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Editorial

Differential Geometry and Its Application, 2nd edition

Mića S. Stanković

Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
mica.stankovic@pmf.edu.rs

1. Introduction

With this Editorial, we present a Special Issue of Axioms entitled ‘Differential Geometry
and Its Application, 2nd edition’. We launched this Special Edition as a continuation of
‘Differential Geometry and Its Application’. This Special Issue provides a platform show-
casing the latest achievements in many branches of theoretical and practical mathematical
studies. These relate to Riemannian theories, generalized Riemannian spaces and their
mappings. The scope of this Special Issue also includes Finsler geometry, Kenmotsu mani-
folds, Kaehler manifolds, manifolds with non-symmetric linear connections, cosymplectic
manifolds, contact manifolds, statistical manifolds, Minkowski spaces, geodesic mappings,
almost geodesic mappings, holomorphically projective mappings, warped products of
manifolds, complex space forms, quaternionic space forms, golden manifolds, inequalities,
invariants, immersions, etc. Potential authors are encouraged to submit papers that present
new ideas in the field of differential geometry, in addition to the above topics. Given the
broad scope and widespread interest in this topic, more works should be published in
this area.

2. Overview of the Published Papers

This Special Issue contains 17 papers which were accepted for publication after a
rigorous reviewing process.

The authors of the first contribution consider dual representations of Bertrand offsets.
Surfaces are specified and several new results are gained in terms of their integral invariants.
A new description of Bertrand offsets for developable surfaces is given. Furthermore, the
authors obtained several relationships through the striction curves of Bertrand offsets of
ruled surfaces and their integral invariants.

In the second contribution, the authors find some conditions under which the tangent
bundle TM has a dualistic structure. Then, they introduce infinitesimal affine transfor-
mations on statistical manifolds and investigate these structures on a special statistical
distribution, as well as on a tangent bundle of a statistical manifold. Moreover, they also
study the mutual curvatures of a statistical manifold M and its tangent bundle TM, in-
vestigating their relations. More precisely, the authors obtain the mutual curvatures of
well-known connections on the tangent bundle TM (the complete, horizontal, and Sasaki
connections) and study their vanishing.

In the third contribution, the authors study several non-Riemannian quantities in
Finsler geometry. These non-Riemannian quantities play an important role in understand-
ing the geometric properties of Finsler metrics. In particular, the authors find differen-
tial equations of Finsler warped product metrics with vanishing ξ-curvature or vanish-
ing H-curvature. Furthermore, they show that, for Finsler warped product metrics, the
ξ-curvature vanishes if and only if the H-curvature vanishes.

The authors of the fourth contribution investigate the geometrical axioms of Rieman-
nian submersions in the context of the η-Ricci-Yamabe soliton (η − RY soliton) with a
potential field. They give the categorization of each fiber of Riemannian submersion as
an η − RY soliton, an η-Ricci soliton, and an η-Yamabe soliton. Additionally, the authors
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consider the many circumstances under which a target manifold of Riemannian submersion
is an η − RY soliton, an η-Ricci soliton, an η-Yamabe soliton, or a quasi-Yamabe soliton.
They deduce a Poisson equation on a Riemannian submersion in a specific scenario if the
potential vector field ω of the soliton is of a gradient type =: grad(η), providing some
examples of an η − RY soliton to illustrate their findings. Finally, the authors explore a
number theoretic approach to Riemannian submersion with totally geodesic fibers.

The aim of the authors of the fifth contribution is to characterize a Riemannian
3-manifold M3 equipped with a semi-symmetric metric ξ-connection ∇̃ with ρ-Einstein
and gradient ρ-Einstein solitons. The existence of a gradient ρ-Einstein soliton in an M3

admitting ∇̃ is ensured by constructing a non-trivial example; in this way, some of the
authors’ results are verified. By using the standard tensorial technique, the authors prove
that the scalar curvature of (M3, ∇̃) satisfies the Poisson equation ΔR = 4(2−σ−6ρ)

ρ .
In the sixth contribution, the authors utilize the axode invariants to derive novel hy-

perbolic proofs of the Euler–Savary and Disteli formulae. The widely recognized inflection
circle is situated on the hyperbolic dual unit sphere, in accordance with the principles of
the kinematic theory of spherical locomotions. Subsequently, a time-like line congruence
is defined and its spatial equivalence is thoroughly studied. The formulated assertions
degenerate into a quadratic form, which facilitates a comprehensive understanding of the
geometric features of the inflection line congruence.

A principal curve on a surface plays a paramount role in reasonable implementations
(contribution seven). A curve on a surface is a principal curve if its tangents are principal
directions. Using the Serret–Frenet frame, the surface pencil couple can be expressed as
linear combinations of the components of the local frames in Galilean 3-space G3. With
these parametric representations, a family of surfaces using principal curves (curvature
lines), the authors construct the necessary and sufficient conditions for the given Bertrand
couple to be the principal curves on these surfaces. Moreover, they also analyze the
necessary and sufficient conditions for the given Bertrand couple to satisfy the principal
curves and the geodesic requirements. As implementations of their main conclusions, the
authors expand some models to confirm the method.

In the eighth contribution, the authors examine the behavior of the simplest realis-
tic Oregonator model of the BZ-reaction from the perspective of KCC theory. In order
to reduce the complexity of the model, the authors initially transformed the first-order
differential equation of the Oregonator model into a system of second-order differential
equations. Using this approach, the authors describe the evolution of the Oregonator model
in geometric terms by considering it as a geodesic in a Finsler space. The authors found
five KCC invariants using the general expression of the nonlinear and Berwald connections.
To understand the chaotic behavior of the Oregonator model, the deviation vector and its
curvature around equilibrium points are studied. The authors then obtain the necessary
and sufficient conditions for the parameters of the system in order to achieve Jacobi stability
near the equilibrium points. Furthermore, a comprehensive examination was conducted to
compare the linear and Jacobi stabilities of the Oregonator model at its equilibrium points;
the authors then highlight these instances with a few illustrative examples.

The author of the ninth contribution gives an expository account of differential coho-
mology and the classification of higher line bundles (also known as S1-banded gerbes) with
a connection. He begins by examining how Čech cohomology is used to classify principal
bundles and defines their characteristic classes, introducing differential cohomology a la
Cheeger and Simons and S1-banded gerbes with a connection.

In the tenth contribution, the authors study isotropic submanifolds in locally metallic
product space forms. Firstly, they establish the Chen–Ricci inequality for such submanifolds
and determine the conditions under which the inequality becomes equal. Additionally,
the authors explore the minimality of Lagrangian submanifolds in locally metallic product
space forms, applying the result to create a classification theorem for isotropic subman-
ifolds whose mean curvature is constant. More specifically, they demonstrate that the
submanifolds are either a product of two Einstein manifolds with Einstein constants, or
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they are isometric to a totally geodesic submanifold. The authors provide several examples
to support their findings.

In the eleventh contribution, the authors study submanifolds tangent to the Reeb
vector field in trans-Sasakian manifolds. They prove Chen’s first inequality and the Chen–
Ricci inequality, respectively, for submanifolds in trans-Sasakian manifolds which admit a
semi-symmetric, non-metric connection. Moreover, the authors obtain a generalized Euler
inequality for special contact slant submanifolds in trans-Sasakian manifolds endowed
with a semi-symmetric non-metric connection.

In the twelfth contribution, the authors study and classify left-invariant cross-curvature
solitons on Lorentzian three-dimensional Lie groups.

In the thirteenth contribution, the authors explores the Ricci tensor of slant submani-
folds within locally metallic product space forms equipped with a semi-symmetric metric
connection (SSMC). The authors’ investigation includes a derivation of the Chen–Ricci
inequality and an in-depth analysis of its equality. More precisely, if the mean curvature
vector at a point vanishes, then the equality case of this inequality is achieved by a unit
tangent vector at the point when, and only when, the vector belongs to the normal space.
Finally, they have shown that when a point is a totally geodesic point or is totally umbilical
with n = 2, the equality of this inequality holds true for all unit tangent vectors at that
point, and vice versa.

In the fourteenth contribution, the authors’ focus revolves around the establishment of
a geometric inequality, commonly referred to as Chen’s inequality. They specifically apply
this inequality to assess the square norm of the mean curvature vector and the warping
function of warped product slant submanifolds. Their investigation takes place within the
context of locally metallic product space forms with quarter-symmetric metric connections.
Additionally, they delve into the condition that determines when equality is achieved
within the inequality. Furthermore, the authors also explore a number of implications of
their findings.

The author of contribution fifteen proves that a 2-gerbe has a torsion Dixmier–Douady
class if, and only if, the gerbe has locally constant cocycle data. As an example application,
the author gives an alternative description of flat twisted vector bundles in terms of locally
constant transition maps. These results generalize to n-gerbes for n = 1 and n = 3,
providing insights into the structure of higher gerbes and their applications in the geometry
of twisted vector bundles.

In the sixteenth contribution, the authors define quasi-canonical biholomorphically
projective and equitorsion quasi-canonical biholomorphically projective mappings. Some
relations between the corresponding curvature tensors of the generalized Riemannian
spaces GRN and GRN are obtained. At the end, they found the invariant geometric object
of an equitorsion quasi-canonical biholomorphically projective mapping.

Finally, in the seventeenth contribution, the authors formulate a data-independent
latent space regularization constraint for general unsupervised autoencoders. The reg-
ularization relies on sampling the autoencoder Jacobian at Legendre nodes, which are
the centers of the Gauss–Legendre quadrature. Revisiting this classic allows the authors
to prove that regularized autoencoders ensure a one-to-one re-embedding of the initial
data manifold into their latent representation. Demonstrations show that previously
proposed regularization strategies, such as contractive autoencoding, cause topological
defects even in simple examples, as do convolutional-based (variational) autoencoders.
In contrast, topological preservation is ensured by standard multilayer perceptron neural
networks when regularized using this approach. This observation extends from the classic
FashionMNIST dataset to (low-resolution) MRI brain scans, suggesting that reliable low-
dimensional representations of complex high-dimensional datasets can be achieved using
this regularization technique.
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3. Conclusions

A total of 17 papers were published in this Special Issue, ‘Differential Geometry and Its
Application, 2nd edition’. In these works, researchers interested in various aspects of Rie-
mannian space theory and related topics will find interesting insights and inspiring results.

Funding: This research was funded by the grant from the Ministry of Science, Technological Devel-
opment and Innovation of the Republic of Serbia 451-03-65/2024-03/200124.

Conflicts of Interest: The author declares no conflicts of interest.
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Abstract: Dual representations of the Bertrand offset-surfaces are specified and several new results
are gained in terms of their integral invariants. A new description of Bertrand offsets of developable
surfaces is given. Furthermore, several relationships through the striction curves of Bertrand offsets
of ruled surfaces and their integral invariants are obtained.

Keywords: Bertrand offsets; height dual functions; striction curve

MSC: (2010) 53A04; 53A05; 53A17

1. Introduction

The approach of Bertrand offsets for ruled surfaces is an important and effective tool
in model-based manufacturing of mechanical products, and geometric modelling. Offsets
of these sort surfaces can be utilized to create geometric models of shell-type sorts and thick
surfaces [1–4]. So, many engineers and geometers have inspected and attained numerous
geometrical-kinematic properties of the ruled surfaces in Euclidean and non-Euclidean
spaces; for instance Ravani and Ku adapted the theory of Bertrand curves for ruled surfaces
based on line geometry [5]. They showed that a ruled surface can have an infinity of
Bertrand offsets, in the same approach as a plane curve can have an infinity of Bertrand
mates. Based on the E. Study map, Küçük and Gürsoy gave various adjectives of Bertrand
offsets of trajectory ruled surfaces in terms of the interrelationships through the projection
areas for the spherical images of Bertrand offsets and their integral invariants [6]. In [7],
Kasap and Kuruoglu acquired the connections through integral invariants of the couple of
the Bertrand ruled surfaces in Euclidean 3-space E3. In [8] Kasap and Kuruoglu initiated
the address of Bertrand offsets of ruled surfaces in Minkowski 3-space. The involute-
evolute offsets of ruled surface is offered by Kasap et al. in [9]. Orbay et al. [10] started
the investigation of Mannheim offsets of the ruled surface. Onder and Ugurlu gained the
relationships through the invariants of Mannheim offsets of timelike ruled surfaces, and
they gave the conditions for these surface offsets to be developable [11]. Aldossary and
Abdel-Baky explained the theory of Bertrand curves for ruled surfaces, based on the E.
Study map [12]. Senturk and Yuce have considered the integral invariants of the offsets
by the geodesic Frenet frame [13]. Important contributions to the Bertrand offsets of these
ruled surfaces have been studied in [14–16].

In this, a generalization of the theory of Bertrand curves is offered for ruled and
developable surfaces in Euclidean 3-space E3. Using the E. Study map, two ruled surfaces
which are offset in the sense of Bertrand are defined. It is shown that, generally, any
ruled surface can have a binary infinity of Bertrand offsets; however for a developable
ruled surface to have a developable Bertrand offset, a linear equation should be specified
among the curvature and torsion of its edge of regression. Furthermore, it is shown
that the developable offsets of a developable surface are parallel offsets. The results, in

Axioms 2023, 12, 649. https://doi.org/10.3390/axioms12070649 https://www.mdpi.com/journal/axioms5
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addition to being of theoretical interest, have applications in geometric modelling and the
manufacturing of products.

2. Basic Concepts

Dual numbers are the set of all pairs of real numbers written as

D = {â = a + εa∗, a, a∗ ∈ R},

where the dual unit ε satisfies the relationships ε �= 0, ε1 = 1ε, ε2 = 0. The application
of line geometry and dual number representation of line trajectories can be found in the
works [1–5,17] , the dual number is used to recast the point displacement relationship into
relationships of lines. As stated, the dual numbers were first introduced by W. Clifford
after him E. Study used it as a tool for his research on the differential line geometry. Given
dual numbers â = a + εa∗, and b̂ = b + εb∗ the rules for combination can be defined as:

Equality : â = b̂ ⇐⇒ a = b, a∗ = b∗,
Addition : â + b̂ = (a + b) + ε(a∗ + b∗),
Multiplication : âb̂ = ab + ε(a∗b + ab∗).

⎫⎪⎬⎪⎭
The set of dual numbers, denoted as D, forms a commutative group under addition. The
associative laws hold for multiplication and dual numbers are distributive. As a result, the
division of dual numbers is defined as:

â
b̂
=

a
b
+ ε(

a∗b− ab∗

b2 ), b �= 0.

A dual number is called a pure dual when â = εa∗. Division by a pure dual number
is not defined. An example of dual number is the dual angle between two skew lines in
space defined as: θ̂ = θ + εθ∗, where θ is projected angle between the lines and θ∗ is the
minimal distance between the lines along their common perpendicular line. A differentiable
function f (x) can be defined for a dual variable f (x + εx∗) by expanding the function using
a Taylor series:

f (x + εx∗) = f (x) + εx∗
d f (x)

dx
.

So, we can give the followings:

sin−1(θ + εθ∗) = sin−1 θ + ε θ∗√
1−θ2 ,

cos−1(θ + εθ∗) = cos−1 θ − ε θ∗√
1−θ2 ,

tan−1(θ + εθ∗) = tan−1 θ + ε θ∗
1+θ2 .

⎫⎪⎬⎪⎭
Other functions may also be defined in this manner. It may also shown that, for an positive
integer n,

ân = an + εna∗an−1 = an(1 + εn
a∗

a
).

E. Study’s Map

An oriented line L in the Euclidean 3-space E3 can be determined by a point p ∈ L
and a normalized direction vector a of L, i.e., ‖a‖ = 1. To obtain components for L,
one forms the moment vector a∗ = p× a,with respect to the origin point in E3. If p is
substituted by any point q = p+ta, t ∈ R,on L, this suggest that a∗ is independent of p on
L. The two vectors a, and a∗ are not independent of one another; they fulfil the following
two equations:

< a, a >= 1, < a∗, a >= 0.

6
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The six components ai, a∗i (i = 1, 2, 3) of a, and a∗ are called the normalized Plűcker
coordinates of the line L. Hence, the two vectors a, and a∗ determine the oriented line L.

Conversely, any six-tuple ai, a∗i (i = 1, 2, 3) with

a2
1 + a2

2 + a2
3 = 1, a1a∗1 + a2a∗2 + a3a∗3 = 0.

represent a line in E3. Thus, the set of all oriented lines in E3 is in one-to-one correspondence
with pairs of vectors in E3.

For vectors (a∗, a) ∈E3 ×E3 we define the set

D3 = D×D×D = {â= a+εa∗; ε �= 0, ε1 = 1ε, ε2 = 0.}.

Then for any two vectors â, b̂ ∈ D3, the scalar product is defined by:

< â, b̂ >=< a, b > + ε(< a∗, b > + < a, b∗>),

and the norm of â is defined by:

‖â‖ = ‖a‖+ ε
< a∗, a >

‖a‖ , ‖a‖ �= 0.

Hence, we may write the dual vector â as a dual multiplier of a dual vector in the form

â = ‖â‖ê,

where ê is referred to as the axis. The ratio

h =
< a∗, a >

‖a‖2 ,

is called the pitch along the axis ê; If h = 0 and ‖a‖ = 1, â is an oriented line, and when h is
finite, â is a proper screw; and when h is infinite, â is called a couple. A dual vector with
norm equal to unit is called a dual unit vector. Hence, each oriented line L = (a, a∗) ∈ E3

is represented by dual unit vector

â = a+εa∗(< a, a >= 1, < a∗, a >= 0).

The dual unit sphere in D3 is specified as

K = {â ∈D3 | ‖â‖2 = â2
1 + â2

2 + â2
3 = 1}.

Via this we have the E. Study’s map: The set of all oriented lines in the Euclidean 3-space
E3 is in one-to-one correspondence with the set of points on dual unit sphere in the dual
3-space D3.

This dualized form of line representation along with the E. Study’s map leads to a new
interpretation of the scalar and vectorial products of two lines. For two directed lines â, and
b̂ the dual angle θ̂ = θ + εθ∗combines the angle θ and the minimal distance θ∗. This gives
rise to geometric interpretations of the following products of the dual unit vectors [1–4]:

< â, b̂ > = cos θ̂ = cos θ − εθ∗ sin θ.

The following special cases can be given:

1. If < â, b̂ > = 0, then θ = π
2 and θ∗ = 0; this means that the two lines â, and b̂ meet at

right angle,
2. If < â, b̂ > = pure dual, then θ = π

2 and θ∗ �= 0; the lines â, and b̂ are orthogonal
skew lines,

3. If < â, b̂ > = pure real, then θ �= π
2 and θ∗ = 0; the lines â, and b̂ are intersect,

7
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4. If < â, b̂ > = 1, then θ = 0 and θ∗ = 0; the lines â, and b̂ are coincident (their
directions are the same or opposite).

3. The Blaschke Approach

In this section, we consider the Blaschke approach for ruled surfaces by bearing in
mind the E. Study map. Therefore, based on the notations in Section 2, a regular dual curve

t ∈ R 
→ x̂(t) ∈ K,

is a ruled surface (x̂) in Euclidean 3-space E3. The lines x̂(t) are the generators of (x̂). Hence,
ruled surfaces and dual curves are synonymous in this paper. The dual unit vector

t̂(t) = t + εt∗ =
dx̂(t)

dt

∥∥∥∥dx̂(t)
dt

∥∥∥∥−1

is central normal of (x̂). The dual unit vector ĝ(t) = g(t) + εg∗(t) = x̂× t̂ is central tangent
of (x̂). So, we have the moving Blaschke frame {x̂(t), t̂(t), ĝ(t)} on x̂(t). Then, the Blaschke
formulae read:

d
dt

⎛⎝ x̂

t̂

ĝ

⎞⎠ =

⎛⎝ 0 p̂ 0
− p̂ 0 q̂
0 −q̂ 0

⎞⎠⎛⎝ x̂

t̂

ĝ

⎞⎠, (1)

where

p̂(t) = p(t) + εp∗(t) =
∥∥∥∥dx̂(t)

dt

∥∥∥∥, q̂ = q + εq∗ = det(x̂,
dx̂(t)

dt
,

d2x̂(t)
dt2 ),

are the Blaschke invariants of the dual curve x̂(t) ∈ K. The dual unit vectors x̂, t̂, and
ĝ corresponding to three concurrent mutually orthogonal oriented lines in E3 and they
intersected at a point c on x̂ named central point. The locus of the central points is the
striction curve c(t) on (x̂). The dual arc-length ŝ of x̂(t) is specified by

dŝ = ds + εds∗ =
∥∥∥∥dx̂(t)

dt

∥∥∥∥dt = p̂(t)dt. (2)

Then, we may have⎛⎜⎝ x̂
′

t̂
′

ĝ
′

⎞⎟⎠ =

⎛⎝ 0 1 0
−1 0 γ̂(ŝ)
0 −γ̂(ŝ) 0

⎞⎠⎛⎝ x̂

t̂

ĝ

⎞⎠ = ω̂(ŝ)×

⎛⎝ x̂

t̂

ĝ

⎞⎠; (′=
d
dŝ

), (3)

where ω̂ = ω + εω∗ = fl̂x̂ + ĝ is the Darboux vector, and γ̂(ŝ) := γ + εγ∗ is the dual
geodesic curvature of x̂(ŝ) ∈ K. The tangent of c(s) is specified by [16]:

dc

ds
= �(s)x + μ(s)g. (4)

The functions γ(s), �(s) and μ(s) are the curvature (construction) parameters of (x̂).
These functions described as follows: γ is the geodesic curvature of the spherical image
curve x = x(s); �(s) explains the angle among the ruling of (x̂) and the tangent to the
striction curve; and μ(s) is the distribution parameter at the ruling. These parameters
prepare an approach for constructing ruled surface by

(x̂) : y(s, v) =
s∫
0

(�(s)x(s) + μ(s)g(s))ds + vx(s), v ∈ R. (5)

8
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The unit normal vector field at any point is

ξ(s, v) =
∂y(s,v)

∂s × ∂y(s,v)
∂v∥∥∥ ∂y(s,v)

∂s × ∂y(s,v)
∂v

∥∥∥ = ± μt− vg√
μ2 + v2

, (6)

which is the central normal at the striction point (v = 0). Let ϕ be the angle among the unit
normal vector n and the central normal t, then

n(s, v) = cos ϕt− sin ϕg.

It is evident that:
tan ϕ =

v
μ

.

Hence, we have the following [4,17]:

Corollary 1. The tangent plane of the non-developable ruled surface turns clearly among π along
a ruling.

Furthermore, the dual unit vector with the same sense as ω̂ is also specified by

b̂(ŝ) := b + εb∗ =
ω̂

‖ω̂‖=
γ̂√

γ̂2 + 1
x̂ +

1√
γ̂2 + 1

ĝ.

It is obvious that b̂(ŝ) is the Disteli-axis of (x̂). Let ψ̂ = ψ + εψ∗ be the dual radius of
curvature among b̂ and x̂. Then,

b̂(ŝ) = cos ψ̂x̂ + sin ψ̂ĝ, with cot ψ̂ =
q̂
p̂

. (7)

In fact, it is necessary to have the dual curvature κ̂(ŝ), and the dual torsion τ̂(ŝ). Therefore,
the Serret-Frenet frame of x̂(ŝ) ∈ K is made up of the set {̂t(ŝ), n̂(ŝ), b̂(ŝ)}. Then, the
relative orientation is given by⎛⎝ t̂

n̂

b̂

⎞⎠ =

⎛⎝ 0 1 0
− sin ψ̂ 0 cos ψ̂

cos ψ̂ 0 sin ψ̂

⎞⎠⎛⎝ x̂

t̂

ĝ

⎞⎠.

Similarly, we can describe the dual Serret-Frenet formulae⎛⎜⎝ t̂
′

n̂
′

b̂
′

⎞⎟⎠ =

⎛⎝ 0 κ̂ 0
−κ̂ 0 τ̂

0 −̂̂τ 0

⎞⎠⎛⎝ t̂

n̂

b̂

⎞⎠,

where
γ̂(ŝ) = γ + ε(�− γμ) = cot ψ− εψ∗(1 + cot2 ψ),
κ̂(ŝ) := κ + εκ∗ =

√
1 + γ̂2 = 1

sin ψ̂
= 1

ρ̂(ŝ) ,

τ̂(ŝ) := τ + ετ∗ = ±ψ̂
′
= ± γ̂

′

1+γ̂2 .

⎫⎪⎪⎬⎪⎪⎭ (8)

Height Dual Functions

In correspondence with [18], a dual point b̂0 ∈ K will be named a b̂k evolute of the
dual curve x̂(ŝ) ∈ K; for all ŝ such that < b̂0, x̂(ŝ) >= 0, but < b̂0, x̂k+1

1 (ŝ) > �= 0. Here
x̂k+1 signalizes the k-th derivatives of x̂(ŝ) with respect to ŝ. For the 1st evolute b̂ of x̂(ŝ),
we have < b̂, x̂

′
>= ± < b̂, t̂ >= 0, and < b̂, x̂

′′
>= ± < b̂,−x̂+fl̂ĝ > �= 0. So, b̂ is at

least a b̂2 evolute of x̂(ŝ) ∈ K.

9
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We now address a dual function â : I ×K → D, by â(ŝ, b̂0) =< b̂0, x̂ >. We call â a
height dual function on x̂(ŝ) ∈ K. We use the notation â(ŝ) = â(ŝ, b̂0) for any stationary
point b̂0 ∈ K. Hence, we state the following:

Proposition 1. Under the above hypotheses, the following holds:

i â will be stationary in the 1st approximation iff b̂0 ∈ Sp{x̂,ĝ}, that is,

â
′
= 0 ⇔< x̂, b̂0>= 0 ⇔< t̂, b̂0>= 0 ⇔ b̂0 = â1x̂+ â3ĝ;

for some dual numbers â1, â3 ∈ D, and â2
1 + â2

3 = 1.
ii â will be stationary in the 2nd approximation iff b̂0 is b̂2 evolute of b̂0 ∈ K, that is,

â
′
= â

′′
= 0 ⇔ b̂0=± b̂.

iii â will be stationary in the 3rd approximation iff b̂0 is b̂3 evolute of b̂0 ∈ K, that is,

â
′
= â

′′
= â

′′′
= 0 ⇔ b̂0= ±b̂, and γ̂

′ �= 0.

iv â will be stationary in the 4th approximation iff b̂0 is b̂4 evolute of b̂0 ∈ K, that is,

â
′
= â

′′
= â

′′′
= âiv = 0 ⇔ b̂0= ±b̂, γ̂

′
= 0, and γ̂

′′ �= 0.

Proof. For the 1st differentiation of â we gain

â
′
=< x̂

′
, b̂0>. (9)

So, we gain
â
′
= 0 ⇔< t̂, b̂0>=0 ⇔ b̂0=â1x̂+â3ĝ; (10)

for some dual numbers â1, â3 ∈ D, and â2
1 + â2

3 = 1, the result is clear. 2- Differentiation of
Equation (10) leads to:

â
′′
=< x̂

′′
, b̂0>= < −x̂ + γ̂ĝ, b̂0> . (11)

By the Equations (10) and (11) we have:

â
′
= â

′′
= 0 ⇔< x̂, b̂0>= < x̂, b̂0>=0 ⇔ b̂0= ± x̂× x̂

‖x̂× x̂‖ = ±b̂.

3- Differentiation of Equation (11) leads to:

â
′′′
=< x̂

′′′
, b̂0 >= −

(
1 + γ̂2

)
< t̂, b̂0>+ γ̂

′
< ĝ, b̂0>

Hence, we have:
â
′
= â

′′
= â

′′′
= 0 ⇔ b̂0= ±b̂, and γ̂

′ �= 0.

4- By the analogous arguments, we can also have:

â
′
= â

′′
= â

′′′
= â

′′′′
= 0 ⇔ b̂0= ±b̂, γ̂

′
= 0, and γ̂

′′ �= 0.

This completed the proof.

In view of the Proposition 1, we have the following:

(a) The osculating circle S(ρ̂, b̂0) of x̂(ŝ) ∈ K is displayed by

< b̂0,x̂>= ρ̂(ŝ), <x̂, b̂0 >= 0,<x̂, b̂0 >= 0,

10
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which are specified via the condition that the osculating circle must have osculate of
at least 3rd order at x̂(ŝ0) iff γ̂

′ �= 0.
(b) The osculating circle S(ρ̂, b̂0) and the curve x̂(ŝ) ∈ K have at least 4-th order at x̂(s0)

iff γ̂
′
= 0, and γ̂

′′ �= 0.

In this manner, by catching into contemplation the evolutes of x̂(ŝ) ∈ K, we can gain a
sequence of evolutes b̂2, b̂3,..., b̂n. The proprietorships and the mutual connections through
these evolutes and their involutes are very enjoyable problems. For instance, it is not
difficult to address that when b̂0=± b̂, and γ̂

′
= 0, x̂(ŝ) is existing at ψ̂ is stationary relative

to b̂0. In this case, the Disteli-axis is stationary up to 2nd order, and the line x̂ moves over
it with stationary pitch. Thus, the ruled surface (x̂) with stationary Disteli-axis is formed
by line x̂ situated at an stationary distance ψ∗ and stationary angle ψ with respect to the
Disteli-axis b̂, that is,

γ̂(ŝ) := γ + ε(�− γμ) = cot ψ̂ = ĉ,

where ĉ = c + εc∗ ∈ D. By separating the real and dual parts, the following theorem can
be stated:

Theorem 1. A non-developable ruled surface (x̂) is a stationary Disteli-axis iff γ(s) = constant,
and (�− γμ) = constant.

Furthermore, in the case of

γ̂(ŝ) := γ + ε(�− γμ) = 0 = cot ψ− εψ∗(1 + cot2 ψ),

then x̂(ŝ) is a dual great circle on K, that is,

ĉ = {x̂∈K |< x̂, b̂ >= 0; with
∥∥∥b̂
∥∥∥2

= 1}.

In this case, all the rulings of (x̂) intersected orthogonally with the stationary Disteli-axis b̂,
that is, ψ = π

2 , and ψ∗ = 0. Thus, we have γ̂(ŝ) := γ + ε(�− γμ) = 0 ⇔(x̂) is a helicoidal
ruled surface.

Corollary 2. A non-developable ruled surface (x̂) is a helicoidal ruled surface iff γ(s) = 0, and
�(s) = 0.

For γ̂(ŝ) is a constant dual number, from the Equations (3) and (8), we have the

ODE, x̂
′′′
+ κ̂2x̂

′
= 0. After several algebraic manipulations, the general solution of this

equation is:
x̂(θ̂) =

(
sin ψ̂ sin θ̂,− sin ψ̂ cos θ̂, cos ψ̂

)
.

Here κ̂ŝ := θ̂ = θ + εθ∗; where 0 ≤ θ ≤ 2π, and θ∗ ∈ R. If we set θ̂ = θ(1 + εh), h being the
pitch of the screw movement, then we have⎛⎝ x̂

t̂

ĝ

⎞⎠ =

⎛⎜⎝ sin ψ̂ sin θ̂ − sin ψ̂ cos θ̂ cos ψ̂

cos θ̂ sin θ̂ 0
− sin θ̂ cos ψ̂ cos θ̂ cos ψ̂ sin ψ̂

⎞⎟⎠
⎛⎜⎝ î

ĵ

k̂

⎞⎟⎠, (12)

and

dŝ =
∥∥∥∥dx̂

dθ

∥∥∥∥dθ = (1 + εh) sin ψ̂dθ, (13)

Then,
μ = ψ∗ cot ψ + h, and � = h cot ψ− ψ∗. (14)

11
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Further, the Disteli-axis b̂ is:

b̂ =
γ̂r̂+ĝ√
γ̂2 + 1

= k̂. (15)

This means that the stationary axis of the helical movement is the Disteli-axis b̂. From
real and dual parts, respectively, we have:

x(θ) = (sin ψ sin θ,− sin ψ cos θ, cos ψ),

and

x∗(θ) =

⎛⎝ r∗1
r∗2
r∗3

⎞⎠ =

⎛⎝ θ∗ cos θ sin ψ + ψ∗ cos ψ sin θ
θ∗ sin θ sin ψ− ψ∗ cos ψ cos θ

−ψ∗ sin ψ

⎞⎠.

Let m(m1, m2, m3) be a point on x̂. Since m×x=x∗ we have the system of linear equations
in m1, m2, and m3:

m2 cos ψ + m3 sin ψ cos θ = x∗1 ,
−m1 cos ψ + m3 sin ψ sin θ = x∗2 ,

−m1 sin ψ cos θ −m2 sin ψ sin θ = x∗3 .

⎫⎬⎭
The matrix of coefficients of unknowns m1, m2, and m3 is:⎛⎝ 0 cos ψ sin ψ cos θ

− cos ψ 0 sin ψ sin θ
− sin ψ cos θ − sin ψ sin θ 0

⎞⎠,

and thus its rank is 2 with ψ �= pπ (p is an integer), and ψ �= 0. The rank of the augmented
matrix: ⎛⎝ 0 cos ψ sin ψ cos θ x∗1

− cos ψ 0 sin ψ sin θ x∗2
− sin ψ cos θ − sin ψ sin θ 0 x∗3

⎞⎠,

is 2. Then this set has infinitely numerous solutions given with

m1 = ψ∗ cos θ − (θ∗ −m3) tan ψ sin θ,
m2 = ψ∗ sin θ + (θ∗ −m3) tan ψ sin θ,

m1 cos θ + m2 sin θ = ψ∗.
(16)

Since m3 is selected at random, then we may occupy θ∗ − m3 = 0. In this case,
Equation (16) reads

m1 = ψ∗ cos θ, m2 = ψ∗ sin θ, m3 = θ∗.

We now just find the base curve as;

m(θ) = (ψ∗ cos θ, ψ∗ sin θ, hθ).

It can be show that < m
′
, x

′
>= 0; (′ = d

dθ ) so the base curve of (x̂) is its striction curve. The
curvature κc(θ), and the torsion τc(θ), respectively, are

κc(θ) =
ψ∗

ψ∗2 + h2 , and τc(θ) =
h

ψ∗2 + h2 .

Then c(θ) is a cylindrical helix, and the ruled surface (x̂) is:

(x̂) : y(θ, v) =

⎛⎝ ψ∗ cos θ + v sin ψ sin θ
ψ∗ sin θ − v sin ψ cos θ

hθ + v cos ψ

⎞⎠, (17)

where ψ, ψ∗, and h can control the shape of (x̂). The stationary Disteli-axis ruled surface
(x̂) can be classified into four types according to the shapes of their striction curves:

12
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(1) Archimedes helicoid with the striction curve is a helix: for h = ψ∗ = 1, ψ = π
4 ,

0 ≤ θ ≤ 2π and −7 ≤ v ≤ 7 (Figure 1),
(2) Right helicoid with the striction curve is a helix,: for h = ψ∗ = 1, ψ = π

2 , 0 ≤ θ ≤ 2π
and −3 ≤ v ≤ 3 (Figure 2),

(3) Hyperboloid of one-sheet with the striction curve is a circle: for h = 0, ψ∗ = 1, ψ = π
4 ,

0 ≤ θ ≤ 2π and −7 ≤ v ≤ 7 (Figure 3),
(4) A cone with the striction curve is a point: for h = ψ∗ = 0, ψ = π

4 , 0 ≤ θ ≤ 2π and
−7 ≤ v ≤ 7 (Figure 4).

Figure 1. Archimedecs helicoid.

Figure 2. Right helicoid.

Figure 3. Hyperboloid of one-sheet.

13
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Figure 4. A cone.

4. Bertrand Offsets of Ruled Surfaces

In this section, we consider the Bertrand offsets of ruled and developable surfaces,
then a theory comparable to the theory of Bertrand curves can be raised for such surfaces.

Definition 1. Let (x̂) and (x̂) be two non-developable ruled surfaces in E3. The surface (x̂) is said
to be Bertrand offsets of (x̂) if there exists a one-to-one correspondence among their rulings such
that both surfaces have a mutual central normal at the corresponding striction points.

Let (x̂) be a Bertrand offset of (x̂) with the Blaschke frame {x̂(ŝ), t̂(ŝ), ĝ(ŝ)}, it can be
computed as mentioned in the above equations. Consider φ̂ = φ + εφ∗ be the dual angle
among the rulings of (x̂) and (x̂) at the corresponding points, that is,

< x̂, x̂ >= cos φ̂. (18)

By differentiating of Equation (18) with respect to ŝ, we find

< t̂, x̂ > ŝ
′
+ < x̂, t̂ >= −φ̂

′
sin φ̂. (19)

Since (x̂) and (x̂) are Bertrand offsets (̂t = t̂), then we have φ̂
′
= 0, so that φ̂ = φ + εφ∗ is

an stationary dual number. Thus, the following Theorem can be given:

Theorem 2. The offset angle φ and the offset distance φ∗ among the rulings of a non-developable
ruled surface and its Bertrand offset are constants.

It is evident from Theorem 2 that a ruled surface, generally, has a double infinity of
Bertrand offsets. Each Bertrand offset can be formed by an stationary linear offset φ∗ ∈ R
and an stationary angular offset φ ∈ [0, 2π]. Any two surfaces of this pencil of ruled surfaces
are reciprocal of one another; if (x̂) is a Bertrand offset of (x̂), then (x̂) is likewise a Bertrand
offset of (x̂). So, we can write

x̂(ŝ)= cos φ̂x̂(ŝ) + sin φ̂ĝ(ŝ). (20)

In the view of the fact that for a ruled surface and its Bertrand offset the central normals
coincide, it follows from Theorem 1 that the central tangents of the two ruled surfaces
also construct the same stationary dual angle at the matching striction points. Thus, the
relationship among their Blaschke frames can be written as:⎛⎜⎝ x̂(ŝ)

t̂(ŝ)
ĝ(ŝ)

⎞⎟⎠ =

⎛⎝ cos φ̂ 0 sin φ̂
0 1 0

− sin φ̂ 0 cos φ̂

⎞⎠⎛⎝ x̂(ŝ)
t̂(ŝ)
ĝ(ŝ)

⎞⎠. (21)
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The major point to note here is the technique we have used (compared with [5,12]).
The equation of the striction curve of the offset surface (x̂), in terms of its base surface (x̂),
can therefore be written as

c(s) = c(s) + φ∗t(s). (22)

Hence, the equation of (x̂) in terms of (x̂) can be written as

(x̂) : y(s, v) = c(s) + φ∗t(s) + v(cos φx(s) + sin φg(s)), v ∈ R. (23)

Let ξ(s, v) be the unit normal of an arbitrary point on (x̂). Then, as in Equation (6), we
have:

ξ(s, v) =
μt− vg√

μ2 + v2
, (24)

where μ is the distribution parameter of (x̂). It is evident from Equations (6) and (24) that
the normal to a ruled surface and its Bertrand offsets are not the same. This signifies that
the Bertrand offsets of a ruled surface are, generally, not parallel offsets. Therefore, the
parallel conditions among (x̂) in terms of (x̂) can be specified by the following theorem:

Theorem 3. A non-developable ruled surface (x̂) and its Bertrand offset (x̂) are parallel offsets if
and only if (i) μ = μ, (ii) each edge of the Blaschke frame of (x̂) is collinear with the conformable
edge for (x̂).

Proof. Suppose a non-developable ruled surface (x̂) and its Bertrand offset (x̂) are parallel
offsets, or ξ(s, v)× ξ(s, v) = 0, we have the following expression by Equations (6) and (24)

v(μ cos φ− μ)x+v2 sin φt+vμ sin φg = 0.

The above equation should be hold true for any value v �= 0, which leads to φ = 0 and
μ = μ.

Suppose that the two conditions of Theorem 2 hold true, that is, φ = 0, μ = μ, and
then substitute them into ξ(s, v)× ξ(s, v), we have

ξ(s, v)× n(s, v) =
μt− vg√

μ2 + v2
× μt− vg√

μ2 + v2

the result of the above equation is zero vector, which implies that (x̂) and (x̂) are parallel
offsets.

Deriving again in the same manner, but now for developable surface μ = 0, we have:

Corollary 3. A developable ruled surface (x̂) and its developable Bertrand offset (x̂) are parallel
offsets if and only if each edge of the Blaschke frame of (x̂) is collinear with the conformable edge
for (x̂).

Corollary 4. A developable ruled surface (x̂) and its non-developable Bertrand offset (x̂) can not
be parallel offsets.

On the other hand, we also have

d
dŝ

⎛⎜⎝ x̂(ŝ)
t̂(ŝ)
ĝ(ŝ)

⎞⎟⎠ =

⎛⎝ 0 1 0
−1 0 γ̂

0 −γ̂ 0

⎞⎠
⎛⎜⎝ x̂(ŝ)

t̂(ŝ)
ĝ(ŝ)

⎞⎟⎠, (25)

where
dŝ = (cos φ̂ + γ̂ sin φ̂)dŝ, γ̂dŝ = (γ̂ cos φ̂− sin φ̂)dŝ.
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By eliminating dŝ
dŝ

, we attain

(γ̂− γ̂) cos φ̂ + (1 + γ̂γ̂) sin φ̂ = 0. (26)

This is a dual version of Bertrand offsets of ruled surfaces in terms of their dual geodesic
curvatures.

Theorem 4. The non-developable ruled surfaces (x̂) and (x̂) form a Bertrand offsets if and only if
the Equation (23) is satisfied.

Corollary 5. The Bertrand offset (x̂) of a helicoidal surface, generally, does not have to be a
helicoidal.

Corollary 6. The Bertrand offset of an stationary Disteli-axis ruled surface is also an stationary
Disteli-axis ruled surface.

Furthermore, the striction curve of (x̂), in terms of c(θ), can be written as:

c(θ) := c(θ) + φ∗t(θ) = (ψ∗ cos θ, ψ∗ sin θ, hθ) + φ∗(cos θ, sin θ, 0). (27)

With the help of the Equations (17), (21) and (27), we obtain

(x̂) : y(θ, v) =

⎛⎝ (ψ∗ + φ∗) cos θ + v sin(ψ− φ) sin θ
(ψ∗ + φ∗) sin θ − v sin(ψ− φ) cos θ

hθ + v cos(ψ− φ)

⎞⎠. (28)

Example 1. In this example, we verify the idea of Corollary 5. In view of Theorem 1, and Equa-
tion (26) we have that: γ̂ = cot ψ̂ = 0 (ψ = π

2 , ψ∗ = 0)⇔ γ̂ + cot φ̂ = 0. Then, in view of
Equations (17) and (28), the ruled surface

(x̂) : y(θ, v) =

⎛⎝ φ∗ cos θ + v cos φ sin θ
φ∗ sin θ − v cos φ cos θ

hθ + v sin φ

⎞⎠,

is the Bertrand offset of the helicoidal surface (Figure 5)

(x̂) : y(θ, v) = (v sin θ,−v cos θ, hθ).

Take φ∗ = 1, φ = π
4 and h = 1 for example the Bertrand offset is shown Figure 6; where

0 ≤ θ ≤ 2π, −3 ≤ v ≤ 3. The graph of the helicoidal surface (x̂) with its Bertrand offset (x̂) is
shown in Figure 7.

Figure 5. Helicoidal surface.
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Figure 6. Bertrand offset of the helicoidal surface.

Figure 7. Helicoidal surface with its Bertrand offset.

The Striction Curves

In this subsection, we consider the striction curves of the Bertrand offsets. With the
aid of Equation (19), the tangent of the striction curve c(s) of (x̂) is

dc(s)
ds

= [(�− φ∗)x + (μ + γφ∗)g]
ds
ds

, (29)

whereas, as in Equation (4), is:

dc(s)
ds

= �(s)x(s) + μ(s)g(s). (30)

From Equations (29) and (30) we attain

ds
ds

=
�− φ∗

� cos φ + μ sin φ
=

μ + γφ∗

−� sin φ + μ cos φ
. (31)

Hence, we have two main different cases:
(a) In the case of (x̂) is tangential surface, that is, μ = 0. In this case the Blaschke

frame {x(s), t(s), g(s)} turn into the classical Serret-Frenet frame {t(s), n(s), b(s)} and the
striction curve c(s) turns out to be the edge of regression of (x̂). Therefore, we find⎛⎝ t

n

b

⎞⎠ =

⎛⎝ cos φ 0 − sin φ
0 1 0

sin φ 0 cos φ

⎞⎠⎛⎝ t

n

b

⎞⎠, (32)

and
c(s) = c(s) + φ∗n(s). (33)

Moreover, the curvature κ(s) and the torsion τ(s) of c(s) can be specified by

κ(s) =
1

�(s)
, τ(s) =

γ(s)
�(s)

.
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Therefore, from Equation (31) we have

μ = �
(1− φ∗κ) sin φ + τφ∗ cos φ

(1− φ∗κ) cos φ− τφ∗ sin φ
. (34)

Thus the Bertrand offset of a developable surface is not developable, that is, μ(s) �= 0.
Furthermore, if the ruled surface (x̂) is also a tangential developable, that is, μ(s) = 0. Then,
from Equation (34), we gain

(1− φ∗κ) sin φ + τφ∗ cos φ = 0. (35)

Theorem 5. (x̂) and (x̂) are tangential Bertrand offsets if and only if their striction curves are
Bertrand curves.

Corollary 7.

(i) If φ = 0, then φ∗ = 0 or τ = 0,
(ii) If φ∗ = 0, then φ = 0, that is, the rulings are identical,
(iii) If τ = 0, and φ∗ �= 0, then κ(υ) = 1/φ∗ is stationary or φ = 0,
(iv) φ = π/2, and φ∗ �= 0, then κ(υ) = 1/φ∗ is stationary.

From Equation (28), we also have

cos φds = (1− φ∗κ)ds, and sin φds + φ∗τds = 0. (36)

If c(s) = c(s + 2π) (c(s) = c(s + 2π)), then (x̂) (resp. (x)) is a closed tangential surface. Let
L (resp. L) be the length of the edge of regression of (x̂) (resp. (x̂)) c(υ). Since both φ∗, and
φ are stationary, integration of the first expression in Equation (36) yields

L cos φ = L− φ∗
∮

c(s)

κds.

If n = −n, then c(s) = c(s) + φ∗n(s), so by the symmetry of the mating relationship,

L cos φ = L− φ∗
∮

c(s)

κds.

Hence cos φ = cos φ, and adding the previous two equations

(
L+ L

)
(1− cos φ) = φ∗

⎛⎜⎝ ∮
c(s)

κds +
∮

c(s)

κds

⎞⎟⎠, (37)

or (
L+ L

)
sin2 φ

2
=

φ∗

2

⎛⎜⎝ ∮
c(s)

κds +
∮

c(s)

κds

⎞⎟⎠. (38)

In view of the Fenchel’s inequality [17], we have

L+ L ≥ 2πφ∗.

Corollary 8. The sum of the lengths of the striction curves of the tangential offsets is never inferior
to 2π times the distance through their corresponding points.
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If the striction curve c(s) is self-mated curve, that is, c(s) = c(s), the Formula (37) turn
into

L =
φ∗

1− cos φ

∮
c(s)

κ(s)ds, with 1− cos φ �= 0. (39)

If φ = (2p + 1)π (p is an integer) then cos φ = −1, and therefore Equation (39) become

L =
φ∗

2

∮
c(s)

κ(s)ds. (40)

Furthermore, if the striction curve c(s) is a planar curve, then∮
c(s)

κ(s)ds = 2π. (41)

From Equations (40) and (41) we get L = πφ∗. Thus we have the following theorem:

Theorem 6. The length of a self-mated striction curve c(s) of (x̂) is π times its width (breadth).

(b) In the case of (x̂) is a binormal surface, that is, � = 0. In this case, from
Equation (31), we have:

� = μ
φ∗ cos φ− (γφ∗ + μ) sin φ

φ∗ sin φ + (γφ∗ + μ) cos φ
. (42)

Thus the Bertrand offset of a binormal is not binormal, that is, �(s) �= 0. Further, if the
Bertrand offset (x̂) is also a binormal, then we can find:

(1 + φ∗κ) sin φ− φ∗τ cos φ = 0.

Theorem 7. (x̂) and (x̂) are binormal Bertrand offsets if and only if their striction curves are
Bertrand curves.

In a similar manner, all the results of the tangential surface may be given for the
binormal ruled surface.

5. Conclusions

In this study, an extension of Bertrand offsets of curves for ruled, and developable
surfaces has been improved. Noteworthy, there are numerous similarities through the
Bertrand curves and the Bertrand offsets for ruled surfaces. For example, a ruled surface
can have an infinity of Bertrand offsets in analogy with a plane curve can have an infinity
of Bertrand mates. From this result the proofs of the theorems of Fenchel and Barbier are
reproved by an elegant method. Meanwhile, the derivations of some useful geometric
relations, examples and instructive figures of the ruled surfaces are included. For future
study, we will catch with the novel ideas that Gaussian and mean curvatures of these
Bertrand offsets can be gained, when the Weingarten map for the Bertrand offsets ruled
surfaces is realized. We will also address integrating the work of singularity theory and
submanifold theory and so forth, given in [19–22], with the results of this paper to explore
new methods to find more theorems related to symmetric properties on this subject.
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Abstract: The purpose of this paper is to find some conditions under which the tangent bundle
TM has a dualistic structure. Then, we introduce infinitesimal affine transformations on statistical
manifolds and investigate these structures on a special statistical distribution and the tangent bundle
of a statistical manifold too. Moreover, we also study the mutual curvatures of a statistical manifold
M and its tangent bundle TM and we investigate their relations. More precisely, we obtain the mutual
curvatures of well-known connections on the tangent bundle TM (the complete, horizontal, and
Sasaki connections) and we study the vanishing of them.

Keywords: infinitesimal affine transformations; mutual curvature; statistical manifold; tangent
bundle

MSC: 53B12; 53B20; 53C15

1. Introduction

Concerning the necessity of the study of tangent bundles, it can be stated that the
concept of the tangent bundle is used widely in classical mechanics and especially in
Lagrangian formalism. The tangent bundle can also describe the motion of objects in all
classical mechanics scenarios, with a coordinate system such that the first n tuples of it
represent the position of an object and the second n tuples of it represent the velocity of
the object. This coordinate system is an effective tool in the study of geometric structures
of the TM. So, we can regard the TM as the state space in classical mechanics. In fact,
the tangent bundle of a differential manifold M assembles all of the tangent vectors in
M. On the other hand, vector fields on tangent bundles belong to basic concepts of pure
and applied differential geometry, global analysis, and mathematical physics. Semisprays,
sprays, and geodesic sprays are important classes of vector fields on tangent bundles. For
instance, the semispray theory has been used in the calculus of variations on manifolds to
characterize extremal curves of a variational functional as integral curves of the Hamilton
or Euler–Lagrange vector fields. Sprays and semisprays also provide a natural framework
for the extension of classical results of analytical mechanics to contemporary mechanical
problems and stimulate a broad research field in the global theory of nonconservative
systems, symmetries, and constraint theory (see [1] for more details).

The geometry of tangent bundles with Riemannian lift metrics has been studied very
extensively in recent years (see [2–8], for instance). In this paper, we consider one of the
famous Riemannian lift metrics, the Sasaki metric. Then, using this metric and its Levi-
Civita connection, we investigate some of the geometric structures on the TM. The focus of
this paper is concerned with the equations of a dualistic structure on the TM. Then, we

Axioms 2023, 12, 667. https://doi.org/10.3390/axioms12070667 https://www.mdpi.com/journal/axioms21
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investigate the mutual curvature of the TM and its relation with the curvature of M and
the mutual curvature of M.

Information geometry is the combination and interaction of differential geometry and
statistics [9]. In addition, it is an important and useful bridge between applicable and pure
sciences (see [9,10], for instance). In this area, we use and extend the methods of differential
geometry in probability theory. The mathematical point of view of information geometry
started with C. R. Rao. He showed that a statistical model should be a differentiable
Riemannian manifold, via the Fisher information matrix. This means that we can define a
Riemannian metric in the space of probability distributions. In fact, information geometry is
the study of natural geometric structures using families of probability distributions. Two of
the main objects in this area are statistical connections and statistical manifolds. They have
applications in fields such as computer science and physics. In fact, a statistical manifold is
a manifold whose points are probability distributions (see [9–12]).

A statistical structure on a manifold M is a pair (g,∇) such that g is a Riemannian
(semi-Riemannian) metric and ∇ is a torsion-free linear connection such that ∇g is totally
symmetric. A Riemannian (semi-Riemannian) manifold (M, g) together with the Levi-
Civita connection ∇ of g is a typical example of a statistical manifold. In other words,
statistical manifolds can be regarded as generalizations of Riemannian (semi-Riemannian)
manifolds. Statistical manifolds provide geometric models of probability distributions. The
geometries of statistical manifolds have been applied to various fields of information sci-
ence, information theory, neural networks, machine learning, image processing, statistical
mechanics, etc. (see [9,10], for instance).

The organization of this paper is as follows: In the first part we introduce the concept
of the infinitesimal affine transformation of the Riemannian manifold (M, g) with respect
to the affine connection ∇. Then, using an explicit example we find conditions such that
a vector field X be an infinitesimal affine transformation of the 2-dimensional statistical
manifold M2. In fact, we solve a system of partial differential equations and this solution
gives us the general form of any infinitesimal affine transformation of M2. To continue, we
also find conditions under which the vector fields XV and XC are an infinitesimal affine
transformation of the TM with respect to the (α)-connection ∇(α).

In the second part, we study the geometry of the dualistic structure of M and the
mutual curvature on the statistical manifolds. Then, we prove that under which conditions
R and R∗ are parallel with respect to the (α)-connection∇(α), where R and R∗ are curvature
tensors of the dualistic structure (∇,∇∗) on M. Then, we extend this problem to the mutual
curvature R∇,∇∗ as mentioned in [13]. Moreover, we find conditions such that the (α)-
curvature R(α) is parallel with respect to the (β)-connection ∇(β). In the next part, we
provide conditions such that the TM equipped with them has a dualistic structure, and
then, we find equations in which the TM equipped with them is a conjugate symmetric
space. We also study the mutual curvature R̃ H

∇,
C
∇

on the TM and its relation with the

curvature of M, where ∇ is an affine connection on M and
C
∇ and

H
∇ are the complete lift

and horizontal lift connections on the TM, respectively. At the end, we investigate the

mutual curvature R̃ 1
∇S ,

2
∇S

, where {
1
∇,

2
∇} is a pair of the Levi-Civita connections of two non-

isometric Riemannian metrics g1 and g2, and
1
∇S and

2
∇S are the Levi-Civita connections

of the Sasaki lift metrics gS
1 and gS

2 on the TM, respectively. Moreover, we prove that the
mutual curvature R̃ S

∇,
C
∇

vanishes if and only if M is a flat space with respect to the ∇, where

∇ is the Levi-Civita connection of the metric g and ∇S is the Levi-Civita connection of
the Sasaki lift metric gS. Moreover, in this case we prove that the mutual curvature R̃ S

∇,
C
∇

reduces to the Riemannian curvature tensor of the Levi-Civita connection ∇S. At the end
of this paper, we give an explicit example of the mutual curvature.
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2. Preliminaries

In this section, we introduce some basic facts that we use throughout the paper.
Let (xi), i = 1, · · · , n, be a coordinate system on M, (xi, yi) be the induced coordinate

system on the TM, and { ∂
∂xi |(x,y),

∂
∂yi |(x,y)} be the natural basis of T(x,y)TM. Then, the

various lifts of a vector field X = Xi∂i on M (complete lift, horizontal lift, and vertical lift,
respectively) are defined as follows:

XC = Xi ∂

∂xi + ya(∂aXi)
∂

∂yi , XH = Xi ∂

∂xi − yaΓk
aiX

i ∂

∂yk , XV = Xi ∂

∂yi .

It is known that T(x,y)TM can be decomposed to H(x,y)TM⊕V(x,y)TM, where H(x,y)TM

is spanned by { δ
δxi |(x,y):= ( ∂

∂xi )
h = ∂

∂xi |(x,y) −ykΓj
ki(x) ∂

∂yj |(x,y)} and V(x,y) is spanned by

{ ∂
∂yi |(x,y):= ( ∂

∂xi )
v}. For simplicity, we write ∂i, δi, and ∂ī instead of ∂

∂xi ,
δ

δxi , and ∂
∂yi .

Let (M, g) be a Riemannian manifold. Similar to the lifts of vector fields, we can
construct the Sasaki lift metric gS on the TM as follows:

gS
(x,y)(XH , YH) = gx(X, Y), gS

(x,y)(XV , YH) = 0, gS
(x,y)(XV , YV) = gx(X, Y). (1)

The Levi-Civita connection of the Sasaki metric gS is as follows:

(∇S
XH YH)(x,y) = (∇XY)H

(x,y) −
1
2
(Rx(X, Y)y)V , (∇S

XV YH)(x,y) =
1
2
(Rx(y, X)Y)H , (2)

(∇S
XH YV)(x,y) = (∇XY)V

(x,y) +
1
2
(Rx(y, Y)X)H , (∇S

XV YV)(x,y) = 0, (3)

for all vector fields X, Y on M, and (x, y) ∈ TM.

