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Ayoub Boumchich, Judicaël Picaut, Pierre Aumond, Arnaud Can and Erwan Bocher

Blind Calibration of Environmental Acoustics Measurements Using Smartphones
Reprinted from: Sensors 2024, 24, 1255, doi:10.3390/s24041255 . . . . . . . . . . . . . . . . . . . . 108

Domenico Rossi, Antonio Pascale, Aurora Mascolo and Claudio Guarnaccia

Coupling Different Road Traffic Noise Models with a Multilinear Regressive Model: A
Measurements-Independent Technique for Urban Road Traffic Noise Prediction
Reprinted from: Sensors 2024, 24, 2275, doi:10.3390/s24072275 . . . . . . . . . . . . . . . . . . . . 132

Lei Gao, Chenzhi Cai, Chao Li and Cheuk Ming Mak

Numerical Analysis of the Mitigation Performance of a Buried PT-WIB on Environmental
Vibration
Reprinted from: Sensors 2023, 23, 7666, doi:10.3390/s23187666 . . . . . . . . . . . . . . . . . . . . 151

v



Andrés Eduardo Castro-Ospina, Miguel Angel Solarte-Sanchez, Laura Stella Vega-Escobar,

Claudia Isaza and Juan David Martı́nez-Vargas

Graph-Based Audio Classification Using Pre-Trained Models and Graph Neural Networks
Reprinted from: Sensors 2024, 24, 2106, doi:10.3390/s24072106 . . . . . . . . . . . . . . . . . . . . 165

Sam Lapp, Nickolus Stahlman and Justin Kitzes

A Quantitative Evaluation of the Performance of the Low-Cost AudioMoth Acoustic Recording
Unit
Reprinted from: Sensors 2023, 23, 5254, doi:10.3390/s23115254 . . . . . . . . . . . . . . . . . . . . 177

Drew Priebe, Burooj Ghani and Dan Stowell

Efficient Speech Detection in Environmental Audio Using Acoustic Recognition and Knowledge
Distillation
Reprinted from: Sensors 2024, 24, 2046, doi:10.3390/s24072046 . . . . . . . . . . . . . . . . . . . . 189

Justin Ivancic, Gamani Karunasiri and Fabio Alves

Directional Resonant MEMS Acoustic Sensor and Associated Acoustic Vector Sensor
Reprinted from: Sensors 2023, 23, 8217, doi:10.3390/s23198217 . . . . . . . . . . . . . . . . . . . . 200

Justin Ivancic and Fabio Alves

Directional Multi-Resonant Micro-Electromechanical System Acoustic Sensor for Low
Frequency Detection
Reprinted from: Sensors 2024, 24, 2908, doi:10.3390/s24092908 . . . . . . . . . . . . . . . . . . . . 224

vi



About the Editor

Hector Eduardo Roman

Hector Eduardo Roman is currently working as scientific collaborator at the Department of

Physics and Department of Earth and Environmental Sciences of the University of Milano-Bicocca.

He has been awarded a visiting professorship at the Pohang University of Science and Technology

(POSTECH) working at the Division of IT Convergence Engineering (Pohang, Korea). He has

been a Guest Scientist at the Max Planck Institute for the Physics of Complex Systems (MPIPKS,

Germany) and Research Fellow at the Department of Physics of the University of Milan. He has

been nominated Research Assistant (Privatdozent) at the University of Hamburg and the University

of Giessen (Germany) and has been awarded a Fedeor Lynen Fellowship from the Alexander von

Humboldt Foundation (Germany). His interests cover different areas of complex systems such as

sensor networks, acoustic sensing and monitoring in natural/urban environments, atomic and soft

matter physics, fractals, biomolecules, and finance. He is the co-editor/co-author of 8 books and has

over 200 publications in international journals.

vii





Preface

This reprint contains a collection of feature papers, written by internationally recognized experts,

dealing with the issue of soundscape characterization in urban and natural environments, with

the scope of expanding our knowledge of the way anthropogenic effects can affect the quality of

life in populated areas and alter wildlife conservation in natural habitats. One of the aims is the

development of new local quality-of-life indices based on environmental noise recording data for

the purpose of suggesting specific strategies to mitigate anthropogenic noise pollution in general

domains. The reprint should be useful to both experts in the field of soundscape analysis and

researchers interested in pursuing new ideas in this rapidly evolving field of work.

The Editor has benefitted from an ongoing collaboration with Prof. Roberto Benocci and Prof.

Giovanni Zambon from the Department of Earth and Environmental Sciences of the University of

Milano-Bicocca.

Hector Eduardo Roman

Editor
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Editorial

Editorial to the Special Issue “Acoustic Sensing and Monitoring
in Urban and Natural Environments”

Hector Eduardo Roman

Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy;
hector.roman@unimib.it

During the last decades, the great advances achieved in sensor technology and monitor-
ing strategies have been instrumental to accurately quantify anthropogenic noise pollution
in both urban and natural environments. Indeed, when lacking of human influence, a
natural habitat soundscape constitutes a benchmark which allows us to estimate any nega-
tive impact that anthropogenic activity can have in a particular surrounding. The study
of natural soundscapes can therefore be very useful for the development of new ideas
and methodologies aimed at improving the quality of life in highly populated urban areas
which may suffer from self-produced noise pollution. The latter is one of the greatest
environmental threats to people’s health, which has become an issue affecting millions of
people worldwide.

Historically, human society develops more efficiently in urban areas which facilitate
its great variety of activities. The emergence of large populated zones, however, is not the
result of a long-term planning and therefore they are not optimized to yield high living
standards. As a result, people living in large conglomerates must cohabit with the often
deleterious actions of different agents, among which anthropogenic noise plays a central
role. Only recently these issues have been considered seriously yielding the development of
new branches of study and research. The latter are essential to guide and support efficient
policy-making decisions aimed at finding the right intervention measures.

The aim of this Special Issue is to gather experts actively working in different fields
of acoustic phenomena, such as sensing and monitoring techniques in either urban or
natural environments, to help expanding our knowledge on soundscape monitoring and
analysis contributions 1–7, road traffic and soundscape modeling contributions 8–10, and
the development of more efficient sensors contributions 11–14 in support of such different
endeavours.

In contribution 1, ’Hearing to the Unseen’, Bota et al. present a work which can signifi-
cantly improve on standard passive acoustic sensing (PAS) and environmental monitoring,
the latter known to be challenging when huge amount of data needs to be collected. Specifi-
cally, they develop a new technique able to recognize species-specific sounds more efficiently,
denoted as BirdNET, based on a novel machine learning tool for automated recognition and
acoustic data processing. They apply BirdNET for detecting two cryptic forest bird species:
Coal Tit (Peripatus ater) and the Short-toed Treecreeper (Certhia brachydactyla), illustrating
the achievement of highly accurate recognition rates, typical of BirdNET performance.
In addition, the software has been made freely available, encouraging researchers and
managers to utilize it.

Understanding the impact of urbanization on the surrounding biodiversity and
wildlife conservation is a main ecological issue. Often, the actual impact of a rapid urban-
ization is difficult to assess using traditional PAS methods, as discussed by Barnes and
Quinn in contribution 2. They present a multimethod analysis of biodiversity in the rapidly
urbanizing county Greenville (South Carolina, USA), based on several audio recodings
in 25 locations along a predertermined trail, supplemented with visual assessments, an
online database and the use of refugia tubes. The local species identification along the
trail was employed to identify relationships between herpetofauna and acoustic indices (as

Sensors 2024, 24, 6295. https://doi.org/10.3390/s24196295 https://www.mdpi.com/journal/sensors1
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proxies for biodiversity), suggesting that the use of different sampling methods is crucial for
achieving a more comprehensive and realistic evaluation of wildlife occupancy. This study
should be of help to establish better conservation policies of biodiversity and appropriate
urbanization guidelines in natural forested ecosystems.

Soundscape indices have been introduced with the aim of evaluating different con-
tributions of the environmental sound components, providing accurate assessments of
the “acoustic quality” within a complex habitat. In contribution 3, Benocci et al. apply
machine learning (ML) algorithms (decision tree, random forest, adaptive boosting, and
support vector machine) to optimize the (four) parameters determining the behavior of the
soundscape ranking index (SRI). The latter was previously introduced by the authors to
study sound recordings taken at 16 sites, distributed over a regular grid covering an area
of about 22 hectares, within an urban park in the city of Milan surrounded by a variety of
anthropophonic sources. The recordings span 3.5 h each over a period of four consecutive
days. The authors find that two ML algorithms (decision tree and adaptive boosting) yield
a set of parameters displaying a rather good classification performance (F1-scores: 0.70 and
0.71, respectively). The method is expected to prove useful when considering large amount
of sound data, allowing for an efficient classification of the associated indices.

The above results are in quantitative agreement with a self-consistent estimation of
the mean SRI values discussed in contribution 4. In the latter, a careful aural survey from
a single day was performed in order to identify the presence of 19 predefined sound
categories, within one minute of recording, for a total of 70 one-minute intervals. The
resulting one minute histograms of the SRI values were used to define a dissimilarity
function for each pair of sites. Dissimilarity increases significantly with the inter-site
distance in real space, and optimal values of the 4 parameters were obtained by minimizing
the standard deviation of the data, requiring consistency with a fifth parameter describing
the power-law variation of dissimilarity with distance. This study can be useful to assess
the quality of a soundscape in more general situations.

Predicting traffic noise over city-wide scales is challenging due to the relatively large
amount of input information required to reach a sufficient accuracy. In contribution 5,
the authors present a methodology by just relying on street categorization and a city
microphone network. A simplified dynamic traffic model is employed to predict statistical
and dynamical noise indicators, and to estimate the number of noise events. A standard
sound propagation module is then employed to determine the noise levels. Finally, an
ML technique elaborates the deterministic predictions of the different traffic parameter
scenarios, choosing the one yielding the best accord with the indicators measured by
the microphone network. The method is illustrated using data from the city of Barcelona,
yielding results within a 2–3 dB precision, and number of events within a 30% accuracy. The
current methodology allows considering a wide variety of noise indicators thus improving
environmental noise assessment over city-wide scales.

A significant change in urban soundscapes occurred during the COVID-19 pandemic
as a result of the imposed mobility and activity restrictions in the affected zones, yielding
a dramatic reduction in noise pollution levels. The latter was measured in Barcelona,
both before and during the lockdown, by means of a deployed acoustic sensor network
consisting of 70 sound recording units, as discussed in contribution 6. Different noise
indices were compared, together with a perceptual test conducted within the project Sons al
Balcó during the lockdown. The analysis was based on a clustering procedure, separating
objective from subjective data according to the predominant type of noise sources present
in each sensor area. The areas were then classified as heavy, moderate and low-traffic
areas. A reduction in noise indices values was found to be significantly correlated with
an improved acoustic satisfaction and type of noise sources. These results suggest that
objective calibrated data can be useful to estimate the subjective perception of urban
soundscapes in cases lacking of input information.

To efficiently deal with major health and social issues in complex noisy environments,
dynamical noise maps are generally needed to keep track of noise behavior in real time.
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An alternative approach to existing real time recording methods has been proposed in
contribution 7 based on the direct use of smartphones carried by mobile individuals as
measurement tools of local noise levels. To successfully implement this methodology, an
accurate calibration of the smartphones is required. The authors discuss the so called “blind
calibration” procedure, in which measured noise levels from several smartphones, located
within a limited area, are sent to a data center for a consistent evaluation of their values,
allowing for their calibration. The article proposes to set up a blind calibration method
by using data from the NoiseCapture (NC) smartphone application, and tests using NC
datasets are discussed in support of the suggested model.

The accurate assessment of traffic noise levels in a given urban area is a primary
requisite to complay with present road traffic noise (RTN) regulations. In contribution
8, Rossi et al. propose a new methodology based on an easy application of RTN models,
without the need of relying on measured data for calibration in the first place. Equivalent
continuous sound pressure levels were obtained using different emission models coupled to
a sound propagation algorithm, by randomly generating traffic flows, speeds, and source–
receiver distances. Finally, a multilinear regressive technique was developed to deal with
the data in a managable way for applications. The procedure was validated using a set of
long-term traffic and noise data, recorded using several sensors (sound level meters), car
counters, and speed detectors, in Saint-Berthevin (France). The estimations provided by the
multilinear regressions are in very good agreement with the field measurements, displaying
mean absolute errors in the range (1.60–2.64) dB(A), suggesting that RTN models can be
successfully integrated into a network of traffic sensors to forecast noise levels accurately.

Railway transit plays a dominant role in exerting vibration pollution in urban areas. A
common technique employed to dissipate the associated waves consists in the infilling of
periodic narrow excavation dugs in the soil located along the expected wave propagation
paths. However, the presently used infilled ditches do not provide sufficient attenuation at
low and medium frequencies. In contribution 9, Gao et al. suggest a novel solution to cope
with the most disturbing lower frequencies. The new method is based on the use of acoustic
metamaterials consisting of a periodic infilled trench combined with a wave-impeding
block, typically embedded at a certain depth in the ground. The authors develop a 3D
finite elements model to quantify the expected isolation performance of the suggested
wave barriers. The results are very promising, suggesting that the combination of periodic
infilled trench structures with a wave impedance block barrier can effectively attenuate the
most disturbing low and medium frequencies, helping to mitigate environmental vibrations
pollution.

Environmental sound studies gain considerable insight if an accurate classification of
the different type of sound sources can be accomplished. In contribution 10, Castro-Ospina
et al. consider the interesting idea of representing audio data using the language of graph
theory, and apply it to the problem of sound classification. The new methodology is based
on the use of pre-trained audio models to extract hidden features from audio files, informa-
tion which is then represented as nodes of connected graphs. To solve multi-class audio
classification problems, the graphs are trained using three graph neural networks (GNNs):
graph convolutional networks, graph attention networks (GATs) and GraphSAGE. The GAT
model emerges as the best performer yielding an accurate classification of environmental
sounds, and an excellent identification of the type of land cover such as forest, savanna, or
pasture. The study embodies a promising scenario to the use of learning techniques in the
context of GNNs methodology for analyzing audio data related to environmental issues.

Autonomous recording units are widely used to record vocalizing species localized
either in an indoor or outdoor context, of which AudioMoth is one of the most popular ones.
Despite its extensive use, few quantitative tests of AudioMoth performance have been
reported. Clearly, further information on the device is needed for the design of efficient
field surveys, and for processing the recording data more accurately. In contribution 11,
two types of tests on AudioMoth recorder performance characteristics are reported. In the
first one, settings regarding different orientations and mounting conditions, using several
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devices, yielded little variations in acoustic performances. In particular, protecting plastic
bags used in outdoor setups have little effect on sensitivity for frequencies below 10 kHz.
It is found that AudioMoth has an almost constant on-axis response, displaying some
attenuation effects from sources located behind it. The latter can be of relevance when the
device is positioned on a tree. In the second test, a variety of recording frequencies, gain
settings, environmental temperatures, and battery types were considered. In particular, the
lifespan of different types of batteries were measured, showing that lithium batteries work
very well lasting for about 190 h at room temperature and sampling rate of 32 kHz, while
at freezing temperatures they keep collecting data for a period twice as long as compared
to their standard alkaline counterparts. This information should be of help to researchers
performing lasting measurements under very different environmental conditions.

The work in contribution 12 deals with learning transfers from a ‘teacher model’
to a smaller ‘student model’. Such distillation techniques are used to design efficient,
lightweight student models for speech detection in bioacoustics. Taken the EcoVAD voice
detection architecture as the teacher model, a comparative analysis is perfomed on the
MobileNetV3-Small-Pi model aimed at working as a compact student architecture. Various
configurations of the student models were analysed to identify the optimal performance,
and different distillation techniques were studied to find the most effective method of
model selection. The obtained distilled models exhibit comparable performances to the
EcoVAD one, suggesting a possible approach to overcome present computational barriers
for real-time ecological monitoring using compact devices.

In contributions 13 and 14, Ivancic et al. report recent developments of a small,
lightweight, portable sensor well adapted to resolve quiet or distant acoustic sources and
their location, in addition to underwater operations. The new acoustic device is based on a
micro-electromechanical system (MEMS), and a novel design of a related acoustic vector
sensor array (AVS) is discussed in contribution 13. In contribution 14, extensions of the
MEMS acoustic sensor are presented to broaden the operating bandwidth by keeping a
high signal-to-noise ratio, in particular at low frequencies. The new approach represents a
significant improvement in sensor performance compared to standard MEMS sensor ones,
in which the multi-resonant design plays a fundamental role to overcome the limitations of
the standard devices which increase sensitivity at the expense of bandwidth.

Conflicts of Interest: The author declares no conflict of interest.
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Hearing to the Unseen: AudioMoth and BirdNET as a Cheap
and Easy Method for Monitoring Cryptic Bird Species

Gerard Bota 1, Robert Manzano-Rubio 1, Lidia Catalán 2, Julia Gómez-Catasús 3,4 and Cristian Pérez-Granados 1,5,*

1 Conservation Biology Group, Landscape Dynamics and Biodiversity Programme, Forest Science and
Technology Center of Catalonia (CTFC), 25280 Solsona, Spain; gerard.bota@ctfc.cat (G.B.);
robert.manzano@ctfc.cat (R.M.-R.)

2 Independent Researcher, 44002 Teruel, Spain; lidiacrispi@gmail.com
3 Terrestrial Ecology Group (TEG-UAM), Department of Ecology, Autonomous University of Madrid,

28049 Madrid, Spain; julia.gomez@uam.es
4 Research Centre in Biodiversity and Global Change (CIBC-UAM), Autonomous University of Madrid,

28049 Madrid, Spain
5 Ecology Department, Alicante University, 03080 Alicante, Spain
* Correspondence: cristian.perez@ua.es

Abstract: The efficient analyses of sound recordings obtained through passive acoustic monitoring
(PAM) might be challenging owing to the vast amount of data collected using such technique. The
development of species-specific acoustic recognizers (e.g., through deep learning) may alleviate
the time required for sound recordings but are often difficult to create. Here, we evaluate the
effectiveness of BirdNET, a new machine learning tool freely available for automated recognition
and acoustic data processing, for correctly identifying and detecting two cryptic forest bird species.
BirdNET precision was high for both the Coal Tit (Peripatus ater) and the Short-toed Treecreeper
(Certhia brachydactyla), with mean values of 92.6% and 87.8%, respectively. Using the default values,
BirdNET successfully detected the Coal Tit and the Short-toed Treecreeper in 90.5% and 98.4% of
the annotated recordings, respectively. We also tested the impact of variable confidence scores on
BirdNET performance and estimated the optimal confidence score for each species. Vocal activity
patterns of both species, obtained using PAM and BirdNET, reached their peak during the first two
hours after sunrise. We hope that our study may encourage researchers and managers to utilize this
user-friendly and ready-to-use software, thus contributing to advancements in acoustic sensing and
environmental monitoring.

Keywords: acoustic sensor; audio recognition; automated recognition software; autonomous recording
unit; machine learning; Paridae; Periparus ater; passive acoustic monitoring; wildlife monitoring

1. Introduction

Nowadays, there exists an increasing demand for automated, efficient, and scalable
ecological monitoring methodologies that possess the capability to address the ongoing
decline in biodiversity [1]. Conventional field surveys, which rely on human presence in the
field, may suffer from limitations and biases stemming from human expertise, while also
being time-consuming and costly [1,2]. Fortunately, advancements in sensing technologies
and computational capabilities now enable the execution of automated ecological surveys
on a large scale, both spatially and temporally. Innovative biomonitoring techniques
(see [3]) decrease the need for human presence in the field while reducing potential biases
associated with human-based surveys. Although new technologies provide important
improvements over traditional monitoring methods, their application is not exempt from
considerations and limitations. For example, the technology considered should be selected
taking into account the goals of the biodiversity monitoring scheme, the indicators to be
measured, the accuracy for target taxa, as well as the available capacity of and budget for
equipment [4,5].
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Many animal species, ranging from small insects to whales, emit acoustic signals, so
acoustic communication is widespread in the animal world, and very often species commu-
nicate using a sequence of distinct acoustic elements [6]. One of the emerging noninvasive
and automated techniques for ecological monitoring is passive acoustic monitoring (PAM).
This method involves the utilization of Autonomous Recording Units (ARUs) equipped
with acoustic sensors (referred to as microphones hereafter) that are deployed in the field
to obtain recorded acoustic data using a specified recording schedule. ARUs are sound
recorders that can be programmed with specific time schedules to be unattended while
operating in the field, with great battery autonomy and storage capacity and built to operate
in outdoor conditions [7]. The subsequent analysis of these recorded sounds enables the
detection and monitoring of individuals or ecosystems without disrupting their natural
behavior [2].

PAM is a trending technique whose use to monitor species and ecosystems is increas-
ingly gaining more and more attention (see reviews in [2,8]). This rise in popularity can
be partially attributed to several factors. Firstly, the availability of affordable and efficient
ARUs, such as AudioMoth [9,10], has facilitated the widespread adoption of PAM. Secondly,
recent innovations in acoustic data processing techniques [11,12] have enhanced the anal-
ysis and interpretation of acoustic data obtained through PAM. Lastly, the development
of low-cost yet high-quality microphones (e.g., [13]) has further contributed to the ad-
vancement of PAM. Passive acoustic surveys generate a significant amount of data, posing
challenges for visual or acoustical verification of the recordings (but, see [14]). To address
this issue, a wide range of audio signal recognition tools have been developed over the
past decade to assist with audio processing and enable fast and accurate interpretation of
the extensive acoustic data obtained from passive acoustic surveys. These tools encompass
a spectrum of approaches, ranging from basic detectors that employ template matching
methods (e.g., [15]) to advanced techniques, like deep learning and convolutional neural
networks, which represent the current state-of-the-art in the field [12].

Birds are the most commonly monitored group of animals using PAM [2] and, conse-
quently, the majority of advances in audio signal recognition have been focused on birds
(see [11,16,17]). State-of-the-art techniques have demonstrated their ability to develop
highly accurate bird recognition models. However, these sophisticated methods may pose
challenges for implementation by managers, scientists, and the general public due to the
significant level of informatics experience required [17]. Fortunately, a recently updated
machine learning tool called BirdNET provides a free and user-friendly solution for au-
tomated audio recognition [11]. This ready-to-use tool has been widely adopted by the
general public (over 1.1 million participants used the BirdNET APP during 2020, [18])
and by scientists (see review of applications in [19]), enabling an easy access and use of
machine learning for automated wildlife recognition. BirdNET employs a deep neural
network for automated detection and classification of wildlife vocalizations [11]. The tool
divides the original sound recordings into 3-s segments and provides identification for over
6000 species of wildlife for each segment [11,18]. BirdNET can identify multiple species
within the same segment, and each detection is accompanied by a quantitative confidence
score, automatically provided by BirdNET, ranging from 0 to 1. This score reflects the
probability of accurately identifying the species, with a score of 1 indicating a perfect
match. The confidence score can be adjusted by the user as a threshold value, enabling the
filtering of BirdNET output at a desired confidence level. Selecting a higher confidence
score increases the percentage of correctly classified detections but may result in a lower
number of detections overall. However, our current knowledge on how confidence score
impacts BirdNET species detection accuracy is very limited (reviewed in [19]). Addition-
ally, BirdNET allows the users to adjust the overlap of prediction segments, modify the
sensitivity parameter, and to apply filters to classify sounds based on recording location,
time period, or target species [11,19].

BirdNET, as a user-friendly tool, can be easily accessed through various friendly
interfaces. It can be used in a smartphone (BirdNET App, [18]), enabling users to directly
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record bird sounds in the field. Alternatively, a web-based platform called BirdNET-
API allows users to upload their recordings for analysis [20]. BirdNET functionality
is also integrated into Raven Pro, an audio software developed by the Cornell Lab of
Ornithology, and can be run on Windows or Python through the BirdNET-Analyzer, which
is openly accessible on GitHub (https://github.com/kahst/BirdNET-Analyzer, accessed
on 11 August 2023). While BirdNET was initially designed for bird species recognition,
the most recent updates have expanded its capabilities to include a limited number of
other species, such as frogs and primates [21,22]. However, the extent of BirdNET’s ability
in correctly identifying bird species vocalizations from sound recordings collected using
omnidirectional microphones, the ones typically used in PAM, remains largely confined to
a few case studies (as reviewed by [19]).

In this study, our objective is to conduct a comprehensive evaluation of the usefulness
of using low-cost recorders (AudioMoth) and BirdNET for monitoring two cryptic forest
bird species. For each species, we have set out the following aims: (1) Assessing the
precision of BirdNET in correctly identifying bird vocalizations; (2) Determining the optimal
confidence score threshold of each species, which might be useful to establish a reliable
criterion for accepting BirdNET detections with a high level of confidence; (3) Estimating
the percentage of presences automatically identified by BirdNET compared to human visual
inspection of sonograms with the default values and using the optimal confidence score
threshold; (4) Apply the method on a large field acoustic dataset aiming to describe the
diel vocal behavior of the studied species, which we recorded during the daily period over
the course of one month in two distinct habitat types. While our assessment is restricted to
two bird species, we hope that our approach may be a valuable guidance to improve the
overall quality of passive acoustic surveys using widely spread low-cost ARUs and free
user-friendly automated audio processing software.

2. Materials and Methods

2.1. Study Species

The Coal Tit (Periparus ater) and the Short-toed Treecreeper (Certhia brachydactyla) were
selected as the forest study bird species owing to their cryptic behavior and challenges for
monitoring using visual cues. The Coal Tit is a small passerine that is resident in Europe,
North Africa, and parts of Asia [23]. The distribution of the Short-toed Treecreeper is
limited to Europe and North Africa [24]. The challenges associated with monitoring the
Coal Tit are primarily related to its canopy habits, as they often inhabit the upper and outer
parts of the forest canopy [25], making them potentially difficult to observe depending
on forest structure. The Short-toed Treecreeper is a small passerine specialized in feeding
on insects found in bark crevices. While its preference for feeding in trunks may make
them more detectable, the genus Certhia, to which the Short-toed Treecreeper belongs, is
characterized for its effective camouflage against tree trunks, making it challenging for
humans to visually detect them in trunks [26]. Fortunately, both species exhibit high vocal
activity. Male Coal Tits produce songs primarily during the breeding season, characterized
by a common pattern of two or three ascending or descending elements that are repeated
several times [23,27]. The song of the Short-toed Treecreeper is relatively simple but
distinctive. It consists of a low-pitched vocalization that is repeated several times [28].
Given the high vocal activity of both species and the challenges associated with their visual
detection, passive acoustic monitoring might be a reliable tool for monitoring their presence
and providing valuable insights into their behavior.

2.2. Study Area

The study was carried out in two forest areas located in the Comunidad Foral de
Navarra (Northern Spain). Both areas were located at about 600–800 m a.s.l. and separated
around 30 km. The first forest was predominantly dominated by Sessile Oak (Quercus
petraea), which was located in the municipality of Etxarri (42◦58′10.96′′ N, 1◦53′6.33′′ W).
This forest is recognized as one of the well-preserved oak forests in Navarra. The second
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forested area, situated in the municipality of Aitzarotz (43◦1′27.83′′ N, 1◦45′55.72′′ W), was
dominated by European Beech (Fagus sylvatica). The Navarra region experiences a humid
and temperate climate, with average annual temperatures ranging between 8.5 and 14.5 ◦C
and a typical annual rainfall regime between 1100 and 2500 mm.

2.3. Acoustic Monitoring Protocol

We deployed one AudioMoth recorder [9] in each monitored forest, which operated
from 24 February to 23 March 2022. This period corresponds to the pre-breeding period for
both species in temperate forests (first laying date around mid April, [29,30]). The recorders
were securely housed in AudioMoth IPX7 cases (Open Acoustic Devices) and mounted on
trees at a height of approximately 1.5 m above the ground. The recorders were configured
to record audio at a sampling rate of 48 kHz, gain Med–High, and 16 bits per sample. The
recording schedule spanned from 8 a.m. to 7 p.m., with a single 15-min recording captured
at the beginning of each hour. This schedule was designed to encompass most of the daily
hours, considering local sunrise occurring at 7:30 a.m. and sunset at 6:30 p.m. (sunrise and
sunset estimates for 10 March in the study area). Following this protocol, we obtained a
total of 11 15-min recordings per day and study location. This gave a total of 336 15-min
recordings per site (87 h of recording per site) during the whole study period.

2.4. Recording Analyses

Acoustic recordings were analyzed using BirdNET (version 2.2.0, [11]). BirdNET
was run using the default parameter values, including a sensitivity parameter of 1.0, a
confidence score threshold of 0.1, and no overlap of prediction segments (0). We configured
BirdNET to report detections exclusively for the Coal Tit and the Short-toed Treecreeper,
therefore, avoiding the detection of nontarget species [31].

2.5. Recognizer Performance

We estimated the precision of BirdNET, a commonly used acoustic metric for assess-
ing recognizer performance [32]. BirdNET precision was assessed without applying any
filtering on the confidence score threshold. Precision was estimated as the proportion
of BirdNET detections correctly classified by the total verified BirdNET detections [32].
To estimate precision, we randomly selected 309 BirdNET detections from the Coal Tit
BirdNET output (28.5% of total detections) and 311 detections within the BirdNET output
reported for the Short-toed Treecreeper (10.2% of total detections). We included a larger
number of detections with lower confidence scores because there is a higher probability of
mislabeling detections with lower confidence scores but also because there were a larger
number of detections with low confidence scores in BirdNET’s output. For each selected
detection, the observer listened to and inspected the spectrogram in Raven Pro 1.6 [33] at
the timestamp of the 3-s segment and reported whether the target species was present or
absent. This process allowed us to determine the proportion of BirdNET detections that
were correctly classified among the total verified BirdNET detections [32].

We also used the validation dataset described in the paragraph above to identify the
confidence score threshold with a 95% probability of correct identification for each species.
Following the approach outlined in [22], we back-transformed BirdNET’s confidence scores
into its original logit scale using the following equation:

Logit score = ln(1/(1 - confidence score))

Next, for each species, we fitted a logistic regression to establish a relationship between
the correct or incorrect classification of the validated detections as a response variable and
the BirdNET logit-scale prediction score as an independent variable. The logistic regressions
provide an equation that enables us to convert BirdNET scores into the probability of a
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given prediction being correct. For each species, the equations considering a probability of
correct identification of 95% were as follows:

logit(P) = ln(intercept) + 0.95 × ln(logit-score)

The identified optimal score was used as a confidence score threshold to consider only
BirdNET detections with a high probability of correct identification when describing the
diel pattern of vocal activity. The diel pattern of vocal activity was described showing the
percentage of BirdNET detections made per recording hour and location for each of the
monitored species.

Finally, we also assessed the detection and identification performance of BirdNET for
each bird species, by establishing a validation dataset consisting of referenced recordings.
This involved a manual review of 100 recordings, with 50 recordings from each location
among those recorded between 8 a.m. and 9 a.m. For each recording, a human observer
assessed whether the Coal Tit and/or the Short-toed Treecreeper were detected by visually
inspecting spectrograms in Raven Pro 1.6 [33]. Recordings were reviewed blindly without
knowledge of the site location, date, or time of recording. To assess the effectiveness of
BirdNET in detecting the Coal Tit and the Short-toed Treecreeper, we determined the
percentage of presences detected by BirdNET compared to the total number of recordings
with known presence in the validation dataset. For this evaluation, we examined every
audio recording that BirdNET annotated as containing one or both species. An expert
observer verified, by listening to or inspecting the spectrogram, whether the species was
truly present or absent at the timestamp of the 3-s segment annotated by BirdNET. If the
species was absent at the selected timestamp, additional detections were verified until
the presence of the species was confirmed or until the last detection was checked. Those
recordings with no BirdNET annotations were annotated as absences according to BirdNET
output. We estimated the percentage of occurrences detected by BirdNET in comparison
to a human verification in two scenarios: (1) Without applying any filtering to BirdNET’s
output (i.e., default values, all detections with confidence scores above 0.1 were included);
(2) By filtering BirdNET’s output by the optimal confidence score threshold for each species
(see Section 3).

3. Results

3.1. Recognizer Performance

BirdNET precision was high for both the Coal Tit and the Short-toed Treecreeper,
with mean values of 92.6% and 87.8%, respectively (Table 1). As expected, the confidence
score threshold had a significant impact on the accuracy of bird vocalization to be correctly
identified (Table 1, Figure 1). For the Coal Tit, the highest confidence score of a mislabeled
detection was 0.267, indicating that all detections with a confidence score higher than this
value were correctly classified. Similarly, for the Short-toed Treecreeper, the mislabeled
detection with the highest confidence score had a value of 0.471. A summary table showing
the overall BirdNET precision for both species across three confidence score categories can
be seen in Table 1.

According to the logistic regressions the equations considering a 95% probability of
correct identification for each species were:

logit(P Coal Tit) = ln(0.154) + 0.95 × ln(9.300), p < 0.001,

logit(P Short-toed Treecreeper) = ln(0.290) + 0.95 × ln(5.237), p < 0.001.

Therefore, the minimum confidence score to consider only detections with a 95%
probability of correct identification was 0.247 for the Coal Tit and 0.335 for the Short-toed
Treecreeper (Figure 1).
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Table 1. Number of BirdNET detections (annotated by the software) and verified detections (correctly
classified after human verification) for the Coal Tit and the Short-toed Treecreeper across three
confidence score categories. The overall precision of BirdNET (in percentage, %) for each category
and species is shown between brackets.

Confidence
Score Category

Coal Tit Short-Toed Treecreeper

Detections Verified Detections Verified

(0.1–0.29) 157 134 (85.3%) 153 119 (77.8%)
(0.3–0.49) 77 77 (100%) 77 73 (94.8%)

>0.5 75 75 (100%) 81 81 (100%)

TOTAL 309 286 (92.6%) 311 273 (87.8%)

Figure 1. Results of the logistic regression showing the relationship between the probability of a
correct BirdNET prediction and the confidence score of a given prediction for the (left) Coal Tit and
the (right) Short-toed Treecreeper. Statistical analyses were performed using the BirdNET logit-scale
of the prediction score (see Section 2) as an independent variable, but we represent the original
confidence score of BirdNET for graphical purposes.

According to the validation dataset (100 15-min recordings), a human detected the
presence of the Coal Tit and the Short-toed Treecreeper in 42 and 64 recordings, respectively
(Table 2). When using BirdNET with the default confidence score the Coal Tit was detected
in 38 recordings (90.5% of the recordings with known presence) while it was detected
in 23 recordings (54.8%) using the optimal confidence score (Table 2). For the Short-toed
Treecreeper, BirdNET correctly detected the species in 63 recordings (98.4% of the recordings
with known presence) using the default confidence score and in 52 recordings (81.3%) using
the optimal confidence score (Table 2). In both cases, there was a higher agreement between
BirdNET and the human observer in terms of correctly predicting the presence or absence
of each species when using the default confidence scores (95 and 92 recordings for the
Coal Tit and Short-toed Treecreeper, respectively) compared to the optimal confidence
score (81 and 86 recordings for the Coal Tit and Short-toed Treecreeper, respectively; see
Table 2). However, the number of mislabeled recordings (i.e., where BirdNET annotated
the presence of the species, but it was not confirmed) decreased from 1 to 0 when using the
optimal confidence score instead of the default values for the Coal Tit and from 7 to 2 in the
case of the Short-toed Treecreeper (Table 2).

11



Sensors 2023, 23, 7176

Table 2. Confusion matrix of the ability of BirdNET to correctly detect the presence of the Coal Tit
and the Short-toed Treecreeper in sound recordings. The validation dataset was composed of 100
15-min recordings manually reviewed for each species, in which the Coal Tit and the Short-toed
Treecreeper were known to be present in 42 and 64 recordings, respectively.

Coal Tit Short-Toed Treecreeper

Default Values (>0.1) Optimal Score (>0.247) Default Values (>0.1) Optimal Score (>0.335)

Detected Not-Detected Detected Not-Detected Detected Not-Detected Detected Not-Detected

Presence 38 4 23 19 63 1 52 12

Absence 1 57 0 58 7 29 2 34

3.2. Diel Vocal Activity Pattern

The vocal activity of both species is described using those detections with a 95%
probability of correct identification (thresholds of confidence score of 0.247 and 0.335 for
the Coal Tit and the Short-toed Treecreeper, respectively). The diel pattern of vocal activity
differed between species. The vocal activity pattern of the Coal Tit occurred primarily
during the first two hours of the day, with 96.1% of all BirdNET detections (566 out of
589) occurring at 8 a.m. and 9 a.m. (Figure 2). The peak vocal activity of the Short-
toed Treecreeper, in both sites, also occurred at 9 a.m., accounting for 23.0% of the total
predictions (Figure 2). However, unlike the Coal Tit, the Short-toed Treecreeper sustained a
high level of vocal activity throughout the morning, gradually decreasing until reaching
minimal levels by the end of the day (Figure 2).

Figure 2. Diel pattern of vocal activity of the (left) Coal Tit and the (right) Short-toed Treecreeper in
Northern Spain. Vocal activity was monitored using passive acoustic monitoring between 24 February
and 23 March 2022 in two forested areas from 8:00 to 19:15. The first 15 min of each hour were recorded.
The diel pattern is expressed as the total number of BirdNET detections with a 95% probability of
correct identification per recording hour. The data shown is based on 568 BirdNET detections of the
Coal Tit in Aitzarotz (data from Etxarri not shown in the graph since there were only 21 detections)
and 1905 BirdNET detections (948 in Etxarri and 957 in Aitzarotz) of the Short-toed Treecreeper.

4. Discussion

In this article, we have demonstrated the effectiveness of using low-cost open-source
acoustic sensors in combination with BirdNET, a readily available machine learning tool,
for efficient monitoring of two cryptic bird species in forest environments: the Coal Tit
and the Short-toed Treecreeper. While the use of acoustic sensors mounted in ARUs is
well-established for monitoring wildlife and ecosystems (see, e.g., [1,2,34]), the analyses of
acoustic data has posed challenges in terms of automation and scalability. However, recent
advancements have aimed to address these challenges, with BirdNET being a notable

12



Sensors 2023, 23, 7176

contribution in this field [11,19]. BirdNET is a convolutional neural-network-based tool
designed for processing acoustic data [11]. Although BirdNET has rarely been used in
scientific studies, the existing evaluations have consistently reported a high accuracy in
identifying bird species (reviewed by [19]) but also anurans and primates [21,22].

We have demonstrated that BirdNET achieved a high level of precision in correctly
identifying the Coal Tit and the Short-toed Treecreeper, with a mean precision of 93% and
88%, respectively, when using the default confidence score threshold. We also observed
that the precision of BirdNET was highly varied with the selection of the confidence score
threshold, with no mislabeled identifications when using a confidence score threshold
of 0.247 for the Coal Tit and 0.335 for the Short-toed Treecreeper. Our findings are in
agreement with [35], who also reported improved precision in BirdNET when using a
higher confidence score threshold for three North American bird species. Although the
impact of the confidence score on BirdNET output may vary among species, the general
pattern is consistent, with larger precision values obtained when using a high confidence
score, but it lowers the proportion of predictions made and, therefore, the proportion of
calls and presences detected [19]. However, our current knowledge of the specific impact
of different confidence scores on BirdNET’s ability to accurately detect species’ presence in
sound recordings is very limited (but, see [19,35] and next paragraph).

In our study, we determined the optimal confidence score for each monitored species,
which was defined as the minimum confidence score required to consider only detections
with a 95% probability of correct identification. The defined values might be used for future
studies aiming to monitor the Coal Tit or the Short-toed Treecreeper. We used these optimal
values as thresholds to assess the impact of confidence score BirdNET’s ability to detect
the presence of both species in sound recordings and to describe their diel pattern of vocal
activity in a large acoustic dataset. As expected, when using the optimal confidence score,
the number of detected presences decreased compared to using the default values. The
percentage of presences detected by BirdNET using the optimal confidence score, instead
of the default values, decreased more for the Coal Tit (from 90.5% to 54.8%) than for the
Short-toed Treecreeper (from 98.4% to 81.3%). It is a surprising result since the optimal
confidence score of the Short-toed Treecreeper was higher (0.335) than the one of the Coal
Tit (0.247); therefore, a higher decrease in presences detected for the Short-toed Treecreeper
would have been expected. One possible explanation for this surprising result might
be related to a high vocal activity of the Short-toed Treecreeper, which may compensate
for the potential decrease in the number of vocalizations detected when using a higher
confidence score. Our findings might be also affected by different foraging strategies or
territorial behavior of the target species and, therefore, by birds moving more often outside
the detection range of the recorder. However, we were unable to include this factor in our
analyses. In our study we focused on the ability of BirdNET to detect the species’ presence
in sound recordings, but further research could expand on this by assessing the ability
of BirdNET to detect vocalizations, an acoustic metric known as recall rate, which is not
frequently evaluated in BirdNET surveys [19].

The selection of an appropriate confidence score in BirdNET may depend on the prior-
ities of the user (e.g., ability and time to verify more or less false positives) and research
goals. A recent review on BirdNET suggested starting with a minimum confidence score of
around 0.5 to assess BirdNET performance [19], while other authors have recommended
that confidence scores of 0.7–0.8 should be in the appropriate range for most studies [36].
However, our study highlights the importance of conducting species-specific assessments
(e.g., by creating independent validation datasets for each species) for choosing an ap-
propriate confidence score and how this selection can vary depending on research goals.
According to our data, if our objective is to detect the presence of both species in sound
recordings it would be necessary to use low confidence scores (e.g., 0.1, default values).
Otherwise, a significant number of presences will be undetected. On the other hand, if our
goal is to study ecological processes, which usually require low-error estimates, such as
describing the vocal behavior of a bird species, selecting a higher confidence value may
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be more appropriate. Although this selection may decrease the number of vocalizations
detected, it would provide a more reliable description of the behavior (see [21]).

Finally, we linked BirdNET detections to ecological processes using a large acoustic
dataset as an example of how this tool may help researchers and managers to improve
acoustic monitoring programs and contribute to a better understanding of the ecological
processes. The vocal activity of the Coal Tit was primarily concentrated in the first two
hours after sunrise, with minimal vocal activity throughout the day. This pattern aligns
with the typical vocal activity pattern observed in most passerines [37,38], and with the
pattern described for two close-related species, the Blue Tit (Cyanistes caeruleus) and the
Great Tit (Parus major) [39]. The vocal activity of the Short-toed Treecreeper, similar to the
Coal Tit, peaked during the first hours after sunrise. However, the Short-toed Treecreeper
showed sustained vocal activity throughout the morning, and the species even vocalized
during the afternoon. This prolonged vocalization behavior might be related to the species’
strong vocal response towards other species, particularly to the closely related Common
Treecreeper (Certhia familiaris, [40,41]), which coexists in the study area and may have
stimulated the vocal activity of the Short-toed Treecreeper.

5. Conclusions

Our study has demonstrated the effectiveness of BirdNET, a new tool for processing
acoustic data, in accurately identifying two cryptic bird species and detecting their presence
in sound recordings. We have also highlighted the importance of carefully selecting
the confidence score, as it has a significant impact on the output of BirdNET, and may
potentially lead to poorly informed conclusions. In both species a higher confidence score
reduces false positives but also results in fewer detections of species’ presences. We hope
that our assessment and the methods we employed, including calculating the optimal
confidence score (see [22]), will encourage researchers and managers to make use of this
freely available software (accessible on GitHub) that is user-friendly (e.g., can be run as a
GUI from Windows) and ready-to-use (>6500 species already included). Additionally, the
continuous development of BirdNET (last update in June 2023) will contribute to further
improvements in acoustic sensing and monitoring in both urban and natural environments,
including the ability to detect multiple species from various taxa simultaneously [19–22].
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Abstract: Data are needed to assess the relationships between urbanization and biodiversity to
establish conservation priorities. However, many of these relationships are difficult to fully assess
using traditional research methods. To address this gap and evaluate new acoustic sensors and
associated data, we conducted a multimethod analysis of biodiversity in a rapidly urbanizing county:
Greenville, South Carolina, USA. We conducted audio recordings at 25 points along a development
gradient. At the same locations, we used refugia tubes, visual assessments, and an online database.
Analysis focused on species identification of both audio and visual data at each point along the
trail to determine relationships between both herpetofauna and acoustic indices (as proxies for
biodiversity) and environmental gradient of land use and land cover. Our analysis suggests the
use of a multitude of different sampling methods to be conducive to the completion of a more
comprehensive occupancy measure. Moving forward, this research protocol can potentially be useful
in the establishment of more effective wildlife occupancy indices using acoustic sensors to move
toward future conservation policies and efforts concerning urbanization, forest fragmentation, and
biodiversity in natural, particularly forested, ecosystems.

Keywords: frogs; mixed methods; trail; Piedmont; unsupervised classification

1. Introduction

The planet and the life that inhabits it are currently undergoing a sixth mass extinc-
tion marked by extensive declines in global biodiversity. One of the taxa that has been
experiencing drastic population decline is herpetofauna, namely frogs. This poses a major
environmental issue as frog species are a key indicator of environmental health, and the loss
of frog populations can lead to a complete food web and ecosystem collapse [1]. Thus, the
need to protect and monitor frog species in the wild is becoming more and more paramount.

One of the main drivers of herpetofauna population loss is habitat loss. A clear
portion of this habitat loss comes in the form of urbanization and anthropogenic expansion.
Urbanization is an increasingly evident problem for biodiversity as the human population
continues to grow and spread. This is becoming so much of a dilemma, in fact, that
residential development is projected to increase in area by 51% between the years 2003 and
2030 [2]. This projected increase will result in a decrease in undeveloped lands in many
parts of the world, leading to a decrease in biodiversity in these areas as well as a loss of
the ecosystem services that nature provides [3].

Deforestation because of urbanization creates threats across taxa from vegetation to
avian species, mammals, and herpetofauna. Studies by Howell et al. [4], found a significant
decrease in population growth rates and stability of federally threatened Chiricahua Leop-
ard Frogs after their natural habitat of wetlands and canyon streams was modified and
removed for the implementation of development and agriculture. They found that these
changes in population growth were influenced widely by habitat removal, new habitat
characteristics, and the demographics that the processes of urbanization enforced upon the
new patches [4].
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Researchers have long used a diversity of techniques to sample herpetofauna [5,6].
These include a variety of active and passive sampling techniques such as transects, pitfall
traps, cover boards, funnel traps, refugia tubes, and glue traps. These methods are used to
reduce researcher bias and extend the length of the sampling season [7]. However, each
method is limited in terms of which type of herpetofauna is being sampled (e.g., pitfall
traps only work for ground-dwelling taxa). Likewise, they can be time-consuming and
costly. Thus, decisions need to be made to optimize data collection [8]. In addition to
these well-established methods, new sensor technologies have been developed that may
provide additionality to current sampling and monitoring methods, in particular passive
acoustic sampling.

Automated recording units (ARUs) are an increasingly common acoustic method to
measure biodiversity in real-time and across dispersed landscapes [9]. The ability of these
acoustic sensors to collect large quantities of spatial data makes them useful monitoring
tools [10]. With simple programming and installation, ARUs require little time for the
researcher to be in the field [10,11]. ARUs also provide researchers with the ability to cover
a larger spatio-temporal scale in relation to more customary sampling practices [1]. In the
last 10 years, ARUs have been widely used to monitor the occupancy, movement, and
behavioral patterns of birds and bats (e.g., [12,13]) but less frequently for frogs, toads, and
other herpetofauna (but see MacLaren et al. [14]).

ARUs may add additional value for detecting the distribution of herpetofauna because
multiple locations can be intensively sampled concurrently. Through analysis of frog
vocalizations, the relative abundance and species richness can be determined for a location,
allowing an estimate of herpetofauna species diversity to be reached [1]. This can improve
researchers’ ability to detect those species that may have a low detection probability or that
require frequent sampling for detection [15]. In addition, the volume of data collected using
ARUs opens the opportunity to leverage new machine learning tools to analyze these data,
though unlike other species, for example bats, less work has been done to build effective
tools for easy application when sampling herpetofauna.

In addition to species-specific detections, the ARUs allow for a diversity of different
acoustic measures of an ecosystem that can reflect the broader ecological community as
compared to a single species and have been shown to correlate with other measures of
biodiversity (e.g., [16,17]). These measures, frequently defined as acoustic or soundscape
indices, reflect the multiple dimensions of sound in an environment, including biophony,
geophony, and anthrophony. These indices can be measured as continuous variables over
time, thus describing the acoustic environment a frog or other species may experience
along an urban to rural gradient including other wildlife species and vehicle traffic or other
sources of human noise.

In this project, we compared traditional methods for biodiversity sampling and re-
porting (visual observations, citizen science, and refugia tubes) with new methods (ARUs,
soundscape indices). We expected to see different, but complementary, patterns in the
response of traditional and new sampling techniques, such that research on the diver-
sity of herpetofauna in urban areas could potentially focus on a narrower set of tools
and indicators.

2. Materials and Methods

2.1. Study Area

We collected data along the Swamp Rabbit Trail in Greenville County, SC, USA
(Figure 1A). The county is in the Piedmont ecoregion, at the base of the Appalachian
mountains, extends from northern Virginia all the way into central Alabama, and includes
the northwestern corner of South Carolina, known as the Upstate. This area has experi-
enced rapid urban development in the last century. The area has made the transition from
a forest biome to a heterogenous populated forest anthrome due to the effects of human
development and population growth [18]. This change has forged a novel ecological envi-
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ronment which mixes forest biome and urban development and has created a demand for
conservation efforts to prevent further deterioration of the area.

Figure 1. (A) The location of Greenville Co., SC in the southeastern United States including land use
and land cover in the county as classified by the NLCD land cover types. (B) The same land use
and land cover within 100 m of the trial and associated buffers for extracting iNaturalist data. Black
circles indicate the 100 m buffer that was surveyed around the trail. The red, pink, green, and yellow
pixels within the buffers indicate the land use and land cover from NLCD. The green points in the
buffers indicate iNaturalist observations.

The Swamp Rabbit Trail (SRT, Figure 1B) is a 22-mile-long rails-to-trails development.
The SRT is embedded in fragmented forested and developed areas in the South Carolina
Piedmont ecoregion including urban and suburban development, subdivisions, and high-
way systems. The understory plant communities along the trail, not unlike many other
disturbed sites in the region, are dominated by non-native and invasive vegetation. We
specifically focused on six miles of the trail found adjacent to Furman University, spreading
two miles northwest into the outskirts of Travelers Rest and four miles southwest towards
downtown Greenville.

2.2. Data Collection

We used a variety of audio and visual collection methods to determine herpetofauna
presence and abundance along the trail including refugia tubes, visual observation surveys,
and iNaturalist. Our particular focus for this article is the adoption of automated recording
units (ARU) which are sensors that are being used with increasing frequency for a diversity
of environmental monitoring efforts (as discussed above).

We placed refugia tubes every 800 m (0.5 miles) along the trail in 2018 to enhance
the attainment of visual observation data. We used polyvinyl chloride (PVC) pipe traps,
following the methods in Boughton et al. [19], for the collection of treefrog species. We
used opaque, white PVC pipe which was cut into 60 cm lengths with a capped bottom for
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the refugia tubes. The tubes were mounted in trees about 1.5 m high along the trail. In the
base of each tube, we poured water to create a moist environment most like those in which
anurans would be found naturally [19]. To keep our study period consistent, the refugia
tubes were only routinely checked during the summer months of 2021 and 2022 to align
with the ARU data.

Our observation data came from two sources. First, we conducted regular transect
surveys along the trail to observe and hear individuals. Transects were 400 m along the
trail and 50 m deep. Transect depth varied depending on the environment surrounding
different sections of the trail. Observational surveys took place twice weekly. Second, we
downloaded data from iNaturalist, filtered to Greenville, SC with only herpetofauna species
selected. We included in this sample data from 2008 to the present to increase the number
of observations included. As an added precaution to the quality range that can be obtained
from citizen science databases, we also filtered the data to only include research-grade
observations. We then used ArcGIS Pro to filter this dataset to only observations that were
within 50 m of the trail.

We collected acoustic data using the SM2 from Wildlife Acoustics Inc. Recordings
during the summer months (late May, June, and July) of 2021 and 2022 to ensure the
optimum number of species that would be calling due to the ideal temperatures and
weather [20]. Using procedures described in Sidie-Slettedahl et al. [21], we deployed the
ARUs every 400 m (0.25 miles) along the trail. We hung recording devices between 1.5 and
2 m approximately 10 m off of the paved trail in a tree or shrub [22]. We programmed the
ARUs at 48 dB gain (left and right) and to record for 10 min, every hour, on the hour, 24 h a
day. An ARU was located at each sampling point for one week.

2.3. Data Processing

To identify the frequency of detections of each species in the audio recordings we used
the Kaleidoscope Version 5.3.4 software from Wildlife Acoustics (Maynard, MA, USA).
Specifically, we used Kaleidoscope as a form of unsupervised classification to calculate
distinct sound clusters at each recording location. We set a minimum and maximum
frequency range of 150 Hz and 5500 Hz. We set a minimum and maximum length of
detection at 0.1 and 15 s, 3 maximum inter-syllable gap, and 1.0 as the max distance
from the cluster. These values were chosen to avoid including the repetitive call of one
individual multiple times in our dataset. Details on the clustering methods can be found at
wildlifeacoustics.com. We then manually inspected each file in each cluster to identify each
vocalizing amphibian.

To identify spatial and temporal patterns in acoustic indices we used the tuneR
package [23] for the program R (R Core Team 2019) to read sound files. We then used
the soundecology [24] and seewave [25] packages to obtain values of each index from
channel 1. We measured anthrophony or technophony (human-derived sounds), which
we defined following the literature (e.g., [26]) as sound occurring in the 1–2 kHz range,
and biophony (ecologically derived sounds), which we defined as sound occurring in the
2–8 kHz frequency range (following [26]), for each sound file. We used the soundecology
and seewave packages to obtain values of Normalized Difference Soundscape Index,
Acoustic Complexity Index, Acoustic Diversity Index, Acoustic Evenness Index, total
entropy, and Bioacoustic Index (abbreviated NDSI, ACI, ADI, AEI, H, and BAI, respectively)
for each sound file. NDSI was an index of anthropogenic noise disturbance measuring the
proportion of biophony to anthrophony [26]. ACI measured the variation in the intensity of
sounds [27]. ADI and AEI both measure the distribution of sound power across frequency
ranges [28]. ADI quantified this distribution using the Shannon diversity index, thus
measuring sound diversity similarly to species diversity, while AEI used the Gini index of
evenness, thus measuring sound evenness similarly to species evenness. H was a function
of temporal energy dispersal and spectral energy dispersal [25]. BAI was a function of both
power and frequency range of sound between 2000 and 11,000 Hz [29]. We made three
passes with this modification at 80 Hz, 1000 Hz, and 2000 Hz, following Hyland et al. [30].
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Because of the filters, Biophony and BAI are considered as shown with the 2000 Hz filter as
both are only measured in this acoustic space. Anthrophony and NDSI are only considered
at the 1000 Hz filter, because anthrophony is measured between 1000 and 2000 Hz and thus
NDSI also does not have results for 80 Hz, and the 2000 Hz filter, because it is a ratio of
biophony above 2000 Hz and anthrophony between 1000 Hz and 2000 Hz.

2.4. Data Analysis

We used the program R 4.0.2 (R Core Team 2019) to synthesize, visualize, and analyze
the data with the ggplot and dplyr packages [31]. For individual species, count per unit
effort (CPU) was calculated by dividing the total number of observations by the number of
data inputs recorded at each location. To avoid pseudo-replication in the soundscape data,
we averaged all values for each index for each sampling. Thus, a site was the unit of study
for subsequent statistical analyses of ARU data. We tested for spatial relationships using
linear regression with land use and land cover as explanatory variables for both CPU and
each acoustic index. Significance was based on an alpha value of 0.05.

3. Results

In total, our different collection methods were able to detect 1419 herpetofauna ob-
servations (Figure 2; 1405 from the ARUs, 0 from refugia tubes, 11 from iNaturalist, and
3 visual observations). By including ARU data our number of detections increased by
15× and the number of species increased from 11 to 17. From the ARUs alone, we were
able to accurately detect nine different anuran species: Cope’s Gray Treefrog (Dryophytes
chrysoscelis), American Bullfrog (Lithobates catesbeianus), American Toad (Anaxyrus ameri-
canus americanus), Fowler’s Toad (Anaxyrus fowleri), Green Frog (Lithobates clamitans), Green
Tree Frog (Dryophytes cinereus), Northern Cricket Frog (Acris crepitans), Pickeral Frog (Litho-
bates palustris), and Spring Peeper (Pseudacris crucifer). Cope’s Gray Treefrog was the most
frequently detected species at most locations. The greatest number of species was detected
at mile marker 28.25 on the trail with nine of our species being detected by two different
data collection methods. Three species were identified by multiple collection methods. For
example, the American Toad was captured with all three methods. Meanwhile, Cope’s
Gray Treefrogs were found both audibly and visually through the ARU data as well as
during visual transect monitoring. The Fowler’s Toads were also identified by two of the
collection methods: ARUs and iNaturalist.

However, with our other detection methods, we were also able to include other, less vo-
cal herpetofauna groups including snakes, turtles, and skinks. We totaled eight non-anuran
species identifications using visual and citizen science data collection: Broad-headed Skink
(Plestiodon laticeps), Common Five-lined Skink (Plestiodon fasciatus), Deirochelyine Turtles,
Eastern Box Turtle (Terrapene carolina carolina), Eastern Copperhead Snake (Agkistrodon con-
tortrix), Eastern Garter Snake (Thamnophis sirtalis sirtalis), Eastern Kingsnake (Lampropeltis
getula), and Slider Turtles (Trachemys). Also, by restricting the iNaturalist data to only our
2-year study period, we would have lost 81.1% of our dataset from iNaturalist.

These data also allow us to observe relationships between different species and land
cover types. For example, the Green Frog displayed a significant, but different, relationship
with the combination of both the developed and forested cover (Table 1, Figure 3). Though
not significant, the Cope’s Gray Treefrog, a species that was observed by every observation
technique, showed slight associative responses between occupancy and the presence of
water but lacked this response when compared to occupancy within forested environments
(Table 1, Figure 3).

There were no statistically significant relationships (p > 0.20 for all indices) between
the acoustic indices and measures of adjacent land use and land cover. While there were no
statistical relationships between the indices and associated land use and land cover, we
did find evidence of clear heterogeneity over space and time for many indices, allowing
for better tracking of biodiversity over space and time. For example, both biophony and
anthrophony varied between their respective minimum and maximum values between
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locations (Figure 4). In some locations the index value changes by nearly that same amount
over a 24 h period. Perhaps of greater value are the clear outliers in the ACI and ADI and
more so in the BAI that may suggest soundscapes with richer biodiversity or a greater
impact of change.

Figure 2. Species relative frequencies (colors) by location and observation technique. Data was
collected along the Swamp Rabbit Trail, Greenville SC. ARU and visual observation data from
Summer 2021 to 2022. iNaturalist data from 2016 to 2021.
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Table 1. Regression estimates and standard error for the response of Cope’s Gray Treefrog, Green
Frog, and total species abundance, as a function of the percentage of water, forest, and development
along the Swamp Rabbit Trail. Significant p values noted in bold and shown in Figure 3.

Cope’s Gray Treefrog Green Frog Total
Estimate Std. Error p Value Estimate Std. Error p Value Estimate Std. Error p Value

Intercept 0.243 0.120 2.599 0.139 0.054 0.035
Water (%) −0.029 0.024 0.250 −0.001 0.001 0.800 0.000 0.001 0.800
Forest (%) 0.000 0.002 0.920 −0.026 0.001 0.0003 −0.001 0.001 0.320
Developed (%) 0.001 0.003 0.810 −0.026 0.001 0.0003 0.001 0.001 0.255

Figure 3. Count per unit effort (CPU) as a factor of habitat type for (A) Cope’s Gray Treefrog and
wetland habitat, (B) Cope’s Gray Treefrog and forested habitat, (C) Green Frog and developed habitat,
and (D) Green Frog and of forested habitat. Data collected along the Swamp Rabbit Trail, Greenville,
SC, USA.
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Figure 4. Variation in each filtered acoustic index across a 24 h time window at each location (line
colors). Data collection using automated recording units (SM2 from Wildlife Acoustics) in spring
and summer of 2021 and 2022. Acoustic indices calculated in R using the packages described in the
methods. 1K and 2K represent the filter applied to each of the indices.

4. Discussion

A long-standing challenge in biodiversity research, and in particular herpetological
research, is the inability to conduct a comprehensive survey of a location due to the vari-
ability of species over space and time. In this case study, our results clearly show variation
in the detection of individual species identified through unsupervised classification and in
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communities identified through acoustic indices. Focusing on the former, by leveraging
sensors, ARUs clearly contributed to the greatest number of detections, thus increasing esti-
mates of herpetofauna diversity. However, they could not pick up everything, emphasizing
the necessary variations in data collection methods to conduct a comprehensive analysis of
biodiversity at a point or within a region. By using different detection and identification
methods, we were able to create a more comprehensive index of the study site. There
were, however, vocal species that we were unable to detect via audio data due to noise
congestion or other factors. An example of this can be seen in Figure 1 where the American
Toad (depicted by the color gray in the figure) was not detected by the ARUs at mile
markers 30.75 and 31.0 on the Swamp Rabbit Trail, but we were able to visually identify
them at that location using iNaturalist citizen science data. Likewise, the variability in the
soundscape indices suggests there is variation in acoustics data that could be explained by
the same variables as the occupancy data or, more likely, other measures of environmental
change. While we did not separate what specific species were affecting each index, the five
sites that stand out for the BAI warrant further investigation for conservation efforts for
herpetofauna and other wildlife. Moreover, if there is evidence of a correlation between
the BAI (or another index) and richness or occupancy of key herpetofauna, overall or at a
given point in time, it may be that these indices can be used to track herpetofauna diversity
until better machine learning tools become available to process these data.

As stated, each study method contains strengths and weaknesses. Some of these weak-
nesses were highlighted in data processing and analysis. Active sampling, through transect
sampling and physical searching for taxa, allows for an increased probability of sample
bias due to the likelihood of the researcher only looking in locations in which herpetofauna
species are more likely to be found. Alternatively, passive sampling made possible with
sensors embedded in ARUs reduce bias but also restrict the comprehensiveness of the
study due to the specifications for a distinct type of taxa. This was seen through the lack of
non-vocalizing species that were detected using ARUs, an expected result. Lastly, citizen
science data has the potential to be an unreliable research source due to the likelihood
of the public misidentifying an organism; however, it allows researchers to gain a larger
understanding of species found both spatially and over a longer time scale. This potential
for error and a less reliable dataset can be counteracted using filters, such as scientific-grade
observations, within citizen science applications; however, this also greatly reduces the
available dataset that the platform has to offer. Citizen science data is also restrictive as it
may not include rare or elusive species in its observational skillset if a species had not been
recorded prior.

Like ARUs, citizen science data collection has increased in frequency and usefulness.
For ecology, this growth has been driven by the popular citizen science platform iNatu-
ralist, which was launched in 2008 (inaturalist.org). Platforms such as iNaturalist allow
researchers to surpass the confines of time, effort, and funding due to the immense volume
of field observations that can be gathered by the larger public [32]. Through using data
from iNaturalist, we were also able to include species that may have evaded our efforts
in data collection despite their presence in the study site in our comprehensive data set.
Many of these included species do not typically rely on sound and calls for communication,
like skinks, salamanders, snakes, and turtles. Even though some of these groups may
use acoustic communication, like a snake hissing or rattling, these vocalizations were
not detected by our ARUs due to the greater amplitude of the surrounding forest noise.
By using iNaturalist data, we were also able to account for species that may have been
observed outside of our study timespan. Instead of only including data from the summer
months of 2021 and 2022, we also were able to include observations from as far back as
August 2016 to increase the comprehensiveness of our study.

One challenge with the ARU data that persists is the necessity of manual identification
of species. We attempted to build an advanced classifier within Kaleidoscope. However,
due to the lack of regularity of the individual species’ vocalizations (a short chirp versus
a call) and the inevitable variability of background noise overpowering the vocalizations
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themselves, we were unsuccessful. Future work could be oriented toward the formation
of an efficient, advanced classifier for herpetofauna species similar to the ones that are
currently seen for birds and bats. We also experienced shortcomings with our refugia tube
collection method. Due to the lack of observations from these refugia tubes, we can only
assume that the frogs had a bias to continue to choose natural refugia over an artificial
one [33]. Thus, we concluded that refugia tubes were not a useful data collection method
for our study site.

5. Conclusions

In conclusion, in this case study, the use of a variety of different collection methods
led to a more comprehensive study of the herpetofauna along the study transect. This
allows us to think further about how these relationships may vary seasonally and develop
further occupancy patterns. Locally, this information can be used to further implement
conservation strategies regarding the establishment of an effective buffer around the trail
and the forested areas through which it runs. Future research should evaluate the added
value of using multiple techniques, including ARUs, in other study regions. In addition,
researchers should continue to use this variety of collection methods to create a reliable
index for other species.
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Abstract: The goal of estimating a soundscape index, aimed at evaluating the contribution of the en-
vironmental sound components, is to provide an accurate “acoustic quality” assessment of a complex
habitat. Such an index can prove to be a powerful ecological tool associated with both rapid on-site
and remote surveys. The soundscape ranking index (SRI), introduced by us recently, can empirically
account for the contribution of different sound sources by assigning a positive weight to natural
sounds (biophony) and a negative weight to anthropogenic ones. The optimization of such weights
was performed by training four machine learning algorithms (decision tree, DT; random forest, RF;
adaptive boosting, AdaBoost; support vector machine, SVM) over a relatively small fraction of a
labeled sound recording dataset. The sound recordings were taken at 16 sites distributed over an
area of approximately 22 hectares at Parco Nord (Northern Park) of the city Milan (Italy). From the
audio recordings, we extracted four different spectral features: two based on ecoacoustic indices
and the other two based on mel-frequency cepstral coefficients (MFCCs). The labeling was focused
on the identification of sounds belonging to biophonies and anthropophonies. This preliminary
approach revealed that two classification models, DT and AdaBoost, trained by using 84 extracted
features from each recording, are able to provide a set of weights characterized by a rather good
classification performance (F1-score = 0.70, 0.71). The present results are in quantitative agreement
with a self-consistent estimation of the mean SRI values at each site that was recently obtained by us
using a different statistical approach.

