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Editorial

The Application of Machine Learning in Geotechnical
Engineering

Wei Gao

Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and
Transportation Engineering, Hohai University, Nanjing 210098, China; wgaowh@163.com

1. Introduction

Geotechnical engineering is civil engineering constructed in rock and soil and includes
three main types: underground, foundation, and slope engineering. Because rock and soil
are typical natural geological bodies, their mechanical properties and internal structures
are very complex [1]. They are characterized by complicated physical, mechanical, and
chemical behaviors, and their structure is a three-phased system which changes depending
on water content and environmental conditions in a highly non-linear manner. Moreover,
rock and soil are anisotropic and heterogeneous by nature owing to differences in their
origins and formation processes. Therefore, most geotechnical engineering problems in-
volve the coupling of multiple fields and multiple phases; generally, they cannot be solved
easily. Moreover, unsafe geotechnical engineering will bring about serious disasters, such
as landslides and surface subsidence, which cannot be solved well by traditional (e.g.,
theoretical, numerical, and experimental) methods. However, the development of artificial
intelligence has supported the development of better solutions to geotechnical engineering
problems. Machine learning methods have been applied widely to this end and have
gained prominence in current research trends [2,3]. The first study to use machine learning
in geotechnical engineering was conducted by Stanford in 1983 [4] and addressed the po-
tential applications of expert systems in the domain of slope engineering specifically. From
that moment on, machine learning methods have been gaining increasingly widespread
use in the field of geotechnical engineering. Because geomechanics are the foundation of
geotechnical engineering, nowadays, there are numerous studies on the applications of
machine learning methods in geomechanics. These include two main aspects: geotechnical
parameters and geotechnical constitutive models [5,6]. Numerous studies have also ex-
plored using machine learning methods in the three main types of geotechnical engineering:
underground engineering [7,8], foundation engineering [9], and slope engineering [10].
Moreover, machine learning methods have been used to solve specific geotechnical en-
gineering problems, including soil–structure interactions [11] and seepage of dams [12].
In addition, machine learning methods have been employed to predict geotechnical engi-
neering disasters, such as ground surface settlements [13], landslides [14], rock bursts [15],
etc. Currently, machine learning methods have become prevalent in the development of
boring machines for underground engineering: the construction of integrated management
systems for tunnel boring machine operations [16], the safety prediction of shield tunnel
construction [17], the prediction of shield attitudes [18], and main drive torque estimation
in shield tunnelling [19] are some of the areas in which they have proven useful. There-
fore, nowadays, machine learning methods have been applied in most, if not all, fields of
geotechnical engineering and geomechanics. Almost all types of machine learning methods
have been employed in this field; examples include expert systems, fuzzy systems, artificial
neural networks, deep learning methods, swarm intelligence, evolutionary algorithms, big
data analysis, biological computation, nature-inspired computation, support vector ma-
chine, and Gaussian process regression. Out of these, the use of artificial neural networks
has been the most extensive.
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This Special Issue presents new applications of machine learning methods in the
field of geotechnical engineering, from planning and design to construction. It contains
19 articles, which I will briefly describe in the next section. It is not the purpose of this
Editorial to elaborate on each of the papers, but rather to encourage the reader to explore
them on their own.

2. An Overview of the Published Papers

In the study by Elsawy et al. (contribution 1), the undrained shear strength of sensitive
alluvial soft clay located in northern areas of the Nile River, Egypt, is determined using the
machine learning approach. This analysis is key to assessing the stability of foundation en-
gineering in this type of soil. Generally, the main method to determine the undrained shear
strength of soil is through laboratory tests. However, this is costly and time-consuming.
Moreover, extracting undisturbed samples of sensitive clay from construction sites it ex-
tremely difficult. Therefore, based on a dataset of 111 geotechnical testing points from
laboratory and field tests, Elsawy et al. use several machine learning models (including
linear regression, Gaussian process regression, regression trees, ensembles of regression
trees, and support vector machine) to determine the undrained shear strength of sensitive
alluvial soft clay according to the soil’s key features, which include water content, liquid
limit, dry unit weight, plasticity index, consistency index, void ratio, specific gravity, and
pocket penetration shear. The performance of each machine learning model is assessed
through its coefficient of determination. The results show that the most accurate model is
the support vector regression model.

The study by Zheng et al. (contribution 2) is focused on the back analysis of sur-
rounding rock parameters of underground engineering. For the construction of large-span
arch cover metro stations, the determination of the surrounding rock parameters is very
important. In this paper, to obtain the surrounding rock parameters of Shikui Road sta-
tion, located on Dalian Metro Line Five, an intelligent back analysis method, called the
Gaussian process differential evolution co-optimization algorithm (GP-DE algorithm), is
proposed. In this method, based on the data obtained by the FLAC3D finite element model
using the orthogonal scheme for numerical results, the relationship between monitoring
data (displacement and stress) and the surrounding rock parameters is constructed by the
Gaussian process model. Based on data measured in real-life engineering, through the
optimization of the differential evolution algorithm, suitable surrounding rock parameters
can be obtained. Finally, by using the forward calculation of FLAC3D, the accuracy of
the inversion parameters is verified. The results show that the forward calculation results
obtained using the inversed parameters are in good agreement with those obtained in real
life, and the accuracy of this back analysis method is very high.

The third article in this Special Issue is also focused on the back analysis of geomaterial
mechanical parameters of underground engineering. In this study, a novel back analysis
method combining a reduced-order model (ROM) and grey wolf optimization (GWO)
has been proposed. In this method, the ROM is adopted to construct a surrogated model
between the response of the underground structure and the surrounding rock parame-
ters based on a numerical model, and GWO is used to optimize the surrounding rock
parameters based on the ROM. The proposed method is applied to determine the sur-
rounding rock parameters of two tunnels. The results show that the obtained surrounding
rock parameters are in excellent agreement with the actual parameters, and the defor-
mation results computed based on those parameters are consistent with the theoretical
deformation results.

In the fourth article in this collection, the synthetic aperture radar (SAR) and optical
image registration are studied. The SAR and optical images collect rich spectral information
for ground objects, but their qualities are seriously affected by atmospheric attenuation
and weather conditions. Therefore, improving the quality of these images is crucial to
improving geotechnical engineering surveys. In this study, a novel method for SAR and
optical image registration is proposed. In the new method of feature point extraction, phase
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consistency intensity screening and scale space grid division are combined to obtain stable
and uniform feature points from images, and in feature description, the extended phase
consistency method is applied to calculate the gradient amplitude and direction of the
images. The experimental results showed the superior matching performance of the new
method compared with current state-of-the-art methods.

The study by Zhan et al. (contribution 5) is also focused on the back analysis of
surrounding rock parameters of underground engineering. In this study, based on data
from a numerical model established based on a fluid–solid coupling finite element model,
a surrogated model between the response of the surrounding rock (displacement and
pore water pressure distribution) and surrounding rock parameters is constructed by the
Gaussian process. According to the measured displacement and pore water pressure of
the surrounding rock, this surrogated model searches for the suitable rock parameters
using differential evolution. Therefore, the study proposes a new intelligent back analysis
method for fluid–solid coupling of surrounding rock in tunnels in water-rich areas. Finally,
this new back analysis method is verified by comparing the inversion parameters with the
ones measured in real-life.

In the next paper, by Li and Dias (contribution 6), the assessment of rock elasticity
modulus is conducted using four hybrid random forest models. The study proposes a data-
driven method based on the hybrid random forest for the determination of rock elasticity
modulus, which is vital for rock engineering design and cannot be solved using traditional
methods such as experimental analysis and empirical formulas. In this new method, four
metaheuristic optimization algorithms (backtracking search optimization algorithm, multi-
verse optimizer, golden eagle optimizer, and poor and rich optimization algorithm) are
used to optimize the random forest, thus enabling the construction of four hybrid random
forest models. Based on the collected database consisting of 120 rock samples, the hybrid
random forest models are applied to predict the rock elasticity modulus according to four
factors (porosity, P-wave velocity, Schmidt hammer rebound number, and point load index).
Moreover, the performance of the four hybrid random forest models is evaluated according
to four indices (root-mean-square error, mean absolute error, determination coefficient, and
Willmott’s index). The results show that the prediction accuracy of the hybrid random forest
model based on the poor and rich optimization algorithm is the best, and that porosity is
the most important factor.

The study by Yang et al. (contribution 7) is also focused on estimating the undrained
shear strength of clay. In this study, based on the collected database of 202 Finnish clay
samples, a CatBoost–Bayesian hybrid model adaptively coupled with modified theoretical
equations is constructed to determine the undrained shear strength of clay according to
11 main parameters (organic content, clay content, void ratio, natural water content, liquid
limit, plastic limit, effective overburden pressure, preconsolidation pressure, overconsoli-
dation ratio, compression index, and sensitivity). The CatBoost–Bayesian hybrid model,
in which the Bayesian optimization algorithm is used to optimize the CatBoost algorithm,
is employed to obtain the feature importance level of the 11 parameters and is adaptively
coupled with the theoretical equation of undrained shear strength derived from the modi-
fied Cambridge model. The constructed model is verified using the experimental samples
of Finnish clay. The results indicate that the established model can successfully estimate
the undrained shear strength of isotropically consolidated clays.

The next study, by Lee et al. (contribution 8), uses machine learning for the prediction
of ground subsidence risk in urban areas in Korea. Because ground subsidence in urban
areas, caused by damage to underground utilities, can cause serious disasters, Lee et al.
construct a machine learning-based ground subsidence risk prediction model based on
the collected attribute information and historical ground subsidence data on six types of
underground utility lines (water supply, sewage, power, gas, heating, and communication).
Firstly, the target area is divided into a square grid from which the attribute information
and historical ground subsidence data are extracted. Twenty-four datasets are developed,
including single-type attribute information, merged by six types of underground utility
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lines, and three risk levels, categorized from the number of ground subsidence occurrences.
Then, based on the datasets, three machine learning models (random forest, extreme
gradient boosting, and light gradient boosting machine) are applied to classify ground
subsidence risk levels. The results show that the new method can successfully predict risk
levels in the target region.

The study by Chala and Ray (contribution 9) is focused on comparing four machine
learning-based soil classification methods using cone penetration test data. In this study, the
four machine learning methods include artificial neural network, random forest, support
vector machine, and decision trees. The database used is collected from the International
Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) database and includes
232 cone penetration test (CPT) datasets, and soil is classified according to Robertson’s soil
behavioral types. Moreover, the quantitative metrics used to evaluate the machine learning
methods include overall accuracy, sensitivity, precision, F1_score, and confusion matrices.
The results show that all machine learning methods can accurately classify most soils,
and most evaluation metrics of the four machine learning methods indicate high scores.
Moreover, the support vector machine and random forest have outstanding performance
on both majority and minority soil classes and can be applied for rapid and accurate
soil classification.

The article by Lendo-Siwicka et al. (contribution 10) is focused on the determination
of the damping ratio of clay soils. In this study, to ease the difficulty of determining
the properties of soils, which are affected by many complex factors, a new method to
determine the value of the clay soil damping ratio using an artificial neural network model
is proposed. Based on a dataset consisting of 1227 examples from the testing 15 soil samples
in the Resonance Column, the damping ratio of clay soils affected by seven factors (shear
strain, normalized shear modulus, liquid limit, mean effective stress, silt content, plasticity
limit, and clay content) is predicted. Moreover, a comparison of the new artificial neural
network model with empirical formulas is conducted. The results show that the new
method boasts a much higher prediction accuracy and a more flexible application.

The next study, by Cheng et al. (contribution 11), is focused on the prediction of
undrained bearing capacity of skirted foundation in spatially variable soils. The bearing
capacity of the skirted foundation, widely used in offshore and subsea engineering, is
seriously affected by variabilities in soil undrained shear strength. To predict its uniaxial
bearing capacity factors under pure horizontal and moment loads, an efficient machine
learning method using a two-dimensional convolutional neural network is proposed. In
this new method, datasets with 600 samples from the random finite element numerical
simulation are used; the input is a random field data matrix for the soil domain in a
numerical model, and the output is the corresponding bearing capacity factor. The results
show that the prediction performance of the new method is satisfactory in terms of the
variation coefficients and the fluctuation scale in two directions, with a high determination
coefficient and low root-mean-square error.

The study by Daghistani and Abuel-Naga (contribution 12) is also focused on the
prediction of soil behavior using machine learning methods. In this study, based on a
dataset from 1068 tests on sand (including microscopy, direct shear, oedometer, and specific
gravity tests), a machine learning model for evaluating the influence of sand particle
morphology on shear strength is constructed. Two machine learning methods—multiple
linear regression and random forest regression—are applied and compared. The features
of sand particle morphology considered by the two machine learning models include mean
particle size, uniformity coefficient, curvature coefficient, dry density, normal stress, and
particle regularity. The results show that the prediction accuracy of both models is very
high compared to the experimental results, and the most important factor affecting the
shear strength of sand is mean particle size.

The next study, by Chala and Ray (contribution 13), is focused on the prediction
of soil shear wave velocity, which is an essential parameter in evaluating the seismic
response in foundation engineering. In this study, based on a collected dataset with
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1000 cone penetration test data, four machine learning methods (random forest, support
vector machine, decision trees, and extreme gradient boosting) are employed to predict soil
shear wave velocity according to four features: cone tip resistance, sleeve friction, friction
ratio, and soil depth. Moreover, to improve the performance of the four machine learning
methods, their hyperparameters are optimized using Bayesian optimization with the k-fold
cross-validation method. Eight metrics (root-mean-square error, mean absolute error, mean
absolute percentage error, coefficient of determination, performance index, scatter index,
uncertainty analysis at 95% confidence level, and proportion of samples that fall within
±10% deviation from the predicted values compared with the target value) are used to
evaluate the performance of the proposed machine learning methods. The results show
that the performance of the random forest is the best, achieving the highest accuracy and
the lowest level of errors.

The study by Ma et al. (contribution 14) focuses on the application of the multi-
objective optimization method for the optimization of the foundation pit dewatering
scheme, which is very important for the safety of foundation engineering. Using the
foundation pit dewatering theory and the multi-objective optimization algorithm of the
non-dominated sorting genetic algorithm (NSGA-II), the authors optimize the foundation
pit dewatering scheme for a foundation pit dewatering project at an inverted siphon section
of the Xixiayuan canal head. This multi-objective optimization has three objectives, which
are minimum total cost of dewatering, minimum amount of land subsidence caused by
dewatering, and maximum drawdown of water level in the center of the foundation pit.
Using this new method, a Pareto-optimal solution set with uniform distribution is obtained,
and the optimization scheme is applied to the solution set to produce multiple feasible
schemes for real dewatering. The results show that the obtained foundation pit dewatering
scheme meets the requirements for water level and settlement control.

The article by Almasoudi et al. (contribution 15) focuses on the effects of dry density
and moisture content on kaolin–brass interfacial shear adhesion. In this study, to evaluate
the interface shear adhesion between compacted kaolin clay and a metallic surface, a new
testing method is proposed. Compacted kaolin clay specimens with various energy levels
and moisture contents are used to determine the interface shear adhesion strength between
reconstituted kaolin clay and a metallic surface. The results show that to provide the highest
density and divide the compaction curve into dry and wet sides, the optimum moisture
content is 30%, and as the clay’s dry density increases, the interface shear adhesion strength
increases too. Moreover, as the moisture content rises on the wet side of the compaction
curve, the strength decreases significantly.

The next article, by Abed et al. (contribution 16), focuses on the accurate estimation of
soil compaction parameters. In this study, based on a collected dataset with 226 entries,
the multivariate adaptive regression splines model algorithm is used to predict essential
soil compaction parameters, including optimum water content and maximum dry density,
according to six factors (liquid limit, plastic limit, compaction energy, sand content, fines
content, and gravel content). The hyperparameter of the multivariate adaptive regression
splines model is searched for using the grid search approach with cross-validation strategies.
To evaluate the performance of the proposed machine learning method, three metrics (root-
mean-square error, mean absolute error, and coefficient of determination) are applied.
The results show that the performance of the proposed model is excellent, with a high
coefficient of determination and a low root-mean-square error and mean absolute error.
Thus, the model’s robustness and reliability in predicting soil compaction parameters are
all very high.

The following article, by Gajan (contribution 17), predicts the acceleration amplifica-
tion ratio of rocking shallow foundations. In this study, based on a dataset from 140 rocking
foundation experiments comprising a total of 9 series of centrifuge and shaking table experi-
ments, the maximum acceleration transmitted to structures on rocking shallow foundations
during earthquake loading is predicted by various machine learning models (including
artificial neural network, k-nearest neighbors regression, support vector regression, random
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forest, adaptive boosting regression, and gradient boosting regression models) according to
three non-dimensional rocking system capacity parameters (critical contact area ratio of the
rocking foundation, slenderness ratio of the rocking structure, and rocking coefficient of the
soil–foundation structure system) and two earthquake loading demand parameters (peak
horizontal ground acceleration of earthquake shaking and arias intensity of earthquake).
Here, the acceleration amplification ratio is defined as the maximum acceleration at the
gravity center of a structure by the peak ground acceleration of the earthquake. To evaluate
the performance of the machine learning models, two metrics (mean absolute percentage
error and mean absolute error) are applied. The results show that the artificial neural
network model is the most accurate and most consistent.

The study by Yang et al. (contribution 18) focuses on the prediction of the advanced
rate of dual-mode shield tunneling in complex strata. In this study, based on the geo-
logical and on-site monitoring parameters of dual-mode shield tunneling collected from
the left tunnel of Shenzhen Metro Line 13 (China), the advanced rate of shield tunneling
is predicted using a long short-term memory recurrent neural network. To this end, the
influence factors of advanced rate of shield tunneling, including tunneling parameters,
shield tunneling mode, and strata parameters, are used. Moreover, the original data are
preprocessed by the isolation forest algorithm and the improved mean filtering algorithm
to obtain steady-state phase parameters. Meanwhile, the hyperparameters of the long
short-term memory recurrent neural network are optimized using the particle swarm opti-
mization, genetic algorithm, differential evolution, and Bayesian optimization algorithms.
The performance of the optimized long short-term memory recurrent neural network is
evaluated using the evaluation metrics of mean absolute error, root-mean-square error,
and mean absolute percentage error, according to which the Bayesian optimization–long
short-term memory recurrent neural network achieves superior performance. Finally,
by combining the dropout algorithm and five-fold time series cross-validation with the
best model, a multi-algorithm-optimized recurrent neural network model for tunneling
speed prediction is constructed. The results show that the new prediction model has high
prediction accuracy and operational efficiency under different excavation modes.

The last paper, by Gao et al. (contribution 19), focuses on the prediction of utility
tunnel performance in soft foundations during operation periods. In this study, based on a
total of 15,376 data collected from field tests on utility tunnel engineering in Suqian City,
Jiangsu Province, China, utility tunnel performance in soft foundations during operation
periods, represented by the main structure responses (displacement and stress), is predicted
using deep learning according to five main disturbance factors (four vehicle operating
load parameters and one operating time parameter). The deep belief network is applied to
treat big data. To improve the network’s performance and optimize its hyperparameters,
the whale optimization algorithm is applied, resulting in the construction of a new deep
learning model. To evaluate the prediction accuracy of the proposed model, three evalua-
tion indexes (root-mean-square error, mean absolute error, and correlation coefficient) are
applied. The results show that the new deep learning model can accurately predict the
performance of utility tunnels during operation periods, with suitable applicability.

3. Conclusions

The papers collated in this Special Issue encompass the applications of machine learn-
ing methods across almost all geotechnical engineering disciplines, including underground
and foundation engineering and cover a variety of stages, including planning and design,
construction, and operation. This indicates that machine learning can be used across all
stages of geotechnical engineering—that is, its applications can cover the full geotechnical
engineering lifecycle. Moreover, machine learning methods can prove useful in the field of
geomechanics, e.g., in the evaluation of the physical and mechanical parameters of geo-
materials (including soil and rock). In addition, this collection covers numerous machine
learning methods, including regression methods (Gaussian process regression, regression
trees, ensembles of regression trees, support vector machine, reduced-order model, ran-
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dom forest, extreme gradient boosting, light gradient boosting machine, artificial neural
network, decision tree, multivariate adaptive regression splines model, k-nearest neighbors
regression, adaptive boosting regression, and CatBoost algorithm); intelligent optimiza-
tion methods, from swarm intelligence and evolutionary algorithms to nature-inspired
computation (differential evolution algorithm, grey wolf optimization, backtracking search
optimization algorithm, multi-verse optimizer, golden eagle optimizer, poor and rich op-
timization algorithm, Bayesian optimization algorithm, non-dominated sorting genetic
algorithm (NSGA-II), particle swarm optimization, genetic algorithm, and whale optimiza-
tion algorithm); and even some deep learning methods (two-dimensional convolutional
neural network, long short-term memory recurrent neural network, and deep belief net-
work). Many of the studies presented here construct data-driven models with the aid of
machine learning methods. For these studies, the key is to obtain a suitable dataset. Various
methods are employed to achieve this goal, including field tests, laboratory tests, numerical
simulation, previous studies, etc. Some of those datasets can be called big data.

In terms of the subjects covered by this Special Issue, the application of machine
learning methods in geomechanics emerges as the main discussion topic, with eight papers.
In seven of these, the research object is obtaining the properties of soil, as this can easily be
achieved by tests. Of those seven papers, three focus on estimating mechanical parameters,
another three on estimating physical parameters, and only one on soil classification. The
final paper in this group of eight analyzes the mechanical parameters of rock. In these
studies, information about the property parameters of geomaterials generally comes from
laboratory tests.

The next main topic in this Special Issue is the application of machine learning methods
in underground engineering, and there are six papers in this field. Among them, the most
popular research object is the construction stage of engineering, which is the focus of four
papers. Three of these are on the back analysis of tunnels and one on ground subsidence
risks for underground utilities. Engineering during the design stage is the research object
of one paper, which determines shield tunneling parameters. Finally, there is one paper
whose research object is engineering during the operation period. It analyzes utility tunnel
performance in soft foundations affected by operation factors.

The third major topic in this Special Issue is the application of machine learning
methods in foundation engineering, which is discussed in four papers. The majority are
concerned with engineering during the construction stage, with three papers covering
three different research objects—the undrained bearing capacity of skirted foundations, the
interaction between soil and structure, and the dynamic response of rock foundations. In
the remaining paper, the research object is engineering during the design period. In this
study, the optimization of a foundation pit dewatering design is conducted.

The last topic in this Special Issue is the application of machine learning methods in
the planning of geotechnical engineering, with only one paper concentrating on this area.
This paper focuses on the identification of geophysical prospecting information.

From the above analysis, it is evident that the geomechanics subjects in this compila-
tion of articles are almost exclusively the parameters of geomaterials, and that one main
geomechanics subject is lacking, namely the constitutive model of geomaterials. Moreover,
in terms of geotechnical engineering subjects, a major area, namely slope engineering,
is equally missing from this Special Issue. On top of the subjects mentioned above, ma-
chine learning methods can also be applied in the study of engineering disasters related
to geotechnical engineering. Therefore, the papers in this Special Issue are only some of
the new developments in the application of machine learning in geotechnical engineering,
and should be seen not only as new results, but also as starting points, inviting readers to
conduct future studies on the themes explored here.

As a final note, I would like to highlight the particularity that all papers in this Special
Issue are on the construction of data-driven models, which is the main application of
machine learning methods in geotechnical engineering. However, datasets obtained in
geotechnical engineering, no matter what method is used (including field tests, laboratory
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tests, and numerical simulations), are not complete datasets, and their number is very
limited; that is, these datasets only describe very limited, partial properties of real engineer-
ing. Therefore, purely data-driven models will run into essential problems. However, the
properties of real engineering can partly be described by mechanical models on the soil and
rock mechanics. Therefore, in order to apply machine learning in geotechnical engineering,
mechanical models should be included as well, as is the case in physics-based machine
learning [20]. Moreover, to obtain more big datasets, the development of modern moni-
toring technology is another way that will promote the application of machine learning in
geotechnical engineering.
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Abstract: Soft soils are commonly located in many regions near seas, oceans, and rivers all over the
world. These regions are vital and attractive for population and governments development. Soft soil
is classified as problematic soil owing to sustaining low shear strength and high settlement under
structures. Constructing structures and/or infrastructures on soft soil is a considerable risk that
needs great attention from structural engineers. The bearing capacity of structure foundations on
soft soil depends mainly on their undrained shear strength. This soil feature strongly influences
the selection of appropriate soil improvement methods. However, determining undrained shear
strength is very difficult, costly, and time-consuming, especially for sensitive clay. Consequently,
extracting undisturbed samples of sensitive clay faces several difficulties on construction sites. In
this research, accurate field-tested data were fed to advanced machine learning models to predict
the undrained shear strength of the sensitive clay to save hard effort, time, repeated laboratory
testing, and costs. In this context, a dataset of 111 geotechnical testing points were collected based
on laboratory and field examinations of the soil’s key features. These features included the water
content, liquid limit, dry unit weight, plasticity index, consistency index, void ratio, specific gravity,
and pocket penetration shear. Several machine learning algorithms were adopted to provide the
soft clay modeling, including the linear, Gaussian process regression, ensemble and regression trees,
and the support vector regression. The coefficient of determination was mainly used to assess
the performance of each predictive model. The achieved results revealed that the support vector
regression model attained the most accurate prediction for soil undrained shear strength. These
outcomes lay the groundwork for evaluating soil shear strength characteristics in a practical, fast,
and low-cost way.

Keywords: soft clay; undrained shear strength; machine learning; ICT; predictive modeling

1. Introduction

Patches of soft soil are distributed throughout many vital regions near oceans, seas,
and rivers. These regions are essential for human activities and the development of various
structures such as roads, bridges, embankments, buildings, railroads, tunnels, etc., and new
cities are also constructed on this type of soil. The problems presented by soft soil are high
compressibility and low shear strength. Moreover, structure settlement continues for long
periods. The failure of structures mainly occurs due to a lack of soft soil shear strength.
Soft soil is one of the problematic soils encountered all over the world. Consequently, the
“soft soil” [1], is defined as soil that typically exhibits an undrained shear strength (USS)
in the range of 20 to 40 kPa, while the very soft soil possesses USS values of less than
20 kPa. The performance of soft soil depends not only on water content, but also on its
structure. Generally, the soft soil remains stiff in the dry state until it is subjected to a drastic
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increase in its water content, at which it converts to weak and soft soils [2]. The saturated
soft soil causes several problems for structures on it, such as low bearing capacity and
long-term excessive settlement [3]. Constructing heavy structures on native soft clay soil is
a difficult task. The geotechnical design depends mainly on the (short-term) undrained
shear strength of the soft soil, as it has a smaller value compared to that of the (long-term)
drained shear strength.

Hence, the undrained shear strength of the soft soil is the most important parameter to
be determined when calculating its bearing capacity. The selection of suitable improvement
methods for the sensitive clay is also mainly dependent on the accurate values of its
undrained shear strength. However, there is a difficulty associated with extracting and
sampling the soft soil, especially the very sensitive soft clay. The sensitive clay usually
has an undrained shear strength in the laboratory smaller than that in the field due to the
effect of disturbance on the sample. Since the design of structure foundations depends
on the undrained shear strength of the sensitive clay, it must be carefully determined and
evaluated from the results of both field and laboratory tests.

The precision of the laboratory tests, such as direct shear, unconfined compression,
or undrained triaxial compression, significantly depend on the quality of the collected
sensitive, undisturbed clay samples [2,4], and additionally rely on the thickness and the
friction of the sharp edges of the circular samplers with soil. On the other hand, field test
results (field vane test and piezocone cone penetration test—CPTU) are also influenced by
selection techniques [5,6]. In 2021, Ayadat [4] stated that the field vane shear test is more
accurate than the Swedish cone shear test.

Due to the difficulty of determining the undrained shear strength of the sensitive clay,
empirical equations are utilized based on clay properties, like clay activity and Atterberg
limits [4,7–11], water content, plasticity index, and over consolidation ratio [12]. However,
there is a shortage of past studies that investigate the functional form and the influential
soil properties of the existing empirical correlations. Moreover, Mataic et al. [13] stated that
pre-consolidation pressures can differ significantly owing to soil disturbances during sam-
pling, which occasionally causes unpredictable values of the pre-consolidation pressures.
Subsequently, empirical correlations include only a few soil parameters despite there being
greater soil parameter influences on the undrained shear strength of the soft soil.

Recently, machine learning (ML) models have been widely utilized to predict the
same important soil parameters that are costly, time-consuming, and require great effort to
determine in the laboratory or the field. Generally, machine learning has been recently used
by geotechnical engineers in the prediction of skin friction of driven piles [14], the bearing
capacity of shallow foundations [15], or the shear strength of soil [16–18]. ML models are
rarely used to estimate undrained shear strength of soft soil based on different geotechnical
properties [12,19,20]. In 2022, Tran et al. [6] only utilized ML models in the prediction of
the undrained shear strength for marine-sensitive soft soil, with a coefficient of correlation
of 0.715.

Predictions of undrained shear strength of the alluvial sensitive soft clay using ML
advanced modeling have not yet been thoroughly studied by geotechnical researchers.
Therefore, the main objective of the current research was to introduce an accurate ML model
to predict the undrained shear strength of sensitive alluvial soft clay using many important
soft clay soil properties. The ML models have been formulated using a realistic dataset.
The advantage of the ML model is to make an accurate prediction for the undrained shear
strength of alluvial sensitive soft clay, in order to avoid disturbance difficulty during its
extracting and sampling. Moreover, handling and performing shear strength tests on very
soft and soft soil, either in the field or in the laboratory, typically comes with high costs, is
time-consuming, and requires hard work and effort from geotechnical staff. ML prediction
of the undrained shear strength of sensitive clay is expected to introduce significant savings
in the above-mentioned factors. The ML models predict undrained shear strength based
on soft clay essential properties, which can be easily determined in the laboratory. Soft
soil properties, acting as predicting features, include moisture content, specific gravity,
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void ratio, dry unit weight, liquid limit, plasticity and consistency indexes, and pocket
penetration shear. In this context, the ML model has been formulated using precise realistic
datasets (features) for the sensitive soft clay samples collected from the delta region of
Egypt, located in northern areas of the Nile River. Generally, alluvial soft clay regions are
very crowded all over the world, with various structures like roads, embankments, bridges,
railways, tunnels, airports, buildings, etc. The accuracy of the ML models is evaluated by
the coefficient of correlation method. An accurate ML prediction of the undrained shear
strength will achieve sustainably for the structures on non-treated or treated sensitive soft
clay by gathering between its long-term high performance and economic side. The used
undrained shear strength values of the sensitive clay were determined from the results
of precise field vane shear tests. Collecting realistic and feature-enriched datasets, along
with the selection of the appropriate algorithm, led to a substantial improvement in the
prediction accuracy of the model.

2. Materials and Methods

The soft clay is located in northern areas of the Nile River, in Egypt. The sensitive
clay was formed in alluvial sediments. For the ML model study, 111 soft clay samples
were collected from the northern Nile delta. The data set included geotechnical features
of natural water content (W), dry unit weight (γd), liquid limit (LL), plasticity index (PI),
consistency index (CI), void ratio (e), specific gravity (Gs), and pocket penetration shear (qp).
The utilized features were easily determined or calculated from the geotechnical laboratory
tests. The performed experimental tests were natural water content, specific gravity, bulk
density, liquid and plastic limits, and Pocket penetration, according to ASTM numbers
D 2216, D 854, D1556, D 4318, and WK27337, respectively. The latter tests are traditional
geotechnical tests, and are also more cost-effective and less time-consuming.

Moreover, the adopted dataset was selected because the included soil features sig-
nificantly influence the undrained shear strength of the studied soft clay. For example,
increasing the natural water content causes a decrement in the cohesive force between
soil particles, which leads to a weakening of soil consistency and reduces shear strength.
Increasing dry density leads to a minimizing of the pores between soil particles and void
ratio, causing an effective increment in the undrained shear strength. The void ratio of soil
not only affects its permeability, but it also significantly influences the undrained shear
strength of the soil. The increments of the liquid limit, plasticity index, and consistency
index offer strong evidence for the existence of clay content. Consequently, increasing
clay content in soft soil directly increases its undrained shear strength. Specific gravity is
considered the main factor in predicting shear strength. Pocket penetration shear value
represents an important indication of the undrained shear strength of the saturated cohe-
sive soil value, which has a significant correlation with the undrained shear strength of the
sensitive soft clay.

It is known that determining undrained shear strength, either in the field or in the
laboratory, is highly difficult. Moreover, several problems were faced in extracting undis-
turbed samples of sensitive clay. According to the unified soil classification system, the
sensitive clay soil was categorized as a high plasticity clay (CH). The classification of CH
in soft soil was a result of the high values of the plasticity index. The liquid limit and
plasticity index ranged from 46% to 103%, and from 20% to 69%, respectively. The natural
water content ranged between 40% to 71%, as illustrated in Figure 1 and Table 1. The
undrained shear strength of the clay was determined by field vane shear tests (ASTM
D2573-08) [21]. The vane test was suitable for the studied soil, having saturation conditions
and a soft consistency. The field van shear equipment is shown in Figure 2. The results
of the undrained shear strength stated that the sensitive clay ranged from very soft to
soft soil (5 kPa–45 kPa). The sensitivity values of the clay were between 2.5 and 28.6, as
depicted in Figure 3. Clay sensitivity was the ratio of the undrained shear strength in the
field to that in the laboratory, for the same soil. According to the sensitivity classification
of Das and Sobhan (2014) [20], the current study soil included low, medium, and high
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sensitivity clay. To overcome the difficulties presented in extracting samples of sensitive
clay and determining its undrained shear strength, as well as saving time and reducing
costs, accurate ML models were utilized.

 

Figure 1. Plot of (a) PL, (b) Wn, and (c) LL versus depth.

Table 1. Statistical analysis of the dataset of soft clay features.

Soft Clay Feature (Unit) Minimum Maximum Mean Standard Deviation

γd (kN/m3) 8.926 12.40 10.49 0.769
Wn (%) 40.00 71.00 54.80 6.834
LL (%) 46.00 103.0 75.58 12.77
PI (%) 20.00 69.00 43.07 9.587

CI 0.060 1.150 0.491 0.243
e 1.149 2.017 1.586 0.191

Qp (kPa) 10.00 80.0 38.19 15.75
Gs 2.680 2.740 2.711 0.0135

USS (kPa) 5.00 45.00 20.815 8.199

 

Figure 2. Field vane shear equipment.
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Figure 3. Sensitivity of the soft soil.

In this study, we considered eight input features to create an ML predictive modeling
of the soft clay soil. The datasets were initially preprocessed to eliminate any outliers that
were commonly observed in realistic datasets. To eliminate the impact of incompatible data
scales on model training time, and therefore make the computations much faster, the data
was normalized using the following equation:

xn =
x − xmin

xmax − xmin
(1)

where x refers to the original data, xn refers to the normalized data, xmin, and xmax signify the
minimum and maximum values detected in the dataset, respectively. The modified output
data was simply retrieved in its original form, after model training, utilizing the formula:

x = xn(xmax − xmin) + xmin (2)

We used a statistical procedure known as feature selection in order to identify the most
important features that have a significant influence on model predictions. The procedure
comprises a correlation matrix (CM) alongside a principal component analysis (PCA).
Following that, various supervised ML algorithms including linear regression, Gaussian
process regression, regression trees, ensembles of regression trees, and support vector
machine (SVM) approaches were adopted in the training phase.

The SVM approach [22] is widely used for ML modeling of classification or regression
problems. With a few minor exceptions, the support vector machine regression (SVR)
utilizes the same concepts as the SVM for classification [23–26]. In the case of regression,
a margin of tolerance (ε) is specified as a rough approximation to the SVM that the issue
would have already requested. However, there is a more problematic reason: the algorithm
is more intricate and, therefore, it must be considered. The SVM algorithm operates by
using the largest margin to identify the most optimum hyperplane that splits data into
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many classes. We used the regression function f(x) to optimally approximate the supplied
training dataset {(xi yi)}N

i , where xn is a multivariate collection of N observations with
observed response values yn. For the simplest case, the function f(x) is expressed as [22]:

f (x) = wx + b (3)

The optimized values of w and b can be acquired by minimizing the following expression [22]:

min
1
2
‖W‖2 + C ∑N

i=1(ξi + ξ∗i ) (4)

Subject to: ⎧⎨⎩
yi − wxi − b ≤ ε + ξi
wxi + b − yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(5)

where ε is an ε-insensitive tube indicating the error tolerance, and C is a compromise
between the empirical error and the general term. The regression function may be stated as
follows, using Lagrangian multipliers and optimum constraints [22]:

y =
N

∑
i=1

(αi + α∗i )K(xi, x) + b (6)

where K(xi, xj) is the kernel function. Examples of the most famous kernel functions are the linear,
polynomial, sigmoidal, Gaussian, and radial basis functions. The latter is expressed as [22]:

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
(7)

where ‖xi − xj‖ denotes the Euclidean distance between the two feature vectors, and σ is
the spread of the kernel function’s distribution.

To evaluate and verify ML models, several assessment indices are commonly utilized. In
this study, the following measures were used to evaluate the model prediction performance:

(1) Residuals, ri, which characterizes the error for each data point. Most regression
metrics are typically derived using ri given by:

ri = (yi − ŷi)
2 (8)

where yi denotes the measured or original data, while ŷi denotes the predicted data obtained
by the model.

(2) Root mean square error (RMSE), which is computed by:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (9)

(3) Furthermore, the coefficient of determination, R2, is frequently used to assess and
compare various regression models and is calculated by:

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (10)

where yi denotes the mean values of the predicted output.
Following the choice of the most optimal regression modeling, hyperparameters

were optimized (tuned) using further optimization techniques. In this regard, model
hyperparameters are special configurations that are externally set to the model, using
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optimization procedures, and their values cannot be estimated from data. As a result, for
correctly configured model hyperparameters, the objective function, known as the loss
function, is minimized. In this process, for each training iteration, the mean squared error
(MSE) statistics are obtained and computed using:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (11)

After optimizing the model hyperparameters, they are deployed and can be employed
to predict soft clay undrained shear strength. The framework of the modeling procedure is
further illustrated as shown in Figure 4.

Figure 4. Framework of soft clay ML modeling.

3. Results and Discussion

For the examined soft clay soil, descriptive statistics of its geotechnical parameters,
as well as the linear correlation chart, are illustrated in Figure 5. The studied clay soils
exhibited a wide range of dry density (8.93–12.4 kN/m3), initial void ratio (1.149–2.017),
specific gravity (2.68–2.74), consistency index (0.06–1.15), and pocket penetration shear
(10–80 KPa,). Table 1 summarizes the statistical analysis of the dataset.

The increments in the sensitive clay initial properties, like dry unit-weight, liquid limit,
plasticity index, and consistency index, caused an increase in the values of the undrained
shear strength, as illustrated in Figure 5. The undrained shear strength expressed the
cohesion shear strength parameter of the normally consolidated clayey soil. The dry
density increase led to additional inter-cohesion between clay particles. Consequently,
the increment of liquid limit, plasticity, and consistency indexes was an indication of the
high values of clay contents in the studied sensitive soil. The higher value of clay contents
caused higher values of cohesion (undrained shear strength). The later results were found
also by [7]. On the other hand, the water content and the void ratio had a negative influence
on the USS of the sensitive soil. This is because the excessive voids and water in the
soil logically decreased the shear resistance of the soil. Finally, the specific gravity had
approximately no impact on the soil USS values, as depicted in Figure 5.

Data partitioning using a procedure known as cross-validation (CV) is essentially
required for accurate modeling. Using this technique, the training dataset was randomly
partitioned into two groups: the training set and the validation set. The training set was
used in the learning phase and was typically the largest dataset and was mainly utilized
to obtain the parameters of the model under development, while the validation set was
basically used to tune the model hyperparameters. CV assisted data partitioning into a
set of folds (k-folds). This process was run either during training or when estimating the
average test error across all folds. Subsequently, this technique guards against overfitting
better than others; however, it requires numerous fits, and consequently, it is suitable for
small and medium-sized datasets. In this modeling approach, we used a CV partitioning of
5 folds. Sequentially, several ML techniques, including linear regression, regression trees,
Gaussian process regression, the ensemble of trees, and support vector regression, were
trained and validated to attain their optimum hyperparameters. For the SVR, the most
important hyperparameters were the box constraint, denoted by the parameter C, which
was a positive numeric variable that determined the penalty imposed on samples that fell
beyond the epsilon edges (ε) and assisted in the prevention of overfitting or satisfying model
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regularization. In addition, the selection of the kernel function, as well as its optimized
kernel scale, plays an important role in scaling the input features. The model performance
is further evaluated using a new dataset, namely the testing set. This set is used to assess
the model’s performance and guarantees that it can generalize effectively to new and
unknown data points. The evaluation metrics for RMSE and R2 for both the training and
testing sets are listed in Table 2. Among the adopted algorithms, the fine Gaussian SVR
gave the best-fit results. The RMSE of the training and testing sets of the optimized model
were 2.57 and 1.65 kPa, respectively. The model hyperparameters, including box constraint,
ε, kernel function, and kernel scale of the optimized model based on SVR, are outlined
in Table 3. The attained values of the determination coefficient, R2-Score, were 0.90 and
0.96, respectively. These results indicate that the formulated model is reliable and accurate
enough to be employed for forecasting the USS of soft clay soil.

Figure 5. Correlation chart of soft clay features.

Table 2. Evaluation metrics of soft clay ML models for both the training and testing sets.

Training Set Testing Set

ML Algorithm RMSE (kPa) R2 RMSE (kPa) R2

Linear regression 3.65 0.80 2.89 0.87
Regression trees 3.66 0.80 2.68 0.89

Gaussian process regression 3.17 0.85 3.17 0.85
Ensemble of trees 3.79 0.79 2.79 0.88

Fine Gaussian SVR 2.57 0.90 1.65 0.96
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Table 3. List of hyperparameters of the optimized model.

C ε Kernel Function Kernel Scale

11.8255 0.02199 Gaussian 8.6869

Figure 6 demonstrates assessment plots of the predicated undrained shear strength
against the actual one for the modeled dataset. As depicted in the figure, most values of the
measured samples lie close to the line of equality with the predicted values. Furthermore,
Figure 7 represents the correlation between the actual and the predicted data as regression
curves. As can be observed, the model’s predictability is good, especially for the testing
dataset. As a result, the use of an SVR model to forecast soil USS is achievable with high
accuracy and low error.

 
Figure 6. Comparison results of the trained model, predicted versus actual output data of vane-tested
USS. The straight line denotes to line of equality.

Based on the above results and analysis, accurate ML prediction of the undrained
shear strength of the alluvial sensitive soft clay has an important and positive impact
on the field of geotechnical engineering. The current ML model achieved more accuracy
compared with other previous studies [6,19]. Precise determination of USS for the sensitive
clay is a challenging task, being time-consuming, requiring great effort, and incurring high
financial costs. The input data of the basic soil properties effectively and directly influence
the USS values with positive or negative impacts. The selected features in the present
model are essential properties of the studied soil that can be easily determined in a short
time. The collected realistic and feature-enriched datasets, as well as the selection of the
appropriate ML algorithm, resulted in a significant improvement in the prediction accuracy
of the presented model. The accurate ML prediction of USS of the alluvial sensitive clay
contributes toward solving many problems, such as saving time, effort, and costs. This is
achieved by reducing the number of samples and tests that are essentially required using
traditional methods.
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Figure 7. Soft clay USS plotted against sample number of the measured, predicted, and tested dataset.

4. Conclusions

This study presents ML predictive modeling of the alluvial sensitive soft clay soil
undrained shear strength, an essential parameter, and intensively investigated topic in
geotechnical engineering. The creation of an accurate machine learning model facilities
to achieve a significant cost reduction in field testing. In this regard, data is essential in
machine learning challenges in order to build an accurate and reliable prediction model.
One aspect of this investigation was the collection of extra data comprising many important
features of the soft clay soil. Collecting realistic and rich datasets along with the selection
of the appropriate algorithm leads to substantial improvement of prediction accuracy. The
dataset that was utilized to forecast soil undrained shear strength has eight input variables,
namely the moisture content, specific gravity, void ratio, dry unit weight, liquid limit,
plasticity and consistency indexes, and Pocket penetration shear. Several ML approaches
were trained including linear regression, regression trees, Gaussian process regression, the
ensemble of trees, and SVR. Among those, the fine Gaussian SVR accurately exhibited
the best fit model. Many evaluation metrics of the model prediction performance were
computed including MSE, RMSE, and R2 metrics. The latter value for the investigated soft
clay dataset was evaluated to be 0.96 for the testing dataset. The attained results confirm the
model reliability to accurately forecast the sensitive alluvial soft clay vane-test undrained
sheer strength. This accurate prediction of ML model has a great positive impact in the
geotechnical and structural engineering field saving hard work, high costs, and long time.
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Abstract: Due to the characteristics of soil–rock composites and large-span arches, the surrounding
rock parameters of stations are difficult to obtain accurately under soft upper and hard lower
geological conditions when the arch cover method is used to carry out the construction of a large-
span underground excavation station. To optimize the design of stations and guide the next step
of construction, an intelligent inverse analysis method, the Gaussian process differential evolution
co-optimization algorithm (GP-DE algorithm), is proposed for the arch cover method for station
construction. Taking the Shikui Road station of the Dalian Metro Line Five as the engineering
background, the finite element model of FLAC3D is established. By combining the measured data of
the sensor and the monitoring data obtained using the orthogonal scheme, this algorithm is used for
the joint back analysis of displacement stress and the accuracy of the inversion parameters is verified
by forwarding the calculation for FLAC3D. By using the obtained surrounding rock parameters,
the demolition length of the center diaphragm to the Shikui Road station is optimized. Under
different numbers of training samples, the inversion effect of the GP-DE algorithm and the other
three common back-analysis algorithms is compared and analyzed. Finally, based on the iteration
rate and convergence effect, the value range of the differential evolution algorithm parameters F and
CR is given. The results show that the forward calculation results of the parameters obtained from
the back analysis are in good agreement with the actual values, and the accuracy of the back-analysis
results is high.

Keywords: arch-cover method; back analysis; Gaussian process; differential evolution algorithm;
orthogonal design

1. Introduction

In the construction of subway stations under complex geological conditions, the arch
cover method is widely used because of its outstanding advantages, such as less impact
on the surrounding environment, fewer procedures, high efficiency, and safe and reliable
construction [1]. In construction using the arch cover method, due to the complexity and
heterogeneity of the rock mass structure, it is difficult to accurately describe the failure
mechanism of the rock mass, and it is also difficult to give accurate rock mass parameters
in the project [2]. Because of the large span, the geological conditions of the crossing
are more complex, so the accuracy of the rock stratum information in the exploration
process is difficult to guarantee, and some parameters can only give the corresponding
interval range, which cannot provide a certain reference value for the input parameters
of the numerical simulation. Therefore, the back-analysis method combined with the
field-measured data becomes one of the most effective methods to accurately obtain rock
mechanical parameters [3,4].

At present, the back-analysis method is widely used. In the study of the back analysis,
Kavanagh first put forward the method of the back analysis of displacement in 1971. Ac-
cording to the amount of deformations after tunnel excavation, the mechanical parameters
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of rock mass were calculated with the finite element method [5]. Gioda calculated some
mechanical parameters of rock mass by monitoring information on displacement [6]. Gao
proposed a new neural network back-analysis method based on the black hole algorithm.
Based on the measured converging displacement, the physical parameters of the surround-
ing rock of two deep roadways in the Huainan coal mine of China were back-calculated [7].
Su used FLAC3D to initialize the stochastic mechanical parameters, and, then, based on the
differential evolution algorithm, the displacement difference between the numerical value
and the in situ measurement value was regarded as the fitness value for the identification of
rock mechanical parameters [8]. Zhao proposed an inverse analysis method for identifying
rock mass parameters around tunnels using the ELM extreme learning machine model op-
timized with particle swarm optimization (PSO), taking into account displacement loss and
spatial effects [9]. Jiang and others, through a differential evolution algorithm, combined
the automatic acquisition system with a numerical simulation to conduct a displacement
stress joint back analysis of surrounding rock parameters in tunnel engineering [10]. Jin and
others inversed the joint surface parameters of the rock mass of the Baihetan hydropower
station by combining the discrete element method and neural network, applying the re-
sults to the model, and comparing them with the measured values [11]. Wang and others
conducted a back analysis on surrounding rock parameters by compiling an intelligent
displacement back-analysis program based on a differential evolution algorithm and us-
ing tunnel convergence and arch crown settlement displacement values [12]. Huang and
others used a genetic algorithm to invert the surrounding rock parameters of a highway
tunnel and then took the obtained parameters into the numerical model for a forward
analysis. The difference between the results and the measured values was small [13]. In
previous studies, some algorithms were mainly used to back-analyze the rock parameters
surrounding a tunnel in combination with the actual site displacement, but only relying
on the displacement for the back analysis, which has certain limitations, and there have
only been a few intelligent back-analysis studies for the stations constructed using the arch
cover method. In practical projects, especially under soft upper and hard lower geological
conditions, the unique arch cover construction method of large span concealed excavation
makes it difficult to predict the mechanical parameters of the surrounding rock. Therefore,
an accurate prediction of surrounding rock parameters has a certain guiding role for the
station constructed with the arch cover method.

Table 1 shows the application research of the Gaussian process machine learning algo-
rithm. After 2009, the application of the Gaussian process in civil engineering increased,
mainly in the time series prediction of rock and soil mass deformation during the construc-
tion process. There are only a few studies on the algorithm being used for the inversion of
rock and soil mechanical parameters. The Gaussian process for machine learning can better
solve the problem of supervised learning. Two well-known algorithms, the neural network
(ANN) and support vector machine (SVM), do not handle some aspects well. For example,
the neural network has certain limitations in dealing with small-sample problems, and
the support vector machine is also difficult to use for determining its kernel function and
loss function. With the continuous development of machine learning, the GP algorithm
has become a focus point in the field of international machine learning, and has been
successfully applied to regression classification. Based on the Bayesian learning theory, this
algorithm has significant advantages in dealing with small samples, nonlinearity, and other
problems, and the GP algorithm has flexible nonparametric inference, adaptive parameter
acquisition, and a simple implementation process [14].

This paper takes the Shikui Road Station of the Dalian Metro as the engineering
background. First, according to 25 groups of orthogonal design schemes, the forward
calculation is carried out through the established three-dimensional FLAC3D numerical
model. After the results are obtained, a sensitivity analysis is carried out on the results, the
key parameters are found, and 25 groups of displacement stress results are normalized.
Then, the Gaussian process differential evolution (GP-DE) algorithm is used to train the
25 groups of normalized orthogonal design results and the measured displacement and
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stress are taken as the input samples for the inversion to obtain accurate surrounding
rock parameters, which intend to provide a theoretical basis and reference value for the
optimization design of the station and the guidance of the next step of construction in arch
cover construction.

Table 1. Application research of Gaussian process machine learning algorithm.

Authors Research Introduction Year

Carl Edward Rasmussen and
Christopher K. I. Williams [15]

Gauss process machine learning algorithm, proposed in 1994, can
better solve the problem of supervised learning 1994

Sofiane Brahim-Belhouari et al. [16]
Gaussian process is used in prediction of non-stationary time series,

and compared with a neural network, it is proved that Gaussian
process is more superior

2004

Hyun-OmlKimet al. [17] Use Gaussian process to train human characteristics as samples for
gender recognition 2006

Su Guoshao et al. [18,19] Application of Gaussian process to time series prediction of slope
deformation and foundation pit displacement 2007

Fyfe, Colin et al. [20] Three analysis methods based on Gaussian process are proposed
and relevant analysis is carried out 2008

Liu Kaiyun et al. [21] Analysis of slope deformation time series using Gaussian process
and genetic algorithm 2009

Liu Kaiyun et al. [22] Parameter inversion of elasto-plastic model in geotechnical
engineering by introducing Gaussian process regression algorithm 2011

He Peng et al. [23] Prediction of the deformation convergence value of the
surrounding rock of the working face based on Gaussian process 2017

Zhang Yunpeng et al. [24] Establishment of prediction model for large deformation of tunnel
surrounding rock using Gaussian process 2018

The remainder of this article is organized as follows. Section 2 introduces the geological
uncertainty in the construction of a large-span arch cover station. Section 3 introduces the
station parameter identification method based on the GP-DE arch cover method. Section 4
introduces the application of this method in engineering. Section 5 optimizes and analyzes
the project’s temporary support removal scheme according to the determined parameters.
Section 6 discusses the inversion effect of GP-DE and the influence of differential evolution
parameters on the back-analysis effect. Finally, Section 7 concludes.

2. The Problem of Geological Uncertainty in the Large-Span Arch Cover
Station Construction

The geotechnical environment has a great influence on underground engineering
because geotechnical mass is not only the generating medium of underground engineering,
but also the source of load [25]. In particular, the core idea of the arch and cover method
construction is to make use of the bearing capacity and stability of the underlying surround-
ing rocks, as the rock mass bears and disperses the load to different degrees, with multiple
identities as well as functions [26,27]. Rock mechanical parameters are one of the most
important factors affecting the mechanical characteristics of tunnel construction, together
with the access point for disaster control and structure design [6]. However, the limitations
of measurement technologies and equipment, especially the incomprehensibility and spa-
tial variations in the geological environment, bring great challenges to the identification
of mechanical parameters of surrounding rocks. Therefore, a reasonable determination of
physical and mechanical parameters of rocks as well as soil mass has a great influence on
the design and construction of underground engineering.

To ensure the safety of station construction through the arch and cover method, it is
necessary to design or adjust the construction scheme, while an optimization analysis of the
excavation methods, temporary support, and demolition measures are necessary [28,29]. One
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of the ways to optimize the rationality of the scheme is to use the numerical simulation of the
site [27,30], as is shown in Figure 1. To ensure the effect and accuracy of the numerical model,
it is necessary to ensure the accuracy of the formation parameters in the simulation process.

Figure 1. Relationship among parameter identification, numerical simulation and construction
scheme optimization.

3. Parameter Identification Methods for Stations through Arch Cover Method
Based on GP-DE

In the excavation process of a station through the arch cover method, if the joint
reverse analysis of the displacement stress is used, we can more comprehensively consider
the relationship between the changes of station surrounding rocks and parameters, and
the accuracy of the inversion results should be higher. Combined with the automatic
monitoring data and a reasonable optimization model, the optimal mechanical parameters
of the surrounding rocks are obtained through the reverse analysis method, and then the
actual deformation law of surrounding rocks is found, so as to provide a scientific basis
for the subsequent optimization design of the station [31]. How to minimize the number
of function evaluations in the optimization process while achieving the global optimal
solution becomes the key. To this end, a joint inverse analysis of displacement stress based
on the GP-DE algorithm is used.

3.1. The GP Respond Surface Optimized by DE

GP algorithm is mainly determined by the mean function and covariance function.
Consider regression model [16,20,32].

This is example 1 of an equation:

y = f (x) + ε (1)

where x is the input variation; y is the observed value; Noise ε~N
(
0, σn

2). The expecta-
tion and variance of the predicted value y′ can be obtained from the Bayesian posterior
probability formula:

This is example 1 of an equation:

μ′
y = C

(
x′, X

)[
C(X, X) + σn

2 In

]−1
y (2)
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σ y ′2 = C
(
x′, x′

)− C
(
x′, X

)[
C(X, X) + σn

2 In

]−1
C
(
X, x′

)
(3)

In GP, the covariance function is equivalent to the kernel function, and the squared
exponential covariance function is the commonly used covariance function.

C
(
xi, xj

)
= σf

2 exp
[
−1

2
(
xi − xj

)T M
(
xi − xj

)]
+ σn

2σij (4)

where: σf
2 is the signal variance of the kernel function, M = diag

(
I−2) is the diagonal

matrix of the hyperparameter, I is the variance scale, and σij is the Kronecker symbol.
θ =

{
M, σf

2, σn
3
}

is made the hyperparameter, and the optimal hyperparameter can
be obtained using the log function maximum likelihood method. The partial derivatives of
the negative log-likelihood function and the hyperparameter θ are:

L(θ) =
1
2

yTC−1y +
1
2

lg|C|+ n
2

lg2π (5)

∂L(θ)
∂θi

=
1
2

tr
[(

ααT − C−1
) ∂C

∂θi

]
(6)

The DE algorithm is a differential evolution algorithm, which is also a population-
based evolutionary algorithm. In the DE algorithm, the initial population is generated
first, all the new individuals in the initial population are selected as the same parent
probability, and better individuals are selected as the next generation between new and
parent individuals. If the population generation is G and the number is NP, the population
vector of generation G is represented as xi(G), i = 1, 2, 3 · ··, NP. Each vector individual
contains D components. The basic process of the DE algorithm is as follows [8,33].

3.1.1. Generate Initial Population

In D-dimensional space, NP chromosomes satisfying the upper and lower bounds of
independent variables are randomly generated. The formula is:

xij(0) = randij(0, 1)
(
xU

ij − xL
ij
)
+ xL

ij

(i = 1, 2, · · ·, NP, j = 1, 2, · · ·, D)
(7)

where: xU
ij, xL

ij are the upper and lower bounds of the jth component in the ith vector;
randij(0, 1) is a random number between (0,1).

3.1.2. Mutation Operation

During evolution, the variable of the difference between any two target vector indi-
viduals is superimposed on a third vector individual according to a certain law, so that it
becomes a brand-new variable, which is the variation vector. Through mutation operation,
not only the searchability of the population is enhanced, but the diversity of the population
is also maintained. For the target vector of generation G, the jth component of the variation
vector is:

uij(G + 1) = xr1j(G) + F
(
xr2j(G)− xr3j(G)

)
(8)

where: r1, r2, and r3 are arbitrary and mutually different integers in [1, NP]; F is the scaling
factor, which plays the role of adjusting the step amplitude of vector difference.

3.1.3. Cross Operation

The target vector xi(G) and the variation vector xi(G) are hybridized according to
Formula (4) to generate a new test vector ui(G + 1).

ui(G + 1) =
{

vi(G + 1), rj ≤ CR ‖ j = ni
xi(G + 1), rj > CR & j �= ni

(9)
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where rj ∈ [0, 1] is a random number, which corresponds to the jth component of the
vector; CR ∈ [0, 1] is the cross probability, and a new individual is randomly generated
by probability; and ni is an integer randomly selected in 1, 2, · · ·, D, that is, one or more
components of the variation vector shall be ensured to be applied by the test vector.

3.1.4. Select Action

The greedy search method is selected for the selection operation. The fitness function
is used to compare each objective vector of DE with the test vector. If the value of the
objective function corresponding to the test vector is small, the test vector is selected; if not,
it is retained.

The Gaussian process machine learning algorithm is used as the GP-DE algorithm
to establish the nonlinear mapping relationship among the learning samples. Taking the
optimal hyperparameters of the GP as the population, the hyperparameters in the GP are
optimized through the mutation cross-selection operation based on the DE algorithm, so as
to optimize the GP model and predict an output value closer to the optimal solution. Using
the square difference between the optimal output value and the control value predicted by
the GP model as the fitness function, the prediction ability of the GP model is improved by
optimizing the sample population to approach the optimal solution, so that the predicted
target vector is closer to the optimal solution. This cycle is iterated until the global optimal
solution of each optimal hyperparameter is found.

3.2. The Parameter Identification Flowchart

According to the meaning of the model parameters, the stress and displacement are
taken as the objective function to control the target value as well as to reach the minimum
objective function.

minF(x) = minE(x) + minD(x)

minE(x1, x2, · · · , xn) =
1
m

m
∑

i=1

[
Y0

i − Yi
]2

minD(x1, x2, · · · , xn) =
1
l

i
∑

i=1

[
S0

i − Si
]2

xa
i ≤ xi ≤ xb

i (i = 1, 2, · · · , n)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(10)

where minE(x) is a function of the displacement control value; minD(x) is the stress control
value; Y0

i and S0
i are the measured deformation and stress values of the surrounding rock;

Yi and Si are implicit functions with the surrounding rock parameters as independent
variables, which need to be solved by numerical simulation; xi is a parameter; n is the
number of parameters; xa

i and xb
i are the upper and lower limits of the parameter xi; and m

is the number of observation values.
The specific flow of displacement stress joint back analysis of surrounding rock pa-

rameters based on GP-DE is as follows:

1. Orthogonal design of surrounding rock parameters includes: the tensile strength T,
Poisson’s ratio μ, cohesion c, and internal friction angle ϕ. Different values of the five
surrounding rock parameters of elastic modulus E are taken within a certain range for
an orthogonal design, and an orthogonal scheme is formed.

2. Second item, sample generation: FLAC3D is used to establish a numerical model, and
the orthogonal scheme is used to simulate the model. The results of the orthogonal
scheme are normalized after they are obtained, and the processed results are test
samples, which are regarded as GP learning training samples and prediction test
samples, and the influential factors obtained through a sensitivity analysis are used as
the variables to be inverted.

3. The following method is used to establish a nonlinear mapping relationship model of
surrounding rock parameters: use GP technology to establish the nonlinear mapping
relationship, use superparameters to carry out GP learning and prediction on the test
samples, and evaluate the fitness of the obtained results obtained. Then, repeat the
operation of mutation, crossover, selection, GP prediction, and fitness evaluation on
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the test samples. When the objective function reaches the preset value, the GP-DE
algorithm has been optimized.

4. Optimization of surrounding rock parameters: first of all, take the objective function of
Formula (10) as the fitness function of the DE algorithm, generate a random group of
parameters in the solution space as the initial population, and repeat the operation of
mutation, crossover, selection, GP prediction, and fitness evaluation. The surrounding
rock parameters that meet the minimum fitness are the back-analysis parameters. The
detailed process is shown in Figure 2.

Figure 2. Flow chart of back-analysis method based on GP-DE algorithm.

Due to the different dimensions of displacement and stress in the results obtained
based on the orthogonal design, a direct comparison and calculation will make the final
results inaccurate, so they cannot be compared. To make the results accurate and reliable,
normalization can be a good choice. After normalization processing, the data of different
dimensions can be transformed into dimensionless data for subsequent processing. The
normalization formula is as follows:

ri = (ki − kimin)/(kimax − kimin)

(i = 1, 2, · · ·, 25)
(11)

where: ki is the calculated value of the ith output in the sample, kimin is the minimum value
of the output in the orthogonal scheme, kimax is the maximum value of the output in the
orthogonal scheme, and the normalized value of ri is ri ∈ [0, 1].

4. Engineering Application

4.1. Engineering Overview

Shikui Road Station of Dalian Metro Line 5 is located in the urban area of Dalian,
which is surrounded by residential and commercial areas, with numerous underground
pipelines. The main body of the station is located directly below the road. The overall
terrain of the site is a gentle slope, whose geomorphic unit belongs to denuded low hills.
The soil in the upper part of the station is plain fill, and the lower part is mainly constructed
with moderately to strongly weathered quartzite. The excavation diameter of the tunnel
face of the station is about 21 m, and the soil thickness is 11.9~19.4 m. The stratum through
which the station passes mainly consists of moderately weathered quartzite, which is a
class-IV surrounding rock with a low compressibility foundation, a high bearing capacity
of bearing stratums, a uniform foundation, and a large buried depth. The project is a
large-span underground excavation project, where the arch cover method is adopted for
construction. During construction, a small pilot tunnel is excavated first; then, a middle
pilot tunnel is excavated; then, the side walls of the small pilot tunnel are removed; and
finally, and the arch cover is formed. During excavation, it is easy to cause collapse along
the fracture structural plane, and the excavation depth is large, making it easy to cause soil
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deformation. The longitudinal geological profile and the station cross-section are shown
in Figure 3. The project location is Shikui Road Station of Dalian Metro Line 5 in Dalian,
Liaoning Province, China. The project location is shown in Figure 4.

4.2. Construction Procedure of Arch Cover Method

The construction sequence of symmetry is mainly adopted in the excavation of the
Shikui Road arch cover pilot tunnel. First of all, a side pilot tunnel is excavated, then follows
a middle pilot tunnel, and a supporting structure is timely constructed to prevent excessive
settlement. Necessary monitoring measures shall also be taken during the construction to
adjust the excavation footage and support scheme according to the monitoring data. The
construction scheme is shown in Table 2. The specific construction process is as follows:

Table 2. Schematic diagram of arch cover method construction process.

Construction Steps Diagrammatic Sketch Construction Steps Diagrammatic Sketch

1 2

3 4

5 6

(1) The side pilot tunnels 1 and 2 of the main body are grouted and reinforced with
advanced small conduits, which are then excavated and supported in time. The
mortar and foot lock anchor bolts are set at the arch foot, and a crown beam is set
when the side pilot tunnel is through.

(2) Advanced small tremie grouting reinforcement is carried out for pilot tunnel No. 3
and No. 4 in the main body, and then excavation is carried out, support is to be
provided in time, and plain concrete is backfilled in the empty part of the side pilot
tunnel.

(3) The side walls of side pilot tunnel No. 1 and No. 2 are dismantled, and secondary
primary support is provided at the same time.

(4) Advanced small tremie grouting reinforcement is carried out for pilot tunnel No. 3
and No. 4 in the main body; then, excavation is carried out, support is to be provided
in time, and plain concrete is backfilled in the empty part of the side pilot tunnel.

(5) The side walls of side pilot tunnel No. 1 and No. 2 are dismantled, and secondary
primary support is provided at the same time.

(6) According to the measured data, the middle partition is removed at a certain distance,
a waterproof layer is laid on the bottom of the crown beam, and a secondary lining
structure is constructed in time.

28



Appl. Sci. 2022, 12, 12590

(7) The lower soil mass is excavated layer by layer, and the side walls are initially sup-
ported, and at the same time, the side wall is provided with anchor cables and steel
supports. After reaching the tunnel bottom elevation, a bottom cushion is constructed.

(8) The waterproof layer is paved, the secondary lining structure and medium plate beam
column are constructed, and then the internal structure of the station is constructed.

Figure 3. The longitudinal geological profile and the station cross-section: (a) the longitudinal
geological profile; (b) the station cross-section.

Figure 4. The project location map.

4.3. Numerical Simulation Model

A numerical calculation model is established using FLAC3D finite difference software.
In order to eliminate the influence of the boundary effect, the left and right boundary
of the model are taken as more than two times the station span, the lower boundary is
taken as two times the station span, the upper boundary is taken vertically to the surface,
and the depth direction of the three-dimensional model is taken as 50 m, with an overall
model size of 100 m × 60 m × 74.2 m, whose size scale is simulated according to the data
given in the geological survey report. The model includes 200,853 nodes and 126,890 units.
Ansys 15.0 software is used to establish and grid the model, as well as densify the grid of
main structures and surrounding rock areas. The numerical calculation and analysis are
completed using FLAC3D3.0. The Mohr–Coulomb yield criterion is adopted in the analysis
process of the model. A linear elastic model is used to simulate the primary support,
secondary lining, backfill concrete, crown beam, and other structures. The boundary
around the model is a normal constraint, the bottom boundary is a 3D fixed constraint,
and the upper one is free. The input geotechnical parameters are based on Table 3. The
numerical calculation model calculation model is shown in Figure 5. Note: the “e” in the
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figure represents “10”, and the number after it is his exponent. For example, 2.5000e-003
represents 2.5000 × 10−003.

Table 3. Basic mechanical parameters of surrounding rock.

Surrounding Rock Thickness/m E/GPa μ γ/kN·m3 c/MPa ϕ/◦

Plain filling soil 3.6 0.008 0.4 17 0.01 15
Strongly weathered quartzite 2 0.05 0.35 23 0.08 30
Medium weathered quartzite 68.6 1.3~6 0.3~0.35 26.5 0.2~0.7 27~39

Figure 5. Numerical calculation model: (a) overall model; (b) model of the station.

The Mohr–Coulomb yield criterion is adopted to the station. The first layer is con-
structed with plain fill, the second layer consists of strongly weathered quartzite, and the
third layer is made of moderately weathered quartzite (parameter layer to be inverted).
The basic mechanical parameters are shown in Table 3 regarding field investigation and
investigation data.

4.4. Monitoring and Measurement

According to the basic requirements in the construction specifications of the Shikui
Road Station, the construction methods and surrounding rock characteristics of Shikui Road
Station were monitored, including changes in the stress and settlement of the arch cover
during the construction period. To obtain a better inversion effect, it was necessary to select
appropriate monitoring information for inversion. Therefore, an automatic monitoring
section was set at the arch cover of the station, and an earth pressure box as well as a
single-point displacement meter was used to monitor the stress and displacement changes
in the arch cover in real time.

The earth pressure box (TY-1, TY-2, and TY-3) and single-point displacement meter
(DW-1, DW-2, and DW-3) were arranged as shown in Figure 6.

Figure 6. Automated sensor placement location.
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The actual monitoring data and the calculation results were compared and analyzed.
Figures 7 and 8 show the actual monitoring data of the earth pressure box and the single-
point displacement meter.

Figure 7. Field monitoring data curve of earth pressure box.

Figure 8. Field monitoring data curve of displacement measuring point.

4.5. Orthogonal Design

Orthogonal design is a multi-factor and multi-level test method, through which repre-
sentative points can be selected for test design, thus reducing the difficulties caused by a
large number of tests and the facilitation of efficient tests [34].

In the back analysis, the stability and displacement settlement of the station mostly
depend on the surrounding rock parameters, and the influence of different surrounding
rock parameters on the failure and deformation of rock mass is different; at the same
time, if there are many inversion parameters, the authenticity of parameters obtained from
the back analysis will also be affected. Therefore, the parameters of surrounding rocks
that have a great impact on the station were obtained through a sensitivity analysis for
back analysis.

An orthogonal design scheme was adopted, the parameter values were divided into
five grades according to the determined parameter range, and then the values of different
grades of each parameter were reasonably combined according to the orthogonal scheme;
that is, 25 combinations were formed according to the L25 (55) orthogonal table (as is shown
in Table 4). According to the field investigation and survey data, 25 combinations of five test
parameters at five levels were designed. The parameter and value range: tensile strength
t = 0.07~0.19 MPa, Poisson’s ratio μ = 0.3~0.35, cohesion c = 0.2~0.7 MPa, internal friction
angle ϕ = 27◦~39◦, and elastic modulus E = 1.3~6 GPa. The parameters of each scheme
were substituted into a three-dimensional finite element model for forward calculation,
and the three points (as is shown in Figure 7), where the sensors were located at the station
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arch cover, were, respectively, selected to obtain the corresponding displacement and stress,
whose results are shown in Table 4.

Table 4. Parametric orthogonal experiment scheme.

Factor
E/

GPa
μ

c/
MPa

ϕ/
◦

t/
MPa

DW-1/
mm

DW-2/
mm

DW-3/
mm

TY-1/
kPa

TY-2/
kPa

TY-3/
kPa

test1 1.30 0.30 0.20 27 0.07 13.64 11.67 11.69 234.95 174.19 169.67
test2 2.48 0.31 0.32 30 0.07 7.01 5.88 5.86 149.88 136.15 99.83
test3 3.65 0.32 0.45 33 0.07 4.87 4.09 4.05 133.20 116.90 96.41
test4 4.83 0.33 0.57 36 0.07 3.79 3.2 3.16 128.27 116.34 88.09
test5 6.00 0.35 0.70 39 0.07 3.11 2.63 2.59 125.51 120.03 87.13
test6 4.83 0.30 0.32 33 0.10 5.18 4.36 4.33 107.73 78.63 43.08
test7 6..00 0.31 0.45 36 0.10 3.1 2.59 2.56 109.42 115.60 81.28
test8 1.30 0.32 0.57 39 0.10 11.84 9.97 9.87 172.40 132.75 99.45
test9 2.48 0.33 0.70 27 0.10 6.92 5.79 5.74 133.63 117.19 83.77
test10 3.65 0.35 0.20 30 0.10 6.73 5.96 5.78 189.64 138.41 151.20
test11 2.48 0.30 0.45 39 0.13 8.86 7.47 7.36 138.23 65.41 24.61
test12 3.65 0.31 0.57 27 0.13 4.95 4.13 4.09 109.75 109.84 70.04
test13 4.83 0.32 0.70 30 0.13 3.83 3.19 3.16 102.77 103.65 69.79
test14 6.00 0.33 0.20 33 0.13 4.14 3.69 3.59 180.82 126.39 145.73
test15 1.30 0.35 0.32 36 0.13 14.43 12.29 12.27 190.41 85.35 52.84
test16 6.00 0.30 0.57 30 0.16 3.15 2.63 2.6 89.68 99.91 55.69
test17 1.30 0.31 0.70 33 0.16 11.96 10.06 9.97 163.99 114.17 90.04
test18 2.48 0.32 0.20 36 0.16 7.58 6.61 6.59 213.93 142.20 173.48
test19 3.65 0.33 0.32 39 0.16 5.15 4.34 4.35 122.05 111.87 96.55
test20 4.83 0.35 0.45 27 0.16 3.93 3.28 3.26 98.24 90.76 65.44
test21 3.65 0.30 0.70 36 0.19 5.05 4.22 4.17 101.81 93.96 60.39
test22 4.83 0.31 0.20 39 0.19 4.22 3.71 3.68 205.64 141.33 174.70
test23 6.00 0.32 0.32 27 0.19 3.44 2.92 2.93 112.19 117.19 101.08
test24 1.30 0.33 0.45 30 0.19 12.24 10.32 10.29 165.71 113.95 77.52
test25 2.48 0.35 0.57 33 0.19 13.64 11.67 11.69 121.43 106.48 62.03

In the back analysis, the mechanical parameters had a great relationship with the
stability of the surrounding rocks. The failure and deformation of rock mass were different
with different rock mass parameters. Moreover, the authenticity of the parameters obtained
from back analysis decrease with the increase in the number of inversion parameters [35].
Therefore, sensitivity analysis was used in this paper to obtain the factors that have a
greater impact on the stability of the station for an inverse analysis, and a range analysis
was carried out on the settlement displacement value of the arch crown and arch waist. See
Table 5 for the range value of DW-1, DW-2, and DW-3 as well as the order of their impact
on the displacement.

Table 5. Numerical calculation results (Cont).

Factor E/GPa μ c/MPa ϕ/◦ t/MPa

range (DW-1) 7.970 1.892 1.150 1.216 1.184
order (DW-1) 1 2 5 3 4
range (DW-2) 7.973 1.890 1.150 1.216 1.183
order (DW-2) 1 2 5 3 4
range (DW-3) 9.434 2.118 1.302 1.382 1.364
order (DW-3) 1 2 5 3 4
Range mean 8.856 2.033 1.229 1.320 1.292

0rder 1 2 5 3 4

In Tables 4 and 5, DW-2 is the settlement displacement value at the left arch waist of
the arch cover; DW-3 is that at its right arch waist; DW-1 is that at its arch crown; TY-1,
TY-2, and TY-3 are the total stress at these three points of the arch cover of the station; and
the range, order as well as average range of DW-1, DW-2, and DW-3 are the range value of
the settlement displacement at the corresponding measuring points of at the arch cover, the
primary and secondary relationship of the influence of various parameters, as well as the
average range value.
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As can be seen from Table 3, the order of sensitive factors affecting the three points
at the arch cover is elastic modulus E, Poisson’s ratio μ, internal friction angle ϕ, tensile
strength t, and cohesion force c. Elastic modulus has the greatest influence, followed by
Poisson’s ratio and internal friction angle. Therefore, the first three factors with a great
influence on the sensitivity factor analysis are selected for the analysis in this paper.

4.6. Parameter Identification Results

The back analysis of displacement and stress can be used to further solve not only the
problem of the low accuracy, but also the problem of the low authenticity caused by the
increase in back-analysis parameters. At the same time, real changes in the surrounding
rocks of the station can be fully considered in the joint analysis of displacement and stress,
so that it is more real and effective.

According to the actual monitoring, the settlement displacement of each point of
the surrounding rocks was DW-1 = 12.53 mm, DW-2 = 10.75 mm, DW-3 = 10.71 mm,
TY-1 = 176.97 kPa, TY-2 = 125.8 kPa, and TY-3 = 120.55 kPa. Taking the measured dis-
placement and stress values as the control values while applying MATLAB to conduct a
joint back analysis on displacement and stress, the initial parameters setting of differential
evolution are shown in Table 6.

Table 6. Initial parameters of differential evolution.

Initial Parameter Type
Number of

Optimization
Variables

Number of
Population

Cross Factor CR Variation Factor F
Maximum
Evolution
Algebra

Population Size
NP

numerical value 5 100 0.7 0.8 200 100

It was found that when the cross factor was CR = 0.7 and F = 0.8, the optimal mechani-
cal combination parameter of moderately weathered quartzite obtained through inversion
was E = 1.3 GPa, μ = 0.33, and ϕ = 35◦, and the inversion results of surrounding rock
parameters are shown in Table 7. The results obtained from the inversion were substituted
into the finite-element software for a forward calculation, the results obtained from which
were compared with the monitoring values at the monitoring section of Shikui Road Station
and the single displacement back analysis. The results are shown in Table 8.

Table 7. Inversion results of surrounding rock parameters.

Factor E/GPa μ ϕ/◦

Parameter value 1.3 0.33 35

Table 8. Comparison of inversion calculation results and actual measurement results.

Measuring Point

Actual Monitoring
Value

Displacement Back Analysis
Joint Back Analysis of Displacement and

Stress

Calculated Value Relative Error/% Calculated Value Relative Error/%

DW-1/mm 12.53 11.86 5.35 12.58 0.40
DW-2/mm 10.75 10.18 5.30 10.84 0.84
DW-3/mm 10.71 10.15 5.23 10.81 0.93
TY-1/kPa 176.97 — — 180.20 1.83
TY-2/kPa 125.8 — — 130.35 3.62
TY-3/kPa 120.55 — — 124.79 3.52

The back analysis of displacement and stress can be used to further solve not only the
problem of the low accuracy, but also the problem of the low authenticity caused by the
increase in back-analysis parameters. At the same time, the joint analysis of displacement
and stress real changes in the surrounding rocks of the station can be fully considered, so
that it is more real and effective.
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According to the data in Table 4, only when the settlement value of the displacement
at the arch cover of the station was used as the control value for the back analysis of
surrounding rock parameters could the maximum relative error be 5.35%, while when the
displacement and stress value at the arch cover of the station was combined for the back
analysis, the maximum error was only 3.62%. The inversion effect was improved by 32.3%
through a joint back analysis of displacement and stress compared with the single back
analysis of displacement. This method further illustrates the applicability of the joint back
analysis of displacement stress using the GP-DE algorithm through the arch and cover
method. The surrounding rock parameters obtained from the joint back analysis can be
applied to the problem of later scheme optimization, thus providing a reliable reference for
the subsequent calculations.

5. Optimization Analysis of Temporary Dismantling Based on Determined Parameters

To analyze the stress characteristics of the center diaphragm wall of Shikui Road Station
during the excavation process, the parameters obtained from the joint back analysis of
displacement and stress based on the GP-DE algorithm were used as calculation parameters
in the removal process of the center diaphragm wall support of the station. By analyzing
the ground settlement and vault settlement of the station, the optimal length of the removal
of its center diaphragm wall with class-IV surrounding rocks was studied. The overall
model was consistent with Figure 9. A numerical simulation was carried out with FLAC3D
3.0 software. The stratum and constitutive as well as physical and mechanical parameters
were consistent with Table 1. The center diaphragm wall was established with solid units.
After the center diaphragm wall was removed, the two-layer primary support structure
and the secondary lining structure were constructed immediately. The monitoring section
was set as 3 m in the longitudinal direction of the station, and 35 monitoring points of the
ground settlement were set in its transverse direction. The ground and vault settlement
under the length of 6 m, 12 m, 18 m and 24 m were analyzed, respectively, to determine the
optimal removal length of the center diaphragm wall of the station.

  
(a) (b) 

 
(c) (d) 

Figure 9. Numerical model of demolition of partition walls in different length: (a) dismantle 6 m;
(b) dismantle 12 m; (c) dismantle 18 m; (d) dismantle 24 m.
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5.1. Surface Subsidence Analysis

To better analyze the suitable distance of the removal length of the center diaphragm
wall in the station, the optimization was carried out based on the length range provided
by the design institute. Four lengths were selected to analyze the removal length of the
center diaphragm wall, so as to obtain a more appropriate removal length of the center
diaphragm wall. The ground settlement under four schemes, namely 6 m, 12 m, 18 m, and
24 m, was compared, respectively, to determine the optimal removal length of the center
diaphragm wall. The surface settlement curve is shown in Figure 10.

Figure 10. Surface settlement curve.

It can be seen from the surface settlement curve that, during the removal of the
center diaphragm, the surface was symmetrically distributed to both sides with the center
diaphragm as the center, and the surface settlement was distributed in a “V” shape. All
the maximum surface settlement values were on the tunnel axis. When the removal length
of the center diaphragm of the station was 6 m, the maximum surface settlement value
was 4.9 mm, which was 6.65 mm, 9.75 mm and 14.31 mm when the removal length of the
station center diaphragm was 12 m, 18 m and 24 m, respectively. It could be found that,
with the increase in the removal length of the center diaphragm, the maximum surface
settlement gradually increased. When the center diaphragm was removed for 6 m, the
minimum surface settlement occurred, and when it was removed for 24 m, the maximum
surface settlement occurred. This is because the stress conversion of the main pilot tunnel
of the station after excavation is relatively stable when the removal length of the center
diaphragm is small, while when the removal length of the center diaphragm is too long,
the stress conversion of the main pilot tunnel of the station after excavation is severe, which
may lead to the instability of the structure, thus causing a greater settlement of the ground
surface. It can be seen from the surface settlement curve that the removal length of the
center diaphragm had a great impact on the surface settlement, which is not enough to be
judged only by the surface settlement, so a further analysis is needed.

5.2. Settlement Analysis of Arch Crown

During the construction and removal of the center diaphragm wall of the station,
the value of the arch crown settlement is a monitoring item that cannot be ignored. The
monitoring of the arch crown settlement plays an important role in the safety of the tunnel.
If the value of the arch crown settlement exceeds the control range, it may bring great
dangers to the tunnel. Therefore, the monitoring of the arch crown settlement should be
focused on. The demolition length of the center diaphragm wall can be further determined
by the crown settlement through the value of the crown settlement of different demolition
lengths of the center diaphragm wall. The Figure 11 shows the vertical displacement cloud
diagram of the demolition length of each center diaphragm wall. Note: the “e” in the
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figure represents “10”, and the number after it is his exponent. For example, 2.5000e-003
represents 2.5000 × 10−003.

 
(a) (b) 

(c) (d) 

Figure 11. Vertical displacement cloud diagram of each demolished length: (a) dismantle 6 m;
(b) dismantle 12 m; (c) dismantle 18 m; (d) dismantle 24 m.

It can be seen from the vertical displacement program of the center diaphragm of
different removal lengths in Figure 10 that different removal lengths had different effects
on the settlement of the station vault. When the removal length of the center diaphragm
was 6 m, 12 m, 18 m and 24 m, the settlement of the station vault was 15.57 mm, 16.43 mm,
18.12 mm and 21.87 mm, respectively. It could be found that, with the increase in the
removal length of the center diaphragm, the settlement value of the station vault showed
a significant increase. When the removal length of the center diaphragm was 24 m, the
settlement value of the vault was the largest. According to the field monitoring and data,
the control value of the station vault settlement was 20 mm, so when the removal length
of the center diaphragm was 24 m, the control value was exceeded. If this is the removal
length, the stability of the station will be weakened, which may affect the safety of the
whole station.

It can be seen from the surface settlement curve and the dome top settlement cloud
diagram that after a comprehensive comparison of the surface settlement value and the
dome top settlement value, when the removal length of the center diaphragm wall at the
arch cover of the station was 18 m, the value of surface settlement and dome top settlement
was within the control value range. Through the removal of the center diaphragm wall
with this length, not only the budget cost for the removal of the center diaphragm wall of
the station can be reduced, but also the safe construction of the tunnel can also be ensured.

6. Discussion

6.1. Effect Analysis of Back Analysis of GP-DE Model

To verify the algorithm of GP-DE, the displacement stress in the construction process
through the large-span arch cover method and numerical model simulation was used to

36



Appl. Sci. 2022, 12, 12590

analyze the inversion effect of the algorithm on the mechanical parameters of the upper soft
stratum and the lower hard stratum. To further analyze the applicability of this algorithm,
the methods including GP-DE, BP, LSSVM and GP commonly used in back analyses were
used to compare and analyze the inversion effect of the mechanical parameters of the
upper and lower hard layer through the large-span arch cover method for different training
samples with an identical numerical model and mechanical parameter input. The Figure 12
shows the relative error of monitoring point values of different strategies.

 
(a) (b) 

 
(c) (d) 

Figure 12. Relative error of monitoring point values of different strategies: (a) 5 samples;
(b) 10 samples; (c) 25 samples; (d) 41 samples.

Training sets with 5, 10, 25 and 41 samples were used to train the above algorithms.
A line chart of relative errors was drawn corresponding to the mechanical effect at each
measurement point based on different training sets and different inversion algorithms, as
is shown in the figure. Samples were obtained through numerical simulation. The rules for
selecting samples from different sample sets were as follows: a number of samples (5 and
10 samples) were randomly selected from the table of Sample L25(55), respectively, and the
training sample set 41 was the orthogonal scheme L25(55) plus L16(45).

When the number of samples was 5, there were fewer training samples at this time.
It can be found from the figure that LSSVM and GP-DE inversion was significantly better
than the BP neural network and GP, which shows that GP-DE and LSSVM can also have
certain inversion performance of rock formation parameters when the sample size is small.
BP and GP in this case, especially BP, are more likely to fall into a local solution state.
When the number of trainings increased to 10, the GP inversion effect was significantly
improved, and the GP-DE effect was the best. The BP neural network could easily fall into
local solutions, and some relative errors were large.
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When the number of training samples increased to 25, the results of the BP neural
network had a better effect than LSSVM, so BP needs a sufficient number of training
samples, which can better give play to the advantages of the algorithm. An advantage
of LSSVM is that it can have a good effect when the number of training samples is small,
which is suggested to be selected when the number of samples is small. When the number
of training samples reached 41, little improvement could be found in the inversion results
compared with 25, and the inversion results of the selected algorithm were at a better level.
Compared with the other three algorithms, both the inversion results and the convergence
speed had a good performance. The overall inversion effect of the GP-DE algorithm was
excellent, which also had a good performance with a small sample size.