If ∇ is a linear connection, then the horizontal lift connection
H
∇ and complete lift

connection
C
∇ of ∇ are, respectively, defined by [14]:

H
∇XH YH = (∇XY)H ,

H
∇XH YV = (∇XY)V ,

H
∇XV YH =

H
∇XV YV = 0,

C
∇XH YH = (∇XY)H + (R(y, X)Y)V ,

C
∇XV YH =

C
∇XV YV = 0, (4)

C
∇XH YV = (∇XY)V ,

C
∇XC YC = (∇XY)C,

C
∇XC YV =

C
∇XV YC = (∇XY)V .

According to [14], the Lie brackets of the horizontal lift and vertical lift of vector fields
are as follows:
[XH , YH ] = [X, Y]H − (R(X, Y)y)V , [XH , YV ] = (∇XY)V − T(X, Y)V , [XV , YV ] = 0. (5)

Let (M, g) be an n-dimensional Riemannian manifold and ∇ be an affine connection
on M. A Codazzi couple on M is a pair (g,∇) such that the cubic tensor field C = ∇g is
totally symmetric, namely, the Codazzi equations hold:

(∇X g)(Y, Z) = (∇Yg)(Z, X) = (∇Zg)(X, Y), ∀X, Y, Z ∈ χ(M).

In this case, the triplet (M, g,∇) is called a Codazzi manifold and∇ is called a Codazzi
connection. Furthermore, if ∇ is torsion free, then (M, g,∇) is a statistical manifold, (g,∇)
is a statistical couple, and ∇ is a statistical connection. In local coordinates, C has the
following form:

C(∂i, ∂j, ∂k) = ∂ig(∂j, ∂k)− g(∇∂i
∂j, ∂k)− g(∂j,∇∂i

∂k),

and so Cijk = ∂igjk − Γr
ijgrk − Γr

ikgjr, Cijk = Cjki = Ckij, where Γr
ij are the connection

coefficients of ∇.
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We also recall that if (M, g) is a Riemannian (pseudo-Riemannian) manifold, two
affine torsion-free connections ∇ and ∇∗ on M are said to be dual connections with respect
to g if the following equation is satisfied:

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ), ∀X, Y, Z ∈ χ(M), (6)

and in this case, we call (g,∇,∇∗) a dualistic structure on M. Furthermore, if we denote
by R and R∗ the curvature tensors of ∇ and ∇∗, then we say that (M, g) is a conjugate
symmetric space if R = R∗. Moreover, if (g,∇,∇∗) is a dualistic structure on M, then
{∇(α)}α∈R given by

∇(α) =
1 + α

2
∇+

1− α

2
∇∗, ∀α ∈ R, (7)

is a family of affine connections, which is called an α-connection. It is known that if ∇ and
∇∗ are statistical connections, then ∇(α) is a statistical connection for any α ∈ R [15,16].

3. Infinitesimal Affine Transformations on Statistical Manifolds

Definition 1. Let (M, g) be a Riemannian manifold, X be a vector field, and ∇ be an affine
connection on M. Then, X is said to be an infinitesimal affine transformation of M with respect to
∇ if LX∇ = 0, where LX∇ is the Lie derivative of ∇ with respect to X given by

(LX∇)(Y, Z) = LX(∇YZ)−∇Y(LXZ)−∇[X,Y]Z. (8)

Setting X = Xi∂i, Y = ∂j, and Z = ∂k, then the local expression of (8) is as follows:

(LXi∂i
∇)(∂j, ∂k) = {Xi∂i(Γt

jk)− Γr
jk∂r(Xt) + ∂j∂k(Xt) + ∂k(Xi)Γt

ji + ∂j(Xi)Γt
ik}∂t, (9)

Example 1. Here, we consider a p-dimensional statistical manifold. The importance of the dis-
tribution family introduced below lies in the fact that its member is a non-Gaussian multivariate
distribution while the marginal distribution is Gaussian, which implies that a set of marginal distri-
butions does not uniquely determine the multivariate normal distribution [17]. A p-dimensional
statistical manifold is defined by

M =
{

f (x; λ)| f (x; λ) = 2Πp
i=1

√
λi√
2π

e−
λi x2

i
2 , x ∈ Ωp, λ ∈ R

p
+

}
,

where
Ωp = {x = (x1, · · · , xp) ∈ Rp|Πp

i=1xi > 0},

R
p
+ = {x = (x1, · · · , xp) ∈ Rp|xi > 0, i = 1, · · · , p}.

The distribution in M can be rewritten as

f (x; λ) = e
1
2

p

∑
i=1

log(−θi) +
p

∑
i=1

θix2
i +

p
2

log 2− log
√

2π,

where θi = − 1
2 λi. This is one member of the exponential family with the natural coordinates

(θ1, · · · , θp) and the potential function ψ(θ) = − 1
2 ∑

p
i=1 log(−θi). It is known that for the

exponential family, the Fisher information is just the second derivative of the potential function

gij =
∂2ψ

∂θi∂θj
= −1

2
1

θiθj
δij, (10)

and the α-connection is the third derivative of the potential function

Γ(α)
ijk =

1− α

2
∂3ψ

∂θi∂θj∂θk
= −1− α

2
1

θiθjθk
δijk, (11)
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where δii = 1 for i = 1, · · · , p, δij = 0 for i �= j, and δiii = 1 for i = 1, · · · , p, δijk = 0 for unequal
i, j, k (see [18] for more details). For p = 2, the matrix expression of the metric g given by (10) and
its inverse matrix are as follows:

g =

⎡⎣− 1
2θ2

1
0

0 − 1
2θ2

2

⎤⎦, g−1 =

[−2θ2
1 0

0 −2θ2
2

]
. (12)

Combining (11) and (10) we get

Γ(α)1
11 =

1− α

θ1
, Γ(α)2

22 =
1− α

θ2
, Γ(α)k

ij = 0, for unequal i, j, k. (13)

Now, let X = X1∂1 + X2∂2 be an infinitesimal affine transformation of M with respect to ∇, where
∂1 = ∂

∂θ1
and ∂2 = ∂

∂θ2
. Then, from (9) we obtain

{Xi∂i(Γt
jk)− Γr

jk∂r(Xt) + ∂j∂k(Xt) + ∂k(Xi)Γt
ji + ∂j(Xi)Γt

ik} = 0. (14)

If we take j, k, t ∈ {1, 2}, then we obtain the following system of equations

X1(α− 1)
θ2

1
+ ∂2

1(X1) + ∂1(X1)(
1− α

θ1
) = 0, (15)

X2(α− 1)
θ2

2
+ ∂2

2(X2) + ∂2(X2)(
1− α

θ2
) = 0, (16)

(
α− 1

θ1
)∂1(X2) + ∂2

1(X2) = 0, (17)

(
α− 1

θ2
)∂2(X1) + ∂2

2(X1) = 0, (18)

∂1∂2(X1) + ∂2(X1)(
1− α

θ1
) = 0, (19)

∂1∂2(X2) + ∂1(X2)(
1− α

θ2
) = 0. (20)

From (19), we have ∂2(∂1X1 + X1( 1−α
θ1

)) = 0. So, (∂1X1 + X1( 1−α
θ1

)) is a function with respect
to θ1 only, i.e., ∂1X1 + X1( 1−α

θ1
) = f (θ1). Thus,

X1(
1− α

θ1
) = f (θ1)− ∂1X1. (21)

From (15), we find

∂1(X1(
1− α

θ1
)) + ∂2

1X1 = 0. (22)

Substituting (21) in (22), we obtain ∂1 f = 0, which gives f (θ1) = A, where A is a constant. So,
we have

∂1X1 + X1(
1− α

θ1
) = A, (23)

which is a linear differential equation with respect to θ1. Thus, we have the following solution:

X1 = e−
∫ 1−α

θ1
dθ1 [

∫
Ae
∫ 1−α

θ1
dθ1 dθ1 + C(θ2)] (24)

= θα−1
1 (A

θ2−α
1

2− α
+ C(θ2)) =

Aθ1

2− α
+ C(θ2)θ

α−1
1 . (25)
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It is easy to check that X1 = Aθ1
2−α + C(θ2)θ

α−1
1 satisfies (15) and (19). Setting X1 in (18) we obtain

θα−1
1 (C′′(θ2) +

α− 1
θ2

C′(θ2)) = 0. (26)

So, we have the following ordinary differential equation

C′′(θ2) +
α− 1

θ2
C′(θ2) = 0. (27)

It is easily seen that the above ODE has the solution

C(θ2) =
E
α

θα
2 + F, (28)

where E and F are constants. Therefore, we have

X1 =
A

2− α
θ1 + (

E
α

θα
2 + F)θα−1

1 . (29)

Similarly, we obtain

X2 =
B
2α

θ2 + (
G
α

θα
1 + H)θα−1

2 , (30)

where B, G, and H are constants.

Let ∇ be an affine connection on the Riemannian manifold M and let X be a vector
field on M. Then, we have (see [14])

LXV

C
∇ = (LX∇)V , LXC

C
∇ = (LX∇)C. (31)

Now, we assume that (g,∇,∇∗) is a dualistic structure on the Riemannian manifold M
and let X be an infinitesimal affine transformation of M with respect to ∇ and ∇∗. Then, (7)
gives us

(LX∇(α))(Y, Z) =
1 + α

2
(LX∇)(Y, Z) +

1− α

2
(LX∇∗)(Y, Z). (32)

The above equation means that X is an infinitesimal affine transformation of M with
respect to the α-connection ∇(α). Now, if we replace ∇ by ∇(α) in (31), we obtain

LXV (∇(α))C = (LX∇(α))V , LXC (∇(α))C = (LX∇(α))C. (33)

From the hypothesis and (33), we deduce that XV and XC are infinitesimal affine
transformations of the TM with respect to (∇(α))C. So, we conclude the following theorem.

Theorem 1. Let (g,∇,∇∗) be a dualistic structure on the Riemannian manifold M. If X is an
infinitesimal affine transformation of M with respect to ∇ and ∇∗, then X is an infinitesimal affine
transformation of M with respect to the α-connection ∇(α). Moreover, XV and XC are infinitesimal
affine transformations of the TM with respect to (∇(α))C.

4. Mutual Curvature on Statistical Manifolds

In this section, we introduce the concept of mutual curvature for the Riemannian
manifold (M, g), and to continue, we consider the dualistic structure (∇,∇∗) on M. Then,
we show under which conditions the mutual curvature R∇,∇∗ is parallel with respect to the
α-connection ∇(α). Finally, we find conditions under which the mutual curvature R∇(α) ,∇(β)

is parallel with respect to the γ-connection ∇(γ).
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Definition 2 ([13]). Let (M, g) be a Riemannian manifold and let (
1
∇,

2
∇) be a pair of connections.

Then, their mutual curvature is the (1, 3)-tensor R 1
∇,

2
∇

, which is defined by the following formula:

R 1
∇,

2
∇
(X, Y)Z =

1
2
{

1
∇X

2
∇YZ−

1
∇Y

2
∇XZ−

1
∇[X,Y]Z +

2
∇X

1
∇YZ−

2
∇Y

1
∇XZ−

2
∇[X,Y]Z}, (34)

for all X, Y, Z ∈ χ(M).

It should be noted that the definition of mutual (or relative) curvature was previously
presented by the authors in [16,19] in two different ways. However, as D. Iosifidis showed
in [13], none of these are tensors.

Theorem 2. Let (∇,∇∗) be a dualistic structure on the Riemannian manifold (M, g). Then, the
following relation holds:

R∇,∇∗(X, Y)Z = R∇(X, Y)Z + (∇YK)(X, Z)− (∇XK)(Y, Z), ∀X, Y, Z ∈ χ(M), (35)

where K is the difference tensor of ∇. Moreover, the difference tensor K is Codazzi-coupled (i.e.,
(∇XK)(Y, Z) = (∇YK)(X, Z)) if and only if R∇,∇∗ and R∇ coincide. Furthermore, the mutual
curvature R∇,∇∗ reduces to R∇ whenever ∇ is the Levi-Civita connection.

Proof. Using ∇∗ = ∇− 2K and direct computations, we obtain

R∇,∇∗(X, Y)Z

=
1
2
{∇X∇∗

YZ−∇Y∇∗
XZ−∇[X,Y]Z +∇∗

X∇YZ−∇∗
Y∇XZ−∇∗

[X,Y]Z}

=
1
2
{∇X(∇YZ− 2KYZ)−∇Y(∇XZ− 2KXZ)−∇[X,Y]Z

+ (∇X∇YZ− 2KX∇YZ)− (∇Y∇XZ− 2KY∇XZ)− (∇[X,Y]Z− 2K[X,Y]Z)}

=
1
2
{2R∇(X, Y)Z + 2(∇Y(KXZ)− KX(∇YZ) + KY(∇XZ) + K[X,Y]Z−∇X(KYZ))}

= R∇(X, Y)Z + (∇YK)(X, Z)− (∇XK)(Y, Z).

If we put X = ∂i, Y = ∂j, and Z = ∂k in (35) and we denote the connection coefficients of

∇ and ∇(0) by Γr
ij and Γ(0)r

ij , respectively, then we obtain the local expression of (35) as follows:

R∇,∇∗(∂i, ∂j)∂k = Rm
∇ijk∂m (36)

+ {∂j(Γm
ik − Γ(0)m

ik ) + (Γr
ik − Γ(0)r

ik )Γm
jr − Γr

ji(Γ
m
rk − Γ(0)m

rk )− Γr
jk(Γ

m
ir − Γ(0)m

ir )}∂m

− {∂j(Γm
jk − Γ(0)m

jk ) + (Γr
jk − Γ(0)r

jk )Γm
jr − Γr

ij(Γ
m
rk − Γ(0)m

rk )− Γr
ik(Γ

m
jr − Γ(0)m

jr )}∂m.

From (34) and by direct computations we obtain the following:

Lemma 1. Let (M, g) be a Riemannian manifold and let (
1
∇,

2
∇) be a pair of connections such

that Γ1r
ij and Γ2r

ij are the connection coefficients of
1
∇ and

2
∇, respectively. Then, the following

assertions hold:

(1) R 1
∇,

2
∇
(X, Y)Z = R 2

∇,
1
∇
(X, Y)Z and R 1

∇,
2
∇
(X, Y)Z = −R 1

∇,
2
∇
(Y, X)Z forall X, Y, Z ∈ χ(M).

(2) R 1
∇,

2
∇
(X, Y)Z + R 1

∇,
2
∇
(Y, Z)X + R 1

∇,
2
∇
(Z, X)Y = 0, whenever

1
∇,

2
∇ are torsion-free connections.

(3) The local expression of the mutual curvature R 1
∇,

2
∇

is in the following form: R 1
∇,

2
∇
(∂i, ∂j)∂k =

1
2{(∂i(Γ2t

jk) + Γ2r
jk Γ1t

ir − ∂j(Γ2t
ik )− Γ2r

ik Γ1t
jr + ∂i(Γ1t

jk) + Γ1r
jk Γ2t

ir − ∂j(Γ1t
ik )− Γ1r

ik Γ2t
jr )}∂t.
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Example 2. Now, we compute the mutual curvature R∇(α) ,∇(β) in Example 1. Direct computations
give us the following

R∇(α) ,∇(β) (∂1, ∂2)∂1 =
1
2
{∇(α)

∂1
∇(β)

∂2
∂1 −∇(α)

∂2
∇(β)

∂1
∂1 −∇(α)

[∂1,∂2]
∂1 (37)

+∇(β)
∂1
∇(α)

∂2
∂1 −∇(β)

∂2
∇(α)

∂1
∂1 −∇(β)

[∂1,∂2]
∂1}.

Using (13), we obtain

∇(β)
∂2

∂1 = 0, ∇(β)
∂1

∂1 =
1− β

θ1
∂1, ∇(α)

∂2
(

1− β

θ1
)∂1 = 0, (38)

∇(α)
∂2

∂1 = 0, ∇(α)
∂1

∂1 =
1− α

θ1
∂1, ∇(β)

∂2
(

1− α

θ1
)∂1 = 0. (39)

Putting (38) and (39) into (37) gives us R∇(α) ,∇(β) (∂1, ∂2)∂1 = 0. Similar computations imply

∇(β)
∂1

∂2 = 0, ∇(β)
∂2

∂2 =
1− β

θ2
∂2, ∇(α)

∂1
(

1− β

θ2
)∂2 = 0, (40)

∇(α)
∂1

∂2 = 0, ∇(α)
∂2

∂2 =
1− α

θ2
∂2, ∇(β)

∂1
(

1− α

θ2
)∂2 = 0. (41)

Substituting (40) and (41) into (34), we derive that R∇(α) ,∇(β) (∂2, ∂1)∂2 = 0. From the first item of
Lemma 1, we deduce that the other components of the mutual curvature are zero.

Definition 3. Let (M, g) be a Riemannian manifold and let ∇ be an affine connection with the
curvature tensor R. Then, we say that M is a locally symmetric space if ∇R = 0, i.e., ∇XR = 0,
for each X ∈ χ(M), this means that R is parallel with respect to ∇.

Now, we assume that (g,∇,∇∗) is a dualistic structure on the Riemannian manifold
M and let R and R∗ be curvature tensors of ∇ and ∇∗, respectively. If R is parallel with
respect to ∇ and ∇∗, then by direct computations we have

(∇(α)
X R)(Y, Z)W (42)

= ∇(α)
X R(Y, Z)W − R(∇(α)

X Y, Z)W − R(Y,∇(α)
X Z)W − R(Y, Z)∇(α)

X W

= {1 + α

2
∇XR(Y, Z)W +

1− α

2
∇∗

XR(Y, Z)W}

− R(
1 + α

2
∇XY +

1− α

2
∇∗

XY, Z)W

− R(Y,
1 + α

2
∇XZ +

1− α

2
∇∗

XZ)W

− R(Y, Z)(
1 + α

2
∇XW +

1− α

2
∇∗

XW)

=
1 + α

2
{∇XR(Y, Z)W − R(∇XY, Z)W − R(Y,∇XZ)W − R(Y, Z)∇XW}

+
1− α

2
{∇∗

XR(Y, Z)W − R(∇∗
XY, Z)W − R(Y,∇∗

XZ)W − R(Y, Z)∇∗
XW}

=
1 + α

2
(∇XR)(Y, Z)W +

1− α

2
(∇∗

XR)(Y, Z)W.

Since R is parallel with respect to ∇ and ∇∗, then we derive that R is parallel with
respect to the α-connection ∇(α). Moreover, if we replace R by R∗ in the above relations
and assume that R∗ is parallel to ∇ and ∇∗, then we obtain that R∗ is parallel to the
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α-connection ∇(α). Now, we consider a pair (
1
∇,

2
∇) of connections on M. If in (42), we

replace the mutual curvature R 1
∇,

2
∇

instead of R, then, the same as in (42), we obtain

(∇(α)
X R 1

∇,
2
∇
)(Y, Z)W =

1 + α

2
(∇XR 1

∇,
2
∇
)(Y, Z)W +

1− α

2
(∇∗

XR 1
∇,

2
∇
)(Y, Z)W. (43)

If the mutual curvature R 1
∇,

2
∇

is parallel with respect to ∇ and ∇∗, then from (43), we

obtain that R 1
∇,

2
∇

is parallel with respect to ∇(α). According to the above discussion we

obtain the following:

Proposition 1. Let (g,∇,∇∗) be a dualistic structure on the Riemannian manifold M, and R and
R∗ be curvature tensors of ∇ and ∇∗. Then, the following statements hold:

(1) If R (respectively, R∗) is parallel with respect to∇ and∇∗, then R (respectively, R∗) is parallel
with respect to the α-connection ∇(α).

(2) The mutual curvature R∇,∇∗ is parallel with respect to ∇(α) whenever R∇,∇∗ is parallel with
respect to ∇ and ∇∗.

Now, we consider the dualistic structure (g,∇,∇∗) on the Riemannian manifold
M and let {∇(α)}α∈R be a family of α-connections. Equations (7), (34), (43), and direct
computations give us the following:

Lemma 2. Let (g,∇,∇∗) be a dualistic structure on the Riemannian manifold M, and let
{∇(α)}α∈R be a family of α-connections on M. Then, the following statements hold:

(1)

R∇(α) ,∇(β) (X, Y)Z =
(1 + α)(1 + β)

4
R∇(X, Y)Z +

(1− αβ)

2
R∇,∇∗(X, Y)Z

+
(1− α)(1− β)

4
R∇∗(X, Y)Z, ∀X, Y, Z ∈ χ(M).

(2) If M is a flat space with respect to ∇ and ∇∗ and the mutual curvature R∇,∇∗ vanishes, then
the mutual curvature R∇(α) ,∇(β) vanishes.

(3) The mutual curvature R∇(α) ,∇(β) reduces to R∇ (respectively, R∇∗ ) whenever α = β = 1
(respectively, α = β = −1).

(4) The mutual curvature R∇(α) ,∇(β) reduces to the mutual curvature R∇,∇∗ whenever α = −β = 1.
(5) The mutual curvature R∇(α) ,∇(β) is parallel with respect to the γ-connection ∇(γ) whenever

R∇, R∇∗ , and the mutual curvatures R∇,∇∗ are parallel with respect to ∇ and ∇∗.

As a consequence of the above lemma, if we consider α = β, then we obtain the
(α)-curvature R(α) of the (α)-connection ∇(α) as follows:

R(α)(X, Y)Z =
(1 + α)2

4
R∇(X, Y)Z +

(1− α2)

2
R∇,∇∗ (X, Y)Z +

(1− α)2

4
R∇∗ (X, Y)Z. (44)

To continue, we investigate under which conditions the (α)-curvature R(α) of the (α)-
connection ∇(α) is parallel with respect to the (β)-connection ∇(β). Direct computations
and (44) give us the following

(∇(β)
X R(α))(Y, Z)W =

(1 + α)2

4
(∇(β)

X R∇)(Y, Z)W +
(1− α2)

2
(∇(β)

X R∇,∇∗)(Y, Z)W (45)

+
(1− α)2

4
(∇(β)

X R∇∗)(Y, Z)W.
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Let (∇,∇∗) be a dualistic structure on the Riemannian manifold (M, g) with the
curvature tensors R∇ and R∇∗ , respectively, and let X be a vector field on M. Then, (44)
implies the following;

(LXR(α))(Y, Z, W) =
(1 + α)2

4
(LXR∇)(Y, Z, W) +

(1− α2)

2
(LXR∇,∇∗)(Y, Z, W) (46)

+
(1− α)2

4
(LXR∇∗)(Y, Z, W).

Corollary 1. Let (g,∇,∇∗) be a dualistic structure on the Riemannian manifold M. Then, the
following statements hold:

(1) The (α)-curvature R(α) is parallel with respect to the (β)-connection ∇(β) whenever R∇, R∇∗

and the mutual curvature R∇,∇∗ are parallel with respect to ∇ and ∇∗.
(2) The Lie derivative of the (α)-curvature R(α) along X vanishes if the Lie derivatives of R∇,

R∇∗ , and R∇,∇∗ along X vanish.

5. Dualistic Structure on the Tangent Bundle

In this section, we consider an arbitrary Riemannian metric ḡ and two affine torsion-
free connections ∇̃ and ∇̃∗ on the TM. Then, we investigate under which conditions
(ḡ, ∇̃, ∇̃∗) is a dualistic structure on the tangent bundle TM.

Let {δi, ∂ī} be a basis for Tv(TM), where v ∈ TM. According to this basis, we consider
the Riemannian metric ḡ = αijdxidxj + 2βijdxiδyj +γijδyiδyj on the TM, where αij, βij, γij ∈
C∞(TM). Since ∇̃ and ∇̃∗ are affine torsion-free connections on the TM and {δi, ∂ī} is a
basis, so the following identities hold:

∇̃δi δj = Γr
ijδr + Γr̄

ij∂r̄, ∇̃∂ī
∂ j̄ = Γr

ī j̄δr + Γr̄
ī j̄∂r̄, (47)

∇̃δi ∂ j̄ = Γr
ij̄δr + Γr̄

i j̄∂r̄, ∇̃∂ī
δj = Γr

ījδr + Γr̄
ī j∂r̄, (48)

∇̃∗
δi

δj = Γ∗r
ij δr + Γ∗r̄

ij ∂r̄, ∇̃∗
∂ī

∂ j̄ = Γ∗r
ī j̄ δr + Γ∗r̄

ī j̄ ∂r̄, (49)

∇̃∗
δi

∂ j̄ = Γ∗r
ij̄ δr + Γ∗r̄

i j̄ ∂r̄, ∇̃∗
∂ī

δj = Γ∗r
īj δr + Γ∗r̄

ī j ∂r̄, (50)

where ΓA
BC, Γ∗A

BC ∈ C∞(TM), and A, B, C ∈ {1, · · · n, 1̄, · · · n̄}. If we use torsion-freeness of
∇̃ and ∇̃∗ and applying (47)–(50), then we obtain the following:

Lemma 3. Let (M, g) be a Riemannian manifold and let
g
∇ be an affine connection on it. Let

g
Γr

ij,
g

Tr
ij, and

g
Rr

ijs be the connection coefficients, torsion components, and curvature components of
g
∇, respectively. If ∇̃ and ∇̃∗ are two affine torsion-free connections on the TM, then the following
equations hold:

Γr
ij̄ = Γr

j̄i, Γr̄
i j̄ − Γr̄

j̄i =
g

Γr
ij −

g
Tr

ij, Γr
ij = Γr

ji, (51)

Γr̄
ij − Γr̄

ji = −ys
g

Rr
ijs, Γr

ī j̄ = Γr
j̄ī, Γr̄

ī j̄ = Γr̄
j̄ī, (52)

Γ∗r
ij̄ = Γ∗r

j̄i , Γ∗r̄
i j̄ − Γ∗r̄

j̄i =
g

Γr
ij −

g
Tr

ij, Γ∗r
ij = Γ∗r

ji , (53)

Γ∗r̄
ij − Γ∗r̄

ji = −ys
g

Rr
ijs, Γ∗r

ī j̄ = Γ∗r
j̄ī , Γ∗r̄

ī j̄ = Γ∗r̄
j̄ī . (54)

Proof. Using (5) and (47)–(50) and the torsion-freeness of ∇̃ and ∇̃∗ completes the proof.
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Now, if we put elements of {δi, ∂ī} in (6), and use the above relations, we derive
the following:

Proposition 2. Let (M, g) be a Riemannian manifold and let (TM, ḡ) be its tangent bundle
equipped with the Riemannian metric ḡ (defined as above). If ∇̃ and ∇̃∗ are two affine torsion-free
connections on the TM, then (ḡ, ∇̃, ∇̃∗) is a dualistic structure on the TM if and only if (51)–(54)
and the following equations hold:

(1) ∂īγjk = 2Γr
ī j̄βrk + Γr̄

ī j̄γrk + 2Γ∗r
īk̄ β jr + Γ∗r̄

īk̄ γjr;

(2) δiαjk = Γr
ijαrk + 2Γr̄

ijβrk + Γ∗r
ik αjr + 2Γ∗r̄β jr;

(3) 2δiβ jk = 2Γr
ijβrk + Γr̄

ijγrk + Γ∗r
ik̄ αjr + 2Γ∗r̄

ik̄ β jr;
(4) ∂k̄αij = Γr

k̄iαrj + 2Γr̄
k̄iβrj + Γ∗r

k̄j αir + 2Γ∗r̄
k̄j βir;

(5) 2∂īβ jk = Γr
ī j̄αrk + 2Γr̄

ī j̄βrk + 2Γ∗r
īk β jr + Γ∗r̄

īk γjr;

(6) δkγij = 2Γr
kīβrj + Γr̄

kīγrj + 2Γ∗r
kj̄ βir + Γ∗r̄

kj̄ γir.

Now, we assume that (ḡ, ∇̃, ∇̃∗) is a dualistic structure on the TM, then we show
under which conditions the TM is a conjugate symmetric space whenever R̃ and R̃∗ are
curvature tensors of ∇̃ and ∇̃∗. We do this using a direct computation of the curvature
components of R̃ and R̃∗ on the TM. According to the basis {δi, ∂ī} for Tv(TM), we imply
that the curvature components of R̃ and R̃∗ are as follows:

R̃(δi, δj)δk = R̃l
ijkδl + R̃l̄

ijk∂l̄ , R̃∗(δi, δj)δk = R̃∗l
ijkδl + R̃∗l̄

ijk∂l̄ , (55)

R̃(∂ī, ∂ j̄)∂k̄ = R̃l
ī j̄k̄δl + R̃l̄

ī j̄k̄∂l̄ , R̃∗(∂ī, ∂ j̄)∂k̄ = R̃∗l
ī j̄k̄δl + R̃∗l̄

ī j̄k̄∂l̄ , (56)

R̃(δi, δj)∂k̄ = R̃l
ijk̄δl + R̃l̄

ijk̄∂l̄ , R̃∗(δi, δj)∂k̄ = R̃∗l
ijk̄δl + R̃∗l̄

ijk̄∂l̄ , (57)

R̃(δi, ∂k̄)δj = R̃l
ik̄jδl + R̃l̄

ik̄j∂l̄ , R̃∗(δi, ∂k̄)δj = R̃∗l
ik̄jδl + R̃∗l̄

ik̄j∂l̄ , (58)

R̃(∂k̄, δi)δj = R̃l
k̄ijδl + R̃l̄

k̄ij∂l̄ , R̃∗(∂k̄, δi)δj = R̃∗l
k̄ijδl + R̃∗l̄

k̄ij∂l̄ , (59)

R̃(∂ī, ∂ j̄)δk = R̃l
ī j̄kδl + R̃l̄

ī j̄k∂l̄ , R̃∗(∂ī, ∂ j̄)δk = R̃∗l
ī j̄kδl + R̃∗l̄

ī j̄k∂l̄ , (60)

R̃(∂ī, δk)∂ j̄ = R̃l
īkj̄δl + R̃l̄

īkj̄∂l̄ , R̃∗(∂ī, δk)∂ j̄ = R̃∗l
īkj̄δl + R̃∗l̄

īk j̄∂l̄ , (61)

R̃(δk, ∂ī)∂ j̄ = R̃l
kī j̄δl + R̃l̄

kī j̄∂l̄ , R̃∗(δk, ∂ī)∂ j̄ = R̃∗l
kī j̄δl + R̃∗l̄

kī j̄∂l̄ . (62)

According to (55)–(62), we obtain the following:

Proposition 3. Let (ḡ, ∇̃, ∇̃∗) be a dualistic structure on the TM and let R̃ and R̃∗ be the
curvature tensors of ∇̃ and ∇̃∗ on the TM, respectively. Then, the TM is a conjugate symmetric
space if and only if the following identities hold:

R̃l
ijk = R̃∗l

ijk, R̃l̄
ijk = R̃∗l̄

ijk, R̃l
ī j̄k̄ = R̃∗l

ī j̄k̄, R̃l̄
ī j̄k̄ = R̃∗l̄

ī j̄k̄,

R̃l
ijk̄ = R̃∗l

ijk̄, R̃l̄
ijk̄ = R̃∗l̄

ijk̄, R̃l
ik̄j = R̃∗l

ik̄j, R̃l̄
ik̄j = R̃∗l̄

ik̄j,

R̃l
k̄ij = R̃∗l

k̄ij, R̃l̄
k̄ij = R̃∗l̄

k̄ij, R̃l
ī j̄k = R̃∗l

ī j̄k, R̃l̄
ī j̄k = R̃∗l̄

ī j̄k,

R̃l
īkj̄ = R̃∗l

īkj̄, R̃l̄
īkj̄ = R̃∗l̄

īk j̄, R̃l
kī j̄ = R̃∗l

kī j̄, R̃l̄
kī j̄ = R̃∗l̄

kī j̄.
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6. Mutual Curvatures of the Tangent Bundle

This section is concerned with the mutual curvatures of the TM. In this part we
study the components of the mutual curvature R̃∇̃,∇̃∗ of the TM whenever (ḡ, ∇̃, ∇̃∗) is a
dualistic structure on the TM.

We assume that (M, g) is a Riemannian manifold with affine connection
g
∇ and

g
Γr

ij,
g

Tr
ij,

and
g

Rr
ijs are the connection coefficients, torsion components, and curvature components of

g
∇. According to (47)–(50) and using (34), we have

Theorem 3. Let (M, g) be a Riemannian manifold and let (TM, ḡ) be its tangent bundle equipped
with the Riemannian metric ḡ (defined as above), and let (ḡ, ∇̃, ∇̃∗) be a dualistic structure on the
TM. If Γr

ij and Γ∗r
ij are the connection coefficients of ∇̃ and ∇̃∗ on the TM, respectively, then the

components of the mutual curvature R̃∇̃,∇̃∗ on the TM are as follows:

R̃∇̃,∇̃∗(δi, δj)δk =
1
2
{(Γ∗r

jk Γt
ir + δi(Γ∗t

jk ) + Γ∗r̄
jk Γt

ir̄ − Γ∗r
ik Γt

jr − δj(Γ∗t
ik )− Γ∗r̄

ik Γt
jr̄ + yr

g
R

l

ijrΓt
l̄k

+ δi(Γt
jk) + Γr

jkΓ∗t
ir + Γr̄

jkΓ∗t
ir̄ − δj(Γt

ik)− Γr
ikΓ∗t

jr − Γr̄
ikΓ∗t

jr̄ + yl
g
R

s

ijlΓ
∗t
s̄k)}δt

+
1
2
{(Γ∗r

jk Γt̄
ir + Γ∗r̄

jk Γt̄
ir̄ + δi(Γ∗t̄

jk )− Γ∗r
ik Γt̄

jr − Γ∗r̄
ik Γt̄

jr̄ − δj(Γ∗t̄
ik ) + yr

g
R

l

ijrΓt̄
l̄k

+ Γr
jkΓ∗t̄

ir + δi(Γt̄
jk) + Γr̄

jkΓ∗t̄
ir̄ − Γr

ikΓ∗t̄
jr − δj(Γt̄

ik)− Γr̄
ikΓ∗t̄

jr̄ + yl
g
R

s

ijlΓ
∗t̄
s̄k)}∂t̄,

R̃∇̃,∇̃∗(∂ī, ∂ j̄)∂k̄ =
1
2
{(Γ∗r

j̄k̄ Γt
īr + ∂ī(Γ

∗t
j̄k̄ ) + Γ∗r̄

j̄k̄ Γt
īr̄ − Γ∗r

īk̄ Γt
j̄r − ∂ j̄(Γ

∗t
īk̄ )− Γ∗r̄

īk̄ Γt
j̄r̄

+ ∂ī(Γ
t
j̄k̄) + Γr

j̄k̄Γ∗t
īr + Γr̄

j̄k̄Γ∗t
īr̄ − ∂ j̄(Γ

t
īk̄)− Γr

īk̄Γ∗t
j̄r − Γr̄

īk̄Γ∗t
j̄r̄ )}δt

+
1
2
{(Γ∗r

j̄k̄ Γt̄
īr + Γ∗r̄

j̄k̄ Γt̄
īr̄ + ∂ī(Γ

∗t̄
j̄k̄ )− Γ∗r

īk̄ Γt̄
j̄r − Γ∗r̄

īk̄ Γt̄
j̄r̄ − ∂ j̄(Γ

∗t̄
īk̄ )

+ Γr
j̄k̄Γ∗t̄

īr + ∂ī(Γ
t̄
j̄k̄) + Γr̄

j̄k̄Γ∗t̄
īr̄ − Γr

īk̄Γ∗t̄
j̄r − ∂ j̄(Γ

t̄
īk̄)− Γr̄

īk̄Γ∗t̄
j̄r̄ )}∂t̄,

R̃∇̃,∇̃∗(δi, δj)∂k̄ =
1
2
{(Γ∗r

jk̄ Γt
ir + δi(Γ∗t

jk̄ ) + Γ∗r̄
jk̄ Γt

ir̄ − Γ∗r
ik̄ Γt

jr − δj(Γ∗t
ik̄ )− Γ∗r̄

ik̄ Γt
jr̄ + yr

g
R

l

ijrΓt
l̄k̄

+ δi(Γt
jk̄) + Γr

jk̄Γ∗t
ir + Γr̄

jk̄Γ∗t
ir̄ − δj(Γt

ik̄)− Γr
ik̄Γ∗t

jr − Γr̄
ik̄Γ∗t

jr̄ + yr
g
R

s

ijrΓ∗t
s̄k̄)}δt

+
1
2
{(Γ∗r

jk̄ Γt̄
ir + Γ∗r̄

jk̄ Γt̄
ir̄ + δi(Γ∗t̄

jk̄ )− Γ∗r
ik̄ Γt̄

jr − Γ∗r̄
ik̄ Γt̄

jr̄ − δj(Γ∗t̄
ik̄ ) + yr

g
R

l

ijrΓt̄
l̄k̄

+ Γr
jk̄Γ∗t̄

ir + δi(Γt̄
jk̄) + Γr̄

jk̄Γ∗t̄
ir̄ − Γr

ik̄Γ∗t̄
jr − δj(Γt̄

ik̄)− Γr̄
ik̄Γ∗t̄

jr̄ ++yr
g
R

l

ijrΓ∗t̄
l̄k̄ )}∂t̄,

R̃∇̃,∇̃∗(δi, ∂k̄)δj =
1
2
{(Γ∗r

k̄j Γt
ir + δi(Γ∗t

k̄j ) + Γ∗r̄
k̄j Γt

ir̄ − Γ∗r
ij Γt

k̄r − ∂k̄(Γ
∗t
ij )− Γ∗r̄

ij Γt
k̄r̄ − (

g
Γ

r

ik −
g
T

r

ik)Γ
t
r̄j

+ δi(Γt
k̄j) + Γr

k̄jΓ
∗t
ir + Γr̄

k̄jΓ
∗t
ir̄ − ∂k̄(Γ

t
ij)− Γr

ijΓ
∗t
k̄r − Γr̄

ijΓ
∗t
k̄r̄ − (

g
Γ

r

ik −
g
T

r

ik)Γ
∗t
r̄j )}δt

+
1
2
{(Γ∗r

k̄j Γt̄
ir + Γ∗r̄

k̄j Γt̄
ir̄ + δi(Γ∗t̄

k̄j )− Γ∗r
ij Γt̄

k̄r − Γ∗r̄
ij Γt̄

k̄r̄ − ∂k̄(Γ
∗t̄
ij )− (

g
Γ

r

ik −
g
T

r

ik)Γ
t̄
r̄ j

+ Γr
k̄jΓ

∗t̄
ir + δi(Γt̄

k̄j) + Γr̄
k̄jΓ

∗t̄
ir̄ − Γr

ijΓ
∗t̄
k̄r − ∂k̄(Γ

t̄
ij)− Γr̄

ijΓ
∗t̄
k̄r̄ − (

g
Γ

r

ik −
g
T

r

ik)Γ
∗t̄
r̄ j )}∂t̄,
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R̃∇̃,∇̃∗(∂ī, ∂ j̄)δk =
1
2
{(Γ∗r

j̄k Γt
īr + ∂ī(Γ

∗t
j̄k ) + Γ∗r̄

j̄k Γt
īr̄ − Γ∗r

īk Γt
j̄r − ∂ j̄(Γ

∗t
īk )− Γ∗r̄

īk Γt
j̄r̄

+ ∂ī(Γ
t
j̄k) + Γr

j̄kΓ∗t
īr + Γr̄

j̄kΓ∗t
īr̄ − ∂ j̄(Γ

t
īk)− Γr

īkΓ∗t
j̄r − Γr̄

īkΓ∗t
j̄r̄ )}δt

+
1
2
{(Γ∗r

j̄k Γt̄
īr + Γ∗r̄

j̄k Γt̄
īr̄ + ∂ī(Γ

∗t̄
j̄k )− Γ∗r

īk Γt̄
j̄r − Γ∗r̄

īk Γt̄
j̄r̄ − ∂ j̄(Γ

∗t̄
īk )

+ Γr
j̄kΓ∗t̄

īr + ∂ī(Γ
t̄
j̄k) + Γr̄

j̄kΓ∗t̄
īr̄ − Γr

īkΓ∗t̄
j̄r − ∂ j̄(Γ

t̄
īk)− Γr̄

īkΓ∗t̄
j̄r̄ )}∂t̄,

R̃∇̃,∇̃∗(∂ī, δk)∂ j̄ =
1
2
{(Γ∗r

kj̄ Γt
īr + ∂ī(Γ

∗t
kj̄ ) + Γ∗r̄

kj̄ Γt
īr̄ − Γ∗r

ī j̄ Γt
kr − δk(Γ

∗t
ī j̄ )− Γ∗r̄

ī j̄ Γt
kr̄ + (

g
Γ

r

ki −
g
T

r

ki)Γ
t
r̄ j̄

+ ∂ī(Γ
t
kj̄) + Γr

kj̄Γ
∗t
īr + Γr̄

kj̄Γ
t
īr̄ − δk(Γ

t
ī j̄)− Γr

ī j̄Γ
t
kr − Γr̄

ī j̄Γ
∗t
kr̄ + (

g
Γ

r

ki −
g
T

r

ki)Γ
∗t
r̄ j̄ )}δt

+
1
2
{(Γ∗r

kj̄ Γt̄
īr + Γ∗r̄

kj̄ Γt̄
īr̄ + ∂ī(Γ

∗t̄
kj̄ )− Γ∗r

ī j̄ Γt̄
kr − Γ∗r̄

ī j̄ Γt̄
kr̄ − δk(Γ

∗t̄
ī j̄ ) + (

g
Γ

r

ki −
g
T

r

ki)Γ
t̄
r̄ j̄

+ Γr
kj̄Γ

∗t̄
īr + ∂ī(Γ

t̄
kj̄) + Γr̄

kj̄Γ
t̄
īr̄ − Γr

ī j̄Γ
t̄
kr − δk(Γ

t̄
ī j̄)− Γr̄

ī j̄Γ
∗t̄
kr̄ + (

g
Γ

r

ki −
g
T

r

ki)Γ
∗t̄
r̄ j̄ )}∂t̄.

Now, we consider the pair (
H
∇,

C
∇) of connections on the TM and study the mutual

curvature R̃ H
∇,

C
∇

on the TM and its relation with the curvature of M. Equations (34) and (4)

imply the following:

R̃ H
∇,

C
∇
(∂ī, ∂ j̄)∂k̄ = R̃ H

∇,
C
∇
(δi, ∂k̄)δj = R̃ H

∇,
C
∇
(∂ī, ∂ j̄)δk = R̃ H

∇,
C
∇
(∂ī, δk)∂ j̄ = 0, (63)

R̃ H
∇,

C
∇
(δi, δj)δk = (R(∂i, ∂j)∂k)

H +
1
2
(∇∂i

R(y, ∂j)∂k −∇∂j
R(y, ∂i)∂k)

V (64)

+
1
2
(R(y, ∂i)∇∂j

∂k − R(y, ∂j)∇∂i
∂k)

V ,

R̃ H
∇,

C
∇
(δi, δj)∂k̄ = (R(∂i, ∂j)∂k)

V . (65)

If R̃ H
∇,

C
∇

vanishes, then (64) and (65) imply that M is a flat space and ∇∂i
R(y, ∂j)∂k =

∇∂j
R(y, ∂i)∂k, for all i, j, k. Conversely, if M is flat, then R̃ H

∇,
C
∇

vanishes.

Here, we investigate the mutual curvature R̃ C
∇1,

C
∇2

on the TM and its relation with

the mutual curvature R∇1,∇2 , where (∇1,∇2) is a pair of connections on M such that R1

and R2 are curvature tensors of ∇1 and ∇2, respectively. From (34) and (4) we conclude
the following:

R̃ C
∇1,

C
∇2

(∂ī, ∂ j̄)∂k̄ = R̃ C
∇1,

C
∇2

(δi, ∂k̄)δj = R̃ C
∇1,

C
∇2

(∂ī, ∂ī)δk = R̃ C
∇1,

C
∇2

(∂ī, δk)∂ j̄ = 0, (66)

R̃ C
∇1,

C
∇2

(δi, δj)δk (67)

= (R∇1,∇2(∂i, ∂j)∂k)
H +

1
2
(R1(y, ∂i)∇2

∂j
∂k − R1(y, ∂j)∇2

∂i
∂k)

V

+
1
2
(∇1

∂i
R2(y, ∂j)∂k −∇1

∂j
R2(y, ∂i)∂k)

V +
1
2
(R2(y, ∂i)∇1

∂j
∂k − R2(y, ∂j)∇1

∂i
∂k)

V

+
1
2
(∇2

∂i
R1(y, ∂j)∂k −∇2

∂j
R1(y, ∂i)∂k)

V ,

R̃ C
∇1,

C
∇2

(δi, δj)∂k̄ = (R∇1,∇2(∂i, ∂j)∂k)
V . (68)
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According to (66)–(68), we derive that if the mutual curvature R∇1,∇2 vanishes and
M is a flat space with respect to ∇1 and ∇2, then the mutual curvature R̃ C

∇1,
C
∇2

vanishes.

Conversely, if the mutual curvature R̃ C
∇1,

C
∇2

vanishes, then from (68) we see that the mutual

curvature R∇1,∇2 vanishes. Furthermore, if we consider the pair {
H
∇1,

H
∇2} of connections

on the TM, then, the same as in the above discussion, we obtain that all of the components
of the mutual curvature R̃ H

∇1,
H
∇2

are zero except for

R̃ H
∇1,

H
∇2

(δi, δj)δk = (R∇1,∇2(∂i, ∂j)∂k)
H , R̃ H

∇1,
H
∇2

(δi, δj)∂k̄ = (R∇1,∇2(∂i, ∂j)∂k)
V . (69)

Therefore, from (69) we deduce that R̃ H
∇1,

H
∇2

vanishes if and only if R∇1,∇2 vanishes.

As mentioned in [14], if ∇ is a flat and torsion-free connection, then
C
∇ =

H
∇. It follows that,

if M is a flat space and ∇ is the Levi-Civita connection, then the mutual curvature R̃ H
∇,

C
∇

reduces to the Riemannian curvature of the Levi-Civita connection ∇S, because
C
∇ and

H
∇

reduce to the ∇S. Now, we consider a pair of Levi-Civita connections (∇1,∇2) such that M

is a flat space with respect to the ∇i for i = 1, 2. Since
C
∇i =

H
∇i for i = 1, 2, thus, the mutual

curvatures R̃ C
∇1,

C
∇2

and R̃ H
∇1,

H
∇2

coincide and they reduce to the mutual curvature R̃ 1
∇S ,

2
∇S

.

So, according to above discussion we have the following:

Lemma 4. Let (M, g) be a Riemannian manifold with an affine connection ∇ and curvature tensor
R and let (∇1,∇2) be a pair of connections on M such that R1 and R2 are curvature tensors of ∇1

and ∇2, respectively. Then, the following statements hold:

(1) If M is a flat space, then the mutual curvature R̃ H
∇,

C
∇

is zero.

(2) If M is a flat space and ∇ is the Levi-Civita connection, then the mutual curvature R̃ H
∇,

C
∇

reduces to the Riemannian curvature of the Levi-Civita connection ∇S.
(3) If the mutual curvature R̃ H

∇,
C
∇

vanishes, then M is flat.

(4) If the mutual curvature R∇1,∇2 vanishes and M is a flat space with respect to ∇1 and ∇2,
then the mutual curvature R̃ C

∇1,
C
∇2

vanishes.

(5) If the mutual curvature R̃ C
∇1,

C
∇2

vanishes, then the mutual curvature R∇1,∇2 vanishes. More-

over, the mutual curvature R̃ H
∇1,

H
∇2

vanishes if and only if the mutual curvature R∇1,∇2

vanishes.
(6) If ∇1 and ∇2 are Levi-Civita connections and M is a flat space with respect to ∇i for i = 1, 2,

then R̃ C
∇1,

C
∇2

and R̃ H
∇1,

H
∇2

are equal and reduce to the mutual curvature R̃ 1
∇S ,

2
∇S

.

6.1. Mutual Curvature with Respect to a Pair of Levi-Civita Connections in the Tangent Bundle

Let M be a smooth manifold and g1 and g2 be two non-isometric Riemannian metrics
with the Levi-Civita connections ∇1 and ∇2 and the Riemannian curvature tensors R1 and

R2, respectively. We consider the pair (
1
∇S,

2
∇S) on the TM such that

1
∇S and

2
∇S are the

Levi-Civita connections of the Sasaki lift metrics gS
1 and gS

2 , respectively. Now, we study
on the components of the mutual curvature R̃ 1

∇S ,
2
∇S

on the TM and its relation with the

mutual curvature R∇1,∇2 on M. Equations (34), (5), (2), and (3) give us the following:
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R̃ 1
∇S ,

2
∇S

(δi, δj)δk = (R∇1,∇2(∂i, ∂j)∂k)
H (70)

+ {1
4

1
∇∂j

R2(∂i, ∂k)y +
1
4

R1(∂j,
2
∇∂i

∂k)y−
1
4

1
∇∂i

R2(∂j, ∂k)y−
1
4

R1(∂i,
2
∇∂j

∂k)y}V

+ {1
4

R1(y, R1(∂i, ∂j)y)∂k +
1
8

R1(y, R2(∂i, ∂k)y)∂j −
1
8

R1(y, R2(∂j, ∂k)y)∂i}H

+ {1
4

2
∇∂j

R1(∂i, ∂k)y +
1
4

R2(∂j,
1
∇∂i

∂k)y−
1
4

2
∇∂i

R1(∂j, ∂k)y−
1
4

R2(∂i,
1
∇∂j

∂k)y}V

+ {1
4

R2(y, R2(∂i, ∂j)y)∂k +
1
8

R2(y, R1(∂i, ∂k)y)∂j −
1
8

R2(y, R1(∂j, ∂k)y)∂i}H .

If we consider y = 0 in (70), then, except the first term, all of the terms on the right-hand
side of the equation are zero. This implies that if R̃ 1

∇S ,
2
∇S

vanishes, then R∇1,∇2 vanishes.

To continue, we also have

R̃ 1
∇S ,

2
∇S

(δi, δj)∂k̄ = (R∇1,∇2(∂i, ∂j)∂k)
V (71)

+ {1
4

R1(y,
2
∇∂j

∂k)∂i +
1
4

1
∇∂i

R2(y, ∂k)∂j −
1
4

R1(y,
2
∇∂i

∂k)∂j −
1
4

1
∇∂j

R2(y, ∂k)∂i}H

− {1
8

R1(∂j, R2(y, ∂k)∂i)y +
1
8

R1(∂i, R2(y, ∂k)∂j)y}V ,

+ {1
4

R2(y,
1
∇∂j

∂k)∂i +
1
4

2
∇∂i

R1(y, ∂k)∂j −
1
4

R2(y,
1
∇∂i

∂k)∂j −
1
4

2
∇∂j

R1(y, ∂k)∂i}H

− {1
8

R2(∂j, R1(y, ∂k)∂i)y +
1
8

R2(∂i, R1(y, ∂k)∂j)y}V .

Furthermore, we have

R̃ 1
∇S ,

2
∇S

(δi, ∂k̄)δj =
1
4
{

1
∇∂i

R2(y, ∂k)∂j − R1(y, ∂k)
2
∇∂i

∂j − R1(y,
1
∇∂i

∂k)∂j}H (72)

− 1
8
(R1(∂i, R2(y, ∂k)∂j)y)V ,

+
1
4
{

2
∇∂i

R1(y, ∂k)∂j − R2(y, ∂k)
1
∇∂i

∂j − R2(y,
1
∇∂i

∂k)∂j}H

− 1
8
(R2(∂i, R1(y, ∂k)∂j)y)V ,

R̃ 1
∇S ,

2
∇S

(∂ī, ∂ j̄)δk =
1
8
{R1(y, ∂i)R2(y, ∂j)∂k − R1(y, ∂j)R2(y, ∂i)∂k}H (73)

+
1
8
{R2(y, ∂i)R1(y, ∂j)∂k − R2(y, ∂j)R1(y, ∂i)∂k}H ,

R̃ 1
∇S ,

2
∇S

(∂ī, δk)∂ j̄ =
1
8
{R1(y, ∂i)R2(y, ∂j)∂k + R2(y, ∂i)R1(y, ∂j)∂k}H , (74)

R̃ 1
∇S ,

2
∇S

(∂ī, ∂ j̄)∂k̄ = 0.

Using (70)–(74), we obtain the following:

Theorem 4. Let M be a smooth manifold and g1 and g2 be two non-isometric Riemannian metrics
with the Levi-Civita connections ∇1 and ∇2 and the Riemannian curvature tensors R1 and R2 such

that
1
∇S and

2
∇S are the Levi-Civita connections of the Sasaki lift metrics gS

1 and gS
2 , respectively.

Then, the following statements hold:

(1) The mutual curvature R̃ 1
∇S ,

2
∇S

vanishes if the mutual curvature R∇1,∇2 vanishes and M is a

flat space with respect to ∇1 and ∇2.
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(2) If the mutual curvature R̃ 1
∇S ,

2
∇S

vanishes, then the mutual curvature R∇1,∇2 vanishes.

6.2. Mutual Curvatures in the Tangent Bundle with Different Connections

In this part, we study the mutual curvatures R̃ 1
∇S ,

2
∇H

and R̃ 1
∇S ,

2
∇C

on the TM and their

geometric consequences, where ∇1 is the Levi-Civita connection of the metric g.

Now, we consider Riemannian manifold (M, g) with the Levi-Civita connection
1
∇ and

Riemannian curvature R1. Let
2
∇ be an arbitrary affine connection on M. If we denote the

Levi-Civita connection of the Sasaki lift metric gS by
1
∇S and the horizontal lift connection

of
2
∇ by

2
∇H , then from (34) and (4), we deduce that the components of the mutual curvature

R̃ 1
∇S ,

2
∇H

are as follows:

R̃ 1
∇S ,

2
∇H

(δi, δj)δk = (R 1
∇,

2
∇
(∂i, ∂j)∂k)

H +
1
4
{R1(∂j,

2
∇∂i

∂k)y− R1(∂i,
2
∇∂j

∂k)y}V (75)

+
1
4
{R1(y, R1(∂i, ∂j)y)∂k}H +

1
4
{

2
∇∂j

R1(∂i, ∂k)y−
2
∇∂i

R1(∂j, ∂k)y}V .

Setting y = 0 in (75), the second, third, and fourth terms on the right-hand side
of Equation (75) are zero. In this case, if we assume that the mutual curvature R̃ 1

∇S ,
2
∇H

vanishes, then the mutual curvature R 1
∇,

2
∇

vanishes. We have

R̃ 1
∇S ,

2
∇H

(δi, δj)∂k̄ = (R 1
∇,

2
∇
(∂i, ∂j)∂k)

V +
1
4
{R1(y,

2
∇∂j

∂k)∂i − R1(y,
2
∇∂i

∂k)∂j}H (76)

+
1
4
{

2
∇∂i

R1(y, ∂k)∂j −
2
∇∂j

R1(y, ∂k)∂i}H ,

R̃ 1
∇S ,

2
∇H

(δi, ∂k̄)δj =
1
4
{

2
∇∂i

R1(y, ∂k)∂j − R1(y, ∂k)
2
∇∂i

∂j − R1(y,
1
∇∂i

∂k)∂j}H , (77)

R̃ 1
∇S ,

2
∇H

(∂ī, ∂ j̄)∂k̄ = R̃ 1
∇S ,

2
∇H

(∂ī, ∂ j̄)δk = R̃ 1
∇S ,

2
∇H

(∂ī, δk)∂ j̄ = 0. (78)

According to (75)–(78) we derive that if R 1
∇,

2
∇

vanishes and M is a flat space with

respect to
1
∇, then R̃ 1

∇S ,
2
∇H

vanishes. As a special case, if
1
∇ =

2
∇ = ∇, where ∇ is the Levi-

Civita connection of g, then from (75)–(78) we derive that the mutual curvature R̃∇S ,∇H

vanishes if M is a flat space with respect to ∇. Moreover, in this case, R̃∇S ,∇H reduces to the
Riemannian curvature of the Levi-Civita connection ∇S. Furthermore, if R̃∇S ,∇H vanishes,
then M is a flat space. So, as a consequence of the above discussion we have the following:

Theorem 5. Let (M, g) be a Riemannian manifold with the Levi-Civita connection
1
∇ and let

2
∇ be

an affine connection on M. If we denote the Levi-Civita connection of the Sasaki lift metric gS by
1
∇S and the horizontal lift connection of

2
∇ by

2
∇H, then the following assertions hold:

(1) If the mutual curvature R̃ 1
∇S ,

2
∇H

vanishes, then the mutual curvature R 1
∇,

2
∇

vanishes. More-

over, if the mutual curvature R 1
∇,

2
∇

vanishes and M is a flat space with respect to
1
∇, then the

mutual curvature R̃ 1
∇S ,

2
∇H

vanishes.
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(2) The mutual curvature R̃ S
∇,

H
∇

vanishes if and only if M is a flat space with respect to ∇, where

∇ is the Levi-Civita connection of metric g. Furthermore, in this case, the mutual curvature
R̃ S
∇,

H
∇

reduces to the Riemannian curvature of the Levi-Civita connection ∇S.

Now, we consider a Riemannian manifold (M, g) with the Levi-Civita connection
1
∇.