Keywords: soundscape; ecoacoustic indices; soundscape ranking index (SRI); urban parks; ma-
chine learning

1. Introduction

Among the elements used to evaluate the environmental status as a whole, one is
strictly connected to the acoustic quality of a habitat, recognized as a vital dimension
of wildlife conservation [1,2]. The induced modifications prompted by the encroaching
urbanization with increasingly excessive human noise and a lack of gradients between
natural and built environments can lead to direct deleterious effects on biodiversity as
documented in recent works [3–6].

The diffusion of passive acoustic monitoring with a large memory capability, and the
possibility of analyzing acoustic recordings by extracting specific spectral and level charac-
teristics through ecoacoustic indices (see [7] for a review), allow us to retrieve important
information about the unique assemblage of sounds across space and time. Such habitat
characteristics are collectively referred to as a soundscape [8,9], the latter recognized as
a distinct feature or ecological “signature” of a landscape [10,11].

Such characteristics can indeed be reflected in ecoacoustics indices calculated over
predefined time intervals. Thus, they integrate the acoustic dynamics of an ecosystem, con-

Sensors 2023, 23, 4797. https://doi.org/10.3390/s23104797 https://www.mdpi.com/journal/sensors28



Sensors 2023, 23, 4797

sisting of vocalizing species, anthropogenic noise, and natural phenomena [12], into a set of
time series that can be proved to explain observed changes in habitat status [13], providing
insights on species diversity and human impacts across a wide range of terrestrial [14–16]
and aquatic environments [17,18]. The validation of ecoacoustic indices calculation is
usually sound-truthed by specialized operators that classify hours of recordings according
to predefined sound categories.

This identification procedure of sound sources is highly time consuming and requires
specific knowledge of animal vocalizations. This necessarily limits its applicability to small
datasets [19,20]. A cumulative approach that provides a qualitative description of the
recorded sound (e.g., many/few vocalizing birds, many/few birds species, high/low traffic
noise, etc.) partially improved the validation process, showing good matching between
the “manual” identification of acoustic categories and ecoacoustic indices [21]. Thus,
the need for employing unsupervised methods to process large amounts of information,
independently of human intervention, is evident. Having access to such techniques can
allow us to study huge datasets on very different time and spatial scales, prompting the
disentangling of information hidden within the complex network of interest. To this end,
we resort to machine learning (ML) techniques. The latter are currently widely used to
train models using empirical data for a plethora of applications, such as translation, text
classification, web searching, image recognition, and speech recognition. For instance,
some of the first relevant applications were developed for the classification of handwritten
digits [22] and the automatic composition of music [23,24].

It is widely recognized that ML techniques have the ability to learn generic spatial
features [25,26], suitable in particular for image-related tasks. Recent applications of deep
learning (DL) and ML computations for studying soundscape dynamics show promising
results in terms of species identification [27,28], the separation of audio sources by using
a set of techniques aimed at recovering individual sound sources when only mixtures are
accessible [29], and also unsupervised classifications by means of convolutional neural
networks (CNNs) [11]. In urban areas, ML models have been applied for predicting long-
term acoustic patterns from short-term sound pressure level measurements [30] and for
detecting anomalous noise sources prior to computing traffic noise maps [31]. CNNs have
been applied to soundscape classification [32,33], species-specific recognition [34–36], and
the identification of multiple and simultaneous acoustic sources using a two-stage classifier
able to determine, in real time, simultaneous urban acoustic events taking advantage
of physical redundancy from a wireless acoustic sensors network (WASN) in the city of
Barcelona [37].

Several soundscape sources have been classified using two CNN classifiers to dis-
tinguish between biophony and anthropophony in the city of London by training CNN
models on a limited quantity of labeled sound samples [28]. Their results exceed the
analysis performed by multiple acoustic indices. Other attempts successfully provided
sound sources identification at the price of a huge “manual” procedure in approximately
60,000 sound recordings [38]. The prediction of soundscape components, including quiet
periods and microphone interference, was also performed by training a CNN with a huge
dataset collected over four years across Sonoma County (California) by citizen scientists
with high precision [39].

Other examples of ML applications to soundscape prediction can be found in [40–44].
In [40], the authors present a method for the automatic recognition of the soundscape quality
of urban recordings by applying four different support vector machine (SVM) regressors to
a combination of spectral features. In [41], a mixture of features (temporal, spectral, and
perceptual) was used to classify urban sound events belonging to nine different categories.
In [42], the detection and classification of acoustic events were obtained by using a modified
Viterbi decoding process in combination with weighted finite-state transducers (WFSTs).
In [43], acoustic indicators collected from the city of Barcelona were used to train several
clustering algorithms, demonstrating the possibility of parceling the city based on the noise
levels in the area. In [44], an unsupervised learning technique was applied to group the
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nodes of a WASN in clusters with the same behavior, thus recognizing complex patterns
on this basis. Other studies make use of ML techniques together with signal processing to
classify acoustic events at subsequent stages (layers) [45].

In [46], two types of supervised classifiers, namely artificial neural networks (ANNs)
and a Gaussian mixture model (GMM), were compared to determine the primary noise
source in the acoustic environment. In [47], the authors combined local features and
short-term sound recording features with long-term descriptive statistics to create a deep
convolutional neural network for classifying urban sound events. In [48], four well-known
deep neural networks were fine-tuned for bird species classification.

As can be appreciated, the use of ML techniques have mostly found applications in
soundscape studies by correlating different noise events to the perception of the population,
with the aim of automatically detecting potentially disturbing noise events (see also [49]).
When using traditional ML algorithms, the choice of appropriate features of the audio file,
either in the form of frequency content, dynamic information, or both, always represents
the first step in the analysis. In this regard, the most widely used feature is represented by
the mel-frequency cepstral coefficient (MFCC).

Urban parks represent a unique area of study as retrieving source-specific information
from geophony, biophony, and anthropophony remains a challenging task due to interfer-
ence and confounding factors arising from the simultaneous presence of different sound
sources. It should be emphasized that, in the existing literature, the question of defining
an indicator that ‘summarizes’ the information about the acoustic environment unbound
from human perceptual nature has not generally been considered. In order to fill this gap,
we devised an index enabling us to quantify the quality of the local environment sound
in a simple fashion. The index is referred to as the soundscape ranking index (SRI), and
is assembled by weighting the different soundscape components (geophony, biophony,
and anthropophony) present in a habitat/environment. The identification of the different
soundscape components requires a time-intensive “manual” labeling or sound truthing of
the recorded audio files, and is usually performed by a single expert.

In this work, we studied the possibility of predicting the SRI at an urban park in the
city of Milan (Italy) from the extracted spectral features of audio recordings. This task
was pursued by applying a set of ML classification models to our dataset collected over
an extended area, where the resulting indexes were grouped, for simplicity and in accord
with our previous works, into three main categories denoted as “poor”, “intermediate”,
and “good” environment sound qualities. This classification was obtained according to
the different contributions of the environment sound sources. These groups are influenced
by the choice of the set of weights attributed to each soundscape component (typically the
weight is given a positive value in the case of the presence of biophonies and a negative
value in the presence of anthropophonies). Here, we used the classification capabilities of
the chosen ML algorithms to fine-tune the soundscape weights, thus obtaining the optimal
separation of the area of study in terms of local environmental sound qualities. The use of
ML techniques to study the SRI will allow us to consider much larger datasets than those
studied by means of supervised methods requiring human intervention. Work along this
line is in progress.

The paper is organized as follows. Section 2 describes the area of study and the instru-
mentation used. The formulation of SRI in terms of weighting the different soundscape
components is discussed together with the ML optimization procedure used. The clas-
sification models and spectral features representing the dataset are described in detail.
The results are presented in Section 3, where the different models are also discussed on the
basis of the validation procedures. In Section 4, we summarize the main achievements of
the present work and outline possible future developments along the present lines.

2. Materials and Methods

In this section, we briefly describe the area of study, instrumentation, and recording
pattern. We include the description of the SRI index, the scheme used for its prediction and
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optimization based on the features extracted from the spectral analysis of audio recordings
in the form of ecoacoustic indices and mel-frequency cepstral coefficients (MFCCs), and the
manual labeling. We also illustrate the classification models used to predict the manual
labeling from the extracted features of the audio recordings.

2.1. Area of the Study

The Parco Nord (Northern Park) in the city of Milan extends over an area of approx-
imately 790 hectares and is located within a highly urbanized area. Approximately 45%
of its surface is dedicated to natural green spaces and vegetation, whereas the remaining
surface is devoted to agricultural activities and infrastructures. The area of study is a
tree-covered parcel of approximately 22 hectares encircled by agricultural fields, lawns,
paths, and roads (see Figure 1). It has a semi-natural structure that is characterized by
herbaceous layers of nemoral flora, shrub and arboreal layers, and dead wood. The area
is crossed by numerous paths and is mainly used for recreational activities. It contains
an artificial lake of approximately 300 m2 located approximately 250 m from the edge of
the bush. The main traffic noise sources are the A4 highway and the Padre Turoldo street,
located to the north at around 100 m from the wooded parcel. There is also the presence of
a small airport (Bresso airport) on the west side at around 500 m from the tree-line edge.

Figure 1. Area surrounding the grid of sensors indicated as numbered spots. Red spots indicate the
active recording sites, and yellow spots indicate sites with recording disruption. In the figure, the A4
highway, Padre Turoldo Street, and Bresso airport runaway are indicated.

2.2. Audio Recorders

We used low-cost digital audio recorders produced by the SMT Security (Figure 2a).
They were set to measure continuously with a sampling rate of 48 kHz and were equipped
with a two-week lifetime powerbank. Before using low-cost devices, it was necessary to
verify their possible different frequency responses in the frequency range of interest. Thus,
initial tests were devoted to selecting those recorders with a frequency response within 5%
of the average spectrum calculated over all recorders. The average spectrum was computed
using a 512-point FFT analysis by applying a white noise as a sound source. Full details
of the the frequency characterization of the recorders can be found in [50]. The results are
reported in Figure 2b, where a reduction in sensitivity for frequencies higher than 10 kHz
is observed.
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Figure 2. (a) SMT Security recorder and its practical location (red circle) on a tree. (b) Average spec-
trum (computed using a 512-point FFT) of sound level response of the recorders [dB] vs. frequency
in the range (0–24) kHz. The gray band around the curve corresponds to one standard deviation of
the response calculated over several SMT Security recorders. Sensitivity decreases for frequencies
higher than 10 kHz.

2.3. Measurement Scheme

The 22 recorders were initially positioned on a regular grid, as shown in Figure 1, cover-
ing an area of approximately 270 × 500 m2, plus another grid with an area of 300 × 250 m2

for the southern part of the parcel. The recordings were scheduled for the period of greatest
singing activity of the avifauna and repeated over four days, namely on 25–28 May 2015,
from 06:30 a.m. to 10:00 a.m. (CET), corresponding to 3.5 h for each site and for each
recording session. Unfortunately, six recorders did not work properly (see yellow spots in
Figure 1) and thus the audio files analyzed in this study involved only 16 sites.

2.4. Aural Survey

In this section, we describe the scheme adopted for the aural analysis of audio files in
order to quantify distinctive sound features. An aural survey was carried out to quantify
the biophonies, anthropophonies, and geophonies. In particular, a single expert listened
carefully to the recordings according to the following scheme: one minute listened to for
every three minutes of continuous recording, for a total of seventy minutes of listening per
site. The expert focused on quantifying the biophonic activity (mainly avian vocalizations)
and the tecnophonic sources, evaluating the parameters reported in the scheme of Figure 3.
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Figure 3. Classification of sound sources considered for the aural survey corresponding to six cate-
gories: birds, other animals, road traffic noise, other noise sources (airplanes, trains), rain, and wind.
For each category, the following attributes were considered. Birds: (1) individual abundance, (2) per-
ceived singing activity (%), (3) species richness, (4) vocalization intensity. Other biological sound
sources: presence–absence. Anthropogenic noise: (1) noise intensity, (2) typology of traffic. Other
anthropogenic sources: presence–absence. Geophonies were absent in the considered recordings.

Each soundscape component was analyzed to extract information about the sound
source and its occurrence and intensity (see Figure 3). Following this criterion, the avian
vocalizations were the most studied. For each minute listened, four parameters were
evaluated: (1) individual abundance (no–few–many subjects), (2) perceived singing ac-
tivity expressed as the percentage of time occupied by avian vocalizations (0–100%),
(3) species richness (none–one–more than one species), and (4) vocalization intensity (no–
low–high intensity). For other biological sound sources, such as other animals and people,
just the presence–absence indicator was used.

The anthropogenic noise is mainly attributable to road traffic. For this source, two
parameters were evaluated (see Figure 3): (1) noise intensity (no–low–high intensity) and
(2) the typology of traffic (no–continuous–intermittent traffic). Other sources, such as
installations and airplanes, were also studied using the presence–absence indicator. Finally,
given their poor contribution to the soundscape of the area during the measurement
campaign, geophonies such as rain and wind were not considered.
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2.5. The Soundscape Ranking Index, SRI

We wish to quantify the quality of the local environment sound by means of a single
index, SRI, as proposed recently [51]. In the following, we briefly recall the definition of the
SRI, introduced to describe, on average, the local environment sound,

SRINT =
1

NT

NT

∑
r=1

nc

∑
i=0

cNi Ni,r, (1)

where NT refers to the total number of recordings, nc + 1 is the total number of identified
categories (birds, other animals, road traffic noise, other noise sources, and rain and wind)—
here, nc = 4 and Ni,r = 1 if the ith sound category is present at the recording r; otherwise,
Ni,r = 0—and cNi s are coefficients chosen within the ranges displayed in Table 1 [51].

In the present study, a single audio recording, i.e., NT = 1, was considered. The reason
for this choice relies on the need to compare the present new results with those discussed
by us in a previous work [52]. It can also be seen as providing a “snapshot” of the local
soundscape. It should be emphasized that the present work is a first attempt to estimate
the SRI for the Northern Park in Milan using ML techniques. Extensions of this analysis to
more audio recordings is under consideration and the results will be considered elsewhere.
Each set of calculated spectral features is expected to be correlated to a series of manually
recognized sound categories within the single audio recording (we can provide the audio
recording data upon request). In this specific case, Equation (1) becomes (see also [52])

SRI� =
nc

∑
i=0

cNi Ni,�, (2)

where the subindex � refers to the �th recording and the coefficients take on the following
values: cNi > 0 (cNi → c+, c++) when a sound category is associated with a natural sound,
where we have split the values into two subranges (+, ++), and cNi < 0 (cNi → c−,
c−−) for a potential disturbing event, also split into two subranges. The absence of bird
vocalization is regarded as neutral, cN0 = 0. In Table 1, we report the assumed ranges
of variability for cNi . Note that in [52] we used the notation P(1) = c++, P(2) = c+,
P(3) = cN0 , P(4) = c−, and P(5) = c−−.

Table 1. Range of variation in the coefficient cNi assigned to each sound category, i = 0, . . . , 4, to be
used in Equation (2). In this case, we aribitrarily chose −5 ≤ cNi ≤ 5 for convenience.

cNi Range P(i) [52]

c++ [2, 5] P(1)
c+ [0, 2] P(2)
cN0 0 P(3)
c− [−2, 0] P(4)
c−− [−5, −2] P(5)

Thus, Equation (2) provides a number that is expected to be representative of the
environmental sound quality. Following our previous works [51,52], we chose three
intervals of the SRI to define the environmental sound quality, for a single recording
denoted simply as �, given by

SRI� < 0 [poor quality],

0 ≤ SRI� ≤ 2 [medium quality], (3)

SRI� > 2 [good quality].

It should be emphasized that the choice of these intervals for classifying the SRI
is rather arbitrary. Nonetheless, they are based on rather generic features attributed to
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human perception, in the sense that the poor (good) quality interval reflects a prevalence
of anthropogenic (biophonic) sound sources, whereas the intermediate quality interval
reflects a balance/co-existence of both types of sound sources.

2.6. SRI Optimization Procedure

We first searched for the sound categories, reported in Table 2, by manually labeling
the audio recording (see [52] for additional details). Each category i was assigned a weight,
cNi , according to the attributes present in the audio recording (see column ‘Attribute’ in
Table 2). The singing activity was assigned a weight that depends on the percentage of birds
singing in each recording, e.g., for a singing activity in the interval (0, 25]%, we assigned a
weight of 0.25 × c++, whereas, for (25, 50]%, we assigned a weight of 0.50 × c++, etc.

Then, we calculated the spectral features of the sound recording and implemented the
optimization scheme illustrated in Figure 4. In order to achieve this, we assumed that the
coefficients cNi can vary over the intervals reported in Table 1.

Figure 4. Scheme of the optimization procedure for the SRI according to the following steps: (1) as-
signment of weights to each sound category; (2) splitting of extracted spectral features and of the
corresponding SRI into test and training sets; (3) running of classification models; (4) computation of
classification score; (5) selection of optimal SRI according to the highest classification score.
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Table 2. Coefficient cNi assigned to each sound category to be used in Equation (2).

Category Attribute cNi

no cN0
Birds singing few c+

many c++

no cN0
Birds species �2 c+

>2 c++

0 0.00 × c++

(0, 25] 0.25 × c++

Singing activity (%) (25, 50] 0.50 × c++

(50, 75] 0.75 × c++

(75, 100] 1.00 × c++

no traffic c+
Traffic type continuous c−

intermittent c−−
zero c+

Traffic intensity low c−
high c−−

Other sound sources absent cN0
present c−−

In order to proceed, both the spectral features and SRIs need to be split into “training”
and “test” sets. The training set is used as the input for each classification model, whereas
the performance of the test set is quantified according to the metrics described in Section 2.9.
Here, we implicitly assumed that the optimal classification outcome produces the optimal
separation/distance among the sites. This consideration comes from the analysis performed
in a previous work where sites were clustered on the basis of distances (dissimilarities)
calculated over the extracted spectral features of the audio files recorded in the area of
study [51,52]. In the classification process, SRIs represent the target variable to be predicted
by each model. This process is repeated for each combination of weights, cNi , where i > 0,
that is varied in the assigned interval. We considered a variation step Δc = 0.1 for each of
the four intervals for cNi , where the total number of choices is given by the product of the
number of possible values for each coefficient cNi : 20 values for c+ and c− each, and 30
for c++ and c−− each, yielding 202 × 302 = 360,000 combinations. The set of weights that
define the optimal SRI was then obtained on the basis of a classification score as defined in
Section 2.9.

2.7. Classification Models

In this section, we provide a brief description of the classification models used to
predict the manual labeling sound categories, and thus the SRI index, from the ecoacoustic
indices. In general, machine learning methods are better able to address multicollinearity
issues and capture the potential non-linear relationships among variables. While binary
classification is a more common application of them, they are also widely used for regres-
sions when the target is continuous. In our case, we used classification algorithms for
trinary (poor/medium/good) categories for determining the SRI.

The models taken into consideration in this study, which were implemented in Python
programming language [53], are the following:

• Decision tree (DT);
• Random forest (RF);
• Support vector machine (SVM);
• Adaptive boosting (AdaBoost).
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The supervised classification models implemented for the SRI optimization procedure
were trained on the 80% of the data and tested on the remaining 20%. Data were split using a
stratified procedure to keep the proportions between the classes of the corresponding target
variable. Furthermore, class weights were used to take into account the class imbalance
of the data set. In fact, training an algorithm with a skewed distribution of the classes
can be achieved by giving different weights to both the majority and minority classes.
The difference in weights will influence the classification of the classes during the training
phase. The whole purpose is to penalize the misclassification made by the minority class
by setting a higher class weight and, at the same time, reducing the weight for the majority
class. The weight for the jth class of the target variable was chosen as follows:

Wj =
1
|j|

T
N

, (4)

where T is the total number of data items, N is the number of classes of the target variable,
and |j| is the number of items in the jth class.

2.7.1. Decision Trees

A decision tree (DT) is a non-parametric supervised learning method used to predict
the value of a target variable by learning simple decision rules inferred from the data
features [54,55]. DTs can be used to classify a set of data items using the inferred rules to
recursively partition the feature space until each partition is pure or a stopping criterion
is reached. Specifically, a DT learns a sequence of if-then statements, with each statement
involving one feature and one split point. The topmost node in a DT is known as the root
node and is constituted by the whole set of items. The root node is split starting from those
variables that lead to the greatest degree of homogeneity.

Several measures were designed to evaluate the impurity of a partition, of which the
Gini impurity (GI) is among the most popular ones [56]. Then, following the same criterion,
each subsample, called a node, is split recursively into smaller nodes alongside single
variables, and according to threshold values that identify two or more branches. Finally,
when a node is no longer split into further nodes, either because a stopping criterion is
reached or because it is pure, it becomes a leaf of the tree. An item is assigned to the class
that has been associated with the leaf that it reaches.

2.7.2. Random Forest

A random forest is a meta estimator that fits a number of decision tree classifiers on
various sub-samples of the dataset, and uses averaging to improve the predictive accuracy
and control overfitting. Random forests (RFs), or random decision forests, are an ensemble
of learning methods used for classification, regression, and other tasks that operates by
constructing a multitude of decision trees during the training procedure. For classification
tasks, the output of the random forest is the class that is selected by most trees. In other
words, it fits a number of decision tree classifiers on various sub-samples of the dataset and
uses averaging to improve the predictive accuracy and control overfitting [57]. For this
reason, RF generally outperforms decision tree models.

2.7.3. Support Vector Machine

Support vector machines (SVMs) are supervised machine learning models that can be
used for both classification and regression purposes [58,59]. They were initially devised
as a binary classifier. SVMs map training data to points in space in order to maximize the
width of the gap between the two categories. Thus, new data are mapped into that same
space and predicted to belong to a category based on which side of the gap that they fall.

For multiclass classification, the same idea is employed by decomposing the multiclas-
sification problem into multiple binary classification problems. This can be achieved by
mapping data points to a high dimensional space to gain mutual linear separation between
every two classes. This is called a One-vs.-One approach, which breaks down the multiclass
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problem into multiple binary classification problems using a binary classifier per each
pair of classes. Another approach that can be used is the so-called One-vs.-All approach.
In this case, a binary classifier per each class is used. The latter approach is used for the SRI
optimization procedure.

In general, a data point is viewed as a p-dimensional vector (a list of p numbers)
and we want to know whether we can separate such points with a (p − 1)-dimensional
hyperplane. This is called a linear classifier. There are many hyperplanes that might classify
the data, but the goal of SVMs is to find the best hyperplane that represents the largest
separation, or margin, between the classes. It is defined so that it is as far as possible from
the closest data points from each of the classes. SVMs are effective in high-dimensional
spaces even if the number of dimensions is greater than the number of samples. SVMs can
efficiently perform a non-linear classification using what is called the kernel trick, implicitly
mapping their inputs into high-dimensional feature spaces [60].

For the sake of clarity, let us consider a simple separable classification method in
multidimensional space. Given two classes of examples clustered in feature space, any
reasonable classifier hyperplane should pass between the means of the classes. One possible
hyperplane is the decision surface that assigns a new point to the class whose mean is closer
to it. This decision surface is geometrically equivalent to computing the class of a new point
by checking the angle between two vectors: the vector connecting the two cluster means
and the vector connecting the mid-point on that line with the new point. This angle can be
formulated in terms of a dot product operation between vectors. The decision surface is
implicitly defined in terms of the similarity between any new point and the cluster mean—a
kernel function. This simple classifier is linear in the feature space whereas, in the input
domain, it is represented by a kernel expansion in terms of the training examples.

Radial basis function (RBF) kernels are the most generalized form of kernelization and
are one of the most widely used kernels due to its similarity to Gaussian distribution [61].
The RBF kernel function for two points x and y computes the similarity or how close they
are to each other. This kernel can be mathematically represented as follows:

K(x, y) = exp
(
−γ ||x − y||2

)
, (5)

where γ is a hyperparameter that is inversely proportional to the standard deviation σ,
and ||x − y|| is the Euclidean distance between two points x and y. The RBF kernel support
vector machines are implemented using the scikit-learn library [62].

2.7.4. AdaBoost

Adaptive boosting has been a very successful technique for solving two-class clas-
sification problems. It was first introduced in [63] with the AdaBoost algorithm. In go-
ing from two-class to multi-class classification, most boosting algorithms have been re-
stricted to reducing the multi-class classification problem to multiple two-class problems,
e.g., [63–65]. The natural multi-class extension of the two-class AdaBoost was obtained with
the algorithm stagewise additive modeling using a multi-class exponential loss function
(SAMME) [66].

The core principle of AdaBoost is to fit a sequence of weak learners (i.e., models that
are only slightly better than random guessing, such as small decision trees) on repeatedly
modified versions of the data. The predictions from all of them are then combined through
a weighted majority vote (or sum) to produce the final prediction. The data modifications
at each so-called boosting iteration consist of applying weights, (w1, w2, . . . , wN), to each of
the training samples. Initially, the weights are set to wi = 1/N so that the first step simply
trains a weak learner on the original data. For each successive iteration, the sample weights
are individually modified and the learning algorithm is reapplied to the reweighted data.
At a given step, those training examples that were incorrectly predicted by the boosted
model induced at the previous step have their weights increased, whereas the weights are
decreased for those that were predicted correctly. As iterations proceed, examples that
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are difficult to predict receive ever-increasing influence. Each subsequent weak learner is
thereby forced to concentrate on the examples that are missed by the previous ones in the
sequence [57].

2.8. Feature Extraction

In this section, we describe the features that were employed in the machine learning
process. Feature extraction starts from the audio recordings and builds derived values
(features) containing salient or summative information about the measured data. This
process is intended to help the learning procedure by providing significant information
about the content of the recordings. Here, we essentially used two types of features:
those based on ecoacoustic indices and those based on mel-frequency cepstral coefficients
(MFCCs) (see below).

2.8.1. Ecoacoustic Indices

Ecoacoustic indices (ECOs) are generally used to quantify the soundscape in both
marine and terrestrial habitats, and are grouped into categories aiming at quantifying the
sound amplitude and its level of complexity and weighting the importance of geophonies,
biophonies, and technophonies (soundscape). In this work, we focused on the following
set of ecoacoustic indices:

• The acoustic entropy index (H) highlights the evenness of a signal’s amplitude over
time and across the available range of frequencies [67].

• The acoustic complexity index (ACI) accounts for the modulation in intensity of
a signal over changing frequencies [68].

• The normalized difference soundscape index (NDSI) accounts for the anthropogenic
disturbance by computing the ratio between technophonies and biological acoustic
signals [69].

• The bio-acoustic index (BI) is calculated as the area under the mean frequency spectrum
above a threshold characteristic of the biophonic activity [15].

• The dynamic spectral centroid (DSC) indicates the center of mass of the spectrum [70].
• The acoustic diversity index (ADI) provides a measure of the local biodiversity at the

community level without any species identification [70].
• The acoustic evenness index (AEI) provides reverse information of ADI with high

values identifying recordings with the dominance of a narrow frequency band [70].

The ecoacoustic indices were calculated in the R environment (version 3.5.1 [36]).
Specifically, the fast Fourier transform (FFT) was computed by the function spectro available
in the R package “seewave” [71] in the frequency interval (0.1–12) kHz based on 1024 data
points corresponding to a frequency resolution of FR = 46.875 Hz and, therefore, to a time
resolution TR = 1/FR = 0.0213 s. The ecoacoustic indices were computed using the R pack-
age “soundecology” [72]. A dedicated script running in the “R” environment was written
to calculate the DSC index. Two patterns of calculation were used:

• For each one-minute recording, we computed seven cumulative indices. Each record-
ing is thus represented by seven features (seven indices).

• For each one-minute recording, we computed each index with a one-second time-
step. Then, we calculated seven statistical descriptors (over 60 values): minimum,
maximum, mean, median, skewness, kurtosis, and standard deviation. Each recording
is thus represented by 49 features (seven indices times seven statistical descriptors).

Table 3 reports a summary of the extracted features employed in the classification process.
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Table 3. Type of features extracted from the audio recording: characteristics and numerousness. Here,
we use the abbreviations: ecoacoustic indices (ECOs), mel-frequency cepstral coefficients (MFCCs)
(see also Section 2.8.2).

Type of Feature Characteristics Number of Features

Seven ecoacoustic indices (7 ECOs) one-minute integration time 7

Seven ecoacoustic indices
and one-second integration time 49

seven statistical descriptors (49 ECOs)

Twelve MFCCs
and one-second time window 84

seven statistical descriptors (84 MFCCs)

Twelve MFCCs (1428 MFCCs) one-second time window 1428

2.8.2. Mel-Frequency Cepstral Coefficients (MFCCs)

The mel-frequency cepstrum (MFC) has become a convenient alternative for obtaining
a reduced amount of data from each audio recording while keeping the core spectral
information. The MFC is a representation of sound based on a linear discrete cosine
transform (DCT) of a log-power spectrum on a non-linear MEL scale of frequency [73].
The latter is a perceptual scale of pitches judged by listeners to be equally spaced from
one another (logarithmically distributed human auditory bands). Thus, after getting the
spectrum onto the MEL scale, by applying filter banks and the logarithm of energies in
each filter bank, the last step is to calculate the MFCCs [74]. This is carried out by fitting
the cosines to the calculated log-energies using the DCT. MFCCs are the coefficients that
collectively describe the MFC; that is, the amplitudes of the resulting spectrum. In most
applications, the number of coefficients is twelve. This number represents a trade-off
between an accurate description of the spectrum and dimensionality reduction of our
feature space.

The calculation of the MFCCs was performed in the R environment using the default
number of MEL filter banks; that is, 40 logarithmically distributed bands over the whole
spectrum. Another important issue is the selection of the most convenient time window
size for extracting the features of the data set. In this regard, we have to keep in mind that
the dataset is obtained by computing a fixed number of features from an audio recording,
usually referred to as a “window”.

A large time window size may capture relevant events but would result in a dataset
with few instances. On the other hand, a small time window would result in a larger data
set but may split the relevant events into several windows. For this reason, as we are trying
to classify a summative description of the audio files (information described in Figure 3),
we used a one-second time window as representative for distinguishing different sound
characteristics. This number was selected to frame and window each audio file using
a Hamming window with an overlap of 50%. In addition, in this case, we used two patterns
of calculation (see Table 3):

• For each one-minute recording, we computed 12 MFCCs in a one-second time window.
Then, we calculated seven statistical descriptors resulting from each audio recording:
minimum, maximum, mean, median, skewness, kurtosis, and standard deviation.
This corresponds to 84 features (12 MFCCs times 7 statistical descriptors).

• For each one-minute recording, we computed 12 MFCCs in a one-second time window.
This corresponds to 1428 features (12 MFCCs times 119 time windows: 60 s window
with 50% overlap).

2.9. Metrics

The performance of a model can be evaluated by the use of specific metrics that quan-
tify the capability of the model to correctly predict one’s target. In our case, the performance
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of a model was evaluated based on a selection of the optimal set of weights, cNi , reported
in Equation (2) and described in Table 2, which contributes to the definition of the SRI.

A confusion matrix is generally the starting point for calculating each metric. A con-
fusion matrix is a table used to describe the performance of a classification model on a
set of (training and test) data for which the true values are known. A strong discrepancy
between the results obtained between training and test data may be indicative of an overfit-
ting issue. It generally contains the following information: true positives, TPs, and true
negatives, TN, which are the observations that are correctly predicted, and false positives,
FP, and false negatives, FN, which occur when the actual class contradicts the predicted
class. The derived metrics are the following [75]:

Precision: This represents the ratio of correctly predicted positive observations to the
total predicted positive observations. A high precision is related to a low false positive rate:

Precision =
TP

TP + FP
. (6)

Recall (Sensitivity): This is the ratio of correctly predicted positive observations to
all observations in the actual class. Thus, the recall tells us the proportion of correctly
identified positives:

Recall =
TP

TP + FN
. (7)

F1-score: This is defined as the harmonic mean of precision and recall [75]. Therefore,
the F1-score takes both FPs and FNs into account:

F1-score =
2 · (Recall · Precision)

Recall + Precision
. (8)

This metric is useful in case both precision and recall are equally important. In our
case, we decided to refer to the F1-score as the classification measure.

As a validation of the results, we used the k-fold cross-validation technique. It consists
of an iterative procedure used to evaluate machine learning models. The procedure has
a single parameter called k that refers to the number of folds that a given data sample has
to be split into. This technique returns stratified folds; that is, folds obtained by preserving
the percentage of samples for each class. At each kth iteration, the kth fold is used as the
test set, whereas the other folds are used to train the model.

3. Results and Discussions

The results presented in this section refer to the audio files recorded on 25 May 2015,
from 06:30 a.m. to 10:00 a.m. (CET). As described in Section 2.6, from the extracted features
of all the audio recordings for which we had the corresponding labeling of sound categories,
we ran four machine learning models to attempt a prediction of the soundscape ranking
index calculated assigning a set of weights to each sound category. The range of variation in
the above mentioned weights is reported in Table 1, and the best combination is calculated
by the highest score provided by each classification model. The optimal set of weights are
obtained by the highest classification measure, which, in our case, is the F1-score. Using
the optimal set of weights, we calculated the SRI and derived a map of the environment
sound quality of the area of study.

The machine learning algorithms selected usually work better on small data sets
than deep neural networks. In fact, the latter require extremely large datasets to achieve
high performances. Furthermore, a large dataset was not readily available and would be
expensive and time-consuming to acquire. Another consideration when selecting classical
machine learning algorithms concerns hyper-parameter tuning and the interpretability
of these kinds of models. The underlying mechanisms of random forest, Adaboost, and
SVMs are more straightforward than those of deep neural networks. Enhancing the
interpretability also results in an easier tuning of hyper-parameters. However, for our
preliminary study, we leaned on the default values as reported in [76], with the exception
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of the max depth parameter (used in DT and RF) used to control the size of the tree to
prevent overfitting.

For each model, we split the entire dataset, consisting of 1220 audio files, into a training
and test set with the following proportion: 80% of the dataset used for training and 20% of
the dataset used for testing. As the reference measure to search for the optimal classification,
we used the F1-score, which is more suited to our case, i.e., an uneven class distribution
due to the limited sample size numerousness. Table 4 reports the results of the four models
for each of the four extracted features.

Table 4. Summary of results obtained for decision tree (DT), random forest (RF), support vector
machine (SVM), adaptive boosting (AdaBoost) models, and four extracted features. Range of weights
values and classification measures are reported. Precision, recall, and F1-score are provided with
their standard deviations.

DT c++ c+ c− c−− Precision Recall F1-Score

(7 ECO) [2.0, 2.1] [1.9, 2.0] [−1.2, −1.0]] −3.6 0.64 ± 0.32 0.71 ± 0.10 0.62 ± 0.15

(49 ECO) [2.3, 2.6] [1.5, 1.7] [−1.2, −1.0] [−4.72, −4.0] 0.64 ± 0.26 0.67 ± 0.03 0.63 ± 0.13

(84 MFCC) [2.0, 2.3] [1.8, 2.0] [−1.2, −1.0] [−4.4, −3.9] 0.68 ± 0.24 0.73 ± 0.09 0.68 ± 0.10

(1428 MFCC) [2.5, 2.6] [1.4, 1.5] −1.0 [−5.0, −4.8] 0.63 ± 0.22 0.64 ± 0.12 0.62 ± 0.12

RF

(7 ECO) 2.0 2.0 [−1.5, −1.4] [−2.6, −2.7] 0.63 ± 0.28 0.75 ± 0.16 0.63 ± 0.12

(49 ECO) 2.0 1.6 −0.3 −4.7 0.70 ± 0.28 0.78 ± 0.14 0.69 ± 0.12

(84 MFCC) [2.0, 2.1] [0.7, 0.8] −0.1 [−4.3, −4.1] 0.71 ± 0.22 0.78 ± 0.15 0.71 ± 0.15

(1428 MFCC) 2.0 2.0 −1.7 −2.8 0.68 ± 0.15 0.75 ± 0.16 0.70 ± 0.03

SVM

(7 ECO) 2.5 1.6 −1.0 −4.7 0.60 ± 0.18 0.60 ± 0.06 0.59 ± 0.10

(49 ECO) [4.3, 5.0] [1.9, 2.0] [−1.2, −1.0] [−2.3, −2.0] 0.33 ± 0.58 0.33 ± 0.56 0.33 ± 0.47

(84 MFCC) [4.3, 5.0] [1.9, 2.0] [−1.2, −1.0] [−2.3, −2.0] 0.33 ± 0.58 0.33 ± 0.56 0.33 ± 0.47

(1428 MFCC) [4.3, 5.0] [1.8, 2.0] [−1.2, −1.0] [−2.3, −2.0] 0.33 ± 0.58 0.33 ± 0.56 0.33 ± 0.47

AdaBoost

(7 ECO) [2.4, 2.6] [1.3, 1.7] [−1.8, −1.5] [−2.2, −2.0] 0.60 ± 0.19 0.64 ± 0.18 0.62 ± 0.15

(49 ECO) [2.3, 2.4] 2.0 [−1.8, −1.7] [−3.4, −3.2] 0.68 ± 0.05 0.70 ± 0.05 0.69 ± 0.02

(84 MFCC) 2.9 2.0 −1.7 −2.5 0.65 ± 0.24 0.78 ± 0.15 0.70 ± 0.14

(1428 MFCC) [2.0, 2.4] [1.5, 1.8] [−1.2, −1.0] [−4.1, −3.3] 0.66 ± 0.09 0.68 ± 0.04 0.67 ± 0.04

In particular, the table contains the values of the weights and the corresponding
classification measures. The weights can vary in an interval, meaning that the optimal
classification measure (F1-score) can be obtained for a different combination of weights.
The table also contains precision and recall as classification measures. All three measures
are given in terms of the mean value ± standard deviation calculated over all classification
classes defined by Equation (3).

In general, we can observe an increase in the classification performance as we pro-
vide more detailed information about the spectral content of each recording from 7 to
84 extracted features. For the 1428 features for each recording (1428 MFCCs), we observe a
general drop (with the exception of the RF model) in the performance, more likely due to
information redundancy contained in the time series. This redundancy is smoothed out by
considering the statistical descriptors of the same time series (84 MFCCs).

A similar consideration can be carried out for the ecoacoustic indices. In this case,
the 7 ECO features, derived by integrating the ecoacoustic indices over the whole length of
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the recording (1 minute), contain more condensed information; thus, it appears to not be
enough to represent the complexity of the soundscape in a single summative index. On the
other hand, the 49 ECO features provide a better representation of the spectral dynamics
within each single audio recording. AdaBoost and RF models perform better. The AdaBoost
model yields an F1-score of 0.70 (precision 0.65 and recall 0.78) with 84 MFCCs, and an
F1-score of 0.69 (precision 0.68 and recall 0.70) with 49 ECO features. The RF model yields
an F1-score of 0.71 (precision 0.71 and recall 0.78) with 84 MFCCs, and an F1-score of 0.70
(precision 0.68 and recall 0.75) with 1429 MFCCs. Hence, the RF model results in a slightly
higher classification performance.

The highest metric ranking leads to the definition of nearly different sets of coefficients
cNi assigned to each sound category to be used in Equation (2). The DT model provides
similar coefficients to the RF model. On the other hand, the SVM model gives the worst
classification performance, and the resulting coefficients cNi are completely discordant from
the results of the other models.

Discussions

The possibility of deriving an overall soundscape index summarizing the contribution
of all the sound components and being able to rank them in terms of sound “quality” can be
one of the empowering ecological tools used to help rapid on-site field and remote surveys.
Here, we tested four extracted features (see Table 3) from recordings taken on 25 May 2015,
from 06:30 a.m. to 10:00 a.m. (CET), referring to a measurement campaign over an area of
approximately 22 hectares located in the Parco Nord of Milan.

The idea of predicting an overall ranking index from a limited number of recordings,
as initally defined in [51] and complemented in [52], was further developed in this paper,
representing a first attempt to summarize the herd of ecoacoustic indices and spectral
features for describing specific aspects of the audio-spectral content of a recording. This
preliminary approach, based on ML techniques, revealed that two classification models, RF
and AdaBoost, are able to provide rather good classification measures (F1-score = 0.70–0.71)
using 84 extracted features from each recording. The two models are “evolutions” of DTs,
of which AdaBoost required intensive time–machine calculation to complete the whole
weight scan. In order to check for the possible overfitting of the models, we implemented
a procedure called k-fold cross-validation, which refers to the number of groups, k, that a
given data sample is to be split into. In this case, we tested the following values: k = (2, 5,
10), and repeated the operation 200, 100, and 100 times, respectively. Figure 5 illustrates the
results in terms of the associated kernel density distributions.

We find that the RF model provides a more robust classification as its F1-score distri-
bution presents maxima at higher values than for the AdaBoost model (see Table 5) for all
the k-groups of split samples considered. As k increases, we also observe a spreading of
the distribution due to a less numerous dataset.

Table 5. Mean F1-score ± standard deviation calculated for the distributions illustrated in Figure 5:
random forest (RF) and adaptive boosting (AdaBoost) models, where k = (2, 5, 10).

k RF AdaBoost

2 0.62 ± 0.02 0.49 ± 0.04

5 0.62 ± 0.03 0.51 ± 0.05

10 0.62 ± 0.04 0.52 ± 0.08
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Figure 5. Kernel density distributions of F1-score for RF and AdaBoost, obtained using the k-fold
splitting of the dataset for the following number of splits: k = (2, 5, 10), and repeating the operation
200, 100, and 100 times, respectively. (Left panel) The RF model with the following combination of
weights: c++ = 2.0, c+ = 1.6, c− = −0.3, c−− = −4.7. (Right panel) The AdaBoost model with the
following combination of weights: c++ = 2.9, c+ = 2.0, c− = −1.7, c−− = −2.5. RF model provides
a more robust classification as its F1-score distribution presents maxima at higher values than for the
AdaBoost model.

In order to further validate the obtained results, we computed an SRI map over the
study area based on the weights obtained for the RF model, which is reported in Table 4.
For each of the 16 sites, we considered the median value of the SRI computed over all the
measurements corresponding to the labeled recordings. The results are shown in Figure 6.

As expected, lower SRI values (poor/medium soundscape quality) are found close to
the traffic noise sources (Sites 1–4), where the presence of higher traffic noise and less bird
singing activity contribute significantly to this outcome. On the other hand, sites belonging
to the park interior are less influenced by traffic noise and host higher biodiversity (many
birds of different species singing). This result is reflected by the higher SRI values (good
soundscape quality). Sites (5–8) are at intermediate positions and show a sort of transient
behavior of SRI values (medium/good soundscape quality).

In Figure 6 (left panel), we show the actual continuously changing SRI values, whereas,
in the right panel, they are selected as in Equation (3) to obtain a simplified picture. Both
maps are fully compatible with the results obtained in [50], where the statistical analysis
based on the computed ecoacoustic indices revealed the presence of a two-cluster separa-
tion, and also with a more recent estimation of the SRI based on a self-consistent statistical
analysis [52]. The latter gives the optimized parameter values of c++ = 2.29, c+ = 0.766,
c− = −1.528, and c−− = −2.262, which are consistent with those reported in Figures 5 and 6.
Such a cluster separation is in agreement with the results of the aural survey (see Section 2.4)
aimed at determining the sound components at the 16 sites (biophonies, technophonies,
and geophonies).
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Figure 6. SRI map obtained using the following combination of weights as for the RF model:
c++ = 2.0, c+ = 1.6, c− = −0.3, c−− = −4.7. (Left panel) Range of continuous SRI variability: small
differences in SRI at different sites are highlighted. (Right panel) Range of variability of SRI as
defined by Equation (3): two main clusters are depicted, confirming previous analysis (see [50,52]).
The legends indicate the ranges of variability of the SRI, and the sensor numbers correspond to the
active ones as described in Figure 1.

4. Conclusions

The study of the soundscape within urban parks represents an increasingly important
issue as they represent the link between natural habitats and highly populated urban areas.
The evaluation of the soundscape is usually carried out through the help of ecoacoustics
analysis and thus the use of well-known ecoacoustic indices. In this work, we gathered
spectral information in the form of ecoacoustic indices and MFCCs to train four machine
learning models to predict a single index (the soundscape ranking index, SRI) carrying
information of different sound sources and, in addition, providing a soundscape ranking
among different locations within the urban park.

The SRI has the advantage of yielding a quick overview of an environment given a set
of extracted spectral features. We found that the seven statistical descriptors calculated for
the 12 MFCCs (for a total of 84 features) are able to determine the optimal combination of
weights that leads to a quite high classification score. Values for the F1-score of approxi-
mately 0.70 and 0.71 were obtained for AdaBoost and RF models, respectively. However,
the RF model proved to be more robust when tested using the k-fold cross-validation
procedure. Indeed, the information carried by the SRI represents a summative representa-
tion of the soundscape quality, which is essentially driven by the prevalence of the sound
sources acting locally. As such, the SRI can be used to rapidly provide maps of environment
sound quality on the basis of few audio recordings. The splitting of the SRI into three main
intervals may somehow be adjusted by considering its quantization into smaller bins. This
will allow us to obtain finer shades of the environment sound quality.

Mapping the SRI yielded similar results to those recently obtained in [50] through a
simpler statistical approach and using a self-consistent SRI computation able to visualize
the internal structure of the soundscape in the same habitat [52]. For these reasons, we may
conclude that the SRI can become a useful tool for helping policy makers follow up the
soundscape evolution in “natural” habitats within urban zones. More specifically, it can
be employed, once fully developed, to evaluate the impact of noise-mitigating measures
on “pocket” parks, urban parks, and residential redevelopment areas, thus allowing one to
follow up the soundscape evolution in “natural” habitats within urban zones.

As already stated in the introduction, the availability of a small labeled dataset can
undermine the performance of ML models, which represents a limitation of the present
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study. However, the obtained performance can be considered satisfactory and can represent
a benchmark for future developments. As a future development of the present work, we
envisage the use of larger labeled datasets. This can be achieved by using additional
recordings with the corresponding aural survey, and/or via data augmentation using
Monte Carlo techniques. We also envisage the application of NN models to develop
more efficient classification schemes. In many situations, there is also the need to use
different sound recorders to map extended areas simultaneously. Indeed, this procedure
can introduce a bias in the analysis owing to different frequency responses of each sound
recorder. This issue also needs to be addressed in our future works.
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Abstract: We have performed a detailed analysis of the soundscape inside an urban park (located in
the city of Milan) based on simultaneous sound recordings at 16 locations within the park. The sound
sensors were deployed over a regular grid covering an area of about 22 hectares, surrounded by a
variety of anthropophonic sources. The recordings span 3.5 h each over a period of four consecutive
days. We aimed at determining a soundscape ranking index (SRI) evaluated at each site in the
grid by introducing 4 unknown parameters. To this end, a careful aural survey from a single day
was performed in order to identify the presence of 19 predefined sound categories within a minute,
every 3 minutes of recording. It is found that all SRI values fluctuate considerably within the 70 time
intervals considered. The corresponding histograms were used to define a dissimilarity function for
each pair of sites. Dissimilarity was found to increase significantly with the inter-site distance in
space. Optimal values of the 4 parameters were obtained by minimizing the standard deviation of
the data, consistent with a fifth parameter describing the variation of dissimilarity with distance. As a
result, we classify the sites into three main categories: “poor”, “medium” and “good” environmental
sound quality. This study can be useful to assess the quality of a soundscape in general situations.

Keywords: soundscape; soundscape ranking index (SRI); urban parks; acoustic sensor networks

1. Introduction

The acoustic quality of a habitat is generally recognized as a primordial requirement of
wildlife conservation [1,2]. It has become customary to evaluate the environmental status
of particularly exposed areas, such as large populated urban zones, in addition to natural
habitats. As a result of increasing urbanization all over the world, the associated, and in
many cases excessive human technophonies, usually called “noise”, together with a lack of
planning to permit for a smooth transition between a built environment and a natural one,
can yield several deleterious effects on biodiversity. An exhaustive picture on these issues
has been documented in recents works [3–6].

The use of passive acoustic monitoring has become the main tool to study a particular
habitat [7–10]. Its diffusion among researchers and technicians has evolved considerably
together with its increasing memory capability. An important step towards its utilization
on large scales came with the development of specific spectral and level characteristics of
sound through the analysis of ecoacoustic indices (for a review, see [11]). This, in addition,
allows the retrieval of important information about the way different sounds are assembled
across both space and time. This new characteristic of the habitat sound is commonly
referred to as the soundscape [12,13], and it has been recognized as a distinct feature or,
more importantly, as an ecological “signature” of a landscape [14–16].

Urban parks are sources of natural sounds, but in many cases, they are mixed with
anthropogenic noise, such as vehicle traffic noise, from surrounding built areas [17,18]. Many
research works have shown that Brazilian and Italian parks exceed noise level thresholds due
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to the presence of traffic noise as the main source of disturbance [19–21]. These results also
give evidence that the traffic noise perception in urban parks can undermine the potential
beneficial effects of natural sounds [22].

The ecoacoustics indices merge the complex acoustic dynamics of an ecosystem,
consisting of vocalizing species, anthropogenic noise, and natural phenomena [23], into
sets of time series, allowing us to get a picture of the environmental changes at a given
habitat [24]. Furthermore, they provide new insights on species diversity and human
impacts across a wide range of terrestrial [25–29] and aquatic environments [30,31]. The
validation of the calculation of ecoacoustic indices is usually sound-truthed by specialized
operators who classify hours of recordings according to predefined sound categories.

The identification of sound sources by operators is highly time consuming and re-
quires specific knowledge of animal vocalizations, thus limiting its applicability to small
datasets [32,33]. However, a cumulative approach based on a qualitative description of the
recorded sound (e.g., many/few vocalizing birds, many/few birds species, high/low traffic
noise, etc.) was shown to improve the validation process, showing a good matching be-
tween the dentification of acoustic categories from the audio recording and the ecoacoustic
indices [34].

In this work, we address the question of quantifying the quality of a local soundscape
from a set of audio recordings at each site of a grid covering the area of interest. The
intervention of an expert is required, who is expected to recognize the different sound
categories determining the soundscape. The main goal is to associate a soundscape ranking
index (SRI) with each site of the grid, in order to classify the quality of the local environ-
mental sound into one of the following three categories: “poor”, “medium” and “good”.
This is achieved by introducing a sound dissimilarity function between sites, found to be
consistent with a power-law behavior with the inter-site distance. We conclude with a
discussion of possible future work along these lines.

2. Materials and Methods

2.1. Area of the Study

The Parco Nord (Northern Park) of Milan (Italy) covers an area of approximately
790 hectares and is located within a highly urbanized area (see Figure 1). About 45% of its
surface is dedicated to natural green spots and vegetation, while the remaining parts are
devoted to agricultural activities and infrastructures. The area of study is a tree-covered
parcel of approximately 22 hectares enclosed by agricultural fields, lawns, paths and roads.
It has a semi-natural structure, which is characterized by herbaceous layers of nemoral
flora, shrub and arboreal layers and dead woods.

The zone is crossed by numerous paths, and it is mainly used for recreational activities.
It contains an artificial lake of about 300 m2 surface area, located at approximately 250 m
from the edge of the bush. The main traffic noise sources are the A4 highway and the Padre
Turoldo street, both located north of the park at around 100 m from the wooded parcel.
There is also the presence of a small airport (Bresso airport) on the west side at around
500 m from the tree-line edge.

2.2. Audio Recorders

Mapping the environmental sounds over large areas may require important financial
commitments that could be alleviated by the availability of very low-cost recorders (VLCRs).
Thus, we used SMT security digital audio recorders with a 48 kHz sampling rate and
equipped with a two-week lifetime powerbank. The main disadvantage of using very
low-cost recorders is the possibility that they present dissimilar microphone sensitivities.
This may cause a different frequency and level response to a sound exposure. The response
of each recorder was evaluated in terms of the following:

• Computation of the acoustic complexity index (ACI, see [27]) for a white noise source.
• Behavior of each VLCR at different frequencies.

51



Sensors 2021, 23, 3401

The ACI computes the relative variation of recorded amplitudes of adjacent temporal
steps in each frequency bin, as determined by the FFT analysis in the frequency range
0–24 kHz. Thus, its computation provides overall evidence of possible anomalies in the
frequency response. Anomalies were identified when the recorder response strongly
departed from the average ACI value. Based on these results, we selected audio recorders
characterized by a response within 3% of the average ACI value. The full description of the
procedure is reported in [35].

2.3. Measurement Scheme

The 22 recorders were initially positioned on two regular grids (see Figure 1), the first
one (northen part) covering an area of approximately 500 × 270 m2, and the second grid
(southern part) covering an area of about 300 × 270 m2. The recordings were scheduled
for the period of greatest singing activity of the avifauna [10] and repeated over four days,
namely on 25–28 May 2015, from 06:30 a.m. (UTC +2) to 10:00 a.m., corresponding to a 3.5 h
long recording session for each day. Unfortunately, six recorders, numbered as 7, 9, 14, 15,
16 and 21 and indicated by the yellow spots in Figure 1, did not work properly, and thus,
the audio files analyzed in this study reduced to only 16 sites.

Figure 1. The Parco Nord (Northern Park) area of study. The sensor network is indicated by the
numbered dots (1–22), deployed inside the tree-covered zone of the park. The network consists of
two regular grids, the northern and the southern ones, composed of 16 and 6 nodes, respectively.
Those in red color are the actually used sensors (total number 16), while those in yellow are the six
ones discarded due to malfunctioning. One can see the A4 highway, the Padre Turoldo street and the
artificial lake to the northern part of the park, while to the west side of it, the small Bresso airport
runaway is located.

2.4. Aural Survey

In order to quantify the biophonies [36], anthrophonies and geophonies [37], an aural
survey was performed on one of the four days of recordings, of 3.5 h total duration for each
of the 16 sites. Specifically, a single expert listened carefully to the 16 recordings according
to the following scheme. For each site, the daily record duration of 210 min was grouped
into 70 intervals of 3 min each, of which only the first 1-min interval was listened, while the
following 2 min of recording were skipped. This operation spanned several weeks of careful
work to accurately examine the whole set of recordings. The expert focused on quantifying
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the biophonic activity (mainly avian vocalizations) and technophonic sources (mainly
traffic noise, including trains and airplanes, and other sources such as park maintenance
activities), according to the scheme discussed in [38] and reported in detail in Table 1.

Table 1. Sound categories corresponding to the 19 identified sources. (First column) Sound sources.
(Second column) Quantity/Duration/Level. (Third column) Parameter index ni (ni ∈ {1 − 5} and
i = 1, 19) associated with the ith category. (Fourth column) Identification feature.

Sound Source Quantity Parameters Identification

Many 1 Many birds
Birds number Few 2 Few birds, no traffic

None 3 No birds, no other sources

>1 1 Many species
Birds species 1 2 One species, no traffic

None 3 No birds, no other sources

100% 1 60 s
Birds 75% 1 45 s
sound 50% 1 30 s

duration 25% 1 15 s
0% 1 0 s

None 2 Few birds, no traffic
Traffic level Low 4 Continuous/low traffic

High 5 Intermittent/high traffic

None 2 No traffic
Traffic type Continuous 4 Continuous/low traffic

Intermittent 5 Intermittent/high traffic

Trains Present 5 Trains
Airplanes Present 5 Airplanes, other sources

For each single minute of listening, bird vocalizations and non-biophonic sources
were searched. The former was subdivided into three main categories according to the
quantity of birds (many, few, none), number of species (>1, 1, none) and sound durations,
(100, 75, 50, 25, 0)%. The third column displays the index n of the parameter P(n) (n = 1, 5),
associated with each subcategory (i = 1, 19). The fourth column is aimed at providing a
more specific characterization of the way the subcategory could be identified. Regarding
the bird sound durations, the latter is expressed in terms of the percentage of bird singing
activity identified within the considered minute. The effective time span in seconds is
displayed in the fourth column.

The non-biophonic contributions are split into road traffic, trains, airplanes and other
technophonic noise sources. The former is subdivided into two categories, level and type
of traffic, while the last three are associated with the fifth parameter if they are present
and with the third one if absent (see below). Finally, geophonies such as rain and wind
were not considered due to their negligible contribution to the soundscape during the
measurement campaign.

2.5. The Soundscape Ranking Index

We are interested in quantifying the quality of the local environment sound by means
of a soundscape ranking index, SRI, as proposed recently [38]. In the following, we briefly
discuss how to evaluate the SRI, aimed at describing the local soundscape, at a given site j
in the network, in an average sense. The value of SRI(j, t) depends on the time interval t,
in our case (t = 1, 70), listened during the aural survey at site j. For each time interval t
and site j, we determine the event function, N(i, j, t) for the ith sound category (i = 1, 19),
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described in Table 1. The event function can be either N = 1 or N = 0, depending on
whether the event i is present or not. The SRI can then be obtained as the sum

SRI(j, t) =
19

∑
i=1

N(i, j, t)w(i), (1)

where the weights, w(i) = P(ni) c(ni), with ni = (1, 2, 3, 1, 2, 3, 1, 1, 1, 1, 1, 2, 4, 5, 2, 4, 5,
5, 5) (cf. Table 1), while the additional factor, c(ni) = (1.0, 0.75, 0.50, 0.25, 0.0) for
i = (7, 8, 9, 10, 11), respectively, and c(ni) = 1, otherwise. For instance, w(6) = P(3)
c(6) = P(3), while w(7) = P(1) c(7) = 0, and w(8) = P(1) 0.25, etc.

The choice of the values for the parameter P(n) is rather arbitrary of course, but we
can stick to the following simple considerations in order to make up a representative and
useful picture of the soundscape. We follow our previous work [38] and assume that
P(n) > 0 if the sound is associated with a natural source, while we take P(n) < 0 if it is of
anthropogenic origin. Given the fact that we consider five different situations, we chose
the values reported in Table 2 to start with.

Now, we have all the ingredients to calculate the SRI(j, t), using Equation (1), once the
event function, N(i, j, t), is known for all the subcategories i, at site j and time interval t.
SRI is expected to fluctuate as a function of t, reflecting the ever changing environmental
conditions of the varying soundscape. However, we may average the index over time in
order to get a mean value,

〈
SRI(j)

〉
, at site j, which should provide us with a quantitative

element to estimate the quality of the local environmental sound. By quality, we mean that〈
SRI(j)

〉
should be large for a natural soundscape and small for a poor one affected by

strong anthropogenic perturbations. At this point, and in order to fix the ideas, we suggest
a simple classification of the mean quality index,

〈
SRI

〉
, as displayed in Table 3.

Table 2. The starting parameters P(n) (n = 1, 5) associated with each sound category to be used in
Equation (1) (see also [38]).

n P(n) Identification

1 2 Many birds/species
2 1 Few birds/no traffic

3 0 No birds/no other sources

4 −1 Continuous/low traffic
5 −2 Intermittent/high traffic/other sources

Table 3. Quality intervals for the mean soundscape ranking index,
〈
SRI

〉
.

Poor Quality Medium Quality Good Quality

SRI < 0 0 ≤ SRI ≤ 2 SRI > 2

2.6. Optimization Procedure for P(n)

The values of P(n) reported in Table 2 can be seen as our starting guess of the unknown
parameters and are therefore arbitrary. As we discuss in Section 3, however, they appear to
build a quite robust starting set from which one can search for new “optimized” values.
In addition, we find that the optimized set is closer to the prescription in Table 3 than
the original set. We show that this different behavior is a result of the self-consistent
optimization method we have developed for obtaining the parameters P(n).

The basic quantity in our approach is the probability distribution function, Hj(SRI), of
the set of SRI values obtained at a given site j, at different time intervals t, using Equation (1).
Based on the distribution functions obtained for all active sites, we can define a quantity

54



Sensors 2021, 23, 3401

representing how “dissimilar” two distributions are. The dissimilarity between say, sites i
and j, denoted as Di,j, is here defined by the following relation:

Di,j = 1 − 1
Ai Aj

∫ ∞

−∞
dx Hi(x) Hj(x), with A2

i =
∫ ∞

−∞
dx H2

i (x), (2)

where the normalizing factor Ai ensures that Di,i = 0. The integral form used in Equation (2)
can be formally seen as the internal product of two vectors, Hi(m) and Hj(m), where m ∈ Z
are the coordinates in a high-dimensional space. Specifically, if we define the histograms
Hi(x) on a set of discrete coordinates, x = m b, where b is the bin size used to build the
histograms, we may regard Hi(m) as the mth component of the vector H̄i. This internal
product is reminiscent of a similar form, typically used in financial studies, to define
a distance between time series in terms of their cross-correlations [39]. Intuitively, the
larger Di,j is, the larger the soundscape dissimilarity between sites i and j. In other words,
Equation (2) represents a measure that can be used to estimate a soundscape distance
between sites. We can loosely say that two sites displaying very different SRI distribution
functions are very distant in soundscape space.

Actually, sites i and j are located at well defined positions in space; in particular,
they are at a fixed spatial distance, Ri,j, within the network (cf. Figure 1). Therefore, the
question arises of whether both distances, Di,j and Ri,j, are somehow related to each other.
Intuitively, one would expect that dissimilarity increases with distance. In other words, we
are interested in finding how the local soundscape changes as a function of spatial distance
R within the network. To do this, we assume, as our working hypothesis, a simple relation
of the form

Di,j � a (Ri,j[m])α, (3)

where the distances Ri,j are expressed in meters, and the exponent α > 0 needs to be
determined empirically. We expect that Equation (3) should be valid at least in an average
sense. Note that it can be written as D ∼ (R/R0)

α, where R0 is an effective length scale
associated with the network soundscape. This in keeping with the fact that D is actually
dimensionless. Numerically, the constants a and R0 are related to each other by, R0 = a−1/α.
Note that R0 is given in meters (see also Equation (4)). To simplify the notation, in what
follows, we simply write Rα

i,j, meaning (Ri,j[m])α.
As a matter of fact, α becomes the sixth parameter in our approach. Notice, however,

that P(3) = 0 in all cases, so we are effectively dealing with only five parameters: P(1),
P(2), P(4), P(5) and α. The five parameters are obtained by a least-square fit that minimizes
the total deviation of the data from the fit, i.e.,

Σ2 =
1

120

16

∑
i=1,j>i

(
Di,j − a Rα

i,j

)2
, with a =

〈
Di,jRα

i,j
〉
/
〈

R2α
i,j
〉 ≡ R−α

0 . (4)

The constant a is obtained by requiring ∂Σ/∂a = 0, and as a result, it is a function
of all the five unknown parameters. We note that in the expression for a, the symbols〈〉

represent averages over the 120 distinct site pairs (i, j) in the network. The effective
soundscape length R0 now becomes

R0 = [
〈

R2α
i,j
〉
/
〈

Di,jRα
i,j
〉
]1/α. (5)

3. Results

The results presented in this section refer to the audio files recorded on 25 May 2015,
from 06:30 a.m. to 10:00 a.m., and based on the aural survey discussed in Section 2.4.

3.1. Initial P(N) Values

We start the analysis of the soundscape using the initial values of the parameters re-
ported in Table 2. As discussed in Section 2.5, we evaluate the SRI values using Equation (1)
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at the 70 time intervals for each of the 16 active sites. The corresponding histograms vs. SRI
are reported in Figure 2.

Figure 2. Variability of SRI at each active site. The distribution functions H(SRI) were obtained using
Equation (1), from the initial values of parameters P(n) = (2, 1, 0, − 1, − 2). The scale for SRI
is fixed for all sites in the range (−5, 10). The two sets of colors (black on top and red on bottom
panel) are for convenience but indicate that the former are centered to lower values of SRI while the
latter are centered to more positive ones, suggesting an underlying organization of the sites into two
main groups.

Once the distribution functions, H(SRI), for each active site have been obtained (Figure 2),
we can evaluate, using Equation (2), the dissimilarity distances between pairs of sites. We
note that, so far, the exponent α has not been required. Indeed, it can be read off from the
plot of Di,j values versus the corresponding inter-site distances Ri,j, as shown in Figure 3.
We notice in the figure a pronounced scattering of the empirical data from the behavior
expected from Equation (3). Despite this fact, we can still recognize an increasing trend of
D vs. R, as visualized by the obtained least-square fit representing the expected power-
law featured in Equation (3). From the latter, we find α � 1/3, which is rather small,
but significant enough to conclude that the assumed power-law (Equation (3)) may be
acceptable.
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Figure 3. Dissimilarity, Di,j, between two sites, (i, j) vs. inter-site distance Ri,j, obtained from
Equation (2) using the initial set of parameters P(n) = (2, 1, 0,−1,−2). The full squares are the
empirical data, and the straight line is a least-square fit with the power law D = aRα, yielding
a = 0.049, corresponding to R0 = 8500 m, and α � 1/3. Specifically, we find

〈
DRα

〉 � 2.354 and〈
R2α

〉 � 48.03. The total error of the fit is Σ0 = 0.147. The mean inter-site distance in the network is〈
Ri,j

〉
= 353.64 m, the minimum and maximum ones: Rmin = 75 m and Rmax = 800 m, respectively.

The associated distribution function of dissimilarity is shown in Figure 4, together
with a fitting function of a simple analytical form, which should be useful for making a
quantitative comparison with the case of optimized parameters discussed below.

Figure 4. Probability density distribution of dissimilarity, corresponding to the values used in
Figure 3. We find

〈
D
〉 � 0.333 (vertical red line). The continuous line is a fit with the form y =

Axa/[1 + (x/b)c], with the normalization constant A = 19, and the fit parameters a = 1.19, b = 0.31
and c = 4.17.

Finally, we plot in Figure 5 the mean SRI values at each site, obtained from Equation (1)
and corresponding to the parameter set: P(n) = (2, 1, 0,−1,−2) and α = 0.33. We note that
all mean values turn out to be positive,

〈
SRI

〉
> 0, and they are not quite consistent with

the scenario expected from Table 3. This observation actually motivated us to search for a
way to improve on this quality scenario results. The idea is then to search for a “better” set
of parameters that can bring us beyond our initial guess, thus eliminating the arbitrariness
endowed in our parameter values.
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Figure 5. Mean
〈
SRI0

〉
obtained by averaging the index over the 70 temporal values for each active

site (yellow bars). The red and blue bars display the one σ(i) variations of the data at each site i,
above and below the local mean values, respectively. The dashed lines represent averages over all
sites of the three set of data. We find <SRI0 > = 2.14, <SRI0 >+σ = 3.68, <SRI0 >−σ = 0.60, with
σ = 1.54. The actual site identification numbers are reported just below the zero line: (1–6, 8, 10–13,
17–20, 22).

