ation for specificity (P chi test 0.004), precision (P chi test 0.008), and accuracy (P chi test
0.012), but not for sensitivity (P chi test 0.06) (Figure 9a–d).
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(a) (b) 

  
(c) (d) 

Figure 9. Variation of sensitivity, specificity, accuracy and precision in correlation to pathologists’
experience of examining whole slide images. (a) Variation of sensitivity in correlation to pathologists’
experience of examining WSIs. (b) Variation of specificity in correlation to pathologists’ experience of
examining WSIs. (c) Variation of accuracy in correlation to pathologists’ experience of examining
WSIs. (d) Variation of precision in correlation to pathologists’ experience of examining WSIs.

3.2.2. Slide Analysis

Slide analysis (microscopic examination) revealed much better results than those ob-
tained on WSIs (Table 4). The senior pathologists had one to three errors per person (senior
pathologist 1A—2 errors, senior pathologist 1B—3 errors, senior pathologist 2A—3 errors,
senior pathologist 2B—one error; all but one error were false negative); the pathologists
had more errors—pathologist A—12 errors, pathologist B—4 errors; 4 of them were false
positive and 12 false negative) while residents had 29 errors (resident A 12 errors, all false
negative, resident B—17 errors, 2 false positive, 15 false negative). The results were much
better than those obtained by evaluating WSIs but algorithm-assisted evaluation had bet-
ter results than human evaluation either on WSIs or slides. In fact, our model results
(AI-assisted evaluation) were better or similar to pathologists examining slides. Senior
pathologist 2B was identical, with only one false negative result, for the same case. The re-
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sulting accuracy for our model was 98.33% with only one false negative result—sensibility
of 95.65% and no false positives—specificity of 100%.

Table 4. Statistical measures of the pathologists’ performance on glass slides.

Senior
Pathologist

1A

Senior
Pathologist

1B

Senior
Pathologist

2A

Senior
Pathologist

2B

Pathologist
A

Pathologist
B

Resident A Resident B Our model

Sensitivity 0.9130 0.8695 0.9130 0.9565 0.5217 0.9565 0.4782 0.3478 0.9565

Specificity 1 1 0.9729 1 0.9729 0.9189 1 0.9459 1

Precision 1 1 0.9545 1 0.9230 0.88 1 0.8 1

Negative
predictive

value
0.9487 0.925 0.9473 0.9736 0.7659 0.9714 0.7551 0.7 0.9737

False
negative rate 0.0869 0.1304 0.0869 0.0434 0.4782 0.0435 0.5217 0.6521 0.0435

False
positive rate 0 0 0.0270 0 0.0270 0.0811 0 0.0540 0

Accuracy 0.9667 0.95 0.95 0.9833 0.8 0.9333 0.8 0.7166 0.9833

F1 0.9545 0.9302 0.9333 0.9778 0.6667 0.9167 0.6471 0.4848 0.9778

Experience
(decades) 1.2 1.4 0.7 0.9 0.4 0.4 0 0 -

3.2.3. Time Analysis

Time dedicated for WSI examination varied from 10 s to 80 min with an average
time of 11.43 min per WSI. The average time of examination varied between examiners
from 5.48 min to 17.06 min with shorter times for positive slides and longer for negative
ones (either true or false negatives). In fact, for every pathologist, the longest time of
examination was recorded for negative cases (true negative for seven examiners and false
negative for the remaining one) and the shortest for true positive ones (Table 5). No relation
with experience or prior exposure to WSI was identified.

Table 5. Time used by pathologists when examining whole slide images.

Time of
Examination

(min)

Senior
Pathologist

1A

Senior
Pathologist 1B

Senior
Pathologist

2A

Senior
Pathologist 2B

Pathologist A Pathologist B Resident A Resident B

All WSIs 1–45 1–35 0.08–20 0.16–26 0.5–80 0.33–35 9.5–35 0.1–28

Average
all WSIs 17.07 12.38 5.48 5.78 14.04 13.58 14.95 8.16

True positive 1–18 1–18 0.08–15 0.16–8 0.5–25 0.33–21 0.5–32 0.1–13

Average true
positive 7.26 6.54 4.28 2.47 5.59 7.64 12.54 3.51

False positive 9–14 27 4–15 0.16–8 - 4–30 - 3–21

Average false
positive 11.50 27.00 11.33 4.43 - 10.67 - 7.33

True negative 8–45 2–35 1–20 1–26 0.5–80 7–35 3–35 2–20

Average true
negative 21.37 11.56 5.88 8.38 12.38 18.55 14.14 7.25

False negative 15-36 5-32 1 - 2-52 - 7-29 5-28

Average false
negative 28.75 21.50 1.00 - 26.92 - 21.10 13.50

When examining slides, the pathologists spent less time than for WSIs. The overall
interval varied from 3 s to 49 min with an average of 5.25 min (Table 6).
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Table 6. Time used by pathologists when examining slides by microscope.

Time of
Examination

(min)

Senior
Pathologist

1A

Senior
Pathologist 1B

Senior
Pathologist

2A

Senior
Pathologist 2B

Pathologist A Pathologist B Resident A Resident B

All slides 1–20 1–49 0.05–10 0.16–26 0.5–38 0.33–16 0.5–22 0.5–19

Average
all slides 6.13 7.08 2.84 4.25 5.44 5.06 6.15 5.09

True positive 1–19 1–32 0.05–10 0.16–8 0.5–10 0.16–15 0.5–18 0.5–11

Average true
positive 3.71 11.2 3.21 3.42 3.04 5.46 0.92 2.75

False positive 8 0.5 3-16 1-3

Average false
positive - - 8 - 0.5 11.33 - 2

True negative 1–20 1–16 0.05–10 1–26 0.5–38 0.33–11 0.5–12 1–11

Average true
negative 7.46 3.45 2.52 4.76 4.77 3.98 4.42 4.1

False negative 5–9 2–49 1–4 4 1.5–25 13 1–22 2–19

Average false
negative 7 24.33 2.5 4 10.68 13 8.15 9.06

Time used by pathologists in AI-assisted examination varied from 9 s to 2.002 min for
positive slides (average 0.61 min). In most of the cases, the AFB were present in the first
or the second patch in the list. In one case the pathologist examined 25 patches to find a
convincing AFB.

We exemplify two cases that required pathologists 32–33 min for examination (an
average of 12–13 min for classic microscopic examination) (Figures 10 and 11). In negative
cases, a maximum of 4–5 min weas necessary for confirmation of negativity. Average time
needed for AI-assisted examination was 1.85 (1 min 51 s).

 

Figure 10. Paucibacillary lesion identified as positive by 5 of 8 pathologists in 1–32 min (medium of
13.75 min); the time of AI-assisted examination was 15 s (the convincing positive patch—the green
square—was the second one).
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Figure 11. Paucibacillary lesion identified as positive by 6 of 8 pathologists in 1–33 min (medium
of 12.25 min); the time of AI-assisted examination was 9 s (first patch—green square—was convinc-
ingly positive).

3.2.4. Error Analysis

We analyzed the errors made by pathologists when evaluating WSIs. To our surprise,
human examination of WSIs results in an amazing proportion of 31 WSIs of a total of
60 cases that were erroneously interpreted (51.67%) with a total of 71 misinterpretations of
480 evaluations (Table 7, Figure 12a). Even when residents were excluded, errors occurred
for 21 WSIs (35%)—more than one third of the cases (Table S7 Supplemental Material,
Figure 12b).

Table 7. Errors in WSIs evaluation for qualified pathologists and residents.

Qualified Pathologists and Residents (8 Persons × 60 WSI)

Negative Cases Positive Cases Total

No of errors per WSI

0 23 6 29

1 9 3 12

2 1 5 6

3 3 5 8

4 0 3 3

5 1 0 1

6 0 1 1

Cases with errors (of 60 WSIs) 14 17 31

% 37.84% 73.91% 51.67%

No of errors (of 480 examinations) 25 46 71

% 8.45% 25.00% 14.79%
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(a) (b) 

Figure 12. (a) Errors in WSIs evaluation for all the team (qualified pathologists and residents).
(b) Errors in WSIs evaluation for qualified pathologists.

4. Discussion

Diagnosis of TB can be difficult. A complex interpretation of clinical and radiological
images supported by immunological, bacteriological, histopathological, and molecular
tests is needed. Paucibacillary lesions are particularly difficult to diagnose. Sputum and/or
tissue examination often fail to identify AFB. Bacteriological tests are more successful in
identifying mycobacteria than pathology (up to 50–80% more sensitivity for bacteriology
compared with histopathology) [28] but the main drawback of the method is the time re-
quired by cultures—average of 14–21 days but it is not unusual to take up to 6–8 weeks [29].
PCR and bacteriological tests may also offer divergent results [30]. Immunohistochemistry
for mycobacteria is expensive and due to the small dimensions of the bacillus, can be
difficult to interpret in paucibacillary lesions.

Histopathologically identification of AFB in the appropriate morphological milieu
represents the most precise diagnosis of TB possible because it corroborates the presence of
specific lesions with the presence of the bacteria. TB is a form of “specific chronic inflamma-
tion”, i.e., inflammation with microscopic lesions so characteristic that, by their presence
alone, one can affirm with certitude that the culprit provoking the morphologic alterations
is a species of Mycobacterium. The lesions consists of confluent epithelioid granulomas
with centrally located Langhans multinucleated giant cells and caseating necrosis. In these
cases, the diagnosis requires only a routine H&E stain. However, in different circumstances
(early lesions, associated illnesses such as cancers, immunosuppression or (auto)immune
diseases, simultaneous infection with other microorganisms, etc.), this typical morphologi-
cal picture is altered and several special stains are needed for diagnosis: Gömöri staining
for reticulin and van Gieson Weighert for elastic fibers (to prove the preservation of reti-
culin and elastic fibers in necrotic area); ZN or auramine (to identify AFBs); some other
special stains (Giemsa, Gram, Grochott, Warthin Starry, etc.) to exclude the presence of
other microorganisms; in some cases immunohistochemical tests for mycobacteria; and/or
polymerase chain reaction (PCR) for Mycobacterium tuberculosis are performed. Moreover,
clinical, blood tests (QuantiFERON-TB), and imaging data are corroborated in order to
establish a diagnosis of TB [31,32].
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Understanding the details of the histopathologic diagnosis of TB is mandatory in
order to explain the strict inclusion and exclusion criteria one has to use for constructing
the dataset. A paucibacillary lesion may include very few bacilli easy to miss even by an
experienced pathologist. This is why we excluded from the negative cases group the slides
with morphological appearance highly suggestive of tuberculosis even if the ZN-stained
slides did not reveal any bacilli no matter how thoroughly was the examination both at the
moment of diagnosis and at reexamination. Additionally, in the B group, in the negative set
of cases used for testing, cases with morphology similar to TB but with a clear diagnosis of
diseases other than TB were included. This was conducted in order to avoid an involuntary
bias created when the pathologist examines a ZN-stained slide that he/she is convinced
that the diagnosis is not TB and obviously no bacilli may be present: “it does not look as
TB, for sure no AFB are present; no careful scrutiny is needed”; “it looks as TB, maybe there
are AFP present; and let’s look for them carefully”.

Xiong et al., describe reevaluation of the cases during the process of developing the
algorithm. They reclassified seven cases initially labeled as negative [15].

Zaizen et al., have an interesting approach when constructing the testing group:
the positive cases were those with proven mycobacteriosis either when the biopsy was
performed or during follow-up; based on this perspective, AI-supported pathological
diagnosis identified 11 positive cases versus 2 positive cases in classical pathological
diagnosis, without AI support [19]. It is unusual for a pathologist to miss 9 cases from a
total of 42 (12.5% sensitivity). The algorithm was able to identify 11 positive cases (2 cases
identified as positive by human examiner and 9 more cases) and “missed” 5 cases. Due to
the design of the testing process, these “missed” cases could be real negative ones at the
moment of examination (if a patient is developing an illness in the future he or she is not
mandatory presenting the microorganism months in advance) or, due to the scarcity and
the not uniform distribution of the mycobacteria within the tissue it is possible that the
tissue examined by algorithm did not contain bacilli in the moment of investigation.

Another important advantage of our dataset is represented by the number of the cases
selected for annotation and the number of positive patches. We annotated 110 positive
WSIs obtaining 263,000 positive patches. As it is shown in Table 8, this is the biggest
and most diverse AI training dataset for mycobacteria to date. The number of negative
cases is also important; at first glance, few negative WSIs are necessary for obtaining a
large number of negative patches (one slide with 1 cm2 of tissue can be cut in more than
800,000 patches of 64 × 64 pixels). It is important, however, to have different types of
tissue with different types of lesions to ensure a sufficient variability of the patches in
both structure and color. The absolute number of negative WSIs of our training group is
also the biggest, comparable with Pantanowitz et al., dataset but with several orders of
magnitude higher than the others. The high number of ZN-stained slides is important due
to the fact that it offers a higher diversity of images. ZN stain is a manual stain with high
variability from lab to lab, being almost impossible to standardize. A “good” ZN stain is
one that reveals mycobacteria from light pink to deep red or even purple rods on a light
blue to dark blue background. In fact, its variability is so high that one technician cannot
obtain two identical ZN stains on the same tissue block. This can be “a blessing in disguise”
since the algorithm trained on a sufficiently large dataset (originating from a sufficiently
numerous different WSIs), supplementary extended by augmentation techniques altering
color, contrast, brightness, saturation, etc. will be able to properly recognize ZN-stained
WSIs provided by labs worldwide.
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Table 8. Studies of automated detection of AFB on ZN stains on tissue.

Studies on
Tissue

Year

Training
Set

Positive
WSIs

Training
Set Total

WSIs

Patches
Positive

Patches
Negative

Patches
(Pixels)

Test Set Accuracy % Sensitivity
(Recall) %

Specificity %

Xiong
et al. [15] 2018 30 45 96,530 2,510,307 32 × 32 201 WSIs 90.55 * 97.94 83.65

Yang
et al. [16] 2020 6 33 18,246 18,246 256 × 256 134 WSIs 87 * 87.13 87.62

Lo
et al. [17] 2020 9 9 613 1202 20 × 20 patches 95.30 93.5 96.3

Pantanowitz
et al. [18] 2021 47 418 5678 1,111,918 32 × 32 138 WSIs 84.6 64.8 95.1

Zaizen
et al. [19] 2022 2 42 506 N/A N/A 42 WSIs N/A 86 100

Our study 2022 110 510 263,000 700,000,000 64 × 64 60 WSIs 98.33 95.65 100

* calculated based on the data provided in the paper.

In the five methods of automatic identification of mycobacteria in ZN-stained slides
described in the literature, one study (Lo et al. [17]) does not evaluate WSI. Its valida-
tion is solely made on patches. Xiong et al. [15] present a completely automated method
of diagnosis while Yang et al. [16], Pantanowitz et al. [18], and Zaizen et al. [19] devel-
oped AI-assisted diagnostic methods as a tool in the hands (and eyes) of pathologists.
In Yang et al.’s method, the pathologist evaluates a score heatmap superposed on the WSI.
In Pantanowitz et al.’s method, the pathologists evaluated a gallery of patches displayed
in reverse order of the probability score in relation with WSI. Both methods allow for the
pathologist to evaluate the suspicious areas in the context of the specific histopathologi-
cal lesion. Zaizen et al., do not describe precisely how the pathologist uses the platform
for diagnosis. Instead, they specify that each probably positive patch was examined by
six pathologists.

Our method is an AI-assisted diagnostic method with a similar approach to
Pantanowitz’s et al.’s design of the platform (analyzing a list of patches displayed in
reverse order of the probability score). However, our solution employs a much larger
dataset (about two orders of magnitude larger) and an active learning approach that further
increases the performance metrics, especially for difficult cases (i.e., artifacts) or WSIs with
peculiar staining.

Our algorithm obtained very good results compared with previous studies. Our testing
method compared the AI-assisted diagnosis with the pathologist’s diagnosis either on
slides (by microscopic examination) or WSIs. Our test set included 60 cases based on
general recommendation for the minimal size required for digital pathology validation [33].
As expected, there is a definite improvement of AFB identification by pathologists when
examining slides other than WSIs. It is known that pathologists are not very keen to change
from conventional microscopy to remote WSI examination as a routine. The diagnostic
concordance between WSI and slide examination varies from 63% to 100% in different
studies [34].

Moreover, pathologist’s experience in examining WSIs affected the accuracy of finding
AFB—the longer the period of exposure to WSIs, the better the pathologist’s results. The ac-
curacy of the diagnosis when our algorithm was used was higher than the accuracy of
every pathologist, even when slides were examined. The algorithm was able to pick more
bacilli than the human examiner alone, thus almost eliminating the false negatives. When
examining slides, pathologists missed a total of 47 cases of TB (false negatives), in average
almost 6 cases per person. Our algorithm helped pathologists improve Mycobacterium
identification on WSIs, but the results were also better with AI-assisted evaluation than
those where pathologists examined slides by microscope. In real life, a pathologist examin-
ing a slide may identify lesions suspicious of TB—epithelioid granulomas with giant cells
and/or coagulative necrosis with reticuline preservation (caseum). When one suspect TB,
he/she will ask for a ZN special stain in order to identify bacilli. AFB presence confirms
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the diagnosis of TB without biunivocal relation (i.e., AFB absence does not exclude TB diag-
nosis). In other words, when a pathologist fails to identify AFB, he/she will not necessarily
miss TB but the positive diagnosis that will finally be obtained in most of the cases will be
obtained with supplementary efforts (several costly techniques) and with some delays in
significant cases. Altogether, both the patients and the medical system will benefit from
implementation of such an algorithm in routine pathology.

Another issue for discussion is the debate about what metric should be preferred:
specificity or sensitivity? A diagnostic method is preferable to be specific while a screening
test is better to be more sensitive. We decided to use a higher specificity (fewer false positive
cases) with the risk of missing some positive cases (false negative). The algorithm selects
patches that are more probable to contain AFB and shows them to the pathologist. If the
algorithm is picks up too many structures, the pathologist will be forced to look to a myriad
of artifacts and he/she will lose a lot of time sorting through them.; In the end, it is more
profitable to examine the slide without AI support.

Last but not least, when discussing our algorithm capabilities in comparison with
human results, we should not forget that our team of pathologists are familiar with ZN
stains and AFB identification on slides; we expect that a pathologist not used to examining
ZN-stained slides would have poorer results with more numerous false negatives, especially
in paucibacillary lesions.

When looking at the errors in analyzing both WSIs and slides, there are huge differ-
ences between qualified pathologists and residents. The residents were in their final year
of residency and are very good and hard-working people. However, we showed that no
exposure to WSIs prior to this test poorly influenced the outcome.

We have a closer look at the cases with the most numerous errors in interpretation.
One negative case had five errors with eight examiners and four errors from six qualified
pathologists (cat scratch disease—suppurative necrotizing granulomatous lymphadenitis).
Some structures looked like AFB, but the overall quality of the stain was poor (slightly
pink–pale red blood cells). In some areas, structures could be mistaken as AFB but the
suspicious structures were not clear-cut bacillar structures (Figures 13 and 14).