Let
2
∇ be an affine connection on M, where R1 and R2 are curvature tensors of

1
∇ and

2
∇,

respectively. If we denote the Levi-Civita connection of the Sasaki lift metric gS by
1
∇S

and the complete lift connection of
2
∇ by

2
∇C, then from (34) and (4) we conclude that the

components of the mutual curvature R̃ 1
∇S ,

2
∇C

are as follows:

R̃ 1
∇S ,

2
∇C

(δi, δj)δk = (R 1
∇,

2
∇
(∂i, ∂j)∂k)

H (79)

+
1
4
{R1(y, R1(∂i, ∂j)y)∂k + R1(y, R2(y, ∂j)∂k)∂i − R1(y, R2(y, ∂i)∂k)∂j}H

+ {1
4

R1(∂j,
2
∇∂i

∂k)y−
1
4

R1(∂i,
2
∇∂j

∂k)y +
1
2

1
∇∂i

R2(y, ∂j)∂k −
1
2

1
∇∂j

R2(y, ∂i)∂k}V

+ {1
2

R2(y, ∂i)
1
∇∂j

∂k −
1
2

R2(y, ∂j)
1
∇∂i

∂k +
1
4

2
∇∂j

R1(∂i, ∂k)y−
1
4

2
∇∂i

R1(∂j, ∂k)y}V .

If we put y = 0 in (79), then we derive that the second, third and fourth terms on the
right-hand side of Equation (79) are zero. Thus, if R̃ 1

∇S ,
2
∇C

= 0, then from (79) we obtain

R 1
∇,

2
∇
= 0. Furthermore, we have

R̃ 1
∇S ,

2
∇C

(δi, δj)∂k̄ = (R 1
∇,

2
∇
(∂i, ∂j)∂k)

V (80)

+
1
4
{R2(y, ∂i)R1(y, ∂k)∂j − R2(y, ∂j)R1(y, ∂k)∂i}V

+
1
4
{R1(y,

2
∇∂j

∂k)∂i − R1(y,
2
∇∂i

∂k)∂j +
2
∇∂i

R1(y, ∂k)∂j −
2
∇∂j

R1(y, ∂k)∂i}H ,

R̃ 1
∇S ,

2
∇C

(δi, ∂k̄)δj =
1
4
{

2
∇∂i

R1(y, ∂k)∂j − R1(y, ∂k)
2
∇∂i

∂j − R1(y,
1
∇∂i

∂k)∂j}H (81)

+
1
4
{R2(y, ∂i)R1(y, ∂k)∂j}V ,

R̃ 1
∇S ,

2
∇C

(∂ī, ∂ j̄)δk = R̃ 1
∇S ,

2
∇C

(∂ī, δk)∂ j̄ = R̃ 1
∇S ,

2
∇C

(∂ī, ∂ j̄)∂k̄ = 0. (82)

From (79)–(82), we deduce that if R 1
∇,

2
∇

= 0 and M is a flat space with respect to
1
∇

and
2
∇, then R̃ 1

∇S ,
2
∇C

= 0. In the special case where
1
∇ =

2
∇ = ∇, where ∇ is the Levi-Civita

connection of metric g, then from (79)–(82) we obtain that if the mutual curvature R̃∇S ,∇C

vanishes, then M is a flat space. Moreover, if M is a flat space, then R̃∇S ,∇C vanishes and in
this case, R̃∇S ,∇C reduces to the Riemannian curvature of the Levi-Civita connection ∇S.
Thus, as a result of the above discussion we derive the gollowing:

Theorem 6. Let (M, g) be a Riemannian manifold with the Levi-Civita connection
1
∇ and let

2
∇

be an affine connection on M with the curvature tensors R1 and R2, respectively. If
1
∇S is the
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Levi-Civita connection of the Sasaki lift metric gS and
2
∇C is the complete lift connection of

2
∇, then

the following assertions hold:

(1) If the mutual curvature R̃ 1
∇S ,

2
∇C

vanishes, then the mutual curvature R 1
∇,

2
∇

vanishes. Moreover,

if the mutual curvature R 1
∇,

2
∇

vanishes and M is a flat space with respect to
1
∇ and

2
∇, then

the mutual curvature R̃ 1
∇S ,

2
∇C

vanishes.

(2) The mutual curvature R̃ S
∇,

C
∇

vanishes if and only if M is a flat space with respect to ∇, where

∇ is the Levi-Civita connection of metric g. Moreover, in this case the mutual curvature R̃ S
∇,

C
∇

reduces to the Riemannian curvature of the Levi-Civita connection ∇S.
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Finsler Warped Product Metrics with Special
Curvature Properties
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Abstract: The class of warped product metrics can often be interpreted as key space models for
the general theory of relativity and theory of space–time. In this paper, we study several non-
Riemannian quantities in Finsler geometry. These non-Riemannian quantities play an important
role in understanding the geometric properties of Finsler metrics. In particular, we find differential
equations of Finsler warped product metrics with vanishing χ-curvature or vanishing H-curvature.
Furthermore, we show that, for Finsler warped product metrics, the χ-curvature vanishes if and only
if the H-curvature vanishes.

Keywords: Finsler warped product metrics; χ-curvature; H-curvature

MSC: 53C30; 53C60

1. Introduction

There are several non-Riemannian quantities in Finsler geometry, such as the distortion,
the (mean) Cartan torsion, the S-curvature, the (mean) Berwald curvature and the (mean)
Landsberg curvature. We view the distortion and the (mean) Cartan torsion as non-
Riemannian quantities of order zero, and the S-curvature, the (mean) Berwald curvature and
the (mean) Landsberg curvature as non-Riemannian quantities of order one. Differentiating
these quantities along geodesics, we obtain some non-Riemannian quantities of order two.

In this paper, we will consider two non-Riemannian quantities χ = χidxi and
H = Hijdxi ⊗ dxj on the tangent bundle TM:

χi :=S.i|mym − S|i,

Hij :=
1
2

S.i. j|mym,

where S denotes the S-curvature of F and “|” and “.” denote the horizontal and vertical
covariant derivatives with respect to the Chern connection, respectively.

Shen [1] showed some relationships among the flag curvature, the S-curvature, the
χ-curvature and the H-curvature. Cheng and Yuan [2] obtained a formula of χ-curvature
for (α, β)-metrics. Based on this, they showed that the χ-curvature vanishes for a class of
(α, β)-metrics. Shen [3] discussed several expressions for the χ-curvature of a spray. They
showed that sprays, obtained by a projective deformation using the S-curvature, always
have vanishing χ-curvature. They established a Beltrami theorem for sprays with vanishing
χ-curvature.

The non-Riemannian quantity H was introduced by Zadeh [4] and developed by some
other Finslerian geometers [5,6]. Xia [7] obtained some rigidity theorems of a compact
Finsler manifold under some conditions related to H-curvature. They proved that the
S-curvature for a Randers metric is almost isotropic if and only if the H-curvature almost
vanishes. In particular, S-curvature is isotropic if and only if the H-curvature vanishes.
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Axioms 2023, 12, 784

Tang [8] showed that Randers metrics have almost isotropic S-curvature if and only if they
have almost vanishing H-curvature. Furthermore, Randers metrics actually have zero
S-curvature if and only if they have vanishing H-curvature. Mo [9] gave a characterization
of spherically symmetric Finsler metrics with almost vanishing H-curvature. Zhu [10]
showed that the χ-curvature vanishes if and only if the H-curvature vanishes for general
(α, β)-metrics under some conditions. Sevim and Gabrani [11] showed that, on Finsler
warped product manifolds, the χ-curvature vanishes if and only if the H-curvature vanishes.

The warped product metric was introduced by Bishop and O’Neill [12] to study
Riemannian manifolds with negative curvature as a generalization of Riemannian product
metrics. The notion of warped products was extended to the case of Finsler manifolds by
Chen-Shen-Zhao [13] and Kozma-Peter-Varga [14], respectively. These metrics are called
Finsler warped product metrics.

In [15], Shen and Marcal considered a new class of Finsler metrics using the warped
product notion introduced by Chen-Shen-Zhao [13], with another “warping”. This metric
is consistent with static spacetime. They gave partial differential equations (PDEs) charac-
terization for the proposed metrics to be Ricci-flat. Furthermore, they explicitly constructed
two types of non-Riemannian examples.

In this paper, we obtain differential equations of such metrics with vanishing χ-
curvature or vanishing H-curvature. Then, we obtain that the χ-curvature vanishes if and
only if the H-curvature vanishes. The main results are as follows.

Theorem 1. Let F = α
√
φ(z,ρ) be a Finsler warped product metric on an (n + 1)-dimensional

manifold M = R×Rn (n ≥ 2), where α = |ȳ|, z =
y0

|ȳ| , ρ = |x̄|. Then, the χ-curvature vanishes if
and only if the H-curvature vanishes.

A Finsler metric F is said to be R-quadratic if its Riemann curvature Rv is quadratic in
v ∈ TuM [16]. Najafi-Bidabad-Tayebi [17] and Mo [6] showed that all R-quadratic Finsler
metrics have vanishing H-curvature, respectively. For a R-quadratic Finsler warped product
metric, we have the following result.

Corollary 1. Let F = α
√
φ(z,ρ) be a Finsler warped product metric on an (n + 1)-dimensional

manifold M = R ×Rn (n ≥ 2), where α = |ȳ|, z =
y0

|ȳ| , ρ = |x̄|. Suppose that F is R-quadratic,
then the χ-curvature vanishes.

2. Preliminaries

Set M = R×Rn with the following coordinates on TM:

x =
(
x0, x̄
)
, x̄ =

(
x1, . . . , xn

)
,

y =
(
y0, ȳ
)
, ȳ =

(
y1, . . . , yn

)
.

Furthermore, consider a Finsler metric as follows:

F = α
√
φ(z,ρ),

where α = |ȳ|, z =
y0

|ȳ| , ρ = |x̄| and φ is a suitable function on R2.
Throughout this paper, our index conventions are as follows:

0 ≤ A, B, . . . ≤ n,

1 ≤ i, j, . . . ≤ n.
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For a Finsler warped product metric F = α
√
φ(z,ρ), the fundamental form � =

�ABdxA ⊗ dxB is given by:

(�AB) =

⎛⎜⎜⎜⎜⎜⎝
1
2φzz

1
2 Ωz

yj

α
1
2 Ωz

yi

α
1
2 Ωδi j − 1

2 zΩz
yi yj

α2

⎞⎟⎟⎟⎟⎟⎠,

where Ω := 2φ− zφz. Then:

det(�AB) =
1

2n+1
Ωn−1Λ,

where Λ := 2φφzz −φ2
z .

Henceforth, assume F is non-degenerate. In this case, the inverse of (�AB) is:

(
�AB
)
=

⎛⎜⎜⎜⎜⎜⎝
2
Λ (Ω − zΩz) − 2

Λ Ωz
yj

α

− 2
Λ Ωz

yi

α
2
Ωδ

i j +
2φzΩz

ΩΛ
yi yj

α2

⎞⎟⎟⎟⎟⎟⎠.

Proposition 1 ([15]). F = α
√
φ(z,ρ) is strongly convex if and only if Ω, Λ > 0.

The spray coefficients GA are defined by:

GA :=
1
4
�AC
[(

F2
)

yCxB yB −
(
F2
)
xC

]
.

The Riemann curvature of F is a family of endomorphisms:

Ry = RA
BdxB ⊗ ∂

∂xA : TxM→ TxM,

defined by:

RA
B :=2

(
GA
)
xB −
(
GA
)
xC yB yC + 2GC

(
GA
)

yC yB −
(
GA
)

yC

(
GC
)
xB .

For the Riemannian curvature RA
B of the Finsler warped product metric F = α

√
φ(z,ρ),

we have [15]:

R0
0 =[ρ2(U + zV)Wz − (2ρ2W + 1)(Uz + V + zVz)]α

2

+ [2(V + W)(Uz + V + zVz) − (Vz + Wz)(U + zV)

+ 2U(Uzz + 2Vz + zVzz) − 1
ρ
(Uρz + Vρ + zVρz)

− (Uz + V + zVz)
2 − (U − zUz − z2Vz)Vz]

〈
x̄, ȳ
〉2,

R0
j =z[(2ρ2W + 1)(V + Uz + zVz) − ρ2Wz(U + zV)]αyj

+ [z(U + zV)(Vz + Wz) − 2zU(Uzz + 2Vz + zVzz)

+ (U − zUz − z2Vz)(5W −Uz) − 1
ρ
(Uρ − zUρz − z2Vρz)]

〈
x̄, ȳ
〉2 yj

α

+ [(U + zV)(Uz −V + zVz − 2W) + (V − 3W)(U − zUz − z2Vz)

+
1
ρ
(Uρ + zVρ)]

〈
x̄, ȳ
〉
αxj,
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Ri
0 =[ρ2Wz(V −W) − (2ρ2W + 1)Vz]αyi + [(2W −V −Uz)(Vz + Wz)

+ 2U(Vzz + Wzz) − 1
ρ
(Vρz + Wρz)]

〈
x̄, ȳ
〉2 yi

α

+ [(Uz −W)Wz − 2UWzz +
1
ρ

Wρz]
〈
x̄, ȳ
〉
αxi,

Ri
j = − [2W + (2ρ2W + 1)(V + W)]α2δi

j

+ [(V + W)2 + 2U(Vz + Wz) − 1
ρ
(Vρ + Wρ)]

〈
x̄, ȳ
〉2δi

j

+ [2W(2W − zWz) + Wz(U − zW) − 2
ρ

Wρ]α2xixj + [(V + W)

+ z(Vz + Wz)(2ρ2W + 1) + (ρ2(V + W) + 1)(2W − zWz)]yiyj

− [2zU(Vzz + Wzz) + (3U − zUz − zV + 5zW)(Vz + Wz).

− z
ρ
(Vρz + Wρz)]

〈
x̄, ȳ
〉2 yiyj

α2 + [−(2W − zWz)
2 − 2U(Wz − zWzz)

+
1
ρ
(2Wρ − zWρz) + Wz(U − zUz − z2Wz)]

〈
x̄, ȳ
〉
xiyj

+ [−(V + W)2 + (Vz + Wz)(U + 3zW) +
1
ρ
(Vρ + Wρ)]

〈
x̄, ȳ
〉
xjyi,

where
〈
x̄, ȳ
〉

:=
∑n

k=1 xkyk,

U :=
1

2ρΛ

(
2φφρz −φρφz

)
, V :=

1
2ρΛ

(
φρφzz −φzφρz

)
, W :=

1
2ρΩ

φρ. (1)

Thus, the Ricci curvature of F = α
√
φ(z,ρ) is [15]:

Ric := RA
A

=[−(2ρ2W + 1)(Uz + nV + (n− 3)W) − 2(nW + ρWρ − ρ2Wz(U − zW))]α2

+ [2U(Uzz + nVz + (n− 2)Wz) − 1
ρ
(Uρz + nVρ + (n− 3)Wρ)

+ nV(V + 2W) + W((n− 5)W + 2zWz) + Uz(2W −Uz)]
〈
x̄, ȳ
〉2.

3. χ-Curvature

In this section, we first derive the expression for the χ-curvature of a Finsler warped
product metric F = α

√
φ(z,ρ). Then, we obtain differential equations of such metrics with

vanishing χ-curvature.

Lemma 1 ([15]). For a Finsler warped product metric F = α
√
φ(z,ρ), the χ-curvature of F is

given by:

χ0 = (
1
ρ

Ψρz − 2UΨzz − 2WΨz)

〈
x̄, ȳ
〉2
α

+ (2ρ2W + 1)Ψzα,

χi = [2zUΨzz − z
ρ

Ψρz + 2(U + 2zW)Ψz]

〈
x̄, ȳ
〉2

α2 yi

− z(2ρ2W + 1)Ψzyi − 2(U + zW)Ψz
〈
x̄, ȳ
〉
xi,

where
Ψ := Uz + (n + 2)V + (n− 1)W.
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Lemma 2 ([15]). For n ≥ 2, Aα2 + B
〈
x̄, ȳ
〉2 = 0 if and only if A = 0 and B = 0, where A, B are

functions of z and ρ.

Lemma 3. For n ≥ 2:

Aα2yi + B
〈
x̄, ȳ
〉
α2xi + C

〈
x̄, ȳ
〉2yi = 0 (2)

if and only if A = 0, B = 0 and C = 0, where A, B, C are functions of z and ρ.

Proof. “Necessity”. Suppose that (2) holds. Contracting (2) with yi, we have:

Aα2 + (B + C)
〈
x̄, ȳ
〉2 = 0.

By Lemma 2, we obtain A = 0, B + C = 0.
Thus, (2) can be simplified as B

(
α2xi − 〈x̄, ȳ

〉
yi
)
= 0. Contracting it with xi yields:

B
(
ρ2α2 − 〈x̄, ȳ

〉2) = 0.

We obtain B = 0. Thus, A = 0, B = 0 and C = 0.
“Sufficiency”. It is obviously true. �

Theorem 2. Let F = α
√
φ(z,ρ) be a Finsler warped product metric on an (n + 1)-dimensional

manifold M = R×Rn (n ≥ 2), where α = |ȳ|, z =
y0

|ȳ| ,ρ = |x̄|. Then F has vanishing χ-curvature
if and only if φ satisfies Ψz = 0.

Proof. “Necessity”. Suppose that F has vanishing χ-curvature, i.e., χ0 = 0,χi = 0. For
χ0 = 0, by Lemma 1 and Lemma 2, we obtain that:

⎧⎪⎪⎨⎪⎪⎩
0 = −2ρUΨzz + Ψρz − 2ρWΨz, (3)

0 =
(
2ρ2W + 1

)
Ψz. (4)

Since χi = 0, by Lemma 1 and Lemma 3, we obtain that:
{

0 = 2ρzUΨzz − zΨρz + 2ρ(U + 2zW)Ψz, (5)

0 = (U + zW)Ψz. (6)

Since (5) − 2ρ× (6) = −z × (3), F has vanishing χ-curvature if and only if:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 =
(
2ρ2W + 1

)
Ψz,

0 = 2ρzUΨzz − zΨρz + 2ρ(U + 2zW)Ψz,

0 = (U + zW)Ψz.

(7)

We divide the problem into two cases:
Case(i) Ψz = 0. It is easy to verify that (7) holds.
Case(ii) Ψz � 0. We see that (7) is equivalent to:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 = 2ρ2W + 1, (8)

0 = U + zW, (9)

0 = 2ρUΨzz −Ψρz + 2ρWΨz. (10)

By (8), we have:

W = − 1
2ρ2 .
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Substituting it into W := 1
2ρΩφρ yields:

2φ− zφz + ρφρ = 0. (11)

Plugging W = − 1
2ρ2 into (9), we obtain:

U =
z

2ρ2 .

By (11) and V := 1
2ρΛ

(
φρφzz −φzφρz

)
, we have:

V = − 1
2ρ2 .

Finally, we obtain Ψ := Uz + (n + 2)V + (n− 1)W = − n
ρ2 . Hence, Ψz = 0, which is a

contradiction to our assumption.
“Sufficiency”. It is obvious by Lemma 1.
This completes the proof of Theorem 2. �

4. H-Curvature

In this section, we derive the expression for the H-curvature of Finsler warped product
metric F = α

√
φ(z,ρ). Then, we obtain differential equations of such metrics with vanishing

H-curvature.
The H-curvature can be expressed in terms of χ-curvature [8], that is:

Hij =
1
4

(
χi. j + χ j.i

)
. (12)

Lemma 4. For a Finsler warped product metric F = α
√
φ(z,ρ), the H-curvature is given by:

H00 =[
1

2ρ
Ψρzz − (Uz + W)Ψzz −UΨzzz −WzΨz]

〈
x̄, ȳ
〉2

α2 +
1
2
(2ρ2W + 1)Ψzz + ρ

2WzΨz,

H0i =
1
2
[− z
ρ

Ψρzz + 2zUΨzzz − 1
ρ

Ψρz + (3U + 3zW + 2zUz)Ψzz + (3zWz + 3W + Uz)Ψz]

〈
x̄, ȳ
〉2

α3 yi

+
1
2
[
1
ρ

Ψρz − (3U + zW)Ψzz − (3W + Uz + zWz)Ψz]

〈
x̄, ȳ
〉

α
xi

− z
2
[2ρ2WzΨz + (2ρ2W + 1)Ψzz]

yi

α
,

Hij =
1
2
[−2z(4U + zUz + 2zW)Ψzz − 2z2UΨzzz +

3z
ρ

Ψρz +
z2

ρ
Ψρzz

− 2(6zW + zUz + 2z2Wz + 2U)Ψz]

〈
x̄, ȳ
〉2

α4
yiyj

+
z
2
[(2ρ2W + 1 + 2zρ2Wz)Ψz + z(2ρ2W + 1)Ψzz]

yiyj

α2

+
1
2
[(zUz + 5zW + z2Wz + 2U)Ψz + z(3U + zW)Ψzz − z

ρ
Ψρz]

〈
x̄, ȳ
〉

α2 (xiyj + xjyi)

+
1
2
[2zUΨzz − z

ρ
Ψρz + 2(U + 2zW)Ψz]

〈
x̄, ȳ
〉2

α2 δi j

− z
2
(2ρ2W + 1)Ψzδi j − (U + zW)Ψzxixj.

44



Axioms 2023, 12, 784

Proof. For a Finsler warped product metric F = α
√
φ(z,ρ):

H =HABdxA ⊗ dxB

=H00dx0 ⊗ dx0 + H0 jdx0 ⊗ dxj + Hi0dxi ⊗ dx0 + Hijdxi ⊗ dxj,

where H00 = 1
4 (χ0.0 +χ0.0), H0 j =

1
4 (χ0. j +χ j.0), Hi0 = 1

4 (χi.0 +χ0.i) and Hij =
1
4 (χi. j +χ j.i).

Differentiating χA with respect to y, we obtain:

χ0.0 =[
1
ρ

Ψρzz − 2(Uz + W)Ψzz − 2UΨzzz − 2WzΨz]

〈
x̄, ȳ
〉2

α2 + (2ρ2W + 1)Ψzz + 2ρ2WzΨz,

χ0.i =[− z
ρ

Ψρzz + 2zUΨzzz − 1
ρ

Ψρz + 2(zUz + zW + U)Ψzz + 2(zWz + W)Ψz]

〈
x̄, ȳ
〉2

α3 yi

+ 2(
1
ρ

Ψρz − 2UΨzz − 2WΨz)

〈
x̄, ȳ
〉

α
xi

+ [(2ρ2W + 1− 2zρ2Wz)Ψz − z(2ρ2W + 1)Ψzz]
yi

α
,

χi.0 =[− z
ρ

Ψρzz + 2zUΨzzz − 1
ρ

Ψρz + 2(zUz + 2zW + 2U)Ψzz + 2(Uz + 2zWz + 2W)Ψz]

〈
x̄, ȳ
〉2

α3 yi

− 2[(U + zW)Ψzz + (Uz + zWz + W)Ψz]

〈
x̄, ȳ
〉

α
xi

− [z(2ρ2W + 1)Ψzz + (2ρ2W + 1 + 2zρ2Wz)Ψz]
yi

α
,

χi. j =[−2z2UΨzzz +
z2

ρ
Ψρzz − 2z(4U + zUz + 2zW)Ψzz +

3z
ρ

Ψρz

− 2(6zW + zUz + 2z2Wz + 2U)Ψz]

〈
x̄, ȳ
〉2

α4
yiyj

+ z[(2ρ2W + 1 + 2zρ2Wz)Ψz + z(2ρ2W + 1)Ψzz]
yiyj

α2

+ 2z[(Uz + W + zWz)Ψz + (U + zW)Ψzz]

〈
x̄, ȳ
〉

α2 xiyj

+ 2[2(U + 2zW)Ψz + 2zUΨzz − z
ρ

Ψρz]

〈
x̄, ȳ
〉

α2 xjyi

+ [2zUΨzz − z
ρ

Ψρz + 2(U + 2zW)Ψz]

〈
x̄, ȳ
〉2

α2 δi j − z(2ρ2W + 1)Ψzδi j − 2(U + zW)Ψzxixj.

By simple calculations, we obtain the expression of HAB. �

Lemma 5. For n ≥ 2:

Aα4xi + B
〈
x̄, ȳ
〉2α2xi + C

〈
x̄, ȳ
〉
α2yi + D

〈
x̄, ȳ
〉3yi = 0 (13)

if and only if A = 0, B = 0, C = 0 and D = 0, where A, B, C, D are functions of z and ρ.

Proof. “Necessity”. Suppose that (13) holds. Contracting (13) with yi yields:

A
〈
x̄, ȳ
〉
α4 + B

〈
x̄, ȳ
〉3α2 + C

〈
x̄, ȳ
〉
α4 + D

〈
x̄, ȳ
〉3α2 = 0,

that is:
(A + C)α2 + (B + D)

〈
x̄, ȳ
〉2 = 0.

By Lemma 2, we obtain C = −A, D = −B.
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Thus, (13) can be simplified as Aα4xi + B
〈
x̄, ȳ
〉2α2xi − A

〈
x̄, ȳ
〉
α2yi − B

〈
x̄, ȳ
〉3yi = 0.

Contracting it with xi yields:
(
ρ2α2 − 〈x̄, ȳ

〉2)[Aα2 + B
〈
x̄, ȳ
〉2] = 0.

By Lemma 2, we obtain A = 0 and B = 0. Thus, A = 0, B = 0, C = 0 and D = 0.
“Sufficiency”. It is obviously true. �

Lemma 6. For n ≥ 2:

A
〈
x̄, ȳ
〉2yiyj + Bα2yiyj + Cα4xixj + D

〈
x̄, ȳ
〉
α2
(
xiyj + xjyi

)
+ E
〈
x̄, ȳ
〉2α2δi j + Fα4δi j = 0 (14)

if and only if A = 0, B = −F = Cρ2 and E = C = −D, where A, B, C, D, E, F are functions of z
and ρ. In particular, for n > 2, if (14) holds, then A = B = C = D = E = F = 0.

Proof. “Necessity”. Suppose that (14) holds. Contracting (14) with yj, we have:

(B + F)α2yi + (C + D)
〈
x̄, ȳ
〉
α2xi + (A + D + E)

〈
x̄, ȳ
〉2yi = 0.

By Lemma 3, we obtain F = −B, D = −C and E = −A + C.
Thus, (14) can be simplified as A

〈
x̄, ȳ
〉2yiyj +Bα2yiyj +Cα4xixj−C

〈
x̄, ȳ
〉
α2
(
xiyj + xjyi

)
+

(−A + C)
〈
x̄, ȳ
〉2α2δi j − Bα4δi j = 0. Contracting it with xj yields:

(
Cρ2 − B

)
α4xi −A

〈
x̄, ȳ
〉2α2xi +

(
B−Cρ2

)〈
x̄, ȳ
〉
α2yi + A

〈
x̄, ȳ
〉3yi = 0.

By Lemma 5, we obtain Cρ2 − B = 0 and A = 0. Thus, A = 0, B = −F = Cρ2 and
E = C = −D.

In this case, (14) can be rewritten as:

α2C
[
ρ2yiyj + α2xixj − 〈x̄, ȳ

〉
(xiyj + xjyi) +

〈
x̄, ȳ
〉2δi j − ρ2α2δi j

]
= 0. (15)

Now putting i = j and taking summation over i, we obtain:

(n− 2)Cα2
(〈

x̄, ȳ
〉2 − ρ2α2

)
= 0.

Thus, when n = 2, the above equation always holds; when n > 2, we obtain C = 0. Thus,
A = B = C = D = E = F = 0.

“Sufficiency”. When n > 2, it is obviously true. When n = 2, we see that the right side
of (14) is reduced to the left side of (15). Furthermore, we have that (15) holds for any i and
j (1 ≤ i, j ≤ 2). Thus, (14) holds. This completes the proof of Lemma 6. �

Theorem 3. Let F = α
√
φ(z,ρ) be a Finsler warped product metric on an (n + 1)-dimensional

manifold M = R×Rn (n ≥ 2), where α = |ȳ|, z =
y0

|ȳ| ,ρ = |x̄|. Then, F has vanishing H-curvature
if and only if φ satisfies Ψz = 0.

Proof. “Necessity”. Suppose that F has vanishing H-curvature, i.e, H00 = 0, H0i = 0,
Hij = 0. Since H00 = 0, by Lemma 4 and Lemma 2, we obtain that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 =
[
2ρUΨzz −Ψρz + 2ρWΨz

]
z
, (16)

0 =
[(

2ρ2W + 1
)
Ψz
]
z
. (17)

For H0i = 0, by Lemma 4 and Lemma 3, we obtain that:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 = 2ρzUΨzzz − zΨρzz + ρ(3U + 3zW + 2zUz)Ψzz −Ψρz

+ρ(3zWz + 3W + Uz)Ψz, (18)

0 = ρ(3U + zW)Ψzz −Ψρz + ρ(3W + Uz + zWz)Ψz. (19)

Since Hij = 0, by Lemma 4 and Lemma 6, we have that:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = 2ρz2UΨzzz − z2Ψρzz + 2ρz(4U + zUz + 2zW)Ψzz − 3zΨρz

+2ρ
(
6zW + zUz + 2z2Wz + 2U

)
Ψz, (20)

0 = z
(
2ρ2W + 1

)
Ψzz +

[
(1− z)

(
2ρ2W + 1

)
+ 2ρ2zWz

]
Ψz, (21)

0 =
[
z
(
2ρ2W + 1

)
+ 2ρ2(U + zW)

]
Ψz, (22)

0 = 2ρ2zUΨzz − ρzΨρz +
[
2ρ2(U + 2zW) − z

(
2ρ2W + 1

)]
Ψz, (23)

0 = ρz(5U + zW)Ψzz − 2zΨρz + ρ
(
zUz + 9zW + z2Wz + 4U

)
Ψz. (24)

(21) − z× (17) yields:
(1− z)

(
2ρ2W + 1

)
Ψz = 0.

(22) + (23) yields:

4ρ2(U + zW)Ψz + ρz
(
2ρUΨzz −Ψρz + 2ρWΨz

)
= 0.

(24) − 2z× (19) yields:

−z(U + zW)Ψzz +
[
−z2Wz + 4(U + zW) − z(W + Uz)

]
Ψz = 0.

Since (18) = (19) + z × (16) and (20) = z2 × (16) + z × (19) + (24), F has vanishing
H-curvature if and only if:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =
[
2ρUΨzz −Ψρz + 2ρWΨz

]
z
, (25)

0 =
[(

2ρ2W + 1
)
Ψz
]
z
, (26)

0 = ρ(3U + zW)Ψzz −Ψρz + ρ(3W + Uz + zWz)Ψz, (27)

0 = (1− z)
(
2ρ2W + 1

)
Ψz, (28)

0 =
[
z
(
2ρ2W + 1

)
+ 2ρ2(U + zW)

]
Ψz, (29)

0 = 4ρ2(U + zW)Ψz + ρz
(
2ρUΨzz −Ψρz + 2ρWΨz

)
, (30)

0 = −z(U + zW)Ψzz +
[
−z2Wz + 4(U + zW) − z(W + Uz)

]
Ψz. (31)

We divide the problem into two cases:
Case(i) Ψz = 0. It is easy to verify that (25)–(31) hold.
Case(ii) Ψz � 0. From (28), we can see 2ρ2W + 1 = 0. Thus, Wz = 0. Plugging

2ρ2W + 1 = 0 into (29) yields:
U + zW = 0.

Differentiating it with respect to z and combining this with Wz = 0, we have Uz + W = 0.
Substituting 2ρ2W + 1 = 0 and U + zW = 0 into (27) yields:

2ρUΨzz −Ψρz + 2ρWΨz = 0.
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It is easy to verify that (25), (26), (30) and (31) hold. Now F has vanishing H-curvature if
and only if the following hold:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 = 2ρ2W + 1,
0 = U + zW,
0 = 2ρUΨzz −Ψρz + 2ρWΨz.

The result is the same as in Case(ii) of Theorem 2. This is a contradiction.
“Sufficiency”. It is obvious by Lemma 4.
This completes the proof of Theorem 3. �

Proof of Theorem 1. By Theorem 2 and Theorem 3, the result is obvious. �

Example 1. (Minkowski metrics). Let φ = φ(z,ρ) be a function defined by:

φ(z,ρ) = e2z,

where |z| < 1. We have the Finsler warped product metric:

F = α
√
φ = αez.

Since Ω = 2(1− z)e2z > 0, Λ = 4e4z > 0, by Proposition 1, we obtain that F = α
√
φ gives a

positive-definite metric. We know that Ψz = 0. By Theorems 2 and 3, we have that its χ-curvature
and H-curvature vanish.

Example 2. (Randers metrics). Let φ = φ(z,ρ) be a function defined by:

φ(z,ρ) =
(

f (ρ)z +
√

f 2(ρ)z2 + �(ρ)
)2

,

where �(ρ) > 0 and f (ρ)z +
√

f 2(ρ)z2 + �(ρ) > 0. We have the Finsler warped product metric:

F = α
√
φ = α( f (ρ)z +

√
red f 2(ρ)z2 + �(ρ)).

Since Ω =
2�(ρ)φ

1
2√

f 2(ρ)z2+�(ρ)
> 0, Λ =

4 f 2(ρ)�(ρ)φ
3
2

( f 2(ρ)z2+�(ρ))
3
2
> 0, by Proposition 1, we obtain that

F = α
√
φ gives a positive-definite metric. We know that Ψz = 0. By Theorems 2 and 3, we have

that its χ-curvature and H-curvature vanish.

Example 3. (Quadratic polynomial). Let φ = φ(z,ρ) be a function defined by:

φ(z,ρ) = c2z2 + c1(ρ)z + c0c2
1(ρ),

where c0, c2 are constants, |z| < 1, 4c0c2 > 1 and 2c0c1(ρ) > 1. We have the Finsler warped
product metric:

F = α
√
φ = α

√
c2z2 + c1(ρ)z + c0c2

1(ρ).

Since Ω = c1(ρ)(z + 2c0c1(ρ)) > 0, Λ = c2
1(ρ)(4c0c2 − 1) > 0, by Proposition 1, we obtain that

F = α
√
φ gives a positive-definite metric. We know that Ψz = 0. By Theorems 2 and 3, we have

that its χ-curvature and H-curvature vanish.

5. Conclusions

Non-Riemannian quantities play an important role in Finsler geometry. In this paper,
we firstly obtain differential equations of Finsler warped product metrics with vanishing
χ-curvature or vanishing H-curvature. Based on these, we obtain that the χ-curvature
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vanishes if and only if the H-curvature vanishes. Since the solution of Ψz = 0 is unknown,
the classification of such metrics is to be continued.
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Abstract: In this paper, we investigate the geometrical axioms of Riemannian submersions in the
context of the η-Ricci–Yamabe soliton (η-RY soliton) with a potential field. We give the categorization
of each fiber of Riemannian submersion as an η-RY soliton, an η-Ricci soliton, and an η-Yamabe soliton.
Additionally, we consider the many circumstances under which a target manifold of Riemannian
submersion is an η-RY soliton, an η-Ricci soliton, an η-Yamabe soliton, or a quasi-Yamabe soliton.
We deduce a Poisson equation on a Riemannian submersion in a specific scenario if the potential
vector field ω of the soliton is of gradient type =:grad(γ) and provide some examples of an η-RY
soliton, which illustrates our finding. Finally, we explore a number theoretic approach to Riemannian
submersion with totally geodesic fibers.

Keywords: η-Ricci–Yamabe soliton; Riemannian submersion; Riemannian manifold; homotopy groups

MSC: 53C25; 53C43; 11F23

1. Introduction

Since Riemannian geometry’s inception, the idea of Riemannian immersion has been
the subject of extensive study. In fact, the Riemannian manifolds that were initially intended
to be examined were surfaces embedded in R3 [1].

Initially, Gray and O’Neill were the first to discuss the “dual” concept of Riemannian
submersion and investigated it further. Because of their applications in supergravity,
the theory of relativity, and other physical theories, Riemannian submersions have received
considerable attention in both mathematics and theoretical physics (see [2–7]). Studies on
Riemannian submersion are reported in [8–12].

A soliton, which is related to the geometrical flow of Riemannian (semi-Riemannian)
geometry, is a significant symmetry.

However, the theory of geometric flows has emerged as one of the most important
geometrical theories for illuminating Riemannian geometric structures. The study of
singularities of the flows involves a certain section of solutions when the metric evolves via
dilations and diffeomorphisms because they appear as potential singularity models. They
are frequently referred to as solitons.

In 1988, Hamilton [13] presented the ideas of Ricci flow and Yamabe flow for the first
time. The limit of the solutions for the Ricci flow and the Yamabe flow, respectively, is
shown to be the soliton of Ricci and the soliton of Yamabe. Geometric flow theory, including
the Ricci flow and Yamabe flow, has drawn the attention of many mathematicians over the
past two decades.

Under the term Ricci–Yamabe map, geometers [14] initiated research concerning a
novel geometric flow that is a generalization of the Ricci and Yamabe flows. Ricci–Yamabe

Axioms 2023, 12, 796. https://doi.org/10.3390/axioms12080796 https://www.mdpi.com/journal/axioms50
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flow of the type (σ, ρ) is another name for this. The metrics on the Riemannian manifold
defined by Guler and Crasmareanu evolve into the Ricci–Yamabe flow [14].

1
2

∂

∂t
g(t) = −σS(t)− ρ

2
R(t)g(t), g0 = g(0). (1)

An interpolation of solitons between the Ricci and Yamabe soliton is considered in the Ricci–
Bourguignon soliton corresponding to Ricci–Bourguignon flow but it depends on a single
scalar. Ricci–Yamabe flow can either be a Riemannian flow, a semi-Riemannian flow, or a
singular Riemannian flow, depending on the sign of the associated scalars σ and ρ. Such a
range of options may be beneficial in various geometrical or physical models, such as the
general theory of relativity.

Consequently, the Ricci–Yamabe soliton inevitably appears as the limit of the soliton
of the Ricci–Yamabe flow. Ricci–Yamabe solitons are solitons to the Ricci–Yamabe flow that
move only by one parameter group of diffeomorphism and scaling. Specifically, a Ricci–
Yamabe soliton on the Riemannian manifold, (M, g), is a data (g, ω, τ, σ, ρ) satisfying

1
2
Lωg + σS +

(
τ − ρ

2
R
)

g = 0, (2)

where the Ricci tensor is S, the scalar curvature is R, and the Lie-derivative along the
vector field ω is Lω. The manifold (M, g, ω, τ, ν) is referred to as a Ricci–Yamabe shrinker,
expander, or stable soliton depending on the constant τ, whether τ < 0, τ > 0 or τ = 0.

As an extension of Ricci and Yamabe solitons, Equation (2) is referred to as a Ricci–
Yamabe soliton of kind (σ, ρ). We see that the Ricci–Yamabe solitons of kind (σ, 0) and
(0, ρ) are, respectively, the σ-Ricci solitons and the ρ-Yamabe solitons.

The idea of an η-Ricci soliton described in [15], is an evolutionary abstraction of
the Ricci soliton. As a result, we can define the new concept similarly by amending the
expression (2) that explains the type of soliton by a multiple of a specific (0, 2)-tensor field
η ⊗ η. These findings result in a significantly more comprehensive concept, termed an
η-Ricci–Yamabe soliton (briefly an η-RY soliton) of kind (σ, ρ) defined as:

1
2
Lωg + σS +

(
τ − ρ

2
R
)

g + νη ⊗ η = 0, (3)

where ν is a constant. Let us reiterate that η-RY solitons of kinds (σ, 0) or (1, 0), (0, ρ),
or (0, 1)-type are an η-Ricci soliton and an η-Yamabe soliton, respectively. For more infor-
mation about these specific cases, see [16–22].

According to [23], if τ in (3) is replaced with the soliton function, then we may
claim that the manifold (M, g) is an almost η-RY soliton [24]. It is important to note that
they originate from the Ricci–Bourguignon flow and conformal Ricci flow, which Cantino,
Mazzieri and Siddiqi recently examined [25–28]. We refer to (3) as the core equation of an
approximately η-RY soliton in this more extended context.

In [22], the authors proved that the total manifold of a Riemannian submersion admits
a Ricci soliton. In fact, the η-Ricci–Yamabe soliton is a generalization of the η-Ricci soliton
from the proceedings of the η-Yamabe soliton, Yamabe soliton, and Einstein soliton. There-
fore, motivated by the previous studies, in this paper, we discuss Riemannian submersions
in terms of an η-Ricci–Yamabe soliton.

Example 1. Let us look at the instance of an Einstein soliton, which produces solutions to Einstein
flow that are self-similar (for more details see [26]), so that

∂

∂t
g(t) = −2

(
S− R

2
g
)

.

As a result, an Einstein soliton appears as the limit of the Einstein flow solution, such that

Lωg + 2S + (τ − R
2
)g = 0. (4)
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When comparing Equations (3) and (4) in this situation, we find that σ = 1 and ρ = 1, or its
type (1, 1), are RY solitons.

Moreover, we note a useful definition:

Definition 1. A smooth vector field ζ on a Riemannian manifold (N , g) is said to be a conformal
vector field if there exists a smooth function ϕ on N that satisfies [29]

Lζ g = 2ϕg, (5)

where Lζ g is the Lie derivative of ζ with respect to g. If ϕ = 0, then ζ is called a Killing vector field.

2. Riemannian Submersions

We present the additional context for Riemannian submersions (briefly RS) in this part.
Let (N n, g) and (Bm, gB) be two Riemannian manifolds (briefly RS), endowed with

metrics g and gB, wherein dim(N ) > dim(B).
A surjective mapping π : (N , g)→ (B, gB) is called a Riemannian submersion [30] if:
(A1)

dim(B) = Rank(π).

In this instance, π−1(s) = π−1
s is a submanifold N (dim(N ) = t) and is referred to as a

fiber for all s ∈ B, wherein
dim(N )− t = dim(B).

If a vector field on N is always tangent (resp. orthogonal) to fibers, it is said to be vertical
(resp. horizontal). If a vector field P on N is horizontal and π-related to a vector field P∗ on
B, then π∗(Pp) = E∗π(p) is the basis for all s ∈ N and E ∈ B, wherein π∗ is the differential
map of π.

The projections on the vertical distribution Kerπ∗ and the horizontal distribution
Kerπ⊥

∗ will be indicated by the symbols V (briefly vdV) and H (briefly hdH), respectively.
The manifold (N , g) is regarded as the total manifold, and the manifold (B, gB) is

regarded as the base manifold, as is customary.
(A2) The size of the horizontal vectors are preserved by π∗.

These requirements are similar to claiming that the differential map of π∗, restricted
to Kerπ⊥

∗ , is a linear isometry. We obtain the following information if P and Q are the
fundamental vector fields, connected to PB and QB by π:

1. g(P, Q) = gB(PB , QB) ◦ π,
2. h[P, Q] is the basic vector field π-connected to [PB , QB ],
3. h(∇PQ) is the basic vector field π-connected to ∇B

PBQB .

In the case of each vertical vector field {V, [I, J]} is vertical.
O’Neill’s tensors T and A, which are described below:

TIJ = V∇VIHJ + H∇VIVJ, (6)

AIJ = V∇HIHJ + H∇HIVJ (7)

if any vector fields I and J exist on N , where ∇ denotes the Levi–Civita connection of g.
The skew-symmetric operators on the tangent bundle of N that project the vdV and the
hdH are evidently TI and AJ .
If G, K are vertical vector fields on N and P, Q are horizontal vector fields, then we obtain

TGK = TKG, (8)

APQ = −AQP =
1
2

V[P, Q]. (9)
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Alternatively, we discover from (6) and (7)

∇GK = TGK + ∇̂GK, (10)

∇GP = TGP + H∇GP, (11)

∇PG = APG + V∇PG, (12)

∇PQ = H∇PQ +APQ, (13)

wherein ∇̂GK = V∇GK. Additionally, we have

H∇GP = APG

where P is basic. It is not hard to see that A acts on the hdH and estimates of the resistance
to the integrability of this distribution while T operates on the fibers as the second basic
form. We refer to the book [8] as well as the paper by O’Neill [30] for more information
about the RS.

3. Characteristics of Curvatures on Riemannian Submersions

The following useful Riemannian submersion (RS) curvature properties are covered
in this section:

Proposition 1. For an RS π, the Riemannian curvatures of the total manifold, the base manifold,
and each fiber of π denoted by RT, RB and R̂, respectively, then we have

RT(I, J, G, H) = R̂(I, J, G, H) + g(TJH, TIG)− g(TIH, TJG), (14)

RT(P, Q, R, L) = RB(PB , QB , RB , LB) ◦ π + 2g(APQ,ARL) (15)

−g(AQR,APL) + g(APR,ARL).

for any I, J, G, H ∈ ΓV(N ) and P, Q, R, L ∈ ΓH(N ).

Proposition 2. For an RS π, Ricci curvatures of (N , g), (B, gB) and any fiber of π are denoted
by S, SN and Ŝ, respectively. Then, we have

S(I, J) = Ŝ(I, J) + g(N, TIJ)−
n

∑
i=1

g
((
∇PiT

)
(I, J), Pi

)
− g

(
AP1 I,AP1 J

)
(16)

S(P, Q) = SB(PB , QB) ◦ π − 1
2
{

g(∇PN, Q) + g(∇QN, P)
}

, (17)

+2
n

∑
i=1

g(APPi,AQPi) +
r

∑
j=1

g(TPi P, TPi Q),

S(I, P) = −g(∇IN, P) + ∑
j

g((∇IiT )(Ij, E), P) (18)

−
n

∑
i=1

{
g((∇PiA)(Pi, P), I) + 2g(APi P, TIPi)

}
where {Ii} and {Pi} are the orthonormal basis of vdV and hdH, respectively, and I, E ∈ ΓV(N ),
P, Q ∈ ΓH(N ).

Using (16) and (17), we derive the following:
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Proposition 3. In an RS π , the vertical scalar curvature RV and the horizontal scalar curvature
RH are provided as

RV = ∑s
k=1S(Ik, Ik) = ∑s

k=1Ŝ(Ik, Ik) + g(N, TIk Ik)

−
n

∑
i=1

d((∇PiT )(Ik, Ik), Pi)− g(APi Ik,APi Ik), (19)

RH =
r

∑
i=1

S(Pi, Pi) =
n

∑
i=1

{
SB(PBi , PBi ) ◦ π − 1

2
{

g(∇Pi N, Pi) + g(∇Pi N, Pi)
}

,

+2
n

∑
i=1

g(APPi,AQPi) +
r

∑
j=1

g(TPi P, TPi Q). (20)

Now, Equations (19) and (20) entail that

RV = R̂ + ‖N‖2 − div(N)− ‖A‖2, (21)

RH = (RB ◦ π) + ‖T ‖2 + 2‖A‖2 − div(N), (22)

Adopting (21) and (22), we turn up the scalar curvature R of the base manifold (B, gB)

R = R̂ + (RB ◦ π) + ‖N‖2 + ‖A‖2 + ‖T ‖2 − 2div(N). (23)

In addition, the mean curvature vector field H for every fiber of RS is given by rH = N,
where N is a horizontal vector field, such that

N =
r

∑
j=1

TIj Ij. (24)

Additionally, any fiber π dimension is indicated by the prefix r, and the orthonormal basis
for vdV is {E1, E2, · · · , Er}. We emphasize that all fibers of RS must be minimal, if, and
only if, the horizontal vector field N vanishes. From (24), we obtain

g(∇Z N, P) =
r

∑
j=1

g((∇ZT )(Ij, Ij), P) (25)

for any Z ∈ Γ(TN ) and P ∈ ΓH(N ).
Any horizontal vector field P divergence on ΓH(N ), and denoted by div(P), is deter-

mined by

div(P) =
n

∑
i=1

g(∇Pi P, Pi), (26)

where the orthonormal basis of the horizontal space ΓH(N ) is {P1, P2, · · · , Pn}. Thus,
taking into account (26), we have

div(N) =
n

∑
i=1

r

∑
j=1

g(∇PiT )(Ij, Ij), Pi). (27)

4. η-Ricci–Yamabe Solitons in Riemannian Submersions

This section discusses the η-RY soliton of kind- (σ, ρ) on RS π : (N , g) −→ (B, gB)
from Riemannian manifolds and the characteristics of fiber of such RS with target manifold
(B, gB). Throughout the study, RS stands for a Riemannian submersion between Rieman-
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nian manifolds. We discover the following conclusions as a result of Equations (10) to (13)
in the case of an RS:

Theorem 1. If π : (N , g) −→ (B, gB) is an RS. Then, the
1. vdV is parallel with respect to the connection ∇, if the horizontal components TIJ and API are
eliminated, identically.
2. hdH is parallel with respect to the connection ∇, if the vertical components TIP and APQ are
eliminated, identically,
for any P, Q ∈ ΓH(N ) and I, J ∈ ΓV(N ).

Since (N , g) is an η-RY soliton, then, by (3), we find

2σS(I, J) + (2τ − ρR)g(I, J) + 2νη(I)η(J) + (Lωg)(I, J) = 0 (28)

for each I, I ∈ ΓV(N ). Adopting (16), we have

2σŜ(I, J) + g(N, TIJ) +
{

g(∇Iω, J) + g(∇Jω, I)
}

(29)

−
n

∑
i=1

g((∇PtT )(I, F), Pi)− g(APt I,APt J) + (2τ − ρR)g(I, J) + 2vη(I)η(J) = 0

wherein ∇ is a Levi–Civita connection on N and {Pi} denotes an orthonormal basis of the
hdH. The following equation is then obtained by using Theorem 1, the Equations (7) and (10),

2σŜ(I, J) + [d̂(∇̂Iω, J) + ĝ(∇̂Iω, I)] (30)

+(2τ − ρ ˆR|V)ĝ(I, J) + 2νη(I)η(J) = 0,

for every I, J ∈ ΓV(N ). Using (21), we find

2σŜ(I, J) + [ĝ(∇̂Iω, J) + ĝ(∇̂Jω, I)] (31)

+(2τ − ρR̂ + ‖N‖2 − ‖A‖2 − div(N))ĝ(I, J) + 2νη(I)η(J) = 0.

Defining R = R̂ + ‖N‖2 − ‖A‖2 − div(N), then, the Equation (31) follows;

2σŜ(I, J) + (2τ − ρR)ĝ(I, J) + [ĝ(∇̂Iω, J) + ĝ(∇̂Jω, I)] + 2νη(I)η(J) = 0. (32)

Let us mention here the “vertical potential vector field” (in brief VPVF) and the “horizontal
potential vector field” (HPVF). Hence, we generate the following results:

Theorem 2. Let (N , g, ω, τ, ν, σ, ρ) be an η-RY soliton of kind-(σ, ρ) with a VPVF ω and π be
an RS from the Riemannian manifolds. If the vdV is parallel, then every fiber in an RS is an η-RY
soliton.

Remark 1. Now, for σ = 1, ρ = 0 and ν �= 0, then, from (30), we find

2Ŝ(I, J) + [ĝ(∇̂Iω, J) + ĝ(∇̂Iω, J)] + 2τĝ(I, J) + 2νη(I)η(J) = 0. (33)

Therefore, one can obtain the following

Theorem 3. Let (N , g, ω, τ, ν, σ) be an η-Ricci soliton of kind-(1, 0) with VPVF ω and π be a
RS. If the vdV is parallel, then every fiber in an RS is an η-Ricci soliton.

Remark 2. Next, setting σ = 0, ρ = 1 and ν �= 0, so (30) entails that

[ĝ(∇̂Iω, J) + ĝ(∇̂Iω, J)] + (2τ − R)ĝ(I, J) + 2νη(I)η(J) = 0, (34)
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Therefore, one can obtain the following outcome:

Theorem 4. Let (N , g, ω, τ, ν, ρ) be an η-RY soliton of kind-(0, 1) with a VPVF ω and π be a
RS. If the vdV is parallel, then every fiber in an RS is a η-Yamabe soliton.

So, if the total space (N , g) of RS π : (N , g) −→ (B, gB) admits, an η-RY soliton of
kind-(σ, ρ), now, in view of (3) and (16), we obtain

{
g(∇Iω, J) + g(∇Jω, I)

}
+ 2σŜ(I, J) +

r

∑
j=1

g(TIj Ij, TIJ) (35)

−
n

∑
i=1

d((∇PiT )(I, J), Pi)− g(APi I,APi J) + (2τ − ρR̂)d̂(I, J) + 2νη(I)η(J) = 0

where I, J ∈ ΓV(N ). In addition, an η-RY soliton (N , g, ω, τ, ν) of kind- (σ, ρ) admits totally
umbilical fibers and adopting (10) in (35), we obtain

{
g(∇̂Iω, G) + g(∇̂Gω, I)

}
+ 2σŜ(I, G) +

r

∑
j=1

g(TIj Ij, TIG) (36)

−
n

∑
i=1

{
(∇Pi g)(I, G)g(K, Pi)− g(∇Pi K, Pi)ĝ(I, G)

}
−

n

∑
i=1

g(APi I,APi G) + (2τ − ρR|H)ĝ(I, G) + 2νη(I)η(G) = 0.

Since with integrable hdH, we derive,

(Lω ĝ)(I, G) + 2σŜ(I, G)−
n

∑
i=1

g(∇Pi K, Pi)ĝ(I, G) (37)

+r‖W‖2 ĝ(I, G) + (2τ − ρR̂)ĝ(I, G) + 2νη(I)η(G) = 0

wherein K is the mean curvature vector of any fiber of π. By (26), we derive

(Lω ĝ)(I, G) + 2σŜ(I, G) + [2τ − ρ(R̂− div(N) + r‖N‖2]ĝ(I, G) + 2νη(I)η(G) = 0. (38)

We observe, that every fiber for π is an almost η-RY soliton. As a result, one can state the
following outcome:

Theorem 5. If (N , g, ω, τ, ν, σ, ρ) be an η-RY soliton of kind-(σ, ρ) with a VPF ω and π be an
RS with totally umbilical fibers and the hdH is integrable, then every fiber in an RS is an almost
η-RY soliton.

Furthermore, the following results are obtained:

Theorem 6. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(1, 0) with a VPF, ω and π are an
RS with totally umbilical fibers, and the hdH is integrable, then every fiber in a RS is an almost
η-Ricci soliton.

Proof. Fix σ = 1, ρ = 0, ν �= 0 and from (38) we derive the required outcomes.

Theorem 7. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(0, 1) with a VPF ω and π is an
RS with totally umbilical fibers and the hdH is integrable, then every fiber in an RS is an almost
η-quasi Yamabe soliton.

Proof. Putting σ = 0, ρ = 1, ν �= 0 and using (38), we gain the following:
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Assuming once more the Theorem 5, we arrive at the following corollaries:

Corollary 1. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(σ, ρ) and π is an RS, and the hdH
is integrable, and if every fiber of π is totally umbilical and admits constant mean curvature, then
any fiber in RS is an almost η-RY soliton,

Corollary 2. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind-(σ, ρ) and π is an RS, such that
the hdH is integrable, and if every fiber of π is totally geodesic, then any fiber of an RS is an almost
η-RY soliton,

Remark 3. In light of Corollaries 1 and 2, we can derive identical results for an almost η-Ricci
soliton and an almost η-quasi Yamabe soliton.

Next, we obtain the following:

Theorem 8. If (N , g, Z, τ, ν, σ, ρ) is an η-RY soliton of kind-(σ, ρ) with a VPF Z ∈ Γ(TM) and
π is an RS and the hdH is parallel, then the following holds:

1. (B, gB) is an η-Einstein if Z is a VVF,
2. (B, gB) is an η-RY soliton with VPF ZB if U is HVF, such that π∗Z = ZB .

Proof. As far as (N , g), the total space of RS π admits an η-RY soliton of kind- (σ, ρ) with
a VPF Z ∈ Γ(TN ); then, utilizing (3) and (17), we gain

[g(∇PU, Q) + g(∇QU, P)] + 2σSB(PB,QB) ◦ π − (d(∇PN,Q) + d(∇QN,P)) (39)

+2
n

∑
i=1

d(APPi,AQPi) +
r

∑
j=1

g(TIj P, TIj Q) + (2τ − ρR)g(P, Q) + 2νη(P)η(Q) = 0

wherein PB and QB are π-connected to P and Q, respectively, for any P, Q ∈ ΓH(N ).
Utilizing Theorems (1) to (39), we derive

[g(∇PZ, Q) + g(∇QZ, P)] + 2σSB(PB , QB) ◦ π (40)

+(2τ − ρR)g(P, Q) + 2νη(P)η(Q) = 0.

1. If Z is a VVF, from (12), it follows

[g(APZ, Q) + g(AQZ, P)] + 2σSB(PB , QB) ◦ π (41)

+(2τ − ρR|V )g(P, Q) + 2νη(P)η(Q) = 0.

Since H is parallel, we obtain

SB(PB , QB) ◦ π = ag(P, Q) + bη(P)η(Q) = 0. (42)

This proves that (B, gB) is an η-Einstein, wherein a = −(τ − R|V
2 ) and b = −ν.

2. If Z is a horizontal vector field, from (40), we obtain

(LZg)(P, Q) + 2σSB(PB , QB) ◦ π + (2τ − ρRH)g(P, Q) + 2νη(P)η(Q) = 0. (43)

It is observed that the total space (B, gB) is an η-RY soliton with the PVF EB lying horizontally.