6.2. Influence of Differential Evolution Parameters on Optimization Results

In DE, variation factor F, cross factor CR, and population size NP, different strategies
may affect the convergence rate. To obtain better calculation results, the control variable
method was used in this paper to analyze the impact of key parameters such as DE,
variation coefficient F, and cross coefficient CR on the DE algorithm under the above
conditions with optimized parameters, 25 training samples, and the mechanical parameter
input dimension of the numerical model; thus, the appropriate value range of variation
coefficient F and cross coefficient CR was determined.

F represents the single search contraction range, and CR represents the probability
of cross-recombination between newly generated mutants and individuals in the original
population, which is used to enhance the diversity of the population. F was fixed as 0.3,
0.5, 0.7, and 0.9, respectively, and the convergence of CR that was between 0.3 and 0.9 was
compared and analyzed, as is shown in Figure 13.

  
(a) (b) 

  
(c) (d) 

Figure 13. Training convergence curve under different F and CR values: (a) F = 0.3; (b) F = 0.5;
(c) F = 0.7; (d) F = 0.9.
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From the perspective of the overall iterative effect, when CR was 0.7 and 0.9, the
iteration effect and rate were relatively better. When the CR value was 0.3 and 0.5, the
iteration rate was high in the beginning part, but slowed down significantly in the later
part. When F was 0.5 and 0.7, the overall iteration rate was higher than 0.3 and 0.9. Based
on the iteration rate and convergence effect, it is suggested that the parameters and the
value of CR be selected, respectively, from 0.5 to 0.7 and from 0.7 to 0.9.

7. Conclusions

The GP-DE back-analysis method was used to back-analyze the rock strata parameters
of the station constructed using the arch cover method. The main conclusions are as follows:

1. The advantages of the GP-DE (Gaussian process differential evolution co-optimization)
algorithm in establishing a nonlinear mapping relationship and its strong optimization
ability are used to back-analyze the surrounding rock parameters of the power station.
The calculation results showed that the error between the forward calculation of
inversion parameters and the measured values was only 3.62%, which can meet the
needs of the project to guide the next step of construction.

2. The current content is “based on the parameters inversed by the GP-DE algorithm”;
it was studied that the optimal length for removing the station middle partition
(including Class-IV surrounding rocks) was 18m, which can not only reduce the
budget cost for removing the station middle partition, but also ensure the safety and
efficiency of tunnel construction.

3. With different training samples, the inversion effect of the mechanical parameters
of the upper soft rocks and the lower hard rocks through the long-span arch cover
method was compared with that through the GP-DE, BP, LSSVM, and GP methods.
Compared with the other three algorithms, the inversion effect of the GP-DE algorithm
was generally good, which performed well with a small-sample training amount.

4. For the key parameters of DE, the variation coefficient F, and the cross-coefficient
CR, the control variable method was used to analyze the impact of these two param-
eters on the DE algorithm. Based on the iteration rate and convergence effect, it is
recommended that the selection range of parameter F be 0.5~0.7 and the value of CR
be 0.7~0.9.
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Abstract: Geomaterial mechanical parameters are critical to implementing construction design and
evaluating stability through feedback analysis in geotechnical engineering. The back analysis is
widely utilized to identify and calibrate the geomaterial mechanical properties in geotechnical
engineering. This study developed a novel back-analysis framework by combining a reduced-order
model (ROM), grey wolf optimization (GWO), and numerical technology. The ROM was adopted
to evaluate the response of the geotechnical structure based on a numerical model. GWO was used
to search and identify the geomaterials properties based on the ROM. The developed back analysis
framework was applied to a circular tunnel and a practical tunnel for determining the mechanical
property of the surrounding rock mass. The results showed that the ROM could be an excellent
surrogated model and replaced it with the numerical model. The obtained geomaterial properties
were in excellent agreement with the actual properties. The deformation behavior captured by
the developed framework was consistent with the theoretical solution in a circular rock tunnel.
The developed framework provides a practical, accurate, and convenient approach for calibrating
the geomaterial properties based on field monitoring data in practical geotechnical engineering
applications.

Keywords: geomaterial; tunnel; back analysis; reduced-order model; grey wolf optimization

1. Introduction

The geomaterial property is critical to guiding construction and assuring safety during
the feedback analysis and dynamic design for geotechnical engineering [1–3]. The back
analysis based on field monitoring data has been widely used in geotechnical engineering.
The back analysis aims to obtain the geomaterial properties by minimizing the objective
function, which represents the response difference of geotechnical structure between the
monitored field and the predicted by the physical model, based on the optimization
technology. The core of the back analysis technique is the optimization technique and
physical model. Generally, the numerical method is widely used to calculate the structure
response field in practical geotechnical engineering [4,5]. However, a numerical method
is time-consuming due to the repetitive computing in back analysis, especially for the
practical large-scale geotechnical structure. Meanwhile, optimal techniques often have
problems in back analysis, such as high dimensionality, complexity, and local minima. In
order to solve the above two problems, various surrogate models and optimal technology
have been proposed in the back analysis [2,3,6]. In this study, the reduced order model
(ROM) and the grey wolf algorithm (GWO) were combined to improve the practicability of
back analysis.

Last century, displacement back analysis was proposed by Sakurai and Takeuchi
to identify the rock mechanical parameters based on the monitoring information of the
tunnel [7]. However, the numerical method is time-consuming and limits the engineering
application of back analysis. In order to overcome the limitations of the numerical method,

Appl. Sci. 2022, 12, 12595. https://doi.org/10.3390/app122412595 https://www.mdpi.com/journal/applsci42



Appl. Sci. 2022, 12, 12595

various machine learning-based surrogate models were a focus of attention to approximate
the response of the geotechnical structure in the past decades [8–11]. The neural network
method was utilized to construct the intelligent displacement back analysis model for
identifying the mechanical property of the surrounding rock mass [12–15]. The support
vector machine and the relevance vector machine were selected to build a displacement
back analysis model to recognize the geomaterials parameters [16–18]. Machine learning
provides an excellent tool for predicting the structural response and is selected as the surro-
gate model in the geotechnical back analysis. However, some limits of artificial intelligence,
such as overfitting, trapping local minimum, etc., hinder the practical application in back
analysis for geotechnical engineering. Meanwhile, the traditional surrogate model does
not reflect the physical mechanism of geological engineering and only obtains information
about the discrete response at some monitoring points. Therefore, obtaining the total
response fields using this classical approach is challenging due to the learning efficiency.
The ROM was developed that contains some knowledge about the engineering structure
under consideration and can overcome the limits of machine learning and the traditional
surrogate model. So, this study adopted the ROM to establish the surrogate model for
back analysis.

In order to acquire the appropriate geomaterial property, various intelligent optimiza-
tion methods, such as genetic algorithm [16,19,20], artificial bee colony [18], particle swarm
optimization [21,22], etc., have been widely utilized to seek the geomechanical property
in the back analysis. Due to the complexity of geomaterials, trapping the local minimum
solution is the main drawback of the back analysis method, which hinders its applica-
tion in practical engineering. Grey wolf optimization (GWO) is an efficient metaheuristic
method developed recently [23]. The GWO algorithm is suitable for solving nonlinear
and complex problems due to its simple concept, small number of adjustable parameters,
fast convergence, and strong global optimization capacity. It only considers the function
evaluation and does not need the derivative information, which is suitable for black box
global optimization problems. So, GWO was selected as an optimal technology for the back
analysis in this study.

This study proposed a novel back analysis approach by combining numerical models,
ROM, and GWO to identify the geomaterial mechanical property in geotechnical engi-
neering. ROM was utilized to construct a surrogate model to approximate and capture
the response of the geotechnical structure for replacing the numerical model in the back
analysis. The GWO algorithm was regarded as an optimal technology for seeking the
unknown geomaterial property based on the idea of the back analysis. The developed
framework was applied to a circular tunnel and an actual tunnel project. The remainder
of this study is stated as follows. First, ROM and GWO algorithms are briefly introduced
in Sections 2 and 3, respectively. Section 4 introduces the main ideas and procedures of
the developed back analysis in detail. In Section 5, a circular tunnel and an actual tunnel,
i.e., the experimental tunnel in the Goupitan Water conservancy project, China, are used to
verify and investigate the developed back analysis framework. Finally, some conclusions
are drawn in Section 6.

2. Reduced-Order Model

2.1. Constructing the ROM Model

The ROM was used to predict the system response using a low-order model based
on numerical methods and the proper orthogonal decomposition in engineering. For any
xi, i = 1, 2, . . . , I, and θj, j = 1, 2, . . . , J, the proper orthogonal decomposition was utilized to
obtain the following equation [24].

ũh(xi, θj
)
=

K

∑
k=1

βk
(
θj
)

ϕk(xi) + g̃
(
xi, θj

)
(1)
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where ũh denots the solution of field variables for geotechnical structure, θj and xi denote
the parameter and design variables of a geotechnical model, ϕ and β note the unknown
coefficient of ROM, and g̃(x, θ) is an extended boundary condition in the entire domain.

g̃(x, θ) =

{
g(x, θ) on ∂Ω
0 elsewhere

(2)

Equation (1) can be rewritten as follows:

ũh = ϕβ + g̃ (3)

By utilizing the Latin hypercube sampling (LHS), the set of design variables θj, j =
1, 2, . . . , J. was constructed for determining the unknown coefficient ϕ. Then, the corre-
sponding discrete solutions (snapshots) of the numerical model wj = uh(θj

)− g̃
(
θj
)
, j =

1, 2, . . . , J, were acquired based on numerical techniques such as finite element, discrete
element, boundary element, etc. The spatial Gram matrix by Mx can be obtained as follows:

Mx
ij =

(
wi·wj

)
, i, j = 1, 2, . . . , J (4)

where
(
wi·wj

)
notes the inner product between wi and wj.

The descending order of the positive eigenvalues of Mx is listed in the following form.

λ1 ≥ λ2 ≥ . . . ≥ λJ ≥ 0 (5)

The first K eigenfunctions ϕk(x), k = 1, 2, . . . K corresponds to the first K eigenvalues,
providing the orthogonal principal direction of snapshots. If rk =

(
rk

j

)
j=i,i,...J

denotes the

kth eigenvector of Mx, then its dual kth eigenfunctions ϕk(x) can be determined according
to the following form.

ϕk(x) =
K

∑
j=1

rk
j wj(x) (6)

where K notes the basis size of the proper orthogonal decomposition and can be solved in
the following inequation.

∑K
i=1 λi

∑J
i=1 λi

> k (7)

where k is the user-specified tolerance and equals 0.9999 in this study.
The following penalized minimization problem can solve the unknown coefficient β.

min
β j∈RK

‖uh,j − ϕβ j − g̃j‖2 + μ‖β j‖2 (8)

β j can be solved by the following normal equation.(
ϕT ϕ + μIK

)
β j = ϕT

(
uh,j − g̃j

)
, j = 1, 2, . . . , J (9)

where μ notes a small regularization parameter.

2.2. Predicting the Field Variables

In order to determine the field variables for unknown variables θ and x, the radial
basis function (RBF) was adopted to expand the coefficient βk(θ) in the following form.

βk(θ) =
J

∑
j=1

αjkψ

(∣∣θ − θj
∣∣

σ

)
(10)
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For any θj′ , j′ = 1, 2, . . . , J, Equation (10) can be presented as follows.

J

∑
j=1

αjkψ

⎛⎝
∣∣∣θj′ − θj

∣∣∣
σ

⎞⎠ = βkj′ (11)

where βkj′ are determined by Equation (9). The above equations can be rewritten in the
compacted form:

Aαk = βk (12)

The following equation can solve the unknown coefficient αk.(
AT A + μIJ

)
αk = AT βk, k = 1, 2, . . . , K (13)

2.3. Procedure of the ROM Model

This study developed a ROM by combining the numerical method (including finite
element, discrete element and boundary element, etc.) and the proper orthogonal decom-
position. Using the LHS, the set of design variables was constructed for the snapshot.
Then the numerical method was adopted to calculate the corresponding solution of de-
sign variable in the above set. Based on the obtained snapshots, the proper orthogonal
decomposition basis vector and its coefficient were acquired using the proper orthogonal
decomposition algorithm for geotechnical engineering. In order to acquire the unknown
field of the new design variable, RBF functions were adopted to expand the coefficient of
the proper orthogonal decomposition basis and then to determine the coefficients of the
orthogonal decomposition ROM. The unknown field variables corresponding to the new
design were determined using the ROM. Figure 1 shows the main flowchart and procedure
of the ROM. In what follows, the procedure of the ROM model is presented in detail.

 
Figure 1. The main part of the ROM model.

Step 1: Collect the data of the geotechnical engineering, including project property, geo-
stress, boundary conditions, etc.;
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Step 2: Establish the numerical model (FEM) based on the above engineering information;
Step 3: Construct the design variables set θ for the numerical model using LHS;
Step 4: Calculate the field variables wi (displacement or stress field) at space domain X

using a numerical method for each design variable. Collect all the field variables and
acquire the snapshots;
Step 5: Build the spatial Gram matrix Mx based on the above snapshots;
Step 6: Solve the eigenvalues λ and eigenvectors r based on the spatial Gram matrix;
Step 7: Determine the rank number K of Mx and the first K eigenfunction vector ϕ;
Step 8: Determine the undetermined coefficient β based on eigenfunction vector ϕ and
snapshots;
Step 9: To a new design variable θ, construct element φ based on the design variables θ
generated by LHS using the RBF function;
Step 10: Determine the interpolation matrix A of elements φ;
Step 11: Determine the vector of element α using the penalized linear systems;
Step 12: Solve the coefficients β(θ) based on the RBF function;
Step 13: Calculate the unknown field variables ũh(θ) based on coefficients β(θ) and eigen-
function vector ϕ using the ROM.

3. Grey Wolf Optimization (GWO)

Grey Wolf Optimization (GWO) is a heuristic optimization strategy inspired by the
social hierarchy and hunting techniques of grey wolves. GWO mimics the leadership
hierarchy and hunting technology of grey wolves. The hierarchy of the grey wolves is
divided into four levels (alpha (α), beta (β), delta (δ), and omega (ω)), which present the
optimal solution, the suboptimal solution, the third optimal solution, and the remaining
candidate solutions, respectively [23]. There are three main stages of grey Wolf hunting,
namely searching, encircling, and attacking prey. The GWO is the mathematical model of
the hunting strategy and social hierarchy of grey wolf. A grey wolf can determine the prey
by randomly changing its position based on the GWO algorithm. The hunting process is
guided by α, β, δ, and ω according to the above three kinds of wolves in GWO.

In the encircling phase, the encircling behavior of wolves can be expressed in the
following mathematical model:

→
D =

∣∣∣∣→D · →Xp(t)−
→
X(t)

∣∣∣∣ (14)

→
X(t + 1) =

→
Xp(t)−

→
A · →D (15)

where t denotes the step of the iteration,
→
D denotes the searching vector,

→
X and

→
Xp are the

vector and denote the position of a grey wolf and the prey, respectively.
→
A and

→
C denote

the coefficient vectors and can be determined according to the following form:

→
A = 2

→
a · →r 1 −→

a (16)

→
C = 2

→
r 2 (17)

where
→
r 1 and

→
r 2 denote the vector and selected randomly in the range of zero to unity, the

component
→
a decreases linearly from 2 to 0 with the iterations.

In the hunting phase, the locations of other search agents (including omega) were
updated according to alpha, beta, and delta knowledge based on the following equations.

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣ (18)
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→
Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣ (19)

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣ (20)

→
X1 =

→
Xα −

→
A1 ·

→
Dα (21)

→
X2 =

→
Xβ −

→
A2 ·

→
Dβ (22)

→
X3 =

→
Xδ −

→
A3 ·

→
Dδ (23)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
(24)

where the subscripts α, β, and δ represent the alpha wolf, beta wolf, and delta wolf,
respectively.

In the attacking prey phase, the final attack is determined by decreasing the
→
a from 2

to 0 with the iterations
→
A selected randomly in the range [−2

→
a , 2

→
a ].

→
A will decrease with

the reduction to the
→
a and force the wolfs to approach the prey while

∣∣∣∣→A∣∣∣∣ is less than 1.

In search of prey, grey wolves follow the leader, dispersing from one another in search
of prey and gathering to attack. The number of wolves Nw and the generation NG are
the two essential parameters of GWO. Each generation represents the decision movement
of a wolf. The number of wolves represents the function computational times in each
generation. Figure 2 shows the flowchart of GWO and the main procedure. A detailed
introduction of the GWO can be found in the literature [23].
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Figure 2. The flowchart of GWO.

4. ROM-Based Back Analysis Using GWO

Back analysis technology has been commonly utilized to identify the geomaterial
property in geotechnical engineering. The numerical method and the optimal technology
are the two critical elements of back analysis. This study developed a ROM-based back
analysis combining numerical methods, ROM, and GWO. The ROM model was utilized to
predict the nonlinear response of the geotechnical structure based on the numerical method.
GWO was selected as an optimal technology to seek the geomaterial properties.

4.1. Back Analysis

In the 1970s, back analysis was proposed to identify the rock mass properties in rock
engineering [25]. The back analysis provides a simple but effective way to identify the
geomaterial properties based on the field data and numerical analysis. It also provides
a helpful tool for guiding the dynamic design, reinforcement of surrounding rock mass,
and safe construction of geotechnical engineering. Figure 3 shows the main parts of the
back analysis and its basic idea. Field measurements provide basic information for back
analysis. The physical model is the heart of the back analysis. Due to the complex geological
conditions, it is not easy to determine the closed-form solution of geotechnical engineering.
Meanwhile, optimal technology is essential to back analysis due to multi-extremum and
multi-constrained optimization problems. This study adopted the ROM model to capture
the physical model. GWO was selected as the optimal technology due to its excellent global
optimizing capability.
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Figure 3. Schematics of back analysis.

4.2. ROM-Based Surrogate Model

The physical model characterizes the nonlinear implicit function mapping between
geomaterial properties and their response during construction. In this study, a ROM-based
physical model was established to capture the nonlinear mapping function between the
geomaterial properties (Deformation modulus, Poisson’s ratio, strength property, and
in-situ stress) and corresponding structural response (displacement, stress, strain, etc.). The
following equations define the physical model ROM(X).

ROM(X) : RN → RQ, (25)

Y = ROM (X), (26)

where X = (x1, x2, . . . , xN) is a vector and xi (i = 1, 2, . . . , N) is the ith geomaterial properties
and Y = (y1, y2, . . . , yN) is a Q dimension vector and denotes the response induced by
construction.

Some known training samples are necessary for establishing the surrogate model
ROM(X) of the physical model in the back analysis. It is necessary to obtain the training
samples for ROM based on a numerical method and the design of experiment.

4.3. Objection Function

This study constructed the objective function based on the geotechnical structure
response difference between the field value and ROM prediction. The objection function
forced the optimal technology to seek the optimal variable. The following root means
square defines the objective function:

f itness =

√
n

∑
i=1

(
ypi − yi

)2/n (27)

where n denotes the number of monitoring points, yi and ypi denote the predicted by ROM
and monitoring response of the geotechnical structure in ith measurement point.

4.4. Procedure of the Developed Framework

This study developed a novel back-analysis framework combining ROM, GWO, and
numerical technology. The ROM was adopted to capture the nonlinear mapping between
the geomaterial properties and the corresponding response during excavation in combi-
nation with the ROM and numerical model. The experimental design was adopted to
construct the combination of the unknown properties, and then the numerical method was
utilized to calculate the structural response at each combination. The snapshots consist
of a combination of the unknown parameters and the corresponding response. ROM was
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built based on the above snapshots. GWO is an optimal approach to seeking geomaterial
properties based on the ROM. The detailed procedures of the proposed method are listed
as follows (as seen in Figure 4):

Step 1: Collect the engineering data, such as the unknown (need to determine by back
analysis) and known geomaterial mechanical and physical properties, boundary conditions,
and the range of unknown geomaterial properties;
Step 2: Generate the combination of the unknown properties based on experimental design
and calculate the structural response at each training sample. The snapshots consist of the
combination of the unknown parameters and the corresponding response;
Step 3: Based on the determined snapshots, generate the ROM to capture the nonlinear
function mapping between the geomaterial properties and the corresponding structural
response in geotechnical engineering;
Step 4: Establish the objective function and call the GWO to seek the geomaterial properties
based on the monitored data during the construction.

Figure 4. Flowchart of the proposed back analysis framework.

5. Numerical Example and Application

5.1. Numerical Example

A circular tunnel is excavated in a continuous, homogeneous, and isotropic rock mass.
The hydrostatic far-field stress p0 and uniform support pressure pi are shown in Figure 5.
When support pressure pi is not enough to meet critical pressure pcr, a plastic zone will
exist. The values of pcr could be computed as follows:

pcr =
2p0 − σc

k + 1
(28)

where σc notes the uniaxial compression strength. It could be obtained using the following
equation.

σc =
c(k − 1)

tan ϕ
(29)
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where ϕ and c denote the cohesion and the friction angle, respectively. k could be deter-
mined as follows:

k =
1 + sin ϕ

1 − sin ϕ
(30)

Figure 5. Numerical example—a circular tunnel.

According to the Mohr–Coulomb criterion, Duncan (1993) analyzed and inferred the
inward displacement of tunnel wall uip and the plastic zone radius rp [26].

rp

r0
=

[
2(p0 + s)

(k + 1)(pi + s)

] 1
k−1

(31)

uip

r0
=

[
(1 + μ)

E

][
2(1 − μ)(p0 − pcr)(

rp

r0
)

2
− 2(1 − 2μ)(p0 − pi)

]
(32)

where E notes the elastic modulus and μ notes Poisson’s ratio. The values are computed as
follows:

s =
σc

k − 1
(33)

In this study, back analysis was utilized to identify the far-field stress p0, cohesion c,
and friction angle ϕ based on the deformation of the surrounding rock mass in the tunnel.
Five horizontal direction monitoring points were placed to record the deformation of
surrounding rock mass in the circular tunnel. The distance between the center of the tunnel
and the five monitored points are 1.0 m, 1.2 m, 1.6 m, 1.8 m, and 2.0 m, respectively. The
displacements of monitored points could be calculated using the above formula (Equation
(32)). The tunnel radius is 1.0 m. The value of far-field stress p0, cohesion c, and friction angle
ϕ are 32 MPa, 6.8 GPa, 3.2 MPa, and 32◦, respectively. The displacements of 5 monitored
points were calculated by the analytical solution and adopted as field measurement to
back-calculate the unknown parameters of the surrounding rock mass using the proposed
method. The snapshots were constructed and generated based on the experimental design
and a numerical method.

Once the snapshots are obtained, the surrogate model could be established according
to the ROM algorithm. Figure 6 shows the calculated displacement comparison between
the ROM and the analytical solution (Equation (32)). The predicted displacement using the
ROM surrogate model is in good agreement with the analytical solution. It shows that the
ROM captured well the nonlinear function mapping between unknown properties and the
tunnel deformation. The ROM-based surrogate model provides a feasible way to replace
the analytical solution in back analysis.
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Figure 6. Deformation comparison between computed by the analytical solution and the ROM
prediction.

ROM-based back analysis was utilized to identify the unknown properties of the
surrounding rock mass using the above ROM surrogate model and to predict displacement
in the tunnel. The far-field stress p0, cohesion c, and friction angle ϕ are 32.01 MPa, 6.73 GPa,
3.40 MPa, and 31.03◦, respectively (Table 1). The relative error is −0.03%, 1.02%, −6.25%
and 3.03%, respectively. The maximum relative error is less than 7%. It shows that the
identified parameters agree with the actual parameters using the proposed back analysis
framework. The displacements comparison between the predicted by back analysis, ROM
surrogate model, and calculated by the analytical by actual parameters are shown in
Figure 7. Figure 8 shows the stress and displacement of the surrounding rock mass in
the tunnel calculated based on the different methods. The results show that the proposed
framework can be utilized to identify the mechanical property of the surrounding rock
mass in the tunnel.

Table 1. The results and comparison.

Actual This Study Relative Error (%)

p0/MPa 32.00 32.01 −0.03
E/MPa 6800.00 6730.87 1.02
c/MPa 3.20 3.40 −6.25

ϕ/◦ 32.00 31.03 3.03

Figure 7. Displacement comparison of the different method at monitored point.
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(a) Displacement 
 

(b) Stress 

Figure 8. Displacement and stress of surrounding rock mass and their comparison.

Figure 9 shows the convergence of the unknown mechanical property of the surround-
ing rock mass using the developed back analysis method. The convergence property of
the developed back analysis is shown in Figure 10. The unknown property can converge
to the final value quickly. The developed method has excellent convergence and global
optimization performance.

 

Figure 9. Convergence process of the unknown parameters.
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Figure 10. The convergence process of GWO.

5.2. Application: Goupitan Experimental Tunnel

Goupitan Hydropower Station is a landmark west-to-east transmission project located
on the Wujiang River in Guizhou Province, China [27]. According to the preliminary design
of the underground powerhouse, the right bank tailwater tunnel and the construction
diversion tunnel pass through the soft clay rock mass. An experiment tunnel with a buried
depth of 70 m was excavated to understand the rheological characteristics of clay rock.
The tunnel size was 2 m in width and 2 m in height, respectively. Some monitoring points
are set up to obtain the deformation of surrounding rock during tunnel excavation. Rock
stratum S1−2

2h and S1−1
2h are located approximately 3 m below and 30 m above the tunnel,

respectively (Figure 11). The 4# and 6# borehole of 7 m depth is set at the position of 11.6 m
in the tunnel, where the 4# borehole is horizontal, the 5# borehole is 45◦ inclined, and the
6# borehole is vertical. Five monitoring points numbered 1–5 were arranged at a depth of 0,
1, 2, 4, and 6 m (Figure 11). Table 2 lists the deformation of the 3-day, 5-day, and 11-day at
each monitoring point.

Figure 11. Goupitan experimental tunnel and monitored points.

Table 2. The monitoring displacement in the monitored borehole.

Time (Day)
Displacement (mm)

4# 6#

3 2.558 1.778
5 3.789 2.377
11 4.531 2.685

The developed back analysis framework was utilized to identify the rheological
properties of the rock mass based on the 3rd, 5th, and 11th day monitored displacements
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at 4# and 6# boreholes. For the developed back analysis, a physical model is critical
to identify the rheological mechanical properties of the rock mass. In this study, the
rheological properties of the rock mass include the shear modulus G1 and viscosity η1
for the Kelvin model, the shear modulus G2 and viscosity η2 for the Maxwell model. In
geotechnical engineering, it is not easy to determine an analytical solution for use. Although
the numerical method is commonly used to understand the rheological mechanism and
deformations behavior of the rock mass, it is time-consuming in practical and large-scale
geotechnical engineering.

In this study, a ROM surrogate model, which replaced the numerical method, was
used to improve the efficiency of back analysis. A uniform design was utilized to construct
a group of 42 samples, and Fast Lagrangian Analysis of Continua (FLAC) software was
utilized to solve the displacement of the tunnel wall in the rock mass. Rock masses S1−1

2h
and S1−2

2h were regarded as Burger‘s material [28,29], and their rheological mechanical
properties were identified by the developed method. Table 3 lists the range of unknown
rheological mechanical parameters based on laboratory tests and a field survey. Figure 12
indicates the predicted displacement comparison by the ROM and the numerical model
along 4# and 6# boreholes, respectively. The calculated deformations by the ROM were
found very close to the deformation computed by the numerical solution. It proves that
the ROM surrogate model characterized well the nonlinear mapping relationship between
unknown rheological properties and deformation of the tunnel wall in the rock mass.
Hence, it could replace the numerical method in the back analysis.

Table 3. Ranges of unknown rheological properties.

Clay-Green Clay Rock S1−1
2h Purple Clay Rock S1−2

2h

G1
h (GPa) G2

h (GPa) η2
h (GPa·d) η1

h (GPa·d) G1
z (GPa) G2

z (GPa) η2
z (GPa·d) η1

z (103 GPa·d)

0.5–4.5 0.1–3.5 0.1–3.5 15–35 1–15 5–20 1–15 1.5–4.5

(a) 4# borehole (b) 6# borehole 

Figure 12. Displacement comparison of monitoring borehole.

According to the back analysis theory and the proposed method, the rheological pa-
rameters of S1−1

2h and S1−2
2h are determined based on the displacement of the surrounding

rock mass on the 3rd, 5th and 11th days of the 4# and 6# boreholes (Table 4). The developed
method identified the rheological mechanical properties in a reasonable way. Compared
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with other methods, the rheological mechanical properties obtained by the proposed frame-
work are closer to the actual properties of rock mass, and the rheological properties could
be determined dynamically by rationally using the on-site displacement data monitored
during construction. The developed back analysis framework costs approximately 73.65 s
in PC with Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz &2.29 GHz to obtain the rheological
properties. However, it takes approximately 2 min for a single tunnel stability analysis
using the numerical simulation method. It is obvious that the ROM-based surrogate model
could dramatically improve the efficiency of back analysis.

Table 4. Obtained rheological parameters.

Number of Monitored Day 3rd, 5th and 11th

Clay-green clay rock S2h
1−1

G1
h (GPa) 1.39

G2
h (GPa) 0.20

η2
h (GPa·d) 0.12

η1
h (GPa·d) 35.00

Purple clay rock S2h
1−2

G1
z (GPa) 1.00

G2
z (GPa) 20.00

η2
z (GPa·d) 8.68

η1
z (103 GPa·d) 1.96

It is critical to identify and understand the deformation and failure mechanism of the
surrounding rock mass. The developed back analysis identifies the rheological properties
based on the displacements monitored. The deformation of the rock mass was investigated
based on the rheological properties identified by the developed back analysis framework
using the ROM and GWO. The ROM then predicted the displacements of the monitored
borehole. Their comparisons are shown in Figure 13 in which it is evident that the dis-
placement determined by the ROM is in good agreement with the monitored displacement
during the excavation. It also shows that the identified rheological properties well char-
acterized the rheological behavior of the rock mass during the tunnel construction. This
confirms that the developed method can be used for determining rheological properties
and evaluating the time-dependent behavior of the rock mass. The rheological properties
obtained by the developed method can be used for stability analysis, design, and safety
construction during excavation in rock engineering. In addition, the predicted deformation
by ROM diverges from the monitoring data on the 34th day due to the complexity of the
construction site, which brings errors and uncertainty to the monitoring data. With the
increasing monitoring data, the rheological properties of the surrounding rock mass will be
updated dynamically to capture the trend.

The relationship between the rheological property (clay-green clay rock) and the
number of iterations is shown in Figure 14 for the GWO. The variation process objective
function is plotted in Figure 15. The results are similar to the above numerical example.
GWO could seek the appropriate mechanical property of the rock mass quickly. It proved
again that the GWO is an excellent optimal technology and has a good performance of
global optimization.
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Figure 13. The monitored and predicted deformation based on obtained parameters and their
comparison.

 

Figure 14. Variation process of the rheological property for clay-green clay rock.
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Figure 15. Convergence process of the developed framework.

6. Conclusions

This study developed a novel back analysis framework to identify the geomaterial
property by combining a numerical model, ROM, and GWO. The ROM was utilized to
establish the surrogate model for capturing deformation during excavation in geotechnical
engineering. The numerical method was adopted to construct snapshots for the ROM based
on the design of the experiment. The geomaterial properties were identified based on the
monitored displacement data by the developed framework. Meanwhile, GWO was selected
as an optimal technology for back analysis due to its global optimization performance. The
developed back analysis framework was illustrated successfully by a numerical example
and Goupitan experimental tunnel. The geomaterial properties identified by this study
were compared with the ROM prediction. The predicted displacement of the surrounding
rock mass was also close to the actual monitored displacement. The results showed that
the developed back analysis framework provides a convenient, practical, and accurate
way to understand the geomaterial properties based on the monitored response during
construction.

(1) The ROM model was utilized to construct a low-order surrogate model for captur-
ing the response-induced excavation in geotechnical engineering and replacing the
numerical model in the back analysis. It is critical to practical engineering due to the
difficulties in obtaining the analytical solution for geotechnical engineering;

(2) Back analysis is a scientific and practical tool widely used in geotechnical engineering.
The numerical model and optimal technology are the two critical components of back
analysis. The developed back analysis framework takes full advantage of the merits
of ROM and GWO and provides a feasible way for determining the property of the
surrounding rock mass in geotechnical engineering;

(3) ROM is an excellent physics-based data-driven surrogate model that can capture the
mechanism of surrounding rock mass. GWO is an efficient metaheuristic method
developed recently and is suitable for solving the black-box problem. However, ROM
depends on the numerical fidelity model, and the parameters of the GWO algorithm
influence the optimal performance. In a future study, the authors will further improve
the developed framework by absorbing and combining the advantages and merits of
various methods.
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Abstract: Synthetic aperture radar (SAR) satellites have an active sensor on board, which emits
electromagnetic signals and measures the strength and time delay of the returned signal backscattered
from ground objects. Optical images have rich spectral information, but it is easily affected by
atmospheric attenuation and weather conditions. Thus, the study of the registration between these
two images is of great significance. We present a novel method for SAR and optical image registration.
In the stage of feature points extraction, the method combines phase consistency intensity screening
and scale space grid division to obtain stable and uniform feature points from the image. During the
stage of feature description, the method employs the extended phase consistency method to calculate
the gradient amplitude and direction of the image, and improves the correctness of the main direction
calculation and descriptor construction. Experimental results demonstrate its superior matching
performance with respect to the state-of-the-art methods.

Keywords: remote sensing; image registration; SAR; SIFT

1. Introduction

Remote sensing technology is a critical means of earth observation from remote sensing
devices mounted on artificial satellites, airplanes and other aviation or spacecraft [1],
because it can collect electromagnetic information of ground targets on a large scale to help
humans obtain observations that traditional technology cannot achieve. As a result, this
technology is widely used in national economic and military aspects such as meteorological
observation, map surveying and mapping and military investigation [2–7]. Remote sensing
image registration is a method to establish a matching relationship between two or more
remote sensing images captured by different angles or different sensors in the same scene
at different times. It is a pioneer task for subsequent remote sensing image splicing, fusion
or transformation detection.

With the rapid development of remote sensing technology, the acquisition methods
of remote sensing images are gradually showing a diversified trend. In practical appli-
cations, the imaging methods of heterogeneous remote sensing images are different and
the information contained is not the same. How to use heterogeneous remote sensing for
effective fusion and complementation of information in images has attracted more and
more attention in recent years. Synthetic Aperture Radar (SAR), as an active imaging radar,
has the advantages of all-weather imaging due to its strong penetrating ability [8–10]. It
can penetrate clouds and haze and other occlusions to break through the limitations of
optical imaging, but is not easy to obtain the perceived characteristics of ground targets.
In contrast, optical remote sensing images can obtain spectral information such as rich
gray-scale textures of ground targets under good imaging conditions, good visual interpre-
tation functions and have great advantages in ground target recognition and classification.
Therefore, it has become an important research topic in the field of remote sensing image
processing to realize the complementary advantages of multi-source images through ef-
fective heterogeneous remote sensing image registration and fusion technology [11]. At
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present, due to the great difference in imaging mechanism between SAR and optical images,
the geometric and radiation characteristics of the images are different. In addition, the
multiplicative speckle noise inherent in the SAR image brings many difficulties to the
registration of SAR and optical images. Therefore, it is of great significance to study the
registration of SAR and optical images.

The SIFT algorithm [12] is a classic local invariant feature extraction method. The
algorithm mainly detects extreme points in the Gaussian difference scale space as stable
feature points, and at the same time it calculates the gradient direction histogram in the
neighborhood of the image to construct the feature vector. In terms of its similar algorithms,
the extraction of robust feature points and the calculation of basic gradient features are
of great significance to the performance of this method. As mentioned above, due to the
different imaging mechanisms and acquisition methods of optical and SAR images, there is
a large non-linear radiation difference between these two kinds of images [13]. At the same
time, there is an inherent multiplicative noise in SAR images, which will cause different
extractions. The source image has a small number of feature points with the same name
and poor robustness [14]. In addition, the main direction of the calculated feature points
and the constructed descriptor are unreliable due to gradient calculation errors, which
leads to a lower correct matching rate in the feature point matching stage.

To solve the problems mentioned above, this paper conducts research from the two
aspects of obtaining robust feature points with the same name and calculating the consis-
tency gradient of heterogeneous images, and proposes a SIFT registration method based
on uniform extraction of feature points and gradient consistency. In the stage of feature
points extraction, the method combines phase consistency intensity screening and scale
space grid division to obtain stable and uniform feature points from the image. In the
feature description stage, the method employs the extended phase consistency method to
calculate the gradient amplitude and direction of the image, and improves the correctness
of the main direction calculation and descriptor construction compared with the original
SIFT algorithm.

2. Proposed Method

Compared with the original SIFT algorithm, the method in this chapter first uses a
combination of phase consistency intensity screening and uniformly distributed feature
point detection to extract uniform and robust candidate points from the image as stable
feature points. Secondly, the extended phase consistency method is used to calculate the
gradient magnitude and direction of the image, and the main direction and descriptor of
the feature points are calculated, accordingly. Finally, in order to improve the uniqueness
of the feature point descriptor, a 136-dimensional GLOH-like descriptor is constructed by
collecting the histogram of the neighborhood gradient around the feature point in polar
coordinates. Finally, it is according to the dual-match and two-way matching and the
eigenvector matching strategy combined with the RANSAC method, which obtains the
deformed model parameters and realizes the registration between SAR and optical images.
The workflow of the proposed algorithm is shown as Figure 1.

Figure 1. The workflow of the proposed algorithm.

2.1. Uniform Robust Feature Point Extraction

When processing the registration of SAR and optical images, the distribution of feature
points has a great influence on the registration result, which obtains a suitable number of
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evenly distributed feature points and retains stable and highly repeatable feature points
in heterogeneous images. It can accurately estimate the geometric transformation model
between images and improve the registration accuracy. In order to solve the problem of
uneven distribution of feature points in a single image, this section introduces the scale
space scale factor and coordinate space blocking strategy, and uses the phase consistency
intensity value to filter the feature points, and obtain as much as possible from heteroge-
neous images with robust feature points of the same name. The steps of the algorithm are
as follows:

1. The upper limit of the total number of feature points is determined by the original
image size N.

2. Calculate the phase consistency response intensity map of the original image Ipc.
3. Calculate the scale parameters of each group of each layer to construct a Gaussian

pyramid.
4. Calculate the feature point set of each group of each layer in the scale space Iol: (a) De-

termine the upper limit of the number of feature points in this layer; (b) detect extreme
points as initial candidate points of interest; (c) divide the layer of the Gaussian image
into regular grid cells and determine the features that each cell needs to retain the
number of points in the n_celli; (d) position the coordinates of the candidate points of
interest and analyze the principal curvature to eliminate unstable points on the edge;
(e) find the Ipc according to the coordinates to obtain the PC intensity value of the
reserved interest point, and according to the PC intensity, the degree value and the
absolute value of the Gaussian difference response are sorted, and the top n_celli are
retained as the feature points in the cell; (f) summarize the feature points in all cells to
obtain the feature point set Pol of the current layer Iol.

5. Summarize the feature points of all scale layers in the scale space to obtain a set P.

According to the SIFT feature points obtained by the above feature point detection
algorithm, because in the process of feature point detection, the number of feature points
in the scale space distribution and coordinate space distribution is consciously restricted,
and then the stability and saliency of the feature points can be characterized by the index
screens of the feature points, and finally obtains a uniform and robust feature point set.

2.2. Main Direction Calculation and Descriptor Construction

In SIFT and its improved algorithm, specifying the main direction for the feature
point can make it a rotation invariant, and the calculation of the main direction and the
construction of the descriptor are all through the feature points in the differential pyramid
space image to count the gradient histogram of the neighborhood. The image is obtained, so
the gradient direction between the SAR and optical images should be consistent. However,
as for the registration of multi-sensor images, due to the huge difference in radiation
characteristics between each other, for example, the gradient direction of the matching area
are often different. In order to avoid this problem, which may cause registration failure, in
this paper, the gradient calculation method based on phase consistency is used to extract
the consistent gradient features of SAR and optical images, and we use this basic feature
to calculate the main direction of feature points by means of statistical histograms and
build descriptors.

In this section, when calculating the main directions of feature points, we choose the
method that approximates the original SIFT algorithm. After the precise coordinates of the
feature points and the corresponding scale coordinates are obtained through the detection
algorithm, the consistent gradient algorithm is used to calculate the neighboring neighbors
of the feature points from the corresponding scale space. In the gradient direction histogram
of the domain, the direction corresponding to the maximum peak value is selected as the
main direction of the feature point, and the direction with the peak value in the histogram
greater than 80% of the main direction peak value is used as the auxiliary direction to
improve the stability of the algorithm.
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When constructing the feature point descriptor, this paper makes some modifications
to the selection and division of the neighborhood block of the SIFT feature point. The SIFT
native structure description method divides the pixels in the radius neighborhood around
the feature points into 4∗4 sub-blocks in space, and counts the gradient direction histograms
of eight directions in each sub-block, and finally divides the directions of all sub-regions
into 4∗4 sub-blocks. The gradient information combination is a 128-dimensional descriptor.
According to the research of Krystian Mikolajczyk et al. this division method ignores
the positional relationship between the pixels within the neighborhood block. Therefore,
this article adopts the method that selects the image within a certain radius around the
feature point as its neighborhood block. After rotating the neighborhood block to the main
direction, the pixels in the neighborhood block are divided in the polar coordinate system
according to their distance from the center point into different fan-shaped grids, so that
17 grid areas are obtained. For each fan-shaped sub-region and each pixel in the center
circle, use the corresponding gradient algorithm to calculate the gradient magnitude and
direction, and then assign the gradient value in the sub-block to eight directions, and finally
after the gradient information of each direction in the 17 sub-regions is concatenated and
normalized, 136 dimensions are obtained, so that the descriptors obtained have better
robustness and uniqueness.

2.3. Feature Points Matching Strategy

After the feature point descriptors are constructed, the feature vector sets of SAR
and optical images are obtained, respectively. It is necessary to establish a correct match
based on the similarity measurement criterion between feature vector descriptors and
the matching relationship. This chapter will first use the two-way matching algorithm to
establish the initial matching relationship, and then use the random sampling consensus
algorithm to remove the wrong matching point pairs, and calculate the parameters of the
transformation model by retaining the correct matching point pairs. The main process is
as follows:

2.3.1. Dual-Match

Assuming that the feature vector sets obtained in the previous feature extraction stage
are Vs and Vo, respectively, the simplest way to calculate the similarity between feature
vectors is to calculate the Euclidean distance. However, in the actual matching process, due
to noise and scene occlusion problems, some feature points do not have correct matching
points corresponding to them, and the points with the closest Euclidean distance found
in the corresponding images may be mismatched points. Therefore, Lowe proposed the
k-nearest neighbor ratio method to eliminate the false matches [10].

According to experiments, this method can achieve good results in most scenes.
However, this one-way matching method is prone to “one-to-many” wrong matching
phenomenon due to similar neighborhoods in different locations. A certain eigenvector in
Vs has multiple eigenvectors that satisfy the k-nearest neighbor ratio method in the Vo set,
which will cause a lot of trouble for the subsequent error matching elimination. Therefore,
this paper adopts a two-way matching strategy [15] to improve the accuracy of matching
point pairs.

The specific process is as follows: (a) For each feature vector La in Vs, calculate its
Euclidean distance with each feature vector in Vo by traversing. Then, sort and find the
closest Euclidean distance Distf1 and the next closest Euclidean distance Distf2 and the
corresponding vectors Lb and Lb’. If Distf1/Distf2 ≤ Threshold, then La and Lb match.
Traverse all the feature vectors in Vs to obtain the forward matching set of Mforward. (b) For
each feature vector Lb in Vo, calculate its Euclidean distance with each feature vector in
Vs by traversing. Then, sort and find the closest Euclidean distance Distf1 and the next
closest Euclidean distance Distf2 and the corresponding vectors La and La’. If Distb1/Distb2
≤ Threshold, then La and Lb match. Traverse all the feature vectors in Vo to obtain the
forward matching set Mbackward. (c) Set up two loops, traversing Mforward and Mbackward,
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respectively. If the set of matching satisfies the relationship Distf1 = Distb1, then the set of
matching point pairs is retained to obtain a set of bidirectional matching point pairs.

2.3.2. Random Sampling Consistency Method Purification

In the rough matching point set after the previous two-way matching, there are still
some wrong matching point pairs. This includes two types. The first type of mismatched
points come from unmatched regional scenes, which are mismatched due to approximate
descriptors; the second type of mismatched point pairs come from matched regional scenes,
however, due to noise and local areas of the image deformation leads to a deviation in
positioning. If such matching point pairs are not eliminated, the calculated transformation
model will deviate from the actual situation, resulting in a decrease in registration accuracy.
For the above two considerations, it is necessary to adopt a certain method to purify the set
of rough matching points. Among the many methods, the random sampling consensus
algorithm proposed by Fischler et al. [16] is the most commonly used. This method is a
robust parameter estimation method. Its main idea is to fit the model parameters in an
iterative manner in the search set, set a threshold to filter the interior points, continuously
expand the set of support points, and find all the data pairs that meet the model parameters
to obtain the optimal solution.

3. Experimental Results and Analysis

To evaluate the performance of the proposed method, three pairs of SAR and optical
images are experimented. The test data consists of different characteristics including
different resolutions, incidence angles, seasons etc. Experimental results are shown in
Figures 2–4. To quantitatively evaluate the registration performances, we adopt the root-
mean-square error (RMSE) [12] between the corresponding matching keypoints, and it can
be expressed as:

RMSE =

√
1
n

n

∑
i=1

(xi − xi
′)2+(yi − yi

′)2 (1)

where (xi,yi) and (xi
′,yi

′) are the coordinates of the ith matching keypoint pair; n means the
total number of matching points. In addition, the correct matching ratio (CMR) is another
effective measure, which is defined as:

CMR =
correctMatches
correspondences

(2)

“correspondences” is the number of matches after using PROSAC, “correctMatches” is the
number of correct matches after removing false ones. The results of quantitative evaluation
for each method are listed in Table 1.

Figure 2. Cont.
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Figure 2. (a) Optical image; (b) SAR image; matches found in pair 1 using (c) SIFT, (d) SAR-SIFT, and
(e) the proposed method. The reference image is shown on the left and the sensed image on the right.

  
(a) (b) 

 
(c) 

Figure 3. Cont.
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Figure 3. (a) Optical image; (b) SAR image; matches found in pair 2 using (c) SIFT, (d) SAR-SIFT, and
(e) the proposed method. The reference image is shown on the left and the sensed image on the right.
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Figure 4. Cont.

67



Appl. Sci. 2023, 13, 1238
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Figure 4. (a) Optical image; (b) SAR image; matches found in pair 3 using (c) SIFT, (d) SAR-SIFT, and
(e) the proposed method. The reference image is shown on the left and the sensed image on the right.

Table 1. Quantitative comparison of the proposed method with other SIFT-based algorithms.

Image No. Method CMR/% RMSE/Pixel

1
SIFT 64.79 1.1344

SAR-SIFT 79.65 0.9276
Proposed 88.21 0.5128

2
SIFT 67.58 1.3153

SAR-SIFT 71.29 1.1452
Proposed 81.89 0.8127

3
SIFT 62.46 0.9008

SAR-SIFT 75.34 0.7097
Proposed 89.73 0.4982

It can be observed from Table 1 that the correct matching rate obtained by the SIFT
and SAR-SIFT algorithms is relatively low. The proposed algorithm can obtain more correct
matching point pairs, which shows that this algorithm is better in suppressing the radiation
difference between optical and SAR images. Compared with the other two algorithms, the
CMR of this algorithm is improved by 88.21%, 81.89% and 89.73%, respectively in the three
groups of images, and the RMSE is reduced by 0.5128, 0.8127 and 0.4982, respectively.

4. Discussion

The original SIFT method uses the gradient calculation method of the difference oper-
ator to process the SAR and optical images. Due to the influence of the non-linear radiation
difference of the heterogeneous image, the gradient magnitude and direction calculated in
the SAR image by this calculation method are quite different from the calculation result
in the optical image. At the same time, due to the SAR due to the influence of image
noise, the feature points detected by this method from heterogeneous images are often
poor in stability, and the ratio of control points with the same name is low, which is easy to
cause mismatches. These all cause the phenomenon that the correct rate of feature points
matching by this method is not high.

In this chapter, the SIFT registration method based on uniform extraction of feature
points and gradient consistency has successfully dealt with the shortcomings of the SIFT
algorithm. Using the combination of phase consistency intensity screening and uniform
distribution feature point detection, it improves the robustness of feature points, while taking
into account the uniformity of the feature points in the coordinate space. In addition, the
extended phase consistency method is used to calculate the gradient amplitude of the image;
thus, the accuracy of the main direction calculation of the original SIFT method is improved.
In the descriptor construction process, the descriptor constructed by dividing the sector area
under polar coordinates has better reliability. In this way, the feature point matching method
is optimized from the feature point extraction to the feature point description link, so the
highest matching success rate and registration accuracy can be obtained.
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5. Conclusions

In this paper, we present a novel method for the SAR and optical image registration.
In the stage of the feature points extraction, the method combines the phase consistency
intensity screening and scale space grid division to obtain stable and uniform feature points
from the image. In the feature description stage, the method employs the extended phase
consistency method to calculate the gradient amplitude and direction of the image, and
improves the correctness of the original SIFT algorithm of the main direction calculation
and descriptor construction. Experimental results demonstrate its superior matching
performance with respect to the state-of-the-art methods.
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Abstract: To realize parameter feedback optimization of tunnel construction in water-rich areas,
a feedback analysis method for tunnel parameters under fluid–solid coupling conditions was es-
tablished based on an intelligent optimization algorithm. Firstly, the numerical calculation model
was established and solved using the fluid–solid coupling model. In orthogonal design analysis,
the displacement of surrounding rock and pore water pressure distribution in different rock mass
parameter combinations were obtained, and the learning samples needed for machine learning were
established. The input group was surrounding rock displacement and pore water pressure, and the
output was rock mass parameters. Then, the Gaussian process algorithm was used to obtain the
nonlinear mapping relationship contained in the learning samples. A differential evolution algorithm
was used to optimize the critical parameters involved in this process. Furthermore, according to
the established regression model and the measured displacement and pore water pressure in the
research area, differential evolution was used again to optimize the rock mass parameters and obtain
the parameter feedback analysis results. Finally, the inversion values were compared with the actual
measured values, and the reliability of the surrounding rock parameters obtained from the feedback
analysis was verified, providing an effective method for obtaining surrounding rock parameters for
similar projects.

Keywords: tunnel engineering; fluid–solid coupling; intelligent feedback analysis; Gaussian process;
difference evolution algorithm; water-rich tunnel

1. Introduction

The interaction of water and rock in a tunnel constitutes a complex geological system.
Due to the discontinuity and heterogeneity of rock and the singleness and randomness of
laboratory tests, it is more difficult to obtain accurate surrounding rock parameters in tunnel
design and numerical simulation. The displacement back analysis method based on an
intelligent algorithm can better solve the above problems [1–4]. In 1971, Kavanagh et al. [5]
proposed a method of back analysis of elastic modulus. Lu et al. [6] back-analyzed the
surrounding rock elastic modulus, Poisson’s ratio and other stratum parameters through
actual deformation monitoring data. In the process of back analysis, the selection of
a reasonable, intelligent algorithm is helpful in improving the inversion accuracy and
efficiency of parameters.

Artificial neural network (ANN), genetic algorithm (GA) and particle swarm opti-
mization (PSO) have been widely used in parameter back analysis [7–12]. Feng et al. [13]
combined ANN and GA to form an evolutionary neural network method to identify sur-
rounding rock parameters. Deng et al. [14] used the BP network and GA to back-analyze
the elastic modulus of three different geologies by using slope displacement, which im-
proved the calculation efficiency and overcame the defects of narrow application range and
slow convergence speed of traditional optimization algorithms. Zhou [15] constructed a
GA-BP intelligent feedback system to predict the parameters of the tunnel-surrounding
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rock. Wang et al. [16] realized the back analysis of fluid–solid coupling parameters through
the hybrid intelligent algorithm of differential evolution algorithm (DE) and PSO. PSO
and GA can effectively solve global optimization problems [17]. However, when using
a stochastic global optimization algorithm, it is often necessary to evaluate the fitness of
a large number of random solutions many times to determine the better solution. The
Gaussian process (GP) algorithm is a machine learning regression method developed in
recent years. It is mainly based on the statistical theory under the Bayesian framework, and
has strong generalization ability and good adaptability in solving small nonlinear sample
and high-dimensional regression problems [18,19]. Sun et al. [20] established a probabilistic
back analysis method based on Bayesian theory. The research results provide a basis for the
establishment of a probabilistic back analysis method of geotechnical engineering parame-
ters. In order to realize the dynamic uncertainty inverse analysis of rock mass parameters
with the construction process, Zhang et al. [21] introduced the multi-output support vector
machine method and Bayesian theory into the dynamic uncertainty inverse analysis of
rock mass parameters. Tao [22] established the probabilistic back analysis and deformation
prediction method of rock and soil parameters based on Bayesian theory. Sun [23] studied
the geotechnical engineering back analysis method based on multi-objective optimization
and Bayesian theory. DE is a global search method based on population, which can evolve
the population to the optimal solution through mutation crossover and selection. It has the
advantages of fewer control parameters, fast convergence and strong robustness [24,25].
The DE algorithm has been comprehensively developed in recent decades, producing, for
example, the DREAM algorithm. Luo et al. [26] studied the identification of the spatial
variability of aquifer hydraulic conductivity based on the DREAM algorithm, providing a
new idea for the study of spatial variability of aquifer parameters. Yang et al. [27] used the
DREAM algorithm to analyze the factors affecting the uncertainty of groundwater numeri-
cal simulation. Zhang et al. [28] studied the probabilistic back analysis of soil parameters
and displacement prediction of unsaturated slopes using Bayesian updating.

The problem of fluid–structure coupling is a key concern in engineering construction,
and back analysis based on the fluid–structure coupling problem has been studied in
recent years. Wu et al. [29] proposed a probabilistic back analysis method based on
polynomial chaos expansion. Based on stochastic polynomial expansion, the probabilistic
back analysis of fluid–structure coupling for an unsaturated soil slope was developed.
Wang et al. [30] studied the inversion method of dams’ seepage characteristics based on
fluid–structure coupling. Based on the fluid–solid coupling theory and Bayesian theory,
Zheng et al. [31] established a coupled probabilistic back analysis model for an unsaturated
soil slope. A method of multi-objective probabilistic inverse analysis using time-varied
data of displacement and pore water pressure was proposed based on Markov chain theory.
Xu et al. [32] studied the coupled grouting reinforcement mechanism and displacement
back analysis of mechanical parameters of surrounding rock.

In this paper, the GP algorithm and DE algorithm (GP-DE) are introduced in the
parameter identification of fluid–solid coupling of the surrounding rock of a tunnel. Firstly,
the numerical calculation model was established and solved using the fluid–solid coupling
model. In orthogonal design analysis, the displacement of surrounding rock and pore
water pressure distribution in different rock mass parameter combinations were obtained,
and the learning samples needed for machine learning were established. Then, GP was
used to obtain the nonlinear mapping relationship in the learning samples, and DE was
used to optimize the critical parameters involved in this process. Furthermore, according to
the established regression model and the measured displacement and pore water pressure
in the research area, DE was used again to optimize the rock mass parameters and obtain
the parameter feedback analysis results. In addition, in order to improve the mapping
effect, the super-parameters of the GP model were optimized by the DE algorithm. Then,
the trained GP model was integrated into the DE algorithm to identify the parameters of
the tunnel-surrounding rock. Finally, the method was applied to the Chenjiadian tunnel
in the city of Dalian, China. Through this method, the optimization of tunnel excavation
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footage is realized, and the construction efficiency is effectively improved on the premise
of ensuring safety.

2. The Parameter Identification Method of Fluid–Solid Coupling of Surrounding Rock
Based on GP-DE

2.1. The Problem of Parameter Inversion of Fluid–Solid Coupling of Surrounding Rock

The identification of parameters is essentially an optimization problem. The optimiza-
tion process can be expressed as:

min E(x1, x2, · · · , xN) = min( 1
m

m
∑

k=1

∣∣Y0
k − Yk

∣∣)
xa

k ≤ xk ≤ xb
k (k = 1, 2, · · · , N)

(1)

where E represents the mapping function between surrounding rock parameters and tunnel
displacement, Yk

0 is the field monitoring result of tunnel displacement and Yk is the tunnel
displacement calculated through numerical simulation. m is the number of observed values,
xk is the surrounding rock parameter, N is the number of parameters and xk

a and xk
b are

the upper and lower limits.

2.2. The GP Algorithm

In the process of back analysis, the operation process of GP is as follows.
Assume X = [x1, x2, . . . , xn] is the d × n input matrix, and y = [y1, y2, . . . , yn] is the

output vector, then the training dataset can be expressed as {X, y}; thus, the standard linear
regression model with Gaussian white noise can be expressed as:

yi = f (xi) + ε (2)

where ε denotes an independent random variable, and ε ∼ N
(
0, σ2

n
)
, while σ2

n represents
the variance.

The prior distribution of the observed target value y can be expressed as:

y ∼ N
(

0, C + σ2
nI
)

(3)

where C = C(X, X) denotes a symmetric positive definite covariance matrix of the nth order.
For the test sample (x*,y*), where x* = (x1*,x2*,x3*, . . . ,xn*), y* = (y1*,y2*,y3*, . . . ,yn*),

the joint Gaussian prior distribution of y and y* can be obtained and expressed as:[
y

y*

]
∼ N

(
0,
[

C(X, X) + σ2
nI C(X, x∗)

C(x∗, X) C(x∗, x∗)

])
(4)

where C(X,X) denotes an n × n symmetric positive definite covariance matrix, and I
represents the identity matrix. C(X, x∗) = C(x∗, X)T is an n × 1 covariance matrix consisting
of new input test points x∗ and all input points; C(x∗, x∗) is the covariance matrix consisting
of new input test points x∗.

When the training set D and the input value x* of a test sample are known, the GP can
use the posterior probability formula to calculate the output value y* of the test sample,
which can be expressed as:

y∗|x∗ , D ∼ N(uy∗ , σ2
y∗) (5)

uy∗ = C(x*, X)(C(X, X) + σ2
nI)

−1
y (6)

where uy∗ and σ2
y∗ denote the expectation and variance of y*, respectively.

According to the Gaussian process, the covariance function is used to measure the
degree of similarity between the learning sample and the prediction sample. In this case,
the covariance function is similar to the kernel function of support vector machine, which
plays an important role in Gaussian process machine learning methods. For the rest of the
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calculation, the constructed covariance function can meet the requirements of symmetry
and positive qualitative. In the early trial calculation process, it is determined to choose the
square index covariance function, and its prediction effect is better. It is expressed as:

kse
(
xp, xq

)
= σ2

f exp
(
− 1

2J2

∥∥xp − xq
∥∥2
)
+ σ2

nδpq (7)

where xp and xq can represent the learning samples, prediction samples or combinations
of learning and prediction samples depending on a particular situation; J is the distance
correlation between the two data points xp and xq; σf is the local correlation; σn is the
standard deviation of the noise; and lastly, δpq is a sign function. When p = q, then δpq = 0;
otherwise, δpq = 1.

The GP-based surface should be trained by representative data samples before it can
map the complex nonlinear relation between the jointed parameters and displacements.
The data samples can be obtained by model tests, field tests, numerical simulation and
other methods. In this study, the data samples were collected using the orthogonal design,
uniform design and numerical simulation. In the GP training process, hyper-parameters σf
and σn affect the GP training effect and prediction accuracy, so this process can be described
as an optimization problem, which is expressed as:

minE(θ) = min(
K

∑
h=1

GPh(θ)− Yh
Yh

), h = 1, 2, . . . K (8)

where GPh(θ) and Yh denote the estimated output data of the tentative GP and the real output
corresponding to the hth test sample. The test sample number is h = 1, 2, . . . , K. θ = (σf ,σn)
represents the hyper-parametric vector.

2.3. The GP Optimized by DE

During the feedback analysis process, an intelligent optimization algorithm, DE, was
used to optimize θ in this study. The basic operations of the algorithm include four steps:

(1) Generating initial population

Generate the initial search point; that is, generate the original population PG:

PG =
{→

x 1, · · · →x i · · · →x Np

}
, i = 1, · · · , NP (9)

where G is evolutionary algebra and NP is the population size, and its value does not
change with evolution. Individual B is expressed as:

→
x i =

(
xi,1, · · · xi,j, · · · xi,n

)
, i = 1, · · · , NP, j = 1, · · · , n (10)

The jth component xi,j of the individual
→
x i =

(
xi,1, · · · xi,j, · · · xi,n

)
in the initial pop-

ulation P0 is randomly generated in the search space S, where S refers to the boundary
constraint condition of the problem to be optimized:

xi,j = Lboundj + rand × (Uboundj − Lboundj
)
,

i = 1, · · · , NP, j = 1, · · · n
(11)

where n represents the individual dimension, Uboundj and Lboundj represent the upper
and lower limits of components, respectively, and rand represents the random number that
follows uniform distribution within the range of [0, 1].

(2) Mutation operation

Perform the mutation operation. Two target individuals are taken as a group to
generate variation vectors:

vi = ax1 + bx2 (12)
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where a and b are randomly generated weight coefficients, and a + b = 1.

(3) Crossover operation

Crossover operation is performed on the variation vector obtained in the previous
step and its corresponding target vector, and then the test vector is obtained:

ui,j =

{
vi,j, f or j = 〈l〉n, 〈l + 1〉n, · · · , 〈l + L + 1〉n
xi,j, otherwise

(13)

where i = l..., NP, j = 1,...,n is the modulo taking function with modulo n; l is an integer, which
is randomly selected and generated in the interval [1, n]. L is the number of experimental
vectors generated through crossover operations.

(4) Selection operation

The fitness of the test vectors generated by crossover was evaluated and compared
with the original vector, and the vectors with better fitness were reserved for entering the
new iteration process.

2.4. The Parameters Identification Flowchart

For Equation (1), the Yk can be calculated by the GP model, and then it is expressed as
Equation (14). Adopting DE, the parameters of rock mass can be identified.

minE(x1, x2, · · · , xN) = min( 1
m

m
∑

j=1

∣∣∣GP(x1, x2, · · · , xN)
0
j − Yj

∣∣∣)
xa

k ≤ xk ≤ xb
k (k = 1, 2, . . . , N)

(14)

The process of back analysis of surrounding rock parameters is shown in Figure 1. The
specific algorithm is as follows:

(1) Orthogonal samples are obtained by numerical simulation, and learning samples are
established according to the samples.

(2) GP is used to learn the rules of learning samples.
(3) The DE method is used to generate the initial population.
(4) The mapping established in step 2 is called to calculate the output variables corre-

sponding to the initial population in step 3.
(5) Compare the calculated results of the previous step with the field-measured results.

Enter step 7 when it meets the fitness requirements; otherwise, enter step 6.
(6) Perform the DE optimization operation described above to generate a new initial

population, and return to step 4.
(7) Obtain and record the population at this time, and this result is the target parameter

of the required back analysis.

Figure 1. The flow diagram of the anti-analysis method which is based on the GP-DE algorithm.
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3. Engineering Application

3.1. Engineering Overview

The Chenjiadian tunnel is 1500 m long, 10.5 m high and 12.7 m wide. From top to
bottom, the tunnel geology contains a local surrounding rock fracture zone and abundant
groundwater. The coupling action of water and rock and soil reduces the strength of the
surrounding rock, which seriously affects the stability of the tunnel (Figure 2). Due to the
complexity of geology and the limitations of exploration conditions, it is necessary to use
an intelligent algorithm to determine the hydrogeological parameters.

Figure 2. The location of the Chenjiadian tunnel.

3.2. The Principle of Fluid–Solid Coupling Modeling

FLAC3D software conducts fluid–structure coupling calculations based on the finite
difference method. It defaults that the rock and soil mass are continuous media. The fluid
seepage follows Darcy’s law and satisfies Biot’s equation, mainly including the following
equations:

(1) Equilibrium equation

For small deformation, the fluid particle equilibrium equation is:

− qi,i + qv =
∂ς

∂t
(15)

where qi,i is seepage velocity (m/s); qv is the volume fluid source intensity (s−1); ς is the
change in fluid volume per unit volume of porous media.

∂ς

∂t
=

1
M

∂p
∂t

+ α
∂ε

∂t
− β

∂T
∂t

(16)

where M is the Biot modulus (N/m2); α is the Biot coefficient; β is the coefficient of thermal
expansion (◦C−1), which considers liquid and solid particles. p is the pore water pressure
(Pa); ε is the volume strain; T is the temperature.

The momentum balance equation is:

σij,j + ρgi = ρ
dvi
dt

(17)

ρ = (1 − n)ρs + nρw (18)

Among them, ρ is the bulk density (kg/m3); ρs and ρw are the density of solid and
liquid, respectively; n is porosity; gi is the component of gravity acceleration (m/s2); vi is
the velocity component of the medium (m/s).

qi = −k
[
p − ρfxjgj

]
(19)
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where k is the permeability coefficient of the medium (m2/(Pa·s)); ρf is the fluid density
(kg/m3); gi is the component of gravity acceleration (m/s2).

(2) Constitutive equation

The volume strain and the pore pressure of the fluid interact with each other. The
change in the strain makes the pore pressure readjust, and the change in the pore pressure
also affects the occurrence of the strain. The descriptive equation is:

Δσij + αΔpδij = Hij(σij, Δξij) (20)

Among them, Δσij is the stress increment; Δp is the pore water pressure increment; δij
is the Kronecher factor. Hij is the given function. Δξij is the total strain increment.

(3) Compatibility equation

The relationship between strain rate and velocity gradient is:

εij =
1
2
(vi,j + vj,i) (21)

where v is the velocity of a point in the medium (m/s).

(4) Boundary condition

There are four types of boundary conditions in seepage calculation: (1) the given pore
water pressure, (2) the given velocity vector outside the boundary normal direction, (3) the
impervious boundary given by default in the program and (4) the pervious boundary. The
form of pervious boundary is as follows:

qn = h(p − pe) (22)

where qn is the velocity component in the normal direction outside the boundary, h is the
leakage coefficient (m3/(N·s)) and pe is the pore water pressure at the seepage outlet.

(5) Time scale

The fluid and mechanics processes are involved in the fluid–structure coupling cal-
culation, and the time scales in these two states need to be considered. The characteristic
time can generally characterize the size of the time scale. The characteristic time of the
mechanical process is expressed as follows:

tm
c =

√
ρ

Ku + 4/3G
Lc (23)

where Ku is the undrained bulk modulus; G is the shear modulus; ρ is the density; Lc is the
feature length (the average size of the model). The characteristic time of the fluid diffusion
process is defined as:

t f
c =

L2
c

c
(24)

where Lc is the characteristic length of seepage (the average size of seepage path in the
model) and c is the diffusion rate, defined as the ratio of permeability coefficient to water
storage coefficient:

c =
k
S

(25)

3.3. Numerical Simulation Model

FLAC3D software was used for the numerical simulation of excavation and support.
The model included the embankment of the He-Da Expressway with a slope of 1:1.5
(Figure 3a). At the bottom of the model were X, Y and Z constraints, and around them
were normal constraints. The model consisted of 67,336 nodes and 62,784 elements, and the
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Mohr–Coulomb yield criterion was adopted. Shell and cable structural elements simulated
the primary support and bolt, respectively. Groundwater was located 6 m above the tunnel
roof arch.

Figure 3. The numerical calculation model of the Chenjiadian tunnel. (a) Numerical model. (b) Distribution
of monitoring points.

In the early stages of construction, the rock and soil masses within the construction
range of the station are drilled and sampled. The geological parameters of the station
are investigated and the stratigraphic parameters are obtained. However, there are some
limitations in the geological surveys. The process of geological surveying is interfered with
by many factors. The rock mass and overlying rock mass parameters of the station are
essential references in the construction process. The main body of the tunnel in the study
area is in moderately weathered gneiss, and the strongly weathered gneiss above the tunnel
affects the stability of the tunnel to a certain extent. Therefore, the relevant parameters of
moderately weathered gneiss and strongly weathered gneiss are mainly identified.

The elastic modulus (E1) and Poisson’s (μ1) ratio of moderately weathered gneiss and
the elastic modulus (E2) and Poisson’s ratio (μ2) of strongly weathered gneiss were selected
as the back analysis parameters. In addition, the permeability coefficients of moderately
weathered gneiss (K1) and the permeability coefficients of strongly weathered gneiss (K2) that
are difficult to measure were also added as the back analysis parameters. Other mechanical
parameters are shown in Table 1. Input values were tunnel deformation value, pore water
pressure and water inflow, and output values were surrounding rock parameters.

The arch crown settlement AZ, arch bottom uplift DZ, arch waist convergence BC and
the relative displacement AB of measuring points A and B were taken as the displacement
monitoring values (Figure 3b). The pore water pressure P at point E and the unit seepage
volume F of the tunnel were taken as the seepage monitoring values. Among them, point E
was 1 m away from the arch foot of the tunnel, the pore water pressure P was measured
by the pore water pressure gauge and the unit seepage F of the tunnel was calculated by
dividing the sum of the seepage of all outlet points in a particular mileage section of the
tunnel by the length.

According to relevant specifications for tunnel engineering design and geological
survey data, the value ranges of six parameters were as follows: E1 is 2.85 GPa~6.53 GPa;
μ1 is 0.21~0.41; E2 is 1.81 GPa~3.49 GPa; μ2 is 0.25~0.45; K1 is 0.196 m/d~0.372 m/d; K2
is 0.4 m/d~0.78 m/d. The orthogonal design scheme and uniform design scheme were
established through these six parameters for numerical calculation. The calculation results
are shown in Table 2 (training samples) and Table 3 (test samples).
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Table 1. The parameters of calculation.

Elastic
Modulus/GPa

Poisson’s Ratio
Cohesion

/kPa
Internal Friction

Angle/◦
Permeability

Coefficient/(m/d)

Slightly weathered gneiss 4.19 0.26 27 38 0.025
Moderately weathered gneiss — — — — 21 42 — —

Strongly weathered gneiss — — — — 15 46 — —
Subgrade soil 0.15 0.35 23 19 0.843

Primary support 25 0.18 20,000 34 6.3 × 10−4

Bolt 200 — — — — 25 — —
Middle wall 25 0.18 20,000 34 — —

Table 2. Tunnel-surrounding rock parameters’ orthogonal scheme and the calculation results.

E1
(GPa)

μ1
E2

(GPa)
μ2

K1
(m/d)

K2
(m/d)

AZ
(mm)

AB
(mm)

BC
(mm)

DZ
(mm)

P (105)
(Pa)

F(m3/m × d)

1 2.85 0.21 1.81 0.25 0.196 0.4 5.961 3.64 0.355 1.313 1.337 9.07
2 3.52 0.26 1.81 0.3 0.24 0.495 5.445 3.481 0.291 1.186 1.264 8.866
3 4.19 0.31 1.81 0.35 0.284 0.59 5.002 3.342 0.763 1.097 1.16 5.34
4 5.86 0.36 1.81 0.4 0.328 0.685 4.513 3.224 1.425 0.982 1.026 3.1
5 6.53 0.41 1.81 0.45 0.372 0.78 4.12 3.175 2.149 1.015 0.84 3.04
6 4.19 0.21 2.23 0.3 0.328 0.78 5.193 3.471 0.165 1.496 1.348 4.31
7 5.86 0.26 2.23 0.35 0.372 0.4 4.717 3.288 0.002 0.921 1.311 3.74
8 6.53 0.31 2.23 0.4 0.196 0.495 4.431 3.202 0.753 0.883 1.162 3.52
9 2.85 0.36 2.23 0.45 0.24 0.59 4.362 3.234 1.035 1.656 1.045 3.33
10 3.52 0.41 2.23 0.25 0.284 0.685 4.773 3.167 1.696 0.706 0.721 6.34
11 6.53 0.21 2.65 0.35 0.24 0.685 4.598 3.306 0.018 0.9 1.358 3.23
12 2.85 0.26 2.65 0.4 0.284 0.78 4.819 3.367 0.012 1.494 1.231 3.38
13 3.52 0.31 2.65 0.45 0.328 0.4 4.283 3.209 0.511 1.414 1.217 3.45
14 4.19 0.36 2.65 0.25 0.372 0.495 4.663 3.135 0.941 0.66 0.882 6.4
15 5.86 0.41 2.65 0.3 0.196 0.59 4.205 3.049 1.57 0.613 0.72 3.79
16 3.52 0.21 3.07 0.4 0.372 0.59 4.639 3.343 0.233 1.318 1.355 3.37
17 4.19 0.26 3.07 0.45 0.196 0.685 4.24 3.232 0.151 1.287 1.283 3.18
18 5.86 0.31 3.07 0.25 0.24 0.78 4.462 3.143 0.48 0.644 0.977 3.35
19 6.53 0.36 3.07 0.3 0.284 0.4 4.184 3.039 0.927 0.572 0.895 3.89
20 2.85 0.41 3.07 0.35 0.328 0.495 4.469 3.097 1.261 0.959 0.749 7.38
21 5.86 0.21 3.49 0.45 0.284 0.495 4.123 3.2 0.03 1.028 1.398 4.5
22 6.53 0.26 3.49 0.25 0.328 0.59 4.38 3.156 0.151 0.642 1.114 3.36
23 2.85 0.31 3.49 0.3 0.372 0.685 4.857 3.226 0.227 0.89 0.95 6.56
24 3.52 0.36 3.49 0.35 0.196 0.78 4.39 3.111 0.692 0.88 0.829 3.86
25 4.19 0.41 3.49 0.4 0.24 0.4 3.959 3.004 1.214 0.908 0.761 6.17

Table 3. Uniform parameter test methods and the results of numerical calculation.

E1
(GPa)

μ1
E2

(GPa)
μ2

K1
(m/d)

K2
(m/d)

AZ
(mm)

AB
(mm)

BC
(mm)

DZ
(mm)

P (105) (Pa) F (m3/m × d)

1 4.19 0.26 1.81 0.035 0.372 0.875 5.053 3.352 1.175 1.164 1.090 6.335
2 5.86 0.36 2.23 0.20 0.284 0.780 4.374 3.136 0.447 0.797 0.861 4.291
3 3.52 0.46 2.65 0.40 0.196 0.685 4.049 3.032 0.698 0.621 0.750 3.310
4 6.53 0.21 3.07 0.25 0.416 0.590 4.503 3.177 0.586 0.867 0.904 4.680
5 2.85 0.31 3.49 0.45 0.328 0.495 4.249 3.096 0.313 0.729 0.818 3.915

3.4. Parameters Identification Results

During the GP-DE feedback analysis process, the population size NP was 100, the
variation factor F was 0.7, the cross factor CR was 0.9, the maximum evolutionary algebra
was 200 and SE was selected as the kernel function. After tunnel excavation, the measured
values of AZ, DZ, BC, AB, P and F were 8 mm, 3.17 mm, 3.02 mm, 6.31 mm, 0.122 MPa
and 3.77 m3/m × d, respectively. The optimal parameters obtained by back analysis were
E1 = 2.83 GPa, μ1 = 0.33, E2 = 1.24 GPa, μ2 = 0.36, K1 = 0.285 m/d and K2 = 0.658 m/d.
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According to Table 4, compared with the numerical simulation results, the maximum
relative error of the back analysis is 9.40%, which meets the requirements of engineering con-
struction. This back analysis method can be used for surrounding rock parameter prediction.

Table 4. Parameters of surrounding rock of uniform testing scheme analysis results.

Back Analysis Result Relative Error

E1
(GPa)

μ1
E2

(GPa)
μ2

K1
(m/d)

K2
(m/d)

E1
(%)

μ1
(%)

E2
(%)

μ2
(%)

K1
(%)

K2
(%)

1 3.85 0.29 1.81 0.33 0.36 0.82 0.00 −9.40 8.74 6.81 4.49 7.24
2 6.96 0.35 2.39 0.22 0.26 0.78 −6.69 3.79 3.39 −8.19 9.15 0.00
3 3.37 0.47 2.49 0.37 0.20 0.73 6.43 −1.72 4.54 7.50 0.00 −6.16
4 6.19 0.23 3.26 0.27 0.45 0.58 −5.80 −8.41 5.56 −8.45 −7.01 2.02
5 3.07 0.34 3.49 0.41 0.33 0.52 0.00 −7.98 −7.14 9.22 −1.60 −4.81
6 6.43 0.39 3.74 0.28 0.25 0.38 4.55 6.33 −8.85 7.14 −4.57 5.26

Figure 4 shows the fitness values in the iterative process. It can be seen from the figure
that with the increase in evolutionary algebra, the distribution of solution vector in space
tends to converge. The iterative process of parameter acquisition is shown in Figure 5.
In the initial stage of iteration, the fluctuation range of parameters is extensive. When
the number of iterations reaches 45, the obtained parameters no longer fluctuate and the
optimal solution is generated.

Figure 4. Fitness values with different evolutions. (a) 1st evolution. (b) 15th evolution. (c) 30th evolution.
(d) 45th evolution.
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Figure 5. Variation in the recognized parameters.

3.5. Analysis of Tunnel Excavation Footage Based on Back Analysis Results

Based on the back analysis results, different amounts of excavation footage of the
tunnel were selected to analyze their impact on the tunnel. The optimal amounts of excava-
tion footage under four working conditions were selected by analyzing the distribution of
the plastic zone. The distribution of the plastic zone under four cyclic excavation footage
conditions is shown in Figure 6.

It can be seen from Figure 6 that the plastic zones in the four cyclic excavation footage
conditions are distributed differently. Due to the reinforcement effect of the advanced small
pipe, the plastic zone of the arch crown is reduced, and the plastic zone is mainly distributed
on both sides of the arch foot and arch shoulder. With the increase in excavation footage,
the pressure release from surrounding rock also increases, so the area of the plastic zone
increases obviously. The area of the plastic zone is the largest under the condition of 2.5 m
excavation footage. Considering the actual situation of the project, the excavation footage
of 1.5 m should be selected for excavation. At the same time, grouting reinforcement should
be strengthened on both sides of the arch foot and the arch shoulder of the tunnel to ensure
construction safety.

According to the analysis results, the excavation footage of the construction site was
determined to be 1.5 m. Figure 7 shows the site construction condition of the tunnel when
it is constructed according to the excavation footage of 1.5 m. In the construction process,
the surrounding rock of the tunnel is relatively stable and the construction environment
is safe. The monitoring data of the arch settlement change obviously in the early stage
of excavation, and gradually tend to be stable in the later stage. The arch settlement
value is always within the monitoring control range in the monitoring process. In the
construction process, the original 1.0 m excavation footage is adjusted to 1.5 m, which
effectively improves the construction efficiency.
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(a) (b)

(c) (d)

Figure 6. Plastic differentiation layout under various working conditions. (a) 1 m. (b) 1.5 m. (c) 2.0 m.
(d) 2.5 m.

(a)

(b)

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
00 5 10 15 20 25 30

Monitoring control value

Monitoring time/d

Th
e 

se
ttl

em
en

t v
al

ue
 o

f t
he

 v
au

lt/
m

m

Figure 7. Optimization of tunneling excavation footage. (a) Optimized results of tunnel excavation at
construction site. (b) Field monitoring data of vault settlement.
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Figure 8 shows the results of vault settlement under different working conditions.
In the simulation process, without considering the fluid–structure coupling, the arch
settlement result caused by tunnel excavation is 4.26 mm, and when considering the fluid–
structure coupling, the simulation result shows that the arch settlement is 5.32 mm. In the
actual construction process, the maximum settlement of the vault is 5.45 mm. Therefore,
when tunnel construction is carried out in water-rich areas, the numerical simulation results
are closer to the actual on-site construction conditions when considering the fluid–structure
coupling. Thus, the impact of groundwater on construction cannot be ignored. In the actual
construction process, the corresponding water stop measures should be taken to ensure the
safety of construction.
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Figure 8. The vault settlement under different working conditions.

4. Discussion

4.1. The Influence of GP Parameters on the Results of Back Analysis

σf and σn are important super-parameters of the GP model. Figure 9 shows the
prediction accuracy under different parameters. When ln σf = 3.56 and ln σn = 8.72, the
relative error is 3.56%; thus, the accuracy of prediction is affected by the parameter selection.
Therefore, in the back analysis of parameters, choosing the appropriate parameters for GP
is important.

Figure 9. The influence of GP parameters on the prediction accuracy.
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4.2. The Influence of DE Parameters

DE is more complex and involves many influencing factors in the GP-DE algorithm.
F, CR, N and other difference strategies perhaps have an impact on the convergence speed.
The DE/Best/1 difference strategy and NP = 100 were selected, with F = 0.6 and

CR between 0.5 and 0.9. There was a difference in convergence speed in the process of
optimization. When CR = 0.9, the number of iterative steps required to achieve convergence
is the lowest. Selecting CR as 0.9 and F as 0.5~0.9, the convergence rate is the fastest when
F = 0.7. It is shown that the appropriate initial parameters can improve the convergence
speed. CR = 0.9 and F = 0.7 were selected for this study (Figure 10).
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Figure 10. Iteration curve.

The DE/Best/1 difference strategy was selected, with CR = 0.9 and F = 0.7, and NP
changed. As seen from Figure 11, when the population size reaches 100, the precision of
parameter optimization no longer changes significantly with the increase in population.
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Figure 11. Iteration curve of different populations.

In the DE algorithm, there are various difference strategies, shown in Equation (26).
Selecting F = 0.7, CR = 0.9 and NP = 100, the different strategies are compared. It can be
seen from Figure 12, compared with other strategies, that DE/Best/1 is the best strategy
for optimization.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

DE/rand/1 : vi,g = xr1,g + F
(
xr2,g − xr3,g

)
DE/best/1 : vi,g = xbest,g + F

(
xr2,g − xr3,g

)
DE/rand/2 : vi,g = xr1,g + F

(
xr2,g − xr3,g + xr4,g − xr5,g

)
DE/best/2 : vi,g = xbest,g + F

(
xr1,g − xr2,g + xr3,g − xr4,g

)
DE/rand − to − best/2 : vi,g = xr1,g + F

(
xbest,g − xr2,g + xr3,g − xr4,g

) (26)
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5. Conclusions

Through back analysis of the surrounding rock parameters of the Chenjiadian tun-
nel and with the numerical calculation of the fluid–structure interaction, the following
conclusions are obtained:

1. To realize parameter feedback optimization of tunnel construction in water-rich areas, a
feedback analysis method of tunnel parameters under fluid–solid coupling conditions
based on GP and DE was established based on an intelligent optimization algorithm.

2. Choosing the appropriate parameters of GP by DE is important to improve the
accuracy of the back analysis results. The variation parameters of DE have an impact
on the convergence speed. CR = 0.9, F = 0.7, N = 100 and the difference strategy
DE/Best/1 were selected for this study.

3. The optimal hydrogeological parameters of the surrounding rock were obtained
by a back analysis algorithm based on GP-DE. The optimal parameters from back
analysis are E1 = 2.83 GPa, μ1 = 0.33, E2 = 1.24 GPa, μ2 = 0.36, K1 = 0.285 m/d and
K2 = 0.658 m/d, providing an effective method for obtaining the surrounding rock
parameters of similar projects.

4. Based on the back analysis results, different amounts of excavation footage of the
tunnel were selected to analyze their impact on the tunnel. The optimal excavation
footage under four working conditions was selected by analyzing the distribution of
the plastic zone.
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Abstract: The determination of the rock elasticity modulus (EM) is an indispensable key step for
the design of rock engineering problems. Traditional experimental analysis can accurately measure
the rock EM, but it requires manpower and material resources, and it is time consuming. The EM
estimation of new rocks using former published empirical formulas is also a possibility but can be
attached of high uncertainties. In this paper, four types of metaheuristic optimization algorithms
(MOA), named the backtracking search optimization algorithm (BSA), multi-verse optimizer (MVO),
golden eagle optimizer (GEO) and poor and rich optimization algorithm (PRO), were utilized to
optimize the random forest (RF) model for predicting the rock EM. A data-driven technology was
used to generate an integrated database consisting of 120 rock samples from the literature. To verify
the predictive performance of the proposed models, five common machine-learning models and
one empirical formula were also developed to predict the rock EM. Four popular performance
indices, including the root-mean-square error (RMSE), mean absolute error (MAE), the coefficient
of determination (R2) and Willmott’s index (WI), were adopted to evaluate all models. The results
showed that the PRO-RF model has obtained the most satisfactory prediction accuracy. The porosity
(Pn) is the most important variable for predicting the rock EM based on the sensitive analysis. This
paper compares the performance of the RF models optimized by using four MOA for the rock EM
prediction. It provides a good example for the subsequent application of soft techniques on the EM
and other important rock parameter estimations.

Keywords: elasticity modulus; rock materials; data-driven; soft techniques; poor and rich optimiza-
tion algorithm

1. Introduction

In rock engineering, the rock elasticity modulus (EM) plays an important role for
structure designs [1–4]. The EM is an important index for quantifying the rock behavior.
It is also closely related to the rock’s durability, which can determine rock applications to
a large extent [5]. Numerous experiments were developed according to the international
society of rock mechanics (ISRM) to calculate the rock EM [6]. Nevertheless, the expensive
sample costs and time-consuming laboratory operations have forced engineers to develop
other methods for estimating the rock EM.