 

Figure 13. Cat scratch disease. Centrally, one structure reminiscent of AFB but pale blue in color
(green oval); however, the color of red blood cells is not appropriate (green stars). Paler than regular
in a good Ziehl–Neelsen stain. ZN × 400 as offered by Aperio ImageScope platform; WSI scanned
with Aperio GT450, 40× magnification.
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Figure 14. Cat scratch disease. Centrally, several structures look like AFB but pale blue in color
(green rectangular area); however, enhancement of the image—black contour window in the lower
right corner of the picture (digital magnification offered by Aperio ImageScope software)—shows
improper format of the pink structures. ZN × 400 as offered by Aperio ImageScope platform; WSI
scanned with Aperio GT450, 40× magnification.

A case of tuberculosis in striated muscle had four errors from eight examiners. There were
many fragments of tissue and almost 5 cm2 of tissue with very few bacilli, which were
easily missed by examiners (Figure 15).

 

Figure 15. Tuberculosis. Centrally, two AFBs present (green oval); please note the good quality of
the Ziehl–Neelsen stain certified by the pink color of red blood cells. ZN × 400 as offered by Aperio
ImageScope platform; WSI scanned with Aperio GT450, 40× magnification.
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The case with most errors in interpretation was a tuberculous epithelioid granuloma-
tous lymphadenitis with extensive caseation with very few bacilli present in ZN stain—one
to four AFB present in each section. Due to the minute dimensions of Mycobacterium
tuberculosis (one micron thick), a bacillus will be completely enclosed in one section of
tissue and serial sections reveal different bacilli. The slide examined in this test included
two sections of tissue with very few bacilli, one in one section (Figure 16) and two on
the other section. Considering the paucity of the bacilli, it is no wonder that the examin-
ers missed them on WSIs. Interestingly, this was the case the algorithm was not able to
identify bacilli. For this case, the algorithm identified 3 patches with positive scores over
0.7 and 145 patches with positive scores between 0.5 and 0.69. None of them presented
convincing AFBs.

 

Figure 16. Tuberculous epithelioid granulomatous lymphadenitis with extensive caseation. One AFB
is present within the center (green circle). Higher resolution is in the right inferior rectangular area
(detail: green arrow). ZN × 400 as offered by Aperio ImageScope platform; WSI scanned with Aperio
GT450, 40× magnification.

In fact, in order to avoid the examiner being biased by the overall picture of the lesion,
the testing set was designed to include lesions with similar appearance to tuberculosis
such as granulomatous inflammation, most of them with necrosis. The cases with reactive
lymphadenitis, unspecific inflammation, or malignancies were not erroneously evaluated
by any examiner.

The most impressive benefit of using the AI-assisted algorithm for AFB identification is
saving time. AI-assisted evaluation was 2.84 times faster than human evaluation. We have
to be aware that the pathologists involved in our clinical test had impressive experience
in diagnosing tuberculosis and analyzing ZN stains. Our department has expertise in
infectious diseases diagnosis. ZN stain is routine for lymph nodes and bronchial biopsies
and, moreover, the pathologists were recently exposed to numerous positive and negative
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ZN-stained WSIs during the annotation period. A “regular” pathologist likely does not
have the same level of exposure, so the time required for a thorough examination of a
ZN-stained slide is usually much longer. We can estimate that our algorithm saves at least
one-third of the pathologist’s time that can be spent on other more complex tasks.

Moreover, considering the inherent bias induced by the level of expertise of our team
of pathologists, the results of our model argue in favor of an overall increase in the quality of
AI-assisted diagnosis. In other words, if the model was able to reach the best performance
of one of our most experienced pathologists (identifying convincing positive patches in
all but one cases), for a less experienced pathologist the algorithm will certainly improve
their performance. It is true that the final labeling of the status of the patch (positive versus
negative) is established by the pathologist. The fact that the model is identifying highly
suggestive areas helps the human examiner to make a final decision.

Situations when AI algorithms performed better than pathologists were reported
during clinical testing for automatic identification of prostate cancer. One case previously
missed by pathologists was suggested as malignant by the algorithm and confirmed as
such by experts [35]. Additionally, algorithms for Mycobacterium tuberculosis detection
identified positive cases with subsequent expert’s confirmation [15,19].

Our algorithm is able to identify bacilli even in cases with a very low density of AFB
and in cases that were missed by pathologists, even when considering experienced pathol-
ogists (AI-assisted diagnosis based on our method has a specificity 100% and sensibility
95.65%). The impact of this achievement is significant. Our automatic method being used to
assist pathologists in identifying AFB is saving time and money that is otherwise required
by other investigations. Therefore, it shortens the interval between the biopsy and the
start of the treatment with major benefits, both for the patient (better results and faster
improvement of health) and for society (faster decrease in the patient’s infectiousness,
diminishing the medical costs for expensive investigations or, longer treatments required
for old lesions, diminishing the social security costs by fewer days of medical leave, etc.).

There are many limitations for our technique. The main important limitations concern
the dimensions and diversity of the dataset and our method of clinical testing.

Our dataset is the largest and most diverse of the datasets for mycobacteria presented
in the literature. It is also the most “correct” one, due to our method selecting cases.
Unfortunately, it is not a “perfect” dataset; to reach this goal, the dataset should include
all the positive slides from all over the world. This is virtually impossible. We applied
several techniques of augmentation to minimize this drawback, but we are aware of this
impossible to overcome drawback.

Our method of clinical testing is also flawed because of the simple fact that the team
of researchers who developed the algorithm also validated it. This forced manner of
designing the test of the algorithm thus biases the validation of all AI-models developed
in medicine. We tried to diminish this risk by separating the people who designed and
selected the test group of cases from the people who actually performed the test. Our most
experienced pathologist tried to further minimize the risk by including in the test group
positive paucibacillary cases and negative cases with similar microscopic appearance to TB
(see the discussions above). We are aware that the bias is not completely overcome due to
the simple fact that the pathologists belong to the same school of pathology with similar
methods of evaluation and routines. The only answer for this limitation is for independent
validation to be performed by pathologists from completely different institutions and from
as many countries as possible, ideally on international cohorts of patients. Overcoming this
problem represents the key towards clinical implementation of the algorithm [36].

5. Conclusions

We developed a model for AI-assisted detection of AFB on WSIs that is able to identify
bacilli with an accuracy of 98.33%, sensitivity of 95.65%, and specificity of 100%. The results
were better than or, for one case, similar to those of a team of pathologists of variable
expertise when examining slides and WSIs, thus reducing human error form fatigue and
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loss of focus. By using our algorithm, pathologists saved at least one-third of the total
examining time.

We intend to annotate the positive WSIs used for clinical testing and retrain our
algorithm with the resulting supplementary patches, thus making use of our active learning
setup. The new product iteration will be further tested in different hospitals to test the
robustness of the algorithm when exposed with different types of ZN stains and to diminish
the inherent subjectivity of the validation.
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Abstract: Although drug-induced liver injury (DILI) is a major target of the pharmaceutical industry,
we currently lack an efficient model for evaluating liver toxicity in the early stage of its development.
Recent progress in artificial intelligence-based deep learning technology promises to improve the
accuracy and robustness of current toxicity prediction models. Mask region-based CNN (Mask R-
CNN) is a detection-based segmentation model that has been used for developing algorithms. In the
present study, we applied a Mask R-CNN algorithm to detect and predict acute hepatic injury lesions
induced by acetaminophen (APAP) in Sprague-Dawley rats. To accomplish this, we trained, validated,
and tested the model for various hepatic lesions, including necrosis, inflammation, infiltration, and
portal triad. We confirmed the model performance at the whole-slide image (WSI) level. The training,
validating, and testing processes, which were performed using tile images, yielded an overall model
accuracy of 96.44%. For confirmation, we compared the model’s predictions for 25 WSIs at 20×
magnification with annotated lesion areas determined by an accredited toxicologic pathologist. In
individual WSIs, the expert-annotated lesion areas of necrosis, inflammation, and infiltration tended
to be comparable with the values predicted by the algorithm. The overall predictions showed a
high correlation with the annotated area. The R square values were 0.9953, 0.9610, and 0.9445 for
necrosis, inflammation plus infiltration, and portal triad, respectively. The present study shows that
the Mask R-CNN algorithm is a useful tool for detecting and predicting hepatic lesions in non-clinical
studies. This new algorithm might be widely useful for predicting liver lesions in non-clinical and
clinical settings.

Keywords: drug-induced liver injury; acute hepatic injury; deep neural network; mask region-based
convolutional neural network; artificial intelligence; deep learning

1. Introduction

In recent years, artificial intelligence (AI)-assisted digital pathology has made rapid
progress owing to the success of deep learning [1,2]. Some trials have applied deep-
learning techniques in clinical and non-clinical fields of digital pathology, as they may be
used to accomplish tasks that could not be automated using classical imaging analysis
methods [3,4]. Deep-learning-based techniques are being increasingly applied in many
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routine contexts [5]; in research, they have been used in toxicological pathology and good
laboratory practice (GLP) settings [6].

For digital pathology, convolutional neural networks (CNNs) are applied to build
decision-making workflows [7]. When provided with plentiful data on annotated training
images, CNNs can derive complex histological patterns by deconvoluting the image content
into thousands of salient features, selecting/aggregating the most meaningful features, and
then moving on to recognize the identified patterns in novel images [7]. Mask region-based
CNN (Mask R-CNN), which was developed from Faster R-CNN, is one of the best-known
detection-based segmentation models [8,9]. In Mask R-CNN, region of interest (ROI)
alignment is used to increase the number of anchors and mask branches to achieve instance
segmentation. Mask R-CNN has a faster detection speed and greater accuracy than Faster
R-CNN [10]. To date, Mask R-CNN-based approaches have been used to analyze multiple
organs, such as for heart, right-lung, and left-lung segmentation [9].

Acute hepatic injury can be caused by viral infection, alcohol, and/or drugs. The latter
injury is termed drug-induced liver injury (DILI) [11–13]. DILI is a major concern for drug
developers, regulatory authorities, and clinicians. However, we currently lack an adequate
model system for assessing drug-associated DILI risk in humans [14]. The observable
morphological patterns of acute hepatocellular injury include acute hepatitis, necrosis, and
resolving hepatitis. Acute hepatitis is characterized by portal and parenchymal inflamma-
tion, hepatocellular injury, and/or necrosis, in the absence of fibrosis. The necrosis can
be spotty or confluent; in some cases, such as that induced by acetaminophen (APAP),
it can be zonal [15]. The pathological findings characteristic of APAP overdose, which
include acute hepatitis with apparent centrilobular hepatic necrosis, have been targeted
to develop therapeutic pharmaceuticals [16]. Several published reports have used deep
learning models to predict liver injury or toxicity [17–21]. However, no previous study
has applied deep learning to detect acute hepatic injury for toxicological diagnosis in a
non-clinical study.

Here, we applied a deep-learning algorithm in developing a more efficient diagnostic
tool for toxicity screening, based on the pathological characteristics of APAP-induced
acute hepatic injury. We applied a Mask R-CNN segmentation network to detect the
lesions of acute hepatitis, with a particular focus on lymphocyte/histiocyte infiltration
and necrosis. We evaluated model performance by comparing the whole-slide image
(WSI)-level detection of lesions by the model versus the annotation results generated by an
accredited toxicologic pathologist.

2. Materials and Methods

2.1. Animal Experiments

Sprague-Dawley (SD) rats (Crl:CD; 9 weeks of age, both males and females) were
obtained from Orient Bio, Inc. (Republic of Korea) and allowed to acclimate for 2 days prior
to the beginning of the study. Throughout the experiments, the rats were maintained under
controlled conditions (23 ± 3 ◦C, 30–70% relative humidity, 12 h light/12 h dark cycle of
150–300 lux, 10–20 cycles/h ventilation). A standard rat pellet diet (gamma-ray irradiated;
5053 PMI Nutrition International, San Francisco, CA, USA) was provided ad libitum. The
animals had free access to municipal tap water that had been filtered and UV-irradiated.
This water was analyzed for specific contaminants every 6 months by the Daejeon Regional
Institute of Health and Environment (407, Daehak-ro, Yuseong-gu, Daejeon, Korea). The
experiment was approved by the Assessment and Accreditation of Laboratory Animal Care
International (AAALAC) and Institutional Animal Care and Use Committee (IACUC).

Animals were randomly assigned into the following three groups (n = 10 per group,
5 males and 5 females): (1) control group; (2) single dose APAP (2500 mg/kg) group;
(3) repeated dose APAP group (1000 mg/kg) group. Liver from each animal was divided
into 5~6 different pieces, and they were paraffin-embedded. In total, about 200 liver
sections were H&E-stained and digitalized into whole-slide images (WSIs) by slide scanner.
For dataset establishment, images of necrosis, inflammation, infiltration, and portal triad
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were cropped and labeled from 7, 16, 30, and 132 whole-slide images. Thirty-two WSIs,
which were not used for model training, were left to check the performance of the trained
AI model.

Acetaminophen (APAP; A7085, 99.0% purity; Sigma-Aldrich, MO, USA) was adminis-
tered orally to induce acute liver injury in 10-week-old SD rats using two dosing systems: a
single dose of 2500 mg/kg or a 6-day repeated dose of 1000 mg/kg. Doses of APAP were
chosen from previously published reports [22,23]. Immediately prior to administration,
2500 mg or 1000 mg of APAP was dissolved in 10 mL of sterile distilled water. Admin-
istration was performed at 10 mL/kg per dose. Sterile distilled water was administered
as a vehicle control. The day of the starting dose was regarded as Day 1. Single-dosing
animals and six-day repeated animals were sacrificed on Day 3 and Day 7, respectively.
Liver tissues were collected in 10% formaldehyde. Hematoxylin and eosin (H&E) staining
was performed as previously described [24].

2.2. Data Preparation

Whole-slide images (WSIs) of liver sections were scanned using a Panoramic 250
Flash III (3DHistech, Hungary) with a 20× objective and bright-field illumination. The
scan resolution was 0.24 μm per pixel, and the images were saved as TIFF stripes with
JPEG2000 image compression. The data preparation for segmentation of portal triad, necro-
sis, infiltration, and inflammation was performed as previously described [8]. Briefly, the
20×-magnified WSIs were cropped into 448 × 448 pixels of tile images, and all lesions were
labeled using a VGG image annotator 2.0.1.0 (Visual Geometry Group, Oxford University,
Oxford, UK). The annotated lesions were confirmed by an accredited toxicologic patholo-
gist before the algorithm training was initiated. A total of 8,291 image tiles were obtained
from 201 WSIs. The lesions identified on these images were labeled and used to train and
test the Mask R-CNN algorithm. The train_test split function embedded in the scikit-learn
package was used to split the annotated image tiles into the training, validation, and test
data sets (ratio, 7:2:1, respectively). Data augmentation was conducted to improve the
training dataset; this was performed eight times using a combination of image-augmenting
techniques (reverse, rotation, and brightness). A total of 46,312 images were used for
training, while 1659 and 843 images were used for validation and testing, respectively
(Supplementary Material Table S1).

2.3. Generation of the Mask R-CNN Algorithm

All procedures related to algorithm training, including the data distribution, were
performed as previously described in detail [8]. Briefly, the training was performed using an
open-source framework for machine learning (Tensorflow 2.1.0 with a Keras 2.4.3 backend)
powered by an NVIDIA RTX 3090 24G GPU. The Matterport Mask R-CNN 2.1 package
(Sunnyvale, CA, USA) was used for training. The Mask R-CNN algorithm consisted of two
stages: (1) the region proposal network (RPN), which proposed candidate object-bounding
boxes; and (2) RoIAlign, which was used to extract features for the prediction of pixel-
accurate masks. RoIAlign uses bi-linear interpolation to compute the exact values of the
input features at four regularly sampled locations in each RoI bin and aggregates the results
using max pooling. A schematic of the procedure is shown in Figure 1.

Figure 1. Schematic of the procedures for Mask R-CNN and segmentation of hepatic lesions.
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2.4. Model Training, Validation, and Testing for Acute Hepatocellular Injury
2.4.1. Hyperparameters

A total of 48,814 images were used to train, validate, and test the model on lesions of
acute hepatic injury in SD rats. The hyperparameters used during the training are described
in Table 1. All configurations were set as the defaults defined by the Matterport package
with the exception of the five parameters that were customized to fit the hepatic injury
dataset. Four images were simultaneously analyzed using IMAGE_PER_GPU, and four
GPUs were used during the training. The image size was determined as 448 × 448 by
IMAGE_MAX_DIM and IMAGE_MIN_DIM according to the tile image size. The threshold
of instance classification accuracy, DETECTION_MIN_CONFIDENCE, was adjusted to 0.5.
Stochastic Gradient Descent (SGD) was selected as the optimizer.

Table 1. Hyperparameters used in Mask R-CNN training.

Hyperparameter Value

IMAGES_PER_GPU 4
GPU_COUNT 4

STEPS_PER_EPOCH 10
IMAGE_MAX_DIM 448
IMAGE_MIN_DIM 448

LAYER_1 60
LAYER_2 120
LAYER_3 200

DETECTION_MIN_CONFIDENCE 0.9
LEARNING_RATE 0.001

LEARNING_MOMENTUM 0.9
WEIGHT_DECAY 0.0001

DETECTION_MAX_INSTANCES 100

2.4.2. Loss

To calculate the training losses, the class (label), mask, and bounding box (bbox) losses
observed during the training were serialized using the tf. Summary module and visualized
using a tensorboard. To calculate class loss, we used the multi-class cross-entropy loss.
Since the mask network uses the sigmoid to predict whether a given pixel belongs to the
class, the mask loss was determined by binary cross-entropy. For the bounding box loss,
we used a smooth L1 loss, which calculated the error between the prediction and ground
truth. Finally, to determine the Mask R-CNN loss (total loss), we calculated the sum of the
losses (i.e., the sparse softmax cross-entropy loss for the label, the smooth L1 loss for the
bounding box, and the binary cross-entropy loss for the mask).

2.4.3. Metrics for Model Performance

To verify model performance, we calculated the mean average precision (mAP), which
is derived from the intersection of the union (IoU), precision, and recall values. The IoU
value was calculated as previously described [8], and generally reflected the ratio of the
area overlaid by the union of the predictions and the ground truth. The mAP value reflects
the accuracy of the model; here, we used the transformed mAP, which takes on a value of
0 when an image is found to contain any misprediction. We used this transformation to
perform a more detailed analysis of the error cases, investigate the causes of correct and
incorrect predictions, and more strictly evaluate the model performance.

