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Abstract: In a networked control system scenario, the packet dropout is usually modeled by a
time-invariant (homogeneous) Markov chain (MC) process. However, from a practical point of
view, the probabilities of packet loss can vary in time and/or probability parameter dependency.
Therefore, to design a fault detection filter (FDF) implemented in a semi-reliable communication
network, it is important to consider the variation in time of the network parameters, by assuming
the more accurate scenario provided by a nonhomogeneous jump system. Such a premise can be
properly taken into account within the linear parameter varying (LPV) framework. In this sense, this
paper proposes a new design method of H∞ gain-scheduled FDF for Markov jump linear systems
under the assumption of a nonhomogeneous MC. To illustrate the applicability of the theoretical
solution, a numerical simulation is presented.

Keywords: fault-detection filter; Markovian jump linear system; H∞ norm; LMI relaxations;
nonhomogeneous Markov chains

MSC: 93E10

1. Introduction

In order to keep a manufacturing process as lean as possible, there are several aspects
that must be considered. The monitoring capability is one of the features receiving the
major spotlight in industrial operations since it is crucial to guarantee that the process is
safe for the personnel involved. Among the procedures that constitute the monitoring
systems, one that is worth mentioning is the fault-detection (FD) process [1,2].

A fault can be seen as the first indication of more harsh problems. It is any type
of unwanted minor behavior that was not expected from the system. It can be caused,
for instance, by extended wear due to long periods of time without maintenance. As a
consequence of inadequately fixed wear, malfunctions or failures can cause a breakage [3].

In this sense, FD is a model-based process in which any abnormal/unexpected be-
havior is detected by a two-step procedure. The first step in the FD process is the residue
generation, performed by an observer. The second step is the evaluation process, where
the residue signal, generated by the observer, is treated by an evaluation function and
compared with a predetermined threshold. We assume that a fault has occurred if the
evaluation function surpasses the threshold; otherwise, we consider that the system is
working as intended [4].

Mathematics 2023, 11, 1713. https://doi.org/10.3390/math11071713 https://www.mdpi.com/journal/mathematics1
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Currently, an important assumption that must be taken into account in FD systems is
that the communication between the components is made via semireliable networks, which
are associated with occasional packet dropout. These dropouts are caused by different
sources as package collision due to high network congestion [5]. The distinction between a
dropout and a fault is an essential aspect of the FD process since it makes easier to locate a
fault. A viable way to model a packet dropout in a network is to employ a Markov jump
linear system (MJLS) framework. This representation is appropriate to handle systems
whose dynamic behavior is subject to random abrupt changes, like those caused by network
packet dropouts. In this scenario, a Markov chain (MC) is used to model the jumping
between the modes of operation of the system [6].

In the literature, there are plenty of examples of FD approaches that consider network
behavior in their design. For instance, in [7,8] linear matrix inequality (LMI)-based con-
straints are provided to design fault detection filters (FDF) by using the H∞ norm as a
performance index. In [9], the authors have developed an FD approach for underactuated
manipulators modeled by MJLS. In [10], an FD method for networked control systems
(NCS) under the assumption of the existence of a variable delay between the signals re-
ceived by the system components is tackled. In [11], a fault detection filter under the MJLS
formulation was applied to a control moment gyroscope. In [12], a fault-detection filtering
problem is tackled under the Markov switching memristive neural networks. In [13], an
observed-based sliding mode control problem based on the event-triggered protocol under
the Markovian jump systems framework was presented. In [14], a fault-detection filter for
discrete time Markov jump Lur’e systems with bounded sector condition. Observing all
the above examples, one fundamental premise in the MJLS context is that the Markov chain
(MC) is considered to be homogeneous [15], which means that it does not vary in time.
However, since the packet dropout sources (collision, congestion, networked-induced de-
lay) change in time, we consider that a fixed transition probability between the Markovian
operation modes does not properly model the network behavior. A way to handle the
particularity of a time-varying MC was presented in [16], where the author has proposed
new LMI constraints to evaluate the stability of MJLS governed by a nonhomogeneous
MC. A particular case of the proposal presented by [16], which allows for designing
FDF for MJLS systems affected by nonhomogeneous MCs, consists of using a linear pa-
rameter varying (LPV)-based representation for the time-varying transition probability
matrix [17,18]. There are several works in the literature that deal with the problem of
control (or filter) synthesis for nonlinear systems by using different approaches. For exam-
ple, regarding the design of fault-tolerant controllers, there are strategies based on fuzzy
systems [19] capable of modeling system nonlinearities by using Takagi–Sugeno models,
so that if the probability of actuator failure is small, the control mode is normal, and if
the probability is high, the control is changed to fault-tolerant mode. Another strategy to
deal with nonlinearities that can be found in the literature arises in the context of sliding
mode control [20]. In this case, the class of discrete-time nonlinear systems with delays and
uncertainties that is considered is the conic type, where the nonlinear terms satisfy the con-
straint that lies in a known hypersphere with an uncertain center. However, the proposed
approach, in addition to considering the loss of packets in the communication network via
the Markov chain, deals with the nonlinearity of the systems by using a different strategy
from those previously discussed, in which the modes of operation are considered linear but
depend on time-varying parameters. Such modeling allows the use of convex optimization
methods and LMI-based tools to solve the filtering problem without adding extra levels
of complexity.

In view of the above works, the main contribution of the present work are

• the proposition of a new design technique of gain-scheduled FDF for MJLS with
nonhomogeneous MC, and

• the numerical simulation to reinforce the usability of the proposed theoretical solution.

The proposed approach describes the nonhomogeneous MC using linear time-varying
parameters to model those variations, assuming that these parameters are known or at
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least measurable. Another important assumption made is that the probability varies in
time arbitrarily. Hence, the probability parameter for the following instant (k + 1) does
not depend on present instant k, which grants the ability to disassociate the Lyapunov
function in two distinct simplexes. Based on this assumption, we propose the design of
a gain-scheduled fault-detection filter where the scheduling parameter implemented is
the one that dictates the variation of the MC. One advantage of the proposed approach,
when compared with others found in the literature, is that the design conditions assure
the system stability for the entire parameter-varying range since the FDF is scheduled in
terms of time-varying parameters modeling the network variation. The major novelty of
the proposed technique is the higher level of fidelity in the representation of the network
influence in the system model. Since FD is a model-based approach, a more accurate
representation of the system can lead to better performance in practice.

The paper is organized as follows. Sections 2 and 4 present the necessary theoretical
fundamentals. Section 3 shows how to model the nonhomogeneous Markov Chain by
using LPV. Section 5 introduces the problem formulation and the main contributions.
Section 6 illustrates the feasibility of applying the proposed technique, by means of a
numerical simulation, and Section 7 concludes the paper with some final remarks.

Notation

The real Euclidean space is denoted by Rn where n represents its dimension and a real
matrix with n rows and m columns is represented by Rn×m. The symbol In stands for an
n × n identity matrix (or, for simplicity, just I, with an appropriate dimension, whenever no
confusion arises) and the symbol (·)′ denotes the transpose of a matrix. The operator Her(·)
is used to express the symmetric sum as in Her(X) = X + X′, while the operator diag(·)
represents a diagonal matrix. The symbol • denotes a symmetric block in a partitioned
symmetric matrix. The expected value operator is represented by E(·) and the conditional
expected operator is denoted by E(·|·). The fundamental probability space is described by
(Ω, F , {Fk}, Pr(·)). The space L2 is the Hilbert space formed by Fk-measurable random
sequences {zk}∞

k=0 such that ‖z‖2 �
[
∑∞

k=0 E{|z(k)|2}
]1/2

< ∞.

2. Preliminaries

A generic discrete-time MJLS is given by

G ≡
{

x(k + 1) = Aθk x(k) + Jθk w(k)

z(k) = Cθk x(k) + Dθk w(k)
, (1)

where x(k) ∈ Rnx is for the state vector, w(k) ∈ Rnw is the exogenous input vector, and
z(k) ∈ Rnz is the output signal. The state-space matrices of system (1) depend on the
index θk, which represents a discrete-time Markov chain belonging to a finite set of modes
K = {1, . . . , σ}, whose switching is ruled by a time-varying transition probability matrix

P(k) =

⎡⎢⎣ρ11(k) · · · ρ1σ(k)
. . .

ρσ1(k) · · · ρσσ(k)

⎤⎥⎦. (2)

The entries ρij(k) of P(k) are such that ρij(k) = Pr(θk+1 = j|θk = i), ∀k ≥ 0, ρij(k) ≥ 0,
and ∑σ

j=1 ρij(k) = 1. We recall that whenever the transition matrix is time-invariant, that is,
P(k) = P, the associated Markov chain is said to be homogeneous; otherwise, it is called
nonhomogeneous (meaning that the probabilities vary in time) [15,21]. It is assumed that
ρij(k) varies within the following interval: 0 ≤ ρ

ij
≤ ρij(k) ≤ ρij ≤ 1, where ρ

ij
represents

lower bound and ρij denotes the upper bound. Another important assumption is that
the upper and lower bounds of the transition probability are known, and the transition
probability variation is instantly measurable. Therefore, all the parameters in (2) may

3
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vary in a known range with ρij(k) ∈ [ρ
ij

, ρij]. There are several ways to determine the

values of the upper (ρij) and lower (ρ
ij

) bounds of ρij(k). Those values can be obtained

via mathematical modeling, observation, estimation, simulation, or based on the a priori
knowledge of the system, such that the estimate can vary among systems and depends on
the type of variation to which the system is subjected.

From the constraints ∑σ
j=1 ρij(k) = 1 and 0 ≤ ρ

ij
≤ ρij(k) ≤ ρij ≤ 1, the transition

matrix (2) can be described by N polytopic intervals, where N depends on the number
of transition probabilities that are time-varying. From these polytopic intervals, some
techniques can be applied to obtain a gain-scheduled FDF.

In order to exemplify these N polytopic intervals and how to define a time-varying
transition matrix by using LPV, let us assume that σ = 5 and the parameters ρ14(k) and
ρ15(k) vary in time; hence, the first row of the transition matrix (2) can be written as[

ρ11 ρ12 ρ13 ρ14(k) ρ15(k)
]
, (3)

and from this row, two polytopic intervals (N = 2) are obtained:[
ρ11 ρ12 ρ13 ρ

14
ρ15

]
,

[
ρ11 ρ12 ρ13 ρ14 ρ

15

]
. (4)

The polytopic intervals obey the constraints ∑σ
j=1 ρij(k) = 1 and 0 ≤ ρ

ij
≤ ρij(k) ≤

ρij ≤ 1 simultaneously. The following notation will be used to represent a time-varying
row of P(k) as in (3) with the lower and upper bounds as in (4):[

ρ11 ρ12 ρ13 [ρ
14

, ρ14] [ρ
15

, ρ15]
]
. (5)

The main novelty in this paper is the usage of the same time-varying parameters
that coordinate the nonhomogeneous MC variation as gain-scheduled parameters for
the design and implementation of the FDF. This concept will be carefully described in
Section 3.

Although the time variation that affects the probability matrix is generally repre-
sented by modeling P(k) as belonging to a polytope, in this paper we choose to use
another approach, which describes each time-varying row of P(k) in terms of a linear time-
varying parameter vector αr(k) belonging to a distinct unit simplex ΛNr , r = 1, 2, . . . , m.
The definition of the unit simplex is given by

ΛNr ≡
{

ζ ∈ R
Nr

∣∣∣∣∣ Nr

∑
i=1

ζi = 1, ζi ≥ 0, i = 0, 1, . . . , Nr

}
, (6)

where m is the number of time-varying rows in the probability matrix. In order to group up
all the time-varying parameters of P(k) in a single domain, we perform a Cartesian product
of m simplexes, each one of dimension Nr, in a single domain called multisimplex, and
represent it by ΛN = ΛN1 ×ΛN2 × · · · ×ΛNm , with the index N given by N = (N1, . . . , Nm).
For ease of notation RN represents the space RN1+N2+...+Nm . In this sense, a given element
α(k) ∈ ΛN is a vector belonging to RN and can be decomposed as (α1(k), α2(k), . . . , αm(k))
according to the structure of ΛN . Subsequently, each αr(k) ∈ Λr ⊂ RNr , r = 1, . . . , m, is
decomposed in the form (αr1, αr2, . . . , αrNr ). This approach follows the one adopted in [22].

Hereafter, the transition probability will be denoted by ρij(α(k)), where the term
α(k) ∈ ΛN represents the time-varying parameter responsible to model the probability of
the nonhomogeneous Markov chain at time k.

4
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3. Modeling the Nonhomogeneous Markov Chain by Using the Linear Parameter
Varying Approach

We next present the definition of a matrix Oi(ιk), where i represents the MC mode,
and ιk = (ι1(k), . . . , ιm(k)) denotes a generic LPV parameter. It is assumed that Oi(ιk) is
affinely dependent on the time-varying parameters ιj(k), as described below:

Oi(ιk) = Oiι0
+

m

∑
j=1

ιj(k)Oiιj
. (7)

The matrix in the affine form (7) can be interpreted in the following manner: matrix
Oi ι0 represents the time-invariant part of the filter dynamics. The remaining matrices
Oi ιj

, j = 1, . . . m denote the time-varying dynamic that depends on the parameters ιj(k).
To illustrate this particular structure, consider the example presented below, for an MJLS
with three operation modes, whose time-varying probability matrix is given by

P(k) =

⎡⎣ 0.5 [0.1, 0.3] [0.2, 0.4]
[0, 0.4] [0.5, 0.9] 0.1

0.2 0.6 0.2

⎤⎦, (8)

where elements ρ12(k), ρ13(k), ρ21(k) and ρ22(k) vary in a known interval [ρ
ij

, ρij].

Since each uncertain row of P(k) can be represented by a polytopic interval, the rep-
resentation of the first row is given by[

0.5 0.1 0.4
]
α11(k) +

[
0.5 0.3 0.2

]
α12(k) (9)

and the second row is [
0 0.9 0.1

]
α21(k) +

[
0.4 0.5 0.1

]
α22(k) (10)

with α1(k) = (α11(k), α12(k)) ∈ Λ2, α2(k) = (α21(k), α22(k)) ∈ Λ2, and α(k) = (α1(k), α2(k))
∈ Λ2 × Λ2. On the other hand, the representation of P(k), in terms of parameter ι(k) used in the
affine structure, can be done as follows,

P(k) =

⎡⎣0.5 0.2 0.3
0.2 0.7 0.1
0.2 0.6 0.2

⎤⎦
︸ ︷︷ ︸

Pι0

+

⎡⎣0 1 −1
0 0 0
0 0 0

⎤⎦
︸ ︷︷ ︸

Pι1

ι1(k) +

⎡⎣0 0 0
1 −1 0
0 0 0

⎤⎦
︸ ︷︷ ︸

Pι2

ι2(k), (11)

where ι1(k) ∈ [−0.1, 0.1] and ι2(k) ∈ [−0.2, 0.2]. Although the modeling seems to be
different, note that a simple change of variables can recover the multisimplex modeling
from the affine representation, since

ιr(k) = ιrαr1(k) + ιrαr2(k), (12)

where ιr(k) ∈ [ιr, ιr], αr(k) = (αr1(k), αr2(k)) ∈ Λ2, r = 1, 2.
In order to clarify how to write a time-varying matrix in the affine form, consider the

following affine matrix as[
5 0.3+ι1(k)

12 −2+0.5ι2(k)

]
︸ ︷︷ ︸

Oi(ιj)

=
[ 5 0.3

12 −2
]︸ ︷︷ ︸

Oi ι0

+
[

0 1
0 0

]︸ ︷︷ ︸
Oi ι1

ι1(k) +
[

0 0
0 0.5

]︸ ︷︷ ︸
Oi ι2

ι2(k), (13)

where ι1(k) ∈ [ι1, ι1] and ι2(k) ∈ [ι2, ι2]. By using the multisimplex formulation, ιr(k) =
ιrαr1(k) + ιrαr2(k) for r = 1, 2, we recover the representation with α(k) ∈ ΛN = Λ2 × Λ2,
where N = (2, 2). This procedure can be extended for all matrices throughout this paper.
Bearing this in mind, in what follows, whenever we write Pi(α(k)) for α(k) ∈ ΛN , we mean

5
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a representation, as in (7), in terms of generic LPV parameters or, equivalently, in terms the
multisimplex parameter α(k).

4. Bounded Real Lemma

The concept of stability for the nonhomogeneous Markov chain is different from its
homogeneous counterpart. This discrepancy is caused by the arbitrary variation of the
transition probability. Therefore, an upper bound of the H∞ norm can only be obtained if
system (1) under the assumption of w(k) ≡ 0 is exponentially stable in the mean square
sense with conditioning of type I (ESMS-CI). This concept was first introduced in [23] and
is also presented in [16]. In this sense, before introducing the main results of this paper,
some fundamental definitions are presented next.

Definition 1 ([16]). Assuming that system (1) is ESMS-CI, and x(0) = 0, its H∞ norm is given
by

‖G‖∞ = sup
w∈L,‖w‖2 
=o

‖z‖2

‖w‖2
. (14)

Next, we present a sufficient condition version of the bounded real lemma adapted
from [16], which allows us to deal with nonhomogeneous MJLS with arbitrarily fast time-
varying parameters, where the parameters are modeled by using the multisimplex domain
ΛN . For that, it is assumed that the condition H1 in Proposition 1 in [16] is satisfied; that is,
Pr(θk = i) > 0 for all i ∈ K and k ≥ 0.

Remark 1. In order to draw the results presented in Lemma 1, it is necessary to consider the
assumption that the variation of the probabilities ρij(k) is arbitrarily fast. Under this assumption,
there is no need to bound the variation limit.

Lemma 1. System (1) is ESMS-CI and satisfies ‖G‖∞ < γ if there exist symmetric positive
definite matrices Pi(α(k)), such that, for each i ∈ K and for all α(k), α(k + 1) ∈ ΛN, the
parameter-dependent LMIs[

Ai Ji
Ci Di

]′[
Ei(P)(α(k),α(k+1)) 0

0 I

][
Ai Ji
Ci Di

]
−

[
Pi(α(k)) 0

0 γ2 I

]
︸ ︷︷ ︸

Ωi(α(k))

< 0 (15)

are satisfied, where Ei(P)(α(k), α(k + 1)) = ∑σ
j=1 ρij(α(k))Pj(α(k + 1)).

Proof. Here is a sketch of the proof for Lemma 1. Assuming that there exist Pi(α(k)) =
P′

i (α(k)) such that Equation (15) holds, we have, from Proposition 1 in [16], that system (1)
is ESMSC1. Define the cost function as

J γ
τ =

τ

∑
k=0

E
[
z(k)′z(k)− γ2w(k)′w(k)

]
. (16)

Observe that ‖G‖∞ < γ ⇐⇒ J γ
∞ ≤ −e2‖w‖2

2, ∀ ‖w‖2 
= 0 and for some e 
= 0,
where J γ

∞ represent the cost function for τ → ∞. Considering the Lyapunov function
Vθk (k, x(k)) � x(k)′Pθk (α(k))x(k), one has

J γ
τ =

τ

∑
k=0

E
[
z(k)′z(k)− γ2w(k)′w(k)− Vθk (k, x(k)) + Vθk+1

(k + 1, x(k + 1))
]

+
τ

∑
k=0

E
[
Vθk (k, x(k))− Vθk+1

(k + 1, x(k + 1))
]

6
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=
τ

∑
k=0

E
[
z(k)′z(k)− γ2w(k)′w(k)− Vθk (k, x(k))

]
+

τ

∑
k=0

E
[

E
[
Vθk+1

(k + 1, x(k + 1))|Fk

]]
− E

[
Vτ+1(τ + 1, x(τ + 1)

]
+ E

[
Vθ0(0, x(0))

]
=

τ

∑
k=0

E
[
z(k)′z(k)− γ2w(k)′w(k)− Vθk (k, x(k))

]
+

τ

∑
k=0

E
[

x(k + 1)′E
[

Pθk+1
(α(k + 1))|Fk

]
x(k + 1)

]
− E

[
Vτ+1(τ + 1, x(τ + 1))

]
+ E

[
Vθ0(0, x(0))

]
=

τ

∑
k=0

E
[
[x(k)′ w(k)′]Ωθk (α(k))[x(k)

′ w(k)′]′
]

− E
[
Vτ+1(τ + 1, x(τ + 1))

]
+ E

[
Vθ0(0, x(0))

]
,

where Ωi(α(k)) is presented in Equation (15). Recalling that x(0) = 0 so that Vθ0(0, x(0)) =
0, we have ∀k ≥ 0 and some e 
= 0 that

J γ
τ =

τ

∑
k=0

E
[
[x(k)′ w(k)′]Ωθk (α(k)) •

]
− E[Vθτ+1(τ + 1, x(τ + 1))]

≤
τ

∑
k=0

E
[
[x(k)′ w(k)′]Ωθk (α(k)) •

]
≤ −

τ

∑
k=0

e2E[‖w(k)‖2]. (17)

Inequality (17) yields, as τ → ∞, that J γ
∞ ≤ −e2‖w‖2

2 ∀ ‖w‖2 
= 0, showing the desired
result.

5. Problem Formulation and Main Result

The block diagram of Figure 1 illustrates the FD scheme considered in this paper.
Note that there are three elements composing the diagram: the system itself (Gθk , which
represents the plant subjected to a fault), the controller Kθk , and the gain-scheduled FDF
block Fθk .

Figure 1. Graphic description of the FD scheme used to design the gain-scheduled fault detection
filter.

7
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The main purpose of this section is to design the FDF. Consider that the nonhomogeneous
MJLS Gθk is defined as

Gθk ≡
{

x(k + 1) = Aθk x(k) + Bθk u(k) + Jθk w(k) + Fθk f (k)

y(k) = Cθk x(k) + Dθk w(k) + Eθk f (k)
, (18)

where x(k) ∈ Rnx denotes the system states vector, u(k) ∈ Rnu represents the control
input, w(k) ∈ Rnw is the exogenous/noise input, y(k) ∈ R

ny represents the measurement
signals, and f (k) ∈ R

n f is the fault signal that should be detected. We also assume that
w(k), f (k) ∈ L2. Finally, when regarding the output-feedback control law, consider the
following expression

u(k) = Kθk y(k). (19)

The controller Kθk is assumed to be designed beforehand.

Remark 2. Although the formulation presented in this paper considers an output-feedback control
law (19) that is mode-dependent (depends on θk) but is parameter-independent (does not depend
on αk or the time-varying probabilities ρij(k)), the synthesis of the FD filter presented next can be
extended to deal with a parameter-dependent control law. Regardless of that, for both situations, it is
imperative that the controller is designed a priori. The major implementation difference in the latter
case is that the controller would be defined as gain-scheduled.

We define the gain-scheduled FDF under the aforementioned conditions as

Fθk ≡

⎧⎪⎪⎨⎪⎪⎩
η(k + 1) = Aηθk (α(k))η(k) +Mηθk (α(k))u(k) + . . .

Bηθk (α(k))y(k)

r(k) = Cηθk (α(k))η(k)

, (20)

where η(k) ∈ R
nη is the filter states, r(k) ∈ Rnr is the residue signal, u(k) is the control

law given by (19), and y(k) represents the measurement output. The FDF is scheduled in
terms of the time-varying parameter α(k), which represents the variation in time of the MC.
Consequently, it is assumed that the time-varying behavior of the MC is known or at least
measurable. The purpose of the gain-scheduled FDF in (20) is to generate a residue signal
r(k), which is used to detect the fault.

Remark 3. All matrices that compose the filter (20) are written in the affine form as in (7), that is

Aηi(βk) = Aηiβ0
+

m

∑
j=1

β j(k)Aηiβ j
, (21)

and similarly for Mηi(βk), Bηi(βk), Cηi(βk). Recall that the goal of this paper is to design the gain-
scheduled FDF (20) where the schedule parameter represents the variation in the nonhomogeneous
MC, as explained in Section 3.

We define e(k) = r(k)− f (k) and the augmented system as

Gaug ≡
{

x̃(k + 1) = Ãθk (α(k))x̃(k) + J̃θk (α(k))w̃(k)

e(k) = C̃θk (α(k))x̃(k) + D̃θk (α(k))w̃(k)
, (22)

where x̃(k) = [x(k) η(k)], and w̃(k) = [u(k) w(k) f (k)]. The matrices that compose the
augmented system are

Ãi(α(k)) =
[

Ai 0
Bηi(α(k))Ci Aηi(α(k))

]
,

8
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J̃i(α(k)) =
[

Bi Ji Fi
Mηi(α(k)) Bηi(α(k))Di Bηi(α(k))Ei

]
, and

C̃i(α(k)) = [ 0 Cηi(α(k)) ], D̃i(α(k)) = [ 0 0 −I ]. (23)

In order to provide an FDF (20), which generates a residue signal r(k) that is robust
against noise and associated with a fast response whenever a fault occurs, we set our goal
as the synthesis of a proper FD filter by minimizing an upper bound γ for the H∞ norm of
the augmented system (22), such that

sup
w(k)∈L2, ‖w(k)‖2 
=0

‖e(k)‖2

‖w(k)‖2
< γ. (24)

In the following, we present our main result of the paper, which provides parameter-
dependent bilinear matrix inequalities (BMI) for the design of an FDF (20) for system (18)
with H∞ guaranteed cost. For compactness, hereafter, the dependence on time of parameter
α(k) and α(k + 1) is omitted, such that they will be respectively replaced by α and α+.

Theorem 1. If there exist, for all i ∈ K, symmetric positive definite parameter-dependent matrices
Zi(α), Ri(α), Z̄1(α

+), R̄i(α
+), matrices Wi(α), W̄i(α

+), Xi(α), Yi(α) Oi(α), Bηi(α), Mηi(α),
∇i(α) with appropriate dimensions, and a scalar ξ ∈ (0, 2), such that the BMIs (25) hold for all
α, α+ ∈ ΛN and i ∈ K,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π11 • • • • • • • • •
Π21 Π22 • • • • • • • •

0 0 −γ2 I • • • • • • •
0 0 0 −γ2 I • • • • • •
0 0 0 0 −γ2 I • • • • •

Π61 Π62 0 0 0 Π66 • • • •
Π71 Π72 0 0 0 Π76 Π77 • • •
Π81 Π82 Υa

i (α)
′(Bi) Υa

i (α)
′(Ji) Υa

i (α)
′(Fi) ξΠ81 ξΠ82 −Z̄(α+) • •

Π91 Π92 Υb
i (α)

′Mηi(α) Π94 Π95 ξΠ91 ξΠ92 −W̄(α+) −R̄(α+) •
∇i(α) ∇i(α) 0 0 −I ξ∇i(α) ξ∇i(α) 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (25)

where

Υa
i (α) = [ρ1/2

i1 (α)Inx . . . ρ1/2
iσ (α)Inx ], Υb

i (α) = [ρ1/2
i1 (α)Inη . . . ρ1/2

iσ (α)Inη ],

Υc
i (α) = [ρ1/2

i1 (α)Inx+nη . . . ρ1/2
iσ (α)Inx+nη ], Π11 = Zi(α)− Her(Xi(α)),

Π21 = Wi(α)− Yi(α)− Xi(α)
′, Π61 = Zi(α)− ξXi(α)

′ − Xi(α),

Π71 = Wi(α)− ξXi(α)
′ − Yi(α), Π81 = Υa

i (α)
′AiXi(α),

Π91 = Υb
i (α)

′(Bηi(α)CiXi(α) +Oi(α)), Π22 = Ri(α)− Her(Yi(α)),

Π62 = Wi(α)
′ − ξYi(α)

′ − Xi(α), Π72 = Ri(α)− ξYi(α)
′ − Yi(α),

Π82 = Π81, Π92 = Π91, Π94 = Υb
i (α)

′Bηi(α)Di,

Π95 = Υb
i (α)

′(Bηi(α)Ei), Π66 = −ξ Her(Xi(α)),

Π76 = −ξ(Yi(α)− Xi(α)
′), Π77 = −ξ Her(Yi(α)),

and

Z̄(α+) = diag(Z̄1(α
+), . . . , Z̄σ(α+)), W̄+(α+) = diag(W̄+

1 (α+), . . . , W̄σ(α+)),
R̄i(α

+) = diag(R̄1(α
+), . . . , R̄σ(α+)),

(26)

then γ is an upper bound for the H∞ norm of the augmented system (22), where the matrices that
compose the FDF in the form of (20) are given by Aηi(α) = Oi(α)Yi(α)

−1, Bηi(α), Mηi(α),
Cηi(α) = ∇iYi(α)

−1(α) for all i ∈ K.

9
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Proof of Theorem 1. Consider the augmented matrices as from (23), and define the matri-
ces Pi(α) and Hi(α) according to

Pi(α) =
[

Zi(α) •
Wi(α) Ri(α)

]
, Hi(α) =

[
Xi(α) Xi(α)
Yi(α) Yi(α)

]
. (27)

In addition, we define the matrices P̄i(α
+) and P̄(α+) as follows:

P̄i(α
+) =

[
Z̄i(α

+) •
W̄i(α

+) R̄i(α
+)

]
, P̄(α+) = diag(P̄i(α

+), . . . , P̄σ(α
+)). (28)

Consider the following change of variables: Oi(α) = Aηi(α)Yi(α), ∇i(α) = Cηi(α)Yi(α).
Then we obtain the following identities:

Ãi(α)Hi(α) =
[

Ai+BiKi(α)Ci 0
Mηi(α)Ki(α)Ci+Bηi(α)Ci Aηi(α)

][
Xi(α) Xi(α)
Yi(α) Yi(α)

]
=

[
(Ai+BiKi(α)Ci)Xi(α) (Ai+BiKi(α)Ci)Xi(α)

Ξi(α)+Aηi(α)Yi(α) Ξi(α)+Aηi(α)Yi(α)

]
,

C̃i(α)Hi(α) = [ 0 Cηi(α) ]
[

Xi(α) Xi(α)
Yi(α) Yi(α)

]
= [ Cηi(α)Yi(α) Cηi(α)Yi(α) ],

(29)

where Ξi(α) = (Mηi(α)KiCi +Bηi(α)Ci)Xi(α). Consequently, the BMI (25) can be rewritten
as ⎡⎢⎢⎣

Pi(α)−Her(Hi(α)) • • • •
0 −γ2 I • • •

Pi(α)−ξHi(α)
′−Hi(α) 0 −ξ Her(Hi(α)) • •

Υc
i (α)

′ Ãi(α)Hi(α) Υc
i (α)

′ J̃i(α) ξΥc
i (α)

′ Ãi(α)Hi(α) −P̄(α+) •
C̃i(α)Hi(α) D̃i(α) ξC̃i(α)Hi(α) 0 −I

⎤⎥⎥⎦ < 0. (30)

By using the projection lemma (see [24]), (30) can be rewritten as follows,

D + U′HiV + VH′
iU < 0, (31)

where

D =

⎡⎢⎣
Pi • • • •
0 −γ2 I • • •
Pi 0 0 • •
0 Υc

i
′ J̃i 0 −P̄+ •

0 D̃i 0 0 −I

⎤⎥⎦, U′ =

⎡⎢⎣
−I
0
−I

Υc
i
′ Ãi

C̃i

⎤⎥⎦, V′ =

⎡⎣ I
0
ξ I
0
0

⎤⎦. (32)

(Observe that in the remaining of the proof, the time-varying parameter α is omitted
for notation simplicity, as well as the dependence on α+, which will be replaced by the
superscript index “+”.)

By taking the following basis for the null space of U and V

NU =

⎡⎣ I 0 0 0
0 I 0 0
−I 0 Ã′

iΥ
c
i C̃′

i
0 0 I 0
0 0 0 I

⎤⎦, NV =

⎡⎣ ξ I 0 0 0
0 I 0 0
−I 0 0 0
0 0 I 0
0 0 0 I

⎤⎦ (33)

and by applying the equivalence conditions of the projection lemma, we get

N′
UDNU =

⎡⎣ −Pi • • •
0 −γ2 I • •

Υc
i
′ Ãi Pi Υc

i
′ J̃′i −P̄+ •

C̃i Pi D̃i 0 −I

⎤⎦ < 0, (34)

N′
VDNV =

⎡⎣ (ξ2−2ξ)Pi • • •
0 −γ2 I • •
0 Υc

i
′ J̃i −P̄+ •

0 D̃i 0 −I

⎤⎦ < 0. (35)

10
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Notice that from the first term in (35) we can state that 0 < ξ < 2. Now, pre- and
postmultiplying (34) by diag(Xi, I, X̄+, I), where Xi = P−1

i , X̄+ = (P̄+)−1, we obtain⎡⎣ −Xi • • •
0 −γ2 I • •

X̄+Υc
i
′ Ãi X̄+Υc

i
′ J̃i −X̄+ •

C̃i D̃i 0 −I

⎤⎦ < 0. (36)

Notice that X̂+ represents a block diagonal matrix given by

X̂+ = diag(X̄+
1 , . . . , X̄+

σ ), (37)

with X̄+
i = (P̄+

i )−1. By using the Schur complement in (36) and noticing that

Υc
i X̄+Υc

i
′ =

σ

∑
j=1

ρij X̄+
j , (38)

we have the condition (15) satisfied, so that the result follows from the bounded real lemma,
presented in Lemma 1, for the nonhomogenous MJLS.

Remark 4. Observe that the conditions of Theorem 1 constitute of infinite-dimensional problems,
which can be solved by using homogeneous polynomial approximations for the optimization variables
(LMI relaxations) and then testing the positivity of the polynomial matrix inequalities by means of a
finite set of LMIs. For this purpose, the authors strongly recommend the use of the toolbox robust
LMI parser (ROLMIP), whose tutorial can be found in [25].

Remark 5. Theorem 1 can be adapted to handle the FDF synthesis problem for homogeneous MJLS
with constant or uncertain but time-invariant probability matrix by simply making α(k + 1) =
α(k) = α.

The constraints presented in Theorem 1 are BMIs, which means that is necessary to
use appropriate tools in order to solve them. Among a number of techniques available
in the literature [26–28], we employ the coordinate descend algorithm (CDA), since it is a
well-known and widely used tool to solve such issues. Accordingly, an iterative procedure
based in CDA is given below to solve Theorem 1.

In Algorithm 1, φ represents the stop criteria and tmax is the maximum number of
iterations allowed. Observe that if a solution is found in the first iteration of CDA, the
iterative procedure will converge to an optimized solution or at least keep the same solution
found in the first iteration. The CDA is better detailed in [26,27].

Algorithm 1 Coordinate descent algorithm.
Coordinate descent algorithm (CDA):
Input: Bηi, γ, tmax, φ.
Output: Aηi, Bηi, Mηi, Cηi.
Initialization:
While: γt−1−γt

γt−1 ≤ η or t ≤ tmax do:

Step 1: Find a solution for the LMI constraint (25) obtaining the values of X using as an
input Bi, which can be obtained by using any method, for example, the one in Theorem 1
in [7].
Step 2: Now find a solution for the same LMI constraint (25) to obtain Aηi, Bηi, Mηi, Cηi,
but this time by using X as an input. Also obtain the value of γ.

11
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6. Numerical Example

To illustrate the applicability of the theoretical results, a numerical example of a
coupled tanks model (see Figure 2) is presented next. In this example, we assume that
the plant itself is time-invariant, nevertheless, there are some time-varying parameters
associated with the model of the communication network, which is represented by a
nonhomogeneous Markov chain.

h1

u1

h2

Figure 2. Coupled tanks model considered in the numerical example. The level on each tank h1, h2,
measured independently from each other, are the system states, while the control input is the inlet
flow u1 into the first tank.

6.1. Simulation Setup

The parameters and modeling of the coupled tanks system were extracted from [29],
such that the continuous-time state-space matrices are given by

A =
[
−0.0239 −0.0127
0.0127 −0.0285

]
, B =

[
0.71

0
]
,

J =
[

0.0071
0

]
, F =

[
0.071

0
]
, K = [ −1.03 −0.33 ]. (39)

The sampling time used is Ts = 1s. Note that in order to represent the fault as an
abnormal input on the first tank, the matrix associated with the fault signal F is 10% of the
control input matrix B.

Regarding the network modeling, we assume that each tank is far away from the other;
therefore, data gathered from each sensor is transmitted via two distinct networks. Network
1 transmits the measurement of the first tank, and Network 2 transmits the measurements
of the second tank. The transmission of the measurement signals through a semireliable
communication network is modeled by using a simplified Gilbert–Elliot model, as done
in [30] while the packet dropout is represented by the zero-input approach from [31],
meaning that when a packet loss occurs, we assume that the value of the received signal
is null. Hence, the complete network behavior is represented by four distinct operation
modes, as illustrated by Figure 3. The first one is that where all the measurements are
correctly transmitted (called “Ok Ok” in Figure 3); the second one considers that the
measurement on the first tank is successfully transmitted, but occurs a packet dropout of
the measurement from the second tank (called “Ok Drop” in Figure 3); the third case is the
opposite of the second one (called “Drop Ok” in Figure 3); and the last mode represents the
case where all measurements were lost (called “Drop Drop” in Figure 3).

12
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Ok Ok Ok Drop

Drop Ok Drop Drop

ρ14(k)

ρ12(k) ρ13(k)

ρ11(k)

ρ21(k)

ρ24(k)

ρ23(k)

ρ22(k)

ρ31(k)
ρ32(k)

ρ34(k)

ρ33(k)

ρ41(k)

ρ42(k)

ρ43(k)

ρ44(k)

Figure 3. Graphic representation of the network states modeled as a Markov chain where the mode
Ok Ok denotes that the networks responsible for transmitting the measurement of both sensors are
operating on the nominal state, the mode Ok Drop represents the situation where there is a problem
in the network in charge of transmitting the measurements of the second tank, the mode Drop Ok
represents a failed transmission of the first tank measurements, and the mode Drop Drop stands for
the case when both networks present some issues.

Remark 6. It is essential to point out that the proposed solution allows modeling the network
packet dropout rate varying in time. However, the feasibility of the proposed solution is dictated
by three main features, the system dynamic, the number of Markov modes, and range variation.
Therefore, it is important to keep in mind that an overly complex Markov chain with a high range of
variation will request more computational effort, and in some situations, a feasible solution may not
be achieved.

From the previous network description, we can write the matrices that represent the
measurement signal y(k) are denoted by (the subindex is associated with the network
operation mode)

C1 =
[ 1 0

0 1
]
, C2 =

[ 1 0
0 0

]
, C3 =

[ 0 0
0 1

]
, C4 =

[ 0 0
0 0

]
,

D1 =
[ 0.01

0.01
]
, D2 =

[ 0.01
0

]
, D3 =

[ 0
0.01

]
, D4 =

[ 0
0
]
,

E1,2,3,4 =
[ 0

0
] . (40)

Observe that we imposed E equal to zero in all modes because despite the fault in the
example representing an abnormal input on the first tank, the sensors are assumed to be
healthy throughout the simulation.

To illustrate the flexibility of the proposed approach, a particular scenario was tested.
Assume that we solely know the boundary of the transition probability matrix that governs
the jumps among the four network modes. Another important assumption considered
in the design process is that in the fourth mode, Drop Drop, where there is no sensor
information, the scheduling parameter is not accessible, implying that the matrices that
compose the FDF for this mode are designed in the robust form instead of the affine form.

13
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The time-varying transition probability matrix is given by

P(k) =
[ 0.3 0.2 0.1 0.4

0.1 0.4 0.3 0.2
0.1 0.2 0.4 0.3
0.1 0.2 0.1 0.6

]
︸ ︷︷ ︸

Pβ0

+

[ 0 0 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

]
β1(k)︸ ︷︷ ︸

Pβ1
(k)

+

[ 0 0 0 0
0 0 0 0
0 1 −1 0
0 0 0 0

]
β2(k)︸ ︷︷ ︸

Pβ2
(k)

, (41)

where β1(k) ∈ [0, 0.3], β2(k) ∈ [0, 0.3], and by consequence βr(k) = 0αr1(k)+ 0.3αr2(k), r =
1, 2, where α(k) ∈ ΛN = Λ2 × Λ2, N = (2, 2).

Additionally, the transition probability among network states represented in Figure 3
by ρij(k) corresponds to an entry in the transition probability matrix P(k). Those transition
probabilities depend on time as follows,

ρij(k) = ρ0ij + β1(k)ρ1ij + β2(k)ρ2ij,

where ρ0ij, ρ1ij and ρ2ij represent the elements of ith row and jth column from the following
matrices Pβ0(k), Pβ1(k) and Pβ2(k) of Equation (41). Furthermore, the time evolution of the
time-varying parameters β1(k) and β2(k) is illustrated by Figure 4.

By using the above numerical values of the plant and the network, we are now able to
apply Theorem 1 to provide a solution for the FDF, so that the filter matrices in (20) (with
ξ = 0.9 in Theorem 1) are given by

Aη1β0 =
[ 0.56 0.00−0.00 −0.00

]
, Aη1β1 =

[ −0.01 −0.00
0.00 −0.00

]
, Aη1β2 =

[ −0.01 −0.00
0.00 −0.00

]
,

Aη2β0 =
[

0.12 0.00
0.00 0.00

]
, Aη2β1 =

[ −0.01 −0.00
−0.00 −0.00

]
, Aη2β2 =

[ −0.01 −0.00
−0.00 −0.00

]
,

Aη3β0 =
[ 0.00 −0.02
−0.00 −0.00

]
, Aη3β1 =

[ −0.00 0.03
0.00 0.00

]
, Aη3β2 =

[ −0.00 0.03
0.00 0.00

]
Aη4β0 =

[ −0.00 −0.00
0.00 −0.00

]
,

Bη1β0 =
[ 0.04 0.00−0.00 0.00

]
, Bη1β1 =

[ 0.01 −0.00
−0.00 0.00

]
, Bη1β2 =

[ 0.01 −0.00
−0.00 0.00

]
,

Bη2β0 =
[

0.03 0.00
0.00 0.00

]
, Bη2β1 =

[
0.01 0.00
0.00 0.00

]
, Bη2β2 =

[
0.01 0.00
0.00 0.00

]
,

Bη3β0 =
[

0.00 0.03
0.00 0.00

]
, Bη3β1 =

[
0 0.01
0 0.00

]
, Bη3β2 =

[
0 0.01
0 0.00

]
,

Bη4β0 =
[

0.00 0.00
0.00 0.00

]
,

Mη1β0 =
[

0.04
0.00

]
, Mη1β1 =

[
0.01
0.00

]
, Mη1β2 =

[
0.01
0.00

]
,

Mη2β0 =
[

0.03
0.00

]
, Mη2β1 =

[
0.01
0.00

]
, Mη2β2 =

[
0.01
0.00

]
,

Mη3β0 =
[

0.03
0.00

]
, Mη3β1 =

[
0.01
0.00

]
, Mη3β2 =

[
0.01
0.00

]
,

Mη4β0 =
[

0.01
0.00

]
,

Cη1β0 = [ 1.20 −0.12 ], Cη1β1 = [ −0.01 −0.01 ], Cη1β2 = [ −0.01 −0.01 ],
Cη2β0 = [ 0.32 0.01 ], Cη2β1 = [ −0.00 −0.00 ], Cη2β2 = [ −0.01 −0.00 ],
Cη3β0 = [ 0.02 −0.02 ], Cη3β1 = [ −0.00 0.01 ], Cη3β2 = [ −0.00 0.01 ],
Cη4β0 = [ −0.01 −0.00 ].

(42)

6.2. Simulation Result

In this section, for comparison purposes, we present simulation results with one design
of FDF that assumes complete knowledge of the modes and the other design that uses
the results from [8], where an H∞ guaranteed cost is used as the performance criterion.
This comparison is important to show that the consideration of the nonhomogeneous MC
impacts the FDF performance. This particular paper was chosen to be compared with the
proposed approach since both are based on the MJLS framework and are based on the H∞
norm. Another critical piece of information that can be gathered from this comparison is
the complexity of the problem versus performance gain. We remind that the parameters
β1(k), β2(k) are assumed to be instantly measurable. Hence, the parameters β1(k), β2(k)
vary during the simulation according to the information provided by Figure 4.
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Figure 4. The behavior of the parameters β1(k), β2(k) during each simulation. The parameters β1(k),
β2(k) are responsible for representing the time-varying aspect of the transition matrix P(k) in (41).

There are three faults that the system is subjected to during simulation. Those faults,
presented in Figure 5, were applied on the first tank, and both affect the signal multiplying
matrix F in (39). A Monte Carlo simulation with 100 interactions was performed, and
Figures 6 and 7 illustrate the obtained results.

0 50 100 150 200 250 300
Instant k

-2

-1

0

1

2

f(
k)

Fault 1 (Abrupt)
Fault 2 (Oscillatory)
Fault 3 (Incipient)

Figure 5. The representation of the three faults that were inflicted in the system during simulations.
The magenta curve represents an abrupt fault, the cyan curve denotes an oscillatory fault, and the
brown curve is the incipient fault.

Figure 6 presents the system’s states when subjected to all three fault cases, and also a
case without fault. From Figure 6, it is possible to observe that the faults do not surpass
10% of the nominal state value.

15



Mathematics 2023, 11, 1713

50 100 150 200 250 300
instant k

0.15

0.2

0.25

0.3

h
1

States h1 and h2

50 100 150 200 250 300
instant k

0.05

0.1

0.15

h
2

Fault 1 (Abrupt)
Fault 2 (Oscilatory)
Fault 3 (Incipient)
Faultless

Figure 6. System states when subjected to all three faults, where the magenta curves denote the states
with an abrupt fault, the cyan curves represent the states for the oscillatory fault, and brown curves
are the states results for the incipient fault. The black curves represent the state without faults.

The residue signal generated by the FDFs for each type of fault, and also the case
without fault are presented in Figure 7. We may state that all the FDF worked as expected,
have been affected by the faults when it occurs, and that when there is not a fault the
residue kept close to zero. Note that the results obtained by the FDF designed with the
complete knowledge of the modes show more sensitivity against the fault, which helps to
detect the fault faster.

A fault-detection procedure has two major stages: the residue generation and eval-
uation process. In Figure 7, the residue signals obtained via simulation were presented.
To execute the next stage, it is necessary to define two tools: the evaluation function
(EVAL(k)) and the threshold (TH). The definition of these two tools are a deep issue that
will not be tackled here; therefore, for a more detailed discussion, please refer to [1,4].
Consider the following definition for the evaluation function:

EVAL(k) �

√√√√ k

∑
i=k−L

r(i)′r(i), (43)

where L represents the evaluation window, which, in this particular simulation is assumed
to be L = 250. The threshold TH is used to assess the evaluation function EVAL(k).
If EVAL(k) > TH there is a fault, and for the opposite case there is no fault. For the simula-
tions, the value of the threshold was arbitrarily set to TH = 5. From the aforementioned, the
evaluation functions for all the FDF considering each fault were calculated and presented
in Figure 8.

As can be seen in Figure 8, all FDFs are able to detect the different faults; however,
there is a clear difference in the time that it takes for each FDF, as indicated by Table 1.
Note that the proposed approach presented a faster detection for all three faults. This
occurred because the proposed solution considers a more trustworthy model. Thus, an
abnormal change can be detected more quickly.
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Figure 7. The residue signal obtained for FDF designed by using Theorem 1 under the assumption
of knowledge of all modes (to the left), and the FDF provided by [8] (to the right). Both designs
are subjected to three type of faults, and also the situation without fault. (a) Residue signal for FDF
designed via Theorem 1 subjected to Fault 1. (b) Residue signal for FDF designed via [8] subjected to
Fault 1. (c) Residue signal for FDF designed via Theorem 1 subjected to Fault 2. (d) Residue signal
for FDF designed via [8] subjected to Fault 2. (e) Residue signal for FDF designed via Theorem 1
subjected to Fault 3. (f) Residue signal for FDF designed via [8] subjected to Fault 3. (g) Residue
signal for FDF designed via Theorem 1 without fault. (h) Residue signal for FDF designed via [8]
without fault.
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Figure 8. The evaluation function obtained for FDF designed by using Theorem 1 under the assump-
tion of knowledge of all modes (to the left), and the FDF provided by [8] (to the right). Both designs
are subjected to three type of faults, and also the situation without fault. (a) Evaluation function
for FDF designed via Theorem 1 subjected to Fault 1. (b) Evaluation function for FDF designed
via [8] subjected to Fault 1. (c) Evaluation function for FDF designed via Theorem 1 subjected to
Fault 2. (d) Evaluation function for FDF designed via [8] subjected to Fault 2. (e) Evaluation function
for FDF designed via Theorem 1 subjected to Fault 3. (f) Evaluation function for FDF designed
via [8] subjected to Fault 3. (g) Evaluation function for FDF designed via Theorem 1 without fault.
(h) Evaluation function for FDF designed via [8] without fault.
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Table 1. The detection window for all FDF considering each fault after the Monte Carlo simulation.

Design Method Fault 1 (k) Fault 2 (k) Fault 3 (k)

Theorem 1 (All) [105 114] [133 140] [183 188]

[8] [112 117] [145 156] [202 212]

Another interesting aspect is that the FDF designed by using [8] (the FDF under the
assumption that the MC is homogeneous) is affected by the variation even when there is
no fault occurrence. This particularity can be observed in Figure 8h, where the evaluation
value drifts away from zero. This is an issue that affects the performance of the FDF, since
it may cause false alarms. Note that this phenomenon does not occur on the FDF designed
by using the proposed approach, showing that the consideration of the nonhomogeneous
MC is useful to increase the performance of the FDF, especially for the situation where a
nonhomogeneous MC is used to model characteristics that are inherently time-varying, such
as a wireless sensor network. The last piece of information gathered from the simulation
is that even though the proposed solution was based on more assumptions and a higher
number of LMI constraints, which is clearly more computationally costly compared to the
results in [8], the proposed approach provides superior performance.

7. Conclusions

The main contribution of this paper is the development of a new design method
for gain-scheduled FDF considering that the plant measurement signals are transmitted
through a network whose dropouts are modeled by using the MJLS theory, with the Markov
chain being nonhomogeneous. The premise of nonhomogeneous MC is tackled by using
the LPV modelling, specifically applied to the probability transition matrix, allowing us to
design the FDF under this particular circumstance. The FDF synthesis results are obtained
by using parameter-dependent LMI constraints that employ H∞ norm as performance
index. Since the gain-scheduled FDF varies according to the probability transition matrix
variation, the proposed FDF is optimal for all the variation range of the Markov chain. To
illustrate this, a comparison between the proposed technique with another method from the
literature that does not contemplate the nonhomogeneous MC assumption was made. The
simulation results show that the nonhomogeneous assumption positively impacts the FDF
performance, allowing the proposed technique to detect the fault in a smaller time window,
which can be seen in Table 1. Furthermore the FDF does not present false variations in the
evaluation function, that could be identified as faults, when a fault does not occur, as can
be seen in Figure 8g,h. A possible next step along this research line would be to include a
sensitivity H− index in the design to further improve the FDF performance.
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Abbreviations

The following abbreviations are used in this manuscript:

Fault Detection FD
Markov Jump Linear Systems MJLS
Markov Chain MC
Networked Control System NCS
Fault Detection Filter FDF
Linear Parameter Varying LPV
Exponentially Stable in the Mean Square Sense with Conditioning of Type 1 ESMS-CI
Linear Matrix Inequality LMI
Coordinate Descend Algorithm CDA
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Abstract: In this paper, we are interested in the numerical aspects of the class of generalized Riccati
difference equations which are involved in linear quadratic (LQ) stochastic difference games. More
specifically, we address the problem of the numerical computation of the stabilizing solutions for
this class of nonlinear difference equations. We propose an iterative deterministic algorithm for the
computation of such a global solution. The performances of the proposed algorithm are illustrated
with some numerical examples.

Keywords: stochastic Riccati equations; stochastic control; iterative computation; deterministic
approach

MSC: 93E03; 93C05; 93E20; 60J27; 60J10; 91A05; 91A15

1. Introduction

In this paper, we address the problem of the numerical computation of the stabilizing
solutions of a class of generalized Riccati difference equations. The considered nonlinear
matrix equation occurs in connection with zero-sum linear LQ stochastic difference game
control problems (see [1] for more precision regarding this aspect). One of the particularities
of such equations lies in the sign indefiniteness of their quadratic terms. This sign indefinite-
ness makes the characterization (as well as the numerical computation) of global solutions
to such nonlinear matrix difference equations far more challenging when compared with
the sign-definite counterpart. Even though some interesting results have already been
reported in the literature (see [2,3] and the references therein), there are still substantial
open problems in this field.

In [1], we addressed some theoretical aspects related to the nonlinear difference equa-
tions under consideration. The present paper can be viewed as the numerical counterpart
of [1]. We propose a globally convergent iterative algorithm for the computation of the
stabilizing solutions to this class of Riccati equations. To the best of the authors’ knowledge,
the numerical algorithms developed in the literature for the computation of the solutions
to stochastic Riccati equations are mainly based on stochastic approaches consisting of
transformation of the original problem into the problem of solving a sequence of coupled
stochastic Riccati equations (see [4,5] and the references therein) that rely again on some
iterative procedures for their numerical resolution. One of the most remarkable features of
our proposed algorithm is its deterministic nature, in the sense that one has to solve at each
main iteration a system of uncoupled deterministic Riccati equations. This allows us to use
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direct methods (invariant or deflating subspace-based methods; see [6]) for the numerical
solutions to such deterministic equations. We believe that such a fundamental difference in
the construction of what we called above deterministic and stochastic algorithms will have
an important impact from the computation-time point of view. This will be illustrated via
numerical experiments.

We mention here that in [7], we proposed a deterministic iterative algorithm for
the numerical computation of the stabilizing solutions to a class of generalized Riccati
equations related to the so-called continuous-time, full-information stochastic H∞ control.
The discrete-time counterpart of this type of Riccati equation is a particular case of the more
general class of Riccati equations considered in the present paper. We have recently shown
(see [1]) that the proof of the existence and uniqueness of the stabilizing solution for this
more general class of Riccati equations presents substantial differences when compared
with the full-information H∞-type Riccati equations, even though we followed a similar
philosophy in the proof procedure. We believe that we have a similar situation from the
numerical computation point of view. The results reported in the present paper are more
general and contain substantial differences when compared with [7].

This paper is organized as follows. In Section 2, we describe the problem that we ad-
dress. In Section 3, we introduce the main results of the paper. Some numerical experiments
are included in Section 4.

Notations: N = {1, 2, ..., N}, where N ≥ 1 is a fixed natural number. AT stands for
the transpose of the matrix A, and Tr[A] denotes the trace of a matrix A. The notation
X ≥ Y (X > Y), where X and Y are symmetric matrices, means that X − Y is positive
semi-definite (positive definite). In block matrices, � indicates symmetric terms, where(

A B
BT C

)
=

(
A �
BT C

)
=

(
A B
� C

)
. The expression MN� is equivalent to MNMT ,

while M� is equivalent to MMT . Consider the following space of matrices: MN
n,m =

Rn×m × · · · ×Rn×m. In the case where n = m, we shall write MN
n instead of MN

n,n.
We introduce the following convention of notations:

• If B =
(

B(1), · · · , B(N)
) ∈ MN

n,m and D =
(

D(1), · · · , D(N)
) ∈ MN

m,p,
thenC = BD ∈ MN

n,p, whereC =
(

C(1), · · · , C(N)
)
, C(i) = B(i)D(i), 1 ≤ i ≤ N.

• BT =
(

BT(1), · · · , BT(N)
) ∈ MN

m,n.
• If A =

(
A(1), · · · , A(N)

) ∈ MN
n with det(A(i)) 
= 0, 1 ≤ i ≤ N, then

A−1 =
(

A−1(1), · · · , A−1(N)
)
.

As usual, Sn ∈ Rn×n denotes the subspace of symmetric matrices of a size n × n, and
SN

n = Sn × · · · × Sn. SN
n is a finite, dimensional real Hilbert space with respect to the inner

product:

〈X,Y〉 =
N

∑
i=1

Tr[X(i)Y(i)] (1)

for all X = (X(1), X(2), ..., X(N)),Y = (Y(1), Y(2), ..., Y(N)) ∈ SN
n . Throughout this

paper, E[·] stands for the mathematical expectation and E[·|θt = i] denotes the conditional
expectation with respect to the event {θt = i}.

2. Problem Setting

2.1. Problem Description

Consider the following nonlinear difference equation in the space SN
n :

X(t) = Π1(t)[X(t + 1)] +M(t)−
[
Π2(t)[X(t + 1))] +L(t)

][
R(t) + Π3(t)[X(t + 1)]

]−1
� (2)
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where t ∈ Z+ = {0, 1, 2, ...} with an unknown function X(t) =
(

X(t, 1), · · · , X(t, N)
)
.