The empirical formula based on statistics is a popular method to estimate the rock EM
in preliminary design phases [7–12]. The aim of the empirical formulas (simple-regression
(SR) or multiple-regression (MR) formulas) is to establish a relationship between one or
more rock properties and the EM. Numerous researchers proposed various empirical for-
mulas to estimate the rock EM [3,4,13–16]. Beiki et al. [17] used the porosity (Pn) to predict
the rock EM with a low prediction accuracy of the coefficient of determination (R2). Yasar
and Erdogan [18] provided a linear SR formular using P-wave velocity (Vp) to estimate EM.
Dincer et al. [19] established an SR formula between the Schmidt hammer rebound number
(SHRN) and EM. The prediction accuracy of R2 was equal to 0.85. Behzadafshar et al. [20]
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only utilized the point load index (PLI) to forecast the granite EM. The prediction accuracy
was not satisfactory, resulting in a low R2 of 0.58. Dehghan et al. [21] developed an MR
formula consisting of the above four variables to predict the travertine EM. By reviewing
the developed empirical formula, the Pn, Vp, SHRN and PLI are usually considered into
these empirical equations, which can be obtained directly from tests [13]. However, the
original data used to develop each empirical formula are fixed and different, and the
formula performance decreases once it is used to predict the EM of a new rock [22]. From
the prediction accuracy perspective, the intrinsic relationship of the SR and MR formulas
cannot well describe the complex and nonlinear correlation between the rock properties
and the EM [23].

In recent years, soft techniques have been widely used to solve prediction problems
in rock engineering [24–30], especially machine-learning (ML) methods. For the rock EM
prediction, Ocak and Seker [31] proposed an artificial neural network (ANN) model to
predict the EM of intact rock. The results showed that the ANN model obtained a higher
accuracy for the root-mean-square error (RMSE is equal to 0.191) than those of previous
approaches. Pappalardo and Mineo [32] utilized ANN models to estimate the EM statis of
rock samples. The results indicated that this artificial intelligence model is of more practical
value in estimating the rock EM. Singh et al. [33] used an adaptive neurofuzzy inference
system (ANFIS) to predict the EM values of 85 rock samples. The performance evaluation
results illustrated that the ANFIS model has a better performance than the initial ANN
model and fuzzy inference system (FIS) model by means of the lower RMSE value of 6.799.
Umrao et al. [34] developed an ANFIS to estimate the EM of 45 heterogenous sedimentary
rocks. This model has obtained a satisfactory prediction accuracy of R2 = 0.935. Acar and
Kaya [35] adopted a least-square support vector machine (LS-SVM) model to find the EM
of weak rocks by considering the Vp, unit weight (r), PLI and tensile strength (Ts). The
prediction results showed that the LS-SVM models can be a good substitute for experiments
to measure the weak rock EM. Al-Anazi and Gates [36] used a support vector regression
(SVR) model and a backpropagation neural network (BPNN) model to forecast the EM of
reservoir rocks. The prediction results indicated that the former has a better performance
than the latter. Matin et al. [37] used an integrated ML model, named the random forest
(RF) model, to predict the EM and the uniaxial compressive strength (UCS) of various rocks.
Based on the prediction results, the RF model not only achieves a satisfactory accuracy
(R2 = 0.91) for the EM prediction but can also accurately estimate the UCS (R2 = 0.93).
Other similar studies on the rock EM prediction by ML models can be referred to in the
literature [38–42]. To improve the ML model’s performance, the metaheuristic optimization
algorithms (MOA) are used to select the model hyperparameters. Tian et al. [43] used
the imperialism competitive algorithm (ICA) and the particle-swarm optimization (PSO)
to optimize an ANN model for predicting the EM of rock materials. The optimization
results illustrated that the ICA-ANN has the best prediction accuracy for both the training
and testing phases (R2: 0.952 and 0.955). Mokhtari and Behnia [44] combined the cuckoo
optimization algorithm (COA) and ANN model to estimate the EM of limestone rocks.
The results showed that the COA can obviously improve the prediction performance of
the ANN model. Other optimized ML models for the EM prediction can be found in the
literature [45–50].

Among common ML models, the RF model has unique advantages in resisting the
overfitting phenomenon, and its combination with MOA can effectively solve the hyperpa-
rameter selection problem [51]. In general, MOA can be divided into four groups, i.e., the
based evolutionary, based swarm intelligence, based human behavior and based physico-
chemical groups. Therefore, the aim of this paper is to generate four optimized RF models
using four different MOA strategies for predicting the rock EM. An integrated rock database
was established using the data-driven technology to train and test the proposed models. In
addition, five widely used ML models and one empirical equation were also developed to
compare the predictive performance with four hybrid RF models for predicting the rock
EM. Finally, a sensitive analysis is carried out to calculate the variable importance.
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2. Data Preparation

Reviewing the published studies on the rock EM prediction, the used rock samples are
generally different, resulting in a loss of accuracy in predicting other rock sample properties
from original empirical formulas or other models. To overpass this limitation, an integrated
rock database consisting of 120 rock samples (e.g., granite and travertine) was established
using the data-driven technology. The EM values of these rock samples was investigated by
Armaghani et al. [3], Dehghan et al. [21] and Tuğrul and Zarif [52]. The reason for choosing
these data is that the EM value of each rock is determined jointly by the porosity (Pn),
P-wave velocity (Vp), Schmidt hammer rebound number (SHRN) and point load index
(PLI). Before generating the prediction models, a correlation analysis needs to be conducted
by outputting the correlation coefficient (CC) to determine the final variables used in the
EM prediction. As illustrated in Figure 1, the scatter plot at the lower right shows the
distribution of the four input variables and of one output variable. The histograms in the
diagonal showed the data range of all variables, and the number at the upper left represents
the CC between the two corresponding variables. If the number value is negative, the
correlation between the two variables is negative. Otherwise, the correlation is positive.
The absolute number value is used to evaluate the correlation between any of two variables.
If the CC between two input parameters (or between each input and output parameter)
is very high (or very low), one of them needs to be removed to increase the prediction
efficiency. The results showed that the CC between the four variables is not high; Pn and
EM have the highest CC value (−0.651). Especially, the low correlation between PLI and
EM is caused by the diverse sources of databases used to predict EM in this paper, while
the PLI is beneficial to accurately predict the rock EM [3]. Therefore, the Pn, Vp, SHRN
and PLI are used as input variables to predict the EM (output variable). Their detailed
information is shown in Table 1.

Figure 1. Correlation analysis results of four input variables and EM.

Table 1. Detailed description of the input and output variables.

Variables
Statistical Information

Sign Unit Min Max Mean St. D

Point load index PLI MPa 0.890 12.530 4.365 2.839
Porosity Pn % 0.100 10.270 1.957 3.047

P-wave velocity Vp km/s 2.823 7.943 5.575 0.892
Schmidt hammer rebound number SHRN / 25.630 72.000 47.093 13.795

Elasticity modulus EM GPa 3.050 183.300 60.139 44.832
Note: Min—minimum value; Max—maximum value; St. D—standard deviation value.
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3. Development of Hybrid RF Models for Predicting the Rock EM

3.1. Metaheuristic Optimization Algorithms
3.1.1. Backtracking Search Optimization Algorithm (BSA)

Civicioglu [53] proposed a MOA-based evolutionary method to solve optimization
problems, namely, the backtracking search optimization algorithm (BSA). The algorithm is
still inspired by an individual evolution, especially the traditional mutation, and crossover
operators are uniformly replaced by breeding operators. The optimization process of the
BSA can be described using five strategies: initialization, selection, mutation, crossover and
selection. These strategies are defined by using Equations (1)–(5).

Pi = Low + rand(N) · (Up − Low) (1)

Poi =

{
P[ a, b ∼ Pi), a < b
permuting(Poi), a > b

(2)

Mutant = Pi + F(Poi − Pi) (3)

Ti = Pi + map · F(Poi − Pi) (4)

Pui = Ti, f itness(Ti) < f itness(Pi) (5)

where Pi and Poi represent the initial and historical position of the i-th individual, respec-
tively. Low and Up indicate the lower and upper bounds of the dimension space. a and b are
random numbers within the range of [0, 1]. F and map represent the control parameter of
the mutation operator and a binary matrix consisting of crossover probability parameters,
respectively. Ti and Pui are the current position of the i-th tested individual and the updated
position of the i-th individual, respectively.

3.1.2. Multi-Verse Optimizer (MVO)

The multi-verse optimizer (MVO) is a MOA-based physics algorithm proposed by
Mirjalili et al. [54], which is inspired by the idea that the universe moves from white holes to
black holes through wormholes to achieve a stable situation. The white holes are believed
to be an important part of the original universe, the black holes have an irresistible pull
on everything including light beams, and the wormhole is a bridge or passage connecting
different universes. In the MVO algorithm, the birth of the universe is always related to the
objects transfer. The universe with a low inflation rate is more likely to take in more objects.
The optimization process of MVO can be described as follows:

(1) Population—the initial population of the universes in the searching space is defined
using the Equation (6).

U =

⎡⎢⎢⎢⎣
u1

1 u2
1 · · · ud

1
u1

2 u2
2 · · · ud

2
...

...
...

...
u1

n u2
n · · · ud

n

⎤⎥⎥⎥⎦ (6)

where ud
n indicates the parameter of the n-th universe in the d-dimension searching space.

(2) Exploration and exploitation—the function of wormholes is to help objects move from
one universe to another (see Figure 2). Thus, this mechanism by which objects are
exchanged between universes through wormholes can be described as:

uj =

⎧⎨⎩
uj + TDR · ((ub − lb) · r3 + lb), r2 < 0.5 and r1 < WEP
uj + TDR · ((ub − lb) · r3 + lb), r2 > 0.5 and r1 < WEP
uj, r1 > WEP

(7)

where uj represents the j-th parameter of the best universe. ub and lb are the lower and
upper bounds of the multi-universes space, respectively. r1, r2 and r3 indicate three random
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numbers within the range of [0, 1]. TDR and WEP represent two coefficients, the former
is the wormhole existence probability, and the latter is named the travelling-distance rate.
These coefficients can be calculated using the Equations (8) and (9).

WEP = min + t · (max − min
T

) (8)

TDR = 1 − t1/e

T1/e (9)

where min and max represent the minimum maximum values, respectively. t and T indicate
the current iteration and the maximum iteration, respectively. e is the exploitation accuracy.

Figure 2. The conceptual model of wormholes in the MVO algorithm.

3.1.3. Golden Eagle Optimizer (GEO)

Mohammadi-Balani et al. [55] developed a novel MOA-based swarm intelligence
named the golden eagle optimizer (GEO) to provide an effective scheme for solving opti-
mization problems. This algorithm is inspired by the hunting behavior of golden eagles,
who can adjust their speed to hunt. The hunting behavior can be divided into three parts:
(a) selecting the prey; (b) attacking the prey; and (c) cruising. It is worth noting that each
hunting behavior of a golden eagle is carefully considered. It allows striking a balance
between attack and cruise. Once an attack is launched, the golden eagle is unable to obtain
food or replenish enough energy.

(I) Selecting the prey—the selection can occur in a basic way, with each golden eagle
randomly select a prey from the memory of any other group member to better explore
the landscape. It is important to note that the chosen prey is not necessarily the nearest
or furthest prey. Figure 3 shows how prey selection works.

(II) Exploration and exploitation—after determining the prey, each golden eagle carries
out the attacking and cruising behaviors. The attacking behavior can be expressed by
the following mathematical formula:

YG
i = YP

l − Ai (10)

where YG
i and YP

l represent the position of the i-th golden eagle and the prey determined
by the l-th golden eagle, respectively. Ai indicates the attacking distance between the prey
and the i-th golden eagle. The cruising behavior is related to the attacking behavior, which
can be expressed using the Equations (11) and (12).

h1y1 + h2y2 + . . . + hmym = d ⇒
m

∑
z=1

hzRz (11)
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m

∑
z=1

αzyz =
m

∑
z=1

αs
zy∗z (12)

where [h1, h2, . . . hm], [y1, y2, . . . ym] and [R1, R2, . . . Rm] represent the normal coefficients,
variables and random points, respectively. s is the current iteration.

[
y∗1, y∗2, . . . y∗m

]
indicates

the position of the selected prey. [α1, α2, . . . αm] belongs to the Ai.

Figure 3. Prey selection in the GEO algorithm.

3.1.4. Poor and Rich Optimization Algorithm (PRO)

The poor and rich optimization algorithm (PRO) was proposed by Moosavi and
Bardsiri [56]. It is inspired by people’s desires and attitudes towards money. The wealth
accumulated by individuals can preliminarily divide society into two classes, namely, rich
and poor. For the rich (i.e., wealth level is obviously higher than the average one), observing
the behavior of the poor (i.e., wealth level is obviously lower than the average one) can
help them to increase wealth and consolidate their class position. The poor tend to narrow
the gap by learning from rich ideas about wealth and approaches to making money. In
the PRO algorithm, the population distribution of rich and poor can be expressed using
Equation (13).

POPmain = POPpoor + POPrich (13)

where POPmain represents the main population, which is related to the POPpoor (poor
population) and POPrich (rich population). It should be noted that the position of the rich is
better than the poor position. Their positions are calculated using the Equations (14) and
(15), respectively.

P∗
rich = Prich + c ·

(
Prich − Pbest

poor

)
(14)

P∗
poor = Ppoor +

[
c(Pattern)− Ppoor

]
(15)

where P∗
rich and Prich represent the updated and old positions of the rich, respectively. P∗

poor

and Ppoor indicate the updated and old positions of the poor, respectively. Pbest
poor is the

current position of the best people in the poor population. c is a random number within
the range of 0 to 1. The Pattern value is calculated by using the Equation (16).

Pattern =
Pbest

rich + Pmean
rich + Pworst

rich
3

(16)

where Pbest
rich and Pworst

rich represent the current positions of the best and worst people in the
rich population, respectively. Pmean

rich indicates the average position of the people in the rich
population. The position distribution of rich and poor is shown in Figure 4.
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Figure 4. Position distribution for the rich and poor populations.

However, some sudden changes can occur for the rich and poor situations, such as the
stock prices falling and rising, shortages of petroleum products and inflation [56]. Since the
occurrence of the above situation is not predictable, P∗

rich and P∗
poor after mutation can be

expressed as follows:
P∗

rich = P∗
rich + randn, i f rand < Pmut (17)

P∗
poor = P∗

poor + randn, i f rand < Pmut (18)

where rand is a random number within the range of 0 to 1. randn represents a value
considering a normal distribution. Pmut represents the mutation probability.

3.2. Hybrid RF Models

In this paper, the BSA, MVO, GEO and PRO are used to optimize the RF model for
predicting the rock EM. The definition of the RF model is described in the literature [57–60].
The hyperparameter combination selection (i.e., number of trees (Nt) and random features
(Maxdepth)) is a key step to tap into the RF model prediction potential. Therefore, four hy-
brid RF models were generated to find the optimal hyperparameter combination according
to the following process:

(i) Data preprocessing
A total of 120 rock samples with four input variables were used to predict the EM in
this paper. All variables need to be extracted and normalized to [−1, 1]. The purpose
of this step is to prevent a failure for establishing the accurate prediction relationships
due to the parameter variability. After that, the train and test sets are separated from
the initial database. The ratio of the train set to the test set is set equal to 4 to 1. It
should be noted that the same train or test set is used to generate each hybrid RF
model for predicting the rock EM and comparing their performance.

(ii) Parameter settings
Although the Nt increase will not cause an overfitting of the RF model, a large
parameter selection range can greatly increase the computation time. Therefore, the
ranges of Nt and Maxdepth are set equal to [1, 100] and [1, 10], respectively. For
the four MOA algorithms, the number of initial solutions (i.e., individuals of BSA,
candidates of MVO, population of GEO and human of PRO) and the iteration time
are the core factors that affect the optimization performance of these algorithms. To
better activate the optimization performance, the solutions are set equal to 30, 60, 90,
120 and 150 during the 200 iterations.

(iii) Optimization evaluation
The fitness function is utilized to evaluate the performance of each hybrid RF model
with different solutions during the 200 iterations. The RMSE is adopted to represent
the fitness values of all models in this paper. They do not need an absolute value to

93



Appl. Sci. 2023, 13, 2373

evaluate the model performance [51]. In other words, the best-optimized RF model
has the lowest RMSE value among all hybrid models based on the same MOA. The
flowchart for developing four hybrid RF models for predicting the rock EM is shown
in Figure 5.

Figure 5. Flowchart of predicting the rock EM based on the four hybrid RF models.

4. Performance Evaluation

The statistical indices widely utilized to evaluate the performance of the prediction
models include the root-mean-square error (RMSE), the mean absolute error (MAE), the
coefficient of determination (R2) and the Willmott’s index (WI). The RMSE and MAE are
able to reflect the error between the predicted and the measured values. On the other hand,
the R2 and WI describe the fitting performance of the prediction models. In terms of values,
the lowest values of RMSE and MAE and the highest values of R2 and WI represent the
best prediction model.

RMSE =

√
1
n

n

∑
i=1

(Ei − ei)
2 (19)

R2 = 1 −

[
n
∑

i=1
(Ei − ei)

]2

[
n
∑

i=1
(Ei − E)

]2 (20)
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MAE =
1
n

n

∑
i=1

|Ei − ei| (21)

WI = 1 −
[

∑n
i=1(Ei − ei)

2

∑n
i=1
(∣∣ei − E

∣∣+ ∣∣Ei − E
∣∣)2

]
(22)

where n is the number of the samples. Ei and ei represent the measured and the predicted
values of the rock EM, respectively. E is the average value of the measured rock EM.

5. Results and Discussion

5.1. Results of the Proposed Four Hybrid Models

To determine the optimal solution and corresponding hyperparameter combination
(i.e., Nf and Maxdepth) of the RF model, all hybrid models were performed during 200 it-
erations. The iteration curves of each hybrid RF model with five solutions are shown in
Figure 6. As it can be seen in Figure 6a, it is obvious that the BSA-RF with 60 solutions
has a lower fitness value than the other four BSA-RF models during the 200 iterations.
The solution of 90 is the most suitable for generating the MVO-RF model by means of the
lowest fitness value (see Figure 6b). As illustrated in Figure 6c,d, the optimal solutions of
the GEO-RF and PRO-RF models are equal to 120 and 90, respectively. Table 2 lists the
results and the best hyperparameter combination of the four optimized RF models. The
PRO-RF model has the lowest value of RMSE (0.1861) among all models. This optimized
RF model shows that the optimal Nf and Maxdepth values are 17 and 2, respectively.

Figure 6. Iteration curves of four hybrid RF models for predicting the rock EM.
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Table 2. Development results of all hybrid RF models.

Solutions
Fitness (RMSE)

BSA-RF MVO-RF GEO-RF PRO-RF

30 0.1941 0.1893 0.1987 0.1901
60 0.1868 0.1977 0.1974 0.1935
90 0.1947 0.1870 0.1934 0.1861

120 0.1940 0.1942 0.1925 0.1875
150 0.1927 0.1917 0.1940 0.1928

Optimal hyperparameter combination

Nf 19 21 20 17
MaxDepth 2 2 2 2

Four hybrid RF models with the optimal hyperparameter combinations were used to
predict the rock EM in the training phase. The performance indices of each hybrid RF model
are listed in Table 3. As illustrated in this table, four models achieved a good prediction
accuracy with high values of R2 and WI and low values of RMSE and MAE. Compared
with the other three models, the PRO-RF is the best prediction model for predicting the EM
by means of the best performance indices, i.e., R2 is equal to 0.9423, RMSE to 10.7420, MAE
to 7.6514 and WI is equal to 0.9843. The ranking score results of all models indicated that
the GEO-RF model with the lowest total score of 4 is the worst model among all hybrid
models for predicting EM in the training phase. The score of the MVO-RF model is the
second model in the rank just after the PRO-RF model.

Table 3. Performance and ranking results of four hybrid RF models in the training phase.

Models
Performance Indices and Ranking Scores

Total
R2 Score RMSE Score MAE Score WI Score

BSA-RF 0.9359 2 11.3203 2 7.8165 2 0.9824 2 8
MVO-RF 0.9407 3 10.8867 3 7.7471 3 0.9837 3 12
GEO-RF 0.9317 1 11.6807 1 8.0452 1 0.9809 1 4
PRO-RF 0.9423 4 10.7420 4 7.6514 4 0.9843 4 16

As illustrated in Figure 7, the regression distribution of the predicted and the measured
EM values represents the performance of the prediction models. The position of each rock
EM data in the two-dimension regression diagram is determined by the predicted EM
values (horizontal axis, x) and the measured EM values (vertical axis, y). If y = x, it means
that the predicted EM value is equal to the measured EM value. The rock EM data are then
located on the diagonal line. To this end, the PRO-RF model has obtained the most rock EM
data on the diagonal or close to the line among the four hybrid RF models (Figure 7d). After
the PRO-RF model, the MVO-RF model and the BSA-RF model have similar regression
distributions for both the small and big rock EM data. The MVO-RF model has obtained
more data close to the diagonal line than the BSA-RF model in the interval between 20
and 70.

To further determine the performance of all hybrid RF models, the performance indices
were calculated again using the test set, as shown in Table 4. The best model is still the
PRO-RF, which has the lowest values of RMSE and MAE (10.1548 and 6.0423) and the
highest values of R2 and WI (0.9410 and 0.9840). The predictive performance of the BSA-RF
model is better than the MVO-RF model in the testing phase, the former not only has the
better performance indices but also has a higher score (12) than the latter (8). In addition,
the GEO-RF model still does not achieve better predictive performances than the other
models using the test set.
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Figure 7. Regression diagrams of the four hybrid RF models using the train set: (a) BSA-RF model;
(b) MVO-RF model; (c) GEO-RF model; (d) PRO-RF model.

Table 4. Performance and ranking results of four hybrid RF models in the testing phase.

Models
Performance Indices and Ranking Scores

Total
R2 Score RMSE Score MAE Score WI Score

BSA-RF 0.9322 3 10.8902 3 7.2155 3 0.9812 3 12
MVO-RF 0.9236 2 11.5567 2 7.5280 2 0.9785 2 8
GEO-RF 0.9123 1 12.3826 1 7.9739 1 0.9746 1 4
PRO-RF 0.9410 4 10.1548 4 6.0423 4 0.9840 4 16

Figure 8 illustrates the regression results of the four hybrid RF models in the testing
phase. As it can be seen in Figure 8a–c, large errors between the predicted EM values by
the BSA-RF, MVO-RF and GEO-RF models and the measured EM values indicate that the
data point move away from the diagonal, especially when the EM values are in the range
of [50, 80] and [0, 20]. The PRO-RF model has obtained the most EM data points close to
the diagonal based on the best predictive performance in the testing phase. Therefore, the
PRO-RF model is the best hybrid RF model for predicting the rock EM in this paper.

5.2. Performance Comparison between the Proposed and Other Models

To compare the predictive performance with the proposed hybrid models, five com-
mon ML models, named the ANN, SVR, extreme learning machine (ELM), kernel-extreme
learning machine (KELM) and generalized regression neural network (GRNN), and one
empirical formula, were also developed to predict the rock EM. The definition and the
hyperparameter settings of the five ML models can be found in [61–65]. The multivariate-
quadratic equation (MQE) of MR was used to generate an empirical formula as expressed
using Equation (23).

EM = −136.609 + 7.864PLI − 1.056PLI2 − 17.038Pn + 1.378Pn
2

+ 4.265Vp + 1.084Vp
2 + 5.297SHRN − 0.042SHRN2 (23)
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Figure 8. Regression diagrams of the four hybrid RF models using the test set: (a) BSA-RF model;
(b) MVO-RF model; (c) GEO-RF model; (d) PRO-RF model.

The optimal hyperparameter combination of each model and the corresponding per-
formance results are shown in Table 5. The GRNN obtained better performance indices (R2:
0.9010; RMSE: 13.1593; MAE: 8.2674 and WI: 0.9717) than the other models using the test
set. After this model, the prediction accuracy of the KELM and the ELM models is superior
to the ANN and the SVR models. The worst prediction model is the MQE; its index values
of R2, RMSE, MAE and WI are, respectively, equal to 0.8318, 17.1476, 13.5849 and 0.9497.
Figure 9 shows the rank scores of all comparison models. It can be obviously observed that
the performance ranking of the six models is GRNN (24), KELM (20), ELM (16), ANN (12),
SVR (8) and MQE (4).

Table 5. Performance results of five common ML models using test set.

Models
Performance Indices

Hyperparameters
R2 RMSE MAE WI

ANN 0.8683 15.1724 10.8323 0.9619 Nh = 2; Ne = 4,4
SVR 0.8592 15.6918 11.7625 0.9591 C = 128; Rk = 0.25
ELM 0.8795 14.5124 10.2086 0.9665 Nes = 65

KELM 0.8987 13.3074 8.4755 0.9716 Rc = 128; Rk = 1.0
GRNN 0.9010 13.1593 8.2674 0.9717 Sf = 0.3
MQE 0.8318 17.1476 13.5849 0.9497 Equation (7)

Note: Nh—the hidden layers number; Ne—the number of neurons in the corresponding hidden layer; C—penalty
parameter; Rk—RBF kernel parameter; Nes—the number of neurons in a single hidden layer; Rc—regularization
coefficient; Sf—smoothing factor.

The regression diagrams of the six comparison models in the testing phase are pre-
sented in Figure 10. As it can be seen in these diagrams, all models have a finite number
of rock EM data points near the diagonal line. Compared with the other five models,
the GRNN model obtained a good EM regression distribution in the range of 70 to 90
(Figure 10e). For the MQE model, most of the rock EM data points are away from the
diagonal, which also indicates a large error between the EM value predicted by this model
and the measured EM value. As a result, the GRNN model is the best prediction model
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among the six other models by means of the best performance indices. It obtains the highest
rank score value and the best regression distribution.

Figure 9. Ranking scores of the six comparison models using the test set.

Figure 10. Regression diagrams of the other six models for predicting the rock EM.
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Thus, the GRNN model is used to compare the performance with the PRO-RF model
for predicting the rock EM. The bar chart tool is utilized to make an intuitive comparison
between the measured EM and the EM predicted by the GRNN model and PRO-RF model,
as shown in Figure 11. In Figure 11a, the predicted EM values of the No. 1, No. 7, No. 11,
No. 13 and No. 15 samples by the PRO-RF model showed deviations. On the other hand,
the GRNN model also does not accurately predict the EM values of the No. 2, No. 3, No.
4 and No. 19 samples, in addition to the above samples. The error analysis results of the
PRO-RF model and the GRNN model for predicting the rock EM are shown in Table 6. It
can be intuitively observed that the error in the statistical indices based on the PRO-RF
model is better than the GRNN model ones, such as the error sum of the PRO-RF model
(145.014) being lower than the GRNN model (198.417).

Figure 11. Intuitive comparison diagram of the measured EM and predicted EM by the proposed
models: (a) PRO-RF model; (b) GRNN model.

Table 6. Error analysis comparison between the PRO-RF model and the GRNN model.

Models
Statistical Indices

Min Max Median Mean St. E St. D Sum

PRO-RF 0.134 31.524 2.678 6.042 1.702 8.337 145.014
GRNN 0.328 35.992 3.477 8.267 2.135 10.458 198.417

Note: St. E—standard error value. St. D—standard deviation value.

The relative deviation (RD) distribution is also an effective tool to evaluate the model
performances [64]. The definition of RD is the ratio of the error between the predicted value
and the measured value to the measured value. This also means that the models with a
better performance have lower RD values. As illustrated in Figure 12a, the maximum RD
of the PRO-RF model is 44.77%, and most of the RD values are lower than 40%. Especially,
there are 11 RD values lower than 10%. It should be noted that the maximum RD of the
GRNN model is higher than 70%, and only 9 RD values are lower than 10%. Therefore, the
PRO-RF model has a better predictive performance than the GRNN model for calculating
the rock EM.

5.3. Sensitive Analysis

After determining the best prediction model, the sensitive analysis was carried out
to calculate the parameter importance of the rock EM prediction. The average impact on
model output magnitude (mean) is one of indices in the Shapley additive explanations
(SHAP), which is used to represent the parameter importance, as shown in Figure 13. As
can be seen in this graph, the porosity (Pn) has the larger importance value (30.52) than the
other input variables in the EM prediction based on the PRO-RF model. After the Pn, the
importance ranking of other three variables are the SHRN (3.8), Vp (4.09) and PLI (2.08). In
addition, another SHAP index is the impact on the model output (SHAP value), which is
used to describe the correlation between the input and output variables. As illustrated in
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Figure 14, only the Pn has the greatest negative correlation with EM. The SHRN, Vp and
PLI are positively correlated with the EM, and the correlation decreased successively.

Figure 12. The RD distribution diagrams of the PRO-RF model and the GRNN model.

Figure 13. Parameter importance results based on the PRO-RF model.

Figure 14. The SHAP values results of all input parameters based on the PRO-RF model.

6. Conclusions

In this study, four hybrid RF models, named BSA-RF, MVO-RF, GEO-RF and PRO-RF
were developed to predict the elasticity modulus (EM) of 120 rock samples. Four rock
properties, named the porosity (Pn), P-wave velocity (Vp), Schmidt hammer rebound
number (SHRN) and point load index (PLI), were considered as the main factors for the
EM prediction. In addition, five ML models (i.e., ANN, SVR, ELM, KELM and GRNN)
and one empirical formula were also developed to predict the rock EM and compare the
predictive performance with the proposed hybrid RF models. The main conclusion of this
paper can be listed as follows:

i. Four hybrid RF models have obtained a good prediction accuracy by means of four
performance indices. In particular, the PRO-RF model is the best model among them.

ii. The GRNN model has a better predictive performance than the other ML models and
the empirical formula. It results in the higher values of R2 (0.9010) and WI (0.9717)
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and the lower values of RMSE (13.1593) and MAE (8.2674). However, these four
optimized RF models are superior to the GRNN model.

iii. The porosity (Pn) is the most important variable by means of the highest average
impact value of 30.52 for predicting the rock EM. Meanwhile, the Pn is also the only
variable negatively correlated with EM.

This paper proposes four effective hybrid RF models to predict the rock EM. It shows
a successful application of soft techniques for a rock parameter prediction. Nevertheless,
more various rocks should be collected into the integrated database to increase the pre-
diction model’s accuracy. Furthermore, other rock properties such as the density, water
content and UCS could be considered in the rock EM prediction.
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Abstract: The undrained shear strength of clay is an important index for the calculation of the bearing
capacity of the foundation soil, the calculation of the soil pressure of the foundation pit, and the
analysis of the slope stability. Therefore, the purpose of this paper is to conduct a comprehensive study
of the combined use of machine learning with clay theoretical equations to estimate it. Under the
Bayesian framework, the CatBoost algorithm (CatBoost–Bayesian) based on Bayesian optimization
algorithm was developed to obtain the feature importance level of soil parameters affecting the
undrained shear strength of clay, so as to adaptively couple the theoretical equation of undrained
shear strength of K0 consolidated clay, which was derived from the modified Cambridge model.
Then, the theoretical equation of undrained shear strength of the isotropically consolidated clay was
established from the critical state of the clay parameters. Finally, it was illustrated and verified using
the experimental samples of Finnish clay. The results indicate that the theoretical equation established
by the overconsolidation ratio and effective overburden pressure parameters can well estimate the
undrained shear strength of isotropically consolidated clays, and the parameter uncertainty can be
considered explicitly and rigorously.

Keywords: clay; undrained shear strength; CatBoost–Bayesian; overconsolidation ratio; effective
overburden pressure

1. Introduction

The composition and physical and mechanical properties of clayey soil are important
indexes in geotechnical engineering, among which the undrained shear strength index of
clay is the most important index for calculation of the bearing capacity of foundation soil,
calculation of the soil pressure of the foundation pit, and analysis of slope stability. Cross
plate shear tests in the field, direct shear tests in the laboratory, triaxial compression tests,
and other such direct measurement methods are time-consuming and expensive [1]. To
evaluate through indirect methods, theoretical derivation and empirical methods are effec-
tive methods. Based on many experiments, Mesri and Ladd et al., respectively, proposed
empirical equations for the undrained shear strength of clay [2,3]. Jiang Shuihua et al. sim-
ulated the uncertainty of soil parameters and proposed an effective non-stationary random
field model for undrained shear strength parameters [4]. Indirect methods also include
measurements obtained from dilatometer tests (DMT) based on empirical equations [5,6].

The application of machine learning in the field of geotechnical engineering has
gradually become a research hotspot, including slope stability testing, TBM performance
evaluation, rockburst vibration estimation, and pile foundation evaluation, etc., and has
been proposed, expanded upon and applied by many researchers [7–10]. The emergence of
artificial intelligence techniques holds great potential for solving soil parameter estimation
problems involving complex soil–structure interactions [11–13]. However, compared with
other directions in the field of geotechnical engineering, research devoted to soil parameter
estimation is still very limited. The CatBoost algorithm can effectively solve gradient offset
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and prediction offset problems, improving the accuracy and generalization ability of the
calculation [14]. Therefore, it has been widely used in crop evapotranspiration estimation
in hydrology, data-driven seismic performance evaluation of corroded RC columns in
civil engineering, and groundwater salinity prediction in multi-layer coastal aquifers in
geotechnical engineering [14–18].

Moreover, the combination of Bayesian optimization with machine learning algo-
rithms is still relatively rare, and Zhang et al. use extreme gradient boosting and random
forest based on Bayesian optimization in geotechnical engineering to effectively capture
the relationship between undrained shear strength and various fundamental soil parame-
ters [19]. Ho et al. used the good performance of Bayesian, functional, and meta-ensemble
machine learning models to generate land subsidence susceptibility (LSS) maps [20]. The
Cambridge model and modified Cambridge model are two elastic–plastic constitutive mod-
els commonly used in geotechnical engineering to describe the shear properties of soils [21].
They are typical of the constitutive relationships of soils under undrained conditions. The
Cambridge model describes the shear properties of soils under circular stress paths, while
the modified Cambridge model modifies the stress paths in the plastic potential function to
better describe the shear properties of soils under non-circular stress paths [22].

Under the Bayesian framework, the CatBoost algorithm (CatBoost–Bayesian) based
on a Bayesian optimization algorithm was developed to obtain the feature importance
level of soil parameters affecting the undrained shear strength of clay by using the ex-
perimental samples of Finnish clay, so as to adaptively couple the theoretical equation
of undrained shear strength of K0 consolidated clay, which was derived from the mod-
ified Cambridge model. Then, the theoretical equation of undrained shear strength of
isotropically consolidated clay was established from the critical state of clay parameters.
Finally, this paper analyzed the uncertainty of the parameters of the equation and verified
the rationality of the calculation results. The rest of this study was arranged as follows.
In Section 2, the CatBoost algorithm, the principle of Bayesian optimization algorithm
based on random forest and K-fold cross-validation, as well as the theoretical equation
derived from the revised Cambridge model, and the selection of quantitative evaluation
indicators are introduced, respectively. The Finnish clay database used for training and
validating the CatBoost–Bayesian hybrid model and theoretical equations is presented in
Section 3, and a sensitivity analysis of different types of clay was performed to show the
results of the importance of clay parameters. Finally, various verifications of the calculation
results of the undrained shear strength theoretical equation of isotropically consolidated
clay were carried out, and the results of the similar mixed model of CatBoost–Bayesian
were compared and analyzed. Section 4 discusses the conclusions of this study, followed
by references.

2. Materials and Methods

2.1. CatBoost Algorithm

The CatBoost algorithm was developed by researchers and engineers at Yandex, the
largest Russian search engine company, in 2017, and opened source code in April [14,23].
It is the latest algorithm in the open-source field in the world today, and surpasses the
XGBoost algorithm and the LightGBM algorithm in terms of performance. The name
comes from “Category” and “Boosting”, and belongs to the family of Boosting algorithms.
The CatBoost algorithm is an improvement in the framework of the GBDT algorithm. It
effectively solves the problem of gradient bias and prediction shift, avoids the occurrence
of overfitting, and improves calculation accuracy and generalization ability (Figure 1). The
details are as follows.
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Figure 1. The structure of the CatBoost algorithm.

1. The CatBoost algorithm can handle categorical features in GBDT features better, and
the simplest way is to use the average value of the corresponding labels to replace
them. In the decision tree, the label average value will be used as the criterion for
node splitting. This method is known as greedy target-based statistics, or greedy TS.
However, this method has obvious drawbacks, so greedy TS is improved by adding
prior distribution terms to reduce the effect of noise and low frequency categorical
data on the data distribution [14,23].

x̂i
k =

∑
p−1
j=1

[
xσj,k = xσp,k

]
· Yσj + a · p

∑
p−1
j=1

[
xσj,k = xσp,k

]
+ a

(1)

where p is the added prior term and a is usually a weighting factor greater than 0. For
regression problems, the prior term can be taken as the average value of the dataset
in general.

2. The prediction shift is caused by the gradient bias. To overcome this problem, CatBoost
proposes a new algorithm called ordered boosting (Algorithm 1).

Algorithm 1: Ordered boosting pseudo-code algorithm

input: {(Xk, Yk)}n
k=1, I;

σ ← random permutation of [1, n];
Mi ← 0 for i = 1 . . . n;
for t ← 1 to I do

for i ← 1 to n do
ri ← yi − Mσ(i)−1(Xi);

for i ← 1 to n do

ΔM ← learn model
((

Xj, rj

)
: σ(j) ≤ i

)
;

Mi ← Mi + ΔM;
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From the Algorithm 1, Xi denotes a sample, Mi denotes a separate model, and model
Mi is obtained by training with a training set that does not contain sample Xi.

2.2. Bayesian Optimization Algorithm (SMAC) and k-Fold Cross-Validation

Hyperparameter optimization is a combinatorial optimization problem that cannot be
optimized by gradient descent as general parameters. Evaluating a set of hyperparameter
problems often involves issues such as resource allocation and efficiency. The simpler
hyperparameter optimization methods include manual search, grid search, and random
search. In this study, we used the currently popular adaptive hyperparameter search
method of Bayesian optimization [24–26]. Based on the combinations of hyperparameters
that were already tested, this method can predict the next combination that is more likely
to bring the greatest benefit. This study is implemented using the optuna automatic
hyperparameter optimization framework.

SMBO stands for sequential model-based optimization. The so-called serialization
refers to the optimization by iterative method one trial at a time. SMBO is a specific
implementation form of Bayesian optimization.

SMAC, proposed by Hutter et al. [27], stands for sequential model-based optimization
for general algorithm configuration; the model originates from the random forest model.
The random forest (RF) algorithm is a combination of the Bootstrap Aggregating algorithm
proposed by Breiman in 1996 and the stochastic subspace algorithm proposed by Ho [28]
in 1998. SMAC was initially designed to remove some of the limitations of SMBO to
make it applicable to general algorithm configuration problems with many classification
parameters and benchmark sets of instances, and to solve the case in which the parameter
type cannot be discrete in the Gaussian regression process.

During the process of model training, the problem of data overfitting often occurs. The
model can match the training data well, but cannot predict the data outside the training set
well. This affects the accuracy of the final evaluation results.

K-fold cross-validation (CV) is widely used as a criterion for model selection [29], and
was originally created to reduce the computational cost of leave-one-out cross-validation
(LOOCV) [30]. It divides a dataset into K equal samples, of which K-1 samples are used to
build the model for training, and the remaining 1 sample is used for validation. During
this K-time iteration, each part of K is successively assigned as validation data.

Jung [31] proposed a new method of choosing K-fold to ensure K = ln(n) and guarantee
n/K > 3d simultaneously. After verifying the feasibility of it, where n denotes a data
point and d denotes the number of parameters (in this study, n = 202, d = 12, K = 5.3),
and combining it with Pham [32] method, K was setted to 5. Therefore, this study used a
five-fold cross-validation method for validation (Figure 2).

Figure 2. Five-fold cross-validation.
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To reduce the reliance on empirical rules and inefficient brute force search, Bayesian
optimization methods are applied to determine the appropriate model hyperparameters
for the CatBoost algorithm (CatBoost–Bayesian). With appropriate model hyperparameters,
the CatBoost–Bayesian hybrid model is able to provide a data-driven ranking of clay feature
importance and properly uncover the intrinsic linkage of soil parameter essences; however,
it cannot give full interpretability. To address this issue, the clay feature importance is adap-
tively coupled with the theoretical equations derived from the modified Cambridge model
to estimate the undrained shear strength of isotropically consolidated clay under a Bayesian
probabilistic framework, taking into account the parameter and model uncertainties, which
are explained in detail in Sections 2.3 and 2.4.

2.3. Theoretical Equation

Deriving the undrained shear strength ratio Su/σ
′
vi from the soil intrinsic relationship

is a common method for solving soil strength. Based on the Cambridge model, Ohta
et al. [33] proposed the undrained shear strength derivation equation under the condition
of triaxial K0 (K0 is the coefficient of earth pressure at rest) consolidation.(

Su

σ′
vi

)
OCA

= OCRΛ ·
(

Su

σ′
v0

)
NCA

(2)

where OCA is the overconsolidated state of anisotropic clay, NCA is the normally consoli-
dated state of anisotropic clay, the overconsolidation ratio is OCR = σ′

v0/σ′
vi, Λ = 1 − κ/λ,

κ is the slope of the swelling lines described by the effective overburden pressure, and λ is
the slope of the anisotropical normally consolidated soil compression curve:

κ =
(ei − e0)(

lnσ′
v0 − lnσ′

vi
) (3)

κ =
(ei − e0)(

lnp′0 − lnp′i
) (4)

where κ is the slope of the swelling lines described by the effective average stress, p′0 is the
effective average vertical pressure in the anisotropical normally consolidated state, and
p′i is the effective average overburden pressure. ei is the void ratio, and e0 is the initial
void ratio.

p′0
p′i

= OCR(κ/κ) (5)

Substitute p′0 = 1
3 (1 + 2K0nc) · σ′

v0 and p′i =
1
3 (1 + 2K0) · σ′

vi into Equation (5), to obtain
the following:

κ = κ ·
ln
(

1+2K0nc
1+2K0

)
+ ln(OCR)

ln(OCR)
(6)

where K0 is the coefficient of earth pressure at rest in the soil in the overconsolidated state,
K0nc is the coefficient of earth pressure at rest in the soil in the normally consolidated state,
and the undrained shear strength ratio of the normally consolidated soil is(

Su

σ′
v0

)
NCA

=
1 + 2K0

3
M
2

exp
(
−Λ ± Λ

M
η0

)
(7)

where Λ = 1 − κ/λ, η0 = 3 · (1 − K0)/(1 + 2 · K0), M is the critical state stress ratio,
M= q/p, q is generalized shear stress, q = (σ1 − σ3), p is the average principal stress, and
p = (σ1 + σ2 + σ3)/3. When η0 = 0 and K0 = 1, the ratio of undrained shear strength of
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the isotropical normally consolidated state and isotropically overconsolidated state clay is
obtained, respectively. (

Su

σ′
v0

)
NCI

=
M

2Λ+1 (8)

(
Su

σ′
vi

)
OCI

= OCRΛ ·
(

Su

σ′
v0

)
NCI

= OCRΛ M
2Λ+1 (9)

where OCI is the overconsolidated state of isotropic clay, and NCI is the normally consoli-
dated state of isotropic clay. Based on the experimental results of isotropic consolidation
and swelling tests, Karube [34] proposed an empirical equation M = 1.75 · Λ.

From Equations (8) and (9), the equations for calculating the undrained shear strength
of the isotropical normally consolidated and isotropically overconsolidated clays can
be obtained.

(Su)NCI = σ′
v0 ·

1.75 · Λ
2Λ+1 = σ′

v0 ·
1.75 · (1 − κ

λ

)
2(2−

κ
λ )

(10)

(Su)OCI = σ′
vi · OCRΛ · 1.75 · Λ

2Λ+1 = σ′
vi · OCR(1− κ

λ ) · 1.75 · (1 − κ
λ

)
2(2−

κ
λ )

(11)

In the Cambridge model, in isotropically consolidated clays, λ = 0.434 · Cc, κ =
0.434 · Cs [35].The initial void ratio can be solved by equation e0 = 2.5 · Cc + 0.25 [36].
Ladd [37] proposed an empirical equation for computing the undrained shear strength of
clay based on the results of indoor and outdoor tests and examples of foundation failure.

Su

σ′
vi

= S · (OCR)m (12)

where S is under normal consolidation conditions, m is the strength growth index, and m is
affected by 1 − κ/λ or 1 − Cs/Cc according to the critical state theory [21].

2.4. Bayesian Perspective of Unified Undrained Shear Strength Equation

Unlike classical statistics, which is based on the frequentist approach, the CatBoost–Bayesian
hybrid model is based on Bayesian statistics and machine learning. The CatBoost–Bayesian
hybrid model uses Bayesian theory to combine engineering judgment and empirical prior
knowledge with data to derive posterior distributions. In geotechnical analysis and predic-
tion, engineers usually consider data from multiple sources [38]. This study updates the
intrinsic model parameters (posterior distribution) with information from laboratory exper-
imental data, field test data, and engineering experience [39]. Considering the differences in
soil area and experimental methods, according to Equations (7)–(12), the effective overlying
pressure σ′vi

is used together, and σ′vi and σ′v0 are converted by the correction coefficient β
to complete the unification of the undrained shear strength equations of isotropic normal
consolidation and isotropic overconsolidation, derived from the constitutive model.

Su = f (ξ) + ε (13)

where ξ =
[
α, β, m, σ′

vi
, OCR

]
represents the constitutive model parameter, f (ξ) = α

(
σ′

vi

)β

(OCR)m, α = 1.75m/2(1+m), n = 1 − k/λ = 1 − cs/cc, and ε is a Gaussian random
variable with mean uε=0 and standard deviation σε = 0.215 [40]. Conditional probability
theory is used to update the Su posterior probability density function (PDF) based on prior
information and laboratory test data of random variables. The calculation is as follows:

p(ξ|Su) = KL(Su|ξ)p(ξ) (14)

110



Appl. Sci. 2023, 13, 5418

where K is the normalization constant; p(ξ) is the prior distribution of the key constitutive
parameter ξ, and L(Su|ξ) is the likelihood function reflecting the probability relationship
between the Su of the laboratory test (site test) and constitutive model parameters.

2.4.1. Prior Distribution

Information about model parameters is usually limited given laboratory/field tests.
Therefore, non-informative prior knowledge is used in this study. Assuming that a single
random variable is independent, the prior distribution is equal to the product of the prior
distributions of all constitutive model parameters. In order that there is no preference for
any value in the possible range of parameters, uniform prior distribution is usually used.
Uniform prior distribution is used to reflect the knowledge state of the model parameters
in the Bayesian framework [41], expressed as

p(ξ) =
n

∏
i=1

p(ξi) (15)

p(ξ) =

{
1

μimax−μimin
· 1

σimax−σimin
μiε[μimin, μimax], σiε[σimin, σimax]

0 others
. (16)

where n is the number of constitutive model parameters, and μimin, μimax, σimin and σimax
are the lower and upper limits of μi and σi respectively.

2.4.2. Likelihood Function

The likelihood function reflects the degree of consistency between constitutive model
parameter A and the statistical characteristics of laboratory test/field test b, which can be
expressed by multivariate normal distribution function [42]:

L(Su|ξ) =
(

1√
2πσSu

)N N

∏
i=1

exp

[
( fi(ξ)− μSu)

2

2σ2
Su

]
(17)

where N is the number of laboratory tests/field tests. μSu and σSu are the mean and
standard deviation of Su respectively, and fi(ξ) is the value estimated by the parameters
of the constitutive model. With the continuous development of the field of geotechnical
engineering driven by data, it is less difficult to obtain prior information than in previous
engineering practices. In order to obtain updated posterior ξ, Markov chain Monte Carlo
simulation (MCMC) is used to obtain discrete samples based on prior distribution and
likelihood function simulation [43,44]. The basic idea of MCMC simulation is to repeatedly
extract samples from the target distribution by converging with the Markov chain of the
target distribution.

2.4.3. Uncertainty Analysis of the Unified Constitutive Model

The uncertainty of the undrained shear strength equations of isotropic normal consoli-
dation and isotropic overconsolidation after updating the constitutive model parameters
is studied by using a first-order approximation method. The mean value and standard
deviation of a can be approximated as [45,46]

μSu = α
(

μ
σ
′
vi

)β
(μOCR)

m (18)

σ2
Su

=
(

∂Su
∂σ′

vi

)2
σ2

σ′
vi

+
(

∂Su
∂OCR

)2
σ2

OCR + σ2
ε

≈
⎡⎣ Su

(
μσ′vi

+σσ′vi

)
−Su

(
μσ′vi

−σσ′vi

)
2

⎤⎦2

+
[

Su(μOCR+σOCR)−Su(μOCR−σOCR)
2

]2
+ σ2

ε

(19)
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where Su is a function of σ′
vi and OCR with means and standard deviations, μσ′

vi
and σσ′

vi
,

μOCR and σOCR, respectively, and where ε is the model factor that takes into account the
uncertainty of the intrinsic structure model and the effect of sample differences.

2.5. Quantitative Evaluation Indicators

R2, Evar, RMSE, and MAE, the evaluation indicators used in this study, are commonly
used to evaluate the prediction performance of the regression model, where R2 and Evar
explain the variance score of the regression model, and their values take the range of [0,1];
values closer to 1 indicate that the independent variable is more able to explain the variance
change in the dependent variable, and smaller values indicate the opposite [47–49].

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (20)

Evar = Explain variance = 1 − Var{yi − ŷi}
Var{yi} (21)

RMSE indicates the average value of the square root of the error of the fitted data and
the original data corresponding to the sample points; MAE assesses the degree of closeness
between the prediction results and the real dataset. The smaller the value of these two, the
better the fitting effect. The statistical indicators are computed as follows:

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
(22)

MAE =
∑n

i=1|yi − ŷi|
n

(23)

where yi denotes the true value of the undrained shear strength of the clay sample, ŷi
denotes the predicted value of the undrained shear strength of the sample clay, y denotes
the value of the undrained shear strength of the clay sample, and n denotes the number of
the clay sample. The coefficient of variation (COV) is commonly used in engineering to
perform an analysis of variance, showing the variability of a sample population relative to
the sample mean.

COV =
σ

μ
(24)

where σ represents the standard deviation of the undrained shear strength of the sample
clay, and μ represents the mean undrained shear strength of the sample clay.

3. Results and Discussion

A comprehensive study of the use of the CatBoost–Bayesian hybrid model with clay-
corrected theoretical equations to estimate clay undrained shear strength values is shown
in Figure 3.

3.1. Properties of Clays and the Database

The data used in this study were derived from the FI-CLAY/14/856 dataset in the
TC304 database, made up of laboratory test data of clay parameters in 33 regions in
Finland [50,51]. In this study, 11 parameters of 202 Finnish clay samples were selected
for research, including organic content (Org), clay content (CI), void ratio (e), natural
water content (W), liquid limit (LL), plastic limit (PL), effective overburden pressure (σ′

vi),
preconsolidation pressure (σ′

v0), overconsolidation ratio (OCR), compression index (Cc),
sensitivity (St), and undrained shear strength (Su); the statistical results of this data set are
as follows (Table 1 [51], Figure 4).
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Figure 3. Flow chart of CatBoost–Bayesian adaptively coupled modified theoretical equations.

Table 1. Statistical analysis of dataset.

Parameters Symbol Min Max Std Mean COV Unit

Organic content Org 0.00 7.10 1.48 1.23 1.20 %
Clay content CI 12.70 95.00 20.61 58.99 0.35 %

Void ratio e 0.81 3.88 0.69 2.13 0.32 -
Natural water content W 28.00 155.00 25.52 77.45 0.33 %

Liquid limit LL 24.40 166.00 24.73 76.78 0.32 %
Plastic limit PL 17.70 42.00 4.90 27.68 0.18 %

Effective in situ stress σ′
vi 4.00 130.00 27.31 41.68 0.66 kPa

Preconsolidation pressure σ′
v0 13.00 198.00 37.89 69.35 0.55 kPa

Overconsolidation ratio OCR 0.46 20.00 1.81 2.12 0.85 -
Compression index Cc 0.10 4.22 0.86 1.29 0.67 -

Sensitivity St 1.69 163 19.97 24.26 0.84 -
Undrained shear strength Su 5.21 240.00 31.32 28.95 1.08 kPa

Std: Standard deviation.

113



Appl. Sci. 2023, 13, 5418

Figure 4. Plasticity chart and different soil types.

Figure 5 shows the normal distribution and fitting effect of organic content (Org), clay
content (CI), void ratio (e), natural water content (W), liquid limit (LL), plastic limit (PL),
effective overburden pressure (σ′

vi), preconsolidation pressure (σ′
v0), overconsolidation ratio

(OCR), compression index (Cc), and undrained shear strength (Su), and an analysis of the
abnormal value of clay undrained shear strength.

  
(a) (b) 

Figure 5. Cont.
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(c) (d) 

 
 

(e) (f) 

Figure 5. Visualization of normal distribution of 11 clay parameters. (a) Fitted relationship of Su, Org,
CI. (b) Fitted relationship of Su, e, W. (c) Fitted relationship of Su, LL, PL. (d) Fitted relationship of
Su, σ′

vi, σ′
v0. (e) Fitted relationship of Su, OCR, Cc. (f) Su abnormal value analysis.

Considering the abnormal value of clay undrained shear strength to reduce its influ-
ence on the fitting, a simple linear fitting can be performed to obtain the empirical equation
of clay undrained shear strength parameters (Figure 5). It could be observed that between
the single parameters of clay, the linear relationship is obvious, but the fitting error is
large. At the same time, the empirical equation could not be verified. There is a certain
particularity, and the constitutive relationship of the clay could not be obtained. Therefore,
further research on the relationship between the multi-parameters of the clay is needed.
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3.2. Feature Importance of CatBoost–Bayesian Hybrid Model

The CatBoost algorithm (CatBoost–Bayesian hybrid model) was optimized using the
Bayesian optimization algorithm under the five-fold cross-validation, and the optimal
hyperparameters of the CatBoost algorithm were obtained (Table 2); this study was carried
out under the optimal parameters to avoid the excessive model fit, and was beneficial to the
CatBoost–Bayesian hybrid model’s adaptively coupled modified theoretical equations for
stable estimation of the undrained shear strength of clay. Through the CatBoost–Bayesian
hybrid model, an importance ranking of soil parameters that affect the undrained shear
strength of clay was obtained.

Table 2. CatBoost optimal hyperparameters.

Optuna_Parameters of CatBoost Description

loss function MAE
n_estimators 1000
learning rate 0.153
random state 2019

l2_leaf_reg 0.030
colsample_bylevel 0.098

depth 1
boosting type Plain
bootstrap type MVS

min_data_in_leaf 4
one_hot_max_size 3

early_stopping_rounds 100

When the CatBoost–Bayesian hybrid model was used to estimate the undrained shear
strength of clay, the feature importance of the model input parameters to the hybrid model
under five-fold cross-validation was obtained, and it was explained whether the input
parameters contribute positively (positive correlation) or negatively (negative correlation).
Each point in the graph represents a data point from the training set. The color represents
the value of the feature parameter; red represents the sample with a higher value of
the feature parameter, and blue represents the sample with a lower value of the feature
parameter. The length of the horizontal line represents the importance of the estimation of
the undrained shear strength of the clay.

It can be seen from the whole that the overconsolidation ratio (OCR) is the most
important parameter for estimating the undrained shear strength of clay, followed by
preconsolidation pressure (σ′

v0), effective overburden pressure (σ′
vi), etc. The effective

overburden pressure (σ′
vi) increases and the undrained shear strength depends on the con-

solidation stress before shearing, that is, the research status of the preconsolidation pressure
(σ′

v0) [52–54]. The void ratio (e) and clay content (CI) features are the least important. At
the same time, the characteristic variables significantly show that the compression index
(Cc) makes a negative contribution to the computed value of the drainage shear strength,
while the preconsolidation pressure (σ′

v0) and the overconsolidation ratio (OCR) make a
positive contribution to the computed value of the drainage shear strength (Figure 6). The
model’s interpretability method is expected to help geotechnical engineers in the selection
of soil parameters in practical engineering. However, the CatBoost–Bayesian hybrid model
is still a black-box model, which finds it difficult to explain the internal mechanism of the
model and the feature importance; therefore, the combination of the feature importance
results with the theoretical equations derived from the constitutive model can provide a
reference for geotechnical analysis.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Clay parameter importance ranking of CatBoost–Bayesian. (a) Feature importance analysis
of K = 1. (b) Feature importance analysis of K = 2. (c) Feature importance analysis of K = 3. (d) Feature
importance analysis of K = 4. (e) Feature importance analysis of K = 5. (f) Feature importance ranking.
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3.3. Estimation of Clay Undrained Shear Strength
3.3.1. Uncertainty Analysis of Equation Parameters

Under the Bayesian framework, the CatBoost algorithm (CatBoost–Bayesian) based on
a Bayesian optimization algorithm was developed to obtain the feature importance level of
soil parameters affecting the undrained shear strength of clay, so as to adaptively couple
the theoretical equation of undrained shear strength of K0 consolidated clay, which was
derived from the modified Cambridge model; then, the theoretical equation of undrained
shear strength of isotropically consolidated clay was established from the critical state of
the overconsolidation ratio (OCR) and overburden effective pressure (σ′

vi).
Considering the constitutive relation of clay, the calculation results of the established

undrained shear strength theoretical equation of isotropically overconsolidated clay were
used for inversion calculation. The equation parameter γ of the clay in the overconsolidated
state is affected by (1 − Cs/Cc), γ = m = 0.88 · (1 − Cs/Cc)± 0.06 · SD, and the equation
constant parameter is affected by the plasticity index, α = 2 + 0.5 · Ip. For the measured
parameters of clay that are difficult to obtain, it is recommended that when the clay depth
is 1.9 m < D < 17 m, the calculation parameters of undrained shear strength should be
computed according to the following recommended values (α)OCI = 2.246, (β)OCI = 0.490;
the value range of the correction coefficient of σ′

vi is 0.441 < (β)OCI < 0.539, and the average
value is (β)OCI = 0.490. The theoretical equation is (Su)OCI = 2.246 · (σ′

vi
)0.490 · (OCR)0.770.

This results in a stable estimate of the undrained shear strength of isotropically consolidated
clays (Figure 7a,d).

(Su)OCI = 2.246 · (σ′
vi
)0.490 · (OCR)0.770 (25)

Figure 7. Limit state functions of clay with different consolidation. (a) Limit state function of
overconsolidated clay. (b) Limit state function of normally consolidated clay. (c) Limit state function
of underconsolidated clay. (d) Parameter analysis of equation of state for different consolidations.

In the normally consolidated state, the fitting parameter ranges were 0.988 < (α)NCI <
1.910, 0.619 < (β)NCI < 0.786, and −0.993 < (γ)NCI < 0.309 in this study (Figure 7d). There
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is a relatively stable estimation result when the clay depth is 1.9m < D < 22m. Therefore,
for the calculation of the parameters of undrained shear strength, it is recommended to
take the means (α)NCI = 1.376, (β)NCI = 0.703 and (γ)NCI = −0.342 (Figure 6b).

(Su)NCI = 1.376 · (σ′
vi
)0.703 · (OCR)−0.342 (26)

In the underconsolidated state, the parameter ranges 0.895 < (α)UCI < 3.589, 0.386 <
(β)UCI < 0.777, and 0.386 < (β)UCI < 0.777 were fitted in this study (Figure 7d). When the
clay depth was 2.5 m < D < 17 m , the undrained shear strength has a relatively stable
estimation result. It is recommended to take the means (α)UCI = 1.793, (β)NCI = 0.581
and (γ)NCI = −0.423 for calculation (Figure 7c). The underconsolidated state of clay is the
result of the interaction between the strength characteristics of the soil itself and excess
pore water pressure, and its undrained shear resistance exhibits structural properties [55].
Therefore, it cannot be verified by the previous results, and it needs to be verified by the
relationship between the measured value and the estimated value.

(Su)UCI = 1.793 · (σ′
vi
)0.581 · (OCR)−0.423 (27)

where UCI is the underconsolidated state of isotropic clay.
It can be seen from the whole that the estimated undrained shear strength of clay is

affected by the clay depth (D) in different consolidation states, which is in line with the
actual situation to a certain extent. Asaoka, Guo, and Jiang et al. verified that the undrained
shear strength of clay exhibits an obvious linear trend along the depth, through cross-plate
shear tests [56,57].

3.3.2. Verification of the Feasibility of the Theoretical Equation

The Bayesian framework concept is an effective means of correcting the original
judgments using the new information collected. Based on the new information of the Su
and OCR ofthe Finnish clay database, as well as the σ′

vi test index, priori equations are
corrected so that the generated posterior equations are more realistic and have fewer errors.
The mean and standard deviation of Su are also calculated to verify the distribution form
of the posterior equation.

The form of the probability distribution of Su for the posterior equation was performed
to verify the rationality of the Bayesian framework. By testing, the posterior equation
estimated the undrained shear strength with small standard deviation and low variability
(Figure 8).

  
(a) (b) 

Figure 8. Test of probability distribution of undrained shear strength. (a) Test of prior and posterior
probability distribution. (b) Test of Finnish clay and posterior probability distribution.

The results visualized in Figure 9 were computed by the theoretical equation men-
tioned above. The measured and theoretically computed values of the undrained shear
strength of clay were compared, in which the abscissa is the measured value, and the ordi-
nate is the theoretical computed value. For the underconsolidated state of clay (Figure 9a),
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since there was no previous result to verify, Equation (10) of Ohta and Wang et al. was
selected to better estimate the undrained shear strength of clay. The theoretically computed
value is in good agreement with the measured value. For the normally consolidated state
of clay (Figure 9b), the theoretically computed results in this study are slightly larger
or smaller than the measured values; meanwhile, for the overconsolidated state of clay
(Figure 9c), the theoretically computed results in this study are in good agreement with the
measured values, and the computed values of Ohta and Wang et al. are obviously larger. It
is found that the R2 values in the underconsolidated state, the normally consolidated state
and the overconsolidated state are 0.88, 0.91 and 0.97, respectively.

   
(a) (b) (c) 

Figure 9. Comparison between the theoretically computed and measured values of Su. (a) 2.5 m <

D < 17 m. (b) 1.9 m < D < 22 m. (c) 1.9 m < D < 17 m.

Under the double logarithmic coordinate, the undrained strength ratio Su/
(
σ′

vi
)β, cor-

rected by β, and the overconsolidation ratio OCR both show an obvious linear relationship,
which verifies the theory proposed by our predecessors. Su/

(
σ′

vi
)β increases linearly with

the increase in OCR in the overconsolidated state (Figure 10a), and Su/
(
σ′

vi
)β decreases

linearly with the increase in OCR in the underconsolidated state and normally consolidated
state (Figure 10b). The reliability of the theoretical equation proposed in this study is
further verified. It is not difficult to find that the gap between the theoretical computed
value and the experimental point in this study is significantly smaller than the gap between
the theoretically computed value and the measured value studied by Ohta and Wang et al.
(Figure 10a).

 
(a) (b) 

Figure 10. The relationship between Su/
(
σ′vi
)β and OCR. (a) Overconsolidated state. (b) Undercon-

solidated and normally consolidated state.

This study found that (Su)NCI has a stable estimation result when the clay depth
is 1.9 m < D < 22 m, and (Su)OCI has stable estimation result when the clay depth is
1.9 m < D < 17 m. When the clay depth is 0 m < D < 1.9 m, the estimated value of
(Su)OCI fluctuates greatly. The smaller the compressibility index (Cc) value, the lower the
compressibility of the soil, and the Cc value of the low compressibility soil is generally
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less than 0.2. When the depth is less than 1.9 m, the clay in this study is in a state of
low compressibility; at the same time, the natural water content is low and the degree of
looseness is high, so it is not conducive to estimating the undrained shear strength of the
clay. It may be seen from the feature importance ranking of the CatBoost–Bayesian hybrid
model that the natural water content (W) and the compression index (Cc) are important
parameters of clay, which can explain the large error in the estimation of (Su)OCI by the
theoretical equation (Figure 11). Combined with the analysis of the geological tectonic
environment, it is because the deposition time of the upper part of the clay depth is
relatively short, which is affected by long-term evaporation and water loss. The lower
clay has a long deposition time and is affected by the rise and fall in the groundwater
level for a long time, which is equivalent to continuous loading and unloading, and finally
shows the overconsolidation characteristics and the abrupt change of the clay properties.
Therefore, the computed value of the theoretical equation should be much smaller than the
measured value.

 
Figure 11. Error analysis of undrained shear strength of clay.

3.3.3. Comparative Analysis of Estimation Results

Considering the effect of clay depth (D), the combination of the feature importance of
the CatBoost–Bayesian hybrid model and the calculation of the theoretical equation derived
from the modified Cambridge model can well estimate the undrained shear strength of
clay, and the theoretical computed value is in good agreement with the measured value
(Figure 12a,b). The computed average properties of the clay at different consolidation
states were R2 = 0.92, Evar = 0.92, RMSE = 0.19, MAE = 0.03. This indicated that the
uncertainty of the theoretical equation is significantly reduced when the overconsolidation
ratio was combined with the preconsolidation pressure or the effective overburden pressure.

  
(a) (b) 

Figure 12. Comparison of Su computed results. (a) Recommended equation: R2 = 0.91. (b) Recom-
mended equation: R2 = 0.97.
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The computed results of the test set of the CatBoost–Bayesian hybrid model under
five-fold cross-validation are within the 95% confidence interval, and the computed av-
erage performance is training set R2 = 0.91, Evar = 0.91, RMSE = 0.30, MAE = 0.12; test
set R2 = 0.86, Evar = 0.86, RMSE = 0.37, MAE = 0.20. Only a very small number of
undrained shear strength estimates at K3 in the test set exceed the 95% confidence interval,
proving the reliability of the computed results [58]. In the five-fold cross-validation, there
is a gap between the computed value of a small amount of undrained shear strength and
the real value, which leads to the large value of RMSE and MAE, and the fitting effect is
not significant enough (Figure 13a–d).

 
(a) (b) 

 
(c) (d) 

Figure 13. Comparison of quantitative evaluation indicators. (a) R2. (b) Evar. (c) RMSE. (d) MAE.

As shown in Figure 14, UCI_Su, NCI_Su, and OCI_Su demonstrate the performance
of CatBoost–Bayesian hybrid model for estimating the undrained shear strength of clay
in different consolidation states of clay, as well as the overall CatBoost–Bayesian hybrid
model performance, which is subsequently compared with LightGBM-Bayesian, XGBoost-
Bayesian hybrid model for comparison. The training and test set performance evaluations
are shown in Table 3.

 
Figure 14. Estimation performance visualization.
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Table 3. Estimation performance comparison of four hybrid models.

R2_Mean Evar_Mean RMSE_Mean MAE_Mean

Train Test Train Test Train Test Train Test

UCI_Su - 0.88 - 0.88 - 0.19 - 0.04
NCI_Su - 0.90 - 0.90 - 0.16 - 0.03
OCI_Su - 0.97 - 0.97 - 0.22 - 0.02

CatBoost–Bayesian 0.91 0.86 0.91 0.86 0.30 0.37 0.12 0.20
LightGBM-Bayesian 0.99 0.81 0.99 0.81 0.14 0.48 0.08 0.23
XGBoost-Bayesian 0.94 0.81 0.94 0.82 0.24 0.41 0.16 0.24

RandomForest -Bayesian 0.95 0.80 0.95 0.80 0.99 0.98 0.46 0.46

On the R2 and Evar curves explaining the variance score of the model, the CatBoost–
Bayesian hybrid model has the strongest ability to explain the variance in the undrained
shear strength under five-fold cross-validation, which could explain almost 86% of the
202 undrained shear strengths of clay. The sample variability shows that the hybrid
model has a better effect; RMSE and MAE evaluate the closeness of the predicted clay
undrained shear strength to its experimental value, and the smaller the value, the better
the model fitting effect. It could be observed that the estimated results for clays in different
isotropically consolidated states could explain almost 92% of the 202 sample variability in
the undrained shear strength of clays. The RMSE and MAE of this study are all lower than
other intelligent mixed models, and the results show that the combination of CatBoost–
Bayesian feature importance and theoretical formula has the best fitting effect (Figure 14).

The estimated performance results in Table 3 show that the theoretical equations of
UCI_Su, NCI_Su and OCI_Su derived by combining the CatBoost–Bayesian importance
parameters are better than other models in different consolidation states of clay. Among
the models of the same type, the estimation performance of the CatBoost–Bayesian hybrid
model in the training set and test set is better than other models.

4. Conclusions

Unlike the extensive traditional study of transformation models based on empirical
evidence, data-driven ensemble learning methods combined with traditional empirical
models have received limited research attention in geotechnical engineering. Moreover, the
comprehensive use of Bayesian theory for probabilistic characterization of soil parameter
uncertainties and algorithmic optimization problems has not been fully leveraged in a
systematic and coherent manner. To address the above challenges, the following study
has been conducted. Under the Bayesian framework, the CatBoost algorithm (CatBoost–
Bayesian) based on Bayesian optimization algorithm was developed to obtain the feature
importance level of soil parameters affecting the undrained shear strength of clay, so as to
adaptively couple the theoretical equation of undrained shear strength of K0 consolidated
clay, which was derived from the modified Cambridge model, and then the theoretical
equation of undrained shear strength of isotropically consolidated clay was established
from the critical state of clay parameters, and the calculation results were verified later.

1. From the feature importance ranking of the CatBoost–Bayesian hybrid model, pa-
rameters with high importance and ease of measurement were selected; the overcon-
solidation ratio (OCR) and the effective overburden pressure (σ′

vi) could reasonably
explain the model and indirectly estimate the undrained shear strength of the clay.

2. The equation parameter γ of the clay in the overconsolidated state was affected by
(1 − Cs/Cc), γ = m = 0.88 · (1 − Cs/Cc)± 0.06 · SD, and the equation parameter α
was affected by the plasticity index, α = 2+ 0.5 · Ip. For the measured parameters of clay
that were difficult to obtain, it was recommended that when the clay depth is 1.9m <
D < 17m, the calculation parameters of undrained shear strength should be computed
according to the following recommended values (α)OCI = 2.246, (β)OCI = 0.490 and
(γ)OCI = 0.770. The theoretical equation was (Su)OCI = 2.246 · (σ′

vi
)0.490 · (OCR)0.770.
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3. When the undrained shear strength of clay in the normally consolidated state was
estimated at a depth of 1.9m < D < 22m, the recommended theoretical equation was
(Su)NCI = 1.376 · (σ′

vi
)0.703 · (OCR)−0.342; when the undrained shear strength of clay

in the underconsolidated state was estimated at a depth of 1.9m < D < 22m, the
recommended theoretical equation was (Su)UCI = 1.793 · (σ′

vi
)0.581 · (OCR)−0.423.

4. Compared with the calculation results of Ohta and Wang et al., it was found that the
theoretical equation in this study can well estimate the undrained shear strength of
isotropically consolidated clay. When the clay depth is 0 m < D < 1.9 m, the huge
fluctuation of the estimated value of (Su)OCI is mainly due to the long-term influence
of evaporative water loss in the upper part of the clay.

5. The CatBoost–Bayesian hybrid model could excavate the intrinsic relationship of the
soil parameters, but it could not give a comprehensive interpretability. The undrained
shear strength of isotropic clays was estimated and is to a certain extent interpretable
by the CatBoost–Bayesian hybrid model feature importance, adaptively coupled to
the theoretical equation derived from the modified Cambridge model. Comparing
the results of the CatBoost–Bayesian hybrid model and its similar hybrid models, this
study ensured that the average R2 reaches 0.92, the average RMSE and MAE were
0.19 and 0.03, respectively, and the overall performance was good.
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Abstract: As ground subsidence accidents in urban areas that occur due to damage to underground
utilities can cause great damage, it is necessary to predict and prepare for such accidents in order
to minimize such damage. It has been reported that the main cause of ground subsidence in urban
areas is cavities in the ground formed by damage to underground utilities. Thus, in this study,
attribute information and historical ground subsidence information of six types of underground
utility lines (water supply, sewage, power, gas, heating, and communication) were collected to develop
a ground subsidence risk prediction model based on machine learning. To predict the risk of ground
subsidence in the target area, it was divided into a grid with a square size of 500 m × 500 m, and
attribute information of underground utility lines and historical information of ground subsidence
included in the grid were extracted. Six types of underground utility lines were merged into single-
type attribute information, and the risk of ground subsidence was categorized into three levels
using the number of ground subsidence occurrences to develop a dataset. In addition, 12 datasets,
which were developed based on the conditions of certain divided ranges of attribute information
and risk levels, and 12 additional datasets, which were developed using the Synthetic Minority
Oversampling Technique to resolve the imbalance of data, were built. Then, factors that represented
significant correlations between input and output data were singled out and were then applied to
the RandomForest, XGBoost, and LightGBM algorithms to select a model that produced the best
performance. By classifying the ground subsidence risk levels through the selected model, it was
found that density was the most important influencing factor used in the model. A risk map of
ground subsidence in the target area was made through the model; the map showed the trend of
well-predicted risk levels in the area where ground subsidence was concentrated.

Keywords: ground subsidence; machine learning; ground subsidence risk prediction model; risk map

1. Introduction

Damage to underground utility lines is known to be one of the main causes of ground
subsidence. Since underground utility lines are concentrated in urban areas with highly
dense populations, accidents due to ground subsidence can cause significant social chaos [1].
As such, it is necessary to prevent accidents related to ground subsidence by analyzing
their fundamental causes and mechanisms.

An investigation of the causes and the number of ground subsidence occurrences from
2010 to July 2014 in Seoul showed that the number of accidents has steadily increased,
and their main cause was found to be damage to water supply and sewage lines [2]. A
mechanism by which ground subsidence occurs is often when pipes are damaged by
external impacts and deterioration due to aging, causing water channels to form around the
damaged location. Soil particles in the ground can then move along the channels, creating
and expanding cavities around the pipes [3]. Thus, ground subsidence is likely to increase
as excavation construction work is repeatedly performed over time.
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Extensive research has been performed on ways to prevent accidents related to ground
subsidence. In Japan, a study using indoor model experiments simulating ground subsi-
dence using standard sand was published to identify the mechanism of how cavities, a
precursor to ground subsidence, were generated inside the ground, while a study on the
identification of a cavity generation mechanism inside the ground by simulating a crack in
the sewage pipeline under the soil box and visualization of the cavity generation through
equipment such as X-rays and computed tomography has also been published [4,5].

Research that aims to identify the mechanism of ground subsidence occurrence using
numerical analysis has also been active. Using the finite element method to simulate the
ground cavity and relaxation zone, several published studies have shown that the location
of the underground utility damage, the relative density of the ground, and the ground layer
conditions have a significant effect on the ground subsidence [6–8].

In addition, studies on performing a decision tree, which is one of the machine learning
algorithms, and the analytic hierarchy process, were published to derive factors influencing
ground subsidence and calculate the weights of influencing factors [9,10].

Studies aiming to predict the risk level of ground subsidence have also been steadily
conducted. One study on the evaluation of ground subsidence risk level that was an-
nounced uses surveyed CCTV data based on sewage pipelines, which is the main cause of
ground subsidence, as well as cavity exploration data by underground exploration radar. In
addition, a study was conducted to propose a regression equation of the ground subsidence
risk level in urban areas in Korea through logistic regression analysis [11]. Moreover, stud-
ies have been conducted to select a model for predicting the ground subsidence risk level
in urban areas in Korea through machine learning, after selecting influencing factors such
as the number of years used and pipeline diameter among attribute values of underground
utilities, and then to suggest a risk map [1].

Researchers have used various ways to predict risk levels in order to prevent accidents
related to ground subsidence. However, they have had difficulty deriving highly accurate
and reliable results, as ground subsidence occurs in complex ways and is caused by various
factors in a wide range of areas. Thus, this study aims to propose a machine learning-
based ground subsidence risk prediction model by selecting the following as influence
factors among the attribute information of underground utility lines in representative
urban areas in Korea: the number of years used, pipeline diameter and length, and the
density of pipelines, which are likely to have a close correlation with ground subsidence.
We compared the results of machine learning models by applying datasets with a range
of conditions and selected the model that exhibited optimal performance. Furthermore,
we aimed to present the importance of each influencing factor, which was used when
classifying the ground subsidence risk levels by the machine learning model through the
selected model.

2. Method and Data Characteristics

2.1. Subsection Flow of the Study

In this study, a representative urban area in Korea was selected as the target region. To
develop a ground subsidence risk level prediction model based on machine learning, the
historical information of ground subsidence, and attribute information of underground
utility lines in the target region were used to build a dataset and then applied to the machine
learning algorithm. The target region was divided into a grid with a total of 2391 squares
of 500 m × 500 m in size, using the ArcGIS program to predict risk level. Six types of
underground utility lines included in each grid square were merged into a single type to
extract the attribute information and density. The dataset was built using a method that
calculated a risk level based on the number of ground subsidence occurrences in the grid
using the historical ground subsidence information.

The developed dataset was divided into training and test datasets at an 80:20 ratio
to prevent overfitting of the model and to test the model. To mitigate the data imbalance,
the Synthetic Minority Oversampling Technique (SMOTE) was applied to the training
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data. This developed training dataset was applied to machine learning algorithms: Ran-
domForest (RF), XGBoost (XGB), and LightGBM (LGBM) to check the model results by
adjusting the hyperparameters that exhibited the optimal performance. Using the 20% test
data, the model’s performance was validated through the test indices of accuracy, F1-score,
and area under the curve (AUC). Based on the test results, dataset types and machine
learning models that exhibited optimal performance were selected, and the importance of
the influencing factors was derived. Figure 1 shows the flow chart of the study.

 

Figure 1. Flow chart.

2.2. Characteristics of the Data

A representative area in Korea was selected as the target region for the prediction of
ground subsidence risk level. The target region was divided into a grid with a total of
2391 squares of 500 m × 500 m in size for the risk level evaluation. For each grid square,
the attribute data of six types of underground utility lines (water supply, sewage, power,
gas, heating, and communication cables) and the historical data of ground subsidence were
compiled. As described above, six types of underground utility lines were merged into a
single type to extract attribute data. In the attribute information of underground utility
lines to build a dataset, the number of years used, pipeline type, diameter, length, burial
depth, slope, etc., were included, but there were many missing and erroneous values as
well. Thus, as the data that could be usable, the number of years used, pipeline diameter,
and length were selected. Then, the density of all pipelines was calculated to be used
as a factor influencing the occurrence of ground subsidence. To improve the model’s
performance, raw data were not directly used, but they were preprocessed to divide the
attribute information of underground utility lines by a certain range. The years used were
divided into 5- and 10-year units, and the pipeline diameter was divided into 50 mm and
100 mm units. The basic unit of data that belongs to the corresponding range was set to the
pipeline’s length. For example, an underground pipeline that was used for three years in
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the grid was assigned to a class corresponding to an age of 1 to 4 years, and the length of
the pipeline was reflected.

For the output data, the risk level of ground subsidence was calculated by summing
the number of ground subsidence occurrences in the grid using the historical information of
ground subsidence occurrences. It is difficult to provide a quantifiable measure of ground
subsidence risk. Thus, multiple datasets of ground subsidence risk levels, categorized by
the number of ground subsidence occurrences, were developed. The developed datasets
were applied to the machine learning algorithms to select a condition of the risk level of
ground subsidence that exhibited good performance. The ground subsidence risk was
categorized into three levels. Risk Level 1 means an area where the number of ground
subsidence occurrences in the grid is “0”. The conditions of Risk Levels 2 and 3 were
adjusted depending on the number of ground subsidence occurrences in the grid. If the
number of ground subsidence occurrences in the grid of Risk Level 2 is one, the number of
ground subsidence occurrences of Risk Level 3 was set to two or more. If the number of
ground subsidence occurrences in the grid of Risk Level 2 is set to a range of one to two,
the number of ground subsidence occurrences of Risk Level 3 was set to three or more. If
the number of ground subsidence occurrences in the grid of Risk Level 2 is set to a range
of one to three, the number of ground subsidence occurrences of Risk Level 3 was set to
four or more. Risk Level 1 of ground subsidence means a relatively safer area from ground
subsidence. The boundary between Levels 2 and 3 varies depending on the conditions, but
Level 2 means an area that needs attention, and Level 3 is an area that is at the highest risk.
Table 1 presents the categories of factors in the datasets. Table 2 presents the dataset which
is set according to the data category condition. A total of 24 datasets were built according
to whether or not SMOTE was applied to each dataset.

Table 1. Category of factors.

Factors Unit Category

Year
(year)

5 1~5, 6~10, 11~15, 16~20, 21~25, 26~30,
31~35, 36~40, 41~45, 46~50

10 1~10, 11~20, 21~30, 31~40, 41~50

Diameter (mm)
50

1~50, 51~100, 101~150, 151~200, 201~250,
251~300, 301~350, 351~400, 401~450,

451~500, 501~550, 551~600

100 1~100, 101~200, 201~300, 301~400,
401~500, 501~600

Risk level
(Sum of occurrences of ground

subsidence in grid)

1 0
2 1, 1~2, 1~3
3 2~, 3~, 4~

Table 2. Category of Factors.

No. Grid Year (Year)
Diameter

(mm)
Risk Level

(Level 2′s Range)

1

500 m × 500 m

5

50
3 (1)

2 3 (1–2)
3 3 (1–3)
4

100
3 (1)

5 3 (1–2)
6 3 (1–3)
7

10

50
3 (1)

8 3 (1–2)
9 3 (1–3)
10

100
3 (1)

11 3 (1–2)
12 3 (1–3)
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2.3. Density

A previous study proved that the density of pipelines was significantly correlated with
ground subsidence [9] Accordingly, we used the density of the pipeline as the influencing
factor of the model to predict the ground subsidence risk level. The density was calculated
using a linear density analysis on the pipelines in the grid using ArcGIS. This method
calculated the length of the pipeline that corresponded to the unit area.

2.4. Risk Level of Ground Subsidence

The risk levels used as the output data in this study were divided into three levels
according to the number of times ground subsidence occurred in the grid. Since there are no
quantifiable measures to categorize the risk level, we build datasets by selecting different
numbers of data belonging to risk level 2 according to the number of occurrences of ground
subsidence in the grid. Thus, the number of data varies according to the category based
on the number of occurrences of ground subsidence of each dataset, which is presented
in Table 3. As presented in Table 3, the ratio of Risk Level 1 data was the highest (57%),
and the ratios of Risk Level 2 and 3 data varied according to the conditions. As such, the
composition of the data shows unbalanced features, and we applied SMOTE, an over-
sampling technique, to the 12 datasets to balance the data [12–14].

Table 3. The ratio of data according to the risk level of ground subsidence.

Range of Risk Level 2

Risk Level
1 2 3

1 1374 (57%) 348 (15%) 669 (28%)

1–2 1374 (57%) 635 (27%) 382 (16%)

1–3 1374 (57%) 706 (30%) 311 (13%)

2.5. Data Correlation Analysis

A Pearson correlation analysis was conducted to verify the correlation between the
input and output data of the dataset which was developed according to the data category
conditions. The results are presented in Table 4.

Table 4. Results of correlation analysis of the influencing factors.

Model No. 1 2 3

Factor Corr p-Value Corr p-Value Corr p-Value

5Y_5 −0.138 0.000 −0.149 0.000 −0.150 0.000
5Y_10 −0.108 0.000 −0.098 0.000 −0.096 0.000
5Y_15 −0.004 0.858 −0.007 0.724 −0.049 0.017
5Y_20 −0.141 0.000 −0.178 0.000 −0.171 0.000
5Y_25 −0.108 0.000 −0.161 0.000 −0.154 0.000
5Y_30 −0.065 0.002 −0.099 0.000 −0.106 0.000
5Y_35 −0.150 0.000 −0.165 0.000 −0.173 0.000
5Y_40 −0.150 0.000 −0.169 0.000 −0.168 0.000
5Y_45 −0.167 0.000 −0.187 0.000 −0.167 0.000
5Y_50 −0.135 0.000 −0.134 0.000 −0.144 0.000

50DTR_50 0.057 0.005 0.061 0.003 0.064 0.002
50DTR_100 0.146 0.000 0.147 0.000 0.148 0.000
50DTR_150 0.159 0.000 0.163 0.000 0.169 0.000
50DTR_200 0.117 0.000 0.116 0.000 0.112 0.000
50DTR_250 0.015 0.478 0.008 0.698 0.013 0.522
50DTR_300 0.153 0.000 0.155 0.000 0.158 0.000
50DTR_350 0.038 0.067 0.026 0.198 0.022 0.274
50DTR_400 0.059 0.004 0.062 0.002 0.059 0.004
50DTR_450 0.099 0.000 0.109 0.000 0.107 0.000
50DTR_500 0.043 0.035 0.044 0.032 0.052 0.011
50DTR_550 0.014 0.494 −0.006 0.783 −0.003 0.895
50DTR_600 0.082 0.000 0.090 0.000 0.089 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000
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Table 4. Cont.