2.5. Model Performance Confirmation at the WSI Level

Thirty-two WSIs that were not used during the training were applied as the confirma-
tion set. All WSIs were obtained from APAP-treated animals. These WSIs were scanned
using a 20× objective and bright-field illumination. Before confirmation, the hepatic lesion
(including the connective tissue) of each WSI was annotated by an accredited toxicologic
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pathologist as the ground truth to be compared with the prediction of the algorithm. Af-
ter annotation, the area of the annotated region was calculated and transformed into a
percentage of the liver-section area. WSI annotation and the annotated area calculation
were conducted using Aperio Image Scope version 12.4.0 (Leica Biosystems, Richmond,
IL, USA) and 20× magnification-scale images. Each magnified WSI was divided into
448 × 448 pixels of tile images, and each hepatic lesion was inferred by the trained algo-
rithm. Following the prediction, the prediction mask-bearing cropped images were merged
into a WSI. The prediction mask areas were calculated and compared to the annotated
lesion by linear regression

3. Results

3.1. Training and Validation of the Mask R-CNN Algorithm for Acute Hepatic Injury Lesions

To train the Mask R-CNN network for identification of acute hepatic injury lesion, a
total of 46,312 annotated tile images, including the augmented samples, were used. Three
hepatic lesion types, namely necrosis, inflammation, and infiltration, were trained for the
identification of hepatic lesions. To improve the performance of the trained model, we also
annotated portal triad, which we found could be confused with infiltration of mononuclear
cell and histiocytes. Total losses, including class, mask, and bbox losses, decreased steadily
during the training (Supplementary Material Figure S1). As shown in the right panels of
Figure 2, the algorithm successfully distinguished between all trained lesions and normal
liver cells in the image tiles. Moreover, the predicted hepatic lesions overlapped well with
the labeled lesions, as shown in the middle and right panels of Figure 2.

During training and validation, we found that some of the detection results did not
match the corresponding annotated lesion. Further assessment revealed that inflamma-
tory findings in the annotation were incorrectly recognized as infiltration findings in the
algorithm-based prediction (Supplementary Material Figure S2).

After training, we tested the model performance by generating mAP values for a
total of 843 image tiles. The overall mAP was 96.44%, and the results obtained for portal
triad, necrosis, inflammation, and infiltration were 95.10%, 100%, 96.35%, and 94.29%,
respectively (Table 2). This model performance was considered to be outstanding, despite
the confusion between inflammation- and infiltration-related lesions.

Table 2. Mean average precision (mAP) in Mask R-CNN training.

Portal Triad Necrosis Inflammation Infiltration Total

mAP 95.10% 100% 96.35% 94.29% 96.44%

3.2. Model Performance Confirmation Using WSI

To test the performance of our trained algorithm in a real-world setting, we tested its
ability to predict hepatic lesions from 32 WSIs. The test was operated at 20× magnification.
Portal triad (blue), necrosis (white), inflammation (yellow), and infiltration (green) were
presented in different colors, as shown in Figure 3. The true annotated lesion was reported
by the square micrometer (μm2), and the algorithm-estimated pixels were converted to the
same units (μm2). Our results showed that the lesions annotated for portal triad, necrosis,
inflammation, and infiltration were comparable to the images predicted by the model
(Figure 3A). Using magnified WSI images, the AI algorithm successfully identified each
lesion of necrosis, inflammation, and infiltration, as compared to the annotated lesions
(Figure 3B).
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Figure 2. Representative segmentation for training and testing of hepatic lesions. The left panels
show the original image tiles before labeling; the middle panels show labeled images for training
of portal triad, necrosis, inflammation, and infiltration; the right panels show the predicted area for
each lesion, as determined by Mask R-CNN.

In individual WSIs, the annotated lesion areas of necrosis, inflammation, and infil-
tration tended to be comparable to (albeit slightly larger than) those determined by the
accredited toxicologic pathologist (Figure 4). Our combined evaluation revealed that the
inflammation-plus-infiltration findings tended to show greater agreement with the anno-
tated images, compared to either alone (Figure 4B,D,E). Correlations between the annotated
and predicted lesions are shown in Figure 5. The predicted areas of portal triad and hepatic
lesions showed very high correlations with the annotated dimensions; all R2 values were
above 0.9, with the exception of that of infiltration (Figure 5).
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Figure 3. Comparison of the original image, annotated image, and algorithm-predicted image at the
WSI level. (A) Original WSI, annotated result obtained from an accredited toxicologic pathologist,
and algorithm detection results for hepatic lesion at 20× magnification. (B) Magnified WSI images
including necrosis, inflammation, and infiltration lesions. Portal triad (blue), inflammation (yellow),
infiltration (green), and necrosis (white) are shown as different colors.

Figure 4. Comparison of the annotated and algorithm-predicted areas at the individual WSI level.
Blue lines represent annotated area and red lines show algorithm-predicted area for portal triad (A),
inflammation and infiltration together (B), necrosis (C), inflammation (D), and infiltration (E).
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Figure 5. Correlations between annotated area and algorithm-predicted area. The areas annotated
by an accredited toxicologic pathologist were compared by linear regression with those predicted
by the established algorithm for portal triad (A), inflammation and infiltration together (B), necrosis
(C), inflammation (D), and infiltration (E). The prediction was performed using 20× magnification-
scale images.

4. Discussion

The development and integration of digital pathology and AI-based approaches
to identify lesions from slide images can offer substantial advantages over traditional
methods, such as by enabling spatial analysis while generating highly precise, unbiased,
and consistent readouts that can be accessed remotely by pathologists [25]. In pre-clinical
studies, CNN has been used to achieve quantitative and rapid assessment of pathological
findings during drug discovery and development.

In the present study, we sought to use deep learning to implement an AI algorithm
for the assessment of toxicological pathology in a non-clinical study. The model was
built through training and validation for several hepatic lesions and used to predict one
lesion. Going forward, training and testing with different hepatic lesions could be used
to allow this algorithm to efficiently differentiate multiple hepatic lesions. The trained
algorithm exhibited a total mAP of 96.44%, which is an outstanding result compared to
those obtained in previous efforts to detect hepatic lesions [26,27]. Finally, we compared
the annotation results assigned by an accredited toxicologic pathologist with the model
prediction to evaluate model performance. The predicted lesions of portal triad, necrosis,
and inflammation showed high correlations with the annotated lesions.

In several previous studies, deep-learning CNN-based algorithms were developed for
detecting hepatic lesions. Heinemann et al. reported that automated deep-learning-based
scores obtained using CNNs showed good agreement with the findings of a human pathol-
ogist [28]. In the CCl4- or CDAA-induced rodent models of non-alcoholic steatohepatitis
(NASH), four histological features were scored (i.e., ballooning, inflammation, steatosis,
and fibrosis). In another published report, a deep learning-based algorithm using CNN
enabled the construction of a fully automated and accurate prediction model for scoring the
stages of liver fibrosis [29]. However, although these previous studies evaluated the use of
deep-learning algorithms for lesion scoring, this is the first work to use such an algorithm
to predict the areas of hepatic lesions in an APAP-induced acute hepatic rat model.
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APAP is widely used as an analgesic and antipyretic drug in the United States [30].
APAP-induced liver toxicity has been reported, and APAP is regarded as one of the most
common pharmaceutical products capable of causing DILI. The mortality rate in APAP
overdose patients is ~0.4%, which translates to 300 deaths annually in the United States [31].
New efforts to detect biomarkers of injured and necrotic hepatocytes seem promising, as it
is important to identify APAP-induced acute liver injury patients at an early stage when
lifesaving medical and surgical therapies can be provided. Going forward, AI approaches
to predicting DILI could improve our understanding of the underlying mechanisms and
our ability to anticipate hepatotoxicity for clinical applications [32].

We encountered several issues when developing our model to identify hepatic lesions.
In the early stage of model establishment, portal triad was not included in the training
process. However, our early results revealed that portal triad was often mistaken for
inflammation or infiltration (Supplementary Material Figure S3). In the three-class model,
the algorithm was trained in inflammation, infiltration, and necrosis. In this model, before
training on the portal triad, confusion with the portal triad was observed with inflammatory
or infiltration findings. This prompted us to include portal triad in further training, with
the goal of increasing lesion recognition. Indeed, this addition, called the four-class model,
improved the accuracy of lesion recognition (Supplementary Material Figure S3). We also
found that some regions annotated as inflammation lesions were incorrectly predicted
by the algorithm as infiltration lesions. This could lead the algorithm to over-estimate
infiltration lesions relative to those identified by the accredited toxicologic pathologist.
That said, there was a relatively low incidence of infiltration lesions in the studied model,
so this error is not expected to significantly affect the overall prediction result. Indeed, our
combined evaluation of the inflammatory and infiltration findings showed a greater agree-
ment with the annotated findings. Simple mononuclear cell infiltration has been typically
reported as inflammatory in the hepatic parenchymal tissues of normal rats [33]. It was
slightly different from APAP-induced inflammation, which was characterized by histiocyte
infiltration of an activated form with fluent cytoplasm around necrosis (Figure 2). A dataset
of two different categories was prepared to prove whether two histological findings can
be distinguished through the AI model. The dataset was divided into training, validation,
and test set for model training and accuracy testing. The test result of the AI model for
the infiltration was good and showed about 94% accuracy under the dataset environment.
However, its test result in the WSI was not good and the correlation determinant (Figure 5E)
was very low between the annotation and the result analyzed by AI model under the WSI,
real world environment. The figures of infiltration and inflammation seemed confused
because they have shared similar cellular components to some extent [34], and more diverse
and complex figures would exist in the real world than in a dataset environment [35]. This
categorization of infiltration and inflammation did not seem advisable in this study. The
two findings are commonly inflammatory and were not confused with the other findings
such as necrosis or portal triad. Therefore, it is thought to be more desirable to merge the
values of infiltration and inflammation to evaluate the degree of inflammatory changes
(Figure 5B). Finally, in WSI, connective tissue was often recognized as necrosis (Supplemen-
tary Material Figure S4). Since connective tissue was not included in our training for model
establishment, WSIs including connective tissue were excluded from our evaluation of the
model’s performance. Careful consideration and further study will be needed before this
model algorithm can be translated to real-world use.

As result of prediction using WSIs, liver injury including trained lesions might be
identified. However, due to the limitations of artificial intelligence, untrained patterns or
images could not be accurately distinguished. If there are untrained lesion patterns, addi-
tional dataset training will be required to identify the lesion efficiently. The presented AI
algorithm efficiently predicted trained lesions, such as inflammation/infiltration, necrosis
and portal triad in acute hepatic injury of rats. Further analysis of patient samples will be
required to validate for human application.

201



Diagnostics 2022, 12, 1478

Modern advancements in digital pathology mean that large quantities of quality
digitized data are available for algorithm developers, scientists, and pathologists world-
wide. Collaborations across the fields of digital pathology, machine learning, and big data
acquisition are paving the way to revolutionize medical pathology [36,37]. Within this
setting, novel approaches have been employed for image analysis in digital pathology;
an example of such an approach is deep learning, which involves multi-layered neural
network architectures. Some deep-learning algorithms involve a slow and hierarchical
process of learning data abstractions and representations between layers and can become
computationally expensive when dealing with high-dimensional image data. This can be
addressed by the use of convolutional neural networks (CNNs), which effectively scale up
high-dimensional data [38]. In the present study, we applied the Mask R-CNN algorithm
to evaluate hepatic lesions in an APAP-induced acute hepatic injury rat model. The study
results suggested that this algorithm can be used to implement diagnosis and prediction of
hepatic lesions. In the future, this strategy could potentially be deployed in clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12061478/s1. Supplementary Material Table S1. Num-
ber of cropped tile images used for the model training, validation, and testing. Supplementary
Material Figure S1. Training loss during model establish-ment. Supplementary Material Figure S2.
Discrepancy in inflammation detection between annota-tion and algorithm prediction. Supplemen-
tary Material Figure S3. Comparison of portal triad de-tection between 3 class model and 4 class
model. Supplementary Material Figure S4. Discrepancy in connective tissue detection between
annotation and algorithm prediction.
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Abstract: There has been particular interest in the deployment of digital pathology (DP) and artificial
intelligence (AI) in the diagnosis of prostate cancer, but little is known about the views of the public on
their use. Prostate Cancer UK supporters were invited to an online survey which included quantitative
and qualitative questions exploring views on the use of DP and AI in histopathological assessment.
A total of 1276 responses to the survey were analysed (response rate 12.5%). Most respondents
were supportive of DP (87%, 1113/1276) and of testing AI in clinical practice as a diagnostic adjunct
(83%, 1058/1276). Respondents saw DP as potentially increasing workflow efficiency, facilitating
research, education/training and fostering clinical discussions between clinician and patient. Some
respondents raised concerns regarding data security, reliability and the need for human oversight.
Among those who were unsure about AI, information was requested regarding its performance and
others wanted to defer the decision to use it to an expert. Although most are in favour of its use, some
are unsure, and their concerns could be addressed with more information or better communication.
A small minority (<1%) are not in favour of the testing of the use of AI in histopathology for reasons
which are not easily addressed.

Keywords: prostate cancer; digital pathology; artificial intelligence

1. Introduction

The role of the histopathologist (cellular pathologist) in clinical care is poorly under-
stood by patients and the wider public [1] despite the histopathology contribution being
integral for the diagnosis and management of conditions such as cancer. The practice
of histopathology has rapidly evolved over the last 10 years, with now well-established
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advances in molecular diagnostics and more recently the introduction of digital pathology
(DP). With the impending roll out of artificial intelligence (AI), it is important to understand
what level of detail the public wish to know about these advances, the role they play in
diagnostic processes, what level of acceptance of such changes is likely (and why) and how
we communicate these advances.

The basic techniques used in histopathology emerged in the 19th century and have
not fundamentally changed to the present day [2]. They centre on the examination of
stained sections of formalin-fixed paraffin-embedded tissue using light microscopy. Over
the last 50 years, however, there has been an exponential growth in the complexity of
tumour classification with the advent of immunohistochemistry and, in recent decades, the
integration of genetic and molecular methods into diagnostics. There have been further
advances in the last decade with the adoption of DP. With DP, the glass slide is scanned and
the digital whole slide image is examined on a computer screen instead of a microscope.
DP is gaining traction as a primary reporting modality in many cellular pathology centres
in the United Kingdom (UK) [3] and is likely to become mainstream in the histopathology
workflow in the coming years [4]. A survey conducted in 2017 [5] reported that 60%
of pathology centres in the UK had access to DP equipment and 58.5% considered the
development of DP infrastructure to be a priority.

The adoption of DP may bring improvements to the diagnostic workflow, allow-
ing streamlined prioritisation, greater flexibility in remote working, potential financial
savings [6] and ease of research collaboration [7]. Education of histopathology trainees
traditionally relies on face-to-face case review with a consultant trainer on a multi-header
microscope. DP allows these interactions to take place remotely, facilitating training across
multiple geographical sites [8]. These benefits have particularly been demonstrated in
recent years due to the COVID-19 pandemic [3]. The majority of histopathology trainees
polled in a 2019 survey saw the introduction of DP into their training as a positive step [9].
Furthermore, there is potential to develop supraregional networks, streamlining the process
where certain cases require external review [10].

Digitisation of histopathological images brings the potential for implementation of
novel diagnostic adjuncts such as AI-assisted diagnostics. These may provide diagnostic
assistance to histopathologists in assessing current standard of care features and may
provide novel insights into disease biology not otherwise possible with a human observer.
Examples include automation of tasks such as quantification of mitotic index [11,12] or
hormone receptor scores in breast cancer [11]. Furthermore, there is evidence emerging of
the potential application of deep learning in AI-assisted diagnostics to gain novel insights
into morpho-molecular associations. For instance, the ability to predict aspects of the
molecular profiles of malignant tumours, such as EGFR in non-small cell lung [13] cancer
and microsatellite instability in gastrointestinal cancers [14], from whole slide images has
been demonstrated.

One area of pathology where there has been intense interest in AI is in prostate can-
cer (PCa). There is potential for improved diagnostic accuracy, improved efficiency and
standardisation of prognostic features such as Gleason grading and tumour quantification.
The mainstay of diagnosis in PCa is core biopsy and the determination of the grade is by
assessment of the morphological features by a histopathologist. These features are then
assigned a grade according to the Gleason grading system (Grade Group System), which re-
mains pivotal in prognostication and influences downstream patient management. In cases
where the morphological features fall short of a definitive diagnosis of malignancy, such as
in limited foci of potential tumour, ancillary studies, including immunohistochemistry to
demonstrate loss of basal markers, are requested to aid the reporting histopathologist in
their decision. Specific AI applications exist as adjuncts to the reporting of prostate core
biopsies, such as suggestion of diagnosis and attribution of Gleason Score [15] and the
pre-emptive requesting of immunohistochemistry in morphologically equivocal cases [16].
Some of these algorithms have been cleared with CE marking or FDA clearance for in vitro
diagnostics and these are the first such regulatory clearances in the field [15,17]. With
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approximately 45,000 new diagnoses of PCa per annum in England and Wales, the benefits
to the workflow are considerable [18].

The potential to use AI in histopathology practice is a potential paradigm shift in the
way histopathologists work and marks a significant step forward beyond traditional light
microscopy; however, the adoption of this is currently occasionally being used in specific
diagnostic settings [19]. While we seek to accelerate adoption and unlock benefits of this
technology, we need to be mindful of any public scepticism and concern regarding the
use of technology and AI in modern life, including in healthcare. Although not specific to
healthcare, a large-scale international survey of over 150,000 respondents demonstrated
mixed opinion regarding implementation of AI in decision making [20]. Differences in
acceptance were observed among individuals from certain demographic groups. Higher
rates of acceptance were observed in those residing in Asian countries compared to western
countries, and in executives and professionals versus manual and service workers.

Few studies exist exploring public perceptions about the deployment of these techno-
logical advances to patient care and there are none specific to histopathology. The view
towards AI in medicine more broadly appears somewhat split. Public comments on social
media in China [21] include broad support for AI in healthcare with many comments
suggesting AI could replace doctors entirely. Women undergoing breast screening mam-
mography in Scotland were found to be supportive of AI as an adjunct to diagnosis but
were sceptical of fully autonomous AI [22].

Our study aims to analyse the views of a group of the public, specifically supporters
of a UK-based prostate cancer charity who have previously undergone prostate biopsy.
Our particular objectives were: (1) to explore the current understanding of how biopsies
are reported; (2) to assess views on digitisation of histopathology; and (3) to determine
whether patients would support the use of AI-assisted diagnostics as an adjunct to the
routine reporting of prostate biopsies and histopathological specimens more broadly.

2. Materials and Methods

2.1. Survey Design

This study collected anonymous, non-NHS data which could not be traced back to an
individual. The questions had been developed with the health information team at Prostate
Cancer UK (PCUK). Given the possibility that the target population may have had limited
familiarity with histopathology, questions were carefully worded to ensure comprehension.
The survey was drafted with the biopsy pathway in mind, with internal review to ensure it
met the needs of the study along with the needs of the charity and its users. The survey
included 11 questions, and follow up questions enabled respondents to make further free
text comments. The survey was developed following discussions with a small number of
volunteer PCUK supporters. The survey was circulated to PCUK supporters through a
mailing list for newsletters etc maintained by PCUK, focussing on men > 50 years old as
this is the group who were most likely to meet the inclusion criteria (see below). The online
survey was hosted on the Toluna platform (an end-to-end consumer intelligence platform
where surveys can be designed and distributed to PCUK supporters); no personal data
was collected, and individual respondents could not be traced. The survey was circulated
on 21 May 2021 and closed in June 2021. In total, 1307 responses were obtained following
circulation to 10,465 PCUK supporters (12.5% response rate).