3.2. Optimized P(N) Values

In order to improve on the previous results, we let all the five parameters, P(1),
P(2), P(4), P(5) and α, vary independently and search for the “best” set that minimizes
the function Σ in Equation (4). For each set of new parameters, we need to evaluate
the SRI given by Equation (1), followed by the calculation of the dissimilarity distances,
Equation (2), once the corresponding histograms of the SRI have been obtained. To speed
up the search, we start varying each parameter value within a given range, subdivided into
few equidistant smaller intervals. Once a minimum has been found, we choose new ranges
centered around the putative minimum parameter values. In this way, we can refine the
search more efficiently and converge fast towards a solution. Indeed, few such iterations
are needed to get a stable result.

It is convenient to check the convergence of the method by first keeping α fixed and
letting the P(n) values adjust themselves so as to minimize Σ. We tried both, α = 0.33
and α = 1, and from each of the found sets, we minimized Σ with respect to α. We
obtained similar values for α in both cases, yielding α ≈ 0.5 ± 0.2. We then performed a
full search with all five parameters, finding indeed α � 0.5 ± 0.05, suggesting that we may
take α = 1/2 as our best value for this unknown exponent. Finally, we set α = 1/2 and
optimized the search for our final set of parameters, yielding

P(1) = 2.290, P(2) = 0.766, P(4) = −1.528, P(5) = −2.262, (6)

with P(3) = 0, and a final error, Σ = 0.139, for dissimilarity versus inter-site distance, as
shown in Figure 6.
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Figure 6. Dissimilarity, Di,j, between two sites, (i, j) vs. inter-site distance Ri,j, obtained from the opti-
mized parameters P(n) = (2.29, 0.766, 0,−1.528,−2.262), corresponding to the best value α = 1/2.
The full circles are the empirical data, and the straight line is a least-square fit with the power law
D = aRα, yielding a = 0.021, corresponding to R0 = 2270 m, with

〈
DRα

〉 � 7.39 and
〈

R2α
〉 � 353.6.

The total error of the fit is Σ = 0.139, which is smaller than the one obtained for the initial parameter
values, Σ0 = 0.147 (cf. Figure 3).

The distribution function of the newly obtained dissimilarity distances, Di,j, is dis-
played in Figure 7. Now, the mean dissimilarity,

〈
D
〉 � 0.375, becomes a bit larger than for

the non-optimized parameters (cf. Figure 4), while the new distribution function becomes
flatter and extends to larger values of D.

Figure 7. Probability density distribution of dissimilarity, corresponding to the values used in
Figure 6. We find

〈
D
〉 � 0.375 (vertical red line). The continuous line is a fit with the form y =

Axa/[1 + (x/b)c], with the normalization constant A = 11 and the fit parameters a = 0.96, b = 0.33
and c = 3.03.

The distribution functions of the SRI for each site are displayed in Figure 8, and their
mean values are shown in Figure 9.
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Figure 8. The distribution functions H(SRI) for the optimized parameters displayed in Equation (6).
The scale for SRI is the same used in Figure 2. Here again, we have used two sets of colors for the
histograms.

Figure 9. Same as in Figure 5 for the self-consistent set of parameters (Equation (6)). Here, we find
<SRI> = 1.65 (2.14), <SRI>+σ = 3.53 (3.68), <SRI>-σ = −0.23 (0.60), with σ = 1.88 (1.54). The
corresponding values from Figure 5 are reported in parenthesis.
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4. Discussion and Conclusions

It is convenient to summarize the main results of our work as shown in Table 4. Let
us start with the exponent α, expressing the way that dissimilarity decays with inter-
site distance (Equation (3)). Quantitatively, the values indicate that for the initial set of
parameters, dissimilarity decays more slowly (1/3) than for the optimized one (1/2),
suggesting a more persistent behavior of the soundscape. The optimized values for the
parameters P(n) display the same trend as the initial ones, differing by at most a 50 % as for
P(4). Despite this, crucial differences develop when we analyze the remaining quantities.

Table 4. Summary of the main results for the exponent α in Equation (3), the parameters
P(n) (n = 1, 5), the mean value of the SRI in the network, the dispersion of the SRI values σ

(cf. Figures 5 and 9), the mean value of dissimilarity
〈

D
〉

among all sites, the effective scale distance
R0 (cf. Equation (3)) and the total error of the fit Σ (Equation (4)).

Initial Parameters Optimized Parameters

α 1/3 1/2

P(1) 2.0 2.290
P(2) 1.0 0.766
P(3) 0.0 0.000
P(4) −1.0 −1.528
P(5) −2.0 −2.262

<SRI> 2.14 1.65
σ 1.54 1.88〈
D
〉

0.333 0.375
R0 8500 m 2270 m

Σ 0.147 0.139

The SRI behaves quite differently. Indeed, the optimized set yields a much smaller
mean SRI value for the whole network, about 23 %, than for the original non-optimized set
of parameters. This again is consistent with the behavior of dissimilarity, indicating a lower
soundscape quality than the one predicted by the original set. The dispersion of the SRI at
each site, σ(i), increases for the optimized parameter set, consistent with a more extended
variability of dissimilarity (cf. Figures 4 and 7), also reflected in their mean values,

〈
D
〉
.

The effective length scale R0 also manifests this difference as it is larger for the original set,
suggesting that dissimilarity is smaller than for the case of optimized parameters. Finally,
as expected, the optimized set yields a smaller dispersion of the data from the assumed
power-law decay of dissimilarity as given by its smaller value of Σ.

We may conclude that in our case, the initial guess for the parameter values over-
estimate the sound quality in the urban habitat we studied. This conclusion is based on
the smaller dispersion of the data obtained from the assumed empirical relation between
dissimilarity and intersite distance, as shown in Equation (3). We may expect that in other
habitats, the self-consistent parameters would be different from the initially chosen values
in either way, i.e., the soundscape quality may be either smaller or larger than initially
predicted. In both cases, the present method suggests which of the scenarios is more likely
to be correct, as it provides us with a recipe to check for the self-consistency of the empirical
data. From a more fundamental perspective, the problem of deriving the basic relation in
Equation (3) should be considered for future studies.

In view of these results, we may suggest that sound dissimilarity between sites decays
with their inter-site distance in space with an exponent α = 1/2, yielding

Di,j � [Ri,j/R0]
1/2, (7)
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where the effective length scale in the network is given by,

R0 =
〈

Ri,j
〉2/

〈
Di,j

√
Ri,j

〉2. (8)

These relations can be tested in other cases, and if confirmed, they may represent
a useful technique to estimate the internal correlations of the soundscape in the area of
interest. Indeed, the set of parameters P(n), obtained in a self-consistent fashion with the
assumed decay of dissimilarity, allows us to classify the sites according to our scheme
discussed in Table 3.

According to the results in Figure 9, we find it quite remarkable that the local SRI
mean values are consistent with our simple quality rules displayed in Table 3. We have
therefore classified them according to these rules and plotted the corresponding set of sites
with different colors, as shown in Figure 10. The good quality sites are in green color, the
medium quality ones in yellow and the poor quality sites in red. There is a “borderline”
site, number 4, which has a mean SRI close to 0. We have therefore indicated it as a full
yellow circle with a red contour.

Figure 10. Final classification of the active sensors: (red circles)
〈
SRI

〉
< 0, (yellow circles) 0 <〈

SRI
〉
< 2 (sensor 4 has been indicated with a red border line since its SRI� 0), and (green circles)〈

SRI
〉
> 2. The latter represents the best quality locations in the network. The value of the optimized

parameters are displayed in Table 4. The inactive sensors (7, 9, 14, 15, 16, 21) are depicted by the
small circles.

Environmental sound represents an important phenomenon that is fully integrated
in the ecological system as a whole [40]. This feature is strongly interconnected with
the ecological processes and patterns driven by biotic and abiotic relationships [40,41].
For this reason, environmental sounds may represent measurable indicators of ecological
relationships and environmental degradation [42,43]. In addition, a simple but effective
classification scheme to visualize the internal “structure” of the soundscape inside a habitat
should be useful for many applications, including helping the monitoring of a given area
for implementing better environmental policies.

One may also attempt to apply pattern recognition algorithms to analyze larger audio
recorders in a systematic way, in order to extract the sound subcategories (and possibly
other ones) considered in Table 1. This could be of great help, and one can rely on human
intervention only to validate the fully automatized algorithm. Our approach represents a
methodological effort to describe the environmental sound quality on the basis of a receiver
perception. For this reason, although we used short recording periods (3.5 h), obtained
from an area of approximately 22 hectares, and some of the geophonic categories were not
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represented in the audio recordings (wind, rain), we expect this study to provide a useful
measure of a habitat soundscape quality in terms of a simple SRI index.

Finally, we expect these results to be useful also in connection with more elaborated
approaches based on ecoacoustic indices and associated time series, analyzed using artifi-
cial intelligence (AI) methods, as they may serve as simpler qualitative indicators of the
soundscape quality to complement the AI results. Work in this direction is in progress.
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Abstract: In this work, a methodology is presented for city-wide road traffic noise indicator mapping.
The need for direct access to traffic data is bypassed by relying on street categorization and a city
microphone network. The starting point for the deterministic modeling is a previously developed
but simplified dynamic traffic model, the latter necessary to predict statistical and dynamic noise
indicators and to estimate the number of noise events. The sound propagation module combines
aspects of the CNOSSOS and QSIDE models. In the next step, a machine learning technique—an
artificial neural network in this work—is used to weigh the outcomes of the deterministic predictions
of various traffic parameter scenarios (linked to street categories) to approach the measured indicators
from the microphone network. Application to the city of Barcelona showed that the differences
between predictions and measurements typically lie within 2–3 dB, which should be positioned
relative to the 3 dB variation in street-side measurements when microphone positioning relative
to the façade is not fixed. The number of events is predicted with 30% accuracy. Indicators can be
predicted as averages over day, evening and night periods, but also at an hourly scale; shorter time
periods do not seem to negatively affect modeling accuracy. The current methodology opens the way
to include a broad set of noise indicators in city-wide environmental noise impact assessment.

Keywords: noise monitoring networks; microphones; road traffic noise; environmental noise mapping;
noise indicators

1. Introduction

Road traffic is commonly the main source of exposure to environmental noise in
European cities [1]. A basic step in road traffic noise mapping is gaining access to traffic
parameters such as traffic intensity, vehicle speed, acceleration and traffic composition on
each road segment in the network [2]. However, most traffic models focus on major roads
only to perform congestion analysis during rush hours [3]. On smaller roads, in contrast,
traffic data are most often lacking. Although this might be in line with the Environmental
Noise Directive [4] in Europe, stipulating that noise maps should only be produced from
55 dB(A) Lden on, this is nevertheless problematic in view of city-wide noise mapping.
When assessing human sleep disturbance due to noise, exposure mapping becomes even
more challenging and should go down to levels as low as 40 dB(A) Lnight.

Knowledge of less exposed zones is relevant as well since these zones should be of
primary interest for future residential developments and are potentially restorative places
in a city. Furthermore, only mapping exposure in part of a city could introduce bias in
environmental justice studies, an important concern nowadays when making sustainable
cities (see, e.g., [5]).

An interesting line of research showed that street categorization in a city is able to
estimate street-side exposure levels reasonably well [6–11], possibly accompanied with
limited sets of snapshot measurements, where efforts can be minimized by suited sampling
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strategies [6,12]. Similarly, roadside noise measurements were shown to be able to ade-
quately predict the underlying road traffic parameters such as vehicle speed, traffic intensity
and the share of heavy vehicles [13]. In the open GIS initiative Open Street Map (OSM),
every road in a city is present and assigned a specific category. This opens possibilities for
full city noise mapping, including low(er) exposure zones.

Linking noise exposure maps to human health effects is currently not very successful.
For an important noise policy indicator such as self-reported noise annoyance, less than
30% of the observed variance found in a surveyed population is actually captured [14].
A possible reason for this low predictive power is that current noise mapping initiatives
focus on long-term equivalent sound pressure levels only. This undermines a noise map
as an efficient urban sound planning instrument. Only recently, the shortcomings of the
commonly used energetically equivalent levels have been officially acknowledged [15].

The way people perceive environmental noise is much more complex than what can be
quantified with these standard energetically averaged sound pressure levels. A wider set
of noise indicators and psycho-acoustical indicators have long been used in other contexts,
e.g., in product design [16] and soundscape studies [17,18]. Essentially, people are very
good listeners, and even subtle changes in the spectro-temporal content of a sound might
impact the perception and reaction to it. Noise indicators of potential interest are statistical
sound pressure levels, the number of events and indicators describing the dynamic nature
of urban sound. Currently, city-wide mapping of such noise indicators is very scarce. A few
measurement-based initiatives can be found, where walkers equipped with microphones
scan a particular city quarter [19–21]. The use of these more advanced indicators to better
predict the impacts of environmental noise is currently underexplored.

In this work, a methodology is described to predict both equivalent sound pressure levels
and a wide range of other noise indicators, by means of deterministic noise modeling, where
the accuracy of the predictions is improved by fitting to long-term measurements of a city noise
monitoring network in a final step. The state-of-the-art deterministic noise modeling procedure,
facilitating the calculation of dynamic noise indicators, is described in brief in Section 2. The
proposed methodology is illustrated for the city of Barcelona (Spain) in Section 3, where a
city-wide microphone network has been operational for more than a decade.

2. Deterministic Noise Mapping Procedure

2.1. Linking Traffic Data and Open Street Map Road Categorization

Street categorization data were directly used from Open Street Map (OSM). Each
street category was assigned a set of plausible traffic parameters (more precisely traffic
intensity, vehicle speed and share of heavy vehicles). This assignment starts from existing
(highway) traffic count databases, and it is ensured that the expected logics such as a lower
traffic intensity, lower vehicle speed and a lower share of heavy vehicles on minor streets
compared to major streets are present. Depending on the deterministically predicted noise
indicators corresponding to a given scenario, additional scenarios were manually added.
In total, 15 scenarios were used (see Appendix A for an overview of the parameter settings).
In a final step, the calculated outcomes for a wide set of noise indicators are weighted
to minimize the difference with measurement from the microphone network, as will be
discussed in Section 3.2.

2.2. Dynamic Traffic Model

Simplified vehicle movements are modeled based on the hourly averaged number of
vehicles and their speeds. Vehicles are launched on a road segment at a fixed speed. When
reaching the end of that segment, the vehicle is removed from the simulation, meaning
there is no vehicle transfer from one segment to another. The inter-vehicle times respect a
Poisson distribution, and vehicle speeds of the different cars follow a normal distribution.
At the end of the simulated hour, at each road segment, the (static) vehicle counts and
average speeds are respected. More information on this simplified micro-simulation traffic
procedure can be found in [22]. A time step of 1 s was considered in this work.
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2.3. Traffic Noise Emission Model

Vehicle category, number of vehicles per hour, and average speed are used as input for
the CNOSSOS [23] road traffic acoustic emission model. These traffic-related inputs come
from the dynamic traffic modeling procedure described in Section 2.2.

2.4. Sound Propagation Model

The sound propagation modeling procedure combines the CNOSSOS sound propaga-
tion model [23] with aspects from the QSIDE urban sound propagation model [24]. Vehicles
close to a receiver (within a radius of 500 m) are treated differently from those further away
(between 500 m and at maximum 2000 m).

At close distance, and when a direct line-of-sight propagation path is possible between
a source and a receiver, geometrical divergence, ground effect and atmospheric absorption
are included following the CNOSSOS sound propagation model, implemented in the
open access NoiseModelling framework [25,26]. Only in the absence of a line-of-sight
propagation path, diffractions around horizontal edges and reflections on vertical objects
are accounted for. The maximum reflection order is 2, and the maximum source-reflection
distance is 50 m (which are standard settings; see, e.g., [27]). A standard noise mapping
receiver height of 4 m is used.

Scattering on atmospheric turbulence is added to the attenuation factors to avoid levels
becoming unrealistically low, especially behind objects. The QSIDE engineering scattering
approach [28] was used, providing an easy-to-evaluate expression adapted to the urban
environment, accounting for sound frequency, propagation distance, street canyon geometry
and turbulence strength. Although the model could include local street canyon geometry in
detail, standard building heights and widths were used to avoid time-demanding retrieval
from geographical input data. Turbulence structure parameters Cv

2 and CT
2 (see Table 1)

depend on whether the propagation occurs in rural/suburban settings or in the dense urban
fabric, and during the daytime or at night. These turbulence parameters are based on long-
term observations over flat rural zones with dispersed smaller cities [29]; in the dense urban
environment, turbulence strength is doubled in a simplified approach.

Table 1. Overview of the sound propagation models and parameter settings.

Close-by Traffic Far Traffic

Radius around receiver (in m) <500 ≥500 and <2000

Traffic (noise emission) modeling Simplified dynamic traffic modeling
following [22], at a 1 s time interval.

Aggregated traffic at discrete emission
points. Number of emission points
minimized by NoiseModelling [26]

If a direct line-of-sight path is possible CNOSSOS sound propagation model [23] without reflections on vertical objects,
without diffractions, and in a non-refracting atmosphere.

Only obstructed sound paths are present

CNOSSOS sound propagation model [23] including reflections on vertical objects
(reflection order 2, maximum source-reflection distance 50 m) and including

diffractions on horizontal edges. Downward refraction (“favorable conditions”)
is assumed with 50% occurrence in any direction.

Turbulent scattering model [28]
Rural/suburban Dense urban fabric

Distance to façade (m) Not applicable 5
City canyon width (m) Not applicable 15

Building height (m) 8 20
Day Night Day Night

Cv
2 (m4/3/s2) 0.4 0.2 0.8 0.4

CT
2 (K2/m2/3) 0.7 0.04 1.4 0.08

In order to capture dynamic noise indicators and noise events, considering individual
nearby vehicles is essential. This is not the case anymore for road traffic further away
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contributing mainly to the background noise at a receiver. This allows bundling the acoustic
energy of cars in a limited number of emission points as optimized by the NoiseModelling
framework. For the propagation simulations, an approach similar to that for nearby traffic
is followed, so depending on whether a line-of-sight path is possible or not.

The CNOSSOS favorable sound propagation approach (i.e., downward refraction) is
only considered in the absence of line-of-sight paths. In the CNOSSOS simplified curved
ray approach, the difference between refraction/no refraction is mainly relevant in the case
of propagation over objects. The probability of favorable sound propagation is then set to
50% in any propagation direction.

3. The Barcelona Microphone Sensor Network

3.1. Measurements and Data Handling

The Barcelona microphone measurement network is unique in its kind due to its size
(roughly 250 monitoring points spread over the city) and since it has been operational
for more than a decade. The network contains both fixed sensors and sensors that are
repositioned period-wise to maximize the zone monitored. Together with the fact that
individual sensors are prone to accidental failure, the dataset is rather discontinuous in
nature. Nevertheless, at some fixed sensors, continuous sound pressure level measurements
over several years are present.

The sensors are opportunistically positioned, e.g., directly attached to window sills or
near balconies. This means that the extent to which façade reflections impact the sound
pressure level measurements is not fixed (see Section 4). Microphones are always facing
the streets and are representative of the most exposed building side.

To limit the impact of changes in the traffic network infrastructure and its management
(such as limiting traffic in specific streets, changing the direction of circulation, ban of heavy
traffic), a 3-year period was selected, which was a compromise between keeping this period
as short as possible and having a sufficient amount of data while keeping as many sensor
locations as possible for processing. Nevertheless, changes in the traffic network cannot be
fully avoided within this time frame, and if this was the case, the measurements were then
the average between the two different traffic situations. Note that convergence must still be
reached at such locations (see next paragraph) for a microphone position to be used.

The processing of the measurement sensors was performed as follows. A basic time
period of 15 min was chosen for all indicators. Previous research [12] showed that this is a
suitable time frame in road traffic noise-dominated urban environments. Shorter periods
could lead to difficulties in stabilizing the noise indicators, giving too much emphasis on
momentary variations. When extending to longer periods, the temporal variations in the
sonic environment might not be captured sufficiently.

For a sensor location to be considered in further analysis, at least 3 weeks of data (not
necessarily continuous) should be available. Weekends were excluded to avoid uncommon
traffic situations. As a simplified convergence criterion, the difference between taking 80%
of the data and all available data (in a chronological way) should be less than 1 dB when
(linearly) averaging a noise indicator that uses a decibel scale. For event-based indicators,
this criterion is set to five events, and for the intermittency ratio set to 5% (see further).
If this condition is not met, this sensor location is disregarded at least for a specific time
period. Removing sensor data during the day period, e.g., does not necessarily mean that
the sensor location is also disregarded during the evening and night periods.

The measurement network contains sensors with two levels of detail. Most micro-
phone stations report total A-weighted sound pressure levels with a basic integration period
of 1 min. These data were available at 93 sensors in the current study (see Section 3.3), dur-
ing the period 2020–2021–2022. Secondly, measurement stations logging 1/3-octave bands
with a basic integration period of 1 s were used during the period 2016–2017–2018. These
more detailed data were available at 23 stations and allowed calculating more advanced
noise indicators as discussed in Section 3.4.
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3.2. Machine Learning Fitting Procedure

As an example supervised machine learning fitting algorithm, an artificial neural
network was used, as implemented in Matlab [30]. A standard split into training, validation
and test sets using 70%, 15% and 15% of the data, respectively, was chosen. The training
algorithm “Levenberg–Marquardt backpropagation” was used, which is recommended as
a fast, first-choice procedure [30]. To prevent overfitting, only five neurons were used, with
a single hidden layer [31]. Given the random split into training, validation and test datasets,
models were repeatedly constructed, allowing the use of averaged model predictions and
giving an indication of confidence intervals on repeated predictions.

In the case of predicting A-weighted equivalent sound pressure levels (see Section 3.3),
the input consists of 93 locations × 15 traffic scenarios; there are 93 (locations) × 3 (day,
evening and nightly averaged) or 93 (locations) × 24 (hourly averaged) outputs. In case
more advanced noise indicators were included (see Section 3.4), 23 (locations) × 15 (traffic
scenario) × 29 (indicators) inputs were used to predict 23 (locations) × 29 (indicators) × 3
(day, evening and nightly averaged) outputs.

This work does not aim at finding the most accurate or fastest machine learning approach
for this specific application, but rather showcases what can be achieved with a standard and
well-established supervised machine learning fitting approach. Similarly, further optimization
of the neural network settings is also beyond the scope of the current work.

3.3. Predicting A-Weighted Equivalent Sound Pressure Levels

Using the basic LAeq,1min values, an integration is performed to 15 min. In the next
step, LAeq,15min data are linearly averaged over day (7:00–19:00), evening (19:00–23:00) and
night (23:00–7:00) periods, thus providing a typical value in each period, and form the basis
for the artificial neural network predictions. In a second set of predictions, hourly averaged
LAeq,15min data are used as well.

Figures 1–3 depict the 15 deterministic predictions at each sensor location that formed
the basis for the weighting by the artificial neural network, together with the measured
values (i.e., the ground truth), the mean predicted values and the 90th and 10th percentiles
based on repeated model constructions. On the horizontal axis, the location ID number is
used, which is an arbitrary number but easily allows assessing changes from location to
location, both in measurements and predictions. Figures are shown for the daily, evening
and nightly averaged LAeq,15min. Note that sensors with an insufficient number of data
points or sensors not leading to converged indicators (see Section 3.1) were obviously
not used during the construction of the machine learning model. Once the model was
constructed, predictions with the model were performed at all 93 sensor locations. Clearly,
only locations with both measurements and predictions were considered in the subsequent
accuracy analysis.

In Figures 4–6, the measured data are plotted on the street map of Barcelona, complying
with the selection criteria (see Section 3.1), the (mean) predictions at (all) sensor locations,
and the difference between measurements and predictions where possible (as root-mean-
square error, RMSE). As an example, daytime data only are shown. At most locations,
prediction errors are limited, although a few points give rise to larger errors.
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Figure 1. Deterministic predictions of LAeq,15min for each single traffic scenario, by the artificial neural
network (showing the mean prediction and the 90th and 10th percentiles, based on repeated model
constructions), together with the converged measurements, at each of the 93 locations where a sensor
node is/was operational. Data shown here are the linearly averaged LAeq,15min during the daytime.

Figure 2. Deterministic predictions of LAeq,15min for each single traffic scenario, by the artificial neural
network (showing the mean prediction and the 90th and 10th percentiles, based on repeated model
constructions), together with the converged measurements, at each of the 93 locations where a sensor
node is/was operational. Data shown here are the linearly averaged LAeq,15min during the evening.
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Figure 3. Deterministic predictions of LAeq,15min for each single traffic scenario, by the artificial neural
network (showing the mean prediction and the 90th and 10th percentiles, based on repeated model
constructions), together with the converged measurements, at each of the 93 locations where a sensor
node is/was operational. Data shown here are the linearly averaged LAeq,15min during the night.

Figure 4. Linearly averaged LAeq,15min from measurements during daytime. Only sensor locations
with converged measurements and data falling within the pre-selected timeframe are shown.

71



Sensors 2023, 23, 5865

Figure 5. Mean LAeq,15min predictions during daytime, at 93 spots where a sensor node is/was
operational.

Figure 6. Root-mean-square error (RMSE) between measured and (mean) predicted LAeq,15min during
daytime. Only sensor locations with converged measurements and data falling within the pre-selected
timeframe were used for this analysis.

The histograms in Figure 7 depict the actual differences between measurements and
predictions, showing that the zero error class is most populated in all time periods consid-
ered. During the night, the distribution is still symmetrical, but the spread seems somewhat
larger. The RMSEs are 2.0 dB(A) during the daytime, 2.1 dB(A) during the evening and
3.3 dB(A) during the night.

Results for hourly predictions are depicted in Figure 8, shown as temporal patterns over
24 h periods at each sensor location. The measured temporal patterns are shown as well. This
figure does not allow the comparison of measurements and predictions at any individual
sensor location, but it nicely shows that the bulk of the temporal patterns are well predicted.
Both locations with a rather flat pattern and those with stronger level drops during the night
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hours can be distinguished, both in the measurements and predictions. Directly related to
Figure 8, Figure 9 shows the hourly RMSEs. Minimum values are found around noon, near
2 dB(A), and increase slightly above 3 dB(A) between 3 and 4 o’clock at night.

Figure 7. Histograms showing the difference between the (mean) predicted and measured LAeq,15min,
linearly averaged over daytime, evening and night hours.

Figure 8. Hourly temporal patterns of LAeq,15min at all 93 measurement locations. The measurements
are shown together with the mean predictions based on repeated model construction. Data shown
here are the linearly averaged LAeq,15min during a specific hour. Interrupted lines indicate hours
where measurements are not converged due to an insufficient amount of data.
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Figure 9. Root-mean-square error (RMSE) between measured and (mean) predicted LAeq,15min over
all locations on an hourly basis. Only sensor locations with converged measurements and data falling
within the pre-selected timeframe are considered.

3.4. Predicting Advanced Noise Indicators

The spectro-temporal detail of the more detailed measurement stations is 1 s and in
1/3-octave bands. All indicators are first evaluated over a 15 min period. Calculating
over longer time frames (hourly, or day/evening/night period) is performed by linearly
averaging the 15 min indicators.

In Table 2, an overview is given of the noise indicators that were considered in this
work. It concerns the basic equivalent sound pressure levels, either non-weighted (Leq),
A-weighted (LAeq) or C-weighted (LCeq). For the calculation, the basic 1 s 1/3-octave bands
are first frequency-weighted and integrated to a total sound pressure level, and in the next
step, they are integrated to 15 min.

Table 2. Overview of the 29 noise indicators considered in this work.

Equivalent
Sound

Pressure
Levels

Statistical
Sound

Pressure
Levels

Number of
Events
above

x dB(A)

Number of
Events
above a
Specific

Indicator

Sound
Dynamics
Indicators

Intermittency
Ratio

Leq LA01 EN55 ENLA10 σAS IntRatio
LAeq LA05 EN60 ENLA50 σCS
LCeq LA10 EN65 ENLA50 + 3 LA10–LA90

LA50 EN70 ENLA50 + 10 LC10–LC90
LA90 EN75 ENLA50 + 15
LA95 EN80 ENLA50 + 20
LA99 ENLAeq + 10

ENLAeq + 15

Statistical level LAn denotes the A-weighted sound pressure level exceeded n% of the
time, where LA10, e.g., is representative of peak levels, while LA90, e.g., is representative of
background noise levels. The percentiles are calculated over a period of 15 min based on
the 1 s A-weighted total levels.

ENx is the number of events above a fixed LAeq of x dB. An event is defined by a
peak in the time history of total A-weighted levels, lasting for at least 1 s. The number
of occurrences is counted over a 15 min period. Similarly, the number of events above a
statistical noise level, or a statistical noise level plus x dB, is considered as well.
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Next, a number of sound dynamics indicators are considered. The difference between
LA10 and LA90 is a commonly used metric in this respect; a large value means a strong
variation in exposure level. LC10−LC90 is a similar indicator; in theory, it is applicable to
higher absolute exposure levels, but it is often used to study dynamics with a focus on the
low sound frequency range. These indicators are calculated as the differences between
statistical levels assessed over the 15 min period.

Indicators σAS and σCS are the standard deviations on either the A-weighted or
C-weighted 1 s total sound pressure levels, calculated over a period of 15 min.

The intermittency ratio IntRatio [32] is defined as the acoustic energy present in peaks
relative to the total amount of energy in a particular time period, expressed as a percentage.
The threshold to detect peaks is set to 3 dB (above the Leq,15min) as proposed in [32].

When having access to detailed spectro-temporal data, the list of noise indicators that
could be calculated is clearly not limited to the current selection. The current selection
could especially be relevant to acoustically characterize urban traffic noise.

In Figures 10–12, fifteen deterministic predictions for (a selection of) statistical sound
pressure levels at each sensor location are depicted, forming the basis for the weighting by
the artificial neural network. These graphs further show the measured values, the mean
predicted values and the 90th and 10th percentiles based on repeated model constructions.
Figures are shown for the daily averaged indicators only for brevity.

Figure 10. Deterministic predictions of the statistical sound pressure level LA10 for each single
traffic scenario, by the artificial neural network (showing the mean prediction and the 90th and 10th
percentiles, based on repeated model constructions), together with the converged measurements,
at each of the 23 locations where a sensor node is present with detailed logging capabilities. Data
shown here are linearly averaged over 15 min periods during daytime.
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Figure 11. Deterministic predictions of the statistical sound pressure level LA50 for each single
traffic scenario, by the artificial neural network (showing the mean prediction and the 90th and 10th
percentiles, based on repeated model constructions), together with the converged measurements,
at each of the 23 locations where a sensor node is present with detailed logging capabilities. Data
shown here are linearly averaged over 15 min periods during daytime.

Figure 12. Deterministic predictions of the statistical sound pressure level LA90 for each single
traffic scenario, by the artificial neural network (showing the mean prediction and the 90th and 10th
percentiles, based on repeated model constructions), together with the converged measurements,
at each of the 23 locations where a sensor node is present with detailed logging capabilities. Data
shown here are linearly averaged over 15 min periods during daytime.

As another example, intermittency ratio predictions can be evaluated based on Figure 13
during the daytime. An overview of the RMSEs of all 29 indicators, averaged over day,
evening and night periods, is given in Table 3.
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Figure 13. Deterministic predictions of the intermittency ratio for each single traffic scenario, by the
artificial neural network (showing the mean prediction and the 90th and 10th percentiles, based on
repeated model constructions), together with the converged measurements, at each of the 23 locations
where a sensor node is/was operational with detailed logging. Data shown here are linearly averaged
over 15 min periods during daytime.

Table 3. Root-mean-square errors (RMSEs) for each noise indicator considered over all sensor
locations, split into day, evening and night periods.

Indicator Day Evening Night

Leq (dB) 1.9 2.2 1.8
LAeq (dB) 2.1 2.1 1.9
LCeq (dB) 2.1 2.3 2.0
LA01 (dB) 2.2 2.2 2.3
LA05 (dB) 2.4 2.4 2.1
LA10 (dB) 2.6 2.5 1.9
LA50 (dB) 2.2 2.3 2.3
LA90 (dB) 1.9 2.5 2.6
LA95 (dB) 2.1 2.6 2.0
LA99 (dB) 2.1 2.7 2.0
σAS (dB) 0.9 1.0 1.1
σCS (dB) 0.8 0.8 0.9

LA10–LA90 (dB) 2.3 2.4 2.5
LC10–LC90 (dB) 1.6 1.9 1.9

EN55 (n.o.e.) 1 4.3 6.5 5.3
EN60 (n.o.e.) 7.4 7.0 8.4
EN65 (n.o.e.) 10.6 7.8 9.4
EN70 (n.o.e.) 12.3 10.9 2.7
EN75 (n.o.e.) 3.4 3.9 4.2
EN80 (n.o.e.) 3.2 3.1 1.6

ENLA10 (n.o.e.) 4.9 4.8 4.8
ENLA50 (n.o.e.) 8.3 9.8 8.6

ENLA50 + 3 (n.o.e.) 7.8 8.8 6.2
ENLA50 + 10 (n.o.e.) 3.9 4.2 3.9
ENLA50 + 15 (n.o.e.) 1.8 2.1 2.5
ENLA50 + 20 (n.o.e.) 0.9 0.8 1.7
ENLAeq + 10 (n.o.e.) 1.0 1.0 1.3

ENLA10 (n.o.e.) 0.5 0.5 0.6

IntRatio (%) 4.9 6.1 5.5
1 n.o.e. stands for “number of events”.
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The A-weighted statistical levels, averaged over the three periods considered, only
score slightly worse (2.3 dB) than the equivalent sound pressure levels (2.0 dB). The σS
indicators, either A-weighted or C-weighted, have an RMSE lower than 1 dB, while L10–L90
is predicted within 2 dB.

The errors in the number of noise events shown in Table 3 should be seen relative to the
total number of events at a particular location. The larger errors are typically for locations and
indicators with more events. When expressing the RMSEs relative to the (measured) total
number of events, values equal to 26%, 28% and 30% are found for day, evening and night
periods, respectively. The IntRatio is predicted with an RMSE of about 5–6%.

4. Discussion

The current work shows that a basic set of deterministic noise mapping simulations,
relying on street categorizations, forms a good basis for predicting sound pressure levels
and related noise indicators. RMSEs with relation to 15 min equivalent sound pressure
levels, averaged over day, evening and night time, were 2.0 dB(A), 2.1 dB(A) and 3.3 dB(A),
respectively, for the case study of Barcelona, relying on a subset of 93 sensor locations with
data over a period of 3 years. The histograms of differences between (fitted) simulations
and measurements show that most data fall in the 0 dB(A) error class. Using this same
approach, linearly averaged hourly predictions are possible, showing an RMSE below
2 dB(A) around noon, increasing to 3 dB(A) in the middle of the night. However, at a
few sensor locations, larger errors are observed. Averaged daily temporal patterns of
LAeq,15min can be predicted too, showing logical results, and clearly distinguish between
sensor locations with a rather flat pattern and those with a stronger level drop during the
night hours.

This same procedure also works well for the more advanced noise indicators considered
here. Some care is needed since this analysis is based on a more limited number of sensors.
Nevertheless, similar RMSEs were obtained, generally between 2 and 3 dB for indicators
expressed in decibel units. Predicting a set of statistical sound pressure levels leads to errors
similar to those for equivalent sound pressure levels. Capturing sound dynamics by means of
the standard deviation, calculated based on 1 s LAeq or LCeq, leads to prediction errors near
1 dB. The intermittency ratio is predicted with an RMSE of about 5–6%.

The number of events, an indicator that might be especially relevant for assessing
sleep disturbance by environmental noise, can be reasonably well predicted too. The larger
RMSEs are typically for locations and indicators with more events. Note that at a location
with a large number of events, missing a few events will not change the perception of the
sonic environment. In contrast, if there are only a few events, each individual event has a
bigger importance. Median relative errors are near 30%.

The artificial neural network fitting procedure uses a random split into training,
validation and test subsets. Various model constructions allow deriving prediction ranges
per location as a measure for the modeling uncertainty, while averaging model responses
stabilizes results. For the LAeq,15min predictions, using 93 sensor locations, the 10th and
90th percentiles on the predictions cover rather small ranges. For the more advanced noise
indicator predictions (23 sensors), these uncertainty ranges are extensive and could indicate
a lack of a sufficient amount of data. Notwithstanding these concerns, the linearly averaged
fitted predictions make sense and do not seem to deviate more from the measurements
than the artificial network trained on 93 sensor locations. Although the fitting procedure
does not (explicitly) impose boundaries during the training, the average predictions nicely
fit within these ranges. This indicates that the translation of street categories to traffic
parameters, performed iteratively based on expert judgment, is performed adequately, at
least for the specific sensor locations considered.

These observed errors should further be seen in view of façade reflections that play a
significant role in inner-city street-side measurements. In the current dataset, the actual
distance of the microphones relative to the façades is not fixed. Since exterior building
surfaces are predominantly rigid, this will lead to strong reflections; consequently, standing
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waves will appear in front of a façade, characterized by frequency ranges with constructive
interferences. At other frequencies, pronounced destructive interference dips appear.
Measurements and numerical simulations, focusing on road traffic noise sources, showed
that the increase in sound pressure level, relative to the free field, is typically between 3 and
6 dB [33–36]. Interference effects are not accounted for in the noise mapping propagation
module. This difference in 3 dB could therefore be considered as a random factor during
the fitting procedure. In addition, the distance relative to the driving lane is also relevant in
relation to the magnitude of the façade reflections [37,38].

The deterministic modeling process is based on the CNOSSOS [23] and QSIDE mod-
els [24]. CNOSSOS is currently the recommended model for noise mapping in the European
Union and basically stems from the ISO9613-2 model [39]. The model captures the basic
physics of sound propagation in the outdoor environment. The focus is on rapid eval-
uation rather than achieving high accuracy, making the model suited for strategic noise
mapping in large zones. The QSIDE model was designed specifically to model exposure
at non-directly exposed building sides in urban environments. Only the QSIDE turbulent
scattering formula [28] is used in the current context. The parameter settings and model
choices aim at balancing the expected physical accuracy and computational cost.

In this respect, simplifications and inaccuracies arising from the deterministic mod-
eling process might be—at least partly—corrected for by the fitting procedure, aiming
primarily at weighting the level predictions of the different traffic parameter scenarios. In
the current deterministic simulations, the reflection order on vertical objects is limited to 2.
In a street canyon, however, a much larger number of reflections is needed; convergence in
sound pressure level might need an order of 20 or more [40]. Despite this strong limitation
during the deterministic modeling, street-side levels are still adequately predicted. A possi-
ble explanation is that a constant factor (“street amplification”) is implicitly added during
the fitting. Research found that the many sound reflections in a street build up a reverberant
field that can be captured by a “building correction” [37] or “reflection ratio” [41], mainly
depending on street width [41]. Logically, street width depends on street category. As
another example, the local vehicle fleet might not fully align with the standard sound
emission model and might depend on the average age and maintenance degree of the cars
and the popularity of specific engine types [42].

In addition, the diffraction formula used in CNOSSOS is a strong simplification
of a complex physical process (see, e.g., [43]). Especially in the case of realistic urban
environments, characterized by consecutive diffractions over roof edges, accuracy will
further degrade. The minimum level set by accounting for turbulent scattering could at
least avoid levels becoming unrealistically low, which is a common issue with simplified
diffraction modeling over buildings [24]. Note, however, that concerns on modeling sound
propagation towards shielded building sides might not be a main problem in the current
work since most sensors are positioned at the street side. Application of the current
methodology to shielded building façades, of high relevance, e.g., with respect to the
promotion of quiet sides [44], needs further study. Indeed, sound fields in non-directly
exposed zones in the urban environment might be strongly different, e.g., in relation to
their dynamics [45].

The methodology presented in this work needs an extensive microphone measurement
network for weighting the traffic scenarios and therefore is not readily applicable to any city.
Although such (permanent) networks are still scarce, they are increasingly being deployed
in bigger cities all over the world such as Barcelona [46], New York [47], and Paris [48],
just to name a few. Although high-end network-based microphone systems are possible,
more affordable options using consumer electronics microphones exist. Such sensors have
become very cheap due to mass production. Although such sensors are not primarily
intended as measurement devices, they can measure sound pressure levels reasonably
well. It was shown before that cheap microphones that highly correlate to reference type-1
microphones even in harsh outdoor conditions can be identified; when the deviations
are expressed in total A-weighted (road traffic) noise levels, values of less than 1 dB are
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obtained, in excess of the deviation amongst reference microphones themselves [49]. More
recent developments and experience with MEMS microphones [50–52] could further boost
the deployment of city-wide microphone networks. The implicit traffic data retrieval in
the current work could further benefit from including computer vision technologies [53].
In [54], e.g., camera images were directly used for noise mapping using machine learning.

A relevant question is whether the trained fitting network could be transferable to
other cities. It is expected that this is unlikely, since the link between street categories and
traffic parameters could be strongly locally dependent. In addition, as discussed before,
the network might not only weight the traffic scenarios, but also traffic and propagation-
related aspects are corrected for. Examples are the typical street widths and number of
lanes corresponding to a specific street category in a city, traffic management policy, and
preferred road surfaces and their maintenance.

5. Conclusions

The proposed advanced noise indicator mapping procedure, using a set of determin-
istic predictions combined with data from a city microphone measurement network, has
been shown to be an approach with high potential. Both equivalent sound pressure levels
and more advanced noise indicators expressed in decibel units lead to RMSEs between 2
and 3 dB. These deviations should be positioned relative to the 3 dB variation in street-side
urban road traffic noise exposure measurements when the microphone positioning relative
to the façade is not fixed. The current work further shows that city-wide noise mapping
without access to direct traffic data is feasible on the condition that a microphone network
is available, and at the same time, systematic inaccuracies occurring at any stage during
the deterministic modeling process might be implicitly corrected for, at least to some extent.
Continued research and more case studies are needed to see whether the current concept
can grow to a mature urban traffic noise mapping methodology.
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Appendix A

In Table A1, the link between the Open Street Map categories and the traffic intensity,
vehicle speed and share of heavy vehicles is shown, for the 15 scenarios that were used in
this work.
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Table A1. Traffic parameters assigned to the Open Street Map street categories that were explicitly
calculated with the deterministic noise mapping methodology. Vehicle intensities (VIs) are expressed
in cars per hour, the share of heavy vehicles (SHV) in %.

Period Road Type
Vehicle

Speed (km/h)
VI (SHV)
Scenario 1

VI (SHV)
Scenario 2

VI (SHV)
Scenario 3

VI (SHV)
Scenario 4

VI (SHV)
Scenario 5

VI (SHV)
Scenario 6

Day

motorway 130 20,400 (15%) 10,200 (15%) 5100 (15%) 20,400 (15%) 20,400 (20%) 20,400 (15%)
trunk 110 8400 (15%) 4200 (15%) 2100 (15%) 8400 (15%) 33,600 (20%) 16,800 (15%)

primary 80 4800 (0%) 2400 (0%) 1200 (0%) 4800 (0%) 19,200 (5%) 9600 (0%)
secondary 80 3300 (0%) 3300 (0%) 3300 (0%) 1750 (0%) 26,400 (5%) 6600 (0%)

tertiary 50 350 (0%) 350 (0%) 350 (0%) 175 (0%) 8400 (0%) 2100 (0%)
residential 30 175 (0%) 175 (0%) 175 (0%) 85 (0%) 350 (0%) 1400 (0%)

service 30 80 (0%) 80 (0%) 80 (0%) 42 (0%) 175 (0%) 175 (0%)

Evening

motorway 130 20,400 (11%) 10,200 (11%) 5100 (11%) 20,400 (11%) 20,400 (16%) 20,400 (11%)
trunk 110 1600 (11%) 800 (11%) 400 (11%) 1600 (11%) 12,800 (16%) 3200 (11%)

primary 80 1000 (0%) 500 (0%) 250 (0%) 1000 (0%) 8000 (5%) 2000 (0%)
secondary 80 600 (0%) 600 (0%) 600 (0%) 300 (0%) 9600 (5%) 1200 (0%)

tertiary 50 100 (0%) 100 (0%) 100 (0%) 50 (0%) 2400 (0%) 600 (0%)
residential 30 50 (0%) 50 (0%) 50 (0%) 25 (0%) 100 (0%) 400 (0%)

service 30 25 (0%) 25 (0%) 25 (0%) 12 (0%) 50 (0%) 50 (0%)

Night

motorway 130 20,400 (32%) 10,200 (32%) 5100 (32%) 20,400 (32%) 20,400 (37%) 20,400 (32%)
trunk 110 800 (32%) 400 (32%) 200 (32%) 800 (32%) 6400 (37%) 1600 (32%)

primary 80 640 (0%) 320 (0%) 160 (0%) 640 (0%) 5120 (5%) 1280 (0%)
secondary 80 360 (0%) 180 (0%) 180 (0%) 160 (0%) 5760 (0.5%) 720 (0%)

tertiary 50 50 (0%) 50 (0%) 50 (0%) 25 (0%) 1200 (0%) 300 (0%)
residential 30 25 (0%) 25 (0%) 25 (0%) 12 (0%) 50 (0%) 50 (0%)

service 30 12 (0%) 12 (0%) 12 (0%) 6 (0%) 25 (0%) 100 (0%)

VI (SHV)
Scenario 7

VI (SHV)
Scenario 8

VI (SHV)
Scenario 9

VI (SHV)
Scenario 10

VI (SHV)
Scenario 11

VI (SHV)
Scenario 12

VI (SHV)
Scenario 13

VI (SHV)
Scenario 14

VI (SHV)
Scenario 15

33,300 (12.9%) 28,404 (16.2%) 34,315 (11.8%) 35,481 (7.7%) 20,400 (15%) 20,400 (20%) 20,400 (15%) 20,400 (15%) 20,400 (15%)
26,928 (5.4%) 21,012 (7.3%) 26,794 (4.4%) 27,705 (2.3%) 8400 (15%) 8400 (20%) 16,800 (15%) 8400 (15%) 33,600 (15%)
26,928 (5.4%) 21,012 (7.3%) 26,794 (4.4%) 27,705 (2.3%) 4800 (0%) 4800 (5%) 9600 (0%) 4800 (0%) 19,200 (0%)
18,192 (10.7%) 14,652 (13.6%) 18,061 (9.8%) 19,562 (5.7%) 6600 (0%) 6600 (5%) 13,200 (0%) 13,200 (0%) 26,400 (0%)

8928 (6.2%) 7476 (7.6%) 9050 (5.1%) 9717 (2.6%) 2100 (0%) 2100 (5%) 2100 (0%) 4200 (0%) 8400 (0%)
3216 (3.5%) 2400 (4.4%) 3062 (3.1%) 3404 (1.6%) 350 (0%) 350 (5%) 350 (0%) 700 (0%) 1400 (0%)
1098 (2.7%) 768 (3.6%) 1059 (2.4%) 1110 (1.4%) 175 (0%) 175 (5%) 175 (0%) 350 (0%) 700 (0%)

20,400 (11%) 20,400 (11%) 20,400 (11%) 20,400 (11%) 20,400 (11%) 20,400 (16%) 20,400 (11%) 20,400 (11%) 20,400 (11%)
3200 (11%) 3200 (11%) 3200 (11%) 3200 (11%) 1600 (11%) 1600 (16%) 3200 (11%) 1600 (11%) 12,800 (11%)
2000 (0%) 2000 (0%) 2000 (0%) 2000 (0%) 1000 (0%) 1000 (5%) 2000 (0%) 1000 (0%) 8000 (0%)
1200 (0%) 2400 (0%) 2400 (0%) 2400 (0%) 1200 (0%) 1200 (5%) 2400 (0%) 4800 (0%) 9600 (0%)
600 (0%) 600 (0%) 600 (0%) 600 (0%) 600 (0%) 600 (5%) 600 (0%) 1200 (0%) 2400 (0%)
400 (0%) 100 (0%) 100 (0%) 100 (0%) 100 (0%) 100 (5%) 100 (0%) 200 (0%) 400 (0%)
50 (0%) 50 (0%) 50 (0%) 50 (0%) 50 (0%) 50 (5%) 50 (0%) 100 (0%) 200 (0%)

20,400 (32%) 20,400 (32%) 20,400 (32%) 20,400 (32%) 20,400 (32%) 20,400 (37%) 20,400 (32%) 20,400 (32%) 20,400 (32%)
1600 (32%) 1600 (32%) 1600 (32%) 1600 (32%) 800 (32%) 800 (37%) 1600 (32%) 800 (32%) 6400 (32%)
1280 (0%) 1280 (0%) 1280 (0%) 1280 (0%) 640 (0%) 640 (5%) 1280 (0%) 640 (0%) 5120 (0%)
1440 (0%) 1440 (0%) 1440 (0%) 1440 (0%) 720 (0%) 720 (5%) 1440 (0%) 2880 (0%) 5760 (0%)
300 (0%) 300 (0%) 300 (0%) 300 (0%) 300 (0%) 300 (5%) 300 (0%) 600 (0%) 1200 (0%)
50 (0%) 50 (0%) 50 (0%) 50 (0%) 50 (0%) 50 (5%) 50 (0%) 100 (0%) 200 (0%)
25 (0%) 25 (0%) 25 (0%) 25 (0%) 25 (0%) 25 (5%) 25 (0%) 50 (0%) 100 (0%)
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Abstract: The mobility and activity restrictions imposed in Spain due to the COVID-19 pandemic
caused a significant improvement in the urban noise pollution that could be objectively measured in
those cities with acoustic sensor networks deployed. This significant change in the urban soundscapes
was also perceived by citizens who positively appraised this new acoustic scenario. In this work,
authors present a comparative analysis between different noise indices provided by 70 sound sensors
deployed in Barcelona, both during and before the lockdown, and the results of a perceptual test
conducted in the framework of the project Sons al Balcó during the lockdown, which received more
than one hundred contributions in Barcelona alone. The analysis has been performed by clustering
the objective and subjective data according to the predominant noise sources in the location of the
sensors and differentiating road traffic in heavy, moderate and low-traffic areas. The study brings out
strong alignments between a decline in noise indices, acoustic satisfaction improvement and changes
in the predominant noise sources, supporting the idea that objective calibrated data can be useful to
make a qualitative approximation to the subjective perception of urban soundscapes when further
information is not available.

Keywords: lockdown; soundscape; LAeq; annoyance; perception; WASN; Barcelona

1. Introduction

The lockdown period during the COVID-19 outbreak at the beginning of 2020 allowed
a new possibility not recorded yet: to be able to dismiss the human effect on many situations
and confront unexplored scenarios, which could give clues to better understand human
behavior. One of these situations was the reduction in acoustic noise level in urban and
suburban areas since many people were confined at home or at least were subjected to
severe mobility restrictions.

The lockdown gave the scientific community a unique scenario to assess how the
reduction in noise levels affects the human perception of the acoustic environment. It is
expected that the lower noise levels measured during the confinement translate to higher
levels of acoustic satisfaction by the population. However, noise levels alone do not explain
the complexity of the subjective acoustic comfort appraisal. In fact, the type of predominant
noise source should be taken into account [1]. Therefore, a combined analysis of objective
noise indices and the subjective assessment of the soundscapes performed during the
lockdown, taking into account the predominant noise sources present in different areas,
could give a very useful insight into which regulations should have a greater impact on
acoustic comfort (e.g., reducing traffic density in quieter residential areas or limiting night-
time leisure activities). As these kind of regulations normally face a strong rejection by part
of the citizenship (such as private vehicle owners or people related to the leisure sector),
assessing and comparing their expected effectiveness beforehand is essential.
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In a previous research, ref. [2] data gathered from acoustic sensors scattered in diverse
acoustic points in a medium-sized city (i.e., Girona, Spain) were compared with the answers
reported in a poll and conducted around the same points. The authors were aware of the
very small set of subjective data analyzed. However, it satisfied the goal of opening
the door to the possibility of evaluating the soundscape by means of both objective and
calibrated measurements and perceived appraisal by citizens. The answers reported in the
survey, despite being a preliminary analysis with limited data, were able to distinguish the
sound sources present around a certain sensor and match those noise sources detected in
sensors data analysis. The results presented in that work also aligned with the objective
measurements related to noise levels and the perception of the neighbors. There was
a remarkable coherence with a prior analysis [3] when the authors also analyzed the
environmental sound scenario before and during the lockdown for each of the sensors. In
the current work, we make a step forward and move to a much bigger city (i.e., Barcelona,
Spain) and we correlate data from 70 acoustic sensors with the answers of the 119 volunteers
who assessed soundscapes from different locations within the city.

In this study, the authors explore the possibility of deriving some human perceptions
by means of objective data provided by a number of noise sensors in the city of Barcelona [4].
Objective data are compared with subjective data and possible correlations are pursued
between sensors data and subjective responses gathered by a survey in the same city. All
sensor data and subjective surveys were collected during the COVID-19 lockdown in 2020.
Sensors are assembled by common main source of noise with the aim to check whether
there is a clear correlation with the survey outcomes. Clusters of sensors are build and
both the type and level of the noise are taken into account when comparing subjective
soundscape assessment with objective acoustic data. Authors will also present an analysis
on the acoustic satisfaction assessment prior and during the lockdown per type of main
noise source, as well as an assessment of perceptual constructs for soundscapes for each
cluster of contributions.

This paper is structured as follows. Section 2 shows the state-of-the-art of the sensor
data collection, with special emphasis on the lockdown period. Section 3 details the
lockdown restrictions in Barcelona, the data used in this work, the description of the
studied areas and the data treatment performed. Next, Section 4 details several clusters of
sensors in Barcelona with the comparison of the objective measurements and the subjective
results. Finally, Section 5 offers a discussion on the results and on the strengths and
limitations of the study. Section 6 details the conclusions of this work.

2. State-of-the-Art

The mobility and activity restrictions imposed by the COVID-19 pandemic provided,
unintentionally, a unique scenario to evaluate how these restrictions affect the noise pol-
lution levels and their perception by citizens. In the past three years, many studies have
been conducted to assess the effects of the lockdown on different soundscapes. Most of
the literature has focused on one of two approaches. On the one hand, some authors have
chosen to analyze objective data collected by a sensor or a network of sensors during the
lockdown in order to compare the results with normal pre-pandemic data. On the other
hand, other researchers opted to conduct a survey about the perception of people during
these same periods.

Most of the published articles on data gathered by sensors during the lockdown
are from urban or sub-urban areas. However, several studies have also been conducted
in other environments such as underwater soundscapes [5–8], marine soundscapes [9],
offshore human activities [10] and airport surroundings [11]. Furthermore, most of the
research conducted in populated areas focused mainly on determining the LAeq reduction
caused by the restrictions. Nonetheless, other changes in the soundscape have also been
highlighted, e.g., in the San Francisco Bay Area, where a shift in the song frequency in
some birds has been detected during the COVID-19 lockdown [12]. Apparently, the more
favorable conditions caused by the drastic reduction in human activity and anthropogenic

85



Sensors 2024, 24, 1650

noise not only affected aspects like activity schedules, movement dynamics or exploratory
behavior of different species [13] but also the vocalizations used in their songs in order
to maximize communication distance in this new acoustic environment [12]. Another
study [14] proved that the distribution of anomalous noise events and the intermittency
ratio showed statistically significant differences in urban and suburban areas in Milan and
Rome during the COVID-19 lockdown translating to a noticeable decrease in the negative
impact of noise pollution in the population of both areas.

The geographical extent of these analyses varies from a single location in a city,
e.g., Stockholm [15], to the combined contribution of seven of the major conurbations in
India [16,17]. Lately, sensor networks consisting of sound meters have been deployed
in many cities. Most of the recent publications that have studied changes in noise levels
in 2020 have taken advantage of data collected from them. However, the scope of these
networks differs significantly from one city to another ranging from 3 sound meters (as of
the date of the study) in Montreal [18] to the impressive 70 sensors in Barcelona [4]. It is also
worth noting that, in some cases, portable monitoring stations have been used [19,20] to
gather noise data in a number of different locations when a permanent network of sensors
was not available.

As expected, most of the literature verified a noteworthy reduction in the mean
LAeq level of noise pollution during the lockdown. Nonetheless, some notable exceptions
have also been spotted. In a quiet residential area in the city of Kobe [21]. Noise levels
were higher during the state of emergency declared, apropos of the COVID-19 disease.
According to the author, this area experiences seasonal changes in noise levels, making
it more difficult to correctly set target values of the acoustic environment planning by
referring to the measured noise level during the shutdown. Also, in Boston [22], in one of
the three protected areas assessed, located near a highway, sound levels were between 4
and 6 dB higher during the lockdown. The probable explanation provided by the authors
is that in a scenario with reduced traffic, vehicles could travel faster, thus creating more
noise. On the contrary, the two other protected areas, which were closer to the city center,
experimented a decrease in 1–3 dB during the same period.

Several acoustic metrics have been chosen in the different studies, with LAeq, Ld
(stands for daytime equivalent noise level), Ln (stands for night-time equivalent noise
level) and Lden (stands for day-night equivalent noise level) being the most widely used,
which are consistent with some of the minimum indicators proposed by Asensio et al. [23].
Some authors offered the global average reduction of LAeq during the lockdown in the city
or region studied. The decrease in LAeq is widespread but some differences are spotted
according to the current restrictions present in each situation. Some of these changes in the
mean LAeq documented in the literature are 5.4 dBA in London [24] (ranging from 1.2 to
10.7 dBA), 5.1 dBA in the Ruhr Area (Germany) [25], 6–7 dBA in Montreal [18], 6–10 dBA in
Monza (Italy) [26], a daily average peak drop of more than 4 dBA in Stockholm [15], 7 dBA
in Rome and Milan [27] or 5.2–5.9 dBA during the peak of the restrictions in Barcelona [4].

This average reduction in the noise level is not necessarily consistent in all the locations
where data were gathered. Some authors documented differences according to land use
categories. In Rio [28], there was a noise reduction between 10 and 15 dBA in those areas
with a predominance of human activities whereas there was no major reduction near major
arteries. In Granada [29], the LAeq variation ranged between 13.3 and 30.5 dBA depending
on the location. Also, in seven Indian cities [16] the noise reduction ranged between 4 and
14 dBA for residential, industrial and commercial areas. Studies conducted in Madrid [30],
the Ruhr Area [25] and Barcelona [4] among others also spotted differences according to
the type of location.

Beyond the average LAeq reduction, a comparison between day and night variations
of the noise levels during the pandemic has also carried out done, e.g., in Buenos Aires [20],
with decreases of 1.4–4.7 dBA during the day and 2.7–6.9 dBA during the night or in
the Île-de-France region [31], with decreases in the road traffic noise of 4.6 dBA during
the daytime and 7 dBA in the night. Differences in daily noise indicators have also been
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spotted in Barcelona [4], Girona [3], Dublin [32] or Madrid [30], among others, showing
that time patterns were also affected during the lockdown. Moreover, other acoustic and
even psychoacoustic metrics such as loudness and sharpness have also been calculated by
some researchers, e.g., in London [24] where clustering of the 11 locations has been applied.

Regarding the people’s perception of the changes in the soundscape during the
COVID-19 shutdown, there are two main approaches in the literature. On the one hand,
some studies have surveyed people directly, asking about their perception of the sound-
scape with a guided set of questions. This is the case of a study set in Italy [33] where
an 18-questions survey was answered by 323 participants and the results confirmed the
expectation of a decrease in the noise pollution levels. Another similar work was conducted
in France [31] where residents of the Île-de-France region perceived a significant reduction
in the level of noise from a set of sources such as human activities, road traffic noise or
airborne noise. In Argentina [34], a survey among 1371 social network users detected that
people preferred the new acoustic environment caused by the COVID-19 lockdown. Also,
in London [35,36] a mixed-method approach consisting of triangulating data from surveys
and spontaneous descriptions offered by the participants (home workers) is being per-
formed with the goal of finding associations between perception of the indoor soundscape
and psychological well-being. Not only changes in residential soundscapes have been
analyzed but also the impact on a historic soundscape such as the Berlin Wall Memorial [37]
by means of soundwalks and informal interviews with staff members and tourists on the
site. In Milan, ref. [38] the authors present a wide analysis of the changes in LAeq in the city
of Milan, evaluating the impact of the Anomalous Noise Events [39] in the different periods
of the lockdown. Also, in [40] the situation was faced worldwide with questionnaires,
including both indoors and outdoors, finding a clear improvement in the perception of the
citizens facing the unpredictable situation of the pandemic. Another study conducted in
Madrid on noise perception and related health effects during the lockdown presented a
cross-sectional study by noise sources based on data collected from 582 participants who
answered a questionnaire [41].

On the other hand, in some cases where people could not be surveyed, other ap-
proaches were selected. Mitchell et al. [42] developed a model to predict the soundscape
pleasantness and eventfulness during the lockdown in London and Venice based on a
database of previous binaural recordings and soundscape questionnaires and new record-
ings made during the pandemic. In the Basque Country [43], experts in soundscape and
architecture listened to recordings taken between March and May 2020 and made two per-
ceptual analyses, i.e., they annotated perceived sound events and assessed the pleasantness
and eventfulness.

There are some precedents that combined an objective and a subjective approach in
order to analyze the impact of the lockdown using a multidimensional approach such as in
the city of Lorient, France [44], where data gathered from a network of sensors were used
in addition to the citizen’s perception of the soundscape during 2019 and 2020, collected by
two questionnaires, to improve the accuracy in describing changes in a sound environment.
Finally, a systematic review on 119 studies about the perceptual change or the noise level
change during the COVID-19 pandemic lockdown can be found in [45].

3. Methods and Data Gathered

The research presented in this work combines data of a diverse nature: (1) A-weighted
equivalent sound pressure levels (LAeq) and other noise indices (Ld), (Le) and (Ln) provided
by a network of calibrated sound sensors deployed in Barcelona and (2) questionnaires
answered by participants in the Sons al Balcó project including their perception of the
soundscape around their dwellings both before and during the lockdown and details about
the most annoying sounds spotted.
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3.1. Lockdown Restrictions

In this subsection, the exact restrictions that were enforced in Barcelona during the
lockdown and de-escalation stages are described to give context to the causes behind the
decrease in noise levels and improvement of the acoustic comfort of citizens.

The lockdown period in Spain started on 14 March 2020, initially affecting only
students and other professionals working in the education sector and ended on 3 May
2020. Within this period, there were weeks with a stricter confinement affecting all non-
essential workers. However, the final days allowed children to go out for a walk and adults
to practice sports outdoors in different time spots. In addition, shops, bars, restaurants,
museums, libraries, sport facilities and leisure establishments were all closed. Public and
private transport was highly reduced and only used to commute to the work place for the
population still working.

After the lockdown began, the de-escalation process extended from 4 May 2020 to
17 June 2020. During these weeks, shops and other business started opening by appoint-
ment and with limited capacity. In the final stages of the de-escalation process, even the
mobility to second residences was finally restored.

3.2. Questionnaire Design

The questionnaire was designed following some of the previous works of the team
about perception and sound [46] related to health, and also other tests in the framework of
former projects as LIFE-DYNAMAP [47], and analyzed and used to model the annoyance
as in [48]. All the citizens answering the questionnaire were informed of the use that the
research team would have from their answers and videos in terms of ethics and publication,
and they signed a consent to use their information.

The main questions asked to citizens were related to the comparison of their sound-
scape before the lockdown and during the lockdown, as can be found in [49,50]. Some of
the more relevant are the following:

• How do you describe the soundscape of your home, before the lockdown and during
the lockdown?

• How do the following adjectives describe the soundscape you recorded? Loud, shrill,
noisy, disturbing, sharp, exciting, calming, pleasant?

• Which sounds are present in the soundscape you recorded? Road traffic, plane, train,
industry works, commercial activities, leisure activities, neighbors, pets, birds, water,
vegetation?

• Please, indicate how much the former different sounds disturb you
• Compare the annoyance related to those sounds before and during the lockdown.

The researchers had the support of the X (formerly Twitter) accounts of both insti-
tutions involved in the Sons al Balcó project (ISGlobal and La Salle Campus Barcelona),
and the dissemination of its own project X (formerly Twitter) account (@SonsalBalco). The
researchers chose to map the soundscape of the lockdown in Catalonia due to the size,
the potential population and the possibility of having contributions from both big cities
like Barcelona, but also from small villages where the soundscape may not have changed
so much during the lockdown. The citizens contributing were only asked to give a nick-
name, and did not require to register or log in to any platform, as all was conducted via
web, which probably increased the participation but did not allow the team to contact the
contributors after the data collection.

3.3. Data Collection Campaign

Several campaigns have been conducted to collect data in the Sons al Balcó project [49,51].
This present work is focused on data obtained from the first campaign performed in 2020
during the final stages of the lockdown caused by the COVID-19 pandemic and the initial
stages of the de-escalation process. A socio-acoustic online questionnaire was designed to
obtain perceptive data representative of the soundscapes across Catalonia. Some requirements
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were considered before launching the digital survey. First, LimeSurvey [52] was chosen
as the web service platform to implement the online question-and-answer survey. The
setting included different response formats and video uploading capacities. One of the main
advantages of LimeSurvey compared to other survey applications is that it is an open-source
solution that can be deployed to any server that supports it. Therefore, it is not constrained
to the servers of the survey application provider. The specific implementation consisted on
an Amazon EC2 cloud computing instance running a Bitnami Stack for LimeSurvey 4.2.3-0
on Ubuntu 16.04.6 LTS. Furthermore, for the purpose of reducing traffic, an Amazon S3
bucket was also applied to upload the recorded videos directly from the smartphones of the
participants. Lastly, a Fine Uploader library running on EC2 was installed to manage and sign
the requests allowing access to the aforementioned S3 bucket.

The questionnaire included different topics such as sociodemographic data, sound-
scape location and perceived quality, both before and during the confinement. Additionally,
participants had to report the presence of different noise sources and their respective an-
noyance. These sound categories included different kinds of motorized traffic (automobiles,
trains or planes), industry, construction works, commercial and recreational activities,
neighborhood noise, pets, birds, water and vegetation. Further details on the survey can be
found in [49].