Model No. 4 5 6

Factor Corr p-Value Corr p-Value Corr p-Value

5Y_5 −0.138 0.000 −0.149 0.000 −0.150 0.000
5Y_10 −0.108 0.000 −0.098 0.000 −0.096 0.000
5Y_15 −0.004 0.858 −0.007 0.724 −0.049 0.017
5Y_20 −0.141 0.000 −0.178 0.000 −0.171 0.000
5Y_25 −0.108 0.000 −0.161 0.000 −0.154 0.000
5Y_30 −0.065 0.002 −0.099 0.000 −0.106 0.000
5Y_35 −0.150 0.000 −0.165 0.000 −0.173 0.000
5Y_40 −0.150 0.000 −0.169 0.000 −0.168 0.000
5Y_45 −0.167 0.000 −0.187 0.000 −0.167 0.000
5Y_50 −0.135 0.000 −0.134 0.000 −0.144 0.000

100DTR_100 0.131 0.000 0.134 0.000 0.136 0.000
100DTR_200 0.152 0.000 0.154 0.000 0.155 0.000
100DTR_300 0.128 0.000 0.127 0.000 0.132 0.000
100DTR_400 0.067 0.001 0.064 0.002 0.060 0.004
100DTR_500 0.103 0.000 0.111 0.000 0.113 0.000
100DTR_600 0.083 0.000 0.089 0.000 0.088 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000

Model No. 7 8 9

Factor Corr p-Value Corr p-Value Corr p-Value

10Y_10 0.085 0.000 0.077 0.000 0.071 0.000
10Y_20 0.123 0.000 0.126 0.000 0.131 0.000
10Y_30 0.150 0.000 0.156 0.000 0.159 0.000
10Y_40 0.108 0.000 0.113 0.000 0.116 0.000
10Y_50 0.107 0.000 0.117 0.000 0.118 0.000

50DTR_50 0.057 0.005 0.061 0.003 0.064 0.002
50DTR_100 0.146 0.000 0.147 0.000 0.148 0.000
50DTR_150 0.159 0.000 0.163 0.000 0.169 0.000
50DTR_200 0.117 0.000 0.116 0.000 0.112 0.000
50DTR_250 0.015 0.478 0.008 0.698 0.013 0.522
50DTR_300 0.153 0.000 0.155 0.000 0.158 0.000
50DTR_350 0.038 0.067 0.026 0.198 0.022 0.274
50DTR_400 0.059 0.004 0.062 0.002 0.059 0.004
50DTR_450 0.099 0.000 0.109 0.000 0.107 0.000
50DTR_500 0.043 0.035 0.044 0.032 0.052 0.011
50DTR_550 0.014 0.494 −0.006 0.783 −0.003 0.895
50DTR_600 0.082 0.000 0.090 0.000 0.089 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000

Model No. 10 11 12

Factor Corr p-Value Corr p-Value Corr p-Value

10Y_10 0.085 0.000 0.077 0.000 0.071 0.000
10Y_20 0.123 0.000 0.126 0.000 0.131 0.000
10Y_30 0.150 0.000 0.156 0.000 0.159 0.000
10Y_40 0.108 0.000 0.113 0.000 0.116 0.000
10Y_50 0.107 0.000 0.117 0.000 0.118 0.000

100DTR_100 0.131 0.000 0.134 0.000 0.136 0.000
100DTR_200 0.152 0.000 0.154 0.000 0.155 0.000
100DTR_300 0.128 0.000 0.127 0.000 0.132 0.000
100DTR_400 0.067 0.001 0.064 0.002 0.060 0.004
100DTR_500 0.103 0.000 0.111 0.000 0.113 0.000
100DTR_600 0.083 0.000 0.089 0.000 0.088 0.000

Density 0.544 0.000 0.534 0.000 0.526 0.000

In Table 4, Y refers to the number of years used, and 5Y and 10Y mean the five-year
and 10-year units, respectively (5–50 refers to the data range). In addition, DTR refers to
the pipeline diameter; 50 and 100 refer to the pipeline diameter of 50 mm and 100 mm,
and 50–600 refers to the range of the pipeline diameters. In this study, the presence of data
correlation was verified by p-value in the correlation analysis. If the p-value was less than
0.05, it was interpreted as showing a significant correlation, so it was used as input data.
Conversely, if the p-value is more than 0.05, it was interpreted as not showing a significant
correlation, so it was excluded from the input data.
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3. Results of Analysis of Ground Subsidence Risk Levels Using Machine Learning

In this study, a machine learning algorithm was used to develop a model to predict
the risk level of ground subsidence, focusing on urban areas in South Korea. The machine
learning algorithms used were RF, XGB, and LGBM, which have produced good results in
previous studies [1,15].

3.1. Random Forest

The Random Forest (RF) algorithm is a tree-based ensemble model that is developed to
solve regression and classification problems in machine learning [16]. An ensemble model
derives better results than a model that trains a single model once, as it trains multiple
algorithms iteratively. It includes techniques such as voting and bagging.

RF presents the best result among the results derived from the trees after creating
multiple tree-based algorithms as the representative result. RF is based on a tree algorithm,
has a low overfitting risk, and can be easily applied to various data. It is widely used in
problem-solving through machine learning to derive a good result [17–20].

RF predicts the outcome as a binary value of 0 or 1, as presented in (1), after extracting
an arbitrary number of input data from a number of single-algorithm predictors and
performing a final decision by majority vote on the results derived from each predictor,
where yi = fi(X), and wi refers to the weight. If the calculated value is larger than the
threshold value, the predicted value is 1, otherwise it is 0 [21].

F(X) = ∑ wiyi (1)

3.2. XGBoost (eXtreme Gradient Boosting)

XGBoost (XGB) is a typical algorithm of a boosting technique where a result is derived
by learning a single model sequentially, and the result of the previous model affects the
next result. XGB is a tree-based algorithm used in solving regression and classification
problems. It is effective in preventing overfitting due to its different regularization penalties.
In addition, it has the advantage of being able to process big data in a short period of time,
so it has been actively used in various fields [22,23].

The calculation equation for the decision-making of XGBoost is presented in (2), where
ŷi refers to the i-th sample’s prediction value and fk refers to the prediction value where the
k-th tree’s sigmoid function is applied. The output is derived by summing all prediction
values. The prediction value can be calculated using (3).

ŷi = ∑K
K=1 fi(xi) (2)

ŷi=
1

1 + e− f (xi)
(3)

The error is calculated using the difference between the prediction and real values in
the tree, and the weight is calculated to reduce the error as presented in (4). ŷi

(t−1) refers to
the prediction value of the previous model, ht(xi) refers to the tree trained by the current
model, and η refers to the learning rate, which is the percentage of reflections from the
prior model. The model’s error is reduced by iterating this method [24,25].

ŷ(t)i = ŷ(t−1)
i + ηht(xi) (4)

3.3. LightGBM (Light Gradient Boosting Machine)

LightGBM (LGBM) is an algorithm in which a tree-based boosting technique is applied
in the same manner as XGB. It has been used in solving regression and classification
problems and in selecting the priority of importance of influencing factors. LGBM is
advantageous for its fast operation speed because it derives a result using a method that
reduces data characteristics by employing partial data only. Thus, LGBM processes big
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data quickly and with a high level of accuracy, and can derive the importance among the
influencing factors used, advantages which have made it a popular choice [26].

LightGBM calculates the loss function using cross-entropy. The equation for calculat-
ing the cross-entropy is presented in (5), where N is the number of samples, K is the number
of classes, yi,j refers to the binary variable indicating whether the i-th sample belongs to
the j-th class, and pi,j refers to the probability that the i-th sample belongs to the j-th class.
LightGBM derives its results by learning to update the model while minimizing the CE
received from the previous model [27].

CE =
1
N ∑N

i=1 ∑N
j=1 yi,j log

(
pi,j
)

(5)

3.4. Evaluation Indexes of Machine Learning Algorithms

For evaluation indexes of machine learning models to solve a classification problem,
accuracy, F1-score, and AUC are generally used. The results of these evaluation indexes
can be calculated using Equations (6)–(10) via the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall(Sensitivity) =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1Score = 2 × Precision × Recall
Precision + Recall

(9)

Specificity =
TN

TN + FP
(10)

Intuitively, it is highly convenient if the model’s performance is evaluated through
the model’s accuracy, but it is also difficult to identify the objective model performance
for imbalanced data. Thus, a model using imbalanced data is evaluated by employing
the F1-score, which uses a harmonic mean of the data. The model confidence is evaluated
using the AUC that uses the receiver operation characteristic (ROC) [28–34].

3.5. Results of Applying Machine Learning

To build a machine learning-based model for the prediction of ground subsidence risk
levels in urban areas, we selected a model that exhibited the best performance by applying
24 datasets, which were developed using the attribute information of underground utility
lines and the historical information of ground subsidence, to RF, XGB, and LGBM classifiers.
To implement machine learning, Python 3.8 was used, and the Scikit-learn library was
employed.

The model’s evaluation indexes, accuracy, F1-score, and AUC were selected. The
accuracy was used to determine the presence of overfitting by comparing the results of the
training set with those of the test set. If the difference between the training and test scores
is equal to or less than 0.1, it was determined that overfitting was avoided. In addition,
the model’s performance was identified using the F1-score and AUC indices to select the
optimal model.

The results of an evaluation of the machine learning models derived in this study
are presented in Tables 5 and 6. Table 5 shows the model results where SMOTE was not
applied, and Table 6 presents the model results where SMOTE was applied.
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Table 5. Results of machine learning model (SMOTE not applied).

Model RF XGB LGBM

No.
Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

1 0.742 0.670 0.450 0.780 0.725 0.668 0.480 0.770 0.765 0.676 0.480 0.800
2 0.766 0.645 0.500 0.800 0.719 0.628 0.490 0.790 0.714 0.666 0.550 0.800
3 0.745 0.649 0.490 0.810 0.768 0.660 0.560 0.800 0.759 0.643 0.560 0.810
4 0.791 0.676 0.470 0.780 0.724 0.674 0.490 0.770 0.763 0.670 0.480 0.790
5 0.764 0.664 0.530 0.800 0.719 0.628 0.500 0.790 0.758 0.660 0.550 0.810
6 0.751 0.664 0.520 0.810 0.732 0.658 0.550 0.810 0.768 0.666 0.570 0.820
7 0.736 0.639 0.420 0.750 0.696 0.641 0.410 0.750 0.714 0.645 0.440 0.750
8 0.681 0.591 0.310 0.750 0.694 0.601 0.390 0.750 0.655 0.591 0.360 0.760
9 0.732 0.635 0.390 0.770 0.680 0.620 0.410 0.770 0.715 0.616 0.410 0.770

10 0.729 0.643 0.430 0.740 0.697 0.647 0.420 0.740 0.715 0.635 0.420 0.750
11 0.651 0.597 0.330 0.750 0.686 0.599 0.380 0.740 0.681 0.603 0.360 0.750
12 0.729 0.635 0.400 0.770 0.683 0.599 0.350 0.760 0.706 0.610 0.350 0.760

Table 6. Results of machine learning model (SMOTE applied).

Model RF XGB LGBM

No.
Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

Train
Score

Test
Score

F1-
Score

(Macro)

AUC
(Macro)

1 0.676 0.626 0.560 0.790 0.648 0.608 0.560 0.770 0.716 0.628 0.560 0.790
2 0.683 0.593 0.550 0.790 0.705 0.608 0.580 0.800 0.656 0.593 0.560 0.800
3 0.718 0.608 0.550 0.790 0.744 0.644 0.590 0.800 0.706 0.620 0.570 0.810
4 0.662 0.624 0.560 0.790 0.679 0.585 0.510 0.770 0.656 0.582 0.520 0.790
5 0.687 0.595 0.560 0.800 0.666 0.587 0.550 0.790 0.690 0.597 0.550 0.800
6 0.699 0.585 0.540 0.800 0.712 0.612 0.560 0.800 0.729 0.624 0.570 0.820
7 0.671 0.603 0.530 0.760 0.655 0.580 0.520 0.770 0.668 0.580 0.520 0.770
8 0.645 0.543 0.460 0.750 0.615 0.553 0.500 0.740 0.655 0.545 0.490 0.750
9 0.632 0.501 0.380 0.740 0.628 0.553 0.490 0.770 0.627 0.551 0.490 0.760

10 0.682 0.597 0.520 0.770 0.660 0.578 0.520 0.760 0.669 0.578 0.510 0.770
11 0.608 0.541 0.450 0.750 0.647 0.555 0.490 0.740 0.651 0.570 0.500 0.750
12 0.636 0.511 0.390 0.750 0.615 0.532 0.460 0.760 0.676 0.568 0.490 0.750

Based on the evaluation results, the optimal model for the prediction of ground
subsidence risk levels in the target region was determined. It was SMOTE-applied XGB
(No. 3 model) when the number of years used was a five-year unit, the pipeline diameter
was 50mm, and the number of ground subsidence occurrences in the grid of risk level 2
was set to 1 to 3. In this model, the F1-score (0.590) and AUC (0.800) were the best, and the
difference between the training (0.744) and test (0.644) scores was equal to or less than 0.1,
which meant overfitting was avoided. Thus, this model was selected as the fittest classifier
for the prediction model of ground subsidence risk level in the target region.

The model results, according to whether or not SMOTE was applied, revealed that
when SMOTE was not applied there was an F1-score of 0.310 to 0.570, and when SMOTE
was applied there was an F1-score of 0.380 to 0.590. This meant that the imbalance in
the number of ground subsidence occurrences, which was the output data, was resolved
through SMOTE, thereby obtaining an efficient classification of the model. F1-Score and
AUC of the XGB classifier in this study were 0.590 and 0.8 (Figure 2). Thus, XGB was
found to not be a very good model from a computer science perspective. This result is due
to the deepening of the data imbalance caused by the wide range of target areas and the
limited use of influencing factors (underground utility attribute information). As ground
subsidence is a phenomenon caused by various causes (underground structures, ground
conditions, ground layer, etc.) in addition to the damage to underground utility lines, it is
expected that the performance of the model will be improved in the future by obtaining
more data on the underground space.
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Figure 2. ROC Curves of XGB Model.

In addition, the tuning of the hyperparameters of each classifier was set to the hy-
perparameter that produces the optimal result using a trial-and-error method. Table 7
summarizes the main hyperparameters of the selected XGB model.

Table 7. Summary of hyperparameters in the model.

Model Hyper Parameter

XGB Estimators (300), learning rate (0.002), max depth (4)

The XGB model included a function to derive the importance of the input data em-
ployed in the process of solving the classification problem. Using this function, we selected
the main influencing factors used to classify the ground subsidence risk levels. Figure 3
shows a graph that exhibits the importance of the factors used in the model, in which Y
refers to the number of years used and DTR refers to the pipeline diameter. Density was
the most importantly used factor in the classification of ground subsidence risk levels in the
XGB model. The number of years used was found to be more important than the diameter
of the pipeline. In pipelines used between 20 and 40 years, it was found to be relatively
more important.

 

Figure 3. Importance of influencing factors in the XGB model.
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3.6. Map of Ground Subsidence Risk

Figure 4 shows a prediction map of the ground subsidence risk level in the target
region using the selected prediction model of ground subsidence risk level, as well as a
map of ground subsidence risk level based on the historical data of past ground subsidence.
In the Figure, the red, yellow, and green colors refer to Level 3, Level 2, and Level 1 ground
subsidence risk, respectively. The points on the map indicate the regions where ground
subsidence occurred.

  

(a) (b) 

Figure 4. Map of ground subsidence risk. (a) Prediction map of ground subsidence risk level. (b) Map
of ground subsidence risk using real data.

When comparing the prediction map using the model and the map drawn based
on the past ground subsidence data, the prediction map had relatively higher risk levels.
The prediction model classified the region in which ground subsidence was concentrated
in the past as the high-risk region. The prediction map of ground subsidence risk levels
in the region will be used as a basis for the management entity to prioritize the areas to
be inspected when investigating cavities inside the ground for the prevention of ground
subsidence.

4. Conclusions

To develop a model that predicts the risk level of ground subsidence and create a risk
level map targeting the urban area in South Korea, a dataset was built using the pipeline
length, the number of years used, and the diameter and density of pipelines in the target
area. The developed datasets were applied to machine learning algorithms RF, XGB, and
LGBM, to comparatively analyze the evaluation indexes. Through this process, the best
performance was found in the model with the following dataset conditions applied to the
XGB classifier: the number of years used was five years, the pipeline diameter was 50 mm,
and the number of ground subsidence occurrences in the grid with risk Level 2 of ground
subsidence was set to 1 to 3, when using SMOTE applied data (F1 Score = 0.590, AUC
= 0.8). Previously, a machine learning-based ground subsidence risk prediction model
has been developed for a small subset of urban areas (two districts) in South Korea [15].
However, since the model was trained using data from a very small area, it is not reliable
enough to be applied to a wide range of target areas. Thus, in this study, we collected a
large number of data for the entire city and proposed a model for predicting the risk of
ground subsidence. As a result, it is now possible to create a reliable ground subsidence
risk map for urban areas in Korea through the ground subsidence risk prediction model
presented in this study.
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The ground subsidence risk prediction model presented in this study derives the
importance of influencing factors used when classifying the risk level of ground subsidence.
Our study results verified that the density had the highest importance, and the number of
years used was more important than the pipeline diameter. This result is similar to that of a
previous study which found the density and the number of ground subsidence occurrences
were highly correlated [9], as well as another study where the aging of pipelines had an
impact on the ground subsidence occurrence as the number of years used increased [3].
Thus, excavation work to bury underground utility lines should be minimized, and aged
pipelines should be managed to cope with ground subsidence.

The risk level map of ground subsidence in the target area was created using the
ground subsidence risk prediction model. This map predicted a number of spots with
higher risk levels than that in the risk map based on the historical data of past ground
subsidence. The ground subsidence risk prediction classifier presented in this study pre-
dicted the risk level of the area in which ground subsidence was concentrated in the past
relatively well.

It is expected that the results presented in this study can be used as foundational data
for a proactive response to the occurrence of ground subsidence in urban areas. In future
research, we will add underground structures (subway tunnels, etc.) and high-rise building
information in the target region to develop a more reliable prediction model of ground
subsidence risk level in urban areas.
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Abstract: Conventional soil classification methods are expensive and demand extensive field and
laboratory work. This research evaluates the efficiency of various machine learning (ML) algorithms
in classifying soils based on Robertson’s soil behavioral types. This study employs 4 ML algorithms,
including artificial neural network (ANN), random forest (RF), support vector machine (SVM), and
decision trees (DT), to classify soils from 232 cone penetration test (CPT) datasets. The datasets were
randomly split into training and testing datasets to train and test the ML models. Metrics such as
overall accuracy, sensitivity, precision, F1_score, and confusion matrices provided quantitative evalu-
ations of each model. Our analysis showed that all the ML models accurately classified most soils.
The SVM model achieved the highest accuracy of 99.84%, while the ANN model achieved an overall
accuracy of 98.82%. The RF and DT models achieved overall accuracy scores of 99.23% and 95.67%,
respectively. Additionally, most of the evaluation metrics indicated high scores, demonstrating that
the ML models performed well. The SVM and RF models exhibited outstanding performance on both
majority and minority soil classes, while the ANN model achieved lower sensitivity and F1_score
for minority soil class. Based on these results, we conclude that the SVM and RF algorithms can be
integrated into software programs for rapid and accurate soil classification.

Keywords: cone penetration test; soil classification; machine learning; artificial neural network;
support vector machine; random forest; soil behavioral type

1. Introduction

For many years, the cone penetration test (CPT) has been the predominant method
for conducting field exploration in geotechnical engineering [1–5]. This test requires a
cone-shaped instrument to be inserted into the soil at a consistent penetration rate, while
measuring the cone tip resistance (qc) and sleeve friction (fs). The CPT continuously
provides precise, repeatable results for its entire profile depth. Moreover, the CPT is a
relatively quick and inexpensive means of acquiring field data for estimating parameters for
many applications, such as soil classification, environmental studies, hydrological analysis,
and seismic site response assessments.

Soil classification is essential in geotechnical engineering, especially when evaluating
site response to seismic events. Accurate soil classification helps to understand the dynamic
properties of soil and the effects of earthquakes on the soil’s behavior. The traditional
soil classification based on the CPT data involves analyzing 2D charts. Early research
was aimed to predict the distribution of soil particles by using the CPT measurements, as
outlined in the pioneering work of Begemann [6]. However, later work by Douglas and
Olsen [7] suggested that a more useful soil classification approach in practical engineering
projects would involve considering soil behavior, rather than solely relying on soil particle
distribution. As a result, Robertson developed soil classification charts based on a soil
behavior type index using CPT measurements [4,8]. Additionally, there are alternative
methods for soil classification. The Unified Soil Classification System (USCS), for example,
relies on extensive field and laboratory tests to classify soil [9].
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Soil classification and parameter estimation using traditional methods can be costly
and time-consuming. Field and laboratory testing is required, and soil samples need to be
transported to a laboratory where particle size distribution and Atterberg limits are con-
ducted. These tests take time to complete, and the results may not be immediately available.
Additionally, soil properties can significantly change with variations in the temperature
and moisture content. However, in recent years, machine learning (ML) techniques have
shown great promise in soil classification. Many studies have demonstrated the potential
of ML techniques in soil classification based on CPT measurements [10–15].

The study conducted by [15] explored the feasibility of utilizing a general regres-
sion neural network (GRNN) to predict soil composition and overall soil type employing
CPT data. The research demonstrated that the GRNN model successfully categorized
soils as either coarse-grained or fine-grained. Similarly, studies have demonstrated the
effectiveness of artificial neural network (ANN) models in predicting complex soil pro-
files [16–18]. In addition, various machine learning techniques such as random forests
(RFs) [19], support vector machines (SVMs) [20,21], decision trees (DTs) [22], gradient
boosting machine (GBM) [23–26], and logistic regression (LR) [27] have been utilized for a
variety of geotechnical engineering applications including classification and liquefaction.

ML techniques have been widely used in various fields, including image [28–30] and
speech recognition, natural language processing, and data analysis, to extract insights from
large datasets. For instance, ML algorithms are used to identify objects, faces, and patterns
in images, which is crucial in facial recognition, autonomous driving, and object detection
in security systems. ML algorithms are also used to transcribe speech into text, enabling
the creation of voice assistants, language translation software, and speech-to-text dictation
tools. In addition, ML algorithms are used to analyze large datasets, uncovering patterns
and insights that would be difficult or impossible to identify manually. This technique has
numerous applications in finance, healthcare, and scientific research.

Although machine learning (ML) techniques have been widely applied in various
fields, there has been limited research on their use in geotechnical engineering. However,
researchers have started exploring the potential of ML techniques for soil classification
and estimation of soil parameters using CPT data. Some geotechnical researchers applied
ML techniques to predict various geotechnical properties such as landslide [31], slope
stability [32–34], soil type [12], and shear wave velocity [13] utilizing CPT data.

In our study, we aim to evaluate the performance of four commonly used ML algorithms,
including artificial neural network (ANN), random forest (RF), support vector machine (SVM),
and decision tree (DT), for soil classification using CPT data. This study has the potential
to address the gap in the existing literature and offer valuable insights into the efficacy of
ML algorithms for soil classification through CPT data. Furthermore, the findings of this
study could help improve the efficiency and accuracy of soil classification in geotechnical
engineering, which could have significant implications for geotechnical engineering.

The selection of the ML model for a classification task is based on several factors,
including desired accuracy, dataset size, generalization ability, interpretability, and robust-
ness. For our specific soil classification problem, we chose to evaluate the performance of
the ANN, DT, SVM and RF algorithms, each with its own strength and weakness. ANNs
are known for their ability to capture complex non-linear relationships in the data [35],
while RF is the ML algorithm that utilizes multiple decision trees to enhance the accuracy
and robustness of the model [36,37]. SVM can handle high-dimensional data and nonlinear
decision boundaries [38,39], and DT is easy to interpret and visualize, and can handle both
categorical and numerical data. By selecting these four algorithms, we aimed to strike
a balance between complexity and interpretability and compare the performance of the
models. Our choice of algorithms provides a diverse set of models that can handle various
aspects of the classification task, including complex relationships, high-dimensional data,
and interpretability. By evaluating their performances, we hope to gain insights into which
algorithm is the most suitable for our specific soil classification problem.
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The performance of the ML models can be compromised by various factors if not
properly addressed. One of the critical factors that can affect the models’ performance is
the selection of hyperparameters. By carefully selecting and tuning the hyperparameters,
we can improve the models’ robustness and ensure that they can perform optimally in
real-world applications [40]. Grid search (technique in which sets of predefined hyperpa-
rameter values are defined) is one of the most commonly used methods for hyperparameter
tuning [41]. Bayesian optimization is another approach that uses a probabilistic model to
estimate the performance of different hyperparameter configurations [41,42].

ML models rely on input features to make predictions, and the quality and relevance
of those features can have a significant impact on the performance of the models [43].
Performing feature importance such as permutation feature importance [44] and eliminat-
ing irrelevant features from the dataset can significantly enhance the performance of ML
models. Feature importance is the process of determining the most important features in a
dataset for a given model.

In ML, outliers are one of the factors that contribute to the poor performance of ML
models. According to the literature [45,46], outliers are data points that deviate significantly
from the surrounding data points. Abnormal data readings during CPT operations can
primarily occur due to human or procedural errors, such as the addition of a rod [47]. These
outliers are not representative of the actual CPT measurements and should be detected and
removed during the data preprocessing stage.

The structure of this paper comprises six sections. The first section provides a detailed
discussion on the background of soil classification and ML models. In Section 2, the
cone penetration test is explained, while Section 3 outlines the dataset preprocessing and
methodology utilized. The ML models employed in this study are briefly summarized in
Section 4. In Section 5, a detailed discussion is presented on the results obtained from the
ML models. Finally, Section 6 provides a summary of the main points of the study and
concludes the paper by proposing recommendations for future research.

2. Cone Penetration Tests

The CPT is a widely used in situ geotechnical testing method that involves inserting a
cone-shaped penetrometer into the soil and recording the soil’s resistance (i.e., qc and fs) to
penetration. Figure 1 visually represents a graph that plots the recorded qc, fs, and friction
ratio used in this study.

The CPT and its variations, such as the CPT with pore pressure measurement (CPTu)
and the seismic cone penetration test with pore pressure measurements (SCPTu), are
valuable tools for various engineering applications. These tests can estimate geotechni-
cal parameters and classify soils over a broad range of soil types, from very soft soil to
weak rock. Over the past few decades, various soil behavior charts have evolved for soil
classification based on CPT-measured data [1–4,48].

One such chart was developed by Robertson [8] and can be used to classify soils into
different categories, such as sand, clay, silt mixture, organic soil, and more. An example of
such a chart is shown in Figure 2, which illustrates the classification of soil types ranging
from sensitive clays to very stiff over-consolidated (OC) clays. The chart categorizes soils
into various classes or zones based on their soil behavioral type index (Ic) determined by
Equation (1) [48]. Table 1 lists boundaries for classification based on Ic values. In this study,
the zone numbers (see Figure 2) are directly used as ML labels as they represent the soil
types in a straightforward and intuitive way.

Ic =

√(
3.47 − log(qt/pa)

2 + (logR f + 1.22)2
)

(1)

where qt is corrected cone resistance or CPT cone resistance qc, pa is atmospheric pressure
in the same unit as qc, R f is friction ratio, and fs is CPT sleeve friction.

R f = ( fs/qc)× 100% (2)
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Figure 1. Sample cone tip resistance (qc), sleeve friction (fs), and friction ratio (Rf) vs. depth employed
in this study.

Figure 2. Robertson soil classification chart based on soil behavioral type index, Ic (adapted from [48]).
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Table 1. Soil behavior type classification based on Ic boundaries (adapted from [8,48]).

SBT Classification Ic Boundaries Soil Type ID/ML Labels

Organic soils: peats Ic > 3.6 2
Clays: clay to silty clay 2.95 < Ic < 3.6 3

Silt mixtures: clayey silt and silty clay 2.6 < Ic < 2.95 4
Sand mixtures: silty sand to sandy silt 2.05 < Ic < 2.6 5

Sands: clean sand to silty sand 1.31 < Ic < 2.05 6
Gravelly sand to dense sand Ic < 1.31 7

Although existing empirical correlations work well with the CPT data, their applicabil-
ity is limited to primarily fine-grained soils. Additionally, CPT and core drilling techniques
work together to provide more detailed information about subsurface soil properties [12].

3. Datasets

For our study, we used publicly available CPT datasets contributed by [47], which were
accessible in the International Society for Soil Mechanics and Geotechnical Engineering
(ISSMGE) database. The CPTs were collected from an area measuring 50 by 50 m. Each
CPT was performed to a depth of 5 m below the ground surface, and the measurement
spacing of qc and fs was 5 mm. Further information about the specifics of the CPTs can be
found in [47,49,50].

We preprocessed the datasets using MS Excel (see Figure 3) to categorize the soil
behavior types based on Robertson’s classification [48]. In order to reduce bias and ensure
that the training and testing datasets are representative of the overall dataset, we shuffled
the dataset and divided it into training and testing datasets using (80, 20) ratio.

The steps followed to preprocess data are as follows:
(1) Combine the individual CPT soundings into the appropriate columns (e.g. depth,

qc, and fs) using Power Query in MS Excel and remove the missing values. (2) Calculate the
inter quartile range (IQR) values for the qc and fs columns using Excel’s built-in functions
such as QUARTILE. (3) Determine the upper threshold values for outlier detection by
multiplying the IQR by three and adding the third quartile. (4) Identify the outlier values
in the qc and fs columns using conditional formatting. (5) Remove the outlier from the
dataset and replace the values with the threshold value. (6) Estimate the R f , total vertical
stress (σv), effective vertical stresses (σ′

v), and Ic.
Table 2 presents a statistical summary of the datasets organized into 222,100 rows

and 7 columns. The frequency distribution of each soil type in the dataset is shown in
Figure 4. The distribution analysis demonstrated that soil type 5 has the highest frequency
and represents over 50% of the total dataset. Soil type 4 has the second highest frequency
and represents over 30% of the dataset. Soil types 2, 3, 6, and 7 (minority class) have
much lower frequencies and represent less than 20% of the dataset combined, indicating an
imbalanced dataset. Balancing this highly imbalanced dataset using oversampling or under
sampling techniques may be possible, but it can also affect the natural variability of the soil,
potentially leading to biased predictions and incorrect soil classification. To avoid this, we
opted to train the ML models on the imbalanced datasets and evaluate their performances
using appropriate evaluation metrics such as sensitivity, precision, and F1_score, instead of
artificially generating or discarding soil samples that could impact the true variability of
the soil.
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Figure 3. Flow diagram illustrating dataset preprocessing and machine learning model architecture.

Table 2. Summary statistics of dataset.

Depth (m) fs (kPa) qc (kPa) Rf (%) σv (kPa) σ′
v (kPa) Soil Type ID

Mean 2.57 158.91 2535 9.53 49.75 24.00 4.68
Median 2.57 144.70 2360 6.14 49.87 23.89 5

Standard Deviation 1.43 84.31 1181 16.59 27.41 13.22 0.82
Kurtosis −1.16 1.72 1.79 87.94 −1.11 −1.06 1.23

Skewness 0.00 1.12 0.99 5.86 −0.01 0.01 −0.53
Minimum 0.01 0.30 10.0 0.01 0.07 0.02 2
Maximum 5.63 438.90 6830 899 109.94 54.92 7
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Figure 4. Frequency distribution of soil types considered for ML models.

The input features, which include depth, qc, and fs, are raw data directly obtained
from the test. In contrast, the friction ratio R f , total vertical stress (σv), and effective vertical
stresses (σ′

v) are results from empirical correlations (Equations (2), (3) and (5), respectively).

σv = γ × h (3)

where σv is total vertical stress, γ is unit weight of soil and h is depth of soil.
The unit weight of the soil is estimated using the following expression [51]:

γ = γw

[
0.27logR f + 0.36log(qc/pa) + 1.236

]
(4)

where γ is unit weight of soil, γw is unit weight of water in the same unit as γ, qc is cone
tip resistance, and pa is atmospheric pressure in the same unit as qc.

σ′
v = σv − γwh (5)

where σ′
v is effective vertical stress, σv is total vertical stress, γw is unit weight of water in

the same unit as σv, and h is depth of soil.

4. Machine Learning Models

ML is a subfield of artificial intelligence (AI) that aims to develop algorithms and
statistical models to help computer systems improve their performance on specific tasks
by learning from the data [52]. The types of learning include supervised, unsupervised,
and reinforcement [53]. While the supervised and reinforcement learning algorithms can
involve human supervision, the unsupervised learning algorithms do not rely on labeled
data or human guidance.

Our study utilized the supervised ML algorithms to classify soils using the CPT
datasets. We trained four different ML algorithms, ANN, RF, SVM, and DT, using train-
ing CPT datasets and tested their performance on test datasets via R programming lan-
guage [54]. In the following section, we discuss each of the ML algorithms to gain insight
into their strengths and limitations.
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4.1. Artificial Neural Network Model

ANNs are ML models that draw inspiration from the human brain’s structure and
functions [35]. They comprise interconnected neurons that use weighted connections to
process and transmit information. ANNs can learn data patterns and relationships by
modifying the connection strength based on the input and output. ANN models typically
contain three layers, including input, hidden, and output layers. Figure 5 presents an
example of an ANN model that includes an input layer with 6 neurons, 2 hidden layers
with 16 and 8 neurons, and an output layer. Deep learning is commonly used to describe
neural networks with many hidden layers.

Figure 5. Example of visualized neural network plot with 2 hidden layers, 16 and 6 neurons, and
6 features.

In the ANN models, weights (the connection strength between neurons) and activa-
tions (output of a neuron in the network) are fundamental elements that enable the network
to learn patterns and relationships in the data. The weights in an ANN are adjusted during
the learning process to optimize the model’s performance. At the same time, activation
applies a mathematical operation to the input and transmits an output to the other neurons
in the network.

Choosing the proper activation function is essential when dealing with an ANN model.
There are several types of activation functions, namely, Sigmoid function (commonly used
for binary classifications), ReLU (rectified linear unit) function, Tanh (hyperbolic tangent)
function, and Softmax function (commonly used in the output layer).

Our study considers an ANN model with 2 hidden layers containing 128 and 32 neu-
rons and an output layer. We implemented our models using the Keras package [55], which
provides an easy-to-use interface for building and training neural networks. A multi-layer
perceptron (MLP) model provided the soil classification with the ReLU activation function
in both hidden layers, and the Softmax activation function in the output layer. The Keras
library in R aided the model development, which was compiled using the categorical
cross-entropy loss function, the Adam optimizer, and accuracy as the evaluation metric.
The model was trained on the training data for 200 epochs, using a batch size of 32 and
a validation split of 0.2. The model would learn from the data and adjust its weights and
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biases to minimize the loss, which measures the difference between the predicted and
actual values.

The categorical cross-entropy loss function is used to measure the difference between
the predicted and actual values in a classification task. To minimize this loss, the Adam
optimizer adjusts the weights and biases of the model during training. Accuracy, on the
other hand, is a metric that evaluates how well the model generalizes to new, unseen data
by measuring the percentage of correct predictions. The performance of the model was
improved through the Bayesian optimization fine-tune of its hyperparameters including
dense units 1, dense units 2, dropout 1, dropout 2, and batch size.

4.2. Random Forest Model

Random forest is a widely used ensemble learning algorithm for both classification
and regression tasks. The algorithm employs multiple decision trees to improve the model’s
accuracy and robustness. Unlike individual decision trees, random forest is less prone to
overfitting as it combines multiple trees with varying biases and variances. Additionally, it
can efficiently handle high-dimensional data with many features by randomly selecting a
subset of features for each tree. As a result, the algorithm is capable of handling large and
complex datasets [36,37,56].

In our research, we utilized the random forest algorithm to train a model using the
random forest package [57] in the R programming language. We fine-tuned the model’s
hyperparameters, including the number of variables randomly sampled at each split of a
decision tree (mtry), the minimum number of internal node size (min.node.size), and the
number of decision trees (ntree), using a model-based Bayesian optimization technique.
The performance of the model was evaluated using cross-validation, and we selected the
optimal values of the hyperparameters based on its best performance.

4.3. Decision Tree Model

Decision tree (DT) is a widely used machine learning algorithm that can be applied
to both classification and regression problems. It is a non-parametric algorithm that can
handle large and complex datasets without imposing a rigid parametric structure, making
it a versatile tool for various applications [57]. The DT algorithm builds a tree-like model
where the internal nodes of the tree represent decisions based on input features, while each
leaf node represents class labels or target values. DT models are particularly suitable for
multi-class classification problems due to their ability to capture non-linear relationships
between input features and target variables [58,59].

For our soil classification problem, we utilized the rpart package [60] in the R pro-
gramming language to implement a decision tree model. We fine-tuned the model’s
hyperparameters, including the complexity parameter (cp), the maximum depth of trees,
the minimum split, and the maximum number of competitor splits, using Bayesian opti-
mization. We used cross-validation to prevent overfitting and improve the model’s ability
to generalize to new data.

4.4. Support Vector Machine Model

SVM is a well-known supervised ML algorithm frequently utilized for multi-class
classification and regression problems [38,39]. The SVM algorithm operates by locating
the optimal hyperplane that segregates the input data points into distinct classes. The
hyperplane locates itself by maximizing the margin, which is the gap between the hyper-
plane and the nearest data points of each class. For our study, we employed the e1071 R
package [61], which offers an SVM implementation in R. This allowed us to train a model
using the training data and assess its effectiveness on the test data. To ensure a well-tuned
and generalized model, we used cross-validation to optimize the hyper-parameters (cost
and gamma).
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5. Results and Discussion

In the following subsections, the results of the ML models are presented and discussed
using confusion matrix and various performance metrics such as overall accuracy, sensi-
tivity (ability to detect positive instances), specificity (ability to detect negative instances),
negative predicted value (NPV), positive predicted value (PPV), and balanced accuracy (the
average of sensitivity and specificity). Due to the imbalanced dataset used for the training
and testing purposes, additional informative performance metrics such as precision, recall,
and F1_score are utilized to assess the efficacy of the ML models.

Overall Accuracy = (TP + TN) / (TP + TN + FP + FN) (6)

where TP = True Positive (number of samples correctly predicted as positive), TN = True
Negative (number of samples correctly predicted as negative), FP = False Positive (number
of samples incorrectly predicted as positive), and FN = False Negative (number of samples
incorrectly predicted as negative).

Precision = TP / (TP + FP) (7)

Sensitivity = TP / (TP + FN) (8)

F1_score =
2 × precision × Sensitivity

precision + Sensitivity
(9)

5.1. Artificial Neural Network Model Results

The results of the ML model implemented utilizing ANN to classify different soil
types are presented here. Figure 6 displays the accuracy and loss of the ANN model for
200 epochs on both the training and validation data. At the beginning of the training, the
model has a low accuracy of 0.79 and a high loss of 0.63 values, indicating that it cannot
make good predictions. However, as training progresses, the accuracy improves, and
the loss decreases, indicating that it gradually improves its ability to make more accurate
predictions. When the validation accuracy and loss metrics improve, it suggests that the
model is generalizing well to new data, which is a desirable outcome.

Table 3 displays the confusion matrix of the ANN model, which provides insight into
the model’s performance on the test data. The rows correspond to the predicted values,
while the columns correspond to the actual values. The diagonal elements of the confusion
matrix represent the number of instances that the model correctly classified, while the
off-diagonal elements correspond to the misclassifications made by the model.

Table 3. Artificial neural network confusion matrix.

Prediction
Actual

2 3 4 5 6 7

2 808 8 0 0 0 0
3 31 1594 23 1 0 0
4 0 63 13,708 69 0 0
5 0 0 91 22,781 55 0
6 0 0 0 62 4801 99
7 0 0 0 1 20 202
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Figure 6. Change in loss and accuracy over epochs for a neural network model.

Statistics by class (Table 4) show that the model has a high sensitivity for all soil types
except type 7, with a low sensitivity value of 0.67. Additionally, the model has a high
specificity for all classes, with values ranging from 0.99 to 1.0.

Table 4. Class distribution summary for ANN model.

Performance Metrics 2 3 4 5 6 7

Sensitivity 0.96 0.96 0.99 0.99 0.98 0.67
Specificity 1.00 1.00 1.00 0.99 1.00 1.00

PPV 0.99 0.97 0.99 0.99 0.97 0.91
NPV 1.00 1.00 1.00 0.99 1.00 1.00

Prevalence 0.02 0.04 0.31 0.52 0.11 0.01
Detection Rate 0.02 0.04 0.31 0.51 0.11 0.00

Detection Prevalence 0.02 0.04 0.31 0.52 0.11 0.01
Balanced Accuracy 0.98 0.98 0.99 0.99 0.99 0.84

The positive predicted value (PPV) and negative predicted value (NPV) are important
performance metrics in evaluating the effectiveness of a classifier. A high PPV indicates
that it is likely correct when the model predicts a sample to belong to a particular class. On
the other hand, a high NPV indicates that when the model predicts a sample to not belong
to a particular class, it is likely to be correct. The ANN model results show a high PPV for
all soil types, with values ranging from 0.91 to 0.99. Similarly, the NPV is high for all soil
types, with values ranging from 0.99 to 1.

In summary, the ANN model has an overall accuracy of 98.82%, showing that the
model performs well in classification tasks. However, the model struggles to predict class
7 (minority class), given a low sensitivity value.
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5.2. Random Forest Model Results

Table 5 displays a confusion matrix that compares the soil types predicted by the
RF model with the actual soil types. The confusion matrix shows that the model made
some correct and incorrect predictions for each class. For example, the model correctly
predicted 835 samples as class 2. The model has high diagonal values, signifying a high
number of correct predictions, and low off-diagonal values, implying a low number of
misclassifications. The model’s overall accuracy is very high, indicating the model’s
performance. It achieved a 99.23% accuracy, indicating that it effectively predicts soil types.

Table 5. Random forest confusion matrix.

Prediction
Actual

2 3 4 5 6 7

2 835 2 0 0 0 0
3 4 1655 8 0 0 0
4 0 8 13,719 88 0 0
5 0 0 95 22,763 59 0
6 0 0 0 63 4806 5
7 0 0 0 0 11 296

The statistics by class (Table 6) show that the RF model has a high sensitivity and speci-
ficity values for all soil types. Overall, it performed well in the classification task, achieving
high scores for multiple performance metrics such as PPV, NPV, and balanced accuracy.

Table 6. Class distribution summary for RF model.

Performance Metrics 2 3 4 5 6 7

Sensitivity 1.00 0.99 0.99 0.99 0.99 0.98
Specificity 1.00 1.00 1.00 0.99 1.00 1.00

PPV 1.00 0.99 0.99 0.99 0.99 0.96
NPV 1.00 1.00 1.00 0.99 1.00 1.00

Prevalence 0.02 0.04 0.31 0.52 0.11 0.01
Detection Rate 0.02 0.04 0.31 0.51 0.11 0.01

Detection Prevalence 0.02 0.04 0.31 0.52 0.11 0.01
Balanced Accuracy 1.00 1.00 0.99 0.99 0.99 0.99

5.3. Decision Tree Model Results

Table 7 presents the confusion matrix for the DT model utilized for the soil classification
task. The table evaluates the performance of a predictive model in classifying different soil
types based on input features. The number of observations that were accurately predicted
by the model (diagonal entries) and the number of misclassifications (off-diagonal entries)
appear in the table. Based on the model’s confusion matrix, the model performed well in
the classification task, as the number of correctly predicted values are significantly higher
than the number of misclassifications. The overall accuracy of the model in predicting soil
types on the test dataset was 95.67%.

Table 7. Confusion matrix for DT model.

Prediction
Actual

2 3 4 5 6 7

2 819 40 0 0 0 0
3 20 1554 45 0 0 0
4 0 71 13,240 591 0 0
5 0 0 537 22,049 269 0
6 0 0 0 274 4548 19
7 0 0 0 0 59 282
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The statistics by class (Table 8) show that the DT model has a high sensitivity and
specificity for all soil types. Moreover, the model exhibits a high balanced accuracy with
values ranging from 0.96 to 0.99. Overall, the model performed well in the classification
task, with high scores for multiple performance metrics across each soil type.

Table 8. Class distribution summary for DT model.

Performance Metrics 2 3 4 5 6 7

Sensitivity 0.98 0.93 0.96 0.96 0.93 0.94
Specificity 1.00 1.00 0.98 0.96 0.99 1.00

PPV 0.95 0.96 0.95 0.96 0.94 0.83
NPV 1.00 1.00 0.98 0.96 0.99 1.00

Prevalence 0.02 0.04 0.31 0.52 0.11 0.01
Detection Rate 0.02 0.03 0.30 0.50 0.10 0.01

Detection Prevalence 0.02 0.04 0.31 0.51 0.11 0.01
Balanced Accuracy 0.99 0.97 0.97 0.96 0.96 0.97

5.4. Support Vector Machine Model Results

The results of the ML model implemented utilizing the SVM to classify different
soil types are presented here. The confusion matrix computed with the SVM model to
evaluate its effectiveness is presented in Table 9. The confusion matrix shows that the
model predicted almost all instances correctly, with a few misclassifications in each soil
type. The overall accuracy of the model is very high (almost 100%), indicating that it is a
high-performing model.

Table 9. Support vector machine confusion matrix.

Prediction
Actual

2 3 4 5 6 7

2 837 0 0 0 0 0
3 2 1662 0 0 0 0
4 0 3 13,812 6 0 0
5 0 0 10 22,893 7 0
6 0 0 0 15 4848 9
7 0 0 0 0 21 292

Table 10 shows the class distribution summary for the SVM model. The model’s
sensitivity is high for each soil type, indicating that the model is good at correctly iden-
tifying the positive cases for each soil type. The model’s specificity is also high for all
soil types, indicating that the model is good at correctly identifying the negative cases for
all soil types. Moreover, the model’s balanced accuracy (the average of sensitivity and
specificity) is remarkably high (almost 1) for all soil types. This shows that the model can
accurately identify both positive and negative cases, making it a reliable classifier for the
soil classification task.

Table 10. Class distribution summary for SVM model.

Performance Metrics 2 3 4 5 6 7

Sensitivity 1 1 1 1 1 0.97
Specificity 1 1 1 1 1 1

PPV 1 1 1 1 1 0.93
NPV 1 1 1 1 1 1

Prevalence 0.02 0.04 0.31 0.52 0.11 0.01
Detection Rate 0.02 0.04 0.31 0.52 0.11 0.01

Detection Prevalence 0.02 0.04 0.31 0.52 0.11 0.01
Balanced Accuracy 1 1 1 1 1 0.98

The model exhibits high PPVs for all soil types, indicating its strong ability to predict
the samples of specific soil types accurately. Similarly, the model shows high NPVs for
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all soil types, indicating its reliability in predicting the samples that do not belong to a
particular soil class. Overall, the model performs exceptionally well on the dataset in terms
of multiple performance metrics.

5.5. Comparison of ML Models’ Performance

To compare the efficiency of the ML models, different performance metrics such
as overall accuracy, sensitivity, precision, and F1_score are utilized. The results of this
evaluation are summarized in Tables 11 and 12. Table 11 shows that the SVM model
achieved the highest overall accuracy of 99.84%.

Table 11. Performance comparisons of ML models on test datasets.

ML Models

ANN RF DT SVM

Overall Accuracy (%) 98.82 99.23 95.67 99.84

Table 12. Performance metrics of ML models for each soil type.

ML Models Soil Type Sensitivity Precision F1_Score

ANN

2 0.96 0.99 0.98
3 0.96 0.97 0.96
4 0.99 0.99 0.99
5 0.99 0.99 0.99
6 0.98 0.97 0.98
7 0.67 0.91 0.77

RF

2 1 0.99 0.99
3 1 0.99 0.99
4 1 0.99 0.99
5 1 0.99 0.99
6 1 0.99 0.99
7 0.98 0.96 0.97

SVM

2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 0.99 1 0.99
7 0.97 0.93 0.95

DT

2 0.98 0.95 0.96
3 0.93 0.96 0.95
4 0.96 0.95 0.96
5 0.96 0.96 0.96
6 0.93 0.94 0.94
7 0.94 0.83 0.88

The ANN, RF, and DT models also performed well, achieving overall accuracies of
98.82%, 99.23%, and 95.67%, respectively. It is important to note that the datasets were
imbalanced, and therefore, it is necessary to consider both the overall accuracy and other
performance metrics for each soil type to accurately assess the ML models’ performance.

Table 12 presents the performance metrics of the ML models for each soil type. The
table shows the sensitivity, precision, and F1_score values of each model and soil type.
These metrics indicate the models’ efficiency in correctly identifying the soil type. Across
all models, the sensitivity, precision, and F1_score values for each soil type are very high,
indicating that the models successfully identified instances of all classes. However, the
efficiency of the ANN model on minority class 7 was low compared to the other models. It
scored lower sensitivity and F1_score values of 0.67 and 0.77, respectively, compared to the
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SVM and RF models with almost perfect scores for all metrics. This indicates that the ANN
model needs additional data to better identify minority classes.

The SVM and RF models outperformed the ANN and DT models in terms of sensitivity,
precision, and F1_score values for all soil types. These two models achieved almost perfect
scores for all performance metrics for all soil types, indicating their high accuracy in the
classification task. Overall, the performance of the ML models in classifying soils based on
the CPT dataset is consistent with previous similar research carried out on ML techniques
(e.g., see [12,21]).

6. Conclusions

In this paper, various ML algorithms, namely, ANN, RF, SVM, and DT are used to
classify soils based on Robertson’s soil behavioral types. To optimize the performance
of these models, hyperparameter tuning was performed using Bayesian optimization.
Additionally, cross-validation was employed to ensure the models’ generalization ability
and optimal performance. The study used 232 CPTs from ISSMGE’s database and randomly
divided the dataset into training and testing datasets. The performance of each ML model
was evaluated using performance metrics such as sensitivity, precision, F1_score, and
overall accuracy.

Based on the findings of this study, the following conclusions can be made:

• The ANN model achieved an overall accuracy of 98.39%. It achieved high scores in
multiple performance metrics for majority soil classes. However, the model achieved
lower sensitivity and F1_score values of 0.67 and 0.77, respectively, for minority soil
class 7.

• The DT model achieved an overall accuracy of 95.67%, indicating high performance in
classifying soils. Additionally, the model demonstrated excellent sensitivity, precision,
and F1_score across all soil types, with scores ranging from 0.88–0.98.

• The SVM model outperformed the other models with the highest overall accuracy
of 99.84%. It achieved almost perfect scores for all performance metrics across all
soil types.

• The RF model achieved an overall accuracy of 99.23% and demonstrated high perfor-
mance across all soil types. Similar to the SVM model, the RF model also achieved almost
perfect scores for all performance metrics across all soil types.

• In general, the SVM and RF models achieved a high level of overall accuracy (almost
100%) in classifying soils, even when trained with imbalanced CPT datasets. These
models exhibited outstanding performance on both majority and minority soil classes,
indicating their potential as valuable tools in geotechnical engineering. Integrating
these ML models into software programs for rapid and accurate soil classification in
real-world projects can aid in making informed decisions.

• Future research could focus on improving the performance of the ANN and DT models
in classifying soils based on CPT data. This could involve exploring other approaches
such as training the models using balanced datasets.
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Abstract: The properties and behavior of soils depend on many factors. The interaction of individual
factors is difficult to determine by traditional statistical methods due to their interdependence. The
paper presents a procedure of creating an artificial neural network (ANN) model to determine the
value of the damping ratio (D) of clay soils. The main purpose of this paper is to compare the
appropriateness of ANN model application with empirical formulas described in the literature.
The ANN model was developed using a series of laboratory tests of the damping ratio performed
in the Resonance Column. Predicted values of the damping ratio of clay soils obtained from the
ANN model are characterized by high convergence (coefficient of determination R2 = 0.976). In
comparison with other published empirical formulas, the ANN model showed an improvement in
the prediction accuracy. What is more, ANN models proved to be more flexible compared to formulas
and relationships with a predetermined structure, and they were well suited to modeling the complex
behavior of most geotechnical engineering materials, which, by their very nature, exhibit extreme
variability. In conclusion, ANNs have the potential to predict the damping ratio (D) of clay soils and
can do much better than traditional statistical techniques.

Keywords: artificial neural networks (ANNs); damping ratio; cohesive soil; resonant column

1. Introduction

Properties and behavior of soils are determined by the following factors: fabric, miner-
alogy, and pore water. Due to the interdependence of individual factors, it is difficult to
determine their interaction using only traditional statistical methods [1]. Classical constitu-
tive modeling based on the elasticity and plasticity theories is unable to properly simulate
the behavior of geomaterials. This is due to the formulation complexity, the idealization
of the behavior of the material, and excessive empirical parameters [2]. Therefore, in
many papers, artificial neural networks (ANNs) have been proposed as a reliable and
practical alternative to modeling the constitutive monotonic and hysteretic behavior of
geomaterials [3–28].

This article concerns the use of artificial neural networks (ANNs) to determine the
value of the damping ratio (D) of clay soils. Parameter D is one of the basic soil parameters.
It characterizes the behavior of soil subjected to dynamic loads, such as the foundations
of machines, the traffic of city trams and subways, and the driving of precast pile or sheet
pile. These geotechnical problems are associated with significant damping, so its impact
has to be taken into account in the dynamic analysis [29]. Unfortunately, the damping ratio,
although important, is not easy to determine either on the basis of empirical formulas or in
laboratory tests. The authors present a model of an artificial neural network (ANN) and
compare the appropriateness of its application with empirical formulas described in the
literature. The ANN model was developed on the basis of a series of laboratory tests of the
damping ratio performed in the Resonance Column manufactured by GDS Instruments Ltd.
Neural networks were to increase the accuracy of prediction. They provide an attractive
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solution for determining the behavior of a complex system and they are widely used for
nonlinear pattern recognition and regression.

The paper also presents the procedure of creating an artificial neural network (ANN)
model to determine the value of the damping ratio (D) of clay soils. The main purpose of
this paper is to compare the appropriateness of ANN model application with empirical
formulas described in the literature, and it also presents a method of selecting the structure
of the ANN with the best predictive quality. To determine the architecture of the neural
network, the following were determined: the number of input variables, the number of
output variables, the number of hidden layers, the number of neurons in hidden layers,
the type of activation function in the neurons of hidden layers and the output layer, and
the number of learning epochs [30]. The Python programming language and the following
libraries: TensorFlow, Keras, NumPy, Pandas, and Scikit-Learn, were used to create the
ANN model. This article can be used as a guideline for creating other ANN models in the
field of geotechnics.

2. Materials and Methods

Soils for the tests were collected from 3 test sites in Warsaw (Poland) from different
depths (from 1.5 to 9.5 m). The soil cores were extracted in their undisturbed state using
Shelby tubes.

Before performing the damping tests in the Resonance Column, the particle size
distribution of the soil and physical properties were studied. The obtained results are
presented in Table 1.

Table 1. Soil characteristics and mean effective stress range for tested soils.

Test Site
Test
No.

Depth
(m)

Soil Type
wc

(%)
LL
(%)

PL
(%)

IP
(%)

p′
(kPa)

eo

(-)
OCR

(-)

Bartycka S1 2.5 sandy clay 11.75 22.1 11.5 10.6 50–200 0.41 2.80–1.00
S2 1.5 sandy silty clay 18.85 32.8 16.0 16.8 30–390 0.56 1.00
S3 1.7 clayey sand 14.43 21.2 12.2 8.9 35–210 0.44 1.00
S4 6.0 clayey sand 11.06 17.7 11.1 6.6 60–240 0.32 3.33–1.00

Pelczynskiego S5 4.5 sandy silty clay 17.41 36.5 14.1 22.4 90 0.48 1.00
S6 7.5 sandy silty clay 10.76 24.5 12.5 12.0 75–415 0.30 2.13–1.00
S7 6.0 silty clay 17.53 37.3 17.1 20.1 120-410-120 0.47 1.00–3.42

Pory K8 8.5 siCl 19.84 44.60 19. 25.11 85–310 0.5 2.00–1.00
S9 2.2 sandy clay 12.23 37.0 11.5 25.6 45–315 0.37 1.00

Pelczynskiego S10 2.2 clayey sand 15.57 41.7 14.3 27.4 90–315 0.40 1.00
S11 2.2 clayey sand 10.50 18.2 9.1 9.1 45–315 0.43 1.00
S12 7.2 silty clay 21.98 51.3 23.7 27.6 145–290 0.60 1.38–1.00

Pory S13 8.0 silty clay 22.95 63.5 26.8 36.7 160–320 0.63 1.25–1.00
S14 9.5 clay 26.04 71.0 33.1 37.8 95–285 0.75 6.32–2.11

Pelczynskiego S15 2.7 sandy silty clay 12.68 27.1 12.3 14.8 55-165-55 0.39 1.00–3.00

Notes: wc—initial water content, LL—liquid limit, PL—plasticity limit, IP—plasticity index, p′—mean effective
stress, eo—initial void ratio, OCR—overconsolidation ratio.

After the examination of the properties of the soil, the core sample was pushed out
from the Shelby tube by a hydraulic press. Subsequently, from the undisturbed core, a
cylindrical specimen at 140 mm high and 70 mm diameter was cut out. The prepared
sample was placed on the resonant column pedestal. After that, the proper test was started.
To prepare the specimen for testing, the resonant column chamber was closed, and the
soil sample was saturated to a Skempton parameter B of at least 0.95. The consolidation
process was then initiated, with dynamic tests conducted at every stage of the consolidation.
First, the resonant frequency at torsional mode excitation was determined, followed by the
application of a sinusoidal wave at the resonant frequency on top of the soil sample using
the drive system. After seconds of excitation, the coils were switched off, and the specimen
was left to vibrate freely. The damping of the soil sample movement was recorded by an
accelerometer and displayed on the screen as a free vibration decay curve. The scientist then
carefully selected the appropriate number of damping cycles at which specimen motions
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were completely damped based on the free vibration decay curve. A detailed description
of the performed research is presented in [31].

To generate a damping ratio curve, the amplitude of the applied voltage on the drive
system was increased, and the same processes as described above were repeated. The
damping tests were performed following the procedures outlined in [32]. Furthermore,
every damping test was repeated 10 times at each shear strain. Later, from ten results of the
parameter D, the average value was evaluated and used in the performed analysis. More
details about materials and methods are presented in [29].

3. Artificial Neural Network

Artificial neural networks (ANNs) are computational methods based on the principle
of operation of human neurons or nerve cells. When certain information reaches them, they
process it and remember it for future use. Artificial systems work in this way as well. Data
are inserted into the system, processed, stored, and corrected.

In geotechnics, the use of neural networks allows to achieve progress in the interpre-
tation of research results, especially in relation to such specific materials as soil. When
analyzing problems related to geotechnics, we most often deal with regression issues, which
means a problem in which we want to predict a numerical value. Regression ANNs predict
an output variable as a function of the inputs. It is required that numeric variables be
dependent in regression ANNs. The use of ANNs often allows to develop better predictive
models than statistical ones and to improve the models as new data become available.

According to Geron [33], in order to create any machine learning project, the following
series of steps should be performed:

• Analyze the whole task;
• Get the data;
• Discover and visualize the data to recognize patterns and additional information—

Exploratory data analysis;
• Prepare data in terms of machine learning algorithms—Data preparation;
• Select and teach a model;
• Tune the model—Model adjustment;
• Present the solution—Results.

In this article, we will go through all these steps to create the ANN model which is
used to predict the value of the damping ratio determined based on the basic geotechnical
parameters of cohesive soils.

3.1. Analyze the Whole Task

The first step is to define the purpose for which we create the project. In our case, the
goal is to determine the value of the damping ratio based on the available soil parameters.
This will allow us to know the value of the coefficient of a given soil without the need to
perform tedious, expensive, and not always available laboratory tests. The next step is to
define the problem we are dealing with. This is essential to start designing the system. We
faced a classic problem of supervised learning. The task was a multiple regression task
because our system would use many features to forecast the result (shear strain, effective
stress, soil type, etc.). We also used a batch learning mechanism (offline learning).

The root mean square error (RMSE) was chosen as the performance metric, which, in
regression problems, is a classic measure of performance. The mean absolute error (MAE)
and coefficient of determination (R2) were also determined, but the RMSE metric was more
sensitive to outliers than the MAE. Equation (1) shows the mathematical formula used to
compute the RMSE error:

RMSE(X, h) =

√
1
m

m

∑
i=1

(h(x(i))− y(i))2 (1)

where:
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• m—the number of elements of the training set;
• x(i)—the value vector of all the features of the i-th example;
• y(i)—the label of i-th example;
• X—the matrix containing the value of all features;
• h—the predictive function.

3.2. Get the Data

The data that we used to create the ANN model comes from the laboratory tests
described in Section 2 herein; “Materials and Methods”. The test results were saved in the
.xlsx format in Excel.

The data were loaded using the Jupyter notebook and the Python Pandas module. The
first five lines of ”raw” data are presented below (Table 2):

Table 2. First 5 lines of “raw” data from the damping ratio laboratory test.

Test
No.

Cl
(%)

Si
(%)

Sa + Gr
(%)

LL
(%)

PL
(%)

IP
(%)

IL
(%)

p′
(%)

eo
(-)

OCR
(-)

γ
(%)

G
(MPa)

G/Gmax
(-)

D
(%)

S1 14 26 60 22.1 11.5 10.6 0.024 50 0.40 2.8 0.0006 53.35 1.00 4.99
S1 14 26 60 22.1 11.5 10.6 0.024 50 0.40 2.8 0.0009 54.63 1.00 4.99
S1 14 26 60 22.1 11.5 10.6 0.024 50 0.40 2.8 0.0012 54.20 1.00 5.01
S1 14 26 60 22.1 11.5 10.6 0.024 50 0.40 2.8 0.0018 53.63 0.98 5.06
S1 14 26 60 22.1 11.5 10.6 0.024 50 0.40 2.8 0.0024 53.35 0.98 5.11

Notes: Cl—clay content, Si—silt content, Sa + Gr—sand + gravel content, LL—liquid limit, PL—plasticity limit,
IP—plasticity index, IL—liquidity index, p′—mean effective stress, eo—initial void ratio, OCR—overconsolidation
ratio, γ—shear strain, G—shear modulus, G/Gmax—normalized shear modulus.

Our dataset consists of 1227 examples obtained from testing 15 soil samples. All
attributes (except “Test No.”) have numeric values. A summary of all numerical attributes
is provided in Table 3.

Table 3. Summary of all numeric attributes.

Cl Si Sa + Gr
(%)

LL PL IP IL p′ eo OCR γ G G/Gmax D

(%) (%) (%) (%) (%) (%) (%) (-) (-) (%) (MPa) (-) (%)

count 1227 1227 1227 1227 1227 1227 1227 1227 1227 1227 1227 1227 1227 1227
mean 17.83 35.38 46.79 33.77 15.28 18.49 0.04 193.96 0.440 1.37 0.0117 120.75 0.87 4.57

std 7.26 17.01 21.83 11.74 4.86 7.58 0.11 104.61 0.104 0.85 0.0220 76.70 0.20 2.78
min 10.00 20.00 6.00 17.70 9.10 6.60 −0.19 30.00 0.280 1.00 0.0001 6.45 0.16 1.57
25% 14.00 23.00 17.00 24.50 12.24 12.03 0.01 110.00 0.375 1.00 0.0008 69.82 0.81 2.57
50% 14.00 26.00 60.00 32.75 14.26 16.79 0.02 180.00 0.433 1.00 0.0031 108.61 0.97 3.73
75% 21.00 60.00 62.00 37.25 17.14 25.11 0.07 270.00 0.510 1.37 0.0111 152.26 1.00 5.45
max 50.00 69.00 70.00 70.95 33.11 37.84 0.24 415.00 0.747 6.32 0.2219 431.76 1.02 19.04

Notes: std—standard deviation, 25%—25th percentile, 50%—median, 75%—75th percentile.

After the first look at the data, the next particularly important, but often underesti-
mated, step is to create a test set. The separation of the test set at such an early stage is to
prevent the occurrence of a phenomenon called the ”data snooping bias”. When we look
at the test set, we can see some interesting pattern (not always right) that will make us
choose a specific machine learning model based on it. When dealing with exceptionally
large datasets, it is enough to randomly select some examples and put them back to create
a test dataset. This is a satisfactory solution, but it does not work well with small datasets.
Next time the program runs, a completely different test set is generated. After some time,
the person creating the model or the machine learning algorithm itself will see the entire
dataset, and this is what we want to avoid. This is why the random seed was used, which
allowed to obtain the same pseudorandom test set every time. The test set accounts for 20%
of the total data.
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3.3. Exploratory Data Analysis

The objectives of exploratory data analysis (EDA) and exploratory data analysis (EDA)
methods are classified according to [34].

3.3.1. Searching for Correlation

At this stage of the project, we only deal with training data. The first step in regression
problems should be looking for the correlation between the features and the label (damping
ratio, D). To do this, we calculate a linear correlation coefficient (Pearson correlation
coefficient) between each pair of values (Table 4).

Table 4. Correlation matrix.

Cl Si Sa + Gr LL PL IP IL p′ eo OCR γ G G/Gmax D

Cl 1.00 0.52 −0.75 0.85 0.84 0.78 −0.48 0.12 0.65 0.41 0.02 −0.02 0.01 −0.13
Si 0.52 1.00 −0.96 0.57 0.61 0.48 −0.25 0.29 0.48 0.11 −0.01 0.09 0.11 −0.31

Sa + Gr −0.75 −0.96 1.00 −0.73 −0.76 −0.64 0.36 −0.26 −0.60 −0.22 0.00 −0.06 −0.09 0.28
LL 0.85 0.57 −0.73 1.00 0.91 0.96 −0.33 0.14 0.74 0.23 0.05 0.10 −0.02 −0.21
PL 0.84 0.61 −0.76 0.91 1.00 0.77 −0.33 0.15 0.86 0.34 −0.05 0.06 0.09 −0.25
IP 0.78 0.48 −0.64 0.96 0.77 1.00 −0.30 0.12 0.59 0.13 0.11 0.11 −0.10 −0.16
IL −0.48 −0.25 0.36 −0.33 −0.33 −0.30 1.00 −0.23 0.08 −0.42 −0.04 −0.18 0.03 −0.05
p′ 0.12 0.29 −0.26 0.14 0.15 0.12 −0.23 1.00 −0.08 −0.29 −0.19 0.63 0.21 −0.35
eo 0.65 0.48 −0.60 0.74 0.86 0.59 0.08 −0.08 1.00 0.16 −0.02 −0.19 0.06 −0.18

OCR 0.41 0.11 −0.22 0.23 0.34 0.13 −0.42 −0.29 0.16 1.00 −0.03 −0.11 0.00 0.07
γ 0.02 −0.01 0.00 0.05 −0.05 0.11 −0.04 −0.19 −0.02 −0.03 1.00 −0.42 −0.85 0.83
G −0.02 0.09 −0.06 0.10 0.06 0.11 −0.18 0.63 −0.19 −0.11 −0.42 1.00 0.48 −0.53

G/Gmax 0.01 0.11 −0.09 −0.02 0.09 −0.10 0.03 0.21 0.06 0.00 −0.85 0.48 1.00 −0.88
D −0.13 −0.31 0.28 −0.21 −0.25 −0.16 −0.05 −0.35 −0.18 0.07 0.83 −0.53 −0.88 1.00

Thanks to the correlation matrix, we can determine the degree of correlation of indi-
vidual features with the damping ratio (Table 5).

Table 5. Degree of correlation (Pearson’s correlation coefficient) of individual features with the
damping ratio.

D γ Sa + Gr OCR IL Cl IP e0 LL PL Si p′ G G/Gmax

1.00 0.83 0.28 0.07 −0.06 −0.13 −0.16 −0.18 −0.21 −0.25 −0.31 −0.35 −0.53 −0.88

The values of the correlation coefficient range from −1 to 1. Values close to 1 indi-
cate a strong positive correlation, values close to −1 say that there is a strong negative
correlation, while values close to 0 indicate no linear correlation. However, it should be
remembered that the Pearson correlation coefficient measures only a linear relationship. It
may completely ignore the nonlinear relationship. The highest positive correlation with the
damping factor is shown by the γ, while the highest negative correlation with the G/Gmax
is shown by the G and p′.

Two variables may also be related by a nonlinear relationship or may have a non-
Gaussian distribution. In these cases, Spearman’s correlation coefficient can be useful to
determine the strength and direction between the two data samples. Spearman’s rank
correlation can also be used if there is a linear relationship between the variables, but will
have slightly less power [35]. Table 6 presents the result of the Spearman correlation test.

Table 6. Degree of correlation (Spearman’s correlation coefficient) of individual features with the
damping ratio.

D γ Sa + Gr OCR IL eo IP Cl LL p′ Si PL G G/Gmax

1.00 0.62 0.39 0.11 −0.04 −0.29 −0.30 −0.32 −0.40 −0.40 −0.48 −0.48 −0.65 −0.71
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From Spearman’s correlation, we see a moderately strong negative correlation of the
damping ratio (D) with PL, Si, p′, LL, Cl, and IP. We can observe that the other features are
also characterized by a higher degree of correlation than in the Pearson’s correlation, which
may indicate that the dependence of these features with D is nonlinear. On the other hand,
a decrease of degree of correlation of values, such as the G/Gmax and γ, can be noticed.

Another way to check the correlation between the attributes is a scatter matrix. The
scatter matrix of all numerical attributes would be unreadable (and unjustified). Figure 1
shows a scatter matrix for some of the most promising attributes. Both the color and size of
the markers relate to the value of the damping ratio (D). The plot shows a matrix of scatter
plots where each variable is plotted against all other variables, resulting in a grid of scatter
plots. The diagonal of the plot shows the kernel density estimation (KDE) plot for each
variable, which provides a visual representation of the distribution of each variable.

Figure 1. Scatter matrix of the damping ratio (D), shear strain (γ), normalized shear modulus
(G/Gmax), and mean effective stress (p′).

The above charts show that the correlation between the shear strain (γ), normalized
shear modulus (G/Gmax), mean effective stress (p′), and the damping ratio (D) is strong
and the individual points are quite close to each other.

3.3.2. Detect Outliers and Anomalies

Some data batches include outliers. An outlier is a data point that differs significantly
from other observations. Some outliers may be caused by measuring, recording, or copying
errors, or by errors in entering the data into the computer. When such errors occur, it is
important to detect and correct them, if possible. If not, excluding the erroneous values
from further analysis is another possibility. Not all outliers are erroneous. Some may
merely reflect unusual circumstances or outcomes; so, having these outliers called to our
attention can help to uncover valuable information [36].

Two methods of the graphical determination of outliers are presented below. The first
option is to create histograms of individual features. Histograms, in addition to visualizing
outliers, allow researchers to gain insight into data, including the distribution, central
tendency, spread, and modality. Figure 2 shows the histograms of the G distribution with
outliers (on the left) and without outliers (on the right).
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Figure 2. Histogram charts of G with and without outliers.

Another way to determine the outliers is to create boxplots. Boxplots are interesting
for representing information about the symmetry, central tendency, skew, and outliers. It
is a good EDA technique since it relies on robust statistics such as the median and IQR
(interquartile range). Figure 3 presents an annotated boxplot which explains how it is
constructed. The central rectangle is limited by Q1 and Q3. The middle line represents
the median of the data. The whiskers are drawn in each direction, to the most extreme
point that is less than 1.5 IQR beyond the corresponding hinge. Values beyond 1.5 IQR are
considered outliers [34]. Figure 4 shows the boxplots of the G feature with outliers (on the
left) and without outliers (on the right).

Figure 3. Example of boxplot with annotations.

Figure 4. Boxplots of G with and without outliers.
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Boxplots are an exploratory data analysis technique, and a researcher should consider
designating a boxplot as an outlier as a suggestion that the points might be mistakes or
otherwise unusual. Outliers should not be eliminated in the first instance, since depending
on their context may provide a lot of information.

3.4. Data Preparation

Based on basic information about the dataset and exploratory data analysis (EDA), we
can draw some conclusions which can determine the basic steps for data preparation:

• All data are numeric;
• There are no empty values—no data cleansing is needed;
• Data are of different orders of magnitude—feature scaling may be required;
• γ and G/Gmax show high linear correlation with the damping ratio—features may be

useful in the ANN model;
• LL, p′, Si, PL, Cl, and IP show moderately strong nonlinear correlation with the

damping ratio—features may be useful in the ANN model;
• Features have outliers—removing outliers should be considered.

Each dataset is different; therefore, there is no one pattern of proceeding in exploratory
data analysis or data preparation. When looking at the data, the researcher has to decide
what steps should be taken to obtain the best possible machine learning (ML) model. Both
exploratory data analysis and data preparation will probably have to be repeated several
times during ANN model improvement.

3.4.1. Feature Scaling

Scaling features is one of the most important data transformations. Since the range of
values of data may vary widely, it becomes a necessary step in data preprocessing while
using machine learning algorithms. Most machine learning algorithms are poor at dealing
with numerical attributes that fall within different ranges of the scale. This also applies to
the analyzed dataset, where, e.g., the p‘ feature has values in the range from 30 to 415 and
where the values of the G/Gmax feature range from 0.16 to 1.02.

One of the two most common types of scaling are min–max scaling and standardiza-
tion. Min–max scaling is commonly known as normalization. Normalization transforms
the data in such way that the features are within a specific range, e.g., (0, 1). To do this,
it subtracts the minimum value from the given value and divides the result by the differ-
ence between the maximum and minimum values. Standardization (also called z-score
normalization) transforms data in such way that the resulting distribution has a mean of 0
and a standard deviation of 1. The standardization mechanism is as follows: we subtract
the mean value from a given value and then divide it by the standard deviation, thanks
to which the resulting distribution has a unit variance. Standardization does not limit the
scaled values to a certain range, as is the case, for example, during normalization. It is also
much less sensitive to outliers.

The type of value scaling which will be the most appropriate in the analyzed task can
be checked by substituting the normalized values, and then the standardized values, into
the model. Target values usually do not need scaling. An important issue, that scientists
often do incorrectly, is what values are scaled. As with all transformations, the scaling
functions should be adjusted only to the training data, not to the entire dataset. Only after
fitting against the training data can these functions be used to transform test data (and
new cases).

Figures 5 and 6 show the results already obtained from the ANN model. The figures
show the MAE and RMSE values of the training and validation set (constituting 20% of the
training set) for the data subjected to normalization and standardization.

For the normalized training data: MAE = 0.2809, RMSE = 0.5069, and R2 = 0.961; for
the standardized data: MAE = 0.2032, RMSE = 0.4352, and R2 = 0.979. For the ANN model
aimed at determining the damping ratio based on other soil parameters, the standardization
works better, and this scaling method will be applied to data in the final model version.
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Figure 5. MAE and RMSE from the ANN model for normalized data.

3.4.2. Architecture of Artificial Neural Networks (ANNs)—Model Adjustment

The structure of the designed neural network depends on the complexity of the
problem to be solved and the type of independent and dependent variables. In order to
define the ANN architecture, the following should be determined: the number of inputs,
the number of output neurons, the number of hidden layers, the number of neurons in
each hidden layer, the type of activation function in the hidden and output layers, and
the weight values of individual neurons. There are also parameters related to training the
neural network, such as the batch size, training epochs, learning rate, and momentum. We
can operate with all these parameters to improve the accuracy of our model.

This can be done in several ways. One of them is to manually select the hyperparameter
values until obtaining the best combination of them. However, this is a very tedious task.
Instead, by taking advantage of all the benefits of Python programming, we can outsource
the search for the best parameters to the GridSearchCV class (scikit-learn). Grid search is a
model hyperparameter optimization technique. For this purpose, it is enough to provide
the desired parameters and their proposed values, and all combinations will be assessed
using a cross-validation test.

Table 7 below shows the optimized parameters and their values that resulted in the
lowest MAE and MSE errors.
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Figure 6. MAE and RMSE from the ANN model for standardized data.

Table 7. Optimized parameter values.

Parameter Value Range

Batch Size 10 (1:100)
Number of Epochs 1000 No significant difference when increasing the value

Training Optimization Algorithm Adam (‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’)

Network Weight Initialization he_uniform (‘uniform’, ‘lecun_uniform’, ‘normal’, ‘zero’, ‘glorot_normal’,
‘glorot_uniform’, ‘he_normal’, ‘he_uniform’)

Neuron Activation Function relu (‘softmax’, ‘softplus’, ‘softsign’, ‘relu’, ‘tanh’, ‘sigmoid’,
‘hard_sigmoid’, ‘linear’)

Dropout Regularization 0 (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
Number of Hidden Layers 2 (0, 1, 2, 3)
Number of Neurons in the

1 Hidden Layer 95 (0:200)

Number of Neurons in the
2 Hidden Layers 80 (0:200)

Learning Rate 0.0001 (0.00001, 0.0001, 0.001, 0.01, 0.1)
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4. Results

4.1. ANN Model Results

Using the data from laboratory tests, an artificial neural network was created to predict
the damping ratio.

The input parameters included:

• γ—the shear strain;
• G/Gmax—the normalized shear modulus;
• LL—the liquid limit;
• p′—the mean effective stress;
• Si—the silt content;
• PL—the plasticity limit;
• Cl—the clay content.

The output data of the neural network were the damping ratio determined based
on laboratory tests. To determine the value of the damping ratio (D) of clay soils in this
study, deep feed-forward (DFF) network was used, which means that we applied more
than one hidden layer in the model. The main problem with using only one hidden layer
is overfitting. Therefore, by adding more hidden layers, we may achieve (not in all cases)
reduced overfitting and improved generalization. The network used has the following
architecture: 7-95-80-1, which means an artificial neural network with seven inputs and two
hidden layers; the first with 95 neurons, the second with 80 neurons, and an output layer
with 1 neuron. The relu function was used as the activation function in the first and second
hidden layers. The Adam optimization algorithm was chosen to train the neural network.
The input data were divided accordingly for the data used to train the network—80% and
20%—for network testing. From the training set, 20% was used to create a validation set
which was used to tune the parameters of a classifier.

The correlation between the damping ratio predicted by the ANN and their values
measured in the laboratory is shown in Figure 7. The predicted values of the damping ratio
of clay soils are characterized by high convergence (R2 = 0.976) with their values measured
in the laboratory, which justifies the use of the ANN to predict their damping ratios.

Figure 7. Correlation of the damping ratios of the clay soils predicted by the artificial neural network
(test cases) with the values measured in the laboratory.

Figure 8 illustrates the histogram of errors made by a neural network when predicting
the damping ratio. The error histogram is the histogram of errors between the target values
and predicted values after training a feedforward neural network. These error values
indicate how the predicted values differ from the target ones. The mean absolute error
(MAE) for the test set was 0.1854, while the mean square error (MSE) was 0.1704.
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Figure 8. Error histogram.

4.2. Comparison of ANN Model with Other Empirical Formulas Available in the Literature

The obtained results were compared with the results obtained from earlier tests for
cohesive soils. The authors chose five formulae for the damping ratio (D) in the wide shear
strain range, summarized as follows:

Ishibashi and Zhang [36]:

D =
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Park and Stewart [37]:
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Michaelides et al. [38]:
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Zhang et al. [39]:
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Soból et al. [29]:
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]
+ dIP + e

(
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)f

; (6)

where a, b, c, d, e, and f are constants, different for both analyzed soil groups, and Pa is
the atmospheric pressure equal to 100 kPa. For low- and medium-cohesive soils with an
IP < 20%: a = 14.8, b = 34.3, c = 26, d = −0.31, e = 1.36, and f = −0.32; for very cohesive soil
with an IP > 20%: a = 6.32, b = 20.36, c = 14.43, d = 0.062, e = 0.75, and f = −1.49.

Each considered model in the literature was suitable only for the tested soils. The
equation presented by Ishibashi and Zhang [36] was calibrated for cohesive soil with an
IP below 50% and an effective stress below 1000 kPa. Park and Stewart [37] presented an
equation for the average damping ratio curve based on nine publications and considered
different types of clay, e.g., offshore clayey silt, Edger plastic kaolin, San Old Bay clay,
Mexico City clay, etc. Michaelides et al. [38] created an empirical model for cohesive soil
with an IP from 0% to 100%. The formula shown by Zhang et al. [39] was appropriated for
Tertiary, Quaternary, and older soils with an IP from 0% to 132%, collected from a depth
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from 0 to 326 m. The equation proposed by Soból et al. [29] was calibrated on the same soil
samples as the ANN model. It should be noted, however, that the formula proposed there
was different for soils with an IP < 20% and different for those with an IP > 20%. The use
of the ANN model allowed to avoid this division, further increasing the accuracy of the
damping ratio predictions. Table 8 presents the comparison between the mean absolute
error and determination coefficient.

Table 8. The comparison of mean absolute error (MAE) and determination coefficient (R2) for
analyzed models.

Ishibashi and
Zhang [36],

Equation (2)

Park and
Stewart [37],
Equation (3)

Michaelides
et al. [38],

Equation (4)

Zhang et al. [39],
Equation (5)

Soból et al. [29]
Equation (6)

Authors ANN
Model

MAE 3.63 1.02 1.06 1.77 0.45 0.19
R2 0.21 0.79 0.78 0.77 0.96 0.98

The conducted comparisons indicate that the best model for cohesive soils taken from
the analyzed site is the ANN model, which was proposed by the authors of this article.

The ANN model tested in the presented research can be useful to other researchers in
several ways compared to traditional equations, such as Equation (6). Firstly, ANN models
have the ability to learn from data and improve their predictive performance over time,
which can result in more accurate and reliable predictions. Additionally, ANN models
are more flexible than traditional equations and can capture more complex relationships
between input and output variables. This can be especially useful in cases where the
underlying relationships between variables are not well understood or are nonlinear.
Finally, ANN models can be trained on large datasets, allowing for the inclusion of a
wide range of input variables, which can lead to more robust predictions. Therefore, ANN
models can provide researchers with a powerful tool for predicting the behavior of cohesive
soils and can potentially lead to new insights and discoveries in this field.

5. Conclusions

The article presents the procedure for developing an artificial neural network (ANN)
model. The potential of using an ANN to increase the confidence level of the prediction
of the damping ratio (D) of normally and lightly overconsolidated Quaternary cohesive
soil was described. Careful selection of the input variables describing the problem at hand
is necessary in order to balance the complexity of the issue at hand with the amount of
information available. Minor variables were omitted. The mean absolute error (MAE)
for the performed tests was 0.1854, while the mean square error (MSE) was 0.1704. The
predicted values of the damping ratio of clay soils are characterized by high convergence
(coefficient of determination, R2 = 0.976).

Comparing the ANN model with other published empirical formulas shows an im-
provement in the prediction accuracy. It is not possible to reliably evaluate the damping
ratio for the tested cohesive soil with the use of commonly known empirical equations.
A comparison of the measured and calculated value with equations from the literature
gave a very large spread of the damping ratio and large error values. The conducted
analysis shows that it can be concluded that an empirical model should be applied to
the soil, with a similar genesis and mineral composition as the soil for which they were
created. Considering the problem, it was shown that artificial neural networks are more
flexible compared to formulas and relationships with a predetermined structure. Addi-
tionally, another advantage of artificial neural networks is the possibility to further model
generalization by inserting newer records and the automatic adaptation of the architecture.

Artificial neural networks are well suited to modeling the complex behavior of most
geotechnical engineering materials, which, by their very nature, exhibit extreme variability.
The use of artificial neural networks to predict the damping ratio of clay soils is an effective,
highly efficient, and easy-to-use method.
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Abstract: Skirted foundations are widely used in offshore and subsea engineering. Previous studies
have shown that soil undrained shear strength variability has a notable impact on probabilistic
analyses of skirted foundation bearing capacity. This study proposes an efficient machine-learning
method to predict the uniaxial bearing capacity factors of skirted foundations under pure horizontal
and moment loads, without relying on traditional time-consuming random finite element methods.
A two-dimensional convolutional neural network is adopted to capture the potential correlation
between soil random fields and bearing capacity factors. The proposed CNN-based model exhibits
satisfactory prediction performance with regard to coefficients of variation and scale of fluctuations
in two directions. Specifically, coefficient of determination (R2) values exceed 0.97, while root mean
square error (RMSE) values remain below 0.13 for the surrogate model. In addition, more than 96% of
the predictions are associated with a relative error of 5% or less, providing evidence of the proposed
2D-CNN model’s satisfactory prediction performance.

Keywords: convolutional neural network; spatial variability; skirted foundation; bearing capacity

1. Introduction

Skirted foundations are widely used in offshore and subsea engineering applications
such as the oil and gas industry, wind turbines, and floating structures. Owing to the
complex seabed environment, these foundations experience a combination of horizontal
(H), vertical (V), and moment (M) loading. Accurate estimation of the foundation’s bearing
capacity is crucial and has drawn increased attention from geotechnical engineers [1–4].
Previous research has assumed the seabed soil to be homogeneous, ignoring the reality
of soil characteristics’ spatial variability due to complex deposition history [5]. Thus, soil
property uncertainty needs to be considered when analyzing foundation bearing capacity.

Soil spatial variability is simulated by the random field theory [6–9]. The random
finite element method (RFEM) and random finite difference method (RFDM) have been
widely used in the probabilistic analysis of geotechnical engineering, considering soil
spatial variability. These methods have been applied in slope stability [10–13], foundation
bearing capacity [14–18], tunnel stability and deformation [19–21], seismic response of
structures [22–24], etc. The non-stationary characteristic exists in seabed soil parameters,
as shown by Hossain and Randolph [25]. Consequently, the non-stationary random field
of soil undrained shear strength has been simulated to investigate the effect of soil spatial
variability on the bearing capacity of offshore foundations. For example, Charlton and
Rouainia [26] assessed the ultimate capacity of skirted foundation in spatially variable
undrained clay under uniaxial and combined loads. Selmi et al. [27] investigated the influ-
ence of soil spatial variability and embedment ratio on the capacity of skirted foundations
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under combined horizontal and moment loading. Ye et al. [16] presented the probabilistic
failure envelope of skirted foundations with surrounding soil undrained shear strength
linearly increasing with depth. However, these studies are based on Monte Carlo simu-
lation (MCS), which is time-consuming to obtain stochastic results. Usually, more than
one hour was required for one MCS, while 500 simulations were necessary for a stochastic
analysis [26]. To resolve this problem, there is a need to develop an effective method for
probabilistic analysis of foundation bearing capacity.