2.2. Survey Composition

The survey is included as supplementary material. Briefly, limited demographic
data were available (country of the respondent and, if UK-based, the region—divided
into North and Scotland/Northern Ireland/Midlands and Wales/South. Respondents
were questioned regarding their baseline knowledge of histopathology and the role of
histopathologists in PCa diagnosis. As histopathology services adopt DP and look towards
AI for diagnostic support, respondents’ attitudes to the use of these technologies were
explored. We specifically explored whether respondents would consider it useful to be
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able to view digital images of their prostate biopsy enabled by digital pathology, to aid
understanding. We explored support for AI, and where there was uncertainty or negativity,
we sought to explore the qualitative comments to understand these hesitations.

The survey included an introductory statement (please see online supplementary
material). Completion of the survey was taken as consent to participate. There was an
explicit statement about publication in an academic journal.

The only inclusion criterion was having had a prostate biopsy at any point (please see
online supplementary material, Question S1). Not having had a prostate biopsy, or being
unsure, was an exclusion criterion as we were aiming to capture experiences of those who
had had a prostate biopsy which required histopathological assessment. A response of “no”
or “did not know” to a prostate biopsy in the past resulted in the end of the survey.

2.3. Statistical Analysis

Descriptive statistics with graphical outputs were used to characterise survey results.
Responses for free text questions were analysed, pertinent themes extracted and categorised
according to said themes. Ambiguous or unclear comments were not included.

3. Results

3.1. Response

In total, 1307 responses were received, of which 87.2% were UK-based; 1276 men
responded ‘yes’ to a history of previous prostate biopsy. The remaining respondents were
excluded from further questioning.

3.2. Understanding of the Role of Histopathology

The majority (69.1%, 882/1276) stated that they understood the role of the histopathol-
ogist (please see online supplementary material, Questions S3–S6, and Figure 1). A further
10% (126/1276) stated they were aware of the term but unclear about the exact nature of
the work carried out by histopathologists. A small proportion (39.2%, 500/1276) said that
they understand the overall role of a histopathology department.

When asked whether they would wish to know more about the work of histopatholo-
gists or of cellular pathology departments, a third responded positively (30.4%, 388/1276),
with a small number stating they had no opinion (16.2%, 207/1276). Around half stated
they did not wish to know more (53.4%, 681/1276).
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Figure 1. Breakdown of responses on patient understanding of histopathology (A–C). Those who
indicated they wished to know more (388 respondents) shown in (D).

3.3. Views on Digitisation of Pathology

Most men viewed the digitisation of histopathological slides as either positive or
very positive (87.2%, 1113/1276; please see online supplementary material, Question S7,
and Figure 2 and Table 1). Review of free text responses revealed five broad themes: a
perception of increased efficiency of turnaround time, record permanence, ease of sharing
information, facilitating research and education and the potential for the development of
novel technologies such as AI.
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Figure 2. Responses to the question “Some histopathology departments are now going ‘digital’.
Slides containing prostate biopsy tissue can now be scanned and viewed digitally on a screen rather
than through a microscope. This makes a permanent digital record of the biopsy which reduces
the chances of any issues with viewing slides. This also allows histopathologists to easily get a
second opinion on a diagnosis. Do you see this change in diagnosing prostate cancer as a positive or
negative?” (Please see online supplementary material, Question S7).

Table 1. Example free text quotations from respondents on their views regarding the introduction of
DP into routine practice.

Theme Example Quotations

(a) Efficiency and technical aspects

Having had prostate cancer anything that speeds up and increases the accuracy of
diagnosis has to be good.
I am no expert but anything that makes viewing samples easier should make the
doctors work easier and perhaps more accurate. I have done microscope work
before, and it can be tiring and challenging especially if you are trying to count
occurrences over an area.
Digital leaves less room for human error.
It sounds positive but without lots more information I could not say very positive,
how secure will this data be, how reliable is the digital screening, is it at least as
reliable . . . as a human?

(b) Record permanence

As a digital record, it can be transferred between departments enabling specialists
to discuss it. More importantly, it can’t be lost easily.
A permanent record would provide a baseline assessment in case of need for
further biopsies.
A digital record could be kept for MDT meetings.
I approve of the positive digital record, but the sample(s) should not be discarded
before a conclusive diagnosis (higher magnification may be needed than the
digital images).
Any use of more modern technology cannot be a negative as long as the control
over data is maintained properly/adequately. I suppose I wouldn’t like my digital
records getting into the wrong hands!!
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Table 1. Cont.

Theme Example Quotations

(c) Sharing of images

A digital record is easily stored and can be easily shared with appropriate people.
If requested, it could be shared with the patient to aid understanding of the result.
Ability to share between experts, and ability to share/show the patient.
There is a digital record of the sample(s) which can easily be recalled as a basis for
comparison if there is/are ever repeat tests. Also, the record will be an element in
a database of all biopsies which might be valuable for statistical or other test
purposes.
Having an electronic library enables medical staff and researchers to have better
access.
I had three biopsies in all . . . I trusted the histopathologists to produce the
necessary reports, which were then used to decide the way ahead. The first biopsy
was abroad, and I actually brought the original slides back to UK with the report;
that would, of course, have been easier had they been digital. As a patient I have
no particular view on digital vs. analogue slides, except that digital probably eases
record-keeping and referral.
I would have been very interested to have seen the samples and had their
significance explained to me.
Makes the data/information available for study/research/analysis to many more
specialists instantly.
My consultant explained in detail what the outcome was from the histology, but I
did not see a digital scan of the biopsies. I think that would be helpful.
Opportunity for referring back to the images. Allows teams to see the images and
comment. Other centres able to easily review the histopathology ensuring
uniformity in research, etc.
This should enable retrospective scanning back over images if something useful is
discovered in the future, where historic biopsy data, perhaps combined with
progression/survival data, would be useful. However, it’s important the biological
samples are retained too, so they can be used for things like genomic sequencing.

(d) AI

AI is infallible if programmed correctly
As long as a person who checks the results is experienced in reading them and the
digital image is not a just compared to a digital library. Digital images can be
stored to compare at a later date, it should be a positive move.
Assuming the quality of image is as good, and the data is properly managed, the
added availability should help diagnosis. It may also assist machine learning for
analysis and more accurate diagnosis.
It seems to make sense to digitize records. It should speed their transfer from one
party to another and will make it easier for more than one professional to examine
them. It might also facilitate the use of ai to review them.
Provided the “library” of samples was large quantities and good enough quality,
using automated digital imaging can cover more areas of the “slide” and present
the targeted cells for review by qualified human to maximise efficiency and
throughput. AI technology can help and be taught to find needles in haystacks . . .
Can machines interpret as well as humans in this situation, I don’t know the
answer to this question?

(e) Reservations towards DP

The important factor for me as a potential cancer sufferer was to know that every
process was being done to the best level possible. I did not want or need to know
the details of the process itself but trusted that I was getting the best. As
techniques advance, I think I would have the same attitude. Trust that the people
know what they are doing and using the best technology.
Either cancer is present or its not, how you record it is immaterial.
I am only interested in the results.
As a patient I am just interested in the results regardless of how they have been
arrived at.
I would think that an expert examining the sample would always be more reliable
than a computer, but maybe there is a role for both approaches if there is time and
money available
Is it necessary to keep digital records? Once you know the result, a record is kept.
So what? How is this going to help me?

Footnote: please also see online supplementary material—Question S7.
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3.3.1. Increased Efficiency and Technical Aspects

There was a strong perception that adoption of a digital workflow would reduce
turnaround time, thus reducing patient anxiety. Some men felt that reviewing digital images
would lead to greater diagnostic accuracy, if images were to be of sufficient resolution and
viewed on large digital displays.

3.3.2. Formation of a Permanent Record

Points were raised regarding the ability to easily archive and retrieve digital images
compared to physical glass slides. Many perceived this to be of benefit if multiple biopsies
were carried out on the same patient, thereby allowing the comparison of images. A propor-
tion also saw utility in comparison of biopsy findings and post-operative histopathology.

3.3.3. Sharing of Digital Images

The ability to share images among members of the multidisciplinary team was seen
as a strong benefit, and for streamlined referral across teams who may be based in geo-
graphically distanced centres. In addition to sharing among healthcare professionals, many
saw a positive opportunity for images to be shared with them as patients in the clinic
setting. Opportunities were seen for the distribution of images for education of trainee
histopathologists. Finally, digitisation of images was seen to allow the generation of a
bank of data which would be drawn upon for research purposes paving the way for future
advances in the diagnosis and treatment of PCa.

When specifically asked whether they would have been interested in viewing their
histopathological images (please see online supplementary material, Question S8, and
Figure 3), most men (82.1%, 1048/1276) responded that this would be desirable. More
specifically, in terms of the format of this, of those who responded positively, most would
prefer this to be in a clinic rather than on a secure online platform.

 
Figure 3. Respondents’ views on viewing digital biopsy images (please see online supplementary
material, Question S8). Respondents were able to choose more than one option.

3.3.4. Deployment of AI Techniques

Many respondents acknowledged the possibility of human error and fatigue in manual
reporting of histopathological slides, thus raising the potential advantage of AI as an adjunct
to reduce such errors.
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Neutral responses suggested indifference to the methods of producing a histopatho-
logical report, as long as the report was produced in a timely and accurate manner. Some
responses suggested indifference due to personal limitations of knowledge and understand-
ing of possible benefits of the technology.

3.3.5. Reservations towards DP

Few responders were against the adoption of DP were relatively few, but important
ideas were raised. Participants discussed the need for digital images and associated data to
be held on a secure server, well protected from illicit access and accidental loss. Others felt
a greater sense of trust in reports generated purely by a human without any computational
intervention or distrust in computer systems.

3.4. On the Introduction of AI in the Reporting of Histopathology

Although most men (1058/1276, 83%) considered the testing of AI as an adjunct to
histopathological reporting (please see online supplementary material, Question S9, and
Figure 4) to be a positive advance, some were unsure (203/1276, 16%) and a few (15/1276,
1%) were not in favour.

 
Figure 4. Digital developments could allow Artificial intelligence (AI) to be used in histopathology.
Pathology AI means that a computer programme can potentially assist with the diagnosis of prostate
cancer by double checking results. To find out for certain, more testing is being carried out. What do
you think about research that will test whether pathologists can be assisted by AI when diagnosing
prostate cancer?

A range of views were observed regarding whether patients wished to learn more
about the use of AI in the diagnosis of PCa (please see online supplemental material,
Question S10, and Figure 5). In total, 39% (498/1276) of respondents wished to learn more,
41% (524/1276) did not and 20% (254/1276) had no opinion. Of the 498 who desired further
information, the majority preferred for this to be in website format (85%, 425/498) rather
than a leaflet (20%, 100/498) or live webinar (15%, 75/498), and 1% (6/498) were open to
receiving information by email.
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Figure 5. Visual representation of respondents’ views on whether they would like to be further
informed about AI in the diagnosis in prostate cancer and the preferred format (please see online
supplementary material, Question S10).

Most comments were positive (examples in Table 2). Free comments offered by men
who were ambivalent or against the use of AI were categorised into two main themes:
(1) technical performance; and (2) preference for human review with a greater sense of
personal trust versus the output of an algorithm. The 5/15 who were not in favour provided
additional free text explanations. Two related to general mistrust of AI, two referred to
wanting human input in decision making and one was uncertain about the accuracy. A
summary of the free text comments for those who were unsure related to having insufficient
knowledge, concerns around accuracy or performance (n = 30), wanting human input or
double checking by a human (n = 18), those who were generally unsure or sceptical (n = 9)
and those who would defer the decision to use the technology to an expert (histopathologist)
(n = 6). Others included ensuring resources were not diverted from elsewhere (n = 1), no
comment (n = 1) and not enough knowledge of histopathology to comment (n = 1). One
respondent made two comments, so these are indicated as two comments, all others made
one comment.

3.4.1. Technical Performance

Comments discussed the wish for a reliable result, and concerns raised regarding
possible misdiagnosis although some noted that apprehension would be alleviated if more
data were available for reassurance regarding the performance of the algorithms.

3.4.2. Preference for Human Review

Respondents expressed reassurance from involvement of a trained professional in the
generation of a histopathological report. The expertise of an experienced histopathologist
was felt to be preferable to AI in terms of patient confidence in the result. Some in this
group stated they would be reassured if the performance of an AI algorithm be verified by
a histopathologist rather than function autonomously.
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Table 2. Example free text quotations from respondents on their views regarding the introduction of
AI into routine histopathology reporting.

Theme Example Quotations

(a) Support for AI

AI might pick up things a tired histopathologist missed, so having them confirm
each other’s work would be good. I think evidence shows that the same
histopathologist analysing the same slide sometime later does sometimes give a
different grade. Getting the grading right is important for picking the right
treatment.
As long as AI does not become the primary decision maker but takes the strain on
some of the more mundane elements of the process, I wouldn’t have a problem.
Assuming that AI can meet (maybe exceed) the levels of accuracy of a human this
could free up the experts’ time for other uses.
Clearly research should be carried out to see whether AI could help. But it should
only be pursued if rigorous checking indicates there are benefits over and above
what a pathologist can do.
I think AI makes sense as long as its role is to assist and not to take over from a
trained pathologist. I wouldn’t be comfortable with the latter at this stage, but I see
value in perhaps helping to increase the speed of diagnoses, add a degree of
consistency in diagnoses which can sometimes be difficult for a pathologist to
achieve all the time, and possibly to help detect patterns across a number of
patients leading to potential future research and treatment areas.
I think it is a good idea; however, a senior pathologist needs to verify the results.
Possibly the most important element to modern AI/pattern recognition
methodologies is a good reliable data set and to not over train the network. It is
essential, therefore, to ensure the quality of the ‘AI’ and also to ensure that if
samples are not confirmed by human examination, then the system produces zero
false negatives. Also, it is essential to be very cautious of using some ‘AI’
companies as partners as they are nothing short of charlatans.
AI has a great potential to speed up diagnosis, a benefit to patients. Quality control
would be essential, checking that known true positives are picked up, and regular
sampling so a histopathologist can check for false positives and false negatives.
My only concern is that it may eventually lead to fewer pathologists being
employed and by them becoming “de-skilled”.

(b) Concerns regarding technical performance

I understand that AI is cost effective and probably can get through a greater
workload quicker. My concern, again, is that will something be missed if the
programming or the technical quality of the ai is compromised.
Good idea but the usual checks and balances need to be good and regularly
tested—see post office debacle re their post masters and mistresses.

(c) Preference for human review

I’m all for the advancement of technology, but for the use of diagnostic purpose I
would prefer the opinion of a doctor. You can’t program experience and a “hunch”.
As long as AI is used alongside pathologist looking at the data, all will be good but
should not replace a pathologist.
AI may be something that a younger generation accept without question but for an
old dinosaur like me AI Is far from second nature. This does not mean that it
couldn’t be useful, it just means that I need convincing.
As a lay person, I would have thought it would assist professionals, but I would
not want it to be totally replacing an expert.

Footnote: please also see the online supplementary material—Question S9.

4. Discussion

The insights gained from this study demonstrate that the majority of men undergoing
a prostate biopsy are supportive of the use of technology in the form of digital pathology
or AI for diagnostic assistance in assessing their prostate biopsy.

An advantage of digital pathology is that it offers the ability to make histopathology
images more accessible, and a recurring theme amongst the free text comments was around
image sharing in various guises: for expert opinion, for teaching and education for clinicians
(pathologists) and for patient information. Indeed, the survey has shown that there is an
apparent patient desire to review their images alongside a healthcare professional in
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clinic, which may not be intuitive. Although this practice is commonplace for radiology,
surgeons and oncologists are less familiar with histopathology, and this is an obstacle in the
adoption of this form of clinical practice. In a recent survey setting in a testicular tumour
network, oncologists potentially felt that viewing digital pathology images may complicate
discussions, especially if a pathology-related question was asked [10]. There may be a
role for AI-annotated images to assist the clinician in highlighting pertinent features to
the patient in clinic without the need for a histopathologist to be present. We perhaps
need to find ways to facilitate this, for example with histopathologists adding user friendly
annotations or labels to images to aid non-histopathologists, but this has time and resource
implications in a speciality in which 97% of histopathology laboratories in the UK already
report too few staff to meet clinical demand [23].

Examples of conversations which could potentially be enhanced by viewing images
include small foci of Gleason Grade Group 1 PCa where patients are often recommended to
receive active surveillance (AS). A proportion of men commencing AS may subsequently
receive treatment for “non-biological” reasons such as patient anxiety and uncertainty, with
rates of 8–23% across different studies [24]. Although untested, if patients could see for
themselves that their cancer is small and low grade then this might provide reassurance that
it could be managed by AS. Other discussions that may be informative include different
Gleason grades that are present or demonstrating that immunohistochemistry has been
performed to confirm small areas of cancer for reassurance that the diagnosis is correct.
Although highly relevant, a detailed discussion on conveying if and how AI results were
used in formulating the histopathologist’s diagnosis to a patient during assessment is
beyond the scope of this paper and the experience of the authors to date will form the basis
of further studies.

The outputs of this study provide useful insight for anyone looking to deploy AI
outside of a retrospective, research setting and into a live clinical diagnostic workflow. We
have demonstrated that the majority of men are in favour of testing AI for diagnostic assis-
tance and potential benefits of improving diagnostic accuracy, increasing capacity within
histopathology departments and standardising subjective assessments such as Gleason
grading, which can be reassuring. We reiterate that the intended utility for AI systems in
histopathology is as an adjunct to review by a histopathologist—there is opportunity to
better and more clearly communicate this point to the general public. It could be a criticism
of this study that in order to avoid overly complex medical terminology the neutrality of
the overall tone of some questions may have appeared more in favour of the benefits of
DP/AI.

It remains important to explore the views of those who are unsure or do not think
this is a good idea to allay concerns where possible. The respondents who were unsure
or not in favour of AI assistance had concerns that could potentially be addressed with
more information or better communication. For example, in the ‘not in favour’ group,
only 2/5 were genuinely distrustful of AI. In the ‘not sure’ group, most comments related
to wanting human input, wanting more information about the relative performance of
the tool or deferral of the ultimate decision whether to use the technology to an expert
(histopathologist). We take away from this that in providing information to patients about
AI and histopathology, the key messages that need to be conveyed are that currently these
tools are an assist to histopathologists, with those same clinical experts still retaining
oversight and responsibility for the diagnostic report. If AI is considered part of clinical
care, there will likely be institutional opt out processes for certain parts of clinical care
which those with a very strong objection can invoke.

It is important to understand that the adoption of machine-assistance in healthcare is
not limited to histopathology. In surgical practice, the robotic-assisted radical prostatectomy
was introduced in 2001 [25] and has been associated with favourable outcomes over
traditional radical prostatectomy [26]. Men who had experienced such surgery were
generally satisfied with their experience, although there was a lack of understanding in
some regarding the precise role of the surgeon and the robot in such circumstances [27].
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Another more general British study [28] gauged differing viewpoints of male and female
patients when faced with robot-assisted surgery. Male participants were generally found to
be less concerned about the adoption of the technology although female participants found
the use of a robot to be dehumanising. Similar opinions were raised by some respondents
in our study although given our focus on PCa patients, our cohort is exclusively male.

Within the diagnostic specialties, perhaps ahead of pathology in the adoption of AI-
assisted diagnosis is radiology. A group in the Netherlands [29] explored viewpoints of
patients undergoing radiological studies regarding the implementation of AI in reporting
radiology. In summary, patients expressed distrust towards AI reporting, wished for preser-
vation of human interaction and were generally ambivalent towards potential workflow
efficiency gains. The domains discussed were similar to those in this study; however, a
considerable difference is observed regarding the results, with many radiology patients
being more reserved regarding the adoption of AI. The reasons for these reservations were
comparable those expressed by our cohort of respondents.