3.4. Sensors Data

For this study, noise levels were obtained from the Wireless Acoustic Sensor Network
(WASN) of Barcelona, which has already been used to conduct, in a previous work by the
authors [4], a thorough analysis of several noise indices during the COVID-19 lockdown in
the city.

The WASN deployed in Barcelona (also named Barcelona Noise Monitoring Network)
consists of 112 devices, 86 of which are sensors and 26 are sound level meters. These
86 sensors are placed for long-term analysis in several pre-analyzed places around the city.
Since not all sensors worked properly during the lockdown, only 70 sensors out of the
86 deployed to conduct this study were analyzed. All the used sensors are CESVA’s TA120
Class 1 sound level meters. The location of these 70 sensors is depicted in Figure 1 along
with the location of the assessed soundscapes. Furthermore, if we look at the distribution of
noise sensors in Barcelona, there is a higher number of devices deployed in the city center
and in leisure areas. This means that this network mainly monitors road traffic, commerce
and leisure activities. A detailed depiction of the locations and maps can be found in [4].
Moreover, see [53,54] for more information about the Barcelona Noise Monitoring Network.

Sensors were active both in a normal pre-pandemic scenario and during the lockdown.
Data from the first semester of 2018 and 2019 has been used as baseline levels for comparison
with noise levels obtained during the lockdown. Most of the sensors were working 24 h a
day during the studied periods and provided A-weighed equivalent sound pressure levels
at one minute time resolution.

3.5. Description of the Studied Areas

As one of the main purposes of this study is to analyze the specific relationships
between the decrease in noise levels and the improvement of the perceived acoustic comfort
in different areas according to the main type of noise source, sensors have been manually
grouped in different clusters. The first three groupings correspond to the majority of sensors
deployed in areas where road traffic noise is the main source of noise exposure. They are
divided into Heavy-Traffic Areas (sensors that measured mean values above 67.5 dBA
during the baseline time-frame, i.e., the first semesters of 2018 and 2019), Moderate-Traffic
Areas (mean values between 64.5 and 67.5 dBA) and Low-Traffic Areas (mean values below
64.5 dBA).
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Figure 1. Location of the sensors and the assessed soundscapes during the 2020 Sons al Balcó
campaign.

There are 16 sensors located in heavy-traffic areas. They are located in some of the
main arteries of the city, which communicate different urban districts and connect with
the entry and exit points to other cities in the metropolitan area. These streets are mainly
used by people going and returning from their jobs and by delivery services and public
transportation. Thus, they were less affected by the mobility restrictions, especially during
the final stages of the lockdown. For this case, 22 respondents, both men and women,
were considered to be in the scope of the selected sensors. The ages of the volunteers were
between 19 and 72 years.

A total of 12 sensors are located in Moderate-Traffic Areas. These sensors are usu-
ally in mid-sized streets, often with multiple lanes. They are also occupied by people
commuting using both private and public transportation. Even though road traffic is the
predominant noise source present, these areas combine residential and office buildings
with commerce and restaurants or even with some recreational facilities. For this cluster,
17 people were considered for the following results. They were both men and women from
32 to 69 years old.

There are sixteen sensors located in Low-Traffic Areas. They are located in quieter
and smaller streets usually in the middle of residential buildings, with the occasional bar,
grocery store or supermarket. The main sound source is traffic coming from the mobility
of the neighbors. However, there is also commerce related noise and neighborhood noise.
During weekends and especially Sundays, these locations are even quieter. In these sensor’
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areas, there are 26 respondents whose age is between 28 and 71 years and they are both
men and women.

The fourth grouping corresponds to sensors placed in SuperBlock areas which consist
mostly in pacified streets. Barcelona’s SuperBlock project was conceived to reduce the
road traffic in residential areas, mostly traffic derived from private vehicles [55]. The main
project’s goal is to create greener and healthier urban public space. However, some of them
are still under construction. In fact, the survey’s results reported that in 57.14% of the videos
collected inside the area of influence of the SuperBlock sensors there were construction
works spotted in the audios sent. A total of six sensors are located in SuperBlocks. In this
case, seven participants evaluated soundscapes considered to be in the scope of SuperBlocks’
sensors. The age of the volunteers was between 23 and 50 years old and they were both
men and women.

The next two clusters contain the sensors placed in areas were leisure activities, com-
mercial activities and restaurants are the main source of noise exposure (both daytime
and night-time leisure activities). Particularly, six sensors are located in areas where the
main sound sources are related to Daytime Leisure activities and restaurants. Most of
these sensors are located in small squares in the middle of residential areas in different city
districts. Road traffic is limited or nonexistent. The main source of noise comes from the
passersby, pedestrians, tourists, playgrounds and restaurants. Occasionally, there is also
some commercial and nightlife activity in these areas. For this cluster of sensors, 24 people
answered the questionnaire.

Next, there are nine sensors located in areas where the main noise source comes from
Night-Time Leisure activities. They are in neighborhoods full of bars, pubs and restaurants
and it is especially active on afternoons, evenings and nights all along the week with lots of
interaction from tourists and students. Trading activity also produces a moderate activity
during the day. In this area, there were 6 volunteers that fit the profile, who were both men
and women from 32 to 50 years old.

From the 70 sensors studied, 65 are distributed among these 6 types of locations. The
other 5 sensors are placed in industrial areas or parks and 5 videos were collected inside the
area of influence of those 5 sensors. However, they are too few to extract any meaningful
aggregated information from them and they have not been included in the clustered study.

3.6. Data Treatment

While data from different sensors were gathered during the 2020 lockdown period,
a socio-acoustic digital participatory survey was also performed. It aimed to gather the
positive and negative perception of noise experienced from home before and during the
lockdown. In this survey, the respondents were told to record a video of their sound envi-
ronment (representative of a typical daily soundscape during the lockdown) and answer a
questionnaire about their perception. In total, 366 volunteers from 132 different locations
completed the questionnaire and uploaded their videos. One of these contributions had
to be discarded because the location was ambiguous. Almost 40% out of the 365 accepted
participants came from cities with a WASN deployed. Twenty-two were from Girona and
preliminary results on their analysis have already been published by authors [2]. This
present work will be anchored in the largest portion of volunteers (119) that described
soundscapes from Barcelona in the survey. The contributors’ profile was both men and
women between 29 and 86 years old.

To ensure the reliability of the responses, the videos recorded were manually labeled
and the sound events reported by volunteers were compared with the sound events
spotted by annotators. In addition, only the questionnaires with the essential data correctly
provided were accepted for this study, i.e., the exact location of the soundscape and the
general assessment of the soundscape both during and before the lockdown.

Authors opted for a clustered approach to perform the study. As stated in Section 3.5,
both sensors and assessed soundscapes are being manually grouped in clusters according
to the predominant noise source and density of traffic. This approach aims to offer more
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insight in which kind of noise sources regulation have a greater impact in the acoustic
satisfaction of citizenship.

Contributions from Barcelona were assigned to the area of influence of their nearest
sensor. Several preliminary experiments were performed with accepted radii from 400 m to
1 km with comparable results. Finally, contributions from a maximum of 1 km distant to the
sensor were taken into account for the analysis, assuming that farther contributions may
have a very different soundscape and even different urban sound environment (leisure,
schools, traffic, etc.). Schafer [56] already explains that focus listening with its implication
of distance separating the listener from the sound event is disintegrating before the sound
walls, so lo-fi soundscapes do not have perspective, but mask the listener with a constant
presence. Distances between the sensors and the location of the assessed soundscapes
were evaluated using the Haversine formula [57], an easy to implement method for ob-
taining optimal approximations of distances over a circle when the longitude and latitude
are known.

Each one of the studied sensors provided LAeq noise levels at a one-minute time
resolution. The mean values for the different noise indices (LAeq, Ld, Le and Ln) are
computed for each sensor both for the lockdown period (from 14 March 2020 to 3 May
2020) and for the baseline time-frame (first semesters of 2018 and 2019). After that, the
mean noise indices corresponding to sensors from the same cluster are also averaged to
obtain the final mean noise indices for the given cluster. Variances for the measured LAeq
decreases will also be calculated.

Volunteers assessed the acoustic comfort around their dwellings both for the lockdown
period and for the pre-lockdown period using a Likert Scale [58] (Very Negative, Negative,
Neutral, Positive and Very Positive). This Likert Scale is converted to a 5-point scale (1 to
5). After that, both ratings are compared to obtain the soundscape rating improvement for
each dwelling. The average and the variance for all the soundscape rating improvements
of the dwellings included in the same cluster are subsequently computed.

Subsequently, the LAeq decrease for each one of the studied clusters will be compared
with the reported improvement of the subjective acoustic comfort (soundscape rating
by volunteers). The hypothesis is that a general alignment will be found between both
objective and subjective data but that there will be significant differences between some
of the clusters, especially related to the different predominant noise sources, e.g., traffic
or leisure.

The previous statistical results will be complemented with a more nuanced study,
both quantitative and qualitative, of the daily noise indices and other answers provided
in the survey (for each cluster). Specifically, distinct intra-day pattern variations in the
mean sound pressure level for each cluster will be described. Also, the main types of actual
noise sources spotted in the area will be commented. The specific subjective assessment
both before and during the lockdown (using a Likert scale) for the overall quality of the
soundscape and the assessment of several perceptual constructs will also help give more
insight into the appraisal of the soundscapes and the possible outlier opinions included.

4. Results

This section offers a detailed description of the comparison between the objective
acoustic data gathered by the sensors in Barcelona and the subjective data collected from
the citizen science campaign. An individual analysis and interpretation has been conducted
for each one of the six clusters described in Section 3.5.

4.1. Barcelona General Results

In this section, we describe the most relevant sensors results in Barcelona together with
the subjective contributions of the citizens. The goal is to show whether the conclusions
reached on previous research studies, ref. [4] and summarized below might show some
qualitative coincidence with the answers to the poll.

92



Sensors 2024, 24, 1650

Barcelona experimented a significant drop in noise level during the lockdown stages in
2020. The decrease was especially steep during the stages with stricter mobility and activity
constraints and during the night hours. This decline has to be put in context as Barcelona
was already showing a mild but steady noise reduction trend in most of its sensors from
2018 to the first months of 2020, probably due to the pacifying efforts being implemented
in recent years by the local administration.

Although all areas of the city produced lower noise levels during the lockdown stages,
they were not equally affected. Areas with heavy traffic experienced lower noise reduction
than areas with moderate traffic, mainly during the day. In residential and low-traffic areas,
the reduction was more restrained because the pre-lockdown noise levels were also lower.
As for the other sources of studied noise, they also showed differences. On the one hand,
daytime leisure, restaurant areas and nightlife areas were among the most affected, with
distinct intraday noise variation. Nightlife areas took a huge plunge during the evening
and night-time frames, whereas daytime leisure and restaurant areas were more affected
during afternoons and evenings. Furthermore, Superblocks and shopping areas presented
a similar drop irrespective of the hour of the day. On the other hand, industrial and services
areas were among the less affected by the restrictions, basically during the morning hours.

Table 1 compares the mean improvement in the LAeq level during the lockdown with
the subjective improvement perceived by participants in the Sons al Balcó project during
the same time-frame. Data collected came from 70 sensors deployed in Barcelona during
the lockdown and from 119 surveys answered by Barcelona citizens. Each row in the table
corresponds to the different clusters described in Section 3.5. In the second column, the
total number of sensors included in each investigated area is shown.

Table 1. Comparative of the mean improvement in the LAeq level during the lockdown and the mean
subjective improvement in the soundscape rating (acoustic satisfaction) reported by the participants
in the Sons al Balcó project during the same time-frame.

Type of Location
Num. of
Sensors

Num. of
Soundscapes

Mean
Distance
Sensor-Video
[km]

Mean LAeq
Decrease

Variance LAeq
Decrease

Mean
Soundscape
Rating
Improvement

Variance
Soundscape Rating
Improvement

Heavy Traffic 16 22 0.39 −4.84 2.14 +1.77 (62.77%) 1.42
Moderate Traffic 12 17 0.31 −5.54 1.21 +2.12 (92.58%) 1.24
Low Traffic 16 26 0.47 −4.63 1.07 +1.5 (58.14%) 3.06
SuperBlocks 6 7 0.4 −7.2 15.98 +1.14 (34.65%) 1.81
Daytime Leisure 6 24 0.44 −7.34 5.45 +1.04 (32.81%) 1.17
Night-Time Leisure 9 6 0.32 −8.25 1.54 +1.17 (35.45%) 0.97

Aggregated data 70 119 0.55 −5.72 5.0 +1.47 (51.63%) 1.7

The third column in Table 1 reports the number of videos and questionnaires collected
inside the area of influence of the corresponding sensors. The videos have been assigned
to the area of influence of a single sensor, the nearest one. Only videos collected within a
1 km radius from the nearest sensor have been considered. The mean distance in km from
the locations where the videos were recorded to the nearest sensors are shown in Column 4.
Column 5 shows the mean dip in the LAeq level during the lockdown in 2020 compared
to the same levels measured during the same weeks in 2018 and 2019. Column 6 contains
the variance of the LAeq decrease for the different sensors. Column 7 shows the perceived
mean improvement in the soundscape rating (and the percentage of improvement over the
original rating), after converting the original Likert scale used by participants to numerical
values from 1 to 5. Finally, Column 8 includes the variance of the soundscape rating
improvement according to the volunteers.

Even though the mean LAeq improvement is higher for the SuperBlocks and Leisure
areas than for the areas mostly affected by road traffic noise, the perceived subjective
improvement is higher for those areas where road traffic noise is predominant. That hints at
the fact that road traffic noise is especially annoying for most of the participants. Reducing
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road traffic noise exposure has a greater impact on the general subjective assessment of the
improvement than reducing other types of noises.

Focusing on the three different traffic areas (heavy, moderate and low), there is a corre-
lation between the objective mean improvement in the LAeq levels and the subjective mean
improvement reported by contributors. Moderate-Traffic Areas are where the improvement
is higher, followed by Heavy-Traffic Areas and, finally, Low-Traffic Areas.

SuperBlocks experienced a high drop in the LAeq level that was translated to a more
modest improvement in the subjective assessment. One of the reasons is that construction
works were already resumed by the time the videos were collected and they were especially
abundant inside the areas of influence of the SuperBlock sensors.

Leisure areas were especially affected by the activity restrictions conducting to mean
LAeq drops of more than 7.3 dB during the lockdown. However, the subjective assessment
only improved by 33 to 35% (which pales in comparison to the improvement in road-
traffic areas). The main reason for that is that the original (before the lockdown) subjective
assessment of the soundscapes collected in those areas was higher than the subjective
assessment of the road-traffic-exposed areas. Leisure areas had an original mean rating of
3.2 points. Therefore, it was virtually impossible to achieve the improvements reported in
the road-traffic-exposed areas.

The improvement for both the objective measurement and the subjective perception
was slightly higher for the nightlife areas than for the Day-time Leisure Areas showing,
again, a correlation between the subjective perception and the objective reduction in
sound levels.

Aggregated data in the last row of Table 1 include all the sensors active in Barcelona
during the lockdown and all the valid contributions received during the 2020 campaign of
Sons al Balcó from the city of Barcelona, even the ones beyond the 1 km threshold.

Figure 2 shows the presence of several kinds of noise sources and other sound events in
the received videos sorted by the type of area in which the nearest sensor is circumscribed.
The percentage depicted in the figure is related to the number of contributions where
participants spotted each of the sound events compared with the total of contributions for
each cluster. The absolute mean LAeq improvement during the lockdown compared to the
mean noise level for the two previous years is also represented in the figure for comparison
purposes. Noise sources have been grouped in five categories: (a) Traffic, which includes
all types of motorized traffic; (b) Industry/Construction, which includes noises from both
industrial sources and construction sites; (c) Commerce/Leisure, which includes noises
from recreational activities, restaurants and shopping areas; (d) Neighbors, which includes
neighborhood noise and pets and (e) Nature, which includes sound events related to nature
elements and wildlife (mainly water, vegetation and birds).

The most prevalent sound in most of the clusters is traffic noise, which appears in 50%
or more of the videos independently of the type of area where the nearest sensor is located.
Road traffic noise prevalence is higher in those areas where the LAeq improvement caused
by the restrictions of the lockdown was less significant. That hints at the fact that road
traffic noise is one of the main contributors to the global LAeq in urban locations. On the
contrary, nature sounds appear more frequently in areas where the LAeq took a steeper dip.
That is caused because some sound sources such as birds that are easily squelched in noisy
soundscapes became apparent when the louder noise sources decreased.

It is also noteworthy that in the lockdown context, the third sound event most preva-
lent after traffic noise and nature related sounds is neighborhood noise, which was spotted
in above 50% of the videos for all the studied groups except for SuperBlocks. In contrast,
industry and construction noise and, especially, leisure and commerce noise was greatly de-
creased. These three categories (neighbors, industry/construction and commerce/leisure)
appear to be independent of the measured LAeq improvement.

A more detailed analysis of each type of urban area is conducted in the subsequent
subsections.
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Figure 2. Percentage of appearance of sound events reported by type of area compared with the LAeq

improvement during the lockdown.

4.1.1. Sensors in Heavy-Traffic Areas

As seen in Table 2, mean pre-lockdown daily noise indices for theses sensors were
significantly higher than those from sensors of other clusters, with more than 70 dB during
the day and almost 65 dB during the night. Even though indices were clearly improved
during the lockdown, they remained notably high when compared to sensors in other
areas. Furthermore, the improvement caused by the restrictions in this group of sensors
was inferior to all the other studied groupings during days and evenings and the second-
to-smallest during nights.

Table 2. Mean daily noise indices during the lockdown (2020) and the same time-frame for previous
years (2018–2019) for the sensors in Heavy-Traffic Areas.

Period Ld [dB] Le [dB] Ln [dB]

2018–2019 70.86 69.84 64.97
2020 66.63 64.21 58.11

The soundscape evaluation before the lockdown was generally poor, with 50% of
participants rating it as “Negative” or “Very Negative” (Table 3). In general, contributions
located in areas where road traffic is the main noise source reported more deteriorated
soundscapes (before the lockdown) than areas where the predominant noise source is
different (always according to the opinions reported in the surveys). In contrast, during the
lockdown the subjective evaluation of the quality of the soundscape experienced one of
the higher boosts compared to other clusters. As observed in Table 3, all the 50% negative
assessments pre-lockdown changed to neutral or positive assessments. In addition, 63.64%
of dwellings considered to have “Very Positive” soundscapes during the lockdown is the
second-to-highest figure for the studied clusters only after SuperBlocks.

Comparing the huge improvement in the subjective acoustic satisfaction assessment
(Table 3) with the rather modest reduction in the levels in noise indices (Table 2), it seems
that the original pre-lockdown noise levels being as high was a critical cause of dissatisfac-
tion and that the modest reduction they experienced during the lockdown was enough to
significantly change the perception of the soundscape.
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Table 3. Subjective acoustic satisfaction assessment before and during the lockdown for dwellings
near sensors in Heavy-Traffic Areas (Likert Scale).

Period Very Negative Negative Neutral Positive Very Positive

Pre-Lockdown 9.09% 40.91% 13.64% 31.82% 4.55%
Lockdown 0% 0% 4.55% 31.82% 63.64%

The perceptual constructs’ assessment is quite heterogeneous. However, there is
general consensus in all the studied clusters that positive perceptual constructs (with
the exception of excitement) are more representative of the studied soundscapes than
negative perceptual constructs. That being said, 36% of respondents in this cluster find their
soundscape noisy and 23% find it disturbing (Figure 3). These percentages are generally
higher than in other clusters (with the exception of Low Traffic) which is consistent with
the higher noise indices in Heavy-Traffic Areas. The main noise sources reported in this
group are road traffic and neighborhood noise and the most annoying, according to survey
results, is road traffic, which is coherent with sensors located in Heavy-Traffic Areas.

Figure 3. Assessment of perceptual constructs for soundscapes near sensors in Heavy-Traffic Areas.

4.1.2. Sensors in Moderate-Traffic Areas

Before the lockdown, the mean noise indices in this cluster (Table 4) were approxi-
mately 3 dB lower than in the Heavy Traffic cluster (Table 2) but significantly higher than
in Low-Traffic Areas (see Section 4.1.3). However, from the three traffic focused clusters,
they are the ones that showed a larger decrease during the lockdown.

Table 4. mean daily noise indices during the lockdown (2020) and the same time-frame for previous
years (2018–2019) for the sensors in Moderate-Traffic Areas.

Period Ld [dB] Le [dB] Ln [dB]

2018–2019 67.62 66.23 61.48
2020 62.56 59.77 54.53

According to the answers, there was a huge improvement in the sound environment
of these sensors when comparing before and after the lockdown periods. In fact, it is the
cluster that showed a bigger amelioration of the global subjective rating of the soundscape
during the lockdown (Table 1). Before the lockdown, more than 50% of the respondents
rated their dwelling’s soundscape as “Negative” or “Very Negative” and not a single
participant considered it to be “Very Positive” (Table 5). However, during the lockdown,
almost 95% of them considered that the soundscape was “Positive” or “Very Positive” with
no reported cases of negative assessments. Objective and subjective data are clearly aligned
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for the traffic clusters. Moderate-Traffic Areas show both the steeper dip in the noise levels
during the lockdown (compared to Low and Heavy-Traffic Zones) and also show the bigger
improvement in the acoustic satisfaction degree of its inhabitants.

Table 5. Subjective acoustic satisfaction assessment before and during the lockdown for dwellings
near sensors in Moderate-Traffic Areas (Likert Scale).

Period Very Negative Negative Neutral Positive Very Positive

Pre-Lockdown 35.29% 17.65% 29.41% 17.65% 0%
Lockdown 0% 0% 5.88% 47.06% 47.06%

This vastly positive evaluation of the soundscapes could be explained by the fact
that road traffic was drastically reduced and although it progressively increased in the de-
escalation process, it never recovered the former density, as mentioned in [4]. In fact, even
though road traffic is the most spotted sound event in Moderate-Traffic Areas, appearing in
almost 90% of the recordings (Figure 2), the reported annoyance caused by road traffic noise
is lower than the annoyance caused by the less prevalent leisure and commerce activities
and construction works in the area. Again, the fact that the most predominant sound source
is not considered especially annoying in the surveys is consistent with the reduced noise
indices during the lockdown.

In general terms, perceptual constructs’ assessment in this cluster is similar to the
other groups. Participants agree more regarding the representation of positive constructs
such as calmness or pleasantness than in negative constructs (Figure 4). It is to be noted,
though, that the exceeding percentage of dissent for disturbance, noisiness and shrillness is
considerably higher than in the other traffic-related clusters.

Figure 4. Assessment of perceptual constructs for soundscapes near sensors in Moderate-Traffic Areas.

4.1.3. Sensors in Low-Traffic Areas

Noise indices for this group of sensors were the lowest during 2018 and 2019 (Table 6).
However, they experienced a milder decline during the lockdown and, in fact, they were
no longer the lowest during the restrictions, surpassed by Day-time Leisure Areas.

Table 6. Mean daily noise indices during the lockdown (2020) and the same time-frame for previous
years (2018–2019) for the sensors in Low-Traffic Areas.

Period Ld [dB] Le [dB] Ln [dB]

2018–2019 62.18 60.26 54.35
2020 57.86 54.08 49
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The initial pre-lockdown assessment of the soundscapes in the surveys amounts to
fewer negative evaluations overall, with around 42% of “Negative” or “Very Negative”
appraisals compared to the 50% or more of the other clusters related to traffic noise (Table 7).
They also achieve a substantial improvement during the lockdown. However, it is the
only cluster where some soundscapes rated “Very Negative” remain. Results seem a
little inconsistent with other clusters but a more detailed analysis detected some outlier
opinions among the respondents which is consistent with the higher than normal variance
in the soundscape rating improvement reported in Table 1. Surprisingly, about 10% of the
respondents considered that the quality of the soundscape had deteriorated during the
lockdown. Analyzing the responses, construction works were reported near the locations
of two of the dissenting citizens, which is the most probable cause for this exceptional
dissatisfaction with the acoustic environment. In fact, in a similar way to Moderate-Traffic
Areas, traffic was the most reported noise source among contributors but it was also
significantly less annoying than construction and commerce activities (much less prevalent
in the studied soundscapes).

Table 7. Subjective acoustic satisfaction assessment before and during the lockdown for dwellings
near sensors in Low-Traffic Areas (Likert Scale).

Period Very Negative Negative Neutral Positive Very Positive

Pre-Lockdown 34.62% 7.69% 34.62% 11.54% 11.54%
Lockdown 7.69% 3.85% 3.85% 42.31% 42.31%

Perceptual constructs’ assessment in Low-Traffic Areas shows a wide range of dissent-
ing opinions among citizens (Figure 5). It is the only cluster where positive and negative
perceptual constructs are similarly rated. Surprisingly, in these quieter parts of the city
where noise indices are lower, noisy and loud are more often depicted as adequate adjectives
than pleasant. Again, an explanation can be found in many construction works resuming
their activity in the final stages of the lockdown after a long period of virtually no noise
in the surroundings. Furthermore, inhabitants of these quieter areas are less used to high
levels of noise pollution and their expectations may be more demanding.

Figure 5. Assessment of perceptual constructs for soundscapes near sensors in Low-Traffic Areas.

4.1.4. Sensors in SuperBlock Areas

One would expect that sensors in this cluster would provide similar noise indices to
those of the Low-Traffic Areas as they are both mainly located in residential quieter zones.
However, noise levels in Table 8 are significantly higher, similar to the indices of Moderate-
Traffic Areas. There are two causes that explain these figures. First, some of the SuperBlock
sensors are really located near the bordering streets of the pacified area where there is an
exceeding traffic density caused by the mobility restrictions inside the SuperBlock and do
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not really represent the noise levels present in the inner buildings. Second, and even more
relevant, intensive construction works were being executed in SuperBlocks (see Figure 2)
in order to convert spaces previously dedicated to motor traffic to pedestrian areas. As a
consequence, there are significant differences between the reported decrease in the noise
indices during the lockdown among the sensors included in SuperBlocks as it can be
observed by the overly high value of the variance reported in Table 1 which is accentuated
by the reduced number of sensors available in the cluster.

Table 8. mean daily noise indices during the lockdown (2020) and the same time-frame for previous
years (2018–2019) for the sensors in SuperBlocks areas.

Period Ld [dB] Le [dB] Ln [dB]

2018–2019 68.91 66.24 62.23
2020 61.69 58.91 55.19

The analysis of the subjective results for this cluster has to be taken as a qualitative ap-
proximation with limited reliability due to the few contributors who reported soundscapes
in SuperBlocks areas and the higher variance also detected in the subjective aprraisals. First,
it should be noted that a single participant rated the soundscape around his dwelling as
“Negative” during the lockdown (Table 9). In fact, this citizen considered that the quality of
the soundscape had worsened compared to the pre-lockdown scenario. Again, construction
works are the probable cause for his outlier opinion according to his answers to the survey.
The other six participants agree that the soundscape quality vastly improved in 2020 giving,
in fact, the highest percentage of “Very Positive” ratings among all the studied clusters.
This overly elevated degree of acoustic satisfaction is aligned with the Ld variation during
the lockdown which, at −7.22 dB, is significantly higher than in the other clusters.

Table 9. Subjective acoustic satisfaction assessment before and during the lockdown for dwellings
near sensors in SuperBlocks areas (Likert Scale).

Period Very Negative Negative Neutral Positive Very Positive

Pre-Lockdown 0% 28.57% 28.57% 28.57% 14.29%
Lockdown 0% 14.29% 0% 14.29% 71.43%

The evaluation of perceptual constructs by inhabitants of SuperBlocks’ surroundings is
similar to the other clusters. However, it is noteworthy that all of the volunteers disagreed
with their soundscape being disturbing (Figure 6). It may be related to the total absence of
commerce or leisure-related sounds reported in this subset of questionnaires, as shown in
Figure 2.

4.1.5. Sensors in Day-Time Leisure Areas

Intraday patterns for this group of sensors are significantly different from road-traffic-
dominated domains. Noise levels increase during the afternoon after class and after
finishing the working day and remain high through the evening, taking into account that in
Spain dinner time can easily extend to 23 h. Therefore, in a normal scenario, Le is especially
elevated, usually surpassing Ld, as seen in Table 10. As leisure activities and restaurants
were severely affected by the restrictions, this cluster presents the lower noise indices
during the lockdown, including the steeper drop in Le. Owing to that, the noise indices
pattern during the confinement followed the usual trend in other areas where Ld towers
over both Le and Ln.
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Figure 6. Assessment of perceptual constructs for soundscapes near sensors in SuperBlocks areas.

Table 10. Mean daily noise indices during the lockdown (2020) and the same time-frame for previous
years (2018–2019) for the sensors in Day-time Leisure Areas.

Period Ld [dB] Le [dB] Ln [dB]

2018–2019 63.72 64.3 57.03
2020 57.28 54.02 47.35

The acoustic satisfaction of the respondents for the pre-pandemic soundscape was
fair-to-middling with a majority of people considering it neither positive nor negative
(Table 11). On the contrary, a vast percentage of people changed their appraisal to “Positive”
or “Very Positive” when the restrictions remained in force. This improvement completely
aligned with the drastic decrease in the Le index, which is the most representative of the
noise caused by daytime leisure activities and restaurants as it has been already stated.

Table 11. Subjective acoustic satisfaction assessment before and during the lockdown for dwellings
near sensors in Day-time Leisure Areas (Likert Scale).

Period Very Negative Negative Neutral Positive Very Positive

Pre-Lockdown 8.33% 4.17% 58.33% 20.83% 8.33%
Lockdown 0% 0% 12.5% 54.17% 33.33%

Sound events spotted in Day-time Leisure Areas when the campaign was performed
are significantly different from other areas. Specifically, it is the only grouping where
nature-originated sounds were reported in more than 80% of the contributions, surpassing
road traffic noise. In fact, it is the only cluster where nature sound categories are more
prevalent than any of the other sound classes, followed by neighborhood noise (Figure 2).
Again, this is consistent with the fact that noise indices were lower than in other areas in
the period affected by the restrictions. These exceedingly low indices also contribute to a
sharper soundscape, which is the perceptual construct more people agree on in the survey
(Figure 7). As for the other perceptual constructs, their assessment is along the lines of most
of the other clusters.

4.1.6. Sensors in Night-Time Leisure Areas

Noise indices in Night-Time Leisure Areas also follow intraday patterns significantly
different from road traffic areas with elevated Le and Ln which are consistent with the peak
hours of night-time activity. In fact, Ln in this cluster is especially high, only second to
the levels of Heavy Traffic sensors (Table 12). These areas were especially affected during
the lockdown due to the curfew and mobility restrictions, which cancelled most of the
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activity. Therefore, it is not surprising that the Ln collapsed from 62.74 dB to 49.49 dB, the
most impressive drop among all indices. Also noticeable is the decrease for the Le, only
surpassed by the drop in the Daytime Leisure cluster.

Figure 7. Assessment of perceptual constructs for soundscapes near sensors in Day-time Leisure Areas.

Table 12. mean daily noise indices during the lockdown (2020) and the same time-frame for previous
years (2018–2019) for the sensors in Night-Time Leisure Areas.

Period Ld [dB] Le [dB] Ln [dB]

2018–2019 63.97 64.54 62.74
2020 57.6 54.81 49.49

As in the case for SuperBlocks, the number of contributions is limited and results of
this cluster should be complemented with additional data when it is available. It is the only
cluster of contributions where there was a 100% consensus regarding the fact that all the
soundscapes where deemed “Positive” or “Very Positive” during the lockdown (Table 13).
It is also noteworthy that there were not negative assessments of the soundscapes in the
pre-lockdown scenario; the majority of participants considered their acoustic environment
neither positive nor negative, which is aligned with the average noise indices detected in
the 2018–19 period.

Table 13. Subjective acoustic satisfaction assessment before and during the lockdown for dwellings
near sensors in Night-Time Leisure Areas (Likert Scale).

Period Very Negative Negative Neutral Positive Very Positive

Pre-Lockdown 0% 0% 66.67% 33.33% 0%
Lockdown 0% 0% 0% 50% 50%

Typical noise sources almost disappeared during the lockdown, with very few in-
stances of leisure or commerce-related noise reported (Figure 2). In addition, there were
not any industry or construction work noises in the surroundings of the participants. The
predominant sound events reported were traffic noise, neighborhood noise and nature
sounds with the same prevalence. These changes in the soundscape elements combined
with very low noise levels are correlated with a higher consensus on some of the positive
perceptual constructs (Figure 8). Inhabitants of these areas are the ones that mostly agree
with their surroundings being calm and they also majorly agree with it being pleasant. Also,
in most negative perceptual constructs there is not a single respondent that agrees with
them as valid describers of their acoustic environment.
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Figure 8. Assessment of perceptual constructs for soundscapes near sensors in Night-Time Leisure
Areas.

5. Discussion

Results in Table 1 showed a strong alignment between the mean LAeq improvement
during the lockdown for each cluster and the correspondent mean soundscape rating
improvement for the same period. In fact, correlation between Columns 5 and 6 of Table 1
are 97.43% for the first three clusters dedicated to road-traffic noise and 58.32% for the next
three clusters with different predominant noise sources. Therefore, the clustered approach
seems to be appropriate for the purpose of comparing objective and subjective data.

On the contrary, comparing individual improvements for each one of the videos’
subjective assessment with the individual drops in the LAeq observed in the nearest sensor
provided a very low correlation of barely 4%. This very modest correlation rises sig-
nificantly when the predominant noise source in the area is taken into account. If this
individual comparison is performed only in areas where road-traffic is predominant (which
include 65 of the contributors) the correlation is more than six times higher (26.44%). Also,
the individual comparison performed only in areas where leisure noise is predominant
(30 participants in total) gave an even higher correlation of 31.72%.

These figures show that with the clustered point of view the relationship between
both sensor data and perception is clearly stronger than when the individual soundscapes
are evaluated. In addition, they also highlight the importance of taking into account the
predominant noise source present in the surroundings of a given soundscape along with
the noise levels to maximize the alignment with its perceived quality.

The clustered approach offers a global perspective of the relationship between the
perception of the soundscapes during the lockdown and sensor data. However, there are
some dissenting opinions that do not align with the general appraisal of the soundscapes
during the lockdown. Three of the participants rated their degree of acoustic satisfaction
during the confinement lower than in the pre-lockdown period and another one kept
the “Very Negative” assessment both before and during the lockdown. Three of these
dissenting opinions are explained by the presence of construction works which resumed
exactly when the survey took place. The other outlier assessment seems less coherent after
analyzing all the answers provided in the survey by this specific contributor. Even though
there are only four dissenting opinions, they have a significant impact in the correlation
between the decreasing of the LAeq level and the improvement of the subjective perception
due to the limited total number of contributions available.

In areas where road-traffic noise is predominant, daily noise indices follow a clearly
defined pattern where Ld is higher than Le and Le is higher than Ln. That does not happen
in areas where the primary noise sources are leisure activities. In Day-time Leisure Areas,
the higher level usually corresponds to Le, followed by Ld and Ln. In Night-time Leisure
Areas, the pattern is similar but night levels are significantly higher and can be very close
to Ld and Le levels. Therefore, lockdown regulations affected differently the noise indices
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depending on the type of area. For areas dominated by road traffic, daily noise indices
were similarly decreased and correlated with the LAeq drop. For that reason, an analysis
based only on LAeq may be sufficient. However, for areas dominated by leisure noise,
Le and Ln experienced especially higher drops compared to Ld. In consequence; it is
convenient to take into account daily noise indices to obtain a clearer picture of the type of
noise sources more affected and the correspondent changes in citizens’ appraisal of their
acoustic environment.

There are some strengths in this study that are worth mentioning. Available objective
data are especially sound because the Barcelona Noise Monitoring Network is an excep-
tionally large WASN with up to 70 working sound sensors during the lockdown. This vast
amount of sensors facilitated that most assessed soundscapes were located relatively near a
sensor (normally within 300 to 500 m depending on the cluster).

Most of the surveys in this project were answered in May 2020 during the initial stages
of the de-escalation process (the last one accepted was from 12 June). Therefore, the time
elapsed from the stricter lockdown in April was relatively short and there were still activity
and mobility restrictions in force. In contrast, other studies in the same field found in the
literature collected data in the later stages of the de-escalation process, which can have a
significant effect on the subjective appraisal of the acoustic environment.

There are also limitations in this work that must be stated. Available subjective data
are the main constraint of this work. It is true that more than one hundred of surveys were
included in the comparison (which is a number consistent with other similar questionnaire-
based studies published [59–61]). However, for attaining higher representation, a larger
amount of opinions should be taken into account.

Not all clusters include the same number of sensors. The clusters with fewer sensors
usually have a higher variance in the reported decrease in noise levels that have to be
considered. In fact, results for the SuperBlocks cluster are not significant because they are
based both in a very limited number of sensors and in a reduced set of assessed soundscapes.
In addition, the reported noise and soundscape rating improvements have a very high
variance affecting the reliability of the comparison.

There are no significant biases in gender and age between the respondents. However,
there is a clear bias in their educational level as 87.72% of the participants had a university
degree, which is an usual bias in this type of research projects [41]. Also, the study is
focused in Barcelona, which is a big metropolis. Results may not be representative of
smaller and less populated urban areas.

6. Conclusions

In this research, authors have compared objective data from acoustic sensors deployed
in several districts in a big city (i.e., Barcelona, Spain) with the answers obtained from a
questionnaire assessing the soundscapes in the surroundings of the sensors as a continua-
tion of the preliminary research conducted in Girona, Spain, by the same researchers [2].
The comparison clearly manifests a coincidence between the reported soundscape quality
during the lockdown and the improved level of noise indices collected by the sensors.

In a number of locations, especially in areas with higher levels of road-traffic noise,
the reduction in the overall noise level highlighted other noise sources not perceived before
the lockdown, such as Birds and Neighbors. This phenomenon is proved by both the
gathered data from the sensors and the answers given by the participants. However, the
new noise sources were not perceived as a nuisance but as pleasant. Therefore, according to
the respondents, this change in the sound environment after confinement was for the better.
That implies that a decrease in the road traffic noise has two direct benefits. Not only does it
provides lower noise indices but it also changes the soundscape constitution from a scenario
where only annoying noise sources are spotted (usually related to motorized traffic) to a
scenario where both annoying and pleasant sound events are equally represented (both
traffic and nature related).
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The clustering of the contributions according to different kinds of predominant noise
sources highlighted significant differences among them. Road traffic areas experienced
the highest increases in the subjective evaluation by the volunteers even though the corre-
sponding decrease in the noise indices was smaller in the same zones. On the contrary, in
the surroundings of spots with predominance of leisure noise, a major drop in the noise
indices translated into a milder increase in the subjective appraisal of the soundscape. This
hints at the fact that road traffic noise is especially annoying. Therefore, its reduction has a
greater effect on the acoustic comfort of citizens than other sound sources. These results
have a direct impact both in environmental governance and urban planning. Measures
taken by the public administration in order to increase the acoustic comfort of the residents
should consider giving priority to the decrease in road traffic noise among other noise
sources as they will be more effective. Accordingly, keeping road traffic noise as isolated as
possible from dwellings and working places should also be a priority for urban planners.

Also, construction work has an important impact both on the noise levels and in
the negative appraisal of the soundscape by those living nearby. On the contrary, other
noise sources such as neighborhood noise or commercial noise are not as clearly correlated.
For that reason, it is highly advisable to take into account the type of noise sources in
addition to the measured noise levels when modeling the soundscape perception for
prediction purposes.

The assessment of perceptual constructs by participants is heterogeneous, especially in
comparison with the global assessment of the quality of the soundscape. They are generally
aligned with the overall improvement reported with the objective data provided with
sensors. In fact, there is a general consensus in the predominance of positive perceptual
constructs over negative ones. However, differences among the various positive perceptual
constructs are less correlated with the noise indices. Likewise, individual percentages for
each one of the negative perceptual constructs are not exactly correlated with variations of
the objective noise levels. Therefore, to obtain information more aligned with the objective
data, a combined analysis of the perceptual constructs is more recommended than an
individual approach.

In the future, the authors plan to start the automatic detection of sounds and objects in
the videos uploaded by citizens in the framework of the still opened project Sons al Balcó. Af-
ter the lockdown, the project has been conducted into local collecting campaigns, as the ones
conducted in Sabadell (https://sonsalbalco.salle.url.edu/sonsdesabadell/, last accessed
24 August 2022) and in Granollers (https://sonsalbalco.salle.url.edu/sonsdegranollers/,
last accessed 24 August 2022). The video and questionnaires collection has been wider
in smaller cities, and this fact opens the possibility of starting the work in designing the
indicators to evaluate both the objective and calibrated measurements (LAeq, etc.) with
the annoyance and pleasantness evaluated subjectively via questionnaires. The automatic
detection of objects and sounds in the videos would increase substantially the information
for each citizen’s contribution and enrich the indicators design. The next steps are focused
on using more data coming from citizen participation to start the definition of indicators
useful for administration and researchers, combining objective and subjective evaluation
of noise and soundscapes, and finally, attempting to predict the subjective perception of a
soundscape using several indicators including WASN-based LAeq levels.
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Abbreviations

The following abbreviations are used in this manuscript:

ANR Active Noise Reduction
EU European Union
LAeq A-weighted equivalent sound level
Ld Day Noise Level. A-weighted Leq , over the 7 h to 21 h period
Le Evening Noise Level. A-weighted Leq , over the 21 h to 23 h period
Ln Night Noise Level. A-weighted Leq , over the 23 h to 7 h period
Lden Day-Evening-Night noise level. A-weighted Leq, over a whole day, but with a penalty

of 10 dBA for night-time noise (23 to 7) and 5 dBA for evening noise (21 to 23)
SPL Sound Pressure Level
WASN Wireless Acoustic Sensor Network
WHO World Health Organization
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Abstract: Environmental noise control is a major health and social issue. Numerous environmental
policies require local authorities to draw up noise maps to establish an inventory of the noise
environment and then propose action plans to improve its quality. In general, these maps are
produced using numerical simulations, which may not be sufficiently representative, for example,
concerning the temporal dynamics of noise levels. Acoustic sensor measurements are also insufficient
in terms of spatial coverage. More recently, an alternative approach has been proposed, consisting of
using citizens as data producers by using smartphones as tools of geo-localized acoustic measurement.
However, a lack of calibration of smartphones can generate a significant bias in the results obtained.
Against the classical metrological principle that would aim to calibrate any sensor beforehand for
physical measurement, some have proposed mass calibration procedures called “blind calibration”.
The method is based on the crossing of sensors in the same area at the same time, which are therefore
supposed to observe the same phenomenon (i.e., measure the same value). The multiple crossings
of a large number of sensors at the scale of a territory and the analysis of the relationships between
sensors allow for the calibration of the set of sensors. In this article, we propose to adapt a blind
calibration method to data from the NoiseCapture smartphone application. The method’s behavior
is then tested on NoiseCapture datasets for which information on the calibration values of some
smartphones is already available.

Keywords: environmental noise; noise mapping; smartphone application; calibration

1. Introduction

Managing environmental noise, particularly in urban areas, is a major health and
social issue. Numerous environmental policies encourage local authorities to produce noise
maps of their territory with the aim of establishing an inventory of the noise environment
and then proposing action plans to improve its quality. This is the case, for example,
with the European directive 2002/49/EC [1] relating to the assessment and management of
environmental noise.

The production of noise maps remains the most widely used tool when considering
environmental policies. In general, these maps are produced using simulations based on
calculation models requiring traffic data for the calculation of acoustic emission and spatial
data for the modeling of acoustic propagation. Because access to these data is sometimes
complicated, and their quality is sometimes questionable, the result of the simulations
only partially reflects the existing state of the sound environment. Conversely, the use of
acoustic sensors arranged within noise observatories gives a more detailed and realistic
image of the noise environment of an area, but the insufficient number of sensors available
does not allow for covering the whole territory and producing a detailed noise map [2].

The densification of sensors through the deployment of low-cost sensor networks is an
interesting alternative, but the network thus produced may prove difficult to maintain in
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the long term. Although several experiments have already taken place, to our knowledge,
there is no functional network of this type that can produce noise maps.

Another alternative is for citizens to become data producers themselves, using smart-
phones as measuring instruments, as part of a participative or crowd-sourcing approach.
On this subject, since the pioneering work in the early 2010s [3–5], many studies have
been conducted [6,7], notably on the quality of acoustic measurements produced with a
smartphone, as well as on the implementation of a participatory approach to collect data
on a large scale and over the long term. Among these approaches, the one based on the
NoiseCapture application, which was developed in our laboratory, is the most advanced
today [8]. Since the application was released in 2017 (for Android smartphones only),
a considerable amount of data has been collected worldwide [9]. Analysis of the data re-
vealed a wide range in the quality of the noise indicators collected due to the measurement
protocol and, in particular, the lack of acoustic calibration of the smartphones in most cases.
A lack of calibration, or even a bad calibration, can indeed generate a significant bias in the
measurement results. The realization of a calibration in the state of the art, from a reference
device (for example, an acoustic calibrator), would normally constitute a prerequisite for the
realization of measurements, but the access to such reference devices by any citizen makes
this procedure difficult to apply in practice. The proportion of calibrated smartphones in
the totality of collected data is then very low, making its use for the production of noise
maps more difficult.

In contrast to the classical metrological principle of calibrating any sensor for phys-
ical measurement, others have proposed so-called “blind” mass calibration procedures.
The method is based on the crossing of sensors in the same area, at the same time, which
are therefore supposed to observe the same phenomenon (i.e., to measure the same value).
The repetition of these crossings of a large number of sensors at the scale of a territory,
and the analysis of the relations between sensors allow, in theory, to calibrate all the sensors.
This type of blind calibration seems particularly interesting for data such as those collected
by NoiseCapture, especially in urban areas, where several sensors can cross each other in
the same area at equivalent time periods.

In this paper, we propose to implement a blind calibration method for uncalibrated
mobile noise measurements. The approach itself is not novel, since blind calibration has
already been applied in other fields, but its application to a database consisting of geo-
localized acoustic measurements is, in our opinion, a major step forward, calling into
question the need to calibrate each smartphone individually. In the present work, this
approach is applied on NoiseCapture data, but it could be generalized for any equivalent
dataset. In the present case, we have exploited the NoiseCapture dataset for the 2017–2020
period available for download [10] as well as more recent additional data obtained by
connecting to the online database [11]. It is important to mention at this point that all data
collected with the NoiseCapture application are totally anonymous. The application fully
respects users’ privacy [12].

The method, described in Section 2, is based on modeling the relationships between
sensors, which can be written in matrix form, and which can then be solved as a linear
algebra problem. The behavior of the method, as well as a modified model, is then tested on
NoiseCapture datasets for which information on the calibration values of some smartphones
is available (Section 3). Finally, as an experiment, the method is applied to the dataset of
the City of Rezé in France, allowing the production of a “calibrated” noise map based on
the collected raw data (Section 3.5). Section 4 concludes on the next challenges to deploy
this method on a large variety of territories.

2. Methodology

2.1. The Problem of the Acoustic Calibration of Smartphones on a Large Scale
2.1.1. General Considerations about Smartphone Acoustic Calibration

The principle of involving citizens in a participative science approach in the acoustical
context is to collect massively geo-localized objective and subjective acoustic data. These
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data can then be used to produce noise maps for the benefit of local authorities, for example,
in the context of establishing action plans to reduce noise pollution. The project can
also be part of an educational [13,14] or citizen approach to raising awareness and the
co-construction of public policies [15,16]. Whatever the purpose of the collected data,
the calibration of smartphones is an issue that is often discussed.

Several works have shown that different acoustic measurement applications installed
on the same smartphone or the same application installed on different smartphones can
generate differences in the measured acoustic indicators [17–19] that can reach up to nearly
30 dB compared to a reference device [20]. It can be explained in particular by the different
coding of the applications as well as by hardware differences between the smartphones.
In this context, particular attention was paid to the development of the NoiseCapture appli-
cation to ensure compliance with the acoustic acquisition protocol on Android smartphones.
One can expect that the dispersion of measured noise values within the NoiseCapture
application is lower. However, the calibration of the application/smartphone pairs is still
required to obtain acoustic results with a minimum of bias [18,20,21].

In this paper, acoustic calibration is seen as the correction of a measured sound pressure
signal so that this measurement coincides with a reference signal (i.e., an acoustic calibrator
most of the time). This correction allows for a systematic error between the device to be
calibrated and the reference device. In the simplest case, if X is the temporal sound pressure
signal measured by the smartphone, then the true value Y of the observable is related to
the measured measurement X via a calibration coefficient k such that:

Y = k × X. (1)

Within a smartphone application for noise measurement, the calibration consists of
estimating this coefficient k, which normally takes into account all the elements of the
analog–digital conversion chain, such as the correction linked to the sensitivity of the mi-
crophone and the effects of the digital discretization of the signal. Considering sound level
in decibels (dB) instead of acoustic pressure, the estimated sound level LY can be calculated
using the measured sound level LX by the smartphone with the following relation:

LY = LX + 20 log k = LX + Δ. (2)

Without the correction, the smartphone will produce a systematic offset (in dB) of a
value equal to Δ.

In most experiments, the calibration procedure consists of evaluating the difference Δ
in measurement between a smartphone and a reference device (e.g., a class 1 sound level
meter) and then proceeding to a correction in the overall sound level, possibly A-weighted,
by using an acoustic correction factor [22]. Most of the time, this correction is assumed to be
a constant compared to the reference device; however, linearity problems can occur at low
and high levels and in frequencies, which could justify a more adapted calibration [20,21],
such as proposed by [23] for example. Instead of using reference devices, some alternative
calibration methods have also been proposed, based, for example, on the measurement of a
quiet sound level [18] or on the in situ measurement of road traffic noise [24]. In addition,
if the calibration corrections are collected for different smartphone models and integrated
in a reference database, the calibration of a smartphone can also be performed indirectly by
searching for the corresponding calibration value in this database [18]. Nevertheless, some
works have also shown possible differences between two identical models of smartphones,
depending on different versions of the operating system or due to hardware changes on two
generations of the same model [20]. Note also that the use of an external microphone instead
of the smartphone’s internal microphone can improve the accuracy of the measurement,
but it still requires microphone calibration [25–28].
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2.1.2. Smartphone Calibration with NoiseCapture

Like other similar applications, NoiseCapture allows for defining a calibration value Δ
either directly by manually entering a calibration value in the application parameters or au-
tomatically using one of the calibration methods proposed by the application: using either
an acoustic calibrator, a reference measurement device, a smartphone already calibrated
with the NoiseCapture application, or based on a road traffic measurement. This calibration
can be carried out several times, possibly giving rise to different calibration values, but for
each measurement carried out, the calibration value applied is systematically associated
with the measurement track (i.e., for all the measurement points in the corresponding track).
In the first public release of the application, only the calibration value was collected. Since
NoiseCapture release 51 (1.2.15) at the end of 2020, the method used for calibration is also
part of the information collected.

In practice, over the period 2017–2020 (before release 1.2.15), 24% of measurement
points have a calibration value different from the default value (0 dB), which suggests that
the corresponding smartphones may have undergone acoustic calibration. However, even
though it represents a very large mass of data, the observed calibration values may call into
question the quality of the calibration: 61.12% of the calibrated smartphones, for example,
have calibration values higher than ±15 dB, which does not seem realistic even considering
the low metrological quality of some smartphones. Finally, only specific events organized
by specialists, for example with the objective of raising awareness among citizens or for
research purposes, can ensure a high quality of data by considering a state-of-the-art
calibration and a training of the users [22,29,30]. It is particularly the case for NoiseCapture
Party events, which aim at collecting data during a specific event, supervised by qualified
persons, generally over a short period of time and a limited spatial extent. However, such
data represent only 0.6% of the data collected over the 2017–2020 period [9].

2.1.3. Mass Calibration vs. Individual Calibration of Smartphones

Relevant exploitation of mobile data at a large scale is therefore hampered by the
heterogeneity of the collected data, which is mainly due to the lack or misapplication of a
calibration protocol. To solve this problem, a relevant solution consists of simultaneously
calibrating a posteriori all the collected data, including those that would have given rise to
a calibration, in order to ensure total coherence between the data. In the literature, this mass
calibration of data measured with mobile sensors, instead of considering the individual
calibration of sensors, has led to the development of specific methodologies referred to as
blind calibration, self-calibration, or re-calibration. In [31], the authors propose, for example,
to take advantage of the multiple rendezvous between an uncalibrated smartphone and
several calibrated smartphones to estimate its bias; a consensus is then found to calibrate
all the smartphones simultaneously by solving a discrete average consensus problem. Here
again, the fact of having only a few reference data points limits the use of the method. On the
contrary, in [32,33], the Moments-Based Calibration approach does not require reference
data but considers that all mobile sensors move in the same way in the whole study domain
with the same probability. The ergodicity property then simplifies the mathematical analysis
of the problem; in practice, as in our case, it is however not verified, since at the scale of a
large territory, it is admitted that two smartphones will never meet. In [34], the calibration
method does not rely on any such assumption and formulates the mutual calibration
problem as a linear algebra problem whose solution relies on the resolution of a Laplacian
matrix. This last method seems particularly well-suited to NoiseCapture data, and we have
therefore chosen to adapt it to the present problem.

2.2. NoiseCapture Application and Database
2.2.1. Application Principle

The principle of mobile noise measurements is to collect geo-referenced acoustic data
in a spatial area (Figure 1). A given user starts a measurement, moves along a path, and
then stops the measurement. At each time step of 1 s, several acoustic indicators are

111



Sensors 2024, 24, 1255

calculated on the fly, recorded on the smartphone, and sent anonymously to a remote server.
The transmitted data are verified and archived, and then they are processed in a simplified
way in order to represent them in a cartographic representation. This representation takes
the form of a noise map, where some acoustic indicators are aggregated on a hexagonal
elementary spatial extent, the network of hexagons covering the entire globe.

• 1s measurement point
Noise level
Geo-localization (GPS)
Localization accuracy (GPS)
Speed (GPS)
Date/Time of measurement
…

Starting point

End point

Figure 1. NoiseCapture approach. Using the NoiseCapture application, a user moves along a path
(i.e., a track in the NoiseCapture vocabulary); each second (i.e., a measurement point), several noise
indicators (sound level, spectrum) and other information (date/time, localization, speed, etc.) are
calculated. When the user stops the measurements, the data are stored within the smartphone, and,
if authorized by the user, uploaded to the NoiseCapture remote server. Raw data collected by the
entire NoiseCapture community is preprocessed and averaged in hexagonal spatial zones (15 m
radius); then, they are displayed in the form of noise maps.

2.2.2. Database and Privacy Policy

All data collected by the application are detailed in reference [35]. Particular attention
has been paid to strict respect for privacy as well as the use of these data by the contributor
and by third parties. The application’s data confidentiality policy clearly explains the
purpose of the application, namely to meet the needs of scientific research, in a context
of participatory science and open science, carried out by French public research establish-
ments (Université Gustave Eiffel—formerly Ifsttar—and CNRS). It is also specified that
no personal data are collected. The development of this application and the redaction of
the privacy notice was performed in consultation with the departments in charge of open
science and legal aspects at Université Gustave Eiffel—formerly Ifsttar—in 2016–2017.

In particular, it is clearly specified from the very first run of the application that its use
does not require registration, does not collect any personal data, does not record any audio
data (acoustic indicators are calculated on the fly), and does not perform any background
tasks. Furthermore, it is specified that the user can choose whether or not to contribute
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to the community database, can stop data collection at any time (by no longer using the
application or by uninstalling it from the smartphone), and can access the application’s
source code and all data collected by the community. This short version of the privacy
policy refers to a detailed online version on the NoiseCapture application website.

Each installation of the smartphone application creates a unique universal identifier
(UUID), which is then associated with each set of measurements carried out with the smart-
phone. This enables all the data collected by a single smartphone to be postprocessed under
a relevant process (for example, in this case, for the blind calibration of the smartphone
measurements). This UUID is not linked to any other smartphone identifier. In addition,
a user can generate a new UUID by uninstalling and reinstalling the application. If a user
contacts the NoiseCapture project administrators to have their measurement data removed
from the community server, they will be asked to provide this UUID.

From an application functional point of view, and like any application developed on
the Android platform and deposited on the official repository (Google Play), the person
installing and using the application must validate authorizations. In our case, only two au-
thorizations are required: device location authorization and audio recording authorization.
When the application is run for the first time, the short version of the NoiseCapture privacy
policy is displayed and detailed [36], and the user must validate and accept these conditions
in order to use the application. Also on first execution, a text is displayed to justify the
application’s activation of device localization (NoiseCapture localization policy [37]). Users
are also regularly warned that this application can never replace a calibrated professional
sound-level meter.

The data collected by the application and uploaded to the community server are
accessible in their entirety, free of charge, and distributed under the Open Data Commons
Open Database License (ODbL) [38], meaning that it is possible to share (to copy, distribute
and use the database), to create (to produce works from the database) and to adapt (to
modify, transform and build upon the database) as long as the database user attributes,
shares and keeps open the database. This seemed to us to be a fair return for the community
contributing to the development of this database and also in the context of Open Science.

2.3. Blind Calibration Model
2.3.1. Natural Graph Model

Among the solutions proposed in the literature for blind calibration, as a first attempt,
the Natural Graph Model (NGM)-based blind calibration scheme proposed in [34] seems
adapted to the mobile noise measurements, such as those collected using the NoiseCapture
application. This method consists of exploiting the multiple appointments of sensors at
positions close in time and space (i.e., in the same hexagon at a nearby time period) in
order to establish mutual calibrations between sensors (Figure 2). In other words, if two
smartphones simultaneously measure the same acoustic phenomenon, they should produce
the same indicators (in the next development, we will say that there is a link between the two
smartphones). This approach assumes that the sound level is homogeneous in a hexagonal
zone whatever the position of the smartphones in that zone. There is no interaction between
the zones; they are independent.

Due to differences in calibration for both smartphones, this rendezvous leads to the
establishment of a correction factor between the two smartphones, i.e., a relative calibration,
which can be generalized to the scale of a network of smartphones to establish relative
calibrations between devices. For a very dense sensor network, the multiple appointments
create a redundancy of information, which can also be exploited to improve the quality of
the calibration.
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Figure 2. Principle of the blind calibration methodology applied to mobile noise measurements.
During the procedure, several sensors noted that S1, S2, S3, and S4 crossed the same spatial area
(i.e., an hexagonal zone, noted Zi) at the same time (t1, t2, t3, t4, t5). In theory, these sensors should
measure exactly the same acoustic event and therefore produce the same noise indicators. The path
of a user is symbolized by a colored arrow; at each time step, the user is localized at a given position,
which is symbolized by the colored circle with the time increment inside.

In the following, the original NGM methodology [34] is detailed and applied to the
mobile noise measurement, using the same notations. However, we do not repeat all of the
original developments so as not to make this article too long. Readers are invited to consult
the original article.

Let us consider, for example, four sensors (S1, S2, S3, S4) traveling a path passing
indifferently several hexagons covering a spatial extent at different times t. All the users
numbered i present at the same time t in the same area define a zone Z of sensors that
measure the value x of the same observable y of the event. Using the relation (2), we
have [34]:

y = xi + Δi = xi + di + ni. (3)

In the relation, it is assumed that the offset Δ that is estimated for a sensor is the sum
of the exact drift d related to the calibration, assumed to be systematic and stationary over
time, and an error n is associated with a non-predictable external effect and non-systematic,
which is assumed to be white noise.

Thus, we can define the zone Zα containing Nα co-located sensors (Table 1), performing
the measurement xα of the same observable yα (i.e., the true value) such that [34]:

{yα = xα
i + di + nα

i }Si∈Zα . (4)

For each sensor Si ∈ Zα, the corresponding drift di can thus be expressed by the other
smartphone drifts dj (Sj ∈ Zα, Sj �= Si) using the following relation [34]:

di =
1

Nα − 1 ∑
(Sj∈Zα ,Sj �=Si)

(
dj + Δxα

ji + Δnα
ji

)
, (5)

with Δxα
ji = xα

j − xα
i and Δnα

ji = nα
j − nα

i .
Since the sensor i moves along other zones and the drift di is stationary over time,

one can derive a set of linear equations. Considering the whole set of sensors, the linear
equations can be written following a matrix form [34]:

L�d = Δ�x + Δ�n, (6)
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where L is the calibration matrix, �d is the drift vector, Δ�x is the differential vector, and Δ�n is
the differential white noise vector. Due to the properties of L, the calibration matrix is the
Laplacian matrix. Lastly, the authors consider two more hypotheses: (1) the differential
white noise vector Δ�n is negligible when considering a large number of sensors, meaning
that L�d ≈ Δ�x; (2) the mean value of all smartphone drifts is nearly zero, which leads to
the equivalent constraint M1

�d = 0 where the elements of M1 are all equal to 1. Finally,
the authors show that the drift vector can be obtained by resolving the following matrix
inversion [34]:

�d = (L + M1)
−1Δ�x. (7)

Once the drift vector is obtained, the estimated true value in a zone can be calculated
using relation (4).

Table 1. Co-location sensor measurements based on the scenario of Figure 2.

Smartphone\Zone Z1 Z2 Z3 Z4 Z5

S1 x2
1 x3

1 x4
1

S2 x2
2 x3

2 x4
2

S3 x1
3 x3

3 x5
3

S4 x1
4 x2

4 x5
4

2.3.2. Simple Mean Model

Instead of using the NGM methodology, one can consider a very simplified approach,
the Simple Mean Model [39], which is also considered in the reference works for predicting
the gain calibration value for each smartphone. First, we take the average of the measure-
ment values in each column of Table 1 to estimate the true input value of a zone. The SMM
assumes a large number of sensors and estimates the true input value yα using:

ŷα =
1

Nα ∑
(Si∈Zα)

(xα
i ) =

1
Nα ∑

(Si∈Zα)

(yα − di − nα
i ). (8)

Next, the drift value of a sensor can be estimated by calculating:

di = ŷα − xα
i . (9)

The linear Equation (5) for the NGM model, plus the constraint ∑i
(
di + nα

i
) ≈ 0,

is then equivalent to the SMM. In other words, the NGM is a generalized extension of
the SMM.

2.3.3. Validation of the NGM Implementation

The NGM implementation was validated by direct comparison with the results pub-
lished in the reference article [34] for a test dataset. This dataset is based on S = 100
simulated measurements located in G = 100 zones. Each measurement is simulated as
the sum of the true value of the measurement y (a random number between 0 and 100
according to a uniform distribution), of a drift d (a random number according to a Gaussian
distribution of variance Δdri f t) and of a noise n (a random number according to a Gaussian
distribution of variance Δnoise). The membership of a measurement in a zone is obtained
randomly. Note that at this step, this dataset has no relation to sound levels and is only
used for evaluating the NGM behavior.

On the basis of this dataset, a network graph can be generated to (Figure 3). The
system (6) is then solved in order to determine the estimated value of the drift according to
the relation (7) as well as the estimated value of the measurement in the corresponding zone
according to the relation (4). The Mean Square Error (MSE) between the true value y and
the estimated value ŷ can then be computed in order to evaluate the model efficiency. In the
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reference article, the authors choose to represent the results through the link density metric
ld ≡ 2L/[S(S − 1)], which represents, on average, the number of times a given smartphone
encounters other smartphones, with L designating the number of links. In addition to
the application of the present NGM, the results obtained by the Simple Mean Model
defined in Section 2.3.2 are also represented. The results are presented in the two following
Figures 4 and 5, and they are very similar to Figures 3 and 4 of the reference article [34].
This simple comparison validates our implementation of the NGM.

S1

S2

S3

S4

Z1

Z2

Z2

Z3

Z2
Z3

Z3Z4

Z5

Figure 3. Network graph based on the scenario of Figure 2 and Table 1.

(a) ld = 1.0

(b) ld = 10.0

Figure 4. Comparison between the NGM and the SMM: error between the true value and the
estimated value, for a link density (a) ld = 1.0 and (b) ld = 10.0, with N = 100 smartphones in
G zones.
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Figure 4 illustrates the error between the estimated value and the true value of the
measurement for two values of the link density (ld = 1.0 and ld = 10.0). As expected, when
the number of links between sensors increases (when ld increases), the estimation error
decreases. Moreover, this figure shows very clearly that the NGM gives a better estimation
than the SMM.

Figure 5 generalizes this conclusion by summarizing the results for several values
of the link density ld. The NGM converges quickly to the true values, even for low link
densities, while the SMM requires a larger number of links to reach an equivalent level
of performance.

Figure 5. Comparison between the NGM and the SMM: mean square error in function of the link
density ld, with N = 100 sensors in G zones.

From a practical point of view, the optimization of the results of the model requires
both an increase in the number of sensors and in the link density. Understandably, the more
links there are between different sensors and the higher the number of sensors, the better
the results.

3. Application of the NGM to a Mobile Acoustic Dataset

3.1. Discussion of NGM Application Assumptions

The development of the NGM is based on several assumptions that need to be dis-
cussed regarding its applicability to a mobile acoustic data dataset. Overall, the reliability
of all these assumptions, although questionable, is also supported by the results that will
be presented later.

3.1.1. NGM Mathematical Assumptions

Regarding the mathematical assumptions of the model, one can consider the follow-
ing discussion:

• First assumption: the drift d of a given sensor is stationary over time. In principle,
the variation of drift over time of a professional microphone is small, especially
with respect to its impact on measured noise indicators. A smartphone microphone,
on the other hand, is exposed to numerous constraints that may partially modify its
acoustic characteristics over time. To our knowledge, there is no published study
on the acoustic monitoring of smartphones over time, at least for environmental
acoustics applications, but our experience within the NoiseCapture project has not
revealed any anomalies on this subject. Moreover, considering the rapid change in
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the smartphone fleet, the assumption of stationarity over a short or medium time
period seems quite acceptable. In the event of a full deterioration of the smartphone
microphone, following an accident, for example, the smartphone will become unusable
for its primary function, and it is likely that it will no longer be used to collect data.