In recent years, machine learning has attracted significant attention for its unparalleled
ability to model non-linear and exceedingly complex functions. Its efficacy in tackling
geotechnical issues has been extensively studied and discussed [28–32]. For example,
Moayedi and Hayati [33] employed machine-learning techniques to predict the settlement
of the ground near sloping terrain due to strip loading. Tran et al. [34] proposed two hybrid
machine-learning models that leveraged five input factors to predict the undrained shear
strength of Finnish sensitive clays. Wang et al. [35] developed a convolutional neural-
network-based global response surface approach to support reliability-based design of a
strip footing in soils that exhibit spatial variability. Furthermore, Van et al. [36] used multi-
variate adaptive regression splines to predict the bearing capacity of conical foundations
in clays that are heterogenous and anisotropic. However, the accurate prediction of the
bearing capacity of skirted foundations in spatially variable soils has not been studied
using machine-learning methods, to date.

This paper proposes an efficient machine-learning-based method to predict the bear-
ing capacity of skirted foundation subjected to pure horizontal and moment loads. The
proposed method employs a two-dimensional convolutional neural network (2D-CNN)
to establish an efficient surrogate model, which replaces the time-consuming MCS. The
input of the surrogate model is the non-stationary random field of soil undrained shear
strength, while the output is the bearing capacity factor of the skirted foundation calculated
by RFEM. The prediction performance of the proposed model is evaluated by comparing
the prediction results with those generated from RFEM.

2. Random Finite Element Method

The bearing capacity of shirted foundation under uniaxial loading is analyzed by
utilizing the random finite element method (RFEM), considering the spatial variability of
seabed soil. The datasets for the machine-learning model in Section 3 are based on the
results of the numerical simulation.

2.1. Simulation of Non-Stationary Soil Random Field

The random field theory extensively delineates the spatial variability of seabed
soils [37,38]. Undrained shear strength (Su) constitutes an essential property of seabed
soil, significantly influencing the bearing capacity of offshore foundations in undrained
conditions [39,40]. This study examines the spatially variable soil undrained shear strength
to investigate the bearing capacity of skirted foundations. Several effective methods for sim-
ulating soil property random fields include the spectral representation method (SRM) [16],
local average subdivision (LAS) method [41], and Karhunen–Loeve (KL) expansion tech-
nique [42,43]. The SRM, characterized by its high efficiency and accuracy in previous
research [44], is adopted to simulate the random field of Su.

Numerous studies illustrate that the mean value of Su increases linearly with depth
for the seabed soil [45–47], which can be expressed by Equation (1):

μSu = μSu,0 + kz (1)

where z is the depth of the seabed soil; μSu is the mean value of Su at the depth z; μSu,0

is the mean undrained shear strength at the mudline; and k is the increasing gradient of
strength below the mudline. According to Ye et al. [16], μSu,0 is set to 10 kPa and k remains
fixed at 1 kPa/m, which indicates that the mean undrained shear strength of the soil in the
numerical model increases from 10 to 60 kPa as depth ranges from 0 to 50 m.
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Determining the scale of fluctuations (SOFs) in horizontal and vertical directions is
essential for evaluating the correlation degree between any two points in the random field.
When the SOF approaches zero, data from any two points in the soil domain become
independent. Phoon and Kulhawy [48] report mean values of horizontal and vertical SOFs
(i.e., δh and δv) for submarine soil as 50.7 m and 3.8 m, respectively. The coefficient of
variation (COV), which governs the dispersion degree of Su in the random field around its
mean value, constitutes another important parameter. Generally, Phoon and Kulhawy [48]
suggests that the COV of submarine soil ranges between 0 and 0.5. In addition, a lognormal
distribution is employed to simulate the variability of Su to preclude negative values in the
random field. The two-dimensional exponential autocorrelation function [49] describes the
spatial correlation of Su, as expressed in Equation (2).

ρ(τh, τv) = exp
[(

−2|τh|
δh

− 2|τv|
δv

)]
(2)

where ρ is the correlation coefficient; τh and τv are the distances between any two points in
horizontal and vertical directions, respectively.

This paper aims to investigate the predictive performance of the proposed machine-
learning model regarding the bearing capacity of the skirted foundations in spatially
variable soil. The variation of COV, δh, and δv are considered separately to provide a
comprehensive depiction of the surrogate model’s prediction performance. Table 1 lists the
specific parameters involved in simulating the random field, and the detailed procedures
for simulating the non-stationary random field of Su are summarized by Ye et al. [16]. A
typical series of random field realization is presented in Figure 1.

Table 1. Summary of the parameters of soil random field.

Case COV δh (m) δv (m)

Ani-1 0.1 50 4
Ani-2 0.2 50 4
Ani-3 0.3 50 4
Ani-4 0.4 50 4
Ani-5 0.5 50 4
Ani-6 0.3 30 4
Ani-7 0.3 40 4
Ani-8 0.3 60 4
Ani-9 0.3 50 2

Ani-10 0.3 50 6
Ani-11 0.3 50 8

2.2. Numerical Model

The finite element method (FEM) was employed to evaluate the bearing capacity of
the skirted foundations in homogeneous soil. In accordance with the previous research
by Ye et al. [16], a skirted foundation with a diameter (D) of 10 m and length (L) of 10 m
was modeled in the commercial finite element software ABAQUS (version 6.14) as a per-
fectly rigid body. The skirt thickness (t) was set to 0.03 m. Horizontal, vertical, and
moment loading (V, H, and M) were applied to the reference point (RP) to determine
the corresponding bearing capacity, with RP located at the centre of the skirted founda-
tion lid. Figure 2 presents the details of the skirted foundation and the positive loading
and displacement.
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Figure 1. A typical series of the soil random field: (a) Case Ani-1; (b) Case Ani-3; (c) Case Ani-6;
(d) Case Ani-11.

Figure 2. Details of skirted foundation and positive loading and displacement.

In reality, skirted foundation has a circular or square section, but it was considered that
plan geometry is secondary to soil strength profile in terms of the effect on bearing capacity
by Gourvenec and Barnett [2]. Therefore, a two-dimensional (2D) plane strain condition
was assumed in this study to allow comparison with existing analytical solution [2], as
well as improving calculation efficiency with satisfactory accuracy [16]. The soil domain
was modeled as a rectangular region with dimensions 7D in length and 5D in width
(70 × 50 m) to minimize the effect of boundaries. Lateral boundaries were constrained
in the horizontal direction, while the bottom boundary was fixed in both horizontal and
vertical directions. No constraint was applied in the top boundary. The soil domain was
meshed into a square grid with dimensions of 1 × 1 m; however, in the 3D × 2D area
surrounding the skirted foundation, the mesh size was adjusted to 0.5 × 0.5 m to obtain
more precise bearing capacity results. A total of 5300 four-node bilinear reduced integration
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quadrilateral (CPE4R) elements were used to simulate the seabed soil domain in the model,
as shown in Figure 3.

 

Figure 3. Finite element model of skirted foundation.

The soil was defined as an elastoplastic material that obeys the Tresca yield criterion,
in which the maximum shear stress was determined by the undrained shear strength [27].
The soil undrained Young’s modulus (Eu) was assumed to be linearly correlated to Su with
the relationship expressed in Equation (3):

Eu = Ku × Su (3)

where Ku is the coefficient. In fact, the ultimate bearing capacity of foundation was con-
firmed to be barely influenced when Ku was equal to 500 [50]. In addition, the Poisson’s
ratio was fixed at 0.49 to simulate the undrained condition. As only the ultimate bearing
capacities were of interest, the skirted foundation was simulated as a rigid body without
any deformation. The skirted foundation and surrounding soil were coupled by the “tie”
constraint to avoid the generation of extra interface element.

The bearing capacity factors were introduced in this paper to evaluate the uniaxial
bearing capacity normalized by the foundation diameter and the mean undrained shear
strength at mudline, as expressed in Equation (4):

NcH = H0/DμSu,0

NcV = V0/DμSu,0

NcM = M0/D2μSu,0

(4)

where NcH , NcV , and NcM denote the bearing capacity factors under pure horizontal,
vertical, and moment loading, respectively; H0, V0, and M0 denote the ultimate uniaxial
bearing capacity. In the deterministic case, without consideration of soil spatial variability,
the bearing capacity factors marked by the subscript det are calculated to make comparison
with previous research. The NcH,det and NcM,det calculated by the finite element method in
this study are 4.20 and 2.54, which are consistent with the results of upper bound analysis
by Bransby and Yun [1] (i.e., NcH = 4.00 and NcM = 2.50). The relative errors are no more
than 5%, indicating acceptable accuracy of the proposed numerical model.

2.3. Random Finite Element Method

The random finite element method (RFEM) was employed to perform the stochastic
analysis of the skirted foundation’s bearing capacity, considering spatially variable soil
undrained shear strength. The primary concept of RFEM involves incorporating the
random field data generated in Section 2.1 into the finite element model simulated in
Section 2.2. The general steps are summarized as follows.
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(1) A deterministic finite element model, coupling the skirted foundation and soil, is
established in ABAQUS software, with the soil elements shown in Figure 1 numbered
from 1 to 5300;

(2) The non-stationary random field of Su is generated using the SRM proposed in
Section 2.1. Each value in the random field data is mapped to an element in the finite
element model based on its unique position number. Subsequently, each realization
of the soil random field is assigned to the deterministic model, replacing the soil
undrained shear strength to generate a new calculation document for the subsequent
finite element analysis. This process was executed using Python coding;

(3) The number of MCS (n) is determined, and the finite element calculation in Section 2.2
is repeated after generating the random field data. The stochastic analysis comprises
n finite element calculations.

Selecting an appropriate MCS number is crucial for obtaining stable and accurate
results. The evolution of the mean value and standard deviation of NcH against the required
MCS numbers in case Ani-3 are shown in Figure 4. The converging trend suggests that
n= 600 is sufficient to provide stable results for the stochastic analysis.

Figure 4. The converging trend of NcH statistics: (a) mean; (b) standard deviation.

3. Architecture of the Proposed Two-Dimensional Convolutional Neural Network
(2D-CNN) Model

The architecture of the proposed 2D-CNN model for predicting the bearing capacity of
skirted foundation consists of the input layer, the convolutional layer, the pooling layer, the
fully connected layer and the output layer. The input and output of the proposed model are
the random field data and bearing capacity factor, respectively. The detailed architecture
of the proposed 2D-CNN model is given in Figure 5. The training process runs on the
PyTorch platform, which is an open-source deep-learning framework based on Python.
The experiments are performed on a standard PC with 8 Intel Core i7-11700 CPUs and two
NVIDIA RTX 3060 GPU cards.

3.1. Input and Output Layer

The proposed 2D-CNN model aims to predict the bearing capacity of the skirted
foundation in spatially variable soil. As shown in Figure 5, the input is a random field
data matrix with size of 70 × 50 mapping to the soil domain in the numerical model. The
bearing capacity factor calculated by FEM is the output of the proposed model. A random
field matrix and corresponding bearing capacity factor constitute a sample in the dataset,
which contains the training, validation, and prediction datasets that are separated from
the whole dataset in the ratio of 70%, 10% and 20%, respectively. Taken the case Ani-1
for example, there are 420, 60, and 120 samples in the training, validation, and prediction
datasets for the training process of the proposed 2D-CNN model.
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Figure 5. Architecture of the proposed 2D-CNN model.

3.2. Convolutional Layer

The convolutional layer is used to extract the key information from the input data.
There are several hyperparameters for a convolutional layer that remain constant in the
training process, such as the kernel size, stride, padding, and filters. These parameters
were determined by trial and error in this study. The kernel size represents the range of
each convolution operation, while the stride controls the crossing length in the horizontal
and vertical directions between the two adjacent convolution operations. The zero-padding
strategy is adopted to make sure the output has the same size as the input. The filter
controls the output channels during the convolutional operation. Generally, a nonlinear
activation function is utilized after the convolutional operation, which is beneficial to
introduce nonlinearities into the surrogate model. In this study, the rectified linear unit
(ReLU) function is employed, as expressed in Equation (5). There are four convolutional
layers in the proposed 2D-CNN model and the detailed hyperparameters of these layers
are shown in Figure 5.

f (x) =
{

0 , x ≤ 0
x , x > 0

(5)

3.3. Pooling Layer

The pooling layer plays significant role in reducing the size of input features. There
are two typical patterns of pooling layer. Specifically, the max pooling aims to hold the
maximum value of each pooling zone, while the average pooling uses the mean value
to present the pooling zone. The average pooling is adopted in this study for a better
prediction performance. The pooling size and stride are equal to 2 × 2 to realize a half
decreasing in both the horizontal and vertical size of the input data.

3.4. Fully Connected Layer

The fully connected (FC) layer is the final part of a regular CNN model. It works by
establishing full connection between the input feature and the output layer. Mathematically,
the input feature is transformed to the output layer through a weight matrix and a bias
matrix, as illustrated in Equation (6):

yd = f (Wdxd + bd) (6)
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where xd and yd denote the input and output vector of the FC layer, respectively; Wd
and bd denote the weight and bias matrix, respectively; f (·) denotes the ReLU activation
function expressed in Equation (5). Furthermore, the last convolutional layer is flattened to
a one-dimensional array before the FC layer.

In the training process, the early stopping method with limited epochs of 2000 is
adopted to avoid overfitting of the proposed 2D-CNN model. The adaptive momentum
(Adam) algorithm is selected as the optimizer and the learning ratio is set to 8 × 10−5 to
reach a reasonable prediction performance. The above-mentioned hyperparameters of
the proposed 2D-CNN model are determined by trial and error. Several networks with
different parameters of convolutional and pooling layers are examined and the effect on R2

and RMSE values in Case Ani-5 are summarized in Table 2, where NCL and KCL denote the
number and kernel size of convolutional layer, respectively. It is observed from Table 2 that
the architecture of three convolutional layers with kernel size at 2 × 2 and average pooling,
as shown in Figure 5, has the maximum R2 and minimum RMSE value in predicting the
uniaxial horizontal and moment bearing capacity factors.

Table 2. Effect of different neural network architecture on R2 and RMSE values.

NCL KCL Pooling Type
R2 RMSE

NcH NcM NcH NcM

2 2 × 2 Maximum 0.9048 0.8996 0.2768 0.2210
2 2 × 2 Average 0.9420 0.9417 0.2501 0.1938
2 3 × 3 Maximum 0.8986 0.8938 0.2911 0.2271
2 3 × 3 Average 0.9189 0.9132 0.2617 0.2051
2 4 × 4 Maximum 0.8968 0.8896 0.3036 0.2459
2 4 × 4 Average 0.9116 0.9077 0.2690 0.2166
3 2 × 2 Maximum 0.9202 0.9166 0.2696 0.2136
3 2 × 2 Average 0.9570 0.9569 0.2433 0.1865
3 3 × 3 Maximum 0.9113 0.9088 0.2836 0.2203
3 3 × 3 Average 0.9345 0.9299 0.2546 0.1987
3 4 × 4 Maximum 0.9078 0.9022 0.2964 0.2384
3 4 × 4 Average 0.9261 0.9212 0.2621 0.2088
4 2 × 2 Maximum 0.9093 0.9066 0.2732 0.2173
4 2 × 2 Average 0.9459 0.9451 0.2476 0.1908
4 3 × 3 Maximum 0.9001 0.8916 0.2877 0.2241
4 3 × 3 Average 0.9215 0.9198 0.2581 0.2029
4 4 × 4 Maximum 0.8988 0.8916 0.3002 0.2429
4 4 × 4 Average 0.9140 0.9112 0.2659 0.2132

4. Results and Discussion

On account of the influence of the number of training samples on the prediction
performance of the proposed model, the dataset in case Ani-3 is selected to obtain 16 CNN
models with difference size of training samples. The prediction datasets are identical for
the 16 models, with 120 samples. Figure 6 displays the variation of R2 and RMSE values
for NcH when the number of training samples increases from zero to 420. It is evident
that the R2 value increases and the RMSE value decreases quickly with the increasing
number of training samples. These changing trends gradually flatten out as the number of
training samples exceeds 210. The R2 and RMSE values slightly fluctuate when the training
samples arrive at 350, demonstrating that 420 training samples are sufficient to provide
stable prediction performance of the surrogate model.
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Figure 6. Influence of number of training samples on R2 and RMSE values.

4.1. Influence of Coefficient of Variation (COV) in the Random Field

Figure 7 shows the development of the mean and standard deviation of the uniaxial
horizontal and moment bearing capacity factors with the variation of COV in RFEM. It is
found that the standard deviations of NcH and NcM increase with COV, for the fluctuation
of the undrained shear strength is larger under conditions with higher COV, as illustrated
in Figure 1a,b.

Figure 7. Variation of the bearing capacity factors (NcH and NcM ) statistics with COV: (a) Mean;
(b) Standard deviation.

In order to investigate the influence of COV of the soil undrained shear strength
random field on the prediction performance of the proposed 2D-CNN model, the datasets
consist of the random field data and corresponding bearing capacity factors from case Ani-1
to Ani-are trained separately with 480 samples and tested by the remaining 120 samples.
The five-fold cross-validation method [51] is adopted to obtain more persuasive results, in
which the total dataset is randomly divided into five subsets and each subset is taken as
the prediction dataset while the remaining four subsets are taken as the training dataset
to train five CNN models. In other words, the presented prediction performance is the
average result of the five models. Figure 8 shows the root mean square error (RMSE) and
coefficient of determination (R2) of the prediction dataset in the five cases. Specifically,
the RMSE value reflects the degree to which the predicted result deviates from the actual
value, where a smaller RMSE value represents better prediction accuracy. The R2 value,
varying between zero and one, reflects the global performance of the surrogate model.
A larger R2 value indicates better prediction performance of the proposed model. It is
visible in Figure 8 that the value of RMSE gradually increases when the COV extends from
0.1 to 0.5. Meanwhile, the value of R2 slightly fluctuates with the increase in COV, which
indicates that the performance of the proposed surrogate model is affected by the degree of
variation of the random field when one considers the soil spatial variability in predicting the
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uniaxial bearing capacity of skirted foundation. The 2D-CNN model essentially captures
the potential characteristics between the input and output vectors. The output value in
the dataset contains a wider distribution range in the case of higher COV, resulting in a
decrease in the average density of training data when the total number of samples remains
unchanged. This is reflected in the surrogate model, which shows relatively poor prediction
performance under higher COV.

Figure 8. Effect of COV on RMSE and R2 value for (a) NcH and (b) NcM.

However, there are five surrogate models for the prediction of bearing capacity factors
when COV varies from 0.1 to 0.5. These models are predetermined with the same structure
(as shown in Figure 5), which contains the difference in the model parameters trained
by different datasets. It is complicated to generate several datasets and train different
surrogate models in dealing with the prediction of bearing capacity factors, considering
the variation of COV in the random field. It is necessary to train a unified surrogate
model in the stochastic analysis under different COV of random field without notably
reducing the accuracy of prediction. Therefore, the samples from case Ani-1 to Ani-5 are
composed to generate a mixed dataset to train a 2D-CNN model in predicting the bearing
capacity factors of the skirted foundation. Specifically, there are 2100, 300 and 600 samples
in the training, validation, and prediction datasets for the training process of the unified
2D-CNN model.

Figure 9 presents the uniaxial bearing capacity factors predicted by the unified 2D-
CNN model and calculated by the RFEM. It can be seen from Figure 9a,b that both the R2

values in the prediction datasets of the uniaxial horizontal and moment bearing capacity
factor are larger than 0.98, while the RMSE values are smaller than 0.12, indicating that
NcH and NcM predicted by the surrogate 2D-CNN model are highly consistent with the
results calculated by the RFEM. The unified model performs better than the model trained
by the dataset with single value of COV, especially when COV is larger than 0.1, as shown
in Figure 8. This is mainly caused by the average effect that the samples with small
COV in the dataset are beneficial to the prediction of the unified model. The cumulative
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density function (CDF) of the predicted and calculated bearing capacity factors under
uniaxial horizontal and moment loading are shown in Figure 9c,d, respectively. The
satisfactory agreement between the CNN-derived and RFEM-derived CDFs of NcH and
NcM demonstrates that the global distribution of the uniaxial bearing capacity factor of the
skirted foundation under the soil random field with different COV is well captured by the
proposed unified 2D-CNN model. In addition, the mean, minimum and maximum values
of the results obtained by the two methods are compared for the quantitative analysis of the
prediction performance. As to the uniaxial horizontal bearing capacity factor, the relative
errors of the mean, minimum, and maximum values between the predicted and calculated
results are 0.15%, 3.16%, and 0.49%, respectively. Meanwhile, the three relative errors of the
uniaxial moment bearing capacity factors are 0.23%, 0.42%, and 0.13%, respectively. The
relative errors of the three evaluating indicators are all restricted within 4.00%, indicating
the distribution of the uniaxial bearing capacity factors calculated by the time-consuming
RFEM can be replaced by the proposed 2D-CNN model.

Figure 9. Comparison of the predicted and actual uniaxial bearing capacity factors under mixed
COV: (a) Scatter of NcH ; (b) Scatter of NcM; (c) CDFs of NcH ; (d) CDFs of NcM.

The probability density functions (PDFs) of the relative errors between the CNN-
predicted and RFEM-calculated bearing capacity factors are given in Figure 10. The relative
errors of the 1200 predicted uniaxial horizonal and moment bearing capacity factors are
less than 8%. In addition, the confidence intervals (CIs) of the relative errors are 97.7%
and 96.3%, with the margin of error at 5%, for the predicted bearing capacity factors
under pure horizontal and moment loading, respectively. The unified 2D-CNN model is
accurate enough to predict the uniaxial horizontal and moment bearing capacity factors for
the probabilistic analysis of the skirted foundation located in spatially variable soil with
different COV.
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Figure 10. Distribution of the relative errors of the predicted bearing capacity factors under mixed
COV: (a) PDF of NcH ; (b) PDF of NcM.

4.2. Influence of Horizontal Scale of Fluctuation (δh) in the Random Field

The development of the mean and standard deviation of NcH and NcM with the
variation of δh is shown in Figure 11. It is indicated that the mean value and standard
deviation of NcH and NcM fluctuated slightly with the increase of δh from 30 to 60 m (e.g.,
case Ani-6, 7, 3, and 8 given in Table 1). The samples of the four cases are composed to a
mixed dataset in training a 2D-CNN model for the prediction of uniaxial bearing capacity
factors of the skirted foundation considering the variation of δh. There are 1680, 240 and
480 samples for the training, validation, and prediction datasets, respectively.

Figure 11. Variation of the bearing capacity factors (NcH and NcM ) statistics with δh: (a) Mean;
(b) Standard deviation.

Figure 12 displays the comparison of NcH and NcM predicted by the trained 2D-CNN
model and calculated by RFEM. As shown in Figure 12a,b, the predicted and calculated
uniaxial horizontal and moment bearing capacity factors are located around the solid line,
which is predefined as the predicted value equal to the actual value, with the minimum
R2 value at 0.9802 and maximum RMSE value at 0.1204, which indicates a satisfactory
prediction performance of the surrogate model. It is observed from Figure 12c that the
distribution of the predicted uniaxial horizontal bearing capacity factors is highly consistent
with the RFEM-calculated results, in which the relative errors of the mean, minimum, and
maximum values are 0.15%, 0.22%, and 0.69%, respectively. Similarly, the relative errors of
the three evaluating values are 0.23%, 0.42%, and 0.13% for the uniaxial moment bearing
capacity factors predicted by the 2D-CNN model, as presented in Figure 12d, which
indicates that the typical distribution of NcH and NcM are well predicted by the surrogate
model on account of the variation of δh.
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Figure 12. Comparison of the predicted and actual uniaxial bearing capacity factors under mixed δh:
(a) Scatter of NcH ; (b) Scatter of NcM; (c) CDFs of NcH ; (d) CDFs of NcM.

In order to visualize the accuracy of the CNN-predicted uniaxial bearing capacity
factors, the probability distribution of the relative errors between the predicted and cal-
culated results is illustrated in Figure 13. It is obviously that the relative errors are all
restricted in 8%, with a CI of 99.2% and 97.3% for the margin of 5% error in the prediction
of uniaxial horizontal and moment bearing capacity factors, respectively. It indicates that
the architecture of the 2D-CNN model proposed in Figure 5 has the potential to predict the
uniaxial bearing capacity factors of the skirted foundation within an acceptable error range
when δh of the soil random field extends from 30 to 60 m.

Figure 13. Distribution of the relative errors of the predicted bearing capacity factors under mixed δh:
(a) PDF of NcH ; (b) PDF of NcM.
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4.3. Influence of Vertical Scale of Fluctuation (δv) in the Random Field

On account of the increasing of δv from 2 to 8 m (e.g., case Ani-9, 10, 3, and 11 shown
in Table 1), a mixed dataset consisting of the total samples in the four cases is generated to
train a 2D-CNN model, which has the same architecture as shown in Figure 5, to predict
the uniaxial bearing capacity factors of the skirted foundation considering the variation of
δv in the soil random field. A total of 1680 and 240 samples are selected for the training and
validation datasets to accomplish the training process of the model, while the remaining
480 samples are used to estimate the prediction performance of the surrogate model.

Figure 14 compares the uniaxial bearing capacity factors predicted by the 2D-CNN
model and calculated by RFEM. It can be seen from Figure 14a,b that the CNN-predicted
NcH and NcM are close to the calculated results, in which the R2 value is more than 0.97
and the RMSE value is less than 0.11. According to the cumulative distribution of NcH
and NcM shown in Figure 14c,d, it is evident that the proposed 2D-CNN model is feasible
in analyzing the uniaxial bearing capacity factors of the skirted foundation in spatially
variable soil with different δv, for the maximum relative error of the three evaluating
indicators is 1.67%.

Figure 14. Comparison of the predicted and actual uniaxial bearing capacity factors under mixed δv:
(a) Scatter of NcH ; (b) Scatter of NcM; (c) CDFs of NcH ; (d) CDFs of NcM.

Furthermore, the probability distribution of the relative errors between the predicted
and calculated uniaxial bearing capacity factors is given in Figure 15. With the variation
of δv from 2 to 8 m, the proposed 2D-CNN model is capable of providing satisfactory
prediction performance for the uniaxial bearing capacity factors by restricting the maximum
relative error within 9%. More specifically, the Cis of the relative error located within 5%
are 99.6% and 97.9% for the prediction of NcH and NcM, respectively. The effect of δv in the
soil random field on the prediction performance of the uniaxial bearing capacity factors is
similar to the influence of δh, as shown in Figure 13.
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Figure 15. Distribution of the relative errors of the predicted bearing capacity factors under mixed δv:
(a) PDF of NcH ; (b) PDF of NcM.

The time required for 600 samples in the statistical analysis of tradition RFDM is
about 327 min on a standard PC as described in Section 3, while the trained 2D-CNN
model takes just 3 s, resulting a 6540-times improvement in calculation efficiency. Only
the ultimate bearing capacity of the skirted foundation had been investigated in this study,
while more than 600 simulations are essential for further reliability analysis, such as the
failure mechanics and failure envelopes of foundation. At this point the trained 2D-CNN
model is highly efficient to acquire numerous outputs in several seconds once the random
filed data are generated, instead of time-consuming finite element calculations.

5. Conclusions

In summary, this study combines the random field theory and convolutional neu-
ral network to develop an effective machine-learning-based model for predicting the
uniaxial bearing capacity factors of the skirted foundation in spatial variable soil under
pure horizontal and moment loading. The spectral representation method is adopted to
simulate the non-stationary random field of soil undrained shear strength with various
coefficients of variation and scale of fluctuations, which is acted as the input of the proposed
2D-CNN model. Meanwhile, the uniaxial horizontal and moment bearing capacity factors
are defined as the output of the surrogate model. The predicted values are compared
with the results calculated by the random finite element method to present the prediction
performance of the surrogate model. Several conclusions are summarized as follows:

(1) The proposed 2D-CNN model can replace the time-consuming RFEM in predicting
the uniaxial bearing capacity factors of the skirted foundation in spatially variable
soil with reasonable accuracy;

(2) There are three 2D-CNN models with the same architecture that are trained to deal
with the prediction of skirted foundation bearing capacity considering the variation
of COV, δh and δv in the soil random field, respectively. The minimum R2 value
and maximum RMSE value for the three surrogate models are 0.9781 and 0.1204,
indicating satisfactory prediction performance of the proposed model;

(3) The confidence interval of the relative error is more than 96.3% with a margin of
5% for the predicted bearing capacity factor with the variation of COV, while the
minimum confidence intervals are 97.3% and 97.9% for the relative errors that are
located within 5% on account of the variation of δh and δv, respectively.

The proposed 2D-CNN model is an effective surrogate model for the prediction of
uniaxial bearing capacity factors of skirted foundation. However, it is noted that the bearing
capacity prediction of the skirted foundation subjected to the combination of horizontal,
vertical and moment loads have not been illustrated. Further study is recommended to
develop a reasonable machine-learning model to predict the skirted foundation bearing
capacity and failure envelope under different loadings.
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Abstract: Particulate materials, such as sandy soil, are everywhere in nature and form the basis for
many engineering applications. The aim of this research is to investigate the particle shape, size,
and gradation of sandy soil and how they relate to shear strength, which is an essential charac-
teristic that impacts soil stability and mechanical behaviour. This will be achieved by employing
a combination of experimental methodology, which includes the use of a microscope direct shear
apparatus, and machine learning techniques, namely multiple linear regression and random for-
est regression. The experimental findings reveal that angular-shaped sand particles enhance the
shear strength characteristics compared to spherical, rounded ones. Similarly, coarser sand particles
improve these characteristics compared to finer sand particles, as do well-graded particles when
compared to poorly graded ones. The machine learning findings show the validity of both models in
predicting shear strength when compared to the experimental results, showing high accuracy. The
models are designed to predict shear strength of sand considering six input features: mean particle
size, uniformity coefficient, curvature coefficient, dry density, normal stress, and particle regularity.
The most important features from both models were identified. In addition, an empirical equation
for calculating shear strength was developed through multiple linear regression analysis using the
six features.

Keywords: particle size; particle shape; sand; shear strength; machine learning; multiple linear
regression; random forest regression

1. Introduction

Natural particulate materials, such as sandy soil, are found everywhere and are essen-
tial to many engineering applications. Various fields, from civil engineering to materials
science, require an understanding of the mechanical behaviour of particle-to-particle [1,2]
and their interactions with different surfaces [3–6]. Understanding these materials is
strongly reliant on particle morphology, which has a significant influence on the mechanical
response of granular materials such as sand. The term ‘particle morphology’ is used to refer
to particle shape, size, form, sphericity, or surface roughness. With regards to particle size,
the soil size in descending order is boulder, cobbles, pebbles, gravel, sand, silt, and clay.
The scope of this paper will be limited to sand, which is a granular material composed of
individual particles classified into three sizes: coarse, medium, and fine sand, as specified
by the Australian standard [7].

While the particle shape has been a topic that has raised many questions in the
literature, its implication on the behaviour of soil is a major area of study with constant
research progression. The soil particle shape can be graded on three independent properties:
form (sphericity: overall shape), roundness, and roughness, each of which has a different
influence on the behaviour of the material [8]. With regards to the sphericity, the soil
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particles can be bulky, flaky, and needle shaped. Sand particles are considered bulky,
and their shape is mostly set during formation. Researchers often use terms such as
‘well-rounded’, ‘rounded’, ‘sub-rounded’, ‘subangular’, ‘angular’, and ‘very angular’ to
describe the roundness of bulky particles. However, the sand’s surface roughness can
change significantly with mechanical and chemical weathering of rocks and minerals over
geological time [9]. While sphericity and roundness are macro- and medium-scale particle
measurements, particle surface texture is a microscale measurement [10]. With regards to
granular sand, the particle shape, including sphericity, roundness, and roughness, affect the
sand’s stiffness, strength, minimum and maximum void ratio (e min and e max), critical state
friction angle (ϕ c), dilatancy (ψ), dilation, strain localisation, and the evolution of strength
anisotropy [11]. Furthermore, particle shape can significantly influence the compressibility
of granular structures. Experimental studies have found that particle roundness and
sphericity (particle regularity) can affect both packing density and compressibility [2].

The shape of soil particles, including roundness, angularity, and surface roughness,
plays a significant role in determining soil mechanical behaviour. Roundness impacts how
particles interact, affecting soil mass packing and stiffness [12–14]. Angular particles, due
to their enhanced interlocking, exhibit higher friction angles and shear strength [15]. Li [16]
found that as sample convexity decreased, friction angle increased. This statement was sup-
ported by an experimental and numerical study by Peng et al. [17], whose results showed
that angular particles have more shear strength compared to rounded particles. Surface
roughness influences soil stiffness [18] and wave propagation parameters [19]. Angularity
affects the undrained response of fine sands, with more angular particles offering increased
resistance to movement, thereby boosting soil strength [20,21]. The work of researchers like
Miura et al. [22] in studying the impact of these properties on soil behaviour contributes to
more accurate predictive models, directly informing engineering practices.

Particle size has an important effect on the behaviour of individual particles and
the packaging density. Vangla and Latha [23] investigated the effect of particle size on
shear strength characteristics. They attempted to eliminate the effect of morphological
characteristics by selecting three sands with different particle sizes (coarse, medium, and
fine) but similar particle shapes (angularity, roundness, sphericity, and roughness). The
samples were prepared at a similar void ratio, and the test was carried out using direct
shear. The results showed that particle size has a slight influence on the peak friction angle
but not on the mechanism of shearing, with coarse sand particles taking longer to reach
the peak compared to fine sand particles. In contrast, an experiment by Wang et al. [24]
investigated the effect of sand and gravel size on shear strength using both direct shear
and triaxial tests in the laboratory. The results showed that as the mean particle diameter
D50 increased, the angle of shearing resistance also increased, leading to higher shear
strength. Similar results were reported by [16,25,26], who found that peak and residual
shear strength increase as particle size increases, whereas in glass beads, interparticle
friction between two glass beads increases as sphere size increases [27]. Interestingly,
particle size also affects the compressibility of the granular structure, with smaller particles
leading to greater compression compared to larger particles [1].

Researchers in the engineering, geotechnics, as well as the medical field have become
more interested in artificial intelligence (AI) techniques over the last two decades. A variety
of machine learning algorithms have been utilised with significant success, including
multiple linear regression (MLR) and random forest regression (RFR), which we have
adopted in our research. In a study by Xie et al. [28], the two models, MLR and RF, were
compared for estimating soil extracellular enzyme activities in reclaimed coastal saline
land. The authors report that the RF model performed better than the MLR model in
predicting the activities of soil amylase and urease, which are important indicators of
soil carbon and nitrogen cycling. The article also identifies the main factors affecting
soil extracellular enzyme activities, such as soil water content, total nitrogen, and pH.
Another study by Zhang et al. [29], who also used MLR and RF models, investigated the
prediction of soil organic carbon (SOC) in a coastal reclamation zone of eastern China. The
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authors compared the effects of different factors on SOC dynamics and found that soil
pH, chloride, and silt contents were the most important factors influencing SOC. Results
from the study indicated that the RF model also performed better than MLR due to its
superiority in handling non-linear relationships between SOC and the predictors. The
RF model showed substantially reduced error indices (ME, MSE, and RMSE), as well
as a higher R2. Another interesting technique is the Adaptive Neuro-Fuzzy Inference
System (ANFIS) introduced by Jang in 1993. ANFIS integrates the elements of neural
networks and fuzzy logic, demonstrating capabilities of learning and generalisation [30].
The system has found diverse applications across various domains. It has been used
for predicting skin permeability in drug-delivery scenarios [31], controlling quality and
predicting characteristics in food-processing technology [32], determining heavy metal
concentrations in water resources [33], and even predicting the security index of ad hoc
vehicular networks [34]. Moreover, it has shown efficacy in predicting the higher heating
value of biomass [35] and modelling thermal error [36]. In addition, a recent article [37]
presents a method to control the cooling of machine tool spindles using ANFIS. The method
adjusts the coolant pump frequency based on the spindle speed and thermal state, achieving
high accuracy and efficiency in reducing thermal deformation and energy consumption.
While MLR and RFR provide robust and interpretable models, the potential of ANFIS,
given its successful implementation in various studies, indicates it as an intriguing future
direction for predictive modelling research, including predicting the shear strength of
cohesionless soil.

The analysis of shear strength of cohesionless soil such as sand can be influenced
by granular shape, size, and gradation. However, no comprehensive model taking these
parameters into account can be found in the literature. This is because there are many
variables that affect it in non-linear ways. In the geotechnical field, machine learning has
been used successfully for problems such as slope stability [38], soil mechanics [39,40],
soil cracking [41], and soil improvement with recycled materials [42–46]. However, the
application of AI methodologies for predicting the shear strength of cohesionless soil,
considering the combined influence of particle shape, size, and gradation, has not been
sufficiently investigated, indicating a large gap in past research. This research aims to
fill this gap by conducting and analysing a series of direct shear tests across different
granular sizes and shapes. This is followed by the application of both MLR and RFR, which
are based on six input features: mean particle size (D50), coefficient of uniformity (Cu),
coefficient of curvature (Cc), dry density ( d), normal stress (σn), and particle regularity
(ρr), the last of which is the average of roundness and sphericity. The research then presents
an empirical equation for predicting the shear strength of sand, considering the six input
features. Finally, after careful examination of the results derived from the models, the study
presents the most effective model and investigates the significance of the inputs involved
in each model. This study provides a strong base for a deep investigation into a new area
that was not explored before.

2. Materials and Methods

2.1. Material

According to the Australian standard [7], sand sizes range from 2.36 mm to 0.075 mm,
with coarse sand ranging from 2.36 to 0.6 mm, medium sand ranging from 0.6 to 0.212 mm,
and fine sand ranging from 0.212 to 0.075 mm. Particles larger than 2.36 mm are classified
as gravel, while particles smaller than 0.075 mm are classified as silt or clay. Different types
of sand were used in the experiments to examine the effect of particle size and shape. The
sands used in the study are referred to as L-Sand, M-Sand, P-Sand, and B-Sand.

For the particle shape impact, four types of sand were used, namely L-Sand, B-Sand,
M-Sand, and P-Sand, were each sieved and separated into four different sizes (1.18 to
0.6 mm, 0.6 to 0.425 mm, 0.425 to 0.3 mm, and 0.3 to 0.15 mm). Due to the limitation of
the microscope lens, which tends to overlook particles larger than 1.18 mm, only particles
below this size were selected.
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To study the impact of particle size, B-sand was sieved and divided into containers
based on their size (Figure 1), and five different sands were selected for testing. According
to Australian standards [7], four of the selected sands are poorly graded and are considered
to be fine sand (B1-Sand) with D50 of 0.11 mm, low medium sand (B2-Sand) with D50 of
0.23 mm, high medium sand (B4-Sand) with D50 of 0.51 mm, and coarse sand (B6-Sand)
with D50 of 1.77 mm. The fifth one is a mixture of sand to create a well-graded sand (B-Sand)
with D50 of 0.58 mm. Therefore, five different sizes were chosen to examine the differences
between coarse, medium, and fine sands, as well as to study the effect of poorly graded
and well-graded sands.

 
Figure 1. The coarse soil (B-sand) is sieved and separated into different containers depending on the
granular size.

Glass beads were utilised to avoid particle shape influence and concentrate only on
particle size impact on mechanical behaviour. The glass beads are made of silica mixed with
other minerals melted at high temperature to produce a viscous, thick liquid. The liquid is
moulded into spherical shapes and hardens as it cools. The regularity of the particle shape
of the glass beads, as observed under the microscope, was found to be almost one. The
glass beads were separated into two different sizes: GB5 with a D50 of 0.89 mm and GB6
with a D50 of 1.77 mm. The specific gravity of the glass beads ranges from 2.45 to 2.50. The
specifications of used particulate materials including sand and glass beads are presented in
Table 1. The sieve analysis was conducted according to the Australian standard [47], and
the results for the used granular material are shown in Figure 2.

Table 1. Specifications of the used particulate materials: sand and glass beads.

Material Range (mm) Grade Cu Cc D50 (mm) Gs R S ρr
L5-Sand 1.18 to 0.6 PG 1 1.44 0.96 0.89 2.65 0.288 0.589 0.439
L4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.68 0.421 0.546 0.484
L3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.69 0.302 0.591 0.447
L2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.74 0.288 0.578 0.433
L1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 - 0.289 0.541 0.415
B-Sand 2.36 to 0.075 WG 2 6.16 1.24 0.58 2.67 - - -
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Table 1. Cont.

Material Range (mm) Grade Cu Cc D50 (mm) Gs R S ρr
B6-Sand 2.36 to 1.18 PG 1.45 0.96 1.77 2.66 - - -
B5-Sand 1.18 to 0.6 PG 1.44 0.96 0.89 2.67 0.263 0.557 0.410
B4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.66 0.246 0.538 0.392
B3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.69 0.279 0.584 0.432
B2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.69 0.270 0.583 0.427
B1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 2.70 0.328 0.580 0.454
M5-Sand 1.18 to 0.6 PG 1.44 0.96 0.89 2.68 0.189 0.551 0.370
M4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.69 0.206 0.565 0.386
M3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.67 0.327 0.597 0.462
M2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.72 0.299 0.542 0.421
M1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 - 0.389 0.499 0.444
P5-Sand 1.18 to 0.6 PG 1.44 0.96 0.89 2.66 0.246 0.559 0.403
P4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.68 0.203 0.575 0.389
P3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.69 0.233 0.523 0.378
P2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.67 0.286 0.565 0.426
P1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 - 0.330 0.508 0.419

GB6 * 2.36 to 1.18 PG 1.45 0.96 1.77 2.45 1 1 1
GB5 1.18 to 0.6 PG 1.44 0.96 0.89 2.45 1 1 1

* Where GB is glass beads, 1 PG is poorly graded, and 2 WG is well graded sand.

Figure 2. Sieve analysis of the used particulate materials, with (a) displaying the sieve analysis for
sand, and (b) showing the sieve analysis for glass beads.

2.2. Experimental

A total of 1068 tests, including microscopy, direct shear, oedometer, and specific grav-
ity tests, were conducted. Out of these experiments, 1000 involved photographing various
types of sand, which include L-Sand, M-Sand, P-Sand, and B-Sand. Each of these sands was
sieved and separated into different containers based on their sizes. Subsequently, micro-
scope analysis was performed on uniformly sized specimens. We considered 50 particles in
each specimen in order to determine particle regularity. Additionally, 46 direct shear tests
were conducted, considering different particle sizes, shapes, and densities. Further, six
tests were carried out to measure compressibility across varying particle sizes and densities
using an oedometer apparatus. Lastly, 16 tests were conducted to determine the specific
gravity of different types of sand of various particle sizes. This was done to investigate the
impact of the mean particle size on specific gravity.

2.2.1. Direct Shear Apparatus

A Mateset direct shear apparatus was used to conduct the experiments, which were
carried out according to the Australian standard [48]. The dimensions of the mould in the
direct shear box were 60 × 60 mm. In each test, different amounts of normal stresses, 25, 50,
100, and 200 kPa, were applied to the sample. Each test was conducted on a dry sample at a
shear rate of 1 mm/min, which is the maximum allowable speed according to the standard.
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The pluviation technique, sometimes called the rainfall method, is employed in the
preparation of granular soil samples, specifically sands, with differing relative densities.
Figure 3 provides a schematic diagram of the pluviation technique. By adjusting the height
from which the sand particles are dropped, the method allows for the creation of samples
with the required density.

 
Figure 3. Schematic view of the pluviation technique.

The relationship between drop height versus void ratio and relative density is shown
in Figure 4, with the void ratio decreasing as drop height increases. A loose sample is
achieved by dropping the soil from a low distance between the cone and mould, reducing
the particles’ kinetic energy and enabling them to loosely pack. Conversely, a dense sample
is formed by dropping the particles from a high distance, increasing their kinetic energy, and
causing them to efficiently rearrange and pack densely. Upon dropping the particles from
the selected height, the mould is removed, and the sample can be used for shearing testing.

Figure 4. Drop height versus void ratio and relative density of L-Sand.
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In the study, two different densities were considered when preparing the sample:
the loose and dense density states. In the loose density state, the sand was spooned and
dropped from a very low height (zero height). Conversely, in the dense state, the sample
was dropped from a cone with a 5.2 mm opening at a height of 83 cm.

2.2.2. Microscope

In this experiment, we used a Nikon Eclipse MA100 microscope, a valuable tool in
geotechnical laboratories for identifying particle shapes. The microscope comes with a
built-in Progression system, offers high-quality optics that enable accurate and efficient
identification of soil particle shapes and sizes. Several parameters are used to characterize
sand particle shape and quality, including sphericity and roundness (Figure 5).

Figure 5. Determining particle shape through sphericity and roundness, with diagonal dotted lines
indicating consistent particle regularity ρr =

(R+S)
2 [2,49].

The sphericity of a particle is a measure of how closely it looks like a circle, while
roundness determines how curved its corners are. A ceramic proppant and high-quality
frac sand are typically both spherical and round, scoring around 0.9 in both metrics. The
same high score is observed in silica sand samples with nearly circular particles, where the
sphericity measure can reach 0.7 or higher. Nonetheless, sand particles featuring angular
edges are expected to have reduced roundness measurements, often falling in the region of
0.2 to 0.5. The schematic representation in Figure 6 shows the method of finding particle
shape parameters including roundness, sphericity, and regularity.

2.3. Mathematical Model

The mathematical model was implemented in the Python programming language.
The research objectives entailed testing two models: a simple model via multiple linear
regression (MLR), and a complex model through random forest regression (RFR). In ad-
dition, MLR was specifically applied to model linearity, while RFR was used to navigate
nonlinearity. In both implemented models (MLR and RFR) the following libraries were
utilised: pandas for data manipulation and analysis, NumPy for numerical computations,
scikit-learn for machine learning tasks including data splitting, normalisation, regression
modelling, and metric evaluation, and finally matplotlib for data visualisation. The work-
flow diagram below (Figure 7) outlines the different processes performed for the machine
learning algorithm implementation. Further details of these processes are discussed in the
following subsections.
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Figure 6. Schematic illustration of determining the particle shape parameters: roundness, sphericity,
and regularity.

 

Figure 7. Workflow of the applied machine learning algorithm.

2.3.1. Pre-Process Data

The pre-processing of data involved two steps: normalisation and splitting the dataset.
Normalisation in machine learning is a vital process that standardizes numerical data in
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your dataset, similar to converting measurements from feet, inches, and yards all into
metres, so everything is on the same scale. This process ensures that the machine learning
models treat all features fairly and do not overvalue one feature while undervaluing
another [50]. When all of the features are on the same scale, the model can learn and make
predictions more effectively and efficiently. Techniques like min-max normalisation, Z-
score normalisation, and robust scaling are commonly used. In other words, normalisation
makes the data neat and uniform, helping machine learning models perform at their best.

In the results analysis, the min-max Normalisation method was followed, which
rescales the data to a range between 0 and 1. The formula for this is as follows:

X′ = (X − X min)

(X max − X min)
(1)

where X is the original value, and X min and X max are the smallest and largest values in
the data.

Following normalisation is the splitting of the dataset. Data splitting is a popular
method for model validation in which we divide a given dataset into two distinct sets:
training and testing. Following that, the statistical and machine learning models are fitted
to the training set and validated using the testing set. By separating a portion of the data
for validation purposes, independent of the training process, we can effectively assess and
compare the predictive performance of various models. The most used ratio of data splitting
is 80:20, where 80% of the data is used for training and 20% for testing. This conventional
method relies on a single random split of the data. The 80:20 split draws its justification
from the well-known Pareto principle, which states that roughly 80% of the effects come
from 20% of the causes or inputs [51]. The train–test split, although commonly used, has
been found to have potential biases and limitations in assessing model performance. To
overcome these challenges, we implemented the k-fold cross-validation method.

The k-fold cross-validation is a popular statistical method that provides a more com-
prehensive, robust, and reliable approach to assess the model’s performance and reduce
computation time without any bias resulting from random dataset splitting [52,53]. This
technique enables a more rigorous evaluation of the model’s effectiveness compared to the
train_test_split approach.

In our own dataset, we incorporated both the train_test_split and the k-fold cross-
validation (10 folds) methods. For the k-fold cross-validation, the dataset was divided into
10 sections, with nine sections used for training the model and the remaining section for
testing. In each fold, a different section was designated for training, while the remaining
sections were used for testing. This process was repeated across all folds until each section
was used for both training and testing. The final result obtained from our 10-fold cross-
validation was an average of the performance across all folds.

2.3.2. Statistical Parameters

Several metrics, each with its own strengths and limitations, can be used to compare
the performance of various AI models. The following are some common metrics:

• Mean absolute error (MAE) is a measure that captures the average absolute disparity
between predicted and true values. By focusing solely on the magnitude of the error,
irrespective of its direction, it provides an evaluation of the model’s effectiveness in
accurately forecasting the actual values.

• Root mean square error (RMSE) is a performance metric like MAE, but it considers
the square of the errors, thus placing more penalty on larger discrepancies. RMSE is
typically employed when substantial errors pose a greater problem than minor ones.

• Root mean square log error (RMSLE) is a useful metric when dealing with a target
variable that spans a broad range of values. It employs the logarithms of both predicted
and actual values, which lessens the effect of substantial discrepancies between these
values. When the distribution of the target variable is skewed, employing this metric
can be particularly beneficial.
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• R-squared (R2) is a statistical measure that measures the degree to which the model
matches the data, relative to a simple, baseline model. R2 values can range from 0 to 1,
with higher values signifying a better fit. However, it is important to note that R2 can
provide a skewed perspective if the underlying baseline model is unfitting, or the data
are contaminated with outliers. Equations (2)–(5) show these metrics:

MAE =
∑N
(
Xm − Xp

)
N

(2)

RMSE =

√
∑N
(
Xm − Xp

)2

N
(3)

RMSLE =

√
∑N
(
log (X m + 1)− log

(
Xp + 1

))2

N
(4)

R2 =

[
∑N

i=1
(
Xm − Xm

)(
Xp − Xp

)
∑N

i=1
(
Xm − Xm

)2
∑n

i=1
(
Xp − Xp

)2

]2

(5)

where N is the number of datasets, Xm and Xp are actual and predicted values, and Xm, Xp
are the average of actual and predicted values, respectively. The model should ideally have
an R2 value of 1 and MAE, RMSE, and RMSLE values of 0.

2.3.3. Multiple Linear Regression

In the realm of statistical modelling, multiple linear regression (MLR) is a powerful
method that is used to understand the relationship between multiple predictors and a single
response variable. This method, which extends the principles of simple linear regression,
allows us to uncover complex dependencies and valuable insights hidden within the
data. MLR aims to establish a linear relationship between the predictors and the response
variable, capturing their combined effect on the result. This method becomes useful in
real-life situations where there are multiple factors that simultaneously influence the target
variable. Multiple linear regression makes several assumptions to ensure the validity of the
regression model. These assumptions include linearity, independence, homoscedasticity
(constant variance), and normality of residuals. Any deviations from these assumptions
can affect the accuracy and reliability of the regression model and may require additional
measures to address them. The MLR code utilises the scikit-learn library with the default
hyperparameter values. Furthermore, the numerical hyperparameters that were set for pre-
processing data, feature importance estimation, and the visualisation process are displayed
on Table 2.

Table 2. Numerical hyperparameters for the multiple linear regression code, including parameters
for both with and without the application of 10-fold CV.

Phase Parameter Value
test_size 0.2

Train and Test Sets random_state 0
n_splits 10

random_state 0K-Fold Cross-Validation
shuffle True

Feature Importance Estimation n_repeats 10
start_point 0

Visualisation boundary_shift 20%

2.3.4. Random Forest Regression

Random forest regression (RFR) has several advantages that make it a popular choice
for regression tasks, including its robustness in dealing with many input features, both
numerical and categorical variables, and its ability to deal with outliers and missing values
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in the data, reducing the need for extensive data preprocessing. Furthermore, RFR is capable
of capturing complex non-linear correlations between input data and the target variable,
making it appropriate for applications where linear models are insufficient. Random forest
regression also provides useful insights on feature importance, which aids in finding the
underlying relationships in the data. Because of its versatility, it can be used in a variety of
regression tasks and can effectively handle large datasets, making it a useful technique for
a wide range of applications. The RFR code utilises the scikit-learn library with the default
hyperparameter values. Furthermore, the numerical hyperparameters that were set for
pre-processing data, model, and the visualisation process are displayed in Table 3.

Table 3. Numerical hyperparameters for the random forest regressor code, including parameters for
both with and without the application of 10-fold CV.

Phase Parameter Value

test_size 0.2
Train and Test Sets random_state 0

n_splits 10
random_state 0K-Fold Cross-Validation

shuffle True
n_estimators 100

Model random_state 0
start_point 0

Visualisation boundary_shift 20%

3. Results

3.1. Experimental Results
3.1.1. Packing Density

The structure of a sand sample (skeleton) plays a crucial role in determining the
mechanical behaviour, which can be controlled by density and anisotropy. The packing
density of sand can depend on multiple factors, such as the particle shape, size, and
gradation along with the arrangement of particles. A sample consisting of particles with
high regularity has a higher density and low void ratio compared to a sample with low
regularity particles [2].

Sand gradation can be poorly graded, well graded, or gap graded. A poorly graded
sand represents sand that has similar grain sizes; in contrast, the well-graded sand has a
percentage of each size when the Cu is greater than 6 and when the Cc lies between 1 and 3.
The gap-graded sand represents sand that has two different mixed sizes, in other words,
two different poorly graded sands mixed together [9]. A well-graded sample will have a
high density and a lower void ratio compared to a poorly graded sample.

According to Burmister [54], when the particle size range is coarser, the density
increases and the void ratios decrease. In the poorly graded sand used, it was shown that
as the mean particle size increases, the density also increases, and the coefficient of volume
compressibility decreases, as demonstrated in Figure 8. These findings are consistent with
the works of Burmister [54] and Lafata [1].

In terms of shape, there is a strong correlation between particle shape and packing
density. A complete sphere shape has the densest possible structure compared to other
shapes [1]. Spherical shapes require less compressive force to achieve a dense state be-
cause they are easier to reorient compared to less spherical shapes [1]. However, further
studies [55] have shown that for particles of similar sizes, the optimal shape for achieving
maximum packing fraction is not necessarily a perfect sphere. A comparison between
a marble-ball model and M&M candies (which have an elongated and flattened shape)
showed that the M&M candy shape has a higher packing fraction of C = 71% compared to
a sphere shape with C = 64%. When examining the relationship between particle shape
and void ratio, Cho, Dodds and Santamarina [2] found that as particle roundness, spheric-
ity, and regularity approach one (indicating complete rounded and spherical shape), the
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difference between the maximum and minimum void ratio decreases. Similar results were
found by Maroof et al. [56], where the void ratio decreased as regularity increased.

Figure 8. The relationship between the mean particle size and (a) initial dry density and (b) coefficient
of volume compressibility.

The mineral composition of a soil is one of its essential characteristics. Mineralogy
influences properties such as specific gravity, Young’s modulus, shear modulus, and the
Poisson ratio [12,57]. The dry unit weight and specific gravity of sand are important, as
they can influence the sample’s void ratio, as shown in the following equation:

e =
Gs γw

γd
− 1 (6)

where Gs represents the specific gravity, γw indicates the unit weight of water, and γd
represents the dry unit weight of the sample. According to the equation, when the specific
gravity increases, the void ratio also increases. Similarly, when the dry unit weight de-
creases, the void ratio increases. The specific gravity of sand typically ranges from 2.65–2.67,
while that of inorganic clay ranges from 2.70–2.80 [58]. Based on the lab experiment, it
was observed that among the four types of sand, as the D50 (mean particle size) of the
sand increases, the dry unit weight of the sample also increases, while the specific gravity
decreases, even within the range of sand particles (2.36 mm to 0.075 mm according to the
Australian standard [7]). Consequently, the void ratio decreases as the mean particle size
increases, as shown in Figure 9.

Figure 9. The mean particle sizes of different sands in relation to (a) specific gravity and (b) maximum
void ratio.
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3.1.2. Shear Strength

The shear strength of the sand can depend on multiple factors related to the specimen,
such as the particle shape, size, and gradation of the sand particles. Upon comparing the
poorly graded fine, medium, and coarse sand, it was found that the coarse sand exhibited a
higher shear strength compared to the others, as shown in Figure 10.

Figure 10. Shear strength versus mean particle size for B-Sand in (a) a loose density state and (b) a
dense density state.

Furthermore, by examining the impact of gradation, the well-graded sand exhibits a
higher density and shear strength when compared to fine and medium poorly graded sand,
as shown in Figure 11. The well-graded sand had a higher shear strength value, though
not as high as the coarse, poorly graded sand. This can be related to the particle shape,
size, and surface roughness. Coarse sand particles, particularly those that are angular, can
achieve higher shear strength due to particle interlocking. Furthermore, particles with
high surface roughness can induce even greater shear strength due to the interlocking of
asperities between the particles.

Figure 11. The particle size and gradation impact on the shear strength at different normal stresses
(25, 50, 100, and 200) at different densities: (a) loose state, and (b) dense state.
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3.2. Machine Learning Models
3.2.1. Multiple Linear Regression

After conducting multiple linear regression (MLR) analyses, the most suitable regres-
sion model was identified. The comparison between the predicted values generated by the
MLR model for training, testing, and 10-fold CV data and the actual experimental values of
shear strength in the direct shear tests is presented in Figure 12. Based on the findings, it
can be concluded that the MLR model has a high level of accuracy.

Figure 12. Multiple linear regression was performed to compare actual shear strength with predicted
shear strength using (a) the training database, (b) the testing database, and (c) 10-fold cross-validation.

The usage of an MLR model for the objective of predicting the shear strength of sand
showed high accuracy, as shown by the varied metrics gathered from the training, testing,
and 10-fold CV data (Table 4).

Table 4. The performance of MLR model to predict shear strength.

Training Database Testing Database 10-Fold CV

Observations 36 10 46
MAE 8.31 7.67 9.28

RMSE 11.87 10.08 13.57
RMSLE 0.29 0.17 0.35

R2 0.95 0.94 0.93

The training database included 36 observations, with an MAE of 8.31, RMSE of
11.87, RMSLE of 0.29, and R2 value of 0.95, indicating a high level of prediction accuracy.
The model was then tested on a separate dataset consisting of 10 observations, where it
demonstrated a slightly improved MAE of 7.67 and a reduced RMSE of 10.08, and an
impressive decrease in RMSLE to 0.17, maintaining a high R2 value of 0.94. Furthermore, a
10-fold cross-validation (CV) was performed on all 46 observations, yielding an MAE of 9.28,
RMSE of 13.57, and RMSLE of 0.35, along with an R2 of 0.93. The model performance across
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the training, testing, and cross-validation demonstrates its robust predictive capability for
shear strength. This outcome promotes confidence in the predictive capability of the model
and its applicability to new data. Thus, an empirical equation was generated to predict the
shear strength of sand with high level of accuracy. The empirical equation is as follows:

τ = 15.57 + (7.28 × D50) + (6.75 × Cu)− (24.53 × Cc)+(
53.90 × ρdry

)
+ (121.64 × σn)− (36.45 × ρr)

where D50 is the mean particle size, Cu is the coefficient of uniformity, Cc is the coefficient
of curvature, ρdry represents the dry density, σn is the normal stress, and ρr refers to the
sand particle shape regularity.

3.2.2. Random Forest Regression

The comparison between the actual values of shear strength in direct shear testing
and the predicted values for training, testing, and 10-fold CV data produced by the RFR
model is shown in Figure 13. Based on the results, it can be concluded that the RFR model
is highly accurate.

 

Figure 13. Random forest regression was performed to compare actual shear strength with predicted
shear strength using (a) the training database, (b) the testing database, and (c) 10-fold cross-validation.

The Python-based RFR model has demonstrated remarkable accuracy in predicting
the shear strength of sand, as evidenced by the metrics calculated for the training, testing,
and 10-fold CV data (Table 5).

The training database used contained 36 observations, with an MAE of 3.79, RMSE
of 6.55, RMSLE of 0.07, and an impressive R2 value of 0.98, signifying an excellent fit of
the model. In the testing phase, using a distinct database of 10 observations, the model
demonstrated slightly higher MAE and RMSE values of 5.68 and 7.37, respectively. The
RMSLE also slightly increased to 0.09, yet the R2 value remained high at 0.97, indicat-
ing strong prediction performance. A 10-fold CV performed on the complete dataset of
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46 observations resulted in an MAE of 9.83, RMSE of 15.8, RMSLE of 0.19, and an R2 value
of 0.90. Despite the slight increase in error values during cross-validation, the RFR model
demonstrated robust and reliable performance in predicting shear strength. These metrics
serve as evidence of the model’s outstanding predictive performance and its ability to
deliver consistent results on new data.

Table 5. The performance of RFR to predict shear strength.

Training Database Testing Database 10-Fold CV

Observations 36 10 46
MAE 3.79 5.68 9.83

RMSE 6.55 7.37 15.8
RMSLE 0.07 0.09 0.19

R2 0.98 0.97 0.90

4. Discussion

4.1. Particulate Shape and Size

Particle morphology can be identified at larger scales, such as that of the particle itself,
as spherical, rounded, blocky, bulky, platy, elliptical, elongated, and so on. On a smaller
scale, texture is essential because it reflects local roughness properties such as surface
smoothness, roundness of edges and corners, and asperities. As shown in Figure 14, there
is no direct correlation between particle size and particle shape.

Figure 14. Mean particle size versus the regularity.

Polydispersity, a key concept in materials science and chemistry, refers to the distri-
bution of particles with varying sizes or masses within a sample. Unlike monodisperse
systems, where all particles are of the same size, polydisperse systems are characterized
by non-uniform particles. It significantly influences the physical properties and behaviour
of materials like soil samples, polymers, and colloids [59]. A shear test was conducted on
glass beads of two different sizes. Each sample had a monodisperse size. Despite both
samples having the same shape regularity, valued at 1, it was observed that the larger
beads, with a D50 value of 1.77, exhibited higher shear strength at normal stresses of 25,
50, and 100 kPa, as shown in Figure 15. This was in comparison to the finer beads, which
had a D50 value of 0.89. Therefore, we can conclude that larger particles can induce higher
shear strength compared to finer particles.
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Figure 15. Shear strength versus normal stress for two different mean particle sizes of glass beads.

4.2. Active Lateral Earth Pressure

The effects of particle size, density, and confining pressure on the active lateral earth
pressure within a uniform type of sand, sorted into different mean particle sizes, are
explored in Figure 16. The active lateral earth pressure increases as the mean particulate
size increases. This result is because larger particles will have a higher dry density than
smaller particles, which will increase the lateral earth pressure. Also, the active lateral earth
pressure increases equally with increasing sample density; this increase is most likely due
to an increase in particle content, as the number of particles in compact samples is greater
than in loose samples. Therefore, the active lateral earth pressure is greater for denser
samples. A similar correlation exists between an increase in normal stress and an increase
in active lateral earth pressure. This phenomenon is related to the increased force applied
perpendicular to the soil particles, which increase the active lateral earth pressure. In
conclusion, the study highlights the importance of mean particle size, density, and normal
stress on the active lateral earth pressure, where the active lateral earth pressure increases
as the particle size, density, and confining pressure increase.

Figure 16. Comparison of active lateral earth pressure and dry density for different particle sizes of
various sands under different normal stresses.
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4.3. Method Comparison

Multiple linear regression (MLR) is a widely used method in supervised learning,
especially for understanding and predicting linear relationships between variables. Owing
to its optimal modelling strategy within the linear causal category, MLR often outperforms
other standard models [60]. The motivation for using MLR stems from its established
reputation as a simple, traditional model. Its strength lies in its capacity to capture linear
relationships effectively between multiple predictors (independent variables) and a single
response (dependent variable), making it particularly appealing for data analysis [29].
Additionally, MLR can provide an empirical equation for calculating shear strength using
multiple inputs, offering utility in geotechnical engineering applications and practices.

Despite these strengths, MLR has its limitations, including its inability to handle
nonlinear correlations or complex interactions between input data and the target variable.
In response to these limitations, random forest regression (RFR) was employed. This
robust and versatile technique navigates these challenges, offering high prediction perfor-
mance [61]. The RFR model is an ensemble of regression trees, building a large number
of these trees before combining them for a final prediction [62]. Moreover, RFR provides
insights into feature importance, thereby helping to unravel underlying relationships in
the data.

A comparison of the results and performance of both models can offer valuable insights
into their respective strengths and weaknesses. This allows for an evaluation of how well
each model captures the underlying patterns in the dataset and a determination of which
model yields better results.

Table 6 presents a comparative performance analysis of MLR and RFR models applied
to training, testing, and 10-fold cross-validation datasets. When comparing MAE values,
the RFR model shows superior performance, particularly with the training data, where it
achieved an MAE of 3.79, compared to 8.31 with MLR. This trend of enhanced performance
continues in the testing data, but not in the cross-validation, where MLR produced a slightly
better MAE result. For RMSE and RMSLE, RFR consistently outperforms MLR across all
datasets, but not in the cross-validation, where MLR outperformed RFR in RMSE. In terms
of R2 values, which indicate the goodness of fit, RFR shows a slight edge in the training and
testing data, but MLR secures a slightly higher value in the 10-fold cross-validation data.
Despite some minor variances, both models demonstrate robust predictive capabilities,
although RFR generally exhibits stronger performance, particularly on the training and
testing datasets.

Table 6. Comparative performance of multiple linear regression and random forest regression on
training, testing, and 10-fold cross-validation datasets.

MLR RFRPerformance
Metrics Training Data Testing Data 10-Fold CV Training Data Testing Data 10-Fold CV

MAE 8.31 7.67 9.28 3.79 5.68 9.83
RMSE 11.87 10.08 13.57 6.55 7.37 15.8

RMSLE 0.29 0.17 0.35 0.07 0.09 0.19
R2 0.95 0.94 0.93 0.98 0.97 0.90

4.4. Importance of Features

The application of machine learning algorithms (MLR and RFR) in our study involves
six input features (D50, Cu, Cc, d, σn, ρr) and one output which is the shear strength of sand.
In Figure 17, both MLR and RFR models, when using the train test splits, identified normal
stress as the principal factor, underlining its essential role in governing shear strength, while
dry density followed as the second most influential parameter, highlighting its significance
in determining the mass per unit volume. However, when using the 10-fold cross-validation
method, mean particle size showed the highest feature importance, followed by coefficient
of uniformity.
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Figure 17. Feature importance analysis comparing multiple linear regression and random forest
regression with and without 10-fold cross-validation: (a) MLR without 10-fold cross-validation,
(b) RFR without 10-fold cross-validation, (c) MLR with 10-fold cross-validation, (d) RFR with 10-fold
cross-validation.

5. Conclusions

This study investigated the influence of sand particulate morphology on the shear
strength characteristics using experimental and machine learning approaches. The findings
can be summarized in the following points.

• Across the range of poorly graded sand sizes, the large sand sample exhibits higher
density and shear strength compared to both medium and fine sand.

• The shear strength of well-graded sand is higher than that of poorly graded medium
and fine sand, but not as high as that of poorly graded coarse sand.

• The particle shape regularity, including its roundness and sphericity, is not related to
the mean particle size.

• In a monodisperse system of glass beads with a similar shape and size, larger particles
contribute to greater shear strength compared to their smaller counterparts.

• As the mean particle size of sand decreases, the specific gravity increases and the
density decreases, leading to a sample with a higher void ratio. Therefore, finer sand
has a higher coefficient of volume compressibility compared to coarse sand.

• The active lateral earth pressure increases as the particle size, density, and confining
pressure increases.

• The machine learning models (MLR and RFR) show excellent accuracy in predicting
the shear strength of sand based on different particle shapes, sizes, and gradations.
In the case of MLR, the R-squared accuracy is 0.95 for the training data, 0.94 for the
testing data, as well as 0.93 when using the entire dataset with 10-fold CV method.
Similarly, for RFR, the R-squared accuracy is 0.98 for the training data, 0.97 for the
testing data, and 0.90 when employing the entire dataset with the 10-fold CV method.

• When using the train–test split, the machine learning models (MLR and RFR) agree
on the importance of the following input features in sequence: normal stress and dry
density. However, when using the 10-fold CV, the importance of the input features
shifts to mean particle size and coefficient of uniformity.
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• Future research could address different types of soil (silt and clay), different parameters
that could influence the shear strength (moisture content, temperature, strain rate, and
stress history), as well as different machine learning algorithms for further exploration.
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Nomenclature

AI Artificial Intelligence
MLR Multiple Linear Regression
RFR Random Forest Regression
ANN Artificial Neural Network
SVM Support Vector Machine
ANFIS Adaptive Neuro-Fuzzy Inference System
ME Mean Error
MAE Mean Absolute Error
MSE Mean Square Error
RMSE Root Mean Square Error
RMSLE Root Mean Square Log Error
CV Cross-validation
R2 R-squared
D50 Mean Particle Size
Cu Coefficient of Uniformity
Cc Coefficient of Curvature

d Dry Density
σn Normal Stress
R Roundness
S Sphericity
ρr Particle Regularity
Dr Relative Density
e Void ratio
emin Minimum Void Ratio
emax Maximum Void Ratio
Gs Specific Gravity
γw Unit Weight of Water
γd Dry Unit Weight of The Sample
τ Shear Strength
SOC Soil Organic Carbon
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Abstract: Seismic response assessment requires reliable information about subsurface conditions,
including soil shear wave velocity (Vs). To properly assess seismic response, engineers need accurate
information about Vs, an essential parameter for evaluating the propagation of seismic waves.
However, measuring Vs is generally challenging due to the complex and time-consuming nature of
field and laboratory tests. This study aims to predict Vs using machine learning (ML) algorithms
from cone penetration test (CPT) data. The study utilized four ML algorithms, namely Random
Forests (RFs), Support Vector Machine (SVM), Decision Trees (DT), and eXtreme Gradient Boosting
(XGBoost), to predict Vs. These ML models were trained on 70% of the datasets, while their efficiency
and generalization ability were assessed on the remaining 30%. The hyperparameters for each
ML model were fine-tuned through Bayesian optimization with k-fold cross-validation techniques.
The performance of each ML model was evaluated using eight different metrics, including root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
coefficient of determination (R2), performance index (PI), scatter index (SI), A10 − I, and U95. The
results demonstrated that the RF model consistently performed well across all metrics. It achieved
high accuracy and the lowest level of errors, indicating superior accuracy and precision in predicting
Vs. The SVM and XGBoost models also exhibited strong performance, with slightly higher error
metrics compared with the RF model. However, the DT model performed poorly, with higher error
rates and uncertainty in predicting Vs. Based on these results, we can conclude that the RF model is
highly effective at accurately predicting Vs using CPT data with minimal input features.

Keywords: shear wave velocity; cone penetration test; machine learning; Random Forests; support
vector machine; decision trees; eXtreme gradient boosting; regression

1. Introduction

Soil characterization plays a vital role in seismic response assessment and interpret-
ing subsurface conditions for large-scale engineering projects. To properly assess seismic
response, engineers need accurate and reliable information about subsurface conditions,
including soil shear wave velocity (Vs), an essential parameter for evaluating the propaga-
tion of seismic waves [1–6]. Seismic-refraction and reflection methods using geophysical
signal processing [7–10] measure Vs at various depths and precision to produce a profile
(preferably to bedrock) for later analysis. To measure Vs, an active source generates a wave
and its travel time to one or more receivers is measured. The velocity results from knowing
the time and distance traveled between the source and receiver. There are several Vs mea-
surement methods, including seismic cone penetration testing (SCPT) [7], Multi-Channel
Analysis of Surface Waves (MASW) [8], Cross-hole testing [8], and down-hole testing
methods. These techniques provide valuable information about subsurface conditions but
become more complex with increasing soil layering.

Additionally, laboratory tests such as bender element [11], triaxial test [12], and res-
onant column tests [13] measure Vs in different ways. These tests are conducted on soil
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samples collected from the site and offer a controlled environment for testing, providing
detailed information on soil behavior under varying stress conditions. However, retrieving
high-quality intact soil samples is a challenging task that requires specialist equipment [14].
Furthermore, it is important to note that the properties of collected samples may signifi-
cantly change over time due to variations in stress conditions, temperature fluctuations,
and moisture content.

A viable alternative is to correlate Vs to cone penetration test (CPT) data, a relatively
easier approach. Many empirical correlations have been developed over the past couple of
decades to estimate Vs from CPT data [15–19]. The CPT test involves pushing a cone-shaped
instrument into the ground at a constant rate while measuring the resistance of the soil.
Two measurements are typically taken during this test: cone tip resistance (qc) and sleeve
friction ( fs) [20,21]. The CPT test provides continuous and reliable soil data, making it an
efficient and cost-effective method in geotechnical engineering practice. This wealth of
CPT data has attracted the attention of many geotechnical researchers to further improve
the prediction accuracy of Vs employing machine learning (ML) algorithms [22–26]. ML
algorithms have shown great promise in accurately predicting Vs from CPT data. The
ML algorithms can learn complex relationships between input variables (e.g., qc and fs
records) and output variables (e.g., soil Vs) from large datasets without the need for explicit
mathematical models.

Many ML algorithms, such as gradient boosting, random forest, support vector ma-
chine (SVM) artificial neural network (ANN), and decision trees (DT), have been used in var-
ious geotechnical applications, including soil classification [27–33], Vs prediction [23–26,34],
liquefaction analysis [35–40], stability analysis [41–45], and settlement prediction [46–48].
The application of ML algorithms in geotechnical engineering has shown promising results
in terms of efficiency and accuracy. For example, Tsiaousi et al. [25] successfully employed
an ANN model to characterize soil stratigraphy and predict Vs. This study demonstrates
how ML approaches can be used to improve soil characterization and prediction of im-
portant geotechnical parameters. Assaf et al. [24] and Riyadi et al. [49] have also used
ML algorithms, including RF and XGBoost, to predict Vs. Their findings confirm that ML
models can achieve high accuracy and performance in predicting Vs. Previous research
has also shown that SVM performs well in predicting Vs [50,51]. These studies collectively
demonstrate the potential of ML algorithms in improving the accuracy of Vs prediction in
geotechnical engineering applications.

The aim of this study is to improve the prediction of Vs using various ML algorithms
with minimal input features. Four ML algorithms, namely RF, SVM, DT, and eXtreme gra-
dient boosting (XGBoost), are employed to predict Vs from CPT data. The study also aims
to minimize the need for expensive and time-consuming fields or laboratory measurements.
The development of ML models can lead to higher accuracy and performance in predicting
Vs. The improvement in the accuracy of Vs prediction has significant implications for site
response assessment and seismic risk reduction. By utilizing ML to predict VS, this study
has the potential to enhance existing knowledge and inspire future research in the field of
ML applications for soil characterization.

The rest of this document is organized as follows: Section 2 discusses dataset prepro-
cessing and visualization, Methodology and performance metrics are described in Section 3,
Section 4 describes the ML models, and Section 5 presents the results. Finally, Section 6
outlines the main results of the study and concludes by suggesting future research.

2. Datasets Preprocessing and Visualization

The dataset used in this study was obtained from a previously published dataset [52].
This study utilized 61 CPT soundings, each containing over 1000 qc and fs recordings.
These data sets were collected from various regions of Austria, including the Vienna Basin,
Gastein Valley, and Zell Basin. The data is publicly accessible and can be downloaded from
the following link: https://www.tugraz.at/en/institutes/ibg/research/computational-
geotechnics-group/database/ (accessed on 12 May 2023). The CPT datasets were pre-
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processed before applying ML training and testing techniques. The preprocessing step
involved removing outliers from the data. Specifically, outliers were identified and removed
from both the qc and fs values in the raw CPT data. Any data point that exceeded twice the
interquartile range (IQR), where IQR is the difference between the third quartile (Q3) and
the first quartile (Q1), was considered an outlier. Next, the target variable, which in this
case was the shear wave velocity, Vs, was estimated using Equation (1) [16]. Subsequently,
the datasets were divided into a training set and a testing set, with a ratio of 0.7:0.3 for
training and testing purposes.

VS =

√(
qc − σv0

pa
× 100.55Ic+1.68

)
(1)

where qc represents cone tip resistance, σv0 represents total overburden pressure, pa rep-
resents atmospheric pressure, and Ic represents soil behavioral type index estimated as
follows:

Ic =
(

3.47 − log((qc − σv0)/σ′v0)
2 + (logFr + 1.22)2

)0.5
(2)

Fr = fs/(qc − σv0)× 100 (3)

where fs represents sleeve friction, σ′v0 is the effective overburden stress, and Fr represents
normalized friction ratio.

The statistical summaries of both the training and testing datasets considered in this
study are presented in Table 1. To gain further insights into the relationship between the
input features and the target variable (Vs), scatter plots are presented in Figure 1. Each
scatter plot indicates the correlation between an individual input feature and the target
variable. In addition, Figure 2 shows the frequency distribution of the input features and
target variable, providing a visual representation of their distribution patterns. Furthermore,
box plots of both the input features and the target variable are presented in Figure 3, offering
an overview of their distribution.

Table 1. Statistical summary of training and testing datasets.

Features Unit Class
Training Dataset Testing Dataset

Mean SD Min Max Count Mean SD Min Max Count

D m Input 12.42 8.88 0.01 40 79,579 12.38 8.78 0.01 40 34,104
qc MPa Input 4.89 3.60 0.01 17 79,579 4.87 3.59 0.01 17 34,104
fs kPa Input 42.91 35.35 0.07 142 79,579 42.88 35.39 0.10 142 34,104

R f % Input 1.56 6.11 0.00 1121 79,579 1.57 6.28 0.00 1083 34,104
Vs m/s Target 166.76 55.89 10.06 322 79,579 166.55 55.57 9.93 322 34,104

The interdependencies among input features in ML models can lead to overfitting
and decreased efficiency. To assess the correlation between each input feature, a Pearson’s
correlation analysis was conducted. Figure 4 displays the correlation coefficients among
the input features in the dataset. The correlation coefficients range from −0.08 to 0.51,
indicating a combination of weak to moderate correlations among the features. The absence
of highly correlated features in the correlation analysis suggests a lower risk of overfitting,
as no redundant features were observed.
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Figure 1. Scatter plots of input features with respect to target variable.
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Figure 2. Frequency distribution of input features and the target variable.
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Figure 4. Table of feature correlations.
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3. Methodology

This section outlines the training and testing procedures for the ML models used to
predict Vs. Four ML models, namely RF, SVM, DT and XGBoost, were trained for this
purpose. Each ML model was trained on the training datasets, with qc, fs, friction ratio
(R f ), and soil depth (D) serving as input features and Vs as target variable (output). To
optimize the performance of these models, the hyperparameters of each model were fine-
tuned using a model-based Bayesian optimization technique. To ensure that the models
can generalize well to new data, the commonly used k-fold cross-validation techniques
were employed. This involves dividing the data into k subsets, training the model on
k-1 subsets, and evaluating their performance on the remaining subset. The root mean
squared error (RMSE) was used as the evaluation metric to assess the models’ accuracy.
In addition to hyperparameter tuning, permutation feature importance and/or recursive
feature elimination techniques were applied using the optimized models. This technique
was used for the identification and removal of irrelevant features, if present, in the input
features. Once the irrelevant features were eliminated, the hyperparameter tuning process
was repeated with the updated features to further enhance the models’ performance. Finally,
the performances of the optimized models were assessed using the testing dataset. The
entire process of training and testing the models is presented in Figure 5, providing a visual
representation of the workflow.

The performance of optimized ML models was evaluated using multiple statistical
metrics such as root mean squared error (RMSE), mean absolute error (MAE), mean abso-
lute percentage error (MAPE), coefficient of determination

(
R2), scatter index (SI), and

performance index (PI) (see Table 2). Many researchers utilized these indices to evaluate the
predictive performance of different ML models [53–60]. The RMSE measures the average
magnitude of the errors between the predicted and actual values, indicating the model’s
predictive accuracy. A lower RMSE indicates better model performance. MAE estimates
the average absolute difference between the predicted and actual values. Like RMSE, a
lower MAE indicates better model performance. MAPE represents the average percentage
difference between the predicted and actual values. A lower MAPE signifies better model
accuracy. R2 measures the proportion of the variance in the target variable (VS) that can be
explained by the model, with values closer to 1 indicating a better fit. Furthermore, a newly
proposed engineering index (A10 − I) was used to evaluate the predictive performance
of the models [55,59,61–63]. In an ideal model, the value of A10 − I is expected to be one.
The A10 − I has significance in engineering as it represents the proportion of samples
that fall within ±10% deviation from the predicted values compared with the target value.
Additionally, the efficiency of the models was evaluated using uncertainty analysis at 95%
confidence level (U95) [64,65].

Table 2. Performance indices used to evaluate the efficiency of the models.

Metrics Best Performance Equations Equation No.

Root mean squared error Lower value
RMSE =

√
∑n

i=1

(
Xi−

�
Xi

)2

n
(4)

Mean absolute error Lower value MAE = 1
n ×

∣∣∣∣ n
∑

i=1
Xi −

�
Xi

∣∣∣∣ (5)

Mean absolute percentage error Lower value
MAPE = 1

n ×
∣∣∣∣∣∣

n
∑

i=1

(
Xi−

�
Xi

)
Xi

∣∣∣∣∣∣× 100%
(6)

Coefficient of determination unity
R2 = 1 − n

∑
i=1

(
Xi−

�
Xi

)2

(Xi−X)
2

(7)
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Table 2. Cont.

Metrics Best Performance Equations Equation No.

A10 − I unity A10 − I = n10
n (8)

Scatter index Lower value SI = RMSE
X

(9)
Performance index Lower value PI = RMSE

X×√
R2+1

(10)

Uncertainty at 95% confidence level Lower value U95 =
√

SD2 + RMSE2 (11)

SI [64,65] SI < 0.05: excellent precision (EP), 0.05 < SI < 0.1: good precision (GP), 0.1 < SI < 0.15: fair
precision (FP), SI > 0.15: poor precision (PP)

n is total number of datasets, Xi is the actual value of the ith observation,
�
Xi is the predicted value of the ith

observation, and X is mean of target variable. n10 is the number of samples with actual/predicted value between
0.90 and 1.10, U95 is uncertainty with 95% confidence intervals, and SD is standard deviation of residuals (the
difference between target Vs and predicted Vs).
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Figure 5. Flow diagram illustrating machine learning models used for predicting VS.
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4. Machine Learning Models

4.1. Random Forests

RF is an ML algorithm that has been widely used for classification and regression
tasks [66,67]. It is an ensemble method that combines multiple decision trees to improve
predictive accuracy and reduce overfitting. RF has several advantages over other machine
learning algorithms, including its ability to handle high-dimensional data, nonlinear rela-
tionships between variables, and missing values [68]. In addition, it provides measures of
variable importance that can be used for feature selection and interpretation [69].

RF classification and regression can be implemented in R using various packages such
as randomForest [68] and ranger [70]. The randomForest package is one of the most widely
used packages for RF classification and regression in R. It provides a simple interface for
building and evaluating RF models and supports both classification and regression tasks.
The ranger package is another popular package for RF classification and regression in R. It
is designed to be faster and more memory-efficient than the randomForest package, and
supports parallel processing [70].

The ranger package provides several hyperparameters that can be tuned to improve
the performance and robustness of RF models. To tune these hyperparameters, one common
approach is to use cross-validation. This involves splitting the data into training and test
sets, fitting the model on the training set with different combinations of hyperparameters,
and evaluating the performance on the validation set. Bayesian optimization is one of
the most efficient methods for hyperparameter tuning. It uses a probabilistic model to
predict the performance of different hyperparameter configurations based on previous
evaluations [71].

4.2. Support Vector Machine

SVMs have gained immense popularity in the field of machine learning due to their
ability to solve both classification and regression problems effectively. SVMs work by
constructing hyperplanes that can optimally separate data points belonging to different
classes or predict target variables with maximum margin. One of the most significant
advantages of using SVMs is their ability in handling high-dimensional datasets and
nonlinear relationships between variables [72].

In R, e1071 package [73] is commonly utilized to implement SVM models for regres-
sion and classification tasks. The package provides options for tuning hyperparameters
such as the kernel function, regularization parameter, and cost parameter. One important
consideration when using SVMs is their robustness to outliers and noise in the data. Out-
liers influence the position of the hyperplane and lead to poor generalization performance.
To address this issue, Bayesian optimization can be utilized to increase the model’s per-
formance and robustness. Bayesian optimization has been shown to be effective at tuning
hyperparameters in various machine-learning algorithms, including SVMs [71].

4.3. Decision Trees

The DT algorithm is commonly used for both classification and regression tasks. The
DT algorithms recursively partition data into subsets based on the values of input features
and then assign labels to each subset based on the majority class or average value of the
target variable. The resulting tree structure can be used to make predictions on new data by
traversing the tree from the root node to a leaf node that corresponds to a specific class or
value. According to Quinlan [74], decision trees are particularly useful for problems with
discrete-valued output variables and can handle both categorical and continuous input
features. They are also easy to interpret and visualize, making them a popular choice for
exploratory data analysis and decision-making tasks. Figure 6 presents a sample decision
tree structure to provide insights into the relationships and decision-making process within
the data, aiding in understanding and interpreting the model’s predictions. The node
numbers are depicted within the boxes, while the input features are represented by the
variables (see Sections 1 and 3). The green leaves in the figure represent the target value, Vs.

221



Appl. Sci. 2023, 13, 8286

Figure 6. Sample decision tree structure illustrating the splitting criteria for predicting the VS.

The implementation of the DT algorithm for regression tasks is usually performed
using the rpart package [75]. The package provides ranges of DT hyperparameters, in-
cluding complexity parameters, maximum number of trees, minimum number of splits,
etc., that can be tuned through grid search or Bayesian optimization. DT algorithms have
been used for a variety of geotechnical applicatons, including classification [76,77] and soil
parameters predictions.

4.4. eXtreme Gradient Boosting

Recently, the XGBoost algorithm has gained popularity due to its high accuracy and
efficiency. XGBoost is an ensemble method that combines multiple weak learners such as
decision trees into a single strong learner [78,79]. The algorithm iteratively adds decision
trees to the model, with each tree attempting to correct the errors of the previous trees.