Here,
Πk(t)[X] =

(
Πk(t)[X](1), · · · , Πk(t)[X](N)

)
(1 ≤ k ≤ 3) are defined by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Π1(t)[X](i) = ∑r
j=0 AT

j (t, i)Ξ(t)[X](i)Aj(t, i)

Π2(t)[X](i) = ∑r
j=0 AT

j (t, i)Ξ(t)[X](i)Bj(t, i)

Π3(t)[X](i) = ∑r
j=0 BT

j (t, i)Ξ(t)[X](i)Bj(t, i)

Ξ(t)[X](i) =
N
∑

j=1
pt(i, j)X(j)

(3)

where 1 ≤ i ≤ N for all X =
(

X(1), · · · , X(N)
) ∈ SN

n . In (2) M(t) = (M(t, 1), ....,
M(t, N)) ∈ SN

n , R(t) = (R(t, 1), ...., R(t, N)) ∈ SN
m , and L(t) = (L(t, 1), ..., L(t, N)) ∈

MN
n,m. Regarding the coefficients of Equation (2), we make the following assumption:

(H1) (a) {Aj(t, i)}t≥0 ⊂ Rn×n, {Bj(t, i)}t≥0 ⊂ Rn×m (0 ≤ j ≤ r), {M(t, i)}t≥0 ⊂ Sn,
{L(t, i)}t≥0 ⊂ Rn×m, and {R(t, i)}t≥0 ⊂ Sm for all i ∈ N are periodic matrix-
valued sequences of a period p. {Pt}t≥0 with Pt := (pt(i, j))(i,j)∈N×N is also
assumed to be a periodic matrix-valued sequence of a period p.

(b) For each t ≥ 0, Pt is a strong nondegenerate stochastic matrix (i.e., pt(i, j) ≥ 0,
∑N

k=1 pt(i, k) = 1, pt(i, i) > 0 for all i, j ∈ N).

The discrete-time backward nonlinear equation (Equation (2)) will be called a general-

ized discrete-time Riccati equation (GDTRE) in the rest of this paper.
We consider the following partitions of the coefficients of Equation (2):

Bj(t, i) =
(

Bj1(t, i) Bj2(t, i)
)
, Bjk(t, i) ∈ R

n×mk , 0 ≤ j ≤ r, (4)

L(t, i) = (L1(t, i) L2(t, i)), Lk(t, i) ∈ R
n×mk , k = 1, 2

and

R(t, i) =
(

R11(t, i) R12(t, i)
� R22(t, i)

)
, Rlj(t, i) ∈ R

ml×mj , l, j = 1, 2. (5)

Consider the following partitions corresponding to Equations (4) and (5):⎧⎪⎪⎨⎪⎪⎩
Π2(t)[X](i) =

(
Π21(t)[X](i) Π22(t)[X](i)

)
Π3(t)[X](i) =

(
Π311(t)[X](i) Π312(t)[X](i)

� Π322(t)[X](i)

)
(6)

with {
Π2k(t)[X](i) = ∑r

j=1 AT
j (t, i)Ξ(t)[X](i)Bjk(t, i)

Π3lk(t)[X](i) = ∑r
j=1 BT

jl(t, i)Ξ(t)[X](i)Bjk(t, i)
; k, l = 1, 2.

The GDTRE (Equation (2)) plays a key role in the solution of a zero-sum LQ stochastic
difference game control problem described by the controlled system⎧⎪⎨⎪⎩

x(t + 1) = A0(t, θt)x(t) + B01(t, θt)u1(t) + B02(t, θt)u2(t) + ∑r
k=1

[
Ak(t, θt)x(t)

+Bk1(t, θt)u1(t) + Bk2(t, θt)u2(t)
]
wk(t)

x(t0) = x0

(7)

and the quadratic performance criterion

J (x0, u1(·), u2(·)) = E

⎡⎢⎣ ∞

∑
t0

⎛⎝ xu(t)
u1(t)
u2(t)

⎞⎠T⎛⎝ M(t, θt) L1(t, θt) L2(t, θt)
� R11(t, θt) R12(t, θt)
� � R22(t, θt)

⎞⎠�

⎤⎥⎦ (8)
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where xu(t) is the solution to the initial value problem (IVP) (Equation (7)), t ≥ t0 ≥ 0, and
u(·) =

(
uT

1 (·) uT
2 (·)

)T . In the first equation (Equation (7)), {wt}t≥0,(
wt = (w1(t), · · · , wr(t))

T
)

is a sequence of independent random vectors, and the triple
({θt}t≥0, {Pt}t≥0,N) is a time non-homogeneous Markov chain defined in a given probabil-
ity space (Ω,F , P) with the finite states set N = {1, · · · , N} and the sequence of transition
probability matrices {Pt}t≥0. Regarding processes {θt}t≥0 and {wt}t≥0, the following
assumptions are made:

(H2) {wt}t≥0 is a sequence of independent random vectors with the following properties:
E[w(t)] = 0, E

[
w(t)wT(t)

]
= Ir, and t ≥ 0, with Ir being the identity matrix of a size r.

(H3) (a) For each t ≥ 0, the σ algebra Ft is independent of the σ algebra Gt, where
Ft = σ(w(s); 0 ≤ s ≤ t) and Gt = σ(θs; 0 ≤ s ≤ t).

(b) π0(i) := P{θ0 = i} > 0 for all i ∈ N.

The following assumption regarding the weight matrices M(t, i), R(t, i) and L(t, i)
is made:

(H4) For each (t, i) ∈ Z+ ×N, we have

R22(t, i) ≥ ρ2 Im2 (9)

M(t, i)− L2(t, i)R−1
22 (t, i)LT

2 (t, i) ≥ 0 (10)

R11(t, i)− R12(t, i)R−1
22 (t, i)RT

12(t, i) ≤ −ρ1 Im1 (11)

with ρj > 0 and j = 1, 2, given constant scalars.

Let

R(t,X(t + 1), i) := R(t, i) + Π3(t)[X(t + 1)](i). (12)

In [1], we considered two different types of admissible strategies, namely the full-state
feedback and full-information feedback strategies. We succeeded in showing that for
both strategies, the solution to the LQ game relies on the unique bounded and stabilizing
solution to the GDTRE (Equation (2)) satisfying a sign condition of the form

R�
22(t,X(t + 1), i) = R11(t, i) + Π311(t)[X(t + 1)](i)−

[
R12(t, i) + Π312(t)[X(t + 1)](i)

]
×

[
R22(t, i) + Π322(t)[X(t + 1)](i)

]−1
� ≤ −δ1 Im1 (13)

R22(t,X(t + 1), i) = R22(t, i) + Π322(t)[X(t + 1)](i) ≥ δ2 Im2 (14)

for all t ∈ I , 1 ≤ i ≤ N, δk > 0, and k = 1, 2 being constants.
The sign conditions in Equations (13) and (14) mean that the quadratic part of the

GDTRE (Equation (2)) is of an indefinite sign. This sign indefiniteness makes the characteri-
zation and the numerical computation of the global solutions to the GDTRE (Equation (2))
much more intricate than in the sign-definite case.

Remark 1.

(i) The solutions {X(t)}t∈I to the GDTRE (Equation (2)) satisfying the conditions in Equations (13)
and (14) will be called admissible solutions.
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(ii) If X(·) : I → SN
n is an admissible solution to the GDTRE (Equation (2)), then we have the

following factorization:

R(t, i) + Π3(t)[X(t + 1)](i) =
(

V11(t)[X(t + 1)](i) 0

V21(t)[X(t + 1)](i) V22(t)[X(t + 1)](i)

)T

×
( −Im1 0

0 Im2

)
� (15)

where Vkk(t)[X(t + 1)](i) ≥ ck Imk , k = 1, 2, i ∈ N, and t ∈ I .
(iii) For a precise definition of the stabilizing solution to the GDTRE (Equation (2)), one can refer

to [1].

We derived in [1] the conditions for the existence and uniqueness of the stabilizing
solution to Equation (2). In the present paper, we are interested in the numerical aspects
of the GDTRE (Equation (2)). Our objective here is to propose a globally convergent
algorithm for the computation of the unique stabilizing solution to Equation (2) with
the sign (indefinite) conditions in Equations (13) and (14). We will propose an iterative
deterministic algorithm which is based on the numerical computation of the bounded and
stabilizing solutions of a sequence of Riccati difference equations arising in the deterministic
framework. In order to accomplish this, we consider the following sequence of uncoupled
Riccati difference equations (which are specific to the deterministic framework):

Xk(t, i) = ĀT
0 (t, i)Xk(t + 1, i)Ā0(t, i) + Mk

i (t)

− (
ĀT

0 (t, i)Xk(t + 1, i)B̄0(t, i) + Lk
i (t)

)(
Rk

i (t) + B̄T
0 (t, i)Xk(t + 1, i)B̄0(t, i)

)−1
� (16)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ā0(t, i) =
√

pt(i, i)A0(t, i)
B̄0(t, i) =

√
pt(i, i)B0(t, i)

Mk
i (t) = Π̄1(t)[Xk−1(t + 1)](i) + AT

0 (t, i)Ξ̄(t)[Xk−1(t + 1)](i)A0(t, i) + M(t, i)
Π̄1(t)[Xk−1(t + 1)](i) = ∑r

j=1 AT
j (t, i)Ξ(t)[Xk−1(t + 1)](i)Aj(t, i)

Ξ̄(t)[Xk−1(t + 1)](i) =
N
∑

j=1
j 
=i

pt(i, j)Xk−1(t + 1, j)

Lk
i (t) = Π̄2(t)[Xk−1(t + 1)](i) + AT

0 (t, i)Ξ̄(t)[Xk−1(t + 1)](i)B0(t, i) + L(t, i)
Π̄2(t)[Xk−1(t + 1)](i) = ∑r

j=1 AT
j (t, i)Ξ(t)[Xk−1(t + 1)](i)Bj(t, i)

Rk
i (t) = Π̄3(t)[Xk−1(t + 1)](i) + BT

0 (t, i)Ξ̄(t)[Xk−1(t + 1)](i)B0(t, i) + R(t, i)
Π̄3(t)[Xk−1(t + 1)](i) = ∑r

j=1 BT
j (t, i)Ξ(t)[Xk−1(t + 1)](i)Bj(t, i)

. (17)

By taking X0
i (t) = 0, 1 ≤ i ≤ N, t ∈ Z+, we may construct the inductive sequences{

Xk
i (t)

}
k≥1

, 1 ≤ i ≤ N, Xk
i (·), which are the unique bounded and stabilizing solution to

the Riccati difference equation (Equation (16)). The aim of this study is to provide a set of
conditions which guarantee that Xk

i (·) is well defined for all k ≥ 1 and lim
k→∞

Xk
i (t) = Xs(t, i)

for all 1 ≤ i ≤ N and t ∈ Z+.

Remark 2. Note that

Π̂(t)[X](i) =
(

Θ1(t)[X](i) Θ2(t)[X](i)
� Θ3(t)[X](i)

)
≥ 0 (18)

if X is such that X(i) ≥ 0, where Θ1(t)[X](i) = Π̄1(t)[X](i) + AT
0 (t, i)Ξ̄(t)[X](i)A0(t, i),

Θ2(t)[X](i) = Π̄2(t)[X](i) + AT
0 (t, i)Ξ̄(t)[X](i)B0(t, i), and Θ3(t)[X](i) = Π̄3(t)[X](i) +
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BT
0 (t, i)Ξ̄(t)[X](i)B0(t, i), 1 ≤ i ≤ N. This follows by noticing that Equation (18) could be

rewritten as

Π̂(t)[X](i) =
(

AT
0 (t, i)

BT
0 (t, i)

)
Ξ̄(t)[X](i) �+

r

∑
j=1

(
AT

j (t, i)
BT

j (t, i)

)
Ξ(t)[X](i) � . (19)

Remark 3. In the Numerical Experiments section, we will clarify the deterministic nature of the
proposed algorithm and highlight the contribution of such a paradigm.

2.2. Some Intermediate Results

Let us formally set u2(t) ≡ uKW
2 (t) = K(t, θt)x(t) + W(t, θt)u1(t). Hence, Equations

(7) and (8) are rewritten as follows:

x(t + 1) = A0K(t, θt)x(t) + B0W(t, θt)u1(t) +
r

∑
k=1

wk(t)(AkK(t, θt)x(t) + BkW(t, θt)u1(t)) (20)

JKW(t0, x0, u1) = E

[
∞

∑
t=t0

(
xu1(t)
u1(t)

)T( MK(t, θt) LKW(t, θt)
� RW(t, θt)

)
�

]
(21)

where xu1(t) is the solution to Equation (20) corresponding to u1(t) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AkK(t, i) = Ak(t, i) + Bk2(t, i)K(t, i)
BkW(t, i) = Bk1(t, i) + Bk2(t, i)W(t, i)
MK(t, i) = M(t, i) + L2(t, i)K(t, i) + KT(t, i)LT

2 (t, i) + KT(t, i)R22(t, i)K(t, i)
LKW(t, i) = L1(t, i) + KT(t, i)RT

12(t, i) +
(

L2(t, i) + KT(t, i)R22(t, i)
)
W(t, i)

RW(t, i) =

(
Im1

W(t, i)

)T

R(t, i)

(
Im1

W(t, i)

) . (22)

With the above system (Equation (20)) and the corresponding quadratic functional in
Equation (21), we associate the following Riccati-type difference equation of the type in
Equation (2):

X(t, i) = ΠK(t)[X(t + 1)](i) + MK(t, i)− (
ΠKW(t)[X(t + 1)](i) + LKW(t, i)

)
× (

RW(t, i) + ΠW(t)[X(t + 1)](i)
)−1

� (23)

where ⎧⎪⎪⎨⎪⎪⎩
ΠK(t)[X](i) = ∑r

j=0 AT
jK(t, i)Ξ(t)[X](i)AjK(t, i)

ΠKW(t)[X](i) = ∑r
j=0 AT

jK(t, i)Ξ(t)[X](i)BjW(t, i)

ΠW(t)[X](i) = ∑r
j=0 BT

jW(t, i)Ξ(t)[X](i)BjW(t, i)

(24)

for all X ∈ SN
n .

In the following, we associate to the GDTRE (Equation (2)) the set AKW, which consists
of all pairs of feedback gains (K(·),W(·)), where t → K(t) =

(
K(t, 1), · · · , K(t, N)

)
:

Z+ → MN
m2,n and t → W(t) =

(
W(t, 1), · · · , W(t, N)

)
: Z+ → MN

m2,m1
are p-

periodic matrix-valued sequences having the following properties:

(i) The zero solution of the stochastic linear system

x(t + 1) = A0K(t, θt)x(t) +
r

∑
k=1

wk(t)AkK(t, θt)x(t) (25)

is exponentially stable in the mean square sense (ESMS) (see Definition 3.1 from [8]
for details).
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(ii) The corresponding GRDE (Equation (23)) has a unique bounded and stabilizing
solution X̃KW(·) satisfying the sign condition

RW(t, i) + ΠW(t)[X̃KW(t + 1)](i) ≤ −ξI (26)

for some positive scalar ξ (which may depend upon (K(·),W(·))) where (t, i) ∈
Z+ ×N.

The following result gives a necessary and sufficient condition which helps us to
decide if the set AKW is empty or not:

Proposition 1. Under the considered assumptions, the following two assertions are equivalent:

(i) AKW is not empty;
(ii) There exist p-periodic sequences t → Z(t) : Z+ → SN

n , t → K(t) : Z+ → MN
m2,n and

t → W(t) : Z+ → MN
m2,m1

solving the following matrix inequalities(
ΠK(t)[Z(t + 1)](i) + MK(t, i)− Z(t, i) ΠKW(t)[Z(t + 1)](i) + LKW(t, i)

� RW(t, i) + ΠW(t)[Z(t + 1)](i)

)
< 0 (27)

Proof. One can apply Theorem 5.6 in [8] to the Riccati difference equation

Y(t, i) = ΠK(t)[Y(t + 1)](i)− MK(t, i)− (
ΠKW(t)[Y(t + 1)](i)− LW(t, i)

)
× (− RW(t, i) + ΠW(t)[Y(t + 1)](i)

)−1
� (28)

obtained from Equation (23) by taking Y(t, i) = −X(t, i), (t, i) ∈ Z+ ×N.

We end this section by giving the existence conditions for the unique bounded and
stabilizing solution to Equation (2). To this end, we introduce the following auxiliary
system: {

x(t + 1) = Ǎ0(t, θt)x(t) + ∑r
j=1 wj(t)Ǎj(t, θt)x(t)

y(t) = Č(t, θt)x(t)
(29)

where
Ǎj(t, i) = Aj(t, i)− Bj2(t, i)R−1

22 (t, i)LT
2 (t, i), 0 ≤ j ≤ r (30)

and Č(t, i) is obtained from the factorization M(t, i)− L2(t, i)R−1
22 (t, i)LT

2 (t, i) = ČT(t, i)Č(t, i)
for all i ∈ N, t ≥ 0.

Theorem 1. Assume the following:

(a) Assumptions (H1–H4) are fulfilled;
(b) The set AKW is not empty;
(c) The auxiliary system in Equation (29) is exactly detectable at a time instant t0 = 0;

Then, X̃(·), defined as X̃(t, i) = lim
τ→∞

Xτ(t, i), coincides with the unique admissible stabilizing and

p-periodic solution Xs(·) to Equation (2), where for each τ > 0, Xτ(t) = (Xτ(t, 1), · · · Xτ(t, N)) is
the solution to Equation (2) satisfying the conditions Xτ(τ + 1, i) = 0 and 1 ≤ i ≤ N.

Remark 4. For the definition of the notion of exact detectability at the time instant t0 = 0, one can
refer to [1].

Remark 5. Note that the above theorem was proven in [1] under the assumption of stochastic
detectability of the system in Equation (29) instead of exact detectability at the time instant t0 = 0.
One can show that the concept of exact detectability at the time instant t0 = 0 is wider than the
stochastic detectability one. Hence, the above result can be applied to a larger class of stochastic
systems than the one reported in [1]. From the technical point of view, the improvement reported
in this paper consists of the modification of Lemma 4.7 from [1], which is proven here under exact
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detectability at the assumption at the time instant t0 = 0. For the reader’s convenience, we include
a sketch of the proof of this Lemma in Appendix A.

3. Main Results

For each k ≥ 1, 1 ≤ i ≤ N, the Riccati difference equation (Equation (16)) may
be regarded as a special case of Equation (2). Hence, the Riccati difference equation
(Equation (16)) is related to the deterministic LQ control problem described by the controlled
system

x(t + 1) = Ā0(t, i)x(t) + B̄0(t, i)u(t) (31)

where t ≥ 0, x(0) = x0, as well as the cost functional

J k
i (x0, u) =

∞

∑
t=0

(
xu(t)
u(t)

)T

Mk
i (t)� (32)

where xu(t) is the solution to the IVP described by the controlled system in Equation (31),
t ≥ 0, x(0) = x0, and

Mk
i (t) =

(
Mk

i (t) Lk
i (t)

� Rk
i (t)

)
(33)

with Mk
i (t), Lk

i (t), and Rk
i (t) being defined in Equation (17).

We formally set u2(t) ≡ uKW
2,i (t) = K(t, i)x(t) + W(t, i)u1(t). Hence, Equations (31)

and (32) are rewritten as follows:

x(t + 1) = Ā0K(t, i)x(t) + B̄0W(t, i)u1(t) (34)

J k,i
KW(x0, u1) =

∞

∑
t=0

(
xu1(t)
u1(t)

)T( Mk
K(t, i) Lk

KW(t, i)
� Rk

W(t, i)

)
� (35)

where xu1(t) is the solution to Equation (34) corresponding to u1(t) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ā0K(t, i) = Ā0(t, i) + B̄02(t, i)K(t, i)
B̄0W(t, i) = B̄01(t, i) + B̄02(t, i)W(t, i)

Mk
K(t, i) = Mk(t, i) + Lk

2(t, i)K(t, i) + KT(t, i)(Lk
2)

T
(t, i) + KT(t, i)Rk

22(t, i)K(t, i)

Lk
KW(t, i) = Lk

1(t, i) + KT(t, i)Rk
12

T
(t, i) +

(
Lk

2(t, i) + KT(t, i)Rk
22(t, i)

)
W(t, i)

Rk
W(t, i) =

(
Im1

W(t, i)

)T

Rk(t, i)�

(36)

With the above system (Equation (34)) and the corresponding quadratic functional in
Equation (35), we associate the following Riccati difference equation:

Xk(t, i) = ĀT
0K(t, i)Xk(t + 1, i)Ā0K(t, i) + Mk

K(t, i)− (
ĀT

0K(t, i)Xk(t + 1, i)B̄0W(t, i)

+ Lk
KW(t, i)

)(
Rk

W(t) + B̄T
0W(t, i)Xk(t + 1, i)B̄0W(t, i)

)−1
� (37)

The notion of a stabilizing solution for Equation (37) is defined in the same way as for
Equation (2).

In the following, we denote with AKW
k,i the set of all pairs of feedback gains (Ki(·), Wi(·)),

where Ki(·) : Z+ → Rm2×n and Wi(t) : Z+ → Rm2×m1 are p-periodic matrix-valued
sequences having the following properties:

(i) The zero solution of the closed-loop system

x(t + 1) = Ā0K(t, i)x(t) (38)
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is exponentially stable.
(ii) The corresponding GRDE (Equation (37)) has a unique stabilizing and p-periodic

solution X̃KW(·) satisfying the sign condition

Rk
W(t, i) + B̄T

0W(t, i)Xk(t + 1, i)B̄0W(t, i) ≤ −ξI (39)

for some positive scalar ξ
(

which may depend upon (K(·),W(·))
)

, and (t, i) ∈
Z+ ×N.

Following similar arguments to those in the proof of Proposition 1, the following result
is deduced:

Proposition 2. Under the considered assumptions, the following two assertions are equivalent:

(i) AKW
k,i is not empty;

(ii) There exist p-periodic sequences t → Z(t, i) : Z+ → Sn, t → K(t, i) : Z+ → Rm2×n, and
t → W(t, i) : Z+ → Rm2×m1 solving the following matrix inequalities:(

ĀT
0K(t, i)Z(t + 1, i) �+Mk

K(t, i)− Z(t, i) ĀT
0K(t, i)Z(t + 1, i)B̄0W(t, i) + Lk

KW(t, i)
� Rk

W(t, i) + B̄T
0W(t, i)Z(t + 1, i)�

)
< 0 (40)

We are now in position to prove the main result of this paper. To this end, we introduce
the following auxiliary system:{

x(t + 1) = ˇ̄Ak
0(t, i)x(t)

y(t) = Čk(t, i)x(t)
(41)

where
ˇ̄A

k
0(t, i) = Ā0(t, i)− B̄02(t, i)(Rk

22)
−1(t, i)(Lk

2)
T(t, i), (42)

and Čk(t, i) is obtained from the factorization

Mk(t, i)− Lk
2(t, i)(Rk

22)
−1(t, i)(Lk

2)
T(t, i) = (Čk)T(t, i)Čk(t, i)

for all i ∈ N, t ≥ 0.

Theorem 2. Assume the following:

(a) Assumptions (H1–H4) are fulfilled;
(b) The set AKW is not empty;
(c) The auxiliary system in Equation (29) is stochastically detectable.

Under these conditions, if we take X0
i (t) ≡ 0, where 1 ≤ i ≤ N, then for each k ≥ 1, Xk

i (·)
is well defined as the unique minimal and positive semi-definite solution to the Riccati difference
equation (Equation (16)), and we have the following:

(i) Xk
i (·) is a periodic sequence of a period p and satisfies the sign conditions of the types in

Equations (13) and (14);
(ii) 0 = X0

i (t) ≤ X1
i (t) ≤ · · · ≤ Xk

i (t) ≤ · · · ≤ Xs(t, i) for all (t, i) ∈ Z+ × N and
Xs(t) =

(
Xs(t, 1), · · · , Xs(t, N)

)
as the unique stabilizing and p-periodic solution to

Equation (2);
(iii) If the auxiliary system in Equation (41) is detectable, then Xk

i (·) is just the stabilizing solution
of the Riccati difference equation (Equation (16));

(iv) lim
k→∞

Xk
i (t) = Xs(t, i) for all (t, i) ∈ Z+ ×N.

Proof. Since AKW is not empty, it follows from Proposition 1 that there exist p-periodic
sequences t → Z(t) : Z+ → SN

n , t → K(t) : Z+ → MN
m2,n, and t → W(t) : Z+ →
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MN
m2,m1

solving the matrix inequalities in Equation(27). Note that Equation (27) could be
rewritten as

(
ĀT

0K(t, i)Z(t + 1, i) �+M1
K(t, i)− Z(t, i) ĀT

0K(t, i)Z(t + 1, i)B̄0W(t, i) + L1
KW(t, i)

� R1
W(t) + B̄T

0W(t, i)Z(t + 1, i)�

)
+ Π̂KW[Z(t + 1)](i) < 0 (43)

where

Π̂KW[Z(t + 1)](i) =
(

AT
0K(t, i)

BT
0W(t, i)

)
Ξ̄[Z(t + 1)](i)�

+
r

∑
k=1

(
AT

kK(t, i)
BT

kW(t, i)

)
Ξ[Z(t + 1)](i)� ≥ 0 (44)

because Z(t, i) ≥ 0 for all (t, i) ∈ Z+ ×N. This allows us to deduce that(
ĀT

0K(t, i)Z(t + 1, i) �+M1
K(t, i)− Z(t, i) ĀT

0K(t, i)Z(t + 1, i)B̄0W(t, i) + L1
KW(t, i)

� R1
W(t) + B̄T

0W(t, i)Z(t + 1, i)�

)
< 0 (45)

Hence, under Proposition 2, it follows that AKW
1,i is not empty. If k = 1, then the Riccati

difference equation (Equation (16)) reduces to

X(t, i) = ĀT
0 (t, i)X(t + 1, i)Ā0(t, i) + M(t, i)

− (
ĀT

0 (t, i)X(t + 1, i)B̄0(t, i) + L(t, i)
)(

R(t) + B̄T
0 (t, i)X(t + 1, i)B̄0(t, i)

)−1
� (46)

where 1 ≤ i ≤ N. From Proposition 4.4 in [1], we deduce that if Xiτ(·) is the solution to
Equation (46) which satisfies Xiτ(τ) = 0, then it is well defined for all 0 ≤ t ≤ τ and τ > 0,
where 1 ≤ i ≤ N, and for each 1 ≤ i ≤ N, with X1

i (·) defined by

X1
i (t) = lim

τ→∞
Xiτ(t) (47)

This is the unique minimal positive semi-definite solution to Equation (46). Moreover,
t → X1

i (t) is a periodic sequence of a period p.
Let us notice that the Riccati difference equation (Equation (2)) satisfied by its stabiliz-

ing solution Xs(·) may be rewritten as

Xs(t, i) = ĀT
0 (t, i)Xs(t + 1, i)Ā0(t, i) + Ms,i(t)

− (
ĀT

0 (t, i)Xs(t + 1, i)B̄0(t, i) + Ls,i(t)
)(

Rs,i(t) + B̄T
0 (t, i)Xs(t + 1, i)B̄0(t, i)

)−1
� (48)

where (
Ms,i(t) Ls,i(t)

� Rs,i(t)

)
=

(
M(t, i) L(t, i)

� R(t, i)

)
+ Π̂(t)[Xs(t)](i). (49)

Since Xs(t, i) ≥ 0, we deduce from Equation (18) that(
Ms,i(t) Ls,i(t)

� Rs,i(t)

)
≥

(
M(t, i) L(t, i)

� R(t, i)

)
.

Hence, by applying Theorem 4.2 in [1] in the special case of the Riccati difference
equation (Equations (46) and (48)), we may infer that Xiτ(t) ≤ Xs(t, i) for all 0 ≤ t ≤ τ,
τ > 0, and 1 ≤ i ≤ N. By taking the limit for τ → ∞, we obtain 0 ≤ X1

i (t) ≤ Xs(t, i) for all
(t, i) ∈ R+ ×N. From the matrix inequality

R(t, i) + Π3(t)
[

X1
i (t)

]
(i) ≤ R(t, i) + Π3(t)[Xs(t)](i)
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we deduce, via Lemma 4.5 in [9], that for each 1 ≤ i ≤ N, X1
i (·) satisfies the sign conditions

in Equations (13) and (14). Thus, assertions (i) and (ii) from the statement are fulfilled for
k = 1.

By using the Lyapunov-type characterization of the stochastic detectability of linear
stochastic systems (see, for example, Chapter 4 in [8]), one can show that the stochas-
tic detectability of the auxiliary system (Equation (29)) implies the detectability of the
deterministic system {

x(t + 1) = ˇ̄A0(t, i)x(t)
y(t) = Č(t, i)xt

(50)

for each 1 ≤ i ≤ N, where ˇ̄A0(t, i) = Ā0(t, i)− B̄02(t, i)R−1
22 (t, i)LT

2 (t, i). Therefore, under
assumption (c) in the statement, it follows that X1

i (·) is just the bounded and stabilizing
solution of the Riccati difference equation (Equation (16)) in the special case k = 1, which
confirms the validity of assertion (iii) from the statement for k = 1.

Let us assume that for k ≥ 2 and for any 1 ≤ l ≤ k − 1 and 1 ≤ i ≤ N, the functions
Xl

i (·) are well defined as unique minimal and positive semi-definite solutions of the Riccati
difference equation (Equation (16)) (written for k and replaced by l) and have properties
(i–iii) from the statement. We now show that for l = k and 1 ≤ i ≤ N, the Riccati difference
equation (Equation (16)) has a minimal solution Xk

i (·) which is positive semi-definite, and it
is a p-periodic sequence satisfying the sign conditions in Equations (13) and (14). Moreover,
we have

0 ≤ X1
i (t) ≤ · · · ≤ Xl

i (t) ≤ · · · ≤ Xk−1
i (t) ≤ Xk

i (t) ≤ · · · ≤ Xs(t, i) (51)

(t, i) ∈ R+ ×N.
If (K(·),W(·)) ∈ AKW, then we rewrite Equation (27) in the form(

ĀT
0K(t, i)Z(t + 1, i) �+Mk

K(t, i)− Z(t, i) ĀT
0K(t, i)Z(t + 1, i)B̄0W(t, i) + Lk

KW(t, i)
� Rk

W(t) + B̄T
0W(t, i)Z(t + 1, i)�

)
+ Π̂KW[Z(t + 1)−X

k−1(t + 1)](i) < 0 (52)

in which (t, i) ∈ Z+ ×N, where Xk−1(t) =
(

Xk−1
1 (t), · · · , Xk−1

N (t)
)

and Π̂KW[Z(t +

1)−Xk−1(t + 1)](i) is computed as in Equation (44) with Z(t + 1) replaced by Z(t + 1)−
Xk−1(t + 1).

Recalling that stochastic detectability implies exact detectability at time instant t0 = 0
(see Remark 5), it follows from Proposition 4.4 in [1] and Theorem 1 that Xs(t, i) ≤ X̃KW(t, i)
for all (t, i) ∈ Z+ ×N. Note also that by using similar arguments to those in Chapter 5
from [8], one can show that X̃KW(t, i) ≤ Z(t, i) for all (t, i) ∈ Z+ ×N. Hence, we deduce
that Xk−1

i ≤ Xs(t, i) ≤ Z(t, i) for all (t, i) ∈ Z+ ×N. Thus, Π̂KW[Z(t + 1) − Xk−1(t +
1)](i) ≥ 0. This allows us to conclude that the matrix-valued sequences Zi(·) = Z(·, i)
satisfy(

ĀT
0K(t, i)Z(t + 1, i) �+Mk

K(t, i)− Z(t, i) ĀT
0K(t, i)Z(t + 1, i)B̄0W(t, i) + Lk

KW(t, i)
� Rk

W(t) + B̄T
0W(t, i)Z(t + 1, i)�

)
< 0 (53)

Therefore, we may conclude that AKW
k,i is not empty for all 1 ≤ i ≤ N if AKW is not

empty. Thus, we deduce that the solutions Xk
iτ(·) to the difference equation (Equation (16))

which satisfy the condition Xk
iτ(τ) = 0 are well defined for all 0 ≤ t ≤ τ, ∀τ > 0, and i ∈ N.

By applying Proposition 4.4 from [1] in the special case of the Riccati difference equation
(Equation (16)), we infer that Xk

i (·), defined by Xk
i (t) = lim

τ→∞
Xk

iτ(t), is the minimal positive

semi-definite and p-periodic solution of the Riccati difference equation (Equation (16)).
From Equations (17) and (49), we obtain(

Ms,i(t) Ls,i(t)
� Rs,i(t)

)
−

(
Mk

i (t) Lk
i (t)

� Rk
i (t)

)
= Π̂(t)

[
Xs(t)−X

k−1(t)
]
(i) (54)
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By again invoking the inequalities Xk−1
i (t) ≤ Xs(t, i) and ∀(t, i) ∈ K+ ×N, we may

obtain Π̂(t)
[
Xs(t + 1)−Xk−1(t + 1)

]
(i) ≥ 0. By applying Theorem 4.2 in [1] in the special

case of Equations (16) and (48), we deduce that Xk
iτ(t) ≤ Xs(t, i) for all 0 ≤ t ≤ τ, τ > 0,

and 1 ≤ i ≤ N. By taking the limit for τ → ∞, we deduce that

Xk
i (t) ≤ Xs(t, i) (55)

for all (t, i) ∈ Z+ ×N. On the other hand, Equation (17) yields(
Mk

i (t) Lk
i (t)

� Rk
i (t)

)
−

(
Mk−1

i (t) Lk−1
i (t)

� Rk−1
i (t)

)
= Π̂(t)

[
X

k−1(t)−X
k−2(t)

]
(i)

Since Xk−2
i (t) ≤ Xk−1

i (t) and (t, i) ∈ K+×N, one obtains Π̂(t)
[
Xk−1(t + 1)−Xk−2(t + 1)

]
,

where (i) ≥ 0. This allows to us apply Theorem 4.2 from [1] in the special case of the Riccati
difference equation (Equation (16)) to deduce that Xk−1

iτ (t) ≤ Xk
iτ(t), ∀ 0 ≤ t ≤ τ, τ > 0,

and 1 ≤ i ≤ N. By letting τ → ∞, we obtain

Xk−1
i (t) ≤ Xk

i (t) (56)

∀(t, i) ∈ Z+ ×N. Thus, Equations (55) and (56) confirm the validity of Equation (51).
Furthermore, Equation (55) yields

R(t, i) + Π3(t)[Xk(t)](i) ≤ R(t, i) + Π3(t)[Xs(t)](i)

∀(t, i) ∈ Z+ × N. These matrix inequalities, together with Lemma 4.5 from [9], allow us to
conclude that Xk

i (·) satisfies the sign conditions in Equations (13) and (14).
Finally, let us remark that if the auxiliary system in Equation (41) is detectable, then the

minimal solution Xk
i (·) coincides with the bounded and stabilizing solution of Equation (16)

for any 1 ≤ i ≤ N. Thus, we have shown inductively that Xk
i (·) can be constructed for

any k ≥ 1 and 1 ≤ i ≤ N which satisfies properties (i–iii) from the statement. Now we
remark that Equation (51) allows us to conclude that the sequences {Xk

i (t)}k≥1, 1 ≤ i ≤ N,
and t ≥ 0 are convergent. Let Y(t, i) = lim

k→∞
Xk

i (t), (t, i) ∈ R+ ×N. By taking the limit for

k → ∞ in Equation (16), we obtain that {Y(t)}t∈Z is a positive semi-definite and p-periodic
solution of Equation (2). Based on the minimality property of the stabilizing solution of the
Riccati equation (Equation (2)), we deduce that Xs(t) ≤ Y(t) , t ∈ Z, and hence

Y(t) = Xs(t) . (57)

Thus, the proof is complete.

4. Numerical Experiments

The time-invariant case will be considered in this section. We will refer to the algorithm
proposed here as Algo_Deter. In this example, and in order to evaluate the performance
of Algo_Deter, we will compare it with an algorithm that belongs to the class of stochastic
algorithms (see Section 1 for a description of this class of algorithms). We propose using here
a stochastic algorithm that we adapted from [10] to our setting. This algorithm is referred to
as Algo_Stoch. We recall here that for solving the deterministic Riccati equations appearing
in Algo_Deter, one can use direct methods (invariant or deflating subspace-based methods).
We refer the reader interested in direct methods to [6,11,12] and the references therein. We
also recall that at each main iteration of Algo_Stoch, one has to use iterative methods. We
will show, from the computation time point of view, the superiority of Algo_Deter when
compared with Algo_Stoch, which is due to the direct or iterative method opposition.

We will use the following simulation protocol:
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1. Set the example numbers n_good = 0, n_Deter = 0, and n_Stoch = 0, where n_good

represents the number of examples for which both Algo_Deter and Algo_Stoch con-
verge, n_Deter is the number of examples for which Algo_Deter converges but not
Algo_Stoch, and n_Stoch is the number of examples for which Algo_Stoch converges
but not Algo_Deter;

2. Choose n, m1, and m2 randomly and uniformly among the integers from 1 to 10 and
fix N = 3;

3. Generate randomly the corresponding system matrices;
4. If the assumptions in Theorem 2 are not verified, then go back to step 2;
5. Use Algo_Deter and Algo_Stoch to solve the corresponding generalized Riccati equa-

tion. Let the stabilizing solution obtained using Algo_Deter be X1 and the solution
obtained using Algo_Stoch be X2, with CPU_time_1 and CPU_time_2 being the re-
spective CPU running times;

(a) If neither algorithms converge, then go back to step 2;
(b) If Algo_Deter converges but not Algo_Stoch, then set n_Deter = n_Deter + 1

and go back to step 2;
(c) If Algo_Deter does not converge but Algo_Stoch does, then set n_Stoch =

n_Stoch + 1 and go back to step 2;
(d) If both algorithms converge, then set n_good = n_good + 1 and compute the error

Ri =
1
N ∑N

j=1 ‖X1(j)− X2(j)‖ and the coefficient ρi =
CPU_time_2
CPU_time_1 ;

6. Repeat steps 2–6 until n_good = 100.

We generated random test samples with a specified level of accuracy ε = 10−8 for
both algorithms.

The obtained results are listed in Table 1 and Figure 1. In Table 1, O(Ri) is the
order of magnitude of Ri, and “Number of Examples” indicates the number of examples
corresponding to the same order of magnitude of Ri. It follows from the obtained results
that when Algo_Deter and Algo_Stoch converged, the obtained stabilizing solutions were
computed with comparable accuracies.

As expected, and thanks to the use of direct resolution methods instead of iterative
ones, one can see clearly from Figure 1 the improvement brought about by Algo_Deter

from the computation time point of view.
During this experiment, we also obtained the following results: n_deter = 36 and

n_Stoch = 0. This shows that Algo_Deter still worked well in cases where Algo_Stoch

failed. We believe that this was due partly to the fact that in Algo_Stoch, the computation
of the sequence of approximations of the stabilizing solution relies on the computation of a
vanishing matrix sequence {Z(k)(t)}k≥0, while in Algo_Deter, one directly computes the
sequence of approximations {X(k)(t)}k≥0. The vanishing nature of the matrix sequence
{Z(k)(t)}k≥0 could induce ill conditioning in its computation.

Table 1. Accuracy comparison for 100 random examples.

O(Ri) Number of Examples

10−9 66
ine 10−10 34
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Figure 1. Plot of the quantity ρi =
CPU_time_2
CPU_time_1 .

5. Conclusions

In this paper, we addressed the problem of the numerical computation of the stabilizing
solution for a class of generalized Riccati difference equations. We proposed an iterative
deterministic algorithm for the computation of such a global solution. The performances of
the proposed algorithm were illustrated via a comparison with existing algorithms in the
literature. Our ongoing efforts are twofold. On one side, we are interested in the numerical
computation of some global solutions to Riccati equations arising in stochastic Nash and
Stackelberg games. The degree of maturity of numerical methods for such an aim is very
weak when compared with its deterministic analogue. On the other side, we are also
interested in generalized Riccati equations arising in mean field LQ games. Such equations
present a coupling that makes this problem very challenging.
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Appendix A

Lemma A1. Assume that the assumptions of Theorem 1 hold. If X(·) is bounded on Z+, a positive
semi-definite solution to Equation (2), then the system

x(t + 1) = [A0(t, θt) + B02(t, θt)V−1
22 (t, θt)V2(t, θt)F(t, θt)

+
r

∑
k=1

wk(t)(Ak(t, θt) + Bk2(t, θt)V−1
22 (t, θt)V2(t, θt)F(t, θt))]x(t) (A1)

is ESMS, where F(t, i) is defined as in Lemma 4.7 from [1], V2(t, θt) =
[

V21(t, θt) V22(t, θt)
]
,

and Vjk(t, θt) = Vjk(t)[X(t + 1)](θt), as introduced in Remark 1.
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Proof. Using similar arguments to those in [1], one can show that Equation (2) can be
rewritten as

X(t, i) =
r

∑
k=0

(Ak(t, i) + B2k(t, i)Γ(t, i))TΞ(t)[X(t + 1)](i)�

+ FT
1 (t, i)VT

11(t, i)V11(t, i)F1(t, i) + ČT(t, i)Č(t, i)

+
[

L2(t, i) + ΓT(t, i)R22(t, i)
]

R−1
22 (t, i)� (A2)

where Γ(t, i) = F2(t, i) + V−1
22 (t, i)V21(t, i)F1(t, i) and (t, i) ∈ Z+ ×N.

Let us associate with Equation (A2) the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(t + 1) = [A0(t, θt) + B02(t, θt)Γ(t, θt) + ∑r

k=1 wk(t)(Ak(t, θt) + Bk2(t, θt)Γ(t, θt))]x(t)

y(t) =

⎛⎜⎜⎝
Č(t, θt)

V11(t, θt)F1(t, θt)

R− 1
2

22 (t, θt)
(

LT
2 (t, θt) + R22(t, θt)Γ(t, θt)

)
⎞⎟⎟⎠x(t)

. (A3)

Note that the first equation in Equation (A3) is simply Equation (A1). Hence, the
conclusion may be obtained by applying Theorem 3.2 from [13] in the case of the system in
Equation (A3). To this end, we have to show that the system in Equation (A3) is exactly
detectable at the time instant t0 = 0.

Let x(t; 0, x0) be a solution to the system in Equation (A3) with the property that the
corresponding output y(t; 0, x0) satisfies

y(t; 0, x0) = 0 a.s. ∀t ≥ 0. (A4)

This means that
Č(t)x(t; 0, x0) = 0 (A5)

V11(t, θt)F1(t, θt)x(t; 0, x0) = 0 (A6)

and
R− 1

2
22 (t, θt)

(
LT

2 (t, θt) + R22(t, θt)Γ(t, θt)
)

x(t; 0, x0) = 0, a.s. ∀t ≥ 0. (A7)

Since R22(t, θt) > 0 and V11(t, θt) > 0, Equations (A6) and (A7) yield

F1(t, θt)x(t; 0, x0) = 0 (A8)

and
F2(t, θt)x(t; 0, x0) = −R−1

22 (t, θt)LT
2 (t, θt)x(t; 0, x0) a.s. ∀t ≥ 0. (A9)

By substituting Equations (A8) and (A9) in the first equation from Equation (A3), writ-
ten for x(t) and replaced by x(t; 0, x0), we obtain that x(·; 0, x0) is a solution to Equation (29).
From Equation (A5), together with the exact detectability at the time instant t0 = 0 of the
system in Equation (29), we deduce that

lim
t→∞

E

[
|x(t; 0, x0)|2

]
= 0. (A10)

Finally, Equations (A4) and (A10) allow us to conclude that Equation (A3) is exactly
detectable at the time instant t0 = 0. Finally, by using the result from Theorem 3.2 in [13],
the proof is completed.
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Abstract: The pulse-with modulated (PWM) dc-dc buck-boost converter is a non-minimum phase
system, which requires a proper control scheme to improve the transient response and provide
constant output voltage during line and load variations. The pole placement technique has been
proposed in the literature to control this type of power converter and achieve the desired response.
However, the systematic design procedure of such control law using a low-cost electronic circuit
has not been discussed. In this paper, the pole placement via state-feedback with an integral control
scheme of inverting the PWM dc-dc buck-boost converter is introduced. The control law is developed
based on the linearized power converter model in continuous conduction mode. A detailed design
procedure is given to represent the control equation using a simple electronic circuit that is suitable
for low-cost commercial applications. The mathematical model of the closed-loop power converter
circuit is built and simulated using SIMULINK and Simscape Electrical in MATLAB. The closed-loop
dc-dc buck-boost converter is tested under various operating conditions. It is confirmed that the
proposed control scheme improves the power converter dynamics, tracks the reference signal, and
maintains regulated output voltage during abrupt changes in input voltage and load current. The
simulation results show that the line variation of 5 V and load variation of 2 A around the nominal
operating point are rejected with a maximum percentage overshoot of 3.5% and a settling time
of 5.5 ms.

Keywords: analog control circuit; dc-dc converter; pole placement; pulse-width modulated; state
feedback with integral control

MSC: 37M05

1. Introduction

The PWM dc-dc converters are utilized in modern aircraft power systems and portable
communication devices due to their high efficiency, small size, and low cost. Portable elec-
tronic devices such as cell phones and laptops require a well-regulated dc supply voltage to
operate properly. However, the dc-dc converters encounter line and load variations during
their normal operation, which fluctuate the load voltage. Therefore, a controller is required
to provide a constant voltage and improve the transient response of the power converter.
Modern control techniques have been applied to control the power converter dynamics
due to their robustness against large disturbances. In [1], neural inverse optimal control
(NIOC) for a regenerative braking system in an electric vehicle (EV). A neural identifier
has been trained with an extended Kalman filter (EKF) to estimate the dc-dc buck-boost
power converter dynamics. An artificial neural network-based controller has also been
developed for a bidirectional power flow management system that comprises a dual-source
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low-voltage buck-boost converter [2]. However, the practical implementation of the control
schemes in [1,2] is complicated.

Other research efforts have proposed model predictive control (MPC) and adaptive
control techniques as alternatives for artificial neural network-based controllers. For
instance, the MPC of the buck-boost converter has been introduced in [3], in which a
switching algorithm is proposed to minimize the error for the power converter. In [4], a
centralized model predictive control has been developed to stabilize the DC microgrid
with versatile buck-boost converters. A direct model reference adaptive control [5] and
an optimal adaptive control [6] have also been presented for boost and voltage source
converters, respectively. A nonlinear control based on the Lyapunov function has been
developed in [7] for power management systems, whereas an inverse-system decoupling
control method has been presented in [8] for a dc-dc buck-boost converter. Despite the
robust control performance, the previous control strategies require tedious mathematical
computations and high-cost for practical implementation.

Feedback linearization methods have been discussed in [9–13] for dc-dc power con-
verters. A feedback control law based on full feedback linearization has been introduced for
the buck, boost, and buck-boost converters [9]. Feedback linearization has been presented
to control the buck-boost power converter [10,11], boost converter [12], and modular mul-
tilevel converter-bidirectional dc-dc power converter [13]. However, the aforementioned
research efforts fall short of introducing systematic design procedures for the practical
implementation of feedback linearization control law. Other research endeavors have
proposed full-state feedback control via a pole placement technique [14–18]. In contrast to
the classical voltage-mode controllers, all the state variables of the power converter are fed
back through constant gains. Such a feature allows the state feedback control law to place
the closed-loop poles arbitrarily in the left-half-plane (LHP). Thus, the closed-loop system
response can be shaped such that the desired specifications are achieved.

The state feedback control based on the normalized linear state-space average model
has been presented in [14] to regulate the output voltage of the dc-dc converters. In [15],
the state feedback control is applied to the dc-dc converters and compared with different
methods, such as fuzzy logic and neural network controllers. Furthermore, moving unstable
poles to the LHP based on a digital state feedback control has been presented in [16]. Such
control methods have been presented to regulate the system state variables and achieve
the desired transient response. However, the steady-state error elimination has not been
discussed. Other methods, such as a power smoothing control using sliding-mode control, a
pole placement criterion [17], and a minimum degree pole placement-based digital adaptive
control [18], have been proposed for power converters. State feedback with integral control
of a PWM push-pull dc-dc power converter has also been reported in [19].

Recently, a pole placement and sensitivity function shaping technique has been ap-
plied to the dc-dc buck converter [20]. The control system has been validated using
MATLAB/SIMULINK. Experimental validation has been performed on a dc-dc buck con-
verter with a constant power load (CPL) using a hardware-in-the-loop (HIL) system, where
dSPACE DS1104 has been utilized to implement the control law. In [21], a state feedback
control via pole placement is designed on the basis of a nonlinear model of a fuel cell
interleaved buck-boost converter. The aforementioned control systems yield robust control
performance, mitigate the non-minimum phase issue, and improve the transient response
of the power converter. However, design complexity and high-cost implementation have
been noticed. In addition, the systematic design procedure and realization of such a control
scheme using a simple analog circuit have not been reported. The comparison among
previous control methods is presented in Table 1.
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Table 1. Modern control techniques of dc-dc power converters.

Control Technique Advantages Disadvantages References

Neural inverse optimal
control (NIOC) i. Robustness against large

disturbances.

ii. Estimating converter dynamics.

i. Complexity of practical
control system design.

ii. High-cost control system
implementation.

[1]

Artificial neural
network-based control [2]

Model predictive control (MPC)
i. Fast dynamical response.
ii. Accurate tracking performance.

Practical implementation has not
been discussed. [3]

Centralized MPC
i. Fast dynamical response.
ii. Less computational efforts than

traditional MPC.

High-cost control system
implementation.

[4]

Direct model reference
adaptive control

Robustness against voltage and
frequency variations.

Complexity of control system
implementation. [5]

Optimal adaptive control Estimation of uncertainties and
disturbances

High-cost control system
implementation (dSPACE). [6]

Lyapunov-based
nonlinear control Robustness against load variations. Practical implementation has not

been covered. [7]

Inverse-system
decoupling control Disturbance rejection capability. Design procedure of control circuit

has not been provided. [8]

Feedback linearization control Mitigation of CPL and zero dynamics. Design procedure of control circuit
has not been provided. [9–13]

State-feedback control via
pole placement

Placement of closed-loop poles at
desired locations.

Steady-state error issue.
Design procedure of control circuit
has not been provided.

[14–18]

State-feedback with
integral control

State variables regulation and
steady-state error elimination.

Design procedure of control circuit
has not been introduced.
High-cost control system
implementation (dSPACE).

[19]

pole placement control with
sensitivity function

Mitigation of CPL and non-minimum
phase issue. [20]

Motivated by the control design approach in [22,23], the pole placement via state-
feedback with integral control of an inverting PWM dc-dc buck-boost converter in continu-
ous conduction mode (CCM) is introduced. The contributions of this research work are
listed below:

• The state-feedback with integral control law is designed based on an ideal small-
signal model and tested with a nonlinear power converter model that includes all
parasitic components;

• The realization of the proposed control circuit has been introduced using op-amps,
resistors, and a capacitor;

• The closed-loop SIMULINK model and the corresponding closed-loop Simscape power
converter circuit have been simulated in MATLAB to validate the design approach;

• The transient characteristics, tracking performance, and disturbance rejection capabil-
ity of the proposed control circuit have been investigated.

The control scheme is designed to track the desired trajectory and improve the transient
response of the power converter. The control system parameters are selected to place the
closed-loop poles at the desired location and guarantee the system’s stability.

The rest of the paper is organized as follows. Section 2 introduces the mathematical
model of the power converter in CCM. Section 3 discusses the state feedback with integral
control design. Section 4 presents the realization of the analog control circuit. In Section 5,
the control design procedure flowchart is introduced. The results and discussion are given
in Section 6, and Section 7 covers the conclusions.
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2. Mathematical Model of Inverting DC-DC Buck-Boost Converter

2.1. Nonlinear Model

The topology of inverting the dc-dc buck-boost converter is depicted in Figure 1a. The
power converter is highly nonlinear because of the switching network presented by the
MOSFET S and the diode D1. The inductor L and the capacitor C represent the energy
storage components in the circuit. The switching elements S and D1 operate alternatively
in CCM, which give two possible structures for the dc-dc converter [17]. The non-ideal
equivalent circuit of the power converter is given in Figure 1b. As shown in Figure 1b, the
equivalent series resistances (ESRs) of L and C are rL and rC, respectively. Moreover, rF, VF,
and rDS represent the parasitic components of the diode D1 and switch S, respectively.

 
(a) (b) 

Figure 1. (a) The inverting dc-dc buck-boost converter circuit. (b) The equivalent circuit of the
non-ideal buck-boost converter in CCM.

Based on the averaging theory, the large-signal averaged model of the dc-dc buck-
boost converter is derived in [24] using Kirchhoff’s voltage and current laws. The nonlinear
dynamics and output voltage vO are expressed as⎧⎨⎩ diL

dt = 1
L [(vI − rDSiL)dT + (vO − VF − rFiL)

−
dT − rLiL]

dvC
dt = − 1

C [iL
−
dT + iO],

(1)

and

vO = vC − rC(iL
−
dT + iO). (2)

In (1) and (2), the input voltage vI , load resistor r, load current iO, inductor current iL,
output voltage vO, and capacitor voltage vC are represented as large-signal quantities. In

addition, dT is the large-signal quantity of the time interval at which S is ON, whereas
−
dT is

the large-signal quantity of the time interval at which S is OFF. The duty cycle dT is defined
such that dT∈[0, 1]. In fact, dT represents the control signal that regulates vO during the
line and load disturbances.

The non-ideal large-signal averaged model in (1) and (2) emulates the dynamics of the
actual power converter. Hence, it can be used to investigate the tracking and regulation
performance of the proposed state feedback controller in MATLAB/SIMULINK.

2.2. Linearized State-Space Averaged Model

The small-signal ac model of the dc-dc converter must be derived to design the
state feedback with the integral controller. Therefore, the nonlinear model should be
linearized around the equilibrium point. To simplify the control design process, the
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parasitic components in (1) and (2) are neglected. Thus, an ideal large-signal state-space
averaged model is obtained

[ diL
dt

dvC
dt

]
=

⎡⎣ 0
−
dT
L

−
−
dT
C

−1
rC

⎤⎦[
iL
vC

]
+

[ vI
L
0

]
dT , (3)

where vC = vO.
The steady-state values of the inductor current IL and output voltage VC of the invert-

ing dc-dc buck-boost converter can be written as⎧⎪⎨⎪⎩
IL = VC

R
−
DT

VC = −DTVI
−
DT

, (4)

where DT , VI , and R are the steady-state values of the duty cycle, input voltage, and load
resistance, respectively. Next, the linearized small-signal averaged model can be derived
by linearizing (3) around the equilibrium point given in (4), which gives⎡⎣ d

~
i L

dt
d

~
vC
dt

⎤⎦ =

⎡⎣ 0
−
DT
L

−−
DT
C

−1
RC

⎤⎦[~
i L
~
vC

]
+

[
VI−VC

L
IL
C

]
~
d, (5)

and
~
vO =

[
0 1

][~
i L
~
vC

]
+ [0]

~
d. (6)

The small-signal ac quantities of the inductor current, capacitor voltage, and duty

cycle are
~
i L,

~
vC, and

~
d, respectively. The small-signal model can also be represented in

compact form as { .
x = Ax + Bu
y = Cx + Du

(7)

The state variables vector x contains
~
i L and

~
vC, while the input u and output y

represent
~
d and

~
vO, respectively. The matrices A, B, C, and D are defined in (5) and (6). The

parameters of the dc-dc buck-boost converter are given in Table 2.

Table 2. Parameters of dc-dc buck-boost converter [24].

Description Parameter Value

Inductor L 30 μH
Output capacitor C 2.2 mF
Load resistance R (1.2–12) Ω
Inductor ESR rL 0.050 Ω
Output capacitor ESR rC 0.006 Ω
MOSFET on-resistance rDS 0.110 Ω
Diode forward resistance rF 0.020 Ω
Diode threshold voltage VF 0.700 V
Input voltage VI 28 ± 4 V
Output voltage VO 12 V
Switching frequency fs 100 kHz

3. State-Feedback with Integral Control Design

3.1. Control Law Design

The block diagram of the state feedback with integral control system is shown in
Figure 2. The control objective is to find the controller gains that place the closed-loop poles
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arbitrarily at the desired location on the s-plane and obtain the desired system response. If
the state variables are available for measurements, the pole placement can be achieved if
the system is controllable [25], which means that the controllability matrix

Co =
[
B AB A2B . . . An−1B

]
(8)

has a full rank.

Figure 2. The block diagram of the state feedback with integral control system.