• Second assumption: the average value of drifts d on all sensors is null. The average
value of all known calibration values in the NoiseCapture database, if we exclude
calibration values at zero (default value in the absence of calibration), is of the order
of −0.43 dB, i.e., close to zero. This hypothesis, therefore, seems globally acceptable. It
is important to note first of all that this assumption is introduced by the authors to
ensure the uniqueness condition of the solution of Equation (6) [34]. The assumption
can therefore be discussed but is, in any case, required in the approach.

• Third assumption: the noise vector�n is small in front of�x for a large number of sensors.
It is difficult to quantify the error introduced by external conditions or insufficient
control of the measurement protocol (noise generated by the operator, bad holding
of the smartphone, effect of the wind on the microphone, etc.). However, one can
consider that this noise is negligible in comparison with the measurement, and that it
can be assimilated to a white noise.

3.1.2. Sensor Definition in the Context of a Mobile Acoustic Measurement

It is also important to consider the definition of a sensor in the context of a mobile
acoustic measurement. Indeed, in the present application, we consider a sensor as a (smart-
phone model, NoiseCapture user) pair (noted later as a (smartphone, user) pair), even if
several users can use the same smartphone model. It allows us to consider a specific cali-
bration for each pair: it enables taking into account the fact that two users can, for example,
use the same smartphone model with a different measurement protocol, or that the same
smartphone model can give rise to several technically different generations and then differ-
ent calibration corrections. In the NoiseCapture approach, a given user is defined by an
Universally Unique Identifier (UUID) that is associated to the corresponding smartphone.

3.1.3. Assumption of Simultaneous Measurements between Two Sensors

The major assumption of the NGM model, which requires matching data that were
measured at the same time and at the same place, is very crucial and raises the question of
the choice of “homogeneous” time periods for the collected data in the context of a mobile
acoustic dataset. In reference [40], the authors consider, for example, that a measurement
of 10 min duration can be sufficient to characterize the sound environment equivalent to a
period of one hour and that “homogeneous” periods of the same day can be discriminated
by measurements of 10 to 20 min. For the moment, the temporal distribution of the collected
data with NoiseCapture is not controllable, and only the accumulation of a large number
of data with time will be able to ensure, in the future, a sufficient number of data for all
temporal and homogeneous reference periods of a day. At this stage, within the framework
of the present work, we will consider a larger time period of 1 h or more with the hypothesis
of homogeneous sound environments.

3.2. Comparison with Reference Datasets: NoiseCapture Parties

In the NoiseCapture approach, specific events can be specifically organized in order to
collect acoustic data over a defined spatial extent and over a given period. These events,
called NoiseCapture Parties, are organized, for example, by researchers to collect data
on a specific territory as part of their research into exposure to noise pollution [41–43],
by teachers to train school and university students in environmental noise issues [14],
or by local authorities wishing to raise awareness on the subject of noise environments [16].
In general, these events are run by professionals who are very familiar with the practice
of acoustic measurement in the environment. For such events, smartphone calibration is
systematically provided and the measurement protocol is detailed. Therefore, on these
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reference datasets, some calibration data are available for a large number of smartphones
(i.e., the initial calibration value).

In this section, and as a preliminary step, we propose to apply the NGM to several
reference datasets (Table 2). Each dataset is defined by an identifier ‘pk_party’ that
identifies the corresponding data in the reference database [9]. The total number of 1 s
measurement points, the number of tracks (consisting of all 1 s measurement points during
the same track), the measurement time period, as well as the total number of (calibrated)
smartphones, are also indicated. In addition, in the framework of the application of the
NGM model to these datasets, the number of links and the value of the link density ld are
also given.

Table 2. Application of the NGM on NoiseCapture Parties datasets (reference data).

‘pk_party’‘pk_party’‘pk_party’ Country Tracks Points Time Period (24-Hour Format) Nb of Sensors Nb of Cal. Sensors Zones Links ld

10 Italy 149 15,912 11:00–12:00 12 11 479 357 5.4
13 France 100 21,470 10:00–11:00 11 11 817 508 9.2
22 France 192 17,309 12:00–19:00 23 23 403 1902 7.5
26 Italy 332 23,220 10:00–12:00 20 20 619 2526 13.3

Each event allows for the collection of data on a spatial extent defined by a set of
contiguous hexagonal areas, as illustrated for example in Figure 1. The rayon of the
hexagons is set to 15 m by default in the NoiseCapture approach, but the influence of this
size on the behavior of the model will be discussed later in Section 3.4.

By construction, it is expected that the NGM performance will increase as the number
of links between sensors increases and, therefore, as link density increases, too. In view
of the ld values in Table 2 and by looking at Figure 6, this hypothesis does not appear so
clearly, even if the trend is globally respected.

Beyond a high ld value, it is important that all smartphones are linked together. For ex-
ample, in the case of NoiseCapture Parties N°13 and 26, one can observe that there are
several groups of smartphones, with many links within each of these groups but not be-
tween smartphones from different groups (see, for example, Figure 7a for the NoiseCapture
Party N°26). Conversely, the NoiseCapture Party event N°22 yields satisfactory results
because most of the sensors are linked together (see Figure 7b for the NoiseCapture Party
N°22). However, the variance is greater for NoiseCapture Party N°22, but this can be
explained by a longer measurement period (7 h) than for the other NoiseCapture Parties,
possibly generating a greater variability in sound levels.

Figure 6. Error value between the estimated drift value and the initial calibration value for each
calibrated smartphone used in the NoiseCapture (NC) Parties N°10, 13, 22 and 26.
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(a) NoiseCapture Party N°26

(b) NoiseCapture Party N°22

Figure 7. Smartphone network graph for the NoiseCapture Party (a) N°26 with 20 linked smartphones
within 6 distinct subsets of data and (b) N°22 with 23 linked smartphones within the same subset
of data.

3.3. Hybrid NGM-SMM

As discussed in the last paragraph, the improvement of the NGM method relies on the
increase in the number of links between smartphones and, thus, the increase in link density.
Obviously, if there are too many smartphones with few links with other smartphones, then
the link density will decrease and the model efficiency will also decrease. An alternative to
the original approach consists of applying the NGM to the pairs (smartphone and user)
with the most links and then using the corresponding calibrated pairs to determine the drift
of the other pairs by using SMM. This methodology, which can be qualified as a hybrid
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NGM-SMM method, makes it possible to “focus” the NGM efficiency on the most relevant
pairs by optimizing the link density and to determine the calibration values for the other
pairs more easily with the SMM.

This methodology has been first tested on the dataset of the NoiseCapture Party
N°22, but the conclusion is similar for the other NoiseCapture Parties. Several values of
the minimal number of links per pair (smartphone, user) to be considered as a cut-off
between NGM and SMM in the hybrid method were tested: from more than 1 link (this
corresponds to the full NGM, with 23 (smartphone, user) pairs) to more than 140 links
(12 remaining pairs), in order to evaluate the hybrid model efficiency. As expected, when
the minimum number of links increases, the number of remaining (smartphone, user) pairs
naturally decreases.

Figure 8 illustrates the results of this hybrid method through the mean error between
the estimated drift values and the initial smartphone calibration values. In these results, all
smartphones are concerned, whether they have been calibrated by the NGM method or
by the SMM method. Compared to the NGM reference, we observe a better behavior of
the hybrid approach (the variance decreases), and this is more so as the minimum number
of links increases. This result clearly shows the contribution of the hybrid NGM-SMM
method compared to the NGM method alone.

Figure 8. Application of hybrid NGM-SMM methodology on the NoiseCapture Party N°22 dataset.
Error (in dB) between the estimated drift and the initial calibration of smartphones as a function
of the number of links between (smartphone, user) pairs from 1 (this corresponds to the full NGM,
i.e., the reference using the initial 23 smartphones) to 140 (12 remaining smartphones).

3.4. Effect of the Size of the Spatial Area on the Hybrid Method

As mentioned below, the size of the spatial area may have an effect on the method’s
efficiency. In this paragraph, we compare the effect of the size of the hexagon on the result
of the hybrid model using the NoiseCapture Party N°22 dataset. Results are detailed in
Table 3 in terms of mean error (in dB) between the estimated drift and the initial calibration
value and in terms of uncertainty (i.e., the interval between the 75 and 25 quantiles after
correcting with the bias value). It should be noted that the larger the area, the fewer the
links between smartphones; this explains why some of the rows in the Table 3 do not give
any results. Whether for the mean error or for the uncertainties, the results in Table 3 show
that for the corresponding dataset, the best compromise is obtained for a hexagonal size of
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15 m. These results confirm the initial hypothesis of the NoiseCapture approach, suggesting
that the sound environment may be considered as homogeneous in an area of 15 m size.

Table 3. Effect of the size of the hexagon on the hybrid method as a function of the minimum number
of links per smartphone. When the minimum number of links is equal to 1, it corresponds to the
reference NGM. Mean error and uncertainty are given in dB.

Hexagon Size
Minimum Number of Links 10 m 15 m 30 m 50 m

1 (NGM) Mean error −2.33 0.36 −0.97 −1.28
Uncertainty ±7 ±8 ±7 ±6.5

15 Mean error −2.33 −0.04 −0.97 −1.21
Uncertainty ±7 ±7.5 ±7 ±6.5

40 Mean error −2.77 −2.13 −3.12 −3.69
Uncertainty ±6.5 ±5.5 ±7.5 ±7

55 Mean error −3.86 −2.77 −3.71 −2.54
Uncertainty ±6 ±5 ±5 ±5

80 Mean error −3.37 −2.34 −3.72
Uncertainty ±5 ±4 ±4.5

120 Mean error −3.54 −1.88
Uncertainty ±4 ±3.2

140 Mean error −3.48 −1.92
Uncertainty ±4 ±2.5

190 Mean error −4.76
Uncertainty ±3.5

3.5. Comparison with Large Realistic Dataset: City of Rezé (France)
3.5.1. Description of the Dataset

The previous analysis is now extended to the City of Rezé, part of the Nantes metropoli-
tan area, in France (Figure 9), for which a very large amount of data has been collected, both
in the context of NoiseCapture Party events (NoiseCapture Party N°2, N°9, and N°52) and
by “independent” contributors. In this area, additional data have also been collected simi-
larly to a NoiseCapture event, in the framework of the Sonorezé research project [16], but are
not a part of NoiseCapture Parties. The involved area represents a surface of 13,780,000 m2,
gathering a total of 450,335 of 1 s measurement points and 2336 tracks on 10,365 hexagons
(Figure 10), collected by 331 (smartphone, user) pairs with 163 different smartphone models.
Reference data (NoiseCapture Parties) represents 1877 of 1 s measurement points (0.4%
of the whole dataset) and 16 tracks (0.7%), collected by 4 (smartphone, user) pairs (1.2%)
and 3 different smartphone models (1.8%). Of the 331 pairs, only 134 smartphones were
calibrated by users, which corresponds to 278,561 (61.9%) of 1 s calibrated measurement
points and 1529 (65.5%) calibrated tracks. The map shown in Figure 10 is obtained by
averaging the sound levels at all the measurement points in each hexagon over the entire
data collection period [35].
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(a) (b)

Figure 9. Localization of the City of Rezé in France. (a) Localization of the City of Rezé (France);
(b) Boundaries of the City of Rezé (France).

Figure 10. NoiseCapture data collected on a small part of the City of Rezé in France: measurement
points and noise map (in dBA) built with raw data.

This dataset was collected over 6 years (2017–2023) at different times of the day and
on different weekdays and weekends. In the present work, we have chosen to limit the
application of the hybrid method to 08:00–20:00 (as a unique time period), for which a
large number of datasets are available, considering that the long-term sound environment
would be homogeneous during these periods. It corresponds to 315,598 of 1 s measurement
points (i.e., 70.1% of the initial dataset) and 1712 tracks (73.3%). Moreover, to avoid the
high variation when it comes to short measurements, a more ‘homogeneous’ approach was
considered. This approach was to consider (smartphone/user) measures that stay less than
30 s (it corresponds to 65.3% of the initial dataset in terms of measurement points), 20 s
(71.6% of the initial dataset) or 10 s (91.8% of the initial dataset) in each hexagon. These
sub-datasets will be referred to in the next paragraph to as ‘filtered data’ (Table 4).
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Table 4. Errors between the gain calibration value of smartphone and the obtained drift value, as
a function of the number of links, in terms of mean error, median error and interquartile range (IQR),
for the full dataset and the filtered data.

Minimum Number of Links per Sensor 1 5 10 20 50 100 200 500

Full dataset

IQR 19.4 18.6 18 16.2 11.4 6.8 21.1 26.6
Mean −6 −6 −6 −5.4 −2.7 −3.4 −11.8 −12
Median −6.5 −6.5 −6.5 −6 −2.5 −3.4 −12.2 −11.8
Number of (smartphone, user) pairs 201 169 155 145 94 72 37 30

Filtered dataset—10 s

IQR 18.9 17.9 17.1 15.7 11.1 19.6 22.6
Mean −4.2 −5.1 −2.1 −4 −2.9 −3.6 −9.9
Median −3.7 2.8 −1.3 −4.9 −1.8 −4.7 −12.6
Number of (smartphone, user) pairs 163 131 108 85 57 26 19

Filtered dataset—20 s

IQR 17 16.9 20.4
Mean −3.8 −3.6 −4.8
Median −2.9 −2.8 −5.5
Number of (smartphone, user) pairs 101 45 18

Filtered dataset—30 s

IQR 16.3 18.9 19
Mean −3.1 −0.7 −3.6
Median −3.9 −1.5 −0.8
Number of (smartphone, user) pairs 63 20 12

3.5.2. Time Slot Variability for a Rendezvous

Similarly to Figure 8, Figure 11 illustrates the mean error and uncertainty of the hybrid
method, applied to data collected for the City of Rezé, as a function of the minimum
number of links between (smartphone, user) pairs. Overall, we can already see that the
variance is greater with this Rezé dataset than for the results shown in Figure 8 for the
NoiseCapture Party N°22. It is due to the fact that this dataset contains a large amount of
data produced outside the NoiseCapture Parties, some of which is of lower quality.

The approach is also applied on the sub-dataset with a minimum presence time of
30 s, 20 s and 10 s in a hexagon. Here again, the hybrid approach seems to give better
results as the number of minimum links increases (the mean error decreases, as does the
uncertainties). For the full dataset, the limit of improvement is reached a priori when
the number of remaining (smartphone, user) pairs becomes insufficient. In the present
case, this limit seems to appear for a number of links between 50 (94 remaining pairs) and
200 (37 remaining pairs), and it is visible for a number of links equal to 100. In this case,
the average error is −3.4 dB between the smartphone calibration values and the drift values
obtained using the hybrid method. The uncertainty is also much lower in this situation.

When considering a minimum time of presence in an hexagon area, we observe that
the mean error decreases in comparison with the full data (results for a minimum number
of links of 5 and 10), while the uncertainty is quite similar and constant. For a larger number
of links, there are no more remaining (smartphone, user) pairs, and the hybrid method
cannot give a result. When comparing the results for the full dataset with the results for a
time of presence of 10 s, we observe that the optimum minimum number of links is reached
earlier for the filtered data. It is difficult to conclude, since there are not enough data for
20 and 30 s, but one could expect that increasing the temporal filter duration will increase
the quality of the results of the hybrid method.
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Figure 11. Application of the hybrid NGM-SMM methodology on the City of Rezé. Mean error (in
dB) between the estimated drift and the initial calibration of smartphones as a function of the number
of links between couples (smartphone, user) from 1 (i.e., the NGM reference) to 500, for each filter
duration. The hybrid method is applied to both the ‘full’ dataset and the sub-dataset (‘filtered’) that
correspond to a presence time of at least 30 s, 20 s and 10 s in a hexagon area.

3.5.3. Qualitative Results

In addition, we now consider the application of the hybrid method on the City of Rezé,
with a minimum number of links of 100, which corresponds to the best configuration for the
full dataset. As an illustration, Figure 12 shows the comparison between calibrated noise
maps, either by considering the individual smartphone calibration values (as measured on
the smartphone), or by considering the calibration values obtained using the hybrid blind
calibration method, for a small part of the City of Rezé:

• The noise map (in dBA) produced with the initial calibration values (‘Initial’ noise
map, Figure 12a). It considers only data for smartphones with an initial calibration
(134 pairs).

• The noise map (in dBA) obtained by applying the blind calibration, using the hybrid
method with a minimum threshold of 100 links per smartphone, but only for the
smartphones that were initially calibrated (‘Blind calibrated’ noise map, Figure 12b).
In this case, 52.7% of smartphones were calibrated (54 using the NGM method and
53 using the SMM method), enabling 71.9% of measurement points to be corrected.

• The difference map (in dBA) between the Initial and the Blind calibrated noise maps
(Figure 12c); this difference map is calculated on the basis of the differences in the
sound level in each hexagon. This map is completed in Figure 13 by a representation
of the distribution of sound level differences as a percentage of the total number of
corresponding hexagons in the whole City of Rezé (8464 hexagons contain data on all
10,365 hexagons).
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Figure 12. Noise maps of a part of the City of Rezé: (a) data with initial calibration (134 calibrated
(smartphone, user) pairs); (b) data after applying the blind calibration on the initially calibrated
smartphones only; (c) difference noise map (a,b), see also details of the differences in Figure 13.

A qualitative comparison of the map produced using the calibration values initially
entered by users and the map produced after blind calibration provides some first insights
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into the method. The initial map (Figure 12a) cannot completely serve as a reference,
because there may be errors in the calibration values entered by users. On the other hand,
the blind calibration method also allows a calibration value to be estimated for smartphones
that have not been calibrated, which is an asset that is not evaluated here.

The findings are as follows. The blind calibration method tends to result in a noise
map with higher noise values in this case study. It is probably due to a bias linked to the
assumption that the calibration values are centered on zero, which is not necessarily the
case for a small number of smartphones. In fact, of the 134 smartphones, 10 correspond to
almost half of the measurements, and in this particular case, the average gain calibration
given for these smartphones is negative and slightly overestimated by the method. This is
visually accentuated in the neighbourhoods where few measurements contribute to the
estimated value for each hexagon. This is the case for instance in the northwest where the
density of measurements is small (see Figure 6 of Reference [16]).

That said, Figure 13 shows that the dispersion of the differences between the two
maps is fairly small with a large part of the points concentrated between −8 and +2 dB,
which confirms the validity of the method (this distribution would be probably centered
for an input dataset whose calibration values are centered on zero). The average value
of sound level differences in the hexagons is overall very close to the average value of
differences between the initial calibration values and after the blind calibration mentioned
in the previous Section 3.5.2 (−3.4 dB), which seems consistent.

Particular behaviors can be observed on this distribution, such as a peak at +12 dB.
A detailed analysis of each of the blind calibration values obtained for each (smartphone,
user) pair and an assessment of the individual contribution of each pair in each of the
hexagonal zones would be required in order to make any assumptions about these peaks.
This question could be the subject of a future investigation.

It will also be interesting, in a further study, to test the behavior of the method as a
function of the input datasets in order to adapt it to the study areas; this point is discussed
in the following section.

Figure 13. Distribution of the differences (in dB) of the noise level measured in each hexagonal zone,
between the initial calibrated noise map and the noise map after blind calibration with the hybrid
model, for the whole City of Rezé (for smartphones that were initially calibrated only). Differences
are calculated for each hexagonal area (15 m) that composed the City of Rezé. Y-axis is given in terms
of a percentage (%) of hexagonal area characterized by a given difference in dB.
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4. Conclusions

Mobile noise measurements offer an alternative way of producing noise maps and
collecting data on the noise environment through a participatory approach in which every
citizen can become a data producer. Over and above the interest in contributing to the
evaluation and development of public policies, this project raises real research questions,
particularly in relation to the quality of the data produced and its use in an operational or
regulatory context. Recent work on NoiseCapture data has shown a certain heterogeneity
in the data collected, for example, in the absence of acoustic calibration of smartphones,
a lack of expertise in the field of environmental acoustics by the contributors, or difficulties
in implementing a measurement protocol that could be shared by all contributors. Data
cleaning and quality control are therefore essential stages in the relevant use of the infor-
mation collected. The work presented in this article is part of this approach and was aimed
more specifically at implementing a generic calibration method for all data simultaneously.
It is now accepted that it will never be possible to calibrate each smartphone individually
and that a mass calibration should therefore be considered instead.

Among the solutions envisaged, those based on blind calibration approaches, already
tested on other studies such as for air quality measurements, are an interesting perspective.
In the present article, we have exploited a method that takes advantage of the multiple
rendezvous of several smartphones “at the same place” and “at the same time”, measuring
the same acoustic event. Written as a network graph model, the resolution of the associated
matrix system can then be used to determine a mean drift for each smartphone, which is
similar to a calibration correction in acoustics. The method relies on certain constraints,
which are discussed in the paper, such as the temporal distribution of the data at our
disposal to verify the “at the same time” condition, or more accurately at similar periods in
the day, as well as the size of the spatial area to verify the “at the same place” condition.
In addition, the number of rendezvous a smartphone can have with others is an important
factor for the quality of results. In particular, we proposed a hybrid approach to address
this critical point, enabling us firstly to improve the quality of the calibration on a limited
number of smartphones by using the Network Graph Model, then, secondly, using these
calibrated smartphones to calibrate the other ones using a simpler approach. With regard
to the first limitation, the progressive accumulation of new data over time should make it
possible to obtain a more relevant temporal distribution of data. We have also observed
that considering only smartphones with a minimum time of presence in each spatial area
could be a way to enhance the behavior of the hybrid method. Regarding the second
limitation related to the size of the spatial area, the results show that a 15 m radius spatial
area was sufficient to verify a relatively homogeneous noise environment in the context of
the hybrid method.

The obtained results seem particularly interesting and demonstrate the feasibility of
such a blind calibration approach for mobile noise data. The method can also be improved
by taking advantage of the simultaneous presence of reference sensors in a given area, such
as noise observatories or calibrated smartphones, as suggested in [44].

The behavior of the method could also be studied on the basis of a perfectly controlled
virtual mobile noise measurement dataset, as shown in Section 2.3.3. For example, it would
be possible to study in more detail the effects of time of presence in hexagons, temporal
and spatial variability, minimum number of links, or the presence of reference sensors.
It could be useful to identify with more confidence the best conditions for applying the
hybrid blind calibration method and to adapt its parameter values to the characteristics
of the dataset. A virtual mobile noise measurement dataset will also enable testing other
spatial and temporal grids, replacing for instance hexagons by streets with similar traffic
behavior or refining the “at the same time” condition relying on temporal periods with
similar sound levels. It will be of interest finally to test the sensibility of the method to
datasets with different levels of heterogeneity in the participatory contributions, as this first
analysis suggests that some main contributors might have an influence on the method if
they collect a large proportion of the data and have calibration values not centered on zero.
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More generally, to improve the method, it might also be useful to improve the quality of
the data collected. It could be envisaged at the source, by improving the mobile application
to ensure better control of the measurement procedure but also a better understanding of
the measurement context. One example is the possibility offered by specific libraries for the
development of smartphone applications to obtain information on the user mode of travel
(on foot, by bike, on public transport), or even the location of the smartphone itself (in the
hand, in the pocket, in a bag). Improving the quality of the database can also be achieved a
posteriori by searching for and then removing any data collected that could be assimilated
to anomalies. It can be taken into account, for example, by considering methods such as
the Local Outlier Factor (LOF) [45] or the Isolation Forest [46] methods.

To conclude, the blind calibration approach, possibly considering improvements, is a
very interesting way of tackling the difficulty of calibrating each individual smartphone.
With this methodology and as part of a participative approach to noise map production, it
would no longer be necessary to ask users to calibrate their smartphones, as this can be
completed a posteriori. It would also be interesting if each user could know the calibration
value in return and have it automatically integrated into the application parameters.
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Abstract: Road traffic noise is a severe environmental hazard, to which a growing number of dwellers
are exposed in urban areas. The possibility to accurately assess traffic noise levels in a given area
is thus, nowadays, quite important and, on many occasions, compelled by law. Such a procedure
can be performed by measurements or by applying predictive Road Traffic Noise Models (RTNMs).
Although the first approach is generally preferred, on-field measurement cannot always be easily
conducted. RTNMs, on the contrary, use input information (amount of passing vehicles, category,
speed, among others), usually collected by sensors, to provide an estimation of noise levels in a
specific area. Several RTNMs have been implemented by different national institutions, adapting
them to the local traffic conditions. However, the employment of RTNMs proves challenging due to
both the lack of input data and the inherent complexity of the models (often composed of a Noise
Emission Model–NEM and a sound propagation model). Therefore, this work aims to propose a
methodology that allows an easy application of RTNMs, despite the availability of measured data
for calibration. Four different NEMs were coupled with a sound propagation model, allowing
the computation of equivalent continuous sound pressure levels on a dataset (composed of traffic
flows, speeds, and source–receiver distance) randomly generated. Then, a Multilinear Regressive
technique was applied to obtain manageable formulas for the models’ application. The goodness of
the procedure was evaluated on a set of long-term traffic and noise data collected in a French site
through several sensors, such as sound level meters, car counters, and speed detectors. Results show
that the estimations provided by formulas coming from the Multilinear Regressions are quite close to
field measurements (MAE between 1.60 and 2.64 dB(A)), confirming that the resulting models could
be employed to forecast noise levels by integrating them into a network of traffic sensors.

Keywords: noise emission models; Road Traffic Noise Models; multilinear regressive approach

1. Introduction

When dealing with actual urban area hazards, environmental noise is surely one of
the most pervasive and dangerous, with road traffic noise surely being the most prominent
of all [1]. As a direct consequence of urbanization increasing, the number of vehicles per
inhabitant has constantly grown during the last years, significantly impacting noise pollu-
tion in both urban and extra-urban contexts [2], and the big amount of constantly passing
vehicles leaves no noise-free spaces. While studies on noise in urban areas were often
neglected in the past, they have recently gained remarkable attention from national and
international evaluation organizations working to implement strategies for its reduction.
For instance, the European Union has outlined a goal to achieve a 30% reduction in the
number of people exposed to harmful noise levels by 2030 [3].
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It has been undoubtedly provided that exposition to day–evening–night noise levels
exceeding 55 dB(A) leads to a series of health issues, listing from the mildest to the most
severe: intelligibility during conversations, irascibility, sleep deprivation, mental issues,
high blood pressure, and even sudden death [4–11]. Moreover, specific sensible areas are
present in urban environments, such as schools. In these places, the control of noise is even
more important, since the effects of noise exposure on children can be more severe than on
adults [7]. Mitigation actions for the reduction in noise levels in urban areas is a mandatory
task, as established by the directive 2002/49/EC [12]. Thus, the accurate assessment of noise
levels in a specific area is a fundamental procedure, important for the implementation of
targeted action plans. When trying to evaluate noise levels in a given area, two approaches
are possible. The most direct–and precise–is to directly measure noise levels with dedicated
instrumentation (sound level meters). Nevertheless, on-field measurements are not always
the fastest or most economically viable way to proceed. In many conditions, in fact, the
morphological arrangement of traffic roads does not permit the installation of fixed stations
for noise level monitoring, or sometimes the measurement campaign could be expensive,
long, and dangerous. To overcome these issues, the implementation of an effective sensor
network in urban areas, that could provide acoustic and traffic data continuously and
possibly with low-cost efforts, can be a valid alternative. Such a solution is largely explored
in the literature: in [13,14], a system of sensors for the discrimination of traffic noise from
anomalous noise events. In [15], a low-cost implementation of urban sensors for urban
noise monitoring is described. In [16], a set of wireless acoustic sensors is described for
automatic audio event classification. In [17], a general review of wireless sensor systems
for smart cities is described.

When such situations are not implementable, the estimation of noise through a Road
Traffic Noise Model (RTNM) is preferable. RTNMs are physical models composed of a
Noise Emission Model (NEM) and a sound propagation model [18]. The former assesses the
source sound power levels (LW), while the latter transforms such information into sound
pressure levels at receiver points. RTNMs take several parameters as inputs such as the
number of vehicles transiting in a certain time period, their categories (light-duty vehicles—
LDVs, medium vehicles, heavy-duty vehicles—HDVs), the vehicles’ speeds and/or their
accelerations, the distance between the road and the sensible receivers [18]. More complex
RTNMs can also take into account other aspects like the presence of roundabouts or
intersections (that affect the noise levels due to acceleration maneuvers), the presence or
absence of acoustic barriers, and even some climatic aspects like air humidity, temperature,
and wind direction [19,20]. It is very interesting to note that the implementation of RTNMs
and the use of sensors for data collection are not mutually exclusive. On the contrary, they
can be implemented together to obtain the best results. In this idea, sensors provide—in
real-time or offline–large quantities of data that are used as input for the predictive models.
Some examples of this integration are reported in [21–23], and even in [24,25], where large
urban area monitoring is exploited.

Different models have been set up by different national institutions, resulting in
heterogeneous results when applied in the same context. Among the most used, it is worth
mentioning the CoRTN model [26], which is commonly adopted in the United Kingdom, the
SonRoad model which has been implemented in Switzerland [27], the NMBP model used in
France [28], the ASJ in Japan [29], and the RLS90 in Germany [30], the Harmonoise [31], and
Quartieri et al. [32]. Besides all these models, the European Union (EU) has implemented
the CNOSSOS one [33,34], which provides a common procedure for the assessment of
transportation and industrial noise levels and the consequent development of noise maps,
aiming at implementing a stand-alone model for noise assessment in all the European
Countries that should receive and use it (by adapting it in some aspects if necessary).
Despite the EU’s efforts towards harmonization, the aforementioned national models are
still used, especially in academic environments.
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Generally speaking, any implemented noise model suffers from some intrinsic draw-
backs, reflecting a variable amount of uncertainty in the final prediction. First of all, any
model needs to be calibrated starting from a set of collected data. Such an unavoidable
procedure implies that a given RTNM generally performs better in predicting road traffic
noise in the same area where its calibration data have been collected. Consequently, when
applied in a different scenario (different country, for example), its performance could be
severely impaired. Moreover, an RTNM can be generally applied to road traffic conditions
similar to the ones of calibration; nonetheless, if the traffic conditions are different from the
ones used in the calibration (lower traffic volumes vehicles, lower or higher speeds), the
model could perform poorly [18,35].

As for the outputs, RTNMs can furnish information in terms of equivalent continuous
sound levels (Leq), percentile levels, or day–evening–night noise levels (Lden). The latter is
calculated from the day (Lday), evening (Levining), and night (Lnight) sound pressure levels,
as their logarithmic sum which includes a penalty for evening and night hours (the same
amount of noise emitted is considered to be more annoying at evening or night than during
the day).

It must be stressed that, although RTNMs represent a valid alternative to long-term
noise measurement campaigns, their utilization may be affected by certain factors. Indeed,
the equations, constituting the framework of RTNMs, could be difficult to apply, necessitat-
ing the development of scripts for their implementation (and the relative programming
know-how). In other cases, commercial software is available for the development of noise
maps, using a specific RTNM as an algorithm. Therefore, there is a need for procedures
that can facilitate the straightforward application of the already-existing RTNMs in the
literature, permitting fast usage and reliable results.

For these reasons, the authors implemented a multiregressive technique for traffic
noise assessment by calibrating it on computed data instead of real ones. As described
in [36–38], such a regressive model has the advantage of not needing real data for its
calibration. Moreover, the algorithms of generation of its calibration dataset make it
potentially applicable to different traffic contexts. On this basis, the authors presented,
in this contribution, a new application by coupling the aforementioned multiregressive
model with four different existing NEMs (REMEL [39], SonRoad [27], CNOSSOS (and
its amendments) [33,34], and NMPB [28]), in turn, coupled with a sound propagation
model (namely a simplified formulation of the propagation provided in the CNOSSOS
final report [33]). Whereas a comparison between models has already been provided in the
literature, a concomitant study on the usage of a multilinear regressive model on different
NEMs and sound propagation model, furnishing a modular approach in which a part can
be easily substituted by another, is a novelty aspect to the best of our knowledge. The
whole code for the generation of the model has been implemented in Python, using the
most common packages for data analysis and visualization [36]. It has a low computational
cost in terms of memory usage and time of generation (already described in detail in [37]).

Outputs of the here-presented models are provided as Leq,h, which is one of the most
commonly used noise indicators in the literature, but the proposed methodology has the
potential to express the final output as a general function of time, computing the equivalent
level at whichever timespan. The validation of the models is provided by applying the
equations coming from the multiregression to a set of more than 3000 data elements coming
from a Long-Term Monitoring Station (LTMS) by the Université Gustave Eiffel and Unité
Mixte de Recherche en Acoustique Environnementale (UMRAE), Nantes [40]. This dataset
contains up to seven years of both acoustic and meteorological road traffic data (from
2002 to 2007), collected from a highway located in the city of Saint-Berthevin (France). At
the end of the validation process, the Leq,h values from the aforementioned dataset were
aggregated on an hourly time basis and compared with the estimations provided by the
multiregressive linear models application.
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2. Materials and Methods

The generation of the model presented in this publication can be divided into four
steps: (1) computing of the dataset for the calibration, (2) calibration of the multilinear
regression model according to the four considered NEMs coupled with the sound propaga-
tion model, (3) validation of the models, (4) estimation of the models, as schematized in
Figure 1. Below is the detailed description of each step.

 

Figure 1. Flowchart of the generation of the model. The computed dataset is used to calibrate the
models by computing equivalent hourly noise levels according to the four NEMs investigated, cou-
pled with a simplified version of the sound propagation model provided in CNOSSOS. A multilinear
regression technique is then applied, and with the obtained coefficients, the simulated hourly noise
levels are computed and compared with the measured ones (from the LTMS dataset) to evaluate the
goodness of the proposed approach.

2.1. Computing of the Dataset for the Calibration

The dataset used for the calibration of the model is entirely computed, and it is
built with sequential steps. The procedure to compute the calibration dataset has been
extensively described elsewhere [36,37], and here, a brief recapitulation of the process
is furnished. The dataset has been built using Python 3.8, with Jupyter notebook as a
compiler. The packages used to develop the code are standard packages for data analysis
(pandas, numpy), for data plotting and visualization (matplotlib-pyplot and seaborn), and for
statistical analysis (sklearn). The machine used is a DELL Pc (Intel® Xeon® CPU E3-1245 v5
@3.50 GHz) with 16 GB of RAM installed, 64 bit.

The first step of dataset generation is the building of a series of 200 rows having
sequential values of flow, expressed as vehicle per hour (defined as variable Q), starting
from 10, with incrementing of 10 vehicles at time. From now on, the following steps are
intended to be repeated for each row of the dataset. The result of this first step is a column
of Q spanning from 10 to 2000 vehicles per hour. The second step is the creation of a second
column: speed of light vehicles (VL) filling each row with a randomly extracted value from
a minimum of 30 km/h to a maximum of 130 km/h, with a minimum range of 1 km/h.
Each value has the same probability of being extracted. The third and fourth steps are
the extraction of the speed of medium and heavy vehicles (VM and VH). The VM value
is randomly extracted from a minimum of 30 km/h to a maximum value equal to the
VL extracted in the previous step, with a minimum range of 1 km/h. Similarly, the VH
value is randomly extracted from a minimum of 30 km/h to a maximum value equal to
the VL extracted in the previous step, with a minimum range of 1 km. Both VM and VH
values have the same probability of being extracted between the whole range. The fifth
step is the random extraction of a p, which represents the percentage over the Q of the
medium and heavy vehicles, which is composed of a pmedium and a pheavy value. They are
extracted as follows: pmedium value is randomly extracted from a minimum of 0.1% to a
maximum of 20.0%%, with a minimum range of 0.1%. All values have the same probability
of being extracted. Subsequently, pheavy is randomly extracted from a minimum of 0.1% to a
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maximum value equal to 20.0% minus pmedium, with a minimum range of 0.1%. In such a
way, the whole p value will never exceed 20.0%. The sixth step is the random extraction
of d representing the source–receiver distance, which spans from a minimum of 10 m to
a maximum of 100 m, with a range of 1 m. The last step is the repetition of steps from 2
to 6 for n times: in this specific application, n is equal to 20. In such a way, a dataset of
4000 rows is built.

2.2. Calibration and Validation of the Multilinear Regression Model According to the Four
Considered NEMs

The independent variables, generated in the previous step, are used to calculate
Leq,h values through the four employed NEMs, coupled with a sound propagation model
(retrieved from the CNOSSOS model). Particularly, the first step involved the calculation
of LW for each vehicle category, using the average speed as an input variable. It must be
stressed that the REMEL and CNOSSOS models foresee a formulation for the LW assessment
of medium vehicles. For the other two NEMs, the formulation proposed to assess the LW
of HDVs was employed also for the medium vehicles. The equations adopted for the LW
calculation can be retrieved from the model-related reports. Details of such calculations can
be found elsewhere [27,28,33,34,39], but for the sake of completeness, the authors report
the formulations in Table 1.

Table 1. Calculations of LW according to the four NEMs used.

REMEL [39]
LWL = 31.130 log10(VL) + 12.700
LWM = 18.765 log10(VM) + 43.967
LWH = 12.831 log10(VH) + 58.270

SonRoad [27]

LWL = 28.5 + 10log10

[
10

7.3+35×log10 VL
10 + 1060.5+log10 (1+(

VL
44 )

3.5
)

]

LWM = 28.5 + 10log10

[
10

16.3+35×log10 VM
10 + 1074.7+log10 (1+(

VM
56 )

3.5
)

]

LWH = 28.5 + 10log10

[
10

16.3+35log10 VH
10 + 1060.5+log10 (1+(

VL
56 )

3.5
)

]

CNOSSOS [33,34]
LW,i = 10log10

(
10

LW,rolling,i
10 + 10

LW,propulsion,i
10

)
with LW, rolling and LW, propulsion given in [33,34] for each vehicle category
and each frequency octave band (i) from 63 to 80,000 Hz

NMBP [28] LW = 10log10

(
10

LW,rolling
10 + 10

LW,propulsion
10

)
+ 20log10

(
dre f

)
+10log10(2π)

with LW, rolling, LW, propulsion, and dre f given in [28] for each vehicle category

Regarding Table 1, it is worth mentioning some important differences between the
NEMs used in this work. While the REMEL and SonRoad models compute LW through a
simple unique formula in which the vehicle speed is the main independent variable, the
others are characterized by a more complex structure. Specifically, the CNOSSOS model
assesses the propulsion and the rolling (due to the interaction between tires and road
pavement) noise contributions separately in each octave band from 63 to 8000 Hz. The
contributions of each octave band must be A-weighted and, therefore, logarithmically
summed to obtain the overall engine and rolling sound pressure levels. These last ones
can be, in turn, logarithmically summed to obtain the overall vehicle sound power level.
It is worth reminding that the CNOSSOS model categorizes vehicles into five groups:
light-duty vehicles, medium vehicles, heavy-duty vehicles, motorcycles, and the fifth
category reserved for alternative vehicles. Since the number of hybrid and electric vehicles
is growing in the EU fleet, it will be necessary, then, to update the model including this
fifth category. In this regard, Licitra et al. [41] proposed coefficients for electric vehicles
in the framework of the CNOSSOS model. Another approach explored in the literature
is to use the CNOSSOS formulation for the LDVs by setting the propulsion coefficients
to zero, as recently investigated in [42]. Finally, the NMPB model estimates the sound
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power level from maximum A-weighted sound pressure levels, considering both engine
and rolling contributions, during single-vehicle pass-by tests at 7.5 m from the receiver. The
rolling noise contribution is distinguished for three road pavement surfaces. In this study,
the authors adopted the rolling noise formulation proposed for the third road pavement
typology. This choice was driven by the fact that it exhibits characteristics closest to those
of the site where the data for the validation process were gathered. It should be noted
that correction terms related to acceleration operations, proximity to roundabouts, and
intersections, among others, were neglected. The reasons behind this choice are twofold:
(i) not all the employed NEMs present such correction terms; (ii) it is difficult to find a
robust validation dataset in which acceleration data are available. Nonetheless, other
variables as acceleration can be easily included in the proposed approach in future works.
It is also noteworthy that CNOSSOS, NMPB, and SonRoad give the possibility to simulate
sound power levels for different road surfaces; nevertheless, in this contribution, only the
reference surface of each model has been evaluated.

The employed sound propagation method is retrieved and adapted from the CNOS-
SOS formulations [33]. It must be said that such a model considers the traffic flow as a linear
source. At first, the hourly equivalent sound density power levels of the different vehicle
categories flows (LWL, LWM, and LWH) are calculated according to the average speeds (VL,
VM, and VH),

Lw′
line,L = LWL + 10log10

(
QL

1000 ∗ VL

)
(1)

Lw′
line,M = LWM + 10log10

(
QM

1000 ∗ VM

)
(2)

Lw′
line,H = LWH + 10log10

(
QH

1000 ∗ VH

)
(3)

and then the hourly equivalent sound pressure levels are retrieved by using the linear
source propagation formulation:

Leq, L = Lw′
line,L − 10log10 d − 8 (4)

Leq, M = Lw′
line,M − 10log10 d − 8 (5)

Leq, H = Lw′
line,H − 10log10 d − 8 (6)

where d is the sound–receiver distance. Therefore, the overall Leq,h value comes from the
logarithmic sum of the partial contributions:

Leq,h = 10 log10

[(
10

Leq,L
10

)
+

(
10

Leq,M
10

)
+

(
10

Leq,H
10

)]
(7)

Once the Leq,h values are calculated according to the formulas of each NEM and to the
propagation, they are used for the multilinear regression. Particularly, an Ordinary Least
Squared regression is implemented between the six independent variables (Q, VL, VM, VH ,
p, d) and the Leq,h by using the Python package sklearn. The regression formula for each
NEM-sound propagation model has the same following structure:

Leq,h simulated = C1Q + C2VL + C3VM + C4VH + C5 p + C6d + intercept (8)

with C1, C2, etc., being the coefficients of the multilinear regression model. At this stage, the
residuals of the regression are computed and analyzed (the reader can refer to Section 3.2).

The obtained regression formulas are validated by running the model on a field
measurements dataset (LTMS) that will be described in the following, and comparing the
estimated Leq,h with the measured noise levels. Please note that by applying the regression
procedure, the authors faced the problem of the uncertainty of the measurement. LTMS
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data are, in fact, by definition, collected data, and they have an intrinsic uncertainty, which
can propagate when a multilinear regression technique is applied to the data. In Section 3.3,
a strategy has been implemented to consider such problems, which has also been addressed
in the last part of the manuscript (Section 4.3), where the limitations of the study are
presented. Moreover, the noise assessment is provided at variable distances, considering
the space between the source and receiver as free, without any surrounding building that
could be responsible for reflection phenomena.

2.3. Estimation of the Performances of the Model

The goodness of the regression models is established by calculating the error as the
difference between the measured Leq,h and the computed ones, and by studying the errors
distributions in terms of statistical metrics such as mean, median, standard deviation,
skewness and kurtosis. In addition, the standard metric errors are calculated (Mean
Absolute Error–MAE, Mean Absolute Percentage Error–MAPE, and Root-Mean-Square
Error–RMSE). All the error metrics and the statistical properties have been computed by
using the Python packages numpy and scikitlearn. Specifically, MAE is defined as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (9)

with n being the number of samples, yi the ith measured value, and ŷi the ith simulated
value. MAPE has been computed by Equation (10):

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
max(ε, |yi|) (10)

with ε an arbitrary small yet strictly positive number to avoid undefined results when y is
zero. RMSE is computed as follows (Equation (11)):

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

3. Results

3.1. Computation and Analysis of the Dataset for the Model Calibration

The first operation carried out for the generation of the multiregressive model is the
computation of the original random dataset. As described in the previous section, this
database is computed by joining, in rows, randomly picked values of six independent
variables (Q, VL, VM, VH , p, and d). This procedure has the scope of generating a robust
and random database to cover a multitude of possible traffic situations. This represents a
fundamental step in the model calibration, aiming to avoid potential bias due to lack of
information. To augment the possibilities of obtaining a totally random database, a high
number of rows is required. Based on observations described in [37], for this application, the
authors chose the n factor equal to 20, obtaining a final dataset of 4000 entries. Before using
it for the calibration of the model, the authors verified that the variables were independently
distributed, performing a correlation analysis. The corr function of the pandas package, on
details, correlates each column with all the others by using the Pearson correlation method,
obtaining a final correlation value spanning from −1 (maximum inverse correlation) to 1
(maximum correlation), with 0 equal to no correlation; the method of correlation chosen is
the standard correlation coefficient. In Figure 2, the correlation matrix is shown, reporting
the results of the above-described procedure.
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Figure 2. Correlation matrix of the randomly computed dataset for the subsequent model calibration.

The correlation matrix shows an obvious maximum correlation of the columns with
themselves (central diagonal) and no correlation (green rectangles) when each variable
is compared with the others. VL, VM, and VH , have a moderate positive certain degree
of correlation, due to the constraints used to generate the dataset. The authors, in fact,
imposed that, after certain values, VM and VH cannot be, for every single row, higher than
VL, to avoid the unlikely situation where all the heavy vehicles, despite the limits fixed by
law, run faster than common light vehicles (please refer to Section 2.1 for more details).
Hence, apart from the relations between the velocities of the vehicle types, the computed
database consists of uncorrelated independent variables. Another important aspect to
underline is that the original database just computed corresponds to a seed value, which
assures its reproducibility. The chosen seed value is the same for all the datasets used for
the calibration of the model with the four different RTNMs.

3.2. Calibration of the Model and Residuals

As described in Section 2, the four NEMs are coupled with the propagation model. At
this stage, the Leq,h values are computed using input data from the randomly generated
database, consisting of 4000 rows. Thus, the multiregressive model was applied using the
information from the database, along with the newly computed Leq,h values, resulting in
the coefficients reported in Table 2:

Table 2. Multiregressive model coefficients.

REMEL SonRoad CNOSSOS NMBP

C1 10.06 10.03 10.03 10.02

C2 10.15 12.53 15.65 12.96

C3 1.41 3.05 0.52 3.02

C4 0.33 0.91 0.12 1.21

C5 3.14 3.36 1.28 2.46

C6 −12.81 −12.84 −12.85 −12.83

INT 31.87 20.51 22.43 19.65

Therefore, the residuals of this calibration process were evaluated. They are here
defined as the difference between the Leq,h values obtained by applying the models (in
their basic form) to the database values and the Leq,h computed by applying the formulas
from the multiregressive technique. The statistical metrics of the residuals coming from
the calibration process are shown in Table 3, while their distributions together with the
autocorrelation functions are plotted in Figure 3.
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Table 3. Statistical metrics of residual distributions (calibration process).

REMEL SonRoad CNOSSOS NMBP

Mean [dB(A)] 0.00 0.00 0.00 0.00

St dev [dB(A)] 0.89 0.64 0.59 0.45

Median [dB(A)] −0.06 −0.07 −0.04 −0.05

Mode [dB(A)] −1.43 −0.37 −0.67 −0.14

Min [dB(A)] −2.68 −1.76 −1.27 −1.39

Max [dB(A)] 3.84 3.09 2.94 2.37

Shapiro 0.98 0.97 0.97 0.98

Skewness 0.56 0.66 0.82 0.56

Kurtosis 0.96 0.40 1.33 0.67

Residuals of calibration are well centered (Figure 3), having a mean value equal to 0.0),
with low standard deviation (a minimum of 0.45 dB(A) and a maximum of 0.89 dB(A)).
Median values also lie within a narrow interval (from −0.07 to −0.04 dB(A)). Shapiro–Wilk
test results indicate that all the residuals are normally distributed (p-value ≥ 0.96). The
residual distributions are characterized by a positive skewness index, due to a variable
amount of data on the right side of the distribution. The kurtosis index is variable, higher
for calibrations with REMEL and CNOSSOS but lower with the other RTNMs. Figure 3
reports also the autocorrelograms of the residuals for all the tested models. It is evident
that no significant autocorrelation is present as a function of the lag, meaning that no
information was left in the residuals and exhibiting a further endorsement of the goodness
of the calibration process.

 

ACF residuals (REMEL) 

 

ACF residuals (SonRoad) 

Figure 3. Cont.
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ACF residuals (CNOSSOS) 

 

ACF residuals (NMPB) 

Figure 3. Distributions of the residuals (calibration process) for the different considered models and
their autocorrelation plots (dotted lines indicating the level of statistical significance).

3.3. Validation of the Model

The calibration phase is followed by the validation of the models, which involves
assessing error metrics using field-measured data.

The dataset used in this paper comes from a Long-Term Monitoring Station (LTMS)
installed by the Université Gustave Eiffel (former IFSTTAR) and Unité Mixte de Recherche
en Acoustique Environnementale (UMRAE), Nantes [40]. This project was based on the
installation of both acoustic and meteorological masts that collected data continuously from
2002 to 2007, in the proximity of a highway in the city of Saint-Berthevin (France). A detailed
description of the experimental site is reported in [40], and the data are available upon
request. This dataset is originally created from more than 30,000 entries, reporting 15 min
Leq,h values. For the purposes of this work, hourly Leq,h values are needed; therefore, the
authors aggregated the data by logarithmically summing all the 15-min entries belonging
to the same hour, and excluding the rows with missing values (no missing data imputation
method was performed), resulting in a final dataset of 3404 rows complete of all the inputs
needed to run the model. Please note that, as described in [36,37], the original LTMS
dataset has to be adapted to the model, specifically for the medium and heavy vehicle flows
and speeds.

Figure 4 reports the measured Leq,h values and the simulated ones for each model
when the multiregressive linear approach is applied.

Red lines on the plot show the bisector (continue line) and an interval of ±2 dB(A)
(dashed lines). It is visible how the clouds of points all have a similar shape, but their
positions vary between the chosen RTNM. Specifically, 71%, 49%, 50%, and 42% of the
points are in the region detected by the bisector shifted up and down by 2 dB(A) for
REMEL, SonRoad, CNOSSOS, and NMPB, respectively. Such percentages become 84%,
71%, 72%, and 67%, respectively, when the bisector is shifted by 3 dB(A), corresponding to
the doubling (halving) of the acoustic pressure.
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Figure 4. Scatterplots of measured vs. simulated Leq,h values of the LTMS dataset for all the
four RTNMs after implementation of the multilinear regressive model. The dashed lines represent a
±2 dB(A) interval with respect to the bisector.

Compared to the REMEL model, the other models tend to underestimate the noise
levels. As the sound propagation model is common to all the four employed NEMs, the
explanation for such behavior could be attributed to the noise emission curves (express-
ing the relationship between the vehicle speed and the sound power level) of SonRoad,
CNOSSOS, and NMPB, which are lower compared to the ones furnished in REMEL, as it is
possible to ascertain from Figure 5.

The metrics related to the distributions of the errors (i.e., the difference between the
measured and simulated LAeq) are reported in Table 4. REMEL is the model characterized by
the lowest mean error, while CNOSSOS, NMPB, and SonRoad present similar performances.
The distribution of the errors turns out to be almost symmetric (around the mean), as
confirmed by the skewness values close to zero. Moreover, there is a high concentration of
errors around the mean, as it is possible to note by the kurtosis values above 1.

Table 4. Metrics related to the distributions of the errors.

REMEL SonRoad CNOSSOS NMBP

Mean [dB(A)] 0.15 2.15 2.01 2.40

St dev [dB(A)] 2.15 2.19 2.24 2.18

Median [dB(A)] −0.02 1.95 1.87 2.24
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Table 4. Cont.

REMEL SonRoad CNOSSOS NMBP

Min [dB(A)] −6.15 −4.12 −4.29 −3.85

Max [dB(A)] 15.20 17.00 17.42 17.42

Shapiro 0.97 0.97 0.98 0.97

Skewness 0.67 0.71 0.53 0.67

Kurtosis 1.79 1.96 1.24 1.85

 

 

Figure 5. Noise emission curves for LDVs, medium vehicles, and HDVs.

3.4. Comparison with RTNMs Application without Regression

After obtaining simulations of Leq,h with multilinear regression techniques, a compari-
son with a straightforward application of RTNMs has been implemented and investigated.
As previously stated, one of the issues of the application of the RTNMs is their difficulty
of application and the requirement for programming scripts or commercial software for
implementations. To overcome these problems, then, a single-time calibration of a multi-
linear regression technique is helpful in permitting future fast estimations of Leq,h values
from road traffic data. However, the multiregressive technique must be reliable and present
a validation efficiency comparable to that of the RTNMs themselves, so as to make the
calibration effort worthwhile. Thus, to estimate the effective validity of the multiregressive
approach compared to the sole applications of RTNMs, the authors performed a compari-
son between the two approaches. The comparison involved statistics of the distributions of
simulated Leq,h values, error metrics, and computational time investment. This comparison
has been carried out on the LTMS dataset.
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3.4.1. Statistical Distributions of RTNMs Results

At first, the authors computed the simulated Leq,h distributions and the related statisti-
cal parameters when the RTNMs were employed with the formulation coming from the
multilinear regressive technique and in their original form. Figure 6 overlaps the distribu-
tions of the simulated Leq,h for the four chosen RTNMs in the two aforesaid approaches,
while Table 4 reports the exact values of statistical parameters of the related distributions.

  

Figure 6. Distribution of simulated LAeq,h from the application of RTNMs with and without the
multiregressive approach.

As is evident from the graphs displayed in Figure 6, the simulated Leq,h values using
the multilinear regressive approach tend to assume slightly lower values compared to
the case where RTNMs are applied in their basic form. Consequently, the multiregressive
approach may introduce underestimations of the noise levels due to the loss of information
introduced by the application of the technique itself. This pattern is further highlighted by
the mean values of the simulated LAeq, consistently lower when employing the multiregres-
sive linear technique compared to simulations without this approach (the reader can refer
to Table 5). In the case of REMEL, the difference between the mean values of simulated
Leq,h is notably higher than 2 dB(A), highlighting a more pronounced effect. Regarding
the shape of the distributions, similarities are observed in both cases, as confirmed by the
standard deviation-, skewness-, and kurtosis-related values.
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Table 5. Statistical properties of measured and simulated Leq,h distributions for the RTNMs with and
without the multiregressive approach.

Measured REMEL SonRoad CNOSSOS NMBP

Mult.
Regr.

w/o Mult.
Regr.

Mult.
Regr.

w/o Mult.
Regr.

Mult.
Regr.

w/o Mult.
Regr.

Mult.
Regr.

w/o Mult.
Regr.

Mean
[dB(A)] 72.09 71.93 74.59 69.94 71.03 70.08 70.97 69.68 70.23

Std
[dB(A)] 2.00 2.35 2.42 2.38 2.46 2.53 2.48 2.42 2.47

Median
[dB(A)] 72.47 72.46 75.10 70.48 71.58 70.62 71.33 70.23 70.74

Shapiro 0.89 0.92 0.93 0.92 0.93 0.93 0.94 0.92 0.93

Skewness −1.69 −1.25 −1.14 −1.25 −1.11 −1.15 −1.14 −1.23 −1.10

Kurtosis 4.87 2.49 2.05 2.50 1.78 1.83 2.22 2.31 1.77

3.4.2. Error Metrics

A comparison between the two approaches was performed also through important
error metrics such as MAE, MAPE, MSE, and RMSE (Table 6), computed based on the
errors committed for the simulation of the Leq,h values on the LTMS dataset.

Table 6. Error metrics of simulated Leq,h for the RTNMs with and without the multiregressive approach.

REMEL SonRoad CNOSSOS NMBP

Mult.
Regr.

w/o Mult.
Regr.

Mult.
Regr.

w/o Mult.
Regr.

Mult.
Regr.

w/o Mult.
Regr.

Mult.
Regr.

w/o Mult.
Regr.

MAE
[dB(A)] 1.60 2.89 2.44 1.85 2.39 1.88 2.64 2.29

MAPE [%] 0.02 0.04 0.03 0.03 0.03 0.03 0.04 0.03

RMSE
[dB(A)] 2.16 3.33 3.07 2.47 3.00 2.41 3.24 2.89

As it is possible to note, the MAE values associated with SonRoad, CNOSSOS, and
NMPB are slightly lower when the models are applied in their basic form (less than
0.6 dB(A) than in the case in which the multiregression is applied). This is attributed, as
mentioned in the previous subsection, to the slight underestimation that the multilinear
regressive approach may introduce due to the loss of information during its application.
The only exception is REMEL, which appears to experience fewer underestimation issues,
at least for the selected case study. Similar trends are observed for RMSE values. In contrast,
MAPE values remain consistent across the four considered models.

In general, the performance of the models when the multiregressive approach is
applied remains in line with the cases where RTNMs are applied in their basic form,
confirming the goodness of the presented methodology.

3.4.3. Computational Efforts Required–CPU Time and Wall Time

The advantage in the implementation of a multiregressive approach can also be found
in the computational efforts required to perform the simulation of given Leq,h values coming
from a set of traffic data. In this subsection, the authors present an evaluation of the time
required to compute a fixed number of Leq,h with and without multilinear regression
implementation for all the four RTNMs investigated. The computer on which the following
tests have been performed is the same one described in Section 2, and the tests have been
run without any other non-necessary running programs in the background. Two types of
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time have been evaluated: CPU time (also known as “Execution time”), which is defined as
the time needed for the effective execution of the code lines, and wall time, which is the
time elapsed from the beginning of the operation to the visualization of the result. These
times were evaluated five times for each model (for the estimations of Leq,h on the same
set of input data), and then the average was computed. It is very important to remember
that the implementation of the multiregressive approach is divided into two steps: a
calibration step and a validation step. The calibration step, which demands a higher
computational effort (increasing with the dimensions of the calibration dataset), only needs
to be implemented once. This is because the multiregression coefficients generated can be
saved and subsequently used for the validation step. Thus, the authors only compared the
validation time of the multiregressive approach with the time needed for the simulation
of data by application of each single RTNM. To be complete, indications regarding the
calibration time are provided anyway. The time for calibration of the multiregressive model
is variable, as shown in Figure 7.

 
Figure 7. CPU and wall time for implementation of the calibration of the multiregressive approach
with the four different RTNMs considered.

The implementation of the regressive model, in fact, requires a comparable time
with three RTNMs (REMEL, SonRoad, and NMBP), with an average time of 3.27 ± 0.2 s.
Calibration time rises with CNOSSOS, which requires 23.39 ± 0.75 s. This can be explained
by the fact that the latter is characterized by more complex equations for evaluating the
sound power level, resulting in an increased computational burden compared to the other
models. The calibration process, then, requires a variable time in the order of seconds.
The other part of the process involves using the obtained coefficients to simulate the Leq,h
values, which are, of course, independent from the RTNMs used for the calibration.

The simulation of the LAeq,h values starting from the coefficient obtained from the
multiregression requires less CPU time than the RTNMs alone which, as remembered in
Section 1, can be difficult to implement or require dedicated software. The difference is in
the order of milliseconds, which may seem to be irrelevant, but it can become significant
when the number of Leq,h values to be simulated increases. It also has to be noted that the
variation in the time needed for the calculation of LAeq,h is more stable when implementing
regression than when applying only RTNMs. This may be due to the higher number of
lines to be read from the compiler than the ones of the regression technique.
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4. Discussion

4.1. Dataset for Calibration

The simulation of noise levels coming from road traffic data has dramatic importance
when real on-field measurements cannot be implemented. Many models have been imple-
mented over time to best transform the input data to noise levels close to real ones. In this
contribution, an approach based on a multiregressive technique has been implemented,
to retrieve a model that can result in a reliable output. The calibration of the model has
been based on a computed dataset of six independent variables; this approach has a double
meaning: (i) it can help in conditions where no real field data can be collected, and (ii) it
helps in virtually simulating any type of traffic situation that could occur in a given scenario.
Such dataset length can be varied according to the necessity, and it has been established in
4000 entries to assure reliability and repeatability. A smaller dataset, in fact, could help in
a reduction in the final total computation time but results in more unstable results since
the output coefficients would fluctuate over the repetitions. In the present manuscript, we
also demonstrated that the six variables used for the simulation of Leq,h are independent
between them, which is a mandatory condition for a correct multilinear regression.

4.2. Model Performances

Error metrics used to evaluate the model have shown interesting aspects of the multi-
linear regression technique when compared to the RTNMs in their basic formulation. At
first, the final results are impaired by an error that is similar to or slightly higher than
the one of the RTNMs applications. This loss of accuracy in the regression model can be
explained by the multilinear regression technique itself, which adjusts all the coefficients
to best minimize the error of each linear regression. Due to the number of variables, such
fitting inevitably requires relative adjustments that may lead to the loss of information.
Apparently, this procedure could also require a very high amount of time to be imple-
mented, and thus ultimately not be convenient over the application of the RTNMs as they
are. However, the simulation of the noise levels (in our application hourly levels) is faster
once the regression coefficients have been established. This may be a high advantage when
simulating a very high number of road traffic data, which is more and more common with
the emerging recording techniques. Another aspect to take into consideration is the sim-
plicity of the simulation of noise levels by using the multiregression coefficients compared
to the application of RTNMs, which requires a lower computation time.

4.3. Connections with Sensors Networks

The road traffic noise model proposed can be calibrated on a computed dataset to
cover multiple traffic conditions, as presented in this paper, or on any field measurements
dataset. The latter option, of course, may be affected by the measurement location features.
Anyway, in both cases, the model needs to be validated on a large dataset collected by
sensors networks, as was done in the paper using the LTMS sensors data. Thus, the outputs
of monitoring networks and digital infrastructures are essential for a proper development
of the proposed methodology.

Moreover, the idea of building an IoT framework for assessing noise impact on a
given area with this approach can surely be developed. A network of sensors continuously
collecting road traffic data related to variables used in the regression could be interfaced
with the proposed methodology, to output equivalent noise levels in near real-time, thanks
to the very low computational cost. The outputs can then be pivoted to any software able
to spatialize the data, such as any Geographic Information System (GIS) framework, to
produce noise maps.

4.4. Final Evaluation of the Model and Its Limitations

In a comprehensive evaluation of all the aspects of this research, the implementation
and usage of the multilinear regression technique is finally advantageous since it is reliable,
simple, and based on a solid calibration dataset that does not require real measurement
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to be built. The calibration dataset used is a key point of the whole procedure since it
gives the possibility to build a solid model for road traffic noise simulation without any
on-field measurements. This is important in situations where measurements are difficult to
be carried out but also when the evaluation of a future noise impact is at stake. Properly
simulating the independent road traffic variables could, in fact, aid in forecasting the
impact of traffic, facilitating the accurate evaluation of the infrastructure arrangement.
The presented model also presents drawbacks, and they are mainly addressed in the
loss of information during the generation of the coefficients of the regression. During
this operation, in fact, an amount of information is inevitably sacrificed for the sake of
simplicity. By observing the error metrics, moreover, it can be seen that the final accuracy
of the model is strongly dependent on the NEMs used for the calibration. Up to now, this
forces the user to conduct multiple calibrations to find the best NEMs for the fitting (just
like the application of more than one RTNM is often required for the best results). A second
intrinsic limitation of the study is that the application of a regressive model on collected
data has to inevitably face the problem of uncertainty of measure, already mentioned in
Section 2.2. Future steps of this work will deepen the statistical analysis and the interval
of confidence approach to assure a more coherent comparison with the real data used for
model validation. Another aspect to bear in mind is that the validation process, at this stage,
has only been pursued on a single database. One of the first next steps of this research,
then, will be testing the validity of the model on different traffic conditions, following the
incorporation of additional variables such as different road surfaces into the noise emission
models, as well as ground and obstacle reflections, atmospheric absorption, among others,
into the sound propagation model. A last limitation aspect to take into consideration is
that the employed NEMs have all been built in the framework of a combustion engine fleet
of vehicles, but recently, the composition of fleet is changing due to a growing number of
hybrid and electric cars. Anyway, the modular structure of the proposed approach allows
to easily integrate new versions of noise emission models that will consider the different
emission curves for electric vehicles as soon as they become available.

5. Conclusions

The multilinear regressive approach presented in this study yields robust simulations
of Leq,h values. A computed dataset was employed to calibrate the models, while the valida-
tion process was performed by using robust and reliable traffic and noise data from a large
database, available in the literature. A detailed comparison has been presented by using
four different RTNMs for the calibration (resulting from the combination of four NEMs and
a simplified sound propagation model). A validation on a field measurement dataset, built
with the adoption of several sensors, has been performed. The results demonstrated that the
proposed approach is suitable for the estimation of noise levels (MAE ranging between 1.60
and 2.64 dB(A)), particularly when compared with the application of the models in their
basic form (MAE values between 1.85 and 2.89 dB(A)). While the multilinear regression
approach may result in a loss of information, causing a slight underestimation of the noise
levels on one side, on the other side, it leads to obtaining easy formulas to be applied after
an initial calibration process. This also has repercussions on the computational burden
associated with the applications of the models.

Finally, it must be stressed that the proposed methodology could serve as support for
a network of traffic sensors (collecting data in terms of traffic volumes and speed), allowing
a fast and online estimation of noise levels, without the aid of sound level meters.
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Abstract: Environmental vibration pollution has serious negative impacts on human health. Among
the various contributors to environmental vibration pollution in urban areas, rail transit vibration
stands out as a significant source. Consequently, addressing this issue and finding effective measures
to attenuate rail transit vibration has become a significant area of concern. An infilled trench can
be arranged periodically along the propagation paths of the waves in the soil to attenuate vibration
waves in a specific frequency range. However, the periodic infilled trench seems to be unsatisfactory
for providing wide band gaps at low and medium frequencies. To improve the isolation performance
of wave barriers at low to medium frequencies, a buried PT-WIB consisting of a periodic infilled
trench and a wave impedance block barrier has been proposed in this paper. A three-dimensional
finite element model has been developed to evaluate the isolation performance of three wave barriers.
The influence of the PT-WIB’s parameters on isolation performance has been analyzed. The results
indicate that the combined properties of the periodic structure and the wave impedance block barrier
can effectively achieve a wide attenuation zone at low and medium frequencies, enhancing the
isolation performance for mitigating environmental vibration pollution.

Keywords: environmental vibration; attenuation zone; periodic structure; wave impedance block;
finite element

1. Introduction

Environmental vibration pollution arising from traffic, machines, and construction
blasting has been the subject of increasing concern in recent years, especially train-induced
environmental vibration pollution. With the development of rail transportation systems in
urban settings, the accompanied vibration from rail systems brings about a negative impact
on the surrounding area. The environmental vibrations may become an annoyance issue
to surrounding residents in both physiological and psychological aspects [1–5]. Therefore,
a lot of attention has been paid to environmental vibration isolation measures. Passive
isolation solutions such as open trenches, infilled trenches, and pile barriers [6–10] have
been investigated numerically and experimentally. Since these wave barriers may intercept,
scatter, or diffract incoming waves, they are generally installed along the propagation
paths of the waves in the soil for environmental vibration isolation. However, a broadband
attenuation band for environmental vibration has not been achieved through these previous
investigations. A relatively broad isolation frequency range is generally required in practical
engineering. Thus, it is significant to obtain a specific broadband isolation frequency range.