XGBoost package [78] is usually utilized to implement the XGBoost regression model
in R. The XGBoost package also offers support for hyperparameter tuning, which can
significantly improve the model’s performance. It provides a range of options for tuning its
hyperparameters, including learning rate (eta), maximum depth of each tree (max_depth),
number of trees, and regularization parameters (alpha and gamma). Bayesian optimization
can be used for hyperparameter tuning in XGBoost.

5. Results and Discussion

In Section 2, we indicated that the datasets were randomly split into training and
testing datasets. The training datasets were used to train the ML models, while the testing
datasets were used to evaluate the efficiency of each model in predicting Vs. In this section,
we will discuss the results obtained from training and testing ML models. All the ML
models were trained and tested using a personal computer with 8GB RAM and Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz processor (Intel Co., Santa Clara, CA, USA).
The performance of each ML model was evaluated using the multiple performance metrics
listed in Table 2.
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5.1. Hyperparameter Optimization Results

The hyperparameters of each model were fine-tuned using Bayesian optimization
with a k-fold cross-validation strategy. Specifically, we used 10-fold cross-validation with
the RMSE as the evaluation metric for fine-tuning the hyperparameters. The goal was to
minimize the RMSE, as lower values indicate better performance. The maximum number
of iterations for the fine-tuning process was set to 100 for each model. Figure 7 illustrates
the convergence behaviors of the ML models during the fine-tuning process. It shows how
the performance metric (RMSE) changed over the iterations. We observed that all the ML
models reached stable results within 100 iterations.
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Figure 7. Convergence behavior of ML models.

Table 3 presents the hyperparameters of the ML models along with their optimized
values. The optimized values represent the set of hyperparameters that yielded the best
average performance according to the RMSE metric.

Table 3. Optimized hyperparameters.

ML Models
Tuned Hyperparameters

Names Ranges Optimized Values

RF

Number of variables, mtry 1–4 3
Minimum node of tree 1–30 2

Maximum depth of tree 2–100 64
Number of trees in the forest 1–30 12

SVM

Penalty parameter, Cost 0.1–100 58.75
Kernel coefficient, gamma 0.01–10 9.44

Margin of tolerance, Epsilon 0.01–1 0.026
Kernel type radial radial

223



Appl. Sci. 2023, 13, 8286

Table 3. Cont.

ML Models
Tuned Hyperparameters

Names Ranges Optimized Values

DT

Complexity parameter, cp 0.001–1 0.001
Maximum depth of trees 1–30 20

Minimum number of splits 2–20 5
Minimum number of

observations
at terminal node, minbucket

2–20 6

Maximum number of splits at
node, maxcompete 1–20 9

XGBoost

Learning rate, eta 0.01–1 0.26
Loss reduction term, gamma 0.01–10 3.79

L2 regularization term, lambda 0.01–1 0.38
L1 regularization term, alpha 0.01–1 0.83
Number of boosting rounds,

nrounds 1–100 84

Maximum depth of trees 2–10 9
Fraction of samples for each tree,

subsample 0.1–1 0.79

5.2. Performance of ML Models

Figure 8 illustrates actual Vs and predicted Vs using the optimized ML models, along
with ±10% error lines (red lines). The green lines show a match between actual and
predicted Vs values. The results demonstrate that all ML models, except for the DT model,
achieved excellent predictive accuracy on both training and testing datasets with high R2

and A10 − I score values of 1. This shows that the RF, SVM, and XGBoost models can
explain all the variance in the Vs using the given features. Furthermore, the scatter plots for
these models show that many data points are closer to the error bounds, indicating that the
models performed well. In contrast, the DT model achieved lower R2 and A10 − I values
ranging from 0.94 to 0.95 and from 0.77 to 0.78 on the testing and training data, respectively.
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Figure 8. Scatter plot illustrating the correlation between actual VS and predicted VS.

The residual plots of ML models are shown in Figure 9, illustrating a random distribu-
tion of points around the horizontal orange line at y = 0 (line of zero error). This indicates
that the model’s predictions are unbiased and have captured the underlying patterns in the
data. Additionally, the frequency distributions of residuals (green bars) are shown in the
figure. The distribution is approximately symmetric, indicating that the errors are normally
distributed, a desirable property. To gain more insight into the performance of the ML
models, a further comparison is carried out in the following subsection.
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Figure 9. Scatter plots and frequency distributions of residuals.

5.3. Comparisons of ML Models

Table 4 provides a summary of the evaluation results for the ML models. Based on our
results, the DT model exhibited lower accuracy, as evidenced by a lower R2 on both training
and testing data. The DT model recorded RMSE of 13.06 and 13.16, MAE of 10.27 m/s and
10.34 m/s, MAPE of 7.27% and 7.31%, and R2 of 0.95 and 0.94 on the training and testing
datasets, respectively. Additionally, Spider charts were utilized to visualize and assess
each model’s efficiency relative to others (Figure 10). The spider chart shows that the DT
model significantly diverged towards higher RMSE, MAPE, and MAE on both training and
testing datasets in comparison to other ML models. The RF, SVM, and XGBoost models
outperform the DT model in terms of RMSE, MAE, MAPE, and R2. All RF, SVM, and
XGBoost models have lower error values and higher R2 scores, indicating higher accuracy
and better performance in predicting VS from the input features.

Table 4. Summary of evaluation results for each ML model using training and testing datasets.

Models
Train dataset

Rank
A10 − I RMSE R2 PI SI MAE MAPE U95

RF 1 (1) 0.46 (1) 1 (1) 0.002 (1) 0.003 (1) 0.24 (1) 0.17 (1) 1.24 (1) 1
SVM 0.998 (2) 1.11 (2) 1 (1) 0.005 (2) 0.007 (2) 0.37 (2) 0.28 (2) 3.07 (2) 2
DT 0.78 (3) 13.1 (4) 0.95 (2) 0.06 (4) 0.08 (4) 10.27 (4) 7.23 (4) 36.20 (4) 4

XGBoost 1 (1) 1.68 (3) 1 (1) 0.007 (3) 0.01 (3) 1.29 (3) 0.87 (3) 4.65 (3) 3

Models
Test dataset

Rank
A10 − I RMSE R2 PI SI MAE MAPE U95

RF 1 (1) 0.96 (1) 1 (1) 0.004 (1) 0.006 (1) 0.50 (2) 0.36 (2) 2.66 (2) 1
SVM 0.998 (2) 1.36 (2) 1 (1) 0.006 (2) 0.008 (2) 0.38 (1) 0.31 (1) 2.3 (1) 2
DT 0.77 (3) 13.2 (4) 0.94 (2) 0.06 (4) 0.08 (4) 10.34 (4) 7.31 (4) 36.48 (4) 4

XGBoost 1 (1) 1.86 (3) 1 (1) 0.008 (3) 0.01 (3) 1.40 (3) 0.94 (3) 5.16 (3) 3
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Figure 10. Spider plot showing the performance metrics of the different models.

Figure 11 illustrates the performance of ML models in predicting Vs as evaluated
using four performance metrics: U95 , A10 − I, PI, and SI. The results indicate that the
DT model achieved lower performance in comparison to other models, as evidenced by
its higher U95 , PI, and SI scores and lower A10 − I values. On the other hand, the RF
model demonstrated exceptional performance, outperforming the other models in terms of
these performance indicators. In terms of SI, the RF, SVM, and XGBoost models achieved
excellent precision (EP), with SI < 0.05 on both the training and testing datasets. In
contrast, the DT model achieved good precision with 0.05 < SI < 0.1 on the training and
testing datasets. Overall, the RF model ranked first, outperforming the other three ML
models, while the DT model ranked fourth. The SVM and XGBoost models ranked second
and third, respectively.

To further assess the performance of the ML models, a comparison was made between
model-predicted VS values and estimated VS values based on existing empirical correlation.
A correlation model was selected to estimate VS from CPT soundings. Equation (12) [80]
was utilized for the estimation of VS from CPT soundings.

VS = 100.31Ic+0.77 ×
√
(qc − σv0)/pa (12)

where VS is soil shear wave velocity, Ic is soil behavior type index, qc is cone tip resistance,
σv0 is total overburden pressure, and pa is atmospheric pressure.

This correlation model served as a benchmark for evaluating the accuracy and reli-
ability of the ML models’ predictions. Figure 12 illustrates the models’ predictions (red)
alongside the profiles of estimated VS values (black) based on the empirical correlations.
The results of this comparison indicate a high level of agreement between the predicted VS
values and the estimated VS values. This demonstrates that the ML models can produce
accurate predictions in line with the established correlations.
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Figure 11. Performance of ML models based on of U95 , A10 − I, PI, and SI indices.
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Figure 12. Comparison of predicted and estimated VS based on empirical correlation.
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6. Conclusions

This study utilized various ML algorithms, including RF, SVM, DT, and XGBoost, to
predict VS from CPT data. To train and test these ML models, we used a previously pub-
lished open-source CPT dataset. The hyperparameters of each ML model were fine-tuned
through Bayesian optimization with cross-validation techniques. Eight performance met-
rics, namely RMSE, MAE, MAPE, R2, A10 − I, SI, PI and U95, provided quantitative
evaluation of the models. Based on our results, the following conclusion can be drawn:

• The RF model outperformed the other ML models, achieving the lowest error metrics
on both the training and testing datasets. Specifically, it achieved an RMSE of 0.46
and 0.96, an MAE of 0.24 m/s and 0.5 m/s, and an MAPE of 0.17% and 0.36%,
respectively. The model also demonstrated low scatter, with SI values of 0.003 and
0.006, and PI values of 0.002 and 0.004 on the training and testing datasets, respectively.
Additionally, the RF model achieved R2 and A10 − I values of 1 on both datasets,
indicating a perfect fit. Furthermore, the RF model recorded the lowest uncertainty,
with a U95 value of 1.24 on the training dataset.

• The SVM and XGBoost models also exhibited strong performance, with slightly higher
error metrics compared with the RF model. These two models ranked second and
third, respectively, following the RF model, which achieved the highest performance.
However, the DT model performed poorly, with higher error rates and uncertainty in
predicting Vs.

• The RF model demonstrated its overall superior performance and high accuracy in
predicting soil Vs, even when trained with minimal input features. Hence, owing to its
excellent performance across multiple metrics, the RF model can be integrated into a
software package for rapid and accurate prediction of soil Vs.

• In summary, while this study relied solely on CPT data for training ML models, it is
important to recognize the limitations of the CPT, particularly its primary suitability
for fine-grained soils. To further enhance the application of ML models in soil char-
acterization, future research should consider incorporating experimental results and
data for coarse-grained soil types.
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Abbreviations

A10 − I Engineering index with ±10% deviation R2 Coefficient of determination
ANN Artificial neural network R f Friction ratio
CPT Cone penetration test RF Random forest
D Depth of soil (m) RMSE Root mean squared error
DT Decision trees SCPT Seismic cone penetration testing
Fr Normalized friction ratio SD Standard deviation
fs sleeve friction SI Scatter index
Ic Soil behavioral type index SVM Support vector machine

229



Appl. Sci. 2023, 13, 8286

IQR interquartile range U95 Uncertainty at
95% confidence interval

MAE Mean absolute error Vs Shear wave velocity
MAPE Mean absolute percentage error σv0 Total overburden stress
MASW Multi-Channel Analysis of Surface Waves σ′v0 Effective overburden stress
ML Machine learning Pa Atmospheric pressure
n Total number of datasets Q3 Third quartile
Pa Atmospheric pressure X Mean

PI Performance index
�
Xi Predicted value of ith observation

qc cone tip resistance Xi Actual value of ith observation
Q1 First quartile XGBoost Extreme gradient boosting
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31. Aydın, Y.; Işıkdağ, Ü.; Bekdaş, G.; Nigdeli, S.M.; Geem, Z.W. Use of Machine Learning Techniques in Soil Classification.
Sustainability 2023, 15, 2374. [CrossRef]

32. Carvalho, L.O.; Ribeiro, D.B. A Multiple Model Machine Learning Approach for Soil Classification from Cone Penetration Test
Data. Soils Rocks 2021, 44, 1–14. [CrossRef]

33. Chala, A.T.; Ray, R. Assessing the Performance of Machine Learning Algorithms for Soil Classification Using Cone Penetration
Test Data. Appl. Sci. 2023, 13, 5758. [CrossRef]

34. Akhundi, H.; Ghafoori, M.; Lashkaripour, G. Prediction of Shear Wave Velocity Using Artificial Neural Network Technique, Multiple
Regression and Petrophysical Data: A Case Study in Asmari Reservoir (SW Iran). Open J. Geol. 2014, 4, 303–313. [CrossRef]

35. Demir, S.; Sahin, E.K. An Investigation of Feature Selection Methods for Soil Liquefaction Prediction Based on Tree-Based
Ensemble Algorithms Using AdaBoost, Gradient Boosting, and XGBoost. Neural Comput. Appl. 2023, 35, 3173–3190. [CrossRef]
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Abstract: This study focuses on optimizing the foundation pit dewatering scheme using the foun-
dation pit dewatering theory and the principles of multi-objective optimization. It explores the
development of a multi-objective optimization model and efficient solution technology for founda-
tion pit dewatering. This research focuses on the foundation pit dewatering project at the inverted
siphon section of Xixiayuan canal head, specifically from pile number XZ0+326 to XZ0+500. It
establishes an optimized mathematical model for foundation pit dewatering that incorporates three
objectives. Additionally, a dewatering optimization program is developed by utilizing the MATLAB
optimization toolbox and the multi-objective optimization algorithm program based on the NSGA-II
algorithm (Gamultiobj). The multi-objective optimization mathematical model is solved, and a
Pareto-optimal solution set with uniform distribution is obtained. The multi-objective optimization
evaluation system based on AHP is constructed from the three aspects of dewatering cost, the impact
of settlement on the environment, and the safety and stability of the foundation pit. The optimization
scheme of the Pareto-optimal solution set is selected as the decision result to provide multiple feasible
schemes for the dewatering construction of foundation pits. The optimization scheme is verified by
using the GMS software. The simulation results demonstrate that the optimization scheme fulfills
the requirements for water level and settlement control. Moreover, the developed optimization
program efficiently solves the multi-objective optimization problem associated with foundation pit
dewatering. Lastly, an evaluation system incorporating the NSGA-II algorithm and AHP is devel-
oped and utilized in the context of dewatering engineering in order to offer multiple viable optimal
dewatering schemes.

Keywords: multi-objective optimization; NSGA-II algorithm; Pareto-optimal solution set; evaluation
system; foundation pit dewatering

1. Introduction

In the construction process of various large-scale projects, the dewatering design of the
foundation pit is one of the most important technical and scientific issues. The management
objectives of foundation pit dewatering under different working conditions (minimum
dewatering cost, minimum land subsidence, maximum drawdown of the foundation pit
center water level, etc.), dewatering engineering design (well depth, well diameter, etc.),
and geological environment constraints (maximum allowable pumping flow of a single
well, allowable value of land subsidence, etc.) should be unified in the optimization model.
Taking the strong permeable foundation pit dewatering project in the inverted siphon
section of the head of the water diversion project of the Xixiayuan Water Conservancy
Project in Henan Province as an example, the multi-objective optimization model of foun-
dation pit dewatering based on the NSGA-II algorithm is established in combination with
the multi-objective requirements of groundwater level reduction, settlement deformation
control, the groundwater environment, and the economic cost.
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In recent years, significant progress has been made in the research and application of
optimization algorithms at home and abroad. The genetic algorithm, simulated anneal-
ing, the Ant colony algorithm, and particle swarm optimization have made important
breakthroughs in theoretical research and practical application [1]. The utilization of op-
timization algorithms is crucial in enhancing efficiency, reducing costs, and optimizing
resource utilization.

Reza introduced a variety of multi-objective optimization algorithms to optimize the
power generation efficiency of the hydropower station reservoir [2]. Wang applied the
NSGA-II algorithm to power grid optimization planning, established the design model
of multi-objective power grid planning, and provided schemes for the trade-off analysis
of various objectives. Based on the objective function method [3], Xu optimized and
analyzed the dewatering plan for a subway foundation pit with the minimum total water
inflow as the objective function and combined with the water level constraints of each
control point [4]. Liu applied the genetic algorithm to determine the optimal number of
wells for foundation pit dewatering and used a simple and efficient genetic algorithm
to control a set of model sets to obtain the overall optimal plan [5]. Yang proposed a
NPTSGA algorithm, which combines the genetic algorithm and the tabu search algorithm.
The algorithm was used to simulate and optimize the problem of seawater intrusion
in coastal areas [6]. Fazli incorporated the crossover operator of the genetic algorithm
into the position change phase of the firefly algorithm, and fused the two algorithms to
solve the optimization problem [7]. Geng introduced the scatter search algorithm into
the computational framework of the particle swarm optimization algorithm, and gave
full play to their fast convergence characteristics to study the vehicle scheduling problem
with uncertain traffic flow [8]. Li proposed a multi-objective optimization algorithm based
on particle swarm optimization, which guided the particle swarm to search more fully,
improved the diversity and distribution of its non-inferior solutions, and verified the
effectiveness of the particle swarm optimization algorithm by using three multi-objective
test functions [9]. Ma systematically summarized the basic principle of the genetic algorithm
and introduced the simulated annealing algorithm. The annealing operation was added to
the original genetic algorithm, and the algorithm was improved to solve the multi-objective
optimization model of subway engineering [10].

Nima proposed a new metaheuristic algorithm, the Crystal structure algorithm, which
can effectively handle multi-objective problems [11]. Mohamed helped the metaheuristic
algorithm to achieve better results in multi-objective optimization problems based on the
marine predators algorithm proposed in recent years, and, compared with other algorithms,
achieved remarkable results [12]. Thanh proposed a new Shrimp and Gobi joint search al-
gorithm (SGA) for solving large-scale global optimization problems. This algorithm avoids
local optima better than population-based algorithms and has faster convergence speed.
Thanh also proposed an improved Grey Wolf optimizer (GWO) algorithm, which improves
the speed of the algorithm and can be used to study structural damage identification in
high-dimensional problems [13,14]. Matteo proposed that the EPLANopt model developed
by the Eurac Research Institute was coupled with the multi-objective evolutionary algo-
rithm of DEAP based on Python, which solved the multi-objective optimization problem
of optimizing different energy sources [15]. Zhang proposed an improved particle swarm
optimization algorithm to solve the model of multimodal multi-objective problems, and
introduced the dynamic neighborhood learning strategy instead of the global learning
strategy to enhance the diversity of the population [16]. Srinivas studied the concept of
non-dominated sorting called the Goldberg algorithm, while searching for multiple Pareto
optimal niche and species formation methods. This method can be extended to higher
dimensional and more difficult multi-objective problems [17]. Xu proposed a new multi-
objective constraint optimization model, which can normalize the weighted sum of the
original objective function and the degree of constraint violation on the basis of minimizing
both the objective function and the degree of constraint violation (the degree of violation
of each constraint or its sum) [18]. Mirjalili proposed a new multi-objective Grasshopper
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Optimization algorithm based on the navigation of locust swarms in nature. The algorithm
can estimate the Pareto optimal frontier of multi-objective problems by combining the target
selection and archiving technology [19]. Wang proposed an effective coevolutionary multi-
group garden balm optimization algorithm (CMGBO) to ensure the convergence of Pareto
regions with good diversity [20]. Zhang proposed an evolutionary strategy for solving
multi-modal and multi-objective optimization problems, mainly studying the strategy of
finding solutions with good convergence and distribution in the decision space. This strat-
egy can effectively solve multiple groups of optimal solutions simultaneously [21]. Gaurav
introduced a multi-objective Seagull Optimization Algorithm. This algorithm introduced
the concept of dynamic archiving and had the characteristics of caching the non-dominated
Pareto optimal solution [22]. Muhammad proposed a search-based software engineering
solution by using a multi-objective evolutionary algorithm. The results of the algorithm
can be tested under the background of different objectives and two quality indicators.
The results reveal the influence of the attribute of the feature model, the implementation
environment, and the number of objectives on the performance of the algorithm [23]. Guan
established a multi-objective water supply optimization model considering cost, reliability,
and water quality for the mountain water distribution network (WDN). The NSGA-II algo-
rithm was used to optimize the WDN design model in the complex terrain of the mountain
area, which provided valuable information for the decision makers in the complex terrain
WDN [24]. Li has developed a proxy-assisted stochastic optimization inversion algorithm
called “dam parameter identification”. This algorithm assesses the influence of randomly
selected training and testing datasets on the modeling and prediction outcomes of artificial
neural networks [25]. Huynh used the dataset collected from the Mekong River test project
as an example to train and test a multi-objective dataset by evaluating the results of on-site
load tests [26].

Taking the multi-objective optimization model of foundation pit dewatering as the
main research objective, this paper carries out research through theoretical research, NSGA-
II algorithm design, a multi-objective optimization model MATLAB solving Pareto solution
set, and GMS numerical simulation verification, and develops a multi-objective optimiza-
tion program and quantitative evaluation system based on the Analytic Hierarchy Process.
The multi-objective dewatering optimization model solution and numerical simulation
verification are carried out for the foundation pit dewatering project of the Xixiayuan
canal head inverted siphon section at pile number XZ0+326 to XZ0+500, which provides
the dewatering optimization decision scheme for the foundation pit dewatering design
and construction.

2. Establishment of Multi-Objective Optimization Model and Evaluation System for
Foundation Pit Dewatering

2.1. Establishment of Objective Function, Constraints, and Control Conditions

To construct the optimization model with the objective function method, three basic
elements should be determined. The first is the objective function, the second is the
constraint condition, and the third is the control condition.

2.1.1. Establishment of Objective Function of Optimization Model

Using the objective function method, three objective functions are constructed, as
shown in Equations (1) to (4):

(1) Minimum total cost of dewatering

The objective function is related to the number of wells and the pumping flow of the
wells, and the pumping capacity and the number of pumping wells should be reasonably
selected to ensure the lowest engineering cost.

J1 = Zmin = α1

w

∑
i=1

ni + α2

w

∑
i=1

qi i = 1, 2, . . . , w (1)
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Among them, J1 is the minimum target of the total dewatering cost (Zmin); w is the
total number of pumping wells; ni is a binary variable, indicating whether the i-th well is
in operation, with a value of 1 indicating operation and 0 indicating no operation; qi is the
flow of the i-th pumping well, m3/d; α1 is the construction cost of the pumping well; α2 is
the cost per unit of pumping capacity; and α1 and α2 are different coefficients related to
local market economic conditions.

(2) The minimum amount of land subsidence caused by dewatering

Considering the influence of dewatering on the premise of meeting the allowable
settlement value, it is required that the settlement of important building settlement control
points should be the minimum; that is, the settlement influence coefficient should be the
minimum. The settlement influence coefficient before optimization is 1, the optimization
model can continuously reduce the amount of land subsidence, and the settlement influence
coefficient decreases from 1.

J2 = [C]min =
∑

ng
g=1 [s]g

∑
ng
g=1 [s]y

g = 1, 2, . . . , ng (2)

Among them, J2 is the goal of minimizing the settlement influence coefficient ( [C]min);
ng is the total number of settlement control points; [s]y is the total allowable settlement,
mm; and [s]g is the optimized settlement of the g-th settlement control point, mm.

(3) The maximum drawdown of the water level in the center of the foundation pit

When implementing the foundation pit dewatering, it is necessary to reduce the
groundwater level as much as possible to ensure the safety of the foundation pit structure,
but at the same time, it is necessary to ensure that the hydraulic gradient at the bottom of
the pit is within the safe allowable range.

H2 − h2
j =

(
2H − Sj

)
Sj =

nw

∑
i=1

qi
πK

ln
Ri
rji

j = 1, 2, . . . , nj (3)

J3 = Hmax =

nj

∑
j=1

H − hj

nj
j = 1, 2, . . . , nj (4)

Among them, H is the initial water level value of aquifer, m; hj is the water level value
of the j-th water level control point after pumping, m; Sj is the water level drawdown
value at control point j, m; nw is the number of pumping wells; qi is the flow rate of the
i-th pumping well, m3/d; nj is the number of water level control points; Ri is the influence
radius of the pumping well, m; rji is the distance from the i-th well to the j-th water level
control point, m; K is the permeability coefficient, m/d; J3 is the maximum target of
groundwater drawdown at the center of the foundation pit (Hmax), m.

2.1.2. Determination of Constraints in Optimization Model

The multi-objective optimization model of foundation pit dewatering shall meet the
following constraints:

(1) Groundwater level

To meet the construction requirements for foundation pit dewatering, it is necessary
to lower the groundwater level in the pit below its bottom and establish water level control
points within the pit. The actual drawdown at these control points must exceed the
design drawdown.

Sj ≤
w

∑
i=1

Sji j = 1, 2, . . . , nj (5)
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where Sj is the design drawdown value at control point j, m; Sji is the drawdown of the
i-th well to the water level control point at j, m; w is the number of pumping wells; and nj
is the number of water level control points.

(2) Single well pumping capacity

The pumping capacity of the pumping well is related to the well structure and aquifer
permeability. It is required that the maximum pumping capacity of the pumping well shall
not exceed its allowable maximum pumping capacity:

0 ≤ qi ≤ qmax(i) i = 1, 2, . . . , w (6)

where qmax(i) is the maximum pumping capacity of the i-th pumping well, m3/d.

(3) Number of pumping wells

In the construction process of pumping wells, the number of pumping wells needs to
be restricted. The restriction of the number of pumping wells in operation is as follows:

∑ ni ≤ nmax (7)

where ni is whether the i-th well exists. If the i-th well exists, then ni = 1; if the contrary
is true, then ni = 0. nmax is the maximum number of pumping wells when all pumping
wells exist.

(4) Settlement

In order to ensure the environmental safety around the foundation pit, a settlement
control point is set. The ground settlement value at the control point should be less than
the allowable settlement at this point:

[s]g ≤ [s]y (8)

where [s]g is the settlement at control point g, mm; variable [s]g is the function of state
variable hi and decision variable qi; among them, hi is the groundwater level, m; qi is the
pumping capacity of a single well, m3/d; and [s]y is the allowable settlement, mm.

2.1.3. Determination of Optimal Model Control Conditions

The control conditions are used to determine and control the parameter levels of
decision variables and state variables, and the well radius and hydraulic gradient of the
pumping well are used as the control conditions.

(1) Well radius

In order to meet the installation of dewatering equipment, the radius of the pumping
well is generally required to be greater than or equal to 0.2 m, as follows:

0.2 ≤ rw(i) (9)

where rwi is the radius of the i-th well, taken as 0.2 m.

(2) Hydraulic gradient

The water level drawdown at the bottom of the foundation pit is the largest. This is
the area with the largest hydraulic gradient. There are potential problems of piping or soil
flow. The risk level is the highest, which needs to be considered. In order to consider the
safety of foundation pit design, the hydraulic gradient is taken as the control condition:

Ks =
icr

imax
(10)

imax =
Δh
ΔL

(11)
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icr =
Gs − 1
e + 1

(12)

where Ks is the safety factor, and the safety factor is usually greater than 1.5~2.5 in the
dewatering design; imax is the maximum hydraulic gradient; icr is the critical hydraulic
gradient; h is the difference between the internal and external water head, m; ΔL is the
seepage path, m; Gs is the specific gravity of aquifer soil particles; and e is the void ratio.

2.2. Establishment of Multi-Objective Optimization Evaluation System

There is a large number and wide distribution range of the Pareto optimal solution set
of the multi-objective optimization model. Each Pareto solution can meet the requirements
of foundation pit dewatering. Therefore, the Analytic Hierarchy Process [27] (AHP) com-
bined with the evaluation scoring method can be used to establish the evaluation system, so
as to select the candidate set with high score in the Pareto solution set as the decision basis.
The most important step for evaluation and decision making is to determine the weight
and scoring standard of the sub-target layer (total dewatering cost, settlement influence
coefficient, and safety and stability of the foundation pit structure).

The evaluation system based on the multi-objective optimization model of dewatering
is structured into two layers. The first layer, denoted as A, represents the main objective
of optimizing the foundation pit dewatering. The second layer, referred to as the sub-
target layer, includes three components: total dewatering cost (A1), settlement influence
coefficient (A2), and safety and stability of the foundation pit structure (A3).

According to the dewatering optimization experience, combined with the Saaty scale
table [28], the weight judgment among sub-target layers is carried out, and the judgment
matrix A is constructed. The maximum eigenvalue and corresponding eigenvector of the
judgment matrix are calculated according to Equation (13):

AW = λmaxW (13)

where W is the weight corresponding to the sub-target layer, and λmax is the maximum
eigenvalue of the judgment matrix.

In order to avoid the influence of human subjective factors, it is necessary to carry out
the consistency test on the constructed judgment matrix and calculate the consistency index
C.I. of the judgment matrix and the consistency ratio C.R. Generally, when C.R. < 0.1, the
consistency of the constructed judgment matrix can pass the test.

C.I. =
λmax − n

n − 1
(14)

C.R. =
C.I.
R.I.

(15)

where n is the order of the constructed judgment matrix; C.I. is a consistency index; C.R. is
the consistency ratio; and R.I. is the average random consistency index.

Therefore, it is seen from Table 1 that the judgment matrix of the total dewatering
cost, the settlement influence coefficient, and the safety and stability of the foundation
pit structure on the total target A in the sub-target layer is constructed, and the weight
and normalized weight corresponding to the sub-target layer are calculated according to
Equation (13).

Table 1. A judgment matrix.

A A1 A2 A3 W0 W0 Normalization

A1 1 1/3 1/5 0.492 0.109
A2 3 1 1/2 1.39 0.309
A3 5 2 1 2.617 0.582
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The maximum eigenvalue of the judgment matrix λmax is 3.004. C.R. = 0.002 < 0.1 is
calculated by the formula, and the consistency of the matrix can pass the test. From the
normalized weights of the three sub-objectives, it can be seen that the decision makers are
most interested in the safety and stability of the foundation pit structure, followed by the
settlement influence coefficient, and, finally, the total cost of dewatering.

In combination with the actual situation and relevant experience of the project, the
total cost of dewatering in the sub-target layer, the settlement influence coefficient, and
the safety and stability of the foundation pit structure are evaluated and scored, and the
score values are shown in Table 2. Therefore, the solution with the highest score in the
Pareto optimal solution set in the multi-objective optimization model is selected as the
optimization decision solution.

Table 2. Sub-target layer parameter evaluation score.

Sub-Target Layer Parameter Range Scoring Value (0–100)

Total cost of dewatering
(Minimum total pumping flow, m3/d)

<1.45 × 105 95
1.45 × 105–1.5 × 105 85
1.5 × 105–1.55 × 105 75

>1.55 × 105 65

Impact of settlement on environment
(Settlement influence coefficient)

<0.53 90
0.53–0.55 80
0.55–0.57 70

Safety and stability of foundation pit structure
(The central water level is lower than the

foundation pit bottom plate, m)

>1.8 90
0.6–1.8 80
0–0.6 70

3. Solution of Multi-Objective Optimization Model

3.1. NSGA-II Algorithm

In 1975, the genetic algorithm appeared in the optimization problem, which was
proposed by J Houand and systematically summarized by Goldberg, which realized the
development of the population and the continuous improvement of the individual level.
The genetic algorithm is based on Darwin’s genetic evolution theory and embodies the
idea of “natural selection and survival of the fittest” [29]. The genetic algorithm has the
characteristics of self-selection and self-adaptation in evolutionary engineering. It has the
ability of global search and it can quickly search all solutions. NSGA-II (non-dominated
sorting genetic algorithm) is one of the most widely used and effective multi-objective
genetic algorithms [17]. It is an algorithm based on the non-dominated sorting algorithm,
which has a small amount of calculation and is an elite algorithm. It was originally
proposed for 2–3 objective problems [30]. Compared with the original NSGA algorithm, its
computational complexity is greatly reduced, and the computation time is greatly reduced.
At the same time, it can ensure the diversity of individuals in the population. Therefore, the
NSGA-II algorithm has improved in terms of optimization and computation time compared
to the original NSGA algorithm, so it is more excellent as a multi-objective algorithm [31].

The flow chart of the NSGA-II algorithm is shown in Figure 1.

3.2. MATLAB Optimization Toolbox

The MATLAB optimization toolbox is an extension toolbox of the MATLAB software’s
numerical calculation. The toolbox has a variety of conventional functions and heuristic
algorithms. It has powerful functions, which can be visualized, and it has high solving
efficiency [32]. The optimization functions in the optimization toolbox are shown in Table 3.
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Figure 1. NSGA-II algorithm flow chart.

Table 3. MATLAB main optimization functions.

Function Description

Fgoalattain Multi-objective achievement problem
Fmincon Constrained nonlinear minimization

Fminimax Minimization and maximum
Linprog Linear program

Quadprog Quadratic programming
Gamultiobj Multi-objective nonlinear minimization

The Gamultiobj program is capable of solving optimization problems with multiple
sub-objectives, and it can be utilized either by inputting code or using the graphical toolbox
in the MATLAB optimization toolbox. This function incorporates most of the operations
from the NSGA-II algorithm, and it is optimized based on it. The Gamultiobj program is
consistent with the NSGA-II algorithm in terms of dominance level, non-inferior solution,
Pareto ranking, and congestion. However, it introduces the optimal front-end individual
coefficient to provide a more precise representation of the Pareto solution. This coefficient
has a maximum value of 1 and a minimum value of 0, expressing the ratio of the optimal
individual to the total population. A larger ratio results in obtaining more sets of Pareto
solutions. The following are the fundamental steps to call the Gamultiobj program, based
on the NSGA-II algorithm, for solving practical engineering problems:

(1) According to the actual engineering conditions in the study area, the expression of the
objective function is determined, the decision variables are determined, the constraints
and control conditions are established according to the construction requirements,
and the optimal mathematical model for solving the problem is established;

(2) Launch the MATLAB optimization toolbox and utilize the Gamultiobj program to in-
put the established multi-objective optimization mathematical model into the toolbox,
following the specific format guidelines;

(3) Combined with the optimization code, the results of the optimization mathematical
model are solved and output.
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3.3. Program Design for Solving Multi-Objective Optimization Model

The technical route of the optimization solution using the NSGA-II algorithm is shown
in Figure 2.

Figure 2. Technical route for optimal solution of multi-objective optimization model of foundation
pit dewatering based on NSGA-II algorithm.

The designed dewatering optimization program has the following advantages:

(1) The program can simultaneously optimize the number of pumping wells and the
pumping capacity of a single well, and it can obtain the Pareto optimal solution set
under different working conditions;

(2) The Pareto solution set is obtained based on the NSGA-II algorithm, with a uniform
distribution of Pareto frontiers and while retaining more excellent solutions;

(3) The program avoids complex programming steps and uses the MATLAB optimization
solver to input parameters and output results in a visual form.

4. Engineering Background

4.1. General Situation

The water conservancy and irrigation area engineering of the Xixiayuan water conser-
vancy project is located on the North Bank of the Yellow River in Henan Province, China.
It is one of the 172 major water conservancy construction projects in the country. The
overview of the study area is shown in Figure 3. This paper focuses on the foundation
pit project located at the inverted siphon section of the canal head with the specified pile
range (XZ0+326 to XZ0+500). This particular section is situated within the Yellow River
wetland protection zone, spanning a total length of 174 meters. Notably, the groundwater
is found in a highly permeable pebble layer, approximately 11 meters above the foundation
surface. Consequently, the excavation of the foundation pit presents challenges pertaining
to dewatering and drainage. The constructed multi-objective optimization model and
evaluation system are used to optimize the design of the tube well dewatering scheme,
providing a reference for similar projects.
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Figure 3. Location distribution map of study area.

4.1.1. Engineering Geological Conditions

The geomorphic unit of the site belongs to the Yellow River beach area. The terrain is
flat and open. It is generally high in the north and low in the south. The ground elevation
is 122.19–127.75 m, and the bottom elevation of the foundation pit of the inverted siphon
section of the canal head is 111.10–111.30 m.

The stratum is quaternary Holocene alluvium, and the lithology is mainly sandy loam
and pebble.

Sandy loam (Q4
2al) in the first layer: brown yellow, dry or slightly wet, loose, uneven

soil, with high sand content in some parts. The thickness is 1.7~2.0 m, and the bottom
elevation is 122.02~122.89 m.

Pebble (Q4
2al) in the second layer: grayish white, purplish red, mixed with a small

amount of quartzite and andesite. The particle size is generally 3~6 cm, a small amount of
15~20 cm, and the maximum particle size is more than 20 cm, mostly in sub round shape,
accounting for about 55~65%, filled with argillaceous sand and not cemented.

4.1.2. Hydrogeologic Condition

The groundwater in the study area is Quaternary pore phreatic water, which mainly
occurs in the pores of the second pebble layer. The buried depth of the groundwater level
is 2.60–3.85 m, and the groundwater level is 121.37–121.99 m. Groundwater primarily
receives recharge from atmospheric precipitation and the Yellow River, while discharge
occurs through evaporation, artificial exploitation, and lateral runoff. The first layer of
sandy loam is generally weakly or moderately permeable, with a permeability coefficient
of 4 × 10−4 cm/s. The second layer of pebbles is highly permeable, and the permeability
coefficient is generally about 3 × 10−1–1.0 cm/s.

4.2. Initial Scheme of Foundation Pit Dewatering in the Study Area

To achieve dewatering and maintain a dry excavation in the foundation pit of the
inverted siphon section of the canal head, this study implements the tube well dewater-
ing method instead of utilizing a waterproof curtain. Moreover, a circular arrangement
approach is employed to uniformly position dewatering wells at a distance of 1 m outside
the pit to effectively lower the groundwater level. In this paper, the foundation pit with
a pile number of XZ0+326–XZ0+500 in the inverted siphon section of the canal head is
selected for dewatering design in the pebbles stratum. The length of the foundation pit
is 174 meters, and the width is 39 m. The ground elevation of the project area is about
122.5 m, the first layer of sandy loam is about 3 m thick, and the second layer of pebbles is
about 20 m thick. The initial groundwater level is about 121.5 m, the bottom elevation of
the phreatic aquifer is about 99.5 m, the thickness of the aquifer is about 22 m, the bottom
elevation of the foundation pit is 110.3 m, the average excavation depth of the foundation
pit is 12 m, the groundwater level is calculated as 1 m below the foundation pit bottom
plate, and the drawdown of the water level in the project area is 11~12 m. The engineering
geological longitudinal section and foundation pit location of the canal head inverted
siphon XZ0+326–XZ0+500 section in the project area is shown in Figure 4. The red line in
the figure shows the location of the foundation pit.
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Figure 4. Engineering geological longitudinal section and foundation pit location of canal head
inverted siphon section XZ0+326–XZ0+500.

The initial design scheme uses a group of phreatic completely penetrating wells for
dewatering, which needs to lower the groundwater to 0.5–1 m below the bottom of the
foundation pit. According to the technical specification for building a foundation pit
(JGJ/120-2012) [33], calculate the total water inflow of the foundation pit:

Q = πk
(2H − sd)sd

ln
(

1 + R
r0

) (16)

Among them, Q is the total water inflow, m3/d; k is the permeability coefficient, m/d;
H is the thickness of the phreatic aquifer, m; sd is the design drawdown of the groundwater
level of the foundation pit, m; r0 is the equivalent radius of foundation pit, m, which can be

calculated according to r0 =
√

A
π ; A is the area of foundation pit, m2; and R is the influence

radius of dewatering, m.
The influence radius of dewatering can be calculated according to the drawdown

value of the observation well arranged in the pumping test, combined with the graphical
method. If there is no water level observation well, it can also be solved by using the
phreatic aquifer empirical formula method with reference to the parameters obtained from
the pumping test:

R = 2sw
√

kH (17)

where sw is the drawdown value of the well water level, m. The meaning of the other
symbols is the same as above.

In order to ensure the dewatering effect, the number of tube wells can be calculated
using the following formula when tube wells are arranged at equal intervals for dewatering:

n = (1.1 ∼ 1.2)
Q

qmax
(18)

where n is the number of wells and qmax is the maximum water yield of a well, m3/d.
The maximum allowable pumping capacity of the pumping well is generally obtained

from the pumping test. In the absence of a pumping test, it can be solved according to the
following empirical formula:

qmax = 120πrl 3√K (19)

where qmax(i) is the maximum pumping capacity of the i-th pumping well, m3/d; r is the
screen radius of the pumping well, m; and l is the effective working length of the screen of
the pumping well, m.
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According to the construction quality acceptance code for building foundation en-
gineering (GB50202-2018) [34], the allowable settlement value caused by foundation pit
dewatering is 15 mm, which is related to the height of the dam.

Then, based on survey data and on-site slug test techniques [35–38], the permeability
coefficient of the aquifer was obtained. The initial design scheme calculation parameters
are shown in Table 4.

Table 4. Calculation parameters of initial design scheme.

Foundation
Pit Section

K/(m/d)
Influence

Radius
R/(m)

qmax/
(m3/d)

Number of
Pumping

Wells

Water Level
Control

Point

Settlement
Control
Points

Total
Q/(m3/d)

XZ0+326–
XZ0+500 432 2242.5 6000 26 5 2 156,000

According to the calculation parameters of the initial design scheme, 26 phreatic
completely penetrating wells are planned to be arranged, 5 water level control points
K1–K5 are arranged along the longitudinal axis of the foundation pit, and 2 settlement
control points P1 and P2 are arranged next to the dam of the Xixiayuan water conservancy
project in the southwest, as shown in Figure 3.

5. Solving Pareto Optimal Solution Set and Analysis Decision

The multi-objective optimization model of foundation pit dewatering based on the
NSGA-II algorithm optimizes the preliminary design scheme, inputs the initial design
parameters, calls the Gamultiobj program, and sets the parameters. The initial population
size of the Gamultiobj program is set to 100, the genetic iteration is set to 30 generations,
the cross ratio is set to 0.7, the function tolerance is set to 1 × 10−6, and the Pareto set
ratio is set to 0.6; that is, the Pareto solution set is generated after 3000 operations and
30 iterations of the function. Through the optimization calculation, in order to meet the
program convergence, constraints, and control conditions, at least 24 pumping wells need
to be operated. Therefore, the Pareto optimal solution set under three working conditions
(24–26 pumping wells in operation) is obtained. The constructed dewatering multi-objective
optimization evaluation system assigns scores and evaluates the Pareto optimal solution
set. Based on the higher evaluation score, the Pareto solution is analyzed to serve as
the foundation for decision making. To assess the feasibility of the proposed scheme, a
numerical simulation was conducted to verify its feasibility in Section 6.

5.1. Pareto Optimal Solution Set and Analysis of Running 26 Pumping Wells Schemes

The multi-objective optimization model for foundation pit dewatering allows for
the identification of Pareto optimal solutions and the generation of multiple dewatering
schemes tailored to different objectives. The first working condition is set with 26 running
wells, and the Gamultiobj program, based on the NSGA-II algorithm, is employed to obtain
the Pareto optimal solution set and the operational status of the pumping wells. This
information is depicted in Figure 5.

It can be seen from Figure 5 that the optimization model maintains the running of all of
the initial 26 pumping wells. After 30 iterations of the algorithm, the Pareto optimal solution
set is obtained. The light green color ball in the solution set is the Pareto optimal solution.
The red dot indicates the relationship between the total water inflow of the foundation pit
and the settlement influence coefficient, the green dot indicates the relationship between the
central water level drawdown of the foundation pit and the total water inflow, and the blue
dot indicates the relationship between the central water level drawdown of the foundation
pit and the settlement influence coefficient. Under the condition of meeting constraints
and control conditions, the total water inflow ranges from 1.42 × 105 to 1.56 × 105 m3/d.
The settlement influence coefficient is between 0.51 and 0.57, which is converted into the
settlement value of 7.65–8.55 mm, which is less than the allowable settlement value of

244



Appl. Sci. 2023, 13, 10865

15 mm. The drawdown of the water level in the center of the foundation pit is 0.2–10 m,
meeting the drawdown requirements of more than 0 m. All Pareto solutions of 26 pumping
wells under all running conditions are substituted into the dewatering multi-objective
optimization evaluation system to calculate the evaluation score, which is arranged in
descending order according to the weighted scores of the three objectives. The score results
of Pareto solutions obtained by the scheme are shown in Table 5.

 
(a) Pareto solution set distribution diagram (b) Working state of pumping well 

Figure 5. Pareto set distribution diagram and pumping well working state under the first optimized
working condition. (In the figure (a), the red dot indicates the relationship between the total water
inflow and the settlement influence coefficient, the green dot indicates the relationship between the
central water level drawdown and the total water inflow, the blue dot indicates the relationship
between the central water level drawdown and the settlement influence coefficient).

Table 5. Evaluation table for optimal scheme of foundation pit dewatering for running 26 pumping
wells.

Pareto Solution No.
Score for

Objective I
Score for

Objective II
Score of

Objective III
Weighted Scores of Three Objectives

of Dewatering Optimization

1 95 90 90 90.545
2 85 90 90 89.455
3 85 80 90 86.365
4 75 80 90 85.275
5 95 90 80 84.725
6 75 70 90 82.185
7 65 70 90 81.095

It can be seen from Table 5 that the solutions in the Pareto optimal solution set are
evaluated by AHP combined with the scoring method, and the Pareto solution with a high
evaluation score is selected. So, the dewatering scheme with a weighted evaluation score
of 90.545 is selected. The comparison of the optimization results of the three objectives is
shown in Table 6, and the optimal results of decision variables are shown in Figure 6.

Table 6. Three objective optimization results of running 26 pumping wells.

Schemes

Each Objective
Well Status

Total Pumping

Flow/(m3/d)
Settlement Value

(mm)

The Distance Where Water Level in
the Center of the Foundation Pit Is

Lower than the Bottom Plate/(m)

Hydraulic
Gradient Value

Preliminary scheme 26 wells in
running 156,000 <15 >0 <0.9

The first optimized
working condition

26 wells in
running 144,972 7.8 1.84 0.65
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Figure 6. Optimization results of decision variables under the first optimization working condition.

It can be seen from Table 6 that the total water inflow of objective I under the first
optimization working condition is about 1.45 × 105 m3/d, the settlement value of objective
II is 7.8 mm, which is less than the allowable settlement value of 15 mm, and the foundation
pit central water level of objective III is 0.39 m lower than the foundation pit bottom plate,
meeting the design requirements for construction of more than 0 m. In this scheme, if
the construction and installation of the pumping well have been completed, the score of
the three objectives is the best, but the disadvantage is that the number of the pumping
wells is the largest, and it is not necessarily the best scheme in the area with a high cost of
construction and installation of the pumping well.

5.2. Pareto Optimal Solution Set and Analysis of Running 25 Pumping Wells Schemes

Similarly, on the premise of meeting the constraints and control conditions, the second
optimization working condition is set to arbitrarily close one of the wells, resulting in a
total of 26 layout schemes, without changing the location of the wells in the preliminary
layout scheme. After optimization by the Gamultiobj program, 26 sets of Pareto solution
sets are obtained, and 26 feasible schemes can be optimized for three objectives. Three sets
of layout optimization schemes with evenly distributed Pareto solution sets are selected for
analysis. The Pareto optimal solution set and pumping well layout state under the second
optimization working condition are shown in Figure 7.

It can be seen from Figure 7 that the three schemes under the second optimized
working condition are to close the J26, J16, or J3 pumping well, respectively. Similarly,
all Pareto solutions of the three schemes under the second optimization condition are
substituted into the dewatering multi-objective optimization evaluation system, and the
evaluation scores are calculated. The weighted scores of the three objectives are arranged
in descending order. The score results of the Pareto solutions of each scheme are shown in
Table 7.

Select the Pareto solution with the highest evaluation score among the dewatering
optimization schemes in Table 7, which are the three dewatering schemes with weighted
scores of 89.455, 90.545, and 89.455, respectively. The comparison of the optimization results
of the three objectives is shown in Table 8. The optimal results of decision variables are
shown in Figure 8.
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(a) Pareto solution set distribution diagram when 
closing J26 pumping well (b) Working state of pumping well when closing J26 

 
(c) Pareto solution set distribution diagram when 

closing J16 pumping well (d) Working state of pumping well when closing J16 

 
(e) Pareto solution set distribution diagram when 

closing J3 pumping well 
(f) Working state of pumping well when closing J3  

Figure 7. Pareto set distribution diagram and pumping well working state under the second optimal
working condition. (In the figure (a,c,e), the red dot indicates the relationship between the total water
inflow and the settlement influence coefficient, the green dot indicates the relationship between the
central water level drawdown and the total water inflow, the blue dot indicates the relationship
between the central water level drawdown and the settlement influence coefficient).
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Table 7. Evaluation table for optimal scheme of foundation pit dewatering for running 25 pumping
wells.

Each Scheme
Pareto

Solution No.
Score for

Objective I
Score for

Objective II
Score of

Objective III

Weighted Scores of Three
Objectives of Dewatering

Optimization

Close J26 pumping well

1 85 90 90 89.455
2 85 80 90 86.365
3 75 80 90 85.275
4 95 90 80 84.725
5 85 90 80 83.635
6 65 70 90 81.095

Close J16 pumping well

1 85 90 90 89.455
2 85 90 90 89.455
3 85 80 90 86.365
4 75 80 90 85.275
5 95 90 80 84.725
6 75 70 90 82.185

Close J3 pumping well

1 85 90 90 89.455
2 85 90 90 89.455
3 85 80 90 86.365
4 75 80 90 85.275
5 95 90 80 84.725
6 75 70 90 82.185

Table 8. Three objective optimization results of running 25 pumping wells.

Schemes

Each Objective
Well Status

Total Pumping

Flow/(m3/d)
Settlement
Value (mm)

The Distance Where Water Level in
the Center of the Foundation Pit Is

Lower than the Bottom Plate/(m)

Hydraulic
Gradient Value

Preliminary scheme 26 wells in
running 156,000 <15 >0 <0.9

The second optimized
working condition

Close J26 145,498 7.9 1.85 0.65
Close J16 149,608 8.4 1.88 0.67
Close J3 145,037 7.7 1.83 0.63

 
(a) Close J26 (b) Close J16 (c) Close J3 

Figure 8. Optimization results of decision variables under the second optimization working condition.

It can be seen from Table 8 that the total water inflow of objective I under the second
optimized working condition is 1.45 × 105–1.49 × 105 m3/d, and the settlement value of
objective II is between 7.85 and 8.4 mm, which is less than the allowable settlement value
of 15 mm. The foundation pit central water level of objective III is 1.83–1.88 m lower than
the foundation pit bottom plate, which meets the requirements of construction of more
than 0 m. In this scheme, the highest evaluation scores for separately closing pumping
wells J26, J16, or J3 are basically the same, but according to Table 8, the advantages and
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disadvantages of each scheme can be analyzed in detail. If the minimum settlement and
the lowest hydraulic gradient are considered, pumping well J3 should be shut down; if the
maximum water level drawdown value and the safest structure are considered, pumping
well J16 should be shut down.

5.3. Pareto Optimal Solution Set and Analysis of Running 24 Pumping Wells Schemes

Similarly, on the premise of meeting the constraints and control conditions, the third
optimal working condition is set to arbitrarily close two of the pumping wells, resulting
in a total of 325 layout schemes, which does not change the location of the wells in the
preliminary layout scheme. After the optimization of the Gamultiobj program, the program
converges to 100 sets of Pareto solution sets, and 100 feasible schemes can be optimized
for the three objectives. Three sets of layout optimization schemes with evenly distributed
Pareto solution sets under the third working condition are selected for analysis. Pareto
optimal solution sets and the pumping well layout status are shown in Figure 9.

It can be seen from Figure 9 that under the third optimization condition, the optimiza-
tion model runs 24 pumping wells. Scheme 1 is to close the J19 and J22 pumping wells,
scheme 2 is to close the J7 and J24 pumping wells, and scheme 3 is to close the J1 and
J22 pumping wells. Similarly, all Pareto solutions of the three schemes under the third
optimization condition are substituted into the dewatering multi-objective optimization
evaluation system, and the evaluation scores are calculated. The weighted scores of the
three objectives are arranged in descending order from larger to smaller. The score results
of Pareto solutions of each scheme are shown in Table 9.

Table 9. Evaluation table for optimal scheme of foundation pit dewatering for running 24 pumping
wells.

Each Scheme
Pareto

Solution No.
Score for

Objective I
Score for

Objective II
Score of

Objective III

Weighted Scores of Three
Objectives of Dewatering

Optimization

Close J19 and J22
pumping wells

1 95 90 90 90.545
2 85 80 90 86.365
3 75 80 90 85.275
4 95 90 80 84.725
5 75 70 90 82.185
6 95 90 70 78.905

Close J7 and J24
pumping wells

1 95 90 90 90.545
2 85 80 90 86.365
3 75 80 90 85.275
4 95 90 80 84.725
5 75 70 90 82.185
6 95 90 70 78.905

Close J1 and J22
pumping wells

1 95 90 90 90.545
2 85 80 90 86.365
3 75 80 90 85.275
4 95 90 80 84.725
5 75 70 90 82.185
6 95 90 70 78.905

Select the Pareto solution with the highest evaluation score in the dewatering opti-
mization scheme in Table 9; that is, the three groups of dewatering schemes with the same
weighted score of 89.455. The comparison of three objective optimization results is shown
in Table 10. The optimization results of decision variables are shown in Figure 10.
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(a) Pareto solution set distribution diagram when 
closing J19 and J22 pumping well 

(b) Working state of pumping well when closing J19 
and J22  

 

 

(c) Pareto solution set distribution diagram when 
closing J7 and J24 pumping well 

(d) Working state of pumping well when closing J7 
and J24 

 

 

(e) Pareto solution set distribution diagram when 
closing J1 and J22 pumping well 

(f) Working state of pumping well when closing J1 
and J22 

Figure 9. Pareto set distribution diagram and pumping well working state under the third optimal
working condition. (In the figure (a,c,e), the red dot indicates the relationship between the total water
inflow and the settlement influence coefficient, the green dot indicates the relationship between the
central water level drawdown and the total water inflow, the blue dot indicates the relationship
between the central water level drawdown and the settlement influence coefficient).
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Table 10. Three objective optimization results of running 24 pumping wells.

Schemes

Each Objective
Well Status

Total Water
Inflow/(m3/d)

Settlement
Value (mm)

The Distance Where Water Level in
the Center of the Foundation Pit Is
Lower Than the Bottom Plate/(m)

Hydraulic
Gradient Value

Preliminary scheme 26 wells in
running 156,000 <15 >0 <0.9

The third optimized
working condition

Close J19, J22 143,665 7.95 1.84 0.66
Close J7, J24 143,121 7.95 1.83 0.65
Close J1, J22 143,036 7.95 1.83 0.65

   
(a) Close J19 and J22 (b) Close J7 and J24 (c) Close J1 and J22 

Figure 10. Optimization results of decision variables under the third optimization working condition.

It can be seen from Table 10 that the total water inflow of objective I under the third
optimized condition is about 1.43 × 105 m3/d, the ground settlement value of objective
II is about 7.95 mm, which is less than the allowable settlement value of 15 mm, and the
foundation pit central water level of objective III is 1.83–1.84 m lower than the foundation pit
bottom plate. In this scheme, due to the minimum number of pumping wells and pumping
capacity, the cost of dewatering is minimized. However, disadvantages of this scheme are
that the settlement of the control point is relatively large, particularly in residential areas
where this may not be the optimal choice.

5.4. Pareto Optimal Solution Set Analysis and Decision Making

The multi-objective optimization model of foundation pit dewatering based on the
NSGA-II algorithm is solved to obtain the Pareto optimal solution set under three different
dewatering conditions. Using the multi-objective optimization evaluation system, the opti-
mization scheme in the Pareto optimal solution set is selected as the decision optimization
result from the three objectives of total dewatering cost, settlement influence coefficient,
and the safety and stability of the foundation pit structure, which provides a variety of
feasible schemes for the dewatering construction of the foundation pit.

The three objectives in the foundation pit dewatering optimization model affect and
interact with each other. Therefore, the specific analysis and decision making are as follows:

(1) When giving priority to the total cost of dewatering, it is important to consider the
drilling and pumping costs for foundation pit dewatering. Within the optional Pareto
solution set, a solution with a smaller number of pumping wells and lower total
pumping capacity should be the first choice based on the dewatering multi-objective
optimization evaluation system. Specifically, the operation scheme of closing the J1
and J22 pumping wells under the third optimization condition can be preferred;

(2) If the focus is on the impact of dewatering on the surrounding environment, preference
should be given to a dewatering scheme with a settlement impact coefficient of
less than 0.53. Specifically, the operation scheme corresponding to Pareto solution
No. 1 under the first optimized condition in Table 5, and the operation scheme
corresponding to closing the J3 pumping well under the second optimized condition
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in Table 7, can ensure minimal ground settlement under the conditions of meeting the
total cost requirements of dewatering and the safety and stability of the foundation
pit structure;

(3) When prioritizing the safety and stability of the foundation pit structure, achieving a
significant drawdown of the water level in the center of the foundation pit is crucial
for ensuring successful construction and enhancing structural safety. Considering the
dewatering multi-objective optimization evaluation system, a preferable dewatering
scheme is to maintain the water level approximately 1.5 m below the bottom plate
of the foundation pit. Therefore, the operation scheme of running 25 pumping
wells while closing the J16 pumping well under the second working condition is
recommended to meet the maximum drawdown of the water level.

6. Numerical Simulation Verification of Dewatering Optimization Scheme Based
on GMS

6.1. Element Subdivision of Numerical Model and Determination of Boundary Conditions

Based on the hydrogeological conditions in the study area, a numerical model is
established using GMS software. The model is divided into two layers, each of which is
divided into 22,500 element meshes of 150 × 150. The first layer is a sandy loam layer
(119.5–122.5 m), the second layer is a pebble layer (99.5–119.5 m), and the bottom is a
claystone layer. The terrain is flat, so it is treated as a horizontal layer. The vertical thickness
of the overall model is 23 m. The southwest of the foundation pit in the study area is close
to the Yellow River, and the fixed water head boundary is set according to the measured
water level of the Yellow River during the simulation period. The Xixiayuan reservoir dam
is located in the northwest, which is regarded as the impermeable boundary treatment.
The poor permeability of the bottom claystone layer is regarded as the impermeable
boundary, and the remaining boundaries are determined as the constant water head
boundary according to the influence radius of pumping, which is set to be equal to the initial
head of the study area. The grid division of the 3D geological model in the study area is
shown in Figure 11. Specifically, the water level values of all constant water head boundaries
in the numerical model are consistent with those taken in the optimization algorithm.

Figure 11. Grid division of 3D geological model of the study area.

The hydrogeological parameters and physical mechanical parameters of each layer are
obtained according to the survey reports and on-site slug test results, as shown in Table 11.

Table 11. Hydrogeological parameters and physical and mechanical parameters of each layer.

Aquifer
Permeability
Coefficient

K/(m/d)
Specific Yield Porosity

Elastic Water
Storage Rate

Sske (1/m)

Inelastic Water
Storage Rate

Sskv (1/m)

Sandy loam soil layer 0.35 0.05 0.3 6 × 10−4 1.2 × 10−3

Pebble layer 432 0.2 0.4 1.2 × 10−4 1.6 × 10−4
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6.2. Numerical Simulation Results and Analysis

Based on the MODFLOW module and SUB subroutine package in GMS, according to
the requirements of foundation pit dewatering and settlement control, and comprehensively
considering three objectives, the dewatering scheme of running 24 pumping wells and
closing the J19 and J22 pumping wells under the third optimal condition is numerically
simulated and analyzed to verify its feasibility and accuracy. Therefore, the groundwater
level and settlement contour maps in the study area under this dewatering scheme are
shown in Figures 12 and 13.

  
(a) Plane contour map of groundwater level in the study 

area 
(b) Three-dimensional contour map of groundwater 

level in the study area 

Figure 12. Contour map of groundwater level in the study area.

(a) Plane contour map of se lement in the study area 
(b) Three-dimensional contour map of se lement in the 
study area 

Figure 13. Contour map of settlement in the study area.

It can be seen from Figure 12 that the water level at the groundwater level control point
in the foundation pit is lower than the elevation 110.3 m of the foundation pit bottom, and
the water level in the pit is stable between 108.9 and 109.6 m, which can lower the water level
to 1.4 m below the foundation pit bottom plate and meet the construction requirements.
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It can be seen from Figure 13 that the settlement in the foundation pit settlement
observation points is up to 8.8–9.0 mm, and the average settlement is about 8.9 mm.
Compared with the allowable settlement of 15 mm calculated by the layered summation
method, the simulation results show that the settlement is far less than the allowable
settlement, which can reduce about 41% of the settlement. It can be verified that the
optimized dewatering scheme of running 24 pumping wells and closing the J19 and J22
pumping wells under the third optimal working condition will not cause settlement damage
to the foundation pit and surrounding buildings, and this can ensure construction safety.

The numerical simulation results and optimization results under this dewatering
scheme are compared and analyzed, and the comparison results are shown in Table 12. The
comparison results show that the numerical simulation results can lower the water level in
the center of the foundation pit to 1.4 m below the bottom of the foundation pit and meet
the requirements of water level drawdown. The observed value of settlement is 8.9 mm,
which is less than the allowable value of 15 mm of settlement, which verifies the feasibility
of the optimization results.

Table 12. Verification and comparison of different results under the third optimal working condition.

Types

The Distance Where Water
Level in the Center of the
Foundation Pit Is Lower

than the Bottom Plate/(m)

Mean Value of Ground
Settlement Observation

Points/(mm)

Total Pumping Wells
Flow/(m3/d)

Allowable value >0 <15 <144,000
Optimal results 1.84 7.95 143,665

Numerical simulation results 1.40 8.9 143,815

7. Conclusions

(1) The objective function method is used to establish the multi-objective optimiza-
tion mathematical model of foundation pit dewatering. Combined with the non-
dominated sorting genetic algorithm NSGA-II and MATLAB optimization toolbox,
the Gamultiobj program is called to develop an iterative program to optimize the
pumping capacity of a single well and the number of pumping wells, and the solving
process is given. The advantages of multi-objective optimization based on NSGA-II
are that the uniformly distributed Pareto optimal solution set can be obtained, and
multi-objective optimization problems for foundation pit dewatering can more quickly
and efficiently be handled based on the fast-elite selection strategy. Using the Analytic
Hierarchy Process (AHP) combined with the evaluation scoring method to establish
an evaluation system, the candidate set with high scores in the Pareto solution set is
used as the decision-making basis. The construction of an evaluation system combin-
ing NSGA-II and AHP applied in foundation pit dewatering engineering represents
an innovative technology and method.

(2) Using the NSGA-II algorithm and MATLAB optimization toolbox programming, the
dewatering optimization of the foundation pit project of the inverted siphon section of
the canal head (pile No. XZ0+326–XZ0+500) in the water conservancy and irrigation
area engineering of the Xixiayuan water conservancy project was carried out, and the
Pareto optimal solution set under three optimal conditions (24 to 26 pumping wells in
running) was obtained. By incorporating the dewatering multi-objective optimization
evaluation system based on the Analytic Hierarchy process, the optimization scheme
within the set of Pareto optimal solutions is chosen as the ultimate decision for
optimization. This scheme takes into account three objectives: the total dewatering
cost, the settlement influence coefficient, and the safety and stability of the foundation
pit structure. Consequently, it offers a range of workable plans for the construction of
the foundation pit dewatering.

(3) The study area’s numerical model is created using the MODFLOW module and SUB
subroutine package within GMS. The optimization outcomes for the decision variables
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in the dewatering scheme, which involves operating 24 pumping wells and closing
the J19 and J22 pumping wells based on the third optimal condition, are applied to the
numerical model. The numerical simulation of this optimized scheme validates the
scientific nature and accuracy of the multi-objective optimization model for foundation
pit dewatering. Importantly, the established multi-objective optimization model and
evaluation system offer numerous viable dewatering optimization plans.
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Abstract: Kaolin clay, with its consistent properties, fine particle size, high surface area, and extensive
historical use, stands out as a reliable choice for laboratory research. This study aims to assess the
interface shear adhesion behaviour between compacted clay and a metallic surface. For this purpose,
a new testing approach was developed. The proposed method is simple, requires neither advanced
equipment nor specialised test procedures, and, thus, represents an improvement over existing
practices in this field. The experimental program focuses on determining the interface shear adhesion
strength between reconstituted kaolin clay and a metallic surface. The kaolin clay testing specimens
were dynamically compacted at various energy levels and moisture contents. The results indicate that
the optimum moisture content is 30%, which provides the highest density to the sample and divides
the compaction curve into dry and wet sides. Furthermore, the results demonstrate that the interface
shear adhesion strength increases with the clay’s dry density. Conversely, there is a significant
decrease in strength as the moisture content specifically rises on the wet side of the compaction
curve. The adhesion behaviour was also attributed to matric suction, where high suction enhanced
interfacial adhesion, while low suction weakened bonding and diminished adhesion. Additionally,
this study presents a unique three-dimensional contour graph illustrating the combined effects of dry
density and moisture content on the interfacial adhesion.

Keywords: dry density; moisture content; kaolin; brass; interface; shear adhesion

1. Introduction

Interfacial adhesion refers to the ability of soil particles to adhere to the interface of
other materials in the presence of water [1]. The system of soil adhesion comprises three
elements: soil, solid surfaces, and their interface [2]. An example of interfacial adhesion
commonly encountered is between clay and metal. It is important to differentiate between
soil adhesion and soil cohesion, as shown in Figure 1, where the former involves soil
particles adhering to other materials, and the latter refers to soil particles sticking to each
other [3].

Figure 1. Illustration of adhesion and cohesion of soil.
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There are two types of soil adhesion: normal adhesion and shear (tangential) adhe-
sion [2]. The applied load is the factor that determines the adhesion type. The normal
adhesion is accommodated with normal tensile load, and the shear adhesion is accommo-
dated with shear load, as shown in Figure 2.

Figure 2. The adhesive tensile strength (normal pull) and the adhesive shear strength (tangential pull).

Adhesion behaviour at interfaces is influenced by various factors, including soil proper-
ties, material properties, interface properties and test conditions, as shown in Figure 3 [4,5].
Soil properties affecting interfacial adhesion include soil composition, grain size distribu-
tion, porosity, specific surface area (SSA), moisture content, water salinity, matric suction,
plasticity, consistency and cohesion [4–6]. According to Zhang and Sang [7], shear adhesion
and moisture content exhibit a parabolic relationship, as defined in Equation (1).

Ic =
LL − MC

PI
(1)

where Ic is the consistency index of the soil, LL is the liquid limits, MC is the moisture
content, and PI is the plasticity index. Thus, there is a relationship between the consistency
index and shear adhesion, which assists in understanding the behaviour of clay adhe-
sion [8]. Material properties that influence interfacial adhesion include the contact area,
applied normal load, and roughness of the surface area [9]. Testing conditions, such as the
contact time at the soil–material interface, rate of loading, humidity, and temperature of
the interface surface, also play a significant role in affecting the behaviour and value of
interfacial soil adhesion [6,10].

Figure 3. Factors affecting interfacial soil adhesion.

The interfacial soil adhesion derives importance from its applications in geotechnical
engineering and agriculture, where it can pose potential challenges. For example, pile
foundations, as shown in Figure 4, may encounter stickiness issues during the digging
process [11], and the cutter head of a tunnel boring machine (TBM) can experience clogging
problems at the interface due to interfacial soil adhesion [12–14].
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Figure 4. Pile Foundation and stickiness during digging.

These practical applications of interfacial soil adhesion can lead to unexpected cost
implications. Additionally, soil sticking to agricultural machines during harvesting can
result in high energy consumption and reduced work efficiency [6,8]. Therefore, it is crucial
to investigate the behaviour of soil adhesion with other materials.

Several studies have employed different methods to measure soil adhesion; however,
there is no specific method or device exclusively designed for soil adhesion measurement [3].
Soil adhesion can be measured in the laboratory using pull-out tests [12], piston separation
tests [15] and shear plate tests [16]. Fountaine [1] used a specialised apparatus to measure
normal adhesion for loam clay and sandy clay under the influence of water surface tension.
Their study revealed that moisture content and material type have an impact on soil
adhesion. Thewes and Burger [12] utilised pull-out tests to investigate clogging issues
in TBMs, where normal soil adhesion occurs. It was found that clay minerals and soil
consistency index (Ic) affect normal adhesion. Azadegan and Massah [17] designed a
dedicated instrument to measure normal adhesion between clay and steel. Their study
focused on the effect of temperature on adhesion and demonstrated that temperature
influences soil adhesion. Mirjavan [15] employed a piston separation device to measure the
normal adhesion of soil to metal. The study investigated wetness levels of montmorillonite
clay and revealed that wetness is a significant influencing factor. Burbaum and Sass [18]
used pull-out load or separation tests to investigate normal adhesion between clay and
steel surfaces, finding that adhesion is influenced by the soil consistency index. Zumsteg
and Puzrin [16] employed a plate apparatus to examine the clogging issue occurring at the
interface between clay and TBM machines during tunnelling. They identified tangential
adhesion as the main factor contributing to soil stickiness and clogging issues. This paper
aims to investigate the behaviour of shear adhesion at the interface between kaolin clay and
the internal surface of a brass mould. This study involves testing thirty compacted kaolin
samples with different moisture contents and compaction energy levels (dry density). To
conduct the experiment, a new simple test method was developed to measure interfacial
shear adhesion between kaolin and brass. The testing methodology introduced in this
research study represents a pioneering approach by employing conventional soil testing
equipment for evaluating interface shear adhesion. This stands in contrast to previous
investigations, wherein specialised testing apparatus, which may not be readily accessible
in commercial laboratories, were utilised.
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2. Materials and Methods

2.1. Materials

The interface adhesion test conducted in this study involved using kaolin clay as the
testing material, sourced from “Scott Chemical Australia Pty Ltd.” (Cheltenham, Australia)
in Melbourne, Australia. Kaolin clay is commonly used in geotechnical engineering studies
due to its availability and representative properties. Different clay compositions can
influence various properties, such as shrinkage, plasticity, and strength. These changes in
properties can, in turn, impact the experiment results by altering the clay’s behaviour under
various conditions. In this experiment, we maintained a consistent mineral composition
among samples to ensure reliable results. The mineral composition of the kaolin, specified
on the clay bag, is shown in Table 1.

Table 1. Mineral composition of the kaolin.

Mineral Mass Percentage

Kaolinite 83.7
Muscovite 14.0

Quartz 2.3

To further characterize the kaolin clay, Table 2 presents the geotechnical properties that
were examined during this study. These properties include parameters such as moisture
content, dry density, shear strength, and compaction energy. Understanding the geotechni-
cal properties of the soil is crucial for assessing its behaviour under different loading and
moisture conditions.

Table 2. Engineering properties of the used soil (kaolin).

Properties Values

Specific gravity (Gs) 2.58
LL (%) 74
PL (%) 32
PI (%) 42
Cation exchange capacity (CEC) (meq/100 g) 0.075
Total surface area (m2/g) 20
Surface charge density (μC/m2) 0.36
Silicate SiO2 45.2
Aluminium Al2O3 38.8

Additionally, Figure 5 shows the particle size distribution of the kaolin clay. This
distribution illustrates the relative proportions of different particle sizes present within
the soil sample. The particle size distribution plays a significant role in determining
the mechanical and hydraulic properties of the soil, affecting factors such as compaction
behaviour, permeability, and shear strength.

Figure 5. Particle size distribution of kaolin.
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2.2. Preparation

To carry out the interfacial adhesion test, 30 different samples were prepared. The
prepared samples produced different moisture contents and dry density conditions. The
percentage of moisture was between 10 and 50%. The kaolin samples were compacted at
different compaction energy levels using a series of blows ranging from 15 to 55 blows to
achieve the minimum and maximum dry density at different moisture levels, as listed in
Table 3. The soil was compacted in the mould in three equal layers of almost 43 mm. The
same amount of energy was applied to each layer. The moisture content used was regular
tap water. After adding varying amounts of moisture to the soil samples, each sample was
placed in a sealed plastic bag and kept overnight for moisture equalisation.

Table 3. The amount of water content and number of blows used in the experiment.

MC (%) 10 20 25 30 40 50

15 15 15 15 15 15

25 25 25 25 25 25
Number of

blows 35 35 35 35 35 35

45 45 45 45 45 45

55 55 55 55 55 55

2.3. Approach

After the soil had been compacted in the compaction mould, the next step was to
test the interfacial shear adhesion with a loading machine. This approach enabled the
interfacial shear strength between the compacted soil and the brass mould to be evaluated.

To prepare the compaction mould for testing, it was inverted, and the mould base was
removed. This allowed the compacted soil to be extruded from the mould, exposing the
surface that was in contact with the brass mould during the shear adhesion test. This setup
ensured a consistent interface between the soil sample and the mould and allowed accurate
measurements of shear adhesion.

The loading machine was then utilised to apply a displacement-controlled load to
the compacted soil, compressing it out of the mould. The loading machine’s mechanism
and setup are illustrated in Figure 6, providing a visual representation of the process.
The displacement rate employed in this study was 5.0 mm/min. This rate ensured a
controlled and uniform compression of the compacted soil, allowing precise measurements
and reliable data acquisition.

By subjecting the compacted soil to a displacement-controlled load, the loading ma-
chine simulated the conditions under which the soil is subjected to external forces or
loading in real-world applications. This enabled the shear adhesion strength between the
soil and the mould to be evaluated, providing valuable insights into the stability of the soil
and its interaction with surrounding materials.

The utilisation of a displacement-controlled load and a consistent loading rate ensured
standardised testing conditions, enabling accurate comparisons between different soil
samples and variations in compaction parameters. The data obtained from these tests
contributed to a better understanding of soil behaviour and its response to external loads
and helped in the planning and implementation of various engineering projects.
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Figure 6. Schematic diagram of the apparatus and the test setup.

The testing process involved shearing the soil against the internal surface of the mould
by applying a vertical load. To ensure that the machine load did not cause additional
compression on the compacted specimen, which could have potentially damaged it by
excessive squeezing, it is crucial for the movement of the compacted specimen to precisely
match the loading displacement. Throughout the loading process, both the displacement
and the load are accurately recorded and plotted. The peak of the load-displacement curve
shows the maximum adhesion capacity of the interface between the compacted kaolin and
the inner wall of the brass mould, as shown in Figure 7. The soil–mould interface adhesion
can be determined using Equation (2):

α =
P
A

(2)

where α is the interfacial adhesion (kPa), P is the peak load (kN), and A is the internal
surface of the mould (m2).
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Figure 7. Kaolin adhesion at 30% optimum moisture and varying compaction levels.
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3. Results

3.1. Compaction Curve

The compaction curve displayed in Figure 8 provides valuable insights into the be-
haviour of kaolin under different compaction energies and moisture contents. By examining
the curve, the relationship between dry density, compaction energy, and moisture content
can be observed.
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Figure 8. Compaction curve of kaolin at different compaction levels.

The compaction curve shows the variations in dry density as a function of compaction
energy, represented by the number of blows (15, 25, 35, 45 and 55 blows) and the moisture
content in the range from 10 to 50%. Each combination of compaction energy and moisture
content corresponds to a specific point on the compaction curve. At 15 blows, the dry
density increases from 1.14 at 10% MC to a peak of 1.39 at 30% MC, then descends to 1.20
at 50% MC. At 55 blows, the dry density ranges from 1.31 at 10% MC to 1.61 at 30% MC,
decreasing to 1.33 at 50% MC. The peaks observed on the compaction curve indicate the
optimum moisture content (OMC) of the kaolin, which is at 30% moisture content in all
cases studied. The OMC represents the moisture content at which the kaolin reaches its
maximum dry density during the compaction process. This optimum moisture content is
important to achieving the desired compaction properties and overall soil performance.
The OMC effectively divides the compaction curve into two distinct sides: the dry side and
the wet side. The basis for dividing the compaction curve is primarily to categorize soil
adhesion behaviour into two stages: one strongly affected and the other weakly affected.
The moisture content ranging from 10 to 30% represents the dry side, while the range of 30
to 50% represents the wet side.

3.2. Dry Density

The relationship between dry density and interfacial shear adhesion at the dry side
is presented in Figure 9. It is observed that there is a linear relationship between dry
density and shear adhesion, wherein an increase in dry density leads to an increase in
shear adhesion at each moisture content value. This finding highlights the importance of
compaction in influencing interfacial adhesion behaviour.

Detailed analysis revealed that the impact of dry density on shear adhesion is more
pronounced at the dry side of the compaction curve compared to the wet side. When kaolin
clay is compacted to a greater extent within the dry side, the soil particles come closer to
each other, resulting in creating a denser surface area. At an MC of 10%, adhesion values
range significantly from approximately 23.6 to 124 kPa across varied dry densities. This
densification of the soil enhances the contact area between kaolin and the brass mould.
Consequently, the interfacial shear adhesion is strengthened due to the increased contact
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between the soil particles and the mould surface. It should be noted that the extent of the
increase in dry density is dependent on the moisture content. In other words, the effect of
the dry density on interfacial shear adhesion varies with the moisture content.
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Figure 9. Dry density versus interfacial adhesion on kaolin at different moisture content levels.

3.3. Moisture Content

Figure 10 provides an insight into the behaviour of interfacial shear adhesion in
compacted kaolin under the influence of moisture content. It has been observed that with a
low moisture content ranging from 5 to 10% MC, the adhesion increases. Specifically, at
10% MC, it shows the highest adhesion among the different levels of compacted kaolin
on the dry side. However, when the moisture content approaches the OMC, especially
between 20 and 30%, increasing the moisture content has a slight effect on adhesion, which
can be considered negligible.
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Figure 10. Interface adhesion of kaolin at different moisture contents and densities.

The behaviour of the unaffected area on the dry side can be explained by considering
the maximum dry density of the soil at that point. At the OMC, the soil reaches its maximum
dry density, resulting in a dense contact area between the kaolin and the mould surface.
This dense interface contributes to the formation of the strongest interfacial adhesion.
Consequently, there is a balanced effect between dry density, which typically improves
adhesion, and moisture content, which often decreases adhesion. On the other hand, on
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the wet side, which is characterised by extreme moisture content and a high degree of
saturation, a significant decrease in interfacial shear adhesion is observed. At the highest
moisture content of 50%, the interface adhesion becomes null. This behaviour can be
attributed to the detrimental effects of excessive moisture content and saturation on the
interfacial adhesion properties of the kaolin.

3.4. Coupling Effect of Dry Density and Moisture Content

Figure 11 presents a novel three-dimensional graph showing the coupling effect of dry
density and moisture content on the interfacial shear adhesion between kaolin and a brass
mould. This graph provides a comprehensive visualisation of the relationship between
these two parameters and their influence on shear adhesion. For the studied case, the light
grey shaded area represents the possible shear adhesion values in relation to moisture
content and dry density. The diagram of the contour lines provides valuable insights. It
shows that at constant dry density, shear adhesion tends to decrease as moisture content
increases. This relationship suggests that higher moisture content generally leads to a
reduction in interfacial adhesion between kaolin and the brass mould.

Figure 11. Three-dimensional contour graph of the effects of dry density and moisture content on
shear adhesion of kaolin.

Figure 12 represents the adhesion change rate (ACR), which is the rate at which the
adhesion value changes with variations in dry density at different water content levels. As
dry density is a function of the ACR, it is important to note that the ACR of shear adhesion
reduction varies with dry density and can be calculated using Equation (3):

ACR =
α2 − α1

ρd2 − ρd1
(3)

where ACR is the adhesion change rate; α2 and α1 are the final and initial adhesion values,
respectively; and ρd2 and ρd1 are the final and initial dry density values, respectively.
The information provided by these contour lines allows a more detailed understanding
of the interaction between dry density, moisture content, and interfacial shear adhesion.
The graph shows that changes in these parameters affect the adhesion behaviour of the
kaolin. This understanding can help to optimize compaction processes and control moisture
content to achieve desired shear adhesion properties.
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Figure 12. The relationship between the adhesion change rate and moisture content.

4. Discussion

The interfacial adhesion behaviour between kaolin and brass can vary depending on
whether it is observed on the dry or wet side of the compaction curve. The compaction
curve is a graph showing the relationship between compaction pressure and the resulting
density or porosity of a material. An analysis of the interfacial adhesion behaviour on
either side of the compaction curve can provide insights into the mechanisms that control
the interaction between kaolin and brass.

In Alshameri’s [19] experiment, he used a mixture of sand and kaolin at different
percentages. In his study, a mixture of 80% sand and 20% kaolin yielded the highest dry
density, with an OMC of 12%. In contrast, this experiment exclusively used kaolin clay and
achieved the highest dry density with an OMC of 30%. This paper presents a wide range
of dry density samples, achieved by considering various numbers of blows at different
moisture contents, as shown in Table 4.

Table 4. Summary of interfacial adhesion behaviour for dry and wet sides.

Number of
Blows

MC (%) ρd (g/cm3) Su (pF) α (kPa)

5 1.05 5.00 15.00

10 1.14 4.70 23.59

20 1.18 4.40 9.92
15 25 1.22 4.32 13.66

30 1.39 3.67 15.62

40 1.31 3.05 6.02

50 1.20 2.00 1.63
5 1.10 5.00 40.00

10 1.19 4.71 63.60

20 1.23 4.43 47.17
25 25 1.32 4.41 45.55

30 1.48 3.82 44.73
40 1.38 3.19 5.37
50 1.26 2.17 3.25

266



Appl. Sci. 2023, 13, 11191

Table 4. Cont.

Number of
Blows

MC (%) ρd (g/cm3) Su (pF) α (kPa)

5 1.15 5.00 70.00

10 1.24 4.72 86.86

20 1.30 4.45 68.00
35 25 1.39 4.44 69.95

30 1.60 3.84 69.30

40 1.41 3.40 7.32

50 1.28 2.29 3.09
5 1.18 5.00 110.00

10 1.30 4.75 123.00

20 1.39 4.48 87.00
45 25 1.45 4.20 85.00

30 1.62 3.89 86.21

40 1.42 2.83 5.69

50 1.32 2.20 3.20
5 1.20 5.00 114.00

10 1.31 4.66 124.00

20 1.40 4.50 88.00

55 25 1.46 4.45 86.00

30 1.61 4.10 87.84

40 1.43 3.60 7.32

50 1.33 2.10 3.00

4.1. Mechanism of Adhesion on the Dry Side

It has been observed that on the dry side of the compaction curve, interfacial adhesion
increases, with higher dry density values at any moisture content. Conversely, adhesion
decreases with increasing moisture content. On the dry side of the compaction curve, where
the pressure is relatively low, the interfacial adhesion behaviour between kaolin and brass
is mainly influenced by physical interlocking and mechanical friction. When pressure is
applied, the kaolin particles tend to encounter the brass surface, creating points of contact
and interlocking. This physical interlocking creates a certain level of adhesion between the
two materials. In addition, the roughness and surface irregularities of the brass surface can
contribute to adhesion. The kaolin particles can fill in the gaps and irregularities on the
brass surface, resulting in a larger contact area and stronger adhesion.

4.2. Mechanism of Adhesion on the Optimum Moisture Content

At the OMC point on the compaction curve, where pressure is at its peak, the adhesion
behaviour between kaolin and brass undergoes marked changes. Moisture content plays
a crucial role in influencing the underlying adhesion mechanisms in that specific region.
However, despite the observed changes, it should be noted that the interfacial adhesion
at the OMC is not the highest. The adhesion between kaolin and brass weakens with
increasing moisture content, demonstrating the negative influence of increased moisture
levels on the strength of interfacial adhesion.

4.3. Mechanism of Adhesion on the Wet Side

On the wet side of the compaction curve, the presence of excessive moisture content
can adversely affect the bonds between individual kaolin particles. The water essentially
acts as a lubricant, reducing friction and interlocking between the particles. This weakens
the bond between the particles, resulting in a significant decrease in the overall adhesion
strength at the interface. However, low moisture content (5–10% MC) in the sample, as
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indicated by the results, shows an increase in adhesion. This can be explained by the fact
that a slight increase in the moisture content increases the dry density, thereby increasing
the contact surface, which leads to higher interfacial adhesion. This is in compliance with
Li and Zhang [20], who showed that adhesion initially increases with moisture content and
then decreases.

4.4. Matric Suction Role

This complex behaviour is further explained by the matric suction effect. Figure 13
illustrates the role of matric suction in binding the kaolin particles to the inner surface of the
compaction mould. On the dry side, which is characterised by low moisture content and
high soil suction, interfacial bonding is strong, resulting in increased interfacial adhesion.
On the other hand, on the wet side, which is characterised by high moisture content
and low soil suction, interfacial bonding becomes weak and has a negligible impact on
interfacial adhesion.

 
Figure 13. Interface adhesion behaviour for dry side versus wet side.

Kaolin exhibits high suction power on the dry side when moisture content is low and
low suction power on the wet side when moisture content is high, as shown in Figure 14.

Figure 15 illustrates the influence of clay suction on the shear adhesion on both sides.
On the dry side, where the moisture content is low and the clay is not fully saturated, the
suction of clay is high and leads to high interface adhesion. Hence, the significant reduction
in soil suction as moisture content increases from 10 to 30% on the dry side accelerates the
loss of adhesion. On the wet side, beyond the OMC of 30%, where the moisture content is
high and the clay is nearly fully saturated, the suction of clay is becoming low and leads to
low interface adhesion. Hence, the low suction due to the high degree of saturation leads
to a sudden failure in the interfacial adhesion. This adhesion failure is due to the combined
effect of high moisture content, where the soil is fully saturated, and low suction.
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Figure 14. Behaviour of suction against the moisture content for varied compacted kaolin.

 

Figure 15. Influence of suction on interface adhesion of kaolin at a standard compaction of 25 blows.