Furthermore, the power converter output voltage should track the desired reference
voltage Vr. Hence, an integral part is added to the control scheme, which adds a new state
xn+1 to the system with an integral gain Kn+1. From Figure 2, we have

.
xn+1 = Vr − (Cx + Du). (9)

A control law u can be selected as

u = −Kx − Kn+1xn+1, (10)

where K is a 1 × n vector of constant gains. Substituting (10) back into (9) gives

.
xn+1 = Vr − (C − DK)x + DKn+1xn+1 (11)

On the other hand, if (10) is substituted into the open-loop state Equation (7), one obtains

.
x = Ax − B(Kx + Kn+1xn+1) (12)

Rearranging (12) results in

.
x = (A − BK)x − BKn+1xn+1 (13)

Now, based on (11) and (13), the augmented state-space model of the power converter
can be written as [ .

x
.
xn+1

]
=

[
A − BK −BKn+1
−C + DK DKn+1

][
x

xn+1

]
+

[
Θ
1

]
Vr (14)

where Θ is an n × 1 vector of zeros. Hence, the closed-loop dc-dc buck-boost converter
dynamics become ⎧⎪⎨⎪⎩

.
−
x =

(−
A − −

B
−
K
)
−
x +

[
Θ
1

]
Vr.

−
y =

−
C
−
x

(15)
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The matrices
−
A,

−
B,

−
C, and

−
K are given by

−
A =

[
A Θ
−C 0

]
(16)

−
B =

[
B

−D

]
(17)

−
C =

[
C − DK −DKn+1

]
(18)

−
K =

[
K Kn+1

]
. (19)

It should be noted that the pair [
−
A,

−
B] must be completely controllable in order to place

the eigenvalues of the matrix (
−
A − −

B
−
K) arbitrarily [25]. Thus, the controller gains vector

−
K

and can place the closed-loop poles of the system dynamics in (15) at the desired location
on the s-plane.

The vector
−
K can be computed manually via comparing the characteristic polynomial

of the matrix (
−
A − −

B
−
K) with the desired characteristic polynomial CP

CP = sn+1 + αnsn + . . . + α1s + α0. (20)

The parameters α0, α1, . . . αn are real constants, which are determined based on the
desired closed-loop poles as illustrated in the following subsection.

3.2. Controller Gains Selection

In this research, the control objective is to obtain a transient response with a percentage
overshoot PO ≤ 5% and settling time ts ≤ 5 ms. The desired specifications are selected
based on the buck-boost simulation results reported in [24]. It is also required to track
a time-varying reference voltage Vr, regulate the output voltage, and reject the line and
load variations.

To simplify the design process, the linearized ideal small-signal model in (5) is consid-
ered. The dominant closed-loop poles can be obtained using the characteristic equation of
the second order system

s2 + 2ζωns + ω2
n = 0. (21)

In [25], the relationship between the settling time, damping ratio, and natural fre-
quency is defined by

ts ∼= 4.6
ζωn

. (22)

Based on (22), if the desired settling time ts and damping ratio ζ are set to 1.5 ms and
0.688, respectively, the natural frequency ωn is 4489.5 rad/s. It should be noted that the
choice of ts and ζ is not unique. The designer can choose different values for ts and ζ that
give excellent results. However, the values of the controller gains must be maintained to
avoid any issues with the practical implementation of the electronic control circuit.

Using (21), ζ, and ωn, the dominant closed-loop poles are s1, 2 = −3089 ± j3258.
However, since the closed-loop control system in (15) comprises three state variables
(inductor current, capacitor voltage, and output voltage error), a third pole should be
placed far to the left at s3 = −12000 on the s-plane, so that the desired transient response is
not affected. Thus, the desired closed-loop poles of the state feedback with integral control
system yield

P =
[−3089 + j3258 −3089 − j3258 −12000

]
. (23)
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Next, (16) and (17) can be used to evaluate the matrices
−
A and

−
B based on the parame-

ters of the buck-boost converter given in Table 2. In MATLAB, it can be verified that the

pair [
−
A,

−
B] has a full rank and the system is controllable. Thus, the feedback gain vector

−
K

can easily be computed using (acker) command in MATLAB, which gives

−
K =

[
0.011 −0.170 600

]
. (24)

The unit step response of the compensated small-signal linearized model of the in-
verting dc-dc buck-boost converter in CCM is shown in Figure 3. It can be seen that the
output voltage vO tracks the desired trajectory, while the percentage peak overshoot PO
and settling time ts are about 4.7% and 1.7 ms, respectively.

Figure 3. The unit step response of the compensated dc-dc buck-boost converter.

It is worth noting that the gains of the state feedback with integral control law in (24)
are designed based on the linearized ideal dc-dc buck-boost converter model. Hence,
when the simulation is conducted with a nonlinear power converter model with all the
parasitic components included, the transient response characteristics will be different from
the response shown in Figure 3. It will exhibit a longer settling time and larger PO. This
is true because the linearized model does not include all the information on the actual
dc-dc power converter dynamics. However, the state feedback controller gains can be
tuned to compensate for the parasitic components effects and obtain the desired transient
response characteristics.

3.3. Structure of Proposed Control System

The MATLAB/SIMULINK model of the state feedback with integral control of the
PWM dc-dc buck-boost converter in CCM is shown in Figure 4.
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Figure 4. MATLAB/SIMULINK model of state feedback with integral control system of inverting
dc-dc buck-boost converter.

The closed-loop control system of the dc-dc buck-boost converter is made up of the
following parts:

• Pulse-Width Modulator: The PWM subsystem contains a comparator that compares
the state feedback with integral control law with the ramp voltage VT to generate the
duty cycle dT that drives the nonlinear power converter model;

• Power Converter: The large-signal non-ideal dc-dc buck-boost converter model is built
in MATLAB/SIMULINK using s-function based on the state-space equations given in
(1) and (2). The nonlinear model emulates the dc-dc buck-boost converter dynamics;

• State Feedback with Integral Controller: The controller subsystem comprises the state
feedback with integral control law given in (10) along with the state feedback controller
gains defined in (24).

4. Realization of Analog Control Circuit

The control scheme given in Figure 4 should be converted to an analog control circuit
that can easily be built using electronic components. The schematic of the proposed control
circuit is given in Figure 5. The control circuit is made up of op-amps, resistors, and a
capacitor. Despite the nonidealities and tolerances of the electronic elements, the overall
control circuit must reflect the mathematical expression of the given control law, which is
designed via the pole placement technique.

The design steps of the state feedback with an integral control circuit are summarized
as follows:

• Voltage sensor gain β: The buck-boost converter is designed to convert 28 V to 12 V. If
the reference voltage Vr = 2 V, then the feedback network gain β is Vr

Vo
= 2

12 = 1
6 ;

• Summing, inverting, and differential op-amps: The gain of the summing, inverting,
and differential op-maps in the control circuit is unity. Thus, the resistors of the
summing op-amps RS1, RS2, and RS3, inverting op-amp RI1 and RI2, and differential
op-amp RF1 and RF2 are set to 5.1 kΩ;

• Pulse-Width Modulator: The peak ramp voltage VT is set to 2 V, whereas the switching
frequency fs is 100 kHz.

• Inductor current gain K1: In the control design section, the gain of the inductor current
K1 has been computed as 0.011. Since the gain K1 = RL2

RL1
, the resistor RL1 and RL2 can

be set to 100 kΩ and 1.1 kΩ, respectively;
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• Output voltage gain K2: In the control design section, the gain of the output voltage
K2 has been computed as 0.17. Since the gain K2 = RV2

RV1
, the resistor RV2 and RV1 can

be set to 100 kΩ and 17 kΩ, respectively;
• Integral gain K3: As reported in [26], the integral gain is defined as K3 = 1

R1C1
. In

the control design section, the gain K3 has been computed as 600. If the resistor R1 is
assumed to be 33 kΩ, then the capacitor C1 is 56 nF;

Figure 5. Schematic of state-feedback with integral controlled PWM dc-dc buck-boost converter circuit.

It should be noted that accurate output voltage and inductor current sensors are
required to measure the control state variables. The inductor current measurement is
important in the state feedback with an integral control system to improve the transient
response characteristics and handle the non-minimum phase power converter [27]. General-
purpose op-amps such as LF357 can be utilized to build the state feedback with the integral
control circuit.

Additionally, the design procedure of the control circuit given above does not include
the selection of the pulse-width modulator and the high-side gate driver of the MOSFET.
The mitigations for over-voltage protection, over-current protection, EMC/EMI compat-
ibility, and other practical engineering aspects should also be considered to develop an
experimental prototype for testing and evaluation.

5. Flowchart of State-Feedback with Integral Control Design

The step-by-step design procedure of the state-feedback with integral control of the
dc-dc buck-boost converter is summarized in a flowchart as shown in Figure 6.

First, the linearized small-signal averaged model of the power converter is derived
in state-space form as defined in (5) and (6). The next step is to construct the closed-loop

power converter dynamics as shown in (15), from which the matrices
−
A,

−
B, and

−
C are

obtained. Subsequently, the rank of the controllability matrix is computed to confirm that

the pair [
−
A,

−
B] is controllable.
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Figure 6. Flowchart of state-feedback with integral control design of dc-dc buck-boost converter.

The dominant closed-loop poles are obtained using the characteristic equation of the
second-order system given in (21). Next, based on (22), the desired percentage overshoot
and settling time yield the required damping ratio and natural frequency, which give the
desired dominant poles. Since the augmented model contains three state variables, the
third pole should be placed far to the left on the s-plane in order to maintain the desired
transient response. Then, the desired closed-loop poles are lumped together as shown
in (23), and the state-feedback control gains given in (24) are computed using the acker
command in MATLAB.

Finally, the SIMULINK model of the state-feedback with an integral-controlled PWM
dc-dc buck-boost converter is simulated to verify the tracking performance of the control
system. If the desired response is achieved, the control equation is converted to an elec-
tronic circuit as explained in Section 4. However, if the system response requires further
enhancement, the closed-loop poles’ location can be adjusted and the controller gains are
re-calculated for verification.
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6. Results and Discussion

6.1. Validation of Control Design Approach

The schematic of state-feedback with an integral control circuit in Figure 5 has
been constructed using Simscape Electrical in MATLAB. In order to validate the con-
trol design methodology, the electronic control circuit has been compared with the MAT-
LAB/SIMULINK nonlinear model of the closed-loop control system given in Figure 4. The
power converter parameters are defined in Table 2. The proposed state feedback controller
gains are given in (24), whereas the corresponding electronic control circuit elements are
defined in Section 4.

The MATLAB/SIMULINK model and the closed-loop power converter circuit in
Simscape Electrical are simulated and compared under nominal operating conditions (load
resistance R = 3 Ω and input voltage VI = 28 V). The simulation of the two closed-loop
control schemes is conducted in MATLAB using (Automatic) solver and 0.1 μs step-size.
The waveforms of the ramp voltage VT, control voltage u, gate-to-source voltage vGS, the
inductor current iL, and output voltage vO during steady-state are shown in Figure 7. The
simulation results of the mathematical closed-loop power converter model in SIMULINK
and the corresponding closed-loop power converter circuit in Simscape Electrical are
depicted in Figures 7a and 7b, respectively.

(a) (b) 

Figure 7. Steady-state waveforms of (a) MATLAB/SIMULINK model and (b) Simscape Electrical
circuit of the state feedback with integral control of PWM dc-dc buck-boost converter in CCM. The
figures show the control input u, ramp voltage VT, gate-to-source voltage vGS, inductor current iL,
and output voltage vO.

It can be seen that the waveforms obtained from the mathematical model in Figure 7a
and those obtained from the corresponding electronic circuit in Figure 7b are identical.
That means the mathematical model of the power converter mathematical model emulates
the power converter circuit dynamics successfully. Additionally, the state feedback with
integral control law has been represented by the analog control circuit properly, which
validates the control circuit design approach.

Notably, the dc output voltage is regulated at −12 V with a duty cycle of 0.336, whereas
the switching frequency of the ramp voltage waveform VT is 100 kHz. The negative output
voltage is due to the topology of the inverting dc-dc buck-boost converter. It can also be
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seen that the power converter operates in CCM because the inductor current waveform is
maintained above zero. The average value of the inductor current is around 5.99 A.

6.2. Rejection of Line and Load Variations

The performance of the state feedback with an integral control system has been
investigated considering step change in input voltage vI and load current iO. The output
voltage response during line variation is shown in Figure 8. In Figure 8a, as vI changes
from 28 V to 33 V, the percentage overshoot PO and settling time ts are about 2.6% and
5.50 ms, respectively. Moreover, when the input voltage vI changes from 28 V to 23 V as
shown in Figure 8b, the maximum PO and ts are around 3.5% and 5.5 ms, respectively. In
both cases, it can be noticed that vO is regulated at the desired value while maintaining
consistent dynamics during the line variations.

 
(a) (b) 

Figure 8. The tracking performance of the state feedback with integral control of inverting dc-dc
buck-boost converter under line disturbance. (a) The output voltage response vO when the input
voltage vI changes from 28 V to 33 V during the time interval 20 ≤ t ≤ 32.5 ms. (b) The output
voltage response vO when the input voltage vI changes from 28 V to 23 V during the time interval
20 ≤ t ≤ 32.5 ms.

On the other hand, the output voltage responses to a step change in load current iO
are depicted in Figure 9. As shown in Figure 9a, when the load current iO increases from
4 A to 6 A, the output voltage vO exhibits a maximum percentage overshoot PO of 2% with
settling time ts of 4 ms. However, when the load current iO decreases from 4 A to 2.5 A,
Figure 9b shows that the output voltage vO has a maximum percentage undershoot PO of
1% and reaches the steady-state value after 3.5 ms.

The simulation results show the disturbance rejection capability of the proposed
control system. Although the control design is conducted based on the linearized ideal
state-space model, the control circuit can still handle the nonlinear dynamics of the dc-
dc buck-boost converter. In addition, the percentage overshoot and settling time of the
output voltage response remain within the desired limits (maximum percentage overshoot
PO ≤ 5% and settling time ts ≤ 5 ms).

50



Mathematics 2023, 11, 2139

 
(a) (b) 

Figure 9. The tracking performance of the state feedback with integral control of inverting dc-dc
buck-boost converter under load disturbance. (a) The output voltage response vO when the load
current iO changes from 4 A to 6 A during the time interval 20 ≤ t ≤ 32.5 ms. (b) The output
voltage response vO when the load current iO changes from 4 A to 2.5 A during the time interval
20 ≤ t ≤ 32.5 ms.

6.3. Tracking of Time-Varying Reference Voltage

The output voltage response vO during step changes in the reference voltage Vr is
shown in Figure 10. The power converter operates at nominal operating conditions (load
resistance R = 3 Ω and input voltage VI = 28 V). It can be noticed that when the reference
voltage Vr steps down from 2 V to 1.5 V, the output voltage vO follows the desired trajectory
vd and shifts down from −12 V to −9 V. Likewise, when the reference voltage Vr steps
up from 2 V to 2.5 V, then the output voltage vO tracks the desired trajectory vd and shifts
down from −12 V to −15 V. In both cases, the output voltage vO takes about 5.5 ms with
no percentage overshoot to reach the steady-state value. Thus, the simulation results show
that the proposed control circuit tracks the desired trajectory effectively.

Figure 10. The output voltage response vO of the state feedback with integral control of PWM dc-dc
buck-boost converter in CCM during a time-varying reference voltage Vr. The upper sub-figure
shows the step changes in reference voltage Vr. The lower sub-figure shows the tracking performance
of the output voltage response vO with respect to the desired trajectory vd.
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However, the output voltage response of the closed-loop nonlinear power converter
circuit in Figure 10 exhibits a longer settling time as compared to that of the closed-loop
ideal linearized power converter model shown in Figure 3. The discrepancy between
the characteristics of the two responses is due to the inclusion of the nonlinearity and
parasitic components of the dc-dc converter and the control circuit, which are not consid-
ered in the linearized closed-loop power converter model. Thus, the nonlinearities and
modeling uncertainty of the power converter increase the settling time of the closed-loop
system response.

Table 3 summarizes the characteristics of the state-feedback with an integral controlled
dc-dc buck-boost converter under step changes in input voltage, load current, and the
reference voltage. It can be noticed that the output voltage is maintained at −12 V during
line and load variations. However, when the reference voltage changes, the output voltage
follows the new desired trajectory as shown in Figure 10.

Table 3. Characteristics of proposed control circuit response during step changes in load current,
input voltage, and reference voltage.

Disturbance Type
(ΔiO, ΔvI, ΔVr)

Overshoot/Undershoot (%) Settling Time (ms) Output Voltage (V)

ΔiO → 4 A to 6.0 A 2 4 −12
ΔiO → 4 A to 2.5 A 1 3.5 −12
ΔvI → 28 V to 33 V 2.6 5.5 −12
ΔvI → 28 V to 23 V 3.5 5.5 −12
ΔVr → 2 V to 2.5 V 0 5.5 −15
ΔVr → 2 V to 1.5 V 0 5.5 −9

7. Conclusions

The state feedback with integral control circuit using the pole placement technique
has been developed for the inverting PWM dc-dc buck-boost converter in CCM. The
control design methodology and the realization of the proposed control circuit have been
introduced. The SIMULINK model and the corresponding Simscape Electrical circuit of
the closed-loop power converter have been simulated in MATLAB to validate the design
approach. It has been observed that the simulation results of the nonlinear closed-loop
power converter model and the corresponding closed-loop power converter circuit are in
good agreement. The pole placement technique results in a control law that places the
closed-loop poles at the desired location on the left-half plane (LHP) and achieves the
desired transient response. Furthermore, the state feedback with integral control eliminates
the steady-state error at the output voltage and provides precise tracking performance. It
has been shown that the line variation of 5 V and load variation of 2 A around the nominal
operating point have been rejected with a percentage overshoot of 3.5% and settling time
of 5.5 ms.

The state feedback with an integral control scheme is simple and implementable
using op-amps and analog components, which is attractive for commercial and low-cost
industrial applications. The proposed control design approach is flexible, which allows the
designer to freely choose the closed-loop poles’ location, compute the controller gains that
meet the requirements, and convert the control equation to an electronic control circuit. The
controller gains of the control circuit can further be tuned to compensate for actual power
converter dynamics and improve the transient response characteristics. On the contrary, if
a digital signal processor is chosen to implement the state feedback control algorithm, then
the control law must be discretized, and further analysis is required in the z-domain to
maintain the stability of the digital control system. Hence, the proposed design technique
introduces a competitive alternative for embedded system-based control implementation.
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Abbreviations

List of Acronyms
PWM pulse-width modulated
EV electric vehicle
NIOC neural inverse optimal control
EKF extended Kalman filter
MPC model predictive control
LHP left-half-plane
CPL constant power load
HIL hardware-in-the-loop
CCM continuous conduction mode
MOSFET metal-oxide-semiconductor field-effect transistor
ESR equivalent series resistance
PO percentage overshoot
CP characteristic polynomial
EMC electromagnetic compatibility
EMI electromagnetic interference
List of Symbols
S MOSFET
D1 Diode
L Inductor
C Output capacitor
rL Inductor ESR
rC Capacitor ESR
rF Diode forward resistance
VF Diode threshold voltage
rDS MOSFET on-resistance
vI Large-signal input voltage
vO Large-signal output voltage
r Large-signal load resistance
iO Large-signal load current
dT Large-signal time interval when S is ON
−
dT Large-signal time interval when S is OFF
iL Large-signal inductor current
vC Large-signal capacitor voltage
VI Steady-state input voltage
VO Steady-state output voltage
R Steady-state load resistance
IL Steady-state inductor current
DT Steady-state time interval when S is ON
−
DT Steady-state time interval when S is OFF
~
i L Small-signal ac inductor current
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~
vC Small-signal ac capacitor voltage
~
d Small-signal ac duty cycle
x State variables vector
A State matrix
B Input matrix
C Output matrix
D Direct transmission matrix
Co Controllability matrix
u System input
y System output
Vr Desired reference voltage
K Constant gains vector
Θ Zeros vector
ts Settling time
ζ Damping ratio
ωn Natural frequency
P Desired closed-loop poles vector
β Voltage sensor gain
VT Peak ramp voltage
fs Switching frequency
K1 Inductor current gain
K2 Output voltage gain
K3 Integral gain
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Abstract: Aiming at the unknown uncertainty of an active power filter system in practical operation,
combining the advantages of self-feedback structure, interval type-2 fuzzy neural network, and
super-twisting sliding mode, an adaptive super-twisting sliding mode control method of interval
type-2 fuzzy neural network with self-feedback recursive structure (IT2FNN-SFR STSMC) is proposed
in this paper. IT2FNN has an uncertain membership function, which can enhance the nonlinear
ability and robustness of the network. The historical information will be stored and utilized by the
self-feedback recursive structure (SFR) at runtime. Therefore, the novel IT2FNN-SFR is designed
to improve the dynamic approximation effect of the neural network and reduce the dependence
of the controller on the actual mathematical model. The adaptive rate of each weight of the neural
network is designed by the Lyapunov method and gradient descent (GD) algorithm to ensure the
convergence and stability of the system. Super-twisting sliding mode control (STSMC) has strong
robustness, which can effectively reduce system chattering, and improve control accuracy and system
performance. The gain of the integral term in the STSMC is set as a constant, and the other gain is
changed adaptively whose adaptive rate is deduced through the stability proof of the neural network,
which greatly reduces the difficulty of parameter adjustment. The harmonic suppression ability of
the designed control strategy is verified by simulation experiments.

Keywords: active power filter (APF); interval type-2 fuzzy neural network (IT2FNN); STSMC;
self-feedback recursive structure

MSC: 68T07; 93C40

1. Introduction

Nowadays, as countries around the world increasingly favor new energy power gen-
eration to improve the energy structure, the power grid is facing increasingly complex
nonlinear loads, which will generate a large number of harmonics, presenting significant
challenges to maintain the safe and stable operation of the grid [1–3]. Therefore, addressing
harmonics in the grid is of utmost importance. One common solution is harmonic com-
pensation, which achieves the goal by simply installing a parallel or series compensation
device on the load side. Active power filters (APF) have become the primary equipment
for harmonic compensation due to the flexibility, excellent compensation capabilities, and
superior controllability when compared to passive power filters (PPF) [4,5]. The traditional
harmonic current compensation tracking control (HCCTC) cannot fully utilize the superior
characteristics of APF. It is the research direction of many researchers to design the novel
HCCTC with better performance by incorporating various intelligent control theories.

Sliding mode control (SMC) is a highly robust, discontinuous nonlinear control method
that is commonly used to address uncertainties and disturbances within a system [6–8]. In
order to ameliorate chattering in SMC, researchers have come up with different methods.
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In some studies, scholars improved the reaching law of sliding mode to reduce chattering
and improve the convergence of the controller [9,10]. In one study, a novel nonsingular
terminal sliding mode control (NTSMC) is designed to weaken the chattering in [11]. Due
to the convergence property of the fractional-order algorithm, it is applied in the design of
the SMC to reduce the chattering around the sliding surface and to enhance the robustness
of the controller [12,13]. In [13], a controller is designed to combine the advantages of
the nonsingular terminal sliding mode control and fractional-order sliding mode control,
which has fast convergence, flexible control, and is chatter-free. Adaptive sliding mode
control (ASMC) is also an approach to handle the chattering problem [14]. Roy et al. [15,16]
developed two novel ASMC strategies successively, one of which removes the assumption
of prior bounded uncertainty, and the other can solve the problem of overestimation or
underestimation, further improving the robustness of the controller and reducing the
chattering. In [17], a high-order sliding mode control (HOSMC) is proposed, to minimize
chattering by removing the limitations of input–output relative order. A novel adaptive
HOSMC is developed to enhance the chattering suppression ability [18]. As one of the
HOSMC, second-order sliding mode control can effectively solve the chattering problem in
the control of underactuated mechanical systems [19]. The super-twisting sliding mode
(STSMC) applies to systems (typically of any order) where the control is present in the
first derivative of the sliding variable. At the same time, it can produce continuous control
signals to weaken the chattering [20]. In the field of speed and altitude tracking control
of air-breathing hypersonic vehicles, a new composite controller combining STSMC, high-
order disturbance observer, and backstepping control is designed [21]. In one study, a
model-free controller was designed, which is combining STSMC and iterative learning
laws, to be applied in the unknown dynamics tray indexing systems [22]. However, it may
be difficult to adjust the gain of STSMC manually, and the performance of STSMC cannot
be fully utilized. In this paper, the gain parameter of the integral term is selected manually,
and the other gain is adjusted adaptively to reduce the difficulty of parameter selection.

The performance of STSMC can be further improved if the dynamic equations of the
system can be predicted in advance and feed-forward compensation can be performed.
Neural networks are commonly utilized due to their strong approximation ability [23–26].
In [23], a novel PID controller based on the NN is developed to adjust the minimum
bandwidth for different situations automatically. For the design of the virtual unmodeled
dynamic compensator, three-layer NNs were used to estimate unknowns in [24]. A neural
network controller is proposed to adjust the sliding mode gain adaptively to reduce chat-
tering [25]. Li et al. utilized the RBFNNs to estimate the unknown function in nonlinear
systems [26]. The combination of fuzzy logic rules and neural networks can reduce the
number of nodes of neural networks and improve the ability to deal with nonlinearity and
robustness [27–30]. However, due to the fact that the Type-1 fuzzy method uses accurate
and clear membership functions, the overall performance of the system could not reduce
or eliminate the uncertainties effectively caused by changes in the environment and other
factors. In view of the above problems, some scholars extend the interval type-1 to interval
type-2, which makes the membership function uncertain, to further improve the nonlinear
ability and robustness of the network [31–33]. However, FNNs could be regarded as static
mapping, which has the defect of poor ability to deal with dynamics. To overcome the
disadvantage of the poor dynamic ability of NNs, some scholars put forward a recursive
neural network (RNN) by combining feedback structure with the network [34–40]. A fully
connected recurrent NN is designed to approximate the exact mathematical dynamics in a
real-time scene, which has a better ability for dynamic response, function approximation
ability, and convergence speed [35]. A self-organizing RNN with novel adaptive algorithms
is adopted to improve the accuracy of model prediction.

Motivated by the above research, an adaptive super-twisting sliding mode control
method of interval type-2 fuzzy neural network with self-feedback recursive structure
(IT2FNN-SFR STSMC) is proposed to ensure that the compensation current in the APF
system can track the desired current quickly and accurately in this paper. The advantages
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of the IT2FNN and RNN are concentrated in the novel IT2FNN-SFR, resulting in its better
dynamic approximation capacity. The adaptive laws of parameters in the proposed IT2FNN-
SFR STSMC are derived by the Lyapunov method and GD algorithm, and the stability and
convergence of the designed controller are also proved by the Lyapunov method. Moreover,
the simulation experiments have been carried out to verify that the harmonic suppression
capability is in line with international standards and has good steady-state response and
dynamic performance. In summary, the major contributions of this article are described as:

(1) A new structure of IT2FNN, namely IT2FNN-SFR, has been proposed, which has the
ability of strong robustness as IT2FNN and great dynamic response as RNN. The
new NN is error-driven and online optimization, which means it is less dependent
on accurate and detailed information about the system. The recursive structure in
the NN will store and take advantage of the historical information to improve the
accuracy of estimation and dynamic approximation effect;

(2) STSMC not only has the advantages of strong robustness and simple control principle
of traditional SMC but also overcomes the chattering problem. In order to reduce the
inaccuracy and complexity of manual parameter setting, a sliding mode gain adaptive
law is deduced to realize a set of gain optimal solutions.

The remainder of this article is structured as follows. In Section 2, the principle
and ideal dynamic equation of a single-phase APF are presented. Section 3 details a
novel control strategy and provides proof of its stability. Section 4 shows the simulation
experiment to verify the effectiveness of the proposed method. Finally, Section 5 concludes
this article.

2. Principle of Active Power Filter

Due to the high reliability of compensation performance and flexible use, APF is
widely used in power systems for harmonic suppression. The main circuit of a single APF
consists of a PWM inverter circuit and a large capacitor on the DC side for energy storage.
The current and voltage signals of the power grid circuit are collected for harmonic analysis
and compensation through the sensors. The pulse width modulation (PWM) signal is
generated by processing these signals by the controller. Finally, the PWM inverter works
out to generate the corresponding current for the system current.

Figure 1 depicts the typical block diagram of a single-phase APF system control,
where us, Udc, is, ic, iL are the supply voltage, the DC-link voltage, the grid current, the
compensation current, and the load current of the APF circuit, respectively. L and R are the
equivalent inductance and resistance of the APF circuit.

us
R1

R2 C

VT1

VT3 VT4

VT2
C Udc

RL

APF

Nonlinear

Signal 
acquisition 

us Udc iL ic

Harmonic 
detection 

Compensation 
current 

calculation
IGBT drive 

Modulation 
circuit

is
iL

ic M
N

 

Figure 1. The block diagram of a single-phase active power filter.

According to Kirchhoff’s voltage and current laws, the following equation can
be obtained:

us = −L
dic
dt

− Ric + UMN (1)

where UMN is the output voltage of the DC side capacitor voltage modulated by the PWM
inverter circuit.
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Assuming that the control law of each cycle is u ∈ [0, 1], and the IGBTs are ideal, the
working state is expressed as:{

VT1, VT4 is on and VT2, VT3 is o f f . t ∈ [0, u]
VT1, VT4 is o f f and VT2, VT3 is on.t ∈ [u, 1]

(2)

Due to UMN ∈ [−Udc, Udc], the following relation can be obtained:

UMN = (2u − 1)Udc (3)

From (1) and (3), the ideal equation of compensation current is rewritten as:

.
ic = −R

L
ic − us

L
− Udc

L
+

2Udc
L

u (4)

Hence, it can be abbreviated as:

.
x = f1(x) + bu (5)

where x is the compensation current ic.

f1(x) = −R
L

ic − us

L
− Udc

L
(6)

b =
2Udc

L
(7)

Considering the internal parameters of the system often change uncertainly and the
unknown external disturbances are existed in the system, the total disturbance containing
parameter perturbation and external disturbances is defined as g(t), assuming that it is
bounded. The actual dynamic equation is given as:

.
x = f + bu (8)

where f = f1(x) + g(t) = − R
L ic − us

L − Udc
L + g(t).

3. Controller Design and Analysis

In order to improve the robustness of the system and reduce the chattering, the
interval type-2-fuzzy neural networks with self-feedback recursive structure adaptive
super-twisting sliding mode control (IT2FNN-SFR STSMC) strategy is designed. The block
diagram is depicted in Figure 2. First, the structure of the novel networks is shown in
Figure 3 and the basic functions and signal transmission of each layer are introduced
as follows:

Sliding 
surface

1( ) is x c e

f̂

û
( )g t

x

5 5
ˆˆ , , ,o oW W Y Y

5 5 4 4 4 4 4

4 3 3 2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , ,

ˆˆ ˆ ˆˆˆ ˆ, , , , , ,

T T T T T
c c

T T T T T T T

W W W W W W B

B W W C C B B

3
2

1 14k̂ Cb s

2 (constant)k

ˆequ
ˆswu

Figure 2. The block diagram of IT2FNN-SFR STSMC.
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Figure 3. The structure of IT2FNN-SFR.

(1) Layer I (input layer): The input signals X =
[
x1 x2 · · · xi

]T are transmitted
in the layer, where the number of neurons in this layer is determined by the actual needs of
the specific problem. In this paper, the current error and DC-side voltage error are used as
the input of neural network, i.e., i = 2. The output of this layer is expressed as:

net1
i (N) = x1

i (N) (9)

y1
i (N) = f 1

i

(
net1

i (N)
)
= net1

i (N) (10)

where x1
i (N) and y1

i (N) represent the input and output of the ith node in the first layer,
respectively; N represents the number of sampling times.

(2) Layer II (membership function layer/fuzzy layer): In this layer, the Gaussian
function with center vector and uncertain base width is selected to enhance the ability of
neural network to deal with nonlinearity. Assume that the j-group type-2 fuzzy output
set is [μ2

ij
, μ2

ij]. In this paper, the number of output set is selected as 3, i.e., j = 3. The

input–output transfer relation is expressed as:

x2
ij(N) = y1

i (N) (11)

μ2
ij
(N) = exp

⎡⎣−1
2

(
x2

ij(N)− c2
ij

σ2
ij

)2
⎤⎦ (12)

μ2
ij(N) = exp

⎡⎣−1
2

(
x2

ij(N)− c2
ij

σ2
ij

)2⎤⎦ (13)

where μ2
ij, c2

ij, σ2
ij represent type-2 fuzzy output, center vector and base width of type 2

Gaussian fuzzy membership function, respectively; “∗”, “∗” represent the lower and upper
bounds of each variable, respectively.

(3) Layer III (Rule Layer): This layer integrates input signals from the Layer II. The
number of neurons in the layer is the equal to the number of neurons in each group of the
Layer II, i.e., j = k = 3. The signal transmission functions are expressed as:

F3
k =

I

∏
i=1

μ2
ij

(14)
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F3
k =

I

∏
i=1

μ2
ij (15)

f 3
k
=

F3
k

K
∑

k=1
F3

k

(16)

f
3
k =

F3
k

K
∑

k=1
F3

k

(17)

where f 3
k is the output of the rule layer after normalization.

(4) Layer IV (self-feedback recursive layer): This layer integrates the current and
historical output information from the rule layer, and the temporary recursive layer is
applied to reserve and process the history output information. In this layer, the group
number of the layer is 1, i.e., o = 1. The output can be expressed as:

x4(N) = ∑ ω3
k f 3

k
(18)

x4c(N) = αx4c(N − 1) + y4(N − 1) (19)

net4(N) = ω4x4(N) + ω4cx4c(N) + b4 (20)

y4(N) = σ
(

net4(N)
)

(21)

x4(N) = ∑ ω3
k f

3
k (22)

x4c(N) = αx4c(N − 1) + y4(N − 1) (23)

net4(N) = ω4x4(N) + ω4cx4c(N) + b
4

(24)

y4(N) = σ
(

net4(N)
)

(25)

σ(z) =
1

1 + e−z (26)

where x4(N) represents the signal from the rule layer at the current sampling time; x4c(N)
represents the historical information in the temporary recursive layer; ω4c represents a
self-feedback weight; ω4 represents the weight of the SFR layer; α is the self-feedback
parameter, which determines the proportion of historical information; b4

l is a bias term; σ(·)
is a sigmod activation function.

(5) Layer V (output layer): the network is defuzzification through weighting. The
expression is given as:

yo(N) = ω5y4(N) + ω5y4(N) (27)

Next, a new neural network is designed to estimate the actual model and reduce
the dependence of the controller on the model. Meanwhile, super twisted sliding mode
control (STSMC) is introduced to reduce the chattering. However, the traditional STSMC
is complicated in adjusting parameters. In this paper, the adaptive rate of gain k1 is also
designed to reduce the difficulty of parameter adjustment when designing the adaptive
rate of network parameters as shown in Figure 2.
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Define the tracking error of APF system as:

e = x − r (28)

where x is a tracking current, r is the reference current.
Design the sliding surface as:

s = Ce (29)

where C is the gain of the sliding surface, which is the positive constant to be designed.
The derivative of Equation (29) is obtained as:

.
s = C

( .
x − .

r
)
= C

(
f + bu − .

r
)

(30)

The equivalent control law can be derived when
.
s = 0:

ueq =
1
b
(− f +

.
r
)

(31)

Adaptive STSMC is used to design the switching control law:

usw = −k̂1|s|
1
2 sgn(s)−

∫
k2sgn(s)dt (32)

where k1 > 0, k2 > 0.
Substituting f̂ into the control law, the control strategy can be established:

u =
1
b
(− f̂ +

.
r)− k̂1|s|

1
2 sgn(s)−

∫
k2sgn(s)dt (33)

From the proposed neural network, the following results can be obtained:

f = W∗
5

T
Φ∗(W∗

4, W∗
4c, B∗

4, W∗
3, B∗

2, C∗
2)

+W∗
5

T
Φ∗(W∗

4, W∗
4c, B∗

4, W∗
3, B∗

2, C∗
2) + ε

(34)

where ε is the error between the optimal value and the actual value, and C∗
2, C∗

2, B∗
2, B∗

2, W∗
3,

W∗
3, W∗

4, W∗
4, W∗

4c, W∗
4c, W∗

5, W∗
5, B∗

4, B∗
4 are the best parameters.

For the sake of further proof of brevity, define that:

Φ = Φ(W4, W4c, B4, W3, B2, C2) (35)

Φ = Φ(W4, W4c, B4, W3, B2, C2) (36)

The output of IT2FNN-SFR is used to replace the f , denoted as:

f̂ = yo = Ŵ5
TΦ̂ + Ŵ5

TΦ̂ (37)

where the superscript “∧” represent the estimated values of the corresponding parameters.
The estimation error of the designed neural network is:

f̃ = f − f̂ = W∗
5

TΦ∗ + W∗
5

TΦ∗
+ ε − (Ŵ5

TΦ̂ + Ŵ5
TΦ̂)

= Ŵ5
TΦ̃ + W̃5

TΦ̂ + Ŵ5
TΦ̃ + W̃5

TΦ̂ + ε0
(38)

where the superscript “∼” represent the approximation errors; ε0 = W̃5
TΦ̃ + W̃5

TΦ̃ + ε is
the total approximation error.
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By expanding Taylor Φ∗ and Φ∗, respectively, we can get the following results:

Φ̃ = ∂Φ
∂W4

∣∣∣W4=Ŵ4
(W∗

4−Ŵ4) +
∂Φ

∂W4c

∣∣∣W4c=Ŵ4c
(W∗

4c−Ŵ4c)

+ ∂Φ
∂B4

∣∣∣B4=B̂4
(B∗

4− B̂4) +
∂Φ

∂W3

∣∣∣W3=Ŵ3
(W∗

3−Ŵ3)

+ ∂Φ
∂C2

∣∣∣C2=Ĉ2
(C∗

2− Ĉ2) +
∂Φ
∂B2

∣∣∣B2=B̂2
(B∗

2− B̂2) + Oh

= ΦW4
W̃4 + ΦW4c

W̃4c + ΦB4
B̃4 + ΦW3

W̃3 + ΦC2
C̃2

+ΦB2
B̃2 + Oh

(39)

Φ̃ = ΦW4
W̃4 + ΦW4c

W̃4c + ΦB4
B̃4 + ΦW3

W̃3 + ΦC2
C̃2

+ΦB2
B̃2 + Oh

(40)

where Oh and Oh are the vectors of higher order terms, and the above partial derivatives
are consistent with the Jacobian matrix arrangement, and the result is:

ΦW4
=

[
∂φ

∂ω4

]
1×1

(41)

ΦW4c
=

[
∂φ

∂ω4c

]
1×1

(42)

ΦB4
=

[
∂φ

∂b4

]
1×1

(43)

ΦW3
=

[
∂φ

∂ω3
1

,
∂φ

∂ω3
2

, · · · ,
∂φ

∂ω3
k

]
1×k

(44)

ΦC2
=

[
∂φ

∂c2
11

, · · · ,
∂φ

∂c2
1j

,
∂φ

∂c2
21

, · · · ,
∂φ

∂c2
ij

]
1×(i×j)

(45)

ΦB2
=

[
∂φ

∂b2
11

, · · · ,
∂φ

∂b2
1j

,
∂φ

∂b2
21

, · · · ,
∂φ

∂b2
ij

]
1×(i×j)

(46)

ΦW4
=

[
∂φ

∂ω4

]
1×1

(47)

ΦW4c
=

[
∂φ

∂ω4c

]
1×1

(48)

ΦB4
=

[
∂φ

∂b
4

]
1×1

(49)

ΦW3
=

[
∂φ

∂ω3
1

,
∂φ

∂ω3
2

, · · · ,
∂φ

∂ω3
k

]
1×k

(50)

ΦC2
=

[
∂φ

∂c2
11

, · · · ,
∂φ

∂c2
1j

,
∂φ

∂c2
21

, · · · ,
∂φ

∂c2
ij

]
1×(i×j)

(51)

ΦB2
=

⎡⎣ ∂φ

∂b
2
11

, · · · ,
∂φ

∂b
2
1j

,
∂φ

∂b
2
21

, · · · ,
∂φ

∂b
2
ij

⎤⎦
1×(i×j)

(52)

63



Mathematics 2023, 11, 2785

By substituting (39) and (40) into (38), it can be obtained:

f̃ = Ŵ5
TΦW4

W̃4 + Ŵ5
TΦW4c

W̃4c + ŴT
5ΦB4

B̃4

+Ŵ5
TΦW3

W̃3 + Ŵ5
TΦC2

C̃2 + Ŵ5
TΦB2

B̃2 + W̃5
TΦ̂

+Ŵ5
TΦW4

W̃4 + Ŵ5
TΦW4c

W̃4c + Ŵ5
TΦB4

B̃4 + Ŵ5
TΦW3

W̃3

+Ŵ5
TΦC2

C̃2 + Ŵ5
TΦB2

B̃2 + W̃5
TΦ̂ + Δ0

(53)

where the total higher order approximation error is:

Δ0 = Ŵ5Oh + Ŵ5Oh + ε0 (54)

Theorem 1. Considering the system of APF in (8), the proposed IT2FNN-SFR STSMC strategy
is guaranteed to be stable if the controller is designed as (33) and the parameter adaptive laws are
designed properly as (55)–(69):

.
Ŵ4

T
= −

.
W̃4

T
= η1Csgn(s)Ŵ5

TΦW4
(55)

.

Ŵ4
T
= −

.

W̃4
T
= η2Csgn(s)Ŵ5

TΦW4
(56)

.
Ŵ4c

T
= −

.
W̃4c

T
= η3Csgn(s)Ŵ5

TΦW4c
(57)

.

Ŵ4c
T
= −

.

W̃4c
T
= η4Csgn(s)Ŵ5

TΦW4c
(58)

.
B̂4

T
= −

.
B̃4

T
= η5Csgn(s)Ŵ5

TΦB4
(59)

.

B̂4
T
= −

.

B̃4
T
= η6Csgn(s)Ŵ5

TΦB4
(60)

.
Ŵ3

T
= −

.
W̃3

T
= η7Csgn(s)Ŵ5

TΦW3
(61)

.

Ŵ3
T
= −

.

W̃3
T
= η8Csgn(s)Ŵ5

TΦW3
(62)

.
Ĉ2

T
= −

.
C̃2

T
= η9Csgn(s)Ŵ5

TΦC2
(63)

.

Ĉ2
T
= −

.

C̃2
T
= η10Csgn(s)Ŵ5

TΦC2
(64)

.
B̂2

T
= −

.
B̃2

T
= η11Csgn(s)Ŵ5

TΦB2
(65)

.

B̂2
T
= −

.

B̃2
T
= η12Csgn(s)Ŵ5

TΦB2
(66)

.
Ŵ5 = −

.
W̃5 = η13Csgn(s)Φ̂ (67)

.

Ŵ5 = −W̃5 = η14Csgn(s)Φ̂ (68)
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.
k̂1 = −

.

k̃1 = η15Cb|s| 1
2 (69)

where η1 ∼ η15are the learning rates of the corresponding adaptive gains, which are positive constants.

Proof. When s 
= 0, a Lyapunov function candidate is given as:

V = |s|+ 1
2η1

tr
(

W̃4
T
W̃4

)
+ 1

2η2
tr
(

W̃4
T
W̃4

)
+ 1

2η3
tr
(

W̃4c
T
W̃4c

)
+ 1

2η4
tr
(

W̃4c
T
W̃4c

)
+ 1

2η5
tr
(

B̃4
T

B̃4

)
+ 1

2η6
tr
(

B̃4
T

B̃4

)
+ 1

2η7
tr
(

W̃3
T
W̃3

)
+ 1

2η8
tr
(

W̃3
T
W̃3

)
+ 1

2η9
tr
(

C̃2
T
C̃2

)
+ 1

2η10
tr
(

C̃2
T
C̃2

)
+ 1

2η11
tr
(

B̃2
T

B̃2

)
+ 1

2η12
tr
(

B̃2
T

B̃2

)
+ 1

2η13
tr
(

W̃5
T
W̃5

)
+ 1

2η14
tr
(

W̃5
T
W̃5

)
+ 1

2η15
k̃1

2 + Cbk2
2 (

∫
sgn(s)dt)2

(70)

The derivative of Equation (70) is obtained:

.
V = sgn(s) · .

s + 1
η1

.
W̃4

T
W̃4 +

1
η2

.

W̃4
T
W̃4 +

1
η3

.
W̃4c

T
W̃4c

+ 1
η4

.

W̃4c
T
W̃4c +

1
η5

.
B̃4

T
B̃4 +

1
η6

.

B̃4
T

B̃4 +
1
η7

.
W̃3

T
W̃3

+ 1
η8

.

W̃3
T
W̃3 +

1
η9

.
C̃2

T
C̃2 +

1
η10

.

C̃2
T
C̃2 +

1
η11

.
B̃2

T
B̃2

+ 1
η12

.

B̃2
T

B̃2 +
1

η13
W̃5

T
.

W̃5 +
1

η14
W̃5

T
.

W̃5 +
1

η15
k̃1 ·

.

k̃1

+Cbk2sgn(s)
∫

sgn(s)dt

(71)

To simplify the proof process, define that:

.
H = 1

η1

.
W̃4

T
W̃4 +

1
η2

.

W̃4
T
W̃4 +

1
η3

.
W̃4c

T
W̃4c +

1
η4

.

W̃4c
T
W̃4c

+ 1
η5

.
B̃4

T
B̃4 +

1
η6

.

B̃4
T

B̃4 +
1
η7

.
W̃3

T
W̃3 +

1
η8

.

W̃3
T
W̃3

+ 1
η9

.
C̃2

T
C̃2 +

1
η10

.

C̃2
T
C̃2 +

1
η11

.
B̃2

T
B̃2 +

1
η12

.

B̃2
T

B̃2

+ 1
η13

W̃5
T

.
W̃5 +

1
η14

W̃5
T

.

W̃5 +
1

η15
k̃1 ·

.

k̃1

(72)

Substituting (30) and (72) into (71) obtains:

.
V = Csgn(s) · ( f + bu − .

r
)
+

.
H + Cbk2sgn(s)

∫
sgn(s)dt

= Cs( f − f̂ )− Cbk̂1|s|
1
2 +

.
H

(73)

If the conditions in Theorem 1 are satisfied, one can obtained:

.
V = Csgn(s) · Δ0 − Cbk̂1|s|

1
2 + 1

η15
k̃1 ·

.

k̃1

= Csgn(s) · Δ0 − Cbk∗1 |s|
1
2

≤ −Cbk∗1 |s|
1
2 + C|Δ0|

(74)
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Suppose that the total higher order approximation error |Δ0| has an upper bound, that
is, |Δ0| < Δmax. It can be obtained that:⎧⎨⎩

.
V ≤ 0 |s| ≥ (Δmax

bk∗1
)

2

.
V > 0 |s| < (Δmax

bk∗1
)

2 (75)

When the system is stable, it is clear that s will tend to 0, and when
.

V > 0, the changes
of s is unknown. However, it can be concluded that s will eventually converge to:

−(
Δmax

bk∗1
)

2
≤ s ≤ (

Δmax

bk∗1
)

2
(76)

When it comes to s = 0, it is easy to find that it meets the requirement in Equation (76).

− 1
C
(

Δmax

bk∗1
)

2
≤ e ≤ 1

C
(

Δmax

bk∗1
)

2
(77)

As for e, it can be easily to conclude that e is bounded and the system is stable. �

Remark 1. When the neural network performs parameter self-learning, matrix operations and
partial derivative calculations are required, which will inevitably increase the amount of calculation.
Table 1 gives the calculation time of the four control methods. Although the proposed method
increases the computational complexity, the computational burden of the design method is relatively
small while meeting the APF performance requirements. However, further optimization remains to
be done.

Table 1. The computational time of four control method.

Strategy ASMC
FNNASMC-SFR based

on LESO [41]
IT2FNN-SFR

STSMC
CTSMC-MLNN

[42]

Time(s) 5.5619 15.795 28.234 32.829

4. Numerical Verification

The effectiveness and reliability of the novel control strategy for APF system is ver-
ified on MATLAB/Simulink. The simulation experiment and comparative results are
introduced below.

In the simulation process, the CPU is i5-8300H(2.30 GHz), the system is 64-bit and the
version of MATLAB is 2019b.

A traditional PI controller is used in the DC voltage control of APF. The parameters of
PI controller are given as: KP = 0.15, KI = 0.02. The designed controller in this paper is
applied in the current control of APF system. The parameters of the membership function
of IT2FNN in this article are selected by experts as follows:

C2 =

[
0.4 0.02 −0.02
8 1 −1

]
; B2 =

[
1 1 1
5 5 5

]

C2 =

[
0.6 0.05 −0.05
10 2 −2

]
; B2 =

[
1.2 1.2 1.2
3 3 3

]
In addition, the parameters of the STSMC and the related parameters of the adaptive

law are selected as follows: C = 10, k2 = 2.5, η1 = 2250, η2 = 2250, η3 = 50, η4 = 50,
η5 = 375, η6 = 375, η7 = 75, η8 = 75, η9 = 15, η10 = 15, η11 = 40, η12 = 40, η13 = 20, 000,
η14 = 22, 500, η15 = 0.0009.

The other parameters used in the simulation process are shown in Table 2.
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Table 2. Parameters for Simulation.

Parameters Values

Supply voltage 24 V/50 Hz

APF main circuit L = 18 mH, R = 0.1 Ω,
C0 = 2200 μF, Udc = 50 V

Non-linear load at steady state R1 = 5 Ω, R2 = 15 Ω, C1 = 1000 uF

Additional non-linear load in parallel R1 = 15 Ω, R2 = 15 Ω, C2 = 1000 uF

Sampling time Ts= 1 e−5s

When the APF does not work out, the power supply current is the same as the load
current, which is shown in Figure 4. It is not difficult to find that the power supply current
is severely polluted by distortion, and the THD of the power supply current is 40.30% (as
shown in Figure 5). At 0 s, APF is integrated into the power grid for harmonic compensation.
The power supply current is shown in Figure 6, and it recovers to a sine wave in a very
short time. The THD of supply current, as shown in Figure 7, is only 2.37%, which
greatly eliminates harmonics and significantly improves current quality. Figures 8 and 9
are the compensation current tracking curve and tracking error curve under the designed
controller. In the Figure 8, the red line represents the reference current and the blue line
represents the compensation current. It can be seen that the compensation current ic can
track the expected reference current ir perfectly, the tracking error can approach to zero
in a very short time, which further verifies that the designed method has a great ability of
harmonic compensation.
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Figure 4. The power supply current before compensation.
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Figure 5. The spectrum analysis of power supply current before compensation.
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Figure 6. The power supply current after compensation.

 
Figure 7. The spectrum analysis of power supply current after compensation.
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Figure 8. The compensation current tracking curve.
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Figure 9. The compensation current tracking error curve.

At the same time, to verify the dynamic performance of the designed method, an
additional nonlinear load was connected to the load at 0.5 s to make the total load of the
circuit smaller, and the parallel load was disconnected at 0.7 s to make the total load of
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the circuit larger. Figure 10 describes the power supply current curves of 0~0.9 s, 0.4~0.6 s,
and 0.6~0.8 s from top to bottom, respectively. It can be seen from both the overall power
supply current diagram and the amplification diagram of 0.1 s before and after the load
change that the power supply current can maintain the sinusoidal waveform. According
to Figures 11 and 12, the compensation current tracking curve and error curve still have
good tracking performance when the load changes. The frequency spectrum analysis
of the power supply current at 0.6 s and 0.8 s is shown in Figures 13 and 14. The THD
is 1.64% after load connection and 2.58% after load disconnection, both of which have
good performance.
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Figure 10. The power supply current of simulation experiment.
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Figure 11. Current tracking and error curve when load is connected.
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Figure 12. Current tracking and error curve when load is disconnected.
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Figure 13. Power supply current spectrum analysis after load is connected.

 

Figure 14. Power supply current spectrum analysis after load is disconnected.

In this paper, the output of the IT2FNN-SFR is taken as the practical mathematical
model of APF, and the estimated curve is shown in Figure 15. The estimated curve has
almost the same phase and similar amplitude compared with the ideal curve. Although
there are many burrs and mutations, the estimated curve is more consistent with the
actual situation for the system with actual parameter perturbation and external disturbance.
Meanwhile, the adaptive gain of STSMC is shown in Figure 16, which estimates the stable
value in a very short time, and its stable value is about 0.3.
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Figure 15. The output of the IT2FNN-SFR.
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Figure 16. The gain of the adaptive STSMC.
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At the same time, the adaptive curves of internal parameters in the designed neural
network are depicted in Figure 17a–g. As shown in the figure, internal parameters will
be adjusted adaptively and stabilized to the optimal value in a short time, which signifies
that the NN has strong robustness and self-adaptive performance, and further verifies the
superiority of the designed network.
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Figure 17. The adaptive curves of internal parameters in the IT2FNN-SFR. (a) The base width curves
of membership function. (b) The center vector curves of membership function. (c) The input weight
curves of SFR layer. (d) The weight curves of the SFR layer. (e) The self-feedback weight curves of
SFR layer. (f) The bias term curves of SFR layer. (g) The output weight curves.
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To verify that the proposed method in this paper can significantly weaken the inherent
chattering in SMC, the control output comparison curve is given in Figure 18. Compared
with the ASMC method (red curve), IT2FNN-SFR STSMC (blue curve) has a smaller
control output amplitude range in a certain time period (take 0.2~0.3 s as an example). In
addition, Table 3 gives the variance index of the control output, which can also verify the
above conclusions.

Time(s)

U
t

Controller Output

ASMC

IT2FNN-SFR STSMC

Figure 18. The control output comparison curve.

Table 3. The output variance of the two controllers.

Strategy Index IT2FNN-SFR STSMC ASMC

Output variance 0.0650 0.1362

Remark 2. APF is a high-frequency switching power electronics, and its system output chattering
is an important indicator to measure system performance. Variance is a statistic that measures the
degree of dispersion of data, but large outliers may cause data skew, so the output is standardized
as follows:

u∗(t) =
u(t)− u(t)max

u(t)max − u(t)min
(78)

The variance of the standardized controlu(t)∗can be easily calculated, and the results are shown
in Table 3.

Meanwhile, the superiority of IT2FNN-SFR STSMC controller is illustrated by com-
paring with the adaptive sliding mode controller (ASMC). Figure 19 shows the error
comparison curves of the two controllers. Compared with ASMC, the designed controller
can track the desired signal more quickly and has a faster response speed at the initial
moment. The overall tracking error is slightly less than that of ASMC controller, which
indicates the compensation effect of the IT2FNN-SFR STSMC controller is better. The
corresponding THD of the two controllers is also given in Table 4. It can be seen that the
THD of the designed IT2FNN-SFR STSMC controller is slightly better than that of the
ASMC controller in startup, steady state, and load changes.

Table 4. The corresponding THD of the two controllers.

Control Strategy 0 s 0.2 s 0.6 s 0.8 s

IT2FNN-SFR STSMC 16.44% 2.37% 1.64% 2.58%
ASMC 20.03% 2.66% 1.68% 2.92%
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Figure 19. The compensation current error contrast curve.

5. Conclusions

In this paper, an adaptive super-twisting sliding mode control strategy for single-phase
active power filter is proposed by combining interval type-2 fuzzy neural network with
self-feedback recursion structure. The advantages of the IT2FNN and RNN are combined
in the novel IT2FNN-SFR to obtain better dynamic approximation capacity. The new
IT2FNN-SFR estimator is designed to approximate the unknown model of the system,
improving the nonlinear processing ability and accuracy by using interval tpye-2 fuzzy
membership function. At the same time, the self-feedback recursive structure can use the
historical information to adjust the output, which improves the approximation ability of
the network. The recursive structure in the NN will store the historical information to
improve the accuracy of estimation and dynamic approximation character. The STSMC
has cannot only effectively reduce system chattering, improve control accuracy, robustness,
and system performance., but also simplify the parameter setting process. Finally, the
simulation results show that the controller has good steady-state performance and dynamic
response, and can effectively suppress the harmonics of the APF system.
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Abstract: This paper designs a novel smooth super-twisting extended-state observer (SSTESO)-based
smooth super-twisting sliding-mode control (SSTSMC) scheme to promote the robust ability and
voltage-tracking performance of DC-DC buck converters. First, an SSTESO is proposed to estimate
the unknown lumped disturbance and compensate for the estimation of the voltage controller. The
SSTESO is realized by constructing a novel smooth function to replace the nonlinear sign function
in STESO, which can provide a faster convergence speed and higher estimation accuracy. The
SSTSM controller is designed by adopting a similar smooth function to further suppress chattering
and improve dynamic response. Comprehensive simulation results demonstrate that the proposed
SSTESO-based SSTSMC scheme can improve the robustness and transient response of a DC-DC buck
converter system in the presence of external disturbance and parameter uncertainties.