In recent years, the concept of acoustic metamaterials (AMs) has attracted increasing
research attention worldwide due to their peculiar wave dispersion characteristics. The
AMs can be regarded as a kind of functional material consisting of identical unit cells
with periodic distributions in another medium [11]. The energy of a wave in a particular
frequency range can be attenuated through its propagation in the AMs, which is considered
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to be a band gap or attenuation zone (AZ). The dispersion properties of AMs in physics
open up a new horizon for environmental vibration isolation. Subsequently, a large number
of investigations, including theoretical analysis, numerical simulations, and experiments,
have been conducted to reveal the mechanism of periodic structures in environmental
vibration reduction [12–21]. Huang et al. [15] proposed a layered periodic structure and
investigated its frequency zone of vibration reduction using FEM. The simulated AZs were
consistent with the results from Bloch theory. Pu and Shi [17] arranged piles in a periodic
way and investigated their isolation effects for Rayleigh waves from the perspective of the
periodic theory. Huang et al. [19] analyzed the vibration isolation performance of periodic
barriers under different excitations through some field experiments. The results indicated
that the frequency range of band gaps in the periodic structures can be identified.

Most of the aforementioned studies focused on vibration isolation at medium frequen-
cies. However, the concerning train-induced environmental vibration concentrates on both
low and medium frequencies, with a relatively broad range. The dominant frequency of
train-induced environmental vibration usually exists in the range of 30–60 Hz. However,
the accompanied low-frequency vibration below 10 Hz can travel over a long distance with
less attenuation, which may cause more serious impacts on the surrounding area. The at-
tenuation mechanisms of periodic structures are classified as Bragg scattering mechanisms
and local resonance mechanisms. For Bragg scattering, the formation of a band gap is based
on a complex result of elastic wave reflection and refraction at the interfaces of different
materials. It is suitable for medium- and high-frequency vibration reduction, but it has
difficulty formulating the low-frequency band gaps [13,14]. The wavelength attenuated by
the locally resonant band gap can reach two orders higher than the lattice constant [22],
which allows relative material structures to isolate lower-frequency vibration. The local
resonance mechanism of periodic structures overcomes the limitations of Bragg scattering
theory, and numerous researchers have utilized this mechanism to obtain low-frequency
vibration isolation [23–26]. However, the local resonance mechanism is contradictory to the
broadband frequency gaps [26].

This paper aims to identify a broadband attenuation zone for environmental vibration
at both low and medium frequencies. The wave-impeding block (WIB) is an efficient and
cost-effective method for low-frequency vibration reduction. It is usually embedded at a
certain depth in the ground under the vibration source and has been widely studied for
environmental vibration control [27–31]. The principle of the WIB is to introduce artificially
stiffened horizontal layers for the sake of changing the wave propagation mechanism in the
ground. Thus, the wave propagation relies on the relationship between the source excitation
frequency and the cutoff frequency of the overlaying soil above the WIB. Therefore, a buried
PT-WIB (periodic infilled trench–wave impedance block barrier) consisting of a periodic
infilled trench and wave impedance block barrier has been proposed in this paper to
realize a wide attenuation zone at both low and medium frequencies. A three-dimensional
finite element model was developed to analyze the vibration isolation performance of the
WIB, periodic infilled trenches, and PT-WIB in both the frequency and time domains. The
influence of the different parameters of PT-WIB on the vibration isolation performance
is revealed. It is hoped that the present study can be applied to reduce environmental
vibration in practical engineering.

2. Model and Methods

The purpose of this paper is to investigate the environmental vibration isolation
performance of the proposed PT-WIB. As illustrated in Figure 1, the WIB is installed below
the vibration source (under the railway), and the periodic infilled trenches are arranged
between the vibration source and the protected objects. A slice of the model includes both
the load actions and wave barriers. Thus, the overall effect of the infinite propagation
domain can be represented by a slice along the longitudinal direction of the load [16].
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Figure 1. A schematic diagram of the PT-WIB.

The finite element method using the software COMSOL Multiphysics has been
adopted to analyze the isolation performance of wave barriers (WIB, periodic infilled
trenches, and PT-WIB) in an elastic half-space. Figure 2 shows the schematic diagram of
a 3D model used for the vibration isolation analysis. A pair of periodic boundary condi-
tions (PBCs) were applied to the model in the y direction to reduce calculation time. The
effectiveness of this simplified model can also be found in related studies [16,17,32,33]. The
dimensions of the considered model, l × m × n, are 40 m, 20 m, and 1 m, respectively. The
widths of the WIB and infilled trench are w1 and w2; the depths of the WIB and infilled
trench are d1 and d2, respectively; l1 is the distance from the vertical harmonic line source
to the first row of infilled trenches; l2 is the distance from the vertical harmonic line source
to the observation area of the vibration response; l3 is the length of the observation area
for the vibration response; and h is the embedded depth of the WIB. The spacing of the
periodic infilled trenches is b. The materials used for the periodic infilled trenches and WIB
are geofoam and concrete, respectively. Low-density geofoam exhibits significant energy
dissipation capacity and excels as a vibration isolation infill material, offering numerous
advantages over alternative infill materials. This superiority stems from its lightweight
nature, economic viability, and exceptional isolation efficiency. Concrete, renowned for its
high-strength properties, is frequently employed as a widely used material for WIB. The
properties of the soil and wave barrier materials were considered based on some previous
studies [18,34,35], as shown in Table 1. It was assumed that the materials of the soil and
wave barriers are elastic, isotropic, and homogeneous. The damping factor of the soil was
0.05. The perfectly matched layer (PML), as an effective absorption boundary condition,
was added on the left, right, and bottom of the considered model to simulate semi-infinite
media in the frequency domain analysis [36]. The velocity of the Rayleigh waves VR was
calculated in view of the propagation of surface waves in the soil, as follows:

VR =

√
E/p√

2(1+v)
·0.87 + 1.12v

1 + v
, (1)

where E, p, and v represent the Young modulus, density, and Poisson ratio of the soil,
respectively. The Rayleigh wavelength λR was calculated to be 2 m at a frequency of 45 Hz.

Table 1. The material parameters of the soil and the barriers.

Material Young Modulus E (MPa) Poisson Ration v Density p (kg/m3)

Soil 46 0.25 1800
Geofoam 37 0.32 60
Concrete 25,500 0.20 2500
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Figure 2. A schematic diagram of the 3D model used for the numerical analysis.

The amplitude reduction ratio AR, which is represented as the ratio between surface
displacement amplitude with and without a wave barrier, was used to assess the vibration
isolation performance of wave barriers, and it can be expressed as [6]:

AR =
uy1

uy0
, (2)

where uy1 and uy0 contribute the surface displacement amplitude with and without a wave
barrier, respectively. The area-averaged frequency response function can be described as:

AR =
1

nl3

∫ n

0

∫ l3

0
ARdxdy. (3)

The wave attenuation through the trenches would appear when AR is less than 1. Thus,
AR was adopted to assess the vibration isolation performance in relation to the barriers.

A mesh size convergence study was carried out to verify the accuracy of the numerical
model. The present numerical simulation results in respect to four different mesh sizes
are compared with the solutions of [18], as shown in Figure 3a. It is indicated that the
simulation results of vibration isolation by periodic geofoam-filled trenches converged to
the exact solution as the mesh size decreased. A tetrahedral mesh size up to λR/8 was
sufficient to satisfy the calculation requirements, and further reduction of the mesh size
would not affect the accuracy of the results [36]. Hence, the model can be discretized
into tetrahedral elements with a size of λR/8 for subsequent studies. For the sake of
substantiating the numerical model further, the vibration isolation performance of an open
trench with 1 λR depth and 0.1 λR width was utilized as a reference, which was located
5 λR away from the excitation source. It can be seen from Figure 3b that the present results
are identical to the previous research results of Yang and Huang [34] and Bordon et al. [37].
As a consequence of the comparison research, the present grid precision is appropriate for
numerical simulations.

 
(a) (b) 

Figure 3. Comparative study for vibration isolation: (a) periodic geofoam-filled trenches; (b) open
trench. Retrieved from refs. [20,34,37].

154



Sensors 2023, 23, 7666

3. Results and Discussions

In order to validate the isolation effectiveness of the PT-WIB, extensive analyses
were conducted to investigate the vibration isolation performance of three kinds of wave
barriers (WIB, periodic infilled trenches, and PT-WIB) under different excitations in both
the frequency domain and time domain. Whereafter, a parametric analysis is proposed to
investigate the behavior of the PT-WIB.

3.1. Isolation Characteristics of Three Kinds of Wave Barriers in the Frequency Domain

For the sake of illustrating the vibration isolation performance of these wave barriers
in a more direct way, the parameters of periodic infilled trenches are referred to in previous
studies [18] as: d2 = 2 m, w2 = 0.3 m, b = 0.7 m. The number of rows for infilled trenches is
seven. The parameters of the WIB for the analysis are d1 = 0.3 m, w1 = 3 m, h = 0.45 m. The
PT-WIB is a combination of the WIB and periodic in-filled trenches; thus, the parameters
of the PT-WIB are the same as those of the above wave barriers. In addition, l1 = 10 m,
l2 = 20 m, and l3 = 6 m are chosen.

Figure 4a,b show the vibration isolation performance with respect to three kinds of
wave barriers at low excitation frequencies (8 Hz and 15 Hz). The isolation effectiveness
of the PT-WIB for low-frequency vibrations was better than that of the WIB and periodic
infilled trenches, especially in the region behind the trenches (x > 10 m). The vibration
isolation effectiveness of periodic infilled trenches is dissatisfactory at low excitation fre-
quencies. This is because wavelength is longer at a lower frequency, and shallow trenches
have difficulty achieving acceptable isolation performance. The results also show that the
WIB had the advantage of reducing the low-frequency vibration, which is consistent with
other investigation results [29–31]. The nephogram of the vertical displacement amplitude
field with three different kinds of wave barriers at the excitation frequency of 15 Hz is
shown in Figure 5.

 
(a) (b) 

 
(c) (d) 

Figure 4. Vibration isolation performances with respect to three kinds of wave barriers at different
fixed frequency excitation: (a) 8 Hz; (b) 15 Hz; (c) 55 Hz; (d) 80 Hz.
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(a) (b) 

 
(c) (d) 

Figure 5. The nephogram of vertical displacement amplitude field at f = 15 Hz: (a) without wave
barriers; (b) with WIB; (c) with periodic infilled trenches; (d) with PT-WIB.

Figure 4c,d compare the vibration isolation performances with respect to three kinds
of wave barriers at medium- and high-excitation frequencies (55 Hz and 80 Hz). It can be
found that the vibration isolation effectiveness of the periodic infilled trenches was rather
high in the region behind the periodic infilled trenches at medium- and high-excitation
frequencies. This is because the designed periodic infilled trenches could isolate the surface
waves of the attenuation zone (45–62 Hz) effectively, and there was a region of evanescent
surface waves above the attenuation zone, namely, leaky surface modes [18]. Thus, the
surface waves of 55 Hz and 80 Hz could also be isolated effectively, whereas some vibration
amplification was observed in front of the periodic infilled trenches on account of the
vibration reflection at the interface of the geofoam and the ground. Whereas WIB performed
better in the area in front of the trenches (x < 10 m), its isolation effectiveness was inferior to
that of the periodic infilled trenches in the region behind the trenches (x > 10 m). It should
be noted that the PT-WIB combined the vibration isolation advantages of both the WIB
and the periodic infilled trenches. It could isolate specific surface waves of the attenuation
zone due to the presence of the periodic infilled trenches and take advantage of the WIB to
weaken the vibration amplification in the front region of the periodic infilled trenches. The
difference in vibration isolation for these kinds of wave barriers at an excitation frequency
of 55 Hz can also be observed in Figure 6.

Figure 7 illustrates vibration isolation performance with respect to three kinds of wave
barriers in the frequency domain. The observation area for vibration response is shown
in Figure 2. It can be noticed from Figure 7 that the vibration isolation performance of
the periodic infilled trenches was effective at medium- and high-excitation frequencies,
especially in the attenuation zone (45–62 Hz). The WIB was more efficient in reducing low-
and medium-frequency vibration, but it was limited in isolating high-frequency vibration.
The PT-WIB can reduce low-frequency vibration as well as the isolation of surface waves in
some specific ranges, which are expected to be the frequency band gaps for the periodic
structure. Thus, a broadband attenuation zone for the vibration could be achieved, which
is difficult to achieve by other single measures. Moreover, the countermeasure was easy to
apply in practical engineering.
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(a) (b) 

  
(c) (d) 

Figure 6. The nephogram of vertical displacement amplitude field at f = 55 Hz: (a) without wave
barriers; (b) with WIB; (c) with periodic infilled trenches; (d) with PT-WIB.

Figure 7. Vibration isolation performance with frequency with respect to three kinds of wave barriers.

3.2. Isolation Characteristics of Three Kinds of Wave Barriers in the Time Domain

In this section, the isolation effectiveness with respect to these three kinds of wave
barriers is investigated in the time domain. A field test to measure traffic-induced en-
vironmental vibrations was conducted in Dongguan (Guangdong Province, China), as
shown in Figure 8a. The type of daily operating elevated intercity train was CRH6A. The
941B-type ultra-low accelerometers were used to collect the accelerometer signal, and the
INV3062-type vibration signal acquisition instrument was used to process and analyze
the signals. The location of the test was 10 m away from the pier in a field. Figure 8b,c
shows the measured acceleration record and the corresponding Fourier spectrum when
a train ran by at approximately 100 km/h, respectively. The measured acceleration data
were integrated twice to acquire the displacement excitation, as described in Figure 8d,
which was applied at the load location shown in Figure 2. The duration of the railway
excitation was 20 s; the dynamic sub-step was 20,000; and the time step of integration was
approximately 0.001 s.
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(a) 

 
(b) (c) 

 
(d) 

Figure 8. Vibration response in the field caused by the intercity railway: (a) field measure; (b) vertical
acceleration record; (c) Fourier spectrum; (d) the corresponding displacement excitation.

The geometries and arrangements of three types of wave barriers were the same as
described in Section 3.1. PMLs are typically not employed in time-domain analysis. Instead,
in the model, a low-reflective boundary condition was implemented to effectively mitigate
the reflection of vibration waves during time-domain analysis. Figure 9 shows vertical
acceleration responses and the corresponding Fourier spectrum at the detection point A
(x = 20 m) with three kinds of wave barriers and without barriers subjected to railway
excitation. It can be seen that the PT-WIB provided better isolation performance than other
wave barriers; the acceleration amplitude with the PT-WIB was reduced by 74.8% when
compared to that without a wave barrier. And the acceleration amplitudes with the WIB
and periodic infilled trenches were reduced by 54.6% and 52.4%, respectively. Meanwhile,
it can be observed from the Fourier spectra of the PT-WIB that vibrations were attenuated
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over the whole observed frequency range. The analysis results in the time domain reveal
the feasibility of isolating environmental vibration with PT-WIB in practice.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 9. Vertical acceleration responses at the detection point and corresponding Fourier spectrum
with and without barriers: (a,b) with and without WIB; (c,d) with and without periodic infilled
trenches; (e,f) with and without PT-WIB.

3.3. Parametric Study of the PT-WIB

The vibration isolation performances of three different wave barriers have been ana-
lyzed in both the frequency domain and the time domain. The proposed PT-WIB shows the
advantage of achieving a wide attenuation zone in environmental vibration isolation. A
parametric study was carried out to analyze the influence of these effects on the vibration
isolation performance of the PT-WIB. A large number of investigations, including theoreti-
cal analysis, numerical simulations, and experiments, have been conducted to reveal the
mechanism of periodic structures in environmental vibration reduction, and a reasonable
design process for isolating vibration in a specific frequency range has been proposed.
The purpose of this study was to extend the attenuation zone and improve the vibration
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isolation performance by introducing the WIB into the periodic infilled trenches. Therefore,
only the influences of parameters associated with the WIB (width, thickness, embedded
depth, and distance from the source) on the isolation performance were analyzed. The pa-
rameters of the periodic infilled trenches remain unchanged, and the parameters (d2 = 2 m,
w2 = 0.3 m, b = 0.7 m) are referring to [18]. The observation area for the vibration response
is shown in Figure 2.

Figure 10a,b show that the average amplitude reduction ratio AR of the observation
area varied with the WIB’s width and thickness, respectively. It can be observed that the
vibration isolation effectiveness of the PT-WIB increased with the width and thickness
of the WIB, especially in the frequency region outside the attenuation zone (45–62 Hz)
of the periodic infilled trenches. The vibration isolation effectiveness increased with a
decrease in the embedded depth of the WIB, as shown in Figure 10c. The embedded depth
of the WIB varied from 0.2 m to 0.6 m, and there was an obvious increase in vibration
isolation effectiveness, particularly in the high-frequency region. The effect of the distance
from the excitation source of the WIB on AR is shown in Figure 10d. It is evident that the
WIB installed below the vibration source (x = 0) was more efficient for isolating low- and
medium-frequency waves. A better performance for high-frequency vibration isolation can
be realized by placing the WIB in the appropriate position between the vibration source
and periodic infilled trenches.

 
(a) (b) 

 
(c) (d) 

Figure 10. Influence of WIB’s parameters on (AR): (a) width (d1 = 0.3 m, h = 0.45 m, x = 0); (b) thickness
(w1 = 3 m, h = 0.45 m, x = 0); (c) embedded depth (w1 = 3 m, d1 = 0.3 m, x = 0); (d) distance from
excitation source of WIB (d1 = 0.3 m, w1 = 3 m, h = 0.45 m).

Furthermore, the nephogram of the vertical displacement amplitude field for the
PT-WIB with respect to different parameters (WIB’s width, thickness, and embedded
depth) is illustrated in Figure 11 in order to demonstrate these parameters’ effects on the
vibration isolation throughout the region in a more direct way. Since the effects of different
parameters on the observation area after the periodic infilled trenches have been discussed
above, attention has been paid to the region before the periodic infilled trenches (0 < x < 10)
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here. The w1 varied from 2 m to 6 m, the d1 varied from 0.2 m to 0.6 m, and the h varied from
0.2 m to 0.6 m. It can be seen from Figure 11 that the embedded depth of the WIB played a
significant part in the vibration isolation of the region before the periodic infilled trenches.
The vibration isolation performance could be distinctly improved with a decrease in the
embedded depth of the WIB. Furthermore, the first row and column of the nephogram in
Figure 11 reveal that the isolation performance improvement of the PT-WIB was not so
obvious when increasing the width and thickness of the WIB. This indicates that decreasing
the embedded depth of WIB is the most effective way to improve the vibration isolation
performance of the PT-WIB.

Figure 11. The nephogram of vertical displacement amplitude field for the PT-WIB with different
parameters (width, thickness, and embedded depth of WIB) at f = 55 Hz. (The direction indicated by
the red arrow represents the direction of parameter change. The nephogram within the red dashed
line box visually demonstrates that the most significant vibration reduction effect is achieved when
the parameters are combined in a specific manner.)

3.4. The Application of PT-WIB in Layered Ground

In practice, the soil is generally layered rather than single-layered. The soil medium
with layered soil [27] was adopted to replace the single-layer soil. The properties of the
layered soil are referred to in [27]. The vibration isolation performances with respect to
these three wave barriers in the layered soil were compared. The geometric dimensions,
number of rows, and material properties of the periodic infilled trenches and WIB are
the same as those described in Section 3.1. It can be observed from Figure 12 that the
vibration isolation performance of PT-WIB is excellent in the layered-soil medium, which
is consistent with the results in Section 3.1. Simultaneously, a parametric study, which is
similar to Section 3.3, was carried out, as shown in Figure 13. It indicates that the influence
of different WIB parameters on vibration isolation is similar to that of Section 3.3.
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Figure 12. Vibration isolation performance with respect to three kinds of wave barriers in layered-
soil medium.

 
(a) (b) 

 
(c) (d) 

Figure 13. Influence of WIB’s parameters AR in layered-soil medium: (a) width (d1 = 0.3 m, h = 0.45 m,
x = 0); (b) thickness (w1 = 3 m, h = 0.45 m, x = 0); (c) embedded depth (w1 = 3 m, d1 = 0.3 m, x = 0);
(d) distance from excitation source of WIB (d1 = 0.3 m, w1 = 3 m, h = 0.45 m).

4. Conclusions

In rail transit, vibration is the main source of environmental pollution. This paper
proposes a buried PT-WIB consisting of periodic infilled trenches and a wave-impedance
block barrier to achieve a broadband attenuation zone for rail transit vibration isolation.
The main conclusions are summarized as follows:

• The WIB is positioned beneath the railway tracks, while periodic infilled trenches
are strategically placed between the railway and the protected buildings. In situa-
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tions where the vibration isolation requirements cannot be met solely by the periodic
trenches, typically due to the limited effectiveness of a narrow band gap at low and
medium frequencies, the newly proposed PT-WIB offers a practical and viable solution.
This innovative approach demonstrates the convenience and feasibility of creating
a broadband attenuation zone, effectively addressing the limitations encountered in
traditional setups.

• The occurrence of vibration amplification phenomena is observed in the vicinity of
periodic infilled trenches and is primarily attributed to wave reflections at the interface
between the geofoam and the ground. However, the implementation of the WIB
effectively mitigates these vibration amplifications. Consequently, the newly proposed
PT-WIB offers a notable advantage by providing a relatively consistent and stable
environmental vibration isolation performance throughout varying distances from the
vibration source.

• Although an increase in the width and thickness of the WIB can improve the vibration
isolation performance of the PT-WIB, a decrease in the embedded depth of the WIB is
a more effective way to improve the vibration isolation performance of the PT-WIB.
Moreover, the PT-WIB can also be applied to a layered ground for the improvement of
vibration isolation performance.
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Abstract: Sound classification plays a crucial role in enhancing the interpretation, analysis, and use
of acoustic data, leading to a wide range of practical applications, of which environmental sound
analysis is one of the most important. In this paper, we explore the representation of audio data as
graphs in the context of sound classification. We propose a methodology that leverages pre-trained
audio models to extract deep features from audio files, which are then employed as node information
to build graphs. Subsequently, we train various graph neural networks (GNNs), specifically graph
convolutional networks (GCNs), GraphSAGE, and graph attention networks (GATs), to solve multi-
class audio classification problems. Our findings underscore the effectiveness of employing graphs
to represent audio data. Moreover, they highlight the competitive performance of GNNs in sound
classification endeavors, with the GAT model emerging as the top performer, achieving a mean
accuracy of 83% in classifying environmental sounds and 91% in identifying the land cover of a site
based on its audio recording. In conclusion, this study provides novel insights into the potential of
graph representation learning techniques for analyzing audio data.

Keywords: ecoacoustics; environmental sound classification; graph neural networks; graph
representation learning; node classification; pre-trained models

1. Introduction

Graphs are powerful mathematical structures that have been extensively employed
to model and analyze complex relationships and interactions across various domains [1].
In passive acoustic monitoring applications, which help to create conservation plans,
ecoacoustics has recently gained great importance as a cost-effective tool to analyze species
conservation and ecosystem alteration. In this field, it is necessary to analyze a large
amount of acoustic data to assess variations in the ecosystem. Moreover, in recent years,
the field of graph representation learning has grown due to the increased interest in using
these graph structures for learning and inference tasks [2]. To learn from graphs, it is crucial
to develop algorithms and models that can efficiently capture and make use of the detailed
structural information present in graph data. These approaches have found applications in
diverse fields, including bioinformatics, computer vision, recommendation systems, and
social network analysis [3–6].

Graph neural networks (GNNs) have emerged as a prominent class of models for
learning on graphs, offering distinct advantages over traditional artificial intelligence tech-
niques [7]. Unlike traditional methods that operate on independent data points, GNNs
use the inherent connectivity and dependencies within the graph structure to learn and
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propagate information across nodes. By recursively aggregating and transforming node fea-
tures based on their local neighborhood, GNNs can capture both local and global patterns,
enabling them to model complex relationships in graph data effectively. Notably, significant
advancements in tasks such as node classification, link prediction, and graph generation
have been made by leveraging their ability to capture structural dependencies [8].

Automatic audio classification tasks have attracted attention in recent years, specif-
ically the classification of environmental sounds [9], enabling applications ranging from
speech recognition [10,11] to soundscape ecology [12,13]. Traditional classification tech-
niques such as k-nearest neighbors, support vector machines, and neural network classifiers
have been used [14–17]. However, its performance mostly relies on hand-crafted features
from representations as temporal, spectral, or spectro-temporal domains. Moreover, deep
learning techniques using 1D (raw waveform) [18–21] or 2D (spectrograms) [22–25] convo-
lutional neural networks (CNN) have shown significant improvements over hand-crafted
methods. Nevertheless, these networks do not consider the relationships that may exist
between different environmental sounds. Recurrent Neural Networks were initially pro-
posed to capture feature dependencies from audio data [26–28]. More recently, Transformer
models have emerged to model longer feature dependencies and leverage parallel process-
ing [29–32]. Transformer models can handle variable input lengths and utilize attention
mechanisms, making them aware of the global context and allowing their application on
audio classification tasks.

Although graphs have been widely employed to represent and analyze visual and
textual data, their potential to represent audio data has received relatively less atten-
tion [33–35]. Nonetheless, audio data, ranging from speech signals to music recordings,
inherently exhibit temporal dependencies and complex patterns that can be effectively
captured and modeled using graph-based representations. Working with graphs presents
several challenges in their construction and subsequent processing. Determining how to
generate feature information for each node and establishing connections between nodes in
the network remain open problems. In this study, we propose utilizing pre-trained audio
models to extract informative features from audio files, enabling the building of graphs that
capture the inherent relationships and temporal dependencies present in the audio data.

Specifically, this study aims to address the problem of audio classification as a node
classification task over graphs. To achieve this, we propose the following approach: (i) char-
acterizing each audio with pre-trained networks to leverage transfer learning from models
trained on large amounts of similar data, (ii) constructing graphs with each set of generated
features, and (iii) utilizing the constructed graphs to classify nodes into predefined cate-
gories, taking advantage of their relationship. To accomplish this, we will use two datasets,
a public one and one acquired in a passive acoustic monitoring study. We will evaluate the
performance of three state-of-the-art GNNs: convolutional graph networks (GCN), graph
attention networks (GAT), and GraphSAGE. These models leverage the rich structural
information encoded in audio graphs in a transductive manner to learn discriminative
representations capable of efficiently distinguishing between different audio classes. By
comparing the performance of these models, we attempt to evaluate which of the graph
models performs better on audio classification tasks.

In conclusion, this study contributes to the emerging field of graph representation
learning by exploring the application of GNNs for audio classification. In particular, we
demonstrate the effectiveness of pre-trained audio models to generate node information
for graph representations and compare the performance of three GNN architectures. The
results not only advance the state-of-the-art in audio classification but also emphasize the
potential of graph-based approaches for modeling and analyzing complex audio data.

2. Graph Neural Networks

A graph is a widely used data structure, denoted as G = (V , E), consisting of nodes(
V =

{
v1, v2, . . . , v|V|

})
and edges

(E = {eij}
)

representing a link between node i (vi)

and node j
(
vj
)
. A useful way to represent a graph is through an adjacency matrix
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(
A ∈ R|V|×|V|

)
, where the presence of an edge is encoded as an entry with Aij = 1 if

there is an edge between (vi) and (vj) and Aij = 0 otherwise. Additionally, each node i has

associated feature information or embeddings denoted as h(0)i .
GNNs are machine learning methods that receive data in the form of graphs and use

neural message passing to generate embeddings for graphs and subgraphs. In [2], the
author provides an overview of neural message passing, which can be expressed as follows:

h(k+1)
u = update(k)

(
h(k)u , agg(k)({hv, ∀ v ∈ N(u)})

)
. (1)

In this equation, h(k)u is the current embedding of node u where the embeddings (hv)
of neighboring nodes will be sent; N(u), the neighborhood of node u; and update(k) and
agg(k), permutation-invariant functions.

There exist various GNN models that differ in their approach to the aggregation or
update function expressed in Equation (1) and in their ability to perform prediction tasks at
node, edge, or network level [36]. The theory of the three GNN models used in this study
is presented below.

2.1. Graph Convolutional Networks (GCNs)

The goal of GCNs is to generalize the convolution operation to graph data by aggre-
gating both self-features and neighbors’ features [37]. Following the update rule given
by Equation (2), GCNs enforce self-connections by making Ã = A + I and stack multiple
convolutional layers followed by nonlinear activation functions.

H(k+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(k)W(k)
)

(2)

In this equation, H is the feature matrix containing the embeddings of the nodes as
rows, and D̃ denotes the degree matrix of the graph, which is computed as D̃ij = ∑j Ãij.
Moreover, σ(·) is an activation function, and W is a trainable weight matrix.

2.2. Graph SAmple and aggreGatE (GraphSAGE)

GraphSAGE, a framework built on top of the original GCN model [38], updates each
node’s embedding information by sampling the number of neighbors at different hop
values and aggregating their respective embedding information. This iterative process
allows nodes to increasingly gain information from different parts of the graph.

The main difference between the GCN model and GraphSAGE lies in the aggregation
function. Where GCNs use an average aggregator, GraphSAGE employs a generalized
aggregation function. Also, in GraphSAGE, self-features are not aggregated at each layer.
Instead, the aggregated neighborhood features are concatenated with self-features, as
shown in Equation (3).

h(k+1)
u = σ

([
W(k)agg

(
{h(k)v , ∀ v ∈ N(u)}

)
, B(k)h(k)u

])
(3)

In this equation, B is a trainable weight matrix, and agg denotes a generalized aggre-
gation function, such as mean, pooling, or LSTM.

2.3. Graph Attention Networks (GATs)

In GCNs (Equation (2)), graph node features are averaged at each layer, with weights
determined by coefficients obtained from the degree matrix (D̃). This implies that the
outcomes of GCNs are highly dependent on the graph structure. GATs [39], for their
part, seek to reduce this dependency by implicitly calculating these coefficients, taking into
account the importance assigned to each node’s features using the attention mechanism [40].
The purpose of this is to increase the model’s representational capacity.
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The expression for GATs is presented in Equation (4).

h(k+1)
u = σ

⎛
⎝ ∑

v∈N(u)
αuvW(k)h(k)v

⎞
⎠ (4)

In this equation, αuv represents the attention coefficients of the neighbors of node u,
v ∈ N(u), regarding the aggregation feature aggregation at this node. These coefficients
are computed as

αuv =
exp

(
a�LeakyReLU(W[hu, hv])

)
∑j∈N(u) exp

(
a�LeakyReLU

(
W

[
hu, hj

])) , (5)

with a denoting a trainable attention vector [41].

3. Materials

3.1. UrbanSound8K

UrbanSound8K is an audio dataset [42] that contains 8732 labeled audio files in WAV
format and lasts four seconds or less. Each audio file belongs to one of the following ten
classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot,
jackhammer, siren, and street music.

The audio files are originally pre-distributed across ten folds, as depicted in Figure 1.
To avoid errors that could invalidate the results and enable fair comparisons with existing
literature, it is advised to perform cross-validation using the ten predefined folds.

Figure 1. Distribution of the ten classes across the predefined folds.

3.2. Rey Zamuro Reserve

This dataset arises from a passive acoustic monitoring study conducted at Rey Za-
muro and Matarredonda Private Reserves (3°31′02.5′′ N, 73°23′43.8′′ W), located in the
municipality of San Martín in the Department of Meta, Colombia. The reserve covers an
expanse of 6000 hectares, predominantly characterized by natural savanna constituting
around 60%, interspersed with introduced pasture areas. The remaining 40% is covered by
forests. This region falls within the tropical humid biome of the Meta foothills, showcasing
an average temperature of 25.6 °C.

Data were acoustically recorded in September of 2022. A 13 × 8 grid was installed
with 94 AudioMoth automatic acoustic devices placed 400 m from each other; of these
recorders, one was not used due to deteriorated audio. The recording was made every
fourteen minutes for seven consecutive days. The recordings were captured in mono
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format at a sampling rate of 192,000 Hz. The study encompassed various habitats, such
as forest interiors, edges, and adjacent areas, each with distinct characteristics, including
undergrowth. The recording heights were standardized at 1.5 m above the ground.

Depending on the kind of land cover, each acoustic recording of Rey Zamuro sound-
scapes was classified as forest, savanna, or pasture. These labels were given based on the
placement of each automated recording unit. A total of 71,497 recordings were obtained, of
which 14,546 correspond to forest class, 14,994 to savanna class, and 41,957 to pasture class.
In all, 80% of the dataset is used as the training set, and the remaining 20% as the test set.

3.3. Pre-Trained Models for Audio Feature Extraction

We use pre-trained deep learning audio models to extract deep features from each
audio file, which will be used as node information in the constructed graphs, i.e., as the
values h(0)i . Specifically, we employed the following three models: VGGish, YAMNet,
and PANNs.

3.3.1. VGGish

VGGish is a pre-trained neural network architecture particularly designed to generate
compact and informative representations, or deep embeddings, for audio signals [43]. It is
inspired by the Visual Geometry Group (VGG) network architecture originally developed
for image classification [44]. The deep embeddings generated by VGGish effectively capture
relevant acoustic features and serve as a foundation for various audio processing tasks, such
as audio classification, content-based retrieval, and acoustic scene understanding [45,46].
VGGish was trained on AudioSet [47], a publicly available and widely used large-scale
audio dataset comprising millions of annotated audio clips and 527 classes, including
animal sounds, musical instruments, human activities, environmental sounds, and more.

The architecture of VGGish consists of several layers, including convolutional, max-
pooling, and fully connected layers. In this model, the processed audio is segmented
into 0.96-second clips, and a log-Mel spectrogram is calculated for each clip, serving as
the input to the neural network. Then, the convolutional layers apply a set of learnable
filters to the input audio spectrogram, aiming to detect local patterns and extract low-level
features. Following each convolutional layer, max-pooling layers are employed to reduce
the spatial dimensions of the obtained feature maps while retaining the most important
information. This process helps capture and preserve relevant patterns at different scales
and further abstract the representations. Lastly, the final layers of VGGish, i.e., the fully
connected layers, take the flattened output of the preceding convolutional and max-pooling
layers and map it to a 128-dimensional representation. This mapping aims to capture
global and high-level dependencies, resulting in deep embeddings that encode meaningful
information about the audio signal and can serve as input for subsequent shallow or deep
learning methods.

3.3.2. PANNs

Large-scale Pretrained Audio Neural Networks (PANNs) are pre-trained models
specifically developed for audio pattern recognition [48]. Their architecture is built upon
CNNs, which are well-suited for analyzing audio mel-spectrograms. PANNs have mul-
tiple layers, including convolutional, pooling, and fully connected layers. These layers
work together to learn hierarchical representations of audio patterns at various levels
of abstraction.

The training process of PANNs involves pre-training the model on the large-scale
AudioSet dataset. By being trained on this dataset, PANNs learn to capture a wide range of
audio patterns, making them strong audio feature extractors. These audio patterns are then
mapped to a 2048-dimensional output space.
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3.3.3. YAMNet

Yet another Audio Mobilenet Network (YAMNet) is a pre-trained neural network
architecture that utilizes the power of deep CNNs and transfer learning to perform accurate
and efficient audio analysis [49].

YAMNet is a mobilenet-based architecture consisting of a stack of convolutional
layers, followed by global average pooling and a final fully connected layer with softmax
activation. The convolutional layers extract local features by convolving small filters over
the input audio spectrogram, thereby capturing different levels of temporal and spectral
patterns. Then, the global average pooling operation condenses the extracted features into
a fixed-length representation. Finally, the fully connected layer produces the classification
probabilities for each sound class.

YAMNet’s primary objective is to accurately classify audio signals into a wide range
of sound categories. However, the embeddings obtained after the global average pooling
operation can also be useful.

To process audio, YAMNet divides the audio into segments of 0.96 s with a hop length
of 0.48 s. For each segment, a feature output comprising 1024 dimensions is generated.

3.4. Graph Construction

A popular way to determine the edges of a graph is to define whether two points are
neighbors through the k-nearest neighbors (k-NN) algorithm. According to this method,
the neighbors of node vi are those k-nearest neighbors in the feature space [50]. Thus, the
k-NN algorithm assigns edges between vi and its neighbors.

4. Experimental Framework

The proposed methodology of this study to assess the effectiveness of using graphs to
represent audio data by leveraging pre-trained audio models to generate node information
is depicted in Figure 2, and involves the following stages: (i) VGGish, YAMNet, and PANNs
pre-trained audio models are used to extract features from both datasets, (ii) those deep
features are used independently to construct graphs where each node represents an audio
file, and edges are determined based on the k-NN algorithm, and (iii) the constructed
graphs are used to train and optimize certain hyperparameters on GCN, GraphSAGE, and
GAT models to perform node classification.

Figure 2. The workflow diagram proposed in this study illustrates that for each audio of a
dataset (a) deep features are extracted with pre-trained audio models (b), then graphs are con-
structed by including those features as node information and setting edges with k-NN (c). For test
data, the nodes present information but no labels (in the diagram the nodes unfilled are the test
nodes). Subsequently, some GNN models are trained and optimized (d). Finally, trained models
allow discriminating test nodes between classes (red or blue in the diagram) through transductive
learning (e).

As a first step, we employed the VGGish, PANNs, and YAMNet pre-trained models to
extract features from the audio files in both datasets to be used as node embedding vectors.
In the UrbanSound8K dataset, fold information was preserved for the extracted features,
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as shown in Figure 3. VGGish model generates a 128-dimensional deep feature vector
for every 0.96 s of an audio clip, and YAMNet produces a 1024-dimensional deep feature
vector for every 0.48 s. Since the audio files have a maximum duration of four seconds for
UrbanSound8K and 60 s for Rey Zamuro, to obtain node embeddings of the same length,
we averaged those 128-dimensional VGGish-based and 1024-dimensional YAMNet-based
deep features.

Figure 3. Feature extraction scheme. The audio files from each fold of the UrbanSound8K dataset
were characterized using pre-trained models.

Subsequently, for each dataset characterized using the pre-trained models, we con-
structed a graph where the nodes represented the audio embeddings, and the edges were
defined by applying the k-NN algorithm, where each node is connected with its k nearest
neighbors. The value k was optimized for each architecture using Optuna [51]. Then, we
implemented the GCN, GraphSAGE, and GAT architectures using PyTorch Geometric [52].
For the GCN and GraphSAGE models, we employed a two-layer architecture with a hidden
dimension optimized by Optuna and an output dimension equal to the number of classes,
i.e., three for the Rey Zamuro dataset and ten for UrbanSound8K. For the GAT model, we
used a two-layer architecture, with the first layer having a value for hidden dimension
optimized by Optuna and 10 heads, followed by a second layer with an output dimension
corresponding to the number of classes and one head.

To compute the attention coefficients, we employed a slope of 0.2 on the LeakyReLU
activation function in Equation (5). For all trained GNNs, we used the ReLU activation
function and a dropout with a probability of 0.5. All models were trained to minimize cross-
entropy loss using the Adam optimizer (with a learning rate of 0.001 and weight decay of
5× 10−4) for 300 and 1300 epochs for UrbanSound8K and Rey Zamuro dataset, respectively.

Finally, for UrbanSound8K, we evaluated the performance of the models in terms of
accuracy using ten-fold cross-validation, i.e., following the dataset’s distribution across
the ten predefined folds. Alternatively, due to the large amount of data and the associated
computational cost for training use, the performance of the models for the Rey Zamuro
dataset was evaluated with the test set.

5. Results and Discussion

Tables 1 and 2 present the accuracy results of the three GNN models (GCN, Graph-
SAGE, and GAT) trained for audio file classification, with nodes representing the audio
data in a graph. These nodes are characterized by three distinct feature sets derived from
pre-trained models (VGGish, PANNs, and YAMNet) applied to UrbanSound8K and Rey
Zamuro datasets. Additionally, the tables display the optimal hyperparameters determined
by Optuna for each GNN model and node characterization combination. For the Urban-
Sound8K dataset, where fold distribution is predefined, accuracy results are presented
as mean values accompanied by their corresponding standard deviations. Conversely,
accuracy results for the Rey Zamuro dataset focus solely on the test set.
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Table 1. UrbanSound8K accuracies.

Feature Model GNN Architecture Best Hyperparameters Accuracy

VGGish

GCN k = 10 0.77 ± 0.04n_hidden = 55

GraphSAGE k = 12 0.76 ± 0.05n_hidden = 57

GAT k = 9 0.79 ± 0.05n_hidden = 52

YAMNet

GCN k = 5 0.81 ± 0.04n_hidden = 196

GraphSAGE k = 11 0.8 ± 0.03n_hidden = 55

GAT k = 6 0.82 ± 0.04n_hidden = 252

PANNs

GCN k = 4 0.83 ± 0.03n_hidden = 40

GraphSAGE k = 5 0.82 ± 0.03n_hidden = 183

GAT k = 10 0.83 ± 0.03n_hidden = 206

Table 2. Rey Zamuro accuracies.

Feature Model GNN Architecture Best Hyperparameters Accuracy

VGGish

GCN k = 5 0.63n_hidden = 48

GraphSAGE k = 10 0.63n_hidden = 63

GAT k = 6 0.63n_hidden = 49

YAMNet

GCN k = 5 0.76n_hidden = 62

GraphSAGE k = 6 0.74n_hidden = 56

GAT k = 6 0.78n_hidden = 53

PANNs

GCN k = 6 0.87n_hidden = 64

GraphSAGE k = 7 0.85n_hidden = 63

GAT k = 5 0.91n_hidden = 51

The results reveal the consistent superiority of PANNs across both datasets and all
three trained GNN models. In particular, on the Rey Zamuro dataset, PANNs show a sig-
nificant improvement of up to 18% in accuracy. The higher performance can be attributed
to the larger dimensional feature space produced by PANNs, with 2048 dimensions, com-
pared to VGGish and YAMNet, which have dimensions of 128 and 1024, respectively. This
larger feature space of PANNs is more suitable for capturing detailed information from
audio data.
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Furthermore, among the compared GNN models, GAT emerges as the top performer,
demonstrating sustained superiority across both datasets. This underscores the effective-
ness of the attention mechanism in exploiting graph information and optimizing aggrega-
tion strategies. Tables 3 and 4 present the computational costs of the experiments conducted,
measured in terms of time and the number of trainable parameters of the networks for
the UrbanSound8K and Rey Zamuro datasets, respectively. It is important to note that
each model possesses a different number of neurons in the hidden layer due to the opti-
mization performed with Optuna. The GAT model has the highest number of parameters
for both datasets and the feature sets generated with the pre-trained models. Specifically,
the largest GAT model for the UrbanSound8K dataset has 8M parameters when using
PANNs’ deep features. Regarding training time, the GAT model for this dataset can take
up to 35 times longer than training GCN and GraphSAGE models. Concerning the Rey
Zamuro dataset, we also calculate the time for each model under test. Once again, the
GAT model demonstrates the largest number of parameters, as well as longer training
and testing times. However, during testing, the times are closer to those of the other two
models. Although training time can indeed be long, it is worth considering that a trained
network can be scalable regardless of the amount of data. However, it is crucial to consider
the computational requirements for building and storing the graph.

Our results show that representing audio datasets through graphs and using deep
features extracted from pre-trained models as node features enables sound classification.
However, it is important to acknowledge an ongoing research challenge in the graph-
building step, particularly in setting its node feature information and edges. To the best
of our knowledge, only one study has employed GNNs for sound classification on Ur-
banSound8K dataset [34]. In one such study, the overall classification accuracy obtained
using GNNs was 63.5%, which improved to 73% when GNNs were used in combination
with features learned from a CNN. However, our results surpass this, even in the case of
GraphSAGE, whose lowest accuracy is 76% for VGGish features. Moreover, our findings
are comparable to those reported in other studies employing 1D CNN models. For example,
in [18], RawNet CNN was presented, which worked with the raw waveform and achieved
an accuracy of 87.7 ± 0.2. Additionally, in [19], a CNN called EnvNet-v2 obtained an
accuracy of 78.3%, in [20] with very deep 1D convolutional networks a maximum accuracy
of 71.68% only for the 10th fold used as the test set, while in [21], a proposed end-to-end
1D CNN achieved 89% accuracy. In addition, 2D CNN models have also been used on the
UrbanSound8K dataset, reaching 79% [22], 70% [23], 83.7% [24], and 97% [25]. It should be
noted that although other studies used the UrbanSound8K dataset to train 1D or 2D CNNs,
they often employ unofficial random splits of the dataset, conducting their own cross-
validations or training-test splits. This causes them to use different training and validation
data than published papers that follow the official distribution, making comparison unfair.

Table 3. Computational cost for UrbanSound8K dataset tests.

Feature Model GNN Architecture # Parameters Training Time [s]

VGGish

GCN 7655 13.3

GraphSAGE 15,799 10.9

GAT 145,640 86.7

YAMNet

GCN 202,870 18.6

GraphSAGE 113,805 33.0

GAT 5,221,480 370.9

PANNs

GCN 82,370 12.7

GraphSAGE 753,421 37.1

GAT 8,487,240 453.9
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Table 4. Computational cost for Rey Zamuro dataset tests.

Feature Model GNN Architecture # Parameters
Training Time

[s]
Test Time [ms]

VGGish

GCN 6682 14.3 4.9

GraphSAGE 17,461 25.8 12.9

GAT 137,240 232.9 84.0

YAMNet

GCN 64,180 20.9 6.1

GraphSAGE 115,874 68.4 80.4

GAT 1,098,200 295.4 99.9

PANNs

GCN 131,786 27.2 7.8

GraphSAGE 259,381 136.9 190.6

GAT 2,101,240 325.7 120.3

6. Conclusions

In this paper, we explored using graphs as a suitable representation of acoustic data for
sound classification tasks, focusing on the UrbanSound8K dataset and a passive acoustic
monitoring study. Particularly, this study offers novel insights into the potential of graph
representation learning methods for analyzing audio data.

First, we utilized pre-trained audio models, namely VGGish, PANNs, and YAMNet,
to compute node embeddings and extract informative features. Then, we trained GCNs,
GraphSAGE, and GATs and evaluated their performance. For the UrbanSound8K dataset,
we employed a ten-fold cross-validation approach with the dataset’s predefined folds for
performance evaluation. Additionally, we partitioned the Rey Zamuro Dataset into train
and test sets to validate its results. Moreover, during the training stage, we conducted
hyperparameter optimization to attain the best possible model for the built graphs.

Our findings demonstrate the effectiveness of using graphs to represent audio data. In
addition, they show that GNNs can achieve a competitive performance in sound classifica-
tion tasks. Most notably, it is shown that it is possible to identify ecosystem states through
audio and GNNs. Notably, the best results were obtained when employing PANNs-based
deep features with the three GNN models. Among the GNN models, the GAT model
outperforms the others. This advantage stems from its attention-based operation, enabling
it to aggregate node information by assigning weights to its neighbors based on relevance.

To further our research, we plan to explore the feasibility of using temporal GNNs
for sound classification tasks to leverage graphs constructed using deep features based on
temporal segments of the audio signal, such as those obtained with VGGish and YAMNet.
Additionally, the proposed methodology will be applied to the area of soundscape ecology,
seeking to generate acoustic heterogeneity maps from the treatment of large volumes
of data with GNN techniques that allow exploiting the acoustic relationships between
different recording sites.
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Abstract: The AudioMoth is a popular autonomous recording unit (ARU) that is widely used to
record vocalizing species in the field. Despite its growing use, there have been few quantitative tests
on the performance of this recorder. Such information is needed to design effective field surveys
and to appropriately analyze recordings made by this device. Here, we report the results of two
tests designed to evaluate the performance characteristics of the AudioMoth recorder. First, we
performed indoor and outdoor pink noise playback experiments to evaluate how different device
settings, orientations, mounting conditions, and housing options affect frequency response patterns.
We found little variation in acoustic performance between devices and relatively little effect of placing
recorders in a plastic bag for weather protection. The AudioMoth has a mostly flat on-axis response
with a boost above 3 kHz, with a generally omnidirectional response that suffers from attenuation
behind the recorder, an effect that is accentuated when it is mounted on a tree. Second, we performed
battery life tests under a variety of recording frequencies, gain settings, environmental temperatures,
and battery types. We found that standard alkaline batteries last for an average of 189 h at room
temperature using a 32 kHz sample rate, and that lithium batteries can last for twice as long at
freezing temperatures compared to alkaline batteries. This information will aid researchers in both
collecting and analyzing recordings generated by the AudioMoth recorder.

Keywords: ARU; automated recording unit; AudioMoth; acoustic monitoring

1. Introduction

Acoustic monitoring is an increasingly widespread technique for surveying popula-
tions of sound-producing species in the field [1–4]. The growth in acoustic field surveys
in recent years has been supported in large part by the development and availability of a
variety of inexpensive autonomous recording units (ARUs), devices that are designed to
record audio in the field passively without the need for a human surveyor to be present.
ARUs generally use battery power and store recordings locally on the device and can
be programmed to record ambient sound at predetermined dates and times [5]. Com-
mercial ARUs have been sold for many years by companies including Titley Scientific
and Wildlife Acoustics [6,7]. More recently, inexpensive open-source designs based on
Raspberry Pi’s [8–10] demonstrated that ARUs could potentially be produced more widely
and at a far lower cost than previously possible.

In 2017, Open Acoustic Devices released the first version of the AudioMoth [11], which
has rapidly become one of the most widely used ARUs, with over 30,000 units produced
and sold in the first four years after its release [12]. AudioMoths have been fabricated
for as little as USD 50 and have most recently been sold through group purchases for
USD 80 [13]. These devices combine many of the user-friendly features of commercial
devices at a fraction of the cost.

Despite its popularity, little information is currently available about the performance
characteristics of the AudioMoth recorder. From the perspective of audio quality, sensitivity,
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directionality, and frequency response (relative sensitivity across frequencies) are funda-
mental characteristics of audio recording equipment that must be measured to interpret
audio data captured by a device. Although the frequency response of the AudioMoth’s
isolated microphone component is available online [14], the device’s end-to-end on-axis
and polar frequency response and sensitivity across gain settings have not been published.
This is particularly important as deployment instructions have suggested attaching the
AudioMoth to the trunk of a 200–400 mm tree [15], but the effect of this mounting option
on audio recordings is not known. These quantitative measurements of recording equip-
ment are distinct from measuring the maximum detection distance of biotic sounds, which
depends on a combination of the properties of the recording equipment, the strength and
characteristics of the sound source, and environmental noise. Other studies have inves-
tigated the maximum detection distance of wildlife using AudioMoth recorders [16,17],
and previous literature has described the importance of considering maximum detection
distance during the design of acoustic monitoring studies and the analysis of bioacoustics
data [18,19].

The recording lifespan of the AudioMoth on one set of batteries has previously been
measured only for a subset of the possible configuration settings. Hill et al. reported
the battery life of the AudioMoth using 3000 mAh lithium batteries for some common
configurations [15], reporting that an AudioMoth could record for 115 days recording at
8 kHz, the lowest sample rate, for 30 s every 5 min. The developers also reported the
AudioMoth lasted 9 days recording nonstop at a 48 kHz sample rate. While the AudioMoth
configuration app provides estimates of battery life for any chosen configuration settings,
these estimates have not to our knowledge been validated empirically.

Here, we report the results of two sets of tests that we conducted to empirically
characterize the performance of the AudioMoth ARU. First, to characterize the acoustic
properties of the device and its onboard microphone, we conducted controlled playback
tests alongside a test microphone across a variety of device orientations and mounting
options. Second, to characterize the longevity of the device in the field, we investigated
the expected battery life for the device across a variety of available settings, battery types,
and ambient temperatures. This information will assist investigators in designing field
experiments using AudioMoth ARUs as well as analyzing the resulting recordings.

2. Materials and Methods

Both tests described below were performed using AudioMoth 1.1.0 recorders from 2021
through 2023. Schematics, printed circuit board layout, and components for AudioMoth
1.1.0 are publicly available [15]. Firmware versions varied between the tests and are
described below. A full list of all equipment used is compiled in Appendix A. Additional
information on these tests and results can be found in [20,21].

2.1. Acoustic Performance Test

Our first test had the goal of characterizing the end-to-end sensitivity of the Au-
dioMoth recorder from the microphone through analog-to-digital conversion. To do this,
we examined five specific assessments, described below. In all testing and reporting of the
results, we follow the guidelines and recommendations of Eargle [22] wherever feasible.
All uses of the word “decibels” refer to a logarithmic value and are reported with respect
to a reference value. For sound pressure level (a physical measurement of sound in air),
dBA is used: the “A-weighted” average of sound pressure level across frequencies, with a
reference point of 20 micro-Pascals = 0 dBA [23]. For digital values, dBFS for “decibels full
scale” is used, where 0 dBFS is the highest measurement possible in the digital system. In
many cases, frequency responses are reported relative to a reference, for instance, relative to
the value of the frequency response at 1 kHz, or relative to the on-axis frequency response.

Unless noted otherwise, the gain setting is 0 (low) for all assessments, which allows the
greatest difference between the test signal and environmental noise without clipping. The
sampling rate was set to 48 kHz and all AudioMoths were using 1.3.0 firmware. The pink
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noise test signal used throughout the assessments was generated with a Mackie SRM-450
loudspeaker at a level of 86 dBA at one meter in front of the speaker. The AudioMoth
was placed 1 m in front of the speaker, except where noted. All frequency responses and
analyses use a frequency range of 100 Hz to 17 kHz, as the speaker was unable to reliably
reproduce sounds above this range. This range covers the vocalizing range of virtually
all birds and frogs and some insects, but not bats [24–27]. All plots of frequency response
show frequency on the x-axis on a logarithmic scale from 100 Hz to 17 kHz and decibels
(dB) on the y-axis with a range of 55 dB so that figures can be compared easily.

The first assessment compared variations in the frequency response patterns of five
new AudioMoths. Comparisons occurred in a 4 × 6 m room in a residential area with
acoustically absorbent panels surrounding the microphone to reduce ambient noise levels
and reflections. The ambient noise level was measured to be 45.5 ± 0.5 dBA using an
Enviro meter EM80 A-weighted Sound Level Meter (Sealed Unit Parts Co., Inc., Allenwood,
NJ, USA).

Second, we assessed the effect of the gain setting on frequency response. The Au-
dioMoth has five gain settings, numbered from 0 (low) to 4 (high). For this assessment,
pink noise was played at 69 dBA at 1 m to avoid clipping on the highest gain setting of 4.
Comparisons occurred in the same room as the first test.

Third, we evaluated on-axis frequency response in a grassland environment using
three different AudioMoth protective housing conditions: no case, a Ziploc bag, and a
sealed vacuum bag with air. The grassland environment was located at the University
of Pittsburgh’s Pymatuning Lab of Ecology Wood Lab site. This environment minimized
reflections from buildings and other objects, as the nearest building was over 30 m from
the testing location and the speaker faced away from that building. Ambient noise levels
recorded before, during, and after testing were 49 ± 3 dBA.

Fourth, we evaluated the polar pattern, which is the sensitivity of a microphone when
the sound arrives from different angles relative to the device. The microphone on the
AudioMoth is omnidirectional, meaning that it has equal sensitivity to sound arriving from
any direction. However, the device itself is unlikely to be truly omnidirectional, especially
for high frequencies, because the device will reflect or absorb some sounds before they
reach the microphone. We tested the polar pattern at various frequencies by incrementally
rotating the AudioMoth 360 degrees in the horizontal or vertical plane while keeping the
source at a fixed position. These tests were performed in the same grassland environment
as the on-axis tests. Housing was not found to substantially affect response; therefore,
results in different housings are not reported here but can be found in [20].

Fifth, we assessed the acoustic effect of mounting AudioMoth on trees, a common
means of deploying devices in forested environments. The forest environment used for test-
ing was a mixed coniferous and deciduous second-growth forest located at the Pymatuning
Lab of Ecology housing site. Ambient noise levels recorded before, during, and after testing
were 47 ± 1.5 dBA. AudioMoths were strapped to the front, back, and sides of trees from
the perspective of the sound source, with the microphone facing away from the tree. We
examined three trees with circumferences of 41 cm, 97 cm, and 170 cm. Housing was not
found to affect response; therefore, results in different housings are not reported here but
can be found in [20].

2.2. Battery Life Test

Our second test had the goal of estimating the total number of hours that an Au-
dioMoth can record under a variety of configurations and conditions expected to be en-
countered in the field. We specifically evaluated the influence of sample rate, device gain,
device temperature, battery type, and in some cases their interactions on AudioMoth
recording time. All tests were performed in a controlled indoor environment using Au-
dioMoths with 1.5.0 firmware and 64 GB SanDisk Ultra microSDXC cards. For all tests,
AudioMoths were programmed to record continuously, and battery life was defined as
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the number of hours of recordings made successfully before the batteries were unable to
continue powering the AudioMoths.

First, we evaluated the effect of the sample rate. A total of twenty-one new Au-
dioMoths were configured to record using 2 (medium) gain at room temperature
(21.5 ◦C) with Procell 2100 mAh alkaline batteries. Three AudioMoths were set to the
same sample rate across each available setting (8, 16, 32, 48, 96, 192, 250, and 384 kHz). For
comparison purposes, the expected battery life was determined while using the AudioMoth
Configuration desktop app by dividing the Procell battery capacity by the daily estimated
power consumption. Sample rates above 48 kHz filled the SD card before the batteries died,
and cards were replaced as needed to obtain the total estimates of battery life.

Second, we evaluated the effect of gain setting. A total of twelve AudioMoths were
configured to record at a 32 kHz sample rate at room temperature with Procell batteries.
Three AudioMoths were set to record at the same gain across each available setting (low,
low–medium, medium, medium–high, and high).

Third, we evaluated the interacting effects of battery type and temperature on record-
ing time. Procell 2100 mAh alkaline batteries were compared against Energizer Ultimate
Lithium 35,000 mAh batteries. Devices with both battery types were placed into three
temperature conditions in a consumer-grade refrigerator/freezer combination. We tested
battery life using three temperature treatments: room (20.5 ◦C), fridge (3.4 ◦C), and freezer
(−16.1 ◦C). The average temperature for each category was determined using an infrared
thermometer to obtain readings of the surface next to the AudioMoths during the morn-
ing, midday, and evening for each condition and across three separate days. A total of
18 AudioMoths were set to record at a sample rate of 32 kHz with a medium gain. For each
battery type (alkaline and lithium), three devices were tested in each temperature condition
(room, fridge, and freezer).

3. Results

3.1. Acoustic Performance Tests
3.1.1. Frequency Response Variation

AudioMoth devices appear to have consistent frequency response patterns with minimal
variation. The maximum variation at any frequency between devices was +4.0/−3.5 dBFS,
and the overall recording levels were indistinguishable. Small increases or decreases in
measured sensitivity at specific frequencies may have been caused by imperfect measure-
ment conditions rather than differences in the devices themselves. Figure S1 shows the
frequency response variation of each device relative to one reference device.

3.1.2. Effect of Gain on Frequency Response Variation

The gain settings do not affect the frequency response, besides an overall change in
the recorded level. The average levels for gain settings 0, 1, 2, and 3 relative to the highest
settings are −14.2, −12.0, −5.7, and −2.6 dB, respectively. Figure S2 plots the frequency
response of one device set to each gain setting, relative to the highest gain setting.

3.1.3. On-Axis Frequency Response

There was wind during on-axis frequency response testing, which registers as low-
frequency noise in the recordings. For this reason, the frequency responses reported here
may be less accurate below 1 kHz. Figure 1 shows the frequency response of AudioMoth in
various protective housings. The 0 dB reference for all lines in this plot is the level of the
control, no housing, at 1 kHz. The vacuum bag has the least effect, with the only substantial
impact being a 5–10 dB loss above 10 kHz. The frequency response is mostly flat but has
sharp dips at around 12 kHz and 15 kHz. The Ziploc bag has slight losses overall, with
a bump from 5–10 kHz and a drop-off above 10 kHz. The frequency response of the two
housings relative to the control is shown numerically in Table S1.
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Figure 1. On-axis frequency response of three 1.1.0 AudioMoths recording pink noise playback from
1 m away. One AudioMoth was placed in a closed Ziploc bag, one was placed in a sealed, but not
vacuumed, bag, and the control AudioMoth (No Case) was not placed in any housing.

3.1.4. Polar Response

As with on-axis testing, there was wind during polar response testing, and the fre-
quency responses reported here may be less accurate below 1 kHz. Figure 2 shows the
horizontal polar response of the AudioMoth with no case for several frequencies. Each
frequency is plotted in 30-degree increments, relative to that frequency’s level at 0 degrees
(on-axis). Lines that dip towards the center of the plot indicate a reduction in sensitivity to
that frequency. The polar response is relatively omnidirectional for low frequencies, losing
about 5 dB for off-axis sounds. This is expected because sound waves below 2 kHz have
wavelengths significantly longer than the dimensions of the device (a 2 kHz sound wave
is approximately 17 cm) and are minimally attenuated or reflected by the device. Higher
frequencies show significant attenuation directly behind the device, especially at 5 kHz
(over 25 dB reduction). The largest effects are losses of 28 dB at 5 kHz and 20 dB at 10 kHz
when sound arrives from behind the device. Figure 2 also shows the vertical polar response
where the sound was coming from “above” and “below” the AudioMoth. The vertical
rotation of the AudioMoth has little effect on low frequencies other than a surprising boost
of 500 Hz arriving from slightly below the device. This could be due to a resonance mode
in the device or may be a measurement error. In the high frequencies, 15 kHz is severely
reduced when it arrives from behind and slightly above the device. This may be a result of
cancellation or absorption by the battery pack (15 kHz has a wavelength of about 2 cm).

3.1.5. Impact of Trees on Frequency Response

Figure 3 shows the frequency spectrums of pink noise playback tests recorded by
an AudioMoth with no case strapped to the front, back, or side of each tree from the
perspective of the sound source. When the AudioMoth is on the same side as the tree
as the sound source (0 degrees), a narrow notch filter (reduction in sensitivity) appears
at 2.3 kHz, indicating cancellation of 15 cm sound waves. One possible cause of this is
a reflection of incoming sound off of the cambium of the tree: if sound travels 3.75 cm
to the reflective surface and 3.75 cm back to the receiver, it will travel half a wavelength
(7.5 cm) round trip and cause destructive interference of 2.3 kHz sound at the microphone.
Interestingly, if this is true, this “dead spot” will only have a strong effect directly in front
of the microphone and at a specific frequency, as varying the angle of incidence will change
the center frequency of the notch filter. Besides the dramatic notch filters, the effects of the
trees on frequency response match our expectations. When sound arrives from behind the
tree, attenuation increases with frequency and with the size of the tree.

For the smallest tree (41 cm circumference), high frequencies are substantially reduced
while low frequencies are unaffected. With increasing tree radius, overall attenuation
increases while the pattern of more attenuation at higher frequencies remains.
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Figure 2. The horizontal polar response of an AudioMoth 1.1.0 with no case is shown at (A) 500–2000 Hz
and (B) 5000–15,000 Hz (90 degrees is to the left and 270 degrees is to the right of the device). The
vertical polar response for the same AudioMoth is shown at (C) 500–2000 Hz and (D) 5000–15,000 Hz
(90 degrees is above and 270 degrees is below the device).

3.2. Battery Life Tests
3.2.1. Effect of Sample Rate

The average hours of audio recorded by each AudioMoth at varying sample rates
is summarized in Table 1. There was little variation in recording performance between
devices, and replicate performance is shown in Table S2. Under what could be considered
baseline conditions, an AudioMoth records an average of 189 h of audio at 20.5 ◦C with
Procell batteries at a 32 kHz sample rate, very close to the 187 h estimated by the AudioMoth
configuration app. As expected, there is a negative relationship between the sample rate and
the hours of audio the AudioMoth will record. In general, we found that the AudioMoth
Configuration App underestimates recording time at low frequencies and overestimates
recording time at high frequencies.
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Figure 3. Pink noise recorded by three 1.1.0 AudioMoths that were strapped 1 m away from the
playback speaker to the front (0◦), back (180◦), and sides (90◦ and 270◦) of trees with various
circumferences: (A) 41 cm, (B) 97 cm, and (C) 170 cm.

3.2.2. Effect of Gain

The gain setting had a negligible effect on the total hours of audio recorded. The
average across settings varied by a maximum of 2%. Individual performance and the
average is shown in Table S3.
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Table 1. The average, minimum, and maximum hours of audio recorded across three 1.1.0 Au-
dioMoths at each sample rate and the average amount of data written to the SD cards compared
against the AudioMoth configuration app estimations.

Sample Rate (kHz) Hours Recorded
Configuration App

Estimate (h)
Mean Min Max

8 249 247 251 229
16 224 224 225 210
32 189 187 191 187
48 161 160 163 168

96 1 91 90 91 133
192 1 60 59 61 87
250 1 47 47 47 80
384 1 43 43 43 55

1 Audio files at these sample rates filled the SD card before the batteries depleted, and required a second SD card
to be inserted once the red and green LEDs began flashing.

3.2.3. Effect of Battery Type and Temperature

The Procell and lithium temperature trials are summarized in Table 2. For Procell
batteries, there is a small 3% decrease in hours recorded between the control devices at
room temperature (20.5 ◦C) and the devices at 3.4 ◦C. In contrast, devices at −16.1 ◦C
recorded just more than half as long as those at room temperature. The lithium batteries
had relatively consistent recording times across all temperatures, all of which were higher
than the recording times for the Procell batteries. With lithium batteries, the AudioMoths
recorded for a slightly longer time at colder temperatures compared to room temperature.
Results were relatively consistent across devices as shown in Tables S4 and S5.

Table 2. A comparison of the average, minimum, and maximum hours of audio recorded by 1.1.0
AudioMoths set to record with a 32 kHz sample rate at different temperature ranges using three
Procell alkaline or Energizer lithium AA batteries.