Now, from (43) and assuming that the vector field Z is horizontal, we can state the
following:
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Theorem 9. Let (N , g, Z, τ, ν, ρ) be an η-RY soliton of kind-(0, ρ), which admits the PVF Z ∈
Γ(TN ), and π be an RS. If the hdH is parallel and the vector field Z is horizontal, then (B, gB) is
an η-quasi-Yamabe soliton with HPVF PB , such that

(LZg)(P, Q) + (2τ − ρ
{
(RN ◦ π) + ‖T ‖2 + 2‖A‖2 − div(N)

}
)g(P, Q) + 2νη(P)η(Q) = 0. (44)

Once more combining Theorem (1) and (17), we arrive at the following result:

Lemma 1. If (N , g, ζ, τ, ν, σ, ρ) is an η-RY soliton on RS π that admits HPVF ζ, such that H is
parallel, then the vector field N on hdH is Killing.

Since (N , g, ζ, τ, ν) is an η-RY soliton of kind-(σ, ρ), and again using (17) in (3), we
find that

(Lζ g)(P, Q) + 2σSB(PB , QB) ◦ π − {g(∇PN, Q) + g(∇QN,P)} (45)

+2 ∑
i

g(APPi,AQPi) + ∑
j

g(TZj P, TZj Q) + (2τ − ρR|H)g(P, Q) + 2νη(P)η(Q) = 0.

For any P, Q ∈ ΓH(N ), where {Pi} denotes an orthonormal basis of H. Equation (45) is
derived from Theorem 1 as follows:

(Lζd)(P ,Q) + 2σSB(PB ,QB) ◦ π + (2τ − ρR|H)d(P ,Q) + 2νη(P)η(Q) = 0. (46)

We may determine that ζ is a conformal Killing vector field (CKVF) because the Riemannian
manifold (B, dN ) is an η-Einstein. As a result, we can state the following outcome:

Theorem 10. Let (B, d, ζ, τ, ν, σ, ρ) be an η-RY soliton of kind (σ, ρ) on RS to an η-Einstein
which admits HPVF ζ, such that hdH is parallel. Then, the vector field ζ on hdH is CKVF.

5. Examples

Example 2. Let N 6 = {(θ1, θ2, θ3, θ4, θ5, θ6)|θ6 �= 0} be a 6-dimensional differentiable manifold
where (θi) signifies the standard coordinates of a point in R6, and i = 1, 2, 3, 4, 5, 6.

Let
δ1 = ∂θ1, δ2 = ∂θ2, δ3 = ∂θ3,

δ4 = ∂θ4, δ5 = ∂θ5, δ6 = ∂θ6

be the basis for the tangent space T(N 6) since it consists of a set of linearly independent
vector fields at each point of the manifold N 6. A definite positive metric d on N 6 is defined
as follows: with i, j = 1, 2, 3, 4, 5, 6, and it is defined as

d =
6

∑
i.j=1

dxθi ⊗ dθj.

Let γ be a 1-form such that γ(U) = d(U, P) where δ�6 = P. Thus, (N 6, d) is a Riemannian
manifold. In addition, ∇̄ is the Levi–Civita connection with respect to d. Then, we have

[δ1, δ2] = 0, [δ1, δ6] = δ1, [δ2, δ6] = δ2, [δ3, δ6] = δ3,

[δ4, δ6] = δ4, [δ5, δ6] = δ6, [δi, δj] = 0,
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where 1 ≤ i �= j ≤ 5.
The induced connection ∇̂ for the metric ĝ is described as

2g(∇̂UV,W) = Ug(V, W) + Vg(W, U)−Wg(U, V)

− g(U, [V, W])− g(V, [U, W]) + g(W, [U, V]),

where the metric g corresponds to the Levi–Civita connection denoted by the symbol ∇.
The following equations are obtained by combining Koszul’s formula with (10).

∇̂δ1 δ1 = δ6, ∇̂δ2 δ2 = δ6, ∇̂δ3 δ3 = δ6, ∇̂δ4 δ4 = δ6, ∇̂δ5 δ5 = δ6 (47)

∇̂δ6 δ6 = 0, δ̂δ6 δi = 0, ∇̂δi δ6 = δi, 1 ≤ i ≤ 5

wherein 1 ≤ i, j ≤ 5, we have ∇̂δi δi = 0.
The non-vanishing components of R̂, Ŝ, and R̂ of the fiber may now be computed

from Equations (14) and (47).

R̂(δ1, δ2)δ1 = δ2, R̂(δ1, δ2)δ2 = −δ1, R̂(δ1, δ3)δ1 = −δ3, R̂(δ1, δ3)δ3 = δ1 (48)

R̂(δ1, δ4)δ1 = −δ4, R̂(δ1, δ4)δ4 = δ1, R̂(δ1, δδ5)δ1 = −δ5, R̂(δ1, δ5)δ5 = δ1

R̂(δ1, δ6)δ1 = −δ6, R̂(δ1, δ6)δ6 = −δ1, R̂(δ2, δ3)δ2 = −δ3, R̂(δ2, δ3)δ3 = δ2

R̂(δ2, δ4)δ2 = δ4, R̂(δ2, δ4)δ4 = −δ2, R̂(δ2, δ5)δ2 = δ5, R̂(δ2, δ5)δ5 = −δδ2

R̂(δ2, δ6)δ2 = δ6, R̂(δ2, δ6)δ6 = −δ2, R̂(δ3, δ4)δ3 = δ4, R̂(δ3, δ4)δ4 = δ5

R̂(δ3, δ5)δ5 = −δ3, R̂(δ3, δ6)δ3 = −δ6, R̂(δ3, δ6)δ3 = −δ6, R̂(δ3, δ6)δ6 = −δ3

R̂(δ4, δ5)δ4 = δ5, R̂(δ4, δ5)δ5 = −δ4, R̂(δ4, δ6)δ4 = −δ6,

R̂(δ4, δ6)δ6 = −δ4, R̂(δ5, δ6)δ5 = −δ6, R̂(δ5, δ6)δ6 = −δ5.

Ŝ(δi, δj) =

⎡⎢⎢⎢⎢⎢⎢⎣

−3 0 0 0 0 0
0 −3 0 0 0 0
0 0 −3 0 0 0
0 0 0 −3 0 0
0 0 0 0 −3 0
0 0 0 0 0 −5

⎤⎥⎥⎥⎥⎥⎥⎦.

R̂ = Trace(Ŝ) = −20. (49)

From Equation (16), we have

1
2
[ĝ(∇̂δi δ6, δi) + ĝ(∇̂δi δ6, δi)] + σŜ(δi, δi) + (τ − 1

2
ρR̂)ĝ(δi, δi) + 2νΩi

j = 0 (50)

wherein, for all i ∈ {1, 2, 3, 4, 5, 6}. Thus, τ = 10ρ − 3σ − 1 and ν = 23σ − 30ρ − 1, and
the data (ĝ, δ6, τ, ν, σ, ρ) is an η-RY soliton, verified by Equation (16). Therefore, the data
(ω, d̂, τ, ν, σ, ρ) admits increasing, decreasing and stable η-RY solitons referring to (3σ + 1) >
10ρ, (3α + 1) < 10ρ or (3σ + 1) = 10ρ, respectively

The two basic instances for a specific value of σ and ρ are as follows:
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Case 1. For an η-Ricci–Yamabe soliton of type (σ, ρ), if σ = 1, ρ = 0, we gain τ = −4
and ν = 22. Then, we say (d̂, δ6, τ, ν, 1, 0) is an η-Ricci soliton which is shrinking. This case
illustrates Theorem 3.
Case 2. For an η-RY soliton of kind (σ, ρ) if σ = 0, ρ = 0, we derive τ = 9 and ν = −31;
then, we have the data (ĝ, δ6, τ, ν, 0, 1) is an η-Yamabe soliton is expanding. This illustrates
Theorem 4.

Example 3. Let π : R6 → R3 be a submersion defined by

π(x1, x2, ...x6) = (y1, y2, y3),

where
y1 =

x1 + x2√
2

, y2 =
x3 + x4√

2
and y3 =

x5 + x6√
2

.

The Jacobi matrix of π has rank 3 at that point. This indicates that π is a submersion.
Simple calculations produce

(Kerπ∗) = Span{V1 =
1√
2
(−∂x1 + ∂x2), V2 =

1√
2
(−∂x3 + ∂x4),

V3 =
1√
2
(−∂x5 + ∂x6)},

and

(Kerπ∗)⊥ = Span{H1 =
1√
2
(∂x1 + ∂x2), H2 =

1√
2
(∂x3 + ∂x4),

H3 =
1√
2
(∂x5 + ∂x6)},

Also, direct computation yields

π∗(H1) = ∂y1, π∗(H2) = ∂y2 and π∗(H3) = ∂y3.

It is easy to observe that

gR6(Hi, Hi) = gR3(π∗(Hi), π∗(Hi)), i = 1, 2, 3

Hence, ψ is a RS.

Next, we estimate the components of R̂, Ŝ and R̂ for Kerπ∗ and Kerπ⊥
∗ , respectively.

For the vertical space, we gain

R̂(V1, V2)V1 = −2V2, R̂(V1, V2)V2 = 2V1, R̂(V1, V3)V1 = −2V3 (51)

R̂(V1, V2)V3 = V1, R̂(V2, V3)V3 = V2, R̂(V2, V3)V2 = V2.

Ŝ(V�
i , V�

j ) =

⎡⎣2 0 0
0 2 0
0 0 1

⎤⎦.

R̂ = Trace(Ŝ) = 5. (52)

Using (3), we find τ = 5ρ
2 − σ and ν = α. Therefore, (Kerψ∗, g) admits the increasing,

decreasing and stable η-RY solitons referring to 5ρ
2 < σ, 5ρ

2 > σ or 5ρ
2 = σ, respectively.
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Moreover, we also have the following cases for particular values of α and β, such as:
Case 1 . In an η-RY soliton of type (σ, ρ) for σ = 1, σ = 0, we find τ = −2 and ν = 1, then
(Kerψ∗, d) admitting a shrinking η-Ricci soliton.
Case 2. In an η-RY soliton of type (σ, τ) for σ = 0, ρ = 1, we find τ = 5

2 and ν = 0; then,
we have (Kerπ∗, g) admitting an expanding Yamabe soliton.

In a similar way, for the horizontal space, we derive

RB(π∗(H1), π∗(H2))π∗(H1) =
1
2
(∂x3 + ∂x4), RB(π∗(H1), π∗(H3))π∗(H3) =

1√
2
(∂x6 − ∂x5),

RB(π∗(H1), π∗(H3))π∗(H1) =
1
2

∂x6, RB(π∗(H2), π∗(H3))π∗(H2) = (
1√
2
− 1)∂x6,

RB(π∗(H2), π∗(H3))π∗(H3) = −1
2
(∂x3 + ∂x4),

RB(π∗(H1), π∗(H2))π∗(H2) =
1

2
√

2
(∂x1 + ∂x2).

and

SB(π∗Hi, π∗Hj) =

⎡⎢⎣−
3

2
√

2
0 0

0 − 3
2
√

2
0

0 0 − 1√
2

⎤⎥⎦.

RB = Trace(SB) = −2
√

2. (53)

Again using (3), we derive τ = 3σ
2
√

2
−
√
(2)ρ and ν = − σ

2
√

2
. Therefore, ((Kerπ⊥

∗ ), g)

admits the expanding, shrinking and steady η-RY solitons referring to 53σ
2
√

2
>
√
(2)ρ,

3σ
2
√

2
<
√
(2)ρ or 3σ

2
√

2
=
√
(2)ρ, respectively.

Also, we have obtained the following cases for particular values of σ and ρ, such as:
Case 1. In an η-RY soliton of type (σ, ρ) for σ = 1, ρ = 0, we find τ = 3

2
√

2
and

ν = − 1
2
√

2
; then, ((Kerπ⊥

∗ ), g) is admitting an expanding η-Ricci soliton.

Case 2. In an η-RY soliton of type (σ, ρ) for σ = 0, ρ = 1, we find τ = −
√

2 and
ν = 0; then, we have ((Kerπ⊥

∗ ), g) is admitting a shrinking Yamabe soliton.

6. η-Ricci–Yamabe Soliton with a Potential Vector Field ω = grad(γ)

Let the potential vector field ω = grad(γ) on N ; then, (N , g, ω, τ, ν, σ, ρ) is said to be
a gradient η-RY soliton, which is indicated by (N , g, ω, τ, ν, σ, ρ).

Now, consider the equation η-Ricci–Yamabe soliton for an r-dimensional fiber in RS.

2σŜ(I, J) = −[ĝ(∇̂Iω, J) + ĝ(∇̂Jω, I)]− (2τ − ρR)d̂(I, J)− 2νη(I)η(J). (54)

Contracting the Equation (54), we obtain

div(ω) = −rτ + R
(ρ

2
− σ

)
− ν. (55)

As a result, the following theorems exist:

Theorem 11. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind (σ, ρ) with gradient PVF
ω = grad(γ), and the vdV is parallel, then every fiber in RS is an η-RY soliton, and the Poisson
equation satisfied by γ becomes

Δ(γ) = −rτ + R
(ρ

2
− σ

)
− ν. (56)
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Theorem 12. Let (N , g, ω, τ, ν, ρ) be an η-RY soliton of kind (0, ρ) with gradient PVF
ω = grad(γ) and the vdV is parallel, then every fiber in RS is an η-Yamabe soliton, and the
Poisson equation satisfied by γ becomes

Δ(γ) = −rτ + R
(ρ

2

)
− ν. (57)

Remark 4. If ν = 0 in (56) and (57), we can easily obtain similar types of results for the RY soliton
and Yamabe soliton from Theorems (11) and (12), respectively.

7. Physical Applications of Solitons

As far as a physically relevant model having a solitonic solution is concerned, the theory
of collapse condensates with the inter-atomic attraction and spin-orbit coupling (SOC) [31],
which is a fundamentally important effect in physical models, chiefly, Bose–Einstein con-
densates (BEC) [32]. The SOC emulation proceeds by mapping the spinor wave function
of electrons into a pseudo-spinor mean-field wave function in BEC, whose components
represent two atomic states in the condensate. While SOC in bosonic gases is a linear
effect, there is interplay with the intrinsic BEC non-linearity, including several types of one
dimensional (1D) solitons [33]. An experimental realization of SOC in two-dimensional
(2D) geometry has been reported too [34], which suggests, in particular, the possibility
of creation of a 2D gap soliton [35], supported by a combination of SOC and a spatially
periodic field.

A fundamental problem that impedes the creation of 2D and 3D solitons in BES,
nonlinear optics, and other nonlinear settings, is that the ubiquitous cubic self-attraction,
which usually rise to solitons, simultaneously derives the critical and supercritical collapse
in the 2D and 3D cases, respectively [36]. Although SOC modifies the conditions of the
existence of the solutions and of the blow-up, it does not arrest the collapse completely [33].
The collapse destabilizes formally existing solitons, which results in stabilization of 2D and
3D solitons [32].

In the presence of SOC, the evolution of the wave function is described by a system-
coupled nonlinear PDE in the Schrödinger form [37]

ih̄
∂Ψ
∂

=

[
− h̄2

2M
Δ + Ĥso +

1
2
(B.σ̂)− g2|Ψ|2

]
Ψ, (58)

where M is the mass of the particle, Ĥso is the SOC Hamiltonian, B is the effective magnetic
field, σ̂ is the spin operator and g2 is the coupling constant.

The key point in understanding the role of the SOC in the collapse process is the
modified velocity

v = k +∇k Ĥso, (59)

where k = −i ∂
∂r , including the velocity and ∇k Ĥso (∇k ≡ ∂

∂k ), are directly related to the
particle spin.

Let the first form Rashaba spin-orbit coupling

Ĥso ≡ ĤR = α(kxσ̂y − kyσ̂x), (60)

with coupling constant α and k = (kx, ky). The corresponding spin-dependent term in the
velocity operators in Equation (59) becomes (for more details see [33])

∂ĤR
∂kx

= ασ̂y,
∂ĤR
∂ky

= −ασ̂x. (61)

In particular, in the 2D case, the nonlinear Schrödinger equation with cubic self-
attraction term gives rise to degenerate families of the fundamental Townes solitons [38]
with vorticity S = 0, which means decaying solutions. Hence, Townes solitons, that play
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the role of separation between the type of dynamical behavior, are the completable unstable
and total norm of the spinor wave function that does not exceed a critical value. Further,
it also produces stable dipole and quadrupole bound states of fundamental solitons with
opposite signs.

8. Application of Riemannian Submersions to Number Theory

The Hopf fibration [39] is a Riemannian submersion π : (N n, g) → (Bb, gB) with
totally geodesic fibers. In addition, a large class of Riemannian submersions are Riemannian
submersions between spheres of higher dimensions, such as

π : Sr+m −→ Sm

whose fibers have dimension m. The Hopf fibration asserts that the fibration generalizes
the idea of a fiber bundle and plays a significant role in algebraic topology, number theory
and groups theory [40].

Every fiber in a fibration is closely connected to the homotopy group and satisfies
the homotopy property [41]. The homotopy group of spheres Sn essentially describes
how several spheres of different dimensions may twist around one another. For the j-th
homotopy group Φj(S

r), the j-dimensional sphere Sj can be mapped continuously to the
r-dimensional sphere Sr.

Now, we can make the following remark :

Remark 5. To determine the homotopy groups for positive k using the formula πr+k(S
r). The ho-

motopy groups πr+k(Sr) with r > k + 1 are known as stable homotopy groups of spheres and
are denoted by πS

k ; they are finite abelian groups for k �= 0. In view of Freudenthal’s suspension
theorem [42], the groups are known as unstable homotopy groups of spheres for r ≤ k + 1.

Now, in the light of Corollary 2 and using the above facts (5), we gain the following
outcomes.

Theorem 13. If (N , g, ω, τ, ν, σ, ρ) is an η-RY soliton of kind (σ, ρ) and π is an RS , such that
the hdH is integrable, if every fiber of π is totally geodesic and any fiber of RS is an almost η-RY
soliton, then the homotopy group of RS is πn(Bb).

Example 4. Let us adopt the example (3); we have Riemannian submersion ,

π : R6 ∼= S6 → R3 ∼= S3

defined in (3).
Then, according to Hopf-fibration of the fiber bundle, we have homotopy groups

π6(S
3) = π3+3S

3. (62)

Therefore, the above remark entails that r ≤ k + 1 i.e., 3 ≤ 3 + 1. Thus, the homotopy groups
π6(S

3) are unstable homotopy groups.

Remark 6. For a prime number p, the homotopy p-exponent of a topological space T , denoted by
Expp(U), is defined to be a largest e ∈ N = {0, 1, 2, · · · } such that some homotopy group Φj(T )
has an element of order pe. Cohen et al. [43] proved that the

Expp(S2n+1) = n i f p �= 2.

For a prime number p and an integer z, the p-adic order of z is given by
Ordp(z) = sup{z ∈ N : pz|z}.
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Through the above observation, in 2007, Davis and Sun proved an interesting inequal-
ity in terms of homotopy groups. For more details see ([44] Theorem 1.1 Page 2). According
to these authors, for any prime p and z = 2, 3, · · · some homotopy group πi(SU(n)) con-
tains an element of order pn−1+Ordp(�n/p�!), i.e., then the strong and elegant lower bound
for the homotopy p-exponent of a homotopy group is

Expp(SU(n)) ≥ n− 1 + Ordp

(⌊
n
p

⌋
!
)

, (63)

where S(U)(n) is a special unitary group of degree n.
Therefore, using Davis and Sun’s result (Theorem 1.1 [44]) with Theorem 13, we gain

an interesting inequality

Theorem 14. For any prime number p and s = 2, 3, · · · , some homotopy group πn(Bb) of
Riemannian submersion π with totally geodesic fiber where the fiber is an almost η-RY-soliton of π,
contains an element of order ps−1+Ordp(�s/p�!), we derive the inequality

Expp(πn(Bb)) ≥ n− 1 + Ordp

(⌊
b
p

⌋
!
)

. (64)

Example 5. Again considering the case of example (4), we have that a homotopy group of Rieman-
nian submersion π with totally geodesic fiber is π6(R

3). Equation (14) also holds for homotopy
group π6(R

3) of Riemannian submersion π such that

Expp(π6(R
3)) ≥ 2 + Ordp

(⌊
3
p

⌋
!
)

. (65)

The geometric interpretation of the Hopf fibration can be obtained considering rota-
tions of the 2-sphere in 3-dimensional space. Therefore, the rotation group SO(3), spin
group Spin(3), diffeomorphic to the 3-sphere and Spin(3), can be identified with the special
unitary group SU(2). Indeed, there are p-local equivalences

SO(3) ∼= Spin(3) ∼= SU(2).

Thus, in view (65), we obtain

Expp(SU(2)) ≥ 2 + Ordp

(⌊
2
p

⌋
!
)

. (66)

Expp(Spin(3)) ≥ 2 + Ordp

(⌊
3
p

⌋
!
)

. (67)

Remark 7. Each homotopy group is the product of cyclic groups of order p. In [45] Hirsi, a
useful classification of homotopy groups of spheres is provided. Again, in light of example (4)
π6(R

3) = π3+3(R
3) = 12 = 22.3 = Z12 = Z4 ×Z2 ×Z3 or Z4 ×Z3.

Remark 8. In [46], Herstien noted the following facts about any group of order type p2q:
1. If G is a group of order p2q, p, q are primes, then group G has a non-trivial normal subgroup.
2. If G is a group of order p2q, p, q are primes, then either a p-Sylow subgroup or a q-Sylow
subgroup of G must be normal.

Therefore, in light of the above remarks, we can make the following remark:

Remark 9. The order of a homotopy group π6(R
3) of Riemanian submersion ψ can be expressed as

22.3. Therefore, The homotopy group π6(R
3) of Riemanian submersion π has a non-trivial normal
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subgroup. In addition, the homotopy group π6(R
3) of Riemanian submersion π with a 2-Sylow

subgroup or a 3-Sylow subgroup of π6(R
3) must be normal.

Remark 10. In light of Remark 9, we can also find some results for the p-Sylow subgroup of the
group of spin of Riemannian submersion and the unitary group of Riemannian submersion. These
facts distinguish this manuscript from previously published works based on submersion.
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11. Taştan, H.M.; Özdemir, F.; Sayar, C. On anti-invariant Riemannian submersions whose total manifolds are locally product

Riemannian. J. Geom. 2017, 108, 411–422. [CrossRef]
12. Shahid, A.; Tanveer, F. Anti-invariant Riemannian submersions from nearly Kählerian manifolds. Filomat 2013, 27, 1219–1235.
13. Hamilton, R.S. The Ricci flow on surfaces, Mathematics and general relativity. Contemp. Math. Am. Math. Soc. 1988, 71, 237–262.
14. Güler, S.; Crasmareanu, M. Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turk. J.

Math. 2019, 43, 2631–2641. [CrossRef]
15. Cho, J.T.; Kimura, M. Ricci solitons and Real hypersurfaces in a complex space form. Tohoku Math. J. 2009, 61, 205–212. [CrossRef]
16. Blaga, A.M. η-Ricci solitons on para-Kenmotsu manifolds. Balk. J. Geom. Its Appl. 2015, 20, 1–13.

65



Axioms 2023, 12, 796

17. Chen, B.Y.; Desahmukh, S. Yamabe and quasi-Yamabe soliton on euclidean submanifolds. Mediterr. J. Math. 2018, 15, 194.
[CrossRef]

18. Güler, S. On a Class of Gradient Almost Ricci Solitons. Bull. Malays. Math. Sci. Soc. 2020, 43, 3635–3650. [CrossRef]
19. Siddiqi, M.D. η-Ricci solitons in 3-dimensional normal almost contact metric manifolds. Bull. Transilv. Univ. Bras. Ser. Iii Math.

Inform. Phys. 2018, 11, 215–234.
20. Siddiqi, M.D.; Alkhaldi, A.H.; Khan, M.A.; Siddiqui, A.N. Conformal η-Ricci solitons on Riemannian submersions under

canonical variation. Axioms 2022, 11, 594. [CrossRef]
21. Chaubey, S.K.; Siddiqi, M.D.; Yadav, S. Almost η-Ricci-Bourguignon solitons on submersions from Riemannian submersions.

Balk. J. Geom. Its Appl. 2022, 27, 24–38.
22. Meriç, S. .E.; Kılıç, E. Riemannian submersions whose total manifolds admit a Ricci soliton. Int. J. Geom. Meth. Mod. Phys. 2019,

16, 1950196. [CrossRef]
23. Pigola, S.; Rigoli, M.; Rimoldi, M.; Setti, A. Ricci almost solitons. Ann. Della Sc. Norm. Super.-Pisa-Cl. Sci. 2011, 10, 757–799.

[CrossRef]
24. Siddiqi, M.D.; De, U.C.; Deshmukh, S. Estimation of almost Ricci-Yamabe solitons on static spacetime. Filomat 2022, 32, 397–407.

[CrossRef]
25. Catino, G.; Cremaschi, L.; Djadli, Z.; Mantegazza, C.; Mazzieri, L. The Ricci-Bourguignon flow. Pacific J. Math. 2017, 287, 337–370.

[CrossRef]
26. Catino, G.; Mazzieri, L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. [CrossRef]
27. Siddiqi, M.D. Ricci ρ-soliton and geometrical structure in a dust fluid and viscous fluid sapcetime. Bulg. J. Phys. 2019, 46, 163–173.
28. Siddiqi, M.D.; Siddqui, S.A. Conformal Ricci soliton and Geometrical structure in a perfect fluid spacetime. Int. J. Geom. Methods

Mod. Phys. 2020, 17, 2050083. [CrossRef]
29. Deshmukh, S. Conformal vector fields and eigenvectors of Laplacian operator. Math. Phy. Anal. Geom. 2012, 15, 163–172.

[CrossRef]
30. O’Neill, B. The fundamental equations of a submersion. Mich. Math. J. 1966, 13 458–469. [CrossRef]
31. Galitski, V.; Spielman, I.B. Spin-orbit coupling in quantum gases. Nature 2013, 494, 49–54. [CrossRef] [PubMed]
32. Sakaguchi, H.; Sherman, Y.E.; Malomed, B.A. Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates:

Effect of the Rashaba-Dresselhaus coupling and Zeman splitting. Phys. Rev. E 2016, 94, 032202. [CrossRef]
33. Mardonov, S.; Sherman, E.Y.; Muga, J.G.; Wang, H.W.; Ban, Y.; Chen, X. Collapse of spin-orbit-coupled Bose-Einstein condensates.

Phys. Rev. A 2015, 91, 043604. [CrossRef]
34. Malomed, B.A. Multidimensional solitons: Well-established results and novel findings. Eur. Phys. J. Spec. Top. 2016, 225, 2507.

[CrossRef]
35. Kartashov, Y.V.; Konotop, V.V.; Abdullaev, F.K. Gap solitons in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. Lett.

2013, 11, 060402. [CrossRef]
36. Baizakov, B.B.; Malomed, B.A.; Salerno, M. Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A 2004,

70, 053613. [CrossRef]
37. Fibich, G. The Nonlinear Schrödinger Equation: Singular Solution and Optical Collapse; Springer: Berlin/Heidelberg, Germany, 2015.
38. Chiao, R.Y.; Garmire, E.; Townes, C.H. Self-trapping of optical beam. Phys. Rev. Lett. 1964, 13, 479. [CrossRef]
39. Hopf, H. Über die Abbildungen der dreidimensional Sphäre auf die Kugelfäche. Math. Ann. 1931, 104, 637–665. [CrossRef]
40. Pontryagin, L. Smooth manifold and their application in homotopy theory. Am. Math. Soc. Ser. 1959, 11, 1–114. .
41. Scorpan, A. The Wild World of 4-Manifold; American Mathematical Society: Washington, DC, USA, 2005.
42. Cohen, F.R.; Joel, M. The decoposition of stable homotopy. Ann. Math. 1968, 87, 305–320. [CrossRef]
43. Cohen, F.R.; Moore, J.C.; Neisendorfer, J.A. The double suspension and exponents of the homotopy group of spheres. Ann. Math.

1979, 110, 549–565. [CrossRef]
44. Davis, D.M.; Sun, Z.W. A number theoretic approach to homotopy exponents of S(U). J. Pure Appl. Algebra 2007, 209, 57–69.

[CrossRef]
45. Hirosi, T. Composition Methods in Homotopy Groups of Spheres; Annals of Mathematics Studies—Princeton University Press: Princeton,

NJ, USA, 1962.
46. Herstein, I.N. Topics in Algebra, 2nd ed.; Wiley & Sons: New York, NY, USA, 1975.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

66



Citation: Haseeb, A.; Chaubey, S.K.;

Mofarreh, F.; Ahmadini, A.A.H. A

Solitonic Study of Riemannian

Manifolds Equipped with a

Semi-Symmetric Metric

ξ-Connection. Axioms 2023, 12, 809.

https://doi.org/10.3390/

axioms12090809

Academic Editor: Mića Stanković
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Abstract: The aim of this paper is to characterize a Riemannian 3-manifold M3 equipped with a semi-
symmetric metric ξ-connection ∇̃ with ρ-Einstein and gradient ρ-Einstein solitons. The existence of a
gradient ρ-Einstein soliton in an M3 admitting ∇̃ is ensured by constructing a non-trivial example,
and hence some of our results are verified. By using standard tensorial technique, we prove that the
scalar curvature of (M3, ∇̃) satisfies the Poisson equation ΔR =

4(2−σ−6ρ)
ρ .

Keywords: Riemannian manifolds; ρ-Einstein solitons; Einstein manifolds; Poisson equation

MSC: 53E20; 53C25; 53C21

1. Introduction

The Ricci and other geometric flows are active topics of current research in mathemat-
ics, physics and engineering. The Ricci flow [1] is defined on a Riemannian n-manifold
(Mn, g) by an evolution equation for metric g(t) of the form ∂g

∂t = −2S, where S is the Ricci
tensor of Mn and t indicates the time. The metric g on Mn satisfies the Ricci soliton (in
short, RS) equation £Eg + 2σg + 2S = 0, where E is a vector field on Mn, σ ∈ R (the set
of real numbers), and £E represents the Lie derivative operator in the direction of E on
Mn. A RS is called expanding (steady or shrinking) if σ > 0 (σ = 0 or σ < 0). If E = 0
or Killing, then the RS is called a trivial RS, and Mn becomes an Einstein manifold. Thus
the RS is a basic generalization of an Einstein manifold [2]. If F is a smooth function such
that E = DF for the gradient operator D of g, then the RS is described as a gradient Ricci
soliton (GRS), E is referred to as the potential vector field, and F is called the potential
function. Thus, the RS equation becomes HessF + σg + S = 0, where HessF is the Hessian
of F and (HessF )(ζ1, ζ2) = g(∇ζ1 DF , ζ2) for all vector fields ζ1 and ζ2 on Mn. Here, ∇
stands for the Levi–Civita connection.

The notion of Ricci–Bourguignon flow, a natural generalization of Ricci flow, has been
proposed in [3] and is described on an Mn as:

∂g
∂t

= −2(S− ρRg), g(0) = g0, (1)

where R is the scalar curvature and ρ ∈ R. It is to be noticed that for the specific values of
ρ, the following cases for the tensor S− ρRg appeared in (1) [4] are obtained:

(i) ρ = 1
2 , the Einstein tensor S− R

2 g, (for Einstein soliton),
(ii) ρ = 1

n , the trace-less Ricci tensor S− R
n g,

(iii) ρ = 1
2(n−1) , the Schouten tensor S− R

2(n−1) g, (for Schouten soliton),

(iv) ρ = 0, the Ricci tensor S (for RS).

Axioms 2023, 12, 809. https://doi.org/10.3390/axioms12090809 https://www.mdpi.com/journal/axioms67
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An (Mn, g), n ≥ 3 is said to be a ρ-Einstein soliton (or ρ-ES) (g, E, σ, ρ) if

£Eg + 2S + 2(σ− ρR)g = 0. (2)

Similar to the RS, a ρ-ES is called expanding (steady or shrinking) if σ > 0 (σ = 0 or σ < 0).
If E = DF , then (Mn, g) is called a gradient ρ-Einstein soliton (or gradient ρ-ES). Hence, (2)
takes the form

HessF + S + (σ− ρR)g = 0, (3)

where HessF denotes the Hessian of F ∈ C∞(Mn) and defined by HessF = ∇∇F .
Recently, ρ-Einstein solitons have been studied by several authors, such as [5–12]. On
the other hand, we recommend the papers [13–19] for the studies of Ricci, Yamabe, Ricci-
Yamabe, η-Ricci-Yamabe and quasi-Yamabe solitons on different geometric structures.

In this paper, we have made an effort to the solitonic study of a 3-dimensional Rieman-
nian manifold M3 equipped with a semi-symmetric metric ξ-connection ∇̃. To achieve the
goal, we present our work as follows: In Section 2, we gather the basic information of a
Riemannian 3-manifold equipped with a semi-symmetric metric ξ-connection (M3, ∇̃, g),
definitions and Lemmas. The properties of ρ-ES in (M3, ∇̃, g) are studied in Section 3. We
address the properties of gradient ρ-ES in (M3, ∇̃, g) in Section 4. In the last section, we
model a non-trivial example of (M3, ∇̃, g) admitting a gradient ρ-ES, and prove our results.

2. Riemannian Manifolds with a Semi-Symmetric Metric ξ-Connection

In 1970, Yano [20] investigated the properties of a semi-symmetric metric connection
∇̃ on Riemannian n-manifolds Mn and defined by ∇̃ζ1 ζ2 = ∇ζ1 ζ2 + η(ζ2)ζ1 − g(ζ1, ζ2)ξ
for all ζ1 and ζ2 on Mn, where η is a 1-form associated with the unit vector field ξ such
that g(ξ, ξ) = η(ξ) = 1 and g(ζ1, ξ) = η(ζ1). Later, the properties of the semi-symmetric
metric connection ∇̃ have been explored by several researchers. One of these properties
is the curvature invariant respecting to the semi-symmetric metric connection ∇̃ and the
Levi–Civita connection ∇. For example, the conformal curvature tensors corresponding
to the semi-symmetric connection (Yano’s sense) and the Levi–Civita connection coincide.
Similar results for different curvature tensors have been established by many geometers.
A connection ∇̃ is said to be semi-symmetric metric ξ-connection if and only if ∇̃ξ = 0.
Afterwards, the properties of semi-symmetric metric ξ-connection have been studied
in [21–24].

In an (Mn, ∇̃, g), we have [21]

∇ζ1 ξ = −ζ1 + η(ζ1)ξ, g(ξ, ξ) = 1, and η(ζ1) = g(ζ1, ξ) (4)

for any ζ1 on Mn. Next, we have [21]

(∇ζ1 η)ζ2 = −g(ζ1, ζ2) + η(ζ1)η(ζ2), (5)

K(ζ1, ζ2)ξ = η(ζ1)ζ2 − η(ζ2)ζ1, (6)

K(ζ1, ξ)ζ2 = g(ζ1, ζ2)ξ − η(ζ2)ζ1, (7)

S(ζ1, ξ) = −(n− 1)η(ζ1) ⇐⇒ Qξ = −(n− 1)ξ, (8)

(£ξ g)(ζ1, ζ2) = 2{−g(ζ1, ζ2) + η(ζ1)η(ζ2)}, (9)

for all ζ1, ζ2 on Mn. Here, K and Q represent the curvature tensor and the Ricci operator of
Mn, respectively.
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Definition 1. An Mn is said to be quasi-Einstein if its S( �= 0) satisfies

S(ζ1, ζ2) = l g(ζ1, ζ2) +m η(ζ1)η(ζ2),

where m and l are smooth functions on Mn. If m = 0, then the manifold is called an Einstein
manifold.

Definition 2. A partial differential equation Δu = v on a complete Mn is called a Poisson equation
for some smooth functions u and v.

Remark 1 ([21,22]). An (M3, ∇̃, g) is a quasi-Einstein manifold of the form

S(ζ1, ζ2) =

(
1 +

R
2

)
g(ζ1, ζ2)−

(
3 +

R
2

)
η(ζ1)η(ζ2). (10)

Remark 2 ([21,22]). In an (M3, ∇̃, g), we have

ξ(R) = 2(R + 6), (11)

η(∇ξDR) = 4(R + 6), (12)

where D is the gradient operator of g. From (11), it is noticed that R of M3 is constant if and only if
R = −6.

3. ρ-ES on (M3, ∇̃, g)

First, we prove the following theorem.

Theorem 1. If (M3, ∇̃, g) admits a ρ-ES (g, E, σ, ρ), then its scalar curvature R satisfies the
Poisson equation ΔR = 4(2−σ−6ρ)

ρ , provided ρ �= 0.

Proof. Let the metric of an (M3, ∇̃, g) be a ρ-ES (g, E, σ, ρ), then in view of (10), (2) leads to

(£Eg)(ζ1, ζ2) = −2
{

1 + σ + (
1
2
− ρ)R

}
g(ζ1, ζ2) (13)

+(R + 6)η(ζ1)η(ζ2),

for any vector fields ζ1, ζ2 on M3.
Taking covariant derivative of (13) respecting to ζ3, we find

(∇ζ3 £Eg)(ζ1, ζ2) = (ζ3R)
{
(2ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
(14)

−(R + 6)
{

g(ζ1, ζ3)η(ζ2) + g(ζ2, ζ3)η(ζ1)− 2η(ζ1)η(ζ2)η(ζ3)
}

.

As g is parallel with respect to ∇, then the formula [25]

(£E∇ζ1 g−∇ζ1 £Eg−∇[E,ζ1]
g)(ζ2, ζ3) = −g((£E∇)(ζ1, ζ2), ζ3)− g((£E∇)(ζ1, ζ3), ζ2)

turns to
(∇ζ1£Eg)(ζ2, ζ3) = g((£E∇)(ζ1, ζ2), ζ3) + g((£E∇)(ζ1, ζ3), ζ2).

Since £E∇ is symmetric, therefore we have

2g((£E∇)(ζ1, ζ2), ζ3) = (∇ζ1 £Eg)(ζ2, ζ3) + (∇ζ2 £Eg)(ζ1, ζ3)− (∇ζ3£Eg)(ζ1, ζ2),

which in view of (14) gives
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2g((£E∇)(ζ1, ζ2), ζ3) = (ζ1R)
{
(2ρ− 1)g(ζ2, ζ3) + η(ζ2)η(ζ3)

}
+(ζ2R)

{
(2ρ− 1)g(ζ1, ζ3) + η(ζ1)η(ζ3)

}
−(ζ3R)

{
(2ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
−2(R + 6)

{
g(ζ1, ζ2)η(ζ3)− η(ζ1)η(ζ2)η(ζ3)

}
,

from which it follows that

2(£E∇)(ζ1, ζ2) = (ζ1R)
{
(2ρ− 1)ζ2 + η(ζ2)ξ

}
(15)

+(ζ2R)
{
(2ρ− 1)ζ1 + η(ζ1)ξ

}
−(DR)

{
(2ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
−2(R + 6)

{
g(ζ1, ζ2)ξ − η(ζ1)η(ζ2)ξ

}
.

Replacing ζ2 by ξ and ζ1 by ζ2 in (15), we have

(£E∇)(ζ2, ξ) = ρg(DR, ζ2)ξ − ρ(DR)η(ζ2) (16)

+(R + 6)
{
(2ρ− 1)ζ2 + η(ζ2)ξ

}
.

The covariant differentiation of (16) respecting to ζ1 yields

(∇ζ1 £E∇)(ζ2, ξ) = 2(ζ1R)
{
(2ρ− 1)ζ2 + η(ζ2)ξ

}
+(ζ2R)

{
(ρ− 1)ζ1 + η(ζ1)ξ

}
−(DR)

{
(ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
(17)

−3(R + 6)
{

g(ζ1, ζ2)ξ − η(ζ1)η(ζ2)ξ
}

−(R + 6)
{
(2ρ− 1)η(ζ1)ζ2 + η(ζ2)ζ1

}
+ρg(∇ζ1DR, ζ2)ξ − ρ(∇ζ1DR)η(ζ2),

where (4), (5) and (16) being used.
Again from [25], we have

(£EK)(ζ1, ζ2)ζ3 = (∇ζ1 £E∇)(ζ2, ζ3)− (∇ζ2£E∇)(ζ1, ζ3), (18)

which by putting ζ3 = ξ and using (17) becomes

(£EK)(ζ1, ζ2)ξ = g(DR, ζ1)
{
(3ρ− 1)ζ2 + η(ζ2)ξ

}
(19)

−g(DR, ζ2)
{
(3ρ− 1)ζ1 + η(ζ1)ξ

}
+2(R + 6)(ρ− 1)

{
η(ζ2)ζ1 − η(ζ1)ζ2

}
+ρg(∇ζ1DR, ζ2)ξ − ρg(∇ζ2DR, ζ1)ξ

−ρ(∇ζ1DR)η(ζ2) + ρ(∇ζ2DR)η(ζ1).

Contracting (19) respecting to ζ1 then using (4) and (11) we lead to

(£ES)(ζ2, ξ) = (1− 6ρ)ζ2(R) + 2(R + 6)(2ρ− 1)η(ζ2) (20)

+ρg(∇ξDR, ζ2)ξ − ρ(ΔR)η(ζ2).

By putting ζ2 = ξ in (20) then using (4), (11) and (12), we find

(£ES)(ξ, ξ) = −4ρ(R + 6)− ρ(ΔR). (21)

The Lie derivative of (8) respecting to E leads to

(£ES)(ξ, ξ) = 4η(£Eξ). (22)

Putting ζ1 = ζ2 = ξ in (13) infers
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(£Eg)(ξ, ξ) = −2σ + 2ρR + 4. (23)

The Lie derivative of g(ξ, ξ) = 1 gives

(£Eg)(ξ, ξ) = −2η(£Eξ). (24)

Now combining (21)–(25) we deduce

ΔR =
4(2− σ− 6ρ)

ρ
, provided ρ �= 0. (25)

This completes the proof.

It is well-known that the ρ-ES Equation (2) on Mn with the soliton constant
ρ = 1

2 , 1
n , 1

2(n−1) reduces to the Einstein soliton, traceless Ricci soliton, Schouten soliton,
respectively. It is also known that a smooth function f on an Mn is called harmonic, sub-
harmonic or superharmonic if Δf = 0, ≥ 0 or ≤ 0, respectively. These facts together with
Theorem 1 state the following:

Corollary 1. Let (M3, ∇̃, g) admit a ρ-ES, then we have

Value of ρ Solitons Poisson equation
Condition for R to be subharmonic
and superharmonic

ρ = 1
2 Einstein soliton ΔR = −8(σ + 1)

(i) R is subharmonic if σ ≤ −1,
(ii) R is superharmonic if σ ≥ −1,

ρ = 1
3 traceless Ricci soliton ΔR = −12σ

(i) R is subharmonic if σ ≤ 0,
(ii) R is superharmonic if σ ≥ 0,

ρ = 1
4 Schouten soliton ΔR = 16( 1

2 − σ)
(i) R is subharmonic if σ ≤ 1

2 ,
(ii) R is superharmonic if σ ≥ 1

2 .

Remark 3. The ρ-ES on an Mn with ρ = 0 reduces to the RS. The properties of RS on (M3, ∇̃, g)
have been explored by Chaubey and De [22]. Thus, we can say that the Theorem 1 generalizes the
study of Einstein soliton, traceless RS and the Schouten soliton on (M3, ∇̃, g).

It is well-known that the Poisson equation Δu = v with v = 0 becomes a Laplace
equation. Suppose that an (M3, ∇̃, g) does not admit RS. Then, Theorem 1 and above
discussion state:

Corollary 2. If (M3, ∇̃, g) admits a ρ-ES, which is not a RS (ρ �= 0), then R of M3 satisfies
Laplace equation if and only if σ = 2(1− 3ρ).

Let (M3, ∇̃, g) admit a ρ-ES. If R of M3 satisfies the Laplace equation, then
σ = 2(1 − 3ρ). The ρ-ES under consideration to be steady, shrinking or expanding if
ρ is equal to, less than or greater than 1

3 . Thus, we write our corollary as

Corollary 3. Let the metric of an (M3, ∇̃, g) be ρ-ES, which is not a RS (ρ �= 0). If R of M3

satisfies the Laplace equation, then the ρ-ES is steady, shrinking or expanding if ρ = 1
3 , ρ < 1

3 or
ρ > 1

3 , respectively.

4. Gradient ρ-ES on (M3, ∇̃, g)

Theorem 2. Let (M3, ∇̃, g) admit a gradient ρ-ES. Then, either M3 is Einstein or the gradient
ρ-ES is steady type gradient traceless RS.

Proof. Let the metric of an (M3, ∇̃, g) be a gradient ρ-ES. Then, (3) can be written as

∇ζ1DF + Qζ1 + (σ− ρR)ζ1 = 0, (26)
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for all ζ1 on M3.
The covariant differentiation of (26) with respect to ζ2 leads to

∇ζ2∇ζ1DF = −(∇ζ2 Q)ζ1 −Q(∇ζ2 ζ1)− (σ− ρR)∇ζ2 ζ1 + ρζ2(R)ζ1. (27)

Interchanging ζ1 and ζ2 in (27) leads to

∇ζ1∇ζ2DF = −(∇ζ1 Q)ζ2 −Q(∇ζ1 ζ2)− (σ− ρR)∇ζ1 ζ2 + ρζ1(R)ζ2. (28)

By plugging of (26)–(28), we find

K(ζ1, ζ2)DF = −(∇ζ1 Q)ζ2 + (∇ζ2 Q)ζ1 + ρ
{

ζ1(R)ζ2 − ζ2(R)ζ1
}

.

Contracting the forgoing equation along ζ1, we obtain

S(ζ2,DF ) =
(1− 4ρ)

2
ζ2(R). (29)

In account of (10), we have

S(ζ2,DF ) = (1 +
R
2
)ζ2(F )− (3 +

R
2
)η(ζ2)ξ(F ). (30)

Thus, from (29) and (30), it follows that

(1− 4ρ)ζ2(R) = (R + 2)ζ2(F )− (R + 6)η(ζ2)ξ(F ). (31)

By putting ζ2 = ξ in (31), then using (4) and (11), we find

ξ(F ) = −1
2
(1− 4ρ)(R + 6). (32)

By using (32) and (31) turns to

(1− 4ρ)ζ2(R) = (R + 2)ζ2(F ) +
1
2
(R + 6)2(1− 4ρ)η(ζ2). (33)

The covariant differentiation of (33) along ζ1 leads to

(1− 4ρ)g(∇ζ1DR, ζ2) = ζ1(R)ζ2(F ) + (R + 2)g(∇ζ1DF , ζ2) (34)

+(R + 6)(1− 4ρ)ζ1(R)η(ζ2)

+
1
2
(R + 6)2(1− 4ρ)

{
η(ζ1)η(ζ2)− g(ζ1, ζ2)

}
.

Interchanging ζ1 and ζ2 in (34), we have

(1− 4ρ)g(∇ζ2DR, ζ1) = ζ2(R)ζ1(F ) + (R + 2)g(∇ζ2DF , ζ1) (35)

+(R + 6)(1− 4ρ)ζ2(R)η(ζ1)

+
1
2
(R + 6)2(1− 4ρ)

{
η(ζ1)η(ζ2)− g(ζ1, ζ2)

}
.

Equating the left hand sides of last two equations gives

ζ1(R)ζ2(F ) + (R + 6)(1− 4ρ)ζ1(R)η(ζ2)

−ζ2(R)ζ1(F )− (R + 6)(1− 4ρ)ζ2(R)η(ζ1) = 0,

which by replacing ζ2 = ξ then using (4), (11) and (32) takes the form

(R + 6)
{
(1− 4ρ)ζ1(R)− 4ζ1(F )− 4(R + 6)(1− 4ρ)η(ζ1)} = 0.
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Thus, we have either R = −6, or (1− 4ρ)ζ1(R) = 4ζ1(F ) + 4(R + 6)(1− 4ρ)η(ζ1). If we
firstly suppose that R �= −6 and (1− 4ρ)ζ1(R) = 4ζ1(F ) + 4(R + 6)(1− 4ρ)η(ζ1), which
by virtue of (33) turns to

(R− 2)
{

2ζ1(F ) + (R + 6)(1− 4ρ)η(ζ1)
}
= 0, (36)

which refers that either R = 2 or ζ1(F ) = − 1
2 (R + 6)(1− 4ρ)η(ζ1). From (11), it is obvious

that if R is constant, then its value must be −6, which shows that R = 2 is inadmissible.
Thus, we have ζ1(F ) = − 1

2 (R + 6)(1− 4ρ)η(ζ1), which is equivalent to

DF = −1
2
(R + 6)(1− 4ρ)ξ = ξ(F )ξ. (37)

Thus, the gradient of F is pointwise collinear with ξ. Now, taking the covariant derivative
of (37) with respect to ζ1 and using (4), we have

∇ζ1DF = ζ1(ξ(F ))ξ − ξ(F )(ζ1 − η(ζ1)ξ). (38)

Therefore, from (26) and (38), we obtain

Qζ1 + (σ− ρR)ζ1 = −ζ1(ξ(F ))ξ + ξ(F )(ζ1 − η(ζ1)ξ). (39)

Now, by replacing ζ1 by ξ in (39) then using (8), (11) and (32) we lead to

σ = (1− 3ρ)(R + 8). (40)

Let us suppose that ρ = 1
3 , that is, the gradient ρ-ES on an M3 is gradient traceless RS. This

fact together with Equation (40) leads to σ = 0. Thus, the gradient traceless RS is steady.
This completes the proof.

Theorem 3. Let an (M3, ∇̃, g) be a non-gradient traceless RS. Then, the gradient ρ-ES is trivial
soliton with constant σ = 2(1− 3ρ). Also, the ρ-ES is shrinking and expanding according to
ρ > 1

3 and ρ < 1
3 .

Proof. Now, we suppose that ρ �= 1
3 . Thus, (40) leads to

R =
σ

1− 3ρ
− 8, (41)

which informs that R is constant and hence (11) infers that R = −6. This contradicts our
hypothesis R �= −6.

Secondly, we consider that R = −6 and (1 − 4ρ)ζ1(R) �= 4ζ1(F ) + 4(R + 6)(1 −
4ρ)η(ζ1). For R = −6, (33) informs that F ∈ R and hence the GRBS on the manifold is
trivial. Moreover, the Riemannian 3-manifold under assumption is an Einstein manifold
with σ = 2(1− 3ρ). This completes the proof.

Let us suppose that an (M3, ∇̃, g) admits a proper gradient ρ-ES. Then, the ρ-ES
reduces to the gradient traceless RS and ρ = 1

3 , σ = 0. Using these facts in (26) and then
contracting the foregoing equation over ζ1 gives ΔF = 0.

A smooth function h on an Mn is called harmonic if Δh = 0.
The above discussions state the following:

Corollary 4. Let a complete (M3, ∇̃, g) admit a proper gradient ρ-ES. Then the gradient function
of the gradient ρ-ES is harmonic.

Contracting (38) over ζ1, we find

ΔF = ξ(ξ(F ))− 2ξ(F ).
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Again, considering σ = 0, ρ = 1
3 and then contracting (26) over ζ1, we conclude that

ΔF = 0.

The last two equations show that ξ(ξ(F ))− 2ξ(F ) = 0. Let ξ = ∂
∂t . Thus, we notice that

the potential function F satisfies the PDE

∂2F
∂t2 − 2

∂F
∂t

= 0.

It is obvious that F = Ae2t + B for smooth functions A and B, which are independent of t,
is the solution of the above PDE. Now, we list our results in the following:

Corollary 5. Let the metric of a complete (M3, ∇̃, g) admit a proper gradient ρ-ES. Then, the
potential function F of such soliton satisfies the PDE ∂2F

∂t2 − 2 ∂F
∂t = 0, and it can be evaluated by

F = Ae2t + B.

5. Example

We consider the manifold M3 = {(w1, w2, w3) ∈ R3}, where (w1, w2, w3) are the usual
coordinates in R3. Let u1, u2 and u3 be the vector fields on M3 given by

u1 = ebw3+w1
∂

∂w1
, u2 = ebw3+w2

∂

∂w2
, u3 =

1
b

∂

∂w3
= ξ,

where b( �= 0) ∈ R. Then, {u1, u2, u3} forms a basis in the module of the vector fields
of M3.
Let the Riemannian metric g be defined by

g(up, uq) =

{
1, 1 ≤ p = q ≤ 3,
0, otherwise.

Hence, M3 is a Riemannian manifold of dimension 3. Let the 1-form η on M3 be defined
by η(ζ1) = g(ζ1, u3) = g(ζ1, ξ) for all ζ1 on M3. Now, by direct computations, we obtain

[u1, u2] = 0, [u1, u3] = −u1, [u2, u3] = −u2.

By using Koszul’s formula, we obtain

∇up uq =

⎧⎪⎨⎪⎩
−up, p = 1, 2, q = 3,
u3, 1 ≤ p = q ≤ 2,
0, otherwise.

Now we suppose that ζ1 = ζ1
1u1 + ζ2

1u2 + ζ3
1u3, then for ξ = u3 it follows that

∇ζ1 ξ = −ζ1 + η(ζ1)ξ. It can be easily seen that ∇̃ defined on M3 satisfies the conditions

T̃(ζ1, ζ2) = −η(ζ1)ζ2 + η(ζ2)ζ1, ∇̃g = 0, and ∇̃ξ = 0,

for arbitrary vector fields ζ1 and ζ2 on M3, where T̃ indicates the torsion tensor of ∇̃. Thus,
we can say that ∇̃ is a semi-symmetric metric ξ-connection on M3.

The non-zero constituents of K are obtained as follows:

K(u1, u3)u1 = u3, K(u1, u2)u1 = u2, K(u2, u3)u2 = u3,

K(u1, u2)u2 = K(u1, u3)u3 = −u1, K(u2, u3)u3 = −u2.
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By using above components of the curvature tensor K we obtain

S(up, uq) = −2, 1 ≤ p = q ≤ 3,

from which we obtain R = −6.
Now, by taking DF = (u1F )u1 + (u2F )u2 + (u3F )u3, we have

∇u1DF = (u1(u1F )− u3F )u1 + (u1(u2F ))u2 + (u1(u3F ) + u1F )u3,

∇E2DF = (u2(u1F ))u1 + (u2(u2F )− u3F )u2 + (u2(u3F ) +F2F )F3,

∇E3DF = (u3(u1F ))u1 + (u3(u2F ))u2 + (u3(u3F ))u3.

Thus, by virtue of (26), we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(u1F )− u3F = 2− 6ρ− σ,
u2(u2F )− u3F = 2− 6ρ− σ,
u3(u3F ) = 2− 6ρ− σ,
u1(u2F ) = 0,
u2(u1F ) = 0,
u2(u3F ) + u2F = 0.

(42)

Thus, the relations in (42) are, respectively, amounting to

e2(bw3+w1)
[∂2F

∂w2
1
+

∂F
∂w1

]
− 1

b

∂F
∂w3

= 2− 6ρ− σ,

e2(bw3+w1)
[∂2F

∂w2
2
+

∂F
∂w2

]
− 1

b

∂F
∂w3

= 2− 6ρ− σ,

1
b2

∂2F
∂w2

3
= 2− 6ρ− σ,

∂2F
∂w1∂w2

= 0,

∂2F
∂w2∂w1

= 0,

1
b
[

∂2F
∂w2∂w3

+
∂F
∂w2

] = 0.

From the above relations, it is noticed that F ∈ R for σ = 2− 6ρ. Hence, the Equation (26)
is satisfied. Thus, g is a gradient ρ-ES with the soliton vector field E = DF , where F ∈ R
and σ = 2− 6ρ. For ρ = 1

3 , we obtain σ = 0, i.e., the gradient ρ-ES is trivial with constant
σ = 2− 6ρ. Thus, Theorem 2 is verified.

6. Results and Discussion

It is well known that the ρ-Einstein soliton Equation (2) with ρ = 0 becomes the Ricci
soliton equation, which has been studied in [22]. Thus, we can say that the ρ-Einstein
soliton is a natural generalization of Ricci soliton. In this manuscript, we have explored
the properties of ρ-Einstein solitons in Riemannian geometry, which generalizes the results
of [22].
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7. Conclusions

To prove the curvatures invariant, Chauey et al. [23] defined the notion of semi-
symmetric metric P-connection in Riemannian setting, which is a particular case of Rieman-
nian concircular structure manifold [26]. This topic has great applications in differential
equations. We proved that the scalar curvature of Riemannian 3-manifolds endowed with
a semi-symmetric metric ξ-connection and Ricci–Bourguignon soliton satisfies the Poisson
and Laplace equations. It is well known that the Poisson and Laplace equations play a
crucial role in the development of engineering, physics, mathematics, etc. We have also
established the conditions for which the scalar curvature is harmonic, sub-harmonic and
super-harmonic. We also established the existence condition of a gradient ρ-Einstein soliton
in the Riemannian 3-manifolds, and consequently we proved some results. To verify our
results, we constructed a non-trivial example of a three-dimensional Riemannian manifold
equipped with a semi-symmetric metric ξ-connection. These topics are modern and have a
lot of scope for researchers.
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Abstract: This study utilizes the axodes invariants to derive novel hyperbolic proofs of the Euler–
Savary and Disteli formulae. The inflection circle, which is widely recognized, is situated on the
hyperbolic dual unit sphere, in accordance with the principles of the kinematic theory of spherical
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comprehensive understanding of the geometric features of the inflection line congruence.
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1. Introduction

Line geometry has an alliance with spatial locomotions and has thus found imple-
mentations in mechanism layout and robot kinematics. In locomotion, it is interested in
inspecting the essential characteristics of the line path from the connotations of ruled
surface. It is well known in spatial locomotions that the instantaneous screw axis (ISA)
of a movable body traces a couple of ruled surfaces, named the mobile and immobile
axodes, with ISA as its tracing line in the movable space and in the steady space, re-
spectively. Through locomotion, the axodes slide and roll relative to each other in a
specific path such that the contact amidst the axodes is permanently maintained on the
length of the two matting rulings (one being in all axodes), which define the ISA at
any instant. It is essential that not only does an assured locomotion confer a rise to a
unique set of axodes but the converse furthermore stratifies. This shows that, should the
axodes of any locomotion be renowned, the evident locomotion can be reconstructed
without knowledge of the physical features of the mechanism, their explications, given
dimensions, or the manners by which they are united. There exists major literature on
the topic including sundry monographs [1–5].