Keywords: smooth super-twisting sliding-mode control (SSTSMC); smooth super-twisting
extended-state observer (SSTESO); DC-DC buck converter; unknown lumped disturbance

MSC: 93C40; 93C10

1. Introduction

The sustainable development of humanity requires a wider use of renewable energy
sources for electricity generation that have the advantages of high reliability, little need for
maintenance, and independence from the supply of fossil fuels. Considering that renewable
energy sources usually provide variable DC output voltage, DC-DC buck converters have
played an important role in providing adequate power sources for electronic systems and
have been extensively adopted in photovoltaic systems [1–3], fuel-cell hybrid systems [4],
energy storage systems [5], etc. In addition, DC-DC buck converters are also used in many
intelligent fields, such as modular drivers for LEDs [6] and off-chip components for Internet
of Things applications [7–9]. The function of DC-DC buck converters is to convert DC
input voltage into another fixed or adjustable DC output voltage, to realize the stable flow
of energy.

The main control target of the DC-DC buck converter is to regulate the output voltage
and track reference voltage accurately and quickly. However, as a typical nonlinear system,
the DC-DC buck converter system contains both external disturbances and parameter
uncertainties. It may be difficult to obtain excellent performance using a conventional
linear control algorithm. In addition, some application scenarios produce higher voltage
accuracy and more stable current for DC-DC buck converters. Therefore, maintaining
high-precision voltage-tracking performance and superior robustness in the buck converter
has become a research hotspot.

In the early literature, linear controllers such as PI and PID, which maintain acceptable
performance around a specific operating point, were widely used in buck converters.
However, these linear controllers were sensitive to time-varying external disturbances.
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In recent decades, more nonlinear control strategies have been applied to DC-DC buck
converters, such as model predictive control [10], neural network control [11], adaptive
control [12], optimal control [13], sliding-mode control (SMC) [14–16], etc.

Among the above-mentioned control methods, SMC for buck converters has attracted
significant attention due to its superior precision and robustness. However, chattering is a
problem for SMC. To address the chattering problem, a saturation function is proposed to
replace the sign function in the conventional sliding-mode algorithm [17]. Nevertheless,
indefinite steady errors remain. Super-twisting SMC (STSMC) [18] is another way to
suppress chattering by adding an integration element and hiding the discontinuous sign
function in the integral term. However, STSMC is still essentially a nonsmooth control
algorithm, and a control lag of the integration part also exists. Therefore, a chattering
problem still exists as the system parameters change. Another problem with SMC is that its
robustness is always limited. Better robustness often depends on increasing the value of
the switching gain, which may sacrifice both dynamic and steady-state performance.

To break the constrained relationship between the switching gain and robustness in
SMC, extended-state observer (ESO)-based composite sliding-mode controllers have been
proposed in [19–21]. ESO is the core part of active disturbance rejection control (ADRC),
which can estimate the lumped disturbance of a controlled plant using a special mecha-
nism [22,23]. The fact that the estimation error can only be guaranteed to converge to zero
asymptotically means that the disturbance will take a long time to be estimated accurately.
To speed up the convergence process of a conventional ESO, a super-twisting algorithm
was adopted to construct a super-twisting extended-state observer (STESO) by the authors
in [24,25]. However, with the introduction of nonlinear functions, a chattering problem
is also introduced to STESO. The chattering of disturbance estimation will eventually be
superimposed on the control signal, which may make the performance of the composite
controller worse. Some intelligent control methods have been developed to control the
dynamics systems [26–34].

Based on the above-mentioned analysis, a smooth super-twisting sliding-mode con-
troller (SSTSMC) combined with a smooth STESO (SSTESO) is proposed in this paper to
enhance the robustness and dynamic performance of a DC-DC buck converter output-
voltage regulation system. To improve the convergence speed and the smoothness of a
conventional super-twisting algorithm (STA), a novel smooth switch function is constructed.
Replacing the sign function in conventional STSMC and STESO with the proposed smooth
function, a novel SSTESO-based SSTSMC scheme is obtained. A widely used Lyapunov
function is employed to demonstrate the stability of the presented smooth STA (SSTA).
Due to the characteristics of the proposed smooth function, the SSTSMC not only acceler-
ates the convergence process but also improves steady-state and robustness performance
compared with the conventional STSMC. With SSTESO, this combines the advantages of
conventional ESO and STESO, which greatly accelerates the convergence of the estimation
error without introducing the chattering problem into the extended-state observer. Then,
the proposed control scheme, combining the SSTESO with SSTSMC, can effectively increase
the dynamic response speed and improve steady-state performance and robustness. The
main contributions and novelty of this paper are as follows:

(1) A pair of novel smooth functions is constructed to replace the sign function in con-
ventional STA, and the stability of the optimized SSTA is demonstrated. Two sets
of SSTESO are designed to estimate the matched and mismatched disturbance in a
DC-DC buck converter system. Compared to the traditional ESO, the SSTESO not
only accelerates the convergence of estimation error but also guarantees the accuracy
of the disturbance estimate.

(2) A smooth STSMC is proposed by adopting the SSTA to increase the dynamic response
speed and further reduce chattering. The proposed SSTESO-based composite SSTSMC
scheme is successfully applied to the DC-DC buck converter. Performance compar-
ison experiments among the STSMC, SSTSMC, ESO-based SSTSMC, STESO-based
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SSTSMC, and SSTESO-based SSTSMC schemes are carried out in simulations that
validate the superiority of the proposed control scheme.

2. Conventional STESO-Based STSM Controller Design

2.1. Modeling of a DC-DC Buck Converter

The basic topology of a DC-DC buck converter is shown in Figure 1, which comprises
a DC voltage input vin, a PWM gate drive-controlled switch device Q, a diode D, an output
filter inductor L, an output filter capacitor C, and a load resistance R. The switch ON and
OFF cases of the DC-DC buck converter are shown with dashed lines 1 and 2, respectively.

Figure 1. The topology of DC-DC buck converter.

The state-space method is used here to analyze the buck converter system. The
dynamic model can be written as:{ diL

dt = − vo
L + vin

L u
dvo
dt = iL

C − vo
RC

(1)

where v0 is an output voltage, iL is an inductor current, and the duty ratio u ∈ [0, 1] denotes
the control signal.

The desired output voltage is denoted as vr. The tracking error can be expressed as
x1 = vo − vr. It should be noted that the load resistance in practice is usually unknown,
and the value of input voltage, filter capacitor, and inductor are not exact. Considering the
uncertainties and external disturbances in DC-DC buck converters, the time derivative of
tracking error x1 is as follows:

.
x1 =

iL
C0

− vo

R0C0
+ d1(t) (2)

where C0 and R0 are the nominal values of capacitor C and load resistance R, respectively,
and the lumped disturbance is denoted as d1(t) = ( 1

C − 1
C0
)iL + ( 1

R0C0
− 1

RC )v0.

Then, we define x2 = iL
C0

− v0
R0C0

. Using (1), the derivative of x2 is written as follows:

.
x2 =

uvin0

L0C0
− x1

L0C0
− x2

R0C0
− vr

L0C0
+ d2(t) (3)

where vin0 and L0 are the nominal values of input voltage vin and inductor L, respectively,
and the matched disturbance is denoted as

d2(t) = − d1

R0C0
+ (

vin
LC0

− vin0

L0C0
)u + (

1
L0C0

− 1
LC

)vo
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Therefore, the dynamic model of the DC-DC buck converter can be rewritten as:{ .
x1 = x2 + d1(t)
.
x2 = uvin0

L0C0
− x1

L0C0
− x2

R0C0
− vr

L0C0
+ d2(t)

(4)

It can be seen that the dynamic model of the buck converter contains both matched
and mismatched disturbances.

The objective of the DC-DC buck converter control is to promptly regulate the output
voltage to the desired value, i.e., v0 → vd or x1 → 0 . The closed-loop system should still
exhibit good control performance in the case of external disturbances.

2.2. Conventional STESO-Based STSM Controller

In this subsection, the conventional STESO is first employed to estimate the lumped
disturbances d1(t) and d2(t), which performs as feedforward compensation in the following
STSM control scheme design.

Regarding the mismatched disturbance d1(t) as an extended system state, then the
first equation of (4) can be reconstructed as{ .

z1 = x2 + z2
.
z2 =

.
d1(t)

(5)

where z1 = x1 and z2 = d1(t).
From (5), the estimation of the mismatched disturbance d1(t) can be easily transformed

into the problem of estimating the extended system states z2. According to [35], the
conventional ESO constructed for (5) is given as follows:⎧⎪⎨⎪⎩

e1 = ẑ1 − z1.
ẑ1 = ẑ2 + x2 − l1e1.
ẑ2 = −l2e1

(6)

where l1 and l2 are the parameters of ESO, and ẑ1 and ẑ2 are the estimations of z1 and z2,
respectively.

According to [25], STESO can be constructed by replacing the linear term e1 in ESO
with the nonlinear functions f1(e1) and f2(e1), as follows:{ .

ẑ1 = ẑ2 + x2 − l1 f1(e1).
ẑ2 = −l2 f2(e1)

(7)

where nonlinear functions f1(e1) and f2(e1) are designed based on a generalized super-
twisting technique, as follows:{

f1(e1) = k1|e1|1/2sign(e1)

f2(e1) = k2
1sign(e1)

(8)

with k1 > 0.
Similarly, regarding the matched disturbance d2(t) as an extended system state, a new

set of STESO can be constructed to estimate, as follows:⎧⎪⎪⎨⎪⎪⎩
e3 = ẑ3 − z3
.
ẑ3 = ẑ4 +

uvin0
L0C0

− x1
L0C0

− x2
R0C0

− vr
L0C0

− l3 f3(e3)
.
ẑ4 = −l4 f4(e3)

(9)
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with {
f3(e3) = k2|e3|1/2sign(e3)

f4(e3) = k2
2sign(e3)

(10)

where k2 > 0, l3 and l4 are the parameters of STESO, z3 = x2, z4 = d2(t), and ẑ3 and ẑ4 are
the estimations of z3 and z4, respectively. Then the estimated values can be compensated
for by the controller to improve the robustness and transient response of the system.

Since the output voltage vo of a DC-DC buck converter system is a DC voltage signal,
improving the accuracy and stability of the output signal has become the primary con-
trol goal. Therefore, an STSM control algorithm with strong chattering suppression and
robustness is adopted in the paper.

The STSM control algorithm was first proposed by Levant [36], and its main feature is
to smooth out the discontinuous signal in the conventional first-order sliding-mode (FOSM)
controller. For System (4), the STSM control law can be designed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s = cx1 + x2

ue =
1

vin0
(x1 +

L0
R0

x2 + vr − cL0C0x2)

us = −μ1|s|1/2sign(s) + uI
.
uI = −μ2sign(s)

u∗ = ue +
L0C0
vin0

us

(11)

where s is the sliding-mode state variable, c > 0 is the sliding-mode constant, μ1 and μ2 are
the control gains, ue is the equivalent control term, us is the switching control term, uI is
the integral term in us, and u∗ is the control signal.

The stability and finite-time convergence of the STSM controller are proved in previous
literature [18].

After estimating the lumped disturbance by STESO, the composite STSM control law
is designed as follows:

u∗ = ue +
L0C0

vin0
(us − cẑ2 − ẑ4 −

.
ẑ2) (12)

Consequently, the STESO-based STSM controller for a DC-DC buck converter system is
constructed. The estimation of the mismatched disturbance d1(t) and matched disturbance
d2(t) can be estimated by the actual system state x1, x2, and control signal u∗.

This composite control scheme provides a method that depends on accurate feedfor-
ward compensation to eliminate the influence of lumped disturbance without sacrificing
other control performance. However, with the application of the super-twisting algorithm
to ESO, which effectively accelerates the convergence of the estimation error, the chattering
problem is also introduced into STESO. The chattering of the disturbance estimation will
eventually be superimposed on the control signal, which may affect the dynamic response
and static performance of the system. In addition, the chattering suppression ability of
STSMC can be further improved by adopting a smooth function to replace the sign function.

3. SSTESO-Based Smooth STSMC Design

3.1. Design of SSTESO

To ensure both convergence speed and smoothness of disturbance estimation, a pair
of smooth functions are constructed to replace the sign function in STESO, as follows:⎧⎨⎩ g1(x) = |x|1/2arctan( x

α1
)

g2(x) = arctan(
∣∣∣ x

α1

∣∣∣)[ 1
2 arctan( x

α1
) + x

α1+x2/α1
]

(13)

with α1 > 0.
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Remark 1. A new parameter α1 is introduced to improve the applicability of the novel smooth
functions in different application scenarios. By setting the appropriate parameter α1, both the
response speed and smoothness of the system can be guaranteed, even if the state variables are of
different orders of magnitude in different systems.

Remark 2. It should be noted that the function gain of arctan(e1/α1) is larger than that of sign(e1)
when the estimation error is far away from the origin, which can make the estimation error converge
to the neighborhood of the origin more rapidly. In addition, the smaller gain of arctan(e1/α1) when
the estimation error is near the origin can guarantee the smoothness of disturbance estimation in the
zero domain. By this simple analysis, it is concluded that this inverse tangent function is superior
to the sign function.

From (13), the SSTESO to estimate disturbance d1(t) can be constructed as follows:{ .
ẑ1 = ẑ2 + x2 − l1k1g1(e1)
.
ẑ2 = −l2k2

1g2(e1)
(14)

Letting e2 = ẑ2 − z2 and subtracting (14) from (5), one obtains:{ .
e1 = −θ1g1(e1) + e2
.
e2 = −θ2g2(e1)−

.
d1(t)

(15)

where θ1 = l1k1 and θ2 = l2k2
1.

Similarly, a new set of SSTESO to estimate matched disturbance d2(t) can be con-
structed as follows:⎧⎨⎩

.
ẑ3 = ẑ4 +

uvin0
L0C0

− x1
L0C0

− x2
R0C0

− vr
L0C0

− l3k2g1(e3)
.
ẑ4 = −l4k2

2g2(e3)
(16)

Letting e4 = ẑ4 − z4, the estimation error equation can be written as follows:{ .
e3 = −l3k2g1(e3) + e4
.
e4 = −l4k2

2g2(e3)−
.
d2(t)

(17)

which is similar to (15). Therefore, only the convergence of (e1, e2) in (15) is analyzed.

Assumption 1. Considering the mismatched disturbance d1(t) and matched disturbance d2(t) in
System (4) are continuous and assumed to satisfy the following condition:∣∣∣∣∣

.
d1(t, e)
g2(e1)

∣∣∣∣∣ ≤ D,

∣∣∣∣∣
.
d2(t, e)
g2(e3)

∣∣∣∣∣ ≤ D (18)

where D is a positive constant and assume D > 1.

Remark 3. The essence of SSTESO is to estimate the unknown lumped disturbance and compensate
for the estimated values to the voltage controller, |di(t, e)|(i = 1, 2) vanishes as ei → 0(i = 1, 2, 3, 4) .
Therefore, Assumption 1 is reasonable.

Theorem 1. Let θ1 > D > 1 and θ2 satisfy

θ2 >
D2

θ2
1 − 1

+ D (19)
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If Assumption 1 is satisfied, the SSTESO designed as (14) for System (5) can drive the
estimation errors (e1, e2) → (0, 0) .

Proof. Selecting the Lyapunov function for System (15) is as follows:

V(e1, e2) = ξT Pξ (20)

where ξT = [|e1|1/2arctan(e1/α1), e2], and P is a symmetrical matrix constructed as

P =

[
r −q
−q 2

]
=

[
θ2

1 + 2θ2 − θ1 −(θ1 − 1)
−(θ1 − 1) 2

]
(21)

The determinant of P can be computed as:

det(P) = θ2
1 + 4θ2 − 1 (22)

From (19), it follows straightforwardly that 4θ2 > D > 1, and hence det(P) > 0.
Concurrently, since the bottom-right entry of P is positive, P is positive definite.

Consider that the time derivative of vector ξ is as follows:

.
ξ =

.
g1(|e1|)A(δ(t, e))ξ (23)

where

A(δ(t, e1)) =

[ −θ1 1
−θ2 + δ(t, e1) 0

]
, δ(t, e1) = −

.
d1(t)

g2(|e1|)sign(e1)
(24)

From Assumption 1, it is clear that |δ(t, e1)| ≤ D. Then, the time derivative of the
Lyapunov function can be given as:

.
V(e1, e2) = − .

g1(|e1|)ξTQ(δ(t, e1))ξ

where ⎧⎪⎨⎪⎩
a(t, e1) = −θ2 + δ(t, e),

Q(δ(t, e1)) =

[
2θ1r − 2q|a(t, e1)| 2|a(t, e1)| − r − θ1q

2|a(t, e1)| − r − θ1q 2q

]
For all possible values of a(t, e1), since |δ(t, e1)| ≤ D and θ2 > D, then

a(t, e1) ∈ [−θ2 − D,−θ2 + D] ⊂ (−∞, 0). Therefore, all possible values of a(t, e1) are
negative and

θ2 − D ≤ |a(t, e1)| ≤ θ2 + D

Then, the determinant of Q(δ(t, e1)) can be computed as follows:

det(Q(δ(t, e1))) = −r2 + c1(t, e1)r − c0(t, e1) (25)

where {
c1(t, e1) = 4|a(t, e1)|+ 2θ1(θ1 − 1)

c0(t, e1) = 4|a(t, e1)|(θ1 − 1)2 + [θ1(θ1 − 1)− 2|a(t, e1)|]2

Both c0(t, e1) and c1(t, e1) are positive. In addition, from (25), it can be computed that

c2
1(t, e1)− 4c0(t, e1) = 16|a(t, e1)|(θ2

1 − 1) > 0

Therefore, the roots of det(Q(t, e1)) as a polynomial in r are always real. These roots
are:

r1 =
c1(t,e1)−

√
c2

1(t,e1)−4c0(t,e1)
2 ,

r2 =
c1(t,e1)+

√
c2

1(t,e1)−4c0(t,e1)
2
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From (19), the minimum value of r2 over all possible values of |a(t, e1)| is given by:

r2min = 2(θ2 − D) + θ2
1 − θ1 + 2

√
(θ2 − D)(θ2

1 − 1)
> θ2

1 + 2θ2 − θ1 = r
(26)

In addition, using (19) again obtains

r1 < 2(θ2 + D) + θ2
1 − θ1 − 2

√
(θ2 − D)(θ2

1 − 1)
< θ2

1 + 2θ2 − θ1 = r.
(27)

Therefore, the inequality r1 < r < r2 holds for all possible values of |a(t, e1)|, and
it follows from (25) that det(Q(t, e1)) > 0. Concurrently, with the bottom-right entry of
Q(t, e1) is 2q = 2(θ1 − 1) > 0, and Q(t, e1) is positive definite.

It is clear that
.
g1(|e1|) > 0 for all e1 > 0. This latter fact, jointly with (24), implies that

.
V(e1, e2) ≤ − .

g1(|e1|)λmin(Q(δ(t, e1)))‖ξ‖2 ≤ 0 (28)

Thus, the proposed SSTESO constructed as (14) will drive the estimation errors
(e1, e2) → (0, 0) . Then, the unknown disturbance d1(t) can be estimated by the SSTESO. �

Similarly, the matched disturbance d2(t) can be estimated accurately when the estima-
tion error of SSTESO converges to the origin. Moreover, the block diagram of the two sets
of SSTESO is shown in Figure 2.

 
Figure 2. The block diagram of two sets of SSTESO.

Through the two sets of SSTESO designed above, the lumped disturbance d1(t), d2(t)
and the time derivative of mismatched disturbance

.
d1(t) can be estimated accurately as

ẑ2, ẑ4, and
.
ẑ2, respectively. Then, these estimated values can be compensated for by the

voltage controller to improve the robustness of the system.

3.2. SSTESO-Based SSTSMC Design

Super-twisting SMC, which is one of the high-order SMCs, can achieve chattering
suppression and eliminate the steady error by adding the integration element. How-
ever, STSMC is still essentially a nonsmooth control algorithm, and the control lag of the
integration part also exists.

Therefore, in this paper, an algorithm is proposed to realize the smoothness in the zero
domain of the nonsmooth control algorithm. This new control algorithm, called SSTSMC,
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is realized by constructing a pair of novel simple smooth functions to replace the switch
function in conventional STSMC and is constructed as:⎧⎨⎩

.
s = −μ1|s|1/2arctan( s

β ) + uI

.
uI = −μ2arctan(

∣∣∣ s
β

∣∣∣)[ 1
2 arctan( s

β ) +
s

β+s2/β
]

(29)

where μ1 > 0 and μ2 > 0 are the control gains, β > 0 is an adjustable parameter. Then, the
control scheme based on SSTSMC for the DC-DC buck converter can be constructed.

First, the sliding-mode surface for System (4) can be formulated as follows:

s = cx1 +
.
x1 = cx1 + x2 + d1(t) (30)

where c > 0 is the constant to be designed.
Subject to the nominal plant model (4), the time derivative of s is given by

.
s = cx2 +

uvin0

L0C0
− x1

L0C0
− x2

R0C0
− vr

L0C0
+ dis(t) (31)

where dis(t) = cd1(t) + d2(t) +
.
d1(t) is the lumped disturbance.

Letting
.
s = 0 in (29), we obtain the equivalent controller as follows:

ueq =
1

vin0
(x1 +

L0

R0
x2 + vr − cL0C0x2)− L0C0

vin0
dis(t) (32)

However, the lumped disturbance is usually unknown in practice. Thus, the lumped
disturbance dis(t) in the equivalent controller can be replaced by the estimated values
dîs(t) = cẑ2 + ẑ4 +

.
ẑ2 from SSTESO proposed above. The new equivalent controller can be

obtained as follows:

ueq =
1

vin0
(x1 +

L0

R0
x2 + vr − cL0C0x2)− L0C0

vin0
dîs(t) (33)

From (29), the reaching law can be obtained as follows:⎧⎨⎩ usw = −μ1|s|1/2arctan( s
β ) + uI

.
uI = −μ2arctan(

∣∣∣ s
β

∣∣∣)[ 1
2 arctan( s

β ) +
s

β+s2/β
]

(34)

Combining Equations (31) and (32), the control law u∗ for System (4) can be obtained
as follows:

u∗ = ueq +
L0C0

vin0
usw (35)

Taking the control law (33) to (29), the time derivative of the sliding-mode variable s
can be written as follows:

.
s = usw + c(d1(t)− ẑ2) + (d2(t)− ẑ4) + (

.
d1(t)−

.
ẑ2)

= usw + ce2 + e4 − .
e2

(36)

By proof of SSTESO, the estimation error ei(i = 1, 2, 3, 4) will converge to zero. Thus,
we assume that the estimated values of SSTESO are accurate and compensated for by the
controller in time to make ei = 0(i = 1, 2, 3, 4). Then,

.
s can be obtained as follows:⎧⎨⎩

.
s = −μ1|s|1/2arctan( s

β ) + uI

.
uI = −μ2arctan(

∣∣∣ s
β

∣∣∣)[ 1
2 arctan( s

β ) +
s

β+s2/β
]

(37)
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which is similar to Equation (15). Therefore, the stability analysis of SSTSMC is similar to
SSTESO, and is omitted here.

Consequently, the proposed SSTESO-based SSTSM control scheme is constructed
completely, and the structure diagram of this controller is shown in Figure 3.

 
Figure 3. Control structure of SSTESO-based SSTSMC for a DC-DC buck converter.

4. Simulation Study

In this section, the effectiveness and reliability of the proposed SSTESO-based SSTSMC
scheme for the DC-DC buck converter are verified using MATLAB/Simulink. In Simulink,
the simulation step size is set to 1.0 × 10−5s, and the switching frequency of the system is
set to 50 kHz.

To illustrate the superiority of the proposed control strategy, two sets of comparative
analysis are conducted: (1) comparing SSTSMC with STSMC; (2) comparing SSTESO+SSTSMC
with conventional ESO+SSTSMC and STESO+SSTSMC schemes. The specific parameters of
the DC-DC buck converter are listed in Table 1. Moreover, the reaching laws of conventional
STSMC are shown in (36). {

usw−ST = −μ1|s|1/2sign(s) + u1
.
u1 = −μ2sign(s)

(38)

Table 1. Nominal parameter values.

Description Parameter Value Units

Inductor L0 6.0 × 10−3 H
Capacitor C0 2.2 × 10−3 F

Load resistance R0 30 → 20 Ω
Input voltage vin0 25 V

Reference voltage vr 12 → 15 V

For fair comparison, the parameters of STSMC, SSTSMC, ESO+SSTSMC, STESO+
SSTSMC, and SSTESO+SSTESO are the same. All the parameters used in these controllers
are obtained through a trial-and-error method to achieve better tracking and robustness
performance, and the relevant values are shown in Table 2.

To compare the responses of these controllers under disturbance rejection and parame-
ter uncertainty, the following simulation tests are performed in the buck converter system:
(1) Startup-phase analysis; (2) Reference-voltage variation; (3) Linear load-resistance varia-
tion; (4) Input-voltage variation.
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Table 2. Controller parameter values.

Controllers Parameters and Values

STSMC c = 5.70 × 106, μ1 = 4.05 × 105, μ2 = 5.25 × 109

SSTSMC c = 5.70 × 106, μ1 = 4.05 × 105, μ2 = 5.25 × 109, β = 400

ESO+SSTSMC c = 5.70 × 106, μ1 = 4.05 × 105, μ2 = 5.25 × 109, β = 400, l1 = 126,
l2 = 3969, l3 = 1.68 × 104, l4 = 7.06 × 107

STESO+SSTSMC c = 5.70 × 106, μ1 = 4.05 × 105, μ2 = 5.25 × 109, β = 400, l1 = 126,
l2 = 3969, l3 = 1.68 × 104, l4 = 7.06 × 107, k1 = 48, k2 = 89

SSTESO+SSTSMC
c = 5.70 × 106, μ1 = 4.05 × 105, μ2 = 5.25 × 109, β = 400, l1 = 126,

l2 = 3969, l3 = 1.68 × 104, l4 = 7.06 × 107, k1 = 48, k2 = 89,
α1 = 5 × 10−4, α2 = 8 × 103

4.1. Controller Comparative Analysis

(1) Startup-Phase Analysis

In this simulation, the reference voltage Vre f is set to 12 V, and the load resistance
remains unchanged at 30 Ω. The response curves of the output voltage during the startup
phase are shown in Figure 4. In the voltage-rise phase, because the sliding-mode state
variable s is far away from the origin, the function gain of arctan(s/β) is larger than sign(s).
Therefore, SSTSMC makes the output voltage reach the desired voltage faster than STSMC.
Then, in the voltage-adjustment phase, s reaches the neighborhood of the origin and the
function gain of arctan(s/β) is smaller than that of sign(s). For this reason, SSTSMC makes
the system have less overshoot and a shorter startup time. Compared to STSMC, SSTSMC
takes less time to reach a steady state and reduces voltage overshoot, which proves that
SSTSMC can accelerate the convergence and provide better transient characteristics.

Figure 4. Output voltages of the two sliding-mode controllers at startup.

(2) Reference-Voltage Variations

The reference voltage is changed from 12 V to 15 V at 1 s, and the load resistance
remains at 30 Ω. The dynamic processes of the output voltage using both strategies during
the reference changes are shown in Figure 5. It can be seen from Figure 5 that because the
rise of the reference voltage is small, there is no overshoot in the output voltage during
the voltage-adjustment phase. Furthermore, the output voltage of the SSTSMC strategy
tracks the new reference voltage successfully to within 12 ms, which is shorter than that
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of the STSMC strategy by 37%. This result proves that SSTSMC has superior tracking
performance for reference trajectory tracking.

Figure 5. Output voltages of the two sliding-mode controllers when the reference changes.

(3) Linear Load-Resistance Variations

The voltage fluctuation owing to external disturbances is evaluated. The simulation
conditions for this time are that the output-voltage reference value remains unchanged at
12 V, and the load resistance is changed from 30 Ω to 20 Ω at 1 s. The response curves of the
output voltage during the load changes are shown in Figure 6. Since the sliding-mode gain
of SSTSMC is larger than that of STSMC at the moment of the introduction of disturbance,
SSTSMC responds more quickly to external disturbance. From Figure 6, the recovery time
and drop voltage of SSTSMC is measured as 78 ms and 0.10 V, respectively, which are both
smaller than that of STSMC.

ov

Figure 6. Output voltages of the two sliding-mode controllers when the load steps down.
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According to the simulation results, the proposed SSTSMC control strategy has shown
better robustness and resistance to disturbance ability compared to the STSMC. As with
the load change, the performance of the proposed SSTSMC strategy is optimal.

(4) Input-Voltage Variations

Considering the input voltage cannot be kept at the nominal value all the time in
practical engineering applications, the input voltage vin0 in the actual test will fluctuate
boundedly around the nominal value. Therefore, to further investigate the robustness of
the proposed SSTSMC strategy, a sinusoidal disturbance signal (10 sin 1000πt) is added
on the nominal value of the input voltage vin0 with the output-voltage reference value
remaining unchanged at 12 V and the load resistance remaining unchanged at 30 Ω. The
simulation results are shown in Figure 7.

Figure 7. Output voltages of the two sliding-mode controllers when input voltage varies.

From Figure 7, the voltage fluctuations under the STSMC strategy are 2.56 mV, while
the SSTSMC strategy reduces voltage fluctuations by 24% (1.94 mV), which means, from
another perspective, that the SSTSMC strategy is more robust and has a better dynamic
adjustment ability in face of input-voltage time-varying disturbance.

The simulation results mentioned above show that the SSTSM control strategy can
greatly reduce the impact of disturbance, increase the dynamic response speed, and improve
the robustness of the closed-loop control system. Therefore, the SSTSMC is chosen as the
basic controller to compare the SSTESO with ESO and STESO to prove the superiority of
the proposed SSTESO+SSTSMC scheme.

4.2. Extended-State Observer Comparative Analysis

In this section, the SSTSMC is selected as the controller and combined with different
extended-state observers for simulation. The simulation conditions are similar to the
previous section, and the controller parameters are shown in Table 2.

(1) Startup-Phase Analysis

The simulation results during the startup phase of the system using three control
schemes are shown in Figure 8 and Table 3. It can be seen from Figure 8c,d that the SSTESO
spends the shortest time among the three observers to make the disturbance estimation ẑ2
and ẑ2 converge to the origin when there is no external disturbance in the system. Before
the disturbance estimation converges to the origin, the disturbance estimates will also be
compensated for by the controller. Therefore, from Figure 8a, the output-voltage response
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speed of the controllers with ESO is faster than that of the controller without ESO in the
voltage-rise phase. Furthermore, because the convergence speed of conventional ESO and
STESO is not as fast as SSTESO, a long compensation will lead to a larger overshoot of the
system output voltage and a longer startup time in the startup phase. Compared to the
data in Table 3, the overshoot of output voltage of the SSTESO+SSTSMC scheme is even
smaller than SSTSMC without the extended-state observer. Moreover, Figure 8c shows that
there is a static error in the disturbance estimation of STESO but not in SSTESO, and the
estimated disturbance value of STESO exhibits larger chatter than that of SSTESO.

Figure 8. Response curves of the three control schemes at startup. (a) Output voltage vo, V.
(b) Convergence curve of estimation error e1. (c) Disturbance estimation of d1(t). (d) Disturbance
estimation of d2(t).

To sum up, SSTESO has a faster convergence speed and better disturbance estimation
accuracy than STESO and conventional ESO. In addition, the SSTESO+SSTSMC scheme can
accelerate the convergence rate of the system and provide better transient characteristics.
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Table 3. Comparative study of control schemes under three simulations.

Simulation Controller Vr (mV) ts (ms)

(1)

STSMC 29 70

SSTSMC 9 44

ESO+SSTSMC 820 67

STESO+SSTSMC 27 60

SSTESO+SSTSMC 7 42

(2)

STSMC - 19

SSTSMC - 12

ESO+SSTSMC 75 47

STESO+SSTSMC - 11

SSTESO+SSTSMC - 11

(3)

STSMC 210 98

SSTSMC 100 78

ESO+SSTSMC 91 35

STESO+SSTSMC 36 48

SSTESO+SSTSMC 9 1

(2) Reference-Voltage Variations

The simulation curves of output voltage, estimation error, and disturbance estimate
during the reference change are shown in Figure 9. As can be seen from Figure 9a, the
curves of output voltage during the reference-voltage step-up are similar to those of the
startup phase. However, because the rise in reference voltage is small, the output voltage
of the STESO+SSTSMC and SSTESO+SSTSMC schemes tracks smoothly from 12 V to 15 V
without overshoot within 11 ms. Furthermore, because of the slow convergence rate of ESO,
the overshoot (75 mV) and adjustment time (47 ms) of ESO+SSTSMC in the adjustment
phase are both large. It also can be seen from Figure 6b, c that the convergence rate of
estimation error e1 and disturbance estimation ẑ2 of STESO and SSTESO is much faster
than that of ESO. However, compared with SSTESO, there is still a static error and a large
chattering in the disturbance estimation ẑ2 of STESO. It can be seen in Figure 9d that,
because the value of disturbance estimation ẑ4 is very large and there is a linear term in
ESO, the convergence time of ESO is slightly shorter than that of STESO and SSTESO.

It can be concluded that SSTESO combines the advantages of ESO and STESO, which
have faster convergence rates and more accurate disturbance estimations.

(3) Linear Load-Resistance Variations

The dynamic processes of three strategies under linear load-resistance change condi-
tions are shown in Figure 10. It can be seen from Figure 10c that, when the disturbance is
introduced into the system at 1 s, the disturbance estimation ẑ2 of STESO and SSTESO con-
verge to a value quickly within 1 ms. Furthermore, it takes 158 ms for the ẑ2 of conventional
ESO to converge to the same value as SSTESO. There is a static error and a large chattering
in the disturbance estimation of STESO when it is stable, while the disturbance estimation
of SSTESO has better accuracy and smoothness. A similar conclusion can be drawn from
Figure 10b. Figure 10d shows the curves of disturbance estimation ẑ4, which outlines
that the convergence rates of all three schemes are similar. Furthermore, the SSTESO has
a smaller disturbance estimation to compensate for the controller when the disturbance
becomes larger, making the controller respond faster to the disturbance. Moreover, for
disturbance estimation ẑ4, SSTESO has better smoothness than STESO. Then, in Figure 10a,
because of the faster convergence rate and more accurate disturbance estimation of SSTESO,
the output voltage of the SSTESO+SSTSMC scheme has the smallest drop in voltage and
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the shortest recovery time among all three schemes when the load resistance steps down.
Simulation results show the proposed SSTESO+SSTSMC scheme has better robustness and
resistance in the presence of disturbance.

Figure 9. Response curves of the three control schemes when the reference changes. (a) Output
voltage vo, V. (b) Convergence curve of estimation error e1. (c) Disturbance estimation of d1(t).
(d) Disturbance estimation of d2(t).

(4) Input-Voltage Variations

A sinusoidal disturbance signal (10 sin 1000πt) is added based on the nominal value
of the input voltage vin0 to investigate the robustness of the proposed SSTESO+SSTSMC
strategy, as shown in Figure 11. The output-voltage chattering of the STESO+SSTSMC
scheme is larger than that of the other two schemes. That is because the external disturbance
of this system caused by the input-voltage fluctuation is not large, and so the ESO and
SSTESO with better smoothness perform better in this simulation. The fluctuation in the
disturbance estimation in STESO is larger, and this chattering will be superimposed on
the control signal eventually, which will aggravate the fluctuation in output voltage. The
voltage fluctuation under the STESO+STSMC scheme is 2.48 mV, which is even larger than
that of SSTSMC without an extended-state observer. Furthermore, the voltage fluctuation
under the SSTESO+STSMC scheme is 1.89 mV, which is slightly smaller than the scheme
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with only the controller. The above analysis shows that, if the estimated value of the
observer is not accurate enough, the robustness of the controller may become worse in the
presence of input-voltage variations.

Figure 10. Response curves of the three control schemes when the load steps down. (a) Output
voltage vo, V. (b) Convergence curve of estimation error e1. (c) Disturbance estimation of d1(t).
(d) Disturbance estimation of d2(t).

Figure 11. Output voltages of the three control schemes when input-voltage variations.
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4.3. Detail Results Analysis and Summary

To compare the control schemes in a useful manner, performance criteria are very
useful. In this article, two criteria have been favored, namely voltage maximum rise or fall
vr and adjustment time ts. Table 3 presents detailed simulation results of different control
schemes under the first three simulation tests. It can be concluded that, because of the
characteristic of the proposed smooth function, the dynamic performance and robustness
of SSTSMC are better than that of STSMC. In addition, for the extended-state observers, the
proposed SSTESO can greatly improve the speed of convergence compared to conventional
ESO. In addition, there is almost no fluctuation in the estimated value of SSTESO, which
makes the compensation to the controller more accurate. The data in Table 3 shows that the
proposed SSTESO+SSTSM control scheme can effectively improve the dynamic tracking
performance and robustness of the system.

5. Conclusions

This paper proposes a smooth super-twisting extended-state observer-based smooth
super-twisting sliding-mode control scheme for DC-DC buck converters with matched and
mismatched disturbances. First, the improved smooth super-twisting algorithm not only
accelerates the convergence speed but also ensures the smoothness of the system near the
zero domain. Then, compared to the conventional ESO, the proposed SSTESO can make
the estimation error converge to the origin faster, but it does not introduce chattering into
disturbance estimation like STESO, which provides higher estimation accuracy. Simulation
and experimental results demonstrate that the proposed SSTESO+SSTSMC scheme has a
faster response time, better tracking performance, and stronger robustness against output-
power variation and parameter uncertainties.
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Abstract: To limit the adverse effects of diabetes, a personalized and long-term management strategy
that includes appropriate medication, exercise and diet has become of paramount importance and
necessity. Compartment-based mathematical control models for diabetes usually result in objective
functions whose terms are conflicting, preventing the use of single-objective-based models for
obtaining appropriate personalized strategies. Taking into account the conflicting aspects when
controlling the diabetic population dynamics, this paper introduces a multi-objective approach
consisting of four steps: (a) modeling the problem of controlling the diabetic population dynamics
using a multi-objective mathematical model, (b) discretizing the model using the trapezoidal rule
and the Euler–Cauchy method, (c) using swarm-intelligence-based optimizers to solve the model
and (d) structuring the set of controls using soft clustering methods, known for their flexibility. In
contrast to single-objective approaches, experimental results show that the multi-objective approach
obtains appropriate personalized controls, where the control associated with the compartment of
diabetics without complications is totally different from that associated with the compartment of
diabetics with complications. Moreover, these controls enable a significant reduction in the number
of diabetics with and without complications, and the multi-objective strategy saves up to 4% of the
resources needed for the control of diabetes without complications and up to 18% of resources for the
control of diabetes with complications.

Keywords: diabetes mellitus (DM); dynamic control of diabetic population (DCDP); non-dominated
sorting genetic algorithm II (NSGA-II); multi-objective firefly algorithm (MOFA); Fuzzy-CMeans
(FCM); Gaussian mixture model (GMM); kernel convolution; fast Fourier transform (FFT)

MSC: 90C20; 90C29; 90C90; 93E20

1. Introduction

Diabetes is a permanent disease resulting from the pancreas’ incapacity to generate in-
sulin, or the body being incapable of utilizing the insulin properly. According to forecasts by
the International Diabetes Federation (IDF), by 2045, one person in eight, or approximately
783 million individuals, will be suffering from diabetes, representing an average increase
of 46% [1]. More than 90% of people living with diabetes are type 2 diabetics. Urbanization,
an aging population, reduced physical activity and the increased prevalence of overweight
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and obesity are the major contributors to the increase in type 2 diabetes. According to
the IDF’s 2021 report, diabetes accounted for at least USD 966 billion in healthcare costs
(9% of the total adult budget). Diabetes can lead to serious complications, among them
vision loss, cardiovascular problems, kidney insufficiency, cerebrovascular accidents, nerve
damage and lower-limb amputations. The key measures capable of mitigating this damage
include appropriate medication, adapted physical exercise [2] and personalized diet [3–5].
To determine an optimal control and implement these measures, several mathematical
control models have been proposed in the literature. Unfortunately, these models do not
distinguish between the different components of the diabetic population we wish to control,
while certain conflicting characteristics are implicitly embedded in this problem. This
results in standard strategies that are adequate for some patients but not appropriate for
others [6,7].

This work proposes a new approach to control the dynamics of the diabetic popula-
tion based on a multi-objective dynamic model, using multi-objective swarm intelligence
optimizers and soft clustering algorithms.

Most of the strategies aimed at controlling the dynamics of the diabetic population are
based on single-objective mathematical models, which formulate the optimal control using
the Pontryagin’s maximum principle and decompose the model using various numerical
techniques to estimate the control [8–11]. Numerical methods employing Pontryagin’s
maximum principle result in controls that are prohibitively resource-hungry in terms of
both personnel and material. To overcome this problem, the authors of [2] used several
heuristic methods to estimate a control by introducing an adequate objective function that
makes a compromise between the components of the model proposed in [8]. However,
focusing on a single objective leads to controls that heavily minimize certain compartments
at the detriment of others. In addition, this kind of solution provides a unique policy that
may not be suitable in some contexts or may not be appropriate.

In this work, we introduce a multi-objective strategy to control the dynamics of a
diabetic population, implementing three compartments, i.e., pre-diabetics, diabetics, and
diabetics with complications, and consisting of the following steps: (a) the introduction of
two controls to protect diabetics from developing complications, (b) the introduction of
two objectives functions to reduce the size of the two last compartments and the necessary
resources to realize such a reduction, (c) the discretization of the obtained model using the
Euler–Cauchy method and the trapezoidal rule, (d) the construction of two appropriate
objective functions that make a compromise between the components of the model, and
(e) employing NSGA-II [12] and MOFA [13] multi-objective optimization algorithms to
build the Pareto front that presents the set of control actions to the customers. In step (c), we
evaluated the error due to the discretization process. NSGA-II and MOFA produce a set of
controls from which the user has to select the appropriate one considering its requirements.
To assist the user, we structured the Pareto solutions front using two soft clustering methods:
the Gaussian mixture model (GMM) [2] and Fuzzy-CMeans (FCM) [14]. The employed
soft computing methods based on fuzzy or probabilistic approaches provide decision
system makers with the necessary capabilities to deal with imprecise and incomplete
information. A soft clustering method permits us to have an observation that belongs to two
or more clusters. The optimal number of groups was selected on the basis of the silhouette
criteria [14]. The experimental results show that the proposed multi-objective approach
offers several effective and personalized controls that will enable experts to implement
diversified group therapies to alleviate the human and material damage of diabetes.

The main contributions of this paper are summarized as follows:

(1) A multi-objective mathematical model for controlling the dynamics of the diabetic
population is introduced;

(2) A discretization of the proposed model is realized based on the trapezoidal rule and
the Euler–Cauchy method (we demonstrate that this error is bounded);

(3) Two multi-objective optimizers are used to solve the proposed multi-objective model;
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(4) As a first postprocessing phase, FFT convolution is used to clean the noise from
the control;

(5) As a second post-processing phase, two soft clustering methods are used to structure
the Pareto front.

The rest of the paper is organized as follows: Section 2 presents some related works.
Section 3 provides a methodology overview. Section 4 presents the proposed multi-objective
mathematical model. Section 5 presents the employed computational intelligence algorithms
(NSGA-II, MOFA, FCM and GMM). Section 6 discusses the experimental results obtained
using our approach. Finally, Section 7 gives some conclusions and future directions.

2. Related Works

Faced with a large population of diabetics, a long-term strategy (group therapy) is
needed that involves dividing this population into a reasonable number of compartments,
then estimating the magic combinations comprising diet, exercise and medication for
each compartment.

To meet these needs, a number of mathematical models have been developed, in
particular dynamic models of the diabetic population. Various compartments have been
considered, i.e., pre-diabetic people, diabetic people without complications, people with
complications, healthy people and other types [15–19]. All the dynamic models of diabetes
proposed in the literature focus on a single objective function and follow the same steps,
with slight differences depending on the types of diabetic groups studied. At first, research
was performed only on two types of compartments, the compartment of people with
diabetes and prediabetic people. In 2014, the first controlled population dynamics model
of diabetes was put forward [20]. It considered three types of populations: pre-diabetic
individuals, diabetic individuals without complications and diabetic individuals with
complications [20]. The authors proposed this controlled diabetic population model to
reduce the negative effects of this disease and used the Gumel numerical method [21]
to solve the system. They also proposed a control strategy over a period of 120 months.
Subsequently, another controlled dynamic model of the diabetic population, based on a new
control strategy, was proposed in [22]; this time, they thought of dividing the population
into two types of compartments, which were the uncomplicated diabetic individuals and
the diabetic individuals with complication. Unfortunately, this approach excludes many
diabetes-related groups and fails to specify how to control a very large population size with
the same control strategy. In 2018, the authors of [23] introduced a population control model
for diabetics, implementing five compartments, but the proposed model takes into account
people with disabilities, which is not the most prevalent general case. Consequently, this
control cannot be generalized.

An alternative study, which has some overlap with our study, examines the fact of
being pregnant [24]. Unfortunately, this study focuses only on women, and more specifically
on pregnant women. Moreover, the control phase has not yet been carried out. In [25],
authors suggested a reduced monitoring framework using the time-discrete method, which
models the progression of prediabetes to diabetes with and without complications and
the impact of the lifestyle context. Anther work [26], by the same authors, provided a
mathematical model of the diabetic population split into six compartments considering
other aspects such as the effects of genetics and behavioral factors. The authors of the
study suggest that in order to decrease the proportion of diabetics, three controls could
be implemented: an awareness program through education and media, therapy and
psychological assistance with follow-up. In the end, several strategies were proposed
in [25,26], but they lead to confusion for doctors, and the proposed controls are difficult
for non-mathematicians to understand. In [8], the authors investigated a model that
outlines the evolution of the population, as well as the pain of diabetic subjects with
the socio-environmental effect depending on the age category; the authors suggested an
optimized monitoring plan to protect patients from the negative influence of a lifestyle
that causes them to develop complications. Numerical methods, employing Pontryagin’s
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principle, result in controls that are prohibitively expensive in terms of human and material
resources. Recently, in [2], we used heuristic methods to estimate a control based on a fitness
function that achieves a compromise between constraints and the model’s objective function.
However, implementing conflicting criteria in a single function results in non-personalized
standard controls. This paper introduces a new approach based on a multi-objective model,
which we solve with two multi-objective swarm optimizers. In order to help the user select
a suitable control from the Pareto front, we also employ two soft clustering methods as
mentioned in the previous section.

3. Methodology Overview

Notations

Time variables: we denote by T the control period and by h the time step.
Compartments: E, I, D and C are the number of pre-diabetics, the incidence of being

prediabetic, the number of diabetics and the number of diabetics with complications.
Parameters: In the system described in Equation (1), μ is the biological death ratio,

β1 is the risk of acquiring diabetes mellitus (DM), β2 is the estimate of the likelihood
that an individual with DM will develop a complication, β3 is the risk of developing
complicated DM, γ is the success ratio for complications, ν is the degree to which severely
disabled individuals become seriously handicapped and δ is the death ratio caused by
medical complications.

Controls: u1 and u2 are the functions introduced to control the compartments of
diabetics with and without complications.

Model

Variables: we introduced two functions (u1 and u2), in model (1), to control the
compartments D and C during the period T; see system (2).

First objective function: this function was introduced to minimize the number of
diabetic D and the resources required to realize this objective (i.e., u1).

Second objective function: this function was introduced to minimize the number of
diabetics with complications C and the resources required to realize this objective (i.e., u2)

Constraints: ordinary differential equation that governs the exchange between differ-
ent compartments in the presence of the controls.

Discretization

Objective functions: The first and the second objective functions implement integral
operators to consider the number of diabetics with and without complications and the
resources required to control these compartments during the period T. To transform these
integral to a discrete sum, we used the trapezoidal rule based on time step h.

Constraints: to transform the differential equations of the proposed model into a
combinatorial system, we used the Euler–Cauchy method because of its simplicity.

Error estimation: in lemma 1 and proposition 1, we demonstrate that the error due to
the discretization is still bounded with a cubic function that implements all the outputs of
the multi-objective model.

Smart local search

To estimate the controls u1 and u2, we used two multi-objective local search methods,
namely the NSGA [12,27] and MOFA [13] algorithms; the configurations of these methods
were experimentally chosen. Here [T/h] + 1 represents the integer par of T/h.

Post-processing

Features extraction: to avoid high-dimensional vectors ([T/h]), when structuring the
control space, we extracted the relevant information by adopting certain criteria (control
fluctuation, control cost, quality of compartments and spatial characteristics).

Structuring of the Pareto front: NSGA-II and MOFA produce a set of controls that are
difficult to exploit, so we used two soft clustering methods, GMM [14] and FCM [28], to
summarize the Pareto front.

Fluctuation corrections: To correct fluctuations caused by successive approxima-
tions, we used the FFT convolution operator and test several masks of different sizes
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(4 × 4, ..., 10 × 10). In this sense, given a function, represented by the matrix U, whose
fluctuations we want to eliminate, we chose a suitable kernel function K, represented by a
matrix of ones modified by a suitable weight w, and the convolution formula is given by
∀j, k C(i, j) = ∑p,q U(p, q) ∗ K(j − p + 1, k − q + 1).

The size of the kernel K and w were experimentally chosen.
Performance evaluation

The control quality was measured using three criteria: (a) the rate of growth of E: the
faster it is, the better the control; (b) the rate of decay of D and C: the faster the decay, the
better the control; and (c) the values taken by u1 and u2: the smaller they are, the better
the control.

4. Multi-Objective Diabetic Control Model

4.1. Single-Goal Control Model

Let E(t), D(t) and C(t) be the compartment of pre-diabetic individuals, the com-
partment of diabetic individuals without complication and the compartment of diabetic
individuals with complication, respectively. Derouich et al. [20] introduced the following
mathematical model:⎧⎪⎨⎪⎩

dE(t)
dt = I − (μ + (β3 + β1)(1 − u(t)))E(t)

dD(t)
dt = β1(1 − u(t))E(t)− (μ + β2(1 − u(t)))D(t) + γC(t)

dC(t)
dt = β3(1 − u(t))E(t) + β2(1 − u(t))D(t)− (μ + γ + ν + δ)C(t)

(1)

u represents the intervention of the endocrinologist [medication potency level (1 mg,
. . . , 10 mg), diet level (the glycemic load not to be exceeded), type of exercise (the number
of minutes of walking, type of running...)], I is the effect of the presence of pre-DM, μ is the
biological death ratio, β1 is the risk of acquiring DM, β2 is the estimate of the likelihood
that an individual with DM will develop a complication, β3 is the risk of developing
complicated DM, γ is the success ratio for complications, ν is the degree to which severely
disabled individuals become seriously handicapped and δ is the death ratio caused by
medical complications.

The function they sought to minimize in [20] is of the following form:

Γ(u) =
T∫

0

(
D(t) + C(t) + Ku2(t)

)
dt

K ∈ R+ and all the feasible controls of one goal model form a set denoted U. u is said
to be feasible if it is measurable and the system (1) has at least one solution. A feasible
control is expressed in percent, i.e., 0 ≤ u(t) ≤ 1, ∀t ∈ [0, T].

Problems:
For a given decision u, the

∫ T
0

(
D(t) + C(t) + Ku2(t)

)
dt and

∫ T
0 D(t)dt can be minimal

and
∫ T

0 C(t)dt is very large, as the terms in Γ are in conflict with each other.
In practice, it is difficult to set up a tradeoff between D, C and u via a penalty constant.

In fact, to evacuate compartment D, there are three possibilities: move patients from D
to E or move patients from D to C, or both. To evacuate compartment C, there is only
one possibility: move patients from C to D. So, the two compartments D and C are in
conflict. A possible scenario: if the number of diabetic patients with complications is
very small, compared to D, a wrong choice of aggregation parameters can give wrong
information to the optimization methods and the number of patients with complications can
receive elements from D while the objective function is minimal (for a given local solution).
When dealing with conflicting cost functions, a single solution is not reasonable because a
solution that may be appropriate in one context may not be appropriate in another. The
characteristics of patients in D are not similar to the ones of C. Therefore, the regulation of
the system requires individualized policies that take this difference into account.
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The Pontryagin principle implies very complex mathematical formulas; moreover, it
leads to an expansive strategy that consumes all existing resources.

4.2. Multi-Objective Control Model

Decision variables: To act on E and D with two separate strategies, we introduced two
controls, u1 to control E and u2 to control D. u1 and u2 are two measurable functions
defined on [0, T] and take their values in [0, 1]. Practically speaking, it is impossible
to estimate the decision functions at each instant t, and that is why we estimated these
functions at d instants t1, . . . , td from [0, T] such that ti+1 − ti = constant = h and T

h = d,
and let us denote by u11, . . . , u1d and u21, . . . , u2d the obtained values.

Constraints: By introducing u1 and u2 in the system (1), we prevented (1 − u1(t))%
of prediabetic people and (1 − u2(t))% of people with diabetes from joining the upper
compartments; thus, we obtained the following system:⎧⎪⎨⎪⎩

dE(t)
dt = I − (μ + (β3 + β1)(1 − u1(t)))E(t)

dD(t)
dt = β1(1 − u1(t))E(t)− (μ + β2(1 − u2(t)))D(t) + γC(t)

dC(t)
dt = β3(1 − u1(t))E(t) + β2(1 − u2(t))D(t)− (μ + γ + ν + δ)C(t)

(2)

We discretized the system (2) using the time step h defined before, and we obtained
the following system:⎧⎨⎩

Ei+1 = Ih − (μ + (β3 + β1)(1 − u1,i))hEi + Ei
Di+1 = β1(1 − u1,i)hEi − (μ + β2(1 − u2,i))hDi + γhCi + Di
Ci+1 = β3(1 − u1,i)hEi + β2(1 − u2,i)hDi − (μ + γ + ν + δ)hCi + Ci

i = 0, . . . , d − 1 (3)

where
∼
up =

(
up,0, . . . , up,d

)
, p = 1, 2.

Objective functions: We introduced the following two objective functions:

Γ1(u1, u2) =
∫ T

0

(
C(t) + Ku2

1(t)
)

dt and Γ2(u1, u2) =
∫ T

0

(
D(t) + Ku2

2(t)
)

dt

We used the trapezoidal rule to estimate Γ1 and Γ2 and then obtained the following
objective functions:

Γ1(u1, u2) ≈
∼
Γ1(

[∼
u1,

∼
u2

]
) =

h
2

d−1

∑
i=0

(Ci+1 + Ci) +
Kh
2

d−1

∑
i=0

(
u2

1,i+1 + u2
1,i

)

Γ2(u1, u2) ≈
∼
Γ2

([∼
u1,

∼
u2

])
=

h
2

d−1

∑
i=0

(Di+1 + Di) +
Kh
2

d−1

∑
i=0

(
u2

2,i+1 + u2
2,i

)
We denote by U1,2 the set of the pair feasible control.
The multi-objective problem we propose in this work is given by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Min
∼
Γ1

([∼
u1,

∼
u2

])
Min

∼
Γ2

([∼
u1,

∼
u2

])
Subject to[∼

u1,
∼
u2

]
∈ [0, 1]2d(∼

E,
∼
D,

∼
C
)

solution o f (3)

(4)

Convexity of the problem (4): We have ∀i = 0, . . . , d − 1 and ∀j = 1, 2; the function[∼
u1,

∼
u2

]
→ u2

j,i+1 + u2
j,i is convex.

Then ∀j = 1, 2, and the function
[∼

u1,
∼
u2

]
→ ∑d−1

i=0

(
u2

j,i+1 + u2
j,i

)
is convex;

As Kh
2 > 0, then ∀j = 1, 2; the function [

∼
u1,

∼
u2] →

∼
Γj

([∼
u1,

∼
u2

])
is convex.
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We have ∀i = 0, . . . , d − 1, the function

F(
[∼

u1,
∼
u2

]
) =

⎡⎣ Ih − (μ + (β3 + β1)(1 − u1,i))hEi + Ei − Ei+1
β1(1 − u1,i)hEi − (μ + β2(1 − u2,i))hDi + γhCi + Di − Di+1
β3(1 − u1,i)hEi + β2(1 − u2,i)hDi − (μ + γ + ν + δ)hCi + Ci − Ci+1

⎤⎦
is linear; thus, F is convex.

Finally, the problem (4) is convex.
As we have shown that the problem (4) is convex, we used gradient methods to

solve it:

(a) The primary methods used were gradient descent algorithms [29];
(b) Dual methods, which exploit convexity to calculate the gradient of the dual max–min,

were also used [30];
(c) The substitution and the decomposition Lagrange methods that introduce a copy

variable to decompose the initial problem to two sub-problems [31]: the first one does
not have any constraints (for which we can use gradient descent, among others) and
the second one does not have objective functions (for which we can use back tracking
methods, among others).