Respondents to our survey voiced concerns over data governance relating to digital im-
ages, which has recently been identified as a source of concern amongst the histopathology
community [30]. Issues regarding data retention, storage, security and use for secondary
purposes such as for education and research have been raised [30,31]; however, these
issues relate to glass slides also. It is believed that, currently, no specific guidance is in
place to govern the application of whole slide images to the research setting in the UK.
Guidance on the validation of DP for diagnosis has been issued by the Royal College of
Pathologists (RCPath), although issues of data governance currently fall outside the scope
of the document. Although not yet formally adopted in the UK, such guidance has been
produced by the Canadian Association of Pathologists [32].

Some respondents considered the retention of data within the UK a necessity and
voiced concerns against foreign interference. With regard to storage of DP data for clinical
purposes, these would be governed by existing principles of patient confidentiality as set
out by UK legislation and General Medical Council policy. These would then be normally
kept within the UK. Regarding cross-border transfer of information, a framework set out by
the Organisation for Economic Co-operation and Development [33] would be the principle
by which privacy is maintained.

The adoption of DP and AI into routine practice raises the question of where ultimate
responsibility will lie in the event of a clinical error and this has been the subject of some
debate [34]. Due to the relative infancy of the technology and its, thus far, limited real-life
use, there is no current precedent for this. It may be that, with time and further scrutiny
by regulatory bodies, this becomes clearer. Our results demonstrate that patients are more
comfortable with the overall responsibility for a histopathology report remaining with the
histopathologist and relying on their decision making to use AI and integrate its findings
into the final report.

In summary, we have found that most respondents are supportive of advances in PCa
diagnosis by means of DP and AI-assisted diagnostics as adjuncts to current workflows. A
potential confounder of the responses we have observed is that these have originated from
supporters of a prostate cancer charity and may, therefore, reflect a more engaged patient
population. There is, however, a small population with reservations for whom trust must
be maintained. Patient reassurance that these methods serve to enhance the diagnostic
method, rather than replace it, may be the means by which to achieve this. While the results
of this study can provide general insight into patient perception of the testing of AI in
histopathology, our cohort is limited to men and PCa in the UK. Further work may, then,
be of utility exploring the views of other populations. These may include a more global
cohort, women or those with other cancers such as breast cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12051225/s1. Please see Survey Questions.
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Abstract: The histopathological diagnosis of prostate adenocarcinoma in needle biopsy specimens
is of pivotal importance for determining optimum prostate cancer treatment. Since diagnosing a
large number of cases containing 12 core biopsy specimens by pathologists using a microscope is
time-consuming manual system and limited in terms of human resources, it is necessary to develop
new techniques that can rapidly and accurately screen large numbers of histopathological prostate
needle biopsy specimens. Computational pathology applications that can assist pathologists in
detecting and classifying prostate adenocarcinoma from whole-slide images (WSIs) would be of great
benefit for routine pathological practice. In this paper, we trained deep learning models capable
of classifying needle biopsy WSIs into adenocarcinoma and benign (non-neoplastic) lesions. We
evaluated the models on needle biopsy, transurethral resection of the prostate (TUR-P), and The
Cancer Genome Atlas (TCGA) public dataset test sets, achieving an ROC-AUC up to 0.978 in needle
biopsy test sets and up to 0.9873 in TCGA test sets for adenocarcinoma.

Keywords: deep learning; adenocarcinoma; prostate; biopsy; whole-slide image; transfer learning

1. Introduction

According to the Global Cancer Statistics 2020, prostate cancer was the second-most-
frequent cancer and the fifth leading cause of cancer death among men in 2020 with an
estimated 1,414,259 new cases and 375,304 deaths worldwide, which is the most frequently
diagnosed cancer in men in over one-half (112 of 185) of the countries [1].

Serum prostate-specific antigen (PSA) is the most important and clinically useful
biochemical marker in prostate [2]. PSA has contributed to an increase in the early detection
rate of prostate cancer and is now advocated for routine use for screening in men [2].
Serum PSA is also an important tool in the management of prostate cancer. Elevation
of PSA correlates with cancer recurrence and progression after treatment. Thus, PSA
is a sensitive marker for tumor recurrence after treatment and is useful for the early
detection of metastases. However, n elevated serum PSA concentration is seen not only in
patients with adenocarcinoma, but also in patients with aging, prostatitis, benign prostatic
hyperplasia, and transiently following biopsy [3–5]. Although PSA elevations might
indicate the presence of prostate disease (e.g., prostate cancer, benign prostatic hyperplasia,
and prostatitis), not all men with prostate disease have elevated PSA levels, and PSA
elevations are not specific for prostate cancer. Therefore, it is necessary to perform definitive
diagnosis of the presence of prostate adenocarcinoma by needle biopsy for cancer treatment.

As for needle biopsy, in the past, the standard approach was to take six cores (sextant
biopsies) [6]. However, based on a systematic review [7], it has been shown that cancer yield
was significantly associated with increasing number of cores, more so in the case of laterally
directed cores than centrally directed cores. This is based on the finding that schemes
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with 12 laterally directed cores detected 31% more cancers than the six cores. Schemes
with further cores (18 to 24) showed no further gains in cancer detection. Hence, a 12-core
systematic biopsy that incorporates apical and far-lateral cores in the template distribution
allows maximal cancer detection, avoids repeat biopsy, and provides information adequate
for identifying men who need cancer treatment [8]. However, diagnosing a large number
of cases containing 12 core biopsy specimens is a time-consuming manual system for
pathologists in routine practice.

Adenocarcinoma is by far the most common malignant tumor of the prostate gland. Ade-
nocarcinoma tends to be multifocal with a predilection for the peripheral zone. Histopatho-
logically, the majority of prostate adenocarcinomas are not difficult to diagnose. However,
the separation of well-differentiated adenocarcinoma from the vast number of benign pro-
static hyperplasia or atypical gland proliferation, the detection of small adenocarcinoma
foci, and the differentiation of poorly differentiated adenocarcinoma from inflammatory cell
infiltration are sometimes very challenging in routine diagnoses.

Therefore, all these factors mentioned above highlight the benefit of establishing a
histopathological screening system based on needle biopsy specimens for prostate adeno-
carcinoma patients. Conventional morphological diagnosis by human pathologists has
limitations, and it is necessary to construct a new diagnostic strategy based on the analysis
of a large number of cases in the future.

Deep learning has been widely applied in computational histopathology, with appli-
cations such as cancer classification in whole-slide images (WSIs), cell detection and seg-
mentation, and the stratification of patient outcomes [9–22]. For prostate histopathology in
particular, deep learning has been applied for the classification of cancer in WSIs [21,23–30].

In this study, we trained a WSI prostate adenocarcinoma classification model using
transfer learning and weakly supervised learning. We evaluated the models on needle
biopsy, transurethral resection of the prostate (TUR-P), and TCGA public dataset test
sets to confirm application of the algorithm in different types of specimens, achieving an
ROC-AUC up to 0.978 in needle biopsy test sets and up to 0.9873 in The Cancer Genome
Atlas (TCGA) test sets for adenocarcinoma. We also evaluated on the needle biopsy test
sets, without fine-tuning, models that had been previously trained on other organs for
the classification of adenocarcinomas [22,31–37]. These findings suggest that computa-
tional algorithms might be useful as routine histopathological diagnostic aids for prostate
adenocarcinoma classification.

2. Materials and Methods

2.1. Clinical Cases and Pathological Records

This was a retrospective study. A total of 2926 hematoxylin and eosin (H&E)-stained
histopathological specimens of human prostate adenocarcinoma and benign lesions—1682
needle biopsy and 1244 TUR-P—were collected from the surgical pathology files of five
hospitals: Shinyukuhashi, Wajiro, Shinkuki, Shinkomonji, and Shinmizumaki hospitals (Ka-
machi Group Hospitals, Fukuoka, Japan), after histopathological review of those specimens
by surgical pathologists. The cases were selected randomly so as to reflect a real clinical
scenario as much as possible. The pathologists excluded cases that had poor scan quality.
Each WSI diagnosis was observed by at least two pathologists, with the final checking and
verification performed by a senior pathologist. All WSIs were scanned at a magnification of
20× using the same Leica Aperio AT2 scanner and were saved in the SVS file format with
JPEG2000 compression.

2.2. Dataset

Tables 1 and 2 break down the distribution of the dataset into training, validation, and
test sets. The training and validation sets consisted of needle biopsy WSIs (Table 1). The
test sets consisted of needle biopsy, TUR-P, and TCGA public dataset WSIs (Table 2). The
regions of the prostate sampled by TUR-P and needle biopsy tend to be different. TUR-P
specimens usually consist of tissues from the transition zone, urethra, periurethral area,
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bladder neck, anterior fibromuscular stroma, and occasionally, small portions of seminal
vesicles. In contrast, most needle biopsy specimens consist mainly of tissue from the
peripheral zone. The split was carried out randomly taking into account the proportion of
each label in the dataset. Hospitals that provided histopathological cases were anonymized
(e.g., Hospital A, Hospital B). The patients’ pathological records were used to extract
the WSIs’ pathological diagnoses and to assign WSI labels. Training set WSIs were not
annotated, and the training algorithm only used the WSI diagnosis labels, meaning that the
only information available for the training was whether the WSI contained adenocarcinoma
or was benign (non-neoplastic), but no information about the location of the cancerous
tissue lesions.

Table 1. Distribution of the WSIs in the training and validation sets.

Adenocarcinoma Benign Total

Training set

Hospital A 144 260 404
Hospital B 100 75 175
Hospital C 115 159 274
Hospital D 56 118 174
Hospital E 23 72 95

Total 438 684 1122

Validation set

Hospital A 6 6 12
Hospital B 6 6 12
Hospital C 6 6 12
Hospital D 6 6 12
Hospital E 6 6 12

Total 30 30 60

Table 2. Distribution of the WSIs in the test sets.

Adenocarcinoma Benign Total

Biopsy

Hospitals A–C 250 250 500
Hospital A 100 100 200
Hospital B 100 100 200
Hospital C 50 50 100

TUR-P
Hospitals A–B 162 1082 1244

Hospital A 109 352 461
Hospital B 53 730 783

Public dataset TCGA 733 34 768

2.3. Deep Learning Models

We trained the models using the partial fine-tuning approach [38]. It consisted of
using the weights of an existing pre-trained model and only fine-tuning the affine pa-
rameters of the batch normalization layers and the final classification layer. We used the
EfficientNetB1 [39] model starting with pre-trained weights on ImageNet. Figure 1 shows
an overview of the training method.

The training method that we used in this study was exactly the same as reported in
a previous study [34]. For completeness, we repeat the method here. To apply the CNN
on the WSIs, we performed slide tiling by extracting square tiles from tissue regions. On a
given WSI, we detected the tissue regions and eliminated most of the white background
by performing a thresholding on a grayscale version of the WSI using Otsu’s method [40].
During prediction, we performed the tiling in a sliding window fashion, using a fixed-
size stride, to obtain predictions for all the tissue regions. During training, we initially
performed random balanced sampling of tiles from the tissue regions, where we tried to
maintain an equal balance of each label in the training batch. To do so, we placed the WSIs
in a shuffled queue such that we looped over the labels in succession (i.e., we alternated
between picking a WSI with a positive label and a negative label). Once a WSI was selected,
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we randomly sampled batch size
num labels tiles from each WSI to form a balanced batch. To maintain

the balance on the WSI, we oversampled from the WSIs to ensure the model trained on
tiles from all of the WSIs in each epoch. We then switched to the hard mining of tiles once
there was no longer any improvement on the validation set after two epochs. To perform
the hard mining, we alternated between training and inference. During inference, the CNN
was applied in a sliding window fashion on all of the tissue regions in the WSI, and we then
selected the k tiles with the highest probability for being positive if the WSI was negative
and the k tiles with the lowest probability for being positive if the WSI was positive. This
step effectively selected the hard examples with which the model was struggling. The
selected tiles were placed in a training subset, and once that subset contained N tiles, the
training was run. We used k = 8, N = 256, and a batch size of 32.

Figure 1. (a) shows a zoomed-in example of a tile in a WSI. (b) During training, we iteratively
alternated between inference and training steps. The model weights were frozen during the inference
step, and this was applied in a sliding window fashion on the entire tissue regions of each WSI. The
top k tiles with the highest probabilities were then selected from each WSI and placed into a queue.
During training, the selected tiles from multiple WSIs formed a training batch and were used to train
the model.

To obtain a prediction on a WSI, the model was applied in a sliding window fashion,
generating a prediction per tile. The WSI prediction was then obtained by taking the
maximum from all of the tiles.

We trained the models with the Adam optimization algorithm [41] with the following
parameters: beta1 = 0.9, beta2 = 0.999, and a batch size of 32. We used a learning rate
of 0.001 when fine-tuning. We applied a learning rate decay of 0.95 every 2 epochs. We used
the binary cross-entropy loss function. We used early stopping by tracking the performance
of the model on a validation set, and training was stopped automatically when there was
no further improvement on the validation loss for 10 epochs. The model with the lowest
validation loss was chosen as the final model.

2.4. Software and Statistical Analysis

The deep learning models were implemented and trained using TensorFlow [42].
AUCs were calculated in Python using the scikit-learn package [43] and plotted using
matplotlib [44]. The 95% CIs of the AUCs were estimated using the bootstrap method [45]
with 1000 iterations.
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The true positive rate (TPR) was computed as:

TPR =
TP

TP + FN
(1)

and the false positive rate (FPR) was computed as:

FPR =
FP

FP + TN
(2)

where TP, FP, and TN represent true positive, false positive, and true negative, respectively.
The ROC curve was computed by varying the probability threshold from 0.0 to 1.0 and
computing both the TPR and FPR at the given threshold.

2.5. Code Availability

To train the classification model in this study, we used the publicly available Tensor-
Flow training script available at https://github.com/tensorflow/models/tree/master/
official/vision/image_classification, accessed on 23 March 2021.

3. Results

3.1. High AUC Performance of the WSI Evaluation of Prostate Adenocarcinoma Histopathology
Images in the Needle Biopsy, TUR-P, and TCGA Test Sets

The aim of this retrospective study was to train deep learning models for the clas-
sification of prostate adenocarcinoma in WSIs of prostate needle biopsy specimens. We
had a total of 1122 needle biopsy WSIs (438 adenocarcinoma and 684 benign WSIs) for
the training set and a total of 60 WSIs (30 adenocarcinoma and 30 benign WSIs) for the
validation set from five sources (Hospitals A, B, C, D, and E) (Table 1). We used a transfer
learning (TL) approach based on partial fine-tuning [38] to train the models. We refer to
the trained models as TL <magnification> <tile size> <model size>, based on the different
configurations. As we had at our disposal ten models that had been trained specifically on
specimens from different organs (breast, colon, stomach, pancreas, and lung) [22,31–37],
we evaluated these models without fine-tuning on the biopsy test sets (Hospitals A–C)
(Table 2) to investigate whether morphological cancer similarities transferred across organs
without additional training. Table 3 breaks down the values of ROC-AUC and log loss in
the biopsy test set (Hospitals A–C) and shows that the colon poorly differentiated adeno-
carcinoma model (colon poorly ADC-2 (20×, 512)) [36] exhibited the highest ROC-AUC
(0.8172, CI: 0.7815–0.855) and the lowest log loss (0.5216, CI: 0.4748–0.5695), indicating its
capability as a base model for the transfer learning approach.

Overall, we trained three different models: (1) a transfer learning model (TL-colon
poorly ADC-2 (20×, 512)) using the existing colon poorly differentiated adenocarcinoma
model (colon poorly ADC-2 (20×, 512)) [36] at a magnification 20× and a tile size of
512 px × 512 px; (2) a model (EfficientNetB1 (20×, 512)) using the EfficientNetB1 at mag-
nification 20× and a tile size of 512 px × 512 px, starting with pre-trained weights from
ImageNet; (3) a model (EfficientNetB1 (10×, 224)) using the EfficientNetB1 at magnification
10× and a tile size of 224 px × 224 px, starting with pre-trained weights from ImageNet.

We evaluated the trained models on the needle biopsy, TUR-P, and TCGA test sets
(Table 2). We confirmed that the surgical pathologists were able to diagnose these cases
from visual inspection of the H&E-stained slides alone prior to the test sets’ evaluation.
The distribution of the number of WSIs in each test set is summarized in Table 2. For each
test set, we computed the ROC-AUC, log loss, accuracy, sensitivity, and specificity, and we
summarize the results in Tables 4 and 5 and Figure 2. In Table 4, we compare the results
of the ROC-AUC and log loss among three models (TL-colon poorly ADC-2 (20×, 512),
EfficientNetB1 (20×, 512), and EfficientNetB1 (10×, 224)) we trained.
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Table 3. ROC-AUC and log loss results for the various existing models on the prostate biopsy test sets.

Existing Models ROC-AUC Log Loss

Breast IDC (10×, 512) 0.704 [0.659–0.751] 0.947 [0.816–1.064]
Breast IDC, DCIS (10×, 224) 0.692 [0.644–0.735] 1.413 [1.282–1.566]
Colon ADC, AD (10×, 512) 0.553 [0.507–0.611] 1.525 [1.350–1.711]

Colon poorly ADC-1 (20×, 512) 0.795 [0.756–0.835] 0.572 [0.513–0.637]
Colon poorly ADC-2 (20×, 512) 0.817 [0.782–0.855] 0.522 [0.475–0.569]
Stomach ADC, AD (10×, 512) 0.706 [0.662–0.753] 1.391 [1.248–1.569]

Stomach poorly ADC (20×, 224) 0.724 [0.681–0.767] 0.598 [0.565–0.629]
Stomach SRCC (10×, 224) 0.804 [0.763–0.839] 0.998 [0.894–1.114]

Pancreas EUS-FNA ADC (10×, 224) 0.774 [0.735–0.817] 0.587 [0.544–0.629]
Lung carcinoma (10×, 512) 0.702 [0.659–0.751] 1.398 [1.2560–1.546]

Table 4. ROC-AUC and log loss results of the three different models for prostate adenocarcinoma on
the biopsy, TUR-P, and TCGA test sets.