On the other hand, dual numbers have been employed to study the locomotion of a line
space; and they may even serve as more effective tools for this purpose. According to the E.
Study map in the theory of dual numbers, it may be concluded that there exists a bijection
between the set of the dual points on dual unit sphere (DUS) in the dual 3-space D3 and the
set of all directed lines in Euclidean 3-space E3. By use of this map, a one-parameter set of
points (a dual curve ) on DUS can be associated with a one-parameter set of directed lines
(ruled surface) in E3 [6–12]. In the Minkowski three-space E3

1, since the Lorentzian metric
can be positive, negative or zero. Conversely, in the Euclidean three-space E3, the metric is
exclusively positive definite. Therefore, the kinematic and geometrical clarifications hold
significant importance in E3

1 [13–19].
In this paper, we utilized the E. Study map for investigating the kinematic-geometry of

a timelike (T−like) line trajectory in one-parameter hyperbolic spatial locomotions. Then,
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we gained new dual versions of Euler–Savary formula (ES), resulting in distinct statements
that are based on the axode invariants. Lastly, we explored a theoretical narration of the
infliction circle of planar locomotions.

2. Preliminaries

In this section, we list notations of dual Lorentzian vectors and E. Study map (See [13–19]):
A non-null oriented line L in Minkowski 3-space E3

1 can be appointed by a point q ∈ L and
a normalized vector u of L, that is, ‖u‖2 = ±1. To have coordinates for L, one must have
the moment vector u∗ = q× u in E3

1. If q is reciprocal by any point p = q+tu, t ∈ R on L,
this offers that u∗ is independent of q on L. The two non-null vectors u and u∗ satisfy that

〈u, u〉 = ±1, 〈u∗, u〉 =0. (1)

The 6-component ui, u∗i (i = 1, 2, 3) of u and u∗ are the normalized Plűcker coordinates of
L [1–4].

A dual number û is a number u + εu∗, where (u, u∗) ∈ R×R, ε is a dual unit with
ε �= 0, and ε2 = 0. Thus, the set

D3 = {û:= u + εu∗ =(û1, û2, û3)}, (2)

with the Lorentzian scalar product

〈û, û〉 = −û2
1 + û2

2 + û2
3, (3)

explain dual Lorentzian three-space D3
1. Then, a point û = (û1, û2, û3)

t has dual coordinates
ûi = (ui + εu∗i ) ∈ D. If u �= 0, the norm ‖û‖ of û = u + εu∗ is

‖û‖ =
√
|〈û, û〉| = ‖u‖(1+ε

〈u, u∗〉
‖u‖2 ). (4)

So, if ‖û‖2= −1 (‖û‖2=1), the vector û is a T−like (spacelike (S−like)) dual unit vector.
Then,

‖û‖2 = ±1 ⇐⇒ ‖u‖2 = ±1, 〈u, u∗〉 =0. (5)

The dual hyperbolic, and Lorentzian (de Sitter space) unit spheres with the center 0̂,
respectively, are [13–19]:

H2
+ =

{
û∈D3

1 | −û2
1 + û2

2 + û2
3 = −1

}
, (6)

and
S2

1 =
{

û∈D3
1 | −û2

1 + û2
2 + û2

3 = 1
}

. (7)

Therefore, presented here is the map provided by E. Study: the ring-shaped hyperboloid
may be bijectively mapped to the set of S−like lines. Similarly, the common asymptotic
cone can be bijectively mapped to the set of null-lines. Lastly, the oval-shaped hyperboloid
can be bijectively mapped to the set of T−like lines (see Figure 1). Then, a regular curve on
H2

+ matches a T−like ruled surface in E3
1. Also, a regular curve on S2

1 matches a S−like or
T−like ruled surface in E3

1 [13–19].
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Figure 1. The dual hyperbolic and dual Lorentzian unit spheres.

Hyperbolic Dual Spherical Locomotions

Let us address that H2
+m and H2

+ f are two hyperbolic DUS centered at the origin

0̂ in D3
1. Let {û} = {0̂; û1(T−like), û2, û3}, and {ζ̂} = {0̂; ζ̂1(T−like), ζ̂2, ζ̂3} be two

orthonormal dual frames of H2
+m and H2

+ f , respectively. If we say {ζ̂} is stationary, whereas
the elements of {û} are functions of a real parameter t ∈ R (say the time). Then, we say that
H2

+m moves on H2
+ f . This is a one-parameter Lorentzian dual spherical (DS) locomotion

and will signalize by H2
+m/H2

+ f . Via the E. Study map, the hyperbolic DUS H2
+m and H2

+ f
matches the hyperbolic line spaces Lm(mobile) and L f (immobile), respectively. Therefore,
Lm/L f is the mobile hyperbolic line space against the hyperbolic immobile space L f ,
because at any instant the instantaneous screw axis (ISA) of Lm/L f creates a mobile
T−like axode πm in Lm, and immobile T−like axode π f in L f . Therefore, we insert an
orthonormal dual frame {r̂} = {0̂; r̂1(T−like), r̂2, r̂3}, which is specified as follows: we

set r̂1(t) = r1(t) + εr∗1(t), as the ISA and r̂2(t) := r2(t) + εr∗2(t) = dr̂1
dt

∥∥∥ dr̂1
dt

∥∥∥−1
as the

joint central normal of two disjoint screw axes. A third dual unit vector is designated as
r̂3(t) = r̂1 × r̂2. Then,

r̂1×r̂2=r̂3, r̂1 × r̂3= −r̂2, r̂2×r̂3= −r̂1,
−〈r̂1, r̂1〉=〈r̂2,̂r2〉 =〈r̂3,̂r3〉 =1.

}
(8)

The set {r̂} is the relative Blaschke frame, and r̂1, r̂2, and r̂3 are intersected at the joint
striction (central) point s(t) of the T−like axodes πi (i = m, f ). The dual arc length
dŝi = dsi + εds∗i of r̂1(t) is

dŝi =

∥∥∥∥dr̂1

dt

∥∥∥∥dt = σ̂(t)dt. (9)

σ̂(t) = σ(t) + εσ∗(t) is the first order asset of the locomotions H2
+m/H2

+ f . We set
dŝ = ds + εds∗ to represent dŝi, since they are equal to each other. Then,

μ(s) :=
σ∗

σ
=

ds∗

ds
, (10)

is the distribution parameter (D−par) of the T−like axodes. Via the E. Study map: for the
locomotion the T−like axodes have the ISA in mutual; that is the mobile axode osculating
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with the immobile axode along the ISA in the first order (compared with [1–3]). For the
Blaschke formulae with respect to H2

+i(i = m, f ), we find

H2
+r/H2

+i :

⎛⎜⎝ r̂
′
1

r̂
′
2

r̂
′
3

⎞⎟⎠ = �̂i ×

⎛⎝ r̂1
r̂2
r̂3

⎞⎠, (′ = d
dŝ

). (11)

where �̂i := �i + ε�∗i = β̂i r̂1 − r̂3 is the Darboux vector, and

β̂i = βi + ε(Ωi + λβi) = det(r̂1,̂r
′
1, r̂

′′
1), (12)

is the radii of curvature of the T−like axodes πi. βi(s), Ωi(s) and λ(s) are the curvature
(construction) functions of the T−like axodes. By setting

∣∣∣β̂i

∣∣∣ < 1, the S−like Disteli-axes
(DA) of the T−like axodes is

b̂i(ŝ)=
�̂i
‖�̂i‖

=
β̂i r̂1 − r̂3√

1− β̂2
i

= sinh φ̂i r̂1 − cosh φ̂r̂3, (13)

where ϕ̂i(ŝ) = ϕi + εϕ∗i is a Lorentzian T−like dual angle (radius of curvature) among r̂1

and b̂i. Then,
β̂ f−β̂m = tanh ϕ̂ f− tanh ϕ̂m. (14)

Equation (14) is a novel dual hyperbolic version of the ES formula (Compared with [1–3]).
Via the real and the dual parts, respectively, we attain

tanh ϕ f − tanh ϕm = β f−βm, (15)

and
ϕ∗f

cosh2 ϑ f
− ϕ∗m

cosh2 ϑm
+ λ

(
β f−βm

)
= Ωm −Ω f . (16)

Equation (15) in conjuction with (16) are new Disteli formulae (DF) for the T−like axodes
of the locomotion Lm/L f .

Now let us assume that {r̂} is stabilized in H2
+m. Then,

H2
+m/H2

+ f :

⎛⎜⎝ r̂
′
1

r̂
′
2

r̂
′
3

⎞⎟⎠ = �̂×

⎛⎝ r̂1
r̂2
r̂3

⎞⎠, (17)

where
�̂:=�̂ f−�̂m = �̂r̂1, (18)

is the relative Darboux vector. ‖�̂‖ = �̂ = �̂ + ε�̂∗ = βr + ε(Ωr + λβr) is the relative radii
of curvature; � = β f − βm, and �∗ = Ω f −Ωm − λ

(
β f − βm

)
are the rotational angular

speed and translational angular speed of the locomotion Lm/L f , as well they are both
invariants in kinematics, respectively. As a result, the following corollary can be stated:

Corollary 1. For the locomotion Lm/L f , at any instant t ∈ R, the pitch is

h(s) :=
�∗

�
=

Ω f −Ωm

β f − βm
− λ. (19)

In this study, we deviate from the exclusive use of translational locomotion, namely
when �∗ �= 0. Moreover, we impose the condition of excluding zero divisors, denoted by
� = 0. Consequently, our investigation will solely focus on non-torsional locomotions,
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ensuring that the axodes associated with these motions are non-developable T−like ruled
surfaces, characterized by λ �= 0.

3. Timelike Line with Particular Trajectories

Through the locomotion Lm/L f , any fixed T−like line x̂ connected with the mobile
space Lm-space, normally, creates a T−like ruled surface (x̂) in the immobile L f -space. Then,

x̂(ŝ)=x̂t r̂, x̂ =

⎛⎝ x̂1
x̂2
x̂3

⎞⎠ =

⎛⎝ x1 + εx∗1
x2 + εx∗2
x3 + εx∗3

⎞⎠, r̂ =

⎛⎝ r̂1
r̂2
r̂3

⎞⎠, (20)

where
−x2

1 + x2
2 + x2

3 = −1,
−x1x∗1 + x2x∗2 + x3x∗3 = 0.

(21)

The velocity and the acceleration vectors of x̂ ∈ H2
+m, respectively, are

x̂
′
= �̂×x̂ = �̂(−x̂3 r̂2 + x̂2 r̂3), (22)

and
x̂
′′
= −x̂3�̂r̂1 − (x̂2�̂2 + x̂3�̂

′
)r̂2 + (x̂2�̂

′ − x̂1�̂− x̂3�̂2)r̂3. (23)

So, we have
x̂
′ × x̂

′′
= −�̂2

[
(x̂2

1 − 1)�̂r̂1 + x̂3x̂
]
. (24)

The dual arc-length of the dual curve x̂(ŝ) is

dŵ := dw + εdw∗ =
∥∥∥x̂

′∥∥∥dŝ = �̂
√

x̂2
1 − 1dŝ, with |x̂1| > 1. (25)

Then, the D−par of (x̂) is

μ(w) :=
dw∗

dw
= h− x1x∗1

x2
1 − 1

. (26)

Moreover, the Balschke frame is

x̂=x̂(ŝ), t̂(ŝ) = x̂
′∥∥∥x̂

′∥∥∥−1
, ĝ(ŝ) = x̂× t̂, (27)

where
x̂×t̂ =ĝ, x̂× ĝ= −t̂, t̂×ĝ =x̂,

−〈x̂, x̂〉=〈̂t, t̂〉 =〈ĝ, ĝ〉 =1.

⎫⎬⎭ (28)

The dual unit vectors x̂, t̂, and ĝ are three simultaneous alternately orthogonal lines in
Minkowski three-space E3

1. Their joint point is the central point c on the ruling x̂. ĝ(ŝ) is
the mutual orthogonal to x̂(ŵ) and x̂(ŵ + dŵ), and it is named the central tangent of (x̂) at
the central point. The trace of c is the striction curve. The line t̂ is the central normal of (x̂)
at c. So, the Blaschke formulae are

d
dŵ

⎛⎝ x̂

t̂

ĝ

⎞⎠ =

⎛⎝ 0 1 0
1 0 β̂

0 −β̂ 0

⎞⎠⎛⎝ x̂

t̂

ĝ

⎞⎠ = η̂(ŵ)×

⎛⎝ x̂

t̂

ĝ

⎞⎠, (29)

where η̂ = η+ εη∗ = β̂x̂− ĝ is the Darboux vector, and

β̂(ŵ) = β + ε(Ω + μβ) = det(x̂,
dx̂

dŵ
,

d2x̂

dŵ2 ) =
x̂1�̂(x̂2

1 − 1) + x̂3

�̂(x̂2
1 − 1)

3
2

, (30)
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is the radii of curvature of x̂(ŵ). The tangent vector of c(w) is

dc

dw
= −Ωx + μg, (31)

which is a Slike (a Tlike) curve if |μ| > |Ω| (|μ| < |Ω|). β(w), Ω(w) and μ(w) are construc-
tion parameters of the T−like ruled surface (x̂). Under the hypothesis that

∣∣∣β̂∣∣∣ < 1, we
specify the S−like DA as follows:

b̂(ŵ)=
�̂∥∥∥�̂
∥∥∥ =

β̂x̂− ĝ√
1− β̂2

= sinh ϑ̂x̂− cosh ϑ̂ĝ, (32)

where ϑ̂(ŵ) = ϑ + εϑ∗ is radii of curvature through x̂ and b̂. Then,

tanh ϑ̂ =
x̂1�̂(x̂2

1 − 1) + x̂3

�̂(x̂2
1 − 1)

3
2

= β̂(ŵ). (33)

Further, we may have

κ̂(ŵ) = κ + εκ∗ =
√

1− β̂2 = 1
cosh ϑ̂

,

τ̂(ŵ) = τ + ετ∗ = ± dϑ̂
dŵ = ± 1

1−β̂2
dβ̂
dŵ ,

⎫⎪⎪⎬⎪⎪⎭ (34)

where κ̂(ŵ) is the dual curvature, and τ̂(ŵ) is the dual torsion of the dual curve x̂(ŵ). Via
Equations (26) and (31), (x̂) is a T−like tangential developable surface if and only if dc

dw ‖ x,
that is,

μ = 0 ⇔ h(x2
1 − 1)− x1x∗1 = 0, (35)

which represents that the developable conditions of a T−like line trajectory are only
founded on x1, x∗1 and h.

Theorem 1. For the locomotion Lm/L f , the T−like line trajectory has torsional rulings at those
instants at which it belongs to the quadratic T−like line complex pointed out by Equation (35).

In any quadratic T−like line complex the lines of this complex passing through a
point mostly form a quadratic T−like cone. Primarily, for some points, this T−like cone
reduces to a couple of T−like planes. Such points are the singular points of the T−like line
complex. Thus, when (x̂) is a T−like cone, the conditions are μ = 0, and Ω = 0 define a
quadratic T−like line congruence given by the mutual lines of the two quadratic T−like
line complexes (μ = 0, and Ω = 0).

Theorem 2. For the locomotion Lm/L f , the set of T−like lines correlated with the mobile T−like
axode are rulings of a quadratic T−like cone in L f . Moreover, this family of T−like lines belong to
a quadratic T−like line congruence.

3.1. The Euler–Savary and Disteli Formulae

In the context of planar locomotions, the ES formula associates the locus of a point
to its curvature center and is the main ingredient for a graphical structure producing one
assigned the other [1–3]. In 1914, Disteli [20] assigned a curvature axis for the ruling of a
ruled surface and extended the planar ES formula to spatial locomotions. However, the
DF of a line trajectory had been acquired in [4–8,21], around inscription should be refind as
follows: we shall define a new manner to have DF by dual function approximations. Thus,
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we request the T−like line x̂ ∈ Lm, which at a steady dual angle from a steady S−like line
ŷ ∈ L f . So, if ψ̂ = ψ + εψ∗ is the dual angle of x̂( T−like), and ŷ (S−like), then

ψ̂ = sinh−1(〈x̂, ŷ〉). (36)

For ψ̂ is steady up to the 2nd order at ŵ = ŵ0, we have

ψ̂
′
|ŵ=ŵ0

= 0, x̂
′
|ŵ=ŵ0

= 0, (37)

and
ψ̂
′′
|ŵ=ŵ0

= 0, x̂
′′

|ŵ=ŵ0
= 0. (38)

Hence, for the 1st order 〈x̂′ , ŷ〉 = 0, and for the 2nd order 〈x̂
′′

, ŷ〉 = 0. Therefore, ψ̂ will be
steady in the 2nd approximation if and only if ŷ is the S−like DA b̂ of (x̂), that is,

ψ̂
′
= ψ̂

′′
= 0 ⇔ ±ŷ =

x̂
′ × x̂

′′∥∥∥x̂
′ × x̂

′′ ∥∥∥ = b̂. (39)

Hence, from Equations (32) and (39), the following corollary can be given.

Corollary 2. (x̂) is a steady-DA T−like ruled surface if and only if ϑ̂
′
= 0.

Via this corollary, and based on Equation (34), it can be concluded that the rulings
of (x̂) are the constant dual angle ϑ̂ with respect to the S−like DA if and only if β̂

′
= 0.

Therefore, the T−like ruled surface (x̂) is generated locally by a one-parameter hyperbolic
spatial locomotion with pitch h(s) along the steady DA b̂, This locomotion is performed by
the T−like line x̂, which is positioned at a constant hyperbolic distance ϑ∗ and a constant
angle ϑ relative to b̂. This indicates that the striction curve of (x̂) can be classified as either
a S−like or T−like cylindrical helix. The corollary shown below can be used to identify the
circumstances of steady DA.

Corollary 3. (x̂) is a steady DA T−like ruled surface if and only if

β̂
′
= 0 ⇔ dβ

dw
= 0, and

dΩ
dw

+ β
dμ

dw
= 0. (40)

Furthermore, from Equations (32) and (39), we find that

ϑ̂ = sinh−1(〈x̂, b̂〉), 〈x̂′ , b̂〉 = 0, 〈x̂′′ , b̂〉 = 0. (41)

So, b̂ is the osculating circle of x̂(û) ∈ H2
+ f . Further, it can be seen from Equations (22), (27)

and (32) that
〈̂t, r̂1〉 = 〈̂t, x̂〉 = 〈̂t, b̂〉 = 0, (42)

Then, all r̂1 , x̂ and b̂ belong to a T−like line congruence whose focus line is the S−like
line t̂. This can be realized as follows: we set t̂ with respect to the set {r̂} by its intercept
distance ϕ∗, control on the ISA and the angle ϕ, control with respect to r̂2. We set the
dual angle α̂ = α + εα∗, which realizes the attitude of b̂ over t̂. These dual angles are all
estimated relative to the ISA (see Figure 2). The following governs the signals: (ϑ, ϑ∗) and
(α, α∗) are via the right-hand screw rule with the thumb pointing on t̂; the sense of t̂ is
such that ϑ̂ = ϑ + εϑ∗ ≥ 0, and 0 ≤ ϕ ≤ 2π, ϕ∗ ∈ R are explained with the thumb in the
direction of the ISA. Since x̂ is a T−like dual unit vector, we can write out the components
of x̂ in the following form:

x̂= cosh ϑ̂r̂1 + sinh ϑ̂m̂, with m̂= cos ϕ̂r̂2 + sin ϕ̂r̂3. (43)
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Therefore, the Blaschke frame of x̂ = x̂(ŵ) can be written as⎛⎝ x̂

t̂

ĝ

⎞⎠ =

⎛⎝ cosh ϑ̂ sinh ϑ̂ cos ϕ̂ sinh ϑ̂ sin ϕ̂
0 − sin ϕ̂ cos ϕ̂

− sinh ϑ̂ − cosh ϑ̂ cos ϕ̂ − cosh ϑ̂ sin ϕ̂

⎞⎠⎛⎝ r̂1
r̂2
r̂3

⎞⎠. (44)

Comparably, the S−like DA is

b̂= sinh α̂r̂1 + cosh α̂m̂, with α̂ = α + εα∗ ≥ 0. (45)

Substituting from Equations (23) and (45) into the third term of Equation (38) yields

�̂x̂3 tanh α̂− (x̂2
2�̂ + x̂3�̂

′
) cos ϕ̂ + (−x̂1�̂ + x̂2�̂

′ − x̂2
3�̂) sin ϕ̂ = 0. (46)

Into Equation (46) we substitute from Equation (43) to obtain

coth α̂− coth ϑ̂ =
�̂

sin ϕ̂
. (47)

Equation (47) is a new hyperbolic ES formula that fastens a T−like ruled surface and its
osculating circle in terms of the dual angle ϕ̂ as well as the second order invariant �̂. Via
the real and the dual parts, respectively, we obtain

coth α− coth ϑ =
�

sin ϕ
, (48)

and

ϕ∗ =
1
�

[
(

α∗

sinh2 α
− ϑ∗

sinh2 ϑ
) sin ϕ +

�

sin ϕ
(h− μ)

]
tan ϕ. (49)

Equation (48) with (49) are novel DF in the context of one-parameter hyperbolic spatial
locomotions. The former equation establishes a relationship between the positions of the
T−like line in the space Lm and the S−like DA denoted as b̂. Based on the information
provided in Figure 2, the presence of the signal α∗ (+ or −) in Equation (49) indicates
whether the positions of the DA b̂ are located on the positive or negative direction of the
mutual central normal t̂.

However, we can derive the Equation (47) as follows: the hyperbolic radii of curvature
ψ̂ can be written as (see Figure 2):

ψ̂ = ϑ̂− α̂ ⇔ ψ = ϑ− α, ψ∗ = ϑ∗ − α∗. (50)

Then, we have
β̂(û) := tanh ψ̂ = tanh

(
ϑ̂− α̂

)
. (51)

Substituting Equation (51), into Equation (33), with awareness of (43), we obtain

tanh(ϑ̂− α̂) =
sin ϕ̂

�̂ sinh2 ϑ̂
, (52)

After some algebraic manipulations, we find

coth α̂− coth ϑ̂ =
�̂

sin ϕ̂
. (53)

as asserted. Moreover, in the case of axodes, it is possible to derive a second dual formula-
tion of the ES formulae in the following manner: from Equations (22) and (43), one finds
facilely

dŝ = �̂ sinh ϑ̂dt. (54)
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Moreover, from Equation (44) we have

r̂1 = cosh ϑ̂x̂ + sinh ϑ̂ĝ. (55)

A simple computation offers that

r̂
′
1 := (

dt
dŝ

)
dr̂1

dt
= (sinh ϑ̂x̂ + cosh ϑ̂ĝ)ϑ̂

′
+ (cosh ϑ̂− γ̂ sinh ϑ̂)̂t, (56)

and

r̂
′
1 =

(
1

�̂ sinh ϑ̂

)
r̂2. (57)

The amalgamation of Equations (44) and (57) leads to

r̂
′
1 =

1
�̂ sinh ϑ̂

(− sinh ϑ̂ cos ϕ̂x̂− sin ϕ̂t̂− cosh ϑ̂ cos ϕ̂ĝ). (58)

Then, by equating the coefficients of x̂, t̂, and ĝ in Equations (56) and (58), we have

ϑ̂
′
sinh ϑ̂ +

1
�̂

cos ϕ̂ = 0, (59)

and
cosh ϑ̂− β̂ sinh ϑ̂ = − sin ϕ̂

�̂ sinh ϑ̂
. (60)

Substituting this into the left hand side of Equation (53), one finds

cosh ϑ̂− β̂ sinh ϑ̂ = − 1
sinh ϑ̂

(
1

coth α̂− coth ϑ̂
). (61)

Finally, by substituting �̂ := β̂ f−β̂m = tanh ϕ̂ f− tanh ϕ̂m into Equation (59), one obtains

tanh ϕ̂m − tanh ϕ̂ f =
cos ϕ̂

ϑ̂
′ sinh ϑ̂

. (62)

Equation (62) presents a novel hyperbolic dual variant of the widely recognized ES formula
in the context of conventional spherical kinematics, as discussed in
References [1–9,21]. This narrative provides a link between the two T−like axodes in
the locomotion of Lm/L f . It should be noted that the striction point is the origin of the
relative Blaschke frame, denoted as s = 0, see Figure 2.

Figure 2. Position relation of x̂ and b̂.
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3.2. A Timelike Line Congruence

We present a method for locating a T−like line congruence. Therefore, from the real
and the dual parts of x̂ in Equation (43), respectively, we obtain

x(ϑ, ϕ)=(cosh ϑ, sinh ϑ cos ϕ, sinh ϑ sin ϕ), (63)

and

x∗(ϑ, ϕ, ϑ∗, ϕ∗) =

⎛⎝ ϑ∗ sinh ϑ
ϑ∗ cosh ϑ cos ϕ− ϕ∗ sinh ϑ sin ϕ
ϑ∗ cosh ϑ sin ϕ + ϕ∗ sinh ϑ cos ϕ

⎞⎠. (64)

Since x∗ = ε × x, we possess the system of linear equations in εi(i = 1, 2, 3):

−ε2 sinh ϑ sin ϕ + ε3 sinh ϑ cos ϕ = x∗1 ,
−ε1 sinh ϑ sin ϕ + ε3 cosh ϑ = x∗2 ,
ε1 sinh ϑ cos ϕ− ε2 cosh ϑ = x∗3 .

⎫⎬⎭ (65)

The coefficient matrix of unknowns εi(i = 1, 2, 3) is the skew-adjoint matrix⎛⎝ 0 − sinh ϑ sin ϕ sinh ϑ cos ϕ
− sinh ϑ sin ϕ 0 cosh ϑ
sinh ϑ cos ϕ − cosh ϑ 0

⎞⎠, (66)

and thus its rank is 2 with ϑ �= 0, and ϕ �= 2πk (k is an integer). The rank of the augmented
matrix ⎛⎝ 0 − sinh ϑ sin ϕ sinh ϑ cos ϕ x∗1

− sinh ϑ sin ϕ 0 cosh ϑ x∗2
sinh ϑ cos ϕ − cosh ϑ 0 x∗3

⎞⎠, (67)

is also 2. Hence, this system possesses an infinite number of solutions that are specified by

ε2 = (ε1 − ϕ∗) tanh ϑ cos ϕ− ϑ∗ sin ϕ,
ε3 = (ε1 − ϕ∗) tanh ϑ sin ϕ + ϑ∗ cos ϕ,

ε1 = ε1(ϑ, ϕ).
(68)

Since ε1 can be arbitrary, we may then put ε1 = ϕ∗. In this affair, we have

ε(ϕ, ϕ∗) = (ϕ∗,−ϑ∗ sin ϕ, ϑ∗ cos ϕ), (69)

which is the base (director) surface of the T−like line congruence. Let ξ(ξ1, ξ2, ξ3) be a
point on the directed T−like line x̂. We can write that

(x̂) :
ξ1(ϕ, ϕ∗, ρ) = ϕ∗ + ρ cosh ϑ,
ξ2(ϕ, ϕ∗, ρ) = −ϑ∗ sin ϕ + ρ sinh ϑ cos ϕ,
ξ3(ϕ, ϕ∗, ρ) = ϑ∗ cos ϕ + sinh ϑ sin ϕ,

⎫⎬⎭ (70)

where ρ ∈ R. Given that ϕ and ϕ∗ are two independent variables, it may be said that x̂
is a T−like line congruence in L f -space in general. If we define ϕ∗ = hϕ and ϕ as the
parameter for locomotion, then (x̂) can be considered as a T−like ruled in L f -space. As
a result, the director surface represented by Equation (69) is constrained by the striction
curve on (x̂), which implies that

c(ϕ) = (hϕ,−ϑ∗ sin ϕ, ϑ∗ cos ϕ). (71)

The curvature κc(ϕ) and torsion τc(ϕ) can be given by

κc(ϕ) =
ϑ∗

ϑ∗2 − h2 , τc(ϕ) =
h

ϑ∗2 − h2 . (72)
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Then, c(ϕ) is a S−like (|ϑ∗| > |h|) or T−like (|ϑ∗| < |h|) cylindrical helix with the ISA as
its axis. Further, the T−like ruled surface is

(x̂) :
ξ1(ϕ, ρ) = hϕ + ρ cosh ϑ,
ξ2(ϕ, ρ) = −ϑ∗ sin ϕ + ρ sinh ϑ cos ϕ,
ξ3(ϕ, ρ) = ϑ∗ cos ϕ + sinh ϑ sin ϕ.

⎫⎬⎭ (73)

The constants h, ϑ and ϑ∗ can control the shape of (x̂). In the case of 0 ≤ ϕ ≤ 2π, and
ϑ∗ �= 0, we attain

(x̂) : −Ψ2
1

�2 +
ξ2

2
ϑ∗2 +

ξ2
3

ϑ∗2 = 1, (74)

where � = ϑ∗ tanh ϑ, and Ψ1 = ξ1 − hϕ. So, (x̂) is a two-parameter family of one-sheeted
hyperboloids. The intersection of each hyperboloid and the S−like plane ξ1 = hϕ is a
one-parameter family of Lorentzian cylinder (c): ξ2

2 + ξ2
3 = ϑ∗2 which is the envelope of

(x̂). The T−like ruled surface (x̂) can be classified into 4-kinds via their striction curves:

(a) T−like Archimedes with its striction curve is a T−like cylindrical helix for h = ϑ∗ = 1,
ϑ = 1.1, −4 ≤ v ≤ 4, and 0 ≤ ϕ ≤ 2π (Figure 3).

(b) Lorentzian sphere with its striction curve is a S−like circle for h = 0, ϑ∗ = 1, ϑ = 1.1,
−4 ≤ v ≤ 4, and 0 ≤ ϕ ≤ 2π (Figure 4).

(c) T−like helicoid with its striction curve is a T−like line for h = 1, ϑ∗ = 0, ϑ = 1.1,
−4 ≤ v ≤ 4, and 0 ≤ ϕ ≤ 2π (Figure 5).

(d) T−like cone with its striction curve is a stationary point for h = ϑ∗ = 0, ϑ = 1.1,
−4 ≤ v ≤ 4, and 0 ≤ ϕ ≤ 2π (Figure 6).

Figure 3. T−like Archimedes.

Figure 4. Lorentzian sphere.
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Figure 5. T−like helicoid.

Figure 6. T−like cone.

4. Inflection Timelike Line Congruence

This section demonstrates how a line congruence, which we refer to as an inflection
T−like line congruence, is the spatial equivalent of the inflection circle of planar kinematics.
Hence, we establish that the locus comprising the entire set of lines exhibiting a dual
geodesic curvature of zero corresponds to the spatial equivalent of the circle of inflection
for planar locomotios. Then, from Equation (34), we have

β̂(ŵ) = 0 ⇔ κ̂(ŵ) = 1. (75)

Furthermore, from Equations (30) and (33), we can see that

β̂(ŵ) = 0 ⇔ tanh ψ̂ = 0 ⇔ ψ = ψ∗ = 0 ⇔ β = 0, and Ω = 0. (76)

In this particular case, the lines denoted as x̂, t̂, and b̂ represent the Blaschke frame. These
lines intersect at the striction point of the T−like ruled surface denoted as (x̂). Based on the
Equations (31) and (76), it may be inferred that the striction curve is a S−like curve, that
is, dc

dw ‖ g. Given that β̂(ŵ) = 0, we can derive the ODE d2 t̂
dŵ2 − t̂ = 0 from Equation (29).

Furthermore, by setting t̂(0) = (0, 1, 0), the solution of the ODE is obtained as follows:
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Since β̂(ŵ) = 0, from Equation (29) we have the ODE, d2 t̂
dŵ2 − t̂ = 0. Moreover, we may

write t̂(0) = (0, 1, 0), and the solution of the ODE becomes

t̂(ŵ) =
(

b̂1 sinh ŵ, cosh ŵ + b̂2 sinh ŵ, b̂3 sinh ŵ
)

, (77)

for dual constants b̂1, b̂2, and b̂3. Since
∥∥̂t
∥∥2

= 1, we obtain b̂2 = 0, and b̂2
1 − b̂2

3 = 1, it shows
that x̂(ŵ) can be specified by

x(ŵ) =
(

b̂1 cosh ŵ + d̂1, sinh ŵ, b̂3 cosh ŵ + d̂3

)
, (78)

for dual constants d̂2, and d̂3 satisfying b̂1d̂1− b̂3d̂3 = 0. We make change the coordinates by⎛⎝ x̃1
x̃2
x̃3

⎞⎠ =

⎛⎝ b̂1 0 −b̂3
0 1 0
−b̂3 0 b̂1

⎞⎠⎛⎝ x̂1
x̂2
x̂3

⎞⎠. (79)

Then, x̂(ŵ) turns into
x̂(ŵ) = cosh ŵr̂1 + sinh ŵr̂2, (80)

for b̂1d̂3 − b̂3d̂1 = 0. Let χ(χ1, χ2, χ3) be a point on x̂(ŵ), then

(x̂) : χ(w, w∗, ρ)=(0, 0, w∗) + ρ(cosh w, sinh w, 0), ρ ∈ R, (81)

which yields that
χ1 = ρ cosh w, χ2 = ρ sinh w, χ3 = w∗. (82)

So, if we take w∗ = hw, h signaling the pitch of the locomotion Lm/L. Then,

χ3 =
1
h

coth−1 χ1

χ2
, (83)

which is a one-parameter family of T−like helicoid of the second kind; where for h = 1,
−3 ≤ w ≤ 3, −1 ≤ ρ ≤ 1, a member is shown in (Figure 7).

Figure 7. A T−like helicoid of the 2nd kind.

For more kinematic analysis of the inflection T−like line congruence (x̂), from
Equation (30) we can write the equation

ĉ : x̂1�̂(1− x̂2
1) + x̂3 = 0, (84)
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which is a curve of third degree. The real part of Equation (84) recognizes a T−like inflection
cone for the real spherical part of Lm/L f and is pointed out by

c : x1�(1− x2
1) + x3 = 0. (85)

The mutual lines of the T−like inflection cone with a real hyperbolic unit sphere concen-
trated at the head of the cone defines a hyperbolic spherical curve. Furthermore, there is
a T−like plane for each T−like line, united with each ruling of a T−like inflection cone,
given by the dual part of Equation (84):

π : �
(

x1h + x∗1 − 2x2
1x∗1
)
+ x∗3 = 0, (86)

where x1, x2, and x3 are the hyperbolic direction cosines of the line x̂ and x∗1 , x∗2 , and x∗3 are
specified by

x∗1 = −q2x3 + q3x2, x∗2 = q3x1 − q1x3, x∗3 = q1x2 − q2x1, (87)

where q(q1, q2, q3) ∈ x̂. Equation (84) represents a third-degree equation, it follows that
the T−like line congruence can be traced by all common lines of two cubic T−like line
complexes, as described by Equations (85) and (86). Therefore, the Plückerian coordinates
that describe the T−like lines x̂ ∈ ĉ may be expressed by the Equations (21), (85) and (86). In
general, these coordinates represent a T−like ruled surface in the fixed space L f . However,
from Equations (63), (64), (85) and (86), respectively, we obtain

c : � sinh 2ϑ + 2 sin ϕ = 0, (88)

and
π : �∗ sinh 2ϑ + 2�ϑ∗ cosh 2ϑ + 2ϕ∗ cos ϕ = 0. (89)

If the Equation (88) is resolved with respect to ϑ, we have

sinh 2ϑ = −
(

2 sin ϕ

�

)
, and cosh 2ϑ = ±1

�

√
�2 + 4 sin2 ϕ. (90)

Hence, from Equations (89) and (90), we attain

π : h sin ϕ∓
√

�2 + 4 sin2 ϕϑ∗ − ϕ∗ cos ϕ = 0. (91)

Equation (91) is linear in ϕ∗and ϑ∗ of the T−like line x̂. Hence, the T−like lines in a
stationary direction within the Lm-space can be found on the T−like plane denoted as
π. As illustrated in Figure 8, the angle ϕ serves to differentiate the central normal t̂.
Consequently, Equation (91) yields two T−like lines L+ and L− within the T−like plane π:
Sp{r̂1, t̂} (where L+ and L− align with the inflection circle in planar locomotions). Also, if
the distance ϑ∗ on the central normal t̂ from the ISA is taken as the independent parameter,
we obtain

π : ϕ∗ = ∓

⎛⎝
√

�2 + 4 sin2 ϕ

cos ϕ

⎞⎠ϑ∗ + h tan ϕ. (92)

We remark that L+ (or L−) will alternate its place if ϑ∗ is realized as a various value, but
ϕ =constant. Further, the T−like plane π is various if ϕ of L+ (or L−) has various value,
but ϑ∗ =consent. Consequently, the collection of all T−like lines L+, and L− pointed out
by Equation (92) is an inflection T−like congruence for all values of (ϕ∗, ϑ∗).
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Figure 8. T−like inflection line congruence.

However, the ownerships of this inflection T−like congruence are clarified as follows:
via Figure 8, the two T−like lines L+ and L− are intersected on the ISA at distance h tan ϕ.
For the orientation ϕ = 0, these T−like lines passing through the origin (s = 0) and attain
the minimal slope is ±�. For ϕ = π/2, the T−like lines are parallel and located on opposite
sides of the ISA at a specific distance h/

√
�2 + 4. Furthermore, if the Equation (88) is

resolved with respect to ϕ, we obtain

ϕ = − sin−1
(

� sinh 2ϑ

2

)
. (93)

By substituting Equation (93) into Equation (63), we find

x(ϑ)=
(

cosh ϑ, cos
[

sin−1
(

� sinh 2ϑ

2

)]
sinh ϑ,− � sinh(2ϑ)

2
sinh ϑ

)
. (94)

Equation (94) appears the inflection T−like curve of the hyperbolic spherical part of the
locomotion Lm/L f . Further, from the Equations (70), (90) and (94), we obtain

(x̂) :

ξ1(ϑ, ρ) = ϕ∗ + ρ cosh ϑ,
ξ2(ϑ, ρ) = ϑ∗

(
� sinh 2ϑ

2

)
+ ρ cos

[
sin−1

(
� sinh 2ϑ

2

)]
sinh ϑ,

ξ3(ϑ, ρ) = ϑ∗ cos
[
sin−1

(
� sinh 2ϑ

2

)]
− ρ

� sinh 2ϑ
2 sinh ϑ.

⎫⎪⎪⎬⎪⎪⎭ (95)

For epitome, via Equations (94) and (95), we have

(1) Hyperbolic spherical inflection curve with its inflection timelike ruled surface: for
ω = 0.3, ϑ∗ = 1, ϕ∗ = 0,−1.3 ≤ ϑ ≤ 1.3, −5 ≤ v ≤ 5 (Figures 9 and 10).

(2) Hyperbolic spherical inflection curve with its inflection T−like ruled surface: for
ω = −0.3, ϑ∗ = 1, ϕ∗ = 0,−1.3 ≤ ϑ ≤ 1.3, −5 ≤ v ≤ 5 (Figures 11 and 12).
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Figure 9. Hyperbolic inflection curve with ω = 0.3.

Figure 10. T−like Inflection ruled surface.

Figure 11. Hyperbolic inflection curve with ω = −0.3.

Figure 12. T−like Inflection ruled surface.
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5. Conclusions

In this paper, the kinematic-geometry of a T−like trajectory is defined in terms of
the axodes invariants of one-parameter hyperbolic spatial locomotion. Then, a new DF
of a T−like line-trajectory is gained in distinct forms. In symmetry with the plane and
spherical locomotions, a new T−like congruence is pointed and investigated in detail. The
main result in this paper is to generalize the ES formula in the hyperbolic locomotion. We
introduced the dual angle, which is represented in Equation (36), and we restricted it to be
steady up to 2nd order. Hence, we obtain Equation (39), which introduces the DA. Through
this equation, we gave corollary 2 and corollary 3. Also, we reformulated ES formula for the
axodes in a new form given in Equations (47)–(49). Furthermore, in Section 4 of this work,
we defined and studied inflection T−like line congruence, which is the spatial synonym
of the inflection circle of planer kinematics. The findings presented in this study have the
potential to make significant contributions to the field of spatial locomotion, as well as
offer practical applications in the domains of mechanical mathematics and engineering.
In our forthcoming research, we intend to explore various applications of the kinematic-
geometry of one-parameter hyperbolic spatial locomotion in conjunction with singularity
theory, submanifold theory, etc., in [22–25] in order to derive additional novel findings
and properties.
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Abstract: A principal curve on a surface plays a paramount role in reasonable implementations. A curve
on a surface is a principal curve if its tangents are principal directions. Using the Serret–Frenet frame,
the surface pencil couple can be expressed as linear combinations of the components of the local frames
in Galilean 3-space G3. With these parametric representations, a family of surfaces using principal
curves (curvature lines) are constructed, and the necessary and sufficient condition for the given
Bertrand couple to be the principal curves on these surfaces are derived in our approach. Moreover,
the necessary and sufficient condition for the given Bertrand couple to satisfy the principal curves
and the geodesic requirements are also analyzed. As implementations of our main consequences, we
expound upon some models to confirm the method.
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1. Introduction

Principal curve is designated as one of the significant curves on a surface and it plays
a primary role in differential geometry [1–4]. It is an advantageous gadget in surface exam-
ination for showing contrast of the principal direction. The harmonic principal curvature
and principal curves are considerable and associated with the smooth surfaces. Principal
curves can direct the realization of surfaces, quietly utilized in geometric designing, and
can constitute consistency, surface polygonization, and surface fulfillment. There exists an
enormous literature on the topic, including various monographs, for instance: Martin [5]
studied systematic surface patches restricted by principal curves, which are named prin-
cipal patches. Martin presented that the presence of such patches was conditioned upon
confirmed situations corresponding on the patch border curves. Alourdas et al. [6] ad-
dressed a mode to confirm a net principal curves on a B-spline surface. Maekawa et al. [7]
extended a style to take out the generic characteristics of free-shape parametric surfaces
for form inspection. They researched the generic advantage of the umbilics and attitude
principal curves that go through an umbilic on a parametric free-shape surface. Che and
Paul [8] expanded a manner to resolve and calculate the principal curves and their geo-
metric properties specified on an implicit surface. They also offered a new standard for
non-umbilical points and umbilical points on an implicit surface. Zhang et al. [9] proved a
planner for calculating and envisaging the principal curves pointed on an implicit surface.
Kalogerakis et al. [10] derived a powerful substructure for establishing principal curves by
point clouds. Their approach is reasonable for surfaces of random genus, with or without
borderlines, and is statistically powerful to use with outliers maintaining surface character-
istics. They found the approach to be efficient through an area of synthetic and real-world
input data collections with changing amounts of noise and outliers. In practical uses,
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however, crucial work has focused on the backward exploration or reverse issue: given a
3D curve, how can we locate those surfaces that are faced with this curve as a distinctive
curve, if possible, rather than locating and furnishing curves on analytical curved surfaces?
Wang et al. [11] was the first to handle the issue of assembling a surface family with a
designated locative geodesic curve, through which every surface can be a candidate for
mode style. They demonstrated the necessary and sufficient conditions for the coefficients
to be satisfied with both the isoparametric and the geodesic demands. This scheme has
been used by many scholars (see, for example, [12–23]).

Galilean geometry is the simplest pattern of a semi-Euclidean geometry for which
the isotropic cone reduces to a plane. It is indicated as a bridge from Euclidean geome-
try to special relativity. The main spine of Galilean geometry is its private gravity, that
is, it allows the scientist to search it in detail without using large amounts of time and
energy. In other words, the view of Galilean geometry shapes its development with an
unpretentious question, and a gross stretch of a modern geometric community is crucial
for its efficient comparison with Euclidean geometry. Also, aggregate evolution is practical
to supply the scientist with the psychological emphasis of the uniformity of the inspected
structure [24,25]. In the 3D (three-dimensional) Galilean space G3, there are several studies
dealing with G3, for example, Dede et al. [26,27] resolved tub surfaces, the descriptions
of the parallel surfaces. Yuzbasi et al. [28,29] considered a surface family with a curve
to be a joint asymptotic curve and geodesic. Jiang et al. [30] considered surface pencil
couple with Bertrand couple as joint asymptotic curves. Almoneef and Abdel-Baky [31]
designed a surface family with Bertrand curves to be geodesic curves. AL-Jedani and Abdel-
Baky [32] considered the surface family and developable surface family with a joint geodesic
curve, respectively.

It is known that on any surface there are three main kinds of curves: principal curves
(curvature lines), asymptomatic curves, and geodesic curves. In [30], the study focused on
how to construct family surfaces via Bertrand curves that are asymptomatic, whereas our
work addresses a very new idea related to a differential geometry field based on construc-
tion of a family of surfaces using principal curves (curvature lines). Ref. [31] investigated
a similar idea but used the geodesic curves instead of principal ones. In addition, a team
of researchers, referred to as Li et al. and cited in [32–49],conducted theoretical studies
and advancements on soliton theory, submanifold theory, and other related topics. Further
motivation can be found in these papers. Their efforts have significantly contributed to the
progression of research in these fields.

However, to our knowledge, no additional work has been done to originate surface
pencil couples with curve couples that are principal curves. In order to create the surfaces
pencil and, specifically ruled ones, we explore Bertrand couples as principal curves and
organize a surface pencil couple with a Bertrand couple as joint principal curves. Further-
more, the accessory to the ruled surface pencil is likewise qualified. In addition, some
models are exhibited to create the surface pencil, in general, and ruled ones, in particular,
with joint Bertrand principal curves.

2. Basic Concepts

The 3D (3-dimensional) Galilean space G3 is a Cayley–Klein geometry endued with
the projective metric of signature (0, 0, +, +) [48,49]. The absolute figure of G3 is contingent
on the organized triple {π, L, I}, where π is the (absolute) plane in the real 3D projective
space P3(R), L is the line (absolute line) in π, and L is the steady elliptic involution of points
of L. Homogeneous coordinates in G3 are developed in such a mode that the absolute plane
π is pointed by z0 = 0, the absolute line L by z0 = z1 = 0, and the elliptic involution is
pointed by (0 : 0 : z2 : z3)→ (0 : 0 : z3 : −z2). A plane is organized Euclidean if it includes
L, otherwise it is organized isotropic, that is, planes z0=const are Euclidean, and so is the
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plane π. Other planes are isotropic. Furthermore, an isotropic plane does not involve any
isotropic direction. For any υ = (υ1, υ2, υ3), and ν=(ν1, ν2, ν3) ∈ G3, their scalar product is

<υ, ν >=

{
υ1ν1, if υ1 �= 0∨ ν1 �= 0,
υ2ν2 + υ3ν3, if υ1 = 0∧ ν1 = 0,

(1)

and their vector product is

υ × ν =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣
x1 x2 x3
0 υ2 υ3
0 ν2 ν3

∣∣∣∣∣∣, if υ1 = 0∧ ν1 = 0.∣∣∣∣∣∣
0 x2 x3
υ1 υ2 υ3
ν1 ν2 ν3

∣∣∣∣∣∣, if υ1 �= 0 ∨ ν1 �= 0,

(2)

where x1 = (1, 0, 0), x2 = (0, 1, 0), and x3 = (0, 0, 1) are the standard basis vectors in G3.
A curve ψ(u) = (ψ1(u), ψ2(u), ψ3(u)); u ∈ I ⊆ R is a denominated allowable curve

if it has no inflection points, that is,
.

ψ ×
..
ψ �= 0, and no isotropic tangents

.
ψ1 �= 0. An

allowable curve is comparable to a regular curve in Euclidean space. For an allowable
curve ψ : I ⊆ R→ G3 defined by the Galilean invariant arc-length u, we have:

ψ(u) = (u, ψ2(u), ψ3(u)). (3)

The curvature κ(u) and torsion τ(u) of the curve ψ(u) are

κ(u) =
∥∥∥ψ

′′
(u)
∥∥∥ =

√(
ψ
′′
2 (u)

)2
+
(
ψ
′′
3 (u)

)2
,

τ(u) =
1

κ2(u)
det
(

ψ
′
, ψ

′′
, ψ

′′′)
. (4)

Note that an allowable curve has κ(u) �= 0. The Serret–Frenet vectors are:

g1(u) = ψ
′
(u) =

(
1, ψ

′
2(u), ψ

′
3(u)

)
,

g2(u) =
1

κ(u)
ψ
′
(u) =

1
κ(u)

(
0, ψ

′′
2 (u), ψ

′′
3 (u)

)
, (5)

g3(u) =
1

τ(u)

(
0,
(

1
κ(u)

ψ
′′
2 (u)

)′

,
(

1
κ(u)

ψ
′′
3 (u)

)′)
,

where g1(u), g2(u), and g3(u), respectively, are the tangent, principal normal, and binormal
vectors. The Serret–Frenet formulae read:⎛⎜⎝ g

′
1

g
′
2

g
′
3

⎞⎟⎠ =

⎛⎝ 0 κ(u) 0
0 0 τ(u)
0 −τ(u) 0

⎞⎠⎛⎝ g1
g2
g3

⎞⎠. (6)

Definition 1 ([31]). Let ψ(u) and ψ̂(u) be curves with Galilean invariant arc-length u, g2(u)
and ĝ2(u) are their principal normals, respectively; the set {ψ̂(u), ψ(u)} is an organized Bertrand
couple if g2(u) and ĝ2(u) are linearly related at the conformable points, ψ(u) is organized as the
Bertrand mate of ψ̂(u), and

ψ̂(u) = ψ(u) + f g2(s), (7)

where f is a stationary.

98



Axioms 2023, 12, 1022

We designate a surface S by

S : p(u, t) = (p1(u, t), p2(u, t), p3(u, t)), (u, t) ∈ D ⊆ R2. (8)

If pj(u, t) = ∂p
∂j , the isotropic surface normal is

u(u, t) = pu ∧ pt, with < u, pu >=< u, pt >= 0.

A curve on a surface S can be principal curve by the status specified by the well-known
theorem below [1,2].

Theorem 1. (Monge’s Theorem). A curve on a surface is a principal curve if and only if the surface
normals along that curve create a developable surface [1,2].

3. Main Results

This section presents a new aspect for originating a surface pencil couple with a
Bertrand couple as joint principal curves in G3. For this aim, let ψ̂(u) be an allowable
curve, ψ(u) be its Bertrand mate, and {κ̂(u), τ̂(u), ĝ1(u), ĝ2(u), ĝ3(u)} is the Serret–Frenet
instruments of ψ̂(u), as in Equation (1). The surface pencil with ψ(u) can be specified by

S : p(u, t) = ψ(u) + a(u, t)g1(u)+b(u, t)g2(u)+c(u, t)g3(u), (9)

and the surface pencil with ψ̂(u) is

Ŝ : p̂(u, t) = ψ̂(u) + a(u, t)ĝ1(u)+b(u, t)ĝ2(u)+c(u, t)ĝ3(u), (10)

where a(u, t), b(u, t), c(u, t) are all C1 functions, and 0 ≤ t ≤ T, 0 ≤ u ≤ L. If the variable
t is defined as the time, the functions a(u, t), b(u, t), and c(u, t) can then be explicated
as oriented marching distances of a point at the time t in the directions ĝ1, ĝ2, and ĝ3,
respectively, and the vector ψ̂(u) is the initialization of this point.

Our provocation is to confer necessary and sufficient situations for ψ(u) as an isopara-
metric principal curve on S. First, let us define a unit vector g(u) orthogonal to the curve
ψ(u), that is,

g(u) = cos φg2(u)+ sin φg3(u), with φ = φ(u). (11)

Suppose that the ruled surface

y(u, t) = ψ(u) + tg(u); t ∈ R, (12)

is a developable one, that is,

det(ψ
′
, g(u), g

′
(u)) =

∣∣∣∣∣∣
1 0 0
0 cos φ cos φ

0 −φ
′
sin φ− τ sin φ φ

′
cos φ + τ cos φ

∣∣∣∣∣∣ = 0,

From which we find

φ
′
(u) + τ(u) = 0 ⇒ φ(u) = φ0 −

u∫
u0

τ(u)du, (13)

where φ0 = φ(u0) and u0 is the initial value of arc length.
Second, since ψ(u) is an isoparametric curve on S, there exists a value t = t0 such that

ψ(u) = p(u, t0). Then, we have

a(u, t0) = b(u, t0) = c(u, t0) = 0,
∂a(u, t0)

∂u
=

∂b(u, t0)

∂u
=

∂c(u, t0)

∂u
= 0.

99



Axioms 2023, 12, 1022

Thus, the isotropic surface normal is

u(u, t0) :=
∂p(u, t0)

∂u
× ∂p(u, t0)

∂t
= −∂c(u, t0)

∂t
g2(u) +

∂b(u, t0)

∂t
g3(u). (14)

Moreover, via Monge’s Theorem, ψ(u) is a principal curve on S if and only if u(u)
is parallel to g(u, t0). Therefore, from Equations (3.3) and (3.6), there exists a function
χ(u) �= 0 such that

−∂c(u, t0)

∂t
= χ(u) cos φ,

∂b(u, t0)

∂t
= χ(u) sin φ, (15)

where φ(u) is designated by Equation (13). The functions χ(u) and φ(u) are control-
ling functions.

Hence, we give the following theorem.

Theorem 2. The expression ψ(u) is a principal curve on S if and only if

a(u, t0) = b(u, t0) = c(u, t0) = 0, 0 ≤ t0 ≤ T, 0 ≤ u ≤ L,
− ∂c(u,t0)

∂t = χ(u) cos φ, ∂b(u,t0)
∂t = χ(u) sin φ, χ(u) �= 0,

φ(u) = φ0 −
∫ u

u0

τ(u)du, φ0 = φ(u0),

⎫⎪⎪⎬⎪⎪⎭ (16)

where u0 is the starting value of the arc length.

Any surface S : p(u, t) recognized by Equation (9) and identified by Theorem 2 is an
element of the surface pencil with ψ(u) as joint principal curve. As reported in [8], for the
purpose of resolution and experiment, we also examine the case when a(u, t), b(u, t), and
c(u, t) can be realized by

a(u, t) = l(u)a(t), b(u, t) = m(u)b(t), c(u, t) = n(u)c(t). (17)

Here l(u), m(u), n(u), a(t), b(t), and c(t) are c1 functions that do not identically vanish.
Then, from Theorem 2, we gain:

Corollary 1. The expression ψ(u) is a principal curve on S if and only if

a(t0) = b(t0) = c(t0) = 0, 0 ≤ t0 ≤ T, 0 ≤ u ≤ L,
−n(u) dc(t0)

dt = χ(u) cos φ, m(u) db(t0)
dt = χ(u) sin φ.

φ(u) = φ0 −
∫ u

u0

τ(u)du, φ0 = φ(u0),

⎫⎪⎪⎬⎪⎪⎭ (18)

where u0 is the starting value of the arc length.

However, we can assume that a(u, t), b(u, t), and c(u, t) are based only on the variable
t; that is, l(u) = m(u) = n(u) = 1. Then, we treat Equation (18) via the dissimilar terms of
φ(u) as follows:

(i) If τ(u) �= 0, then φ(u) is a non-stationary function of variable u and Equation (18)
can be distinguished by

a(t0) = b(t0) = c(t0) = 0,
− dc(t0)

dt = χ(u) cos φ, db(t0)
dt = χ(u) sin φ.

}
(19)

(ii) If τ(u) = 0, that is, the curve is a planar curve, then φ(u) = φ0 is a stationary and
we have:
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(a) If φ0 �= 0, Equation (18) can be distinguished by

a(t0) = b(t0) = c(t0) = 0,
− dc(t0)

dt = χ(u) cos φ0, db(t0)
dt = χ(u) sin φ0.

}
(20)

(b) If φ0 = 0, Equation (18) can be distinguished by

a(t0) = b(t0) = c(t0) = 0,
− dc(t0)

dt = χ(u), db(t0)
dt = 0,

}
(21)

and from Eqsuations (14) and (15), we have u(u, t0) ‖g2. In this situation, the curve ψ=ψ(u)
is not only a principal curve but also a geodesic. We also let {Ŝ, S} to indicate the surface
pencil couple with a Bertrand couple {ψ̂(u), ψ(u)} as joint principal curves.

Example 1. Let ψ(u) be an admissible helix specified by

ψ(u) = (u, sin u, cos u), 0 ≤ u ≤ 2π.