In this sense, we have to transform the multi-objective functions to a single-objective
function using aggregation weights; as a result, we find ourselves in front of a system of
3d constraints plus 2d positivity constraints. In this work, we preferred to use heuristic
methods that only meet the 0 ≤ ∼

uj,i ≤ 1 ∀i = 0, . . . , d − 1 and ∀j = 1, 2 positivity
constraints, i.e., 2d, which are easily introduced in Matlab’s “gamultiobj” as bounds. To
avoid the 3d constraints, given an estimation of the control, at the iteration k, we used an
interpolation method (for example the spline method) to transform the discrete control

∼
u

to the continuous control u; then, we called for the Euler–Cauchy method to approximate

the compartments C and D; after that, we estimated the value of the function
∼
Γj(

[∼
u1,

∼
u2

]
(∀j = 1, 2).

Error of approximation: In this section, we estimate the error related to the approximation
of the integral using the trapezoidal rule. We introduced the following functions:

f1(t) = C + Ku2
1 and f2(t) = D + Ku2

2
∀i ∈ {1, 2}, we set M′

i = max
t∈[0, T]

∣∣u′
i(t)

∣∣ and M′′
i = max

t∈[0, T]

∣∣u′′
i (t)

∣∣
Lemma 1. Considering the system (2), we have:∥∥ f ′′1

∥∥ ≤
(

αM′
1 + αM′

2 + 31α2 + α
)

P + 2KM′′
1 + 2K

(
M′

1
)2

∥∥ f ′′2
∥∥ ≤

(
αM′

1 + αM′
2 + 17α2 + α

)
P + 2KM′′

2 + 2K
(
M′

2
)2

where P is the size of the population and α = max{μ, γ, ν, δ, β1, β2, β3}.

Proof of Lemma 1.

We have f1
′ = C′ + 2Ku′

1u1
Thus f ′1 = β3(1 − u1)E + β2(1 − u2)D − (μ + γ + ν + δ)C + 2Ku′

1u1
Then f ′′ 1(t) = −β3u′

1E+ β3(1 − u1)E′ − β2u′
2D + β2(1 − u2)D′ − (μ + γ + ν + δ)C′

+ 2Ku′′
1u1 + 2K

(
u′

1
)2

Thus f ′′1 = −β3u′
1E+ β3(1 − u1)[I − (μ + (β3 + β1)(1 − u1))E]− β2u′

2D+ β2(1 − u2)
[β1(1 − u1)E − (μ + β2(1 − u2))D + γC] − (μ + γ + ν + δ)[β3(1 − u1)E + β2(1 − u2)D(t)
−(μ + γ + ν + δ)C] + 2Ku′′

1u1 + 2K
(
u′

1
)2

Then f ′′ 1 = [−β3u′
1 − β3(1 − u1)(μ + (β3 + β1)(1 − u1)) + β2β1(1 − u1)(1 − u2)

−(μ + γ + ν + δ)β3(1 − u1)]E + [−β2u′
2 − β2(1 − u2)(μ + β2(1 − u2))− (μ + γ + ν + δ)

β2(1 − u2)]D + [β2(1 − u2)γ + (μ + γ + ν + δ)2]C + 2Ku′′
1u1 + 2K(u′

1)
2 + β3(1 − u1)I
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Thus
∥∥ f ′′1

∥∥ ≤ (
αM′

1 + αM′
2 + 31α2 + α

)
P + 2KM′′

1 + 2K
(
M′

1
)2

Following the same steps, we find
∥∥ f ′′2

∥∥ ≤ (
αM′

1 + αM′
2 + 17α2 + α

)
P + 2KM′′

2 +

2K
(
M′

2
)2. �

Proposition 1. Let (u1, u2) be the optimal control of the problem (P). The error associated with the
trapezoidal rule discretization is bounded by the number

E =

(
Th2

12

)
[(αM′

1 + αM′
2 + 31α2 + α)P + 2K

(
M + M2

)
]

where M = max{M′1, M′2, M′′
1, M′′

2}.

Proof of the Proposition 1. Consider the integral Integ =
∫ b

a f (t)dt; Rahman Qzi et al.
showed that the error of the trapezoidal rule is estimated by [32]:

Error = − (b − a)3

12N2 f ′′(ξ)

where N is the number of the used points in [a, b].

In our case, a = 0 and b = T, and N = d = T/h (h is the step of the discretization).
However, we demonstrated before, in Lemma 1, that∥∥ f ′′1

∥∥ ≤ (
αM′

1 + αM′
2 + 31α2 + α

)
P + 2KM′′

1 + 2K
(
M′

1
)2 and

∥∥ f ′′2
∥∥ ≤ (

αM′
1 + αM′

2 + 17α2 + α
)

P + 2KM′′
2 +

2K
(
M′

2
)2

Thus
∥∥ f ′′i

∥∥ ≤ (
αM′

1 + αM′
2 + 31α2 + α

)
P + 2KM′′

1 + 2K
(
M′

1
)2

Thus, the discretization error is given by

E =

∣∣∣∣ T3

12N2 f ′′i (ξ)
∣∣∣∣ ≤ Th2

12
[(αM′

1 + αM′
2 + 31α2 + α)P + 2K

(
M + M2

)
]

The reason why our approach is of practical rather than conceptual importance is that
it offers more freedom to fragment the control: the first is focused on E and the second
is about D. We will not elaborate too much in the proofs of the results relating to the
invariance and the existence of the solution of the proposed multi-objective model for every
pair of controls (u1, u2).

Invariance: based on the Gronwall inequality (applied to the model (2)) [15], we
demonstrate that E(t) > 0, D(t) > 0, C(t) > 0, and N(t) = E(t) + D(t) + C(t) ≤ I/μ.

Existence: By adopting the same procedures as in [15], we proved that the right-hand
members of the Equation (2) are Lipschitzian. The difference between the proofs given
in [15] were the considered bounds. In our situation, these bounds implemented the
controls u1 and u2, and since (u1, u2) ∈ U1 × U2, these results are always true. �

Theorem 1. Let us consider the next problem:⎧⎪⎪⎨⎪⎪⎩
Min Γ1(u1, u2) Min Γ2(u1, u2)

Subject to
(u1, u2) ∈ U1 × U2

(E, D, C) solution o f (2)

A Pareto front of non-dominant optimal decisions exists (called the Pareto optimal control).

Proof of the Theorem 1: Without going into details, the existence of an optimal front can
be proved by applying the finding of Fleming and Rishel [33] and by following the steps
mentioned below:
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Γ1(u1, u2) =
∫ T

0

(
C(t) + Ku2

1(t)
)
dt and Γ2(u1, u2) =

∫ T
0

(
D(t) + Ku2

2(t)
)
dt are convex

in (u1, u2);
U1 × U2 is convex.
The right-hand sides of the system Equation (2) are continous, bounded and can be

written as a linear function of u1 and u2 with coefficients depending on time and state;
The integral of the objective functionals, C(t) + Ku2

1(t) and D(t) + Ku2
2(t), are clearly

convex on U1 × U2;
We have C(t) + Ku2

1(t) ≥ α1,1+α1,2‖u1‖2 and D(t) + Ku2
2(t) ≥ α2,1+α2,2‖u2‖2 where

α1,1 = inf
t∈[0, T]

D(t) and α2,1 = inf
t∈[0, T]

C(t) and α1,2 = α2,2 = K. �

4.3. Pareto Controls Characterization

The Pareto curve is formed by non-dominated controls (we denote by m the size
of the pareto set). We estimated these controls on several points, say d, of the control
interval [0, 10] years; generally, d is very large compared to m, which affects the quality
of the grouping. In this part, we extracted the most important features that describe the
controls basing on four criterions: the controls fluctuation, the cost of the controls, the
spatial characteristics of the decisions and the quality of the controls.

Fluctuation characteristics: First, we removed the linear trend from the controls u1
and u2 using FFT processing [34], and we obtained the corrected controls u′

1 and u′
2. Two

fluctuation features were extracted in this phase: norm
(
u1 − u′

1
)

and norm(u2 − u′
2).

Control cost: The total resources mobilized to control the compartments D and C; these
were estimated by the sum of the controls on the control duration. In this sense, we have:
sum(u1(t)/t ∈ [0, T]) and sum(u2(t)/t ∈ [0, T]).

Spatial characteristics: the spatial characteristics were measured based on the coefficients
of the polynomial interpolation of the controls.

Quality of Compartments: The adequacy of the different compartments was measured by
DIST = distance (compartment without control, compartment with control). We obtained
three compartment features: dist(Ew, E), dist(Dw, D) and dist(Cw, C). The greater the
DIST, the better the control.

5. Smart Algorithms

5.1. Swarm Intelligence Optimizers

The metaheuristic algorithms were designed based on simulating natural phenomena
and laws, which have better global search ability. The most important concept of multi-
objective optimization is the Pareto front; it is the curve of the non-dominated points
considering the different objective functions at the same time.

Figure 1 illustrates the notion of a Pareto front. Considering the blue line, if we prefer
one objective function, then we disadvantage the other objective function.

Figure 1. Pareto front concept.
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In this section, we provide the main ideas of two well-known swarm intelligence
optimizers that produce local Pareto fronts when solving a multi-objective optimization:
NSGA-II and MOFA. As the appropriate crossover of local search methods allows us to
overcome the shortcomings of the parent methods, it was possible to use some recent hybrid
methods to solve the proposed model, such as the hybrid firefly genetic [3] approach, the
cuckoo search-based metaheuristic approach [35] and the hybrid marine predator sine–
cosine [36] algorithms.

5.1.1. Non-Dominated Sorting Genetic Algorithm II

NSGA-II tends to encourage higher-order chromosomes to appear in the future popu-
lation [12,27]. The controlled evolutionary selection also encourages the chromosomes to
participate in a reasonable diversity of the population in spite of their current weakness.
The Pareto fraction limits the number of chromosomes in the solution set. The distance
function ensures diversity on the front while promoting chromosomes with an acceptable
distance from the front.

The different phases of NSGA-II are shown in Figure 2. The initialization is based
on the constraints of the studied problem. Then, the procedure called the non-dominated
sorting process about the dominance notion is started. After that, the chromosomes
are selected based on two criteria: rank and crowding distance. Then, selection via the
tournaments method implementing the crowded-comparison operator is used to select
the individuals. The crossover operator and the mutation operator are used to produce
chromosomes. The new production is filled by each of the successive borders until the
current population size exceeds the tolerated size.

Figure 2. NSGA-II algorithm schematic diagram.

NSGA-II has the advantages of simple coding and excellent performance, and has been
successfully applied for solving real-world problems, e.g, solving the flow-shop scheduling
problem [37], optimal diet problem [4], data classification [38], Louver configuration [39],
3D laser scanning scheme for engineering structures [40], UAV path planning [41], optimal
lane change path planning [42], green pepper detection [43], optimal configuration of
landscape storage in public buildings [44], etc.

5.1.2. Multi-Objective Firefly Algorithm

MOFA is inspired by the behavior of fireflies [13]. The basic one-objective version is
based on the following rules [27]:

(a) Fireflies have the ability to attract other fireflies, no matter which sex they are.
(b) The attraction is positively proportional to the brightness. If all the fireflies have

nearly the same degree of brightness, then one or more fireflies are moving.
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(c) The luminosity of a firefly is calculated from the cost function.

If dij is the distance between two fireflies i and j, then the variability of attractiveness
δij is estimated by:

δij = δ0exp
(
−σd2

ij

)
(5)

The parameters δ0 and σ are chosen by the user.
If xt

i and xt
j are the present position of the fireflies i and j, respectively, the FA algorithm

uses the following equation to calculate the next position of the ith firefly:

xt+1
i = xt

i + δij

(
xt

j − xt
i

)
+ αtε

t
i (6)

αt and εt
i are the global and local random series corresponding to the ith firefly.

An extension of the basic ideas of FA leads to MOFA, presented in Figure 3.

Figure 3. The MOFA algorithm schematic diagram.

Based on the cost functions and the constraints of the problem to be solved, we defined
appropriate objective functions. A swarm of fireflies was uniformly chosen from the
research space to ensure the same chances to different regions to be explored. The basic
cycle starts by measuring the brightness of all individuals in the swarm, and each pair of
elements is measured against each other. Then, a smart pairing is carried out on the base of
a convex weight matrix. The non-dominated solutions are then forwarded to the following
step. Upon termination of a given number of repetitions, n non-dominated solutions are
achieved to approach the correct Pareto front.

In this context, MOFA has the advantages of simple coding and a smaller number
of parameters to use and has been successfully applied recently for solving interesting
problems, such as an energy-efficiency problem [45], automatic EEG channel selection
problem [46], reference point reconstruction problem [47], integrated process planning
and scheduling problem [48], stochastic techno-economic–environmental optimization [49],
optimization of concentric circular antenna array [50], VLSI Floorplanning problem [51],
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configuration of power quality control device problem [52], identification of compound
gear-bearing faults [53], etc.

5.2. Soft Clustering Algorithms

Let us consider the set of not-labeled observations B = {z1, . . . , zN} ⊂ Rn. The clus-
tering issue consists of partitioning this set into K � N groups P1, . . . , PK and representing
each group k by a vector wk called the reference.

Soft computing methods based on fuzzy (based on the degree of membership) or
probabilistic (based on the frequency of events) approaches provide decision system makers
with the necessary capabilities to deal with imprecise and incomplete information. In fact,
a soft clustering method allows an observation to belong to two or more clusters. In this
work, we use the well-known and basic soft clustering algorithms Gaussian mixture model
(GMM) and Fuzzy-CMeans (FCM) to structure the Pareto front.

5.2.1. Gaussian Mixture Model (GMM)

When we randomly draw an element from the set B, the probability that it is an
element of group k is of αk (statistically estimated). Since the group k is assumed to be
sufficiently compact, it makes sense to simulate the distribution of information within this
subgroup to a normal distribution of mean wk and reduced covariance σ2 I, where I is the
identity matrix of dimension n × n et σ > 0. In this way, the probability that an observation
is an element of B is approximated by the following mixture density:

p(z) = ∑k
k=1 αk fk(z), where ∑K

k=1 αk = 1 and fk is defined by

fk(z) =
1

(2π)
n
2 σn

exp (−‖z − wk‖2

2σ2 )

Practically, the prior probabilities αk are all equal to 1/K. Moreover, the log-likelihood
measuring the fact that all observations are generated by p is given by [54]:

V(W, σ, P) =
1

2σ2 I(W, P) + Nnln(σ) + constant

I(W, P) is the squared error associated with w1, . . . , wK and P1, . . . , PK. The minimiza-
tion of this function is performed in an iterative way, each of which is divided into two
steps: fixing one variable and updating the other (the two variables involved are W and σ).

At the iteration iter, if we suppose the references witer
1 , . . . , witer

k are known, then σiter

is given by the equation σiter =
√

nN/I
(
Witer, Piter

)
;

At the end, the observation zi is allocated to the group j∗ given by the equation
j∗ = argmax( fk(zi), k = 1, . . . , K)

5.2.2. Fuzzy C-Means (FCM)

FCM is a method of clustering that allows to one observation to be in two or more
clusters at the same time [30]. The cost function that this method tends to minimize is
given by:

I(W, μ) =
K

∑
k=1

N

∑
i=1

μm
ik‖zi − wk‖2, 1 ≤ m < ∞

where μik is the degree of membership of zi in the cluster k. The function I(W, μ) is the
minimization of this function, performed in an iterative way based on the equations:

μ−1
ik = ∑K

j=1

(
‖zi−wk‖
‖zi−wj‖

) 2
m−1

and wk =
∑N

i=1 μm
ik zi

∑N
i=1 μm

ik
.

At the end, the observation zi is allocated to the group j∗ given by the equation
j∗ = argmax(μik, k = 1, . . . , K).
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6. Experimental Results and Discussion

In this section, we used two multi-objective heuristic methods, NSGA-II [12,27] and
MOFA [13], to estimate the optimal Pareto front of the problem (4). The configurations
of these two algorithms were performed experimentally, i.e., several configurations were
performed and the ones producing better results were retained.

To structure the obtained fronts, we used two soft clustering methods, FCM and GMM.
The choice of the number of clusters was based on the silhouette criterion. The number of
clusters was chosen on the basis of the silhouette criterion. To this end, we tested GMM
and FCM for different values of K (number of classes) and evaluated the silhouette of the
resulting partitions; the best K is the one corresponding to the highest silhouette value.
Figure A5 gives different silhouette values for different numbers of clusters (1 to 6); in our
case, the silhouette was maximal when K = 4. In this sense, we did not consider all the
approximation points of the controls to structure the control space, but we instead based
our analysis on the characterization shown above (Section 4.3). In addition, in order not
to clutter the paper with many figures, we introduce and analyze the results obtained via
FCM and we put, in the Appendix A, those obtained via GMM.

In addition, convolution filters, such as 9 × 9 kernels, were used to eliminate the
fluctuations, intrinsic to each approximation, in order to obtain reasonable strategies that
are easy to implement.

6.1. NSGA-II Combined with Soft Clustering Methods

In this section, we use the NSGA-II method to estimate the elements of the Pareto front
at several points by adopting the configuration described in Table 1. This configuration
was chosen using the traditional approach of running a number of pilot tests; for example,
we noticed that after 60 iterations, the fitness function remained constant, so we set the
maximum number of iterations at 60. In addition, the adaptive mutation ratio was used
to explore other regions to avoid early convergence to poor local minima. It should be
noted that the best parameters of NSGA-II are the ones that optimize the criteria given in
Section 3 in the sub-section entitled “Performance measures”.

Table 1. NSGA-II configuration.

Option [12] Configuration

Crossover operator New_indiv = indiv1 + rand × atio × (indiv2 − indiv1)
Crossover ratio 0.8

Number of iterations 60
Mutation ratio adaptive feasible

Figure 4 shows the Pareto front obtained by the NSGA-II method. The shape and the
richness of this front show that this algorithm offers several customized control strategies.

Figure 4. Pareto front produced via NSGA-II applied to the model (4).

107



Mathematics 2023, 11, 2957

Figure 5a,b give the two sets of sub-controls offered by the Pareto front produced via
NSGA-II applied to the problem (4). We notice that at each instant of the control interval,
the two sub-controls do not have the same value, so the controller of the population
dynamics under study did not adopt the same strategy for the two compartments C and
D. This justifies, experimentally, the fact of associating different controls to the different
compartments in the mathematical model (2).

(a) 

(b) 

Figure 5. (a) The set of controls u1 extracted from the Pareto front produced via NSGA-II applied to
model (4). (b) The set of controls u2 extracted from the Pareto front produced via NSGA-II applied to
model (4).

On the one hand, the richness of the solution space provides several possibilities,
but on the other hand, it is difficult to exploit these strategies directly because they are
numerous and an expert in the medical field needs assistance to choose what suits them.
For this reason, we used two soft clustering methods to structure the two subspaces of
controls: FCM and GMM. Based on the silhouette criterion, the best K is 4.

Figure 6 gives the pair controls obtained via FCM applied to the sets of subcontrols
extracted from the Pareto front produced via NSGA-II applied to the problem (4). We
noticed that during the first 6 years, the core 1 controls consumed all the resources and
then this effort resulted in a saving of a good portion of the resources. Concerning the
second control, the strategies proposed by the two core 2 controls of the different clusters
are moderate, except for the third cluster, which always requires the exhaustion of more
than 90% of the resources.

108



Mathematics 2023, 11, 2957

Figure 6. Control pairs, over 10 years, obtained via FCM applied to the Pareto front produced via
NSGA-II.

Figure 7 shows the behavior of the different compartments obtained by different
controls produced via FCM applied to the Pareto front produced via NSGA-II applied
to the problem (4). It can be seen that even if all the resources were not consumed, the
population studied can be controlled and the desired behavior was obtained, except that at
the end of the control period, we noticed a slight growth in the two compartments. This
phenomenon is almost absent when we apply the strategy offered by cluster 1.

Figure 7. Compartments obtained when introducing different controls, produced via FCM applied to
the Pareto front produced via NSGA-II, in model (4).

6.2. MOFA Combined with Soft Clustering Methods

In this section, we used the MOFA method to estimate the elements of the Pareto front
at several points by adopting the configuration described in Table 2. This configuration
was chosen using the traditional approach of running a number of pilot tests. It should be
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noted that the best parameters of MOFA are the ones that optimize the criteria given in
Section 3 in the sub-section entitled “performance measures”.

Table 2. MOFA configuration.

Option [13] Configuration

Maximum number of iterations 1000
Swarm size 25

Light absorption coefficient 1
Attraction coefficient base value 2

Mutation coefficient 0.2
Mutation coefficient damping ratio 0.98

Figure 8 gives the Pareto front obtained using the MOFA optimizer applied to the
problem (4). The shape of the front shows that this algorithm provides a few diversified
choices compared to NSGA-II.

Figure 8. Pareto front produced via MOFA applied to the model (4).

Figure 9a,b give the sets of subcontrols extracted from the Pareto front produced via
MOFA applied to the problem (4). We notice that at each time of the control interval, the
two subcontrols do not have the same value, so the controller of the studied population dy-
namics does not adopt the same strategy for the two compartments C and D. This justifies,
experimentally, the act of associating different controls to the different compartments in the
mathematical model (2).

(a) 

Figure 9. Cont.
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(b) 

Figure 9. (a) The set of controls u1 extracted from the Pareto front produced via MOFA applied to the
model (4). (b) The set of controls u2 extracted from the Pareto front produced via MOFA applied to
the model (4).

Similar to the previous subsection, and in order to assist medical experts in the choice
of strategies compatible with their requirements, we used two soft clustering methods to
structure the two control subspaces: FCM and GMM.

Figure 10 gives the controls pair obtained via FCM applied to a Pareto front produced
via MOFA applied to the problem (4). We notice that the sub-controls associated with
compartment D have the form of a trapezoid using all the resources on the time scales
of [1 years, 7 years]. Concerning the second sub-control, MOFA manages to control the
compartment C with few resources (between 25% and 40%). We always notice that the
strategy followed to control compartment D is totally different from the one adopted for
compartment C, which justifies the use of two decision functions in the model (2).

Figure 10. Controls pair obtained via FCM applied to the Pareto front produced via MOFA.

Figure 11 shows the behavior of the different compartments obtained using different
controls produced via FCM applied to the Pareto front produced via MOFA when applied
to the problem (4). It can be seen that even if all the resources were not consumed, the
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population studied could be controlled and the desired behavior was obtained, except for
at the end of the control period, when we notice a slight growth of the two compartments
with nearly the same size and in the same way in all the clusters.

Figure 11. Compartments obtained when introducing different controls, produced via FCM applied
to the Pareto front produced via MOFA, in the model (4).

To measure the percentage of the resources saved by the proposed multi-objective
strategy compared to a mono-objective strategy, we use the following equation:

SavedResources = 1 − sum(MultiObjControl)/sum(SingObjControl)

Table 3 gives the percentage of the resources saved by using the proposed method. In
this regard, we find that the multi-objective strategy saved up to 4% of resources for the
control of compartment D. In addition, it saved up to 18% of resources for the control of
compartment C.

Table 3. Multi-objective control strategy vs. single-objective control strategy.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Multi-objective vs.
single-objective

u1 3% 4% 4% 4%
u2 14% 6% 18% 11%

Notes:

(a) Considering the experimental results shown in the Figures 1–4, we notice that the
two soft clustering methods FCM and GMM give approximately the same groups
(considering a simple permutation), so we extended the same remarks, conclusions,
and recommendations to the other method.

(b) The shapes of the front given in Figure 5 and those given in Figure 9 show that
NSGA-II offers several highly non-dominated customized control strategies compared
to MOFA.
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(c) According to Tables 1 and 2, compared with NSGA-II, MOFA requires a large number
of generations to achieve feasible and acceptable controls (60 generations for NSGA-II
versus 1000 generations for MOFA).

We remark that MOFA-Soft-Cluster produces controls completely different to the ones
produced via NSGA-II-Soft-Cluster. The sub-controls associated with compartment D,
produced via MOFA-Soft-Cluster, are a symmetrical trapezoid of the support [2 years,
8 years], and the sub-controls associated with compartment C have very low cost along
the control duration (they do not even consume 40% of the resources). So, what is wasted
on one side is recovered on the other side. The sub-controls, associated with D, produced
via NSGA-II-Soft-Cluster are a non-symmetrical trapezoid and they start by being too
expensive and end up with a very low cost. Meanwhile, the sub-controls associated with C,
produced via NSGA-II-Soft-Cluster, are too expensive from the beginning to the end (they
consume between 80% and 100% of the resources). We cannot talk about the processing time
because the size of the population and the size of the swarm influence the time complexity
and we cannot establish a mathematical relation between the two sizes.

6.3. Single-Objective vs. Multi-Objective on the Control of the Dynamics of the Diabetic
Population Problem (C2D2P)

In [19], the authors modeled the problem C2D2P in terms of the single-objective
dynamic mathematical model. To solve these models, they used the Gumel method based
on Pantriagin’s principle; the obtained control is represented in red in Figure A6. Since
a control mobilizes human and material resources, it would be better if this control took
as small values as possible. In this sense, Gumel was rejected because it takes very high
values (these controls consume practically all resources). In our previous work [4], we used
the bees algorithm (BA), firefly algorithm (FA), particle swarm algorithm (PSO), genetic
algorithm (GA), moth swarm algorithm (MSA), stochastic fractal search (SFS), wind-driven
optimization (WDO) and probabilistic bees algorithm (PBA); see Figure A6. The stochastic
fractal search (SFS) method has shown an unprecedented ability to produce continuous,
economical controls capable of alleviating socio-economic damage on a reasonable budget.
Compared to a multi-objective strategy (introduced in this work), PSO, FA, GA, AWD,
SBA, PBA, MWA and SFS propose the same strategies to control compartments C and D.
When dealing with conflicting cost functions, a single solution is not reasonable because a
solution that may be appropriate in one context may not be appropriate in another. The
characteristics of patients in D are not similar to the ones of C. For example, 40 min of
running combined with 2 g of medication may regulate the blood sugar of a compartment
D patient, but this solution may not be suitable for a compartment C patient (whose
complications prevent them from running), and 40 min of walking plus 6 g of medication
may prove more appropriate.

6.4. Sensitivity of the Proposed System

To study the sensitivity of the controls obtained using the proposed model + NSGA-II
+ FCM, we applied Gaussian perturbations to the controls obtained using this system; this
noise was generated between 0.001 and 0.3.

Figures A7–A12 show the comparisons obtained for certain noise values; see
Appendix B as well. For Gaussian perturbations between 0.001 and 0.1, there was al-
most no change in the compartments. For Gaussian perturbations between 0.12 and 0.3,
changes were noted in compartment D and small changes were noted in compartment C
(the number of diabetics increases very rapidly compared with the case of optimal control
developed in this work). This is normal, since the values taken by the control are between
0 and 1, and when almost 30% change is applied, the control changes; subsequently, the
behavior of the compartments also changes.

In the end, we can say that the proposed approach is consistent when it comes to small
Gaussian noise.

113



Mathematics 2023, 11, 2957

At the end of this section, we prefer not to make technical comparisons between the
two types of strategies offered by the four systems because a choice may be appropriate
in one context while it may be bad in another context. When there is a multi-objective
problem, the role of the data scientist is the modeling of the studied phenomenon, the
numerical simulation and the structuring of the control space. Then, it is left to the medical
experts to choose what suits them according to their requirements and availability.

7. Conclusions

Single-objective mathematical modeling was previously used for controlling the dy-
namics of populations having one or more chronic diseases, in particular controlling the dy-
namics of the diabetic population. Unfortunately, the controls obtained make no distinction
between the different compartments. In this work, we introduce a multi-objective approach
that implements a multi-objective optimization model, population-based metaheuristics
(NSGA-II and MOFA), flexible unsupervised learning (FCM and GMM), polynomial inter-
polation and FFT convolution for the problem of controlling the diabetic population. The
optimization model implements two objective functions: one for diabetics without com-
plications and another for diabetics with complications. To avoid solving large constraint
systems, our approach calls the Euler–Cauchy method once we have a premature approxi-
mation of the control. The parameters of the heuristic methods are chosen experimentally.
To clean up the resulting controls from noise due to successive approximations, we used a
fast Fourier transform with a kernel size of 9 × 9, chosen experimentally. Since it is difficult
for a diabetes specialist to choose the right control for their use, from the Pareto front, we
used two soft clustering methods to structure the solution space, where the optimal number
of clusters was selected on the basis of the silhouette criterion. The controls produced
enabled the evacuation of the compartments of diabetics with and without complications,
except that towards the end of the control period, we noticed a small increase in these
compartments, a problem we can solve by adding more control approximation points. In
addition, the controls produced are customized because the required resources to control
the diabetics without complications are totally different from the required resources to
control the diabetics with complications. In addition, the multi-objective strategy per-
mits us to save a good number of resources. In the future, we will use variational Bayes
techniques to estimate the parameters of the multi-objective model in order to remedy
sampling-related problems. To improve the control quality, we will use hybrid metaheuris-
tics (MFOA + NSGA) while introducing the notion of attractiveness during crossover or
mutation. In addition, we will introduce the fractional version of the multi-objective model
to handle more information about the dynamics of the diabetic population.
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Appendix A

Figure A1. Controls pair obtained via GMM applied to the Pareto front produced via NSGA-II.

Figure A2. Compartments obtained using different controls produced via GMM applied to the Pareto
front produced via NSGA-II.

115



Mathematics 2023, 11, 2957

Figure A3. Controls pair obtained via GMM applied to the Pareto front produced via MOFA.

Figure A4. Compartments obtained when introducing different controls, produced via GMM applied
to the Pareto front produced via MOFA applied to the model (4).
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Figure A5. Selection of the optimal number of clusters based on the silhouette criteria of groups
obtained via FCM.

Figure A6. Gumel control and meta-heuristics controls for the Bouteyeb model.
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Appendix B

Figure A7. Compartments obtained when introducing different controls, produced via FCM, applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.05].

Figure A8. Compartments obtained when introducing different controls, produced via FCM, applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.1].
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Figure A9. Compartments obtained when introducing different controls, produced via FCM, applied
to Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.15].

Figure A10. Compartments obtained when introducing different controls, produced via FCM applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.2].
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Figure A11. Compartments obtained when introducing different controls, produced via FCM applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.25].

Figure A12. Compartments obtained when introducing different controls, produced via FCM, applied
to the Pareto front produced via NSGA-II, for which we added Gaussian noise from [0, 0.3].
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Abstract: This paper studies the dynamically optimal consumption, investment and life-insurance
strategies for a wage earners under inside information and inflation. Assume that the wage earner
can invest in a risk-free asset, a risky asset and an inflation-indexed bond and that the wage earner
can obtain some additional information on the risky asset from the financial market. By maximizing
the expected utility of the wage earner’s consumption, inheritance and terminal wealth, we obtain
the dynamically optimal consumption, investment and life-insurance strategies for the wage earner.
The method of this paper is mainly based on (dynamical) stochastic control theory and the technique
of enlargement of filtrations. Moreover, sensitivity analysis is carried out, which reveals that a
wage earner with inside information tends to increase his/her consumption and investment, while
reducing his/her purchase of life insurance.

Keywords: investment; consumption; life insurance; inside information; inflation
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1. Introduction

Since Merton’s seminal work [1], investment and consumption problems have been
extensively studied. Karatzas et al. [2] used the dynamic programming method to ex-
plicitly propose a solution to the consumption-portfolio problem under a general util-
ity function and general rates of return. Fleming and Pang [3] obtained the optimal
investment and consumption strategy for investors under the fluctuation of interest rates.
Chang and Chang [4] solved the investment-consumption problem under the Vasicek
model and Hyperbolic Absolute Risk Aversion (HARA) utility. As financial markets
have become more sophisticated, investors are no longer limited to purchasing stocks,
bonds and other products in the securities markets to earn investment returns. Instead,
they can choose products from a broader range of investment products. With the booming
insurance industry, more and more people are investing their money in insurance, and life
insurance is one of the most interesting insurance products. Besides being widely accepted
as a new type of investment product, life insurance is also used by individuals or families
to protect themselves against risk. According to Campbell [5], uncertainty about a wage
earner’s future age of death leads to uncertainty about the family’s financial situation.
Many wage earners purchase life insurance to protect their families against the death
risk. Based on Merton’s elegant theoretical framework, many investment-consumption
problems with life insurance have been studied in the literature. Richard [6] was the first
to study the individual’s portfolio–consumption–life insurance problem under the maxi-
mization of the expected utility, considering that the investor’s lifetime follows a random
but known distribution. Subsequently, Pliska and Ye [7] studied the optimization problem
by maximizing the expected utility and analyzed the demand for life insurance using
numerical experiments. Under the HARA utility, Huang and Milevsky [8] investigated

Mathematics 2023, 11, 3415. https://doi.org/10.3390/math11153415 https://www.mdpi.com/journal/mathematics123



Mathematics 2023, 11, 3415

the portfolio-selection problem, where life insurance is involved. Considering that stocks
have a mean-reverting drift term, the optimal strategies under Constant Relative Risk
Aversion (CRRA) utility were studied by Pirvu and Zhang [9]. Zeng et al. [10] solved the
optimization problem under the no-borrowing restriction. They used the duality method
to determine optimal strategies and indicated that the optimal strategies are influenced
by no-borrowing restrictions. So for individuals, they are buying life insurance both as
a more popular way to manage their finances and to provide financial security for their
families. In addition, Wei et al. [11] provided the optimal strategies for lifetime correlation
couples. They used copula and common-shock to model the mortality dependence and
thus measured correlated longevity. Considering a household in the context of a continuous
two-generation period, the robust optimal strategies were studied by Wang et al. [12], which
assumed that the income growth rate is unknown. They indicated that wealth does not
influence investment strategy, but higher wealth levels contribute to lower life insurance
and higher consumption. Therefore, life insurance provides the necessary protection for
the economic stability of individuals and families in real life. Based on the investment
and consumption problem, the study of the optimal strategy of life insurance is a current
hotspot and has high theoretical value for enriching the application of stochastic optimal
control theory.

Most of the references mentioned above use individual life insurance. In reality,
however, the insurance market exists and insurance companies offer different insurance
contracts, and wage earners face a variety of choices in the insurance market. Therefore, it
is more relevant and promising to consider insurance consisting of multiple life-insurance
policies. The optimal strategies were obtained by Mousa et al. [13] in the case of multidi-
mensional life insurance, which assumed that a life-insurance market consists of different
life-insurance contracts from a finite number of insurers. Hoshiea et al. [14] took both a
social welfare system and multiple life-insurance policies into account to study the optimal
strategies. Considering multidimensional life insurance, Mousa et al. [15] introduced an
economic indicator represented by a stochastic process that affects the financial assets and
studied an optimal asset-allocation problem of a wage earner.

In addition to the risk of death, the increased level of inflation should not be ig-
nored. The purchasing power of wage earners can be significantly affected by inflation.
Kwak and Lim [16] studied a family’s optimal asset allocation under inflation risk and
discovered inflation’s impact on life insurance premiums. Han and Hung [17] considered
risks of interest rate and inflation to investigate the optimal economic decisions of a wage
earner. They discovered that fluctuation in inflation would discourage people from buying
life insurance. Liang and Zhao [18] took into account the inflation risk and studied the
optimal strategies including life insurance under a mean-variance utility. Quite recently,
inflation risk and consumption habits were considered by Shi et al. [19] and their effects on
optimal consumption–investment–life-insurance strategies were analyzed.

In reality, most common people could access public information published by com-
panies and/or regulators. Professional investors would most like to investigate private
markets to obtain additional information about the financial market. This leads to the
so-called inside-information issue. For example, Kyle [20] first pointed out that insiders
in the market make positive profits by exploiting their monopoly power and that the
existence of noise trading makes insider trading undetectable to market makers. Pikovsky
and Karatzas [21], based on Kyle’s research, pointed out that inside-information situa-
tions are real and involve an investor in possession of some information about the future
and possessing relevant mathematical models. This could affect the investment strategy
and wealth levels of wage earners and hence life-insurance and consumption strategies.
Therefore, inside information should be considered with respect to optimal asset-allocation
problems for wage earners. The existence of inside information gives the wage earner
access to a much larger filtration than that generated by the market, which requires solving
the optimality problem under a new filtration. A common approach to modeling the
behavior of wage earners in possession of inside information is the enlargement of filtration
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techniques. Early studies of inside information focused on investors in financial markets.
The impact of inside information on investment strategies and welfare was studied by
Pikovsky and Karatzas [21]. Imkeller et al. [22] considered the problem of possible arbi-
trage opportunities. The problems of non-life insurance with inside information have been
studied, where the insurers may have some inside information about their claim process;
see Baltas et al. [23], Cao et al. [24], Peng et al. [25]. Assuming that the claims process and
the risky assets of insurers are related to jump–diffusion processes, Peng and Wang [26]
took into account inside information in both financial and insurance markets and provided
the optimal risk-management and investment strategies for insurance companies. Peng
and Chen [27] studied the problem of asset-liability management under inside information.
Nevertheless, the study on individual asset allocation with inside information leaves much
to be explored.

In this paper, we investigate the dynamically optimal consumption, investment and
life-insurance strategies for a wage earner under inside information and inflation. The
wage earner is allowed to invest in a portfolio consisting of risk-free assets, risky assets and
inflation-linked bonds. Assume that the wage earner has access to inside information in the
stock market. Correspondingly, we develop a dynamic control system in which the state
equation consists of a wealth process and an income process. The control variables are the
proportion of investment in risky assets, the proportion of investment in inflation-indexed
bonds, consumption and life insurance premium rate. The objective is to maximize the
expected utility of consumption, inheritance and final wealth. For this stochastic control
problem, the optimal solution is obtained by applying the dynamic programming method
and solving the corresponding HJB equation. The main contributions of this paper are as
follows:

(i) Solving the asset-allocation strategies for a wage earner under inside information, and
analyzing the impact of inside information on asset-allocation strategies.

(ii) Taking multidimensional life insurance in the insurance market into consideration.
(iii) Solving the optimal inflation-indexed bond strategy. By addressing these key aspects,

we aim to shed light on the intricate dynamics of consumption, investment and
life-insurance decisions when individuals have access to inside information and are
navigating the complexities associated with inflation.

The remainder of the paper has the following structure. A model that includes the
wealth process and the performance function is presented in Section 2. Section 3 identifies
the optimal decisions and value function. Section 4 provides numerical analyses and
explanations of the economic significance of the optimal strategies. The conclusions of the
paper are presented in Section 5.

2. Model

Let (Ω,F,P) be a complete probability space and filtration Ft∈[0,T] generated by two
standard one-dimension Brownian motions BS(t) and BI(t). T > 0 is the terminal time,
considered to be the wage earner’s retirement time.

2.1. The Financial Market

As is common in the literature, assume that the price process of the risk-free asset is

dS1(t) = r1S1(t)dt,

where the risk-free interest rate r1 > 0. The price process of the risky asset (stock) S2(t) can
be given as

dS2(t) = λS2(t)dt + σSS2(t)dBS(t),

and λ > 0 is the instantaneous expected return rate. σS represents the volatility rate. To
measure inflation, the commodity-price-index process is expressed as

dI(t) = λI I(t)dt + σI I(t)dBI(t),

125



Mathematics 2023, 11, 3415

where the constant λI ∈ (0, ΛI ] stands for the expected inflation rate and the constant ΛI
means the possible maximum value for the inflation rate. σI > 0 expresses the price index’s
volatility rate. The price dynamic of an inflation-indexed bond p(t) is as follows

dp(t) = r2 p(t)dt + p(t)
dI(t)
I(t)

= (r2 + λI)p(t)dt + σI p(t)dBI(t),

where r2 is the real interest rate. r2 + λI is the expected return rate of the bond.

2.2. The Income and the Insurance Market

The nominal income process LN(t) is described as

dLN(t) = λLLN(t)dt + σLLN(t)dBI(t),

where λL denotes the expected return rate of nominal income. σL is the volatility of
nominal income.

Suppose the investor is alive at time t. Let τ stand for the the investor’s lifetime.
Assume the insurance market includes K life insurances from K insurance companies. The
life-insurance premium rate of the kth company is θk(t), k ∈ {1, 2, · · · , K}. ηk : [0, T] → R+

can be called the premium–insurance ratio.

Assumption 1. For each k ∈ 1, · · · , K, ηk(t) is a deterministic continuous function. Furthermore,
the kth insurer considered here is assumed to offer a different set of contracts, i.e., ηk1 
= ηk2 for each
k1 
= k2 and t ∈ [0, T]. Once the wage earner dies at time t, the kth insurance company will pay
θk(t)/ηk(t). Therefore, the legacy W at death time τ is expressed as

W(τ) = X(τ) +
K

∑
k=1

θk(τ)

ηk(τ)
.

Let π1(t) and π2(t) denote the proportion of assets in stocks and inflation-indexed
bonds, respectively. θN,k(t) represents the nominal premium rate of the kth life insurance
company and CN(t) is the nominal consumption for the wage earner. Denote the control
variables as φ = (π1(t), π2(t), θN,k(t), CN(t)). The nominal wealth process under φ is as
follows

dXN(t) =

[
XN(t)r1 + XN(t)π1(t)(λ − r1) + XN(t)π2(t)(r2 + λI − r1) + LN(t)− CN(t)

−
K

∑
k=1

θN,k(t)

]
dt + XN(t)π1(t)σSdBS(t) + XN(t)π2(t)σIdBI(t).

(1)

2.3. Inside Information

We assume that a wage earner can obtain inside information in the risky asset. Specif-
ically, let L = BS(T0) denote the wage earner’s inside information, with T0 > T. The
filtration of the wage earner would be as follows

Gt = Ft ∨ σ(BS(T0)),

and the relationship between Gt and Ft is

Gt ⊃ Ft, ∀t ∈ [0, T].

The following lemma is from Theorem 3.1 of Baltas et al. [23].
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Lemma 1. The process {BS(t), t ≥ 0} is a semimartingale with respect to G = {Gt, t ≥ 0}. Its
semimartingale decomposition is as follows

BS(t) = B̃S(t) +
∫ t

0
κ(s)ds,

where

κ(t) =
BS(T0)− BS(t)

T0 − t
, 0 ≤ t < T0,

and B̃S(t) is a (G,P) Brownian motion.

Considering the inside information BS(T0), the nominal wealth can be described as

dXN(t) =

[
XN(t)r1 + XN(t)π1(t)(λ − r1 + σSκ0 − σS M(t)) + XN(t)π2(t)(r2 + λI − r1)

+LN(t)− CN(t)−
K

∑
k=1

θN,k(t)

]
dt + XN(t)π1(t)σSdB̃S(t) + XN(t)π2(t)σIdBI(t),

where

κ0 = lim
t→0

κ(t) =
BS(T0)

T0
, (2)

and

M(t) =
∫ t

0

1
T0 − s

dB̃S(t).

2.4. The Stochastic Optimal Control Problem

Let X(t) = XN(t)/I(t) be the actual wealth, removing the effects of inflation. Ac-
tual income, actual consumption and the actual insurance premium rate are denoted by
L(t) = LN(t)/I(t), C(t) = CN(t)/I(t) and θk(t) = θN,k(t)/I(t), respectively. Then the
actual wealth and actual income processes can be presented as

dX(t) =

[
X(t)(r1 − λI + σ2

I ) + X(t)π1(t)(λ − r1 + σSκ0 − σS M(t)) + X(t)π2(t)(r2 + λI − r1

−σ2
I ) + L(t)− C(t)−

K

∑
k=1

θk(t)

]
dt + X(t)π1(t)σSdB̃S(t) + X(t)(π2(t)− 1)σIdBI(t),

and
dL(t) = L(t)(λL − λI + σ2

I − σIσL)dt + L(t)(σL − σI)dBI(t).

The performance function can be expressed as

J(t, x, m, l; φ) = Et,x

[∫ T∧τ

t
U(s, C(s))ds + Υ(τ, W(τ))1{τ≤T} + Γ(X(T))1{τ>T}

]
, (3)

where U(x, y), Υ(x, y) and Γ(x) are utility functions.
From the results of Pliska and Ye [7], we have

J(t, x, m, l; φ) = Et,x

[∫ T

t
f (s, t)U(s, C(s)) + F̄(s, t)Υ(s, W(s))ds + F̄(T, t)Γ(X(T))

]
.

where f (s, t) and F̄(s, t) are the conditional probability density and conditional survival
probability, respectively. Let μ(t) denote the hazard function, then

f (s, t) = μ(t) exp
{
−

∫ s

t
μ(u)du

}
, F̄(s, t) = exp

{
−

∫ s

t
μ(u)du

}
.
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Then define the value function as

V(t, x, m, l) := sup
φ∈A

J(t, x, m, l; φ). (4)

Definition 1. The strategies φ = (π1(t), π2(t), θk(t), C(t)) are called admissible strategies if
they satisfy the following conditions. The admissible-strategies set is denoted as A.

(i) The life-insurance purchase θk(t) is Ft∈[0,T]-measurable and satisfies

∫ T

0
θk(s)ds < ∞, k = 1, . . . , K.

(ii) The consumption C(t) is Ft∈[0,T]-measurable and satisfies∫ T

0
C(s)ds < ∞ a.s..

(iii) The investment strategies π1(t) and π2(t) are Ft∈[0,T]-measurable processes and comply with∫ T
0 ‖ π2(t) ‖2 dt < ∞ a.s.,∫ T
0 ‖ π1(t) ‖2 dt < ∞ a.s.,

E
{

exp
[
− ∫ T

0 π1(s)dB̃S(s)− 1
2

∫ T
0 ‖ π1(s) ‖2 ds

]}
= 1.

3. Solution to the Stochastic Optimal Control Problem

This section derives the optimal strategies and corresponding value function.

Theorem 1 (Verification Theorem). If there exists a function Z(t, x, m, l) that satisfies the
following HJB equation

max
φ∈A

{U(s, C(s)) + μ(t)Υ(s, W(s))− μ(t)Z(t, x, m, l) + Φ(t, x, m, l; φ)} = 0,

with the boundary condition
Z(T, x, m, l) = Γ(X(T)),

where the infinitesimal generator

Φ(t, x, m, l; φ) =Zt(t, x, m, l) +

[
x
(

r1 − λI + σ2
I

)
+ xπ1(t)(λ − r1 + σSκ0 − σSm) + xπ2(t)

×
(

r2 + λI − r1 − σ2
I

)
+ l − C −

K

∑
k=1

θk

]
Zx(t, x, m, l) + (λL − λI + σ2

I − σIσL)

× lZl(t, x, m, l) +
1
2

(
π2

1σ2
S + (π2 − 1)2σ2

I

)
x2Zxx(t, x, m, l) +

1
2

( 1
T0 − t

)2

× Zmm(t, x, m, l) +
1
2
(σL − σI)

2l2Zll(t, x, m, l) +
xπ1σS
T0 − t

Zxm(t, x, m, l)

+ xlσLσI(π2 − 1)Zxl(t, x, m, l).

and

φ∗ = arg max
φ∈A

{U(s, C(s)) + μ(t)Υ(s, W(s))− μ(t)Z(t, x, m, l) + Φ(t, x, m, l; φ)},

then the value function V(t, x, m, l) = Z(t, x, m, l).

The proof of the verification theorem can be found in Fleming and Soner [28] and Ye [29].
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Let Uy(x, y) and Υy(x, y) represent the derivative of U(x, y) and Υ(x, y) about its
second variable. U(x, y) and Υ(x, y) are strictly concave to their second variable; thus,
Uy(x, y) and Υy(x, y) are invertible. Therefore, Θ : [0, T] × R+

0 → R+
0 is defined as the

function complying with

Θ1
(
x, Uy(x, y)

)
= y, Uy(x, Θ1(x, y)) = y,

Θ2
(
x, Υy(x, y)

)
= y, Υy(x, Θ2(x, y)) = y.

Theorem 2. The value function reaches its maximum under φ∗ = (π∗
1 (t), π∗

2 (t), θ∗k (t), C∗(t)) ∈ A.
The optimal strategies are

π∗
1 (t, x) = −

σs
T0−t Vxm(t, x, m, l) + (λ − r1 + σsκ0 − σsm)Vx(t, x, m, l)

xσ2
s Vxx(t, x, m, l)

,

π∗
2 (t, x) = 1 − LσLσIVxl(t, x, m, l) +

(
r2 + λI − r1 − σ2

I )Vx(t, x, m, l
)

xσ2
I Vxx(t, x, m, l)

,

θ∗k (t, x) =

⎧⎪⎨⎪⎩
[

Θ2

(
t,

ηk(t)Vx(t, x, m, l)
μ(t)

)
− x

]
ηk(t), k = k∗(t),

0, others,

C∗(t, x) = Θ1(t, Vx(t, x, m, l)),

where k∗(t) = arg min
k∈{1,2,··· ,K}

{ηk(t)}.

Proof. Please see Mousa et al. [13] for the proof.

We consider that wage earners use the same discounted CARA utility function for
household consumption, inheritance and terminal wealth. These utility functions are

U(x, y) = − 1
γ

e−ρx exp{−γy}, Υ(x, y) = − 1
γ

e−ρx exp{−γy}, Γ(x) = − 1
γ

e−ρT exp{−γx},

where ρ > 0 is the discount rate, γ ( γ < 1 ,γ 
= 0) is the risk-aversion parameter. If
φ = (π1(t), π2(t), θk∗(t), C(t)), we obtain the following HJB equation

max
φ∈A

{
− 1

γ
e−ρt exp{−γC} − μ(t)

γ
e−ρt exp

{
−γ

(
x +

θk∗

ηk∗

)}
− μ(t)V(t, x, m, l)

+ Φ(t, x, m, l; φ)

}
= 0,

(5)

where

Φ(t, x, m, l; φ) =Vt(t, x, m, l) +
[

x
(

r1 − λI + σ2
I

)
+ xπ1(t)(λ − r1 + σSκ0 − σSm) + xπ2(t)

×
(

r2 + λI − r1 − σ2
I

)
+ l − C − θk∗

]
Vx(t, x, m, l) +

(
λL − λI + σ2

I − σIσL

)
× lVl(t, x, m, l) +

1
2

(
π2

2σ2
S + (π2 − 1)2σ2

I

)
x2Vxx(t, x, m, l) +

1
2

(
1

T0 − t

)2

× Vmm(t, x, m, l) +
1
2
(σL − σI)

2l2Vll(t, x, m, l) +
xπ1σS
T0 − t

Vxm(t, x, m, l)

+ xlσLσI(π2 − 1)Vxl(t, x, m, l).

Theorem 3. The value function can be obtained as

V(t, x, m, l) = − 1
γ

exp
{
−γ

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]}
.
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The optimal strategies are

π∗
1 (t) = −

σs
T0−t [2D1(t)m + D2(t)]− (λ − r1 + σsκ0 − σsm)

xσ2
s γA(t)

,

π∗
2 (t) = 1 − lσLσI Q(t)− (

r2 + λI − r1 − σ2
I
)

xσ2
I γA(t)

,

θ∗k∗(t) = −ηk∗

γ

[
ln

ηk∗ A(t)
μ(t)

+ ρt + γx
]
+ ηk∗

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
,

C∗(t) = − 1
γ
[ln A(t) + ρt] +

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
.

where

A(t) =
r2 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

D1(t) = − 1
2γ

(T0 − T)2e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

e−(ηk∗+1)
∫ s

t A(u)du

(T0 − s)2 ds,

D2(t) = (T0 − t)e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

(
2(λ − r1 + σSκ0)D1(s)

(T0 − s)σS
+

λ − r1 + σSκ0

γσS

)
× e−(ηk∗+1)

∫ s
t A(u)du

T0 − s
ds,

Q(t) = −e
[
−λL+λI−σ2

I +σI σL+
σL
σI

(r2+λI−r1−σ2
I )

]
(T−t)+(ηk∗+1)

∫ T
t A(s)ds

×
∫ T

t
A(s)e

[
−λL+λI−σ2

I +σI σL+
σL
σI
(r2+λI−r1−σ2

I )
]
(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

G(t) = −ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗ A(t)

γ
ln

ηk∗ A(t)
μ(t)

+
μ(t)

γ

+
D1(t)

(T0 − t)2 − (λ − r1 + σSκ0)D2(t)
(T0 − t)σS

+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
(λ − r1 + σSκ0)

2

2γσ2
S

.

Proof. Please see Appendix A.

Proposition 1 (No inflation case). When there is no inflation in the model, the optimal value
function and optimal strategies are expressed as

V(t, x, m, l) = − 1
γ

exp
{
−γ

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]}
,

π∗
1 (t) = −

σs
T0−t [2D1(t)m + D2(t)]− (λ − r1 + σsκ0 − σsm)

xσ2
s γA(t)

,

θ∗k∗(t) = −ηk∗

γ

[
ln

ηk∗ A(t)
μ(t)

+ ρt + γx
]
+ ηk∗

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
,

C∗(t) = − 1
γ
[ln A(t) + ρt] + [A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)],
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where

A(t) =
r1 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

D1(t) = − 1
2γ

(T0 − T)2e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

e−(ηk∗+1)
∫ s

t A(u)du

(T0 − s)2 ds,

D2(t) = (T0 − t)e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

(
2(λ − r + σSκ0)D1(s)

(T0 − s)σS
+

λ − r + σSκ0

γσS

)
e−(ηk∗+1)

∫ s
t A(u)du

T0 − s
ds,

Q(t) = −e−λL(T−t)+(ηk∗+1)
∫ T

t A(s)ds
∫ T

t
A(s)eλL(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

G(t) = −ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗ A(t)

γ
ln

ηk∗ A(t)
μ(t)

+
μ(t)

γ

+
D1(t)

(T0 − t)2 − (λ − r1 + σSκ0)D2(t)
(T0 − t)σS

+
(λ − r1 + σSκ0)

2

2γσ2
S

.

Proposition 2 (No inside information case). When there is no inside information in the model,
we solve the optimization problem under filtration F. The optimal value function and optimal
strategies are expressed as

V(t, x, l) = − 1
γ

exp{−γ[A(t)x + Q(t)l + H(t)]},

π∗
1 (t) =

λ − r1

xσ2
s γA(t)

,

π∗
2 (t) = 1 − lσLσI Q(t)− (

r2 + λI − r1 − σ2
I
)

xσ2
I γA(t)

,

θ∗k∗(t) = −ηk∗

γ

[
ln

ηk∗ A(t)
λ(t)

+ ρt + γx
]
+ ηk∗ [A(t)x + Q(t)l + H(t)],

C∗(t) = − 1
γ
[ln A(t) + ρt] + [A(t)x + Q(t)l + H(t)],

where

A(t) =
r2 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

Q(t) = −e−λL(T−t)+(ηk∗+1)
∫ T

t A(s)ds
∫ T

t
A(s)eλL(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

G(t) = −ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗ A(t)

γ
ln

ηk∗ A(t)
μ(t)

+
μ(t)

γ

+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
(λ − r1 + σS)

2

2γσ2
S

.

Remark 1. The proofs of Propositions 1 and 2 are similar to that of Theorem 3.
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(i) Note that when there is no inflation in consideration, the wealth process under inside informa-
tion can be expressed as

dX(t) =

[
X(t)r1 + X(t)π1(t)(λ − r1 + σSκ0 − σS M(t)) + L(t)− C(t)−

K

∑
k=1

θk(t)

]
dt

+ X(t)π1(t)σSdB̃S(t).

The optimal value function V under strategy φ = (π1(t), θk(t), C(t)) satisfies the following
HJB equation

max
φ∈A

{U(s, C(s)) + μ(t)Υ(s, W(s))− μ(t)V(t, x, m, l) + Φ(t, x, m, l; φ)} = 0,

where infinitesimal generator

Φ(t, x, m, l; φ) =Vt(t, x, m, l) +

[
xr1 + xπ1(t)(λ − r1 + σSκ0 − σSm) + l − C −

K

∑
k=1

θk

]

× Vx(t, x, m, l) + λLlVl(t, x, m, l) +
1
2

π2
1σ2

Sx2Vxx(t, x, m, l)

+
1
2

(
1

T0 − t

)2
Vmm(t, x, m, l) +

1
2

σ2
Ll2Vll(t, x, m, l) +

xπ1σS
T0 − t

Vxm(t, x, m, l).

(ii) On the other hand, when there is no inside information, the real wealth process under F can be
obtained as

dX(t) =

[
X(t)(r1 − λI + σ2

I ) + X(t)π1(t)(λ − r1) + X(t)π2(t)(r2 + λI − r1 − σ2
I ) + L(t)

−C(t)−
K

∑
k=1

θk(t)

]
dt + X(t)π1(t)σSdBS(t) + X(t)(π2(t)− 1)σIdBI(t).