TL-Colon Poorly ADC-2 (20×, 512)

ROC-AUC Log-Loss

Biopsy

Hospitals A–C 0.967 [0.955–0.982] 0.288 [0.210–0.354]
Hospital A 0.978 [0.966–0.995] 0.209 [0.117–0.276]
Hospital B 0.972 [0.948–0.988] 0.378 [0.276–0.536]
Hospital C 0.967 [0.922–0.993] 0.265 [0.117–0.512]

TUR-P
Hospitals A–B 0.845 [0.806–0.883] 4.152 [4.047–4.253]

Hospital A 0.909 [0.865–0.947] 3.269 [3.089–3.451]
Hospital B 0.737 [0.657–0.810] 4.672 [4.559–4.798]

Public dataset TCGA 0.987 [0.977–0.995] 0.074 [0.055–0.095]

EfficientNetB1 (20×, 512)

ROC-AUC Log-Loss

Biopsy

Hospitals A–C 0.971 [0.955–0.982] 0.256 [0.188–0.349]
Hospital A 0.979 [0.962–0.993] 0.209 [0.110–0.322]
Hospital B 0.978 [0.963–0.992] 0.279 [0.167–0.398]
Hospital C 0.977 [0.959–1.000] 0.306 [0.037–0.406]

TUR-P
Hospitals A–B 0.803 [0.765–0.848] 5.113 [4.976–5.252]

Hospital A 0.875 [0.834–0.923] 4.308 [4.059–4.550]
Hospital B 0.670 [0.597–0.753] 5.588 [5.411–5.729]

Public dataset TCGA 0.945 [0.912–0.973] 0.101 [0.067–0.147]

EfficientNetB1 (10×, 224)

ROC-AUC Log-Loss

Biopsy

Hospitals A–C 0.739 [0.691–0.783] 0.631 [0.545–0.724]
Hospital A 0.751 [0.668–0.810] 0.605 [0.511–0.744]
Hospital B 0.929 [0.885–0.970] 0.335 [0.223–0.427]
Hospital C 0.472 [0.348–0.572] 1.278 [0.979–1.501]

TUR-P
Hospitals A–B 0.804 [0.760–0.847] 0.392 [0.369–0.417]

Hospital A 0.771 [0.705–0.820] 0.424 [0.384–0.474]
Hospital B 0.928 [0.859–0.980] 0.373 [0.347–0.408]

Public dataset TCGA 0.578 [0.497–0.661] 1.575 [1.481–1.657]
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Table 5. Accuracy, sensitivity, specificity, and F1-score results of the transfer learning model (TL-colon
poorly ADC-2 (20×, 512)) from the existing colon poorly differentiated adenocarcinoma model for
prostate adenocarcinoma on the biopsy, TUR-P, and TCGA test sets.

Accuracy Sensitivity Specificity F1-Score

Biopsy

Hospitals A–C 0.918 [0.894–0.942] 0.912 [0.878–0.946] 0.924 [0.888–0.955] 0.918 [0.889–0.941]
Hospital A 0.945 [0.920–0.980] 0.930 [0.897–0.989] 0.960 [0.915–0.991] 0.944 [0.920–0.981]
Hospital B 0.925 [0.885–0.955] 0.890 [0.824–0.944] 0.960 [0.912–0.991] 0.922 [0.878–0.955]
Hospital C 0.940 [0.880–0.980] 0.900 [0.796–0.964] 0.980 [0.921–1.000] 0.938 [0.870–0.978]

TUR-P
Hospitals A–B 0.894 [0.866–0.922] 0.700 [0.603–0.813] 0.926 [0.896–0.950] 0.618 [0.561–0.675]

Hospital A 0.918 [0.889–0.939] 0.798 [0.712–0.867] 0.955 [0.930–0.975] 0.821 [0.749–0.871]
Hospital B 0.890 [0.867–0.909] 0.415 [0.265–0.529] 0.925 [0.906–0.940] 0.339 [0.212–0.424]

Public dataset TCGA 0.949 [0.934–0.965] 0.948 [0.932–0.965] 0.971 [0.906–1.000] 0.973 [0.964–0.981]

Figure 2. ROC curves on the biopsy (Hospitals A, B, C, and A–C), TUR-P (Hospitals A, B, and A and
B), and TCGA test sets of the TL-colon poorly ADC-2 (20×, 512) model.

The model (TL-colon poorly ADC-2 (20×, 512)) achieved the highest ROC-AUCs of
0.9873 (CI: 0.9881-0.995) and the lowest log loss of 0.0742 (CI: 0.0551–0.0959) for prostate
adenocarcinoma on the TCGA test set (Table 4). On the needle biopsy test set, the model
(TL-colon poorly ADC-2 (20×, 512)) also achieved very high ROC-AUCs (0.967–0.978) with
low values of the log loss (0.2094–0.3788) (Table 4). In contrast, ROC-AUCs on the TUR-P
test set were lower than the biopsy test set, and the log loss on the TUR-P test set was higher
than the biopsy test set (Table 4). In addition, accuracy, sensitivity, and specificity results on
the model (TL-colon poorly ADC-2 (20×, 512)) on the biopsy, TUR-P, and TCGA test sets
are given in Table 5. The model (TL-colon poorly ADC-2 (20×, 512)) achieved very high
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accuracy (0.918–0.949), sensitivity (0.89–0.948), and specificity (0.924–0.98) on the biopsy
and TCGA test sets (Table 5). On the TUR-P test sets, the model (TL-colon poorly ADC-2
(20×, 512)) achieved high accuracy (0.8902–0.9176) and specificity (0.9247–0.9545), but low
sensitivity (0.4151–0.7982) (Table 5). As shown in Figure 2, the model (TL-colon poorly
ADC-2 (20×, 512)) is fully applicable for prostate adenocarcinoma classification on the
needle biopsy WSIs, as well as the TCGA public WSI dataset, but not on the TUR-P WSIs.

Figures 3–7 show representative cases of true positives (biopsy and TUR-P), false
positives (biopsy and TUR-P), and false negatives (biopsy), respectively, using the model
(TL-colon poorly ADC-2 (20×, 512)).

Figure 3. Representative true positive prostate adenocarcinoma from the biopsy test sets. On the
prostate needle biopsy whole-slide image (A), Specimens #1–#4 are benign (non-neoplastic), and there
are adenocarcinoma cell infiltration foci (C,E,G) in Specimens #5 and #6 based on the pathological
diagnostic report, which the pathologists marked as red ink dots (yellow triangles) on the glass
slides. The heat map image (B) shows the true positive prediction of adenocarcinoma cells (D,F,H)
using transfer learning from the colon poorly differentiated adenocarcinoma model (TL-colon poorly
ADC-2 (20×, 512)), which corresponds respectively to the H&E histopathology (C,E,G). The heat
map uses the jet color map where blue indicates low probability and red indicates high probability.
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Figure 4. Representative examples of prostate adenocarcinoma false positive prediction outputs
on cases from the needle biopsy test sets. Histopathologically, (A,E) are benign (non-neoplastic)
lesions. The heat map images (B,F) exhibit false positive predictions of adenocarcinoma (D,H) using
transfer learning from the colon poorly differentiated adenocarcinoma model (TL-colon poorly ADC-
2 (20×, 512)). Infiltration of chronic inflammatory cells including histiocytes, lymphocytes, and
plasma cells (C) would be the primary cause of the false positives due to a morphology analogous to
adenocarcinoma cells’ infiltration (D). Areas where prostatic hyperplasia (G) would be the primary
cause of false positives (H). The heat map uses the jet color map where blue indicates low probability
and red indicates high probability.
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Figure 5. Representative false negative prostate adenocarcinoma from the needle biopsy test sets.
According to the histopathological report, there were four needle biopsy specimens in the WSI,
and three of them had adenocarcinomas (A). The pathologists marked the adenocarcinoma areas in
blue dots (A). High-power view showing that there were adenocarcinoma foci (C–E). The heat map
image (B) shows no true positive predictions of adenocarcinoma using transfer learning from the
colon poorly differentiated adenocarcinoma model (TL-colon poorly ADC-2 (20×, 512)).
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Figure 6. Representative true positive prostate adenocarcinoma from the transurethral resection of
the prostate (TUR-P) test sets. In the TUR-P specimen (A), there are adenocarcinoma cell infiltration
foci (C) based on the histopathological report. The heat map image (B) shows the true positive
prediction of adenocarcinoma cells (D) using transfer learning from the colon poorly differentiated
adenocarcinoma model (TL-colon poorly ADC-2 (20×, 512)). The heat map uses the jet color map
where blue indicates low probability and red indicates high probability.

3.2. True Positive Prediction on Needle Biopsy Specimens

Our model (TL-colon poorly ADC-2 (20×, 512)) satisfactorily predicted prostate ade-
nocarcinoma on needle biopsy specimens (Figure 3A). According to the pathological diag-
nostic report, there were adenocarcinoma foci in two of six needle biopsy cores (#5 and #6),
which the pathologists marked as red ink dots (yellow triangles) on the glass slides. The
heat map image shows true positive predictions (Figure 3B,D,F,H) of adenocarcinoma cell
infiltrating areas (Figure 3C,E,G). In Figure 3G, the pathologists did not mark when they
performed the diagnosis; however, the heat map image show true positive predictions
of adenocarcinoma foci, which were reviewed and verified as adenocarcinoma by other
pathologists (Figure 3H). In contrast, the heat map image does not show true positive pre-
dictions on glomeruloid glands precisely, which were assigned a Gleason Pattern 4 [46,47]
(Figure 3G,H). Importantly, the heat map images also exhibit a perfect true negative predic-
tion of needle biopsy cores (#1–#4) on the same WSI (Figure 3B).

3.3. False Positive Prediction on Needle Biopsy Specimens

Inflammatory tissues (Figure 4A) and prostatic hyperplasia (Figure 4E) were false
positively predicted for prostate adenocarcinoma (Figure 4B,F) using the transfer learning
model (TL-colon poorly ADC-2 (20×, 512)). In the inflammatory tissue (Figure 4A), the
infiltration of chronic inflammatory cells including histiocytes, lymphocytes, and plasma
cells (Figure 4C) was the primary cause of the false positive prediction (Figure 4D) due to
a morphology analogous to adenocarcinoma cells. Prostatic hyperplasia (Figure 4E) with
irregularly shaped and diverse sizes of tubular structures (Figure 4G) was the primary
cause of the false positive prediction (Figure 4H).
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Figure 7. Representative examples of prostate adenocarcinoma false positive prediction outputs on
cases from the transurethral resection of the prostate (TUR-P) test sets. Histopathologically, (A,E) are
benign (non-neoplastic) lesions. The heat map images (B,F) exhibit false positive predictions of
adenocarcinoma (D,H) using transfer learning from the colon poorly differentiated adenocarcinoma
model (TL-colon poorly ADC-2 (20×, 512)). Inflammation with infiltration of inflammatory cells
including foam cells (C) would be the primary cause of the false positives due to a morphology
analogous to adenocarcinoma cells’ infiltration (D). The cauterized area of the marginal zone of the
specimen (G) would be the primary cause of the false positives (H). The heat map uses the jet color
map where blue indicates low probability and red indicates high probability.
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3.4. False Negative Prediction on the Needle Biopsy Specimens

In a representative false negative case (Figure 5A), histopathologically, there were
adenocarcinoma foci (Figure 5C–E) in three out of four needle biopsy specimens, which
the pathologists marked with blue dots when they performed the pathological diagnoses.
However, the heat map image exhibits no true positive predictions (Figure 5B).

3.5. True Positive Prediction on the TUR-P Specimens

Although not as accurate as the biopsy specimens (Table 4), there were many cases in
which prostate adenocarcinoma could be classified precisely on the TUR-P specimens. In a
representative true positive TUR-P case (Figure 6A), the transfer learning model (TL-colon
poorly ADC-2 (20×, 512)) satisfactorily predicted prostate the adenocarcinoma-invading area
(Figure 6B). The heat map image shows the true positive predictions of adenocarcinoma cell
infiltration (Figure 6C,D) with the true negative prediction of prostatic hyperplasia (Figure 6A,B).

3.6. False Positive Prediction on TUR-P Specimens

By the transfer learning model (TL-colon poorly ADC-2 (20×, 512)), false positives
on the TUR-P specimens were not only due to prostatic hyperplasia, as observed for the
needle biopsy specimens (Figure 4E–H), but also due to inflammation (Figure 7A–D) and
false positives coinciding with areas of tissue degeneration caused by thermal ablation at
the specimen margins (Figure 7E–H) because in TUR-P, the endoscope is inserted into the
prostate through the urethra and the tissue is harvested with an electrocautery, resulting in
marginal degeneration of the specimen due to thermal cauterization.

4. Discussion

In this study, we trained deep learning models for the classification of prostate adeno-
carcinoma in needle biopsy WSIs. Of the three models we trained (Table 4), the best model
(TL-colon poorly ADC-2 (20×, 512)) achieved ROC-AUCs in the range of 0.967–0.978 on
the needle biopsy, in the range of 0.7377–0.9098 on the TUR-P, and 0.9873 on the TCGA
public datasets. The other two models were trained using the EfficientNetB1 [39] model
starting with pre-rained weights on ImageNet at different magnifications (10×, 20×) and
tile sizes (224 × 224, 512 × 512). The model based on EfficientNetB1 (EfficientNetB1 (20×,
512)) achieved high ROC-AUCs in close proximity to the values of, but lower than, the best
model (TL-colon poorly ADC-2 (20×, 512)). The best model (TL-colon poorly ADC-2 (20×,
512)) was trained by the transfer learning approach based on our existing colon poorly
differentiated adenocarcinoma classification model [36]. To train the models, we used only
1122 needle biopsy WSIs (adenocarcinoma: 438 WSIs, benign: 684 WSIs) without manual
annotations by the pathologists [22,37], as compared to the previous study (about 8400
needle biopsy WSIs for training) [21]. However, we needed to train the models for TUR-P
WSIs separately in the next step because TUR-P WSIs were not applicable to be predicted
precisely by the best model (TL-colon poorly ADC-2 (20×, 512)).

The best model (TL-colon poorly ADC-2 (20×, 512)) achieved similar values of the
ROC-AUC, log loss, accuracy, sensitivity, and specificity among three independent medical
institutes (Hospitals A, B, C) and the TCGA public dataset test sets (Tables 4 and 5), meaning
that the best model has general versatility in prostate needle biopsy WSIs.

Various benign (non-neoplastic) lesions can mimic adenocarcinoma on needle biopsy
specimens, which include glandular lesions such as adenosis, atrophy, verumontanum
mucosal gland hyperplasia, atypical adenomatous hyperplasia, nephrogenic metaplasia,
hyperplasia of mesonephric remnants, and basal cell hyperplasia [48]. Inflammation (acute
and chronic or granulomatous prostatitis) and prostatic hyperplasia are often present in
needle biopsy specimens, and they may become problematic to differentiate between benign
and adenocarcinoma if their histopathological features are similar to adenocarcinoma in
routine diagnosis. Similar to human pathologists, the major causes for false positives
predicted by the best model (TL-colon poorly ADC-2 (20×, 512)) were inflammatory cell
infiltration, especially histiocytes, lymphocytes, and plasma cells, which morphologically
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mimic adenocarcinoma cells and prostatic hyperplasia with irregularly shaped and different
sizes of tubular structures (Figure 4). In addition, normal benign prostate tissues including
seminal vesicles, paraganglia, and ganglion cells may also be confused histopathologically
with adenocarcinoma in needle biopsy specimens [48], which were also predicted as
adenocarcinoma at the tile level in the small areas of false positively predicted WSIs in
this study. Moreover, in routine clinical practice, prostate adenocarcinoma with atrophic
features is easily confused with benign acinar atrophy [49], which may cause false negative
prediction by deep learning models. It may be necessary to add controversial prostate
adenocarcinoma and benign WSIs, which are more likely to cause false positives and
false negatives, to attempt to further improve the model’s performance on such cases.
Interestingly, false positive predictions in cauterized areas of the marginal zone of the
specimens were characteristic of TUR-P WSIs (Figure 7). The lower observed results on
TUR-P were potentially due to the presence of prostate hyperplasia, which morphologically
mimics prostate adenocarcinoma. This indicates that to further improve performance on
TUR-P cases, we would require a training set that would specifically account for such cases
so as to aid the model in reducing false positives.

A greater number of prostate biopsies (usually 12-core systemic biopsy) are performed
currently, and more biopsy cores are submitted to surgical pathology than ever before,
resulting in a huge interpretive burden for pathologists. Indeed, many patients undergo
biopsy for elevated serum PSA with no other clinical evidence of cancer, resulting in an
enormous number of biopsies performed even if numerous diagnostic pitfalls (e.g., fatigue,
time-consuming workflow) and mimics of prostate cancer have been described. Thus,
the ultimate goal of prostate adenocarcinoma detection, as well as the prediction of the
outcome for the individual patient should be augmented by deep-learning-based software
applications. The deep learning models established in the present study achieved very high
ROC-AUC performances (Figure 2 and Table 4) on prostate needle biopsy WSIs; they offer
promising results that indicate they could be beneficial as a screening aid for pathologists
prior to observing histopathology on glass slides or WSIs. At the same time, it can be
used as a double-check to reduce the risk of missed cancer foci. The major advantage
of using an automated tool is that it can systematically handle large amounts of WSIs
without potential bias due to the fatigue commonly experienced by pathologists, which
could drastically alleviate the heavy clinical burden of practical pathology diagnosis using
conventional microscopes. While the results are promising, further clinical validation
studies are required in order to further evaluate the robustness of the models in a potential
clinical setting before they can actually be used in clinical practice. If such models are
deemed viable after rigorous clinical validation, they can transform the future of healthcare
and precision oncology.
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Abstract: Given the recent success of artificial intelligence (AI) in computer vision applications, many
pathologists anticipate that AI will be able to assist them in a variety of digital pathology tasks.
Simultaneously, tremendous advancements in deep learning have enabled a synergy with artificial
intelligence (AI), allowing for image-based diagnosis on the background of digital pathology. There
are efforts for developing AI-based tools to save pathologists time and eliminate errors. Here, we
describe the elements in the development of computational pathology (CPATH), its applicability
to AI development, and the challenges it faces, such as algorithm validation and interpretability,
computing systems, reimbursement, ethics, and regulations. Furthermore, we present an overview of
novel AI-based approaches that could be integrated into pathology laboratory workflows.

Keywords: artificial intelligence; computational pathology; digital pathology; histopathology image
analysis; deep learning

1. Introduction

Pathologists examine pathology slides under a microscope. To diagnose diseases
with these glass slides, many traditional technologies, such as hematoxylin and eosin
(H&E) staining and special staining, have been used. However, even for experienced
pathologists, intra- and interobserver disagreement cannot be avoided through visual
observation and subjective interpretation [1]. This limited agreement has resulted in the
necessity of computational methods for pathological diagnosis [2–4]. Because automated
approaches can achieve reliable results, digital imaging is the first step in computer-aided
analysis [5]. When compared to traditional digital imaging technologies that process static
images through cameras, whole-slide imaging (WSI) is a more advanced and widely used
technology in pathology [6].

Digital pathology refers to the environment that includes tools and systems for dig-
itizing pathology slides and associated metadata, in addition their storage, evaluation,
and analysis, as well as supporting infrastructure. WSI has been proven in multiple studies
to have an excellent correlation with traditional light microscopy diagnosis [7] and to
be a reliable tool for routine surgical pathology diagnosis [8,9]. Indeed, WSI technology
provides a number of advantages over traditional microscopy, including portability, ease
of sharing and retrieving images, and task balance [10]. The establishment of the digital
pathology environment contributed to the development of a new branch of pathology
known as computational pathology (CPATH) [11]. Novel terminology and definitions
have resulted from advances in computational pathology (Table 1) [12]. The computational
analysis of pathology slide images has made direct disease investigation possible rather
than relying on a pathologist analyzing images on a screen [13]. AI approaches aided by
deep learning results are frequently used to combine information from digitized pathology
images with their associated metadata. Using AI approaches that computationally evaluate
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the entire slide image, researchers can detect features that are difficult to detect by eye
alone, which is now the state-of-the-art in digital pathology [14].