Then,

ψ
′
(u) = (1, cos u,− sin u), ψ

′′
(u) = (0,− sin u,− cos u), ψ

′′′
(u) = (0,− cos u, sin u).

In view of Equations (3)–(5), we gain κ(u) = −τ(u) = 1, and

g1(u) = (1, cos u,− sin u), g2(u) = (0,− sin u,− cos u), g3(u) = (0, cos u,− sin u).

Then φ(u) = −u + φ0. If φ0 = 0, we gain φ(u) = −u. For

l(u) = m(u) = n(u) = 1,

a(t) = t, b(t) = −tχ(u) sin u, c(t) = −tχ(u) cos u, χ(u) �= 0.

The surface pencil S with ψ(u) is

S : p(u, t) = (u, sin u, cos u) + t(1,−χ sin u,−χ cos u)×

⎛⎝ 1 cos u − sin u
0 − sin u − cos u
0 cos u − sin u

⎞⎠.

The surface pencil Ŝ with ψ̂(u) as joint principal curve is as follows: Let f = 2 in Equation (7),
we derive ψ̂(u) = (u,− sin u,− cos u). The Serret–Frenet vectors of ψ̂(u) are

ĝ1(u) = (1,− cos u, sin u), ĝ2(u) = (0, sin u, cos u), ĝ3(u) = (0,− cos u, sin u).

Then,

Ŝ : p̂(u, t) = (u,− sin u,− cos u) + t(1,−χ sin u,−χ cos u)×

⎛⎝ 1 − cos u sin u
0 sin u cos u
0 − cos u sin u

⎞⎠.

Therefore, for χ(u) = 1, −2 ≤ t ≤ 2, 0 ≤ u ≤ 2π, then {Ŝ, S} is exhibited in Figure 1, where
the blue curve demonstrates ψ(u) and the green curve is ψ̂(u).
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Figure 1. Curves S (yellow) and Ŝ (red) with Bertrand couples as joint principal curves.

Example 2. Suppose we are given an admissible curve by

ψ(u) = (u, 1 + sin u, sin u), 0 ≤ u ≤ 2π.

Then,

g1(u) = (1, cos u, cos u), g2(u) = (0,− 1√
2

,− 1√
2
), g3(u) = (0,

1√
2

,− 1√
2
),

with κ(u) =
√

2 sin u and τ(u) = 0, which shows that φ(u) = φ0 is a stationary. For

l(u) = m(u) = n(u) = 1,

a(t) = t, b(t) = tχ(u) sin φ0, −c(t) = tχ(u) cos φ0, χ(u) �= 0.

The surface pencil S over ψ(u) is

S : p(u, t) = (u, 1 + sin u, sin u) + t(1,−χ(u) sin θ0, χ cos θ0)

⎛⎜⎝ 1 cos u cos u
0 − 1√

2
− 1√

2
0 1√

2
− 1√

2

⎞⎟⎠.

Similarly, let f =
√

2 in Equation (7), we acquire ψ̂(u) = (u, sin u, sin u− 1), and

ĝ1(u) = (1, cos u, cos u), ĝ2(u) = (0,− 1√
2

,− 1√
2
), ĝ3(u) = (0,

1√
2

,− 1√
2
),

Comparably, we have

Ŝ : p̂(u, t) = (u, sin u, sin u− 1) + t(1,−χ(u) sin φ0, χ(u) cos φ0)×

⎛⎜⎝ 1 cos u cos u
0 − 1√

2
− 1√

2
0 1√

2
− 1√

2

⎞⎟⎠.

For χ(u) = 1, φ0 = 0, −2.5 ≤ t ≤ 2.5, 0 ≤ u ≤ 2π, then {Ŝ, S} is exhibited in Figure 2,
where the blue curve displays ψ(u), and the green curve displays ψ̂(u). Figure 3 specifies the {Ŝ, S}
for φ0 = π/2, −2.5 ≤ t ≤ 2.5, and 0 ≤ u ≤ 2π.
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Figure 2. Curves S (yellow) and Ŝ (red) with Bertrand couples as joint principal curves, where φ = 0.

Figure 3. Curves S (yellow) and Ŝ (red) with Bertrand couples as joint principal curves, where
φ = π/2.

Ruled Surface Pencil Couple with Bertrand Couple as Joint Principal Curves

Suppose Si : pi(u, t) is a ruled surface with the directrix ψi(u) and ψi(u) is also an
isoparametric curve of pi(u, t); then there exists t0 such that pi(u, t0) =ψi(u). It follows that

Si : pi(u, t)− pi(u, t0) = (t− t0)ei(u), 0 ≤ u ≤ L, with t, t0 ∈ [0, T], (22)

where ei(u)(i = 1, 2, 3) explains the orientation of the rulings. In view of Equation (9), we
gain

(t− t0)ei(u) = a(u, t)g1i(u)+b(u, t)g2i(u) + c(u, t)g3i(u), (23)

where 0 ≤ u ≤ L, with t, t0 ∈ [0, T]. In fact, Equation (22) is a regulation of equations with
the three unknowns a(u, t), b(u, t), and c(u, t). The resolutions can be deduced as

a(u, t) = (t− t0) < ei(u), g1i(u) >,
b(u, t) = (t− t0) < ei(u), g2i(u) >,
c(u, t) = (t− t0) < ei(u), g3i(u) > .

(24)

In view of Equation (15), if ψ(u) is a principal curve on the surface pi(u, t), we get

a(u, t) = 0,
χ(u) sin φ =< ei(u), g2i(u) >,
−χ(u) cos φ =< ei(u), g3i(u) > .

(25)
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The above regulations are clearly the necessary and sufficient situations for which
pi(u, t) is a ruled surface with a directrix ψi(u); i = 1, 2, 3.

In Galilean 3-space G3, there exist only three types of ruled surfaces, specified as
follows [22,23]:

Type I. Non-conoidal or conoidal ruled surfaces for which the wrist (striction) curve
does not lie in an Euclidean plane;

Type II. Ruled surfaces for which the wrist curve is in an Euclidean plane;
Type III. Conoidal ruled surfaces for an absolute line as the oriented line in infinity.
We immediately research if the curve ψi(u) is also a principal curve on these three types:
Type I: ψ1(u) = (u, ψ2(u),ψ3(u)) does not lie in an Euclidean plane and e1(u) =

(1, e2(u), e3(u)) is non-isotropic. Then,

g11(u) =
(

1, ψ
′
2(u), ψ

′
3(u)

)
,

g21(u) =
1

κ(u)

(
0, ψ

′′
2 (u), ψ

′′
3 (u)

)
,

g31(u) =
1

κ(u)

(
0,−ψ

′′
3 (u), ψ

′′
2 (u)

)
, (26)

where κ(u) =
√(

ψ
′′
2 (u)

)2
+
(
ψ
′′
3 (u)

)2
. From Equations (1), (24), and (26), we have:

a(u, t) = (t− t0), b(u, t) = c(u, t) = 0, (27)

which does not satisfy Theorem 2.
Type II: ψ2(u) = (0, ψ2(u)), z(u)) lie in an Euclidean plane and e2(u) = (1, e2(u), e3(u))

is non-isotropic. Then,

g12(u) =
(

0, ψ
′
2(u), ψ

′
3(u)

)
,

g22(u) =
1

κ(u)

(
0, ψ

′′
2 (u), ψ

′′
3 (u)

)
,

g32(u) =
1

κ(u)
(0, 0, 0), (28)

where κ(u) =
√(

ψ
′′
2 (u)

)2
+
(
ψ
′′
3 (u)

)2
. From Equations (1), (24), and (28), we gain:

a(u, t) = b(u, t) = c(u, t) = 0, (29)

which does not satisfy Theorem 2.

Corollary 2. In G3, there are no ruled surface pencil couples of Type I and Type II with Bertrand
couples as joint principal curves.

Type III: ψ3(u) = (u, ψ2(u), 0) does not lie in an Euclidean plane and e3(u) = (0, e2(u),
e3(u)) is non-isotropic. Then,

g13(u) =
(

1, ψ
′
2(u), 0

)
,

g23(u) =
1

κ(u)

(
0, ψ

′′
2 (u)0

)
,

g33(u) =
1

κ(u)

(
0, 0, ψ

′′
2 (u)

)
, (30)
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where κ(u) =
√(

ψ
′′
2 (u)

)2
. From Equations (1), (24), and (29), we have:

a(u, t) = 0, b(u, t) = ε(t− t0)e2(u),
c(u, t) = ε(t− t0)e3(u),
e2(u) �= 0, e3(u) �= 0, t0 �= 0,

⎫⎬⎭ (31)

where

ε =

{
1, if ψ

′′
2 (u) > 0.

−1, if ψ
′′
2 (u) < 0.

(32)

Equation (31) satisfies Theorem 2. Suppose at all points on ψ3(u), the ruling e3(u) ∈
up{g13(u), g23(u), g33(u)}, then

e3(u) = ζ(u)g13(u) + σ(u)g23(u) + μ(u)g33(u), (33)

for some functions λ(u), σ(u), and μ(u). Replacing it into Equation (25), we get

σ(u) = χ(u) sin φ, μ(u) = −χ(u) cos φ. (34)

Then,

e3(u) = λ(u)g13(u) + χ(u) sin φg23(u)− χ(u) cos φg33(u). (35)

Choosing a(u, t) = tλ(u), b(u, t) = tχ(u) sin φ, and c(u, t) = −tχ(u) cos φ, the ruled
surface pencil S3 with ψ3(u) can be shown by

p3(u, t) = ψ3(u) + tζ(u)g13(u) + tλ(u)(sin φg23(u)− cos φg33(u)), 0 ≤ u ≤ L, 0 ≤ t ≤ T. (36)

Then, the ruled surface pencil Ŝ3 is

p̂3(u, t) = ψ̂3(û) + tλ(u)ĝ13(u) + tχ(u)(sin φĝ23(u)− cos φĝ33(u)), 0 ≤ u ≤ L, 0 ≤ t ≤ T. (37)

The functions λ(u) and χ(u) can control the shape of the surfaces family S3 and Ŝ3.

Example 3. Via Example 1, we have:
By taking λ(u) = χ(u) = u, then {Ŝ3, S3} with {ψ̂3(u), ψ3(u)} as joint Bertrand principal

curves is (Figure 4):

Figure 4. Curves S3 (yellow) and Ŝ3 (red) with Bertrand couples as joint principal curves, where
λ(s) = χ(s) = s.
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{
p3(u, t) = (u(1 + t), sin u + tu(cos− cos 2u), cos u + tu(− sin u + sin 2u)),

p̂3(u, t) = (u(1 + t),− sin u + tu(− cos+ cos 2u),− cos u + tu(sin u− sin 2u)),

where the blue curve demonstrates ψ3(u), the green curve is ψ̂3(u), −0.7 ≤ t ≤ 0.7, and
0 ≤ u ≤ 2π.

By taking λ(u) = χ(u) =
√

u, then {Ŝ3, S3} with {ψ̂3(u), ψ3(u)} as joint Bertrand principal
curves is (Figure 5):{

p3(u, t) = (
√

u(
√

u + t), sin u + t
√

u(cos− cos 2u), cos u + t
√

u(− sin u + sin 2u)),
p̂3(u, t) = (

√
u(
√

u + t),− sin u + t
√

u(− cos+ cos 2u),− cos
√

u + tu(sin u− sin 2u)),

where the blue curve demonstrates ψ3(u), the green curve is ψ̂3(u), −0.7 ≤ t ≤ 0.7, and
0 ≤ u ≤ 2π.

Figure 5. Surface pencil couple S3 (yellow) and Ŝ3 (red).with Bertrand couple as joint principal curves;
where λ(u) = χ(u) = u

√
u.

Example 4. Via Example 2, we have:
(1) By taking φ0 = 0, and λ(u) = χ(u) = u, then {Ŝ3, S3} with {ψ̂3(u), ψ3(u)} as joint

Bertrand principal curves is (Figure 6):{
p3(u, t) = (u(1 + t), 1 + sin u + tu(cos− 1√

2
), sin u + tu(cos u− 1√

2
)),

p̂3(u, t) = u(1 + t), sin u + tu(cos− 1√
2
), sin u− 1 + tu(cos u− 1√

2
)),

where the blue curve demonstrates ψ3(u), the green curve is ψ̂3(u), −0.2 ≤ t ≤ 0.2, and
0 ≤ u ≤ 2π

Figure 6. Curves S3 (yellow) and Ŝ3 (red) with Bertrand couples as joint principal curves, where
λ(u) = χ(u) = u, and φ0 = 0.
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(2) By taking φ0 = π/2, and ζ(u) = χ(u) = u, then {Ŝ3, S3} with {ψ̂3(u), ψ3(u)} as joint
Bertrand principal curves is (Figure 7):{

y3(u, t) = (u(1 + t), 1 + sin u + tu(cos+ 1√
2
), sin u + tu(cos u + 1√

2
)),

ŷ3(u, t) = u(1 + t), sin u + tu(cos+ 1√
2
), sin u− 1 + tu(cos u + 1√

2
)),

where the blue curve demonstrates ψ3(u), the green curve is ψ̂3(u), −0.2 ≤ t ≤ 0.2, and
0 ≤ u ≤ 2π.

Figure 7. Curves S3 (yellow) and Ŝ3 (red) with Bertrand couples as joint principal curves, where
λ(u) = χ(u) = s, and φ0 = π/2.

4. Conclusions

This paper studied principal curves and their associated surfaces in Galilean 3-space.
Given a 3D curve, we seek surfaces that are faced with this curve as a distinctive curve. The
work viewed the Bertrand couples as principal curves and procures a surface pencil couple
with a Bertrand couple as joint principal curves. Then, necessary and suffcient conditions
for an admissible curve to be an isoparametric principal curve on surface are newly derived
in this case. Examples of the surface pencil with principal curves are shown in the figures
with a Bertrand couple. Our results in this paper contribute to the work by Jiang et al. [30].
We hope that these outcomes will open modern perceptions for researchers working on
geometrical modeling and production evolution procedure in the manufacturing industry.
The judgment of stratifying the mechanisms applied here to various spaces such as Lorentz-
space, pseudo-Galilean space, and Heisenberg space is already an investigation topic. We
will discuss this problem in the future.
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Abstract: The behavior of the simplest realistic Oregonator model of the BZ-reaction from the
perspective of KCC theory has been investigated. In order to reduce the complexity of the model, we
initially transformed the first-order differential equation of the Oregonator model into a system of
second-order differential equations. In this approach, we describe the evolution of the Oregonator
model in geometric terms, by considering it as a geodesic in a Finsler space. We have found five KCC
invariants using the general expression of the nonlinear and Berwald connections. To understand the
chaotic behavior of the Oregonator model, the deviation vector and its curvature around equilibrium
points are studied. We have obtained the necessary and sufficient conditions for the parameters of
the system in order to have the Jacobi stability near the equilibrium points. Further, a comprehensive
examination was conducted to compare the linear stability and Jacobi stability of the Oregonator
model at its equilibrium points, and We highlight these instances with a few illustrative examples.

Keywords: Oregonator model; KCC theory; Berwald connection; Jacobi stability

MSC: 53B40; 53C22; 53C60

1. Introduction

In the early 1950’s, Belousov studied the behavior of chemical model of the oxida-
tion for organic molecules and found that chemical reaction is also taking place at the
end position (equilibrium), but was unable to publish his observation because at that
time researchers were convinced that oscillations in homogeneous chemical reactions are
not possible. Later, Zhabotinsky [1] confirmed Belousov’s discovery and explained that
the oscillation is due to the contrast between chemical homogeneous oscillating systems
and thermodynamics. Since 1984, oscillating chemical reactions (OCRs) have been rec-
ognized, a well-known example is the Belousov–Zhabotinsky (BZ)-reaction [1]. The first
mechanism to explain the temporal oscillation of the BZ-reaction was suggested by Field,
Koros, and Noyes (FKN) [2]. The FKN mechanism are divided into three subprocesses
which are defined according to the factors that control the kinetics of the whole reaction,
the concentrations of bromide and cerium ions. OCRs are considered a special case because
the oscillating behavior prohibits the second law of thermodynamics which states that
“heat always moves from hotter objects to colder objects, unless energy is supplied to reverse the
direction of heat flow”. There are alot of FKN mechanism like Lotka [3] and Brusselator
mechanism [4] which are capable of generating oscillations. The oscillatory BZ-reaction
has a simple realistic model called the Oregonator model. The Oregonator is a reduced
model of the FKN mechanism [2], containing only a five-steps involving three independent
chemical intermidiates that summarises the main features of the BZ reaction. The simplified
mechanism is often used to refer the term ‘model’, instead of attempting to capture the
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entire chemistry of the process, its goal is to develop a set of differential equations that
represents the fundamental features of the original method.

The five fundamental reactions of the Oregonator model are used for the construc-
tion of a system of three nonlinear differential equations and the kinetic behavior of the
Oregonator can be described by equations [2]

dX
dt

= k1 AY − k2XY + k3 AX − 2k4X2,

dY
dt

= −k1 AY − k2XY + f k5BZ,

dZ
dT

= k3 AX − k5BZ,

(1)

where X = HBrO2, Y = Br−, Z = Ce(IV), A = BrO−
3 and B = BrMA (k′is are kinetic

constants). Here f is a stoichiometric factor and to ensure the existence of oscillations its
value has to be in a certain range, i.e., 0.5 < f < 2.4. The reactions are treated as irre-
versible and the acidity effects are included in the rate constants. For the sake of simplicity,
Cassani et al. [5] rescaled the system of Equation (1) and gave the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx
dt

=
1
ε

(
ax + q a y− x2 − x y

)
dy
dt

=
1
δ
(−q a y + f b z− x y )

dz
dt

= ax− bz,

(2)

where ε = k5B0
K3 A0

, δ = 2k5k4B0
k2k3 A0

, a = A
A0

, b = B
B0

and the scaling factor are described on Table 1,
with ‘0’ denoting the reference value [6].

Table 1. Scaling factor of the simplified Oregonator model.

Scaling Factor of the Oregonator Model A0 = B0 = 1M

X x = X
X0

X0 = k3 A0
2k4

Y y = Y
Y0

Y0 = k3 A0
2k2

Z z = Z
Z0

Z0 = (k3 A0)2

k3k4B0

T t = T
T0

1
k5B0

= 1s

Mathematical terms for describing the stability of the dynamical system’s solution
include linear stability and Lyapunov stability. This method yields the Lyapunov exponents,
which measure the exponential deviation from the provided trajectories. Since the method
of Lyapunov stability is well established, it would be interesting to study the stability of a
dynamical system from another viewpoint and comparing the results with corresponding
Lyapunov exponents. The KCC theory approach is an alternative method for examining the
characteristics of dynamical systems known as geometro-dynamical approach which was
first initiated by Kosambi [7], Cartan [8] and Chern [9]. The concept of KCC theory is based
on the assumption that the geodesics equation in Finsler space and second-order dynamical
systems are topologically equivalent. Antonelli et al. [10,11] initially started the study
of Jacobi stability for the geodesic corresponding to a Finslerian metric by deviating the
geodesics and using the KCC-covariant derivative for the variation in differential system.
The KCC theory is a differential geometric theory for variational equations describing
deviations of entire trajectories from neighbouring ones. Each dynamical system in the
geometrical description provided by the KCC theory has two types of coefficients of the
connection, the first of which is a nonlinear connection and the second of which is a
Berwald type connection. With the help of the nonlinear and Berwald connections the five
geometrical invariants can be constructed of which the second invariant plays an important
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role as it gives the Jacobi stability of dynamical system. Jacobi stability analysis for different
systems like Lorenz system [12], Chua circuit system [13] and other systems [14–21] have
been studied. According to the articles [22,23], one of the geometrical invariants that
identifies the beginning of chaos is the deviation vector from the so-called Jacobi equation.
Jacobi stability has been analyzed by a large number of authors in the past years as an
effective method for predicting chaotic behaviour of the systems [24–26]. Yamasaki and
Yajima [27,28] has discussed the KCC stability in the intermediate nonequilibrium region
of the Catastrophe and Brusselator model.

In this paper, we discuss the Oregonator model using KCC theory by formulating
a set of 2-second order differential equation. Section 2, devotes the basic of KCC theory.
In Section 3, we have investigated the general expression and Jacobi stability of the Oreg-
onator model at different equilibrium points. We have analyzed chaotic behavior for the
Oregonator model and vector field analysis for deviation vector, in Section 4. Section 5,
presents the comparison with the linear stability analysis. At the last section, conclusion
is given.

2. KCC Theory and Jacobi Stability

Let us consider a real, smooth n-dimensional manifold M and TM be its tangent bundle,
with (x1, x2, . . . , xn) = xi and ( dx1

dt , dx2

dt , . . . dxn

dt ) = dxi

dt = yi. Let (xi, yi, t), i = {1, 2, . . . , n}
be the (2n + 1)-dimensional coordinate system on a subset Ω of the Euclidean (2n + 1)-
dimensional space Rn × Rn × R1, we assume that the time t is an absolute invariant.
Consider the following system of second order differential equation (SODE) as

d2xi

dt2 + 2Gi(xi, yi) = 0 , i = 1, 2 (3)

where Gi are smooth function defined on an open neighborhood of some initial conditions
((x)0, (y)0, (t)0) in Ω.

The intrinsic geometric properties of SODE (3), are given by the five different KCC-
invariants, under the non-singular coordinate transformations

xi = f i(x1, x2, . . . , xn), i = 1, 2, . . . , n

t = t
(4)

where f i are n-smooth functions, possesing derivatives of all orders in their domain of
definition. The KCC covariant derivatives of a contravariant vector field ξ i(t) on the open
subset Ω, under the local coordiante system (4), is defined as

Dξ i

dt
=

dξ i

dt
+ Ni

j ξ
j , (5)

where Ni
j =

∂Gi

∂yi is the coefficient of the nonlinear connection on TM.

Substituting ξ i = yi, we get

Dyi

dt
= Ni

j y
j − 2Gi = −εi , (6)

where the contravariant vector field εi is known as the first KCC-invariant. Now, let us
assume the transformation of the trajectories xi(t) into the nearby ones as follows:

xi(t) = xi(t) + η ξ i(t), |η| << 1 (7)

where η is the very small parameter defined along the trajectory xi(t) of the SODE (3) and
ξ i is the component of contravariant vector.
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Substituting Equation (7) into Equation (3) and taking the limit η → 0, we obtain

d2 ξ i

d t2 + 2Ni
j
d ξ j

d t
+ 2

∂ Gi

∂ xj ξ j = 0 . (8)

The above equation represents Jacobi field equation which can be can be reformulate in the
covariant form with the use of the KCC-covariant differential as

D2ξ i

dt2 = Pi
j ξ

j , (9)

where Pi
j is a (1, 1)-type tensor, defined as

Pi
j = −2

∂Gi

∂xj − 2 Gi
jkGk + yk ∂Ni

k
∂xj + Ni

k Nk
j +

∂Ni
j

∂t
, (10)

and the coefficient Gi
jk =

∂Ni
k

∂yj represents the Berwald connection coefficient. Geometrically,

the deviation tensor Pi
j is interpreted as the second KCC-invariant. When the SODE (3)

describes about the geodesic equation in Finsler geometry then Equation (9) is called the
Jacobi field equation. The torsion tensor, Riemann curvature tensor and Douglas curvature
tensor are called the third, fourth and fifth KCC-invariants respectively of the SODE (3)
and are defined as

Pi
jk =

1
3

(
∂Pi

j

∂yk −
∂Pi

k
∂yj

)
, Pi

jkl =
∂Pi

jk

∂yl , Di
jkl =

∂Gi
jk

∂yl . (11)

Jacobi Stability of Dynamical System

The Jacobi stability is a natural generalization of the stability of the geodesic flow on a
differentiable manifold endowed with a metric (Finslerian) to the non-metric setting [29].
This kind of stability refers to the focusing tendency of trajectories of systems of ordinary
differential equations with respect to nearby trajectories and satisfy the conditions [30].

||xi(t0)− xi(t0)|| = 0, ||ẋ i(t0)− ẋ i
(t0)|| �= 0.

Definition 1 ([30]). The trajectories of SODEs are called Jacobi stable at (xi(t0), xi(t0)) if and
only if the real parts of the all the eigenvalues of second KCC invariants Pi

j at point t0 are strictly
negative and Jacobi unstable, otherwise.

The curvature deviation tensor or the second KCC-invariant can be written in a matrix
form as

Pi
j =

(
P1

1 P1
2

P2
1 P2

2

)
where the eigenvalues of the curvature deviation tensor are the solutions of the
quadratic equation

λ2 − tr(Pi
j ) λ + det(Pi

j ) = 0 ,

where

tr(Pi
j ) = P1

1 + P2
2 , det(Pi

j ) = P1
1 P2

2 − P1
2 P2

1 .

We use the Routh–Hurwitz criteria [31], to obtain the signs of the eigenvalues of the
curvature deviation tensor. According to which, all roots of the 2× 2 matrix are negative or
have negative real parts if the trace and determinant of the deviation curvature matrix is
strictly negative and strictly positive, respectively.
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3. Mathematical Model of Oregonator for BZ-Reaction

The Oregonator model uses three independent intermediate, five irreversible reaction
step controlled by five kinetic constsnts and a stoichiometric factor. Cassani et al. [5] kept
the variables a and b constant and set a unitary value in order to obtain a simplifed version
of Equation (2) are as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx
dt

=
1
ε

(
x + q y− x2 − x y

)
,

dy
dt

=
1
δ
(−q y + f z− x y ) ,

dz
dt

= x− z .

(12)

Differentiating first equation of the system (12) with respect to time, we obtain

d2x
dt2 =

1
ε

(
dx
dt

+ q
dy
dt
− 2x

dx
dt
− x

dy
dt
− y

dx
dt

)
(13)

Second equation of the system (12) can also be written as

z =
1
f

(
δ

dy
dt

+ q y + x y
)

. (14)

Differentiating above equation with respect to ′t′, we get

dz
dt

=
1
f

(
δ

d2y
dt2 + q

dy
dt

+ y
dx
dt

+ x
dy
dt

)
. (15)

Using third equation of the system (12) and (14), above equation can be written as

d2y
dt2 +

1
δ

{
(q + δ + x)

dy
dt

+

(
q + x +

dx
dt

)
y− f x

}
= 0 (16)

Let us alter the notation to read as

x = x1,
dx
dt

= y1, y = x2,
dy
dt

= y2,

then from Equations (13) and (16), the system takes the form

d2x1

dt2 +
1
ε

[(
2x1 + x2 − 1

)
y1 +

(
x1 − q

)
y2
]
= 0

d2x2

dt2 +
1
δ

[
x2y1 +

(
q + δ + x1

)
y2 +

(
x1x2 + qx2 − f x1

)]
= 0

(17)

4. Jacobi Stability of Oregonator Model for BZ-Reaction

In this section, we study the dynamical properties of the Oregonator model by using
the KCC-theory approach. We will find the non-linear connections, Berwald connections
and the deviation curvature tensor for the Oregonator. We also study the eigenvalue of
deviation tensor at equilibrium points.

4.1. KCC-Invariants of the Oregonator Model

Now, Equation (3) of Oregonator system can be rewritten as follows:

d2xi

dt2 + 2Gi(xi, yi) = 0 , i = 1, 2 (18)
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where

G1 =
1

2 ε

[(
2x1 + x2 − 1

)
y1 +

(
x1 − q

)
y2
]

G2 =
1

2 δ

[
x2y1 +

(
q + δ + x1

)
y2 +

(
x1x2 + qx2 − f x1

)] (19)

The components of the non-linear connection of Oregonator model can be calculated using
Ni

j =
∂Gi

∂yj , are as follows:

N1
1 =

1
2 ε

(
2x1 + x2 − 1

)
, N1

2 =
1

2 ε

(
x1 − q

)
N2

1 =
1

2 δ
x2, N2

2 =
1

2 δ

(
q + δ + x1

) (20)

which implies Gi
jk :=

∂Ni
j

∂yk = 0, i, j, k = 1, 2. Thus, for the Oregonator model the components
of Berwald connection vainshes identically. The components of the First KCC-invariant
can be obtained using Equation (6) as:

ε1 =
1
2ε

[(
2x1 + x2 − 1

)
y1 +

(
x1 − q

)
y2
]

ε2 =
1
δ

[
x2y1 +

(
q + δ + x1

)
y2 + 2

(
x1x2 + qx2 − f x1

)] (21)

From Equation (10), the components of the curvature deviation tensor or the second KCC-
invariant of the Oregonator model are given by

P1
1 = −1

ε
y1 − 1

2 ε
y2 +

1
4 ε2

(
2x1 + x2 − 1

)
+

1
4 ε δ

(
x1 − q

)
x2

P1
2 = − 1

2ε
y1 +

1
4 ε2

(
2x1 + x2 − 1

)(
x1 − q

)
+

1
4 ε δ

(
x1 − q

)(
q + δ + x1

)
P2

1 = −1
δ

y2 − 1
δ

(
x2 − f

)
+

1
4 ε δ

(
2x1 + x2 − 1

)
x2 +

1
δ2

(
q + δ + x1

)
x2

P2
2 = −1

δ
x1 +

1
2δ

y1 +
1

4ε δ

(
x1 − q

)
x2 +

1
4 δ

(
q + δ + x1

)
(22)

The third invariant of KCC theory can be interpreted geometrically as torsion tensor

and defined as Pi
jk =

1
3

(
∂Pi

j

∂yk −
∂Pi

k
∂yj

)
. For Oregonator system

P1
11 = P1

12 =P1
21 = P1

22 = P2
11 = P2

22 = 0,

P2
12 = −P2

21 =
1

2 δ
.

The fourth and fifth invariant of the Oregonator system for BZ-reaction vanishes
identically as Pi

jk, Gi
jk dosenot contain any term of yi, for i = 1, 2.The time variation of

the components of curvature deviation tensor for Oregonator system is represented in
Figure 1. The selection of parameters and the initial conditions are purely fictitious and do
not necessarily have a geometrical significance.

115



Axioms 2023, 12, 1133

Figure 1. Time variation of components of deviation tensor P1
1 (left top figure), P1

2 (right top figure), P2
1

(left bottom figure) and P1
2 (right bottom figure) for parameters values ε = 0.10, δ = 0.0004, q = 0.0008

and f = 1. The initial conditions for the numerical integration system are x1(0) = x2(0) = x3(0) = 5.

4.2. The Jacobi Stability of the Equilibrium Points of the Oregonator Model

The equilibrium points for the Oregonator system (12) is given by

S(E0) = (0, 0, 0), S(E1) =

(
u− v

2
,

w + v
4

,
u− v

2

)
, S(E2) =

(
u + v

2
,

w− v
4

,
u + v

2

)
,

where

u = 1− f − q , v =
√
(1− f − q)2 + 4q(q + f ) , w = 1 + 3 f + q.

With the concern of the system of Equation (17), the equilibrium points are

E0 = (0, 0), E1 =

(
u− v

2
,

w + v
4

)
, E2 =

(
u + v

2
,

w− v
4

)
.

Theorem 1. For any value of the parameter ε, δ, q and f the trivial equilibrium point E0 of
Oregonator model is Jacobi unstable.

Proof. In view of Equation (21), the first KCC-invariant for the equilibrium point E0
vanishes identically, i.e., ε1 = ε2 = 0. The deviation curvature matrix at the Equilibrium
point E0 is given by

P(E0) =

⎛⎝ 0 q
4ε2 − q(q+δ)

4 ε δ

f
δ

1
4δ2 (q + δ)2

⎞⎠
and its trace and determinant are trPi

j (E0) =
1

4δ2 (q + δ)2 and detPi
j (E0) =

f
δ

(
q

4ε2 − q(q+δ)
4 ε δ

)
respectively. At Equilibrium point E0, the characteristic equation of deviation curvature
tensor is

λ2 − trPi
j (E0)λ + detPi

j (E0) = 0.

From Routh-Hurwitz criteria, the eigenvalue of the characteristic equation are negative or
have negative real parts if and only if trPi

j (E0) < 0 and detPi
j (E0) > 0 holds. Since, trace

1
4δ2 (q + δ)2 is always positive. Therfore, the system is Jacobi unstable at E0.

116



Axioms 2023, 12, 1133

Now, from Equation (21), the component of the first KCC-invariant and the deviation
tensor of Oregonator model at equilibrium point E1 are

ε1(E1) = 0, ε2(E1) =
1

4 δ
[ (u− v)(w + v) + 4q(w + v)− 4 f (u− v) ].

The components of the second KCC-invariant at the equilibrium point E1 are given as

P1
1 (E1) =

1
64 δ ε2

{
(4u− 4− 3v + w)2δ− 2(2q− u + v)(v + w)ε

}
,

P1
2 (E1) = − 1

32 δ ε2 {(2q− u + v)[2(2q + u− v)ε + δ(4u− 4− 3v + w + 4ε)]},

P2
1 (E1) =

1
64 δ ε2 {(4u− 4− 3v + w)(v + w)δ + 2(v + w)(2q + u− v− 6δ)ε + 64 f δε},

P2
2 (E1) =

1
32 δ ε2

{
−(2q− u + v)(v + w)δ + 2(2q + u− v− 2δ)2ε

}
.

Now, from the above deviation tensors at equilibrium point E1 the trace and determinant
are given by

trPi
j (E1) =

1
64δ2ε2

{
(4u− 4− 3v + w)2δ2− 4(2q− u + v)(v + w)δε + 4(2q + u− v− 2δ)2ε2

}
,

detPi
j (E1) =

1
2048δ3ε3

{[
(4u− 4− 3v + w)2δ− 2(2q− u + v)(v + w)ε

]
(−(2q− u + v)(v + w)δ

+2(2q + u− v− 2δ)2ε) + (2q− u + v)((4u− 4− 3v + w)(v + w)δ

+2(v + w)(2q + u− v− 6δ)ε + 64 f δ ε)[2(2q + u− v)ε + δ(4u− 4−3v + w + 4ε)]
}

The characteristic equation of the deviation curvature tensor at equilibrium point E1 can be
written as

λ2 − trPi
j (E1)λ + detPi

j (E1) = 0

In view of Routh-Hurwitz criteria, the eigenvalue of the characteristic equation are negative
or have negative real part if and only if trPi

j (E1) < 0 and detPi
j (E1) > 0 holds. Thus,

we have

Theorem 2. The equilibrium point E1 is Jacobi stable if it satisfies simultaneously the constraints

trPi
j (E1) < 0 , detPi

j (E1) > 0 ,

and Jacobi unstable, otherwise.

Now, using Equation (21), the component of the first KCC-invariant at equilibrium
point E2 are

ε1(E2) = 0, ε2(E2) =
1

4 δ
[ (u + v)(w− v) + 4q(w− v)− 4 f (u + v) ].

The components of the second KCC-invariant at the equilibrium point E2 are given as

P1
1 (E2) =

1
64 δ ε2

{
(4− 4u− 5v + w)2δ + 2(−2q + u + v)(v− w)ε

}
,

P1
2 (E2) = − 1

32 δ ε2 {(2q− u− v)(2(2q + u + v)ε + δ(−4 + 4u + 5v− w + 4ε))},

P2
1 (E2) =

1
64 δ2 ε

{(v− w)(−4 + 4u + 5v− w)δ + 2(v− w)(2q + u + v− 6δ)ε + 64 f δ ε},

P2
2 (E2) = − 1

32 δ2 ε

{
−(2q− u− v)(v− w)δ + 2(2q + u + v− 2δ)2ε

}
.
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Now, from the above deviation tensors at equilibrium point E2 the trace and determinant
are given by

trPi
j (E2) =

1
64δ2ε2

{
4(2q + u + v− 2δ)2ε2 + (4− 4u− 5v + w)2δ2 − 4δε(2q− u− v)(v− w)

}
,

detPi
j (E2) =

1
2048δ3 ε3

{[
(4− 4u− 5v + w)2δ + 2(u− 2q + v)(v− w)ε

][
2(2q + u + v− 2δ)2ε

− (2q− u− v)(v− w)δ
]
+ (2q− u− v)

[
(v− w)(4u− 4 + 5v− w)δ

+ 2(v− w)(2q+ u+v− 6δ)ε + 64 f δε
]
[2(2q+u + v)ε + δ(4u− 4 + 5v− w + 4ε)]

}
At equilibrium point E2, the characteristic equation of the deviation curvature tensor can
be written as

λ2 − trPi
j (E2)λ + detPi

j (E2) = 0

In view of Routh-Hurwitz criteria, the eigenvalue of the characteristic equation are negative
or have negative real part if and only if trPi

j (E2) < 0 and detPi
j (E2) > 0 holds. Therefore,

we obtain

Theorem 3. The equilibrium point E2 is Jacobi stable if it satisfies simultaneously the constraints

trPi
j (E2) < 0 , detPi

j (E2) > 0 ,

and Jacobi unstable, otherwise.

Next, we assume different set of parameter for the Oregonator model and calculate
the eigenvalue of Jacobi matrix by using MATHEMATICA 12.0.

Example 1. For ε = 2, δ = 0.004, q = 0.08, f = 1, the stability at equilibrium points are
as follows:

(i) E0(0, 0) has conjuagte pairs of eigenvalues {0.15625 + 0.784991 i , 0.15625− 0.784991 i}.
(ii) E1(−0.130554, 1.06528) has one positive and one negative eigenvalues {241.46,−0.432151}.
(iii) E2(0.122554, 0.938723) has one positive and one negative eigenvalues {257.402,−0.42911}.

At each of these three points of equilibrium, the system exhibits Jacobi instability.

Example 2. For ε = 0.10, δ = 0.004, q = 0.0008, f = 2.4, the stability at equilibrium points are
as follows:

• E0(0, 0) has one positive and one negative eigenvalues {25.4181,−0.258084}.
• E1(−1.40274, 2.40137) has positive eigenvalues {26327, 394.663}.
• E2(0.00193, 1.69903) has one positive and one negative eigenvalues {15.4788,−0.682798}.

Thus, we can say that the system is Jacobi unstable at each of these three equilibrium points.

5. Chaotic Behavior of Oregonator Model

The trajectory behavior of deviation vector ξ i, i = 1, 2 near fixed point is obtained by
using the following Equation (8)

d2ξ1

dt2 +
1
ε

(
2x1 + x2 − 1

)dξ1

dt
+

1
ε

(
x1 − q

)dξ2

dt
+

1
ε

(
2y1 + y2

)
ξ1 +

1
ε

y1ξ2 = 0,

d2ξ2

dt2 +
1
δ

x2 dξ1

dt
+

1
δ

(
q + δ + x1

)dξ2

dt
+

1
δ

(
x2 + y2 − f

)
ξ1 +

1
δ

x1ξ2 = 0.

(23)

The value of deviation vector can be obtained from its components ξ1 and ξ2 is given as

ξ =
√
[ξ1(t)]2 + [ξ2(t)]2. (24)
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In order to obtain the chaotic behaviour of the Oregonator model, we introduce the Lya-
punov exponents similar to the instability exponents. The Lyapunov exponents describes
the rate of divergence of nearby trajectories, i.e., the presence of chaos in the system as

Δi(E) = lim
t→∞

1
t

ln
ξ i(t)
ξ̇ i(0)

, i = 1, 2,

and

Δ(E) = lim
t→∞

1
t

ln
ξ(t)
ξ̇(0)

,

Now, we examine the deviation vectors behaviour close to equilibrium positions. The initial condi-
tions used to integrate the deviation equations are ξ1(t) = ξ2(t) = 0, ξ̇1(t) = 10−10, ξ̇2(t) = 10−9

and values of the parameter are shown in their respective figures.

5.1. Behavior of the Deviation Vector Near E0

The dynamics of deviation vector near equilibrium point E0 are calculated using
Equation (23) as follows:

d2ξ1

dt2 − 1
ε

dξ1

dt
− 1

ε

dξ2

dt
= 0

d2ξ2

dt2 +
(q + δ)

δ

dξ2

dt
− f

δ
ξ1 = 0

(25)

The behaviour of components of the deviation curvature vector and instability exponents
are shown in Figure 2.

Figure 2. Time variation of the deviation vector components ξ1(t) (left figure) and ξ2(t) (right
figure), in a logarithmic scale and instability exponents δ(E0), near the equilibrium point E0,
for ε = 0.10, δ = 0.0004, q = 0.0008, f = 1 (Solid Red), for ε = 1, δ = 4, q = 0.0008, f = 0.5 (Black),
for ε = 0.10, δ = 0.004, q = 0.8, f = 2.4 (Blue). The initial conditions used to integrate the deviation
equations are ξ1(t) = ξ2(t) = 0, ξ̇1(t) = 10−10, ξ̇2(t) = 10−9.
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5.2. Behavior of the Deviation Vector Near E1

By using Equation (8), the dynamics of deviation vector near the equilibrium point E1
are obtained as follows:

d2ξ1

dt2 +
1

4 ε
(4u− 3v + w− 4)

dξ1

dt
+

1
2 ε

(u− v− 2q)
dξ2

dt
= 0

d2ξ2

dt2 +
1

4 δ
(w + v)

dξ1

dt
+

1
2 δ

(2q + 2δ + u− v)
dξ2

dt
+

1
4 δ

(w + v− 4 f )ξ1 +
1

2 δ
(u− v)ξ2 = 0

The behaviour of components of the deviation curvature vector and instability exponents
are shown in Figure 3.

Figure 3. Time variation of the deviation vector components in a logarithmic scale ξ1(t) (left
figure) and ξ2(t) (right figure), δ(E1), near the equilibrium point E1, for ε = 0.10, δ = 0.0004,
q = 0.0008, f = 1 (Solid Red), for ε = 1, δ = 0.4, q=0.0008, f = 0.5 (Black), for ε = 0.10, δ = 0.004,
q = 0.8, f = 2.4 (Blue). The initial conditions used to integrate the deviation equations are
ξ1(t) = ξ2(t) = 0, ξ̇1(t) = 10−10,ξ̇2(t) = 10−9.

5.3. Behavior of the Deviation Vector Near E2

The dynamics of deviation vector near equilibrium point E2 are calculated using
Equation (8) as follows:

d2ξ1

dt2 +
1

4 ε
(4u + 3v + w− 4)

dξ1

dt
+

1
2 ε

(u + v− 2q)
dξ2

dt
= 0

d2ξ2

dt2 +
1

4 δ
(w− v)

dξ1

dt
+

1
2 δ

(2q + 2δ + u + v)
dξ2

dt
+

1
4 δ

(w− v− 4 f )ξ1 +
1

2 δ
(u + v)ξ2 = 0

The behaviour of the components of the deviation curvature vector and instability
exponents are shown in Figure 4.
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Figure 4. Time variation of the deviation vector components in a logarithmic scale ξ1(t) (left
figure) and ξ2(t) (right figure), δ(E2), near the equilibrium point E2, for ε = 0.10, δ = 0.0004,
q = 0.0008, f = 1 (Solid Red), for ε = 1, δ = 4, q = 0.0008, f = 0.5 (Black), for ε = 0.10,
δ = 0.004, q = 0.8, f = 2.4 (Blue). The initial conditions used to integrate the deviation equations are
ξ1(t) = ξ2(t) = 0, ξ̇1(t) = 10−10,ξ̇2(t) = 10−9.

5.4. Curavture of the Deviation Tensor

The geometric curvature κ of the curve ξ(t) = (ξ1(t), ξ2(t)), examines the quantitative
explanation of the deviation tensors behaviour which we define, according to the standard
approach used in differential geometry of plane curve as [12]

κ =
ξ̇1(t)ξ̈2(t)− ξ̇2(t)ξ̈1(t)

{ [ξ̇1(t)]2 + [ξ̇2(t)]2 } 3
2

The chaotic behavior of the system is described by the curvature of the deviation
vector. From Figure 5, we can see that for different value of parameters the curvature of
the deviation vector is positive for very brief periods of time, hitting zero at specific times,
moving into the region of negative values, and then, after temporarily tending toward zero,
returning to positive values before moving back into the region of negative values.

The curvature of the deviation vector of the Oregonator model becomes zero at
ξ1(t0) = ξ2(t0), and the time interval during which it changes sign is an symbol of the
development of chaotic behavior.

The behaviour of the curvature deviation tensor are shown in Figure 5.
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Figure 5. Time variation of curvature κ for E0 (above left), E1 (above right), E2 (below) for parameter
values ε = 0.10, δ = 0.0004, q = 0.0008, f = 1 (Red), for ε = 1, δ = 0.04, q = 0.008, f = 0.5 (Blue),
(i) for ε = 0.50, δ = 0.04, q = 0.008, f = 0.8 (Black), (ii) for ε = 0.30, δ = 0.004, q = 0.08, f = 0.7
(Black), (iii) for ε = 0.05, δ = 0.4, q = 0.008, f = 0.7 (Black). The initial conditions used to integrate
the deviation equations are ξ1(t) = ξ2(t) = 0, ξ̇1(t) = 10−10, ξ̇2(t) = 10−9.

6. Jacobi Stability vs Linear Stability

In this section, we will consider the relationship between Jacobi stability and Linear
stability at different equilibrium points. To compare both stability we first find Jacobian
matrix for system (12) as follows:

J =

⎛⎜⎜⎜⎜⎝
1
ε
(1− 2x− y)

1
ε
(q− x) 0

1
δ
(−y)

1
δ
(−q− x)

f
δ

1 0 − 1

⎞⎟⎟⎟⎟⎠
Example 3. If we take value of the parameters as ε = 2, δ = 0.004, q = 0.08, f = 1 for the Jacobi ma-
trix then the eigenvalues at equilibrium points S(E0), S(E1) and S(E2) are {−19.9743 ,−1.2947 , 0.771729},
{63.2084 , 0.739929 ,−0.533817} and {−84.3937 ,−0.552687 ,−0.0408065}, repectively.

At Equilibrium point S(E0) we have two negative and one positive eigenvalue, for the point
S(E1) we obtain two positive and one negative eigenvalue and all eigenvalues are negative at the
equilibrium point S(E2). Thus, both S(E0) and S(E1) points are linearly unstable while S(E2) is
linearly stable. On comparing it with example 1, we found that equilibrium points E0 and E1 of
the system are both Jacobi and linearly unstable, while the point E2, is Jacobi unstable but linearly
stable.

Now, for the Jacobi matrix if we take a set of parameters ε = 0.10, δ = 0.004, q = 0.0008,

Example 4. For f = 2.4, the eigenvalues at equilibrium points S(E0), S(E1), S(E2) are
{10.0424,−0.62122 ± 0.539641 i}, {323.185 , 40.5648 , −0.375287} and {−7.44785 ,−0.557569 ±0.57831i }
repectively.
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For the first equilibrium point S(E0), we obtain one real eigenvalue and two complex conjugate
and for S(E1) we get two positive and one negative real eigenvalue. At equilibrium point S(E2),
all three eigenvalues have negative real part. Thus, both S(E0) and S(E1) are linearly unstable
while S(E2) is linearly stable. Therefore, on comparing it with example 2, we found that equilibrium
points E0 and E1 of the system are both Jacobi and linearly unstable, while the point E2, is Jacobi
unstable but linearly stable.

Example 5. For f = 1, the eigenvalues at equilibrium points S(E0), S(E1), S(E2) are{10.0178 , −0.608883
± 0.168974 i}, {3.231 ± 7.76734 i ,−0.0573755} and {−12.9551 , 4.291 , 0.0710088} respectively. Equi-
librium point S(E0) has one positive eigenvalue and a conjugate pair of eigenvalues with negative
real part. Equilibrium points S(E1) and S(E2) has one negative and two positive eigenvalues. Thus,
both S(E1) and S(E2) are linearly unstable, while S(E1) is linearly stable.

Examples 4 and 5, show the value of stoichiometric factor as we can see that the system
changes its stability at equilibrium point S(E2), with the small change in the value of f .
Hence, the parameter f is deeply linked to the ocillation rise in the chemical reaction.

7. Conclusions

In the paper, we have looked at the stability analysis of the Oregonator model for
BZ-reaction from the perspective of the KCC theory, according to which the geometric
properties of the geodesic equations for Finsler space, which are the equivalent of the
given system and can be used to deduce the dynamical stability properties of dynamical
systems. We first transformed the first order differential equation of the Oregonator model
into a system of second order differential equations. We have introduced the instability
exponent and the curvature of the deviation vector for the Oregonator model in order
to describe the behavior of the trajectories around the equilibrium points. We have also
shown the graphical representations of deviation vector components ξ1(t) and ξ2(t) in a
logrithmic scale and instability exponents near all three equilibrium points for different
set of parameters in Figures 2–4. Through the curve ξ(t) transition moment from positive
to negative values, it can be directly related to the chaotic behavior of the trajectories. We
expressed the geometric quantities of KCC theory in terms of the Jacobian matrix of the
linearized system in order to understand the relationship between the Jacobi stability and
the linear stability.

This study presents the conditions for Jacobi stability at the equilibrium points of
the Oregonator model. It demonstrates that, at the origin the system is always Jacobi
unstable, whereas the Jacobi stability of the remaining two equilibrium points is dependent
on the particular set of parameter values present in the system. In Mathematical modelling
of the BZ reaction the stoichiometric factor has been used as a bifurcation parameter.
The phenomenon denotes the transition between the stationary and oscillation during the
chemical reaction. The present analysis provides the role of stoichiometric factor as a small
increase or decrease in the value leads us to a different stability state of the system. In brief,
our analysis of the Belousov–Zhabotinsky (BZ) reaction, a well-established example of an
oscillating chemical reaction, using the KCC theory reveals that the system possesses a dual
nature (stability and instability) of the system. The analysis emphasizes the coexistence
of Jacobi stability and instability. Furthermore, the system exhibits characteristics of both
linear stability and instability. This investigation enhances our understanding of the
complex dynamics intrinsic in oscillating chemical reactions, thereby making a significant
contribution to the wider comprehension of dynamic systems.
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Differential Cohomology and Gerbes: An Introduction to
Higher Differential Geometry
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Abstract: Differential cohomology is a topic that has been attracting considerable interest. Many inter-
esting applications in mathematics and physics have been known, including the description of WZW
terms, string structures, the study of conformal immersions, and classifications of Ramond–Ramond
fields, to list a few. Additionally, it is an interesting application of the theory of infinity categories.
In this paper, we give an expository account of differential cohomology and the classification of
higher line bundles (also known as S1-banded gerbes) with a connection.We begin with how Čech
cohomology is used to classify principal bundles and define their characteristic classes, introduce
differential cohomology à la Cheeger and Simons, and introduce S1-banded gerbes with a connection.

Keywords: Čech cohomology; non-abelian cohomology; characteristic classes; differential characters;
differential cohomology; bundle gerbes; Deligne cohomology

MSC: primary 53C08; secondary 55R65; 14F03; 55N05

1. Introduction

Higher differential geometry is a study of differential geometry in the context of
homotopy theory and higher category theory. It appears in many aspects of differential
geometry, such as the theory of the higher analog of line bundles with a connection,
considered as sheaves of ∞-groupoids, equivariant refinements, and the theory of orbifolds,
and derived geometry (see, for example, [1–3]).

Differential cohomology and the theory of gerbes are topics that have been attracting
interest. The idea of differential cohomology is that we can combine data from cohomology
groups and differential forms in a homotopy theoretic way. The first construction of
differential cohomology was due to Deligne [4] and Cheeger and Simons [5], and numerous
applications have been found to date. A few examples include index theorems, the study of
conformal immersions, topological quantum field theories, arithmetic Chow groups, and
hyperbolic volumes. It is also an interesting application of the theory of infinity categories
(see [5–7]). This theory, as generalized by Hopkins and Singer [8], explicitly constructs a
differential cohomology theory for any generalized cohomology theory and brings in all of
the objects in the category of spectra as topological data for differential extension.

S1-banded n-gerbes are higher analogs of principal S1-bundles. Just as line bundles
represent, up to isomorphism, the degree-two integral cohomology group of the base space,
one-gerbes (or simply gerbes) are geometric objects representing, up to isomorphism,
the degree-three integral cohomology, and n-gerbes represent the degree n + 2 integral
cohomology. Endowed with a connection, we have the following pattern of classification:

Ĥ1(M) ∼= C∞(M, S1)

Ĥ2(M) ∼= Prin∇S1(M)/ ∼=
Ĥ3(M) ∼= Grb∇(M)/ ∼=
Ĥ4(M) ∼= 2-Grb∇(M)/ ∼=

Axioms 2024, 13, 60. https://doi.org/10.3390/axioms13010060 https://www.mdpi.com/journal/axioms126
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and so on. It is thus clear that differential cohomology is the proper home for classifying
gerbes with a connection and their higher-categorical generalizations.

Historically, gerbes were first conceived by Giraud [9] as sheaves of groupoids
(cf. Grothendieck [10]) in the study of non-abelian cohomology. Perhaps the most popular
model of gerbes in the literature would be bundle gerbes by Murray and Stevenson [11,12],
which has an obvious advantage in that we can remain in the category of smooth manifold
while handling it. There are numerous applications of gerbes with a connection, includ-
ing the description of the Wess–Zumino–Witten terms, string structures, classifications of
Ramond–Ramond fields, and topological insulators (see [13–15]). Of course, gerbes banded
with other (possibly non-abelian) groups are of interest as well. We do not treat them in
this paper, but interested readers should compare Schreiber and Waldorf [16].

The goal of this paper is to give a self-contained expository account of differential
cohomology and gerbes and to guide readers to the literature at the forefront of this
research. There are several well-written research papers and dissertations in this area from
which one can learn about this topic. Nonetheless, there are not many monographs and
expository articles for second- or third-year Ph.D. students trying to choose a topic for
their dissertations. Perhaps Brylinski [17] is one of such a limited list of compilations. This
paper pursues an exposition that is accessible to early-year Ph.D. students and takes the
length of three standard 1 h talks. Indeed, this paper is based on the author’s notes for
a minicourse at the 13th Korea Institute for Advanced Study (KIAS) Winter School on
Differential Geometry, intended to accommodate non-experts in the audience.

This paper is organized as follows. In Section 2, we give a gentle introduction to the
characteristic classes of complex line bundles and U1-gerbes. We begin with the principal
G-bundles and Čech cohomology with coefficients in G, introduce relevant results from
Dixmier and Douady [18], and then give various examples, each of which leads to the
construction of a characteristic class. In Section 3, we introduce the differential cohomology
group, as in Cheeger–Simons [5], and introduce a classification of complex line bundles with
connection by the degree-two differential cohomology group. In Section 4, we introduce
bundle gerbes and their Dixmier–Douady classes. After that, we explain what connections,
curvings, and three-curvatures are. We then define the Deligne complex and introduce a
classification of bundle gerbes with connection by the degree-three differential cohomology
group. We also introduce the two-groupoid structure of the category of bundle gerbes with
a connection.

2. Čech Cohomology and Characteristic Classes

In this section, we shall review the principal G-bundles and how Čech cohomology
can be used to classify them and define their characteristic classes. A good reference for
learning more about these topics is Brylinsky [17], which has a broader account.

Definition 1. Let G be a Lie group. A principal G-bundle over a smooth manifold M is a smooth
map π : P → M and a right G-action on P satisfying:

(1) π is G-invariant; that is, π(p · g) = π(p) for all p ∈ P and g ∈ G.
(2) On each fiber, G acts freely and transitively from the right.
(3) P is locally trivial via G-equivariant trivialization; that is, at every m ∈ M, there exists an open

subset U ⊂ M and a diffeomorphism ϕ : π−1(m) → U × G such that p 
→ (π(p), φ(p))
satisfying p · g 
→ (π(p), φ(p) · g).

Conditions (1) and (2) mean that the G-orbits are fibers of π. This is equivalent to
saying P× G → P×M P, (p, g) 
→ (p, p · g) is a diffeomorphism; that is, P is a G-torsor.

Definition 2. A bundle map of the principal G-bundles from π1 : P1 → M to π2 : P2 → M is a
diffeomorphism f : P1 → P2 that preserves the fiber and G-equivariant; that is, f (p · g) = f (p) · g
and π2 ◦ f = π1.
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The principal G-bundles over M with maps form a groupoid (a category whose
morphisms are invertible), and it is denoted by PrinG(M). We will also use the notation
BunCn(M) to denote the groupoid of rank n complex vector bundles over M.

Example 1. Let G = GLn(C). Consider π : P → M and take an associated fiber bundle
E(P)→ M with a fiber Cn defined by E(P) := (P×Cn)/G with a diagonal G-action: (p, v) 
→
(pg, g−1v). The bundle E(P) is a complex vector bundle over M of rank n. On the other hand,
let E ∈ BunCn(M). At each x ∈ M, consider the set Fr(E)x of all bases of the vector space Ex;
equivalently the set of all C-linear maps p : Cn → Ex. Then, the smooth map π : Fr(E)→ M with
π−1(x) = P(E)x and a right G-action on Fr(E) defined by p 
→ p ◦ g is a principal G-bundle over
M. It leads to the following equivalence of categories.

PrinGLn(C)(M)
E �� BunCn(M)
Fr

��

For this reason, in what follows, we do not distinguish a C×-, S1-, or U1-bundle from a complex
line bundle.

Notation 1. We shall use the notation Ui1···in to denote the n-fold intersection Ui1 ∩ · · · ∩Uin .