4.5. Limitation

This study has some limitations that should be acknowledged and addressed in future
research. Firstly, this study only used kaolin clay as the testing material, which may
not represent the behaviour of other types of clay or soil mixtures. Future studies could
consider different types of clay mixed with sand or recycled materials [21,22] to investigate
the effect of soil composition on interfacial shear adhesion. Secondly, this study only
performed the test at one displacement rate of 5.0 mm/min, which may not capture the
dynamic loading conditions encountered in real-world applications. Future studies could
consider different displacement rates and check the impact of loading rate on the adhesion
behaviour. Thirdly, this study conducted the test at a constant room temperature of 23 ◦C,
which may not reflect the environmental variations affecting soil properties and adhesion
mechanisms. Future studies could consider the impacts of different temperatures [23]
on the interfacial shear adhesion between kaolin and brass. This study focused on the
impacts of dry density and moisture content on the adhesion of kaolin clay, which are
important factors influencing soil performance and stability. However, other factors such as
contact area, surface roughness, and contact time could also affect the interfacial adhesion
behaviour and should be explored in future research.

5. Conclusions

This paper investigated the coupling effect of dry density and moisture content on the
interfacial shear adhesion between kaolin clay and brass. A simple method was developed
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to measure the shear adhesion using a loading machine. The main findings of this study
are as follows:

• With an increase in moisture content in kaolin, the dry density increases until it reaches
a maximum value and then decreases. The maximum dry density of the used kaolin is
observed at an OMC of 30%.

• There is a linear relationship between dry density and shear adhesion on the dry side
of the compaction curve, where higher dry density leads to higher shear adhesion due
to the larger area of contact with the mould surface.

• As moisture content initially increases up to 10% MC, the shear adhesion also increases.
Beyond that point, the increase in MC results in a slight decrease in adhesion on the
dry side of the compaction curve up to the OMC. Beyond the OMC, on the wet side of
the compaction curve, there is a significant decrease in shear adhesion.

• The adhesion behaviour can be further explained by considering the role of matrix
suction. High suction on the dry side improves adhesion, while low suction on the
wet side weakens adhesion.

• Future research can consider different types of soil and mixtures, as well as tests
performed under various shear rates and temperatures.
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Nomenclature

Ic Consistency index
PI Plasticity index
PL Plastic limit
LL Liquid limit
α Interfacial adhesion
ρ Dry density
P Peak load
A Internal surface area of the mould
Sr Saturation degree of clay
Su Suction of clay
Gs Specific gravity
OMC Optimum moisture content
MC Moisture content
ACR Adhesion change rate
CEC Cation exchange capacity
TBM Tunnel boring machine
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Abstract: Traditional laboratory methods for estimating soil compaction parameters, such as the
Proctor test, have been recognized as time-consuming and labor-intensive. Given the increasing
need for the rapid and accurate estimation of soil compaction parameters for a range of geotechnical
applications, the application of machine learning models offers a promising alternative. This study
focuses on employing the multivariate adaptive regression splines (MARS) model algorithm, a
machine learning method that presents a significant advantage over other models through generating
human-understandable piecewise linear equations. The MARS model was trained and tested on a
comprehensive dataset to predict essential soil compaction parameters, including optimum water
content (wopt) and maximum dry density (ρdmax). The performance of the model was evaluated
using coefficient of determination (R2) and root mean square error (RMSE) values. Remarkably,
the MARS models showed excellent predictive ability with high R2 and low RMSE, MAE, and
relative error values, indicating its robustness and reliability in predicting soil compaction parameters.
Through rigorous five-fold cross-validation, the model’s predictions for wopt returned an RMSE
of 1.948%, an R2 of 0.893, and an MAE of 1.498%. For ρdmax, the results showcased an RMSE of
0.064 Mg/m3, an R2 of 0.899, and an MAE of 0.050 Mg/m3. When evaluated on unseen data, the
model’s performance for wopt prediction was marked with an MAE of 1.276%, RMSE of 1.577%, and
R2 of 0.948. Similarly, for ρdmax, the predictions were characterized by an MAE of 0.047 Mg/m3,
RMSE of 0.062 Mg/m3, and R2 of 0.919. The results also indicated that the MARS model outperformed
previously developed machine learning models, suggesting its potential to replace conventional
testing methods. The successful application of the MARS model could revolutionize the geotechnical
field through providing quick and reliable predictions of soil compaction parameters, improving
efficiency for construction projects. Lastly, a variable importance analysis was performed on the
model to assess how input variables affect its outcomes. It was found that fine content (Cf) and plastic
limit (PL) have the greatest impact on compaction parameters.

Keywords: multivariate adaptive regression splines; soil compaction; optimum water content;
maximum dry density; machine learning

1. Introduction

Soil compaction, a foundational process in geotechnical engineering, refers to the
method of tightening soil particles and reducing air voids, thereby increasing density
while maintaining the existing water content [1]. This technique not only enhances soil’s
mechanical behavior but also provides a stable base for various infrastructures, solidifying
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its significance in the field of civil engineering. Initially suggested by Proctor in 1933 [2],
soil compaction involves applying specified compactive effort in a controlled laboratory
setting, allowing for various water contents. This process enables engineers to pinpoint the
optimal moisture content and maximum dry density—two essential parameters obtained
from the compaction curve [3–5]. In field compaction, the key parameters are the optimum
water content (wopt) and maximum dry density (ρdmax). These are crucial in determining
the maximum dry density of soil, which indicates an enhanced soil bearing capacity. The
optimum water content is the specific moisture level at which soil can attain its highest dry
density following a certain compaction effort. It is the minimum water necessary to form a
thin film on soil particles, aiding their sliding movement for compaction. Compressing soil
to its greatest theoretical density involves eliminating gases within the soil via expelling
them through voids in the soil matrix. This process of gas expulsion is fundamental
to soil densification, allowing soil to reach its maximum potential density. Hence, wopt
and ρdmax are vital in achieving the desired soil densification and stability [6]. These
parameters form the backbone of long-term performance for a myriad of geotechnical
structures, such as landfill liners, highway embankments, railway track-beds, earth dams,
nuclear waste disposal facilities, and airfield pavements [7–17]. For example, study [7]
found that wopt and ρdmax are crucial factors affecting the compression of compacted
Oklahoma soils, influencing collapse potential in embankments. Another study [8] used
wopt and ρdmax as critical parameters to understand the behavior and performance of MX80,
which is a versatile clay for nuclear waste barriers. Furthermore, study [14] investigated
the microstructure and hydraulic properties of high-speed railway subgrade soil using
different values of wopt and ρdmax to understand its behavior. Thus, accurately predicting
and understanding the compaction parameters of diverse soil types is paramount for the
successful construction and maintenance of these geotechnical structures.

To find compaction parameters, two main compaction approaches emerged: the stan-
dard Proctor compaction and the modified Proctor compaction [1]. The standard method
is typically adopted for regular traffic loading situations, while the modified approach is
used when dealing with heavy unit weights like those considered for airfield pavements.
Outcomes derived from laboratory tests conducted using either the standard Proctor com-
paction method (ASTM D698) [18] or the modified Proctor compaction method (ASTM
D1557) [19] are visually represented via an inverted ‘V’ curve. This graphical representation
illustrates the peak, known as ρdmax, and the corresponding moisture content, termed as
the wopt of the soil. Reaching the optimum moisture content and maximum dry density in a
laboratory setting, using both standard and modified compaction tests, demands significant
resources. It involves a considerable amount of time (typically 2–3 days), substantial effort,
and a large volume of soil (around 20 kg per individual test) [1]. Efforts have been made
to overcome this challenge through proposing several prediction models for determining
the soil compaction parameters more efficiently. Empirical equations, created via multi-
ple linear regression, can predict wopt and ρdmax of soil [20–25]. These models offer the
benefits of quick calculations and easy application, which speed up decision-making in
geotechnical projects. They are user-friendly, making them accessible to a variety of users,
not just experts. However, these models come with several limitations. One issue is the
existence of numerous equations for the same factors, leading to potential confusion and
inconsistency in results. This vast array of options makes the selection of the appropriate
model challenging, possibly affecting the reliability of predictions. Another significant
limitation is the assumption of linear behavior, which often does not reflect the complex,
often non-linear nature of soil behavior. These models, while providing an estimation,
might not fully encapsulate the range of outcomes in different conditions due to their
simplified assumptions.

The complex nature of soil compaction parameters, influenced by numerous interre-
lated parameters, necessitates the use of robust, data-driven methodologies such as artificial
intelligence. Traditional models struggle to capture these intricate relationships, but arti-
ficial intelligence and other data-driven methods have shown proficiency in navigating
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the inherent non-linearity and successfully estimating soil compaction parameters. Con-
tinued research should focus on employing precise and reliable techniques, like artificial
intelligence, that can effectively handle these complexities. In the area of predicting soil
compaction parameters, several studies have demonstrated noteworthy advancements.
The use of artificial neural networks (ANNs) has been successfully employed in various
models. For instance, one investigation applied an ANN to model wopt and ρdmax in soil
stabilized with nanomaterials. The model exhibited impressive prediction accuracy of over
97%, surpassing conventional statistical models [26]. Extending this approach to different
soil types, another study harnessed the potential of deep neural networks to predict soil
compaction parameters specific to Egyptian soil. The study achieved remarkable accuracy,
with R2 values of 0.864 for ρdmax and 0.924 for wopt, thereby surpassing the performance of
a simple artificial neural network with just one hidden layer [27]. In the context of highway
projects, a multi-layer perceptron neural network model was developed to predict modified
compaction parameters for both coarse and fine-grained soil samples. This model, similar
to its predecessors, delivered highly accurate results [28]. Stepping beyond traditional
ANNs, a novel hybrid intelligence paradigm known as the ANFIS-IGWO model was pro-
posed in a different study. This model demonstrated superior precision in predicting soil
compaction parameters, boasting correlation values of 0.9203 and 0.9050 for wopt and ρdmax,
respectively [29]. This accuracy was found to surpass other hybrid ANFIS models. In
yet another study, an ANN was utilized to develop predictive equations for the Proctor
compaction parameters of fine-grained soil [30]. The resulting ANN model demonstrated
high efficiency and accuracy, particularly in predicting unseen datasets, thus setting a new
standard compared to existing models in the literature. Moving towards the integration of
empirical correlations with machine learning algorithms, one paper investigated the use
of the support vector machine algorithm to predict soil compaction properties [31]. This
approach aimed at significantly reducing the time and effort required in the laboratory,
achieving R2 values of 0.86 and 0.91 for wopt and ρdmax, respectively. Lastly, in a significant
stride towards machine learning models, a novel model called “ComPara2021” was pro-
posed [17]. This model, based on machine learning, demonstrated superior performance in
predicting soil compaction parameters compared to its contemporaries, proving the value
of such models in saving both time and cost.

Another form of artificial intelligence is genetic programming approaches such as gene
expression programming (GEP) and multigene expression programming (MEP). GEP and
MEP are advantageous frameworks that integrate the benefits of both genetic programming
and genetic algorithms, enabling them to evaluate more complex functions that express
the relationship between input and output data [32,33]. The GEP and MEP models have
notably demonstrated their effectiveness in predicting a variety of parameters related to
compacted soil [15,34,35].

The multivariate adaptive regression splines (MARS) technique, a form of artificial
intelligence, offers potential benefits to geotechnical engineers. Besides being adept at
tackling prediction problems, MARS can identify key input parameters that significantly
influence output parameters. It also allows for the exploration of intricate nonlinear
relationships between a response variable and various predictive variables—a crucial
aspect in analyzing and designing soil compaction parameters. This technique has seen
successful implementations in diverse fields of geotechnical engineering, including ultimate
pile bearing capacity [36], the elastic modulus of rocks [37], Slope reliability analysis [38],
the compressive strength of soil [39], liquefaction [40], settlement prediction [41], and
penetration resistance in clay [42]. Yet, despite its proven effectiveness in these areas, its
application in compaction-related studies remains surprisingly limited.

In this research, MARS is utilized to estimate the optimal moisture content (wopt)
and maximum dry density (ρdmax) of compacted soil. MARS addresses the limitations of
the multiple linear regression (MLR) method, as it does not necessitate an a priori form
of equation between dependent and independent variables and can precisely capture
complex and nonlinear relationships between inputs and outputs [43]. Unlike techniques
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like the ANN, which often operate as a “black box,” MARS can provide an explicit equation
linking inputs and outputs [44–46]. This transparency has led to its frequent application
in modeling intricate engineering issues. Finally, MARS successfully mitigates one of the
key drawbacks of GEP and MEP, which tend to produce highly nonlinear mathematical
relations between input and output data [46].

2. Research Significance

This research carries significant implications in the field of soil engineering and ar-
tificial intelligence applications. It provides a robust foundation for understanding and
predicting soil compaction parameters across a variety of soil classifications. Firstly, this
study is rooted in comprehensive literature-based data collection, which has amassed an
extensive database of different soil types, including gravel, sand, silt, and clay. This broad
spectrum of data offers a detailed and diverse basis for analysis and prediction. Secondly,
we employed the MARS model to predict soil compaction parameters. To enhance the ac-
curacy and reliability of predictions, we further fine-tuned the MARS model’s performance
via hyperparameter tuning. Thirdly, we conducted a comparative study to evaluate the
performance of the MARS model against other existing empirical and artificial intelligence
models. This comparison seeks to identify the most effective and accurate model for pre-
dicting soil compaction parameters, contributing to the optimization of methodologies in
this area of research. Lastly, we carried out a sensitivity analysis to determine the relative
influence of each input variable on the scour depth. Through identifying the most impact-
ful variables, this study aids in refining the prediction model and enhances the overall
understanding of the relationships between different factors.

3. Materials and Methods

3.1. Research Methodology

The comprehensive research approach employed in this study is depicted in Figure 1,
encompassing five fundamental phases: gathering and assimilating data, visualizing and
statistically assessing the data, carrying out data modeling and analysis, evaluating the
performance of machine learning (ML) models, and comparing the findings with earlier
research. The data modeling and analysis are conducted using R-project, a programming
framework extensively used for data mining and ML applications [47].

3.2. Multivariate Adaptive Regression Splines (MARS)

In the year 1991, the concept of multivariate adaptive regression splines (MARS), a
method for non-parametric regression, was proposed by Friedman [48]. This approach aims
to model a relationship between a set of predictor variables, represented as X (n × p), and a
target variable, denoted as y (n × 1). Where n is the number of observations or samples, p
is the number of predictor variables or features, X is the matrix of predictor variables with
size n × p, and y is the column vector of the target variable with size n × 1. The MARS
model’s mathematical representation can be expressed through the equation below:

y = f (X) + e (1)

The term f (X) represents the prediction or approximation of the target variable y
given the predictor variables X by the MARS model. The equation also gives us a residual
vector, e (n × 1), which forms an integral part of this model. MARS can be considered as a
sophisticated extension of the Classification and Regression Trees (CART) [49] technique,
but it stands apart from conventional parametric methods. While parametric methods
necessitate a predefined functional correlation between predictor and target variables,
MARS refrains from such presumptions. Instead, MARS utilizes the predictor variables
present in the specified dataset to produce a set of coefficients and piece-wise polynomials
that carry the power ‘q’. These polynomials are specifically generated to encapsulate the
relationship among variables, which may exhibit either a linear or a non-linear nature.
These polynomials, referred to as ‘splines’, are seamlessly connected to assemble the
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complete MARS model. Moreover, the process of fitting these splines involves segmenting
the data points of the independent variables into discrete regions, with the knot locations
symbolized by ‘t’. The power ‘q’ of these splines essentially determines their linearity
or non-linearity. For any variable ‘x’, the MARS model calculates these splines through
applying the particular equations below:

[−(x − t)]q+ =

{
(t − x)q, if x < t
0, otherwise

(2)

[+(x − t)]q+ =

{
(t − x)q, if x ≥ t
0, otherwise

(3)

In the given equations, ‘q’ is not less than zero, and it is a key factor in shaping the
smoothness of the ultimate MARS model. In this particular investigation, ‘q’ is set to
1, signifying the analysis of linear splines. Figure 2 illustrates two splines related to an
individual variable ‘x’, having ‘q’ set to 1 and a defined knot ‘t’. The left spline provides
positive outcomes, while the right spline produces zero for ‘x’ values on the left side of
the knot. On the flip side, when ‘x’ values lie on the right side of the knot, the right spline
gives positive results, and the left spline is zero. These splines, also called as the foundation
functions for ‘x’, play a significant role in the MARS technique. The MARS model related to
the aim variable ‘y’ is formed via including a series of ‘M’ basis functions, as demonstrated
in the following equation:

ŷ = f̂M(x) = ao + ∑M
m=1 amBm(x) (4)

Equation (4) depicts ŷ as the target variable, which the MARS model predicts. The
term ‘ao’ signifies the intercept term, which is a fixed constant. ‘Bm(x)’ denotes the mth
basis function, which could be an individual basis function or a combination of multiple
basis functions, while ‘am’ symbolizes the coefficient that corresponds to the mth basis
function. The estimation of these coefficients is achieved via the least squares method.

The MARS model, as represented by Equation (4), is formulated using a biphasic
methodology that encompasses a forward pass and a backward pass. The initial phase,
known as the forward pass, involves integrating the predictor variables into the model
and fine-tuning the positions of their corresponding knots. This process gives rise to the
creation of double-sided basis functions, one for each predictor. In the context of an X
matrix, composed of ‘n’ samples and ‘p’ predictors, ‘n × p’ pairs of basis functions emerge,
as exhibited in Equations (2) and (3). These functions are associated with knots, denoted by
xij, where ‘i’ ranges from 1 to ‘n’ and ‘j’ spans from 1 to ‘p’. Every single data point affiliated
with a predictor variable is taken into account as a possible knot for that variable’s pair of
basis functions. However, the forward pass process often results in the formulation of a
convoluted model that tends to overfit, hence reducing its predictive capability. To address
this issue, the second phase, or the backward pass, is implemented. During this phase, the
model is systematically simplified through sequentially eliminating the least contributing,
and therefore redundant, basis functions. The backward pass continues until an optimized
sub-model is achieved, characterized by its lowest Generalized Cross Validation (GCV).
This enhancement substantially boosts the predictive prowess of the MARS model. The
computation for determining the GCV follows the formula provided below:

GCV(M) =
1
n ∑n

i=1 (yi− fM(x̂i))
2(

1− M+d×(M−1)/2
n

)2 (5)
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Figure 1. Research methodology.
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Figure 2. Graph representing two splines associated with the variable x: the left spline, represented
by a dashed line (for x less than t, the formula is −(x − t)), and the right spline, represented by a solid
black line (for x greater than t, the formula is +(x − t)).

3.3. Hyperparameter Tuning Procedure

In this research, we utilized a combination of hyperparameter tuning, taking advan-
tage of the grid search approach [50], along with cross-validation (CV) strategies. The grid
search methodology essentially provides an ideal setting for parameters through arranging
all variable grids within the space of the parameters. Each grid’s axis corresponds to a
parameter of the algorithm, with a unique set of parameters at each grid point that requires
optimization. The primary benefit of combining grid search with CV is to pinpoint the
most suitable hyperparameters for the model based on the selected evaluation metric.
Furthermore, this integration guarantees that the model’s performance is evaluated across
various data subsets, resulting in a more robust and dependable assessment of its efficacy.
A potential drawback of this methodology is that it is computationally intensive. The model
needs to be trained ‘k’ times, which can be time-consuming for large datasets or complex
models. However, since our data only has 226 points, the computational demand in our
specific case is considerably reduced, making the method more manageable and feasible
for our dataset size. To ensure the unbiased selection of data, we employed a prevalent val-
idation method known as k-fold CV [51–55] during the tuning process of hyperparameters
for MARS models. K-fold CV, a standard type of CV, is extensively used in machine learn-
ing. Although there is no definitive rule for choosing the value of K, in practical machine
learning scenarios, K is commonly set at 5 or 10. According to Rodriguez [56], the bias in an
accurate estimation is likely to be reduced when the fold count is either 5 or 10. Based on
this and the suggestions of Kohavi [57] and Wong [58], we chose 5 for K. This decision also
took into consideration the trade-off between computational efficiency and bias. As a result,
five different sets of training and validation runs were performed, with the outcomes being
averaged to depict the overall performance of the MARS models on the training dataset.
All the data-related operations in this study were handled using R software 4.1.3 (R Core
Team, Vienna, Austria) [47]. The approach for hyperparameter tuning used in this research
for training the model and selecting hyperparameters is depicted in Figure 3, as illustrated
in reference [59].
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Figure 3. Tuning of hyperparameters using five-fold cross-validation.

Our research made use of the R package “earth” to perform MARS modeling. This
implementation called for the user’s careful consideration of two particular tuning param-
eters: “degree” and “nprune”. The “degree” parameter indicates the highest degree of
interaction allowed in the model. By default, this value is set to 1, leading to the creation
of a MARS model that is additive and lacks interaction terms. However, it is noteworthy
that MARS is capable of building models that encompass interactions of a degree of two or
even higher. Despite this capability, a guideline suggested by Hastie et al. [60] recommends
maintaining an upper limit on the degree of interaction. The benefit of keeping a lower
degree of interaction lies in its ability to assist in interpreting the final model in a more
straightforward manner. On the other hand, a higher degree of interaction could poten-
tially cause occasional volatility in the model’s predictive capabilities, possibly causing
predictions to deviate significantly from actual values. Hence, to evaluate the impact of
varying degrees of interaction, we experimented with three different values: 1, 2, and 3.
The second parameter, “nprune”, signifies the maximum number of terms (inclusive of
the intercept) that can be present in the model. The “nprune” value should be equal to or
greater than 2 and less than “nk”. Here, “nk” stands for the maximum number of terms
in the model before any pruning activity is initiated. This value of “nk” is determined by
the formula nk = min (200, max (20, 2 × ncol(x))) + 1, where ncol(x) is the total number of
predictive variables. For our specific study, which involved a total of 6 predictive variables,
we looked into 20 potential values for nprune, ranging from 2 to 20. The process of con-
structing and evaluating these 57 MARS models, featuring degrees of 1, 2, 3 and nprune
values ranging from 2 to 20, was accomplished through the implementation of a five-fold
cross-validation procedure.

3.4. Performance Metrics

Three error evaluation metrics, namely root mean squared error (RMSE), mean ab-
solute error (MAE), and the coefficient of determination (R2), are chosen to assess the
accuracy of MARS model predictions. The R2 metric represents the linear relationship
between the predicted and actual values, with its value ranging from zero to one. A value
of R2 nearing one signifies a more accurate model prediction. RMSE provides insight into
the dispersion between predicted and real data and is sensitive due to its relation to the
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Euclidean distance. Meanwhile, MAE is a measure of the average magnitude of errors
between predicted and observed values. Lower values of RMSE and MAE suggest superior
prediction performance by the algorithm. The three metrics are outlined as follows:

Root mean squared error (RMSE):

RMSE =

√
∑n

i=1
(
Gpi − GTi

)2

n
(6)

Correlation of determination (R2):

R2 = 1 − ∑n
i=1
(
Gpi − GTi

)2

∑n
i=1(ḠTi − GTi)

2 (7)

Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣Gpi − GTi
∣∣ (8)

where GTi and Gpi are the true and predicted values for the observation, respectively. ḠTi
is the mean of all the true values. n is the number of samples.

4. Database Used

In the current research, we utilized data (comprising 226 entries) sourced from the
study by [61], which span various soil categories such as fat clay (CH), silty clay (CL-ML),
lean clay (CL), clayey gravel (GC), silty gravel (GM), elastic silt (MH), well-graded sand
with clay (SW-SC), poorly graded sand with clay (SP-SC), silt (ML), clayey sand (SC),
silty sand (SM), poorly graded gravel with clay (GP-GC), and well-graded gravel with
clay (GW-GC). The physical attributes of these soil samples are presented in Table 1. This
dataset encompasses a diverse array of soils, highlighted by the extensive variety of index
properties. Within this dataset, it is posited that the compaction metrics are influenced by
factors like liquid limit (LL), plastic limit (PL), compaction energy (E), sand content (CS),
fines content (CF), gravel content (CG), optimum water content wopt, and maximum dry
density ρdmax, all of which are detailed in Table 1. Figure 4 presents frequency histograms
for each variable, inclusive of soil classification. Analyzing Figure 4 reveals that within this
database, a significant portion of soils possess gravel and sand contents ranging from 0%
to 20% (as seen in Figure 4a,b). Conversely, the content of fines in the soils predominantly
falls within 80% to 100% (illustrated in Figure 4c). A large portion of soils register a liquid
limit between 0 and 50 (as displayed in Figure 4g), and 32 soils exhibit a liquid limit
exceeding 300, indicative of high plasticity. The plastic limit is chiefly found between 10
and 30 (Figure 4d). Notably, this dataset features a comparably larger quantity of clayey
sand, fat clay, lean clay, and clayey gravel in contrast to other soil types (depicted in
Figure 4f). A significant number of compaction tests were executed under standard Proctor
conditions or with diminished compaction energy (not surpassing 600 kJ/m3 as shown in
Figure 4e). Around 30 modified Proctor compaction tests are also part of the study. In terms
of maximum dry density and optimum water content, peak frequencies are predominantly
within 1.6 Mg/m3 to 1.8 Mg/m3 and 10% to 20%, respectively (as captured in Figure 4h,i).
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Table 1. Model variable descriptive statistics.

Statistics CG (%) CS (%) CF (%) LL (%) PL (%) E (kJ/m3) wopt (%)
ρdmax

(Mg/m3)

Standard
deviation 14.566 23.388 30.016 164.218 7.405 735.435 5.964 0.199

Mean 7.468 29.448 63.088 108.727 22.005 894.066 17.512 1.751
Median 0.000 27.000 70.000 40.650 20.150 593.000 17.000 1.750

Maximum 67.100 89.000 100.000 608.000 48.300 2755.000 43.700 2.330
Minimum 0.000 0.000 8.600 16.000 6.100 155.000 5.300 1.090
Kurtosis 3.482 −0.471 −1.250 3.264 0.748 2.266 2.862 0.977

Figure 4. Relative frequency distribution of input and output variables.

5. Model Results

5.1. Hyperparameter Tuning Results for Optimal Model

The hyperparameter tuning procedure, which combined a grid search and k-fold
cross-validation, was employed to determine the optimal model parameters for the MARS
models, aiming for the lowest RMSE. According to Figure 5, the performance of the
MARS model was more sensitive to the ‘nprune’ parameter than the interaction degree,
highlighting the crucial role of ‘nprune’ in achieving top-tier model accuracy.
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Figure 5. Optimization results of hyperparameter tuning for the MARS models: (a) ρdmax and
(b) wopt.

As detailed in Figure 5, a rigorous five-fold cross-validation process pinpointed ‘de-
gree = 2’ and ‘nprune = 13’ as the prime settings for the wopt MARS model. Leveraging
these parameters, the model showcased exemplary performance across the 131 training
datasets, registering an average RMSE. On the other hand, for the ρdmax MARS model, the
most suitable hyperparameters were ‘nprune = 11’ and ‘degree = 2’. With these settings,
the model attained an optimal predictive capacity, reflected by an average RMSE of 0.064
and an R2 of 0.889, specifically for predicting the maximum dry density in compacted soil.

5.2. Cross-Validation Results after Hyperparameter Tuning

Post tuning, the performance of the final MARS models was assessed using a five-fold
cross-validation procedure. The RMSE, R2, and MAE were computed for each fold to
estimate the prediction performance. The results for both models are presented below.

For the wopt model, the five-fold cross-validation results are presented in Table 2:

Table 2. Results derived from a five-fold cross-validation for the wopt model.

Folds
Performance Measures

RMSE (%) R2 MAE (%)

Fold 1 1.513 0.929 1.182
Fold 2 2.368 0.870 1.867
Fold 3 1.827 0.886 1.351
Fold 4 1.710 0.889 1.361
Fold 5 2.323 0.895 1.728

Average 1.948 0.893 1.498
SD 0.380 0.023 0.287

CoV (%) 0.195 0.026 0.192

Notably, the RMSE, R2, and MAE values indicate the high predictive performance
of the MARS model for the wopt parameter, with high R2 values over 0.87 for all folds
in both cases. This highlights the models’ ability to capture a significant portion of the
variance in the target variables. The RMSE values were relatively low across all folds for
both models, underscoring the models’ robustness and their ability to minimize errors
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in prediction. Moreover, the MAE values were reasonably low, revealing the models’
capability to produce accurate predictions with small deviations from the actual values.

The ρdmax model’s cross-validation results are presented in Table 3.

Table 3. Results derived from a five-fold cross-validation for the ρdmax model.

Folds
Performance Measures

RMSE (Mg/m3) R2 MAE (Mg/m3)

Fold 1 0.068 0.860 0.051
Fold 2 0.067 0.908 0.050
Fold 3 0.048 0.948 0.040
Fold 4 0.071 0.870 0.057
Fold 5 0.065 0.909 0.049

Average 0.064 0.899 0.050
SD 0.009 0.035 0.006

CoV (%) 0.141 0.039 0.120

Once again, the RMSE, R2, and MAE values for each fold reflect the high predictive
performance of the model. The average values highlight the overall accuracy of the model,
while the standard deviations suggest that the model’s performance is consistent across
different folds.

One potential reason some folds perform better than others is due to imbalanced
data distribution. If the data are not evenly distributed and one fold ends up with a
disproportionate number of certain classes or types of data, the model may perform poorly
on that fold. For instance, if one fold contains many outliers or rare events, the model might
struggle to generalize. Despite this, the consistently high R2 values, low RMSE and MAE
values, and the low standard deviations for both models across all folds underscore the
effectiveness of the MARS models and their robustness in predicting the wopt and ρdmax
parameters of compacted soil.

5.3. Evaluation of MARS Models on Unseen Dataset

The following two equations were derived from the final optimal models after hyper-
parameter tuning for wopt and ρdmax. The equations are as follows:

wopt = 19.3773983
−0.0639987 × max(97 − CF, 0)
−5.1538333 × max(CF − 97, 0)
−0.0898632 × max(64 − LL, 0)
−0.6415284 × max(21 − PL, 0)
+0.4288445 × max(PL − 21, 0)
+0.0025993 × max

(
1347 − EkJ/m3, 0

)
+0.2425873 × max(CF − 97, 0)× PL
−0.0000061 × LL × max

(
EkJ/m3 − 1347, 0

)
+0.0578447 × max(7.6 − CG, 0)× max(21 − PL, 0)
−0.0093695 × max(70 − CF, 0)× max(PL − 21, 0).

(9)
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ρdmax = 1.39385529
+0.00261487 × max(33.1 − CS, 0)
+0.00621111 × max(98 − CF, 0)
+0.00505340 × max(LL − 64, 0)
+0.00337354 × max(130 − LL, 0)
−0.00526625 × max(LL − 130, 0)
−0.01028165 × max(PL − 11, 0)
−0.00019175 × max

(
1347 − EkJ/m3, 0

)
−0.00188667 × max(CF − 98, 0)× PL
−0.00005026 × max(CS − 53, 0)× max(98 − CF, 0)
+0.00002616 × max(CF − 30, 0)× max(130 − LL, 0).

(10)

The cross plots presented in the subplots (a) and (b) of Figure 6 portray the application
of two previous MARS-based models in predicting two crucial parameters for compacted
soil: the optimum water content (wopt) and maximum dry density (ρdmax). These subplots
showcase the comparison between the models’ predictions and the actual values of wopt and
ρdmax for the testing datasets. The plots illustrate that a significant accumulation of data
points clustering near the Y = X line signifies the strength and reliability of the established
models. Clearly, the implemented models yield predictions that align remarkably well
with the unit slope line. As a result, the proposed models can confidently be considered
highly reliable for estimating the wopt and ρdmax of compacted soil throughout the testing
and training phases.

Figure 6. Actual vs. predicted values using the MARS model for the testing dataset: (a) ρdmax and
(b) wopt.

Figure 7 showcases the relative error of the MARS-based models compared to the
actual measurements of wopt and ρdmax. The subplots in Figure 7 demonstrate that the
outputs of the proposed MARS-based models exhibit an acceptable deviation from the real
measured data. A significant portion of the data falls within the range of −10% to +10% for
wopt and −5% to 5% for ρdmax.

Additionally, the statistical evaluation of the proposed models is presented in Table 4,
providing a comprehensive summary of the assessment. The table includes the MAE, R2,
and RMSE values for the training, testing, and overall datasets. The statistical evaluation
clearly indicates that both MARS-based models exhibit outstanding prediction performance.
The overall RMSE values for wopt and ρdmax are 1.428 and 0.052, respectively, highlighting
the models’ accuracy. The combined findings from Figures 6 and 7, along with the statistical
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results in Table 4, demonstrate the effectiveness of our newly proposed correlations. They
are capable of reliably estimating wopt and ρdmax for compacted soil across various soil
properties and operational conditions, showcasing high integrity and efficiency.

Figure 7. Comparison of relative errors vs. real value: (a) MARS-based model for wopt; (b) MARS-
based model for ρdmax.

Table 4. Performance metrics of the MARS models for training, testing, and overall datasets.

Training Testing Overall

wopt MAE (%) 1.12 1.276 1.15
RMSE (%) 1.392 1.577 1.428

R2 0.942 0.948 0.943
ρdmax MAE (Mg/m3) 0.04 0.047 0.041

RMSE (Mg/m3) 0.05 0.062 0.052
R2 0.936 0.919 0.931

5.4. Comparison between MARS Model with Previously Developed Models

In order to thoroughly assess the reliability of our newly proposed models, we ex-
tended the statistical evaluation to compare them with one of the best predictive corre-
lations, namely Multi Expression Programming (MEP) [61]. The comparison is based on
various statistical criteria and prediction performance, as presented in Table 5 and visually
represented in the bar plots of Figure 8. Analyzing Table 5 and Figure 8 reveals that, despite
the satisfactory prediction performance of MEP, our suggested models outperform it in
accurately estimating the values of wopt and ρdmax for compacted soil. Furthermore, MEP
frequently creates intricate nonlinear empirical models that can be difficult to handle [62].
In turn, the MARS algorithm offers some distinct benefits. Notably, it effectively captures
the intricate interactions between independent and dependent variables. Moreover, it
eliminates the need to exert extra effort to confirm any preliminary assumptions regarding
their relationship. This advantage becomes increasingly vital as the complexity of the
problem grows [63].
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Table 5. Performance metrics of the MEP models for training, testing, and overall datasets.

Compaction Parameters Performance Measures Overall

wopt MAE (%) 1.3
RMSE (%) 1.68

R2 0.921
ρdmax MAE (Mg/m3) 0.054

RMSE (Mg/m3) 0.073
R2 0.867

Figure 8. Comparative performance of MARS vs. MEP models: (a) RMSE; (b) R2.

5.5. Variable Importance Analysis

A primary strength of the MARS model is its capability to discern if a particular input
factor is vital for predicting output values or if it merely offers a slight enhancement to the
model’s precision.

The varImp function in the caret package [64] produces a matrix that displays the
relative importance of features within the model, utilizing two distinct methods to assess
feature significance:

• The raw residual sum-of-squares (RSS) method proceeds in two phases. Initially, it
assesses the RSS decrease for each subset, contrasting it with the preceding subset’s
value. Subsequently, for every relevant feature, it accumulates these reductions across
all subsets that incorporate that feature. Finally, the overall sum of these reductions is
analyzed. Features leading to substantial RSS declines hold greater importance.

• The generalized cross-validation (GCV) method operates analogously to the RSS method,
but it employs GCV in place of RSS. GCV assesses feature performance in subsets,
pinpointing the most pivotal subset (with smaller GCV values being preferable).
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Figure 9 displays the outcomes of the contributions and the selections made by differ-
ent independent variables on the prediction performance of wopt and ρdmax.

Figure 9. Influence of different independent variables on MARS model: (a) for ρdmax; (b) for wopt.

Figure 9a displays the impact of various independent variables on the ρdmax MARS
model. The figure is sorted based on the decreasing influence of these variables. The top
two influential factors are PL (%) and CF (%), with RSS values of 100 and 55.01, and GCV
values of 100 and 75, respectively. These statistics suggest that PL (%) holds the most
significant influence on the ρdmax MARS model, followed closely by CF (%). Other factors
listed in decreasing order of influence are E (kJ/m3), LL (%), and CS (%).

Figure 9b showcases the influence of different independent variables on the wopt MARS
model. The two most impactful factors in this table are CF (%) and PL (%). CF (%) takes the
lead with RSS and GCV values of 100, indicating its paramount significance in the model.
PL (%) follows next with RSS at 63.49 and GCV at 85.71. These results allow us to state
that CF (%) has the most considerable influence on the wopt MARS model, but PL (%) also
retains significant sway. Other listed factors, in order of influence, include E (kJ/m3), LL
(%), and CS (%).

To more deeply assess the reliability of the MARS models, a parametric analysis can be
undertaken. This type of analysis examines the alignment of the model’s predictions with
existing geotechnical knowledge, experimental data, and anticipated outcomes. This study
scrutinized how the predicted soil parameters from the suggested models responded to
hypothetical data, spanning the lower and upper bounds of the data used in model training.
This approach entailed modifying a single input variable while maintaining others at their
average. Synthetic data for this individual parameter were produced via raising it step by
step. These inputs were then used in the prediction equation to determine soil parameters.
This method was iteratively applied for different variables to gauge the model’s reaction to
each input change.

Figure 10 illustrates how the predicted wopt changes in relation to the CF (%), the LL
(%), the PL (%), and the E (kJ/m3). Notably, as the CF (%), the LL (%), and the PL (%)
rise, the forecasted wopt also goes up. In contrast, when the E (kJ/m3) grows, the predicted
value goes down. These consistent changes align with the patterns observed for the wopt
in relation to each soil property as seen in the figure, indicating that the proposed model
is accurate.

Figure 11 displays the parametric analysis of the anticipated ρdmax in relation to each
input variable. Contrary to the wopt, the forecasted ρdmax goes down as the CF (%), LL
(%), or PL (%) rises and as the E (kJ/m3) reduces. This trend mirrors the monotonic
observations from the actual database illustrated in the figure. Such a parallel between the
parametric study and the database in predicting the ρdmax further confirms the accuracy of
the model introduced.
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Figure 10. Parametric analysis of the predicted wopt versus: (a) CF (%); (b) PL (%); (c) LL (%);
(d) E (kJ/m3).

Figure 11. Parametric analysis of the predicted wopt versus: (a) CF (%); (b) PL (%); (c) LL (%);
(d) E (kJ/m3).

The findings from the variable importance analysis are consistent with previously
published literature. A respected study explored the influence of CF on the mechanical
response of CDG (completely decomposed granite) subjected to dynamic compaction
grouting [65]. Through integrating varying proportions of kaolin clay with CDG, this study
aimed to understand the implications of fines concentrations on its compactive behavior.
The findings indicated that an increment in CF correspondingly results in a diminished
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ρdmax, while concurrently elevating the wopt. In another study, sand–kaolin blends were
compressed to investigate the connection between ρdmax, CF, and specific gravity (Gs)
across different moisture levels, with CF ranging from 20% to 70% [66]. A prominent
linear correlation (R2 = 0.99) was found between ρdmax and the CF/Gs2 ratio. For PL, a
respected paper investigates which index properties best correlate with compaction traits.
Incorporating both the study’s findings and the existing literature, it was determined that
the plastic limit correlates strongly with compaction features, such as optimum moisture
content and maximum dry unit weight, more effectively than either the liquid limit or
plasticity index. For the plastic limit (PL), a notable study examined which index properties
have the strongest correlation with compaction characteristics [23]. Through integrating the
study’s results with the established literature, it was ascertained that the plastic limit shows
a significant correlation with compaction attributes, particularly wopt and ρdmax, surpassing
the correlations seen with either the liquid limit or the plasticity index.

6. Conclusions

Determining compacted parameters in geotechnical projects is vital for ensuring soil
stability, optimizing foundation designs, mitigating settlement issues, and guaranteeing
the safety and longevity of structures built on or within the ground. For this reason,
the prediction of those parameters is imperative for proactive planning, cost-effective
execution, and minimizing project risks. This research aims to predict those parameters
via employing the MARS (multivariate adaptive regression splines) model. Compared
to other black-box machine learning models, the MARS model offers advantages such as
flexibility in capturing non-linear relationships, automated interaction detection, fewer
tuning parameters, and the capability to produce more interpretable results, making it
particularly suitable for geotechnical applications where understanding the underlying
behavior is as crucial as prediction accuracy.

The results obtained through this research indicate the following:

• Hyperparameter tuning of the MARS model significantly enhanced its predictive
performance, reducing the error rate and refining the model’s adaptability to complex
geotechnical data.

• The final optimal models for parameters wopt and ρdmax were evaluated using five-
fold cross-validation. The findings showed consistency and high accuracy across
all folds, demonstrating the model’s robustness and reliability in estimating these
critical parameters.

• Testing the models on unseen data (testing dataset) revealed that they maintained
a commendable level of precision and generalization, further substantiating their
efficacy for real-world applications in geotechnical projects.

• Comparing the MARS model with other state-of-the-art models, such as Multi Expres-
sion Programming (MEP), indicated that while both models exhibit strong predictive
capabilities, MARS demonstrated faster convergence and better handling of non-
linear relationships, offering a more efficient and robust alternative for geotechnical
parameter prediction.

• Finally, the variable importance analysis revealed that the fine content (CF) and plas-
ticity limit (PL) are the most influential factors driving the predictive accuracy of
the model, highlighting their pivotal role in determining the geotechnical properties
under study.

It is worth mentioning that ML research often presents inherent challenges and lim-
itations. In this study, a notable limitation is the data sample size of 226 points. The
model formulated in this research delivers the anticipated accuracy when analogous input
parameters are subsequently applied. However, errors may arise in the analysis if the same
parameters are used but lie outside our established range. Gathering more experimental
data in the future is essential to enhance the model’s generalization capabilities. Upcoming
studies will explore the potential of advanced ML techniques, such as deep learning, in
predicting wopt and ρdmax values.
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Abstract: Experimental results reveal that rocking shallow foundations reduce earthquake-induced
force and flexural displacement demands transmitted to structures and can be used as an effective
geotechnical seismic isolation mechanism. This paper presents data-driven predictive models for
maximum acceleration transmitted to structures founded on rocking shallow foundations during
earthquake loading. Results from base-shaking experiments on rocking foundations have been
utilized for the development of artificial neural network regression (ANN), k-nearest neighbors
regression, support vector regression, random forest regression, adaptive boosting regression, and
gradient boosting regression models. Acceleration amplification ratio, defined as the maximum
acceleration at the center of gravity of a structure divided by the peak ground acceleration of the
earthquake, is considered as the prediction parameter. For five out of six models developed in this
study, the overall mean absolute percentage error in predictions in repeated k-fold cross validation
tests vary between 0.128 and 0.145, with the ANN model being the most accurate and most consistent.
The cross validation mean absolute error in predictions of all six models vary between 0.08 and 0.1,
indicating that the maximum acceleration of structures supported by rocking foundations can be
predicted within an average error limit of 8% to 10% of the peak ground acceleration of the earthquake.

Keywords: geotechnical engineering; rocking foundations; earthquake engineering; soil-structure
interaction; artificial neural network; machine learning

1. Introduction

Dynamic soil-structure interaction in shallow foundations has generally been modeled
using mechanics-based models such as simple spring-dashpot models, beam on nonlinear
Winkler foundation models, plasticity-based macro-element models, and continuum-based
models. A recent review article summarizes the computational methods generally used to
model dynamic soil–foundation–structure interactions during earthquake loading, particularly
in the context of geotechnical engineering [1]. As the development of large experimental
databases becomes increasingly common, the application of machine learning techniques
in geotechnical engineering has been improving and becoming more effective [2]. Machine
learning models generalize observed experimental behavior, capture the salient features that
may not be captured by mechanics-based models, and can be used with mechanics-based
models as complementary measures in engineering applications or can be combined with
engineering mechanics using the emerging framework of theory-guided machine learning [3].

Machine learning algorithms such as logistic regression, decision trees, decision tree-
based ensemble models, and artificial neural networks have been used in a variety of
geotechnical engineering applications that include mechanical properties of soils, strength
of soils, soil slope stability, bearing capacity of foundations, and dynamic response of
soils during earthquake loading [4–9]. Recently, in dynamic soil–foundation–structure
interactions, machine learning algorithms have been used to develop data-driven models
for rocking-induced seismic energy dissipation in soil, peak rotation of foundation, and
factor of safety for tipping-over failure of rocking shallow foundations [10,11].
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The earthquake-induced peak acceleration of structures is one of the key seismic
design parameters of buildings and bridges, as the seismic performance of these structures
depends heavily on the inertial forces experienced by the structural members and non-
structural components induced by the acceleration of structures [12,13]. For instance, base
shear force (and bending moment) of structures during earthquake loading, a commonly
used seismic design parameter for structures, is directly proportional to the horizontal
acceleration at the effective height of the structure [14]. There have been several studies
related to floor acceleration demands on structures during seismic loading for structures
supported by traditional, fixed-base foundations [15–17].

Rocking shallow foundations is a recent research phenomenon that has been investi-
gated to some extent, particularly using centrifuge and shaking table experiments [18–23].
Research on rocking foundations reveals that they dissipate seismic energy in soil, reduce
acceleration, force and flexural drift demands transferred to the structures, and effectively
perform as a geotechnical seismic isolation mechanism [24–26]. Numerical modeling
methods and empirical methods are available to quantify the moment-rotation response,
rotational stiffness, damping ratio and settlement-rotation relationships of rocking founda-
tions [27,28]. This paper presents the development of models to predict the rocking induced,
reduced peak acceleration demands on structures using machine learning algorithms that
are trained and tested on experimental results from a rocking foundation database that
covers a wide range of soil properties, foundation geometry, and structural configurations.
Whereas the previously published research on the application of machine learning algo-
rithms to rocking foundations focused on rocking induced seismic energy dissipation, peak
rotation, and tipping-over stability of rocking foundations, the current work focuses on
the acceleration amplification ratio (AAR) of rocking foundations. The motivation for the
current work stems from the importance of reduced acceleration demands transmitted to
structures supported by rocking foundations (one of the major, potential beneficial effects
of rocking foundations, if adopted in civil engineering practice).

The objective of this study is to develop data-driven models for the prediction of
maximum acceleration transmitted to the effective height (center of gravity) of relatively
rigid, single degree of freedom type structures founded on rocking shallow foundations
during earthquake loading using multiple machine learning and deep learning algorithms.
The machine learning algorithms utilized in this study include artificial neural network
regression, k-nearest neighbors regression, support vector regression, random forest re-
gression, adaptive boosting regression, and gradient boosting regression. The results of
these machine learning model predictions are compared with those of a multivariate linear
regression machine learning model (used as the baseline model) and a statistics-based
simple linear regression model. A brief background to the problem considered is presented
first, along with the experimental data used in this study and input features to machine
learning models. It is followed by brief descriptions of the machine learning algorithms
utilized and how they are applied to the problem considered. Finally, the results, discussion
and conclusions of the study are presented.

2. Rocking Foundations for Seismic Loading

2.1. Rocking Mechanism and Acceleration Amplification Ratio

Figure 1 shows the schematic of a simplified, relatively rigid, shear wall-type rocking
structure supported by a shallow foundation, the major forces acting on the structure, and
the forces and displacements acting at the soil-footing interface. The key parameters that
govern the behavior of a rocking system include the critical contact area ratio of the rocking
foundation (A/Ac), slenderness ratio of the rocking structure (h/B), and rocking coefficient
of the soil–foundation–structure system (Cr) [26]. Cr is essentially a non-dimensional,
normalized form of the ultimate moment capacity of rocking foundations and can be
expressed by [29]:

Cr =
B

2·h ·
[

1 − Ac

A

]
(1)
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where B is the width of the foundation in the direction of shaking and h is the effective
height of the structure. The A/Ac is essentially a factor of safety for rocking foundations
and defined as the ratio of total base area of the foundation (A) to minimum foundation
area required to be in contact with the soil (Ac) to support the applied vertical load [18].
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Figure 1. Simplified schematic of a rigid structure-foundation system rocking on soil and the major
forces acting on it during earthquake loading.

The output parameter of machine learning models developed in this study is accelera-
tion amplification ratio (AAR) of the rocking foundation and it is defined as:

AAR =
amax,str

amax
(2)

where amax,str is the peak horizontal acceleration at the effective height of the structure and
amax is the peak horizontal ground acceleration of earthquake shaking. By comparing the
maximum moment experienced by the soil–foundation system due to the inertial forces
from the structure with the moment capacity of the rocking foundation, the following
approximate relationship can be obtained for a theoretical upper bound for the AAR of a
rocking foundation supporting a relatively rigid, SDOF-type structure [26].

AAR ≤ Cr

amax
(3)

Equation (3) implies that the foundation moment capacity limits the maximum seismic
force demands transferred to the structure because of nonlinear soil–foundation–structure
interaction. Though the relationship given in Equation (3) is approximate, it can be used to
obtain simple, statistics-based empirical relationships for AAR.

2.2. Experimental Results

The experimental results utilized in this study are obtained from a total of nine series
of centrifuge and shaking table experiments on rocking shallow foundations conducted
at the University of California at Davis, the University of California at San Diego, and the
National Technical University of Athens in Greece [30]. The details and major results of
these individual test series are available in separate publications [18,29,31–36]. A summary
of these experimental results and the effects of key rocking system capacity parameters
(e.g., A/Ac and Cr) and earthquake demand parameters (e.g., amax) on the performance
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parameters of rocking foundations (e.g., AAR), derived from the data obtained from these
experiments, are available in Gajan et al. (2021) [26].

Altogether, results obtained from 140 experiments on rocking foundations from the
abovementioned series of experiments are utilized in this study. Figure 2 presents the
variation of AAR with amax (experimental results) for rocking structure-foundation systems
with three different clusters of Cr, of which two clusters are for sandy soil foundations and
one cluster is for clayey soil foundations. The AAR of rocking foundations are smaller
than 1.0 for more than 82% of the experiments considered (for 116 out of 140 experiments),
indicating that rocking foundations reduce the accelerations transferred to the structures
they support (de-amplifying effect). This effect increases as Cr decreases, indicating that
the foundations that have more tendency to rock (smaller Cr) de-amplify the acceleration
more. The reduced acceleration demand on the structure during foundation rocking is a
consequence of mobilization of bearing capacity and yielding of soil beneath the foundation
during rocking. This de-amplifying effect is more pronounced for large amplitude shaking
events (greater amax) than for small shaking events, as soil yielding is even more significant
during large amplitude shaking (a beneficial consequence of nonlinear soil-foundation
interaction). Note that, for the experiments considered in this study, there is no noticeable
difference between the AAR values of sandy and clayey soil foundations as long as the amax
and the range of Cr remain the same.
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Figure 2. Results obtained from 140 centrifuge and shaking table experiments: Variation of AAR with
amax for rocking structure–foundation system with three clusters of rocking coefficient (Cr).

It should be noted that simplified procedures for estimating the peak acceleration
demands on traditional fixed-base structures use a trapezoidal distribution, where peak
acceleration at roof level could be about 3.0 to 4.0 times the peak ground acceleration of
the earthquake [12]. For example, the American Society of Civil Engineers’ document
Minimum Design Loads for Buildings and Other Structures (ASCE 7-16) indicates that
the floor acceleration amplification factor can be as high as 3.0 at roof level [37], while the
National Earthquake Hazards Reductions Program’s (NEHRP) Building Seismic Safety
Council (BSSC) indicates that the floor acceleration amplification factor can be as high as 4.0
at roof level [38]. For the purpose of comparison, the abovementioned values correspond to
an equivalent AAR of 3.0 to 4.0. This clearly shows that rocking foundations are much more
efficient in de-amplifying the accelerations transferred to the structures during seismic
loading (AAR < 1.5 for the vast majority of the experiments plotted in Figure 2).

Figure 3 plots the experimental results of AAR against Cr/amax for all 140 rocking
foundation experiments considered in this study (the same data plotted in Figure 2). Also,
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included in Figure 3 are a 1:1 line and a best fit line obtained from statistics-based simple
linear regression (SLR) using log (Cr/amax) and log (AAR) as the independent variable and
the dependent variable, respectively. Though Cr/amax is an approximate theoretical upper
bound for AAR (Equation (3)), some of the experimental data show AAR values greater
than Cr/amax. This could possibly be because of the approximate nature of the upper bound
relationship and the assumptions and simplifications involved in the derivations. The
best fit SLR relationship yields a coefficient of determination (R2) value of 0.75 (in log–log
scale), indicating that there is room for improvement and better predictive relationships
can be obtained by machine learning algorithms. In summary, the experimental results of
AAR indicate that rocking foundations reduce the seismic force demands imposed on the
structures by decreasing the acceleration transferred to structures, and that this beneficial
de-amplifying effect increases as Cr decreases (for foundations that are more prone to
rocking) and as amax increases (for relatively larger magnitude earthquakes).
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Figure 3. Experimental results for AAR as a function of Cr/amax along with a 1:1 line and a statistics-
based simple linear regression (SLR) best fit line in log–log space.

2.3. Input Features for Machine Learning Models

The input features for machine learning models have been selected based on their
theoretical and experimentally observed close relationships with AAR, presented in Gajan
et al. (2021) [26]. In addition, in order to predict other performance parameters of rocking
foundations (namely, seismic energy dissipation, maximum rotation of rocking foundation
and factor of safety for tipping over failure), the same set of input features have been
found to be appropriate and successful [10,11]. The input features include three non-
dimensional rocking system capacity parameters (A/Ac, h/B and Cr), and two earthquake
loading demand parameters (amax and Arias intensity of earthquake (Ia)). The amax is
the most commonly used ground motion intensity parameter in geotechnical earthquake
engineering that characterizes the magnitude of shaking. Arias intensity of earthquake
ground motion combines multiple key features of earthquake ground motion through
numerical integration of acceleration time history in the time domain. These key features
of ground motion include amplitude, duration, frequency content and number of cycles
of earthquake loading. All the input feature parameters have been calculated for 140
individual experiments from the abovementioned series of experiments. Figure 4 presents
the frequency plots, mean values, and standard deviations of all five input features. For
ease of presentation, the frequency plots lump each input feature into five groups; the exact
values of each input feature are used in training and testing of machine learning models.
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Figure 4. Frequency plots (frequency of occurrence in experiments) of input features for machine
learning models developed in this study: (a) A/Ac, (b) h/B, (c) Cr, (d) amax and (e) Ia.

As shown in Figure 4, the input features used in this study cover a wide range of
rocking structure–foundation–soil system parameters (A/Ac, h/B and Cr) and earthquake
demand parameters (amax and Ia). As the variation of Ia is relatively high, it is transformed to
a log scale (feature transformation). In addition, all the input feature values are normalized
to vary between 0.0 and 1.0 (feature scaling). Figure 5 summarizes the research methodology
in the form of a flow chart listing the experimental variables, input features, and the machine
learning models developed to predict AAR.

Rocking foundations 
database: Centrifuge 
and shaking table 
experimental results 
 
Variables: 
- Soil type and 
properties 
- Footing geometry 
and dimensions 
- Structure type and 
dimensions 
- Ground motion type 
and intensities  

Input features: 
 
- Critical contact area 
ratio of rocking 
foundation (A/Ac) 
- Slenderness ratio of 
structure (h/B) 
- Rocking coefficient of 
rocking system (Cr) 
- Peak ground 
acceleration of 
earthquake (amax) 
- Arias intensity of 
earthquake (Ia) 

Machine learning 
algorithms: 
 
- k-nearest neighbors 
regression (KNN) 
- Support vector 
regression (SVR) 
- Random forest 
regression (RFR) 
- Adaptive boosting 
regression (ABR) 
- Gradient boosting 
regression (GBR) 
- Artificial neural network 
regression (ANN) 

Prediction 
parameter: 
 
Acceleration 
amplification ratio 
(AAR) 
 
[AAR is defined as 
the maximum 
acceleration 
transmitted to 
structure divided 
by the peak ground 
acceleration of 
earthquake] 

Figure 5. Flow chart showing the research methodology, experimental variables, input features,
machine learning algorithms and prediction parameter.

3. Machine Learning Algorithms

3.1. Distance-Weighted K-Nearest Neighbors Regression (KNN)

The KNN algorithm considers data instances as multi-dimensional vectors, with the
number of dimensions being equal to the number of input features. The algorithm calculates
the distances between data points in this multi-dimensional space and assumes that the
data points share similar properties with their close neighbors (and hence similar output
values). The Euclidean distance measure is used to calculate the distance between any two
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data points in 5-D space in this study. During the training phase, the KNN algorithm simply
stores the entire training dataset as vectors. During the testing phase, the KNN algorithm
goes through the entire training dataset and finds k number of training data points that
are closer to the test data point (k nearest neighbors, where k is a hyperparameter of KNN
model). The distance weighted KNN model used in this study predicts a weighted average
output based on the outputs of the nearest neighbors of the test data and the inverse of the
distances between the test data and its nearest neighbors.

3.2. Support Vector Regression (SVR)

Unlike commonly used regression machine learning algorithms (e.g., linear regression)
that minimize the error between the predicted values and actual observations, the SVR
algorithm fits a hyperplane to represent the training data within a threshold value. This
threshold value (called the margin, ε) is a hyperparameter of the model. The SVR algorithm
uses a kernel function to transform the data instances into multi-dimensional input feature
space; the radial basis function (RBF) kernel is used in this study. As highly nonlinear
data with multiple input features cannot be completely represented by a hyperplane and a
margin, a tolerance is used for the margin. Another hyperparameter (called the penalty
parameter, C) of the SVR algorithm controls the magnitude of this tolerance across all
dimensions in input feature space. When making a prediction on test data, the SVR model
simply uses the hyperplane to make the prediction.

3.3. Decision Tree Regression (DTR)

The DTR algorithm builds an inverted tree-type data structure by going through the
training dataset and assigning data instances to branches of the tree using information
gain as a measure of reduction in uncertainty in data. While building the tree, the DTR
algorithm chooses the best input feature (k) and a threshold value (tk) for that input feature
to decide on the optimum split by minimizing a cost function. The cost function (J(k, tk))
that the DTR algorithm minimizes is given by [39]:

J(k, tk) =
ml
m

·El +
mr

m
·Er (4)

where E and m represent the mean absolute error and the number of data instances,
respectively, and the subscripts l and r represent the left and right subsets of that node,
respectively (m = ml + mr). The maximum depth of the tree is the major hyperparameter
of the DTR model. When making a prediction on test data, the DTR model finds the
appropriate leaf node and makes the prediction using the average value of the prediction
parameter (AAR) in that leaf node.

3.4. Random Forest Regression (RFR)

The RFR is a bagging (bootstrap aggregation) ensemble machine learning algorithm
that builds multiple DTR models of different depths using random subsets of training
dataset (random sampling with replacement). To train individual (and independent) DTR
models, the RFR model uses a random number of input features each time (i.e., the maxi-
mum number of features to be considered when building a DTR model is a hyperparameter
of the RFR model). The idea is that by intentionally introducing randomness in the construc-
tion of the RFR model, the accuracy of predictions and the variance in prediction error will
be reduced. The number of base DTR models in an RFR model is another hyperparameter
of the model. When making a prediction on test data, the RFR model simply outputs the
average of predictions of each individual DTR model in the ensemble.

3.5. Adaptive Boosting Regression (ABR)

The ABR algorithm uses a boosting technique, where multiple individual base DTR
models are trained sequentially on the entire training dataset. Each successive DTR model
attempts to focus more on the “difficult” data instances (i.e., the data instances for which
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the prediction error of the preceding DTR model is high). Two sets of weights are used by
the ABR algorithm: predictor weight for each individual DTR model and instance weight
for each training data instance. During the training phase, these weights are adjusted in
such a way that, when combined, the final prediction error will be minimum. When making
a prediction on test data, the ABR model combines the predictions of all DTR models in the
ensemble and weighs them using predictor weights.

3.6. Gradient Boosting Regression (GBR)

The GBR algorithm is similar to the ABR algorithm in that it builds multiple base
DTR models in sequence on the entire training dataset with the successive DTR model
attempting to correct the error made by its predecessor. The difference between ABR and
GBR is that the GBR algorithm trains the successive base DTR models on the residual errors
made by its predecessor. When making a prediction on test data, the GBR model simply
adds the predictions made by all base DTR models in the ensemble. The optimum value
for the learning rate, a hyperparameter of DTR-based boosting ensemble models, is found
to be 0.1 for both ABR and GBR models using a trial and error procedure.

3.7. Artificial Neural Network Regression (ANN)

Figure 6 schematically illustrates the architecture of the multi-layer perceptron, deep
learning ANN regression models considered in this study. The number of input neurons
is equal to the number of input features (five), and the number of hidden layers and the
number of neurons in each hidden layer are varied systematically using hyperparameter
tuning, grid search and random search techniques. The commonly used feed-forward,
back-propagation algorithm is used to propagate the input features and correct the errors
during training of ANN models using the stochastic gradient descent (SGD) algorithm.
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Figure 6. Schematic of the architecture of the multi-layer perceptron artificial neural network (ANN)
regression model developed in this study.

In general, the relationship between the inputs and outputs of a neuron in the ANN
model can be expressed by [39]:

yi = g
(
∑k

j=1

(
Wj,iXj

)
+ bi

)
(5)
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where yi is the output of the ith neuron in any hidden layer, j goes from 1 to the number of
neurons (k) in the previous layer, X are the outputs of neurons from the previous layer, W
are the connection weights between neurons in the current layer and previous layer, b is
the bias value, and g() is an activation function. The rectified linear unit (ReLU) function is
the activation function used in this study. For each training instance, the backpropagation
algorithm first makes a prediction using the above relationship and measures the error
using the mean squared error loss function. It then goes through each layer in reverse to
measure the error contribution from each connection and adjusts the connection weights
to reduce the error using the SGD algorithm. During testing, the ANN model simply
propagates the input features through the network and calculates the prediction using the
optimum connection weights determined in the training phase.

4. Results and Discussion

The performance of machine learning (ML) models developed in this study are evalu-
ated mainly using mean absolute percentage error (MAPE) and mean absolute error (MAE)
in predictions. MAPE is defined as:

MAPE =
1
n
·

n

∑
i=1

(∣∣∣∣ ỹi − yi

yi

∣∣∣∣) (6)

where y is the actual (experimental) value of AAR, ỹ is the output value (AAR predicted
by a particular model), and “i” goes from 1 up to the number of predictions (n). Note
that MAE is a similar error measure that calculates the error in terms of the absolute
difference between the predicted and experimental values of AAR (i.e., MAE does not
normalize the difference between experimental and predicted values). A multivariate
linear regression (MLR) ML model is also developed using the same dataset, the same
input features, and supervised learning technique. It is used as the baseline model for
comparison of performances of the nonlinear ML models developed in this study. All the
ML models and deep learning ANN models in this study are developed in the Python
programming platform using the implementations of the standard classes available in
Scikit-Learn (https://scikit-learn.org/stable/, accessed on 1 June 2023) and TensorFlow
and Keras (https://keras.io/, accessed on 1 June 2023) libraries of modules.

4.1. Initial Evaluation (Training and Testing) of Machine Learning Models

The experimental data and results obtained from the abovementioned series of exper-
iments (140 tests) are split into two groups for initial training and testing of ML models
using a 70–30% random split of data: training dataset (98 tests) and testing dataset (42 tests).
After the initial training of ML models on the training dataset, the models are tested on
previously unseen test dataset. Figure 7 presents the comparisons of ML model predictions
with experimental results for AAR during the initial testing phase of the models for the
KNN and SVR models along with the baseline MLR model. Note that the hyperparameters
of the ML models are kept constant at their optimum values (described in Section 4.4): k = 3
in the KNN model, C = 1.0 and ε = 0.1 in the SVR model. As seen in Figure 7, both the KNN
and SVR models (MAPE = 0.17 and 0.16, respectively) outperform the baseline MLR model
(MAPE = 0.21) in terms of accuracy of predictions.

Figure 8 presents the initial testing results of three DTR-based ensemble ML models
(RFR, ABR and GBR) along with their MAPE values. As with the previous three models, the
hyperparameters for all of these models are also kept at their optimum values: maximum
depth of tree = 6 and number of trees in the ensemble = 100 for all three ensemble models.
A single DTR model results in a MAPE of 0.17 during the initial testing phase (not shown in
the figure). However, as can be seen from Figure 8, when 100 trees are combined together,
all three DTR-based ensemble models (MAPE = 0.14 to 0.15) outperform other models
presented in Figure 7 in terms of accuracy of predictions. In terms of consistency among
different models, the MAPE of all five nonlinear, nonparametric ML models vary between
0.14 and 0.17 and the MAE values vary between 0.08 and 0.11. This shows excellent
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consistency among the ML models developed for the problem considered in this study. For
comparison, the MAPE and MAE resulting from the statistics-based simple liner regression
model (SLR) presented in Figure 3 are 0.23 and 0.15, respectively. It should be noted that
the SLR model uses the entire dataset for fitting a linear relationship and uses the same
dataset for calculating the MAPE and MAE values. Despite that, it is interesting to note
that the testing errors of the MLR model (MAPE = 0.21 and MAE = 0.12) are still slightly
better than those of the statistics-based (non-ML) SLR model.
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Figure 7. Comparisons of three ML model predictions with experimental results for the acceleration
amplification ratio (AAR) during the initial testing phase of models: (a) MLR, (b) KNN and (c) SVR.
Note: the dashed lines represent 1:1 lines.
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Figure 8. Comparisons of three DTR-based ML model predictions with experimental results for the
acceleration amplification ratio (AAR) during the initial testing phase of the models: (a) RFR, (b) ABR
and (c) GBR. Note: the dashed lines represent 1:1 lines.

4.2. Significance of Input Features

The significance of input features for the problem considered is quantified using the
feature importance scores obtained from the RFR, ABR and GBR models. The feature im-
portance scores are calculated based on how much the base decision-tree nodes that use an
input feature reduce uncertainty in the data. The normalized feature importance scores of
each input feature are presented in Figure 9 for three DTR-based ensemble ML models after
the initial training phase. Figure 9 clearly shows that amax has the highest normalized feature
importance score (about 40% to 50%) in the predictions of AAR, followed by Cr (about 20%).
This is consistent with the close relationship of AAR with amax and Cr presented in Figure 3
and indicates that the AAR is more sensitive to amax and Cr than the other parameters. The
other three input features (A/Ac, h/B and Ia) have approximately 10% of feature importance
scores each. These observations are consistent for all three DTR-based ensemble models and
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confirm that none of the input features considered in this study are redundant. It should be
noted that when the type of soil is included as an input feature to ML models, it results in
feature importance scores of less than 5%, consistently for all three DTR-based models. In
addition, it does not make any significant difference in ML model predictions when the type
of soil is included as an input feature, and hence the type of soil is not included as an input
feature in this study. However, the effect of soil type on rocking response of foundations is
indirectly included in A/Ac and Cr through shear strength and the bearing capacity of the soil.
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Figure 9. Results of feature importance scores based on the prediction of AAR obtained from three
DTR-based ML models (RFR, ABR and GBR).

4.3. K-Fold Cross Validation Tests

In order to evaluate the performance of ML models on multiple, random pairs of
training–testing datasets, the k-fold cross validation test is used. In a k-fold cross validation
test, one fold of data is used for testing of ML models that are trained on (k − 1) folds
of data, and the process is repeated k times using every single fold as the test dataset
once. In this study, five-fold cross validation tests with three repetitions (with different
randomization of the data in each repetition) are carried out. This repeated cross validation
yields 15 different sets of results for AAR and the corresponding MAPE and MAE values.
Two types of repeated five-fold cross validations are carried out: (i) considering only the
training dataset for hyperparameter turning of each ML model and (ii) considering the
entire dataset for final evaluation and comparison of all the ML models developed in this
study (in terms of accuracy of predictions and variance in prediction errors).

4.4. Hyperparameter Tuning of Machine Learning Models

The purpose of hyperparameter tuning is two-fold: (i) to determine the optimum
values of hyperparameters of ML models for the problem considered and (ii) to ensure
that the ML models do not overfit or underfit the training data. The key hyperparameters
of ML models are optimized by minimizing the testing MAPE obtained using repeated
five-fold cross validation tests on the training dataset. Figure 10 presents the results of
hyperparameter tuning of ML models in the form of average testing of MAPE versus the
variation of corresponding major hyperparameters of the models. Note that each MAPE
value in Figure 10 is the average of 15 different MAPE values resulting from repeated
five-fold cross validation tests.

Results presented in Figure 10a show that the average testing MAPE of the KNN model
first decreases as the number of nearest neighbors (k) increases, indicating an increase in
accuracy. However, when k increases further (k > 3), the accuracy of the model decreases. This
indicates that the critical value of k is 3, in order to avoid overfitting (k < 3) or underfitting
(k > 3) the training data. Based on this observation, the optimum value for k in the KNN
algorithm is chosen to be 3. Similar to the KNN model, the average testing MAPE of the SVR
model decreases as the penalty parameter C increases (Figure 10b), indicating that relatively
smaller values of C would underfit the training data. Though it is not very apparent from
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Figure 10c, relatively larger values of C would overfit the training data. Based on the results
obtained and to be consistent with the previously developed ML models related to this topic
(performance prediction of rocking foundations), the optimum value for C is chosen to be 1.0.
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Figure 10. Variation of the average MAPE of machine learning models with their major hyperparam-
eters from k-fold cross validation tests of models using training data for (a) KNN, (b) SVR, (c) DTR
and (d) DTR-based ensemble models.

It is well known that deep DTR models tend to overfit the training data, while shallow
DTR models tend to underfit the training data [39]. Based on the results shown in Figure 10c
and to be consistent with the previously developed DTR-based models related to this topic,
the optimum value for the maximum depth is set at 6 for base DTR models in the ensembles.
Figure 10d shows that, for all three DTR-based ensemble models (RFR, ABR and GBR), the
accuracy of the models increases as the number of trees increases (this is more apparent
for the GBR model). The number of random features (maximum) to be considered is
kept at 4 for the RFR model, and the learning rate is kept at 0.1 for both boosting models
(ABR and GBR). When the number of trees in the ensembles increases beyond 100, the
average testing MAPE of the models does not decrease any further. This indicates that
the minimum number of trees required in DTR-based ensemble models is 100. This is
remarkably consistent for all three DTR-based ensemble models. Table 1 summarizes the
key hyperparameters chosen for five nonlinear ML models developed in this study.

Table 1. Optimum values chosen for major hyperparameters of machine learning models.

Machine Learning Model Hyperparameter

k-nearest neighbors regression (KNN) k = 3
weight = inverse distance

Support vector regression (SVR) C = 1.0
epsilon = 0.1

mapping function = RBF 1

Random forest regression (RFR) max. depth = 6
max. features = 4

number of trees = 100
Boosting models (ABR and GBR) max. depth = 6

learning rate = 0.1
number of trees = 100

1 Radial basis function.
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4.5. Initial Evaluation of ANN Models

Multiple, multi-layer perceptron, sequential ANN models, with different architectures
(varying number of hidden layers and number of neurons in hidden layers) and hyperpa-
rameters, are developed and evaluated. The same training dataset and testing dataset are
also used for the initial evaluation of ANN models, and the MAPE values of ANN models
are calculated using the same procedure (same as described in Section 4.1). In addition to
the testing error, the ANN models are also tested with the training data after the models are
trained to compute the training error. The purpose of this exercise is to quantify how well
the ANN models learn from the training data and their ability to generalize the patterns
present in training data. The variation of predicted AAR with experimental results for AAR
are presented in Figure 11a,b for the training phase and testing phase, respectively, for one
particular ANN model.
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Figure 11. Comparisons of ANN model predictions with experimental results for AAR during initial
evaluation of the model: (a) training phase and (b) testing phase.

The architecture of this particular ANN model consists of four hidden layers (L = 4)
with forty neurons (N = 40) in each hidden layer. This is in addition to five neurons in
the input layer (one for each input feature) and one neuron in the output layer (for output
parameter, AAR). This particular set of hyperparameters turns out to be the optimum for
the ANN model architecture for the problem considered (described in Section 4.6). Based
on the comparison of predicted versus experimental AAR, with a MAPE of 0.08 and MAE
of 0.053 during the training phase (Figure 11a), it is fair to say the ANN model extracts
adequate information from data to build a reasonably good neural network structure
during the training phase. The ANN model predictions during the initial testing phase are
shown in Figure 11b and the resulting MAPE and MAE on test data are 0.127 and 0.082,
respectively. This prediction accuracy places the ANN model superior to all other ML
models developed in this study during the initial evaluation and testing phase.

4.6. Hyperparameter Tuning of the ANN Model

Similar to the other ML models, the key hyperparameters of the ANN model are
optimized by minimizing the average MAPE values obtained from repeated five-fold cross
validation tests (number of repeats = 3) carried out on the initial training dataset. The
average values of testing MAPE of many different ANN models resulting from the cross
validation tests are presented in Figure 12 (each data point represents the average of 15
different MAPE values). Multiple ANN models (with different architecture) are developed
to find the optimum number of hidden layers (L) and number of neurons (N) in each
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hidden layer (Figure 12a,b), while a fixed network architecture is used to tune number of
epochs and the learning rate (LR) of the SGD algorithm (Figure 12c,d).
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Figure 12. Results of hyperparameter tuning of the ANN model: Variation of average MAPE with
(a) number of hidden layers, (b) number of neurons in each hidden layer, (c) number of iterations for
each batch of training data, and (d) learning rate of SGD algorithm.

Results presented in Figure 12a show that as L increases, the error (average MAPE) in
predictions decreases up to when L = 4. When L increases further, the ANN model seems to
overfit the training data slightly (increase in testing error). A similar trend is observed for the
number of neurons (N) used in each hidden layer (Figure 12b). Based on these observations,
the combination of L = 4 and N = 40 is chosen as the optimum combination for the architecture
of the ANN model for the problem considered. These observations are confirmed and verified
independently by using grid search and random search algorithms going through multiple
ANN model architectures with several possible combinations of L and N. As the number
of iterations (epochs) increases, as expected, the average MAPE in predictions decreases
(Figure 12c); however, once the number of iterations reaches around 200 to 300, no further
significant improvement in MAPE is observed with the number of iterations. As for the
learning rate (LR) of the SGD algorithm, the optimum learning rate is found to be between
0.01 and 0.1 (Figure 12d). The optimum values chosen for the number of iterations and the
learning rate are 300 and 0.01, respectively. Table 2 summarizes the optimum values chosen
for the key hyperparameters of the ANN model developed in this study.

Table 2. Optimum values chosen for major hyperparameters of the ANN model.

Hyperparameter of the ANN Model Value

Number of hidden layers (L) 4
Number of neurons in each hidden layer (N) 40

Activation function ReLU 1

Optimizer SGD 2

Learning rate 0.01
Batch size for training 2

Number of epochs 300
1 Rectified linear unit function. 2 Stochastic gradient descent.
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4.7. Comparison of Overall Accuracy of Model Predictions and Variance in Prediction Error

Multiple k-fold cross validation tests (k = 5 and number of repeats = 3) are carried out
considering the entire dataset to evaluate the overall performance (average testing MAPE
and MAE, and the variance in testing MAPE and MAE) of all ML models. Note that for
hyperparameter training, the k-fold cross validation tests are performed using the training
dataset only, while this final k-fold cross validation test uses the entire dataset. Figure 13
presents the results of the MAPE of predictions of AAR obtained using six nonlinear
machine learning and deep learning models (KNN, SVR, RFR, ABR, GBR, and ANN) along
with the baseline MLR model. The hyperparameters of all models are kept constant as
obtained from the hyperparameter tuning phase of each model. For each model, the testing
MAPE results are plotted in the form of boxplots, showing the average MAPE, median
MAPE, and the 10th, 25th, 75th and 90th percentile values of MAPE (obtained from 15
values of MAPE for each model).
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Figure 13. Boxplots of MAPE in the predictions of AAR of machine leaning models during final
five-fold cross validation tests of models.

The first observation from Figure 13 is that the average testing MAPE of all six non-
linear models are better (smaller) than that of the baseline MLR model. Among the six
nonlinear models, except for the SVR model, the average testing MAPE of the models are
smaller than 0.15, and the results for the average MAPE are remarkably consistent across
different ML models. The ANN model has the smallest average MAPE value (0.128) and
relatively lower variance in MAPE (0.05), indicating that the ANN model outperforms all
other models developed in this study for the problem considered. Based on the overall
average MAPE in predictions, the ANN model improves the prediction accuracy by 43%
compared to the MLR model (MAPE of 0.128 versus 0.225). As the difference in overall
model performance in terms of average accuracy among five nonlinear models is relatively
small (average MAPE varies from 0.13 to 0.15), and if one prefers simpler ML models, KNN
and all three DTR-based ensemble models are almost equally effective for the prediction of
AAR. Figure 14 presents the results obtained from the same k-fold cross validation tests
(same as the one presented in Figure 13), in the form of MAE in predictions of AAR. As
can be observed from Figure 14, the results for testing MAE show a very similar trend that
is observed for testing MAPE (Figure 13). Except for the SVR model, the overall average
MAE of the other five nonlinear ML models varies between 0.083 and 0.092, once again
indicating a remarkable consistency across different ML models. The overall average MAE
in predictions of all six nonlinear ML models varies between 0.08 and 0.1, indicating that
the maximum acceleration transmitted to structures supported by rocking foundations can
be predicted within an average error limit of 8% to 10% of peak ground acceleration of
the earthquake.
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Figure 14. Boxplots of MAE in the predictions of AAR of machine leaning models during final
five-fold cross validation tests of models.

Table 3 summarizes the average MAPE and MAE of predictions of all seven ML
models in repeated five-fold cross validation tests. Also included in Table 3 is the MAPE
and MAE of the statistics-based simple linear regression (SLR) best fit model presented
in Figure 3 (using the relationship between log (Cr/amax) and log (AAR)). As can be seen
from Table 3, from the statistics based SLR model to MLR machine learning model, the
results do not seem to vary much. However, the six nonlinear ML models developed in
this study for the prediction of AAR show a significant difference in accuracy. In order to
compare the performance of the models using a different error criterion, which is not used
in the training phase of models nor in the hyperparameter tuning, a third error measure
is also considered. For this purpose, root mean squared error (RMSE), a commonly used
error measure in machine learning, is selected. The last column of Table 3 presents the
results obtained for average RMSE of predictions of all the models in repeated five-fold
cross validation tests. As can be seen from Table 3, the trend in RMSE values is consistent
with the trends observed in MAPE and MAE, and it leads to the same conclusion: among
the six nonlinear ML models, the ANN model turns out to be the most accurate, the second
most accurate model is the RFR, and it is followed by the ABR, GBR, and KNN models.

Table 3. Summary of average MAPE, MAE and RMSE (testing errors) of models in final five-fold
cross validation tests.

Model Ave. MAPE Ave. MAE Ave. RMSE

Simple linear regression (SLR) * 0.228 0.148 0.232
Multivariate linear regression (MLR) 0.225 0.139 0.185

Support vector regression (SVR) 0.162 0.103 0.145
k-nearest neighbors regression (KNN) 0.145 0.092 0.137

Random forest regression (RFR) 0.144 0.090 0.124
Adaptive boosting regression (ABR) 0.144 0.090 0.125
Gradient boosting regression (GBR) 0.143 0.092 0.133

Artificial neural network regression (ANN) 0.128 0.083 0.113
* Statistics-based (non-ML) model.

4.8. Parametric Sensitivity Analysis of Models

In order to study the sensitivity of ML model predictions to variations in input feature
values, a parametric sensitivity analysis is carried out. For this exercise, the input feature
values are systematically varied and are fed into the ML models. As a baseline case, all
input feature values are kept at their mean values and the predicted AAR corresponding to
this scenario is the most likely value (MLV) of prediction for a particular model. In addition,
each input feature is varied to include two other values: mean minus standard deviation
and mean plus standard deviation. The predictions of the ML models are obtained by this
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method using these two extreme values for a certain input feature, while all other input
feature values are kept at their mean value. As there are five input features, this method
results in eleven combinations of input features. The results of this parametric sensitivity
analysis are presented in Figure 15 for four models in the form of “tornado diagrams”.
In the tornado diagrams presented in Figure 15, the x-axis represents the predicted AAR
values by that particular model when the input feature values are varied (mean ± standard
deviation). Note that in a tornado diagram, the absolute difference between the prediction
values corresponding to the two extreme values of an input feature is called the “swing”,
and the input feature that has greatest swing is plotted at the top of the plot (the input
features are plotted on the y-axis in descending order of their swing values). Also included
in these figures are the most likely value (MLV) of predicted AAR (vertical dashed lines),
when all the input features are kept at their mean values. Table 4 presents summary results
of predicted AAR in parametric sensitive analysis (MLV, minimum and maximum) for all
seven ML models.
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Figure 15. Results of parametric sensitivity analysis of ML models in the form of tornado diagrams
when the input feature values are varied one at a time: (a) MLR, (b) RFR, (c) GBR and (d) ANN. Note:
the dashed vertical lines correspond to the predicted AAR (most likely value) when all input features
are at their mean values.

As the results presented in Figure 15 and Table 4 indicate, the predicted AAR is more
sensitive to peak ground acceleration (amax) than any other input feature for all the models
(i.e., amax produces the maximum swing in predicted AAR). Only the MLR model shows an
almost symmetric response around the MLV in tornado diagrams, mostly because it is a
linear ML model. The unsymmetric nature of the tornado diagrams of all nonlinear ML
models indicates that the relationship between AAR and input features are highly nonlinear.
For all six nonlinear ML models, about 45% to 75% of the variance in the prediction of AAR
results from the variation in amax (variance in this context is defined as half-swing divided
by the most likely value of predicted AAR). Next to amax, Cr and A/Ac have more effect on
model predictions in general when compared to h/B and Ia. This trend is consistent with
the experimental results plotted in Figure 3, where amax and Cr are identified as the key
variables that dictate AAR. This is also consistent with the results presented in Figure 9,
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where two DTR-based ensemble models (RFR and ABR) identify amax and Cr as the features
with the highest and the second highest, respectively, feature important scores to predict
AAR. It should also be noted that none of the ML model predictions are extremely high or
extremely low when the input feature values are varied. This indicates that the ML models
developed in this study do not tend to extrapolate the data beyond a reasonable range of
AAR values.

Table 4. Summary results of predicted AAR in parametric sensitivity analysis of ML models when
the input feature values are varied one at a time.

Model MLV * Minimum Maximum

Multivariate linear regression (MLR) 0.530 0.389 0.723
Support vector regression (SVR) 0.586 0.332 1.046

k-nearest neighbors regression (KNN) 0.435 0.349 0.634
Random forest regression (RFR) 0.480 0.357 0.804

Adaptive boosting regression (ABR) 0.541 0.341 1.150
Gradient boosting regression (GBR) 0.523 0.316 1.065

Artificial neural network regression (ANN) 0.469 0.295 1.018
* Most likely value.

The interpretability of ML models is often thought to be challenging, as they are agnos-
tic to the underlying scientific principles driving the physical mechanisms of the problem
considered. However, apart from the ANN model, all other ML models developed in this
study are based on simple, straight forward logic, and they are relatively easy to interpret (i.e.,
why the model predicts a certain value for AAR given the input feature values). The new
data science paradigm of theory-guided machine learning combines the beneficial features of
both mechanics-based models and ML models while minimizing or eliminating their adverse
effects [3]. This concept forms the basis for future research on this topic.

5. Conclusions

Multiple machine learning (ML) models are developed to predict the maximum ac-
celeration transferred to the center of gravity of structures founded on rocking shallow
foundations during earthquake loading. Based on this study, the following major conclu-
sions are drawn.

• Given the five input features representing the key properties of the rocking foundation
and earthquake loading (A/Ac, h/B, Cr, amax and Ia), the ML models presented in
this paper can be used to predict the maximum acceleration transmitted to structures
supported by rocking foundations with reasonable accuracy.

• Based on k-fold cross validation tests, the overall average MAPE in predictions of the
KNN, RFR, ABR, GBR, and ANN models are all smaller than 0.145, with ANN being
the most accurate and most consistent (MAPE = 0.128). For comparison, the MAPE
of the MLR model and statistics based SLR model are around 0.23. This corresponds
to an improvement in prediction accuracy of about 43%. Next to the ANN model,
the second most accurate model is RFR, and it is followed by ABR, GBR, and KNN.
This finding is also supported by another error measure criterion, namely, root mean
squared error (RMSE) of model predictions.

• The overall average MAE in predictions of all six nonlinear ML models vary between
0.08 and 0.1, indicating that the maximum acceleration transferred to structures sup-
ported by rocking foundations can be predicted within an average error limit of 8% to
10% of the peak ground acceleration of the earthquake.

• Hyperparameter tuning is carried out to obtain the optimum values for hyperpa-
rameters and to ensure that the ML models presented in this paper do not overfit or
underfit the training data. In terms of the architecture of the ANN model, a relatively
simple network (only four hidden layers with 40 neurons in each layer) is found to be
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the optimum and most efficient for the problem considered in terms of accuracy of
predictions without overfitting the training data.

• Feature importance analysis using the RFR, ABR and GBR models reveals that the
chosen five input features capture the maximum acceleration of structures (through
AAR) supported by rocking foundations satisfactorily. Parametric sensitivity analysis
of all ML models reveals that AAR is more sensitive to peak ground acceleration of
the earthquake motion than to other input features.