The HJB equation corresponding to problem (4) under filtration F is

max
φ∈A

{U(s, C(s)) + λ(t)Υ(s, W(s))− μ(t)V(t, x, l) + Φ(t, x, l; φ)} = 0,

where φ = (π1(t), π2(t), θk(t), C(t)) and infinitesimal generator

Φ(t, x, l; φ) =Vt(t, x, l) +

[
x
(

r1 − λI + σ2
I

)
+ xπ1(t)(λ − r1) + xπ2(t)

(
r2 + λI − r1

−σ2
I

)
+ l − C −

K

∑
k=1

θk

]
Vx(t, x, l) +

(
λL − λI + σ2

I − σIσL

)
lVl(t, x, l)

+
1
2

(
π2

1σ2
S + (π2 − 1)2σ2

I

)
x2Vxx(t, x, l) +

1
2
(σL − σI)

2l2Vll(t, x, l)

+ xlσLσI(π2 − 1)Vxl(t, x, l).

4. Numerical Illustrations

This section discusses the impact of important parameters on the optimal strategies of
the wage earner. The results in this section are obtained by applying MATLAB software
(version R2016a, MathWorks Inc., Natick, MA, USA) for numerical analysis. Suppose the
hazard function is described using the Gompertz parameter form

λ(t) =
1
10

e
t−40

10 .
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According to Baltas et al. [23], we discuss the optimal strategies under x = 100,
l = 10, T = 65, r1 = 0.1, r2 = 0.08, m = 0.5, T0 = 70, ρ = 0.1, σS = 0.4, σI = 0.2,
σL = 0.1, λ = 0.8, λI = 0.7, λL = 0.5, γ = 0.3.

4.1. Optimal Investment Strategy

Figure 1 plots the impact of the risk-aversion coefficient γ on optimal investment
strategies π∗

1 and π∗
2 . It is observed that as γ increases, the optimal investment strategies

π∗
1 and π∗

2 both decrease. The risk-aversion coefficient γ increases, implying that the
wage earner is more risk averse, and therefore accepts a lower investment risk. Thus, it
is reasonable for investors with higher levels of risk aversion to adopt a more cautious
investment strategy.

In Figure 2, the effect of the expected return rate λ and volatility rate σS on the optimal
stock strategy π∗

1 is explored. Figure 2a shows that the optimal stock strategy π∗
1 increases as

the expected rate of return λ increases. However, as shown in Figure 2b, when the value of
the volatility rate σS increases, the optimal stock strategy π∗

1 decreases. It is common sense
that as the expected rate of return λ increases, investors will gain more from the stock market.
However, an increase in instantaneous volatility σS will lead to an increase in investment
risk. Thus, as returns increase and volatility decreases, wage earners will invest more in risky
assets, which is consistent with the general conclusion of the investment problem.

The impact of the expected inflation rate λI and price-index volatility rate σI on the
optimal inflation-indexed bond strategy π∗

2 is shown in Figure 3. What can be seen is
that the optimal bond strategy π∗

2 is larger when expected inflation λI is larger and price
index volatility σI is lower. This observation implies that the wage earner stands to invest
in the inflation-index bond if the expected inflation rate is higher and volatility is lower.
This is because larger expected inflation implies larger inflation-indexed expected returns,
while increased volatility in price indices implies increased uncertainty in investing in
inflation-indexed bonds.

The effect of inside information on the optimal stock strategy π∗
1 is shown in Figure 4.

According to Equation (2), the average rate at which the wage earner obtains inside infor-
mation is captured by the parameter κ0. We can observe that the optimal stock strategy
π∗

1 is an increasing function of κ0. This is a reasonable result from the assumption that
the wage earner has a priori knowledge of the random variable L = BS(T0), T0 > T and
κ(t) is the drift induced by this random variable. This implies that the wage earner is
taking advantage of additional information as an insider, and having access to inside
stock information will encourage the wage earner to be bolder when investing in stocks.
Moreover, since the inside information in our model only affects the stock process and
not the inflation-index bond process, it is also quite natural that the optimal percentage
invested in the inflation-index bond is not affected by the information drift.
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Figure 1. The effect of the risk-aversion parameter on the optimal investment strategies. (a) The effect
of the risk-aversion parameter γ on the optimal stock strategy π∗

1 . (b) The effect of the risk-aversion
parameter γ on the optimal bond strategy π∗

2 .
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Figure 2. The effect of the expected return rate and volatility rate on the optimal stock strategy π∗
1 .

(a) The effect of the expected return rate λ on the optimal stock strategy π∗
1 . (b) The effect of the

volatility rate σS on the optimal stock strategy π∗
1 .
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Figure 3. The effect of the expected inflation rate and volatility rate of price index on the optimal
bond strategy π∗

2 . (a) The effect of the expected inflation rate λI of price index on the optimal bond
strategy. (b) The effect of the volatility rate σI of price index on the optimal bond strategy π∗

2 .
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Figure 4. The effect of the inside information on the optimal stock strategy π∗
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4.2. Optimal Life Insurance Strategy

In Figure 5, the influence of the risk-aversion coefficient γ on the optimal life-insurance
strategy θ∗ is illustrated. As depicted in the graph, the spending on buying life insurance
increases as γ increases, indicating that the wage earner is inclined to purchase life insurance
at an optimal level when he/she is more risk averse. Moreover, it shows that the optimal
life-insurance strategy θ∗ increases over time t before decreasing. This is because the risk of
death increases as the wage earner gets older; thus, naturally, life-insurance purchases will
increase. However, after a certain age, the wage earner has a higher mortality rate and it
would cost more to purchase life insurance at this time. Combined with the fact that they
may have accumulated some wealth, it is more cost-effective to take other economic actions
than to purchase life insurance.
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Figure 5. The effect of the risk-aversion parameter γ on the optimal life-insurance strategy θ∗.

Figure 6 shows the impact of inside information on the optimal life-insurance strategy θ∗.
As the image illustrates, a higher value of κ0 is associated with a larger optimal life-
insurance strategy θ∗. This may be because when more inside information about the stock
is available, the wage earner is more certain about investing in stock and thus is more
inclined to invest in risky markets to gain wealth. Therefore, the increase in investment and
expected increase in wealth makes the wage earner less inclined to purchase life insurance
to protect against financial risk.
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Figure 6. The effect of the inside information on the optimal life-insurance strategy θ∗.
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4.3. Optimal Consumption Strategy

Figure 7 plots the influence of the risk-aversion parameter γ on the optimal consump-
tion strategy C∗. The graph shows that as the value of the risk-aversion coefficient γ
rises, the optimal consumption strategy C∗ declines. This indicates that the higher the risk
aversion of the wage earner, the more cautious the consumption, which is consistent with
common sense.
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Figure 7. The effect of the risk-aversion parameter γ on the optimal consumption strategy C∗.

Figure 8 shows the effect of inside information on optimal consumption strategy C∗. As
can be seen, the larger the value of κ0, the larger the corresponding optimal consumption
strategy C∗. This implies that inside information about the stock will have a positive effect
on the optimal consumption. This can be interpreted as follows: when the wage earner
has more inside information about stock, he/she is more inclined to invest in risky assets;
thus, an increase in wealth is expected. As a result, wage earners tend to spend more on
consumption at the optimal level.

30 32 34 36 38 40 42 44 46 48 50

t

10

15

20

25

30

35

40

C
*

κ
0
=0.8

κ
0
=1

κ
0
=1.2

Figure 8. The effect of inside information on the optimal consumption strategy C∗.
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5. Conclusions

Due to the wide range of applications of life insurance in reality and the fact that it
has become a current research hotspot, the factors influencing a wage earner’s investment,
consumption and demand for life insurance under certain conditions need to be studied
and justified. The economics of wage earners’ behavior under these conditions, including
investment, consumption and life-insurance purchases also need to be analyzed. In this
paper, we study the dynamically optimal consumption, investment and life-insurance
strategies for a wage earner in the presence of inside information and inflation. Specifically,
the dynamically optimal strategies for consumption, investment in risky assets, investment
in inflation-indexed bonds and life insurance are obtained by maximizing the expected
utility of consumption, inheritance and final wealth. To provide a comprehensive analysis,
we consider alternative scenarios as well, including an inflation-free model and a model
without the presence of inside information. Finally, in order to study the factors affecting the
investment, consumption and life-insurance demand of the wage earner under conditions of
inside information and inflation, sensitivity analysis is provided through numerical studies.
The dynamically optimal strategies and value function properties suggest that the dynamic
financial behavior of the wage earner are as follows: (i) Inside information leads to an
increase in investment and consumption but a decrease in life-insurance purchases. (ii) As
expected inflation increases and volatility decreases, the purchase of inflation-indexed
bonds should be increased to protect against inflation risk. (iii) If wage earners are more
risk-averse, they will invest more money in life insurance while reducing consumption and
spending on investments in risky markets.

However, due to the complexity of life insurance as a product, the reality of life insurance
is susceptible to a number of factors, such as the economic situation, the health status of the
wage earner, the status of family members and the wage earner’s own subjective awareness
of life insurance. The measurement of these real-world factors requires more sophisticated
modeling to represent them. Therefore, the model in this paper explores more from a mathe-
matical perspective, which has some limitations for the real situation. Consequently, more
realistic models about investment, consumption and life insurance are expected.
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Appendix A

Proof. Applying the first-order optimality condition for the HJB equation, the investment,
consumption and life-insurance strategies can be expressed as

π∗
1 (t) = −

σs
T0−t Vxm(t, x, m, l) + (λ − r1 + σsκ0 − σsm)Vx(t, x, m, l)

xσ2
s Vxx(t, x, m, l)

,

π∗
2 (t) = 1 − LσLσIVxl(t, x, m, l) + (r2 + λI − r1 − σ2

I )Vx(t, x, m, l)
xσ2

I Vxx(t, x, m, l)
,

θ∗k∗(t) = −ηk∗

γ

[
ln

ηk∗Vx(t, x, m, l)
μ(t)

+ ρt + γx
]

,

C∗(t) = − 1
γ
[ln Vx(t, x, m, l) + ρt].

(A1)
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Substituting Equation (A1) into Equation (5) yields

− 1
γ

Vx − ηk∗

γ
Vx − μ(t)V + Vt + x

(
r1 − λI + σ2

I

)
Vx + lVx −

σs
T0−t Vxm + (λ − r1 + σsκ0 − σsm)Vx

σ2
s Vxx

× (λ − r1 + σSκ0 − σSm)Vx + x
(

r2 + λI − r1 − σ2
I

)
Vx − lσLσIVxl + (λI + r2 − r1 − σ2

I )Vx

σ2
I Vxx

×
(

r2 + λI − r1 − σ2
I

)
Vx +

1
γ
(ln Vx + ρt)Vx − ηk∗Vx

γ

[
ln

ηk∗Vx

μ(t)
+ ρt + γx

]
+

(
λL − λI + σ2

I

− σIσL

)
lVl +

σ2
s

(T0−t)2 V2
xm + (λ − r1 + σsκ0 − σsm)2V2

x + 2σs
(T0−t) (λ − r1 + σsκ0 − σsm)VxVxm

2σ2
s Vxx

+
l2σ2

Lσ2
I V2

xl + (λI + r2 − r1 − σ2
I )

2V2
x + 2

(
λI + r2 − r1 − σ2

I
)
lσLσIVxlVx

2σ2
I Vxx

+
1
2

( 1
T0 − t

)2
Vmm

−
σs

T0−t V2
xm + (λ − r1 + σsκ0 − σsm)VxVxm

(T0 − t)σsVxx
− l2σ2

LσIV2
xl + lσL

(
λI + r2 − r1 − σ2

I
)
VxVxl

σIVxx

+
1
2
(σL − σI)

2l2Vll = 0.

(A2)

The value function can be conjectured to be of the following form

V(t, x, m, l) = − 1
γ

exp
{
−γ

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]}
.

Then
Vt =

[
A′(t)x + D′

1(t)m
2 + D′

2(t)m + Q′(t)l + H′(t)
]
Ψ,

Vx = A(t)Ψ,

Vl = Q(t)Ψ,

Vm = [2D1(t)m + D2(t)]Ψ,

Vxx = −γA2(t)Ψ,

Vll = −γQ2(t)Ψ,

Vmm = −γ[2D1(t)m + D2(t)]2Ψ + 2D1(t)Ψ,

Vxm = −γA(t)[2D1(t)m + D2(t)]Ψ,

Vxl = −γA(t)Q(t)Ψ,

(A3)

where Ψ = exp
{−γ

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]}
.

Thus

π∗
1 (t) = −

σs
T0−t [2D1(t)m + D2(t)]− (λ − r1 + σsκ0 − σsm)

xσ2
s γA(t)

,

π∗
2 (t) = 1 − lσLσI Q(t)− (

r2 + λI − r1 − σ2
I
)

xσ2
I γA(t)

,

θ∗(t) = −ηk∗

γ

[
ln

ηk∗ A(t)
μ(t)

+ ρt + γx
]
+ ηk∗

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
,

C∗(t) = − 1
γ
[ln A(t) + ρt] +

[
A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)

]
.

Substitute Equation (A3) into Equation (A2), we have
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− ηk∗ + 1
γ

A(t) +
μ(t)

γ
+

[
A′(t)x + D′

1(t)m
2 + D′

2(t)m + Q′(t)l + H′(t)
]
+ xr2 A(t) + lA(t)

− (λ − r1 + σSκ0 − σSm)[2D1(t)m + D2(t)]
(T0 − t)σS

+
(λ − r1 + σSκ0 − σSm)2

2γσ2
S

+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
A(t)

γ
ln A(t) +

ηk∗ A(t)
γ

ln
ηk∗ A(t)

μ
+

ηk∗ + 1
γ

ρtA(t) + ηk∗xA(t) +
(

λL − λI + σ2
I − σIσL

)
lQ(t)

+
D1(t)

(T0 − t)2 + σLσI l2γQ2(t)− 1
2

γl2σ2
I Q2(t)− σL

σI

(
r2 + λI − r1 − σ2

I

)
lQ(t)

− (ηk∗ + 1)A(t)
[

A(t)x + D1(t)m2 + D2(t)m + Q(t)l + H(t)
]
= 0.

Let the coefficients of x, m and l equals zero respectively, we obtain the following differen-
tial equation

A′(t)− (ηk∗ + 1)A2(t) + (r + ηk∗)A(t) = 0,

D′
1(t) +

[
2

T0 − t
− (ηk∗ + 1)A(t)

]
D1(t) +

1
2γ

= 0,

D′
2(t) +

[
1

T0 − t
− (ηk∗ + 1)A(t)

]
D2(t)− 2(λ − r1 + σSκ0)D1(t)

(T0 − t)σS
− λ − r1 + σSκ0

γσS
= 0,

Q′(t) +
[

λL − λI + σ2
I − σIσL − (ηk∗ + 1)A(t)− σL

σI

(
r2 + λI − r1 − σ2

I

)]
Q(t) + A(t) = 0,

H′(t)− (ηk∗ + 1)A(t)H(t)− ηk∗ + 1
γ

A(t) +
ηk∗ + 1

γ
ρtA(t) +

A(t)
γ

ln A(t) +
ηk∗ A(t)

γ
ln

ηk∗ A(t)
μ(t)

+
μ(t)

γ
+

B(t)
(T0 − t)2 − (λ − r1 + σSκ0)D2(t)

(T0 − t)σS
+

(
λI + r2 − r1 − σ2

I
)2

2γσ2
I

+
(λ − r1 + σSκ0)

2

2γσ2
S

= 0.

According to the boundary conditions A(T) = 1, D1(T) = D2(T) = Q(T) = 0, H(t) =
ρT
γ

,

we have

A(t) =
r2 + ηk∗

e−(r2+ηk∗ )(T−t)
[
(ηk∗ + 1)e(r2+ηk∗ )(T−t) + r2 − 1

] ,

D1(t) = − 1
2γ

(T0 − T)2e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

e−(ηk∗+1)
∫ s

t A(u)du

(T0 − s)2 ds,

D2(t) = (T0 − t)e(ηk∗+1)
∫ T

t A(s)ds
∫ T

t

(
2(λ − r1 + σSκ0)D1(s)

(T0 − s)σS
+

λ − r1 + σSκ0

γσS

)
e−(ηk∗+1)

∫ s
t A(u)du

T0 − s
ds,

Q(t) = −e
[
−λL+λI−σ2

I +σI σL+
σL
σI

(r2+λI−r1−σ2
I )

]
(T−t)+(ηk∗+1)

∫ T
t A(s)ds

×
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t
A(s)e

[
−λL+λI−σ2

I +σI σL+
σL
σI
(r2+λI−r1−σ2

I )
]
(s−t)−(ηk∗+1)

∫ s
t A(u)duds,

H(t) = −e(ηk∗+1)
∫ T

t A(s)ds
[∫ T

t
G(s)e−(ηk∗+1)

∫ s
t A(u)duds +

ρT
γ

]
,

where
G(t) =− ηk∗ + 1

γ
A(t) +

ηk∗ + 1
γ

ρtA(t) +
A(t)

γ
ln A(t) +

ηk∗ A(t)
γ

ln
ηk∗ A(t)

μ(t)
+

μ(t)
γ

+
D1(t)

(T0 − t)2 − (λ − r1 + σSκ0)D2(t)
(T0 − t)σS
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(
λI + r2 − r1 − σ2
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)2

2γσ2
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+
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2γσ2
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.
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Abstract: To make wind power more competitive, it is necessary to reduce turbine downtime and
reduce costs associated with wind turbine operation and maintenance (O&M). Incorporating machine
learning in the development of condition-based predictive maintenance methodologies for wind
turbines can enhance their efficiency and reliability. This paper presents a monitoring method that
utilizes Density Based Support Vector Machines (DBSVM) and the evolutionary Fourier spectra of
vibrations. This method allows for the smart monitoring of the function evolution of the turbine.
A complex optimal function (FO) for 5-degree order has been developed that will be the boundary
function of the DBSVM to be timely determined from the Fourier spectrum through the magnitude–
frequency and place of the failure occurring in the wind turbine drivetrains. The trend of the failure
was constructed with the maximal values of the optimal frequency function for both yesthe cases of
the upwind and downwind parts of the gearbox.

Keywords: wind turbine; monitoring; wear trend; Fourier vibration spectrum; support vector
machine; base density of the collected data; machine learning

MSC: 37M10

1. Introduction

1.1. The Future of Wind Turbines and the Novelty of the Paper

Wind energy has seen remarkable growth over the past decade and continues to be on
an upward trend in the power generation industry. In the current context of the reduction
in and even abandonment of conventional energy sources, wind energy has become a basic
energy source, along with nuclear and hydro energy. In these conditions, the reliability
and stability of the operation are necessary to maintain the production capacity for the
longest possible periods and with the best possible predictability [1]. With the rapid
development of wind turbine technology and in accordance with a higher demand for
renewable energy, the number of wind turbine (WT) units has experienced a major increase,
but under these conditions, the failure rate has also increased [2]. Power transmission is
influenced by all components in the kinematic chain, rotor, gearbox, and generator. After
an experience of over 20 years, both in operation and research, it can be concluded that
the wind turbine component with the highest level of vulnerability is the gearbox, with
a very high failure rate and downtime [1–3]. To make wind power more competitive, it
is necessary to reduce turbine downtime and increase reliability. Condition monitoring
can help reduce the chances of catastrophic failures, enabling cost-effective operation and
maintenance practices. Compared to other applications, the representatives of the wind
industry were quite late to recognize the benefits and importance of monitoring operating
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status through the use of artificial intelligence (AI) and vibration analysis [4]. Substantial
research has been conducted to establish algorithms based on a large volume of data that
train based on specific moments of failure, through machine learning, to obtain specific
failure models [4,5].

This paper presents a method that leverages Fourier spectrum analysis and machine
learning-based data extraction techniques for predicting wear in wind turbine operation.
The novelty of the applied method lies in its utilization of unlabeled and uncategorized data
to infer meaningful results for the predictive maintenance of wind turbines. In this study,
functions representing the vibration trends of turbines across certain speed parameters,
power levels, and wind flow conditions have been constructed. Furthermore, a density-
based data filtering technique drawn from a machine learning-based method, Density
Based Support Vector Machines (DBSVMs), has been employed at the data acquisition
stages of the experiments.

The research was carried out over a period of about two months. The Fourier spectra
were analyzed at different points in time while maintaining regulated and controlled
parameters. With the help of at least five points from the Fourier spectra, the objective
functions were defined. The evolution over time of these Fourier spectra’s maximum points
(amplitude–frequency) offers an effective approach to ensuring predictive maintenance.
The established objective functions can be utilized to determine the wear evolution in
both the low-frequency and high-frequency areas of a wind turbine. As a result of the
experiments, the envelope of normal operation and the envelope of the maximum limit
of operation are obtained for the gearbox, which is the most vulnerable part of the wind
turbine. The envelope of the maximum limit of operation refers to wind turbine operation
until the appearance of a defect. These experiments define the frequency–amplitude
limits, which allow for the predictive maintenance of turbine components by setting the
intervention thresholds without the need for extensive data collection.

The organization of the paper is as follows. Section 1 includes the details of the current
scenario of the predictive maintenance of wind turbines and the state-of-the-art methods
used for the condition monitoring of wind turbines. The research methods and experiments
conducted in this study are discussed in Section 2. The results of the experiments and their
interpretations are presented in Section 3, and the conclusion and future work are briefed
in Section 4.

1.2. Overview of Wind Turbine Condition Monitoring and Its Need

Wind energy has seen remarkable growth over the past decade and continues to be
on an upward trend in the power generation industry [3]. In the current context of the
reduction in and even abandonment of conventional energy sources, wind energy emerges
as a primary source, along with nuclear energy and hydropower [5]. In these conditions, the
reliability and stability of wind turbine operations are crucial to maintaining the production
capacity for prolonged periods and with optimal predictability [1].

The monitoring of wind turbine (WT) conditions is defined as a complex process
of monitoring the parameters of the state of the machine so that a significant change is
detected, which indicates a possible developing fault [6]. This can potentially help in
different stages of wear: the early detection of incipient failures, thus reducing the chances
of catastrophic failures; accurately assessing the proper functioning of the components
and reducing maintenance costs; the analysis of the fundamental causes of the occurrence
of defects, which can ensure the optimal determination of the input parameters for an
improved operation of the turbine; the establishment of the control strategy and the optimal
design of the components [7–10]. In a broad sense, the CMS of a wind turbine can target
almost all of its major subsystems, including the blades, nacelle, power transmission, tower,
and foundation [9]. This paper presents a method that focuses on the monitoring of wind
turbines and can be applied to the different components of the wind turbine: the rotor shaft
with main bearings, the gearbox, and the generator. From a CMS perspective, the three major
monitored transmission components are the rotor shaft, the gearbox, and the generator. Of
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these three components, the gearbox causes the longest downtimes [11–13]. For this reason,
the gearbox was chosen as the main subsystem targeted in this study. In detail, this paper
will cover the typical practices, challenges, and future research opportunities related to CM
wind turbine drivetrains [14].

To understand the dynamic behavior of a WT and especially of a planetary gearbox,
a number of techniques have been used in research and in the industrial field: vibration
analysis, oil condition analysis, thermography, acoustic measurement, boroscopic inspec-
tion, electrical parameters effects, the self-diagnostic of sensors, etc. [15]. In order to ensure
the optimal conditions for predictive maintenance, a combination of different techniques is
needed. Even if the vibration technique has a dominant proportion, it is supported in the
decision by the other specific technologies.

However, a vibration analysis on component fault diagnosis in wind turbines is
a hard challenge due to the complex mechanical conditions of the power transmission
kinematic chain, the variable operating conditions with transient phenomena, and the
speed differences between the different elements of the gearbox [15–17]. In the use of
vibration transducers specifically, piezoelectric accelerometers are the most used method,
with different sensitivities depending on the speed and with a rigid fixation on the structure
of the components [7–9]. The repartition of the sensors in the monitoring process of the
wind turbine from the actual stage of the research is shown in Figure 1 and Table 1.

 

Figure 1. The position of the sensors for the monitoring process.

Table 1. Sensor notation and position on the wind turbine.

Sensor Label Description

B1-MB-RS Main bearing accelerometer—rotor side
B2-MB-GS Main bearing accelerometer—generator side

B3-LSS Gearbox accelerometer—low-speed shaft
B4-IS Gearbox accelerometer—intermediary shaft

B5-HSS Gearbox accelerometer—high-speed shaft
B6-G-DE Generator accelerometer—drive end side

B7-G-NDE Generator accelerometer—non-drive end side
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In this paper, the focus is on the monitoring of wind turbine drivetrains. The drive-
trains consist of the main bearing, main shaft, gearbox, brake, generator shaft, and generator.
From a CM perspective, the three major monitored transmission components are the main
bearing, the gearbox, and the generator. Of these three components [6], the gearbox causes
the longest downtimes. Other research has also shown that the gearbox is the most expen-
sive subsystem to maintain during the 20-year operating life of a turbine [1–7]. For this
reason, the gearbox was chosen as the main subsystem targeted in this study.

1.3. State of the Art in Turbine Wear Monitoring and Trend Analysis

Current research has led to the identification of the following monitoring techniques
and directions, which can be applied to wind turbines [14,15]: vibration analysis; oil condi-
tion analysis; the thermography of important elements in the turbine structure (gearbox);
the analysis of the physical condition of the materials; the measurement of elastic yielding
and deformation of various components; acoustic measurements in various sensitive areas
of the turbine; the measurement of various electrical effects; process parameter measure-
ment; visual inspection; performance monitoring by comparing output sizes for the same
input data; the use of self-diagnostic sensors (Figure 1).

(a) Vibration analysis—Vibration analysis is the most well-known technology for monitor-
ing working conditions, especially for rotating equipment [15]. The type of sensors
used depends on the frequency range used for monitoring, the position of transducers
on the transmission chain for the low-frequency range, the velocity sensor in the
5–1000 Hz frequency domain, the accelerometers for the high-frequency range, and
the acoustic sensor for gearbox monitoring or blades.

(b) Oil analysis—Oil analysis is another evaluation technique, which, coupled with vibra-
tion analysis, contributes to decision-making in predictive maintenance. Oil analysis
is mostly conducted offline via sampling and also ensuring the quality of the oil. The
contamination with dirt from the turbine parts in contact, the moisture, the degrada-
tion of additives, and the maintenance of the oil filter are also aspects of this method.
However, to protect oil quality, the application of online sensors is used more and
more often, especially for particle counters. In addition, protecting the condition of
the oil filter is currently mainly applied to both hydraulic oil and lubricating oil. In
the case of the excessive pollution of the filter, or a change in the characteristics of the
oil, this leads to excessive wear [15].

(c) Thermography—Thermography is often applied for the monitoring and fault identi-
fication of electrical and electronic components [15]. Hot spots due to component
degeneration or poor contact can be identified in a simple and fast way using cameras
and diagnostic software. Mainly, they are used in generator and power converter
monitoring but also for thermal gear contact.

(d) Inspection of component condition—This type of monitoring mainly focuses on detecting
and tracking the evolution of wear using a boroscope device. This method is normally
offline and is a very important decision criterion for stopping, limiting, or planning a
repair [15,16].

(e) Deformation measurement—Deformation measurement using manometers is a common
technique but is not often applied in the case of wind turbine monitoring. Strain
gauges are not robust in the long term [15–17]. For wind turbines, deformation mea-
surement can be very useful for life prediction and stress level protection, especially
for blades [18] but also for the main shaft.

(f) Acoustic monitoring—Acoustic monitoring is related to vibration monitoring using
noise measurement. Acoustic monitoring technology can be used for blade condition
monitoring using an acoustic microphone or for bearing and gearbox monitoring
using acoustic emission sensors fixed directly to the housing [15].

(g) Electrical effects—The electrical parameter monitoring of a generator represents a
mandatory condition in based condition maintenance (CBM). The analysis of electrical
parameters, such as electrical current, voltage, insulation, power, etc., allows for both
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the evaluation of the quality of the generated power and the analysis of the potential
faults [17].

(h) Process parameters—Condition monitoring systems (CMSs) are becoming more sophis-
ticated, and their diagnostic capabilities are improving. However, protection is mostly
based on level detection or signal comparison, which directly leads to alarm when the
signals exceed predefined threshold values. The integration of machine learning is
still in the beginning stages, but in the future, solutions using AI will be sought for
large-scale development [15].

(i) Performance monitoring—Wind turbine performance is often gauged through the rela-
tionship between power, wind speed, rotor speed, and blade angle, and in the case
of large deviations, an alarm sounds or a stop is even initiated [15]. The detection
of margins is important to prevent false alarms [19]. Similar to process parameter
estimation, more sophisticated methods like performance evolution monitoring are
still not a common practice.

Thus, to obtain reliable predictive maintenance results, a combination of different
techniques is needed. While vibration analysis may hold a predominant role, it is comple-
mented by other specific technologies to perform decision-making accurately (Figure 1).

2. Applied Research Methods

2.1. Condition Monitoring System

In this research, the experimental protocol is based on the Condition Monitoring
System (CMS). The data used are part of the online data protocol regarding the wind
turbines’ state of operation. The recorded data are analyzed using signal evaluation both in
the time domain and in the frequency domain. The CMS provides all datasets as originally
optimized for all turbines. The data are collected from a wind turbine gearbox. The
repartition of the sensors in the monitoring process of the wind turbine from the actual
stage of the research is shown in Figure 2.

 
Figure 2. Schema of the experimental stand with the position of the used sensors.

The analysis is centered on the gearbox, examining the vibrations at three specific
points of the gearbox: the low-speed shaft (LSS), the intermediary shaft (IS), and the
high-speed shaft (HSS). The data acquisition is conducted using vibration sensors fixed on
the bearings of the kinematic chain, starting from the input, which is the rotor side, and
extending to the output, which is the generator side.
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The data transmission and processing chain is illustrated in Figure 3. The online
acquisition system allows the data to be recorded according to the original settings, thus
capturing signals along with their speed and power readings. In this way, the evolution of
vibrations can be determined specific to certain values of speed and power [20]. The system
allowed the definition of parameters in the frequency domain both in the acquisition and
analysis phases. The selected frequency range is according to ISO 10816-21 standards [21],
including the rotor, gearbox, generator, and tower/nacelle. Figure 3 shows the datasets
according to CMS, for the gearbox in the 3 entry points: LSS, IS, and HSS.

 
Figure 3. Synopsis of data acquisition and signal processing.

In these experiments, the data from the input of the gearbox, the acceleration in the
frequency domain at LSS, and the data of the gearbox output, in the frequency domain at
HSS, are taken into account, Figure 4.

 

Figure 4. Example of CMS data presentation.

2.2. Signal Processing and Defect Detection

The experiment is based on real-time vibration monitoring, using National Instrument
equipment cRIO-9076 (Austin, TX, USA), with 12 input channels, a 24-bit resolution, and
a 50 k samples/s/ch. max. speed; see Figure 5. The real-time monitoring data are set on
a 25 k samples/s speed, a buffer size of 32,768 samples, and a block size of 10 k samples.
The vibration monitoring provides the signal data from the 3 accelerometers fixed on the
3 gearbox points: the LSS with the 1–2 stages, the IS with the 3 stages, and the HSS with
the spur gear stage. The accelerometers used have a 100 mV/g sensitivity for the IS and
HSS points and a 500 mV/g sensitivity for the LSS point. For a precise synchronization
between vibration signals and speed signals, a laser speed sensor fixed at the generator
side was used.
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Figure 5. Vibration monitoring devices.

Signal analysis was performed via numerical processing, taking into account the pa-
rameters (frequency and amplitude) being monitored. Thus, Figure 6 shows the waveforms
obtained with the help of the monitoring software both in the time domain and in the
frequency domain; Figures 7 and 8 show the acceleration signal in the case of the gearbox
wear. The vibration parameters are set according to the ISO 10816-21 standard, specifying
acceleration in m/s2 RMS, vibration velocity in mm/s RMS, and demodulated acceleration
in m/s2E. With the bearing frequency data, the characteristic frequency of the bearing
defect can be identified. The structure of the vibration parameters is complex and based
on the vibration defect theory [5,22]. The vibration limits for wind turbines, provided by
the ISO 10816-21 standard, present an integrated base defining the recommended state of
operation [23–25]. Even in this situation, many specific cases of the vibration of the wind
turbine components are difficult to classify according to this standard [26]. For this purpose,
it is proposed to develop a model that can interpret the state of operation in real operating
conditions using data provided via the CMS.
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Figure 6. Signal processing and defect detection from the CMS.

Figure 7. Acceleration signal in the case of gearbox wear.
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Figure 8. Envelope acceleration in the case of gearbox wear.

The processing data and analysis approach for bearing detection are also applied for
gear characterization using the gear mesh frequency data according to the kinematic chain
of the gearbox [9–12]. The signal processing and analysis are performed with Fastview
software (v300124), which allows for the use of both vibration monitoring and analysis in
real time. The software allows for the identification of the specific failure frequencies of
the gear and bearings through the method of vibration demodulating using the envelope
function [27] with the dynamic filtering of the specific domain frequencies (Figure 7).

A novelty in the evaluation analysis of the gearbox wear condition is the envelope
method using the Hilbert transform [27] with sideband energy coefficient integration,
called SER coefficient (Sideband Energy Ratio™, a patent-pending algorithm utilized in
the General Electric) [28–32], so that the impact energy generated by the defect can be
quantified (Figure 8).

Figure 8 shows the spectrum of the acceleration envelope in the case of the gearbox
defect. The quantification of the defective condition is evaluated by means of the gear mesh
frequency presence (GMF) in relation to the sidebands, as well as its harmonics. According
to the quantification of the level of sidebands in relation to the amplitude of the GMF
frequency, it can be found that the ratio is less than one, which means that the defect in the
HSS stage is present and is in an advanced state.

2.3. Using DBSVM-Based Data Extraction Technique

The Base density of the Support Vector for Machine Learning (DBSVM) [30] has been
beneficial in establishing the basic data for neural network learning. In any monitoring
activity, it is more efficient to train the neural network using DBSVM as it reduces the
learning input data (decreasing computational complexity) and determines the resulting
weights matrices to identify a mechanical failure without being impacted by the outliers.
This study exploits this method to find the most relevant data points and establish the
objective function (FO).

This data extraction method is based on the filtering of data points based on their
population density. The population density of data points refers to the correlation between
the population size and the space they occupy. The rationale behind this data filtering is to
deal with the data points that are influenced by random noises or gross errors. These data
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points do not accurately represent the general trend. These points are considered outliers
and can affect the accuracy of the established objective functions and, subsequently, the
analysis. The densely populated areas in the input space are determined by calculating the
Mahalanobis distance (1). The points lying in this region are considered meaningful points
while the points lying outside of this region are considered outliers.

The Mahalanobis distance is calculated from the quantity μ which represents the
average of the points’ distances, to each point. The cov−1 represents the inverse covariance
matrix. This distance is explained in [33,34]. The Mahalanobis distance takes into account
the correlation of the dataset and does not depend on the measurement scale [34–36]. The
population variance is calculated with a variance–covariance matrix [35]. The Mahalanobis
distance from the point to the mean of the distribution μ can be calculated by (1), and the
Mahalanobis distance from one point to another can be calculated by (2):

d =

√
(x − μ)Tcov−1(x − μ) (1)

d =

√
(x − y)Tcov−1(x − y) (2)

where the population variance is calculated with [12]

var(xn) =
∑n

1 (x − μ)2

n
(3)

and population covariance with

cov(xn, yn) =
∑n

1 (xi − μx)
(
yi − μy

)
n

(4)

If cov(xi) and cov(yi) > 0
both of them increase or decrease;
If cov(xi) and cov(yi) < 0
when xi increases, yi decreases, or vice versa;
If cov(xi) and cov(yi) = 0
no relation exists between xi and yi;
If var(xi) > var(yi)
xi increases or decreases faster than yi;
End.

The average of d is

average_d =
∑n

1

√
(xi − μ)Tcov−1(xi − μ)

n
(5)

where di is the distance between the points and d is the average of these distances

If di > d,
the point i is in the outlier group;
Else
the point i will be considered an important (meaningful) point in DBSVM;
End.

2.4. Objective Functions

The optimization function (FO) was proposed as a polynomial function of the fifth
order with real coefficients that will be constructed using the data from the acquisition of
Fourier spectra of the vibrations:

FO = a1 × x5 + a2 × x4 + a3 × x3 + a4 × x2 + a5 × x + a6 (6)
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where ai will be determined using the matrix equation:⎛⎜⎜⎝
a1
a2

. . .
a6

⎞⎟⎟⎠ =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎣x5

1 · · · x1 1
...

. . .
...

x5
5 · · · x5 1

⎤⎥⎦
⎡⎢⎣x5

1 · · · x1 1
...

. . .
...

x5
5 · · · x5 1

⎤⎥⎦
T
⎫⎪⎪⎬⎪⎪⎭

−1⎛⎝FO1
. . .

FO5

⎞⎠ (7)

with the following constraints:

- xi > 0;
- xi must be meaningful points, xi ∈ group 1;
- xi ∈ DBSVM;

where FOi is the amplitude of the vibration evolution in time where the defect will
appear and xi is the frequency in time. To define the FO, 5 boundary points (xi, FOi) ∈
DBSVM will be used for each moment of time vs. frequency points but under the same
conditions of forced vibration and for the same wind turbine. The DBSVM points must
strictly adhere to the condition of belonging to DBSVM, which is that

di < average_d. (8)

The boundary of the FO will be the limit of the optimal functioning of the wind turbine.
In this way, the moment of time for the intervention on the gearbox will be determined to
eliminate the danger of an imminent defect.

2.5. The Used Proper LabView Virtual Instrumentation for FO

To solve the objective function FO, proper LabView virtual instrumentation was used,
and the block schemas are shown in Figures 9–11.

 

Figure 9. Part of the block schema of the LabView virtual instrumentation to determine the FO5 order.
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Figure 10. Part of the block diagram represents the FO (polynomial function of the 5-degree order)
characteristic.

 

Figure 11. Front panel with the results of the optimization function FO for known points from the
DBSVM (the maximal values from the Fourier spectrum).
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2.6. Description of the Used Algorithm

The used algorithm includes the following stages, as depicted in Figures 12 and 13:
(i) the acquisition of data at different moments of time for the same parameters of wind,
power, and speed; (ii) the application of relation (4) for calculating the distances between
points di (max. amplitude and frequency of the Fourier spectra acquired); (iii) applying
relation (5) to determine the average distance, d; (iv) defining group 1 of the DBSVM after
checking the condition di < d; (v) establishing the boundary curve of DBSVM; (vi) analysis
of Fourier spectra from group 1; (vii) defining the 5 maximum points from the Fourier
spectra both for the upwind position and for the downwind position of the sensors; (viii) the
use of LabView virtual instrumentation to determine the 5th-order objective functions;
(ix) plotting multiple objective functions for Fourier spectra acquired during three months of
operation, under the same conditions of wind, power, and speed; (x) defining the maximum
points of the objectively drawn functions in order to determine the trend; (xi) determining
the coefficients of the 5th-order objective functions of the trend for both low and high
frequencies, as well as for upwind and downwind of the gearbox sensors positions.

Figure 12. Block schema of the part of the used algorithm to establish the DBSVM of the collected data.

Figure 13. Block schema of the part of the used algorithm to establish the objective functions (FOs)
using the Fourier spectrum collected from the boundary of the DBSVM.

3. Results and Analysis

3.1. Establishing FO Boundary of Fourier Spectrum

If the operational limit of the turbine is set at a specific FO, a defect can be easily
detected through control at each frequency. This can be performed by checking if the
operational point (frequency, magnitude) is in the normal functioning area or outside

153



Mathematics 2024, 12, 1307

of this. In this way, it is possible to determine the maximum permissible magnitude
of vibration.

In this case, the equation of the FO will be

FO = −6.043x5 + 2.233x4 + 0.0005x3 − 0.04x2 + 0.74x + 0.225 (9)

For predictive maintenance, the following relation would be applied:

FOi( fi) < FOj(xi) (10)

where xi is the frequency for the imposed five points ∈ DBSVM, the points from the
boundary limits, and f i represents all the current frequencies that must be checked. If this
condition is false, the respective points could be the potential mechanical wear.

Using the Fourier spectra, the objective functions (FOi) were constructed the objective
functions (FOi) for each of these datasets. All these FOs are shown in Figures 12–15, for
upwind and downwind sensors from the wind turbine gearbox. All objective functions,
FOs, were determined using the maximal values of magnitude from each of the used
Fourier spectra; see the table of each acquisition Fourier spectrum.

Figure 14. The acquisition data distribution and the establishment of boundary values for group 1,
representing meaningful points of DBSVM, occur under similar dynamic conditions of speed and
power. This characteristic is constructed by applying the DBSVM algorithm.

 
(a) 

Figure 15. Cont.
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(b) 

(c) 

 
(d) 

Figure 15. Cont.
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(e) 

 
(f) 

 
(g) 

Figure 15. Cont.
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(h) 

Figure 15. Fourier spectrum from data acquisition between December 2023 and February 2024, in
an upwind and downwind position of the sensors in the gearbox of WTs. (a) Fourier spectrum at
1514 RPM and 1037.4 kW on 25 December 2023, in an upwind position. (b) Fourier spectrum at
1577 RPM and 1169.4 kW on 18 January 2024, in an upwind position. (c) Fourier spectrum at 1492 RPM
and 1027.6 kW on 26 January 2024, in an upwind position. (d) Fourier spectrum at 1552 RPM and
1158 kW, on 30 January 2024, in an upwind position. (e) Fourier spectrum at 1523 RPM and 1054 kW
on 25 December 2023, in a downwind position. (f) Fourier spectrum at 1455 RPM and 971.4 kW on 11
January 2024, in a downwind position. (g) Fourier spectrum at 1471 RPM and 982 kW on 18 January
2024, in a downwind position. (h) Fourier spectrum at 1481 RPM and 1006.5 kW on 26 January 2024,
in a downwind position.

3.2. Construct the Objective Functions FO for All Selected Fourier Spectra

To construct the FO for the data acquisition and establish the trend of the maximum
values of the vibration magnitude vs. frequency, four Fourier spectra were used for the
upwind and downwind bearings; see Figure 15. The results of FOi are shown in Figures 16–19.

 

Figure 16. Objective functions (FOi) for all four selected acquisition data spectra in the upwind
sensor position.
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Figure 17. The front panel of the used LabView VI-s with input and output data for the upwind
position sensor.

 

Figure 18. Objective functions (FOi) for all four selected acquisition data spectra in a downwind
sensor position.

 

Figure 19. The front panel of the used LabView VI-s with input and output data for the downwind
position sensor.
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To validate the mathematical vibration model proposed (Figure 13), the vibration data
are obtained from the CMS of a 2.0 MW industrial WT gearbox, based on the acceleration
position and data acquisition shown in Figures 2 and 5. The gearbox is a planetary type with
a transmission ratio of 116. This model was applied to synthesize the data acquisition of the
wind turbine in the period between December 2023 and February 2024. The conditions that
were imposed are the following: (i) the data acquisition was for the same, or very similar,
wind turbines; (ii) the data acquisition was carried out from the sensors on the gearbox,
B3-LSS and B5-HSS, with upwind LSS bearing radial and similarly downwind HSS bearing
radial; (iii) the data acquisition was performed in the similar dynamic conditions of wind
intensity, speed, and power; (iv) the acquisition data that was synthesized are the data that
fall under the condition to be classified as a meaningful point, xi ∈ group 1, xi ∈ DBSVM;
see Figure 14.

Using the data from the column matrices ai, the fifth-order equation for FOi will be
determined. The FOi for the upwind position of the sensor is shown in relation (11) and for
the downwind position in relation (12).

FO = 6.64x5 − 0.00017x4 + 0.017x3 − 0.0668x2 + 8.84x + 2.473 (11)

FO = 7.44x5 − 0.0002x4 + 0.019x3 − 0.762x2 + 10.368x + 2.921

FO = 9.291x5 − 0.00025x4 + 0.00246x3 − 0.969x2 + 13.1305x + 3.664

FO = 8.28x5 − 0.00022x4 + 0.02x3 − 0.762x2 + 9.781x + 2.735

FO = −3.745x5 + 5.323x4 − 0.00025x3 + 0.045x2 − 2.447x − 0.054 (12)

FO = −1.494x5 + 1.68x4 − 0.00062x3 + 0.08x2 − 1.056x − 0.04

FO = 5.902x5 − 5.157x4 + 0.00014x3 − 0.171x2 + 7.366x + 0.25

FO = 7.391x5 − 6.068x4 + 0.00161x3 − 0.161x2 + 5.767x + 0.234

All determined FOs represent different stages of the mechanical condition of the
turbine gearbox assembly.

3.3. Determine the FO for the Trend

With the help of these functions, the trend of potential defects in the turbine gearbox
area can be assessed. The characteristic frequencies of the WT gearbox in the damage case
are presented in Figures 20 and 21, corresponding to LSS-upwind and HSS-downwind. The
frequency spectrum of acceleration for the LSS-upwind position shows the fundamental
frequency of the planet pin (Figure 20) and the frequency spectrum of the HSS-downwind
position shows the existence of the gear mesh frequency (GMF) generated by the HSS pin
gear and planet pin gear. In the case of a faulty gear, the amplitude is much higher, reaching
up to 10 times higher than in the normal condition case.

At any given moment, it is possible to check whether the function is approaching the
period close to the appearance of a defect or not [4,37]. Throughout this timeframe, it will
be possible to examine whether the points (frequency, magnitude) fall within the first or last
FO or between them, providing information on the proximity of a potential defect, as per
relations (11) and (12). The trends of these functions are depicted in Figure 22, represented
by the maximum of the FO for each of the cases.
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Figure 20. The frequency spectrum at the LSS position in the case of gearbox defect.

Figure 21. The frequency spectrum at the HSS position in the case of gearbox defect.

 
(a) 

 
(b) 

Figure 22. Cont.
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(c) 

Figure 22. The trend of the magnitude–frequency points from the FO. (a) Trend of the FO in the
upwind position of the gearbox sensor in a low frequency. (b) Trend of the FO in the upwind position
of the gearbox sensor in a high frequency. (c) Trend of the FO in the downwind position of the
gearbox sensor.

The trend functions are the following:

- for the low frequency in the upwind position,

FO = 5.6234x5 − 205.21x4 + 2779.11x3 − 16307.64x2 + 32142.12x + 20071.2 (13)

- for high frequency in the upwind position,

FO = 4.306x5 − 0.0096x4 + 0.7267x3 − 18.112x2 − 0.9755x − 0.0328

- for high frequency in the downwind position,

FO = −1.0703x5 + 0.0086803x4 − 2.6357x3 + 355.109x2 − 17907.9x − 451.047

(Magnitude, f requency)icatastrophic wearupwind or downwind
∈ FOtrendupwind or downwind

(14)

If the first FO objective function is defined after an intervention when the gearbox
is working correctly, and the last function is determined close to the appearance of a
defect, the position of any point (frequency, amplitude) can be determined between these
limits. Intermediate FOs define the intermediate limits. Using this method, it will be
possible to implement preventive maintenance and also monitor the normal operation of
the gearbox of the wind turbine. The validation of this developed method can be carried
out by checking whether the maximum points (frequency, magnitude) from the Fourier
spectrum belonging to a certain trend as identified by the objective functions, correspond
to any known instances of gearbox malfunction or failure in wind turbines. This would be
performed through a collaboration with a wind turbine expert.

4. Conclusions and Future Work

This paper presents a novel approach to addressing the complexities of vibration
monitoring and analysis in wind turbine gearboxes. By leveraging mathematical modeling
and AI techniques, we have developed a method for evaluating gearbox conditions during
operation that can help make meaningful interpretations from uncategorized vibration data
from wind turbines. After analyzing the obtained results, the objective functions, and the
trend of the monitoring results, we can make the following remarks: (i) the applied method
is general and can be applied to many other dynamic monitoring processes; (ii) the designed
LabView instrumentation for the synthetic analysis of the obtained acquisition data opens
the way to applying more virtual instrumentation in monitoring the dynamic behavior
across various mechanical fields; (iii) using DBSVMs to filter out the meaningful data adds
a new front to applying machine learning in monitoring processes; (iv) establishing the
trend of the FO for each position of the gearbox sensors ensures the design of an intelligent
monitoring system for predictive maintenance; (v) the trend for the low frequency in
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the upwind sensor position is a decrease in frequency and an increase in magnitude;
(vi) conversely, the trend involves an increase in both frequency and magnitude for the
high frequency; and (vii) in the downwind sensor position, the trend is characterized by an
increase in frequency and a decrease in magnitude.

In future work, we propose the generalization of this method and leveraging of neural
networks for the rapid establishment of weight matrices, objective functions, and wear
trends in wind turbines across all sensors. This will be integrated into a comprehensive
matrix comprising objective functions, alongside a monitoring and trend matrix.

In the next stage of this research, SVM Regression analysis will be implemented to
predict the magnitude of vibrations based on various input features (e.g., frequency, time).
This information will help obtain a quantitative measure of potential defects. Upon a
further assessment of the FFT spectra of vibrations leading up to failures or defects, we
also aim to study and explore other features (fluctuations in phase, etc.) that could indicate
upcoming defects. This condition-based maintenance strategy can also be further enhanced
by incorporating supervised classification. We plan to label the datasets indicating dif-
ferent points (labeled points) in time leading up to the developing fault. This would be
conducted through collaboration with industry specialists. The classification algorithm can
be employed to identify the definite states of the system (normal operation, potential fault,
critical fault). The combination of regression and classification would allow for a more
comprehensive predictive maintenance approach.

The proposed method is intended to be applied in other industrial applications in the
case of condition monitoring of machine tool spindles.
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Abstract: Electro-hydraulic actuators have witnessed significant development over recent years
due to their remarkable abilities to perform complex and dynamic movements. Integrating such an
actuator in humanoids is highly beneficial, leading to a humanoid capable of performing complex
tasks requiring high force. This highlights the importance of safety, especially since high power output
and safe interaction seem to be contradictory; the greater the robot’s ability to generate high dynamic
movements, the more difficult it is to achieve safety, as this requires managing a large amount of
motor energy before, during, and after the collision. No matter what technology or algorithm is used
to achieve safety, none can be implemented without a stable control system. Hence, one of the main
parameters remains the quality and reliability of the robot’s control architecture through handling a
huge amount of data without system failure. This paper addresses the development of a stable control
architecture that ensures, in later stages, that the safety algorithm is implemented correctly. The
optimum control architecture to utilize and ensure the maximum benefit of electro-hydraulic actuators
in humanoid robots is one of the important subjects in this field. For a stable and safe functioning
of the humanoid, the development of the control architecture and the communication between the
different components should adhere to some requirements such as stability, robustness, speed, and
reduced complexity, ensuring the easy addition of numerous components. This paper presents
the developed control architecture for an underdeveloped electro-hydraulic actuated humanoid.
The proposed solution has the advantage of being a distributed, real-time, open-source, modular,
and adaptable control architecture, enabling simple integration of numerous sensors and actuators
to emulate human actions and safely interact with them. The contribution of this paper is an
enhancement of the updated rate compared to other humanoids by 20% and by 40 % in the latency
of the master. The results demonstrate the potential of using EtherCAT fieldbus and open-source
software to develop a stable robot control architecture capable of integrating safety and security
algorithms in later stages.

Keywords: humanoid; real-time software; control system architecture-based EtherCAT

MSC: 28-06

1. Introduction

The high demand for high-performance robots resulted in the growth of the develop-
ment of hardware, software, and control architecture, ensuring a safe and stable interaction
of the robot with the environment. Several research efforts have been targeted to develop
and evolve the hardware and software of robotic systems. Developing a humanoid capable
of safely performing human tasks, such as navigating rough terrains and interacting socially
with humans, may require numerous degrees of freedom. A robot’s control architecture
aims to organize and distribute the multiple controllers responsible for controlling the
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actuators and sensors. This is carried out while considering their communication to ensure
that all components work towards the overall objective. Therefore, the development of the
control architecture for numerous actuated joints is challenging because of the requirements
that the system will impose.

HYDROïD, shown in Figure 1 is a hydraulically actuated full-size humanoid robot
with 51 degrees of freedom designed to operate in dangerous environments, assist the
elderly, and support human needs in industry [1]. Therefore, developing a safe interaction
capability for its joints is necessary. To ensure dynamic motion in HYDROïD, all the
mechatronics subsystems in a robot should be highly reactive, starting from the sensors
and actuators and going into the software architecture of the robot.

Figure 1. HYDROïD humanoid general description.

The actuation system in humanoids plays a crucial role in determining their perfor-
mance and the overall robot capability. Although hydraulic actuators have proven better
performance than electrical actuators in force, power-to-weight, and power-to-volume
ratio, they still suffer from oil leakage, control complexity, and decreased social acceptance.
One of the main issues in hydraulic actuators is the losses generated from using only one
pump that activates all the robot’s joints where many hoses are used to drive the hydraulic
power; each hydraulic cylinder requires two hoses and thus four connection points, all
of which are susceptible to leakage. This is also a drawback from the energy efficiency
point of view. However, these issues are resolved in HYDROïD’s latest generation, where
the hydraulic power is locally generated at the actuated joint. This decreases the need
for hydraulic tubes and gives the joint the required power to enhance energy efficiency.
This is achieved by developing a patented actuation system called Servo Electro-Hydraulic
Actuator (SEHA) [2]. SEHA is an all-in-one compact actuator that is characterized by
increased power-to-weight and power-to-volume ratios, increased safety through a force
compensation module integrated into the actuator that is activated in case pressure exceeds
a preset value, and enhanced joint movement through a flexible control, making it a suitable
actuator for robotics applications and especially those performing heavy-duty tasks.

Moreover, the control architecture is responsible for the communication between the
hardware layer represented by the actuator, sensors, and low-level controllers, and the
higher-level software managing hardware. The control architecture aims to address the
numerous actuators and sensors utilized in the robot and ensure the maximum benefit,
which is one of the critical issues in developing the dynamic motion of robots. This raises
the question of how to organize and physically distribute the robot’s controllers to achieve
its dynamic balance and ability to interact safely with the user. The control architecture has
to be reliable in that it is able to handle huge amounts of data from sensors and actuators
without system failure.
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One of the additional challenges encountered in developing humanoid robots is the
crucial need for a real-time environment that will adopt the controller and ensure the
robot’s stability and safety. This requirement is essential when there is a complex robot that
will collaborate with humans where the real-time environment will ensure the safety of the
robot’s interaction. Hence, developing a Real-Time Operating System (RTOS) is required to
ensure deterministic behavior by handling the interrupts with predefined time [3]. RTOS is
designed for applications requiring immediate critical task processing within a predefined
and guaranteed time frame. This is particularly important in the case of humanoids, as they
need to respond precisely to interact safely with their environment and perform complex
tasks. The real-time concept is required at the low-level joint controller, the high-level
master controller, and the communication between these two layers.

In general, the high-level master controller is restricted by the low-level controller as it
is built on top of it. The low update rate achieved at the low-level controller will limit the
control system’s performance. The update rate, which refers to the frequency at which the
data are updated by the system, is constrained by the communication field bus utilized.
Despite all the improvements in modern communication and the low-level controller,
many robots still have relatively low update rates, often restricted by the communication
fieldbus. Therefore, the communication protocol used in humanoid should adhere to some
requirements, such as being stable, robust, fast, and capable of handling all the data needed
to be transmitted.

This paper presents a real-time control architecture based on the EtherCAT fieldbus
communication protocol for an electro-hydraulic humanoid robot HYDROïD. The pre-
sented work includes the implementation on both the joint and software levels, as well as
the communication interface between them. Hence, a distributed, real-time, open-source,
modular, and adaptable control architecture is proposed, enabling the simple integra-
tion of numerous sensors and actuators to emulate human actions while ensuring safe
collaboration between humans and robots in several tasks.

Section 2 presents the previous works of the implemented control architecture of
humanoid robots. The mechatronics overview of HYDROïD is presented in Section 3,
the modeling and simulation of one joint, and the Inverse Geometric Model and Inverse
Kinematic Model of the hybrid ankle mechanism are provided in Section 4, while the
proposed real-time control architecture is presented in Section 5. The conducted experiment
and the results are shown in Section 6. And finally, we conclude and present the future
work in Section 7.