Temperature Procell Lithium
Avg Min Max Avg Min Max

Room (20.5 ◦C) 189 187 191 234 228 239
Fridge (3.4 ◦C) 183 181 185 241 239 244

Freezer (−16.1 ◦C) 103 99 105 238 236 241

4. Discussion

4.1. Acoustic Performance Tests

In summary, our results show that the AudioMoth has favorable acoustic recording
properties and battery life. The frequency response was found to be generally flat, with a
slight increase in sensitivity above 3 kHz, peaking between 5 kHz and 10 kHz (Figure 1). The
AudioMoth’s frequency response does not vary significantly between devices (Figure S2).
Changing the gain settings results in an overall change in recorded signal level, providing
a total range of adjustment of 14.2 dB, and changing the gain setting does not affect
the relative sensitivity across frequencies. Plastic bags used as weatherproof housing
were found to attenuate frequencies above 10 kHz (Figure 1). This result is congruent with
physical acoustics, which predicts that sound transmission loss through a membrane will be
low for thin, flexible membranes, but will increase with frequency [28]. The polar response
pattern of the AudioMoth showed that the device has lower sensitivity behind the device
than in front, an effect accentuated when the recorder was mounted on a tree. This lack of
omnidirectionality should be considered during data analysis, especially when estimating
the area surveyed by a recorder or estimating the distance to a sound source. During
deployment, attenuation of sounds arriving from behind the device can be minimized by
mounting the AudioMoths on trees or stakes with small diameters (3–7 cm). We note that
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all tests were completed using new devices that had not previously been deployed in the
field, and that acoustic performance may be affected by microphone damage after devices
are left in the field for extended periods [29].

In practice, the AudioMoth is rarely used without protective housing and is often
attached to a tree. When planning deployments of AudioMoths for field data collection, the
effects of such choices should be considered. If a deployment strategy will cause substantial
reductions in certain frequency bands, the downstream effects of this lost information
should be carefully considered. For instance, strapping an AudioMoth to a 30 cm diam-
eter tree will result in a sensitivity to high frequencies that is about 25 decibels higher in
front of the device than behind the device. Considering that sound decays approximately
6 dB per doubling of distance ignoring absorption and attenuation, the maximum record-
ing distance of an event behind the device would effectively be four times smaller than
the front.

Our results show that even when the AudioMoth is not in a case and not strapped to a
tree, it is not truly omnidirectional. When sound arrives from behind the microphone, there
is an overall reduction of at least 5 dB for all frequencies, and certain frequencies (around
5 kHz and 10 kHz) are sharply reduced. A reduction of level in a frequency response plot
can be thought of as a loss of information for each frequency. While an overall loss of
level simply results in quieter files (and effectively a smaller sampling radius), the loss
of specific frequencies more than others “distorts” the data by recording some sounds
quieter than others of equivalent volume. This would be problematic if, for instance, a
study was to attempt to compare the presence of two species with vocalizations in two
specific frequency ranges, one of which was recorded with 15 dB less sensitivity than the
other. During analysis, it is important to account for any frequency-dependent sensitivity
of the deployment strategy.

Cases made of solid materials will have different effects on frequency response than
the thin, flexible bags used for housing in this report. Sound travels easily through flexible
membranes but is absorbed or reflected by thick solid membranes [28]. Higher frequencies
will be attenuated more than lower frequencies when traveling across a solid membrane,
and overall attenuation will be correlated with the thickness of the membrane [28]. Be-
cause the precise effects of a protective housing on the recorded audio are difficult to
predict, the effect of alternative housings on frequency response should be measured
before deployment.

When choosing a gain setting for an AudioMoth deployment, the goal is to choose the
highest gain setting that does not cause clipping. Clipping occurs when the signal level
exceeds the maximum levels that can be recorded, and causes harmonic distortion of the
audio signal, which results in the introduction of harmonics not present in the real-world
signal. Because field sites and organisms can differ greatly in noise levels, experimenting
with different gain settings at a specific field site is the best way to determine an appropriate
gain setting that maximizes recording levels while avoiding clipping.

4.2. Battery Life Tests

In summary, our results show that recording times decreased with an increasing sam-
ple rate, as expected. Expected recording times predicted by the AudioMoth configuration
app for alkaline batteries were consistent with our results for sampling rates of 32 kHz. The
configuration app underestimated recording times at lower sampling rates and overesti-
mated recording times at higher sampling rates. When planning field deployments around
AudioMoth battery life, we recommend using the results of our empirical experiments
rather than the configuration app’s estimates. As expected, cold temperatures decreased
recording times with alkaline batteries, although this effect was not substantial until all
temperatures fell below 0 ◦C. Lithium batteries were recorded for similar amounts of time
at all three examined temperatures.
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5. Conclusions

Our tests show that the AudioMoth’s long battery life, directional pattern, and flat
frequency response make it an effective recording hardware choice for bioacoustic mon-
itoring. The recorder has a relatively flat frequency response and records sound from
all directions effectively, although we note that the device is not fully omnidirectional.
We found that plastic bags have little effect on sensitivity to frequencies below 10 kHz,
making them ideal housings in environments where they provide sufficient protection.
When using AudioMoths or any other automated recording unit, the characteristics of the
recording hardware and housing should be considered during data analysis. In particular,
the frequency response and directionality of the recorder, and the effect of mounting the
recorder on solid objects such as trees, should be considered when evaluating recordings.
The frequency response measurements and battery life tests provided in this report can
be used to inform the survey design and data analysis of acoustic recordings collected
by AudioMoths.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23115254/s1, Figure S1: Frequency response variation between five
AudioMoth devices without cases relative to Device 1017; Figure S2: Frequency response for pink
noise recorded at the 5 gain settings, relative to the highest gain setting; Table S1: On-axis frequency
response in each housing treatment; Table S2: Individual results and overall average for the effect
of sample rate on battery life.; Table S3: Individual results and overall average for the effect of gain
setting on battery life.; Table S4: Individual results and overall average for the effect of temperature
on Procell alkaline battery life; Table S5: Individual results and overall average for the effect of
temperature on Energizer lithium battery life.
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Appendix A

Acoustic Performance Test Equipment List
Enviro meters A-weighted EM80 Sound Level (Sealed Unit Parts Co., Inc., Allenwood,

NJ, USA)

• AudioMoth version 1.1.0 with 1.3.0 firmware (LABmaker, Berlin, Germany)
• 64 GB SanDisk Ultra microSDXC UHS-I Card (SanDisk, Milpitas, CA, USA)
• dbx RTA-M Reference Microphone (HARMAN International, Stamford, CT, USA)
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• Scarlett 2i2 Audio Interface (Focusrite, High Wycombe, United Kingdom)
• Macbook Pro 2013 with Logic Pro X and Audacity 2.2.2 (Apple, Cupertino, CA, USA)
• Mackie SRM-450 Loudspeaker (Mackie, Woodinville, WA, USA)

Battery Life Test Equipment List

• AudioMoth version 1.1.0 with 1.5.0 firmware (LABmaker, Berlin, Germany)
• 64 GB SanDisk Ultra microSDXC UHS-I Card (SanDisk, Milpitas, CA, USA)
• Procell PC1500 Alkaline AA Batteries (Duracell Inc., Chicago, IL, USA)
• Energizer Ultimate Lithium AA Batteries (Energizer Holdings, Inc., St. Louis, MO, USA)
• Frigidaire Top Freezer Refrigerator Model: FFET1022UV (Frigidaire, Charlotte,

NC, USA)

References

1. Sugai, L.S.M.; Silva, T.S.F.; Ribeiro, J.W.; Llusia, D. Terrestrial Passive Acoustic Monitoring: Review and Perspectives. BioScience
2019, 69, 15–25. [CrossRef]

2. Rhinehart, T.A.; Chronister, L.M.; Devlin, T.; Kitzes, J. Acoustic Localization of Terrestrial Wildlife: Current Practices and Future
Opportunities. Ecol. Evol. 2020, 10, 6794–6818. [CrossRef] [PubMed]

3. Laiolo, P. The Emerging Significance of Bioacoustics in Animal Species Conservation. Biol. Conserv. 2010, 143, 1635–1645.
[CrossRef]

4. Marques, T.A.; Thomas, L.; Martin, S.W.; Mellinger, D.K.; Ward, J.A.; Moretti, D.J.; Harris, D.; Tyack, P.L. Estimating Animal
Population Density Using Passive Acoustics. Biol. Rev. 2013, 88, 287–309. [CrossRef] [PubMed]

5. Johnson, E.; Campos-Cerqueira, M.; Jumail, A.; Yusni, A.S.A.; Salgado-Lynn, M.; Fornace, K. Applications and Advances in
Acoustic Monitoring for Infectious Disease Epidemiology. Trends Parasitol. 2023, 39, 386–399. [CrossRef] [PubMed]

6. Titley Scientific Acoustic Monitoring Products. Available online: https://www.titley-scientific.com/us/products/anabat-systems
(accessed on 24 April 2023).

7. Wildlife Acoustics Recorders/Software Products. Available online: https://www.wildlifeacoustics.com/products (accessed on
24 April 2023).

8. Sethi, S.S.; Ewers, R.M.; Jones, N.S.; Orme, C.D.L.; Picinali, L. Robust, Real-time and Autonomous Monitoring of Ecosystems with
an Open, Low-cost, Networked Device. Methods Ecol. Evol. 2018, 9, 2383–2387. [CrossRef]

9. Caldas-Morgan, M.; Alvarez-Rosario, A.; Rodrigues Padovese, L. An Autonomous Underwater Recorder Based on a Single Board
Computer. PLoS ONE 2015, 10, e0130297. [CrossRef] [PubMed]

10. Whytock, R.C.; Christie, J. Solo: An Open Source, Customizable and Inexpensive Audio Recorder for Bioacoustic Research.
Methods Ecol. Evol. 2017, 8, 308–312. [CrossRef]

11. Hill, A.P.; Prince, P.; Piña Covarrubias, E.; Doncaster, C.P.; Snaddon, J.L.; Rogers, A. AudioMoth: Evaluation of a Smart Open
Acoustic Device for Monitoring Biodiversity and the Environment. Methods Ecol. Evol. 2018, 9, 1199–1211. [CrossRef]

12. Roedel, K. Reno Startup Helps Fund Global Production of Acoustic Recording Device. Northern Nevada Business Weekly. 2021.
Available online: https://www.nnbw.com/news/2021/sep/21/reno-startup-helps-fund-global-production-acoustic (accessed
on 24 April 2023).

13. GroupGets AudioMoth by Open Acoustic Devices. Available online: https://groupgets.com/manufacturers/open-acoustic-
devices/products/audiomoth (accessed on 24 April 2023).

14. Knowles Product Data Sheet—SPM0408LE5H-TB Amplified Zero-Height SiSonic Microphone with Enhanced RF Protection.
Available online: https://media.digikey.com/pdf/Data%20Sheets/Knowles%20Acoustics%20PDFs/SPM0408LE5H-TB.pdf
(accessed on 26 April 2023).

15. Hill, A.P.; Prince, P.; Snaddon, J.L.; Doncaster, C.P.; Rogers, A. AudioMoth: A Low-Cost Acoustic Device for Monitoring
Biodiversity and the Environment. HardwareX 2019, 6, e00073. [CrossRef]

16. Barber-Meyer, S.M.; Palacios, V.; Marti-Domken, B.; Schmidt, L.J. Testing a New Passive Acoustic Recording Unit to Monitor
Wolves. Wildl. Soc. Bull. 2020, 44, 590–598. [CrossRef]

17. Manzano-Rubio, R.; Bota, G.; Brotons, L.; Soto-Largo, E.; Pérez-Granados, C. Low-Cost Open-Source Recorders and Ready-to-Use
Machine Learning Approaches Provide Effective Monitoring of Threatened Species. Ecol. Inform. 2022, 72, 101910. [CrossRef]

18. Pérez-Granados, C.; Traba, J. Estimating Bird Density Using Passive Acoustic Monitoring: A Review of Methods and Suggestions
for Further Research. Ibis 2021, 163, 765–783. [CrossRef]

19. Darras, K.; Batáry, P.; Furnas, B.; Celis-Murillo, A.; Van Wilgenburg, S.L.; Mulyani, Y.A.; Tscharntke, T. Comparing the Sampling
Performance of Sound Recorders versus Point Counts in Bird Surveys: A Meta-Analysis. J. Appl. Ecol. 2018, 55, 2575–2586.
[CrossRef]

20. GitHub: KitzesLab—A Quantitative Report of Audio Recording Quality for the AudioMoth. Available online: https://github.
com/kitzeslab/audiomoth-performance (accessed on 12 April 2023).

21. GitHub: KitzesLab—ARU Battery Longevity Report. Available online: https://github.com/kitzeslab/ARU_battery_longevity
(accessed on 12 April 2023).

187



Sensors 2023, 23, 5254

22. Rayburn, R.A.; Eargle, J. Eargle’s Microphone Book: From Mono to Stereo to Surround: A Guide to Microphone Design and Application,
3rd ed.; Focal Press/Elsevier: Waltham, MA, USA, 2012; ISBN 978-0-240-82075-0.

23. Decibels. Available online: https://www.dsprelated.com/freebooks/mdft/Decibels.html (accessed on 12 April 2023).
24. Bat Echolocation. Available online: https://dnr.maryland.gov/wildlife/Pages/plants_wildlife/bats/batelocu.aspx (accessed on

12 April 2023).
25. Dooling, R.J.; Lohr, B.; Dent, M.L. Hearing in Birds and Reptiles. In Comparative Hearing: Birds and Reptiles; Dooling, R.J.,

Fay, R.R., Popper, A.N., Eds.; Springer Handbook of Auditory Research; Springer: New York, NY, USA, 2000; Volume 13,
pp. 308–359. [CrossRef]

26. Heffner, H.E.; Heffner, R.S. Hearing. In Comparative Psychology, 1st ed.; Greenberg, G., Haraway, M.M., Eds.; Routledge: New
York, NY, USA, 1998; pp. 290–303. [CrossRef]

27. Sarria-S, F.A.; Morris, G.K.; Windmill, J.F.C.; Jackson, J.; Montealegre-Z, F. Shrinking Wings for Ultrasonic Pitch Production:
Hyperintense Ultra-Short-Wavelength Calls in a New Genus of Neotropical Katydids (Orthoptera: Tettigoniidae). PLoS ONE
2014, 9, e98708. [CrossRef]

28. Long, M. Sound Transmission Loss. In Architectural Acoustics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 345–382;
ISBN 978-0-12-398258-2.

29. Turgeon, P.J.; Van Wilgenburg, S.L.; Drake, K.L. Microphone Variability and Degradation: Implications for Monitoring Programs
Employing Autonomous Recording Units. Avian Conserv. Ecol. 2017, 12, 9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

188



Citation: Priebe, D.; Ghani, B.;

Stowell, D. Efficient Speech Detection

in Environmental Audio Using

Acoustic Recognition and Knowledge

Distillation. Sensors 2024, 24, 2046.

https://doi.org/10.3390/s24072046

Academic Editor: Hector

Eduardo Roman

Received: 27 January 2024

Revised: 1 March 2024

Accepted: 7 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Efficient Speech Detection in Environmental Audio Using
Acoustic Recognition and Knowledge Distillation

Drew Priebe 1, Burooj Ghani 2 and Dan Stowell 1,2,∗

1 Department of Cognitive Science and Artificial Intelligence, Tilburg University, 5037 Tilburg, The Netherlands
2 Naturalis Biodiversity Center, 2333 Leiden, The Netherlands; burooj.ghani@naturalis.nl
* Correspondence: dan.stowell@naturalis.nl

Abstract: The ongoing biodiversity crisis, driven by factors such as land-use change and global
warming, emphasizes the need for effective ecological monitoring methods. Acoustic monitoring of
biodiversity has emerged as an important monitoring tool. Detecting human voices in soundscape
monitoring projects is useful both for analyzing human disturbance and for privacy filtering. Despite
significant strides in deep learning in recent years, the deployment of large neural networks on
compact devices poses challenges due to memory and latency constraints. Our approach focuses
on leveraging knowledge distillation techniques to design efficient, lightweight student models for
speech detection in bioacoustics. In particular, we employed the MobileNetV3-Small-Pi model to
create compact yet effective student architectures to compare against the larger EcoVAD teacher model,
a well-regarded voice detection architecture in eco-acoustic monitoring. The comparative analysis
included examining various configurations of the MobileNetV3-Small-Pi-derived student models to
identify optimal performance. Additionally, a thorough evaluation of different distillation techniques
was conducted to ascertain the most effective method for model selection. Our findings revealed that
the distilled models exhibited comparable performance to the EcoVAD teacher model, indicating a
promising approach to overcoming computational barriers for real-time ecological monitoring.

Keywords: passive acoustic monitoring; eco-acoustics; deep learning; knowledge distillation;
bioacoustics; classification; transfer learning; speech detection

1. Introduction

Bioacoustics is the scientific discipline that focuses on sounds generated by animals [1].
The field offers insight into the behaviors, communication, and migration patterns of
different species. Recent advances in computational bioacoustics, such as data storage
and digital recording costs, have enabled the application of more advanced analytical
approaches like deep learning [1]. While early deep learning methods focused on neural
networks such as the multilayer perceptron (MLP), Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) models currently surpass and exceed MLP models
in the field [1]. More recently, a convolution-free Audio Spectrogram Transformer (AST),
an attention-based model for audio classification, was designed [2]. However, due to the
quadratic complexity of self-attention, transformer-based models such as AST are known
to be computationally expensive, resulting in increased latency and model size when
compared with lightweight CNNs [3].

Despite the recent progress in computational bioacoustics, some practical and theo-
retical obstacles remain that prevent deep learning methods from broad usage in the field.
A notable obstacle arises from the intricacies of dealing with human speech recordings
in wildlife settings. Although these recordings serve as a useful proxy for quantifying
human disturbance in ecosystems, they also allow for a more precise assessment of human
presence [4]. This increased precision, while beneficial in one aspect, could lead to signif-
icant data privacy concerns as acoustic monitoring equipment becomes more advanced
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and more widely implemented [1]. The implications of this obstacle extend even further
given the documented impact of human activity on the temporal dynamics of animal
activity patterns, which include an increase in nocturnality and potential consequences
for ecological interactions [5–7]. Moreover, noise pollution levels in protected areas have
doubled, affecting critical habitat areas for endangered species [8]. In response to these
challenges, Cretois, Rosten, and Sethi [4] developed a voice activity detection (VAD) model,
EcoVAD, aimed at addressing both the need for precise measurement of human presence
and privacy preservation in eco-acoustic data.

In addition to the above-mentioned theoretical challenges, there are practical chal-
lenges that prevent deep models, such as EcoVAD, from being deployed in eco-acoustic
environments. The deployment of such models has high latency costs [1]. The current
state-of-the-art acoustic monitoring tool, AudioMoth [9], is a low-cost, low-power solution
to certain technical challenges in bioacoustics. However, AudioMoth is not efficient enough
to execute deep neural networks (DNNs) in real time [10]. The challenges that DNNs
bring for deploying models on small devices have led to a series of model compression
and acceleration techniques, one of which is knowledge distillation [11]. The main idea
behind knowledge distillation is that a student model is trained to emulate the processing
performed by a larger teacher model in order to distill refined knowledge and obtain a
competitive performance versus the teacher [11]. This technique allows efficient DNNs to
be trained from large DNNs without a substantial drop in accuracy [11].

While knowledge distillation addresses the compression framework required for
deployment on edge devices, architectural efficiency remains another critical aspect for
real-time inference [1,12]. In an attempt to design a more efficient architecture, Howard et
al. [13] introduced the MobileNetV1 architecture, which replaced the convolutional layer
of CNNs with depth-wise separable convolutions. Specifically, the utilization of factor-
ized convolutions through the combination of depth-wise and point-wise convolution
reduced the computation required by the convolutional block by a factor of eight [13].
While the introduction of MobileNetV1 allowed for a reduction in parameters without
a significant loss in accuracy, it was not effective at efficiently extracting the manifold of
interest (MOI) [14]. This issue was in part due to the application of the nonlinear functions
(RELU) on low-dimensional activations, which lead to information loss in the MOI. To con-
front this problem within the MobileNetV1 architecture, ref. [14] introduced MobileNetV2,
which incorporated inverted residuals with a linear bottleneck. In order to improve the
representational power of the CNN architecture, Hu, Shen, and Sun [15] implemented
a Squeeze-and-Excitation block (SE), which allows the weighting of interdependencies
between channels for feature selection. In light of this development, researchers then
attempted to augment MobileNetV2 and introduced the SE block in the MobileNetV3
architecture. As a result, this led to an improvement in both the latency and parameter size
of the model [16].

Despite the design of MobileNet architectures addressing the model complexity and
latency costs for deployment on small mobile devices, these architectures are not optimized
for other edge devices, such as Raspberry Pi, NVIDIA Jetson Nano, or Google Coral,
which contain different hardware specifications [17,18]. In an attempt to improve the
MobileNetV3 design for Raspberry Pi devices, MobileNetV3-Small-Pi was developed [18].
This architecture replaced the 5x5 filter with a 3x3 filter in the convolution block and
changed the hard-swish activation function to RELU. The modifications made to the
MobileNetV3 led to improvements in both latency and accuracy in MobileNetV3-Small-
Pi [18].

Silva et al. [19] built a CNN-based VAD model using audio spectrograms to detect
speech in audio signals. Using the LeNet 5 CNN and the Half Total Error Rate metric, the
proposed method outperformed several baseline VAD models in low-, medium-, and high-
noise conditions. In an effort to further optimize VAD models in noisy conditions, ref. [20]
integrated a two-layer bottleneck Denoising Autoencoder (DAE) with a CNN. The re-
searchers carried out experiments using two different feature sets, MFCCs (Mel-Frequency
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Cepstral Coefficients) and filterbanks, and compared their performance in various Signal-
to-Noise Ratio (SNR) conditions. The results demonstrate an improvement in classifying
speech in high-noise environments. In an attempt to measure human disturbance in ecologi-
cal settings, ref. [4] proposed an alternative approach for acoustic VAD models. Researchers
trained CNN models on synthetic datasets containing human voices mixed with typical
background noises encountered in eco-acoustic data. By proposing a specialized prepro-
cessing pipeline for audio augmentation and synthetic dataset building, the results indicate
the performance of a custom VGG11 model established a new state-of-the-art benchmark
for VAD models in ecological settings. Despite the advances demonstrated in the afore-
mentioned studies with respect to the accuracy of VAD models, the challenge of designing
models that are suitable for real-time inference and deployment on edge devices remains
a significant challenge. Ref. [21] proposed a lightweight CNN with data augmentation
and regularization techniques to improve the generalization ability of the model. Utilizing
the PreAct ResNet-18 architecture as a teacher and log-scaled Mel Spectrogram as feature
inputs, researchers trained a student model using response-based distillation resulting in a
lower equal error rate and latency from the distilled model. In a similar piece of research,
ref. [22] proposed a response-based knowledge distillation approach, where the teacher
estimates the frame probability for each sound event and provides frame-level supervision
to the student model, which was trained to then discriminate ground truth speech from
non-speech-labeled events. With the aim of deployment on embedded devices such as
Raspberry Pi, the results indicate a 98% reduction in parameters while outperforming the
teacher model.

This study addresses the challenge of deploying deep learning models for ecological
speech detection within the computational constraints of small, edge devices. These cost-
effective and low-power devices struggle to efficiently run complex neural networks like
EcoVAD, hampering real-time bioacoustic monitoring. To circumvent these challenges, our
research focuses on applying knowledge distillation to create streamlined student models
that parallel the larger EcoVAD teacher model’s performance. This approach is intended
to overcome the inherent memory, latency, and computational limitations of such devices
while facilitating a more robust model capable of effective ecological monitoring.

2. Materials and Methods

In the current study, we build on the previous research discussed above, which has
proven instrumental in developing efficient, compact deep learning models suitable for
deployment. We design and execute experiments to optimize deep neural networks for
real-time speech detection. To achieve this objective, we investigate the suitability of
MobileNetV3-Small-Pi [18] model as a student architecture for EcoVAD [4]. The afore-
mentioned studies also highlight the significance of specialized preprocessing, efficient
lightweight architectures, and distillation techniques for optimizing VAD models for such
deployment. Consequently, we employ different knowledge distillation techniques while
incorporating variations in the MobileNetV3-Small-Pi architecture to achieve optimal per-
formance. Finally, we examine how reductions in parameters, floating-point operations per
second (FLOPs), multiplications, and memory utilization in student VAD models influence
the performance of the resulting architectures.

2.1. Knowledge Distillation Techniques

Hinton, Vinyals, and Dean [23] first popularized the knowledge distillation method
by training a smaller student network, using a teacher for distilled knowledge transfer.
The method, known as response -based distillation, trains the student to optimize the
loss function based on the student and teacher’s softened outputs. While response-based
distillation allowed for “dark knowledge” to be distilled, depth is a critical aspect of feature
representation learning [11,24].

In an attempt to distill intermediate representations, ref. [24] introduced feature-
based distillation, which trained a student network to optimize the loss function based
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on the student’s outputs and ground truth labels, along with the feature maps from an
intermediary layer within the student and teacher, respectively. This method, which selects
a teacher hidden layer as a “hint” layer and student hidden layer as a “guide”, improved
the generalization and accuracy of the student when compared with the teacher [11].

While featured distillation allowed for deeper representation learning, the knowl-
edge distilled is independent of outside data examples. Thus, Park et al. [25] introduced
relational knowledge distillation, a method relying upon the relations between learned
representations. This method trained the student network to optimize the loss function
based on the angle-wise and distance-wise relations between different data points, allow-
ing the teacher to distill refined instance relations between the layers and outputs of the
model [25].

2.2. Model Architectures

The teacher architecture used for knowledge distillation is based on a customized
VGG11 architecture [4], adapted to process 128 × 128 single-color channel images, in
contrast to the standard VGG11’s handling of 224 × 224 RGB images. Significant mod-
ifications included the reconfiguration of input and output neurons, the introduction of
batch normalization after each convolutional layer, and the implementation of a dropout
strategy in fully connected layers to enhance the model’s specificity for binary speech
detection. Additionally, a Fast Fourier Transform (FFT) window duration of 64 milliseconds
(equivalent to 1024 samples at a sampling rate of 16 kHz) with a 50% overlap (hop size
of 512 samples) was selected for its proven effectiveness in audio classification tasks, as
detailed in [4]. This approach is further validated by the findings of [26], particularly
highlighting the significant role of normalizing the Mel Spectrograms along each frequency
bin in enhancing classifier performance. By compressing the frequency into 128 Mel scale
bands and implementing this normalization, the model’s input is finely tuned, thereby
improving its capability to accurately differentiate between speech and nonspeech elements.
All student architectures were based on MobileNetV3-Small-Pi (MSP) [18]. The student
architectures maintained the differences implemented in [18] with respect to MobileNetV3,
more specifically, the adjustment from a 5 × 5 filter with a 3 × 3 filter in the later convolu-
tion blocks and an adjustment from the hard-swish activation function to RELU. However,
the architectural differences in the students differ from MSP in a number of ways.

With the goal of analyzing the efficiency of student architectures, four different student
designs were trained to measure the tradeoffs in accuracy and efficiency. The primary
differences between these four architectures lie within the number of channels used in
the convolutional and bottleneck layers, as well as the overall depth of the architecture,
allowing for an exploration of established principles [27] to find an optimal balance between
model complexity and computational efficiency. Student 1 starts with an initial 3 × 3
convolutional layer with 16 output channels, followed by a series of bottleneck layers with
channels ranging from 16 to 512. This design leverages concepts from residual learning to
reduce the computational cost and enhance feature extraction capability compared with
prior CNNs by using depth and channel expansion to capture complex patterns within
the data [14]. Student 2, while similar to Student 1, has a reduction in the number of
bottleneck layers and a difference in the input channels prior to the Adaptive Average
Pooling layer. The input channels are changed from 256 to 512 in this case. The reduction
in bottleneck layers allows for a continuation of the reduction in the depth of the network
while maintaining a higher learning capacity for feature extraction in the later stages of
the network.

Student 3 was initiated with a smaller number of channels compared with the afore-
mentioned student architectures, starting at only 4 output channels in a 3 × 3 convolutional
layer and progressing through a series of more compact bottleneck layers that scale from
4 to 128 channels. This architecture emphasizes an experimental divergence from its prede-
cessors to examine efficiency with an inherent reduction in model capacity. The decrease in
initial channels and compact bottleneck design was to ensure a reduction in calculations per-
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formed for each convolutional operation while ensuring computations performed within
the bottleneck layers were reduced due to smaller feature maps. The final student, Student
4, maintains a similar foundational structure to Student 3, with a 3 × 3 convolutional layer
with 4 output channels in the initial bottleneck. However, the number of bottleneck layers
is reduced in this case, leading to a more compact architecture with fewer layers. The
channel sizes range from 4 to 64. These design changes reflect our efforts to prioritize a
reduction in depth and complexity in order to assess the generalization capabilities of a
simplified network.

Each student architecture maintains a similar final layer construction, which consists
of an Adaptive Average Pooling layer, two 1 × 1 convolutional layers, and a flatten layer.
The models also maintain the presence or absence of the SE block, as in [18]. Furthermore,
each student’s architecture maintains the same expansion ratio pattern, with the exception
of Student 4. The differences in teacher and student architectures, which are highlighted in
Table 1, influence each respective model’s capacity for feature extraction and performance
on the voice activity detection task.

Table 1. Summary of different teacher and student model characteristics. Avg. inference time is
defined as the average time taken by the model to make a prediction on a single input instance,
measured over 100 trials.

Model Parameters Layers FLOPS Multiplications Memory (MB) Avg. Inference Time (s)

Teacher 59,568,769 20 2,485,390,000 1,242,700,000 227 0.17
Student 1 4,662,017 215 388,459,000 194,230,000 17 0.038
Student 2 2,930,177 179 337,257,000 168,628,000 11 0.042
Student 3 502,793 179 27,353,400 13,676,700 1.91 0.0087
Student 4 52,253 114 8,648,350 4,324,170 0.19 0.0050

2.3. Dataset and Preprocessing

The current study used three distinct datasets for the EcoVAD preprocessing pipeline:
The Soundscape Dataset [4], collected from the Bymarka forest near Trondheim, Nor-

way, contains a total of 10 days of acoustic data recorded in files of 55 s at a sampling
frequency of 44.1 kHz. From the initial 10 days of recordings, a subset of data were used for
the EcoVAD preprocessing pipeline, consisting of 9037 raw audio signals from a continuous
5-day forest recording sampled with the same rate and intervals.

The Libri-Speech Dataset [28], a corpus containing 1000 h of 16kHz of read English
speech with a 1:1 male-to-female ratio was used for voice active detection. The data used
for the EcoVAD preprocessing pipeline were a subset from the corpus containing 360 h, of
which 200 h of English reading speech with a 1:1 male-to-female ratio was extracted.

The Background Noise Dataset is a combination of the ESC-50 dataset [29] and Bird-
Clef 2017 dataset [30]. The ESC-50 dataset, used for environmental sound classification,
contains 2000 environmental recordings organized in 50 classes. For training, we subsetted
the data to only include 1600 recordings organized into 40 classes at 5 s intervals, removing
human-related sounds. The BirdClef 2017 dataset, which includes audio recordings of vari-
ous bird species, contains 36,496 audio recordings with 1500 species classes. Due to storage
limitations, a subset of the dataset was used, accounting for 11,889 audio recordings belong-
ing to 501 species. The three datasets, namely Soundscape, Libri-Speech, and Background
Noise, were collectively utilized as inputs for the EcoVAD preprocessing pipeline.

The EcoVAD preprocessing pipeline [4] was used to generate a synthetic dataset
consisting of 20,000 audio files, with a 1:1 distribution between speech and nonspeech
audio files. The pipeline augments raw soundscape audio into processed 3 s soundscape
audio clips, which are accompanied by ground truth labels denoting the presence or
absence of speech. These processed 3 s soundscape audio clips were augmented with
speech, background, and bird species audio recordings to build an accurate representation
of the ecological soundscape. To refine the raw audio signals into features for the speech
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detection task, the signals were converted into 128 × 128 Mel Spectrograms containing
a single color channel, as in [4]. The Mel Spectrograms were then used as input into the
student and teacher architectures for training.

The Evaluation Playback Dataset [4] is an extensive collection of audio recordings
designed to simulate diverse environmental conditions for the purpose of testing voice
activity detection (VAD) models. This unique curated collection of three-second audio
clips is derived from 48 two-minute recordings within forest and seminatural grassland
environments. This dataset, consisting of 5140 audio files, incorporates audio recordings
of male, female, and child voices, both in speech and nonspeech contexts, captured at
distances of 1, 5, 10, and 20 m. The playback dataset allows for the final evaluation and
verification of the robustness of the various student models across distinct landscapes and
at varying distances.

2.4. Training and Evaluation

The synthetic dataset generated for training each student model was broken down
into training, evaluation, and test sets with ratios of 60%, 20%, and 20%, respectively. All
models utilized in this study were subjected to a training process that involved a maximum
of 50 epochs, employing batch sizes of 32. The number of inputs for each model was set to
the Mel Spectrograms’ feature dimensions, where the outputs for each model were set to
one. Given that the task is binary classification, this allows for the model to produce values
between 0 and 1 in order to represent a prediction for speech detection. Furthermore, we
use binary cross entropy with logits loss for the student losses and binary cross-entropy for
the teacher loss function to accurately predict the binary classification task and replicate
the training procedure implemented in [4].

Moreover, after initial hyperparameter testing, we found that the Adam optimizer [31]
was best suited for the optimization algorithm. Additionally, in each distillation experiment,
we employed a learning rate of 0.001. The temperature parameter, which is used to soften
the probability distribution of the logits, was set to 5. The alpha parameter, which controls
the balance between the distillation loss and student loss in the total loss function, was
set to 0.2. Finally, an early stopping method was used to prevent overfitting. The method
involved comparing the present validation loss with the best validation loss. Furthermore,
a patience parameter was introduced and set to 3 in order to ensure that if the loss failed to
improve over a predetermined number of epochs specified by the patience parameter, the
training of the model would be completed.

The evaluation metrics used to measure student model performance include the F1
score and the Area Under the Receiver Operating Characteristic Curve (AUC) score. The
F1 score is a statistical measure used to evaluate the accuracy of a binary classifier, which
can be seen as the harmonic mean of precision and recall. It provides a single performance
measurement that balances both the false positives and false negatives [32] . On the other
hand, the AUC score represents the likelihood that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative one. It measures the
area under a curve that plots the true positive rate (TPR) against the false positive rate
(FPR), offering an aggregate measure of performance across all possible classification
thresholds [4]. Both the F1 score and AUC score were chosen to evaluate the student
models based on the metrics employed in the training of the teacher model.

2.5. Software

The python programming language (3.10.11) was used throughout the study. The
preprocessing pipeline was developed using EcoVAD [4], which utilizes Librosa v.0.8.1 [33]
and Pydub v.0.25.1 [34] as the audio processing libraries. The data visualizations were
performed using matplotlib [35]. The pandas [36] and NumPy [37] libraries were used for
data loading and preprocessing. PyTorch (2.0.0) [38] was used for developing the deep
learning models. The Scikit-learn [39] library was used for the evaluation of the models.
The Google Colaboratory Environment [40] was used for training the models.
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3. Results

3.1. Refinement of Knowledge Distillation Techniques

The performance of student models employing various knowledge distillation tech-
niques was assessed using median Area Under the Curve (AUC) and F1 scores, providing
robust central tendency measures appropriate for our data’s non-normal distribution (see
Table 2). In multiple experiment runs without fixed seeds, soft target distillation yielded
a median AUC of 0.98625 with a confidence interval of 0.9704 to 0.989, and a median F1
score of 0.95395 with a confidence interval of 0.9216 to 0.9596. Feature-based distillation
exhibited a median AUC of 0.98795 with a confidence interval of 0.98755 to 0.99015 and a
median F1 score of 0.95460 with a confidence interval of 0.95015 to 0.9583. Relational-based
distillation demonstrated a median AUC of 0.98905 with a confidence interval of 0.9879 to
0.9898 and a median F1 score of 0.95900, with a confidence interval of 0.9538 to 0.96125.

Table 2. Table of results for different student models employing distinct distillation techniques. We
report median AUC and F1 scores of the student models and distillation methods with bootstrap
confidence intervals given in brackets.

Model
Soft Target
Distillation

Feature-Based
Distillation

Relational-Based
Distillation

Student 1 AUC: 0.9892 AUC: 0.9880 AUC: 0.9899
F1: 0.9599 F1: 0.9520 F1: 0.9595

Student 2 AUC: 0.9908 AUC: 0.9899 AUC: 0.9897
F1: 0.9593 F1: 0.9594 F1: 0.9619

Student 3 AUC: 0.9850 AUC: 0.9874 AUC: 0.9880
F1: 0.9492 F1: 0.9483 F1: 0.9502

Student 4 AUC: 0.9870 AUC: 0.9877 AUC: 0.9878
F1: 0.9528 F1: 0.9542 F1: 0.9552

Overall AUC: 0.98625
[0.9704–0.9895]

AUC: 0.98795
[0.98755–0.99015]

AUC: 0.98905
[0.9879–0.9898]

F1: 0.95395
[0.9216–0.9596]

F1: 0.95460
[0.95015–0.9583]

F1: 0.95900
[0.9538–0.96125]

A pairwise comparison of the different distillation methods, assessed by the Mann–
Whitney U test, did not reveal statistically significant differences in median AUC or F1
scores between the distillation methods (all p-values > 0.05). This indicates that the perfor-
mance of student models is consistent across different distillation methods, suggesting that
while the refinement of knowledge distillation techniques did not improve the performance
of the resulting models, no substantial reduction in performance was observed either.

3.2. Impact of Parameter Reduction and Efficiency on Model Accuracy

The reduction in parameters, FLOPs, multiplications, and memory utilization had
varied accuracies across different distillation techniques (Figure 1). Despite these re-
ductions, the F1 scores of the student models did not decrease when compared with
the teacher-replica model. For instance, Student 1, with only 4,662,017 parameters and
388,459,000 FLOPs, achieved a median F1 score of 0.9552 in the relational distillation
method, which was higher than the teacher-replica model’s F1 score of 0.9376.

The results indicate that the models are not in alignment with the assumption that a direct
linear relationship exists between reductions in model parameters—inclusive of floating-point
operations per second (FLOPs), multiplications, and memory utilization—and model accuracy,
as Student 2 and Student 4 outperformed Student 1 and Student 3, respectively.
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Figure 1. Varied distillation technique results per student with respect to FLOPS and Size. S1–S4
corresponds to the four student models, while the teacher replica is the EcoVAD model. The size of
the circles corresponds to the number of parameters.

3.3. Performance of Lightweight Student Models On Playback Dataset

In terms of performance, the student models demonstrated comparable, and in one
instance superior, performance relative to the EcoVAD teacher model (Figure 2). For
instance, Student 1 achieved average F1 scores of 0.94595, 0.93945, 0.93875, and 0.79895 at 1,
5, 10, and 20 m, respectively, compared with the EcoVAD teacher model’s average F1 scores
of 0.93500, 0.94000, 0.96500, and 0.83200 at the same distances.

Figure 2. Avg. F1 scores based on distance on the playback evaluation data set for relational-based
models. Please note: In this figure, we report mean rather than median scores to facilitate comparison
with [4].

Furthermore, while the avg. F1 score across all distances for the EcoVAD model was
0.917, the student averages were 0.905, 0.886, 0.832, and 0.862 for Students 1–4, respectively.
These results indicate that efficient, lightweight student models can achieve comparable
performance relative to the more complex EcoVAD teacher model.

These results highlight the potential of using knowledge distillation techniques for
generating efficient, lightweight models for VAD tasks. Furthermore, these models maintain
their accuracy despite significant reductions in parameters, FLOPs, multiplications, and
memory utilization.

196



Sensors 2024, 24, 2046

4. Discussion

The goal of this study was to build an efficient general-purpose algorithm for voice
detection in environmental audio by comparing different knowledge distillation techniques
and student model architectures, more specifically, using the EcoVAD model [4] as a teacher
and variations in MobileNetV3-Small-Pi [18] as student models to compare knowledge
distillation techniques for designing an efficient EcoVAD model. The results of this study
were compared with the EcoVAD model on a playback dataset to evaluate the robustness
of the efficient EcoVAD models on different landscapes with varying distances.

This study demonstrates that efficient, lightweight student models can indeed achieve
comparable performance relative to the EcoVAD teacher architecture using knowledge
distillation and efficient student architectures. Students 1 and 2 maintained similar avg. F1
scores on the playbacks dataset using the relational distillation models when compared
with the EcoVAD teacher model. This outcome supports the findings of previous research
that distillation techniques can be used to create smaller, more efficient models without
a significant reduction in accuracy [11]. Furthermore, the statistical analyses conducted
across various distillation techniques revealed no significant effect attributable to the
refinement of knowledge distillation processes on enhancing the performance of student
models. Interestingly, in both feature-based and relational distillation experiments, Student
2’s architecture outperformed Student 1’s in the VAD task on the test dataset; however,
Student 1 outperformed Student 2 on the evaluation playback dataset. This could be the
result of Student 2 being overfitted on the test set; however, further testing would need to
be conducted in order to determine if this is the case.

Given their reduced computational demands, these student models are well-suited for
deployment in edge devices, where efficiency is paramount. This study also demonstrates
that reductions in parameters, FLOPs, multiplications, and memory utilization do not
necessarily result in a significant decrease in model accuracy. However, the results are not
linear. The student models’ performances on the evaluation dataset demonstrated that
while Student 1 and Student 2 outperformed the smaller models, Student 4 consistently
outperformed Student 3 on both the test set and playback dataset. This could be the result
of certain architectural design features between student models, such as a difference in the
expansion ratio and SE block implementation; however, further testing would need to be
carried out in order to validate these claims.

5. Conclusions

This study demonstrates that efficient student models can achieve comparable perfor-
mance to EcoVAD. The findings indicate that MobileNetV 3-Small-Pi [18] can serve as a
backbone for building efficient EcoVad models capable of achieving results comparable to
the EcoVAD teacher model [4]. This study suggests that Student 1 illustrates the feasibility
of deploying effective lightweight EcoVAD models on small-edge devices for real-time
ecological monitoring. These advancements are crucial for the field of ecological monitor-
ing, offering a scalable solution for biodiversity assessment and the monitoring of human
impacts on natural habitats.

The results of the current study are subject to certain limitations. This study incorpo-
rated a limited range of distillation techniques; therefore, other distillation methods could
serve to improve upon the current results. Additionally, the experiments ran were nonde-
terministic; therefore, the implementation of a fixed seed could potentially enhance the
reproducibility of these experiments. Moreover, portions of the data used to generate the
synthetic dataset are proprietary and therefore restricted to research purposes only. Future
research could explore the use of other distillation techniques while further investigating
different variations in the student EcoVAD models presented. Additionally, research could
investigate the performance of these models in real-world settings.

Our work contributes to ongoing efforts to expand eco-acoustic monitoring technolo-
gies. Our focus on efficiency and the deployment feasibility of VAD models paves the way
for such algorithms to be deployed on small embedded devices, such as Raspberry Pi, to
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detect and remove human voices where privacy is a strong constraint or equally well to
monitor patterns of human disturbance. The present study indicates that the optimization
and design of efficient lightweight student models can lead to results comparable to the
larger EcoVAD model. While the current study is in no way a thorough investigation into
efficient VAD model design, it can be considered a contribution toward the design of an
efficient general-purpose algorithm for voice detection in ecological settings.
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Abstract: This paper reports on the design, modeling, analysis, and evaluation of a micro-electromech-
anical systems acoustic sensor and the novel design of an acoustic vector sensor array (AVS) which
utilized this acoustic sensor. This research builds upon previous work conducted to develop a small,
lightweight, portable system for the detection and location of quiet or distant acoustic sources of
interest. This study also reports on the underwater operation of this sensor and AVS. Studies were
conducted in the lab and in the field utilizing multiple acoustic sources (e.g., generated tones, gun
shots, drones). The sensor operates at resonance, providing for high acoustic sensitivity and a high
signal-to-noise ratio (SNR). The sensor demonstrated a maximum SNR of 88 dB with an associated
sensitivity of −84.6 dB re 1 V/μPa (59 V/Pa). The sensor design can be adjusted to set a specified
resonant frequency to align with a known acoustic signature of interest. The AVS demonstrated
an unambiguous, 360-degree, in-plane, azimuthal coverage and was able to provide an acoustic
direction of arrival to an average error of within 3.5◦ during field experiments. The results of this
research demonstrate the potential usefulness of this sensor and AVS design for specific applications.

Keywords: MEMS acoustic sensor; MEMS acoustic vector sensor; resonant sensor

1. Introduction

The design, modeling, analysis, and evaluation of a micro-electromechanical systems
(MEMS) directional acoustic sensor operating at resonance and an associated acoustic
vector sensor (AVS) is presented. Determining the direction of arrival (DOA) of sound
has long been an active field of study in acoustics. The DOA can be determined via many
different devices and techniques.

1.1. Biologically Inspired Sensors

In the field of MEMS vector sensors, significant inspiration has been drawn from
biology. Many MEMS acoustic sensors have been designed based on the hearing organs
of humans as well as certain lizards, mosquitos, locusts, and flies [1]. The acoustic device
presented here draws inspiration from the hearing organ of a fly.

In 1995 Miles et al. [2] described the hearing organ of the fly, Ormia ochracea, and
how the fly is able to determine the DOA of sound. This hearing organ consists of two
mechanically coupled tympana (eardrums). In 2006 Arthur and Hoy [3] demonstrated
in lab conditions that the fly could reliably navigate towards sounds of interest. In 2008
Akcakaya and Nehorai [4] analyzed the physical performance of the ear with respect to
DOA estimation and since then, various MEMS acoustic sensors, inspired by Ormia ochracea,
have been investigated [5–28]. In general, these designs consisted of mechanically coupled
vibrating membranes and a method to sense the vibration. The membrane vibration was
typically sensed with capacitive circuits, piezoelectric arms, or optical sensors.
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1.2. Directional Sensors

The most important factor to Ormia ochracea inspired sensors is that these sensors
typically exhibited a cosine-like directionality, where a maximum response is detected with
the DOA normal to the sensor surface. This response drops sinusoidally to zero as the DOA
is rotated by ninety degrees [29].

Ishfaque et al. [12], in 2019, described a circular membrane MEMS sensor with a
piezoelectric sensing system. This research investigated methods to minimize noise levels
and to maximize the signal-to-noise ratio (SNR). They reported a sensitivity of −167 dB re
1 V/μPa (4.36 mV/Pa) at 1 kHz and an SNR of 66.77 dB. In 2019 Rahaman and Kim [13]
demonstrated an AVS which consisted of two MEMS sensors aligned orthogonally. The
DOA of incoming sound (limited to a single quadrant) was calculated using an arctan-
gent algorithm. While a graph comparing measured and actual DOA was presented,
no explicit DOA accuracy was discussed. Rahaman and Kim [15] presented a different
AVS design in 2020 consisting of two coupled wing-like diaphragms. They employed an
arccosine function to determine DOA with 180-degree azimuthal coverage and average
error of 2.6 degrees. The SNR of the sensors was reported to be about 68.5 dB. In 2021,
Rahaman et al. [16] demonstrated a double-wing-designed sensor utilizing a piezoelec-
tric readout with a sensitivity of −139 dB re 1 V/μPa (110.5 mV/Pa) measured at 1 kHz.
This sensitivity measurement was taken at a frequency significantly below the sensor’s
primary eigenmodes. Ren and Qi [17], in 2021, reported on a double-winged sensor that
utilized a laser to measure the wing deflection, and showed a low noise floor and highly
repeatable sound pressure measurements. Also in 2021, Shen et al. [18] described an Ormia
ochracea-inspired sensor utilizing an intermembrane bridge. The sensor consisted of two
separate circular membranes mechanically coupled by a structure that pivoted between
the two membranes. They reported a theoretical acoustic DOA resolution of two degrees
with an optimal frequency range of 300 Hz to 1500 Hz. In 2022 Rahaman and Kim [19]
described an array of three double-wing sensors collocated and arranged at 120-degree
angles to each other. They reported the angular resolution of the sound source localization
to be ±2 degrees in the horizontal azimuth and elevation; however, localization required a
priori knowledge of one or the other. The reported SNR of the sensor was 66.77 dB with a
sensitivity of −167 dB re 1 V/μPa (4.36 mV/Pa).

1.3. Resonant Sensors

Another key aspect of the sensor presented in this paper is that it is designed to
operate at, or near, resonance. Typically, microphones are designed to have a relatively
constant sensitivity over a large frequency range. Sensors that are designed to operate
near resonance trade increased performance at the cost of a reduced frequency range.
In applications where tonal detection or signature-based harmonic detection is desired,
resonant acoustic sensors can be designed with the advantage of mechanically filtering
noise outside of the frequency range of interest [30–36].

In 1998 Schoess et al. [31] demonstrated a simple, resonant, integrated microbeam
sensor for detecting pending mechanical failure in aircraft components. The reported SNR
of the sensor was 6:1 (15.6 dB) and operated at a resonant frequency of 312 kHz.

In 2017, Kusano et al. [37] demonstrated a small-sized yet low-frequency (430 Hz),
3D-printed, spiral-shaped resonator based on the human cochlea. This resonator was
coupled with a commercial MEMS microphone to create a low-power system tuned to
detect acoustic frequencies of interest. They demonstrated a 9 dB amplification in sound
pressure at the fundamental mode of the resonator with an acoustic sensitivity of up to
−154.4 dB re 1 V/μPa (19 mV/Pa).

Although not a MEMS sensor, in 2020 Lee et al. [35] presented a resonant acoustic
sensor for DOA determination using acoustically coupled Helmholtz resonators. In 2020
Li et al. [36] presented a 210-beam sensor. The research explored the optimization of a
silicone-layer thickness for acoustic sensitivity enhancement, reporting multi-cantilever
sensitivity of 72 V/m/s (sensitivity measured in terms of output voltage to unit velocity).
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1.4. Combined Resonant and Directional Sensors

The sensor presented in this paper follows years of research at the Naval Postgraduate
School. Touse et al. [20,21], in 2010, demonstrated a double-wing sensor design. This design
featured interdigitated comb fingers between the ends of the wings and a substrate enabling
a capacitive readout. The research investigated the cosine-like directionality of the sensor as
well as geometric design options to emphasize particular vibration modes. In 2014, Downey
and Karunasiri [22] investigated device-layer thickness and comb finger design effects on
the sensors’ acoustic sensitivity and overall wing displacement. In 2016, Wilmott et al. [23]
developed an AVS using two double-wing sensors canted with a 30-degree offset. This
design moved towards reducing the azimuthal ambiguity of an AVS. At a resonance
frequency of 1.69 kHz, a sensitivity of −92.0 dB re 1 V/μPa (25 V/Pa) was measured. The
AVS was able to determine the DOA to within a 3.4-degree accuracy over a ±60-degree arc.
In 2020, Espinoza et al. [24] presented an investigation of a similar sensor in an underwater
environment. Two sensors were presented, a double-wing and single-wing design. The
sensors were placed in a housing filled with silicone oil. Underwater sensitivity for both
sensors was approximately −165 dB re 1 V/μPa (6 mV/Pa) measured at resonance (125 Hz
single wing, 242 Hz double-wing). Both sensors demonstrated a cosine-like directivity
pattern.

Rabelo et al. [25], in 2020, demonstrated how separating a sensor’s output signal into
a superposition of rocking and bending modes, and determining the phase shift between
them, could be used to calculate the DOA over a 180-degree arc. In 2022, Alves et al. [26]
presented another underwater version of the sensor. The sensor was enclosed in a near
neutrally buoyant, air-filled housing. At resonance (1.6 kHz), the sensitivity was −149 dB
re 1 V/μPa (37 mV/Pa) with an SNR of about 38 dB. The sensor displayed a dipole
directionality pattern that was more cosine-like than previous underwater designs. Again
in 2022, Alves et al. [27] demonstrated double-wing sensors where each wing had a different
resonant frequency (e.g., left wing: 718 Hz, right wing: 658 Hz). Combining the outputs
of each wing was shown to broaden the frequency peak of the sensor. A sensitivity of
−97.7 dB re 1 V/μPa (13 V/Pa) was measured with an average SNR of 91 dB for a band
pass of 120 Hz. The sensor displayed a cosine-like directionality. Crooker et al. [28], in 2023,
presented algorithms for calculating unambiguous 360-degree DOA. These algorithms
account for minor differences in the individual acoustic sensors, used by the AVS, which
would otherwise introduce DOA errors.

A common problem with the AVSs discussed above is the limitation in azimuthal range.
Single sensors or a combination of them were not able to resolve 360 degrees of acoustic
DOA without ambiguity or a priori knowledge of some parameters. The AVS design
presented in this paper addresses these shortfalls. In this paper, we describe the design
and characterization of a double-wing MEMS sensor, similar to the ones demonstrated
in [23,27]. Using these MEMS sensors, we demonstrate a novel AVS design capable of
non-ambiguous DOA determination over 360 degrees with a significantly higher SNR than
similar sensors.

2. Design and Modeling

2.1. Design Requirements

Distant and quiet acoustic sources can be difficult to detect and track with conventional
acoustic detectors. High SNR, directionality, small size, light weight, and low power
consumption are sensor characteristics often required by many applications, particularly
those associated with national defense. AVSs meeting these requirements can be made
using two MEMS directional acoustic sensors operating at resonance [20–28] coupled with
one omnidirectional microphone.

While the sensor described in this paper is inspired by the Ormia ochracea, there are
significant differences between the fly and this sensor. The fly utilizes multiple vibration
modes of its hearing organ to determine acoustic DOA with a single pair of mechanically
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coupled membranes. The sensor presented here utilizes only one vibration mode and
calculates acoustic DOA using two MEMS sensors and an omnidirectional microphone.

2.2. Sensor Construction

The directional sensor presented in this paper is a MEMS device consisting of a pair of
identical wings connected by a bridge, as shown in Figure 1. The wings vibrate out of the
plane of the sensor substrate when exposed to acoustic waves. The bridge is anchored to
the substrate by torsional legs that are aligned perpendicular to the bridge. In this sensor
design, the torsional legs are located along the center of the bridge, making the sensor
symmetrical. Interdigitated comb fingers are located between the ends of the wings and the
substrate, allowing the displacement of the wings to be measured via a capacitance-sensing
circuit.

Figure 1. Image of MEMS sensor: (a) microscope image of MEMS sensor: (1) wing, (2) bridge,
(3) torsional legs, (4) substrate, (5) SEM image of comb fingers (for capacitive sensing), (6) diagram
showing the 5 μm gap between comb fingers; and (b) laser vibrometry image of MEMS sensor
vibrating in bending mode. Inset: normalized sensitivity response of sensor showing a resonance at
about 680 Hz.

When exposed to acoustic waves, the sensor is subject to a rocking mode (the wings
move opposite to each other) and a bending mode (wings move with each other), as
shown in Figure 1b. In this design, the back of the sensor is open to the environment,
enhancing the bending mode and diminishing the rocking mode. The bending mode
exhibits a cosine-like response to acoustic DOA. The sensor is designed to detect sounds
with component frequencies near the resonance (~700 Hz), allowing for increased SNR in a
narrow frequency band (FWHM ~25 Hz). This also reduces the effects of noise outside of
the frequency band. The resonance and FWHM can be tailored by design by changing the
size and shape of the sensor components. The impact of most of these design parameters
translates into the stiffness of the beam, effective mass, characteristic length, and fluid
density. Detailed parametric simulations are beyond the scope of this paper. Minor physical
differences (due to microfabrication tolerances) in each sensor lead to observable differences
in sensor responses. A detailed analysis of the fabrication imperfections is beyond the
scope of this paper; however, differences in the mass of the wings due to under-etch or
over-etch can cause changes in the resonant peak. Thinner or thicker comb fingers due to
under- or over-etch can cause differences in the mass of the wings (changes in the resonant
peak) and damping (changes in the quality factor). Microscope inspection reveals that
minor differences exist from sensor to sensor (e.g., missing comb fingers, inconsistent
gap etching between wing and substrate comb fingers, device-layer thickness). Laser
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vibrometry measurements of multiple sensors show an average resonant frequency of
671 Hz and average quality factor of 27.

The sensor is microfabricated by a commercial foundry (MEMSCAP) [38] on a 400 μm
thick silicon-on-insulator (SOI) wafer with a 25 μm silicon device layer deposited on top of
the wafer. The device layer includes gold contact pads which allow for the sensor to be
wire-bonded to a printed circuit board (PCB) which contains a capacitance readout circuit,
as shown in Figure 2.

Figure 2. (a) MEMS sensor capacitive readout circuit diagram; and (b) MEMS sensor mounted in
PCB: (1) MEMS sensor, (2) capacitive readout circuitry, (3) wired connection to supply power and to
read sensor output.

Figure 2a shows a block diagram of the electronic readout. The charge amplifier
circuit (dashed rectangle) includes an operational amplifier, which connects sensor and
feedback capacitors to a high-impedance virtual ground at its inverting input. The variable
capacitance CW represents the interdigitated comb finger capacitors of the MEMS directional
sound sensor. Assuming that CW is biased under a constant voltage VREF, when the
wings are at rest, an equilibrium position of the comb fingers’ overlap is achieved and the
capacitance between them is constant. Consequently, the accumulated charge on its plates,
QW, is constant as well. Under these conditions, no electric current (ideally) flows to, or
from, the op amp nor does it flow through the feedback network; the output voltage VCA
follows the inverting input voltage, which in this case is virtual ground. When an acoustic
pressure wave impinges on the sensor’s wings, their equilibrium position at rest is changed
along with the overlap of comb fingers, resulting in a change in the wing capacitance to
a new value, C’W. If the biasing voltage is kept constant, the accumulated charge in the
comb finger capacitors must readjust to a new value, Q’W. The charge difference, ΔQW, is
pushed to, or pulled from, the remainder of the circuit. Since the op amp input impedance
is much larger than that of the feedback capacitor, CF, all the charge variations from the
sense capacitor, CW, move through CF, developing an output voltage, VCA, given by

VCA = −ΔQW
CF

= −ΔCW
CF

VREF. (1)

Two Sallen–Key filter stages are added to limit the passband between 100 and 3500 Hz.
The sensor is intended to be used both in air and underwater. For underwater opera-

tion, the sensor is installed in a smaller PCB with a similar readout circuit. The sensor and
PCB are enclosed in an air-filled, watertight housing, shown in Figure 3. The housing is a
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3-D printed cylinder constructed of plastic (Rigur, VeroWhitePlus) and rubber (AGILUS30
FLX935) [39]. This material was found to be acoustically opaque (~3.5% transmissivity) for
the frequency range of the sensor. For underwater usage, the sensor is in a near neutrally
buoyant housing. In this configuration, the housing vibrates with the same velocity as the
particle velocity of the fluid that would result if the housing was removed [40]. When the
sensor housing is exposed to an acoustic wave, the MEMS sensor behaves like an inertial
sensor. The wings act as a proof mass while the substrate vibrates with the rest of the sensor
housing.

Figure 3. Planar sliced diagram of 3-D printed underwater housing with mounted PCB (penny
included for sense of scale): (1) MEMS sensor, (2) PCB, (3) watertight sensor housing, (4) watertight
wire penetration, and (5) bracket to mount PCB to housing.

2.3. Analytical Modeling

The sensor operation can be approximated as a driven, damped harmonic oscillator.
The complexities in the shape of the sensor and various sources of damping make this
design appropriate for finite element modeling (FEM). However, some simple assumptions
and approximations allow for analytical methods to be used for the sensor design.

In the bending mode, the wings bend up and down together, causing no torque to
be applied to the torsional arms. Analytical models of the sensor can be simplified to a
single wing in a clamped-free configuration. The stiffness of the micro-scale sensor bridge
matches that of larger-scale beams [41].

kbridge =
Ewt3

4L3 , (2)

where E is Young’s modulus, w is the width of the beam, t is the thickness of the beam, and
L is the length of the beam. The stiffness of the wing is much greater than the stiffness of the
bridge, therefore the wing does not bend significantly compared to the bridge. Therefore,
the sensor can be further simplified to a simple mass-loaded beam. In this model, the wing
is treated as a point mass (meff) located at the end of the bridge with an equivalent moment
of inertia in the wing. The natural resonant frequency can then be modeled by

ω0 =

√
kbridge

me f f
. (3)
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Resonating MEMS devices are subject to multiple damping effects. The significance of
these damping sources depends strongly on the design of the device [42]. The damping
caused by the fluid surrounding our sensor is modeled by accounting for two primary
effects: the damping that exists due to a beam vibrating alone in a fluid and damping caused
by the fluid flow between the sensor and the substrate. Sader [43] describes a method for
modeling a cantilever beam of an arbitrary but uniform cross-section that vibrates while
immersed in a viscous fluid. Our sensor does not have a uniform cross-section; however,
Sader’s method was adapted to model it. Sader’s method calculates a Reynolds number
using a characteristic length based on the width of the beam. Our model uses the width of
the wing when calculating this Reynold’s number, given by

Re =
ρωb2

4μ
, (4)

where ω is the vibrational frequency of the beam, ρ is the fluid density, μ is the fluid
dynamic viscosity, and b is the characteristic length (width of the wing for our purposes).
The Reynold’s number is used to calculate a hydrodynamic function (Γ), which is used to
determine the resonant frequency and quality factor. Multiple equations are needed to cal-
culate Γ, and are beyond the scope of this paper. Suffice to say, we used the hydrodynamic
function to calculate the resonant frequency and quality factor using

ω1

ω0
=

(
1 +

πρb2

4μ
Γr

)−1
2

, (5)

and

Q1 =

4μ

πρb2 + Γr

Γi
, (6)

where ω1 and Q1 are the resonant frequency and quality factor modeled by Sader’s method.
Γr and Γi are the real and imaginary parts of the hydrodynamic function detailed in [43].
When the sensor operates in air, Sader’s method produces estimated resonant frequencies
within 6% of the average measured values. However, when the sensor is placed in a more
dense, less viscous fluid, Sader’s model by itself is insufficient.

Sader’s model assumes that the beam vibrates alone in the fluid. Our sensor is
surrounded by a substrate. There is a narrow gap between the edges of the wing and
substrate, and an even more narrow gap between the interdigitated comb fingers of the
wing and substrate. Couette flow in these gaps was considered. The drag force from the
Couette flow can be related to the mechanical resistance of a simple harmonic oscillator
system [44,45] as

Rm = μ

(
Aw

gw
+

AcN
gc

)
, (7)

where Rm is the mechanical resistance. Aw, Ac, gw, gc, and N are the surface area on the
sides of the wing, surface area on the side of a single comb finger, the gap distance between
the wing and substrate, gap distance between comb fingers, and number of comb fingers
on the wing, respectively. The Couette flow contribution to the quality factor of the sensor
is then

Q2 =
me f f ω0

Rm
. (8)

These two separate damping sources are accounted for in our analytical model by
calculating a total quality factor, Qt, via

Qt =

(
1

Q1
+

1
Q2

)−1
. (9)
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A best fit curve for Q as a function of frequency is calculated based on Q → 0 as ω → 0,
Q → ∞ as ω → ω0, and Q(ω1) = Q1. Qt is evaluated against this best fit curve to determine
the resonant frequency, ωt.

To date, the sensor described in this paper (model 7-1) has been operated only in
air (the sensor has been used in underwater applications while encased in an air-filled
housing). However, a similar sensor (model 7-3) has been operated in air and in a low-
viscosity silicone oil. Table 1 shows a comparison of the analytically modeled resonance
frequency and quality factor against average values measured in laboratory conditions.

Table 1. Modeled sensor behavior compared against sensor behavior measured in laboratory. The
error of the 7-1 analytical model is notably larger than the 7-3 error. A contributing factor is the
characteristic length, b, used to calculate the Reynolds number in (3). The analytical model assumes
that wing width is sufficient to use as the characteristic length, b. However, the ratio of the wing
width to bridge width for the 7-1 design is an order of magnitude greater than it is for the 7-3 design.

Model
Key Design
Parameters

[μm]

Resonant Freq
Model

[Hz]
Q1 Q2

Quality
Factor
Model

Resonant Freq
Measured

[Hz]

Quality
Factor

Measured

7-1 Air

Wing Width = 3000
Wing Length = 1450
Bridge Width = 80

Bridge Length = 1960

607 26 162 22 664 27

7-3 Air
Wing Width = 2400
Wing Length = 1595
Bridge Width = 500

Bridge Length = 1400

2345 53 1017 50 2340 59
7-3 Oil 435 22 48 15 440 4

2.4. Finite Element Modeling

FEM analysis of the sensor designs was conducted using COMSOL Multiphysics
software version 6.1. The FEM included the wings, substrate, and a sphere of surrounding
fluid. To reduce computing requirements, the model was bisected along the center of the
length of the sensor bridge with symmetry constraints applied along this bisection.

The material properties of the substrate and sensor components were modeled as
anisotropic, single-crystal silicon based on the properties of silicon used in the sensor
fabrication [46]. The elasticity matrix of the material was adjusted to match the orientation
of the silicon in our sensor. The fluid surrounding the sensor can be modeled by a variety
of substances. However, as this sensor is intended to operate in air, the fluid sphere was
modeled as air at standard temperature and pressure from the COMSOL material library.
The fluid sphere was surrounded by a shell that was a perfectly matched layer of air to
prevent acoustic reflections.

The FEM included pressure acoustics and solid mechanics. Acoustic wave radiation
conditions were applied to the outside edge of the sphere. Boundary loads were applied
between the wings and substrate to simulate the resistance from the flow through the gaps
between the sensor and substrate. Separate boundary loads were applied to the top surface
of the wings to account for form friction. The acoustic wave was modeled as a background
pressure field plane wave. The acoustic DOA was set using an adjustable parameter to
control the wave direction. Figure 4a depicts the meshing scheme used for the sensor mode.
Figure 4b shows the results of a sound-pressure-level study while depicting the sensor in
the bending resonant mode. In both Figures, the fluid within the sphere is transparent for
the sake of image clarity. Figure 4c depicts a detailed image of the sensor in the bending
mode and highlights some of the key boundary conditions utilized in the model.
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Figure 4. FEM study of MEMS acoustic sensor: (a) mesh scheme of sensor and fluid: (1) The sensor
meshing utilizes a combination of free triangle mesh with swept mesh. (2) The boundary of the
fluid sphere is a perfectly match layer that uses swept mesh. (3) The fluid inside the shell uses a free
tetrahedral mesh; (b) results of a sound pressure level study showing the sensor in the bending mode;
and (c) Detailed image of the sensor in the bending mode. Boundary conditions were applied to the
model: (1) symmetry conditions along the bisected edge of the sensor and substrate, (2) boundary
load conditions applied to top surfaces of wings, (3) separate boundary conditions applied to sides
of wings and comb fingers along the gap between the sensor and substrate, and (4) fixed constraint
attaching the torsional leg to the substrate.