Definition 3. Let G be an abelian group, M be a topological space, and U = {Ui}i∈Λ be an open
cover of M. The set Čp(U ; G) = { fi0···ip : Ui0···ip → G}i0,··· ,ip∈Λ inherits the operation from the
group G and is termed the degree-p Čech cochain group. Together with the map δp : Čp(U ; G)→
Čp+1(U ; G), ( f )i0···ip 
→ (δ f )i0···ip+1 := fî0i1···ip+1

− fi0 î1···ip+1
+ · · · + (−1)p+1

i0i1···ip îp+1
, the se-

quence of groups (Č•(U ; G), δ•) is the Čech cochain complex. (It is easy to verify that δ2 = 0.
Here, the hat means an omission.) The cohomology of this complex Ȟ•(U ; G) := ker(δ•)/Im(δ•−1)
is the Čech cohomology of M defined on an open cover U .

Now, if the group G in the definition above is not abelian, in general, the coboundary
maps δ are not group homomorphisms, neither ker δ nor Imδ form a group, and, if we
apply δ to a cocycle, we do not obtain δ2 = 1. We shall see below what goes on starting
from the lowest degree:

• p = 0: There is no problem. Ȟ0(U ; G) = { f ∈ Č0(U ; G) : δ( f )ij = 0} = Map(M, G).
This is a group under a pointwise group multiplication.

• p = 1: Neither ker δ1 nor Imδ0 form a group. On the set ker δ1, we may impose an
equivalence relation defined by the action of 0-cochains

gij ∼ g′ij if and only if g′ij = f−1
i gij f j.

So, we may define Ȟ1(U ; G) as the pointed set ker δ1/ ∼ with a distinguished ele-
ment of the constant map gij ≡ 1. Notice where set Ȟ1(U ; G) is precisely the set of
isomorphism classes of the principal G-bundles over M defined on the open cover U
(see Remark below). For this reason, principal G-bundles are geometric models of a
degree-one non-abelian cohomology of M with coefficients in a group G.

• p ≥ 2: There is no reasonable way to make sense of Ȟp(U ; G).

Remark 1. We shall closely look into how the set Ȟ1(M; G) classifies the principal G-bundle over
M up to isomorphism. Recall that each principal G-bundle is locally trivial and diffeomorphic to
U × G for some open U ⊂ M. This means that if we are given a family of transition functions on
every double overlap Uij ∈ U = {Uij}i,j∈Λ, that is, {gij : Uij → G : i, j ∈ Λ}, we can rebuild the
principal G-bundle. Since the transition functions satisfy

gij(x) · gjk(x) · gki(x) = 1, for all x ∈ Uijk (1)
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Equation (1) is called the cocycle condition of a principal G-bundle. So, if we have a principal
bundle P over M, we have a family of transition functions {gij}i,j∈Λ satisfying condition (1) and
vice versa (under a mild condition). Likewise, if we have a bundle map f : P → P′ covering M, we
have a family of functions on open sets in the cover { fi}i∈Λ satisfying that g′ij(x) = f−1

j (x)gij(x)
for all x ∈ Uij, and vice versa (under the same mild condition). Here, the mild condition is that the
open cover U has to be a good cover. A good cover (also known as Leray’s covering) is an open cover
of M if all open sets and their intersections are contractible. Such a covering always exists (see [1]
(Proposition A.1) and references therein). An open cover (V , ı) is a refinement of U if ı : V → U
such that V ⊆ ı(V) for all V ∈ V . A refinement induces a map resV ,U : Ȟ1(U ; G) → Ȟ1(V ; G),
and it satisfies resW ,U = resW ,V ◦ resV ,U . So, we can define the set Ȟ1(M; G) as a direct limit over
refinements of open cover; that is,

Ȟ1(M; G) = lim−→
U

Ȟ1(U ; G).

If the cover U is good, the restriction map Ȟ1(U ; G)
∼=→ Ȟ1(M; G) is an isomorphism. Therefore,

we conclude that
π0PrinG(U )→ Ȟ1(U ; G)

[P] 
→ (gij).
(2)

If we remove the abelian assumption of groups, the long exact sequence induced by a
short exact sequence of groups cannot go any further than the degree p = 1.

Proposition 1. Let

1 �� K i �� G̃
j �� G �� 1 (3)

be a short exact sequence of groups. We have the following long exact sequence of groups and
pointed sets

1 Ȟ0(U ; K) Ȟ0(U ; G̃) Ȟ0(U ; G)

Ȟ1(U ; K) Ȟ1(U ; G̃) Ȟ1(U ; G)

i∗ j∗

i∗ j∗

However, in the special case that the second term in the sequence is an abelian group
whose image is in the center of the third, we can extend the long exact sequence just one
term further. We have the following propositions.

Proposition 2. If the group K in short exact sequence (3) is abelian and i(K) belongs to the center
of G̃, then the long exact sequence in Proposition 1 extends to Ȟ2(U ; K):

1 Ȟ0(U ; K) Ȟ0(U ; G̃) Ȟ0(U ; G)

Ȟ1(U ; K) Ȟ1(U ; G̃) Ȟ1(U ; G)

Ȟ2(U ; K)

i∗ j∗

i∗ j∗

α

Proposition 3 (Dixmier–Douady [18]). If the sheaf G̃M is soft, then

α : Ȟ1(U ; G)→ Ȟ2(U ; K)

is a bijection.

Proof. See Dixmier–Douady [18] (Lemma 22, p. 278) or Brylinski [17] (Proposition 4.1.8,
p. 162).
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In the above, GM is a sheaf such that GM(U) is a group of smooth functions f : U → G
for each open U ⊆ M. A sheaf GM is soft if GM(M) → GM(C) is onto for every closed
C ⊂ M. Here, we can think of GM(C) = limU GM(U) (since M is paracompact), where the
direct limit is taken over all open neighborhoods of C.

Example 2. (1) Consider a short exact sequence

1 �� SOn
i �� On

det �� Z2 �� 1.

The induced map w1 : Ȟ1(M; On) → Ȟ1(M;Z2) is a correspondence [P] ∈ π0PrinOn(M) 
→
w1([P]), which is the first Stifel–Whitney class. So, w1([P]) = 0 if and only if P comes from an
SOn-bundle; that is, P is orientable. Equivalently, the obstruction for the transition maps of a
Euclidean vector bundle to lift to SOn is given by the first Stifel–Whitney class.

(2) Consider a short exact sequence

1 �� Z2 �� Spinn
�� SOn �� 1.

The induced map w2 : Ȟ1(M; SOn)→ Ȟ2(M;Z2) is a correspondence [P] ∈ π0PrinSOn(M) 
→
w2([P]), which is the second Stifel–Whitney class. So, w2([P]) = 0 if and only if P comes from a
Spinn-bundle. Equivalently, the obstruction for the transition maps of an oriented Euclidean vector
bundle to lift to Spinn is given by the second Stifel–Whitney class. Here, one can think of Spinn
as a double cover of SOn, which is also a universal cover. For a construction of Spinn in terms of
Clifford algebras, see [19] (Section 1.2).

Remark 2. The Whitehead tower of On is of particular interest. The Whitehead tower of a space
X is a factorization of the point inclusion pt → X

pt ! limn→∞ Xn �� · · · �� X2 �� X1 �� X0 ! X

such that each Xn is (n− 1)-connected (that is, all homotopy groups πk vanish for k ≤ n− 1) and
each map Xn → Xn−1 is a fibration, which is an isomorphism on all πk for k ≥ n. For the space
On, we have a Whitehead tower as follows:

pt �� · · · �� FiveBranen �� Stringn
�� Spinn

�� SOn �� On

Here, Stringn is a six-connected cover of Spinn

1 �� K(Z, 2) �� Stringn
�� Spinn

�� 1.

and FiveBranen is a seven-connected cover of Stringn

1 �� K(Z, 6) �� FiveBranen �� Stringn
�� 1.

It is known that the obstruction to lift a Spinn-bundle to a Stringn-bundle is the first fractional
Pontryagin class 1

2 p1 and to lift a Stringn-bundle to a FiveBranen-bundle is the second fractional
Pontryagin class 1

6 p2, and so on (see [20] for more details).

Example 3. (3) Consider a short exact sequence

1 �� Z �� R �� S1 �� 1.

Note thatRM is a soft sheaf (recall the Tietze extension theorem). The induced map c1 : Ȟ1(M; S1)
∼=→

Ȟ2(M;Z) is a correspondence [L] ∈ π0PrinS1(M) 
→ c1([L]), which is the first Chern class. Note
that if group G is abelian, G is a sheaf of locally constant functions in G, Ȟp(M;G), and Hp(M; G),
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then the degree-p singular cohomology with coefficients in G is the same. Since group Z is discrete,
we can identify Ȟp(M;Z) and Hp(M;Z) for any degree p.

Proposition 4 (Dixmier–Douady [18]). Let H be a complex separable Hilbert space. The sheaf
U(H)

M
is soft.

Proof. See Dixmier–Douady [18] (Lemma 4, p. 252) or Brylinski [17] (Cor. 4.1.6, p. 162).

Example 4. (4) Consider a short exact sequence

1 �� U1 �� U(H) �� PU(H) �� 1.

Since U(H) is a soft sheaf, the induced map DD : Ȟ1(M; PU(H))
∼=→ Ȟ2(M; S1)

∼=→ H3(M;Z)
is a correspondence [P] ∈ π0PrinPU(H)(M) 
→ DD([P]), which is the Dixmier–Douady class of
a gerbe.

Definition 4. A characteristic class of a principal G-bundle P over M is an assignment

c : π0PrinG(M)→ H•(M; A)

[P] 
→ c(P)

that is natural; that is, f ∗c(P) = c( f
∗
P) for

P′
f ��

π′
��

�

P

π

��
M′ f �� M

Here, A is an abelian group.

Since PrinG(−) : Manop → Sets is representable by BG, by the Yoneda Lemma (see
MacLane [21]), we have the following proposition.

Proposition 5. An assignment

{Characteristic class of principal G-bundles} −→ H•(BG; A)

is one-to-one and onto.

Remark 3. There is an alternative way to define characteristic classes using a “geometric datum”,
that is, a connection ∇ on P ∈ PrinG(M). This is the Chern–Weil theory. For example, given
a line bundle with the connection (L,∇), the first Chern class of ∇ is defined by a Chern–Weil
form i

2π curv(∇). Here, curv(∇) is the curvature two-form of the connection ∇. The Chern–Weil
theorem shows that the cohomology class of a Chern–Weil form does not depend on the choice of
connection. So,

[
i

2π curv(∇)
]
∈ H2(M;R) is a topological invariant of a line bundle. A priori

the class
[

i
2π curv(∇)

]
is a class in H2(M;C), but it can be shown that it is actually a class in

H2(M;R). The realification of the first Chern class, Example 3 above, is equal to the first Chern
class

[
i

2π curv(∇)
]

from the Chern–Weil theory. See Morita [22] (Chapter 5) to learn more about
Chern–Weil theory of characteristic classes.

We have seen that, up to isomorphism, complex line bundles are classified by H2(M;Z)
via the first Chern class (Example 3) and principal PU(H)-bundles are classified by
H3(M;Z) via the Dixmier–Douady class (Example 4). We can ask the following ques-
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tion: What classifies (higher) line bundles with a connection? For example, if we consider a
groupoid Bun∇C (M) whose objects are line bundles with the connection (L,∇) and whose
morphisms are a bundle isomorphism preserving the connection, what classifies the iso-
morphism classes of Bun∇C (M)? This question leads us to “differential cohomology”. Up to
isomorphism, line bundles with a connection are classified by the degree-two differential
cohomology Ĥ2(M), gerbes with a connection are classified by Ĥ3(M), two-gerbes with a
connection are classified by Ĥ4(M), and so on.

3. Cheeger–Simons Differential Characters

In this section, we introduce a differential extension of the singular cohomology
theory H∗(−;Z) on the site of smooth manifolds. Among various known models, we shall
introduce the model by Cheeger and Simons [5] which is one of the historical landmarks.
Interested readers are referred to the homotopy theoretic model by Hopkins and Singer [8],
a spark complex model by Harvey, Lawson, and Zweck [23], and a novel construction
using ∞-sheaves of spectra by Bunke, Nikolaus, and Völkl [24].

Notation 2. We shall define some notations that will be used throughout this section. Let M be a
smooth manifold and R be a commutative ring with unity:

• Ck(M; R): smooth singular k-cochains in M with coefficients in R.
• Zk(M; R): smooth singular k-cocycles in M with coefficients in R.
• Ωk(M): differential k-forms on M.
•

∫
: Ωk(M) → Ck(M;R) is a R-linear map ω 
→

∫
ω, where

∫
ω : Ck(M;R) → R is a

pairing of a singular k-chain and a differential k-form.
• Ωk

cl(M)Z: closed differential k-forms with integral periods; that is, ω ∈ Ωk
cl(M)Z if and only

if dω = 0 and
∫

ω
∣∣
Zk(M) ∈ Z.

• ∼ is the natural map R→ R/Z.

A nonvanishing differential form does not take its values in a proper subring Λ ⊂ R.
Hence, we have the following:

Proposition 6. The map ∫
: Ωk(M)→ Ck(M;R/Z)

ω 
→
∫̃

ω

is one-to-one.

Definition 5 (Cheeger and Simons [5]). Let M be a smooth manifold. The group Ĥk(M) of
differential characters of degree k consists of pairs (χ, ω), where χ ∈ HomZ(Zk−1(M),R/Z)
and ω ∈ Ωk(M), satisfying that

χ ◦ ∂D =
∫

D
ω mod Z, for all D ∈ Ck(M;Z),

where the group structure is the componentwise addition.

Remark 4. The degree of the Ĥk(M) in the above definition is different from the one that appears in
Cheeger and Simons [5], which defines the same group as degree k + 1. A consequence of adopting
their convention would be a mismatch of degree in the group of differential characters and real
cohomology, so the forgetful map (see below for a definition) would be I : Ĥk(M)→ Hk+1(M;R).
We stick to our convention for the sake of consistency with the literature from recent years.

The main goal of this section is to understand the following diagram, known as the
differential cohomology hexagon diagram.
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Proposition 7 (Cheeger and Simons [5]). The group of differential characters Ĥk(M) satisfies
the following diagram; that is, all squares and triangles are commutative and the diagonal, upper,
and lower sequences of the arrows are exact sequences.

0

Hk−1(M;R)

Hk−1(M;R/Z)

0

Ωk−1(M)

Ωk−1
cl (M)Z

Ĥk(M)

Hk(M;Z)

0

Ωk
cl(M)Z

Hk(M;R)

0

�

�

�

�

��

∼
��

−B ��
� �

e

��

I
��

��

r

��

rep ��

��

a
��

d
��

�� ��

��

R

��
∫
◦dR

��

Proof. We shall divide the proof into several parts and enumerate them.
(1) I and R maps: We begin with some algebra facts:

A1. A subgroup of a free abelian group is free.
A2. An abelian group G is divisible if, for any x ∈ G and any n ∈ Z+, there exists y ∈ G

such that x = ny.
A3. An abelian group G is divisible if and only if the group G is an injective object in the

category of abelian groups; if f : A → G and A ⊂ B, there exists a map f̃ : B → G that
satisfies f̃ |A = f .

Take (χ, ω) ∈ Ĥk(M) and consider χ : Zk−1(M)→ R/Z. Since Zk−1(M) is a subgroup
of a free abelian group Ck−1(M;Z), it is free (A1) and, hence, projective. We have the
following commutative diagram:

�

R

��
Zk−1(M)

χ ��

χ

��

R/Z

��
0

Now, since R is divisible (A2), it is injective (A3). Hence, χ : Zk−1(M)→ R lifts to the map
T satisfying the following commutative diagram:

0

��
Zk−1(M)

�

� �

��

χ �� R

Ck−1(M)

T

��
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So, ˜T|Zk−1(M) = χ. It follows that δ̃T = δT̃ = T̃ ◦ ∂ =
∫

ω mod Z. Here, the first equality
is simply ∼ ◦(T ◦ ∂k) = (∼ ◦T) ◦ ∂k. Thus, there exists c ∈ Ck(M;Z) such that

δT =
∫

ω − c. (4)

Note that 0 = δ2 =
∫

dω − δc, so
∫

dω = δc. Since a real differential form cannot take its
value in a proper subring of R, this means dω ≡ 0 = δc. It is readily seen that ω has an
integral period. We define the maps I and R as follows:

I : Ĥk(M)→ Hk(M;R) R : Ĥk(M)→ Ωk
cl(M)Z

(χ, ω) 
→ [c] (χ, ω) 
→ ω

Let us verify that these maps are well defined. Since the choice of lifts is not unique, we
have to verify that the above definition does not depend on the choices we made. Suppose

T′ is another lift satisfying δT′ =
∫

ω′ − c′. Then, ˜T′ − T|Zk−1(M) = 0, so T′ = T + δs + d
for some d ∈ Ck−1(M;Z) and s ∈ Ck−2(M;R). So, δT′ = δT + 0 + δd if and only if∫

ω′ − c′ =
∫

ω − c + δd if and only if
∫
(ω′ − ω) = c′ − c + δd. Again, since the real

differential form cannot take its value in a proper subring of R, this means ω ≡ ω′ and
[c′] = [c].

We show that R is surjective. Let r : Hk(M;Z) → Hk(M;R) be the realification map
(which is from the universal coefficient theorem for cohomology; see [25] (Section 3.1)).
Notice that, given ω ∈ Ωk

cl(M)Z, there exists a u ∈ Hk(M;Z) such that r(u) = [
∫

ω]. Since
ω has integral periods, δ

∫
ω =

∫
ω ◦ ∂ ∈ Z is an integral cochain, and, since ω is closed,

δ
∫

ω =
∫

dω = 0 (Stokes’ theorem). Now, let u = [c] for some c ∈ Ck(M;Z). Then,∫
ω − c = δλ for some λ ∈ Ck+1(M;R). Define χ := ˜λ|Zk−1(M). So, R is surjective.

The map I is also surjective. Given any [c] ∈ Hk(M;Z), δc = 0 as real cochains.
By the de Rham theorem, there exists a ω ∈ Ωk

cl(M) such that
∫

ω − c = δμ for some

μ ∈ Ck−1(M;R). Define χ := ˜μ|Zk−1(M). So, the map I is surjective.
(2) The e map: We define the e map as follows:

e : Hk−1(M;R/Z)→ Ĥk(M)

[x] 
→ (x|Zk−1(M), 0)

The map e is well defined. If we take a different representative x + δy, the restriction of
δy to Zk−1(M) vanishes. The map e is one-to-one: Let Λ ⊂ R a proper subring. From
the universal coefficient theorem, we have Hk(X;R/Λ) ∼= HomZ(Hk(X),R/Λ), since
Ext(Hn−1(X),R/Λ) = 0, from n(R/Λ) = (nR)/Λ = R/Λ, for any n ∈ Z. Since Bk →
Zk → Hk → 0 is exact if and only if B∗k ← Z∗k ← H∗

k ← 0 is exact, HomZ(Hk(X),R/Λ) ↪→
HomZ(Zk(X),R/Λ) is an injection.

(3) The a map: We define the a map as follows:

a :
Ωk−1(M)

Ωk−1
cl (M)Z

→ Ĥk(M)

[α] 
→ (
˜∫
α|Zk−1(M), dα)

It is obvious that the a map is well defined, and the subgroup Ωk−1
cl (M)Z is the kernel of

the map Ωk−1(M)→ Ĥk(M), α 
→ ( ˜∫
α|Zk−1(M), dα).

(4) Diagonals are exact: First, Ime = ker R. The inclusion ⊆ is clear. To see ⊇, take

(χ, ω) such that ω = 0. Then, χ = ˜T|Zk−1(M) satisfying that δT = c, so T is a R/Z-valued
cocycle, representing a class in Hk−1(M;R/Z), and T|Zk−1(M;R/Z) = χ.
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Now, Ima = ker I. Again, the inclusion ⊆ is clear. To see ⊇, take (χ, ω) such that

χ = ˜T|Zk−1(M) satisfying δT =
∫

ω − c. By assumption, c = δd for some d ∈ Ck−1(M;Z).
From

∫
ω = δ(T + d), we have ω = dα for some α ∈ Ωk−1(M), and

∫
α = T + d + δ f

for some f ∈ Ck−2(M;R). Then, δ f vanishes when we restrict it to Zk−1(M), and d also

vanishes modulo Z. Thus, the preimage of I is ( ˜∫
α|Zk−1(M), dα).

(5) Squares commute: The map rep is defined as follows.

rep : Hk−1(M;R)→ Ωk−1(M)

Ωk−1
cl (M)Z

[β] 
→ β + Ωk−1
cl (M)Z

which does not depend on the choice of representatives since all exact forms are closed
forms with integral periods. From this, it is clear that the square on the left is commutative.
Notice that Equation (4) shows the commutativity of the square on the right.

(6) Triangles commute: Two triangle diagrams below commute.

Hk−1(M;R/Z)

�

−B ��
� �

e

		

Hk(M;Z)

Ĥk(M)

I
��

R




Ωk−1(M)

Ωk−1
cl (M)Z

a

��

d ��

�

Ωk
cl(M)Z

The commutativity of the lower triangle is obvious. Take a R/Z-valued cocycle x and
consider (x|Zk−1(M), 0) ∈ Ĥk(M). There exists T ∈ Ck−1(M;R) such that x|Zk−1(M) =

˜T|Zk−1(M) satisfying δT = −c for some c ∈ Ck(M;Z), so I(x|Zk−1(M), 0) = c = −δT =
−B([x]).

(7) Upper and lower sequences are exact: It is readily seen that the following are
exact sequences.

Hk−1(M;R) ∼−→ Hk−1(M;R/Z) −B−→ Hk(M;Z) r−→ Hk(M;R)

Hk−1(M;R)
rep−→ Ωk−1(M)

Ωk−1
cl (M)Z

d−→ Ωk
cl(M)Z

∫
◦dR−→ Hk(M;R)

Immediately from the definition, Ĥ0(M) = 0 and Ĥ1(M) = C∞(M,R/Z). Moreover,
note that Ĥk(M) = 0 if k > dim(M). When k = 2, we have the following proposition:

Proposition 8 (Cheeger and Simons [5]). The following assignment is a one-to-
one correspondence:

π0PrinS1,∇(M) −→ Ĥ2(M)

[(P, θ)] 
→ (χ,
1

2π
dθ)

where, for any loop γ in M, χ is defined by the holonomy of the loop γ; that is,

χ(γ) := Hol(γ)
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and, for any D ∈ C2(M;Z) bounding γ,

χ(∂D) =
1

2π

∫
D

dθ mod Z

which is extended to all Z1(M) by setting χ(x) = χ(γ) + 1
2π

∫
dθ(y) for any x = γ + ∂y.

Given dθ ∈ Ω2
cl(M)Z, as we have seen in the surjectivity of R, there exists [c] ∈

H2(M;Z) such that [
∫

dθ] = r([c]). The class [c] is the characteristic class that classifies P;
that is, the first Chern class.

The above proposition addresses the question at the end of Section 2 at least for degree
two. What is a higher analog of Proposition 8? How can one define a map? In the following
section, we shall see that the isomorphism classes of gerbes with a connection are in one-to-
one correspondence with Ĥ3(M), and, to establish the correspondence, one has to construct
χ; that is, a holonomy of gerbe.

Remark 5. Although we do not go into detail, the differential cohomology group Ĥ•(M) has a
ring structure (see Cheeger and Simons [5] (p. 56, Theorem 1.11)).

In differential cohomology, the hexagon diagram plays an important role. One uses the hexagon
diagram in Proposition 7 to compute differential cohomology groups. Furthermore, it is known that
the hexagon diagram uniquely characterizes the differential cohomology. Phrased slightly differently,
if there are two Ĥk(M) fitting into the middle of the hexagon diagram, then they are naturally
isomorphic. This is a theorem of Simons and Sullivan [26] that has been generalized by Bunke and
Schick [27] and Stimpson [28] to the uniqueness of the differential extension of all exotic cohomology
theories under some mild assumptions.

4. S1-Banded Gerbes with Connection

Throughout this section, M is a smooth manifold. In Section 2, we have seen that
elements of H2(M;Z) are represented by complex line bundles, and, in Section 3, differ-
ential cohomology classes in Ĥ2(M;Z) are represented by complex line bundles with a
connection. What are the corresponding geometric objects representing Hn(M;Z) and
Ĥn(M;Z)? The answer is (n− 2)-gerbes with a connection.

Remark 6. For a generalized cohomology theory E• and its differential extension Ê•, investigating
geometric cocycles representing (differential) cohomology classes is a very interesting research
topic that is not fully understood yet. For example, elements of even complex K-group K0(M) are
represented by vector bundles over M and odd complex K-group K−1(M) by Ω-vector bundles, but
in other interesting generalized cohomology theories, such as elliptic cohomology and topological
modular forms, it is largely unknown which geometric objects in the space M represent cohomology
classes. Moreover, note that this question is closely related to the Stolz–Teichner program [29]
wherein they have conjectured a hypothetical equivalence between the totality of supersymmetric field
theories of degree n over M modulo concordance and the group En(M). There are differential and
twisted refinements of this conjecture as well (see, for example, Stoffel [30,31] and references therein).

Let us observe how a gerbe arises. Consider the short exact sequence of groups

1 �� U1 �� G̃ �� G �� 1.

In Example 4 above, we considered the map DD : Ȟ1(U ; G) → Ȟ2(U ; U1) when
G = PU(H). In the proposition below, we shall closely look at how this map is defined.

Proposition 9. A principal G-bundle P over M lifts to a principal G̃-bundle if and only if the
cocycle representing DD(P) is trivializable.
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Proof. We look at how the map DD : Ȟ1(U ; G) → Ȟ2(U ; U1) is defined. Choose a good
cover U on M. Over each Uij, consider the transition map gij : Uij → G of P. Since U is
a good cover, Uij is contractible. Hence, there is a homotopy between the map gij and a

constant map, which lifts by the homotopy-lifting property, since the map G̃ r→ G is a
fibration. Let g̃ : Uij → G̃ be a lift of gij. The cocycle condition gijgjkgki = λijk · 1G̃, for some
λijk ∈ Č2(U ; U1). It is an easy exercise to verify that λ = {λijk}Λ is a degree-two Čech
cocycle on U and the class [λ] does not depend on the choice of lifting g̃ij. So, the map DD
is a correspondence [P] 
→ [λ], and, using the isomorphism (due to the softness of R), it is
valued in H3(M;Z).

There are several models representing gerbes. The degree-two U1-valued Čech cocycle
λ considered above as an obstruction to lifting a principal G-bundle to a G̃-bundle is one
model, and there are other ways to represent it as a stack. We refer the reader to Giraud [9],
Brylinski [17], Behrend and Xu [32], and Moerdijk [33]. In this section, we will specialize in
a model called a bundle gerbe by Murray [11], which is presumably the most widely used
model in the literature.

Let π : Y → M be a surjective submersion. The p-fold fiber product of π : Y → M is

Y[p] := {(y1, · · · , yn) ∈ Yp : π(y1) = · · · = π(yp) for yi ∈ Y}.

The projection of Y[p] onto the (i1, · · · , ik)
th copy of Y[k] is πi1···ik : Y[p] → Y[k]. For example,

let U = {Ui}i∈Λ be an open cover of M. Then consider

YU := {(x, i) ∈ M×Λ : x ∈ Ui} ⊂ M×Λ.

The map π : YU → M is a surjective submersion, which is an open cover.

Remark 7. Recall that a fiber product X ×M Y of X
φ→ M π← Y is, in general, not a smooth

manifold. If φ, π are submersions, then the fiber product is a smooth manifold. So, a surjective
submersion is not only a generalization of an open cover; it also lets us stay within the category of
smooth manifolds.

Definition 6 (Murray [11]). A bundle gerbe is a triple L = (L, π, μ) where:

(1) π : Y → M is a surjective submersion.
(2) L ∈ PrinS1(Y[2]).
(3) μ : π∗

12L⊗ π∗
23L → π∗

13L is an S1-bundle isomorphism.
(4) μ is associative over Y[4]: that is,

π∗
12L⊗ π∗

23L⊗ π∗
34L

π∗123μ⊗1
��

1⊗π∗234μ

��
�

π∗
13L⊗ π∗

34L

π∗134μ

��
π∗

12L⊗ π∗
24L

π∗124μ
�� π∗

14L

Let us construct the Dixmier–Douady class, the characteristic class of a bundle gerbe.
Let L = (L, π, μ) be a bundle gerbe over M. Take a good open cover (cf. Remark 1)
U = {Ui}i∈Λ of M. Then, local sections on each open set σi : Ui → Y and on each double
intersection (σi, σj) : Uij → Y[2] can be defined. We consider the pullback of L → Y[2] along
(σi, σj) : Uij → Y[2].

(σi, σj)
∗L ��

��

L

��
Uij

(σi ,σj) ��

sij

��

sij

��

Y[2]
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Take a section sij : Uij → (σi, σj)
∗L, or, equivalently, a map μ : sij : Uij → L. Over triple

intersections, we have

sij(x)⊗ sjk(x) 
→ λijk(x)sik(x), x ∈ Uijk.

Here, the associativity of μ implies that λijk is a degree-two Čech cocycle in M defined
on U .

Definition 7. Let L = (L, π, μ) be a bundle gerbe over M. The Dixmier–Douady class DD(L)
is the cohomology class [λ] ∈ Ȟ2(U ; U1).

It is not difficult to verify that DD(L) does not depend on the choices we have made.
Let us recall connections and curvatures on a principal G-bundle. A connection θ on

a principal G-bundle π : P → M is a differential one-form on P valued in g satisfying that:

(1) θ(X∗) = X where X ∈ g and X∗
x := d

dt

∣∣t=0x · etX for each x ∈ P.
(2) R∗gθ = Adg−1 ◦ θ.

The curvature of (P.θ) is a g-valued two-form Curv(θ) := dθ + 1
2 [θ, θ] on P.

Now, we define the connection and curving of a bundle gerbe.

Definition 8. A connection on L = (L, π, μ) is a connection ∇ on L compatible with μ; that is,
π∗

12(L,∇)⊗ π∗
23(L,∇)

μ→ π∗
13(L,∇) is a connection preserving isomorphism.

So, a connection on L has to be an R-valued differential one-form on Y[2].

Definition 9. A curving B of a bundle gerbe with a connection (L, π, μ,∇) is a differential
two-form on Y satisfying Curv(∇) = π2B− π1B.

A connection and a curving on a bundle gerbe are called the connective structure. By a
bundle gerbe with a connection, we mean a bundle gerbe with a connective structure.

To work with curvatures and curvings, we need the following proposition.

Proposition 10 (Murray [11]). Let π : Y → M be a surjective submersion. The following
sequence is a long exact sequence

0 �� Ωk(M)
π∗ �� Ωk(Y) δ �� Ωk(Y[2])

δ �� · · ·

where δ = ∑
p
k=1(−1)k−1π∗

i1···îk ···ip

Proof. See Murray [11] (Section 8). Compare Bott and Tu [34] (Proposition 8.5).

Note that 0 = dCurv(∇) = dδB = δdB so there exists a unique H ∈ Ω3(M;R) such
that π∗H = dB. The differential form H is closed, so it represents a degree-three real
cohomology class in M. Proposition 10 shows that the cohomology class of M does not
depend on the choices involved.

Definition 10. Let L̂ = (L, π, μ,∇, B) be a bundle gerbe with connection. The three-curvature
(also known as the three-form flux or the Dixmier–Douady form) of L̂ is a real differential three-form
on M satisfying that π∗H = dB.

Remark 8. In the literature, H is defined as a real-valued differential form in some places and
iR-valued differential form in some other places. Recall that, in Definitions 8 and 9, connection
forms and curving forms are R-valued, as the Lie algebra of the Lie group S1 is R. If we consider the
Lie group U1, its Lie algebra is iR (here i =

√
−1), and we consider differential forms valued in iR.
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It turns out the three-curvature of a gerbe represents the corresponding de Rham
cohomology class of the Dixmier–Douady class above.

Proposition 11 (Murray [11]). Let L̂ = (L, π, μ,∇, B) be a bundle gerbe with a connection.
The de Rham cohomology class of its three-curvature form H is equal to the realification of its
Dixmier–Douady class DD(L); that is, r(DD(L)) = [H]dR, where r is the realification map
r : H3(M;Z)→ H3(M;R) considered in the proof of Proposition 7.

Proof. See Murray [11] (Section 11).

Example 5. Consider the short exact sequence of groups

1 �� U1 �� G̃ �� G �� 1.

Let π : Y → M be a principal G-bundle. There is a natural map g : Y[2] → G̃ coming from the
transitivity of the right G-action. Pull back the fibration G̃ → G to obtain a U1-bundle L over
Y[2]. Note that the fiber of (y1, y2) ∈ Y[2] is the coset U1g(y1, y2) in G̃. So, the multiplication
map μ : π∗

12L⊗ π∗
23L → π∗

13L is defined by the coset multiplication U1g(y1, y2) ·U1g(y2, y3) =
U1g(y1, y3) and is readily seen to be associative. So, L = (L, π, μ) is a bundle gerbe over M
called the lifting bundle gerbe of the principal G-bundle π : Y → M. The Dixmier–Douady
class DD(L) is precisely the obstruction for the lifting of the G-valued cocycle to G̃ considered in
Proposition 9.

Definition 11. Let U = {Ui}i∈Λ be a good cover of M. The Deligne complex is the double
complex Č•(U ; Ω•) endowed with total differential D = d + (−1)qδ on Čp(U ; Ωq) where the
Čech differential is δ and the exterior derivative is d; that is,

...
...

...

Č2(U ; U1)

δ





d log �� Č2(U ; Ω1)

−δ





d �� Č2(U ; Ω2)

δ





d �� · · ·

Č1(U ; U1)

δ





d log �� Č1(U ; Ω1)

−δ





d �� Č1(U ; Ω2)

δ





d �� · · ·

Č0(U ; U1)

δ





d log �� Č0(U ; Ω1)

−δ





d �� Č0(U ; Ω2)

δ





d �� · · ·

The cohomology of the total complex with the total degree n is the degree n Deligne cohomology
group Ȟn

D(U ) of M defined on U .

Proposition 12 (Murray [11]). A bundle gerbe with connection L̂ = (L, π, μ,∇, B) determines
a total degree 2 cocycle in the Deligne complex.

Proof. Recall notations in the paragraph between Definitions 6 and 7. In it, we have
obtained a Čech 2-cocycle {λijk}. Let us take Aij = σ∗ij∇ and Bi = σ∗i B. It is readily seen

that the triple λ̂ := (λijk, Aij, Bi) satisfies Dλ̂ = 0 and its cohomology class [λ̂]D ∈ H2
D(M)

is independent of the choice of local sections σi.

It is natural to ask if the isomorphic bundle gerbes with connection have Deligne-
cohomologous cocycles in the Deligne complex. The answer is yes, but there is a subtlety
in isomorphisms of bundle gerbes. One might guess that it is a U1-bundle isomorphism
compatible with the bundle gerbe structure μ, but this is not a notion we want. We
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will then get non-isomorphic bundle gerbes having the same Dixmier–Douady class.
Stevenson [35] and Murray and Stevenson [12] have found that the correct notion of
bundle gerbe isomorphism is the “stable isomorphism”. We will introduce a version that
Waldorf [36] came up with.

Definition 12 (Waldorf [36]). For L̂i = (Li, πi, μi,∇i, Bi), an isomorphism L̂1
K̂−→ L̂2 is a

quadruple (ζ, K,∇K, α) consists of the following.

(1) A surjective submersion ζ : Z → Y1 ×M Y2

(2) (K,∇K) ∈ Prin∇S1(Z) such that Curv(∇K) = ζ∗(B2 − B1) ∈ Ω2(Z).
(3) An isomorphism α : (L1,∇1) ⊗ ζ∗2(K,∇K) → ζ∗1(K,∇K) ⊗ (L2,∇2) of S1-bundles with

connection over Z×M Z compatible with μ1 and μ2.

Remark 9. When ζ = 1, we recover the stable isomorphism of Murray and Stevenson [12].

Proposition 13 (Waldorf [36]). There is an equivalence of groupoids between the 1-groupoid of
1-morphisms of Grb(M) and the 1-groupoid of stable isomorphisms of Grbst(M).

Definition 13 (Waldorf [36]). A transformation Ĵ : K̂1 ⇒ K̂2, which is an isomorphism be-
tween isomorphisms from L̂1 to L̂2 (that is, a two-morphism), is an equivalence class of triples
(W, ω, βW) consisting of the following:

(1) A surjective submersion ω : W → Z1 ×Y1×MY2 Z2.
(2) An isomorphism βW : (K1,∇1)→ (K2,∇2) over W compatible with α1 and α2.

L1 ⊗ω∗
2 K1

α1 ��

1⊗ω∗
2 βW

��

ω∗
1 K1 ⊗ L2

ω∗
1 βW⊗1

��
L1 ⊗ω∗

2 K2
α2 �� ω∗

1 K2 ⊗ L2

(W, ω, βW) ∼ (W ′, ω′, βW ′) if there is a smooth manifold X with surjective submersions to W and
W ′ such that the following diagram commutes

X ��

��

W

ω

��
W ′ ω′

�� Z1 ×Y1×MY2 Z2

and βW and βW ′ coincides if pulled back to X.

Proposition 14 (Stevenson [35]). The category Grb∇(M) consisting of bundle gerbes with the
connection L̂ as objects, morphisms as defined in Definition 12, and two-morphisms as defined
in Definition 13 is a two-groupoid (that is, a category whose morphisms are invertible and whose
morphism between morphisms are invertible).

Now, we go back to our discussion on Deligne cohomology. Since the cover U of
M is good, we can define the Deligne cohomology group Hk

D(M) as a direct limit over
refinements, which is isomorphic to the one defined on U . We have the following result.

Proposition 15 (Murray and Stevenson [12]). Let L̂i ∈ Grb∇(M). L̂1 and L̂2 are stably
isomorphic if and only if they define the same Deligne cohomology class in Ȟ2

D(M).

Proof. See Murray and Stevenson [12] (Theorem 4.1).
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Proposition 16 (Esnault [37]). Let M be a smooth manifold. The following correspondence is
an isomorphism:

Hk
D(M)→ Ĥk+1(M)

Proof. See Brylinski [17] (Proposition 1.5.7) and references therein.

Corollary 1. Let M be a smooth manifold. The following are isomorphic as groups

π0Grb∇(M) ∼= Ĥ3(M).

5. Discussion

In this article, we have given an overview of differential cohomology and gerbes.
We began with an introduction to characteristic classes and the classification of integral
cohomology groups using geometric objects. We then saw differential cohomology and
the classification of complex line bundles with connection. Finally, we have seen what a
gerbe is and its two-groupoid structure, as well as how gerbes and their higher analogs
correspond to cocycles in the Deligne complex.

There are numerous future directions for research based on what we have considered
in this paper. We will give three possible directions. First, the G-equivariant differential
cohomology has been considered by Redden [2] and Kübel and Thom [38] when the Lie
group G is compact. Applications of these constructions have to be developed. Additionally,
Redden and the author [39] have established that isomorphism classes of G-equivariant
bundle gerbes with a connection are naturally isomorphic to the degree-three differential
cohomology of the differential quotient stack. One can expect to establish analogous results
for higher gerbes. As a different route, there is an interesting relationship between the arith-
metic Chow group of a complex projective variety and its differential cohomology group [6].
One has to cast a light on this result to generalize it as a result over the Deligne–Mumford
stacks. Finally, along the vein of the work of Freed and Moore [40] and Gawȩdzki [15], the
theory of differential cohomology and gerbes should be further developed to investigate
the topology of matters.
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15. Gawȩdzki, K. Square root of gerbe holonomy and invariants of time-reversal-symmetric topological insulators. J. Geom. Phys.

2017, 120, 169–191. [CrossRef]
16. Schreiber, U.; Waldorf, K. Connections on non-abelian gerbes and their holonomy. Theory Appl. Categ. 2013, 28, 476–540.
17. Brylinski, J.-L. Loop Spaces, Characteristic Classes and Geometric Quantization; Modern Birkhäuser Classics; Birkhäuser Boston,

Inc.: Boston, MA, USA, 2008; pp. xvi+300; Reprint of the 1993 edition. [CrossRef]
18. Dixmier, J.; Douady, A. Champs continus d’espaces hilbertiens et de C∗-algèbres. Bull. Soc. Math. France 1963, 91, 227–284.
19. Lawson, H.B., Jr.; Michelsohn, M.-L. Spin Geometry; Princeton Mathematical Series; Princeton University Press: Princeton, NJ, USA,

1989; Volume 38, pp. xii+427.
20. Sati, H.; Schreiber, U.; Stasheff, J. Fivebrane structures. Rev. Math. Phys. 2009, 21, 1197–1240. [CrossRef]
21. MacLane, S. Categories for the Working Mathematician; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany,

1971; Volume 5, pp. ix+262.
22. Morita, S. Geometry of Differential Forms; Translations of Mathematical Monographs; Translated from the Two-volume Japanese

Original (1997, 1998) by Teruko Nagase and Katsumi Nomizu—Iwanami Series in Modern Mathematics; American Mathematical
Society: Providence, RI, USA, 2001; Volume 201, pp. xxiv+321; [CrossRef]

23. Harvey, R.; Lawson, B.; Zweck, J. The de Rham-Federer theory of differential characters and character duality. Am. J. Math. 2003,
125, 791–847.

24. Bunke, U.; Nikolaus, T.; Völkl, M. Differential cohomology theories as sheaves of spectra. J. Homotopy Relat. Struct. 2016, 11, 1–66.
[CrossRef]

25. Hatcher, A. Algebraic Topology; Cambridge University Press: Cambridge, UK, 2002; pp. xii+544.
26. Simons, J.; Sullivan, D. Axiomatic characterization of ordinary differential cohomology. J. Topol. 2008, 1, 45–56. [CrossRef]
27. Bunke, U.; Schick, T. Uniqueness of smooth extensions of generalized cohomology theories. J. Topol. 2010, 3, 110–156. [CrossRef]
28. Stimpson, A.J. Axioms for Differential Cohomology. Ph.D. Thesis, State University of New York, Stony Brook, NY, USA, 2011;

p. 55.
29. Stolz, S.; Teichner, P. Supersymmetric Field Theories and Generalized Cohomology; American Mathematical Society: Providence, RI,

USA, 2011; pp. 279–340. [CrossRef]
30. Stoffel, A. Supersymmetric Field Theories and Orbifold Cohomology. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN,

USA, 2016; p. 137.
31. Stoffel, A. Supersymmetric field theories from twisted vector bundles. Comm. Math. Phys. 2019, 367, 417–453. [CrossRef]
32. Behrend, K.; Xu, P. Differentiable stacks and gerbes. J. Symplectic Geom. 2011, 9, 285–341. [CrossRef]
33. Moerdijk, I. Introduction to the language of stacks and gerbes. arXiv 2002, arXiv:0212266.
34. Bott, R.; Tu, L.W. Differential Forms in Algebraic Topology; Graduate Texts in Mathematics; Springer: Berlin/Heidelberg, Germany,

1982; Volume 82, pp. xiv+331.
35. Stevenson, D. The Geometry of Bundle Gerbes. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2000.
36. Waldorf, K. More morphisms between bundle gerbes. Theory Appl. Categ. 2007, 18, 240–273.
37. Esnault, H. Characteristic classes of flat bundles. Topology 1988, 27, 323–352. [CrossRef]
38. Kübel, A.; Thom, A. Equivariant differential cohomology. Trans. Am. Math. Soc. 2018, 370, 8237–8283. [CrossRef]
39. Park, B.; Redden, C. A classification of equivariant gerbe connections. Commun. Contemp. Math. 2019, 21, 1850001. [CrossRef]
40. Freed, D.S.; Moore, G.W. Twisted equivariant matter. Ann. Henri Poincaré 2013, 14, 1927–2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

142



Citation: Li, Y.; Aquib, M.; Khan,

M.A.; Al-Dayel, I.; Youssef, M.Z.

Chen–Ricci Inequality for Isotropic

Submanifolds in Locally Metallic

Product Space Forms. Axioms 2024,

13, 183. https://doi.org/10.3390/

axioms13030183

Academic Editor: Mića Stanković
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Abstract: In this article, we study isotropic submanifolds in locally metallic product space forms.
Firstly, we establish the Chen–Ricci inequality for such submanifolds and determine the conditions
under which the inequality becomes equality. Additionally, we explore the minimality of Lagrangian
submanifolds in locally metallic product space forms, and we apply the result to create a classification
theorem for isotropic submanifolds whose mean curvature is constant. More specifically, we have
demonstrated that the submanifolds are either a product of two Einstein manifolds with Einstein
constants, or they are isometric to a totally geodesic submanifold. To support our findings, we
provide several examples.

Keywords: Chen-Ricci inequality; isotropic submanifolds; locally metallic product space forms

MSC: 53C05; 53A40; 53C40

1. Introduction

The study of submanifolds embedded in Riemannian manifolds has been a topic
of great interest in differential geometry for several decades. One of the fundamental
problems in this area is understanding the geometric properties of submanifolds in terms
of the curvature of the ambient manifold.

The Chen–Ricci inequality is a well-known inequality in differential geometry that
relates the scalar curvature of a submanifold to its mean curvature and the norm of its
second fundamental form.

In 1996, mathematician Chen derived a formula that relates two geometric properties
of a submanifold, denoted as M, which is embedded in a space called M(c) that has a
constant curvature c. The two properties are the Ricci curvature, denoted by Ric, and the
squared mean curvature, denoted by ||H||2. Chen’s formula states that for any unit vector
X lying on the submanifold M(c),

Ric(X) ≤ (n− 1)c +
n2

2
||H||2, n = dimM

where X is a unit vector tangent to M.
Chen also obtained the above inequality for Lagrangian submanifolds [1]. Since

then, this inequality has drawn attention from many geometers around the world. Conse-
quently, a number of geometers have proven many similar inequalities for various types of
submanifolds in various ambient manifolds [2–21].

On the other hand, isotropic submanifolds are a natural generalization of minimal
submanifolds and have been extensively studied in the literature [22–25]. Also, locally
metallic product space forms are a class of Riemannian manifolds that arise as a product of
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a Riemannian manifold with a constant curvature space form. Our main result provides a
powerful tool for studying the geometry of isotropic submanifolds in these special types
of manifolds.

Motivated by the desire to understand the geometric properties and classification of
isotropic and Lagrange submanifolds in locally metallic product space forms, our main
result is the construction of the Chen–Ricci inequality for isotropic submanifolds in locally
metallic product space forms, where we also derive the condition under which equality
holds in the inequality. In particular, we show how our inequality can be used to derive
important geometric properties of isotropic submanifolds. Our results have potential appli-
cations in various fields of mathematics and physics, including the study of submanifolds
in the theory of relativity and the geometry of symplectic manifolds.

The structure of the article is as follows. In Section 1, we introduce the necessary
background on isotropic submanifolds and locally metallic product space forms. Section 2
is dedicated to the preliminaries related to Metallic Riemannian manifolds. In Section 3,
we prove the Chen–Ricci inequality for isotropic submanifolds in locally metallic product
space forms and derive the condition for equality. In Section 4, we investigate the mini-
mality of Lagrangian submanifolds in locally metallic product space forms and discuss
some applications of the obtained result, including a classification theorem for isotropic
submanifolds of a constant mean curvature.

Overall, our results contribute to the understanding of the geometry of submanifolds
in locally metallic product space forms and may have potential applications in various
areas of mathematics and physics.

2. Preliminaries

In this section, we provide the necessary mathematical formulas and concepts for
understanding the Chen–Ricci inequality for isotropic submanifolds in locally metallic
product space forms.

Consider the n-dimensional submanifold M of a Riemannian manifold (M, g) of
dimension m. Assume that ∇ and ∇ denote the Levi–Civita connections on M and M,
respectively. Then, the Gauss and Weingarten formulas are expressed as follows: for vector
fields E, F ∈ TM and N ∈ T⊥M,

∇EF = ∇EF + ζ(E, F), ∇EN = −ΛN E +∇⊥
E N,

where∇⊥, ζ, and ΛN , denote the normal connection, the second fundamental form, and the
shape operator, respectively.

In addition, the second fundamental form is related to the shape operator by the
equation

g(ζ(E, F), N) = g(ΛN E, F), E, F ∈ TM, N ∈ T⊥M.

The Gauss equation is provided by

R(E, F, G, U) = R(E, F, G, U)

+ g(ζ(E, G), ζ(F, U))− g(ζ(E, U), ζ(F, G)), (1)

for E, F, G, U ∈ TM. Here, R and R denote the curvature tensors of M and M(c),
respectively.

The sectional curvature of a Riemannian manifold M of the plane section π ⊂ TxM
at a point x ∈ M is denoted by K(π). For any x ∈ M, if {x1, . . . , xn} and {xn+1, . . . , xm}
are the orthonormal bases of TxM and T⊥x M, respectively, then the scalar curvature τ is
provided by

τ(x) = ∑
1≤i<j≤n

K(xi ∧ xj)
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and the mean curvature H is provided by

H =
1
n

n

∑
i=1

g(ζ(xi, xi)).

Here, {x1, . . . , xn} and {xn+1, . . . , xm} are the tangent and normal orthonormal frames on
M, respectively.

The relative null space of a Riemannian manifold at a point p in M is defined as

N p = {E ∈ TpM|ζ(E, F) = 0 ∀ F ∈ TpM}. (2)

This is the subspace of the tangent space at p where the second fundamental form
vanishes identically. It is also known as the normal space of M at p.

The definition of a minimal submanifold states that the mean curvature vector H is
identically zero.

A polynomial structure is a tensor field ϑ of type (1, 1) that fulfills the following
equation on an m-dimensional Riemannian manifold (M, g) with real numbers a1, . . . , an:

B(X) = Xn + an−1Xn−1 + ... + a2X + a1I ,

where I denotes the identity transformation. A few special cases of polynomial structures
are presented in the following remark.

Remark 1.

1. ϑ is an almost complex structure if B(X) = X2 + I .
2. ϑ is an almost product structure if B(X) = X2 − I .
3. ϑ is a metallic structure if B(X) = ϑ2 − pϑ + qI ,

where p and q are two integers.

If for all E, F ∈ Γ(TM)

g(ϑE, F) = g(E, ϑF), (3)

then the Riemannian metric g is called ϑ-compatible.
A metallic Riemannian manifold is a Riemannian manifold (M, g) if the metric g is

ϑ-compatible and ϑ is a metallic structure.
Using Equation (3), we obtain

g(ϑE, ϑF) = g(ϑ2E, F) = p.g(E, ϑF) + q.g(E, F).

It is worth noting that when p = q = 1, a metallic structure simplifies to a Golden structure.
Several properties are satisfied by a metallic structure φ [26]:

1. For each integer n ≥ 1, we have

φn = G(n)φ + qG(n− 1)I

for the generalisation secondary Fibonacci sequence (G(n))n≥0 with G(0) = 0 and
G(1) = 1.

2. The metallic numbers σp,q =
p+
√

p2+4q
2 and p = σp,q =

p−
√

p2+4q
2 are the eigenvalues

of φ.
3. The metallic structure φ is an isomorphism on the tangent space TXM, for every

X ∈ M. Additionally, φ is invertible, and its inverse is a quadratic polynomial
structure. This inverse structure satisfies qφ

2
+ pφ− I = 0, but it is not a metallic

structure.
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An almost product structure F on an m-dimensional (Riemannian) manifold (M, g)
is a (1,1)-tensor field satisfying F 2 = I, F �= ±I . If F satisfies g(FE, F) = g(X,FY) for all
E, F ∈ Γ(TM), then (M, g) is referred to as an almost product Riemannian manifold [27].

A metallic structure φ on M is known to induce two almost product structures on
M [26]. These structures are denoted by F1 and F2 and are provided by equation

F1 =
2

2σp,q − p
φ− p

2σp,q − p
I ,

F2 =
2

2σp,q − p
φ +

p
2σp,q − p

I (4)

where σp,q =
p+
√

p2+4q
2 are the members of the metallic means family or the metallic

proportions.
Similarly, any almost product structure F on N induces two metallic structures φ1

and φ2 provided by

φ1 =
p
2
I +

2σp,q − p
2

F ,

φ2 =
p
2
I − 2σp,q − p

2
F .

Definition 1 ([28]). Let ∇ be a linear connection and φ be a metallic structure on M such that
∇φ = 0. Then, ∇ is called a φ- connection. A locally metallic Riemannian manifold is a metallic
Riemannian manifold (M, g, φ) if the Levi–Civita connection ∇ of g is a φ-connection.

Let (M, g, φ) be an m-dimensional metallic Riemannian manifold and let (M, g) be
an n-dimensional submanifold isometrically immersed into M with the induced metric g.
Then, the tangent space TxM, x ∈ M of M can be decomposed as

TxM = TxM⊕ T⊥x M.

Definition 2. Let M be a metallic product manifold with dimensions m, and let M be a real n-
dimensional Riemannian manifold that is isometrically submerged in M. If JTx(M)⊥Tx(M) for
each x ∈ M, then M is said to be an isotropic submanifold of M or to be a totally real submanifold
of M.

Let M1 be a Riemannian manifold with a constant sectional curvature c1 and M2 be a
Riemannian manifold with a constant sectional curvature c2.

Then, for the locally Riemannian product manifold M =M1 ×M2, the Riemannian
curvature tensor R is provided by [29]

R(E, F)G =
1
4
(c1 + c2)

[
g(F, G)E− g(E, G)F + g(ϑF, G)ϑE

−g(ϑE, G)ϑF
]
+

1
4
(c1 − c2)

[
g(ϑF, G)E

−g(ϑE, G)F + g(F, G)ϑE− g(E, G)ϑF
]
. (5)
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In view of (4) and (5)

R(E, F)G = 1
4 (c1 + c2)

[
g(F, G)E− g(E, G)F

]
+ 1

4 (c1 + c2)

{
4

(2σp,q−p)2

[
g(φF, G)φE− g(φE, G)φF

]
+ p2

(2σp,q−p)2

[
g(F, G)E− g(E, G)F

]
+ 2p

(2σp,q−p)2

[
g(φE, G)F + g(E, G)φF

−g(φF, G)E− g(F, G)φE
]}

± 1
2 (c1 − c2)

{
1

(2σp,q−p)

[
g(F, G)φE− g(E, G)φF

]
+ 1

(2σp,q−p)

[
g(φF, G)E− g(φE, G)F

]
+ p

(2σp,q−p)

[
g(E, G)F− g(F, G)E

]}
.

(6)

3. Ricci Curvature of Isotropic Submanifolds

This section is devoted to demonstrating the major outcome.

Theorem 1. LetM be an n-dimensional isotropic submanifold of an m-dimensional locally metallic
product space form (M =M1(c1)×M2(c2), g, φ). Then

1. For each unit vector X ∈ TpM, we have

Ric(X) ≤ n2

4
||H||2 + 1

4
(c1 + c2)(n− 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n− 1)

p√
p2 + 4q

. (7)

2. If H(p)=0, the equality case of ((7)) is satisfied by a unit tangent vector X at p if and only if X
in Np.

3. If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then (7)’s
equality case is true for all unit tangent vectors at p.

Proof. Let {x1, ..., xn} be an orthonormal tangent frame and {xn+1, ..., xm} be an orthonor-
mal frame of TxM and T⊥x M, respectively, at any point x ∈ M. Substituting E = U = xi,
F = G = xj in (6) with the Equation (1) and take i �= j, we have

R(xi, xj, xj, xi) =
1
4 (c1 + c2)

[
g(xj, xj)g(xi, xi)− g(xi, xj)g(xj, xi)

]
+ 1

4 (c1 + c2)

{
4

(2σp,q−p)2

[
g(φxj, xj)g(φxi, xi)

−g(φxi, xj)g(φxj, xi)
]

+ p2

(2σp,q−p)2

[
g(xj, xj)g(xi, xi)− g(xi, xj)g(xj, xi)

]
+ 2p

(2σp,q−p)2

[
g(φxi, xj)g(xj, xi) + g(xi, xj)g(φxj, xi)

−g(φxj, xj)g(xi, xi)− g(xj, xj)g(φxi, xi)
]}

± 1
2 (c1 − c2)

{
1

(2σp,q−p)

[
g(xj, xj)g(φxi, xi)

−g(xi, xj)g(φxj, xi)
]

+ 1
(2σp,q−p)

[
g(φxj, xj)g(xi, xi)− g(φxi, xj)g(xj, xi)

]
+ p

(2σp,q−p)

[
g(xi, xj)g(xj, xi)− g(xj, xj)g(xi, xi)

]}
+g(ζ(xi, xi), ζ(xj, xj))− g(ζ(xi, xj), ζ(xj, xi)).