• The ML models presented in this paper can be used with numerical simulation results
as complementary measures in modeling of rocking foundations or can be combined
with mechanics-based models using the emerging framework of theory-guided ma-
chine learning. This forms the basis for future research on this topic.
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Nomenclature

AAR Acceleration amplification ratio
ABR Adaptive boosting regression model
amax Peak ground acceleration of earthquake
ANN Artificial neural network regression model
A/Ac Critical contact area ratio of rocking foundation
Cr Rocking coefficient of rocking system
GBR Gradient boosting regression model
h/B Slenderness ratio of rocking system
Ia Arias intensity of earthquake
KNN k-nearest neighbors regression model
MAE Mean absolute error
MAPE Mean absolute percentage error
MLR Multivariate linear regression model
R2 Coefficient of determination
RFR Random forest regression model
RMSE Root mean squared error
SLR Simple linear regression (non-ML) model
SVR Support vector regression model
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Abstract: Based on the left tunnel of the Liuxiandong Station to Baimang Station section of Shenzhen
Metro Line 13 (China), a prediction model for the advanced rate of dual-mode shield tunneling in
complex strata was established to explore intelligent tunneling technology in complex ground. Firstly,
geological parameters of the complex strata and on-site monitoring parameters of EPB/TBM dual-
mode shield tunneling were collected, with tunneling parameters, shield tunneling mode, and strata
parameters selected as input features. Subsequently, the Isolation Forest algorithm was employed to
remove outliers from the original advance parameters, and an improved mean filtering algorithm was
applied to eliminate data noise, resulting in the steady-state phase parameters of the shield tunneling
process. The base model was chosen as the Long-Short Term Memory (LSTM) recurrent neural
network. During the model training process, particle swarm optimization (PSO), genetic algorithm
(GA), differential evolution (DE), and Bayesian optimization (BO) algorithms were, respectively,
combined to optimize the model’s hyperparameters. Via rank analysis based on evaluation metrics,
the BO-LSTM model was found to have the shortest runtime and highest accuracy. Finally, the
dropout algorithm and five-fold time series cross-validation were incorporated into the BO-LSTM
model, creating a multi-algorithm-optimized recurrent neural network model for predicting tunneling
speed. The results indicate that (1) the Isolation Forest algorithm can conveniently identify outliers
while considering the relationship between tunneling speed and other parameters; (2) the improved
mean filtering algorithm exhibits better denoising effects on cutterhead speed and tunneling speed;
and (3) the multi-algorithm optimized LSTM model exhibits high prediction accuracy and operational
efficiency under various geological parameters and different excavation modes. The minimum Mean
Absolute Percentage Error (MAPE) prediction result is 8.3%, with an average MAPE prediction result
below 15%.

Keywords: shield tunneling; complex strata; EPB/TBM dual-mode shield tunneling; tunneling
parameter prediction; recurrent neural network

1. Introduction

The composite stratigraphy dual-mode shield tunnel boring machine (TBM) is a shield
construction technology designed to cope with complex geological conditions in subway
tunneling. It can efficiently and stably advance in composite strata, such as alternating soft
and hard layers or soft overlying complex layers. Among these, the most common is the
EPB/TBM dual-mode shield TBM. Compared to traditional single-mode shield TBMs, the
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composite stratigraphy dual-mode shield TBM can better adapt to geological conditions,
enhancing construction efficiency and safety. When using a dual-mode shield TBM for
variable excavation modes in complex geological conditions [1–3], it is necessary to compre-
hensively consider factors such as engineering geology and excavation mode and propose
reasonable adjustments to the equipment excavation parameters. Optimizing the shield
TBM excavation parameters is crucial for ensuring stable and effective tunneling [4]. Im-
proper excavation parameter settings may lead to various issues, such as over-excavation,
deviation of the TBM axis, instability of the face support [5], excessive tool wear, and
in severe cases, may even result in TBM accidents. Therefore, in the shield construction
process, careful attention must be paid to the setting and adjustment of excavation parame-
ters, and strict adherence to relevant construction regulations and standards is essential
to ensure the safety and efficiency of shield construction [6–8]. During the construction
of composite stratigraphy shield tunnels, the tunneling speed of the TBM may be influ-
enced by various factors, including geological conditions, shield construction parameters,
and environmental factors [9–11]. The relationship between these factors and the TBM’s
tunneling speed involves complex mathematical relationships, requiring further in-depth
research and analysis. Precise control and adjustment of these factors are necessary to
ensure smooth construction.

Early tunneling speed prediction models are primarily based on empirical, theoretical,
or a combination of both approaches. These models explore the operational patterns of
tunneling speed and other characteristics via formula derivation and simulated experi-
ments. Zhao Bojian et al. [12] utilized statistical methods to establish relationships between
shield tunneling parameters and strata, conducting a thorough analysis. In the context
of composite strata, Li Jie et al. [13] employed orthogonal experiments combined with
nonlinear regression analysis to develop a mathematical model for the tunneling speed of
Earth Pressure Balance (EPB) shield tunneling. Sapigni et al. [14], via a study of monitoring
data from three tunnels, found a close correlation between excavation rate and rock mass
classification, which could be fitted with a quadratic regression equation. Based on on-site
measured data, Kahrama et al. [15] established a regression model for excavation rate,
with statistical analysis results indicating a close correlation with rock properties. Has-
sanpour et al. [16], using data from the Nowsood Tunnel No. 2, established an empirical
formula for excavation rate about different geological parameters, finding a particularly
close correlation with rock cuttability, especially the field penetration index. Wang Hongxin
et al. [17], based on model test results, successfully developed a structural model to study
EPB shield tunneling. They derived specific mathematical expressions for the total thrust,
soil chamber pressure, screw conveyor speed, and tunneling speed. Zhang Zhiqi et al. [18]
conducted multivariate regression analysis and discovered a certain robustness between
shield tunneling speed and cutterhead torque. Xu Qianwei [19], via experiments, identi-
fied key shield construction parameters and studied their adaptive relationships with soil
properties. However, these methods rely on linear relationships between data, while shield
tunneling data often exhibit nonlinear relationships. Additionally, shield tunneling data are
exceptionally voluminous, making conventional calculation methods unable to calculate
the connections between data precisely.

In recent years, due to the advancement of artificial intelligence technology, many
data-driven models have been successfully applied to tunneling speed prediction. Xu
et al. [20], based on on-site and laboratory experiment data from a tunnel in Malaysia,
proposed five different machine-learning methods for predicting tunneling speed. By
comparing the predicted results of each method with actual values, they found that the
K-Nearest Neighbors (K-NN) algorithm achieved the best prediction accuracy. Zhang
Zheming et al. [21] employed the uniform extraction of samples to establish a model for
predicting cutterhead torque, cutterhead thrust, and tunneling speed in the stable section.
The model used a radial basis function neural network kernel and ten-fold cross-validation
for the training of the Least Squares Support Vector Machine (LS-SVM) model, providing
accurate predictions. Based on the Shenzhen Metro project, Li Chao et al. [22] utilized
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backpropagation (BP) artificial neural network technology to establish a prediction model
for shield tunneling parameters under complex geological conditions. Hou Shaokang
et al. [23] introduced a novel TBM tunneling parameter prediction model that used an
improved particle swarm optimization algorithm to optimize a BP neural network. The
enhanced algorithm employed adaptive inertia weights, resulting in higher prediction
accuracy than traditional BP and PSO-BP models. Qiu Daohong et al. [24], considering the
temporal nature of collected TBM tunneling parameters, constructed a Long Short-Term
Memory (LSTM) neural network model. Experimental results demonstrated that this model
achieved optimal prediction accuracy for net tunneling speed.

There is a greater abundance of research on the tunneling speed prediction of single-
mode shield TBMs under different geological conditions. At the same time, there is rela-
tively less research on the tunneling speed prediction of dual-mode shield TBMs. Dual-
mode shield TBMs require the selection of different excavation modes based on varying
geological conditions during the tunneling process. Simultaneously, factors such as face
support balance, cutterhead tool types, and support methods may change, rendering the
parameters obtained by the data acquisition system more complex. Therefore, establishing
tunneling speed prediction models for dual-mode shield TBMs is inherently more complex
than for single-mode shield TBMs. Furthermore, the application of machine learning
algorithm models for predicting tunneling speed has been more prevalent in research.
The above model data input, lack of data refinement process, data outlier processing, and
its importance. In contrast, there is a relatively limited number of studies focusing on
prediction models based on optimization algorithms. There is also a scarcity of research
that compares the impact of different optimization algorithms on the prediction accuracy
of models.

Based on the left line project of Liuxiandong Station–Baimang Station Tunnel of
Shenzhen Metro Line 13, this paper obtains a large number of time series characteristic
parameters based on the data acquisition system, eliminates abnormal data via the iso-
lated forest algorithm, and optimizes the original shield parameters with the improved
mean filtering algorithm. Considering the influence of stratum conditions on tunneling
parameters from three dimensions of surrounding rock grade, tunnel depth–span ratio, and
soft–hard composite ratio, an LSTM model integrating four super-parameter optimization
algorithms is established. Combined with the dropout algorithm and five-fold time series
cross-validation, the two shield tunneling modes of EPB and TBM and the propulsion
speed under different strata are predicted and analyzed, which provides feasible guidance
for intelligent control of the dual-mode shield tunneling process.

2. Project Overview

The Shenzhen Metro Line 13 is a north–south urban rail transit line starting at the
Shenzhen Bay Port and traversing the Nanshan District and Bao’an District, totaling
22,434 km. The line is between the central development axis and the western development
axis of the city, connecting the Hohai Central Urban Area and the Western High-Tech
Industrial Park. It serves as a fast connection between these two regions. This study is
based on the left-line project from Liuxiandong Station to Baimang Station, focusing on
the section from 0 to 650 m in the tunnel, with a total length of approximately 2036 m.
This section represents a typical complex geological formation. The Liuxiandong Station’s
elevation to Baimang Station’s section ranges from 24.26 to 42.85 m above ground, with a
slightly undulating terrain. A mid-tableland landscape, with localized gully landscapes
between tablelands, characterizes the initial topography. The predominant geological
layers in this section include the fourth series of artificial fill (Q4ml) and fluvial deposits
(Q4al + pl). The fluvial deposits mainly consist of silty clay, plastic fine-grained clay, and
sand layers. The existing geological layers exhibit distinct stratified structures above the fill
layer. The underlying bedrock consists mainly of mixed granites from the Jixian Formation
to the Qingbaikou Formation (Jx-Qby) and biotite granite from the Yanshan period (γβ5K1).
The tunnel body passes through moderately to slightly weathered rocks as the primary
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geological formation, followed by residual layers and highly weathered rocks. The tunnel
also intersects sporadically with intensely weathered and moderately weathered schists.

The shield tunneling machine selected for the Liubai section of Shenzhen Metro
Line 13 is the “Xinhe 15” EPB and single-shield TBM dual-mode shield tunneling machine,
designed and manufactured by China Railway Construction Equipment Group. The main
configuration parameters are detailed in Table 1. The design concept of this shield tunneling
machine integrates the functionalities of both EPB and single-shield TBM, allowing for
in-tunnel conversion. The EPB mode is suitable for weak geological conditions, employing
the EPB tunneling method to ensure the face support’s stability and prevent uneven
ground settlement. On the other hand, the single-shield TBM mode applies to complex
rock formations, enhancing the tunneling speed in such conditions and avoiding risks
associated with slow progress and severe tool wear when using the EPB mode in complex
rock formations.

Table 1. “Xinhe 15” dual-mode shield main technical parameters index.

Parameter Design Value

Shield type Mono-protecting shield
Total weight/T (Host + Supporting) 650

Total length of machine/m 96
Cutterhead speed/(r/min) 0-2.47-5.59
Excavation diameter/(mm) ϕ6980

Maximum thrust/T 5060
Rated torque/kN·m 6080

Number of tools 50 (Hob) + 61 (Scraper) + 12 (Side scraper)

3. Predictive Model Algorithm Principle

3.1. LSTM Model

The data of shield tunneling are time-series, and the data are purely dependent.
Traditional machine learning algorithms (such as BP neural network, random forest, etc.)
cannot capture the time-series value between data. The LSTM network has an internal
gating mechanism, which enables it to effectively capture and retain information from past
inputs. At the same time, the generalization ability of the LSTM neural network is stronger.
It is a deep learning algorithm widely used in the market and more suitable for engineering
needs. In predicting TBM tunneling speed, the LSTM model can be employed by inputting
parameters such as excavation parameters, TBM mode, and geological parameters. This
allows for the establishment of a model capable of predicting the tunneling speed at the
next step. Furthermore, by introducing hyperparameter optimization algorithms into the
LSTM model, prediction accuracy and operational efficiency can be enhanced, providing
better support for TBM excavation projects. When handling sequential data, the LSTM
model effectively addresses issues such as gradient vanishing or exploding that exist in
traditional Recurrent Neural Networks (RNNs). Additionally, it can model long-term
dependencies. In the LSTM architecture, besides the conventional input layer, output layer,
and hidden layer, a memory cell and three gating units (Forget Gate, Input Gate, Output
Gate) are introduced. Among these, it represents the input gate, ft is the forget gate, gt
denotes the input supply, and ot represents the output gate. The formulas for computing
the forget gate, input gate, and output gate are as follows:

ft = σ(Wf · [ht−1, xt] + b f ), (1)

it = σ(Wi · [ht−1, xt] + bi), (2)

Ct = tanh(WC · [ht−1, xt] + bC), (3)
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ot = σ(Wo · [ht−1, xt] + bo), (4)

In the formula, Wf, Wi, Wc, and Wo are different calculation matrices; bf, bi, bo, and
bc are the bias terms of the three gated units and the cell state, respectively; σ and tanh
are activation functions, respectively; σ represents the sigmoid function, and its output
is between 0 and 1; and tanh is the hyperbolic tangent function of the mapping interval
[−1, 1]. At each time step t, the LSTM introduces a hidden state C (cell state) and employs
three gates to control the content of the cell state. The first gate, the Forget Gate, determines
how much information from the previous time step’s cell state Ct−1 needs to be retained
in the current time step’s cell state Ct. The second gate, the Input Gate, regulates how
much information from the current time step’s input x is stored in the cell state Ct. The
Output Gate, the third gate, determines how much information will be output from the
cell state Ct to the current time step’s output ht. The LSTM network can selectively retain
or output helpful information via this mechanism, enabling improved handling of long
sequential data.

3.2. Multiple Optimization Algorithm Model

In the operation of LSTM, performing hyperparameter optimization is crucial as
it identifies the optimal combination of hyperparameters that enhances model perfor-
mance. By selecting appropriate hyperparameter combinations, it is possible to improve
the model’s generalization ability, resulting in superior performance on the test set. This
study employs four widely applicable and practical hyperparameter optimization algo-
rithms: Genetic Algorithm (GA), Differential Evolution (DE), Bayesian Optimization (BO),
and Particle Swarm Optimization (PSO). Due to constraints in length, the principles of
these algorithms are not extensively elaborated. Subsequently, the study will train these
four hyperparameter optimization algorithms, compare the performance of evaluation
metrics under different algorithms, and employ a ranking method to determine the optimal
hyperparameter optimization algorithm for this model.

After selecting the optimal hyperparameter optimization algorithm, in order to en-
hance the model’s generalization ability, a multi-algorithm optimized model incorporating
Time Series cross-validation (TSCV) and the Dropout algorithm was established to further
improve the predictive performance of the model on tunneling speed.The Dropout algo-
rithm is a widely used regularization technique for deep learning models proposed by
Geoffrey Hinton and his team in 2012. Its primary objective is to prevent neural networks
from overfitting, thereby improving the model’s generalization ability across different data
sets. This study incorporated the Dropout layer into the LSTM model, with a dropout prob-
ability set to 0.1. This implementation achieved random dropout of a portion of neurons in
the neural network, preventing certain neurons from developing excessive dependence on
specific features and thereby reducing the complexity of the neural network.

Tunnel boring machine (TBM) excavation parameters constitute time-series data with
temporal dependencies. In conventional cross-validation, data is randomly partitioned,
making validating past data using future data highly inappropriate due to the temporal
dependencies. Therefore, the data sequence should not be arbitrarily shuffled. This study
employs time series cross-validation to evaluate prediction models’ performance on time-
series data. When assessing time-series prediction models, time-series cross-validation
effectively measures the model’s generalization ability across different periods. The model
utilizes a five-fold time series cross-validation, and the operational workflow is depicted in
Figure 1:
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Figure 1. Five-fold time series cross-validation diagram.

The process begins by selecting a window size, which encompasses a specific number
of observational values. Subsequently, the window is incrementally moved forward,
providing distinct training and validation data subsets for the model. At each step, the
model is trained on the data within the window and validated on the data outside the
window. This allows for the computation of performance metrics, such as mean squared
and absolute percentage errors, for the model on each validation set. Finally, the average of
these metrics is calculated to assess the model’s overall performance. By combining the
above methods, the overall model process is shown in Figure 2.

Figure 2. Flow chart of multi-algorithm optimization model.

4. Establishment of a Prediction Model for Dual-Mode Shield Tunneling Parameters

4.1. Filter Input Feature Parameters

The predictive model in this study comprehensively considers the influence of various
factors, including geological parameters, shield machine excavation parameters, and shield
tunneling modes. Therefore, detailed explanations for the parameters mentioned above are
provided in the following sections.

(1) Composite Geological Characteristics Parameters

When considering the geological conditions within the Liubai section’s left tunnel
range, this study employs rock mass rating and the soft–hard compound ratio as in-
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put parameters for composite geological features. According to the national standard
‘Code for geotechnical engineering investigation of urban rail transit’ (GB50307-2012)
Appendix F [25], the geotechnical construction engineering classification of each rock and
soil layer revealed by this investigation is carried out. Grade III rock mass predominates
along the left tunnel route, accounting for 46.78% of the tunnel length. Grade IV rock mass
represents 12.7% of the tunnel length, Grade V rock mass accounts for 38.56%, and Grade
VI rock mass covers 1.95%. To better reflect the conditions of alternating soft and hard
layers in the composite geological formation, the thickness of the weak soil layer at the
excavation face to the total excavation face thickness is defined as the soft–hard compound
ratio, representing the composite geological formation. The definition of the soft–hard
compound ratio is given by Formula (5):

μ =
Hi

Hi + Hj
, (5)

The equation μ represents the soft–hard compound ratio, within the range of 0 to 1; Hi
is the thickness of the weak soil layer, and Hj is the thickness of the hard rock layer.

(2) Operating parameters of shield machine

The original data in the research phase comprises 220-dimensional parameter indi-
cators. Based on the mechanisms affecting shield tunneling speed, this study primarily
considers several excavation parameters as input variables for predicting tunneling speed:

(1) Total Thrust: A more significant total thrust reduces resistance encountered by the
shield machine during excavation, enabling faster advancement. As the shield ma-
chine progresses, the total thrust must overcome the resistance and friction in the
geological layers to propel the machine forward. Therefore, the magnitude of the total
thrust directly influences the shield tunneling speed.

(2) Thrust Pressure: It represents the force exerted by the shield machine during the
excavation process, directly affecting the machine’s forward speed in the geological
layers. The thrust pressure of the shield machine should be controlled within a specific
range to ensure the stability and safety of shield tunneling.

(3) Cutterhead Torque: It represents the force exerted by the shield machine during the
excavation process, directly affecting the machine’s forward speed in the geological
layers. The thrust pressure of the shield machine should be controlled within a specific
range to ensure the stability and safety of shield tunneling.

(4) Cutterhead Speed: The higher the rotation speed of the cutterhead on the shield
machine, the stronger its cutting ability, resulting in faster advancement of the shield
machine in the geological layers.

(3) Shield tunneling mode parameters

To consider variations in the tunneling state of the dual-mode shield machine, it is
necessary to select different excavation modes based on distinct geological conditions and
excavation performance. They need to be labeled accordingly to differentiate between the
EPB and TBM excavation modes. After multiple test runs, the EPB mode is ultimately
labeled 1, and the TBM mode is labeled 3. This labeling approach aids the model in learning
from the input parameters, reduces the impact on neural network weight training, and
consequently enhances the rationality of the model’s predictive results.

4.2. Data Preprocessing
4.2.1. Steady-State Segment Data Extraction

During the tunneling process, equipment monitors data on a timely basis. Interrup-
tions in tunneling due to cutterhead tool replacement, segment assembly, and other reasons
are within the scope of monitoring. This results in a substantial volume of raw data of
lower quality. To extract steady-state data, it is necessary to eliminate empty thrusting
data and exclude short-term unstable data [26]. In general processing, cutterhead thrust
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(F), cutterhead torque (T), cutterhead speed (RPM), and tunneling speed (V) are consid-
ered state-discriminant parameters. Any value of zero parameters is considered blank
data recorded during shield machine operations, and the entire row of data is removed.
Short-term unstable data in each tunneling cycle, typically occurring during the start-up
process of the shield machine, should be selectively excluded to reduce potential errors in
subsequent calculations.

Figure 3 shows a shield tunneling process for data segment 140. Although the dis-
played unstable data in the initial stages of tunneling are minimal, considering that not
every start-up process proceeds smoothly, it is advisable to sequentially exclude the first
10% of data from each start-up phase chronologically. This approach aims to optimize the
quality of the data.

Figure 3. Raw data.

4.2.2. Outlier Handling

In practical scenarios, equipment monitoring generates a large amount of data, and
monitoring anomalies may inevitably lead to some outlier values. For such data, commonly
used outlier detection methods are employed for exclusion. This study utilizes the Isola-
tion Forest algorithm for identifying and detecting anomalous data. The Isolation Forest
algorithm was jointly proposed by Professor Zhou Zhihua and others in 2008 [27] for data
mining. It is an unsupervised anomaly detection algorithm suitable for continuous data
anomaly detection. Specifically, the Isolation Forest algorithm randomly partitions the data
into several subspaces, constructs a set of binary search trees based on random partitions,
and inserts data points into the leaf nodes. It determines whether a data point is an outlier
by calculating the average path length across all trees for each data point. A shorter path
length indicates that the data point is more easily isolated, making it more likely to be an
outlier. The isolated forest model is shown in Figure 4.

 

Figure 4. Isolated forest model.
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The specific numerical expression is given by the following Formula (6). Firstly,
construct h(x) as a metric to measure the “isolation degree” of a data point (sample) from
other data points. It is defined as the path length that a data point traverses from the root
node to that point on a random tree. For a random tree T and a data point x within it,
the number of samples that share the same leaf node with x in T is denoted as T.size(x).
Subsequently, for a given T.size(x), a correction term c(T.size(x)) can be calculated to represent
the average path length of constructing a binary tree with T.size(x) samples.

h(x) = e + c(T.size), (6)

The second step involves constructing the average path length c(n) of a binary tree
using n samples, specifically based on a Binary Search Tree (BST). This metric represents
the average distance between any two nodes in a BST with n elements. The average path
length c(n) can be calculated using the following formula:

c(n) = 2[H(n)− 1]− 2
n − q(n)− 1

n
, (7)

Here, H(n) represents the average path length of a BST with a height of n, and q(n) is
an estimation of the number of non-leaf nodes in the BST after randomly constructing and
inserting n elements.

s(x, n) = 2−
E(h(x))

c(n) , (8)

Finally, a normalization process is applied to map the range of h(x) to between 0 and 1.
Here, h(x) represents the path length of sample point x, and S(x, n) is the anomaly index
of the tree, which records the training data of x in n samples. From this formula, it can be
observed that as the path length decreases, s approaches 1, and the probability of detecting
the sample point as an anomaly increases.

Compared to commonly used calculation methods such as Mahalanobis distance
and the 3σ criterion, the Isolation Forest algorithm does not require calculating anomaly
standards for data under different geological conditions. Its unsupervised, efficient, and
precise advantages make it more suitable for extensive data processing in industries such as
tunnel boring machines (TBM). The Isolation Forest algorithm is capable of handling high-
dimensional data. However, an increase in data dimensions during processing increases tree
depth, resulting in higher time complexity for tree construction and search. Additionally,
greater tree depth increases sensitivity to anomalies, making them more prone to be
classified as outliers. Considering the focus of this study on predicting the tedious tunnel
process’s advance rate, the advance rate is paired with the total thrust, thrust pressure,
cutterhead torque, and cutterhead speed to form a two-dimensional array. This array is
then cyclically fed into the model for training, with all identified anomalies marked after
training completion. Finally, the rows containing anomalies are removed. The model is
configured with 100 trees, a contamination rate of 0.02 in the data set, and a random seed
set to 42. The training results are shown in Figure 5.

For the processing of outliers in the 140th tunneling cycle parameters, a total of
2825 data sets were processed. During the operation, numerous duplicate data points
were identified. Via statistical analysis, it was determined that a total of 115 data sets were
flagged as outliers. As a result, the final data set comprises 2710 remaining data sets.
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(a) Cu erhead Torque (b) Cu erhead Speed 

 
(c) Thrust Pressure (d) Total Thrust 

Figure 5. Outlier tag.

4.2.3. Data Denoising

After removing outliers, the data exhibits inevitable fluctuations that can impact the
modeling process and even the calculation results. These anomalous fluctuation data in
the tunneling parameter sequence are called noise data. This phenomenon is particularly
pronounced in geological environments with complex and variable conditions, rendering
the temporal parameter data more unstable. Xiao et al. [28] pointed out that denoising
tunneling parameters can reduce the spatial variability of these parameters, making it
easier for machine learning algorithms to learn the patterns in data changes. An improved
mean filtering algorithm is employed to denoise the tunneling parameters to mitigate these
irregular variations. The formula for the original mean filtering algorithm is as follows,
assuming a non-stationary data set of total length N. To eliminate noise, a window size of
2n + 1 (<N) is set, and as the window slides forward, the average of every 2n + 1 adjacent
data yk is taken to represent the measurement result of the midpoint data. This method
effectively eliminates noise.

yk =
1

2n + 1

2n+1

∑
i=−n

yk+i, (9)

There is significant data fluctuation with sudden rises and falls throughout the shield
tunneling process, accompanied by changes in the soft and hard composite strata. An
improved mean denoising algorithm is proposed to mitigate the impact of significant
differences in window values on denoising effectiveness. In each forward-sliding window
process, the data within the window is sorted, and the maximum value ykmax and the
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minimum number ykmin are excluded. The mean of the remaining data is then calculated to
represent the measurement result. The formula for the improved algorithm is as follows:

yk =
1

2n − 1
(

2n+1

∑
i=−n

yk+i − ykmax − ykmin), (10)

In order to assess the denoising effect, this paper selects two evaluation metrics: Signal-
to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR). Signal-to-Noise Ratio (SNR):
It evaluates signal strength and noise level ratio. Peak Signal-to-Noise Ratio (PSNR): It
evaluates the ratio between the maximum possible signal and noise power. Excellent SNR
and PSNR depend on the specific application scenarios and requirements. The metrics only
need to reach a certain level, and in the context of denoising the same data, higher SNR
and PSNR indicate better denoising effects. The formulas for calculating both metrics are
as follows:

SNR = 10 ∗ lg

(
∑ p2

∑(p − q)2

)
, (11)

PSNR = 10 ∗ lg

(
pmax

2

1
n ∗ ∑(p − q)2

)
, (12)

where p represents the original data, q is the filtered data, and pmax denotes the maximum
signal value. In the engineering calculations, considering that the data processing is
conducted in a ring-by-ring manner, with varying lengths of the excavation parameter
sequences for each ring, a sliding window of size 11 is chosen after multiple tests. Here, the
denoising effect after handling outliers is presented. Table 2 compares the evaluation metric
values before and after algorithm improvement, while Figure 6 illustrates the denoising
effect achieved via the improved mean filtering algorithm.

Figure 6. Comparison of variation amplitude of data values before and after denoising.
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Table 2. Prediction effect ranking analysis.

Cutterhead Speed Thrust Pressure
Tunneling

Speed
Cutterhead Torque Total Thrust

SNR PSNR SNR PSNR SNR PSNR SNR PSNR SNR PSNR

Mean filter algorithm 42.10 43.14 22.57 25.49 17.72 23.14 18.96 24.78 33.19 34.65

Improved mean filter
algorithm 42.68 43.72 22.58 25.49 17.84 23.27 18.96 24.79 33.19 34.65

The improved algorithm enhances the denoising effect on the cutterhead rotation and
tunneling speed. The SNR for the cutterhead rotation and tunneling speed increased by
0.58 and 0.12, respectively, while the PSNR increased by 0.58 and 0.13, respectively. The
SNR for tunneling speed and cutterhead torque is below 20, indicating a relatively low
signal-to-noise ratio. This suggests the presence of considerable noise in the data signal,
likely influenced by changes in the geological conditions and factors such as vibrations and
impacts in the mechanical system. This underscores the necessity of data denoising.

4.2.4. Data Normalization

When data features have significantly different magnitudes and exhibit a wide range
of values, normalization methods are commonly employed to balance the importance of
different features in prediction, thereby enhancing prediction accuracy. Two commonly
used normalization methods are min–max normalization and Z-score normalization. The
computation formulas for these two methods are as follows:

x∗ = x − xmin

xmax − xmin
, (13)

x∗ = x − xmean

δ
, (14)

As shown in Formula (13), the max–min normalization method linearly transforms the
original data to the range [0, 1], where xmax and xmin represent the maximum and minimum
values of the column data, respectively. This method is suitable for data distributions with
clear boundaries, mainly when scaling the data to a fixed range is necessary. Formula (14)
demonstrated that the z-score normalization method normalizes the original data set to
have a mean of 0 and a standard deviation of 1. Here, xmean represents the mean of all
sample data, and δ represents the standard deviation of all sample data. This method is
applicable when data distribution lacks clear boundaries and is suitable for cases where
comparing data from different features on the same scale is necessary. In the subsequent
sections of this paper, different normalization methods will be applied to the training set,
and the same method will then be used to normalize the validation set. The most suitable
normalization method will be determined by comparing the model’s predictive accuracy
on the test set. It is important to note that considering the potential differences in data
distribution between the training and validation sets, separate normalization processes for
the training and validation sets are necessary to achieve optimal predictive performance.

4.3. Evaluation Index

In the predictive model, various evaluation metrics are employed, each emphasiz-
ing different aspects, and relying on a single metric lacks comprehensiveness in model
assessment. To evaluate the model’s performance, three distinct evaluation metrics are
employed: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE), defined as follows:

MAE =
1
n

n

∑
i=1

∣∣ŷi − yi
∣∣, (15)
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RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (16)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (17)

In the formula, yi is the real value and ŷi is the predicted value. MAE is a commonly
used metric for assessing the accuracy of predictive models, reflecting the degree of close-
ness between actual and predicted values. Similarly, RMSE is employed to gauge predictive
model accuracy. In contrast to MAE, RMSE imposes a higher penalty by squaring the
errors, making it more sensitive to significant errors and outliers. MAPE is highly sensitive
to extreme values, limiting its ability to handle outliers effectively. However, it expresses
errors as a percentage, providing interpretability and comparability.

5. Comparative Analysis of Forecast Results

5.1. Model Parameter Presets

The research process processed 1–680 tunnel boring machine (TBM) shield tunneling
parameters. Due to the enormous volume of raw data and variations in data quality, which
could impact the model’s predictive performance, samples were selected from different
tunneling modes. For the TBM mode, the training set comprised rings 120 to 138, with
the prediction segment spanning rings 139 to 146. Under the Earth Pressure Balance (EPB)
mode, the training set included rings 435 to 444, and the prediction segment covered
rings 445 to 450. Approximately 310,000 data points for each parameter—tunneling speed,
total thrust, cutterhead torque, tunneling pressure, and cutterhead speed—were selected,
totaling around 1.55 million data points. The constructed model is a real-time prediction
model with a rectified linear unit (ReLU) as the activation function. The time step was set
to 20, utilizing the past 20 time steps of data as input to predict future data. The number
of epochs was set to 200. Considering that optimization algorithms can optimize multiple
hyperparameters in the LSTM model, such as the number of LSTM layers, the number of
LSTM units in hidden layers, learning rate, batch size, etc. Given the limitations of existing
computer performance, it is advisable to choose critical hyperparameters. In line with
previous research experience, this study selected two commonly optimized hyperparame-
ters before including optimization algorithms: the number of LSTM hidden layer neurons
and the learning rate. Prior to incorporating optimization algorithms, preliminary tuning
was conducted for other hyperparameters. The pre-training hyperparameter settings are
presented in Table 3, with 30 combinations tested during the preliminary tuning, and the
relative errors are compared in Figure 7.
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Figure 7. Comparison of relative errors in pre-training.

Table 3. Pre-training setup.

Name Optimize Parameter Range

Normalization method max-min normalization, z-score normalization

Batch size 16, 32, 64, 128, 256

Number of LSTM layers 1, 2, 3

After multiple pre-tuning experiments, the minimum average percentage error was
14.4%. Regarding the model’s accuracy, using the z-score normalization method for data
processing, setting the number of LSTM layers to 2, and configuring the batch size to
256 were more effective in training the model. Considering the dimensional differences in
the model’s input data, which could influence the model’s output, the z-score normalization
method was employed to transform data with different dimensions into a unified scale.
This ensures relative balance in the importance of these data during model computations,
mitigating interference caused by dimensional disparities. The network structure becomes
more complex when the number of LSTM layers is excessive. Although increasing the
number of layers can enhance model performance and help capture deeper features and
relationships, this improvement is dynamic. With the increased model complexity, the
training process may face the risk of gradient explosions.

Additionally, computational resources and training time would also increase. After a
series of pre-training experiments, it was determined that a two-layer LSTM configuration
is optimal for the model. Furthermore, setting the batch size to 256 improves the model’s
convergence speed and generalization ability. A larger batch size can simultaneously
process more data, reducing noise and fluctuations. During training, using a batch size that
is too small may lead to overfitting of the model to the training data, resulting in inadequate
generalization of new data.

5.2. Excavation Rate Prediction Analysis

The four optimization algorithms set the optimization range for the number of neurons
in the LSTM hidden layer between 10 and 100, and the optimization range for the learning
rate is set between 0.001 and 0.1. At the same time, other parameters use the model’s default
values. Figure 8 illustrates the predictive results of the LSTM model on the test set under
different optimization algorithms. In regression models, different evaluation metrics focus
on different aspects. Evaluating with a single metric may overlook other important factors,
so a comprehensive evaluation method using multiple metrics is necessary. Zorlu et al. [29]
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proposed the ranking method as a commonly used multi-metric comprehensive evaluation
method in 2008. This method involves ranking N models under the same evaluation metric,
i. Then, the rankings of m different evaluation metrics for the same model are summed to
obtain the multi-metric ranking for that model, as shown in Table 4.

Table 4. Prediction effect ranking analysis.

Predictive
Model

Optimization Results Training
Time (s)

MAE RMSE MAPE Overall
Ranking

Rank
SortUnits Rate EPB TBM EPB TBM EPB TBM

BO-LSTM 32 0.0094 367(1) 1.63(2) 3.51(1) 2.17(2) 4.49(1) 8.0%(1) 13.8%(1) 9 1
DE-LSTM 36 0.0085 800(3) 1.62(1) 3.93(3) 2.16(1) 4.88(3) 8.0%(1) 15.9%(3) 15 2
GA-LSTM 23 0.0086 1011(4) 1.82(4) 4.22(4) 2.38(4) 5.21(4) 9.3%(3) 16.9%(4) 27 4
PSO-LSTM 19 0.0150 396(2) 1.74(3) 3.77(2) 2.24(3) 4.83(2) 8.7%(2) 14.6%(2) 16 3

Note: ( ) is a single-column ranking.

 
(a) BO-LSTM (b) DE-LSTM 

 
(c) GA-LSTM (d) PSO-LSTM 

Figure 8. Prediction results of different LSTM models for the test set.

After comparing the performance of different optimization models on the test set, the
conclusion can be drawn that, regarding the optimization of model hyperparameters, the
number of neurons in the LSTM hidden layer or the learning rate should be manageable.
Many neurons in the LSTM hidden layer can lead to an overly complex model, making it
prone to overfitting. Conversely, more neurons are needed to ensure the model captures
complex patterns and relationships, resulting in an insufficient utilization of information
from the input data. A learning rate that is too small may slow down network training,
requiring a longer time to converge, while a learning rate that is too large may lead to
unstable training, skipping the optimal points and preventing convergence. Therefore, it is
necessary to use hyperparameter optimization algorithms for multiple training iterations
to achieve optimal predictive performance.

Examining the prediction curves for specific tunneling ring numbers reveals that
the trends in the predicted data under both tunnel boring machine (TBM) and earth
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pressure balance (EPB) shield modes generally align with the actual excavation parameter
curves. Under the TBM mode, the predicted curve for the weathered zone aligns well
with the actual values, demonstrating overall good predictive performance. However,
there is significant fluctuation in the local prediction segment from ring 139 to ring 141
due to unfavorable geological conditions characterized by complex rock changes in a
poor geological area. This section underwent pre-reinforcement during construction,
contributing to relatively poorer predictive results than other segments. In the EPB mode,
the predicted curve for the composite soft and hard layer is smoother, reflecting stable
changes in tunneling speed due to the softer rock characteristics, resulting in a closer match
between predicted and actual values with more minor relative errors. Based on the overall
ranking, BO-LSTM performs the best, with PSO-LSTM and DE-LSTM showing similar
performance, while GA-LSTM performs the least favorably.

Regarding predictive accuracy, DE-LSTM and BO-LSTM are suitable for predicting
relatively stable curve patterns. However, DE-LSTM performs poorly in predicting curves
with significant fluctuations and suffers from the drawback of slow operation speed. Over-
all, BO-LSTM is a preferable model that can be applied to predict different geological
environments. In EPB mode, the Mean Absolute Percentage Error (MAPE) prediction result
is 8%, while in TBM mode, the MAPE prediction result is 13.8%. PSO-LSTM exhibits good
overall performance, providing accurate predictions with a shorter runtime, and can be
considered an alternative prediction model.

5.3. Multi-Algorithm Optimization Model Prediction Analysis

The models above exhibit favorable predictive performance on a fixed test set, but
this does not necessarily imply the same performance on the global data set. In order
to enhance the model’s generalization capability, dropout algorithms and five-fold time
series cross-validation are introduced to the BO-LSTM model, proposing a multi-algorithm-
optimized tunneling speed prediction model. The validation set is partitioned based on
the temporal characteristics of the overall data set, and the evaluation metric results are
depicted in Figure 9.

Figure 9. Time series cross-validation results.

In the above pictures, the dotted lines of different colors are the reference lines of the
average value of the evaluation index. Via five rounds of time series cross-validation, the
model demonstrates strong generalization capabilities, with a mean absolute error (MAE)
of 3.18, root mean square error (RMSE) of 4.32, and mean absolute percentage error (MAPE)
of 13.7%. In relatively stable geological layers, the MAPE prediction result is 8.3%. Even
in challenging geological conditions where the excavation process experiences significant
discrete fluctuations, the model maintains an 80% accuracy in predicting tunneling speed.
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6. Conclusions

This paper relies on the Shenzhen Metro Line 13 Left Tunnel Project from Liuxiandong
Station to Baimang Station. It utilizes geological parameters and real-time monitoring
of excavation parameters in the complex strata to establish a prediction model for the
excavation rate of EPB/TBM dual-mode tunnel boring machines (TBMs) based on multi-
algorithm optimization and recurrent neural networks. The accuracy of the prediction
results is analyzed, and the main conclusions are as follows:

(1) The combined impact of the dual-mode TBM excavation mode, TBM operating state
parameters, and geological parameter variations was considered in establishing the tun-
nel boring machine (TBM) excavation data set. The model is more interpretable under
actual working conditions, supporting the planning and control of TBM construction.

(2) Isolation Forest and an improved mean filtering algorithm were applied to handle
TBM operating state parameters. This reduced the spatial variability of excavation
parameters, making it easier for machine learning algorithms to learn the patterns of
feature variations. The data set processed via denoising allows the construction of a
more accurate prediction model for TBM tunneling speed.

(3) A prediction model for TBM tunneling speed was established using multi-algorithm
optimization and recurrent neural networks. The model integrates Bayesian optimiza-
tion algorithms, dropout algorithms, and time-series cross-validation, demonstrating
strong generalization capabilities and operational efficiency. The lowest MAPE pre-
diction result is 8.3%, with an average MAPE prediction result below 15%.

The established model primarily aims to explore the real-time operational patterns of
tunneling speed in the dual-mode TBM excavation process under unsupervised training
models and provide a foundational model for intelligent decision control. In practice, the
data in the tunneling process is input into the model in real time, the model is trained, and
the results are output in real time, which plays a guiding role in the field. In this study,
the mechanical properties of rock have not been considered, and the model is not refined
enough. In order to obtain a refined model that is more generalized and more in line with
engineering practice, future research will consider more input of tunneling parameters and
rock mechanics parameters.
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Abstract: The underground utility tunnel in a soft foundation is generally affected by the serious
disturbance of the vehicle load during the operation period. Therefore, in this study, for the typical
utility tunnel engineering in Suqian City of Jiangsu Province, China, field tests were conducted to
monitor the performance of the utility tunnel structure in a soft foundation affected by the ground
traffic loads during the operation period. Based on the test results, the datasets whose number is
15,376, composed of the five main disturbance factors (four vehicle operating load parameters and
one operating time parameter), and the corresponding two main structure responses (displacement
and stress) have been constructed. Based on the obtained datasets, using the proposed new deep
learning model called WO-DBN, in which the seven hyperparameters of a deep belief network (DBN)
are determined by the whale optimization algorithm (WOA), the safety responses of the utility tunnel
structure have been predicted. The results show that for the prediction results, the average absolute
error for the displacement is 0.1604, and for the stress, it is 12.3726, which are not significant and
can meet the requirement of the real engineering. Therefore, the deep learning model can accurately
predict the performance of the utility tunnel structure under a vehicle load and other disturbances,
and the model has good applicability.

Keywords: field test; safety response; tunnel structure; vehicle load; WO-DBN

1. Introduction

The underground utility tunnel is one kind of underground structure in which there
are more than one utility pipe or cable. For the utility tunnel, it can not only reduce the
excavation needs and costs, and consequently reduce traffic congestion caused by excava-
tion, but also provide enough shallow underground space to avoid utility interference and
enough space for new utilities, which meets the sustainable development requirements
of underground space. Therefore, in light of urban development and the growing need
for public facilities in big cities, the utility tunnel has been rapidly developed in the world.
The first utility tunnel was built in France in 1850 [1]. However, the development of utility
tunnels in China was very late, and the first one was built in Shanghai in 1994 [2]. Actually,
the rapid development of the utility tunnel in China is from the 21st century, and recently,
China has made big progress in utility tunnel construction as an essential urban infras-
tructure development. In China, the eastern coastal area is the economically developed
region, and there are many big cities. In this area, the soft soil layers are widely distributed.
Therefore, in China, many utility tunnels are constructed in the soft foundation. As a kind
of urban underground engineering that is shallowly buried under the road, pavement and
green areas, the utility tunnel in a soft foundation will be seriously affected by the ground
traffic loads during the operation period. Because the mechanical properties of soft soils
are very poor, under the loading disturbance, large deformation will be caused for the soft
soils. Therefore, it is very hard work to determine the long-term mechanical status of soft
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soil after a disturbance, which will cause significant difficulties for the safety operation of
the utility tunnels. Thus, it is a very important work to analyze the safety status of utility
tunnels constructed in a soft foundation during the operation period.

Nowadays, there are many works on the safety analysis of utility tunnels during
operation periods affected by external loads similar to ground traffic loads. These studies
include two main types, which are experimental studies and numerical studies. For
the experimental studies, based on the in-field explosion experiments, the protective
performance of utility tunnels under a ground accidental explosion has been studied,
which includes two types of utility tunnels (steel bars-reinforced concrete utility tunnel and
basalt fiber reinforced polymer bars-reinforced utility tunnel) [3,4]. By a similar ground
surface explosion experiment, the structural dynamic responses of a double-box-reinforced
concrete utility tunnel buried in calcareous sand have been analyzed [5]. Moreover, based
on a quasi-static experiment, the cross-sectional mechanical behavior of a prefabricated
multi-cabin-reinforced concrete utility tunnel under free-field racking deformation by
earthquake action has been studied [6]. Also, based on quasi-static load tests on the
full-size model, the mechanical behavior of a prefabricated concrete utility tunnel and
the seismic behavior of top joints for the hybrid precast utility tunnel consisting of the
precast composite top slab and double-skin sidewalls with reserved rebar have been
researched [7,8]. Based on the quasi-static cyclic tests for simulating earthquake action,
the seismic performance of the precast concrete composite walls of utility tunnels with
a grouting-sleeve connection out-of-plane has been studied [9]. By using the low-cyclic-
loading tests conducted on the bottom joints, the seismic behavior of the prefabricated utility
tunnel created by transferring reserved rebars from the double-skin concrete sidewalls
to the bottom slab has been investigated [10]. Moreover, the shaking table model test
is one widely used method for studying the dynamic response of utility tunnels, and
there are many works involving this experimental method. For example, by employing
a multi-shaking table array system for a 1/30-scale utility tunnel model, the transverse
response of a reinforced concrete utility tunnel under near-fault ground motions with
and without a velocity pulse has been studied [11]. And by a series of shaking table
model tests, the dynamic responses of a prefabricated corrugated steel utility tunnel under
earthquake action have been studied [12]. To ensure the sustainable and safe operation of
a cast-in-place concrete utility tunnel over a design life of 100 years, the seismic response
pattern of a utility tunnel in a layered liquefiable site by earthquake excitation has been
studied by the shaking table tests [13]. By using the 1/20 scaled shaking table tests to
simulate the earthquake excitation, the seismic performance of a prefabricated T-shaped
cross micro-concrete utility tunnel has been studied [14]. And in a study [15], the dynamic
response of a reinforced concrete utility tunnel under earthquake seismic action has been
investigated through the shaking table tests. Moreover, in the study [16], the seismic
failure mechanism of a prefabricated corrugated steel utility tunnel on liquefiable ground
under earthquake excitation was investigated by the shaking table test, too. From the
abovementioned studies, it can be found that two types of dynamic loads (ground surface
explosion and earthquake excitation) have been simulated in these experimental studies.
Most of them studied the dynamic response of utility tunnels by the influence of a short
time disturbance. Therefore, there is a big gap between those experimental studies and
the study on a utility tunnel affected by ground traffic loads during the operation period,
which is a long-term disturbance.

For the numerical studies, by using the two-dimensional (2D) numerical model con-
structed by the general finite element software (ABAQUS 6.12), the response characteristics
of a concrete rectangular tunnel that is similar to a utility tunnel in soft soil subjected
to transversal ground shaking have been analyzed [17]. Using the 2D numerical model
constructed by the same software, too, the dynamic behavior of the pipe-arched main
compartment for the corrugated steel utility tunnel has been investigated [18]. By using the
general finite element software (ABAQUS 6.10), a three-dimensional (3D) numerical model
has been constructed for analyzing the mechanical performance of the perforated steel
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plate-reinforced utility tunnel with the use of ultra-high-performance concrete and an engi-
neered cementitious composite under dynamic loads [19]. Also based on the 3D real-site
numerical model constructed by the same software, the seismic responses of prefabricated
utility tunnels with different incident angles of P-waves were analyzed [20]. Based on
the 3D rigorous numerical model developed in the platform of Displacement Analyzer
(DIANA), the cross-sectional mechanical behavior of a prefabricated multi-cabin-reinforced
concrete utility tunnel under free-field racking deformation by earthquake action has been
studied [6]. Using the 3D finite element model of the explicit dynamic software (LS-DYNA
R8.0), the blast performance of a reinforced concrete utility tunnel subjected to a ground
surface explosion has been investigated [21]. Moreover, by using the 2D discrete element
numerical model of Particle Flow Code (PFC) software (PFC 2D 5.0), the dynamic response
of the reinforced concrete utility tunnel in soft soil of a horizontal non-homogeneous site
has been analyzed [15]. And, to investigate the seismic performance of prefabricated corru-
gated steel utility tunnels in liquefiable soil, the numerical plane model constructed by the
finite difference software of Fast Lagrangian Analysis of Continua (FLAC) 3D (FLAC 3.0)
has been used [16]. In most of the abovementioned studies, the effect of earthquake action
on the mechanical behavior of utility tunnels has been investigated, except one in which
the effect of a ground surface explosion has been considered. Therefore, no study is on the
long-term effect of the ground traffic loads during the operation period on the performance
of the utility tunnel.

Currently, with the development of artificial intelligence and information technology,
some new methods have been used to analyze the safety operation of utility tunnels. For
example, a building information modeling (BIM)-based framework for the operation and
maintenance of utility tunnels has been constructed, which includes three modules (BIM
model, database, and monitoring system) [22,23]. Based on the past monitoring data, a
multi-layer long short-term memory and recurrent neural network architecture has been
proposed for forecasting the temperature and relative humidity inside utility tunnels [24].
Moreover, based on the selected information, the risk assessment of utility tunnels can be
conducted using different methods, such as an integrated model based on dynamic hazard
scenario identification, Bayesian networks and risk analysis [25] and risk interaction-based
deep learning [26]. Lastly, based on the collected data from previous studies, by using the
traditional artificial neural network (ANN), the damage of a tunnel deeply buried in a
mountain affected by an earthquake and landslide has been predicted [27]. It can be found
that, in those studies, although the safety operation of a utility tunnel or a tunnel affected
by some factors using monitored information has been analyzed, the used information is
collected from other studies. Therefore, only the research framework or simple method
have been proposed, and a prediction of the safety of a utility tunnel affected by ground
traffic loads during the operation period has not been conducted.

In summarizing the previous studies, it can be found that the current studies are on
the analysis of the dynamic mechanical behavior of utility tunnels affected by short time
loads such as ground surface explosions or earthquake excitation, and the new methods
are only used for the system analysis of the utility tunnel operation based on the collected
information from other studies. Therefore, there are no studies on the prediction and
evaluation of the safety performance of utility tunnels under long-term disturbance by
ground vehicle loads during the operation period, especially the studies using the new
methods, such as deep learning. To address this gap, here, field tests have been conducted
for one real utility tunnel to obtain the big data information about the safety performance
of a utility tunnel under disturbance by ground loads during the operation period. And
based on a deep learning method–deep belief network (DBN) and the swarm intelligence
optimization method–whale optimization algorithm (WOA), one new deep learning model–
whale optimization deep belief network (WO-DBN) has been proposed. Lastly, based
on the collected big data information, and by using the new deep learning model, the
prediction of the performance of a utility tunnel under disturbance by ground vehicle loads
during the operation period has been conducted.
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The novelty and aim of this study are summarized as follows: (1) it is the first study
on the prediction of the safety performance of a utility tunnel under long-term disturbance
by ground vehicle loads during the operation period, (2) it is a new study on monitoring
the long-term performance of utility tunnels by field tests, (3) it is the first study on the
selection and analysis of big data to describe the safety of utility tunnels under long-term
disturbances during the operation period and (4) it is the first study on an application deep
learning method for predicting the safety performance of a utility tunnel under long-term
disturbance during the operation period.

The rest of this paper is as follows. Section 2 gives the methodologies, including DBN,
WOA, WO-DBN and field test methods. The results are provided in Section 3. Section 4
includes the discussions. Finally, the main conclusions of this study are summarized in
Section 5.

2. Methodologies

2.1. Deep Belief Network (DBN)

The DBN has the special network structure represented by the multiple-layer restricted
Boltzmann machines (RBMs) [28], as shown in Figure 1. For its excellent data analysis
ability, DBN has become one of the most commonly used deep learning methods, and it
is widely used in big data prediction, data mining, recognition and classification [28,29].
For DBN, the unsupervised pre-training method is applied to learn the input features by
the multiple-layer RBMs. Multiple-layer RBMs will increase the upper bound of the log-
likelihood, which can greatly enhance the data mining ability and improve the prediction
accuracy. In comparison with ANN, in DBN, the initial weights are learned from the
structure of the input data, which is closer to the global optimum. The learned weights are
used as the initial values of other networks with the same structure, and thus, the drawbacks
of initialization parameters falling into the local optima and a long training time can be
avoided. Moreover, for its complex network structure, the DBN can treat big data problems.
Nowadays, DBNs have already been used to solve the big data problems in geotechnical
engineering [30]. Therefore, in this study, the DBN is applied to the performance prediction
of a utility tunnel in a soft foundation during the operation period.

For one RBM in the DBN (Figure 2), there are only two layers, which are the visible
layer (v) and hidden layer (h). Therefore, the visible layer of the first RBM is the first layer
of the DBN, for which the original data are inputted. The hidden layer of the first RBM
is the second layer of the DBN and is also the visible layer of the second RBM. The DBN
including multiple hidden layers can be constructed. For multiple RBMs in the DBN, the
DBN has a strong learning ability which can extract deep features of the complex data [31].

As a typical deep learning method, the training of a DBN is complex and generally
includes two parts, unsupervised learning and supervised learning, corresponding to two
stages, namely, forward pre-training and reverse fine-tuning. The training process of the
DBN is shown in Figure 3.
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The detailed steps are as follows:
(1) Parameter initialization
First, for the first RBM, its model parameters θ= (W, a, b) should be initialized ran-

domly, which include the connection weights W = (wij) ∈ (0, 1) between the visible layer
vi and the hidden layer hj and the biases of visible and hidden layers (a = (a1, a2, · · · , ai)

T

and b = (b1, b2, · · · , bj)
T). The other initial parameters should be determined by the control

variable method [29], including the number of RBM layers K, the numbers of neurons in
hidden layers nk (k = 1, K), the learning rate η and the maximum iteration numbers of
pre-training and fine-tuning (T1 and T2).

(2) Forward pre-training
In this stage, the network is trained by the unsupervised learning method. Therefore,

the input data have no labels, and the model parameters of DBN are updated by the greedy
layer-by-layer learning algorithm [31]. That is to say, the first RBM is trained by the original
input data, and thus, its model parameters can be obtained. Then, the model parameters
of the first RBM remain unchanged, and its output data are used to train the second RBM
until the last RBM is trained. The flow chart of the greedy layer-by-layer learning algorithm
is shown in Figure 4, whose detail process is as follows:
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T
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h t hj recon
t
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Figure 4. Flow chart of the greedy layer-by-layer learning algorithm.

First, for the first RBM, which is trained by the contrastive divergence (CD) algorithm,
its outputs (the hidden layer, reconstructed visible layer and reconstructed hidden layer)
can be obtained using the following equations:(

hj
)(t1)

data = p(h(t1)
j = 1

∣∣∣v(t1) ) = σ(bj + ∑
i
(vi)

(t1)
datawij), (1)

(vi)
(t1)
recon = p(v(t1)

i = 1
∣∣∣h(t1) ) = σ(ai + ∑

j
(hj)

(t1)
datawij), (2)

(
hj
)(t1)

recon = p(h(t1)
j = 1

∣∣∣v(t1) ) = σ(bj + ∑
i
(vi)

(t1)
reconwij), (3)
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where
(
hj
)(t1)

data represents the calculated output of the hidden layer neuron
(
hj
)

at the t1th

update, (vi)
(t1)
data represents the input of the visible layer neuron (vi) at the t1th update.

(vi)
(t1)
recon and

(
hj
)(t1)

recon represents the reconstructed output of the visible layer neuron (vi)

and hidden layer neuron
(
hj
)

at the t1th update, respectively. p(h(t1)
j = 1

∣∣∣v(t1) ) represents
the probability that the hidden layer is activated when it is updated. σ(x) is the logistic
sigmoid function. The probability that the hidden layer, the reconstructed visible layer and
the reconstructed hidden layer are activated when they are updated is the corresponding
output value.

After the visible layer and hidden layer are reconstructed, the model parameters of
this RBM are updated as

Δwij = η(
〈
(vi)

(t1)
data(hj)

(t1)
data

〉
−
〈
(vi)

(t1)
recon(hj)

(t1)
recon

〉
), (4)

Δai = η((vi)
(t1)
data − (vi)

(t1)
recon), (5)

Δbj = η((hj)
(t1)
data − (hj)

(t1)
recon), (6)

where Δwij is the update values of the weight, Δaj is the bias of the visible layer, Δbj is the
bias of the hidden layer and η is the learning rate. Through the above formula, the initial
weights of the model are learned from the structure of the input data in the pre-training
stage, which can greatly improve the performance of the DBN.

Then, it is judged whether the number of pre-trainings (t1) reaches the maximum
number of iterations (T1). If the number of pre-trainings (t1) does not reach the maximum
number of iterations (T1), the updated model parameters are used as the initial value to
continue to update the first RBM. Until the iteration number of pre-training (t1) reaches
the maximum number of iterations (T1), the pre-training of the first RBM ends. The model
parameters of this RBM are used for the visible layer of the next RBM.

Finally, the CD algorithm is used to train the high-level RBMs sequentially. Until the
model parameters of all RBMs are updated, the pre-training of the DBN is over. The greedy
layer-by-layer learning algorithm optimizes the weight of a DBN that is linear to network
size and depth in time complexity. Moreover, since the approximation of the likelihood
function only requires one step in this algorithm, the training time is significantly reduced.

It can be found that, using the greedy layer-by-layer learning algorithm, the training
of the DBN can be simplified to the training of multiple RBMs. Therefore, for the DBN, the
computing process can be simplified, and the training speed can be improved. Moreover,
the data in this stage are not labeled, and thus, the data mining ability of the DBN has been
improved too.

(3) Reverse fine-tuning
In this stage, the network is trained by the supervised learning method. Therefore, the

data have labels. In the training, based on the errors between the computed output and
the real output values, the weight and bias of the network have been updated by using
the back propagation method. Therefore, in this stage, to further optimize the DBN, its
parameters are fine-tuned after pre-training, whose details are as follows.

In this stage, the DBN is trained by a contrastive version of the wake–sleep algorithm
called the updown algorithm [31]. Here, for the top layer, the mean square error (MSE) can
be obtained as

MSE =
1
J

J

∑
j=1

(
ρj − Oj

)2, (7)

where J is the neuron number of the top layer. ρj and oj represent the computed and real
output values of the top layer of the jth neuron, respectively.
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Then, by using the gradient descent method, the connection weights and bias are
continuously updated based on the computed MSE, which is propagated backward layer
by layer. Finally, when the fine-tuning iteration whose number is t2 reaches the maximum
iteration whose number is T2, the reverse fine-tuning is over.

In summary, for the DBN composed of multiple RBMs, multiple-layer RBMs will
increase the upper bound of the log-likelihood, which means a stronger learning ability.
The training process is divided into two parts, which are an unsupervised pre-training
procedure performed in a bottom-up manner and a supervised up-down fine-tuning
process. The pre-training process can be regarded as feature learning, in which the better
initial values of weights can be determined, and then, the updown algorithm is to adjust
the whole network.

2.2. Whale Optimization Algorithm (WOA)

A WOA is a typical swarm intelligence optimization method [32] for simulating the
efficient hunting behavior of humpback whale populations. Whales use spiral bubble
nets to hunt their prey in order to achieve optimal results, and thus, whale herds possess
extremely high swarm intelligence. In the WOA, the position of each whale represents
one solution of the optimization problem. During whale hunting, whales exhibit two
behaviors. One is the shrinking circle movement, in which all whales move towards other
whales, and another is spiral bubble hunting, in which the whales swim in a circular motion
and spray bubbles to drive their prey. The whales randomly choose these two behaviors
for hunting. That is to say, whales will randomly choose whether to swim towards the
whale in the optimal position or randomly choose a whale as their target and approach it.
Therefore, there are three modes in the behavior patterns of whales, which are shrinking
circle movement, spiral bubble hunting, and the exploration of prey. Using those three
modes, the whales continuously update their position until they reach the optimal position.

For the above complex behavior patterns of whales, there are excellent exploration and
exploitation abilities for the WOA. In the WOA, the current optimal solution is assumed to
be the target prey. In the exploration phase, whales swim to a randomly selected individual,
that is, a global search is performed. However, in the exploitation phase, whales swim
around the target prey in a shrinking circle and along a spiral-shaped path simultaneously,
that is, a local refinement search is performed. Moreover, a probability of 50% was applied
to select a shrinking encircling mechanism or spiral model for updating the whale position
in the WOA.

The flow chart of the WOA is shown in Figure 5.
The details of the WOA are as follows.
(1) The initial values of the parameters should be determined, which include the solu-

tion dimension D, whale population size N, maximum iteration number Tmax, and spiral size

constant b. Moreover, the initial positions of whales
→
Zi= (z1

i , z2
i , · · · , zD

i ),
i = 1, 2, · · · , N are assigned randomly.

(2) The optimal individual and its position are recorded, which is represented as
→
Z∗ = (z1, z2, · · · , zD). The adaptation of each individual to the environment is assessed.

(3) If the iteration number t reaches the maximum iteration number Tmax, the process
is over and the optimal solution should be outputted. Otherwise, the process continues.

(4) The probability p and coefficients vector
→
r are assigned randomly. According to

the probability p and the adaptive variation of the search vector
→
A, the individual position

is updated as follows:
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Figure 5. Flow chart of the WOA.

When p < 50% and
→
|A| < 1, the shrinking encircling mechanism is used to update the

individual position, which is expressed as

→
Z(t + 1) =

→
Z∗(t)−

→
A·→B , (8)

where
→
Z(t + 1) is the next position vector and

→
Z∗(t) is the current optimal position vector.

It is worth noting that if there is a better solution, it needs to be updated in each iteration. t
is the current iteration number, and

→
A = 2

→
a ·→r −→

a , (9)

→
B =

∣∣∣∣→C ·
→
Z∗(t)− →

Z(t)
∣∣∣∣, (10)

where
→
A is one coefficient vector,

→
a is a vector that decreases linearly from two to zero

throughout the computing process,
→
r is a random vector in the range of [0, 1],

→
Z(t) is the

current position vector and
→
C is another coefficient vector which can be expressed as

→
C = 2

→
r , (11)
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When p < 50% and
→
|A| ≥ 1, the random search is used to update the position, which

is expressed as
→
Z(t + 1) =

→
Zrand −

→
A·
∣∣∣∣→C ·→Zrand −

→
Z(t)

∣∣∣∣, (12)

where
→
Zrand is a random position vector. Here,

→
|A| ≥ 1 emphasizes that the exploration

shows that the WOA algorithm performs a global search.
Lastly, when p ≥ 50%, the spiral upward movement is used to update the position,

which is expressed as
→
Z(t + 1) =

→
Z∗(t) +

→
B′·ebl · cos(2πl), (13)

where b represents a constant spiral size, l is a random number in the range of [−1, 1] and

→
B′ =

∣∣∣∣→Z∗(t) − →
Z(t)

∣∣∣∣, (14)

After the position updating operation, the process returns to step (2).
The previous study [32] shows that, because the exploitation and exploration phases

have been conducted separately and in almost half of the iterations each, the WOA can
solve the global optimization easily and with a high convergence speed. Moreover, the

adaptive change in the
→
A allows the WOA to make a smooth transition between exploitation

and exploration. It is worth noting that the two main internal parameters,
→
A and

→
C , need

to be adjusted in the WOA.

2.3. Whale Optimization Deep Belief Network (WO-DBN)

For a complex structure of a DBN which is composed of multiple-layer RBMs, there
are many hyperparameters in the DBN that should be determined beforehand. Generally,
those hyperparameters are determined by the control variable method. However, using
the control variable method, there are three main shortcomings [31], which are as follows:
(1) For many search parameters, it is hard work to implement a control variable method.
(2) For a small search range, the searched optimal value is only the result in this small range,
rather than the real optimal one. (3) The theoretical basis of the control variable method
is lacking. To solve those shortcomings, it is a very suitable way to use the optimization
method to select the suitable hyperparameters of a DBN. As one good global optimization
method, the WOA can be used to select the optimal hyperparameters of the machine
learning model [33]. Therefore, in this study, the WOA is used to determine the suitable
hyperparameters of the DBN, and a new deep learning model called a whale optimization
deep belief network (WO-DBN) is proposed, whose flow chart is shown in Figure 6.

It must be noted that, in this deep learning model, based on the experience and our
tests, there are four hidden layers. The ReLU activation function, which only requires a
threshold to obtain the activation value and has a very fast convergence speed, is used [34].

The main steps of the new deep learning model are as follows:
(1) Based on the experience, the searched ranges of the DBN hyperparameters that

should be determined are provided. The hyperparameters include the neuron numbers for
the first, second, third and fourth hidden layers (n1, n2, n3 and n4), the learning rate η and
the maximum iteration numbers for pre-training and fine-tuning (T1 and T2), which are

taken as the whale position
→
Z, represented as,

→
Z = [n1, n2, n3, n4, η, T1, T2], (15)

(2) Based on the experiments and our tests, the initial parameters of the WOA are given,
including the maximum iteration number Tmax, the whale population size N and the spiral
size constant b. According to the number of optimized hyperparameters, the dimension D
is determined to be 7. Moreover, the initial whale population is generated randomly.
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(3) According to the solved problem, the fitness function is defined as

f =

M
∑

i=1

(
yi − y′i

)2

M
, (16)

where y′i and yi are the computed and real values of the ith sample, respectively, and M is
the number of samples.

By using this fitness function, the fitness values of whale individuals can be obtained.
According to its fitness value, the most adaptive individual is taken as the prey, whose
position is selected as the target position.

(4) Based on the computing operations in the fourth step of the WOA, the positions of
whale individuals have been updated, and the new whale population is generated.

(5) If the iteration number reaches the maximum iteration number Tmax, the process is
over. Otherwise, the process returns to step (3).

(6) The whale individual with the best position is selected and outputted, whose
position is the optimized DBN hyperparameters. And by using those hyperparameters, the
suitable DBN model can be obtained.

 

Figure 6. Flow chart of the WO-DBN.

2.4. Filed Test

The utility tunnel engineering is in the high-speed railway business district of Suqian
City, Jiangsu Province of China. For this engineering, one section is along the Guangzhou
Road, whose width is 40 m and length is 1851 m. The single cabin structure of this utility
tunnel should meet the entering requirement of power, communication and water supply
pipelines in the tunnel. The utility tunnel is under the central green isolation zone, as
shown in Figure 7.
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Figure 7. Layout of the utility tunnel.

For this utility tunnel engineering, the main tunnel structure is constructed by the
segmented open excavation and cast-in-place and is one long strip single-cabin-reinforced
concrete structure. The length of one segment is 25 m. The width and height of a standard
section for this utility tunnel structure are 3 m and 3.5 m, and those for the directly buried
outlet shaft are 6 m and 5.65 m. For a large size and complex structure for the section of
the directly buried outlet shaft, in this study, the utility tunnel of the directly buried outlet
shaft between the pile number of GZK 0 + 820 to GZK 0 + 900 is selected as the research
object. For this utility tunnel of the directly buried outlet shaft, the covered depth is only
about 2 m.

The site of this utility tunnel engineering belongs to the Xuhuai Yellow River alluvial
plain geomorphic area, which is a unit of the abandoned ancient Yellow River channel
geomorphology and has a flat terrain. By using the geological investigation method, such
as the drilling method, in the report of engineering geological exploration, the engineering
geological cross-section of this utility tunnel engineering can be obtained, which is shown
in Figure 8.

From Figure 8 and according to the report of engineering geological exploration, there
are six soil layers, for which the basic engineering geological conditions are summarized
as follows.

For layer 1, it is the plain fill soil layer with the color of yellow or grayish yellow, it
is loose and its main composition is silt, including the plant roots and stems, and locally
contains crushed stones, bricks, etc. For its poor mechanical properties, this layer has
been removed.

 

Figure 8. Cross-section of engineering geology.
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For layer 2-1, it is the silt layer with the color of grayish yellow, and it is wet and
slightly dense. For this layer, the thin layers of soft plastic clay are mixed in local layers,
and there is a feeling of sand when rubbing hands with a rapid shaking response. This
layer has low toughness and dry strength with moderate compressibility.

For layer 2-2, it is the clay layer, whose color is from grayish brown to yellowish gray
with soft plastic and local plastic. For this layer, the thin layers of silt are partially mixed
with the glossy cut surface. Moreover, this soil layer has high toughness and dry strength,
with no shaking response and medium to high compressibility.

For layer 2-2A, it is the sullage silty clay layer, whose color is from grayish brown
to yellowish gray, too. For this layer with a mechanical property from soft plastic to flow
plastic, the thin layers of silt are also mixed with the slight glossy cut surface. Moreover,
this soil layer has medium toughness and dry strength, with no shaking response and
high compressibility.

For layer 2-3, which is the clay layer whose color is grayish brown or yellowish gray,
it is from soft to plastic, with the glossy cut surface including a small number of iron
manganese spots. This layer has high toughness and dry strength with no shaking response
and medium compressibility.

For layer 2-4, it is the silty clay layer whose color is from gray yellow to brown yellow,
and the mechanical property is from plastic to hard plastic. Moreover, the local layers
of this layer are clay including iron manganese spots and a small number of calcareous
nodules. As for layer 2-3, this layer has high toughness and dry strength, with no shaking
response and medium compressibility, too.

From the above analysis, it can be found that, for the soil layers in which the utility
tunnel is located, there are mainly two parts, which are soft soil in lower layers and filling
soil in upper layers. The soft soil layers mainly include the sullage silty clay and the silty
clay. Therefore, the soil layers in which the utility tunnel is located belongs to the typical
soft soil.

Because the utility tunnel engineering, which is a typical soft foundation engineering,
is shallowly buried under the green isolation areas, it will be seriously affected by the
ground traffic load during the operation period, which will cause large deformation for
the utility tunnel. Moreover, for locations near multiple ground transportation routes, this
engineering will be repeatedly affected by the loads of incoming and outgoing ground
vehicles. Therefore, for this utility tunnel engineering with its big size and complex
structure during the operation period, the ground traffic load will significantly influence its
safety. It is very important work to monitor and predict the safety for this utility tunnel
during the operation period.

To monitor the response of the utility tunnel structure during the operation period
in-site, the steel stress gauge and concrete strain gauge are placed at the middle of the floor,
the side wall and the roof of the structure for the directly buried outlet shaft. Moreover,
the contact pressure monitoring sensors are embedded in soil at different depths along the
side wall of the utility tunnel and along the floor. The layout of field monitoring points is
shown in Figure 9.

In this study, the used data acquisition instrument is the dynamic and static signal
testing system of Chentu CT5808W, whose adjustable maximum frequency is 50 Hz. This
instrument can capture the slight changes in sensors within a short period of time. In the
field test, to simulate the vehicle load under normal two-way traffic and one-way traffic
conditions, on the second lane from east to west and the opposite lane, vehicle load action
tests have been conducted, with rear axle loads of 8.3 tons, 9 tons and 11 tons. The vehicle
load, which is a one-time action, is applied by a dump truck.
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Figure 9. Layout of monitoring points.

3. Results

3.1. Construction Datasets from Field Tests Results

From the field test, it can be found that the sensors buried in the roof of the structure can
obviously reflect the disturbance of vehicle loads during the operation period. Therefore,
the results of those sensors are used in this study. From the comprehensive analysis of
the engineering condition, site investigation and real measurement data, it can be found
that the main load disturbance factors affecting the response of the utility tunnel structure
include the vehicle driving speed, the magnitude of the vehicle load, the lateral distance
between the vehicle wheel load center and the mid span of the structure roof, the symmetry
of the vehicle load distribution and the operating time. The disturbance response of the
utility tunnel structure is mainly represented by the settlement and the horizontal stress
at the mid span of the structure roof. It must be noted that the settlement of the mid
span of the structure roof can be computed by the obtained concrete strain results at the
corresponding position, and the horizontal stress at the mid span of the structure roof is also
computed by the obtained steel stress results at the corresponding position. Therefore, to
predict the safety of the utility tunnel structure, the four vehicle operating load parameters
and one operating time parameter are selected as the influence factors, which are the input
variables of the prediction model, and the response factors of the utility tunnel structure are
the settlement and the horizontal stress at the mid span of the structure roof, which are the
output variables of the prediction model. According to the requirements for the input and
output variables of the prediction model, field test data have been organized to establish
the datasets for the training the model. For the large number of field test datasets, in order
to illustrate the form of the dataset, only part of the data are provided here, as shown in
Table 1.

It must be noted that, in Table 1, the “1” in the third column represents load symmetry,
and “2” represents load asymmetry. For the data in each line, the first five ones represent
the five disturbance factors, and the last two represent the two corresponding responses of
the utility tunnel structure affected by the first five disturbance factors. The data in each
line are one training sample of the prediction model, and the datasets of the prediction
model are constructed by numerous lines of the training sample.

Finally, it must be noted that, because the load disturbance factors can be determined
easily in the field tests at one engineering site, in this study, only the main load disturbance
factors have been considered. Actually, in real engineering, there are other influence factors
on the performance of the utility tunnel structure, such as the type of soft foundation soil.
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However, those factors are unchanged for one particular utility tunnel during the operation
period. Therefore, those influence factors cannot be taken as the disturbance factors for one
particular form of engineering. Moreover, for one particular utility tunnel, the influence of
the type of soft foundation soil has been represented in the implicit relationship between
the load disturbance factors and structural responses. Therefore, for this prediction study,
the influence of the type of soft foundation soil is not considered. That is to say, the type of
soft foundation soil does not affect the predictive accuracy of the deep learning model.

Table 1. Part data of field test datasets.

Input Variables Output Variables

Operating
Time

/h

Vehicle Speed
/km/h

Symmetry of
Vehicle Load

Magnitude of
Vehicle Load

/kN

Load Position
/m

Vertical
Displacement

/mm

Horizontal
Stress
/kPa

1 22.5 1 156.49 5.25 2.0053 720.342
1.6 41.25 1 169.17 5.25 2.2926 730.722

2.17 60 1 190.01 5.25 2.2596 725.702
1.26 60 1 195.81 5.25 2.4146 728.099
4.31 41.25 1 180.01 5.25 2.0452 720.963
4.63 80 2 90.01 6.39 1.8 391.573
1.17 41.25 2 81.25 7.34 1.17 303.95
4.06 80 2 100.1 6.39 2.24 383.41
1.25 80 2 96.58 6.39 2.76 340.47

1 41.25 2 96.58 7.34 2.16 288.28

3.2. Process of Prediction by WO-DBN

The prediction process of the settlement and the horizontal stress at the mid span of
the structure roof based on WO-DBN is shown in Figure 10.

From Figure 10, the computing process of the prediction structure response of the
utility tunnel is as follows.

(1) Based on the field test results, the datasets for the safety prediction model of the
utility tunnel structure during the operation period have been constructed, that is, the field
test datasets for the response of the utility tunnel structure during the operation period
(including the structure deformation index data and structure stress index data) have been
selected. Here, the field test data of a one-year simulated operation period have been used.

(2) The field test datasets have been preprocessed. The duplicate data and obvious
abnormal data have been removed. The zero values in the datasets have been revised to
the very small values (greater than zero). After preprocessing, a total of 15,376 sets of valid
data have been obtained.

It should be noted that, if the amount of training data is very huge, to reduce the
workload of processing the training data, the digital signal processing methods such as
the wavelet analysis or filtration methods can be employed to optimize the selection and
preprocessing of training data.

(3) Considering the total amount of data, the datasets have been divided. Approxi-
mately 80% of the data have been selected as the training sets, including a total of 12,110
sets, and the remaining data are as the testing sets. The used datasets are summarized in
Table 2.

Table 2. The used datasets.

Name Field Test Datasets Training Sets Testing Sets

Number of sets 15,376 12,110 3266
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Figure 10. Flow chart of the prediction structure response of the utility tunnel based on WO-DBN.

(4) The hyperparameters of the DBN have been optimized by the WOA, and the
prediction model by the DBN based on the optimization results has been established. The
predication model has been trained by the training sets to determine the parameters of the
predication model, and the WO-DBN model for the prediction of the vertical displacement
and the horizontal stress at the mid span of the structure roof can be obtained.

(5) The data of the load and operating time of the testing sets have been substituted into
the obtained WO-DBN model, and the corresponding structure response can be obtained,
which are the predicted results of the vertical displacement and the horizontal stress at the
mid span of the structure roof.

3.3. Evaluation Index of the Prediction Model

In this study, the square root mean square error (RMSE), mean absolute error (MAE)
and correlation coefficient (R) are used to evaluate the prediction accuracy of the model,
which are as follows:

RMSE =

√√√√√ N
∑

i=1

(
yi − y′i

)2

N
, (17)

MAE =

N
∑

i=1

∣∣yi − y′i
∣∣

N
, (18)

R =

N
∑

i=1
(yi − y)(y′i − y′)√

N
∑

i=1
(yi − y)2 N

∑
i=1

(y′i − y′)2
, (19)

where y′i represents the prediction value corresponding to the i-th input data, y′ represents
the average value of prediction values, yi represents the real test value corresponding to
the i-th input data, y represents the average value of real test values and N represents the
number of prediction samples.
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3.4. Analysis of Predication Results

The training sets are used to train the predication model, and the WO-DBN model can
be obtained. The optimized hyperparameters of the DBN, which are the parameters of the
WO-DBN, are summarized in Table 3.

Table 3. Parameters of the WO-DBN model.

Parameters n1 n2 n3 n4 η t1 t2

Values 44 47 34 18 0.0044 13 60

The testing sets have been substituted into the obtained WO-DBN model, and the
prediction results of the structure response can be obtained, which are as shown in Figure 11.
It must be noted that, for comparison, the real test results are also shown in this figure.

It must be noted that, in Figure 11, to show the computing errors between the pre-
diction results and the real test ones clearly, the scattered points of vertical displacement
and the horizontal stress of the structure roof corresponding to different samples were
artificially connected to form variation curves. Therefore, the variation curves in Figure 11
have no practical meaning.

From Figure 11, it can be found that the prediction results of the WO-DBN model
are in agreement with the real test results—that is, the performance of the constructed
prediction model in this study is suitable.

To deeply analyze the prediction results, based on Equations (17)–(19), the quantitative
evaluation indexes (RMSE, MAE and R) can be obtained, which are summarized in Table 4.

Table 4. Evaluation indexes of the WO-DBN prediction model.

Indexes RMSE MAE R

Vertical Displacement 0.2312 0.1604 0.9742
Horizontal stress 22.0217 12.3726 0.6825

From Table 4, it can be found that, for the vertical displacement of the structure roof,
the values of RMSE and MAE are all small, and the value of R is 0.9742, which is near
1. Therefore, the prediction results are very good. However, for the horizontal stress
of the structure roof, the values of RMSE and MAE are large. The reason is that the
computing values of RMSE and MAE are related with the magnitude of the data [27,35].
Because the magnitude of the data for the horizontal stress is much larger than that for
the vertical displacement, there are big differences for the computing values of RMSE and
MAE between them. Moreover, the computing value of R is not related with the magnitude
of the data [27,35]. Therefore, its result is relatively effective. Actually, for the horizontal
stress of the structure roof, its computing value of R is 0.6825, which is near 0.7, that is, the
prediction result of WO-DBN is somewhat suitable too. Obviously, the prediction result of
vertical displacement is better than that of horizontal stress, that is, the obtained WO-DBN
prediction model has a better predictive effect on the structure deformation response. The
reason is that the displacement response of the utility tunnel structure to the disturbances
such as operation loads is more obvious than the stress response, which is represented by
the more obvious change in results in Figure 11a than that in Figure 11b.

From the above analysis, it can be found that, based on the constructed WO-DBN
model and considering the disturbance factors of the utility tunnel structure during the
operation period, the corresponding disturbance response of the utility tunnel structure
can be predicted well. Therefore, this study can provide an effective way to dynamically
predict the safety response of the utility tunnel structure during the operation period based
on the big data analysis by the artificial intelligent method.
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(a) 

(b) 

Figure 11. Prediction results of the structure response for the utility tunnel: (a) Vertical displacement
at the mid span of the structure roof; (b) Horizontal stress at the mid span of the structure roof.

4. Discussion

To further analyze the performance of the WO-DBN model, a comparison study
between WO-DBN, DBN, ANN and another deep learning method called long short-term
memory (LSTM) has been conducted.

For the DBN model, the trial-and-error method is generally used to determine its
hyperparameters, which can be described as follows.

(1) According to the experience, the possible ranges of hyperparameters have been
determined.

(2) Several sets of hyperparameter combinations have been selected in their possible
ranges by the experimental design or other methods, and these hyperparameter combina-
tions have been used for prediction.

(3) The prediction errors of models by the different combinations of hyperparameters
have been used for comparison, that is, the evaluation indexes of the prediction models
have been compared. The parameter combination with the smallest prediction error has
been selected as the final hyperparameters of the prediction model.
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By using the trial-and-error method, the determined hyperparameters of the DBN
model are summarized in Table 5.

Table 5. Parameters of the DBN model.

Parameters n1 n2 n3 n4 η t1 t2

Values 45 50 30 10 0.0014 15 65

As one typical artificial intelligence method, the ANN is generally used for prediction
study [27,35–37]. Therefore, it is used here for comparison. By using the trial-and-error
method, too, its hyperparameters can be determined, which are summarized in Table 6.

Table 6. Parameters of the ANN and LSTM models.

Parameters n1 n2 η Epoch

ANN Values 32 16 0.01 50
LSTM Values 16 8 0.001 100

It should be noted that, in Table 6, n1 and n2 are neuron numbers for the first and
second hidden layers, respectively. η is the learning rate, and Epoch is the maximum
iteration number.

Moreover, for the LSTM which belongs to the recurrent neural network (RNN) [38],
it is one generally used deep learning method for the prediction study [38,39]. Therefore,
here, for a comparison with the new deep learning model (WO-DBN), the LSTM is applied.
By using the trial-and-error method, the hyperparameters of LSTM can also be determined.
Because the determined structure of LSTM is the same as that of ANN, the hyperparameters
of LSTM are also summarized in Table 6.

By using the determined parameters in Tables 5 and 6, the prediction models for the
response of the utility tunnel structure based on DBN, ANN and LSTM can be constructed.
For comparison, the prediction results of the DBN, ANN and LSTM models are also shown
in Figure 11. From Figure 11, it can be found that there are some differences between the
prediction results of the three models (DBN, ANN and LSTM) and the real test results, and
the results of WO-DBN approach the real data more. Therefore, the prediction results of the
new WO-DBN model are the best, which are much better than those of the three models.
Moreover, to compare the four models (WO-DBN, DBN, ANN and LSTM) more clearly,
the quantitative evaluation indexes (RMSE, MAE and R) of the four prediction models are
summarized in Table 7.

Table 7. Comparison of evaluation indexes for four prediction models (WO-DBN, DBN, ANN
and LSTM).

WO-DBN DBN ANN LSTM

Vertical displacement
RMSE 0.2312 0.5697 0.6563 0.5595
MAE 0.1604 0.4285 0.4852 0.3777

R 0.9742 0.8642 0.7585 0.8435

Horizontal stress
RMSE 22.0217 31.2888 38.1835 34.5109
MAE 12.3726 24.7234 30.4551 28.2891

R 0.6825 0.5011 0.3411 0.5145

From Table 7, it can be found that, both for the vertical displacement and for the
horizontal stress, the computing errors of the WO-DBN model are all much less than those
of the three other models (DBN, ANN and LSTM). For example, the R for the vertical
displacement by WO-DBN is 0.9742, which is much larger than those by DBN (0.8642),
ANN (0.7585) and LSTM (0.8435). The R for the horizontal stress by WO-DBN is 0.6825,
which is also much larger than those by DBN (0.5011), ANN (0.3411) and LSTM (0.5145).
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Therefore, the performance of the prediction model by WO-DBN is significantly better
than those by DBN, ANN and LSTM. The proposed WO-DBN model is a more suitable
method for predicting the performance of the utility tunnel structure during the operation
period. Moreover, in four prediction models, the performance of ANN is the poorest,
whose computed R for the vertical displacement and the horizontal stress is the least. The
computed R for the vertical displacement by DBN is larger than that by LSTM, but the
computed R for the horizontal stress by DBN is slightly less than that by LSTM. However,
with comprehensive consideration of the computing errors, the performance of DBN is
superior. Therefore, for the prediction of the performance of the utility tunnel structure
during the operation period, the order of the four models is as follows: WO-DBN, DBN,
LSTM and ANN.

Although the proposed WO-DBN model can well predict the performance of the utility
tunnel structure in a soft foundation during the operation period and its performance is
much better than that of other models (DBN, ANN and LSTM), as a preliminary study, the
amount of used data is not very large, and the considered structure disturbance factors are
not very comprehensive. Moreover, in this deep learning model, the WOA is only used
to select the hyperparameters of the DBN, and the DBN is still trained by the traditional
greedy layer-by-layer learning algorithm. Finally, in this study, the offline data are used in
the prediction model, which restricts the real-time prediction. Therefore, the future works
can be summarized as follows: (1) a prediction study on the real big data of the measured
disturbance of the utility tunnel structure during the operation period, (2) a prediction
study considering more structure disturbance factors for the utility tunnel structure during
the operation period, (3) the development of a new deep learning model, in which both the
hyperparameters and algorithm parameters of DBN are all optimized by the WOA and
(4) a prediction study based on the real-time monitoring data to enhance the predictive
capabilities of the deep learning model.

5. Conclusions

In this study, to monitor the performance of the utility tunnel structure in a soft
foundation affected by ground traffic loads during the operation period, the field tests have
been conducted in the typical engineering site (one utility tunnel engineering in Suqian
City of Jiangsu Province, China). From the field test results, the five main disturbance
factors (four vehicle operating load parameters and one operating time parameter) on the
utility tunnel structure and the two main structural safety responses (displacement and
stress) have been determined to construct the big datasets whose number is 15,376 for the
prediction model. To treat the datasets, one new deep learning model called WO-DBN has
been proposed, in which the WOA is used to optimize the hyperparameters of the DBN.
Finally, using the WO-DBN model, and based on the datasets, the main safety responses of
the utility tunnel structure have been predicted. From the studies, the following conclusions
can be drawn: (1) For the utility tunnel structure in a soft foundation during the operation
period, the two main safety responses affected by the five main disturbance factors such
as the load and time are the displacement and stress at the mid span of the structure
roof. (2) For its special structure and good computing performance, the deep learning
method (DBN) can analyze the big data from the field tests well; however, for the numerous
hyperparameters of DBN, which cannot be determined easily, the WOA is used to optimize
those hyperparameters, and a new deep learning model (WO-DBN) is proposed to treat
the big data. (3) Based on the new WO-DBN model, the dynamic safety status of the utility
tunnel structure in a soft foundation during the operation period can be predicted well,
whose results show that the computing errors are not significant (the average absolute
error for the displacement is 0.1604 and that for the stress is 12.3726) and can meet the
requirement of real engineering.
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