2. Previous Works

The dynamic balance of the robot, as well as its ability to safely interact with the
user, depend mainly on the developed control architecture and its distribution in the robot.
Hence, a centralized approach was first suggested. This approach involves a single central
unit that controls all the robot joints. NAO [4], HRP-2 [5], and PETMAN [6] adopted this
approach. It is simple but limited due to the high computations required, especially in the
case of many degrees of freedom. Moreover, the failure of this controller will lead to the
failure of the whole system. Hence, the decentralized approach was introduced, where
multiple processors are distributed for each joint or multiple joints, each of which operates
with a degree of authority. This approach was used in Valkryie [7] and LOLA [8] humanoids.
Compared to the centralized approach, this approach will allow more efficient control of
the robot joints with the processing of the sensor data without the high computational
power required in the centralized approach. However, an issue of coordination emerged
mainly when the robot was performing complex tasks since some controllers may have
conflicting goals affecting the overall behavior of the robot. Also, the system will introduce
some delays due to the required communication between the multiple controllers. Hence,
the researcher’s efforts led to the development of the distributed control architecture. In
this architecture, multiple controllers are distributed among the robot joints. Each controller
operates independently and communicates with each other in a peer-to-peer manner, with
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the ability to make its own decisions. Each controller can join or leave the system without
affecting the overall performance. However, coordination and synchronization among
distributed agents can be complex and require robust communication mechanisms. It
is worth mentioning that in HRP-2, the centralized control system was initially adopted.
However, some problems occurred in the electrical system, leading to the disconnection
between the interface boards mounted in the main computer and the sensors/motors, and
the HRP-2 became out of control. Hence, they shifted to distributed control architecture in
HRP-3p and HRP-5P [9]. Overall, the control architecture topology for humanoid robots
has progressed with several available solutions; each has its own advantages, and deciding
which approach should be taken is highly important.

One of the additional challenges encountered when designing the robot’s software is
the crucial need for a real-time environment for implementing the controller and ensuring
the robot’s stability. This requirement is essential when there is a complex robot that will
collaborate with humans, and the real-time environment is indispensable for ensuring
the safety of the robot’s interaction. Hence, developing a Real-Time Operating System
(RTOS) is required. The development of the RTOS is made on either the high-level master
controller or the joint controller. The choice of the operating system at the high level or
the main PC is highly important. One of the common practices is adopting open-source
operating systems such as Ubuntu, as it is considered cost-effective and flexible. However,
Ubuntu is not a real-time OS, but several approaches can be taken to support Linux in real
time. This includes the RT Patch, GPL, RTAI, and Xenomia. These approaches are based
either on the double-kernel method, where a real-time kernel is installed into the standard
operating system kernel, or on the enhancement of the Linux scheduler. RT Patch can fulfill
real-time requirements for periodic tasks with a minimal jitter for long-term measurements,
increasing confidence in the stability of this approach [10].

The communication protocol handles the data transmission between components and
elements like sensors, actuators, and computational units. The Controller Area Network
(CAN) is one of the most popular protocols. The CAN bus network provides a cost-effective
networking solution for low-bandwidth applications where the bandwidth is 1 Mbps. It is
a serial communications protocol that supports distributed real-time. CAN Bus protocol
was used in different robots like HUBO [11], KHR-2 [12], PETMAN, and HRP-3. It provides
robust communication; however, it is limited in bandwidth. Moreover, the Powerlink
protocol [13] is one of the well-known protocols for real-time motion control. It is an open-
source library that can be integrated into developing a real-time system. The performance
of this protocol depends on the topology used, and it needs high computational power.
Finally, the Ethernet for Control Automation Technology (EtherCAT) protocol [14] from
Beckhoff Automation is a well-supported protocol that meets the demands of real-time
and high-bandwidth applications. It can achieve a bandwidth of up to 1 Gbps or even
10 Gbps. This communication protocol was used in the Atlas [15], TALOS [16], Hydra [17],
TOCABI [18], and WalkMan [19] robots.

The main control frequency of the HUBO robot using CANbus is 100 Hz, while
the control frequency of the joint motor is 1 kHz. The control loops in iCub with CAN
communication protocol operate at 100 Hz. Escher humanoid uses CANopen, and the
configuration values and joint space set points are transmitted at 500 Hz rate [20]. Petman
from Boston Dynamics utilized a modified CANbus, and the update rate was 1 kHz. In
general, the limitations in the bandwidth of CANbus and that it does not allow handling
multiple point-to-point connections were major drawbacks [21].

Several efforts were made to enhance the performance of this protocol using multiple
parallel CAN networks, but the update rate was relatively low. Also, Sercos-II, with a
bandwidth of 16 Mbit/s, is used for the robot TORO, and the achieved update rate is
1 kHz. LOLA robot chose the SERCOS-III protocol to resolve the issues of CANbus, and
they achieved a 1 kHz update rate. EtherCAT bus is used in RoboSimian [22], Hydra,
and ARMAR-6 [23], and the update rate achieved in these robots is 1 kHz. Some robots
switched to EtherCAT to take advantage of this protocol. For example, Boston Dynamics
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switched from CANBus in Petman into EtherCAT in Atlas, and the LOLA robot switched
to EtherCAT, achieving a 2 kHz update rate [8]. Higher update rates were achieved using
dual channel EtherCAT in the TOCABI robot, where a 4 kHz update rate was achieved.

3. HYDROïD’s Mechatronics Overview

HYDROïD is a humanoid robot that comprises 51 DoFs emulating human joints.
36 DoF of which are hydraulically actuated, composing the body, and 15 electrically actu-
ated, composing the head. In this paper, our primary focus is on controlling the hydrauli-
cally actuated joints. The initial version of HYDROïD is based on an electro-hydraulic
actuation system with a double-stage servo valve. The mechanisms in HYDROïD and the
DoFs [24] are shown in Table 1. The robot and its kinematic structure are shown in Figure 2.

Table 1. Representation of HYDROïD’s DoF.

Mechanism DoF/Mechanism Quantity Total DoF

Toe 1 2 2

Ankle 3 2 6

Knee 1 2 2

Hip 3 2 6

Torso 4 1 4

Shoulder 4 2 8

Elbow 1 2 2

Wrist 3 2 6

36

Figure 2. HYDROïD ’s kinematic structure.

These mechanisms were developed upon studying human morphology and appear-
ance, leading to compact, lightweight, and modular mechanisms that can achieve the
required range of motion, torque, and speed.

Hydroid consists mainly of two hybrid mechanisms, each with a rotating hydraulic
actuator carrying a parallel structure. The first mechanism is dedicated to the hip, shoulder,
and torso, while the second was chosen for the ankle and the wrist.
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In the hybrid mechanism of the hip, shoulder, and torso, the requirement is a wide
range of motion in the pitch axis, while for the yaw and roll axes, nearly the same range of
motion is required. Hence, the choice of the rotary actuator for these mechanisms is for
achieving a wide range of motion in the pitch axes, and two other linear actuators are used
for the yaw and roll rotation [25].

On the other hand, for the ankle and wrist mechanisms, the small space allocated
is a challenge. Also, the center of gravity for these mechanisms is preferred to be closer
to the knee/elbow to reduce energy consumption, but the range of motion on the three
axes is nearly the same. Hence, the rotary actuator for these mechanisms is chosen for
the roll rotation, and it is placed near the knee/elbow, while four other linear actuators
are implemented in parallel structure and responsible for transmitting the motion to the
ankle/wrist in the roll and pitch rotations. The choice of the rotary actuator leads to a
compact design that can be easily integrated into the wrist and the ankle while achieving
the needed torque [26].

4. Control Architecture Development Methodology

Understanding the mechanisms and the actuator utilized in the robot is an essential
step before designing the control architecture. It is important to comprehend the complexity
imposed by the control, which is essential to develop an optimized and efficient control
architecture. Rough calculations of the computational cost that can be added to the system
are essential for determining the distribution of the controllers in later stages.

Considering the mechanical design of HYDROïD, there are two existing layers: the
joint layer, represented by the servo valve and the hydraulic actuator, and the mechanisms,
such as the mechanism of the wrist, ankle, hip, and shoulder. Figure 3 shows an example
of HYDROïD’s leg; at the joint level, we have a servo valve that takes current i as input and
gives the flow Q as output, leading to a motion of the whole mechanism. The complexity of
the control will impact the decisions made in later stages regarding the control architecture.
For this purpose, a study is conducted in this section regarding (i) the inverse kinematics
and inverse geometry at the ankle mechanism and (ii) the simulation and modeling at the
joint level containing a servo valve and rotary hydraulic actuator. This study is beneficial
for understanding the complexity and calculating the computational cost for developing
the control architecture.

Figure 3. Control of one mechanism in HYDROïD.

4.1. Kinematic and Inverse Geometric Model of Hybrid Mechanism

The ankle mechanism of HYDROïD is a 3 DoF hybrid mechanism achieved with
serial and parallel substructures. The merge of the serial and parallel mechanisms leads
to an ankle design that respects the size constraints that do not overload the actuator,
producing 3 DoF motion with easy control models. This mechanism is chosen as the case
study for two main reasons: (i) this mechanism is considered a complicated mechanism,
and (ii) calculating the computation costs of such mechanism is beneficial in designing the
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control architecture. This section represents the Inverse Geometric Model(IGM) and the
Inverse Kinematics Model (IKM) for the ankle mechanism.

The kinematic structure of the ankle mechanism is shown in Figure 4. In the ankle
mechanism, there are four closed loops named Chj, and each is composed of the links:

Co1, Co2, Co3, Coj
1, Coj

2, Coj
3, Coj

4, Coj
5, and Coj

6 with j = 1, 2, 3, 4. There are four linear
actuators grouped in couples: the couple (r1

1, r3
1) allows the actuation of the joint qs and

the couple (r2
1, r4

1) allows the actuation of the joint q f . The orientation of the end effector
with respect to the base is identified with three angles, roll, yaw, and pitch, and grouped
in vector Xa = (θr, θp,θy). The inputs of the hybrid mechanism are the length of the linear
actuator rij and the roll rotation θr, while the outputs are the angles qv, qs, and q f .

Figure 4. Kinematic structure of HYDROïD’s ankle mechanism.

4.1.1. Inverse Geometric Model

The IGM is used to determine the required stroke of the linear actuators. So r1j will be
calculated for a given posture of the end effector through the IGM. To obtain the IGM of
the ankle mechanism, the roll rotation is straightforward since it belongs to the serial part
where qv = θr; however, for the yaw and pitch, which belong to the parallel mechanism,
more calculations are needed, which be presented in this section. Upon the calculations of
the IGM, the following notations are adopted:

• The jth closed kinematic chain is designated as a chain Loopj for j = 1, 2, 3, 4. The
mechanism outputs are grouped into a vector q = (qs, q f , qv).

• The linear joint positions are the mechanism inputs and are named rj
1 for j = 1, 2, 3, 4.

• The rotation of the ith joint in the jth closed loop is represented by θ
j
i .

• All the joints are passive joints except for rj
1 and qv are the active joint variables.

To carry out the IGM, we consider the open mechanism maintained by breaking the zj
5

joints as shown in Figure 4. Hence, the IGM can be presented as follows: For Loop1 and
Loop3, The rotation of the second and third joints are represented in Equations (1) and (2).

θ
j
3 = arcsin(

d · Sqv

lj
3

) (1)

θ
j
2 = arcsin(

(d · Sqs · Cq f ) + (l j
4 · Cqs)− l j

1

l j
3 · Cj

3

(2)
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Hence, the active joint variables are written as in Equation (3),

rj
1 = l0 − l j

2 − l j
4 · Sqs + d · CqsCq f − l j

3Cj
2Cj

3 (3)

Similarly, the same relations are established for Loop2 and Loop4. The rotations are
shown in Equations (4) and (5).

θ
j
3 = arcsin(

d · Sqv + l j
4 · Cq f − l j

1

l j
3

) (4)

θ
j
2 = arcsin(

(d · Sqs · Cq f )− (l j
4 · Sqs.Sq f )

l j
3 · Cj

3

) (5)

The active joint variable in these loops is, therefore, presented in Equation (6).

rj
1 = l0 − l j

2 − l j
4 · Cqs · Sq f + d · CqsCq f − l j

3Cj
2Cj

3 (6)

4.1.2. Inverse Kinematic Model

Upon calculating the IGM, the calculation of IKM is essential. These models are useful
for the simulation of the robot, for the control, and for the motion planning of the robot.
Hence, these models will be integrated into the developed control architecture. The IKM is
used to determine the relation between the angular velocities around the roll, pitch, and
yaw axes grouped in the vector Ẋa = (θ̇r, θ̇p, θ̇r)t and the active joint velocities grouped in
the vector ṙa = (ṙ1

1, ṙ1
2, ṙ1

3, ṙ1
4, ṙ1

5, q̇1)
t.

The kinematic model will be expressed as in Equation (7) for the four closed loops.
Detailed calculations of the IKM can be found in the Appendix A.⎡⎢⎢⎢⎢⎣

L1
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⎤⎥⎥⎥⎥⎦ (7)

Equation (7) has the classical matrix form shown in Equation (8).

A · q̇ = B · ṙ (8)

Moreover, the global kinematic variable Ẋ can be written as shown in Equation (9).

Ẋ = q̇sZb + q̇vZv + q̇ f Zf =

⎡⎣ q̇sSqv + q̇ f CqvCqs
−q̇sCqv + q̇ f SqvCqs

q̇v + q̇ f Sqs

⎤⎦ =

⎡⎣0 CqvCqs Sqv
0 SqvCqs −Cqv
1 Sqs 0

⎤⎦⎡⎣q̇v
q̇ f
q̇s

⎤⎦ (9)

Equation (9) can be reformulated and written as in 10.[
Ẋ = D · q̇

]
(10)

Finally, substituting Equation (10) in Equation (8) results in the final kinematic model
of the proposed ankle mechanism, and this is presented in (11).

A · D−1 · Ẋ = B · ṙ (11)

4.2. Modeling and Simulation of Electro-Hydraulic Actuator

The joints of HYDROïD are designed using linear hydraulic actuators [27] or rotary
hydraulic actuators with Flapper-Nozzel double-stage servo valves. As rotary actuators are

171



Mathematics 2024, 12, 1405

more complex, we will consider them for our study. A study of the servo valve’s dynamic
behavior is also considered to improve the dynamic performance and reduce the complexity
of the implemented control. An analysis stage is an important stage in determining the
influence of the parameters affecting the dynamic performance of the servo valve. This
study is indispensable for ensuring the maximum benefit of the servo valve and, therefore,
ensuring the best performance of the system, reducing the control algorithm complexity
that will be implemented in the control architecture.

This section presents the modeling, simulation, and validation of the mathematical
model; the parameters that have the greatest influence on the dynamic performance of the
servo valve are also determined. An interpretation of the servo valve’s dynamic behavior
is based on determining the stationary error, the damping factor, the natural frequency, the
proper frequency, the overshoot, the response time, the transient time, etc.

The joint level comprises a double-stage servo valve and a rotating hydraulic motor,
as shown in Figure 5. Table 2 presents the notations used throughout this section.

Table 2. Terms, Notation, and Units.

Terms Notation Units

Geometric capacity of engine qm cm3

Gradient of flow losses
proportional to the pressure in

the engine
am cm5/daNs

Reduced moment of inertia at
the shaft of rotating hydraulic

motor
Jr daNcms2/rad

Moment of inertia at the
motor JM daNcms2/rad

Moment of inertia at the stator Js daNcms2/rad
Resisting moment Mr daNcm
Moment of friction Mf daNcms

Gradient of moment losses
proportional to angular

velocity
bm daNcms/rad

Dry friction coefficient c fu -
Angular speed of the rotating

hydraulic motor shaft ω rad/s

Modulus of elasticity of oil E daN/cm2

Damping factor ξ -
Natural pulsation ωn rad/s

Current output flow from
servo valve Qcurrent cm3/s

Angular acceleration ε rad/s2

Angular space θ rad
Active moment Ma daNcm
Active power N W

Active pressure pM daN/cm2

Pressure on discharge path p0 daN/cm2

The analysis of the parameters and performance of the dynamic behavior was carried
out based on the analysis of the indicial characteristics of speed, acceleration, angular space,
moment, power, flow, and pressure. The indicial characteristics were determined based on
the indicial functions, whose relationships were established depending on the damping
factor for each component, respectively, the servo valve and rotary hydraulic motor. The
angular velocity indicial functions were determined taking into account the expression of
the transfer function of the rotary hydraulic motor, assimilated with a PT2-type function
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as in Equation (12). The input is the flow from the servo valve, Q, and the output is the
angular velocity of the rotating hydraulic shaft ω.

H(s) =
ω(s)
Q(s)

=
a0

b2s2 + b1s + b0
(12)

where the coefficients of the transfer function of the rotary hydraulic motor are represented
in Equations (13)–(16).

a0 =
qm(1 − c fu)

2π
(13)

b0 =
( qm

2π

)2
(1 − c fu) + ambm (14)

b1 = (Jm + Js)am +
qm

2E
bm (15)

b2 = (Jm + Js)
qm

2E
(16)

Figure 5. Simplified schematic of the robot’s joint level composed of a double-stage servo valve,
hydraulic rotating motor, and an electronic board.

The parameters of the transfer function, the damping factor, and the natural pulsation
are shown in Equation (17).

ξ =
b1

2
√

b0 · b2

ωn =

√
b0

b2

(17)

For each operating point, the damping factor ξ is determined and compared with the
value 1 to establish the slope of the indicial characteristic of the angular velocity ω.

If the damping factor is greater than one, then the response is over-damped. The
expression for the angular velocity of the rotary hydraulic motor servo system is shown in
Equation (18).

ω1 =
a0
b0

· Qcurrent ·
[

1 +
b2 · e−b1t

b1 − b2
− b1 · e−b2t

b1 − b2

]
−

Mf · am ·
[

1 − e−
b0 t

am ·(JM+JS )

]
b0

(18)

If the damping factor is unity, then the response is critically damped, and the ex-
pression for the angular velocity of the rotary hydraulic servo system is represented in
Equation (19).

ω2 =
a0
b0

· Qcurrent ·
[

1 − e−ωnt ·
(

1 − ωnt
)]

−
Mf · am ·

[
1 − e−

b0 t
am ·(JM+JS )

]
b0

(19)
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Finally, if the damping factor is less than one, then the response is underdamped, and
the expression for the angular velocity of the rotary hydraulic motor is in Equation (20).

ω3 =
a0

b0
√

1 − ξ2
· Qcurrent ·

[
1 − e−ωnξt · sin

(
ωn

√
1 − ξ2 · t + arctan

√
1 − ξ2

ξ

)]

−
Mf · am ·

[
1 − e−

b0 t
am ·(JM+JS )

]
b0

(20)

Based on the angular velocity calculations, the angular acceleration’s current value is
determined in Equation (21).

εcurrent =
ωcurrent

Δt
(21)

Hence, the current value of the angular space is shown in Equation (22).

θcurrent =
ωcurrent · Δt

2
(22)

Based on the current values of active pressure and the active flow, the current value of
active moment and active power are calculated in Equation (23) and in Equation (24):

Macurrent =
qM
2π

· (pMcurrent − p0) (23)

Ncurrent = pMcurrent · Qcurrent · 0.1 (24)

The analysis of the dynamic behavior based on the transfer functions and the inverse
Laplace transform was conducted through a program in MatLab—Simulink. Using the
mathematical model and after applying the inverse Laplace transform, a proportional type
transfer function with second-order inertia (PT2) is obtained for the rotary hydraulic motor
and the servo valve.

To enhance the performance of the servo valve, a correction was applied, an electronic
RC correction with the transfer function of first-order shown Equation (25) with T repre-
senting the time constant with a constant value of 0.006 s. The results of this correction are
shown in Figure 6. The figure on the left shows the results without correction of the servo
system, and the figure on the right shows the results with the corrections included.

H(s) =
1

Ts + 1
(25)

The anticipation correction is also applied using the transfer function in Equation (26).
This transfer function is considered a correction of the anticipation in case Td is greater than
Ti, and otherwise, it is a correction on the inertial. Both corrections were applied with Td
equal to 0.01 s and Ti equal to 0.001s in case of anticipation correction and with Td equal to
0.0001 s and Ti equal to 0.001 s for the inertial correction. The results of these corrections
are shown in Figure 7, with the left graph showing the anticipation correction results and
the right one showing the graph on the left showing the inertial corrections.

H(s) =
Tds + 1
Tis + 1

(26)

Also, the first-order inertial and the second-order inertial corrections are applied and
shown in Figure 8. The left graph shows the results of the first-order correction, and the
right graph shows the results of the second-order corrections. The transfer function for the
first order is shown in Equation (27) with Ti equals 0.02 s, and that of the second order is
shown in Equation (28) with Ti1 equals 0.0005 s and Ti2 equals 0.02 s.

H(s) =
1

Tis + 1
(27)
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H(s) =
1

Ti2s2 + Ti1s + 1
(28)

Figure 6. Rotary hydraulic actuator with a servo valve simulation results, the graph on the left is
without the servo valve correction there is an overshoot, the graph on the right is with the servo valve
correction included with T = 0.006 s, the overshoot is reduced and the response time is increased.

Figure 7. Rotary hydraulic actuator with a servo valve simulation results with anticipation and
inertial correction of the servo valve, the graph on the left is with inertial correction with Td = 0.0001
and Ti = 0.001, the overshoot increased and the response time decreased, and the graph on the right
is with anticipation correction with Td = 0.01 and Ti = 0.001 the overshoot increased, the response
time decreased and the transient time increased.

Figure 8. Rotary hydraulic actuator with a servo valve simulation results with inertial correction of
the servo valve, the graph on the left is with first-order inertial correction included with Ti = 0.02
sec the overshoot is reduced, but the response time is increased, and the graph on the right is with
second-order inertial correction with Ti2 = 0.0005 s and Ti1 = 0.02 s, a large response time is introduced
and the transient time is increased but operation is stable.

The following can be observed from the simulation results: (i) first-order inertial
correction reduces the overshoot and the transient time but increases the response time,
so the operation of the system will be slower; (ii) the anticipation correction increases
the overshoot; reduces the response time and increases the transient time, ensuring good
promptness so that the system will be fast, accurate, but at the limit of stability; (iii) the
second-order inertial correction causes a large delay in the response, introducing a low-
frequency vibratory component, it increases the transient time, the operation of the system
is transferred to low frequencies so that the response will be prolonged, with oscillations,
but the operation is stable.
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4.3. Computational Cost Estimations

A control loop based on the IGM and the KM could be implemented to control the
ankle mechanism. PID controller would also be integrated, as shown in Figure 9. We aim
to approximate the computational cost for such a control algorithm to develop an efficient
control architecture. For this purpose, we implemented the code for each block on Matlab,
estimated the execution time, and calculated the number of executions for each algorithm.
The results are shown in Table 3. The execution time is the average time for 100 runs of the
algorithm and the number of operations presents the operations presented in the algorithm,
such as multiplication, subtraction, addition, and trigonometric functions.

Figure 9. Control loop using the IGM and the KM model.

Table 3. Estimation of the control loop computation costs.

Algorithm Number of Operations Execution Time (ms)

IGM 52 5.3
IKM 150 15.4
PID 15 4.6

Table 3 shows a rough estimation of the required computations for integrating a control
loop in the control architecture. This study is essential for deciding the characteristics of the
MCU at the joint level, as the MCU should be capable of handling all these computations
in addition to all the computations required for the sensor readings, communication tasks,
and any other control task. The utilized MCU at the joint level has a CPU speed of 480 MHz,
and it can achieve 1027 DMIPS, meaning that up to 480 million cycles are performed per
second and 1027 million instructions can be executed per second. Hence, the MCU can
handle the required computations for implementing the control loop for one mechanism,
which can be integrated directly into the joint level.

5. Proposed Real-Time Control Architecture

The development of the control architecture of HYDROïD follows a set of specific
requirements: (i) achieving high bandwidth in hardware and software, (ii) achieving the
deterministic property and having real-time software, (iii) implementing a cost-effective
control architecture, (iv) robust and stable distribution of controllers that respects the
human-like appearance avoiding the bulky cables, (v) ease of integrating the numerous
sensors and actuators, and (vi) respecting the safety factors for the protection of the robot
and the human. The proposed control architecture is a distributed, open-source, modu-
lar, and real-time architecture to fulfill these requirements. Three main layers represent
HYDROïD’s hierarchical architecture: (i) the top layer, the central control unit, (ii) the
hardware abstraction layer, and (iii) the lowest layer represented by the firmware of the
embedded electronic board on each actuator. This section covers all the necessary selections
to develop the control architecture that meets all the requirements.

5.1. Joint Controller

A customized in-house electronic board, shown in Figure 10, is developed on the joint
level, represented by SEHA, responsible for controlling the actuator. The compactness
of this electronic board is beneficial for the robot’s human-like appearance. The board

176



Mathematics 2024, 12, 1405

comprises three different boards. The first is mainly responsible for the power generation of
all the actuator sensors besides the sensor’s connectors. The second board consists of (i) the
microprocessor STM32H7 that belongs to the cortex M7, which is the highest performance
of the member; (ii) the LAN9252, which is the EtherCAT slave with a bandwidth of
100 Mbits/s; (iii) the conditioning circuits for the sensors integrated into the actuator
including position, force, pressure, and temperature sensors, (vi) and the driving circuit
of the servo valve. The third board contains the EtherCAT ports, ensuring the EtherCAT
communication with the main PC.

Figure 10. Developed electronic board at the joint level.

5.2. Joint Controller Distribution

A distributed control architecture is adopted for the control of HYDROïD. The central-
ized architecture is inefficient in controlling 36 DoF, requiring many computations. Hence,
the distributed approach is chosen. Although the distributed approach is adopted, the
joint controller will not be placed on each joint. Having a controller on each joint has the
following drawbacks: (i) adding a joint controller on each joint might make the robot bulky
without respecting the human appearance; (ii) the hybrid and parallel mechanisms in
HYDROïD need synchronization between them to avoid mechanical problems and possible
errors. For this purpose, the controllers will be distributed based on the mechanism, with
each controller responsible for controlling a specific mechanism. This will result in a total
of 15 controllers for the robot. This distribution is presented in Figure 11, highlighting the
mechanisms one joint controller will control.

Figure 11. Distribution of the joint controllers of HYDROïD upon mechanism.
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5.3. Communication Protocol

Because a distributed control architecture is utilized, communication between the joint
controllers and the central control unit is needed, and the communication protocol selection
is essential. The communication protocol ensures the achievement of the bandwidth
requirements and the deterministic property. Comparing the different communication
protocols, EtherCAT was selected as the communication protocol for data transmission
because it shows the best performance besides enabling both hard and soft real-time
communication with high bandwidth, leading to an advanced control architecture. This
communication protocol is based on the Master-Slave topology. The central control unit
layer represents one master device, and the joint controllers represent multiple slave devices.
A special EtherCAT configuration is implemented on both levels to identify the master and
the slave.

5.4. Real-Time EtherCAT Joint Controller

FreeRTOS, an open-source, real-time, and portable firmware for embedded systems,
is selected as the firmware for the joint controller. The advantage of FreeRTOS is that it
is suited for applications that require soft and hard real-time requirements, and it is cost-
effective as it is open-source. It is a real-time kernel on top of which embedded applications
can be built to meet the hard real-time requirements. The application will then be organized
as a collection of independent threads of execution. We have developed different threads
or tasks for the board responsible for controlling the servo valve of SEHA. These are
mainly: (i) Thd-SensorMeasurementProcess, which is the thread responsible for all the
sensor measurements; (ii) Thd-ControlValveProcess, which is the thread responsible for the
current control of the servo valve; (iii) Thd-ControlPositionProcess, which is the process
for controlling the position of the servo valve; (iv) lastly, there are the threads responsible
for the EtherCAT processing that are Thd-EtherCAT-Sync1-Handle which handles the
interrupts of the EtherCAT slave from the SYNC pin of the LAN9252, Thd-EtherCAT-IRQ-
Event-Handle which handles the interrupts of the IRQ pin of the LAN9252, and finally the
Thd-EtherCAT-Timer-Handle that performs the EtherCAT check operation triggered by
a timer. The developed tasks are shown in the Figure 12. The highest priority is given to
the communication task to ensure that any interruption from this side is handled directly.
Then, the second highest priority is given to the control task, followed by the priority of the
sensor readings.

Figure 12. Developed tasks for the joint controller.
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The Slave Stack Code (SSC) tool is utilized to develop the EtherCAT frame structure
on the board. The EtherCAT slave device can be configured by the master device using an
EtherCAT SubDevice Information (ESI) configuration file, an XML document containing
all the information needed to set up a slave device properly for communication. The
ESI configuration file for the developed joint controller board is generated using the
Slave Stack Code (SSC) tool. The generated file has a special element hierarchy, which
describes the slave’s physical properties and the details of the communication protocol.
This includes RxPDO and TxPDO elements, representing a single Process Data Object
(PDO). PDOs represent the process data exchanged between the master and slave devices
of EtherCAT and are updated cyclically. A unique index must define each PDO. The RxPdo
elements describe the data transmitted from the slave device to the master device, while
the TxPdo elements describe data transmitted from the master device to the slave device.
The configured RxPDO and TxPDO for the joint controller of SEHA are shown in Table 4.

Table 4. PDO mapping of the EtherCAT frame.

PDO Object Data Type Index

RxPDO Index Uint32 0x1600
Data1 Uint32 0x1600
Data2 Uint32 0x1600

Total bits 96 bits

TxPDO Valve Current Uint32 0x1A00
Temperature Uint32 0x1A00

Position Uint32 0x1A00
Force Uint32 0x1A00

System State Uint16 0x1A00
Total bits 144 bits

288 Bus Variables for communicating the 36 DoF are used. The total size of the TxPDO
is 144 bits, and that of the RxPDO is 96. Hence, the total size of the input/output frame
is 240 bits for each DoF. The total frame size for controlling the 36 DoF of HYDROïD is
8640 bits or 1080 bytes. Hence, with a link speed of 100 Mbits/s, the simplified theoretical
transmission delay is calculated in Equation (29).

τ =
8 ∗ x

C
(29)

This leads to a transmission delay τ equal to 86.4 μs. To obtain the minimum cycle
time, the propagation delays and the latencies within the slave must be added to the
transmission delay. According to [28], the minimum achievable cyclic time is calculated as
in Equation (30). The notations are shown in Table 5.

Γ = (2n − 1)�+ 2nδ + τ (30)

Table 5. Terms, Notation, and Units.

Terms Notation Units

Minimum cycle time Γ s
Transmission delay τ s

Network device latency � s
Propagation delay δ s

Link capacity C bits/s
Payload x bytes

Number of network devices
(slaves) n
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The typical propagation delay is 0.3 μs/slave. In EtherCAT communication, a frame is
sent by the master, and slaves can read and write data on the fly. The duration of reading
or writing operations corresponds only to the network device latency (�), independent
of frame size, and the same for all slaves. In addition, if we assumed that the network
device latency = 0.3 μs/slave, the minimum cycle time will be around 130 μs. Hence, this
configuration allows the transmission and receipt of data, ideally at approximately 7 kHz.
The decision for the proposed control architecture is to operate on 5 kHz, making sure
not to exceed the 7 kHz that is allowed and ensuring that if the DoF increases, no losses
will occur. These calculations were repeated to further address the adaptability of the
developed control architecture, considering that 50 DoF are connected. This resulted in
a minimum cycle time of 164.7 μs, and hence, the transmission and reception of data is
allowed at 6 kHz.

5.5. Real-Time Software

On the central control unit, represented by the master PC controlling the robot, a
Real-Time Operating System is developed. The selected operating system is Ubuntu, a
cost-effective OS that guarantees the software’s real-time performance. Therefore, an
RT-preemptible kernel is used to ensure the deterministic property.

Due to the increased complexity of robotic applications, robotics middleware was de-
veloped to reduce complexity, improve the software application, and simplify the software
design. When using middleware, the development cost will be reduced as the developer
will build components representing different parts of the robot and easily integrate these
components with other existing components [29]. Among the different existing middleware,
OROCOS, a real-time middleware, is used to obtain the hardware abstraction layer with
the environment. OROCOS is an open-source middleware that supports four C++ libraries:
the Real-Time Toolkit (RTT), the Kinematics and Dynamics Library, the Bayesian Filtering
Library, and the OROCOS Component Library [30]. The RTT provides the infrastructure
and the functionalities to build robotics applications in real time. It is a component-based
tool, and components are connected via defined ports. The port holds a certain message
type that could be transmitted using a defined frequency with a big advantage: respecting
real-time constraints. This advantage allows the creation of precise control for robotic
systems. OROCOS manages the hardware interface between the EtherCAT master and
slaves and sends/receives data within specified time boundaries. This hardware interface
is developed using the Simple Open Master EtherCAT (SOEM) library, which manages the
data transmission using the rtt—soem package. In OROCOS, each EtherCAT hardware
requires a specific driver to be developed. It is worth noting that some of the drivers for
Beckhoff technology already exist. However, in our case, the driver and its corresponding
messages were developed according to the EtherCAT frame of the SEHA controller board.
The high-level control is implemented on OROCOS with a period of up to 5 KHz. To
take advantage of the large packages available on Robot Operating System (ROS) [31], we
designed a mixed hybrid architecture that integrates ROS, enabling hydraulic actuator
control through ROS. OROCOS has an integrated interface with the ROS system, which
makes it easy to exchange data safely with the ROS system without perturbing real-time
performance inside OROCOS. ROS is an open-source middleware that includes many
libraries and tools for developing robotic applications. One of the additional advantages
of ROS is that it facilitates the integration of our control architecture with other existing
robotics systems by developing a bridge and taking advantage of the libraries and the
plugins available.

Moreover, to facilitate the usage of the developed control architecture, a Graphical
User Interface (GUI) is developed on ROS that integrates the different modes of control,
giving the user the ability to switch between these modes easily. Figure 13 shows the
implemented software architecture to control HYDROïD.
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Figure 13. Developed control architecture for HYDROïD’s control.

6. Experimental Validation

The performance of the developed real-time control architecture will be evaluated
in three different ways. First, the performance of the joint controller will be evaluated
by testing the maximum update rate that the developed board can handle. Second, the
performance of the EtherCAT Bus communication is evaluated by testing the network
latency. Lastly, the performance of the patched Real-Time Operating System is evaluated
by measuring its latency.

6.1. Joint Controller Performance

To evaluate the joint controller from the communication perspective, a test was made
to check the maximum frequency that could be sent to the EtherCAT slave from the master
without losing any frame. Hence, the aim is to check the maximum frequency that could
be handled by the EtherCAT slave joint controller without any communication error. For
this purpose, a counter was implemented in the EtherCAT slave. A frame is then sent from
the master within a specified time, and the counter is updated upon receiving a new frame
each time. In case the slave receives a new frame, the counter will be updated. Otherwise,
in the case of communication problems where the board cannot receive a new frame within
the requested time, the counter will not update, and the same value as the previous counter
will be shown. Hence, several frequencies were set from the master, starting from 1 kHz
frequency and reaching 20 kHz. For the update rate ranging from 1 kHz to 9 kHz, the
results are shown in Figure 14. The counter and the error are plotted, but at these update
rates, no errors were detected. However, for the update rates ranging from 10 kHz to
20 kHz, the results are shown in Figure 15; the error is highlighted in red. The board
normally operated without communication issues for all the frequencies below 10 kHz. The
error percentages are shown in Figure 16; below 10 kHz, the error is 0%, which increases to
0.2% at 10 kHz and to 44.37% at 20 kHz.
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Figure 14. EtherCAT Slave performance at update rate ranging from 1 kHz to 9 kHz, the slave is
operating normally, and all the frames are received with no errors.

Figure 15. EtherCAT Slave performance from 10 kHz to 20 kHz, errors, highlighted in red, start to
occur and increase with increasing the update rate.

Figure 16. Error percentage at EtherCAT slave among different update rates.

6.2. EtherCAT Bus Performance

A test was conducted to evaluate the latency in the slave by operating eight slave
boards equivalent to controlling the leg of HYDROïD. The network latency represents the
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delay between the starting execution time of two tasks on the first and last slave in the
network. The boards are connected to the master controller. The first board is taken as the
reference slave. From the master side, an OROCOS component was developed to toggle
the servo valve output of the first and last board. The frequency of the toggle is 5 kHz. An
oscilloscope is connected to the first and the last board to measure the output delay. The
test was conducted for 65 h. Figure 17 shows the schematics of the conducted experiment.
The resulting data shows that the delay did not exceed 167 μs as shown in Figure 18, which
does not exceed the 200 μs or the 5 kHz.

Figure 17. Conducted test for evaluating network latency.

Figure 18. Latency on the slave joint controller-max latency = 167 μs.

6.3. Software Performance

To evaluate the real-time capabilities of the developed real-time software, a cyclic
test was performed for 17 h with the entire functioning of the system, besides launching
some threads to overcharge the PC, like CPU stress utility, network flood, and graphical
stress, to ensure the reliability of the system. The cyclic test is a test that aims to measure
the latency of the patched kernel. The latency is the delay before executing the task. This
test was conducted twice, one on a standard kernel of Ubuntu without any modifications
and the other on the modified kernel. The test on the standard kernel was launched for
approximately 3 h, and the latency was 99,577 μs, as shown in Figure 19. However, the
latency for the test conducted on the real-time kernel was 58 μs for the operation of 17 h, as
shown in Figure 20. The achieved latency in the real-time software assures that our system
will not exceed the desired cycle time, 200 μs equivalent to 5 kHz. Hence, in our proposed
solution, the concept of real-time in terms of achieving tasks within a pre-specified time
is respected.

To evaluate the overall performance of the control architecture, a preliminary experi-
ment was conducted directly on HYDROïD by operating four mechanisms: the left and
right knee and the right and left hip. The aim was to test the control architecture and
the ease of implementing any control algorithm via an experiment to achieve the gate
walking cycle through the control of the left and right hip and the left and right knee.
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The high-level master controller transmits the desired position to achieve the movement
based on biomedical data of a healthy person with a 63 cm step length at 100 cm/s velocity,
while the low-level joint controller controls the current sent to the servo valve based on the
desired position from the high-level controller. Figure 21 shows a snapshot of the robot in
operation, and human-like motion was achieved.

Figure 19. Latency of standard Ubuntu kernel.

Figure 20. Latency of real-time Ubuntu kernel.

Figure 21. HYDROïD in operation applying the proposed control architecture.

7. Conclusions

Hydraulic actuators have proven to be highly effective due to their force capabilities;
on the other hand, electrical actuators are useful from the cost perspective and the ease of
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control. SEHA is a hybrid technology that combines the advantages of the electrical and
hydraulic actuators and avoids the disadvantages, leading to a high-performance actuator.

This paper proposes a real-time control architecture for HYDROïD humanoid. The
modeling and simulation of one joint of HYDROïD composed of a rotary hydraulic actuator
and servo valve were presented and analyzed with the aim of enhancing the performance
for developing an efficient control algorithm with reduced complexity. The IGM and the
IKM were also calculated and presented, and a rough estimation of the computational
cost for implementing a control loop was also conducted to develop an efficient control
algorithm. The requirement upon developing the control architecture is to have adaptable
software from the perspective that adding sensors and actuators should not be complex.
Moreover, the software should ensure the deterministic properties, and hence, there is
real-time software for the safe interaction of the robot with its environment. Moreover, high
bandwidth is required on both the low-level joint controller and the high-level master con-
troller. Hence, this paper presents a distributed, real-time, and modular control architecture.
The proposed architecture is based on EtherCAT communication protocol; the operating
system is Ubuntu with a preemptible kernel ensuring the deterministic behavior and a
hybrid middleware approach that integrates OROCOS and ROS. The choice of EtherCAT
and real-time development is essential for ensuring the safety and stability of the robot,
and the hybrid middleware will reduce the complexity of integrating new sensors and
actuators, making it an adaptable one.

The results show that (i) the developed in-house board can handle an update rate
up to 10 kHz, and communication errors start at 10 kHz. (ii) the network latency while
connecting seven boards and operating at 5 kHz did not exceed 167 μs. (iii) the software
latency does not exceed 58 μs, and the deterministic behavior is achieved. Our results
show an improvement of 20% for the update rate over those reported by [18], where they
achieved a 4 kHz update rate, which is the highest rate according to our knowledge. Also,
the results show a reduction by approximately 40% in the control task latency compared to
those achieved in [32].

As a future step to achieve the real-time capabilities of the OS, Ubuntu 22.04 will be
used. This is the latest version of Ubuntu that offers a real-time kernel. Also, ROS2 [33], the
2nd version of ROS, will be integrated into the system. Moreover, the whole robot will be
operated, and the robot’s motion planning will be executed to operate the robot in different
environmental setups. Integrating safety algorithms is one of the future works that will be
implemented. To further address the safety concerns, the developed control architecture,
due to its distributed structure, enables the addition of safety algorithms either on the
low-level controller or on the high-level controller on OROCOS or ROS, depending on the
algorithm’s requirements.
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Appendix A. Detailed Calculation of IKM

Using the kinematic composition formula, the kinematic of the jth closed loop can be
described as in Equation (A1). Where TcSp/Sb

is the kinematic wrench of the foot relative to
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the base of the parallel mechanism, Tj
cS1/Sb

is the kinematic wrench of the foot relative to

the base of the parallel mechanism, Tj
cS2/S1

is the kinematic wrench of the jth cable relative

to the jth linear actuator, and Tj
cSp/S2

is the kinematic wrench of the foot relative to the
jth cable.

TcSp/Sb
= Tj

cS1/Sb
+ Tj

cS2/S1
+ Tj

cSp/S2
(A1)

This relation is expressed with the individual screws as shown in Equation (A2). With
θ̇

j
i representing the derivative of θ

j
i and $j

k is the kinematic screw of the kth joint in the jth
closed chain.

TcSp/Sb
= ṙj

1$j
1 + θ̇

j
2$j

2 + θ̇
j
3$j

3 + θ̇
j
4$j

4 + θ̇
j
5$j

5 + θ̇
j
6$j

6 + θ̇
j
7$j

7 (A2)

Since rj
1 is the active variable in the closed chain, we can define the reciprocal screw of

this variable named $
Rj
1 that satisfies the condition in Equation (A3)

$j
i$

Rj
1 = 0, i = 2, 3, 4, 5, 6, 7 (A3)

The frame Rj
1 placed on Oj

1 and parallel to Rb is chosen as the working reference
frame for each closed chain. The jth cable projected in this frame can be written with the
coordinates as in Equation (A4).

AjOj
1 =

[
Uj Vj Wj

]
Rj

1

(A4)

Solving Equation (A3) will result in the desired screw shown in Equation (A5).

$
Rj
1 =

1√
U2

j + V2
j + W2

j

[Uj Vj Wj 0 0 0] (A5)

Multiplying Equation (A5) by Equation (A2) and choosing Aj, shown in Equation (A1), as
the working point for the jth closed chain, the determined relation is shown in Equation (A6).

$
Rj
1 TcSp/Sb

(Aj) = ṙj
1$j

1$Rj
1 (A6)

The kinematic wrench of the foot relative to the base Sb project on Rb is written in
Equation (A7).

TcSp/Sb
(A0) = q̇szs + q̇ f z f =

[
q̇ f Cqs − q̇s q̇ f Sqs

]
(A7)

Because of the hybrid mechanism, the first rotation joint is qv independent of the two
other joints qs and q f . Therefore, replacing Equations (A5) and (A7) in Equation (A6) for
the four closed loops, the kinematic model will be expressed as in Equation (A8).⎡⎢⎢⎢⎢⎣

L1
4W1 L1

4SqsV1 0
0 L2

4(CqsW2 − SqsU2) 0
−L3

4W3 −L3
4SqsV3 0

0 L4
4(CqsW4 − SqsU4) 0

0 0 1

⎤⎥⎥⎥⎥⎦ ·
⎡⎣ q̇s

q̇ f
q̇v

⎤⎦ =
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W1 0

W2

W3

W3

0 1

⎤⎥⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
ṙ1

1

ṙ1
2

ṙ1
3

ṙ1
4

q̇v

⎤⎥⎥⎥⎥⎦ (A8)

References

1. Ibrahim, A.A.H.; Ammounah, A.; Alfayad, S.; Tliba, S.; Ouezdou, F.B.; Delaplace, S. Hydraulic Robotic Leg for HYDROïD Robot:
Modeling and Control. J. Robot. Mechatron. 2022, 34, 576–587. [CrossRef]

2. Alfayad, S.; Kardofaki, M.; Sleiman, M. Hydraulic Actuator with Overpressure Compensation. WO Patent WO2020173933A1,
3 September 2020.

186



Mathematics 2024, 12, 1405

3. Fischmeister, S.; Lam, P. Time-Aware Instrumentation of Embedded Software. IEEE Trans. Ind. Inform. 2010, 6, 652–663. [CrossRef]
4. Gouaillier, D.; Hugel, V.; Blazevic, P.; Kilner, C.; Monceaux, J.; Lafourcade, P.; Marnier, B.; Serre, J.; Maisonnier, B. Mechatronic

design of NAO humanoid. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan,
12–17 May 2009; pp. 769–774. [CrossRef]

5. Kaneko, K.; Kaminaga, H.; Sakaguchi, T.; Kajita, S.; Morisawa, M.; Kumagai, I.; Kanehiro, F. Humanoid Robot HRP-5P: An
Electrically Actuated Humanoid Robot with High-Power and Wide-Range Joints. IEEE Robot. Autom. Lett. 2019, 4, 1431–1438.
[CrossRef]

6. Nelson, G.; Saunders, A.; Neville, N.; Swilling, B.; Bondaryk, J.; Billings, D.; Lee, C.; Playter, R.; Raibert, M. PETMAN: A
Humanoid Robot for Testing Chemical Protective Clothing. J. Robot. Soc. Jpn. 2012, 30, 372–377. [CrossRef]

7. Radford, N.A.; Strawser, P.; Hambuchen, K.; Mehling, J.S.; Verdeyen, W.K.; Donnan, A.S.; Holley, J.; Sanchez, J.; Nguyen, V.;
Bridgwater, L.; et al. Valkyrie: NASA’s First Bipedal Humanoid Robot. J. Field Robot. 2015, 32, 397–419. [CrossRef]

8. Sygulla, F.; Wittmann, R.; Seiwald, P.; Berninger, T.; Hildebrandt, A.; Wahrmann, D.; Rixen, D. An EtherCAT-Based Real-Time
Control System Architecture for Humanoid Robots. In Proceedings of the 2018 IEEE 14th International Conference on Automation
Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; pp. 483–490. [CrossRef]

9. Akachi, K.; Kaneko, K.; Kanehira, N.; Ota, S.; Miyamori, G.; Hirata, M.; Kajita, S.; Kanehiro, F. Development of humanoid robot
HRP-3P. In Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, San Diego, CA, USA, 5–7 December
2005; pp. 50–55. [CrossRef]

10. Cereia, M.; Bertolotti, I.C.; Scanzio, S. Performance of a Real-Time EtherCAT Master Under Linux. IEEE Trans. Ind. Inform. 2011,
7, 679–687. [CrossRef]

11. Park, I.W.; Kim, J.Y.; Lee, J.; Oh, J.H. Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3:
HUBO). In Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, 5 December 2005;
pp. 321–326. [CrossRef]

12. Park, I.W.; Kim, J.Y.; Park, S.W.; Oh, J.H. Development of humanoid robot platform KHR-2 (KAIST humanoid robot-2). In
Proceedings of the 4th IEEE/RAS International Conference on Humanoid Robots, Santa Monica, CA, USA, 10–12 November
2004; Volume 1, pp. 292–310. [CrossRef]

13. Cena, G.; Seno, L.; Valenzano, A.; Vitturi, S. Performance analysis of Ethernet Powerlink networks for distributed control and
automation systems. Comput. Standards Interfaces 2009, 31, 566–572. [CrossRef]

14. Jansen, D.; Buttner, H. Real-time Ethernet: The EtherCAT solution. Comput. Control Eng. 2004, 15, 16–21. [CrossRef]
15. Nelson, G.; Saunders, A.; Playter, R. The PETMAN and Atlas Robots at Boston Dynamics. In Humanoid Robotics: A Reference;

Springer: Dordrecht, The Netherlands, 2019; pp. 169–186. [CrossRef]
16. Stasse, O.; Flayols, T.; Budhiraja, R.; Giraud-Esclasse, K.; Carpentier, J.; Mirabel, J.; Del Prete, A.; Souères, P.; Mansard, N.;

Lamiraux, F.; et al. TALOS: A new humanoid research platform targeted for industrial applications. In Proceedings of the
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham, UK, 15–17 November 2017;
pp. 689–695. [CrossRef]

17. Kaminaga, H.; Ko, T.; Masumura, R.; Komagata, M.; Sato, S.; Yorita, S.; Nakamura, Y. Mechanism and Control of Whole-Body
Electro-Hydrostatic Actuator Driven Humanoid Robot Hydra. In Proceedings of the 2016 International Symposium on Experimental
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Abstract: This study presents the development of an adaptive fuzzy control strategy for double-star
PMSM-PWM inverters used in ship electrical propulsion. The approach addresses the current and
speed tracking challenges of double-star permanent magnet synchronous motors (DSPMSMs) in the
presence of parametric uncertainties. Initially, a modeling technique employing a matrix transfor-
mation method is introduced, generating decoupled and independent star windings to eliminate
inductive couplings, while maintaining model consistency and torque control. The precise DSPMSM
model serves as the foundation for an unknown nonlinear backstepping controller, approximated
directly using an adaptive fuzzy controller. Through the Lyapunov direct method, system stability is
demonstrated. All signals in the closed-loop system are ensured to be uniformly ultimately bounded
(UUB). The proposed control system aims for low tracking errors, while also mitigating the impact
of parametric uncertainties. The effectiveness of the adaptive fuzzy nonlinear control system is
validated through tests conducted in hardware-in-the-loop (HIL) simulations, utilizing the OPAL-RT
platform, OP4510.

Keywords: adaptive fuzzy control; double-star permanent magnet synchronous motor (DSPMSM);
OPAL-RT (OP4510); model transformation

MSC: 93C42

1. Introduction

In the current context of energy transition and the search for sustainable solutions
for maritime transport, the use of electric propulsion systems is emerging as a promising
alternative. Double-star permanent magnet synchronous motors (DSPMSMs) supplied with
pulse width modulation (PWM) inverters constitute a popular configuration for the electric
propulsion of ships due to their high performance and increased energy efficiency [1]. In
these large-scale drives, multi-phase machines offer crucial advantages [2], such as power
distribution over multiple branches, a reduction in torque ripple amplitude, a decrease in
current harmonics, and fault tolerance due to the high number of phases.

However, in marine environments, electric propulsion systems face significant vari-
ations in essential internal machine parameters, such as resistance, inductance, inertia,
and friction. These internal variations, induced by dynamic operational conditions such
as changes in load and speed, can substantially influence the performance of the propul-
sion system, thereby affecting power distribution and dynamic response. These internal
variations are complemented by external variations, such as changing weather condi-
tions and interactions with water. These external factors introduce disturbances, thus
affecting the performance of the propulsion system and requiring dynamic adaptation of
control strategies.
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The DSPMSM has been the subject of several scientific articles, both in terms of
modeling and control. The initial work emerged in the 1990s and 2000s, with proposed
modeling and control approaches powered by voltage inverters applied for railway and
ship propulsion [3,4].

Modeling work on the machine is diverse and conducted with various approaches.
The difference lies in considering the machine as a six-phase machine with a connected
neutral or considering it as equivalent to two three-phase machines with the two neutrals of
the two machines separated. In the consideration as two three-phase motors, the modeling
approach relies on the use of coordinate transformation based on synchronous rotating
coordinate transformation (dq) [5,6].

Another modeling method exists which involves vector space decomposition (VSD),
which is a machine modeling technique. The machine is divided into orthogonal subspaces
using this method: one subspace producing a single flux/torque (α-β) and numerous
subspaces not producing flux/torque (x-y) [7].

The two methods mentioned earlier have been used as modeling tools in several works,
including the double-star machine. In this article, we employ another approach to estab-
lish the model based on the general approach dynamical modeling of multi/three-phase
machines developed in [8]. The elaborate modeling approach utilizes a novel decoupling
transformation to eliminate couplings of multi-phase permanent magnet synchronous
machines in a generic modular configuration.

In the literature, various approaches to synchronous machine control can be found,
with most of them focusing on field-oriented control, classic direct torque control (DTC),
adaptive fuzzy DTC, and neural DTC. If we analyze the different objectives targeted
in these papers, we can summarize them into two components: optimal torque control
and speed control. However, in these studies, the system under investigation is always
considered to be time-invariant and without disturbance elements, thus not reflecting the
reality of the system in real cases. This is because energy conversion systems undergo
parametric variations related to heating, aging, magnetic circuit saturation, and other
external constraints.

In Reference [9], a new method for direct torque control of permanent magnet syn-
chronous machines (PMSMs) was presented. The simulation results confirmed the advan-
tages of this approach compared to the conventional Direct Torque Control (DTC) approach.
The proposed method offers a constant inverter switching frequency, reduces torque ripples,
and exhibits good robustness to variations in stator resistance. However, it is observed that
the only parametric variations considered are those related to stator resistance.

Vector control of rotating machines is recognized for its efficiency due to its simplicity
of design and implementation, as well as its natural decoupling between flux and currents.
This type of control is typically achieved using proportional–integral (PI) controllers, whose
parameters are calculated directly from the machine characteristics using conventional
analytical methods. However, this approach requires careful calculation and a good
understanding of all machine parameters.

Historically, Fuzzy Logic Systems (FLSs) have a stellar reputation as effective approxi-
mators [10]. Their universal approximation qualities have led to their considerable usage
in modeling and regulating unpredictable nonlinear systems. For diverse types of nonlin-
ear systems, many adaptive fuzzy control methods have emerged in recent years [11–20].
The adaptive fuzzy control techniques for uncertain nonlinear systems were developed
in [21–23], using a backstepping methodology. The stability of the closed-loop systems
was achieved using the famous Lyapunov direct method. In this work, we suggest using
this robust approximation method to address uncertainties and unknown dynamics inside
the DSPMSM.

Motivated by the previous discussion, in this paper, the problem of currents and
speed control is investigated for DSPMSM subject to parametric uncertainties via fuzzy
approximation-based adaptive control. The FLS is used with the assistance of adaptive
estimators in order to approximate unknown nonlinear dynamics. Additionally, a robust
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adaptive compensation is utilized in order to mitigate the impact of parametric uncertainties
and to correct approximation errors.

Our objective is to replace the PI controllers with adaptive controllers based on fuzzy
logic in order to achieve a more robust control. We take into account the specific constraints
encountered by maritime propulsion systems. Our proposal involves using an adaptive
fuzzy control technique as an effective solution to mitigate the effects of internal parametric
variations, such as stator resistance, machine inductances, inertia of the machine-load
system, or viscous friction due to aging. This paper’s key contributions are as follows:
(i) the suggestion of an adaptive fuzzy control algorithm for DSPMSM that is resilient
against uncertainty and can dampen the external disturbances; (ii) by integrating FLS,
there is no reliance on the mathematical model; and (iii) the global closed-loop system is
demonstrated to exhibit UUB stability.

The present study focuses on creating an adaptive fuzzy control method for DSPMSM
systems that are exposed to external disturbances and uncertainty. The system dynamics
are presumed to be unknown, and the controller settings are adjusted in response to
the emergence of uncertainty. Making use of the fact that the system dynamics will be
transformed into a strict-feedback form, if we include the models of uncertainty, external
disturbances may affect the system model. A new fuzzy adaptive control approach is
combined with a nonlinear control method to address this class of nonlinear systems. There
are two control terms in the suggested adaptive control law. An adaptive fuzzy control
rule is used as the initial control term to adjust the parameters online in order to deal
with the uncertain system dynamics. To address the issue of fuzzy approximation errors,
uncertainties, and external disturbances, the second term serves as a robust control by
using the tangent hyperbolic function. The Lyapunov technique is used to examine the
stability of the closed-loop system and guarantee the tracking error’s convergence to zero.

The main contributions of this paper are the introduction of a new adaptive control
strategy based on Takagi–Sugeno fuzzy inference systems. This strategy is designed to
handle all types of uncertainties and external disturbances that may arise in the system
dynamics. This work is compared to existing works in the same area, as referenced
in [24–39]. The suggested research aims to address complex non-linear control issues with
fewer assumptions compared to the existing literature. The following points encapsulate
the contributions made by this work:

• The suggested fuzzy adaptive controller for uncertain systems reduces the amount of
online learning parameters, making it easier to tune and suited for real-time implemen-
tations. Furthermore, regardless of the order of the nonlinear system, the suggested
technique requires just basic fuzzy inference systems, while in [24–27], the number of
updating parameters is still determined by the system’s order.

• The control techniques proposed in [24–27] are based on backstepping, which is known
to have the drawback of complexity growing. However, in the proposed method, the
controllers have simpler structures and fewer design parameters, as the causes for the
complexity growing problem were completely eliminated.