Table 1. Computational pathology definitions.

Terms Definition

Artificial intelligence (AI) The broadest definition of computer science dealing with the ability of a computer to simulate
human intelligence and perform complicated tasks.

Computational pathology
(CPATH)

A branch of pathology that involves computational analysis of a broad array of methods to
analyze patient specimens for the study of disease. In this paper, we focus on the extraction of
information from digitized pathology images in combination with their associated metadata,
typically using AI methods such as deep learning.

Convolutional neural
networks (CNN)

A form of deep neural networks with one or more convolutional layers and various different
layers that can be trained using the backpropagation algorithm and which is suitable for
learning 2D data such as images.

Deep learning A subclassification of machine learning that imitates a logical structure similar to how people
conclude using a layered algorithm structure called an artificial neural network.

Digital pathology An environment in which traditional pathology analysis utilizing slides made of cells or tissues
is converted to a digital environment using a high-resolution scanner.

End-to-end training An opposite concept of feature-crafted methods in a machine learning model, a method which
learns the ideal value simultaneously rather than sequentially using only one pipeline. It works
smoothly when the dataset is large enough.

Ground truth A concept of a dataset’s ‘true’ category, quantity, or label that serves as direction to an
algorithm in the training step. The ground truth varies from the patient- or slide-level to
objects or areas within the picture, depending on the objective.

Image segmentation A technique for classifying each region into a semantic category by decomposing an image to
the pixel level.

Machine learning An artificial intelligence that parses data, learns from it, and makes intelligent judgments based
on what it has learned.

Metadata A type of data that explains other data. A single histopathology slide image in CPATH may
include patient disease, demographic information, previous treatment records and medical
history, slide dyeing information, and scanner information as metadata.

Whole-slide image (WSI) An whole histopathological glass slide digitized at microscopic resolution as a digital
representation. Slide scanners are commonly used to create these complete slide scans. A slide
scan viewing platform allows for image examination similar to that of a regular microscope.

The conventional pathological digital image machine learning method requires par-
ticularly educated pathologists to manually categorize abnormal picture attributes before
incorporating them into algorithms. Manually extracting and analyzing features from
pathological images was a time-consuming, labor-intensive, and costly method that led
to many disagreements among pathologists on whether features are typical [15]. Human-
extracted visual characteristics must be translated into numerical forms for computer
algorithms, but identifying patterns and expressing them with a finite number of feature
markers was nearly impossible in some complex diseases. Diverse and popular studies
to ‘well’ learn handmade features became the basis for a commercially available medical
image analysis system. After all the algorithm development steps, its performance often
had a high false-positive rate, and generalization in even typical pathological images was
limited [16]. Deep learning, however, has enabled computers to automatically extract
feature vectors from pathology image example data and learn to build optimal algorithms
on their own [17,18], even outperforming physicians in some cases, and has now emerged
as a cutting-edge machine learning method in medical clinical practice [19]. Diverse deep
architectures trained with huge image datasets provide biological informatics discoveries
and outstanding object recognition [20].
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The purpose of this review is to enhance the understanding of the reader with an up-
date on the implementation of artificial intelligence in the pathology department regarding
requirements, work process and clinical application development.

2. Deveopment of AI Aided Computational Pathology

Integrating artificial intelligence into the workflow of the pathology department can
perform quality control of the pre-analytic, analytic, and post-analytic phases of the pathol-
ogy department’s work process, allowing quality control of scan images and formalin-fixed
paraffin-embedded tissue blocks, integrated diagnosis with joining clinical information,
ordering necessary pathology studies including immunohistochemistry and molecular
studies, automating repetitive tasks, on-demand consultation, and cloud server manage-
ment (Figure 1), which, finally allow precision medicine by enabling us to use a wide range
of patient data, including pathological images, to develop disease-preventive and treatment
methods tailored to individual patient features. To achieve the above-mentioned goals,
there are crucial elements required for CPATH. A simple summary of the required steps for
the application of an AI with CPATH is demonstrated in Figure 2.

Figure 1. Embedding AI into pathology department workflow. The digital pathology supplies
whole-slide images to artificial intelligence, which performs quality control of pre-analytic phase,
analytic phase and post-analytic phase of pathology laboratory process.

Figure 2. Requirement for clinical applications of artificial intelligence with CPATH.

2.1. Equipment

Transitioning from glass to digital workflows in AP requires new digital pathology
equipment, image management systems, improved data management and storage capac-
ities, and additional trained technicians [21]. While the use of advanced high-resolution

240



Diagnostics 2022, 12, 2794

hardware with multiple graphical processing units can speed up training, it can become
prohibitively expensive. Pathologists must agree to changes to a century-old workflow.
Given that change takes time, pathologist end-users should anticipate change-management
challenges independent of technological and financial hurdles. AI deployment in the
pathology department requires digital pathology. Digital pathology has many proven uses,
including primary and secondary clinical diagnosis, telepathology, slide sharing, research
data set development, and pathology education or teaching [22]. Digital pathology systems
provide time- and cost-saving improvements over the traditional microscopy technique and
improve inter-observer variation with adequate slide image management software, inte-
grated reporting systems, improved scanning speeds, and high-quality images. Significant
barriers include the introduction of technologies without regulatory-driven, evidence-based
validation, the resistance of developers (academic and industrial), and the requirement for
commercial integration and open-source data formats.

2.2. Whole Slide Image

In the field of radiology, picture archiving and communication systems (PACS) were
successfully introduced owing to infrastructure such as stable servers and high-performance
processing devices, and they are now widely used in deep learning sources [23,24]. Sim-
ilarly, in the pathology field, a digital pathology system was developed that scans tradi-
tional glass slides using a slide scanner to produce a WSI; it then stores and transmits
it to servers [13]. Because WSI which has an average of 1.6 billion pixels and occupies
4600 megabytes (MB) per unit, thus taking up much more space than a DICOM (digital
imaging and communications in medicine) format, this technique took place later in pathol-
ogy than in radiography [25]. However, in recent years, scanners, servers, and technology
that can quickly process WSI have made this possible, allowing pathologists to inspect
images on a PC screen [6].

2.3. Quality Control Using Artificial Intelligence

AI tools can be embedded within a pathology laboratory workflow before or after
the diagnosis of the pathologist. Before cases are sent to pathologists for review, an AI
tool can be used to triage them (for example, cancer priority or improper tissue section)
or to help with screening for unexpected events (e.g., tissue contamination or microorgan-
isms). After reviewing a case, pathologists can also use AI tools to execute certain tasks
(e.g., counting mitotic figures for tumor grading or measuring nucleic acid quantification).
AI software can also run in the background and execute tasks such as quality control and
other tasks all the time (e.g., correlation with clinical or surgical information). The ability
of AI, digital pathology, and laboratory information systems to work together is the key
to making a successful AI workflow that fits the needs of a pathology department. Fur-
thermore, pre-analytic AI implementation can affect the process of molecular pathology.
Personalized medicine and accurate quantification of tumor and biomarker expression
have emerged as critical components of cancer diagnostics. Quality control (QC) of clinical
tissue samples is required to confirm the adequacy of tumor tissue to proceed with further
molecular analysis [26]. The digitization of stained tissue slides provides a valuable way to
archive, preserve, and retrieve important information when needed.

2.4. Diagnosis and Quantitation

A combination of deep learning methods in CPATH has been developed to excavate
unique and remarkable biomarkers for clinical applications. Tumor-infiltrating lympho-
cytes (TILs) are a prime illustration, as their spatial distributions have been demonstrated to
be useful for cancer diagnosis and prognosis in the field of oncology [27]. TILs are the prin-
cipal activator of anticancer immunity in theory, and if TILs could be objectively measured
across the tumor microenvironment (TME), they could be a reliable biomarker [20]. TILs
have been shown to be associated with recurrence and genetic mutations in non-small cell
lung cancer (NSCLC) [28], and lymphocytes, which have been actively made immune, have
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proved to have a better response, leading to a longer progression-free survival than the
ones that did not show much immunity [29]. Because manual quantification necessitates a
tremendous amount of work and is easily influenced by interobserver heterogeneity [30,31],
many approaches are being tested in order to overcome these hurdles and determine a
clinically meaningful TIL cutoff threshold [32]. Recently, a spatial molecular imaging tech-
nique obtaining spatial lymphocytic patterns linked to the rich genomic characterization of
TCGA samples has exemplified one application of the TCGA image archives, providing
insights into the tumor-immune microenvironment [20].

On a cellular level, spatial organization analysis of TME containing multiple cell types,
rather than only TILs, has been explored, and it is expected to yield information on tumor
progression, metastasis, and treatment outcomes [33]. Tissue segmentation is done using the
comprehensive immunolabeling of specific cell types or spatial transcriptomics to identify
a link between tissue content and clinical features, such as survival and recurrence [34,35].
In a similar approach, assessing image analysis on tissue components, particularly focusing
on the relative amount of area of tumor and intratumoral stroma, such as the tumor-
stroma ratio (TSR), is a widely studied prognostic factor in several cancers, including breast
cancer [36,37], colorectal cancer [38,39], and lung cancer [40]. Other studies in CPATH
include an attempt to predict the origin of a tumor in cancers of unknown primary source
using only a histopathology image of the metastatic site [41].

One of the advantages of CPATH is that it allows the simultaneous inspection of
histopathology images along with patient metadata, such as demographic, gene sequenc-
ing or expression data, and progression and treatment outcomes. Several attempts are
being made to integrate patient pathological tissue images and one or more metadata to
obtain novel information that may be used for diagnosis and prediction, as it was discov-
ered that predicting survival using merely pathologic tissue images was challenging and
inaccurate [42]. Mobadersany et al. used a Cox proportional hazards model integrated
with a CNN to predict the overall survival of patients with gliomas using tissue biopsy
images and genetic biomarkers such as chromosome deletion and gene mutation [43].
He et al. used H&E histopathology images and spatial transcriptomics, which analyzes
RNA to assess gene activity and allocate cell types to their locations in histology sections
to construct a deep learning algorithm to predict genomic expression in patients with breast
cancer [44]. Furthermore, Wang et al. employed a technique known as ‘transcriptome-wide
expression-morphology’ analysis, which allows for the prediction of mRNA expression and
proliferation markers using conventional histopathology WSIs from patients with breast
cancer [45]. It is also highly promising in that, as deep learning algorithms progress in
CPATH, it can be a helpful tool for pathologists and doctors making decisions. Studies have
been undertaken to see how significant an impact assisting diagnosis can have. Wang et al.
showed that pathologists employing a predictive deep learning model to diagnose the
metastasis of breast cancer from WSIs of sentinel lymph nodes reduced the human error
rate by nearly 85% [46]. In a similar approach, Steiner et al. looked at the influence of
AI in the histological evaluation of breast cancer with lymph node metastasis, comparing
pathologist performance supported by AI with pathologist performance unassisted by AI to
see whether supplementation may help. It was discovered that algorithm-assisted pathol-
ogists outperformed unassisted pathologists in terms of accuracy, sensitivity, and time
effectiveness [47].

3. Deep Learning from Computational Pathology

3.1. International Competitions

The exponential development in scanner performance making producing WSI easier
and faster than previously, along with sophisticated viewing devices, major advancements
in both computer technology and AI, as well as the accordance to regulatory requirements of
the complete infrastructure within the clinical context, have fueled CPATH’s rapid growth
in recent years [15]. Following the initial application of CNNs in histopathology at ICPR
2012 [48], several studies have been conducted to assess the performance of automated deep
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learning algorithms analyzing histopathology images in a variety of diseases, primarily
cancer. CPATH challenges are being promoted in the same way that competitions and
challenges are held in the field of computer engineering to develop technologies and
discover talented rookies. CAMELYON16 was the first grand challenge ever held, with the
goal of developing CPATH solutions for the detection of breast cancer metastases in H&E-
stained slides of sentinel lymph nodes and to assess the accuracy of the deep learning
algorithms developed by competition participants, medical students and experienced
professional pathologists [49]. The dataset from the CAMELYON16 challenge, which took
a great deal of work, was used in several other studies and provided motive for other
challenges [50–52], attracting major machine learning companies such as Google to the
medical artificial intelligence field [53], and is said to have influenced US government
policy [54]. Since then, new challenges have been proposed in many more cancer areas
using other deep learning architectures with greater datasets, providing the driving force
behind the growth of CPATH (Table 2). Histopathology deep learning challenges can attract
non-medical engineers and medical personnel, provide prospects for businesses, and make
the competition’s dataset publicly available, benefiting future studies. Stronger deep
learning algorithms are expected to emerge, speeding the clinical use of new algorithms
in digital image analysis. Traditional digital image analysis works on three major types
of measures: image object localization, classification, and quantification [12], and deep
learning in CPATH focuses on those metrics similarly. CPATH applications include tumor
detection and classification, invasive or metastatic foci detection, primarily lymph nodes,
image segmentation and analysis of spatial information, including ratio and density, cell
and nuclei classification, mitosis counting, gene mutation prediction, and histological
scoring. Two or more of these categories are often researched together, and deep learning
architectures like convolutional neural networks (CNN) and recurrent neural networks are
utilized for training and applications.

Table 2. Examples of grand challenges held in CPATH.

Challenge Year Staining Challenge Goal Dataset

GlaS
challenge [55] 2015 H&E Segmentation of colon glands of stage T3 and T4 colorectal

adenocarcinoma

Private set—
165 images from
16 WSIs

CAMELYON16 [56] 2016 H&E
Evaluation of new and current algorithms for automatic
identification of metastases in WSIs from H&E-stained lymph
node sections

Private set—
221 images

TUPAC
challenge [57] 2016 H&E Prediction of tumor proliferation scores and gene expression of

breast cancer using histopathology WSIs 821 TCGA WSIs

BreastPathQ [58] 2018 H&E Development of quantitative biomarkers to determinate cancer
cellularity of breast cancer from H&E-stained WSIs Private set—96 WSIs

BACH
challenge [59] 2018 H&E Classification of H&E-stained breast histopathology images

and performing pixel-wise labeling of WSIs
Private set—40 WSIs
and 500 images

LYON19 [60] 2019 IHC Provision of a dataset as well as an evolution platform for current
lymphocyte detection algorithms in IHC-stained images

LYON19 test set
containing 441 ROIs

DigestPath [61] 2019 H&E
Evaluation of algorithms for detecting signet ring cells and
screening colonoscopy tissue from histopathology images of the
digestive system

Private set—127 WSIs

HEROHE
ECDP [62] 2020 H&E

Evaluation of algorithms to discriminate HER2-positive breast
cancer specimens from HER2-negative breast cancer specimens
with high sensitivity and specificity only using H&E-stained
slides

Private set—359 WSIs

MIDOG
challenge [63] 2021 H&E

Detection of mitotic figures from breast cancer histopathology
images scanned by different scanners to overcome the
‘domain-shift’ problem and improve generalization

Private set—200 cases
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Table 2. Cont.

Challenge Year Staining Challenge Goal Dataset

CoNIC
challenge [64] 2022 H&E

Evaluation of algorithms for nuclear segmentation and
classification into six types, along with cellular composition
prediction

4981 patches

ACROBAT [65] 2022 H&E,
IHC

Development of WSI registration algorithms that can align WSIs
of IHC-stained breast cancer tissue sections with corresponding
H&E-stained tissue regions

Private dataset—
750 cases consisting of
1 H&E and 1–4
matched IHC

3.2. Dataset and Deep Learning Model

Since public datasets for machine learning learning in CPATH, such as the Cancer
Genome Atlas (TCGA), the Cancer Image Archive (TCIA), and public datasets created by
several challenges, such as the CAMELYON16 challenge dataset, are freely accessible to
anyone, researchers who do not have their own private data can conduct research and
can also use the same dataset as a standard benchmark by several researchers comparing
the performance of each algorithm [15]. Coudray et al. [66], Using the inception-v3 model
as a deep learning architecture, assessed the performance of algorithms in classification
and genomics mutation prediction of NSCLC histopathology pictures from TCGA and
a portion of an independent private dataset, which was a noteworthy study that could
detect genetic mutations using WSIs such as STK11 (AUC 0.85), KRAS (AUC 0.81), and
EGFR (AUC 0.75). Guo et al. used the Inception-v3 model to classify the tumor region of a
breast cancer [67]. Bulten et al. used 1243 WSIs of private prostate biopsies, segmenting
individual glands to determine Gleason growth patterns using UNet, followed by cancer
grading, and achieved performance comparable to pathologists [68]. Table 3 contains
additional published examples utilizing various deep learning architectures and diverse
datasets. A complete and extensive understanding of deep learning concepts and existing
architectures can be found [17,69], while a specific application of deep learning in medical
image analysis can be read [70–72]. To avoid bias in algorithm development, datasets should
be truly representative, encompassing the range of data that would be expected in the real
world [19], including both the expected range of tissue features (normal and pathological)
and the expected variation in tissue and slide preparation between laboratories.

Table 3. Summary of recent convolutional neural network models in pathology image analysis.

Publication Deep Learning Input Training Goal Dataset

Zhang et al. [73] CNN WSI Diagnosis of bladder cancer TCGA and private—913 WSIs
Shim et al. [74] CNN WSI Prognosis of lung cancer Private—393 WSIs
Im et al. [75] CNN WSI Diagnosis of brain tumor subtype private—468 WSIs
Mi et al. [76] CNN WSI Diagnosis of breast cancer private dataset—540 WSIs
Hu et al. [77] CNN WSI Diagnosis of gastric cancer private—921 WSIs
Pei et al. [78] CNN WSI Diagnosis of brain tumor classification TCGA—549 WSIs
Salvi et al. [79] CNN WSI Segmentation of normal prostate gland Private—150 WSIs
Lu et al. [80] CNN WSI Genomic correlation of breast cancer TCGA and private—1157 WSIs
Cheng et al. [81] CNN WSI Screening of cervical cancer Private—3545 WSIs
Kers et al. [82] CNN WSI Classification of transplant kidney Private—5844 WSIs
Zhou et al. [83] CNN WSI Classification of colon cancer TCGA—1346 WSIs
Hohn et al. [84] CNN WSI Classification of skin cancer Private—431 WSIs
Wang et al. [45] CNN WSI Prognosis of gastric cancer Private—700 WSIs
Shin et al. [85] CNN, GAN WSI Diagnosis of ovarian cancer TCGA—142 WSIs

Abbreviation: CNN, convolutional neural network; WSI, whole-slide image; TCGA, The Cancer Genome Atlas.