Two studies were conducted as part of the FEM analysis: a frequency sweep and
a directionality analysis, where the displacement of the wing and the associated phase
shift from the pressure wave were modeled. The frequency sweep was performed for a
constant angle of incidence of 45 degrees, as seen in Figure 5a. In the directionality analysis,
the direction of propagation of the incident wave was rotated 360 degrees in 5-degree
increments around the bisection while the frequency was kept constant. The FEM shows a
cosine-like response to the DOA, as seen in Figure 5b.

Figure 5. COMSOL FEM of sensor behavior: (a) normalized mechanical response and sensor phase
response to frequency sweep. The large peak at 700 Hz corresponds to the bending mode. The phase
response matches that of a simple harmonic oscillator; and (b) normalized mechanical response to
acoustic propagation angle.
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Electro-static effects were not modeled in the FEM analysis. Data collection on earlier
generations of similar sensors showed that electrostatic forces do not appreciably affect
the performance of the sensors. For this sensor, measurements were taken with the sensor
electrically isolated and electrically connected to a powered PCB. No significant changes to
the resonant frequency or quality factor were noted.

The FEM resonant frequency was 699 Hz with a quality factor of 33. Laser vibrometry
measurements of multiple sensors showed an average bending mode frequency of 671 Hz
and an average quality factor of 27. The sensor resonant frequencies ranged from 662 Hz
to 679 Hz. These results indicate that there are physical effects which impact the sensor
response that were not fully accounted for in the FEM, such as dimensional variation due
to fabrication tolerances and actual material properties. However, the FEM, as it stands, is
a useful tool for sensor design.

2.5. DOA Estimation

The MEMS acoustic sensors described in this paper were used to create an AVS array by
placing two collocated MEMS sensors perpendicular to each other with an omnidirectional
microphone (Knowles MEMS microphones model: SPM0687LR5H [47]) or hydrophone
(Brüel & Kjær (B&K), Nærum, Denmark, Type 8103 [48]) placed between them. The DOA
was measured from the normal of the reference MEMS sensor, which was designated here
as the cosine sensor. The perpendicular MEMS sensor was designated as the sine sensor. A
diagram of the AVS array design is shown in Figure 6a. A three-dimensional representation
of how the individual sensors are arranged to form the AVS is shown in Figure 6b. The
algorithm employed to calculate the DOA is explained in detail in [28] and it is given by

DOA = atan
(

∑|MsVs|sgn(num)

∑|VC|sgn(den)

)
, (10)

where
num = ∑ Re{MSVSV∗

O} (11)

and
den = ∑ Re{VCV∗

O} (12)

where VS, VC, and VO are the sine, cosine, and omnidirectional sensor voltage Fourier
transforms. MS is a correction function that accounts for the differences in frequency
response of the two MEMS directional sensors. The term sgn(.) is the sign function.
Since the omnidirectional microphone is not ideal, only the phase contribution was used
(sgn(num) and sgn(den) terms) to determine the quadrant.

Many underwater acoustic localization applications require the knowledge of az-
imuth and elevation, which was not possible with the single AVS demonstrated in this
manuscript. The use of two devices orthogonally placed would solve this problem. A
more elegant option being studied by our group is to use the rocking vibrational mode of
the MEMS sensors, which has a sine dependence on the incoming sound, in combination
with the bending motion. This would provide 3D unambiguous coverage with the same
arrangement demonstrated in this paper.
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Figure 6. Diagram of AVS: (a) top-down view. The AVS can be used to determine the direction
of incoming sound (DOA) and consists of a cosine sensor (blue), orthogonal sine sensor (red),
and omnidirectional sensor (green); and (b) 3-D view: (1) cosine sensor, (2) sine sensor, and (3)
omnidirectional sensor.

3. Methods

3.1. Mechanical Sensitivity Measurements

All in-air laboratory measurements were taken inside an anechoic chamber. The cham-
ber is made with 12-inch-thick concrete walls and is mechanically and acoustically isolated
from the rest of the building housing the chamber. It is surrounded on the walls, ceiling,
and floor with fiberglass wedges which absorb 99% of incident sound for frequencies
greater than 100 Hz [27].

Mechanical sensitivity measurements were taken using a laser vibrometer setup con-
sisting of a Polytech data management system (DMS), OFV-534 laser unit, and OFV-5000
controller, as shown in Figure 7. An electrically isolated MEMS sensor was placed in a
holder in the path of the laser beam. The deflection of the sensor’s wings was measured at
the edge of the wing just before the beginning of the comb fingers. A frequency sweep sig-
nal was generated from the DMS through a Techron 5507 amplifier to a JBL 2450H speaker
with a 2380A cone pointed toward the sensor. A Piezotronics Model 378A21 calibrated
reference microphone was positioned near the MEMS sensor. The microphone signal was
sent through a Piezotronics Model 482C sensor signal conditioner to the DMS. The DMS
software (Polytec Vibrometer version 4.7) averaged 5 consecutive frequency sweeps to
calculate a mechanical sensitivity curve, as discussed in Section 4.

3.2. Electrical Experimental Setup in Air

Electrical sensitivity and directionality measurements were taken in an anechoic cham-
ber with the sensor electrically connected to a PCB. The MEMS sensors (either individually
or in an AVS configuration) were mounted on a B&K Model 5960 turntable, operated by a
B&K Type 5997 turntable controller. A rubber dampening device was installed between
the sensor and turntable to reduce mechanical coupling. An acoustic signal generated by a
Zurich Instruments Multifunction Lock-in Amplifier (MFLI) was sent to a Techron 5507
amplifier to a JBL 2450H speaker with a 2380A cone, which was pointed toward the AVS.
Parallel signals from each sensor were sent to individual MFLIs and to a microprocessor
(which calculated the DOA). An Agilent 33220A waveform generator was used in conjunc-
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tion with the MFLI to generate broadband white noise. The experimental setup is shown in
Figure 8.

Figure 7. Experimental setup for mechanical sensitivity measurement.

Figure 8. Schematic diagram of the experimental setup for AVS calibration and DOA estimation.

Electrical sensitivity measurements were made with the sensor facing the speaker
(DOA = 0 degrees), while the speaker produced a frequency sweep generated by the MFLI.
The output of the sensor was sent to the MFLI. A Piezotronics Model 378A21 calibrated
reference microphone was positioned near the MEMS sensor during the frequency sweeps.
The microphone signal was sent through a Piezotronics Model 482C sensor signal condi-
tioner (with a gain applied such that the microphone signal corresponded to the pressure)
to a separate MFLI. These signals were divided to generate the electrical acoustic sensitivity
of the sensor, as discussed in Section 4.

Sensor directionality was measured with single tones (near sensor resonance) gen-
erated by the MFLI. The turntable was rotated at a constant angular velocity through a
360-degree circle. The sensor output was sent to the MFLI, which continuously recorded
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sensor output as a function of time during the rotation. The time corresponded to the DOA
angle and a radial plot of sensor directionality was generated, as in Figure 11b.

Prior to an AVS being used to calculate DOA, it must be calibrated. To calibrate the AVS,
the turntable was rotated such that the DOA was set to 45 degrees. The signal generator
produced a frequency sweep. The outputs of each MEMS sensor and omnidirectional
microphone were sent through a microprocessor control box to a computer. A computer
program received the output from the three sensors and computed the correction function,
MS. This correction function was ingested in the arctangent estimator algorithm, which
was run by a Teensy 4.0 microprocessor in the control box.

To characterize the AVS performance, the AVS was exposed to various acoustic signals
(e.g., single tones, white noise, gunshot recordings, drone recordings). The turntable was
adjusted to a known DOA value, and the microprocessor was triggered. The microprocessor
calculated the DOA. The actual and calculated DOA were recorded. The turntable was
then rotated to a new DOA value and the process was repeated.

3.3. Field Experimental Setup

AVSs were operated in the field to measure DOA accuracy when exposed to actual
gunshots. A node consisting of the AVS (encased in a protective housing and dust cover)
and microprocessor control box were placed on an Edelkrone Pan Pro motorized single-axis
rotation device mounted on a tripod, as shown schematically in Figure 9. The rotation
device allowed for precise DOA angles to be set and allowed for continuous rotation. The
AVS was adjusted to point towards the location of the shooter (approximately 200 m away),
the shooter would fire their weapon, the AVS would calculate the DOA to the gunshot.
Both the actual and calculated DOAs were recorded. The AVS was rotated to a new DOA
and the process was repeated. Various rifles and handguns were used for separate DOA
measurements.

Figure 9. Schematic of field AVS DOA measurement setup: (1) AVS, (2) sensor signals connect to
control box containing a microprocessor, (3) rotating mount, (4) tripod, and (5) rifle (sound source).

3.4. Experimental Setup under Water

Individual underwater MEMS sensors were measured in the SWT, which is an alu-
minum tube with an outer diameter of 30.5 cm (12 in), an inner diameter of 25.4 cm (10 in)
and is 61.0 cm (24 in) tall. An Electro Voice UW30 underwater loudspeaker was placed
at the bottom of the SWT on vibration-damping material. The SWT was filled with water
such that the water surface was approximately 33 cm (13 in) above the top of the speaker.
The sensor, contained in a watertight housing, was held on a suspended rod with a rotating
mechanism, which allowed for the DOA of the sensor to be adjusted.
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An acoustic signal was generated by an MFLI and sent to a Hewlett Packard 467A
amplifier, which powered the speaker. Acoustic measurements were taken by a B&K Type
8103 hydrophone. The hydrophone output was sent to a Stanford Research Systems Model
SR560 low-noise preamp and then to an MFLI. The MEMS sensor output was sent directly
to an MFLI.

Electric acoustic sensitivity measurements were made with the sensor facing the
speaker (DOA = 0 degrees). A frequency sweep was generated by the MFLI. Outputs from
the hydrophone and MEMS sensor were sent to MFLIs. The output of the hydrophone was
used to calculate the acoustic pressure, which was then used with the MEMS sensor output
to determine sensitivity.

The directionality measurements for the underwater sensor were taken in the similar
manner to the in-air directionality data. Directional measurements were made by con-
necting the Edelkrone Pan Pro rotation device to the rotator at the end of the suspension
rod. The MFLI generated a single tone while the sensor was rotated at a constant angular
velocity through 360 degrees.

Underwater AVS measurements were taken at the TRANSDEC anechoic pool. The AVS
was suspended on a rotating pole 2 m away from a Lubell Labs VC2C underwater speaker.
Both the sensor and speaker were 6 m from the surface and bottom of the pool. As with in-
air AVS data collection, the MEMS sensor outputs were sent to the microprocessor control
box. Instead of a microphone, the underwater AVS used a B&K Type 8103 hydrophone
as the omnidirectional sensor. The hydrophone output was sent to a Stanford Research
Systems Model SR560 low-noise preamp and then to the microprocessor. The rotating pole
was adjusted to set the AVS to a known DOA while a constant tone was played by the
underwater speaker. The microprocessor was triggered, and the DOA was calculated. The
actual and calculated DOAs were recorded. Then, the pole was rotated to set a new DOA
and the process was repeated.

4. Experimental Results

4.1. Operation in Air

Laser vibrometry measurements were taken for all MEMS sensors. Wing displace-
ment was measured and compared against the acoustic pressure of a frequency sweep to
determine the mechanical sensitivity (μm/Pa). These measurements were conducted in
an anechoic chamber and the response of a typical pair of sensors is shown in Figure 10.
Note the mismatch of the resonant peaks. This mismatch is compensated by the correction
function, MS, in (10) and (11).

Figure 10. Laser vibrometry measurement of mechanical sensitivity of typical MEMS sensors used in
AVS.

213



Sensors 2023, 23, 8217

Electrical sensitivity (V/Pa), as well as directionality, were measured in an anechoic
chamber. Figure 11a shows the response of a sensor in air for a frequency sweep conducted
with the sensor facing the sound source (DOA ≈ 0 degrees). Figure 11b shows the cosine-
like response of the sensor as it is rotated near an acoustic source producing a single tone
near resonance. Although not pictured, additional directional response measurements were
taken for a variety of single-tone frequencies and broadband stimuli with similar results.

Figure 11. Sensor response in air: (a) electrical sensitivity measured for a frequency sweep. Electrical
sensitivity corresponds to mechanical sensitivity; and (b) normalized sensor response to a single tone
(near resonance) while rotating sensor to sweep DOA.

Noise measurements were performed in an anechoic chamber with the sensor readout
electronically powered and with no acoustic stimuli in two different configurations. First,
the sensor wings were free. Then, the sensor wings were cemented to the substrate to
prevent their natural vibration. Figure 12 shows the noise spectral density (V/

√
Hz) over

a 100 Hz to 10 kHz band. Since both curves are coincident, it is possible to infer that
the electronic noise is predominant and that the natural vibrations of the sensor are not
captured by the circuit. The SNR at resonance for an acoustic stimulus of 1 Pa over the
3 kHz band of the circuit is approximately 88 dB. Since the sensor is meant to operate at
resonance, the Sallen–Key filter stages (Figure 2a) can be designed for a much narrower
passband. With a 120 Hz bandwidth, the SNR at resonance becomes greater than 102 dB.

Prior to use in the field, the AVSs were calibrated in an anechoic chamber. This process
is described in Section 3 and in [28]. The frequency response of the sine and cosine sensors
are measured (VC and VS) with the DOA set to 45 degrees. Ideally, the frequency responses
of both sensors at 45 degrees should be the same, however, since they are not, MS = VC/VS
is applied to the sine signal. The signal processing electronics calculate the DOA, using
(10), as the AVS is rotated.

Measurements were taken in an anechoic chamber and in the field for various acoustic
sources, particularly gunfire and small multi-rotor aircraft (drones). Figure 13a shows the
results for the DOA characterization measurements of an AVS. The blue squares represent
data taken in an anechoic chamber with the AVS exposed to an audio recording of rifle
fire. The red circles represent data taken in the field with the AVS exposed to actual fire
from the same type of rifle. Figure 13b shows the detection error, which was calculated as
the difference between the measured and actual DOA. Figure 14a,b shows the results for
the similar data collection of an AVS operating in an anechoic chamber exposed to audio
recordings of a typical four-rotor drone in flight.
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Figure 12. Noise spectral density of typical MEMs sensor. It is possible to notice that electronic noise
is predominant, and the natural vibrations of the sensor are not captured by the circuit.

Figure 13. AVS characterization in air with gunshots. AVS was exposed to gunshot audio recording
in an anechoic chamber and actual gun fire, from same time of weapon, in the field: (a) comparison of
the actual DOA with the estimated DOA; and (b) detailed graph of DOA errors. Outlier data points
are not shown on the DOA error graph.

The anechoic chamber gunshot data and drone data show a systematic error offset
to the positive side. This indicates a misalignment of the turntable used to rotate the
AVS when setting the DOA. Field data typically have larger errors due to reverberations,
acoustic reflections, and background noise. In field experiments, the AVS occasionally
collects data on gunshot sounds that reflect off nearby structures, which is the case with
the outlier points in Figure 13a.

The DOA errors for both drones and gunshots (for data taken in an anechoic chamber)
fall within a 0-to-5-degree range (which corresponds to a ±2.5-degree range when mis-
alignment is corrected for). It should be noted that the drone sound used to characterize
the AVS (as shown in Figure 14) aligned well the MEMS sensors. Different drone sounds
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produce DOA errors of up to ±5 degrees. The tonal nature of the acoustic signatures of
drones tends to lead to larger DOA errors than gunshots.

Figure 14. AVS characterization in air with drone sounds. The AVS was exposed to audio recordings
of a four-rotor drone: (a) comparison of actual DOA with estimated DOA; and (b) detailed graph of
DOA errors.

Figure 15a,b shows the typical acoustic signatures of pistol gunfire and a small four-
rotor drone, respectively, measured with a broadband microphone (Piezotronics Model
378A21). The acoustic signatures are normalized to their maximum values and plotted
against the normalized acoustic sensitivity of a typical MEMS sensor. Gunshot sounds,
while bursts, are typically broadband in the frequency range interrogated by this sensor.
Drone sounds exhibit high peaks at the harmonics of the blade passing frequency (BPF).
These tones differ from drone to drone. Note that in Figure 15b, the MEMS sensor peak
sensitivity is misaligned with the drone BPF harmonic at around 700 Hz. If this signature
is known, a MEMS sensor can be designed to align with a specific harmonic. This will
maximize drone detection while filtering out other acoustic sources. More details on these
types of acoustic sources can be found in [49–53].

Figure 15. Acoustic spectrum of common sound sources: (a) typical gunshot acoustic spectrum
with MEMS sensor sensitivity overlay; and (b) typical drone acoustic spectrum with MEMS sensor
sensitivity overlay.
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4.2. Operations Underwater

Data collection for underwater sensor operations was conducted, for the most part, in
a vertical, water-filled, standing wave tube (SWT). A diagram of the experimental setup is
shown in Figure 16a. A detailed description of the experiment can be found in Section 3.
The acoustic properties of the SWT were characterized to verify that a flat acoustic wave
front is produced in the section of the tube where the sensor is operated. Figure 16b
shows the acoustic pressure value at a depth of 15.2 cm (6 in) below the surface for a
constant frequency and speaker voltage. This depth corresponds to the depth of the sensor
during data collection. The data show that the wave front is essentially flat and mimics a
plane wave. The average pressure is 9.9 Pa with a standard deviation of 0.1 Pa. The most
significant wavefront distortion occurs near the tube wall, with a maximum deviation of
3% from the average. During data collection, the sensor was placed in the center of the
tube where the wavefront is the flattest.

Figure 16. (a) Standing wave tube experimental setup: (1) sensor in housing, (2) rotating mechanism,
(3) underwater speaker, (4) sound damping material, and (5) reference hydrophone; and (b) acoustic
pressure wave front measured at 640 Hz, 6 in depth. The blue ring represents the 10-inch inner
diameter of the tube.

The sensitivity and DOA response of the underwater sensor were measured in a similar
manner to the in-air measurements. Figure 17 shows typical MEMS sensor characteristics
when measured in the SWT. While there is no significant difference in the frequency
response as compared to in-air frequency sweeps, there is a noticeable difference in lobe
size between the front and back of the sensor. This is likely caused by the influence of the
sensor housing. This lobe mismatch was observed for all underwater DOA measurements
in the SWT.

Underwater AVS measurements were taken at the Transducer Evaluation Center
(TRANSDEC) which is a six-million-gallon Navy facility designed to test underwater
acoustic devices. The MEMS sensors were individually evaluated and the AVSs were
calibrated at TRANSEC prior to conducting the DOA measurements. Figure 18a shows
the directionality of each sensor in the AVS. A reduced back lobe was observed similar to
the data obtained in the SWT. Figure 18b shows a diagram of the underwater AVS setup.
Figure 19a,b shows the results of a DOA characterization for an AVS stimulated by a 670 Hz
single tone. The average of the DOA error magnitude is approximately 6.7 degrees.
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Figure 17. Sensor response in standing wave tube: (a) electrical sensitivity measured during a
frequency sweep; and (b) normalized sensor response to a single tone (near resonance) while rotating
sensor to sweep DOA.

Figure 18. (a) Measured directionality response of AVS to 670 Hz tone at TRANSEC. Sine and cosine
sensor responses are normalized to the maximum cosine response. The omni response is significantly
less than the MEMS sensor but is enlarged to show the shape of its directionality; and (b) diagram
of underwater AVS setup: (1) sine sensor in underwater housing, (2) cosine sensor in underwater
housing, (3) omnidirectional hydrophone, (4) sensor alignment tube, (5) rotating mounting frame,
(6) elastic bands connecting sensor housing to rotating frame, and (7) output signals to microprocessor.
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Figure 19. AVS underwater characterization. AVS was exposed to a 670 Hz tone in an anechoic pool:
(a) comparison of actual DOA with estimated DOA; and (b) detailed graph of DOA errors.

It is noticeable that, even though the estimator used underwater was the same as
that used for in-air operation, the error is higher. Possible sources of this error included
surface reflections and effects from the AVS mounting apparatus. Surface reflections were
observed for the frequency ranges investigated with this AVS. As noted above, the back
lobes of the MEMS sensors are smaller than the front lobes when operated underwater. This
phenomenon was seen both in the SWT and the anechoic pool using different mounting
schemes. Therefore, the underwater housing is likely affecting the sensor response.

A sinusoid-like shape to the DOA error is observable for the underwater sensor. There
are two primary causes of a sinusoid-like DOA error: amplitude and phase mismatches
between the two MEMS sensors. The minimum error amplitudes are seen at cardinal
angles (i.e., 0, ±90, and 180 degrees), where either vs. or VC is near zero and the algorithm
is less sensitive to fluctuations. The maximum error magnitudes are near the center
of each quadrant (i.e., ±45 and ±135 degrees), where the amplitude mismatch is most
significant. Phase mismatches (for small phase angles) lead to a different sinusoid-like
DOA error centered at approximately half of the mismatch in the phase. The correction
factor, MS, compensates for the differences between vs. and VC. However, vs. and VC
are determined by applying a Fourier transform to the sine and cosine sensor signals,
respectively. Consequently, there are limitations on the frequency bin size of vs. and
VC. Broadband signals (e.g., white noise, gunshots) are naturally integrated across these
frequency bins and the error is minimized. Single-tone sound sources do not benefit from
this phenomenon and consequently show larger errors.

5. Discussion/Conclusions

This paper describes the design and experimental characterization of directional
acoustic MEMS sensors and an AVS comprised of two collocated and orthogonally aligned
sensors in combination with a commercial omnidirectional microphone (or hydrophone).
The AVS can determine in-plane acoustic DOA over a non-ambiguous 360 degrees. This
AVS is meant to operate near resonance and to be used in the air and underwater. The
configuration of the MEMS sensors, AVS design, and algorithms used make this a novel
approach to using Ormia-inspired MEMS acoustic sensors to determine acoustic DOA.

The small size, light weight, and low power requirements of the MEMS acoustic sensor
and associated AVS show potential for their use as a man-portable sensor for detecting and
locating acoustic contacts of interest. The MEMS acoustic sensor demonstrates very high
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SNR near resonance. This makes the sensor ideal for detecting quiet and distant acoustic
targets of interest. The resonant frequency of the MEMS sensor is based on the physical
characteristics of the sensor (e.g., bridge and wing size) allowing for bespoke sensors to be
designed for acoustic targets that emit specific acoustic tones.

5.1. Sensor Performance

The maximum SNR for this MEMS sensor was determined to be 88 dB with a corre-
sponding maximum sensitivity of −84.6 dB re 1 V/μPa (59 V/Pa). The sensor demonstrates
a cosine-like acoustic directionality for the bending eigenmode. This sensitivity is signifi-
cantly larger than comparable MEMS acoustic sensors, as seen in Table 2. Note that the SNR
reported in [27] is over the frequency band of resonance of the sensor (120 Hz bandwidth).
The SNR reported for this sensor was calculated over the frequency range of its associated
circuit (0 to 3 kHz). When calculating noise only about this sensor’s resonant peak (120 Hz
bandwidth), it would have an SNR of approximately 102 dB.

Table 2. Comparison of MEMS sensor performance.

This
Sensor(7-1)

Double-Wing
MEMS [27]

Double-Wing
Design [16]

16 Cantilever
Beam Design

[54]

Circular
Membrane
Design [12]

8 Cantilever
Beam Design

[55]

Sensitivity 59 V/Pa 13 V/Pa 110.5 mV/Pa 70.8 mV/Pa 4.36 mV/Pa 1.67 mV/Pa
SNR 88 dB [102 dB] 91 dB 71.3 dB 51 dB 66.77 dB Not Discussed

5.2. AVS Performance

The accuracy of the AVS was measured both in the lab and in the field for use in
both the air and underwater. While calculating the DOA of gunshots in the field, the
average best case AVS accuracy was approximately 3.5 degrees. AVS accuracy, measured
in the lab, was determined to be less than an average of 2 degrees over a 360-degree arc.
This performance is an improvement on previous laboratory measurements reported by
this group of 3.4-degree accuracy over a ±60-degree arc [23]. The performance details of
comparable AVS designs are presented in Table 3. Note that the performance data for the
AVS presented in this paper were collected in the field with actual gunfire. The tabulated
data for all other AVS designs were taken in an anechoic chamber.

Table 3. Comparison of AVS performance.

This Sensor
(7-1)

Three-Sensor
Array [19]

Double
Diaphragm
Design [15]

2 Sensor Array
[13]

Canted
Double-Wing

AVS [23]

DOA Arc 360◦ 360◦ 1 180◦ 90◦ ±60◦
Average DOA Accuracy 3.5◦ 2◦ 2.6◦ Not Specified 3.4◦

1 DOA determined with a priori knowledge.

These results indicate the great potential of this type of MEMS sensor for DOA deter-
mination in multiple domains. The specific characteristics and figures of performance can
be modified by design, according to the application demands. Future work includes the
development of multi-resonance MEMS sensors for use in detecting very quiet broadband
acoustic sources.
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Abstract: This paper reports on the design, modeling, and characterization of a multi-resonant,
directional, MEMS acoustic sensor. The design builds on previous resonant MEMS sensor designs
to broaden the sensor’s usable bandwidth while maintaining a high signal-to-noise ratio (SNR).
These improvements make the sensor more attractive for detecting and tracking sound sources with
acoustic signatures that are broader than discrete tones. In-air sensor characterization was conducted
in an anechoic chamber. The sensor was characterized underwater in a semi-anechoic pool and in
a standing wave tube. The sensor demonstrated a cosine-like directionality, a maximum acoustic
sensitivity of 47.6 V/Pa, and a maximum SNR of 88.6 dB, for 1 Pa sound pressure, over the bandwidth
of the sensor circuitry (100 Hz–3 kHz). The presented design represents a significant improvement in
sensor performance compared to similar resonant MEMS sensor designs. Increasing the sensitivity of
a single-resonator design is typically associated with a decrease in bandwidth. This multi-resonant
design overcomes that limitation.

Keywords: MEMS acoustic sensor; multi-resonant acoustic sensor; directional acoustic sensor; under-
water acoustic sensor

1. Introduction

The design, modeling, and analysis of a multi-resonant, directional, micro-electromechanical
system (MEMS) acoustic sensor is presented. Decades of research and development have
been dedicated to better understanding microscale, directional acoustic devices. These small
device designs are useful for creating small acoustic vector sensors (AVS), which are capable
of determining the direction of arrival (DOA) of incoming sound [1,2]. MEMS devices are
popular for use in acoustics because they allow detectors to be small, lightweight, and
have low power consumption requirements. They are ideal for creating manually portable
AVS systems. The motivation of this research is to improve upon existing MEMS resonant
acoustic sensors with a multi-resonant design that increases the frequency bandwidth of the
sensor while maintaining a high signal-to-noise ratio (SNR) and preserving directionality
characteristics.

1.1. Subwavelength-Sized Directional Sensors

Maintaining the sensor’s cosine-like directionality is a key factor in this research.
Directional sensors have an acoustic sensitivity that varies with the sound’s DOA. Fre-
quently, although not necessarily, microscale acoustic sensors have a dipole (or cosine-like)
directionality, where the maximum sensitivity is exhibited when the acoustic wave travels
normally in relation to the face of the sensor. The sensitivity decreases, like a cosine, to zero
when the wave direction is rotated 90 degrees so that it propagates parallel to the sensor
face. This effect is due to the gradient that is formed by the incident sound pressure on the
front and back of the sensor. The presented sensor has just such a cosine-like directionality.
Understanding the directionality of an acoustic sensor is necessary to determine the acous-
tic DOA. Some other microscale sensor designs display different directionality patterns
and are discussed in this section.
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In 2018, Zhou and Miles [3] demonstrated an acoustic flow detector using nanofibers.
The nanofibers were driven by viscous forces, created by the particle motion of the surround-
ing medium of the sensor when subjected to an acoustic wave. This design demonstrated a
dipole directionality and a flat sensitivity curve of zero dB over a wide frequency range
(100 Hz to 10 kHz).

Research presented by Lee et al. [4] in 2020 demonstrated how a sensor consisting of
coupled Helmholtz resonators could be used for DOA determination. Two designs were
presented, a dual resonator and a triple resonator, each with their own directionalities.
By comparing the pressure response of the resonator chambers, the DOA of an acoustic
source could be determined. The triple resonator design demonstrated a 360-degree
DOA coverage.

In 2022, Chen et al. [5] presented an acoustic detector consisting of a four-sided
Helmholtz resonator placed in the center of an array of phononic crystal cylinders. The
sensor design demonstrated a cross-shaped directionality, with the maximum sensitivities
being 90 degrees apart from each other. The design showed a 280:1 gain in acoustic pressure
at resonance.

Also in 2022, Chen et al. [6] presented a gradient acoustic metamaterial coupled with
a space-coiling structure acoustic device consisting of an array of metamaterial plates that
incrementally increased in size. The design exploited wave compression effects to amplify
the sound signal. The sensor has a unique directionality, with one large lobe at the front of
the array and a small back lobe. Two of these sensors were aligned in a canted configuration
to determine the acoustic DOA. Despite being small compared to acoustic wavelengths,
many of these directional acoustic sensors are significantly larger than MEMS sensors.

1.2. Resonant MEMS Sensors

This research is interested in acoustic sensors that are capable of detecting quiet or
distant acoustic sources. Operating the sensor at resonance helps achieve this goal. Typical
microphones are designed to operate at frequencies that are far from their resonances so
that they maintain a constant sensitivity over a large frequency range [7]. However, to
maximize the acoustic sensitivity, achieve a high SNR, or mechanically filter unwanted
acoustic noise, it is advantageous to operate acoustic detectors at or near resonance. One
common MEMS acoustic sensor design consists of a vibrating cantilever beam or paddle
connected to a substrate. Research has been steadily conducted on this kind of MEMS
acoustic sensor.

In 2019, Rahaman and Kim [8] presented a disc-shaped double-wing MEMS acoustic
sensor with a dipole directionality. The sensor utilized a piezoelectric sensing system.
An AVS was constructed using two of these sensors. This AVS demonstrated an ability
to calculate the acoustic DOA over a 90-degree arc. In 2020, Rahaman and Kim [9,10]
presented a different double-wing sensor with rectangular wings. The sensor demonstrated
a cosine-like directionality. The reported sensitivity was 3.45 mV/Pa (−49.2 dB re 1 V/Pa)
at 1 kHz, with an SNR of approximately 68.5 dB. An array of three of these sensors was
used to localize a sound source.

In 2020, Espinoza et al. [11] demonstrated two MEMS acoustic sensors: a double-wing
design and a cantilever paddle design. These sensors were intended for use underwater by
placing them in a silicone oil-filled housing. The housing was then submerged in water.
The paddle and double-wing sensors demonstrated a peak sensitivity of approximately
5.5 mV/Pa and 6 mV/Pa (−45.2 dB and −44.4 dB re 1 V/Pa), respectively, at resonance.
When operating in air, both sensors demonstrated a cosine-like directionality pattern;
however, in water, the directionality pattern was distorted with unequal lobe sizes.

In 2020, Rabelo et al. [12] presented a double-wing design with a closed cavity behind
the sensor. This configuration allowed for comparable rocking and bending modes. The
acoustic DOA was demonstrated to be proportional to the phase shift between these
two modes. This allowed for DOA determination, using a single sensor, over a 180-degree
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arc with an accuracy of 3 degrees. The sensitivity of the sensor was determined to be on the
order of 1 V/Pa (0 dB re 1 V/Pa).

In 2021, Li et al. [13] presented methods to optimize the dimensions of a piezoelectric
MEMS cantilever beam acoustic sensor. The peak sensitivity of the sensor at resonance
(30 kHz) was 148 V/m/s.

In 2022, Li et al. [14] followed up their work of improving the piezoelectric MEMS
acoustic sensor’s bandwidth and sensitivity performance. They created an array of identical
cantilever beams and optimized the layer thickness of the devices. A single cantilever sensor
demonstrated a peak sensitivity of approximately 1 V/m/s with a narrow resonance peak
at 48.7 kHz. An array of 210 cantilevers with identical designs improved the sensitivity to
2 V/m/s. The bandwidth also increased in frequency range. The sensitivity was essentially
constant from 44.9 to 48.9 kHz. This work demonstrated how an array of beams can
improve performance by broadening the response through multiple resonances.

In 2022, Rahaman and Kim [15] presented an AVS made from an array of three double-
wing, resonant, MEMS acoustic sensors. The maximum sensitivity of the sensors was
approximately 100 mV/Pa (−20 dB re 1 V/Pa) at the bending resonant mode (11.9 kHz).
The AVS demonstrated 360 degrees of coverage in azimuth and elevation, but one required
a priori information of the other.

In 2023, Ivancic et al. [16] demonstrated a symmetric double-wing design that em-
phasized the bending mode. The sensor demonstrated a sensitivity of 59 V/Pa (35.4 dB
re 1 V/Pa) and an SNR of 88 dB at 1 Pa over the bandwidth of the sensor circuity. The
sensor demonstrated a cosine-like directionality in air and a distorted cosine directionality
in water (similar to [11]). An AVS was assembled, which consisted of two of these sensors
and a commercial omnidirectional acoustic sensor. The AVS demonstrated a 360-degree
DOA coverage with a 3.5-degree accuracy.

1.3. Multi-Resonant MEMS Sensors

A limitation with many resonant sensor designs is that they operate in a narrow
frequency band, which makes the sensors less effective for detecting broadband acoustic
sources. This research is interested in broadening that frequency band. As suggested
by [14], combining multiple vibrating wings into a single sensor can be an effective way to
broaden the frequency band of the sensor.

Multi-resonant MEMS acoustic sensors employ multiple resonators with differing resonant
frequencies. This increases the overall bandwidth of the sensor. In 2013, Baumgartel et al. [17]
presented a multi-resonant MEMS acoustic sensor that consisted of thirteen cantilevered
paddles with a piezoelectric vibration sensing scheme. The resonant frequencies of each
paddle varied from 860 Hz to 6.2 kHz, with a maximum sensitivity of 202.6 mV/Pa
(−13.9 dB re 1 V/Pa). The sensitivity of the sensor remained above 2.5 mV/Pa (−52.0 dB
re 1 V/Pa) over the designed frequency range of the sensor (240 Hz to 6.5 kHz). In 2015,
Shkel et al. [18] followed up this research with thirteen cantilevered paddle designs, using
the resonant frequencies of each paddle to mechanically isolate sound (human speech)
from noisy background environments. They demonstrated that the sensor could improve
automated speech recognition by 62.7% from a signal with a 15 dB SNR.

In 2020, Liu et al. [19] presented two piezoelectric MEMS cantilevered paddle arrays,
one with ten paddles and the other with nine. The resonant frequencies of the ten-paddle
and nine-paddle arrays ranged from 856 to 4889 Hz and 5380 to 8820 Hz, respectively. Using
these arrays in conjunction demonstrated an improvement in SNR for typical human speech
frequencies. The maximum acoustic sensitivity was 202.1 mV/Pa (−13.9 dB re 1 V/Pa)
at 856 Hz.

In 2021, Kang et al. [20] demonstrated an MEMS acoustic device, inspired by the
human cochlea, consisting of sixteen cantilever beams. The cantilevers were of different
sizes and operated over multiple bending modes of each beam. The beams were designed
so that the entire frequency band of the sensor was covered by one or more of these modes.
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The sensor demonstrated a sensitivity of approximately 71 mV/Pa (−23 dB re 1 V/Pa) over
a frequency range of 300 Hz to 8 kHz. The sensor demonstrated a cosine-like directionality.

In 2022, Alves et al. [21] presented a double-wing design where the torsional legs
were offset from the center of the bridge that connected the wings. This configuration
created two separate bending mode resonances (one for each wing). This allowed for a
wider resonance bandwidth when the responses of each wing were combined. The sensor
demonstrated a 13 V/Pa (22.3 dB re 1 V/Pa) maximum sensitivity with a 91 dB SNR. The
sensor demonstrated a cosine-like directionality in air.

The resonant sensors discussed above provide high sensitivity and directionality
but are limited in effective bandwidth. Most of the multi-resonant sensors demonstrated
broader bandwidths but lacked high acoustic sensitivities. The sensor presented in this
paper combines a high sensitivity with a broader bandwidth. It utilizes a wing design
inspired by those described in [16]. However, instead of consisting of two mechanically
coupled identical wings, this design consists of six independent wings. Each wing has a
different resonant frequency so that the sensor has increased bandwidth while maintaining
a high sensitivity and SNR across that bandwidth.

1.4. Environmental Sensing

The multi-resonant MEMS acoustic sensor presented in this paper is ideal for use in
AVS designs. The acoustic sources of interest to this research are gunshots, drones, and
underwater vehicles. However, this sensor design can be modified to detect and monitor
a variety of sound sources (e.g., road vehicle noise, airborne noise, environmental noise)
in a wide range of acoustic environments. While a single AVS can provide a bearing to a
sound source, a distribution of these AVSs (alone or as part of a larger suite of sensors) can
provide the ability to determine a sound source’s location.

2. Design and Modeling

2.1. Design Requirements

The MEMS sensor was microfabricated out of a 400 μm thick silicon-on-insulator
(SOI) wafer with a 25 μm device layer. The vibrating wings were etched into the device
layer. Likewise, the substrate below the wing was etched all the way through to allow the
wing to vibrate freely. Gold pads were deposited onto the device layer to provide ohmic
contact. Insulating trenches were etched onto the device layer to electrically separate the
vibrating wing from the fixed substrate. The sensor was fabricated by the MEMSCAP [22]
commercial foundry.

Individual resonators in the array consist of a vibrating wing connected to a substrate
via a bridge and torsional legs, as shown in Figure 1. When exposed to sound waves, the
wings vibrate normally to the plane of the substrate. At the end of each wing, fishbone-style
comb fingers are interlaced with corresponding comb fingers on the substrate. When the
wing vibrates, the capacitance between the wing and substrate varies with the deflection of
the wing. The sensor is cemented into an open cavity in a printed circuit board (PCB) and
wire-bonded to a circuit that converts the sensor capacitance to an output voltage. Similar
capacitive sensing schemes are described in more detail in [12,23].

The resonance frequency of a wing (or paddle)-shaped MEMS acoustic sensor is, in
part, a function of the physical parameters of the wing and bridge (e.g., wing size, bridge
length, layer thickness, material). The sensor parameters were selected to align each wing
to different desired resonant frequencies.

While a sensor with a high quality factor is good for detecting a specific tone, it
can limit the detection of broader acoustic sources or tones outside the passband [16].
One promising way to overcome these limitations is to use multiple resonators with near
resonances to broaden the response [14]. To explore this idea, two similar multi-resonant
sensors (versions V11 and V12) were produced. These designs operated nearly identically,
except for slightly shifted resonant frequencies.
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Figure 1. Layout of single wing of the sensor design. (A) Layout of entire wing: (1) wing, (2) bridge,
(3) torsional leg, (4) comb fingers, (5) gold wire bonding pad, and (6) a groove in the device layer
electrically separating the wing from the substrate. (B) Zoomed-in view of fishbone shape of comb
fingers. The dark grey areas under the wing and surrounding the bridge and torsional legs represent
a trench that passes through the base layer of the sensor.

The design criteria was to support detection of sound from 300 to 500 Hz while
maintaining a high sensitivity and SNR across the entire sensor bandwidth. The target
SNR of the overall sensor should be comparable to the SNRs of the individual resonators.
Additionally, the sensor should demonstrate a cosine-like directionality. The design was
also constrained by manufacturing limitations (foundry design rules) [22].

To meet these criteria, a sensor consisting of six individual wings was conceptualized.
Each wing was designed with a different resonant frequency to cover the target bandwidth.
The response of the wings to the incoming sound was transduced in capacitance and linearly
correlated with the vibration. The output of each wing was wire-bonded to the same port
on the capacitive readout circuitry. This configuration places the capacitors of each wing
in parallel, creating a single sensor output that can be modeled as the complex sum of the
outputs of the individual wings. Figure 2A shows a finite element (FE) simulation of the
frequency response for individual wing displacements and the complex addition of all
the wings for sensor design V11. The graph is normalized to the maximum displacement
of wing number 1. Figure 2B shows the phase response of each wing (with respect to a
driving acoustic signal) during a frequency sweep. At resonance, each wing behaves like
a harmonic oscillator. However, the phase response of the whole sensor is more complex
than that of a single wing.

Figure 2. Computer-modeled behavior of sensor: (A) normalized wing displacement for individual
wings and the complex sum of the all the wings; (B) individual wing phases and complex sum. The
phases are offset so that the phase equals zero at resonance.
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2.2. Design Parameters

The sensor wings used in this design differ from similar paddle designs. For the
purposes of this paper, a paddle design consists of a vibrating paddle that is directly
connected to a substrate via a bridge. The bridge acts as a fixed cantilever. In the wing
design, the bridge connects to torsional legs. The torsional legs then connect to the substrate
and twist while the bridge bends. There are two primary reasons for including the torsional
legs in this design. First, the torsional legs allow the resonance frequency of the wing to
be lowered while still meeting size and manufacturing limitations. Second, our previous
investigations into paddle designs revealed that the cantilever connection between the
beam and substrate was structurally weak and prone to failure. Designs that include
torsional legs reduce the stress on the pivot points and are less prone to failure.

Figure 3A shows a top-down picture of the sensor (version V12). A picture of the
sensor mounted into a PCB is shown in Figure 3B. A scanning electron microscope (SEM)
image of the fishbone-style comb fingers is shown in Figure 3C. Table 1 shows some of the
key dimensional parameters of the sensor. The resonant frequency of each wing was set via
the bridge length. The wing dimensions and torsional leg dimensions were maintained
wing to wing.

Figure 3. Multi-resonant acoustic sensor. (A) Microscope image of V12 sensor; (B) image of MEMS
sensor mounted in PCB; (1) multi-resonant MEMS sensor, (2) capacitive readout circuitry, and (3) wire
connections for power and readout; (C) SEM image of fishbone-patterned comb fingers. Note that
residual stress on wings from fabrication causes wings to bend slightly, lifting wing comb fingers
while at rest, approximately halfway up from substrate comb fingers.

Table 1. Key sensor design dimensions.

Wing Width Wing Length Wing Thickness

2500 μm 1600 μm 25 μm

Design Freq
(V11 Wing 1)

Bridge Length
(V11 Wing 1)

Torsional Leg
Length

366 Hz 2900 μm 1000 μm
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2.3. Analytical Modeling

At resonance, each wing acts like a driven, damped harmonic oscillator. The sensor
was limited to frequencies where only the first mode was excited. In this mode, we can
think of a single wing as a mass-loaded spring system with two stiffnesses to consider: the
bending of the beam and the twisting of the torsional legs. The analytical model discussed
here follows from the analytical model presented in [16], with modifications to account for
the twisting of the torsional legs.

The wing is modeled as an undamped, simple harmonic oscillator with three springs.
Two springs are in parallel (each torsional leg). Those springs are in series with the third
spring (the bending of the bridge). The overall stiffness of the wing is given by

kwing =

(
1

2kleg
+

1
kbridge

)−1

, (1)

where kleg is the stiffness of a torsional leg, and kbridge is the stiffness of the bridge, which
can be determined by the standard equation for a flexural beam [24]:

kbrige =
Ewt3

4L3 , (2)

where E is Young’s modulus of silicon. The parameters w, t, and L are the width, thickness,
and length of the bridge, respectively. To determine the stiffness of the legs, first, the
torsional stiffness, Kt, must be established based on the physical properties of the torsional
legs [24], which is determined by

Jleg = G ∗ wlegt3

16

[
16
3

− 3.36
t

wleg

(
1 − t4

12wleg
4

)]
, (3)

Kt =
J
l
=

T
θ

, (4)

where Jleg is the torsional rigidity of a single torsional leg, G is the shear modulus of the
silicon, and the parameters wleg, t, and l are the width, thickness, and length of the torsional
leg, respectively. Note that for this wing design, the thickness is consistent across the entire
wing. T is the applied torque to the beam and θ is the twist angle at the end of the leg.
Figure 4 shows a diagram representing how the torsional stiffness of the torsional legs
relates to flexural stiffness. This allows the effects of the torsional legs and bridge to be
combined as shown in (1).

Kt can be related to kleg based on the twisting angle and applied torque from the force
applied to the wing by the acoustic wave as follows:

F = klegd = klegL ∗ tan(θ), (5)

T = F ∗ L = Ktθ. (6)

Combining (5) and (6) yields

kleg =
Ktθ

L2tan(θ)
. (7)

However, for a small θ, tan (θ) ≈ θ. Therefore,

kleg =
Kt

L2 . (8)
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The mass of the wing is approximated by an effective point mass, meff, located at the
end of the bridge. The moment of inertia of the point mass is equivalent to the moment of
inertia of the wing. This technique is discussed in more detail in [16]. Neglecting damping
effects, the resonant frequency, f0, of the wing can be modeled as follows:

f0 =
1

2π

√
kwing

me f f
. (9)

Figure 4. Relating torsional stiffness (Kt) to flexural stiffness (kleg).

To include damping, this analytic model modifies the Sader [25] method to determine
the resonant frequency and quality factor of a cantilever beam vibrating in a surrounding
fluid. The Sader method is agnostic to the cross-sectional shape of the beam, but it assumes
that the cross-section is constant across the length of the beam. The effective width of the
beam, b, is determined based on its cross-sectional shape. The presented wing design does
not meet this assumption. Therefore, the performance of previous wing designs was used
to modify the method to determine b. The value of b is determined based on the widths of
bridge and wing using the following formula:

b = wwing − 0.016 ∗
(

wwing
2

w

)
. (10)

The quality factor, Q, can be computed using

Q =

4μ
πρb2 + Γr

Γi
, (11)

where μ is the dynamic viscosity, and ρ is the density of the fluid. Γr and Γi are the real and
imaginary parts of the hydrodynamic function detailed in [25].

The modification of Sader’s method is discussed in more detail in [16]. The analytical
model slightly underestimates the measured resonant frequency. The average modeled
resonant frequency is 2% lower than the average measured resonant frequency for all wings.
However, the analytical model underdamps the system with respect to the quality factor.
The average modeled quality factor is approximately 1.8 times larger than the average
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measured quality factor. A detailed comparison of the analytical modeling, computer
simulations, and measured sensor responses is provided in Section 4.

For an MEMS acoustic sensor of this type operating in air, only including damping
from the modified Sader method is sufficient. However, if the sensor is operating in a
more viscous fluid (e.g., water, silicone oil), additional damping effects such as Couette
flow in the gaps between the wing and substrate and the capacitive comb fingers must
be considered.

2.4. Finite Element Modeling

FE modeling of the sensor was conducted using COMSOL Multiphysics version 6.1
modeling software. The FE models were based on similar models to those described in [16].
Each wing in the sensor was modeled independently to determine its resonance frequency,
response to driving frequency (i.e., wing displacement and phase), and directionality.

The device layer was modeled as anisotropic silicon, with the elasticity matrix aligned
to the crystalline structure of the silicon. The sensor was enclosed within a sphere of air
with standard properties from the COMSOL material library. A shell of air with perfectly
matched layer properties was included around the sphere to prevent acoustic reflections.
To reduce computational time, the FE model was bisected along the centerline of the sensor,
and symmetry boundary conditions were applied along the bisection. Previously, similar
FE models were used in the development of single-resonant MEMS sensors [16]. Based
on the measured performance of those sensors, this FE model was updated to include an
additional damping (drag) force so that the modeled behavior better matched the measured
sensor performance.

The FE model used a free tetrahedral meshing for the sensor and surrounding sphere
of air. The perfectly matched layer shell of air surrounding the sphere was meshed using a
swept mesh method. Figure 5A shows a depiction of the device suspended in the sphere of
air and surrounding a shell of air. Figure 5B shows a zoomed-in view of a single half-wing in
the bending vibration mode. The solid mechanics module was used to set fixed constraints,
boundary loads on the wings, and symmetry conditions. The pressure acoustic module
was used to apply a plane wave pressure field to the sensor. The plane wave direction of
propagation was adjusted with a parametric sweep to model the acoustic source rotating
around the sensor to obtain the directionality pattern, as seen in Figure 6A. The simulation
shows a cosine-like response, as expected. The frequency of the acoustic wave was adjusted
with a separate parametric sweep to measure the displacement and phase response of the
sensor, as seen in Figure 6B. The results show a harmonic oscillator behavior near resonance.
An arbitrary phase offset was applied so that the phase equals zero at resonance. This offset
was applied to match the algorithms used for DOA estimation.

The bending mode is the lowest-frequency resonant mode of the sensor design. An
eigenfrequency analysis was conducted to determine the frequency of the second major
resonant mode of the sensor. That mode consists primarily of the wing rocking back and
forth laterally, pivoted at the point where the bridge meets the wing. The second mode for
wing 1 is approximately 3018 Hz. Its deflection magnitude is approximately 15% that of
the first resonant mode. This is outside of the range of interest and was filtered out by the
electronics readout.

The FE model’s quality factor was determined by calculating the magnitude of wing
displacement with respect to the frequency:

Q =
f0

fh − fl
(12)

where f 0 is the resonant frequency, and fh and fl are the upper and lower bounds of
the frequencies, where the displacement magnitude is 70.7% of the maximum. The FE
modeling results are compared with measured results in more detail in Section 4. However,
the average modeled quality factor agrees with the measured quality factors within 0.6%.
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The average modeled resonant frequencies agree with the measured values within 0.9%.
This demonstrates that FE modeling is an effective tool for sensor design.

Figure 5. FE model images of single wing. (A) Depiction of the FE model. Wing located in center of
sphere of air. (B) Single wing in bending mode. The FE model consists of only half the model and
sphere or air. Symmetry conditions are applied along the bisection to account for the entire sensor.

Figure 6. An FE model of wing behavior. (A) The modeled wing directionality matches an ideal
cosine-like shape. (B) The Frequency response of a single wing showing normalized displacement
(blue) and phase (red). A single wing behaves like a harmonic oscillator in terms of resonance.

3. Experimental Methods

3.1. Mechanical Sensitivity

Prior to cementing the sensor into the PCB and wire-bonding it to the capacitive
readout circuit, the mechanical sensitivity was measured via laser vibrometry utilizing a
Polytech data management system (DMS) computer, OFV-5000 controller, and an OFV-534
laser unit. Data collection was conducted in an anechoic chamber. The sensor was held in
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place in the path of a laser beam so that the beam terminated at the wing center line, near
the far edge of a wing, just before the comb fingers. The DMS generated an audio signal
(250 to 510 Hz frequency sweep) that was sent through a Techron 5507 amplifier to a JBL
7-inch speaker, which faced the sensor. The DMS measured the deflection of the sensor
wing. The acoustic pressure was measured with a Piezotronics Model 378A21 reference
microphone. The microphone signal was sent through a Piezotronics Model 482C signal
conditioner to the DMS. The DMS would calculate the average deflection amplitude per
acoustic pressure (mechanical sensitivity) of the wing, as a function of frequency, over the
course of five frequency sweeps. Once the mechanical sensitivity of a given wing was
measured, the sensor would be repositioned so that a different wing was moved into the
path of the laser, and the process was repeated for each wing in the sensor. Figure 7 shows
the experimental setup of the laser vibrometry.

 

Figure 7. Laser vibrometry experimental setup.

3.2. Electrical Characterization in Air

After laser vibrometry measurements were taken, the sensor was cemented into the
host PCB and wire-bonded to the capacitive readout circuit for directionality and frequency
response measurements. The sensor was mounted on a precision turntable (B&K Model
5960) in an anechoic chamber, with a stationary speaker (7-inch JBL cone speaker) pointed at
the sensor. Rotating the sensor changed the DOA at which the acoustic wave was incident
upon the sensor. The MEMS sensor was connected to a control box, which provided power
to the sensor and distributed the output to other devices. A calibrated reference microphone
(Piezotronics Model 378A21) was mounted near the MEMS sensor. The signal from the
microphone was sent to a signal conditioner (Piezotronics Model 482C). The outputs of the
microphone and MEMS sensor were read by separate Zurich Instruments multifunction
lock-in amplifiers (MFLIs).

The MFLIs and a signal generator (Agilent 33220A) were used to produce various
sounds (e.g., steady tones, white noise, frequency sweeps) to characterize the MEMS sensor.
Signals from the MFLI and signal generator were sent to an amplifier (Techron 5507) and
then to the speaker in the anechoic chamber. Figure 8 shows the experimental layout to
determine the frequency response, directionality, and SNR of the MEMS sensor.

To determine the SNR, the MEMS sensor was mounted in an anechoic chamber. All
electrical and acoustic equipment and noise sources were secured in the chamber, except
for the MEMS sensor. The output of the sensor was read by an MFLI, which measured the
noise spectral density over a bandwidth of 0 to approximately 12 kHz. To distinguish the
electronic noise of the sensor circuitry from the mechanical noise of the MEMS sensor chip,
two sets of noise spectral density measurements were taken. One set was for an unmodified
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sensor. The second set of data was with the wings glued in place to prevent their vibration,
which removed the mechanical noise from the system.

 

Figure 8. Experimental setup for sensor characterization (frequency response, directionality).

3.3. Underwater Electrical Characterization

Underwater sensor characterization was conducted at the Naval Transducer Evalua-
tion Center (TRANSDEC), a six-million-gallon, anechoic pool operated by the US Navy, to
perform a wide range of underwater sensor characterizations.

The MEMS sensor was enclosed in an air-filled, water-tight housing, as shown in
Figure 9A. The sensor and housing were nearly neutrally buoyant. In this condition, the
acoustic wave causes the sensor housing to vibrate, and the MEMS sensor acts as an inertial
sensor, detecting the vibration of the housing rather than the acoustic wave directly. A
similar experiment was described in [16].

The MEMS sensor and an omnidirectional reference hydrophone (B&K Type 8103)
were mounted 6 feet deep on a pole with a motorized rotation mechanism. An underwater
speaker (Electro Voice UW30) was suspended 6 m deep and 2 m away from the sensor.
The output of the MEMS sensor was sent to a similar control box, discussed in Section 3.2.
The output of the reference hydrophone was sent to a preamplifier (Stanford Research
Systems SR560) and then to the control box. The control box directed the MEMS sensor
and hydrophone outputs to the MFLIs for data collection. Acoustic signals were produced
by either an MFLI, signal generator (Keysight 33500B), or computer. These signals were
sent through an amplifier to the underwater speaker.

The characterization consisted of frequency response and directionality measurements.
These measurements were conducted in a similar manner to those performed for the sensor
in air, as discussed in Section 3.2. Figure 9B shows the experimental setup for data collected
at TRANSDEC.

Additional frequency response measurements were taken in a water-filled standing
wave tube (SWT). The sensor was mounted on the end of a pole, facing an underwater
speaker (Electro Voice UW30) on the bottom of the SWT. The SWT produces a flat standing
wave front at the sensor location. The SWT experimental setup was similar to the TRANS-
DEC setup, with an MFLI supplying a frequency sweep signal through an amplifier to the
underwater speaker. The sensor output was then directed to the control box and then to
the MFLI. A similar experimental setup using an SWT was discussed in [16].
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Figure 9. Underwater experimental setup. (A) Detailed diagram of the underwater sensor:
(1) MEMS sensor, (2) air-tight sensor housing, (3) omnidirectional hydrophone, (4) mounting
frame, and (5) elastic bands connecting housing to mounting frame. (B) Diagram of underwater
experimental setup.

4. Experimental Results

4.1. Frequency Response

The mechanical sensitivities of the individual wings on the MEMS sensor were mea-
sured via laser vibrometry by measuring the deflection of the wing with respect to the
applied acoustic pressure. Figure 10A shows the mechanical sensitivity of each wing
individually. The complex sum of the wing sensitivities was calculated and plotted to
predict an effective mechanical sensitivity of the entire sensor. The measured resonant
frequencies and quality factors of the measured mechanical sensitivity are consistent with
the FE models.

Figure 10. Measured sensor response: (A) mechanical sensitivity measured via laser vibrometry.
Overall sensor response is calculated. (B) Acoustic sensitivity measured from output of capacitive
sensing circuit. (C) Phase associated with acoustic sensitivity. Overall sensor response is measured
for (B,C).
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The acoustic sensitivity (output voltage per applied acoustic pressure) of the MEMS
sensor was measured with the sensor cemented into the PCB with the capacitive readout
circuit. The acoustic sensitivity is comparable to the mechanical sensitivity of the MEMS
sensor. Figure 10B shows the sensitivity for each wing individually, as well as the entire
sensor when all the wings, connected in parallel, were being read by the capacitive sens-
ing circuit. The maximum sensitivity of the MEMS sensor was measured at 47.6 V/Pa
(33.6 dB re 1 V/Pa). Figure 10C shows the phase response of the individual wings and their
combination. Each wing behaves like its own harmonic oscillator. As predicted by the FE
models, when the outputs of all the wings are combined, the phase response becomes more
complex than those of single wings.

Table 2 shows the modeled and measured resonant frequencies and quality factors of
individual wings for each sensor design, while Figure 11 presents these data graphically.
The average percent difference in resonant frequencies between the FE model and measured
electrical output is 0.43%. The quality factors agree within 0.59%. This shows that the
FE model is an excellent predictor of the sensor’s frequency response. When comparing
the laser vibrometry and electrical sensor performance, the average resonance frequencies
agree to within 0.36%, and the average quality factors agree to within 4%. This suggests that
any electrical damping effects created when applying a voltage across the MEMS sensor
are not significant.

 
Figure 11. Comparison of analytical and FE models with measured results for sensor versions V11
and V12. (A) Modeled and measured resonant frequency. (B) Modeled and measured quality factor.
The analytical model overestimates the quality factor of the sensor.

The acoustic sensitivity was measured underwater, with the sensor mounted in an air-
filled, water-tight housing mounted in an SWT. Figure 12A shows the sensitivity response
of the sensor with respect to frequency. Figure 12B shows the phase response of the sensor,
measured at the TRANSDEC facility. The wavy nature of the phase response is due, in part,
to acoustic reflections and interference patterns generated in the pool during the frequency
sweep. As expected, the frequency response of the sensor in an air-filled underwater
housing is comparable to its response in air.
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Table 2. Resonant frequency and quality factor comparison of modeled and measured values.

Version V11 Resonant Frequency [Hz]/Quality Factor

Data Source Wing 1 Wing 2 Wing 3 Wing 4 Wing 5 Wing 6

Analytical Model 359 34.1 375 34.7 389 35.3 405 35.9 422 36.5 437 37.1
Finite Element Model 366 19.7 382 19.7 399 19.9 413 19.9 430 19.8 446 19.8

Laser Vibrometry 363 18.1 380 18.5 395 19.3 409 20.8 427 19.0 441 18.6
Electrical Output 364 18.9 382 19.3 396 19.0 412 21.3 430 20.0 444 19.6

Version V12 Resonant Frequency [Hz]/Quality Factor

Data Source Wing 1 Wing 2 Wing 3 Wing 4 Wing 5 Wing 6

Analytical Model 367 34.4 383 35.1 398 35.7 414 36.2 430 36.9 446 37.4
Finite Element Model 374 19.8 390 19.7 406 19.8 422 19.7 439 19.8 454 19.8

Laser Vibrometry 370 18.1 388 18.4 403 19.0 418 19.4 436 20.7 452 20.7
Electrical Output 372 18.5 388 20.0 404 19.5 418 21.2 436 21.5 454 22.1

Figure 12. Underwater frequency response of the sensor. (A) Sensitivity of the sensor in SWT.
(B) Phase response of the sensor at TRANSDEC.

4.2. Directionality

Ideally, the sensors produce a cosine-like directionality pattern. Figure 13A shows
the directionality of the sensor operating in air with a 429 Hz acoustic stimulus. The
directionality very closely matches the ideal cosine-like shape. This directionality was
consistent for all frequencies within the target bandwidth of the sensor (300 to 500 Hz).
However, this is not the case when the sensor is operating under water.

Figure 13B shows the directionality patterns for the sensor while stimulated at
two different frequencies. The solid blue line shows the directionality at 367 Hz and
the red line at 432 Hz. A dotted blue line shows the ideal cosine-like directionality for
comparison. While only two patterns are shown, they represent the varying directionality
patterns measured over the bandwidth of the sensor. All patterns are pseudo-cosine-like
(opposing lobes pointing towards 0 degrees and 180 degrees) with significant deviations
from the ideal pattern: lobe size, lobe angle (lobe does not point directly at 0 degrees), and
failure to go to zero at +/− 90 degrees. This inconsistent directionality is likely due to
both the underwater acoustic environment where the data were collected and the sensor
housing. Further investigation is needed to positively identify the causes.
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Figure 13. Directionality pattern of MEMS sensor: (A) in air and (B) under water.

4.3. Signal-to-Noise Ratio

Determining the SNR is critical to understanding the capabilities of this sensor. The
noise spectral density (NSD) of the sensor (both individual wings and the entire sensor) was
measured in an anechoic chamber, with all possible acoustic and electrical noise sources
secured. The NSD data represent the mechanical and electronic noise of the MEMS sensor
and associated readout circuitry. Figure 14A shows the NSD of each individual wing and
the entire sensor (with all wings bonded to the readout circuit). The readout circuit has a
bandwidth of 100 Hz to 3 kHz. The peaks in the NSD of individual wings correspond to
their resonant frequencies. To isolate the mechanical and electrical portions of the NSD of a
single wing, measurements were taken with the wing free to vibrate and again with the
wing fixed (glued in place). The NSD curves with fixed wings closely match the curves
with free wings, except for these resonant peaks. Figure 14B shows the NSD of a single
wing, focusing on its resonance. The fixed wing’s NSD curve closely matches that of the
free wing except for the resonant peak.

The NSD data were used to calculate the noise level of the sensor over the bandwidth
of the sensor circuitry (100 Hz to 3 kHz) and over the design bandwidth of the sensor
(300 to 500 Hz). The acoustic sensitivity data were used to determine the signal level, at
1 Pa, with respect to frequency. Figure 15 shows the SNR for individual wings and the
entire sensor, with the noise level based on the bandwidth of the sensor circuitry. The
maximum SNR of the sensor over the circuit bandwidth is 88.6 dB, and over the design
bandwidth, it is 97.4 dB. The sensor maintains a high SNR over the design bandwidth of
the sensor.

Figure 14. Noise spectral density of the MEMS sensor. (A) NSD of individual wings and the entire
sensor. (B) Comparison of single wing while free to vibrate (blue line) and while fixed (red line). This
demonstrates the mechanical contribution to the overall NSD.
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Figure 15. Signal-to-noise ratio of the sensor (individual wings and the entire sensor). The sensor
demonstrates a high SNR over its design bandwidth.

5. Discussion and Conclusions

A multi-resonant, MEMS acoustic sensor was designed using analytical and FE mod-
eling techniques. The sensor was characterized in air both mechanically (using laser
vibrometry) and electrically to determine the directionality, frequency response, and SNR
of the sensor. Additionally, the sensor was characterized underwater while contained in an
air-filled housing. The sensor improves upon previous designs by broadening the effective
bandwidth while maintaining a high SNR and cosine-like directionality.

5.1. Sensor Characterization

As seen in Figure 15, this sensor provides a very high SNR over a 200 Hz bandwidth.
This is a significant improvement when compared to other resonant acoustic sensors. It
was demonstrated in [21] for vibrating wing sensors operating at resonance that the SNR is
proportional to the square root of the quality factor, tying a high SNR to narrow bandwidths.
This multi-resonant design overcomes that limitation by maintaining a comparable SNR
with nearly 4.5 times the bandwidth.

The sensor displays the same cosine-like directionality as other vibrating wing sen-
sors. Deviations from the ideal directionality, which were observed for the underwater
configuration of the sensor, were also seen in underwater version of previous designs [16].

5.2. Comparison with Similar Sensors

Table 3 compares the multi-resonant sensor’s SNR and effective bandwidth (based
on the full width and half max of the resonant peak) performance. It shows the improved
performance of the multi-resonant sensor when compared to similar resonant MEMS
acoustic sensors.

Table 3. Sensor performance comparison.

Sensor Sensitivity SNR [dB] Bandwidth

Multi-Resonant 48 V/Pa 88.6 (97.4) 1 300 Hz–500 Hz
Double-Wing Design [16] 59 V/Pa 88 (102) 1 658 Hz–684 Hz

Dual-Band Design [21] 13 V/Pa 91 1 650 Hz–725 Hz 2

Double-Wing [9] 3.45 mV/Pa 68.5 Not Discussed
1 Noise based on sensor resonance bandwidth instead of bandpass of circuit. 2 Approximate values.
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5.3. Improving Sensor Designs

This versatile multi-resonant sensor can be scaled to different frequency ranges. The
pass band can be expanded, and the size of the device can be reduced. Several techniques,
commonly used in MEMS devices, can be applied to change the stiffness of the bridges and
torsional beams, as well as the mass of the paddles, allowing for adjusting the spectral re-
sponse of the sensor as desired while preserving a small size. The detection and localization
of quiet sources with specific acoustic signatures such as sniper fire, multi-rotor small UAVs
(drones), single- or multi-tone communication, or sonar signals when used underwater,
etc., can be achieved. A combination of such sensors can be used to make acoustic vector
sensors to provide full 3D coverage (azimuth and elevation). These applications are of
particular interest to Defense and law enforcement.

Another interesting aspect of this approach is that if the readout mechanism is
changed from capacitive comb fingers to piezoelectric films, which can be achieved with-
out adding complexity to the sensor, this sensor can easily become a mechanical energy
harvester [26,27]. Moreover, by broadening the resonant response, as demonstrated in this
manuscript, or tuning the response to desired bands, a very efficient and flexible harvester
can be designed.
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