• The suggested adaptive control techniques may accomplish an a priori intended
transient and steady-state performance in addition to ensuring the stability of the
whole control system by adding prescribed performance. As a consequence, the
suggested methods guarantee that the tracking error always converges to a predeter-
mined, arbitrarily tiny residual set, which is not possible with the prior findings in the
literature [24–26].

• By using the adaptive fuzzy control approach developed, the singularity and explosion
of complexity concerns are effectively avoided in comparison to the backstepping con-
trol algorithms presented in [28,29]. In order to improve the tracking performance, the
robust adaptive compensation techniques are also made to adjust for approximation
errors and lessen the impact of parametric uncertainties.

• In contrast to the references mentioned in [30–34], the proposed controller is more
flexible, as it does not require any knowledge of the mathematical model. On the other
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hand, the suggested controller takes a systematic approach to handling unknown
uncertainties and external disturbances.

• Restrictive assumptions regarding external perturbation were made by the authors in
Refs. [35–37]. The external disturbance is modeled in Ref. [36] using time-varying free-
models with derivable bounds, whereas in Ref. [35], it is described as an exogenous
neutral stable system. In Ref. [37], it is divided into two parts, one of which represents
an estimated portion and the other of which is generated by an exogenous system.
The proposed work, on the other hand, assumes external perturbations under only the
boundedness mild condition without considering any additional information.

• The developed controllers in Refs. [38–40] are intended for systems where the control
gain must be a simple constant, which is a limiting constraint. The latter constraint is
lifted in the suggested method to include a broader category of dynamical systems.
To encompass a wide range of dynamical systems, such as inverted pendulums,
induction motor drives, single-link robot arms, mass–spring–damper systems, flexible
spacecraft, quadrotors, and many more, we actually presume that the system dynamics
are unknown, with the control gain as an unknown nonlinear function.

Prior to presenting the obtained results, we delineate a modeling approach in the
first section, followed by the mathematical development of the adaptive fuzzy control
technique in the second section. Finally, the results of our tests, accompanied by a detailed
analysis, are presented. These tests were conducted using the real-time simulator OP4510
from OPAL-RT.

2. Description of the Studied System

Our study focuses on a complex system, consisting of a permanent magnet syn-
chronous machine with two stator windings. Each of these windings is powered by a
three-phase inverter. To ensure the precise control of these two power electronic structures,
we implemented adaptive fuzzy controllers, enabling the flexible and efficient management
of the system in the presence of disturbances. The depicted system is illustrated in Figure 1.

Figure 1. Structure of the considered system.

The PMSM is in the smoothed pole machine. The study is based on the follow-
ing assumptions:

(a) The multi-phase winding consists of 2 × 3 identical phases.
(b) Variable reluctance effects and saturation phenomena are neglected.
(c) Only the first space harmonic is taken into account.
(d) The temperature effects are neglected.
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(e) The capacitive effect between the windings is neglected.
(f) The semiconductor components constituting the inverters are supposed to be perfect.

3. Mathematical Modeling of DSPMSM

As shown in Figure 2, the double-star permanent magnet synchronous motors (DSPMSM)
considered in our study are composed of two three-phase windings phase-shifted by an
angle, γ.

Figure 2. Double-star machine winding.

The establishment of the decoupled dynamic model of the DSPMSM is performed in
three steps, which are described in the following subsections.

3.1. Electrical Model in the (a1 b1 c1 a2 b2 c2) Frame

The general electrical equation of the DSPSM in this natural basis can be written
as follows:

[VS] = RS[IS] + [LS]
d
dt
[IS] + [ES] (1)

where [Vs] represents the supply voltage vector of the stator windings. It is defined
as follows:

[Vs] =
[
[VS1]

t [VS2]
t
]t

(2)

where

[Vsi] =

⎡⎣vai
vbi
vci

⎤⎦ i = 1, 2 (3)

where [Is] represents the stator’s currents vector. It is defined as follows:

[Is] =
[
[IS1]

t [IS2]
t
]t

(4)

where

[Isi] =

⎡⎣iai
ibi
ici

⎤⎦ i = 1, 2 (5)

where [Es] represents the EMF voltage vector. It is defined as follows:

[Es] =
[
[ES1]

t [ES2]
t
]t

(6)

where

[Esi] =

⎡⎣Eai
Ebi
Eci

⎤⎦ = −
√

2ωϕ f

⎡⎢⎣ sin(θ − (i − 1)γ)

sin
(
θ − 2π

3 − (i − 1)γ
)

sin
(
θ + 2π

3 − (i − 1)γ
)
⎤⎥⎦ i = 1, 2 (7)
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where Rs is the resistance of each winding, and [Ls] is the stator’s inductance matrix. [Ls] is
defined as follows:

[Ls] =

[
[Ls1] [Ms12]

[Ms12]
t [Ls2]

]
(8)

where [Lsi] (i = 1, 2) represents the matrix inductance of each star and is defined as follows:

[Ls1] = [Ls2] =

⎡⎢⎣ l f s + Mss Mss cos( 2π
3 ) Mss cos( 4π

3 )

Mss cos( 4π
3 ) l f s + Mss Mss cos( 2π

3 )

Mss cos( 2π
3 ) Mss cos( 4π

3 ) l f s + Mss

⎤⎥⎦ (9)

where lfs is the leakage inductance, and Mss is the maximal mutual inductance between
two windings.

[Ms12] is the mutual inductance matrix between the two three windings. It is given by
the following relation:

[Ms12] =

⎡⎢⎣ Mss(γ) Mss(γ + 2π
3 ) Mss(γ + 4π

3 )

Mss(γ + 4π
3 ) Mss(γ) Mss(γ + 2π

3 )

Mss(γ + 2π
3 ) Mss(γ + 4π

3 ) Mss(γ)

⎤⎥⎦ (10)

From the inductance matrix, it can be easily shown that the matrix is fully coupled, so
that the control the motor’s currents in this frame are complicated.

3.2. Electrical Dynamical Model in the (α1 β1 α2 β2)

To write the electrical equations of the DSPSM in this reference frame, first we apply
the Concordia transformation to each star (Figure 3A). Second, a rotation of an angle, γ, is
applied to the second star (Figure 3B).

Figure 3. Equivalent windings in (α1β1o1 and α2β2o2)

This transformation from the reference frame (a1 b1 c1 a2 b2 c2) to the reference frame
(α1 β1 o1 α2 β2 o2) is defined as follows:

[T6]
t =

⎡⎢⎢⎢⎢⎣
[
[[T32]]

t

[T31]
t

]
[0]3×3

[0]3×3

[
[[T32] · P(−γ) ]t

[T31]
t

]
⎤⎥⎥⎥⎥⎦ (11)
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where

[T32] =

√
2
3

[
1 − 1

2 −
√

3
2

0 − 1
2

√
3

2

]t

[T31] =
[

1√
2

1√
2

1√
2

]t
(12)

P(γ) =

[
cos(γ) sin(γ)

−sin(γ) cos(γ)

]
(13)

The electrical equation of the DSPMSM in this frame is as follows:

[T6]
t[VS] = RS[T6]

t[IS] + [T6]
t[LS]

d
dt
[IS] + [T6]

t[ES] (14)

By applying this transformation, the stator’s inductance matrix [Ls], the inductance
matrix in this frame can be deduced:[

Ls
′] = [T6]

t[Ls][T6] (15)

Thus, after the development of the calculation, we obtain the following:

[
Ls

′] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎣l f s +
3
2 Mss 0 0

0 l f s +
3
2 Mss 0

0 0 l f s

⎤⎥⎦
⎡⎢⎣

3
2 Mss 0 0

0 3
2 Mss 0

0 0 0

⎤⎥⎦
⎡⎢⎣

3
2 Mss 0 0

0 3
2 Mss 0

0 0 0

⎤⎥⎦
⎡⎢⎣l f s +

3
2 Mss 0 0

0 l f s +
3
2 Mss 0

0 0 l f s

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

The inductance matrix [Ls’] is not completely diagonal. In this new reference frame,
windings following the same axis, α or β, are coupled. Therefore, their mutual inductance
is non-zero and equal to 3Mss/2. However, since the axes α and β are orthogonal, the
mutual inductances between the windings following these axes are zero.

The electromagnetic torque in this frame is defined as follows:

Γ =
ea1iα1 + eβ1iβ1 + ea2iα2 + eβ2iβ2

Ω
(17)

It is important to notice that the transformation P(γ) applied to the second star and
defined above only introduces a rotation of the EMF vector and does not modify its module.
We then have the following:

eα1 = eα2 = eα = −√
3ωϕ f sin(θ)

eβ1 = eβ2 = eβ =
√

3ωϕ f cos(θ)
(18)

Then, the torque expression can be simplified and becomes as follows:

Γ =
ea(i α1 + iα2) + eβ

(
iβ1 + iβ2)

Ω
(19)

3.3. Electrical Dynamical Model in the (α β z1 z2 z3 z4)

Based in the next expression of the torque, a new change of variable based on the
sum of the currents is introduced. And in order to preserve the order of the system (6),
we introduce the difference in currents which will also have the advantage of eliminating
the coupling terms present in the inductance matrix. These current differences have no
effect on the torque, but this ensures the bijectivity of the transformation matrix from one
frame of reference to another. Thus, in order to write the electrical equations in the new
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frame, where the inductance matrix is diagonal, we also apply it to the voltage, current,
and EMF vectors.

From this, to transform the quantities of the (α1 β1 o1 α2 β2 o2) reference to this new
reference, called (α β z1 z2 z3 z4), the following normalized matrix is defined:⎡⎢⎢⎢⎢⎢⎢⎣

xα

xβ

xz1
xz2
xz3
xz′

⎤⎥⎥⎥⎥⎥⎥⎦ =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ −
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

xα1
xβ1
x01
xα2
xβ1
x02

⎤⎥⎥⎥⎥⎥⎥⎦ (20)

where x = v, i, and e.
By applying this transformation to the electrical equation in (α1 β1 o1 α2 β2 o2), the

new electrical equation is obtained.
Now, the electrical equation in this (αβz1z2 z3z4) frame can be easily deduced:⎧⎪⎪⎨⎪⎪⎩

vα = Rsia + Lc Mss
d
dt (ia)−

√
6ωϕ f sin(θ)

vβ = Rsiβ + Lc
d
dt
(
iβ

)
+
√

6ωϕ f cos(θ)

vzj = Rsizj + l f s
d
dt
(
izj

)
j = 1, 4

(21)

where
Lc = l f s + 3Mss (22)

Finally, the transformation matrix from the initial the (a1 b1 c1 a2 b2 c2) coordinate
system to the final (α β z1 z2 z3 z4) coordinate system is as follows:

[T]t =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦ −
⎡⎣1 0 0

0 1 0
0 0 1

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
[
[T32]

t

[T31]
t

]
[0]3×3

[0]3×3

[
[[T32] · P(−γ) ]t

[T31]
t

]
⎤⎥⎥⎥⎥⎦ (23)

In the case where the angular offset is γ = π
6 , this leads to the matrix T, as presented

in Equation (24):

[T] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1
3 −

√
1
11 −

√
1
11

0 −1
2

1
2√

1
6

√
1
6

√
1
6

1
2 − 1

2 0

−
√

1
11 −

√
1
11

√
1
3√

1
6

√
1
6

√
1
6√

1
3 −

√
1
11 −

√
1
11

0 − 1
2

1
2√

1
6

√
1
6

√
1
6

− 1
2

1
2 0√

1
11

√
1
11

√
1
11

−
√

1
6 −

√
1
6 −

√
1
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

3.4. Electrical Equation in Park’s Frame

By applying the classical Park transformation only to the ab component, the dynamical
electrical model in the (dqzj)j=1,4 frame can be established:⎧⎪⎨⎪⎩

Vd = Rid + Lc
d
dt id − ωLciq

Vq = Riq + Lc
d
dt iq + ωLcid +

√
6ωϕ f

Vzj = Rizj + l f s
d
dt izj j = 1, 4

(25)
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The electromagnetic torque equation is as follows:

Γ =
edid + eqiq

Ω
=

eqiq

Ω
= p

eqiq

ω
=

√
6pϕ f iq (26)

3.5. Mechanical Equation

The mechanical equation is classical, and it is given by the following relationship:

J
dΩ

dt
= Γ − Γl − fvΩ (27)

where J is the motor inertia, Γl is the load torque, and fv is the viscous friction.

3.6. Modeling Approach for Control Strategies

By combining the electrical Equations (25) and (26) with the mechanical Equation (27),
we obtain the model of the DSPMSM used to develop the control strategy, as depicted in
Equation (28): ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dΩ
dt = − Γl

J − fv
J Ω +

√
6pϕ f

J iq

diq
dt = −pΩid −

√
6ϕ f
L6

pΩ − R
Lc

iq +
1
Lc

Vq

did
dt = pΩiq − R

Lc
id +

1
Lc

Vd
dizj
dt = R

l f s
izj +

1
l f s

Vzj f or j = 1, . . . , 4

(28)

The DSPMSM model in (28) may be reorganized in the following manner:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dΩ
dt = f1 + g1iq

diq
dt = f2 + g2Vq
did
dt = f3 + g3Vd
dizj
dt = f4izj + g4Vzj f or j = 1, . . . , 4

(29)

where f1, . . . , f 4 and g1, . . . , g4 are unknown continuous nonlinear functions.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1 = − Γl
J − fv

J Ω, and g1 =

√
6pϕ f

J

f2 = −pΩid −
√

6ϕ f
Lc

pΩ − R
Lc

iq, g2 = g3 = 1
Lc

f3 = pΩiq − R
Lc

id

f4 = R
l f

, g4 = 1
l f

(30)

4. Nonlinear Control Design-Based Model for DSPMSM

In this section, a nonlinear control design-based model for DSPMSM is synthesized
in order to obtain good tracking performances for speed and torque; to achieve this goal,
some realistic assumptions are introduced.

Assumption 1. The reference signals Ω∗, i∗q , i∗d, and i∗zj, as well as their first derivatives, exhibit
boundedness and continuity.

Assumption 2. The rotor speed, and stator current are measurable greatness.

For the reference signals Ω*, i*q, i*d, and i*zj, we may define the tracking errors and their
corresponding filtered errors as follows:

ZΩ = Ω* − Ω; SΩ = ZΩ + λΩ

∫ t

0
ZΩ(τ)dτ; with ZΩ(0) = 0 (31)
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Ziq = iq
* − iq; Siq = Ziq + λiq

∫ t

0
Ziq(τ)dτ; with Ziq(0) = 0 (32)

Zid = id
* − id; Sid = Zid + λid

∫ t

0
Zid(τ)dτ; with Zid(0) = 0 (33)

. . . Zizj = izj
* − izj; Szj = Zizj + λzj

∫ t

0
Zzj(τ)dτ; with Zzj(0) = 0j = 1, . . . , 4 (34)

where λΩ, λiq , λid and λzj are positive design parameters.
The control objectives are i*

q = id = 0, iq = i*
q and izj = izj

* = 0 for j = 1, . . . , 4.
Step 1. Speed control.

Using Equation (28), the first filtered error dynamic of (31) is provided by the following:

.
SΩ =

.
Ω

* − f1 − g1i*q + λΩZΩ (35)

Let us select the Lyapunov function candidate as V1Ω = 1
2 S2

Ω, and its time derivative
is as follows:

.
V1Ω = SΩ

.
SΩ = SΩ

(
.

Ω
* − f1 − g1i*q + λΩZΩ

)
(36)

The control law, i∗q , is formulated as follows:

i*q =
1
g1

[
.

Ω
* − f1 + λΩZΩ

]
+ cΩSΩ (37)

where cΩ is the positive design parameter.
It is simply verifiable, using (9), that

.
V1Ω = −cΩS2

Ω < 0 (38)

Step 2. Currents control.

Select the candidate Lyapunov function with augmentation as follows:{
V2i =

1
2 S2

iq +
1
2 S2

id

V2 j =
1
2 S2

zj f or j = 1, . . . , 4
(39)

The filtered error dynamics of (4) to (6) are given by the following:

.
Siq =

di*q
dt

− f2 − g2Vq + λiq Ziq (40)

.
Sid =

di*d
dt

− f3 − g3Vd + λid Zid (41)

.
Szj =

di*zj

dt
− f4 − g4Vzj + λzjZzj for j = 1, . . . , 4 (42)

After that, the time derivative of (39) is written as follows:⎧⎪⎪⎨⎪⎪⎩
.

V2i = Siq

(
di*q
dt − f2 − g2Vq + λiqZiq

)
+ Sid

(
di*d
dt − f3 − g3Vd + λidZid

)
.

V2 j = Szj

(
di*zj
dt − f4 − g4Vzj + λzjZzj

)
f or j = 1, . . . , 4

(43)

The control laws Vq, Vd, and Vzj for j = 1, . . . , 4 are designed as follows:

Vq =
1
g2

[
di*q
dt

− f2 + λiqZiq

]
+ ciq Siq (44)
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Vd =
1
g3

[
di*d
dt

− f3 + λidZid

]
+ cid Sid (45)

Vzj =
1
g4

[
di*zj

dt
− f4 + λzjZzj

]
+ czjSzj for j = 1, . . . , 4 (46)

where ciq , cid , and czj for j = 1, . . . , 4 are positive design parameters.
Using (44), (45), and (46), it is simple to demonstrate that⎧⎨⎩

.
V2i = −ciq S2

iq − cid S2
id
< 0

.
Vzj = −czjS2

zj < 0
(47)

The control laws i*q, Vq, Vd, and Vzj for j = 1, . . . , 4 can be expressed as follows [25]:

i*q = I*
q + cΩSΩ (48)

Vq = Uq + ciq Siq (49)

Vd = Ud + cid Sid (50)

Vzj = Uzj + czjSzjfor j = 1, . . . , 4 (51)

where the ideal controls I*
q, Uq, Ud, and Uzj for j = 1, . . . , 4 are given by the following:

I*
q =

1
g1

[
.

Ω
* − f1 + λΩZΩ

]
(52)

Uq =
1
g2

[
di*q
dt

− f2 + λiqZiq

]
(53)

Ud =
1
g3

[
di*d
dt

− f3 + λidZid

]
(54)

Uzj =
1
g4

[
di*zj

dt
− f4 + λzjZzj

]
for j = 1, . . . , 4 (55)

Given that
.

V1Ω(t),
.

V2i(t), and
.

Vzj(t) for j = 1, . . . , 4 are negative semi-definite, it
follows that V1Ω(t) ≤ V1Ω(0), V2i(t) ≤ V2i(0) and Vzj(t) ≤ Vzj(0) for j = 1, . . . , 4.

Consequently, SΩ, Siq, Sid, and Szj for j = 1, . . . , 4 exhibit uniform boundedness. This
indicates that the closed-loop signals SΩ, Siq, Sid, and Szj for j = 1, . . . , 4, i*q, Vq, Vd, and
Vzj for j = 1, . . . , 4 are constrained within certain limits.

Given that V1Ω(0), V2i(0), and Vzj(0) for j = 1, . . . , 4 are limited, and V1Ω, V2i, and
Vzj for j = 1, . . . , 4 are non-increasing and limited from below, it can be concluded that
the lim

t→∞
V1Ω(t), lim

t→∞
V2i(t), and lim

t→∞
Vzj(t) for j = 1, . . . , 4 exist. By using Barbalat’s

Lemma [41], it can be deduced that
(
SΩ, Siq, Sid, Szj f or j = 1, . . . , 4

) → 0 as t → ∞ , in-
dicating the asymptotic convergence of filtered errors to zero.

The control laws I*
q, Uq, Ud, and Uzj for j = 1, . . . , 4 given in (52) to (55), and they

may be readily derived if the nonlinear functions f1, . . . , f4 and g1, . . . , g4 are known;
nevertheless, the specific forms of these nonlinear functions remain unidentified. Therefore,
seven adaptive fuzzy logic systems are used to directly approach these control laws.

5. Overview of the Fuzzy Logic System

A fuzzy logic system is composed of many components: a fuzzifier, a set of fuzzy
if–then rules, a fuzzy inference engine, and a defuzzifier. These components are shown in
Figure 4.
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Figure 4. Fuzzy logic system configuration.

The fuzzy inference engine uses fuzzy if–then rules to convert an input vector,
xT = [x1, x2, . . . , xn] ∈ Rn, to an output, f̂ ∈ Rn. The i-th fuzzy rule is expressed
as follows:

Rule (i): if x1 is Bi
1 and . . . and xn is Bi

n then f̂ is θi (56)

where Bi
1, Bi

2,. . .,Bi
n are fuzzy sets, and yi is the fuzzy output singleton in the ith rule. The

Singleton fuzzifier, product inference, and center-average defuzzifier produce the fuzzy
system’s output and may be written as:

f̂ (x) =
∑m

i=1 yi

(
∏n

l=1 μBi
l
(xl)

)
∑m

i=1

(
∏n

l=1 μBi
l
(xl)

) = ΘTψ(x) (57)

The degree of membership of xl to Bi
l is denoted as μBi

l
(xl). The number of fuzzy rules

is represented by m. The adjustable parameter vector denoted by ΘT = [θ1, θ2, . . . θm]
is formed by consequent parameters, and the vector ψT(x) = [ψ1, ψ2, . . . , ψm] with
the following:

ψi(x) =

(
∏n

l=1 μBi
l
(xl)

)
∑m

i=1

(
∏n

l=1 μBi
l
(xl)

) (58)

Referring to the fuzzy basis function (FBF), the assumption that the FBFs are chosen in
such a manner that there is always at least one active rule is made throughout the whole of
the work [10]; that is to say, ∑m

i=1

(
∏n

l=1 μBi
l
(xl)

)
> 0.

The fuzzy system (57) is often used in control systems. Based on the universal approx-
imation findings [42,43], the fuzzy system (16) has the capability to estimate any nonlinear
smooth function, f (x), inside a limited working region with a high level of accuracy.

It is crucial to specify the structure of the fuzzy system, including the relevant inputs,
the number of membership functions for each input, and the number of rules. Additionally,
it is important to accurately define the parameters of the membership functions in advance.
The subsequent parameters, Θ, are subsequently calculated by suitable adaption methods.

6. Model Free Control on Adaptive Fuzzy Control Design for DSPMSM

The goal is to develop an appropriate adaptive fuzzy control system for an uncertain
DSPMSM model in order to achieve the precise tracking of torque and speed. Fuzzy logic
systems are used to approximate the ideal controls, Uzj, for j = 1, . . . , 4„ Uq, and Ud.

Lemma 1 ([10]). For each real continuous function, f (x), defined on a compact subset, Φ f ⊂ Rn,
and for any random ε > 0, there exists a fuzzy logic system, such that we have the following:

sup
x∈Φ f

∣∣∣ f (x)− ΘTψ(x)
∣∣∣ ≤ ε (59)
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By utilizing Lemma 1 and referring to the demonstration provided in [10], it can be
concluded that fuzzy logic systems possess the ability to universally approximate any
smooth function inside a compact set. Given the approximation capacity of fuzzy logic
systems, it is reasonable to suppose that the control laws, Uzj, for j = 1, . . . , 4, I*

q, Uq, and
Ud may be estimated as follows:

Uzj
(
xj
∣∣Θj

)
= ΘT

j ψj
(
xj
)
for j = 1, . . . , 4 (60)

I∗q (x5|Θ5 ) = ΘT
5 ψ5(x5) (61)

Uq(x6|Θ6 ) = ΘT
6 ψ6(x6) (62)

Ud(x7|Θ7 ) = ΘT
7 ψ7(x7) (63)

As stated in [29], the optimal parameter vectors, Θ*
j , for j = 1, . . . , 4, Θ*

5, Θ*
6, and Θ*

7
are determined as follows:

Θ*
j = arg min

Θj∈Φθj

⎧⎨⎩ sup
xj∈Φxj

∣∣Ûzj
(
xj
∣∣Θj

)− Uzj(t)
∣∣⎫⎬⎭ for j = 1, . . . , 4 (64)

Θ*
5 = arg min

Θ5∈Φθ5

{
sup

x5∈Φx5

∣∣∣ Î*
q(x5|Θ5 )− I*

q(t)
∣∣∣} (65)

Θ*
6 = arg min

Θ6∈Φθ6

{
sup

x6∈Φx6

∣∣Ûq(x6|Θ6 )− Uq(t)
∣∣} (66)

Θ*
7 = arg min

Θ7∈Φθ7

{
sup

x7∈Φx7

∣∣Ûd(x7|Θ7 )− Ud(t)
∣∣} (67)

where Φxj , Φx5 , Φx6 , and Φx7 are compact set for xj, x5, x6, and x7. On the other hand, Φθj ,
Φθ5 , Φθ6 , and Φθ7 are compact set for θj, θ5, θ6, and θ7.

Furthermore, the minimal fuzzy approximation errors ε j, ε5, ε6, and ε7 are precisely
specified as follows:

ε j = Uzj(t)− Ûzj

(
xj

∣∣∣Θ*
j

)
for j = 1, . . . , 4 (68)

ε5 = I*
q(t)− Î*

q

(
x5

∣∣∣Θ*
5

)
(69)

ε6 = Uq(t)− Ûq

(
x6

∣∣∣Θ*
6

)
(70)

ε7 = Ud(t)− Ûd

(
x7

∣∣∣Θ*
7

)
(71)

The control laws, Uzj, for j = 1, . . . , 4, I*
q, Uq, and Ud may be reformulated as follows:

Uzj(t) = Ûzj

(
xj

∣∣∣Θ*
j

)
+ ε j

= Θ*T
j ψj

(
xj
)
+ ε j for j = 1, . . . , 4

(72)

I*
q(t) = Î*

q
(
x5

∣∣Θ*
5
)
+ ε5

= Θ*T
5 ψ5(x5) + ε5

(73)

Uq(t) = Ûq
(
x6

∣∣Θ*
6
)
+ ε6

= Θ*T
6 ψ6(x6) + ε6

(74)
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Ud(t) = Ûd
(
x7

∣∣Θ*
7
)
+ ε7

= Θ*T
7 ψ7(x7) + ε7

(75)

Let us suppose that the minimal fuzzy approximation errors ε j, ε5, ε6, and ε7 are,
respectively, bounded above by εj > 0, ε5 > 0, ε6 > 0, and ε7 > 0, meaning that

∣∣εj
∣∣ ≤ εj,

|ε5| ≤ ε5, |ε6| ≤ ε6, and |ε7| ≤ ε7.

7. Controller Design

The suggested controller in this section uses fuzzy adaptive backstepping and parame-
ter adaptive laws to ensure that all internal signals of the closed-loop system are uniformly
ultimately bounded and to minimize filtered errors given in (31) to (34).

In order to estimate the nonlinear control laws, Uzj(t), I*
q(t), Uq(t), and Ud(t), pre-

sented in (52) to (55), the fuzzy adaptive control terms in (76) to (79) are defined as
Ûzj(t), Î*

q(t), Ûq(t), and Ûd(t):
Ûzj(t) = ΘT

j ψj
(
xj
)

(76)

Î*
q(t) = ΘT

5 ψ5(x5) (77)

Ûq(t) = ΘT
6 ψ6(x6) (78)

Ûd(t) = ΘT
7 ψ7(x7) (79)

The selected input vectors for the used fuzzy systems are determined as follows:

xj =
[
izj, Zizj

]T
for j = 1, . . . , 4, x5 =

[
Ω, iq

]T , x6 =
[
Ω, iq, i*q, ZΩ

]T
, x6 =

[
id, iq

]T

The adaptive control laws that guarantee the stability of the closed-loop system may
be written as follows [28]:

Vzj(t) = Ûzj(t) + ε̂ jtanh

(
Szj

χj

)
+ czjSzj for j = 1, . . . , 4 (80)

i*q = Î*
q(t) + ε̂5tanh

(
SΩ

χ5

)
+ cΩSΩ (81)

Vq(t) = Ûq(t) + ε̂6tanh
(Siq

χ6

)
+ ciq Siq (82)

Vd(t) = Ûd(t) + ε̂7tanh
(

Sid
χ7

)
+ cid Sid (83)

where χj, χ5, χ6, and χ7 are designed positive constants.
Then, ε̂ j, ε̂5, ε̂6, and ε̂7 are adjusted as follows:

.
ε̂j = ηjSzjtanh

(
Szj

χj

)
− αj ε̂ j (84)

.
ε̂5 = η5SΩtanh

(
SΩ

χ5

)
− α5 ε̂5 (85)

.
ε̂6 = η6SΩtanh

(Siq

χ6

)
− α6 ε̂6 (86)

.
ε̂7 = η7SΩtanh

(
Sid
χ7

)
− α7 ε̂7 (87)

where ηj, η5, η6, η7, αj, α5, α6, and α7 are designed positive constants.
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The vectors Θj, Θ5, Θ6, and Θ7 represent the adaptable parameters of the fuzzy logic
system and are defined as follows:

.
Θj = γjSzjψj

(
xj
)− σj

.
Θj (88)

.
Θ5 = γ5SΩψ5(x5)− σ5

.
Θ5 (89)

.
Θ6 = γ6Siq ψ6(x6)− σ6

.
Θ6 (90)

.
Θ7 = γ7Sid ψ7(x7)− σ7

.
Θ7 (91)

By replacing (76) in (80), (77) in (81), (78) in (82), and (79) in (83), we yield the following:

Vzj(t) = ΘT
j ψj

(
xj
)
+ ε̂ jtanh

(
Szj

χj

)
+ czjSzj for j = 1, . . . , 4 (92)

i*q = ΘT
5 ψ5(x5) + ε̂5tanh

(
SΩ

χ5

)
+ cΩSΩ (93)

Uq(t) = ΘT
6 ψ6(x6) + ε̂6tanh

(Siq

χ6

)
+ ciq Siq (94)

Ud(t) = ΘT
7 ψ7(x7) + ε̂7tanh

(
Sid
χ7

)
+ cid Sid (95)

8. Stability Demonstration Using Lyapunov Theory

Given the following candidate Lyapunov function,

V = 1
2

4
∑

j=1

(
S2

zj +
1
γj

∼
Θ

T

j
∼
Θj +

1
ηj

∼
ε

T
j
∼
ε j

)
+ 1

2

(
S2

Ω + 1
γ5

∼
Θ

T

5
∼
Θ5 +

1
η5

∼
ε

T
5
∼
ε 5

)
+

1
2

(
S2

iq +
1

γ6

∼
Θ

T

6
∼
Θ6 +

1
η6

∼
ε

T
6
∼
ε 6

)
+ 1

2

(
S2

id
+ 1

γ7

∼
Θ

T

7
∼
Θ7 +

1
η7

∼
ε

T
7
∼
ε 7

) (96)

where
∼
Θj,

∼
Θ5,

∼
Θ6, and

∼
Θ7 are the approximation errors, which are given as follows:

∼
Θ

T

j = Θj
T* − Θj

T (97)

∼
Θ

T

5 = Θ5
T* − Θ5

T (98)

∼
Θ

T

6 = Θ6
T* − Θ6

T (99)

∼
Θ

T

7 = Θ7
T* − Θ7

T (100)
∼
ε j,

∼
ε 5,

∼
ε 6, and

∼
ε 7 are the approximation errors expressed in (101) to (104), with ε*

j, ε*
5, ε*

6,

and ε*
7 serving as the optimal parameters; and ε̂ j, ε̂5, ε̂6, and ε̂7 are the estimate of ε*

j, ε*
5, ε*

6,

and ε*
7, respectively.

∼
ε j = ε*

j − ε̂ j (101)

∼
ε 5 = ε*

5 − ε̂5 (102)
∼
ε 6 = ε*

6 − ε̂6 (103)
∼
ε 7 = ε*

7 − ε̂7 (104)

The temporal derivative of V is computed as follows:
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.
V =

4
∑

j=1

(
Szj

{
Uzj − Vzj

}
+ 1

γj

∼
Θ

T

j

.∼
Θj +

1
ηj

∼
ε

T
j

.∼
ε j

)
+

(
SΩ

{
I*
q − i*q

}
+ 1

γ5

∼
Θ

T

5

.∼
Θ5 +

1
η5

∼
ε

T
5

.∼
ε 5

)
+(

Siq
{

Uq − Vq
}
+ 1

γ6

∼
Θ

T

6

.∼
Θ6 +

1
η6

∼
ε

T
6

.∼
ε 6

)
+

(
Sid{Ud − Vd}+ 1

γ7

∼
Θ

T

7

.∼
Θ7 +

1
η7

∼
ε

T
7

.∼
ε 7

) (105)

By introducing (72) through (75) and (92) through (95) in (105), we can yield the following:

.
V =

4
∑

j=1

(
Szj

{
ΘT*

j ψj
(
xj
)
+ ε j − ΘT

j ψj
(
xj
)− ε̂ jtanh

( Szj
χj

)
− czjSzj

}
+ 1

γj

∼
Θ

T

j

.∼
Θj +

1
ηj

∼
ε

T
j

.∼
ε j

)
+(

SΩ

{
ΘT*

5 ψ5(x5) + ε5 − ΘT
5 ψ5(x5)− ε̂5tanh

(
SΩ
χ5

)
− cΩSΩ

}
+ 1

γ5

∼
Θ

T

5

.∼
Θ5 +

1
η5

∼
ε

T
5

.∼
ε 5

)
+(

Siq

{
ΘT*

6 ψ6(x6) + ε6 − ΘT
6 ψ6(x6)− ε̂6tanh

(
Siq
χ6

)
− ciq Siq

}
+ 1

γ6

∼
Θ

T

6

.∼
Θ6 +

1
η6

∼
ε

T
6

.∼
ε 6

)
+(

Sid

{
ΘT*

7 ψ7(x7) + ε7 − ΘT
7 ψ7(x7)− ε̂7tanh

( Sid
χ7

)
− cid Sid

}
+ 1

γ7

∼
Θ

T

7

.∼
Θ7 +

1
η7

∼
ε

T
7

.∼
ε 7

)
(106)

Given that the optimal parameters Θj
T*, Θ5

T*, Θ6
T*, Θ7

T*, ε*
j, ε*

5, ε*
6, and ε*

7 vary slowly

over time,
(

.
Θj

T*
=

.
Θ5

T*
=

.
Θ6

T*
=

.
Θ7

T*
= 0

)
and

( .
ε

*
m =

.
ε

*
5 =

.
ε

*
6 =

.
ε

*
7 = 0

)
, the temporal

derivative of the approximation errors may be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.∼
Θ

T

j = −
.

Θj
T

.∼
Θ

T

5 = −
.

Θ5
T

.∼
Θ

T

6 = −
.

Θ6
T

.∼
Θ

T

7 = −
.

Θ7
T

(107)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.∼
ε j = − .

ε̂j
.∼
ε 5 = − .

ε̂5
.∼
ε 6 = − .

ε̂6
.∼
ε 6 = − .

ε̂6

(108)

By substituting (107) and (108) into (106), we obtain the following:

.
V =

4
∑

j=1

(
−czjS2

zj + Szj
∼
Θ

T

j ψj

(
xj

)
+ Szj

{
ε j − ε̂ jtanh

(
Szj
χj

)}
− 1

γj

∼
Θ

T

j
.

Θj +
1
ηj

∼
ε

T
j

.
ε̂j

)
+(

−cΩS2
Ω + SΩ

∼
Θ

T

5 ψ5(x5) + SΩ

{
ε5 − ε̂5tanh

(
SΩ
χ5

)}
− 1

γ5

∼
Θ

T

5
.

Θ5 +
1
η5

∼
ε

T
5

.
ε̂5

)
+

(
−ciq S2

iq
+ Siq

∼
Θ

T

6 ψ6(x6)+

Siq

{
ε6 − ε̂6tanh

( Siq
χ6

)}
− 1

γ6

∼
Θ

T

6
.

Θ6 +
1
η6

∼
ε

T
6

.
ε̂6) +

⎛⎜⎝ Sid

{
ΘT*

7 ψ7(x7) + ε7 − ΘT
7 ψ7(x7)− ε̂7tanh

( Sid
χ7

)
− cid

Sid

}
+ 1

γ7

∼
Θ

T

7

.∼
Θ7 +

1
η7

∼
ε

T
7

.∼
ε 7

⎞⎟⎠
(109)
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.
V ≤ 4

∑
j=1

(
−czjS2

zj +
1
γj

∼
Θ

T

j

{
γjSzjψj

(
xj
)− .

Θj

}
+

∣∣Szj
∣∣ε*

j − Szj ε̂ jtanh
( Szj

χj

)
+ 1

ηj

∼
ε j

{
ηjSzjtanh

( Szj
χj

)
− .

ε̂j

}
− ε*

jSzjtanh
( Szj

χj

)
+ ε̂ jSzjtanh

( Szj
χj

))
+

(
−cΩS2

Ω + 1
γ5

∼
Θ

T

5

{
γ5SΩψ5(x5)−

.
Θ5

}
+ |SΩ|ε*

5

−SΩε̂5tanh
(

SΩ
χ5

)
+ 1

η5

∼
ε 5

{
η5SΩtanh

(
SΩ
χ5

)
− .

ε̂5

}
− ε*

5SΩtanh
(

SΩ
χ5

)
+ ε̂5SΩtanh

(
SΩ
χ5

))
+

(
−ciq S2

iq +
1

γ6

∼
Θ

T

6

{
γ6Siq ψ6(x6)−

.
Θ6

}
+

∣∣∣Siq

∣∣∣ε*
6 − Siq ε̂6tanh

(
Siq
χ6

)
+ 1

η6

∼
ε 6

{
η6Siq tanh

(
Siq
χ6

)
− .

ε̂6

}
− ε*

6Siq tanh
(

Siq
χ6

)
+ ε̂6Siq tanh

(
Siq
χ5

))
+

(
−cidS2

id +
1

γ7

∼
Θ

T

7

{
γ7Sid ψ7(x7)−

.
Θ7

}
+

∣∣Sid

∣∣ε*
7 − Sid ε̂7tanh

( Sid
χ7

)
+ 1

η7

∼
ε 7

{
η7Sid tanh

( Sid
χ7

)
− .

ε̂7

}
− ε*

7Sid tanh
( Sid

χ7

)
+ ε̂7Sid tanh

( Sid
χ7

))

(110)

Lemma 2 ([43]). The hyperbolic tangent function fulfils the following condition for all given values
of x ∈ R and χ > 0:

f (x) = |x| − xtanh
(

x
χ

)
≤ ζχ (111)

where ζ = 0.2785.

By replacing the adaptive rules (84) through (91) into Equation (110) and using Lemma
2, we obtain the following:

.
V ≤ 4

∑
j=1

(
−czjS2

zj + ε*
jζ +

σj
γj

∼
Θ

T

j Θj +
αj
ηj

∼
ε j ε̂ j

)
+

(
−cΩS2

Ω + ε*
5ζ + σ5

γ5

∼
Θ

T

5 Θ5 +
α5
η5

∼
ε 5 ε̂5

)
+(

−ciq S2
iq + ε*

6ζ + σ6
γ6

∼
Θ

T

6 Θ6 +
α6
η6

∼
ε 6 ε̂6

)
+

(
−cid S2

id
+ ε*

7ζ + σ7
γ7

∼
Θ

T

7 Θ7 +
α7
η7

∼
ε 7 ε̂7

) (112)

The following inequalities are derived by replacing Young’s inequality for the terms

σj

γj

∼
Θ

T

j Θj,
σ5

γ5

∼
Θ

T

5 Θ5,
σ6

γ6

∼
Θ

T

6 Θ6,
σ7

γ7

∼
Θ

T

7 Θ7,
αj

ηj

∼
ε j ε̂ j,

α5

η5

∼
ε 5 ε̂5,

α6

η6

∼
ε 6 ε̂6, and

α7

η7

∼
ε 7 ε̂7 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σj
γj

∼
Θ

T

j Θj ≤ − σj
2γj

∼
Θ

T

j
∼
Θj +

σj
2γj

∼
Θ

T*

j
∼
Θ

*

j

σ5
γ5

∼
Θ

T

5 Θ5 ≤ − σ5
2γ5

∼
Θ

T

5
∼
Θ5 +

σ5
2γ5

∼
Θ

T*

5
∼
Θ

*

5

σ6
γ6

∼
Θ

T

6 Θ6 ≤ − σ6
2γ6

∼
Θ

T

6
∼
Θ6 +

σ6
2γ6

∼
Θ

T*

6
∼
Θ

*

6

σ7
γ7

∼
Θ

T

7 Θ7 ≤ − σ7
2γ7

∼
Θ

T

7
∼
Θ7 +

σ7
2γ7

∼
Θ

T*

7
∼
Θ

*

7

(113)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj
ηj

∼
ε j ε̂ j ≤ − αj

2ηj
∼∼

ε
2
j +

αj
2ηj

∣∣∣ε*
j

∣∣∣2
α5
η5

∼
ε 5 ε̂5 ≤ − α5

2η5

∼
ε

2
5 +

α5
2η5

∣∣ε*
5

∣∣2
α6
η6

∼
ε 6 ε̂6 ≤ − α6

2η6
∼∼

ε
2
6 +

α6
2η6

∣∣ε*
6

∣∣2
α7
η7

∼
ε 7 ε̂7 ≤ − α7

2η7
∼∼

ε
2
7 +

α7
2η7

∣∣ε*
7

∣∣2
(114)

Consequently, we may restructure (112) in the following manner:
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.
V ≤ 4

∑
j=1

(
−czjS2

zj −
σj

2γj

∼
Θ

T

j
∼
Θj +

σj
2γj

ΘT*
j Θ*

j −
αj

2ηj
∼∼

ε
2
j +

αj
2ηj

∣∣∣ε*
j

∣∣∣2 + ε*
jζ

)
+

(
−cΩS2

Ω − σ5
2γ5

∼
Θ

T

5
∼
Θ5 +

σ5
2γ5

ΘT*
5 Θ*

5

− α5
2η5

∼∼
ε

2
5 +

α5
2η5

∣∣ε*
5

∣∣2 + ε*
5ζ

)
+

(
−ciq S2

iq −
σ6

2γ6

∼
Θ

T

6
∼
Θ6 +

σ6
2γ6

ΘT*
6 Θ*

6 − α6
2η6

∼∼
ε

2
6 +

α6
2η6

∣∣ε*
6

∣∣2 + ε*
6ζ

)
+

(
−cid S2

id
− σ7

2γ7

∼
Θ

T

7
∼
Θ7 +

σ7
2γ7

ΘT*
7 Θ*

7 − α7
2η7

∼∼
ε

2
7 +

α7
2η7

∣∣ε*
7

∣∣2 + ε*
7ζ

)
(115)

Let us define

ϑ = min
{

σj, αj, 2czj, σ5, α5, 2cΩ, σ6, α6, 2ciq , σ7, α7, 2cid

}
(116)

Then, (115) is transformed into the following:

.
V ≤ −ϑV + ρ (117)

where

ρ =
4
∑

j=1
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2γj
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j Θ*
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6
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)
+
(

σ7
2γ7

ΘT*
7 Θ*

7 +
α7

2η7

∣∣ε*
7

∣∣2 + ε*
7ζ

) (118)

We can now establish the following theorem, which demonstrates our primary finding
in this study.

Theorem 1. Consider the six-phase PMSM nonlinear system in (28). Assuming that the previously
specified Assumption 1, Assumption 2, and Lemma 1 are correct, the control laws described by
Equations (92) through (95), which use adaptive fuzzy logic system, in conjunction with the
parameter adaption law detailed in Equations (84) through (91), guarantee that all signals inside
the closed-loop system demonstrate uniformly ultimately bounded (UUB) stability. Additionally,
the output tracking error is shown to converge to a narrow area in close proximity to the origin.
Furthermore, the developed controller has the ability to maintain stability.

Proof. The integral of (117) over [0, t] yields the following result:

V(t) ≤ V(0) e−ϑt +
ρ

ϑ
(119)

The inequalities represented by (117) suggest that V ≥ ρ
ϑ ,

.
V ≤ 0. Therefore, by utiliz-

ing the Lyapunov theorem, the signals SΩ, Siq , Sid , Szj,
∼
Θj,

∼
Θ5,

∼
Θ6,

∼
Θ7,

∼
ε j,

∼
ε 5,

∼
ε 6,

∼
ε 7, Vzj, i*q, Vq,

and Vd in the closed-loop systems are bounded. Furthermore, it can be shown that, for any

≥
√

ρ
ϑ , there exists a constant T > 0, such that |ZΩ| ≤ ,

∣∣∣Ziq

∣∣∣ ≤ ,
∣∣Zid

∣∣ ≤ , and∣∣∣Zizj

∣∣∣ ≤ for all t ≥ T.
To attain convergence of the tracking error to a small vicinity around zero and minimize√

ρ
ϑ to the desired extent, it is imperative to select the design parameters ηj,

η5, η6, η7, γj, γ5, γ6, γ7, χj, χ5, χ6, χ7, αj, α5, α6, α7, σj, σ5, σ6, σ7, czj, cΩ, ciq , and cid judiciously.

Therefore, it is evident that lim
t→∞

|ZΩ| ≤ , lim
t→∞

∣∣∣Ziq

∣∣∣ ≤ , lim
t→∞

∣∣Zid

∣∣ ≤ , and lim
t→∞

∣∣Zizj
∣∣ ≤

The proof is now concluded. �
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The modification terms αj, α5, α6, α7, σj, σ5, σ6, and σ7 were introduced in the adaptive
laws (84) through (91) in order to prevent parameter drift from approximation errors. After
modifying adaptive laws, the time derivative of the Lyapunov function utilized for analysis
turns negative when parameter estimations surpass specified limitations [44].

Once the control law was established and the system stability was theoretically con-
firmed, we proposed a system structure for study, as illustrated in Figure 5, incorporating
the developed control law, to subject the system to a series of tests.

Figure 5. Control architecture of the DSPMSM.

Remark 1. A comparative analysis is carried out in Table 1 to provide the greatest visibility and
demonstrate the efficacy of the suggested control technique in relation to other relevant works.

Table 1. Control techniques comparison.

Our Control Scheme Other Approaches Corresponding Papers

Uncertainty information is not required since the controller
updates online to counteract the impact of uncertainty. Information on uncertainty models is required. [30–34]

There is no need for an approximation for disturbance since it
was addressed conceptually by mathematical procedures,
saving the time required for the approximation.

Disturbance was characterized as an external
neutral stable system, or it was estimated. The
authors considered that the time derivative of
the disturbances must be limited.

[35–37]

Control gain is treated as an unknown nonlinear function.
The control gain is a straightforward constant,
which restricts the scope of the systems that
are taken into consideration.

[38,39]

The closed-loop system exhibits uniform ultimate bounded
(UUB) stability, and the tracking error converges exponentially
to the origin. This is achieved through the accurate
approximation using fuzzy systems and the robust control term
based on the tangent hyperbolic function, which effectively
handles the residual terms from the fuzzy systems.

The closed-loop system exhibits stability, with
the tracking error converging exponentially to
a limited set. This behavior is attributed to the
presence of residue terms resulting from
the approximation.

[35,36,40]
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9. Real Times Validation Results

To validate and assess the robustness of our control law, which consists of an adaptive
fuzzy logic, within the framework of our research in developing control systems for the
DSPMSM, we chose to use the RT-LAB platform from OPAL-RT due to its advanced
features and effective integration of the hardware-in-the-loop (HIL) approach (Figure 6).
By adopting this approach, we were able to combine our complex simulation models with
real hardware components, allowing us to validate our designs under conditions close to
reality. To demonstrate the robustness of our control, we chose to subject the system to a
series of tests. Initially, we varied the control variables, namely the electromagnetic torque
and the rotational speed. Subsequently, we made variations in the electrical parameters
of the machine during its operation, including doubling the value of the stator resistance
and halving the machine’s inductance. Finally, we adjusted the mechanical parameters of
the machine, such as inertia and viscous friction, by doubling their nominal values. The
nominal parameters of the machine are provided in Table 2.

Figure 6. Test bench used for validation test.

Table 2. Machine parameters.

Parameters Values

Stator resistance Rs (Ohm) 2
Leakage inductance l f s (H) 0.562 × 10−3

Maximum mutual inductance between two stator’s windings Mss (H) 3.373 × 10−3

Rotor flux (Wb) 0.42
Moment of inertia (kg·m2) 0.025

Numbers of pole pairs 6
Coefficient of viscose friction (N·m·s/rd) 0.01

The tests carried out to confirm the robustness of the developed control method took
place in three following scenarios:

� Scenario 1: variation in operating references;
� Scenario 2: variation in electrical parameters of the DSPMSM;
� Scenario 3: variation in mechanical parameters of the DSPMSM.

9.1. Variation in Operating References

In this section, the references for both the torque and speed of the machine vary
over time, and we will examine the behavior of the adopted control approach. At the
beginning of operation, between t = 0 and t = 3 s, the applied speed reference is 300 rpm,
and from 3 s onwards, the reference transitions to its nominal value of 400 rpm. Similarly,
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the electromagnetic torque reference is 60 Nm, and from t = 6 s onwards, the reference
transitions to its nominal value of 93.5 Nm.

Figure 7a illustrates the curves of torque and velocity during a variation in their
respective setpoints. The setpoint for the load torque is applied at t = 6 s, while that for
velocity is set at t = 3 s. It is observed that the torque rigorously follows the setpoint with
almost no oscillation. However, an undershoot is noticed during the velocity setpoint
change. The integrated fuzzy logic controller quickly brings the system back to its setpoint
within just 0.5 s. As for velocity, it reaches its reference after slight oscillations during
startup and load torque setpoint changes, but these are promptly corrected by the controller
in place, demonstrating high dynamic performance.

 

Figure 7. (a) Speed and torque curves, and (b) id and iq current curves for operating references variation.

The curves obtained during current regulation in the (d,q,o) plane are presented in
Figure 7b. The id current precisely tracks its setpoint, maintained at zero in this selected
control mode. Furthermore, the iq current also follows its reference, calculated based on
the velocity through torque.

The Figure 8 illustrates the variation in the current in the first phase of the first star,
as well as the first phase of the second star, with a zoom-in look at the current behavior at
the moment when the electromagnetic torque changes from 60 Nm to 93 Nm. It should be
noted that, at this moment, the current amplitudes increase from 7 A to 10 A.

 
Figure 8. ia1 current curves and ia2 current curves for operating references variation.

209



Mathematics 2024, 12, 1451

The currents of the first phase (ia1 and ia2) for the two stator windings of the two
stars of the machine are illustrated in Figure 9a. In Figure 9b, the currents of the first phase
(ia1 and ia2) and those of the second phase (ib1 and ib2) of the two windings of the two
stars of the machine are presented. These current curves exhibit a sinusoidal shape, with a
30◦ phase shift between the currents of the two stars, in accordance with the electrical and
mechanical angle of the machine. However, due to the limitations of the oscilloscope used,
only the currents of a few phases are represented, as it has only four acquisition channels.

 

Figure 9. (a) ia1 current curves and ia2 current curves; (b) ia1, ia2, ib1, and ib2 current curves for
operating references variation.

9.2. Variation in Electrical Parameters of DSPMSM

Now, we address the scenario where the electrical parameters of the machine vary
(resistance and inductance). We subjected our system to the test by increasing the resistance
value from its nominal value, which was 2 ohms until t = 3 s, to 4 ohms, representing a
100% increase. Then, starting from t=6 s, we reduced the machine’s inductance value by
50% compared to its nominal value, which was held constant between t = 0 and t = 6 s. The
curves depicting the physical quantities of the machine are shown in the following figures:

In this second case study, which presents the parametric variations in the electrical
quantities of the machine, notably the resistance and inductance values, altered by several
possible reasons, we can cite some of them: temperature variation within the machine;
aging effects; mechanical effects, such as vibrations and shocks; and wear of the stator
windings of the machine, as well as the presence of contaminants, can also influence the
electrical properties of the materials of the machine, among other things.

Despite the presence of these parametric disturbances of the machine, we observe
that the robustness and performance of our system are maintained thanks to the new
control technique proposed in this article, which consists of an adaptive fuzzy controller,
allowing us to find and readjust the parameters of the regulator to maintain the system at
its optimal operating point. These performances are confirmed by the curves presented in
Figures 10 and 11. In Figure 10a, the speed shows a slight increase in the overshoot value
during startup, but the controller manages to bring the speed value back to its setpoint.
Additionally, for the load torque and the id and iq currents, represented in Figure 10b,
the setpoints are well followed and respected. The robustness of the deployed adaptive
fuzzy controller is confirmed by the quality of the stator currents of the machine, which are
sinusoidal in shape, like those obtained in the first case, as shown in Figure 11a,b.
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Figure 10. (a) Speed and torque curves, and (b) id and iq current curves for electrical parameters variation.

 

Figure 11. (a) ia1 current curves and ia2 current curves; and (b) ia1, ia2, ib1, and ib2 current curves
for electrical parameters variation.

9.3. Variation in Mechanical Parameters of DSPMSM

In this new series of tests, we explore variations in the mechanical parameters of the
machine, namely inertia and viscous friction. These variations may be due to various
factors, such as a coupling issue leading to an increase in the system’s inertia, or problems
in the machine’s bearings, resulting in a significant increase in friction. In this section, we
examine the impact of these variations by increasing the inertia value to twice its nominal
value at t = 3 s, while the friction, initially at its nominal value, is doubled at t = 6 s. The
resulting curves from these tests are presented below.

The last case studied concerns the parametric variation in the mechanical quantities of
the machine, which may be disturbed by factors such as the mechanical load fluctuations;
wear of internal parts, such as bearings and rollers; or lubrication issues with mechanical
components. Once again, the robustness of our adaptive fuzzy controller is validated by
the maintenance of the machine’s performance despite these disturbances.

Figure 12a shows that the load torque is not affected by the parametric variations,
and the id and iq currents, depicted in Figure 12b, also perfectly follow their setpoints.
However, a slight increase in the speed overshoot during startup is observed, but the
setpoint is quickly reached and followed. The curves in Figure 13a represent two currents:
one corresponding to the first phase of the first star, and the other to the first phase of the
second star. As for the curves in Figure 13b, they illustrate the currents of the first and
second phases of the first star, as well as those of the first and second phases of the second
star. These currents maintain a sinusoidal shape, with a peak value close to 10 amperes.
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Figure 12. (a) Speed and torque curves, and (b) id and iq current curves for mechanical parameters variation.

 

Figure 13. (a) ia1 current curves and ia2 current curves; and (b) ia1, ia2, ib1 and ib2 current curves for
mechanical parameters variation.

To make a quantitative comparison between the proposed control method and the
controllers proposed in Refs. [30,33], three well-known performance criteria are used. These
are the integral of square error (ISE), integral of the absolute value of the error (IAE), and
integral of the time multiplied by the absolute value of the error (ITAE). The obtained
values for each criterion are summarized in Table 3. It is noted that the proposed control
method offers the smallest values control of ISE, IAE, and ITAE as compared to the other
two controllers. Hence, it is evident that the suggested controller is optimal and exhibits
superior tracking of desired values compared to the other two controllers.

Table 3. Performance indices: ISE, IAE, and ITAE for speed and torque controls.

Control Method

ISE IAE ITAE

Speed
Control

Torque
Control

Speed
Control

Torque
Control

Speed
Control

Torque
Control

Proposed control in [33] 1.988 2.141 × 10−2 4.387 0.719 3.302 2.821

Proposed control in [30] 1.275 9.541 × 10−3 3.416 0.517 2.782 1.365

Proposed control method 0.813 5.771 × 10−3 2.138 0.365 1.096 0.219
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10. Conclusions

In this paper, we present a robust fuzzy adaptive control strategy for a DSPMSM,
marking a significant advancement in the field of electromechanical system control amidst
external disturbances and parametric uncertainties. The methodology developed in this
study provides a precise and segmented representation of the system dynamics of the
double-star permanent magnet synchronous machine (DSPMSM), achieved through a qual-
itative analysis and quantitative comparison with recent methods found in the literature.
Our qualitative analysis highlighted the characteristics and advantages of our proposed
approach, while the quantitative comparison demonstrated its performance and originality.
Moreover, by proposing a model of the machine composed of two decoupled sub-models,
the first being equivalent to that of a three-phase machine in the Park reference frame, and
the second being equivalent to a fourth-order passive circuit, this facilitates the design and
implementation of effective control strategies for these machines. Utilizing the Lyapunov
function, we successfully developed the algorithm and adaptive parameter law, enabling
the reduction of disturbances and parametric uncertainties on the DSPMSM, while main-
taining tracking control efficiency and bounded stability in the global closed-loop system.
Unlike active disturbance-rejection designs, our suggested technique does not rely on prior
knowledge of external disturbances or a mathematical model, thus allowing it to operate
optimally even in adverse conditions caused by model errors and nonlinearities. The
simulation results consistently demonstrated a high tracking performance, underscoring
the robustness and effectiveness of our proposed control method. In the future, our research
will focus on improving the performance analysis in more complex scenarios and exploring
opportunities to integrate this methodology into various domains of electrical engineering
and industrial automation.
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