CNNs are difficult to train end-to-end because gigapixel WSIs are too large to fit in
GPU memory, unlike many natural pictures evaluated in computer vision applications.
A single WSI requires over terabytes of memory, yet high-end GPUs only give tens of
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gigabytes. Researchers have suggested alternatives such as partitioning the WSI into small
sections (Figure 3) using only a subset or the full WSI compressed with semantic infor-
mation preserved. Breaking WSI into little patches and placing them all in the GPU to
learn everything takes too long; thus, picking patches to represent WSI is critical. For these
reasons, randodmizing paches [86], selecting patches from region of interests [42], and ran-
domly selecting patches among image clustering [87] were proposed. The multi-instance
learning (MIL) method is then mostly employed in the patch aggregation step, which
involves collecting several patches from a single WSI and learning information about the
WSI as a result. Traditional MILs treat a single WSI as a basket, assuming that all patches
contained within it have the same WSI properties. All patches from a cancer WSI, for exam-
ple, are considered cancer patches. This method appears to be very simple, yet it is quite
beneficial for cancer detection, and representation can be ensured if the learning dataset
is large enough [88], which also provides a reason why various large datasets should be
produced. If the learning size is insufficient, predicted patch scores are averaged, or classes
that account for the majority of patch class predictions are estimated and used to represent
the WSI. A more typical way is to learn patch weights using a self-attention mechanism,
which uses patch encoding to calculate weighed sum of patch embeddings [89], with a
higher weight for the patch that is closest to the ideal patch for performing a certain task
for each model. Techniques such as max or mean pooling and certainty pooling, which
are commonly utilized in CNNs, are sometimes applied here. There is an advantage to
giving interpretability to pathologists using the algorithm because approaches such as
self-attention can be presented in the form of a heatmap on a WSI based on patch weights.

Figure 3. Images are divided into small patches obtained from tissue of WSI, which are subsequently
prepared to have semantic features extracted from each patch. Green tiles indicate tumor region; red
tiles indicate non-tumor region. Images from Yeouido St. Mary’s hospital.

3.3. Overview of Deep Learning Workflows

WSIs are flooding out of clinical pathology facilities around the world as a result of the
development of CPATH, including publicly available datasets, which can be considered a
desirable cornerstone for the development of deep learning because it means more data are
available for research. However, as shown in some of the previous studies, the accuracy of
performance, such as classification and segmentation by algorithms commonly expressed
in the area under the curve (AUC), must be compared to pathological images manually
annotated by humans in order to calculate the accuracy of the performance. In this way, su-
pervised learning is a machine learning model that uses labeled learning data for algorithm
learning and learns functions based on it, and it is the machine learning model most utilized
in CPATH so far. According to the amount and type of data, object and purpose (whether
the target is cancer tissue or substrate tissue and calculating the number of lymphocytes), it
can be divided into qualitative and distinct or quantitative and continuous representations,
expressed as ‘classification’ [90] and ‘regression’ [91], respectively. Because the model is
constructed by simulating learning data, labeled data are crucial, and the machine learning
model’s performance may vary. Unsupervised learning uses unlabeled images, unlike
previous scenarios. This technology is closer to an AI since it helps humans collect infor-
mation and build knowledge about the world. Except for the most basic learning, such
as language character acquisition, we can identify commonalities by looking at applied
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situations and extending them to other objects. To teach young children to recognize dogs
and cats, it is not required to exhibit all breeds. ‘Unsupervised learning’ can find and assess
patterns in unlabeled data, divide them into groups, or perform data visualization in which
specific qualities are compacted to two or three if there are multiple data characteristics or
variables that are hard to see. A study built a complex tissue classifier for CNS tumours
based on histopathologic patterns without manual annotation. It provided a framework
comparable to the WHO [92], which was based on microscopic traits, molecular character-
istics, and well-understood biology [93]. This study demonstrated that the computer can
optimize and use some of the same histopathologic features used by pathologists to assist
grouping on its own.

In CPATH, it is very important to figure out how accurate a newly made algorithm
is, so there is still a lot of supervised learning. Unsupervised learning still makes it hard
to keep up with user-defined tasks, but it has the benefit of being a very flexible way to
build data patterns that are not predictable. It also lets us deal with changes we did not
expect and allows us to learn more outside of the limits of traditional learning. It helps us
understand histopathology images and acts as a guide for precision medicine [94].

Nonetheless, unsupervised learning is still underdeveloped in CPATH, and even after
unsupervised learning, it is sometimes compared with labeled data to verify performance,
making the purpose a little ambiguous. Bulten et al. classified prostate cancer and non-
cancer pathology using clustering, but still had to verify the algorithm’s ability using
manually annotated images, for example [95].

Currently, efforts are made to make different learning datasets by combining the
best parts of supervised and unsupervised learning. This is done by manually labeling
large groups of pathological images. Instead of manually labeling images, such as in the
2016 TUPAC Challenge, which was an attempt to build standard references for mitosis
detection [96], “weakly supervised learning” means figuring out only a small part of an
image and then using machine learning to fill in the rest. Several studies have shown that
combining sophisticated learning strategies with weakly supervised learning methods can
produce results that are similar to those of a fully supervised model. Since then, many
more studies have been done on the role of detection and segmentation in histopathology
images. “NuClick”, a CNN-based algorithm that won the LYON19 Challenge in 2019,
showed that structures such as nuclei, cells, and glands in pathological images can be
labeled quickly, consistently, and reliably [97], whereas ‘CAMEL’, developed in another
study, only uses sparse image-level labels to produce pixel-level labels for creating datasets
to train segmentation models for fully supervised learning [98].

4. Current Limitations and Challenges

Despite considerable technical advancements in CPATH in recent years, the deploy-
ment of deep learning algorithms in real clinical settings is still far from adequate. This
is because, in order to be implemented into existing or future workflows, the CPATH
algorithm must be scientifically validated, have considerable clinical benefit, and not cause
harm or confuse people at the same time [99]. In this section, we will review the roadblocks
to full clinical adoption of the CPATH algorithm, as well as what efforts are currently
being made.

4.1. Acquiring Quality Data

It is critical that CPATH algorithms be trained with high-quality data so that they
can deal with the diverse datasets encountered in real-world clinical practice. Even in
deep learning, the ground truth should be manually incorporated into the dataset in
order to train appropriate diagnostic contexts in supervised learning to classify, segment,
and predict images based on it [100]. The ground truth can be derived from pathology
reports grading patient outcomes or tumors, as well as scores assessed by molecular
experiments, depending on the study’s goals, which are still determined by human experts
and need a significant amount of manual labor to obtain a ‘correct’ dataset [12]. Despite the
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fact that datasets created by professional pathologists are of excellent quality, vast quantities
are difficult to obtain due to the time, cost, and repetitive and arduous tasks required. As a
result, publicly available datasets have been continuously created, such as the ones from
TCGA or grand challenges, with the help of weakly supervised learning. Alternative efforts
have recently been made to gather massive scales of annotated images by crowdsourcing
online. Hughes et al. used a crowdsourced image presentation platform to demonstrate
deep learning performance comparable to that of a single professional pathologist [101],
while López-Pérez et al. used a crowdsourced deep learning algorithm to help a group of
doctors or medical students who were not pathologists make annotations comparable to an
expert in breast cancer images [102]. Crowdsourcing may generate some noise, but it shows
that non-professionals of various skill levels could assist with pathological annotation and
dataset generation. Obtaining quality data entails more than just obtaining a sufficient
raw pathological image slide of a single disease from a patient or hospital; it also includes
preparing materials to analyze and process the image in order to extract useful data for
deep learning model training. By using strategies such as selecting patches with cells while
excluding patches without cells from raw pictures, as demonstrated in Figure 4, collecting
quality data may be made easier.

Figure 4. (a) Random sampling of 100 patches selected arbitrarily from an WSI image. (b) Random
sampling of 100 patches after application of Laplace filter (which highlights areas with great changes)
from WSI image. Images from Yeouido St. Mary’s Hospital

4.2. Data Variation

Platform diversity, integration, and interoperability represent yet another significant
hurdle for the creation and use of AI tools [103]. Recent findings show that current AI
models, when trained on insufficient datasets, even when utilizing precise and pixel-by-
pixel labelling, can exhibit a 20% decline in performance when evaluated on independent
datasets [88]. Deep learning-based algorithms have produced outstanding outcomes in
image analysis applications, including digitized slide analysis. Deep learning-based sys-
tems face several technological problems, including huge WSI data, picture heterogeneity,
and feature complexity. To achieve successful generalization properties, the training data
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must include a diverse and representative sample of the disease’s biological and mor-
phological variability, as well as the technical variables introduced in the pre-analytical
and analytical processes in the pathology department, as well as the image acquisition
process [104]. A generic deep learning-based system for histopathology tissue analysis.
The previously introduced framework is a series of strategies in the preprocessing-training-
inference pipeline that showed improved efficiency and generalizability. Such strategies
include an ensemble segmentation model, dividing the WSI into smaller overlapping
patches, efficient inference algorithms, and a patch-based uncertainty estimation methodol-
ogy [105,106]. Technical variability challenges can also be addressed by standardizing and
preparing CPATH data to limit the effects of technical variability or to make the models
robust to technical variability. Training the deep learning model on large and diverse
datasets may lower the generalization error to some extent [107].

The amount and quality of input data determine the performance of the deep learning
algorithm [108,109]. Although the size of datasets has been growing over the years with the
development in CPATH, even if algorithms trained using learning datasets perform well on
test sets, it is difficult to be certain that algorithms perform well on actual clinical encounters
because clinical data come from significantly more diverse sources than studies. Similarly,
when evaluating the performance of deep learning algorithms with a specific validation
set for each grand challenge, it is also difficult to predict whether they will perform well
in actual clinical practice. Color variation is a representative example of the variation of
data. Color variation is caused by differences in raw materials, staining techniques used
across different pathology labs, patient intervariability, and different slide scanners, which
affect not just color but also overall data variation [110]. As a result, color standardization
as an image preparation method has long been devised to overcome this problem in WSI.
Because predefined template images were used for color normalization in the past, it was
difficult to style transformation between different image datasets, but recent advances in
generative adversarial networks (GAN) among deep learning artificial neural networks
have allowed patches to be standardized without organizational changes. For example,
using the cycle-GAN technique, Swiderska-Chadaj et al. reported an AUC of 0.98 and
0.97 for two different datasets constructed from prostate cancer WSIs [72,111]. While
efforts are being made to reduce variation and create well-defined standardized data,
such as color standardization and attempts to establish global standards for pathological
tissue processing, staining, scanning, and digital image processing, data augmentation
techniques are also being used to create learning datasets with as many variations as
possible in order to learn the many variations encountered in real life. Not only the
performance of the CPATH algorithm but also many considerations such as cost and
explainability should be thoroughly addressed when deciding which is more effective for
actual clinical introduction.

4.3. Algorithm Validation

Several steps of validation are conducted during the lengthy process of developing
a CPATH algorithm in order to test its performance and safety. To train models and
evaluate performance, CPATH studies on typical supervised algorithms separate annotated
data into individual learning datasets and test datasets, the majority of which employ
datasets with features fairly similar to those of learning datasets in the so-called ‘internal
verification’ stage. Afterwards, through so-called ‘external validation’, which uses data for
tests that have not been used for training, it is feasible to roughly evaluate if the algorithm
performs well with the data it would encounter in real clinical practice [15]. However,
simply because the CPATH algorithm performed well at this phase, it is hard to ascertain
whether it will function equally well in practical practice [112]. While many studies on
the CPATH algorithm are being conducted, most studies use autonomous standards due
to a lack of established clinical verification standards and institutional validation. Even
if deep learning algorithms perform well and are employed with provisional permission,
it is difficult to confirm that their performance exhibits the same confirmed effect when
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the algorithm is upgraded in the subsequent operation process. Efforts are being made
to comprehend and compare diverse algorithms regardless of research techniques, such
as the construction of a complete and transparent information reporting system called
TRIPOD-AI in the prediction model [113].

Finally, it should be noted that the developed algorithm does not result in a single
performance but rather continues within the patient’s disease progress and play an auxiliary
role in decision-making; thus, relying solely on performance as a ratification metric is not
ideal. This suggests that, in cases where quality measure for CPATH algorithm performance
is generally deemed superior to or comparable to pathologists, it should be defined by
examining the role of algorithms in the whole scope of disease progression in a patient
in practice [114]. This is also linked to the solution of the gold-standard paradox [14].
This is a paradox which may ariase during the segmentation model’s quality control,
where pathologists are thought to be the most competent in pathological picture analysis,
but algorithmic data are likely to be superior in accuracy and reproducibility. This paradox
may alternatively be overcome by implementing the algorithm as part of a larger system
that tracks the patient’s progress and outcomes [12].

4.4. Regulatory Considerations

One of the most crucial aspects for deep learning algorithms to be approved by regula-
tory agencies in order to use AI in clinical practice is to understand how it works, as AI is
sometimes referred to be a “black box” because it is difficult for humans to comprehend
exactly what it does [114]. Given the difficulty of opening up deep learning artificial neu-
ral networks and their limited explainability due to the difficulty of understanding how
countless parameters interact at the same time, more reliable and explainable models for
complex and responsible behaviors for diagnosis and treatment decisions and prediction
are required [115]. As a result, attempts have been made to turn deep learning algorithms
into “glass boxes” by clarifying the input and calculating the output in a way that humans
can understand and analyze [116–118].

The existing regulatory paradigm is less adequate for AI since it requires rather small
infrastructure and little human interaction, and the level of progress or results are opaque
to outsiders, so potential dangers are usually difficult to identify [119]. Thus far, the White
House has issued a memorandum on high-level regulatory principles for AI in all fields in
November 2020 [120], the European Commission issued a similar white paper in February
2020 [121], and UNESCO made a global guideline on AI ethics in November 2021 [122],
but these documents unfortunately do not provide a very detailed method to operate
artificial intelligence in the context of operations. Because artificial intelligence is generally
developed in confined computer systems, progress has been made outside of regulatory
environments thus far, and regulatory uncertainty can accelerate development while also
fueling systemic dangers at the same time. Successful AI regulations, as with many new
technologies, are expected to be continuously problematic in the future, as regulations
and legal rules will still lag behind developing technological breakthroughs [123]. Self-
regulation in industrial settings can be theoretically beneficial and is already in use [124],
but it has limitations in practice because it is not enforced. Ultimately, a significant degree
of regulatory innovation is required to develop a stable AI environment. The most crucial
issue to consider in this regard is that, in domains such as health care, where even a slight
change can have a serious influence, regulations of AI should be built with the consideration
of the overall impact on humans rather than making arbitrary decisions alone.

5. Novel Trends in CPATH

5.1. Explainable AI

Because most AI algorithms have unclear properties due to their complexity and often
lacking robustness, there are substantial issues with AI trust [125]. Furthermore, there
is no agreement on how pathologists should include computational pathology systems
into their workflow [126]. Building computational pathology systems with explainable
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artificial intelligence (xAI) methods is a strong substitute for opaque AI models to address
these issues [127]. Four categories of needs exist for the usage of xAI techniques and
their application possibilities [128]: (1) Model justification: to explain why a decision was
made, particularly when a significant or unexpected decision is created, all with the goal of
developing trust in the model’s operation; (2) Model controlling and debugging: to avoid
dangerous outcomes. A better understanding of the system raises the visibility of unknown
defects and aids in the rapid identification and correction of problems; (3) Model improving:
When a user understands why and how a system achieved a specific result, he can readily
modify and improve it, making it wiser and possibly faster. Understanding the judgments
created by the AI model, in addition to strengthening the explanation-generating model,
can improve the overall work process; (4) Knowledge discovery: One can discover new
rules by seeing the appearance of some invisible model results and understanding why and
how they appeared. Furthermore, because AI entities are frequently smarter than humans,
it is possible to learn new abilities by understanding their behavior.

Recent studies in breast pathology xAI quickly presented the important diagnostic
areas in an interactive and understandable manner by automatically previewing tissue
WSIs and identifying the regions of interest, which can serve pathologists as an interactive
computational guide for computer-assisted primary diagnosis [127,129]. An ongoing
study is being done to determine which explanations are best for artificial intelligence
development, application, and quality control [130], which explanations are appropriate
for situations with high stakes [115], and which explanations are true to the explained
model [131].

With the increasing popularity of graph neural networks (GNNs), their application in a
variety of disciplines requires explanations for scientific or ethical reasons in medicine [132].
This makes it difficult to define generalized explanation methods, which are further compli-
cated by heterogeneous data domains and graphs. Most explanations are therefore model-
and domain-specific. GNN models can be used for node labeling, link prediction, and graph
classification [133]. While most models can be used for any of the above tasks, defining
and generating explanations can affect how a GNN xAI model is structured. However,
the power of these GNN models is limited by their complexity and the underlying data
complexity, although most, if not all, of the models can be grouped under the augmented
paradigm [134]. Popular deep learning algorithms and explainability techniques based on
pixel-wise processing ignore biological elements, limiting pathologists’ comprehension.
Using biological entity-based graph processing and graph explainers, pathologists can now
access explanations.

5.2. Ethics and Security

AI tool creation must take into account the requirement for research and ethics ap-
proval, which is typically necessary during the research and clinical trial stages. Developers
must follow the ethics of using patient data for research and commercial advantages.
Recognizing the usefulness of patient data for research and the difficulties in obtaining
agreement for its use, the corresponding institution should establish a proper scheme to
provide individual patients some influence over how their data are used [103]. Individual
institutional review boards may have additional local protocols for permitting one to opt
out of data use for research, and it is critical that all of these elements are understood and
followed throughout the design stage of AI tool creation [104]. There are many parallels to
be found with the AI development pipeline; while successful items will most likely transit
through the full pathway, supported by various resources, many products will, however,
fail at some point. Each stage of the pipeline, including the justification of the tool for
review and being recommended for usage in clinical guidelines, can benefit from mea-
surable outcomes of success in order to make informed judgments about which products
should be promoted [135]. This usually calls for proof of cost or resource savings, quality
improvements, and patient impact and is thus frequently challenging to demonstrate,
especially when the solution entails major transformation and process redesign.
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Whether one uses a cloud-based AI solution for pathology diagnostics depends on a
number of things, such as the preferred workflow, frequency of instrument use, software
and hardware costs, and whether or not the IT security risk group is willing to allow the
use of cloud-based solutions. Cloud-based systems must include a business associate’s
agreement, end-to-end encryption, and unambiguous data-use agreements to prevent data
breaches and inappropriate use of patient data [21].

6. Conclusions and Future Directions

AI currently has enormous potential to improve pathology practice by reducing
errors, improving reproducibility, and facilitating expert communication, all of which
were previously difficult with microscopic glass slides. Recent trends of AI applicaion
should be affordable, practical, interoperable, explainable, generalizable, manageable,
and reimbursable [21]. Many researchers are convinced that AI in general and deep learning
in particular could help with many repetitive tasks using digital pathology because of
recent successes in image recognition. However, there are currently only a few AI-driven
software tools in this field. As a result, we believe pathologists should be involved from the
start, even when developing algorithms, to ensure that these eagerly anticipated software
packages are improved or even replaced by AI algorithms. Despite popular belief, AI will
be difficult to implement in pathology. AI tools are likely to be approved by regulators
such as the Food and Drug Administration.

The quantitative nature of CPATH has the potential to transform pathology laboratory
and clinical practices. Case stratification, expedited review and annotation, and the output
of meaningful models to guide treatment decisions and predict patterns in medical fields
are all possibilities. The pathology community needs more research to develop safe and
reliable AI. As clinical AI’s requirements become clearer, this gap will close. AI in pathology
is young and will continue to mature as researchers, doctors, industry, regulatory agencies,
and patient advocacy groups innovate and bring new technology to health care practi-
tioners. To accomplish its successful application, robust and standardized computational,
clinical, and laboratory practices must be established concurrently and validated across
multiple partnering sites.
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