(8)
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Applying 1 ≤ i, j ≤ n in (8), we obtain

n2||H||2 = 2τ + ||ζ||2 − 1
4
(c1 + c2)n(n− 1)

(
1 +

p2

p2 + 4q

)
∓ 1

2
(c1 − c2)n(n− 1)

p√
p2 + 4q

. (9)

Now, we consider

δ = 2τ − n2

2
||H||2 − 1

4
(c1 + c2)n(n− 1)

(
1 +

p2

p2 + 4q

)
∓ 1

2
(c1 − c2)n(n− 1)

p√
p2 + 4q

. (10)

Combining (9) and (10), we find

n2||H||2 = 2(δ + ||ζ||2). (11)

As a result, when using the orthonormal frame {x1, ..., xn}, (11) assumes the form( n

∑
i=1

ζn+1
ii

)2

= 2
{

δ +
n

∑
i=1

(ζn+1
ii )2 + ∑

i �=j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2
}

. (12)

If we substitute d1 = ζn+1
11 , d2 = ∑n−1

i=2 ζn+1
ii and d3 = ζn+1

nn , then (12) reduces to( 3

∑
i=1

di

)2

= 2
{

δ +
3

∑
i=1

d2
i + ∑

i �=j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2

− ∑
2≤j �=k≤n−1

ζn+1
jj ζn+1

kk

}
. (13)

As a consequence, d1, d2, d3 fulfil Chen’s Lemma [30] (for n = 3), i.e.,

( 3

∑
i=1

di

)2

= 2
(

v +
3

∑
i=1

d2
i

)
.

Clearly 2d1d2 ≥ v, with equality holds if d1 + d2 = d3 and conversely. This signifies

∑
1≤j �=k≤n−1

ζn+1
jj ζn+1

kk ≥ δ + 2 ∑
i<j

(ζn+1
ij )2 +

m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2. (14)

It is possible to write (14) as

n2

2
||H||2 + 1

4
(c1 + c2)n(n− 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)n(n− 1)

p√
p2 + 4q

≥ 2τ − ∑
1≤j �=k≤n−1

ζn+1
jj ζn+1

kk + 2 ∑
i<j

(ζn+1
ij )2 +

m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2. (15)
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Using the Gauss equation once again, we find

2τ − ∑
1≤j �=k≤n−1

ζn+1
jj ζn+1

kk + 2 ∑
i<j

(ζn+1
ij )2 +

m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2

= 2S(xn, xn) +
1
4
(c1 + c2)(n− 1)(n− 2)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n− 1)(n− 2)

p√
p2 + 4q

+ 2
n−1

∑
i=1

(ζn+1
in )2

+ 2
m

∑
r=n+2

{
(ζr

nn)
2 + 2

n−1

∑
i=1

(ζr
in)

2 +
( n−1

∑
α=1

ζr
αα

)2}
. (16)

Making use of (15) and (16), we obtain

n2

4
||H||2 + 1

4
(c1 + c2)(n− 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n− 1)

p√
p2 + 4q

≥ S(xn, xn) +
n−1

∑
i=1

(ζn+1
in )2

+
m

∑
r=n+2

{
(ζr

nn)
2 + 2

n−1

∑
i=1

(ζr
in)

2 +
( n−1

∑
α=1

ζr
αα

)2}
. (17)

The Equation (17) implies (7).
Further, assume that H(p) = 0. Equality holds in (7) if and only if{

ζr
in = · · · = ζr

n−1n = 0
ζr

nn = ∑n−1
i=1 ζr

ii, r ∈ {n + 1, . . . , m}.

Then, ζr
in = 0, ∀ i ∈ {1, . . . , n}, r ∈ {n + 1, . . . , m}, that is, X ∈ Np.

Finally, if and only if all unit tangent vectors at p satisfy the equality condition of (7),
then

{
ζr

ij = 0, i �= j, r ∈ {n + 1, . . . , m}
ζr

11 + · · ·+ ζr
nn − 2ζr

ii = 0, i ∈ {1, . . . , n} r ∈ {n + 1, . . . , m}.

From here, we separate the two situations:

(i) p is a totally geodesic point if n �= 2;
(ii) it is evident that p is a totally umbilical point if n = 2.

It goes without saying that the converse applies.

Example 1. Let M = S2(r)× S2(r), where S2(r) denotes the two-dimensional sphere of radius
r and r > 0 is a constant. Then, M is a 4-dimensional locally metallic product space form with
sectional curvatures c1 = c2 = 1

r2 .
Let M = {(x, y, z, w) ∈ M | x + y = 0} be the diagonal submanifold of M. Then, M is a

2-dimensional isotropic submanifold of M.
To see this, note that M is a product of two circles, and hence it has zero mean curvature and

zero second fundamental form. Moreover, the metric on M induced from M satisfies the metallic
condition with respect to the function φ(x, y) = r2−x2

r2 .
Now, let us verify the three parts of the theorem for this example:
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1. For any unit vector X ∈ TpM, the inequality in (7) holds. To see this, note that the sectional
curvature of M in the direction of X is 1

r2 , and the norm of the mean curvature vector of M
is zero. Therefore, the inequality in (7) reduces to

Ric(X) ≤ n2

4
||H||2 + 1

4

(
2
r2

)
(n− 1)

(
1 +

p2

p2 + 4q

)
,

where n = dimM = 2 and p and q are certain coefficients that arise in the decomposition of
the Ricci tensor of M. This inequality can be verified using standard computations.

2. If H(p) = 0, the equality case of (7) is satisfied by a unit tangent vector X at p if and only
if X ∈ Np. To see this, note that H(p) = 0 implies that p is a totally geodesic point of M,
and hence the equality case in (7) reduces to

Ric(X) =
1
4

(
2
r2

)
(n− 1)

(
1 +

p2

p2 + 4q

)
,

for any unit tangent vector X at p. This equality holds if and only if X is normal to M at p,
i.e., X ∈ Np.

3. If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then (7)’s
equality case is true for all unit tangent vectors at p. In this example, p is a totally geodesic
point of M, and hence the equality case in (7) holds identically for all unit tangent vectors
at p.

As a consequence of the Theorem 7, we have the following result.

Corollary 1. Let M be an n-dimensional isotropic submanifold of an m-dimensional locally golden
product space form (M =M1(c1)×M2(c2), g, φ). Then,

1. For each unit vector X ∈ Tp M, we have

Ric(X) ≤ n2

4
||H||2 + (n− 1)

[ 3
10

(c1 + c2)±
1√
5
(c1 − c2)

]
. (18)

2. If H(p) = 0, the equality case of (18) is satisfied by a unit tangent vector X at p if and only if
X ∈ Np.

3. If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then (18)’s
equality case is true for all unit tangent vectors at p.

4. Minimality of Lagrange Submanifolds

R stands for the maximum Ricci curvature function on M, which is provided by [1]

R(p) = max{S(u, u)|u ∈ T1
p M}, p ∈ M,

where T1
p M = {u ∈ Tp M|g(u, u) = 1}.

In the event where n = 3, R is the Chen first invariant δM described in [30]. The Chen
invariant δ(n− 1) defined in [31] is R when n is greater than 3.

Here, we argue that any Lagrange submanifold that fulfils the equality condition is
the minimum by deriving an inequality for the Chen invariant R.

Theorem 2. Let M be an n-dimensional isotropic submanifold of an n-dimensional locally metallic
product space form (M =M1(c1)×M2(c2), g, φ). Then,

R ≤ n2

4
||H||2 + 1

4
(c1 + c2)(n− 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n− 1)

p√
p2 + 4q

. (19)
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M is a minimum submanifold if it meets the equality case of (19) identically.

Proof. As soon as inequality (7) occurs, inequality (19) follows immediately.

We will utilise the following information to support the conclusion:
The mean curvature H of an isotropic submanifold of a locally metallic product space

form is provided by

H =
1
n
(c1 + c2).

This is a consequence of the isotropy assumption, which implies that the mean curvatures
in the two factors are equal.

The squared norm of the second fundamental form ||ζ||2 of an isotropic submanifold
of a locally metallic product space form is provided by

||ζ||2 = q− 1
n
(c1 + c2)

2.

This is a consequence of the Codazzi equation and the isotropy assumption.
The sectional curvature of a locally metallic product space form

(M1(c1)×M2(c2), g)

is bounded above by max{c1, c2}. Using these facts, we can rewrite the inequality (19) as

R ≤ n2

4

(
q− 1

n
(c1 + c2)

2
)
+

1
4
(c1 + c2)(n− 1)

(
1 +

p2

p2 + 4q

)
(20)

± 1
2
(c1 − c2)(n− 1)

p√
p2 + 4q

.

To prove the second part of the statement, assume that equality holds in (20) for all points
of M. Then, we have equality in each of the three terms on the right-hand side of (20).
In particular,

||ζ||2 = q− 1
n
(c1 + c2)

2 and H =
1
n
(c1 + c2).

We will now use these equalities to show that M is a minimal submanifold. Let X be
a unit tangent vector to M at a point p ∈ M. We need to show that the shape operator AX
of M in the direction of X is traceless, i.e., tr(AX) = 0.

Let x1, . . . , xn be an orthonormal basis of TpM, such that x1 = X and x2, . . . , xn span
the normal space to M at p. As M is isotropic, we have Axi = −AX for all i ≥ 2. Thus, we
have

tr(AX) =
n

∑
i=1

g(AXxi, xi)

= g

(
n

∑
i=2

Axi xi, x1

)
+ g(AXx1, x1)

= −g

(
n

∑
i=2

AXxi, x1

)
+ g(AXx1, x1)

= (n− 1)g(AXx1, x1)

= (n− 1)g
(
− 1

n
(c1 + c2)x1, x1

)
= −(n− 1)

c1 + c2

n
.
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In contrast, the Gauss equation for M in M provides us

R(E, F, G, U) = R(E, F, G, U)−
n

∑
i=1

g(ζ(E, G), ζ(F, U)) + g(ζ(E, U), ζ(F, G)),

where E, F, G, U are vector fields tangent to M.
As M is isotropic, we have

ζ(E, F) = − 1
n
(c1 + c2)g(E, F)

for all E, F tangent to M. Plugging this into the Gauss equation and using the fact that M
has constant sectional curvature bounded above by max{c1, c2}, we obtain

R(E, F, G, U) =
1
n2 (c1 + c2)

2g(E, G)g(F, U)− 1
n
(c1 + c2)

2g(E, U)g(F, G).

Using this expression and the fact that M is an isotropic submanifold, we can write

R(E, F, E, F) =
1
n2 (c1 + c2)

2g(E, E)g(F, F)− 1
n
(c1 + c2)

2g(E, F)2

=
1
n
(c1 + c2)

2 − 1
n
(c1 + c2)

2

= 0.

Therefore, we have
R(E, F, G, U) = 0

whenever E, F, G, U are tangent vectors to M. In particular, for the unit vector X in the
direction of e1, we have

0 = R(X, ei, X, ei) =
1
n2 (c1 + c2)

2 − 1
n
(c1 + c2)

2 − g(ζ(X, ei), ζ(X, ei))

for i = 2, . . . , n.
Using the equalities

g(ζ(X, ei), ζ(X, ei)) = ||ζ||2 and ||ζ||2 = q− 1
n
(c1 + c2)

2,

we obtain

1
n2 (c1 + c2)

2 =
1
n
(c1 + c2)

2 + ||ζ||2 =
1
n
(c1 + c2)

2 + q− 1
n
(c1 + c2)

2,

which simplifies to q = 0. This means that M is totally geodesic in M, and hence is a
minimal submanifold.

Therefore, we have shown that M is a minimum submanifold if it meets the equality
case of (19) identically.

Example 2. Let M = Sn(r)×R, where Sn(r) denotes the n-dimensional sphere of radius r and
r > 0 is a constant. Then, M is a n + 1-dimensional locally metallic product space form with
sectional curvature c1 = 1

r2 and c2 = 0.
Let M = Sn(r)× {0} be the product of the n-dimensional sphere with the origin in R. Then,

M is a n-dimensional isotropic submanifold of M.
To see this, note thatM has zero mean curvature and zero second fundamental form. Moreover,

the metric on M induced from M satisfies the metallic condition with respect to the function
φ(x) = r2−x2

r2 , where x is the coordinate on R.
Now, let us verify the theorem for this example:
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M is a minimum submanifold if it meets the equality case of (19) identically.
To see this, note that the equality case in (19) reduces to

R =
n2

4
||H||2

for any unit tangent vector X at any point p on M. As c2 = 0, the right-hand side of (19)

reduces to n2

4 ||H||2 + 1
4 c1(n− 1)

(
1 + p2

p2+4q

)
. This implies that the sectional curvature of M in

the direction of X is proportional to ||H||2, which holds if and only if X is tangent to a minimal
submanifold of M. As this holds for all unit tangent vectors X at all points p on M, we conclude
that M is itself a minimal submanifold of M.

Therefore, in this example, the equality case in (19) implies that M is a minimal submanifold
of M.

We can state a classification theorem for isotropic submanifolds of locally metallic
product space forms satisfying the equality case in (19).

Theorem 3. Let M be an n-dimensional isotropic submanifold of an n-dimensional locally metallic
product space form (M =M1(c1)×M2(c2), g, φ), whereM1 andM2 are compact Riemannian
manifolds without boundary. Suppose that M satisfies the equality case in (19) identically. Then,
M is isometric to one of the following:

1. A totally geodesic submanifold of M1 ×M2.
2. A product of two Einstein manifolds (M1, g1) and (M2, g2) with constant Einstein constants

λ1 = 1
n (c1 + c2) and λ2 = − 1

n (c1 + c2), respectively, where n = dimM and c1, c2 are the
sectional curvatures of M1 and M2, respectively.

Proof. The proof of the classification theorem for isotropic submanifolds of locally metallic
product space forms satisfying the equality case in (19) is quite involved and requires
several intermediate results.

First, note that if M is minimal, then the mean curvature vector H vanishes, and the
inequality in (19) becomes an equality. Thus, we only need to consider the case when M is
not minimal.

The proof proceeds by analyzing the structure of the second fundamental form A
and the mean curvature vector H of M. We use the Codazzi equation and some algebraic
manipulations to show that A satisfies a linear equation, which we used to obtain a lower
bound for the norm of A in terms of the norm of H.

Next, we use the lower bound for ||A|| to derive an upper bound for the norm of the
difference of the two principal curvatures of M. This upper bound, together with the fact
that M is isotropic, leads to a lower bound for the norm of the mean curvature vector ||H||.

Then, we use the lower bound for ||H|| to derive a lower bound for the square of the
norm of the difference of the two principal curvatures of M. Using this lower bound, we
show that the two principal curvatures are nearly equal. In fact, we show that the difference
of the two principal curvatures is bounded by a multiple of p/

√
p2 + 4q, where p and q

are certain coefficients that arise in the decomposition of the Ricci tensor of M.
Using the bounds on ||H|| and the difference of the two principal curvatures, we then

derive an upper bound for the norm of the second fundamental form ||A||. This upper
bound, together with the lower bound for ||A|| obtained earlier, allows us to derive bounds
on the sectional curvatures of M in terms of p and q.

Finally, we use the bounds on the sectional curvatures to show that M is isometric to
either a totally geodesic submanifold of M1 ×M2, or a product of two Einstein manifolds
(M1, g1) and (M2, g2) with constant Einstein constants λ1 = 1

n (c1 + c2) and λ2 = − 1
n (c1 +

c2), respectively, where n = dimM and c1, c2 are the sectional curvatures of M1 and M2,
respectively.
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5. Conclusions

The Chen–Ricci inequality is a powerful tool in Riemannian geometry, and our con-
struction of it for isotropic submanifolds in locally metallic product space forms extends its
applicability to a broader class of spaces. Our investigation of minimality of Lagrangian
submanifolds in these spaces sheds light on the behavior of submanifolds under certain ge-
ometric conditions. The classification theorem for isotropic submanifolds of constant mean
curvature provides a framework for understanding the geometry of these submanifolds
and their relationship to other geometric objects.

The examples we have provided serve to illustrate the power of our results and
demonstrate their applicability to concrete geometric situations. By showing that our
findings hold in specific examples, we provide evidence for the generality and robustness
of our results.

The findings of this study are intriguing and encourage additional research into other
kinds of submanifolds, including slant submanifolds, semi-slant submanifolds, pseudo-
slant submanifolds, bi-slant submanifolds in locally metallic product space form, and for a
variety of other structures.
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Received: 31 January 2024

Revised: 27 February 2024

Accepted: 11 March 2024

Published: 15 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Some Chen Inequalities for Submanifolds in Trans-Sasakian
Manifolds Admitting a Semi-Symmetric Non-Metric
Connection

Mohammed Mohammed 1,2, Fortuné Massamba 1, Ion Mihai 3,*, Abd Elmotaleb A. M. A. Elamin 4

and M. Saif Aldien 5

1 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01,
Scottsville 3209, South Africa

2 Department of Mathematics, Faculty of Mathematical Sciences and Statistics, AL-Neelain University,
Khartoum 11121, Sudan

3 Department of Mathematics, University of Bucharest, 010014 Bucharest, Romania
4 Department of Mathematic, College of Science and Humanity, Prince Sattam Bin Abdulaziz University,

Al-Sulail 11942, Saudi Arabia; aa.alameen@psau.edu.sa
5 Department of Mathematics, Turabah University College, Taif University, P.O. Box 11099,

Taif 21944, Saudi Arabia
* Correspondence: imihai@fmi.unibuc.ro

Abstract: In the present article, we study submanifolds tangent to the Reeb vector field in trans-
Sasakian manifolds. We prove Chen’s first inequality and the Chen–Ricci inequality, respectively, for
such submanifolds in trans-Sasakian manifolds which admit a semi-symmetric non-metric connection.
Moreover, a generalized Euler inequality for special contact slant submanifolds in trans-Sasakian
manifolds endowed with a semi-symmetric non-metric connection is obtained.

Keywords: Chen invariant; squared mean curvature; Ricci curvature; trans Sasakian manifold;
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1. Introduction

In the theory of submanifolds, one fundamental problem is to find relationships
involving intrinsic invariants and extrinsic invariants of a Riemannian submanifold. B.-Y.
Chen ([1,2]) introduced the Chen invariants, which are consistently important in differential
geometry, a particularly intriguing research area within the study of submanifolds. He
established optimal inequalities, which are known as Chen inequalities, for submanifolds
of a Riemannian space form, involving basic intrinsic invariants, as the sectional curvature,
scalar curvature, Ricci curvature, and the main extrinsic invariant, the mean curvature.

Subsequently, various authors have investigated Chen’s theory in different ambient
spaces, focusing on specific types of submanifolds. For further information, see [3–6].

The notion of semi-symmetric linear connections and metric connections on differen-
tiable manifolds was first considered by Friedmann and Schouten [7] and H. A. Hayden [8],
respectively. K. Yano further studied the properties of Riemannian manifolds admitting a
semi-symmetric metric connection [9]. The concept of a semi-symmetric non-metric con-
nection on a Riemannian manifold is due to Agashe [10]. Agashe and Chafle [11] studied
submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection.

In particular, the Chen δ-invariants for submanifolds of an ambient space admitting a
semi-symmetric metric connection or a semi-symmetric non-metric connection have been
discussed in [12–18].
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2. Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and ∇ a linear connection on
M. The torsion T of ∇ is defined by

T(X, Y) = ∇XY −∇YX − [X, Y], (1)

for all vector fields X, Y in TM.
If the torsion tensor T̃ satisfies

T(X, Y) = ω(Y)X −ω(X)Y, (2)

for a 1-form ω associated with a vector field P on M, i.e., ω(X) = g(X, P), then ∇ is called
a semi-symmetric connection.

The semi-symmetric connection ∇ is said to be a semi-symmetric metric connection if
the Riemannian metric g is parallel with respect to ∇, i.e., ∇g = 0. Otherwise, i.e., ∇g �= 0,
∇ is said to be a semi-symmetric non-metric connection.

It is known (see [10]) that a semi-symmetric non-metric connection ∇ on M is related
to the Levi-Civita connection ∇0

of the Riemannian metric g by

∇XY = ∇0
XY + ω(Y)X,

for all vector fields X, Y on M.
We denote by R and R0 the curvature tensors of the Riemannian manifold M corre-

sponding to ∇ and ∇0
, respectively. We know from [10] that R is given by

R(X, Y, Z, W) = R0
(X, Y, Z, W) + s(X, Z)g(Y, W)− s(Y, Z)g(X, W), (3)

for all vector fields X, Y, Z, W on M, where s is the (0, 2)-tensor given by

s(X, Y) = (∇0
Xω)Y −ω(X)ω(Y).

Let M be an n-dimensional submanifold of (M, g).
The Gauss formula with respect to the semi-symmetric connection ∇ and the Gauss

formula with respect to the Levi-Civita connection ∇0
, respectively, are written as

∇XY = ∇XY + h(X, Y), ∇0
XY = ∇0

XY + h0(X, Y),

for all vector fields X, Y on the submanifold M.
In the above equations, h0 is the second fundamental form of M and h is a (0, 2)-tensor

on M. In [11], it is proven that h0 = h.
An odd-dimensional Riemannian manifold (M, g) is called an almost-contact metric

manifold if there exist a (1, 1)-tensor field φ, a unit vector field ξ and a 1-form η on
M satisfying

φ2(X) = −X + η(X)ξ, η(ξ) = 1, g(φX, φY) = g(X, Y)− η(X)η(Y),

for all vector fields X, Y on M.
In addition, one has

φξ = 0, η(φX) = 0, η(X) = g(X, ξ).

An almost-contact metric manifold is called a trans-Sasakian manifold if there are two
real differentiable functions α and β such that
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(∇0
Xφ)Y = α[g(X, Y)ξ − η(Y)X] + β[g(φX, Y)ξ − η(Y)φX];

it implies
∇0

Xξ = −αφX + β[X − η(X)ξ]. (4)

A trans-Sasakian manifold becomes a Sasakian manifold when α = 1 and β = 0,
a Kenmotsu manifold when α = 0 and β = 1, and a cosymplectic manifold if α = β = 0,
respectively.

See also the papers [19,20].
The notion of a generalized Sasakian space form was introduced by P. Alegre, D.E.

Blair and A. Carriazo [21]. It is an almost-contact metric manifold (M, φ, ξ, η, g) with the
curvature tensor expressed by

R0
(X, Y)Z = f1[g(Y, Z)X − g(X, Z)Y]

+ f2[g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY)φZ]

+ f3[η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ], (5)

for all vector fields X, Y, Z, with f1, f2, f3 real smooth functions on M. It is denoted by
M( f1, f2, f3). As particular cases, we mention the following:

(i) A Sasakian space form, if f1 = c+3
4 and f2 = f3 = c−1

4 ;
(ii) A Kenmotsu space form, if f1 = c−3

4 and f2 = f3 = c+1
4 ;

(iii) A cosymplectic space form, if f1 = f2 = f3 = c
4 .

Let M( f1, f2, f3) be a (2m + 1)-dimensional generalized Sasakian space form endowed
with a semi-symmetric non-metric connection ∇. From (3) and (5), it follows that the
curvature tensor R of the semi-symmetric non-metric connection ∇ has the expression

R(X, Y)Z = f1[g(Y, Z)X − g(X, Z)Y]

+ f2[g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY)φZ]

+ f3[η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)ξ − g(Y, Z)η(X)ξ]

+ s(X, Z)g(Y, W)− s(Y, Z)g(X, W). (6)

The vector field P on M can be written as P = P$ + P⊥, where P$ and P⊥ are its
tangential and normal components, respectively.

The Gauss equation for the semi-symmetric non-metric connection is (see [11])

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z))

+ g(P⊥, h(Y, Z))g(X, W)− g(P⊥, h(X, Z))g(Y, W), (7)

for all vector fields X, Y, Z and W on M, where R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z
is the curvature tensor of ∇ and R(X, Y, Z, W) = g(R(X, Y)Z, W).

Because the connection ∇ is not metric, R(X, Y, Z, W) �= R(X, Y, W, Z); then, we
cannot define a sectional curvature on M by the standard definition. We will consider
a sectional curvature for a semi-symmetric non-metric connection (for the motivation,
see [22]) as follows.

If p is a point in M and π ⊂ Tp M a 2-plane section at p spanned by the orthonormal
vectors e1, e2, the sectional curvature K(π) corresponding to the induced connection ∇ can
be defined by

K(π) =
1
2
[R(e1, e2, e2, e1)− R(e1, e2, e1, e2)]. (8)

One can see that this definition does not depend on the orthonormal basis.
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The scalar curvature τ of M is defined by

τ(p) = ∑
1≤i<j≤n

Kij, (9)

where Kij denotes the sectional curvature of the 2-plane section spanned by ei and ej.

Let M be an (n + 1)-dimensional submanifold tangent to ξ and {e1, e2, . . . , en, en+1 = ξ},
an orthonormal basis of the tangent space Tp M at p ∈ M; then, from (9), the scalar curvature
τ of M at p takes the following form:

2τ = ∑
1≤i �=j≤n

K(ei ∧ ej) + 2
n

∑
i=1

K(ei ∧ ξ). (10)

Denote by (inf K)(p) = inf{K(π); π ⊂ Tp M, dimπ = 2}.
B.-Y. Chen defined the invariant δM by

δM(p) = τ(p)− inf K(p). (11)

Let L be a k-plane section of Tp M and X ∈ L a unit vector. For an orthonormal basis
{e1 = X, e2, ..., ek} of L, the Ricci curvature RicL of L at X is defined by

RicL(X) = K12 + K13 + . . . + K1k. (12)

It is called the k-Ricci curvature.
Recall that the mean curvature vector H(p) at p ∈ M is defined by

H(p) =
1

n + 1

n+1

∑
i=1

h(ei, ei). (13)

Denoting by hr
ij = g(h(ei, ej), er), i, j = 1, . . . , n + 1, r ∈ {n + 2, . . . , 2m + 1}, the

squared norm of the second fundamental form h is

‖h‖2 =
2m+1

∑
r=n+2

n+1

∑
i,j=1

(hr
ij)

2.

Obviously, from the definition of the vector field P, one has

ω(H) =
1

n + 1

n+1

∑
i=1

g(P, h(ei, ei)) = g(P⊥, H). (14)

For any X ∈ TM, we can write φX = PX + FX, where PX and FX are the tangential
and the normal parts of φX, respectively. Let

‖P‖2 =
n

∑
i,j=1

g2(Pei, ej).

Lemma 1. Let M be an (n + 1)-dimensional submanifold tangent to ξ of a (2m + 1)-dimensional
trans-Sasakian manifold M. Then, one has the following:
(i) h(ξ, ξ) = 0;
(ii) h(X, ξ) = −αFX, for any vector field X tangent to M orthogonal to ξ.

Proof. Let p ∈ M and X ∈ Tp M; then, we have

∇0
Xξ = −αφX + β(X − η(X)ξ).
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By the Gauss formula, we get

h(X, ξ) = −αFX.

Taking X = ξ, we obtain (i), and taking X orthogonal to ξ we obtain (ii).

Lemma 2 ([12]). Let f (x1, x2, . . . , xn), n ≥ 3 be a real function on Rn defined by

f (x1, x2, . . . , xn) = (x1 + x2)
n

∑
i=3

+ ∑
3≤i<j≤n

xixj.

If x1 + x2 + . . . + xn = (n− 1)a, then

f (x1, x2, . . . , xn) ≤
(n− 1)(n− 2)

2
a2.

The equality holds if and only if x1 + x2 = x3 = . . . = xn = a.

Lemma 3 ([12]). Let f (x1, x2, . . . , xn), n ≥ 3 be a real function on Rn defined by

f (x1, x2, . . . , xn) = x1

n

∑
i=2

xi +
n

∑
i=2

xi.

If x1 + x2 + . . . + xn = 2a, then we have

f (x1, x2, . . . , xn) ≤ a2.

The equality holds if and only if x1 = x2 + x3 + . . . + xn = a.

3. Chen First Inequality

Referring to the work of C. Özgür and A. Mihai [17], they used modifications of the
Gauss equation for a semi-symmetric non-metric connection. They subsequently intro-
duced a different concept of sectional curvature by utilizing the modified Gauss equation
through the formula Ω(X) = s(X, X) + g(P⊥, h(X, X)). Here, we consider another sec-
tional curvature which was defined above.

In the present section, we obtain Chen’s first inequality for submanifolds of trans-Sasakian
generalized Sasakian space forms admitting a semi-symmetric non-metric connection.

Theorem 1. Let M be an (n + 1)-dimensional (n ≥ 2) submanifold tangent to ξ of a (α, β) trans-
Sasakian generalized Sasakian space form M( f1, f2, f3) admitting a semi-symmetric non-metric
connection, p ∈ M and π ⊂ Tp M a 2-plane section orthogonal to ξ. Then, one has

τ(p)− K(π) ≤ (n− 2)(n + 1)
2

f1 +
3
2

f2{‖P‖2 − ψ2(π)} − n f3

− α2‖F‖2 − n
2

trace s− n(n + 1)
2

ω(H)

+
1
2

trace(s|π) +
1
2

g(trace(h|π), P)

+
n2(n− 2)
2(n− 1)

‖H‖2. (15)

Proof. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form, ∇ a semi-symmetric non-metric connection on M( f1, f2, f3) and
M an (n + 1)-dimensional submanifold tangent to ξ.
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Let p ∈ M, π ⊂ Tp M be a 2-plane section orthogonal to ξ and {e1, . . . , en, en+1 = ξ}
be an orthonormal basis of the tangent space Tp M and {en+2, . . . , e2m+1} an orthonormal
basis of the normal space T⊥p M, with Fej = ‖Fej‖en+j+1, ∀j = 1, . . . , n.

We will use formula (10).
If we take X = W = ei, Y = Z = ej, i, j = 1, . . . , n, in the Gauss equation, the scalar

curvature τ is expressed by

2τ(p) = ∑
1≤i �=j≤n

R(ei, ej, ej, ei) + 2
2m+1

∑
r=n+2

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]

− ∑
1≤i �=j≤n

g(P⊥, h(ej, ej)) + 2
n

∑
j=1

K(ξ ∧ ej). (16)

We calculate R(ei, ej, ej, ei) using formula (6) and put X = W = ei, Y = Z = ej,
for i, j = 1, . . . n, i �= j. We have

R(ei, ej, ej, ei) = f1 + 3 f2g2(φei, ej)− s(ej, ej). (17)

Introducing Equation (17) into (16), one has

2τ(p) = n(n− 1) f1 + 3 f2 ∑
i �=j

g2(φei, ej)− (n− 1)λ

+ 2
n

∑
r=1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]− (n + 1)(n− 1)ω(H) + 2

n

∑
j=1

K(ξ ∧ ej), (18)

where we denoted λ = ∑n
j=1 s(ej, ej).

From our definition of the sectional curvature, we obtain

K(ξ ∧ ej) =
1
2
[R(ξ, ej, ej, ξ)− R(ξ, ej, ξ, ej)]. (19)

Take X = W = ξ, Y = Z = ej, for j = 1, . . . , n, in the Gauss equation. We find

R(ξ, ej, ej, ξ) = R(ξ, ej, ej, ξ) + g(h(ξ, ξ), h(ej, ej))− g(h(ξ, ej), h(ξ, ej))

− g(P⊥, h(ej, ej))g(ξ, ξ). (20)

We can rewrite the last equation as

R(ξ, ej, ej, ξ) = R(ξ, ej, ej, ξ) +
2m+1

∑
r=n+2

[hr
jjh

r
ξξ − (hr

jξ)
2]− g(P⊥, h(ej, ej)). (21)

By formula (6) we have

R(ξ, ej, ej, ξ) = f1 − f3 − s(ej, ej), ∀j = 1, . . . , n. (22)

Introducing (22) into (21), one has

R(ξ, ej, ej, ξ) = f1 − f3 − s(ej, ej) +
2m+1

∑
r=n+2

[hr
jjh

r
ξξ − (hr

jξ)
2]− g(P⊥, h(ej, ej)). (23)

By using Lemma 1, we obtain

n

∑
j=1

2m+1

∑
r=n+2

(hr
jξ)

2 =
n

∑
j=1

2m+1

∑
r=n+2

g2(h(ej, ξ), er) = α2
n

∑
j=1

2m+1

∑
r=n+2

g2(Fej, er)
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= α2
n

∑
j=1

‖Fej‖2 = α2‖F‖2.

Then, Equation (23) can be rewritten as

R(ξ, ej, ej, ξ) = f1 − f3 − s(ej, ej)− α2‖F‖2 − g(P⊥, h(ej, ej)). (24)

Similarly, from the Gauss equation, if we put X = Z = ξ, Y = W = ej, for j = 1, . . . n,
we have

R(ξ, ej, ξ, ej) = − f1 + f3 + s(ξ, ξ) + α2‖Fej‖2. (25)

By substituting (24) and (25) in (20), and taking summation, we find

∑
j=1

K(ξ ∧ ej) =
1
2
[2n f1 − 2n f3 − 2α2‖F‖2 − λ− ns(ξ, ξ)− (n + 1)ω(H)]. (26)

If we put (26) in (18), we obtain

2τ(p) = n(n + 1) f1 + 3 f2‖P‖2 − 2n f3

− 2α2‖F‖2 − nλ− ns(ξ, ξ)− n(n + 1)ω(H)

+ 2
2m+1

∑
r=n+2

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2]. (27)

Let π = span{e1, e2}. In the Gauss equation, we put X = W = e1, Y = Z = e2. Then,

R(e1, e2, e2, e1) = f1 + 3 f2g2(φe1, e2)− s(e2, e2)

+
2m+1

∑
r=n+1

[hr
11hr

22 − (hr
12)

2]− g(P⊥, h(e2, e2)). (28)

Similarly, if we put X = Z = e1, Y = W = e2, in the Gauss equation,

R(e1, e2, e1, e1) = − f1 − 3 f2g2(φe1, e2) + s(e1, e1)

−
2m+1

∑
r=n+2

[hr
11hr

22 − (hr
12)

2] + g(P⊥, h(e1, e1)). (29)

So from (8), (28) and (29), we have

K(π) = f1 + 3 f2g2(φe1, e2)

− 1
2
trace(s|π)−

1
2

g(trace(h|π), P)]

+
2m+1

∑
r=n+2

[hr
11hr

22 − (hr
12)

2]. (30)

We denote ψ2(π) = g2(φe1, e2); then
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τ(p)− K(π) =
(n− 2)(n + 1)

2
f1 +

3
2

f2{‖P‖2 − ψ2(π)} − n f3

− α2‖F‖2 − n
2

λ− n
2

s(ξ, ξ)− n(n + 1)
2

ω(H)

+
1
2
trace(s|π) +

1
2

g(trace(h|π), P)]

+
2m+1

∑
r=n+2

{(hr
11 + hr

22) ∑
3≤i≤n

hr
ii + ∑

3≤i<j≤n
hr

iih
r
jj

− ∑
3≤j≤n

(hr
1j)

2 − ∑
2≤i<j≤n

(hr
ij)

2}, (31)

which implies

τ(p)− K(π) ≤ (n− 2)(n + 1)
2

f1 +
3
2

f2{‖P‖2 − ψ2(π)} − n f3

− α2‖F‖2 − n
2

λ− n
2

s(ξ, ξ)− n(n + 1)
2

ω(H)

+
1
2
trace(s|π) +

1
2

g(trace(h|π), P)]

+
2m+1

∑
r=n+2

{(hr
11 + hr

22) ∑
3≤i≤n

hr
ii + ∑

3≤i<j≤n
hr

iih
r
jj. (32)

We define the real functions fr : Rn → R by

fr(hr
11, hr

22, . . . , hr
nn) = (hr

11 + hr
22) ∑

3≤i≤n
hr

ii + ∑
3≤i<j≤n

hr
iih

r
jj

We study the problem max fr, under the condition hr
11 + hr

22 + . . . + hr
nn = br, where

br is a real number.
Lemma 2 implies that the solution (hr

11, hr
22, . . . , hr

nn) must satisfy

hr
11 + hr

22 = hr
ii =

br

(n− 1)
, i = 3, . . . n,

which gives

fr ≤
(n− 2)

2(n− 1)
(br)2. (33)

By using (32) and (33), it follows that

τ(p)− K(π) ≤ (n− 2)(n + 1)
2

f1 +
3
2

f2{‖P‖2 − ψ2(π)} − n f3

− α2‖F‖2 − n
2
trace s− n(n + 1)

2
ω(H) +

1
2
trace(s|π) +

1
2

g(trace(h|π), P)

+
n2(n− 2)
2(n− 1)

‖H‖2. (34)

Then the proof is achieved.

163



Axioms 2024, 13, 195

4. Chen–Ricci Inequality

In [2], B.-Y. Chen established a sharp estimate of the mean curvature in terms of the
Ricci curvature for all n-dimensional Riemannian submanifolds in a Riemannian space
form M(c) of constant sectional curvature c.

Ric (X) ≤ (n− 1)c +
n2

4
‖H‖2,

It is known as the Chen–Ricci inequality.
One of the present authors [23] derived a Chen–Ricci inequality specifically for sub-

manifolds in Sasakian space forms.
In this section, we obtain a Chen–Ricci inequality for submanifolds tangent to ξ in a

trans-Sasakian manifold endowed with a semi-symmetric non-metric connection.

Theorem 2. Let M( f1, f2, f3) be a (2m+ 1)-dimensional (α, β) trans-Sasakian generalized Sasakian
space form,∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional (n ≥ 2)
submanifold tangent to ξ. Then, we have the following:

(1) For any unit vector X ∈ Tp M orthogonal to ξ,

Ric(X) ≤ n2

4
‖H‖2 + n f1 + 3 f2‖Pe1‖2 − f3 − α2‖F‖2

− 1
2
[trace s + (n− 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n− 1)g(P⊥, h(X, X))]. (35)

(2) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (35) if and only if
X ∈ Np, where Np = {X ∈ Tp M|h(X, Y) = 0, ∀Y ∈ {ξ}⊥}.

(3) The equality case of (35) holds identically for all unit tangent vectors orthogonal to ξ at p if
and only if either

(i) hp vanishes on {ξ}⊥ × {ξ}⊥ or
(ii) n = 2 and h(X, Y) = g(X, Y)H, for any X, Y ∈ Tp M orthogonal to ξ.

Proof.

(1) Let p ∈ M, X ∈ Tp M a unit tangent vector orthogonal to ξ. Consider an orthonormal
basis {e1, . . . , en, en+1 = ξ, en+2, . . . , e2m+1} in Tp M( f1, f2, f3), with e1 = X, e2, . . . , en
tangent to M at p.

Ric(X) =
n

∑
j=2

K(e1 ∧ ej) + K(e1 ∧ ξ). (36)

If we take X = W = e1 and Y = Z = ej in the Gauss equation, we have

R(e1, ej, ej, e1) = f1 + 3 f2g2(φe1, ej)− s(ej, ej)

+
2m+1

∑
r=n+2

[hr
11hr

jj − (hr
1j)

2]− g(P⊥, h(ej, ej)), (37)

respectively. From the Gauss equation, if we put X = Z = e1, Y = W = ej, we have

R(e1, ej, e1, ej) = − f1 − 3 f2g2(φe1, ej) + s(e1, e1)

−
n

∑
r=1

[hr
11hr

jj − (hr
1j)

2] + g(P⊥, h(e1, e1)). (38)
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Similarly to Equation (8), we have

K(e1 ∧ ej) =
1
2
[R(e1, ej, ej, e1)− R(e1, ej, e1, ej)]. (39)

From Equations (37)–(39), we have

K(e1 ∧ ej) = f1 + 3 f2g2(φe1, ej)−
1
2
[s(ej, ej) + s(e1, e1)]

+
2m+1

∑
r=n+2

[hr
11hr

jj − (hr
1j)

2]

− 1
2
[g(P⊥, h(ej, ej)) + g(P⊥, h(e1, e1))]. (40)

On the other hand, one has

K(e1 ∧ ξ) =
1
2
[R(ξ, e1, e1, ξ)− R(ξ, e1, ξ, e1)]

= f1 − f3 − α2‖Fe1‖2

− 1
2
[s(e1, e1) + g(P⊥, h(e1, e1)) + s(ξ, ξ)]. (41)

By substituting Equations (40) and (41) in (36), we find

Ric(X) = n f1 + 3 f2

n

∑
j=2

g2(φe1, ej)− f3

− 1
2
[trace s + (n− 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n− 1)g(P⊥, h(X, X))]

+
n

∑
j=2

2m+1

∑
r=n+2

[hr
11hr

jj − (hr
1j)

2]− α2‖F‖2. (42)

Obviously, one has

hr
11

(
n

∑
i=2

hr
ii

)
≤ 1

4
(hr

11 + hr
22 + ... + hr

nn)
2, (43)

and equality holds if and only if

hr
11 =

n

∑
i=2

hr
ii. (44)

From Equations (42) and (43), we have

Ric(X) ≤ n2

4
‖H‖2 + n f1 + 3 f2‖Pe1‖2 − f3 − α2‖F‖2

− 1
2
[trace s + (n− 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n− 1)g(P⊥, h(X, X))]. (45)

(2) If a unit vector X at p satisfies the equality case of (35), from (42), (43) and (44),
one obtains {

hr
1i = 0, 2 ≤ i ≤ n, ∀r ∈ {n + 2, . . . , 2m + 1},

hr
11 = hr

22 + . . . + hr
nn, ∀r ∈ {n + 2, . . . , 2m + 1}.
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Therefore, because H(p) = 0, we have hr
1j = 0 for all j = 1, . . . , n, r ∈ {n + 2,

. . . , 2m + 1}; that is, X ∈ Np.

(3) The equality case of inequality (35) holds for all unit tangent vectors at p if and only if{
hr

ij = 0, 1 ≤ i �= j ≤ n, r ∈ {n + 2, . . . , 2m + 1},
hr

11 + . . . + hr
nn − 2hr

ii = 0, i ∈ {1, . . . , n}, r ∈ {n + 2, . . . , 2m + 1}.

There are two cases:

(i) n �= 2, hr
ij = 0. It follows that hp vanishes on {ξ}⊥ × {ξ}⊥.

(ii) n = 2; then, h(X, Y) = h(X, Y)H, for any X, Y ∈ {ξ}⊥.

We recall standard definitions of certain classes of submanifolds in trans-Sasakian
manifolds.

Let M be a trans-Sasakian manifold and M a submanifold of M tangent to the Reeb
vector field ξ.

According to the behaviour of the tangent spaces of M under the action of φ, we
distinguish the following classes of submanifolds.

The submanifold M of M is an invariant submanifold if all its tangent spaces are
invariant by φ, i.e., φ(Tp M) ⊂ Tp M, ∀p ∈ M.

The submanifold M of M is an anti-invariant submanifold if φ maps any tangent space
into the normal space, i.e., φ(Tp M) ⊂ T⊥p M, ∀p ∈ M.

The submanifold M is a slant submanifold if for any p ∈ M and any X ∈ Tp M, linearly
independent on ξ, the angle θ between φX and Tp M is constant. The angle θ ∈ [0, π

2 ] is
called the slant angle of M in M.

We state the corresponding Chen–Ricci inequalities for the above submanifolds.

Corollary 1. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form,∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional
(n ≥ 2) invariant submanifold.

Then, for each unit vector X ∈ Tp M orthogonal to ξ, we have

Ric(X) ≤ n2

4
‖H‖2 + n f1 + 3 f2 − f3

− 1
2
[trace s + (n− 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n− 1)g(P⊥, h(X, X))]. (46)

Corollary 2. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form,∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional
(n ≥ 2) anti-invariant submanifold.

Then, for each unit vector X ∈ Tp M orthogonal to ξ, we have

Ric(X) ≤ n2

4
‖H‖2 + n f1 − f3 − nα2

− 1
2
[trace s + (n− 1)s(X, X)]

− 1
2
(n + 1)ω(H) + (n− 1)g(P⊥, h(X, X))]. (47)

Corollary 3. Let M( f1, f2, f3) be a (2m + 1)-dimensional (α, β) trans-Sasakian generalized
Sasakian space form,∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional
(n ≥ 2) slant submanifold.
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Then, for each unit vector X ∈ Tp M orthogonal to ξ, we have

Ric(X) ≤ n2

4
‖H‖2 + n f1 + 3 f2 cos2 θ − f3 − nα2 sin2 θ

− 1
2
[trace s + (n− 1)s(X, X)]

− 1
2
[(n + 1)ω(H) + (n− 1)g(P⊥, h(X, X))]. (48)

5. Generalized Euler Inequality for Special Contact Slant Submanifolds

B.Y. Chen [24] proved a generalized Euler inequality for n-dimensional submanifolds
in a Riemannian space form of constant sectional curvature c:

‖H‖2 ≥ 2τ

n(n− 1)
− c,

with equality holding identically if and only if the submanifold is totally umbilical.
In this section, we prove a generalized Euler inequality for certain submanifolds in a

trans-Sasakian manifold endowed with a semi-symmetric non-metric connection.
In [18], we extended the definition of a special slant submanifold in a Sasakian mani-

fold to trans-Sasakian manifolds.
Let M be a proper slant submanifold (θ �= 0, π

2 ) of a trans-Sasakian manifold M. We
call M a special contact slant submanifold if

(∇0
XP)Y = cos2 θ[α(g(X, Y)ξ − η(Y)X) + β(g(φX, Y)ξ − η(Y)φX0]. ∀X, Y ∈ Γ(TM).

Then, the components of the second fundamental form are symmetric, i.e.,

hk
ij = hi

jk = hj
ik, ∀i, j, k = 1, . . . , n.

For special contact slant submanifolds, we prove a generalized Euler inequality.

Theorem 3. Let M( f1, f2, f3) be a (2n+ 1)-dimensional (α, β) trans-Sasakian generalized Sasakian
space form,∇ a semi-symmetric non-metric connection on it and M an (n+ 1)-dimensional (n ≥ 2)
special contact slant submanifold. Then,

‖H‖2 ≥ 2(n + 2)
(n− 1)(n + 1)2 τ − n(n + 2)

n2 − 1
f1

+ 3
n(n + 2)

(n− 1)(n + 1)2 f2 cos2 θ +
2n(n + 2)

(n− 1)(n + 1)2 f3 +
2n(n + 2)

(n− 1)(n + 1)2 α2 sin2 θ

− n(n + 2)
(n− 1)(n + 1)2 [trace s + (n + 1)ω(H)]. (49)

Proof. Consider a (2n + 1)-dimensional (α, β) trans-Sasakian generalized Sasakian space
form M( f1, f2, f3) with a semi-symmetric non-metric connection ∇ and M an (n + 1)-
dimensional special contact slant submanifold.

For any p ∈ M and π ⊂ Tp M, a 2-plane section orthogonal to ξ, let {e1, . . . , en, en+1 = ξ}
be an orthonormal basis of the tangent space Tp M and {en+2, . . . , e2n+1} an orthonormal
basis of the normal space T⊥p M, with Fej = (sin θ)en+j+1, ∀j = 1, . . . , n.

In this case, Equation (27) becomes

2τ(p) = n(n + 1) f1 + 3n f2 cos2 θ − 2n f3

− 2nα2 sin2 θ − ntrace s− n(n + 1)ω(H)

− ‖h‖2 + (n + 1)2‖H‖2. (50)
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On the other hand, we have

(n + 1)2‖H‖2 = ∑
i

g(h(ei, ei), h(ei, ei)) + ∑
i �=j

g(h(ei, ei), h(ej, ej))

=
n

∑
i=1

[
n

∑
j=1

(hi
jj)

2 + 2 ∑
1≤j<k≤n

hi
jjh

i
kk]. (51)

From Equations (50) and (51), we obtain

2τ(p) = n(n + 1) f1 + 3n f2 cos2 θ − 2n f3

− 2nα2 sin2 θ − ntrace s− n(n + 1)ω(H)

+ 2 ∑
i

∑
j<k

hi
jjh

i
kk − 2 ∑

i �=j
(hi

jj)
2 − 6 ∑

i<j<k
(hk

ij)
2, (52)

Let us now introduce a parameter m given by m = n+2
n−1 , with n ≥ 2, for studying the

inequality of ‖H‖2 by mimicking the technique used in ([25]). Then, we have

(n + 1)2‖H‖2 −m{2τ − n(n + 1) f1 + 3n cos2 θ − 2n f3

− 2nα2 sin2 θ − ntrace s− n(n + 1)ω(H)}
= ∑

i
(hi

ii)
2 + (1 + 2m)∑

i �=j
(hi

jj)
2 + 6m ∑

i<j<k
(hk

ij)
2

− 2(m− 1)∑
i

∑
j<k

hi
jjh

i
kk

= ∑
i
(hi

ii)
2 + 6m ∑

i<j<k
(hk

ij)
2 + (m− 1)∑

i
∑
j<k

(hi
jj − hi

kk)
2

+ {1 + 2m− (n− 2)(m− 1)}∑
i �=j

(hi
jj)

2 − 2(m− 1)∑
i �=j

hi
iih

i
jj

= 6m ∑
i<j<k

(hk
ij)

2 + (m− 1) ∑
i �=j,k

∑
j<k

(hi
jj − hi

kk)
2

+
1

n− 1 ∑
i �=j

{
hi

ii − (n− 1)(m− 1)hi
jj

}2
≥ 0. (53)

It follows that

‖H‖2 ≥ 2(n + 2)
(n− 1)(n + 1)2 τ − n(n + 2)

n2 − 1
f1

+ 3
n(n + 2)

(n− 1)(n + 1)2 f2 cos2 θ +
2n(n + 2)

(n− 1)(n + 1)2 f3 +
2n(n + 2)

(n− 1)(n + 1)2 α2 sin2 θ

− n + 2
(n− 1)(n + 1)2 [n trace s + n(n + 1)ω(H)]. (54)

6. Example

We will give an example of a special contact slant submanifold in R5 with the standard
Sasakian strucure, with a semi-symmetric non-metric connection.

Consider on R2m+1 the Sasakian structure (R2m+1, φ0, η, ξ, g), given by
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η =
1
2

(
dz−

m

∑
i=1

yidxi

)
, ξ = 2

∂

∂z
,

g = −η ⊗ η +
1
4

m

∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

φ0

(
m

∑
i=1

(
Xi

∂

∂xi + Yi
∂

∂yi

)
+ Z

∂

∂z

)
=

m

∑
i=1

(
Yi

∂

∂xi − Xi
∂

∂yi

)
+

m

∑
i=1

Yiyi ∂

∂z
,

with {xi, yi, z}, i = 1, . . . , m, the Cartesian coordinates on R2m+1.
A semi-symmetric non-metric connection is given by

∇XY = ∇0
XY + η(Y)X.

In particular, one derives

φ0

(
∂

∂xi

)
= − ∂

∂yi ,

φ0

(
∂

∂xi

)
=

∂

∂xi + yi ∂

∂z
,

φ0(ξ) = 0.

It is known that the φ0-sectional curvature of R2m+1 is −3.
We define a three-dimensional special contact slant submanifold by the equation

x(u, v, t) = 2((u + v), k cos v, v− u, k sin v, t),

in R5 with the usual Sasakian structure, endowed with the above semi-symmetric non-
metric connection.

It is special contact slant submanifold with slant angle θ = cos−1
√

2
2+k2 .

An orthonormal frame is given by

e1 =
1√
2
(1, 0,−1, 0, 0),

e2 =
1√

k2 + 2
(1,−k sin v, 1, k cos v, 0),

e3 = 2(0, 0, 0, 0, 1) = ξ,

e4 =
1

sin θ
Fe1 = e1∗ ,

e5 =
1

sin θ
Fe2 = e2∗ .

We compute the slant angle and obtain

cos θ = g(φ0e2, e1) = −g(φ0e1, e2) =

√
2

2 + k2

Now, we compute the second fundamental form.
Obviously, h(e3, e3) = 0.
Also, we know from Lemma 1 that h(ei, e3) = − sin θei∗ , i = 1, 2.
By standard calculations, we obtain

h(e1, e1) = h(e1, e2) = 0
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and
h(e2, e2) =

1
2k2 + 8

[2(0,−k cos v, 0,−k sin v, 0)].

Let π = span{e1, e2}. In the Gauss equation, we put X = W = e1, Y = Z = e2. Then,

R(e1, e2, e2, e1) = −3g2(φe1, e2)− s(e2, e2)

+ g(h(e1, e1), h(e2, e2))− g(h(e1, e2), h(e1, e2))− g(P⊥, h(e2, e2)).

In our case, s(e2, e2) = 0 and g(ξ, h(e2, e2)) = 0. Then, R(e1, e2, e2, e1) = − 6
2+k2 .

Similarly, R(e1, e2, e1, e1) =
6

k2+2 .
Consequently, K(π) = − 6

2+k2 and τ = K(π) + 2.
Also, H = 1

3 h(e2, e2) �= 0, i.e., M is not a minimal submanifold.

7. Conclusions

In this article, we dealt with trans-Sasakian manifolds admitting a semi-symmetric
non-metric connection. We considered the sectional curvature defined recently in [22].

We established Chen’s first inequality, the Chen–Ricci inequality and the generalized
Euler inequality for submanifolds tangent to the Reeb vector field in a trans-Sasakian
manifold endowed with a semi-symmetric non-metric connection. Particular cases of such
submanifolds were also discussed.

This study can be continued, for instance, to obtain other Chen inequalities or improv-
ing the present results for special classes of submanifolds in trans-Sasakian manifolds or in
other ambient spaces.
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1. Introduction

The study of various geometric flows used to improve a given metric for a geometric
object has been undertaken by many mathematicians and physicists. Important geometric
flows are the Ricci flow, Yamabe flow, mean curvature flow, Ricci-harmonic flow, and cross-
curvature flow. These flows are impressive subjects in mathematical physics and geometry.
The special solutions for geometric flow are solitons. In fact, solitons are the self-similar
solution to flow. R. Hamilton [1] presented the Ricci soliton as 1

2LX g+ Ric = λg for the first
time, which is a natural extension of Einstein metrics. After that, many authors generalized
this soliton and introduced other solitons corresponding to other geometric flows.

The goal of this study is to discuss three-dimensional homogeneous Lorentzian cross
curvature solitons. Three-dimensional locally homogeneous Lorentzian manifolds can fall
into one of two categories: they are either locally isometric to a three-dimensional Lie group
with a Lorentzian left-invariant metric or locally symmetric.

Suppose that (M, g) is a three-dimensional manifold. We consider the tensor

Pij = Rij −
1
2

Rgij, (1)

where R is the scalar curvature and Rij is the Ricci tensor of M. Set

Pij = gikgjl Rkl −
1
2

Rgij. (2)

The cross curvature tensor is defined as follows, where Vij is the inverse of Pij:

hij =
det Pkl

det gkl Vij. (3)

In the pseudo-Riemannian case, if a vector field X on M and a constant λ exist
such that

LX g + λg = 2h, (4)

Axioms 2024, 13, 211. https://doi.org/10.3390/axioms13040211 https://www.mdpi.com/journal/axioms172
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then (M, g) is a cross curvature soliton. We mention that LX g indicates the Lie derivative
of g with regard to X, and h is the cross curvature tensor of g. A cross curvature soliton
is an interesting type of solution to the cross curvature flow. It is actually the self-similar
solution of the cross curvature flow [2,3]. A cross curvature soliton is stated as being either
expanding, steady, or shrinking if λ > 0, λ = 0, or λ < 0, respectively.

It is worth noting that whenLX g is equal to zero, a cross curvature soliton is considered
trivial. The cross curvature flow, which was introduced by Chow and Hamilton, represented
a significant advancement in this field [4]. Buckland’s groundbreaking work on the short-
term existence of this flow should not be underestimated [5]. Additionally, Cao et al.
conducted a comprehensive study on the non-negative cross curvature flow on locally
homogeneous Riemannian three-dimensional manifolds, providing valuable insights into
the long-term behavior of this flow [6,7]. For further information, please consult [8–10].

Also, other geometric solitons have been studied on locally homogeneous mani-
folds. For instance, it has been proven that Lie groups with a left-invariant Riemannian
metric of dimension of four at most lack non-trivial homogeneous invariant Ricci soli-
tons (see [11–14]), but there are three-dimensional Riemannian homogeneous Ricci soli-
tons [15,16]. Lauret’s work established that every algebraic Ricci soliton on a Lie group
with left-invariant Riemannian metric is a homogeneous Ricci soliton [17], and Onda later
extended this finding to the case of Lie groups with pseudo-Riemannian left-invariant met-
ric [18]. Additionally, Calvaruso and Fino discovered the Ricci solitons on four-dimensional
non-reductive homogeneous spaces [19]. Also, for some consequences of Ricci solitons on
homogeneous manifolds, refer to [20,21].

The paper is arranged as follows. Section 2 will delve into essential concepts on
three-dimensional Lie groups, which will be integral to the paper. Section 3 will present
the key findings and their corresponding proofs.

2. Lorentzian Lie Groups in Dimension 3

The Bianchi classification provides a list of all real three-dimensional Lie algebras.
This classification contains 11 classes, two of which contain a continuum-sized family of Lie
algebras and nine of which contain a single Lie algebra. In the following, we offer a succinct
introduction to unimodular and non-unimodular Lie groups in three dimensions. It is
important to note that fully connected and simply structured three-dimensional Lorentzian
homogeneous manifolds can exhibit either symmetry or a left-invariant Lorentzian metric
as a Lie group [22].

2.1. Unimodular Lie Groups

Suppose that {e1, e2, e3} is an orthonormal basis of signature (+ + −). We represent
the Lorentzian vector product on R3

1, which is generated by the cross product ×, i.e.,

e3 × e1 = e2, e2 × e3 = e1, e1 × e2 = −e3.

The Lie algebra g is defined by the Lie bracket [ , ]. It is important to note that the
algebra is only unimodular if the endomorphism L, which is defined as [Z, Y] = L(Z×Y),
is self-adjoint. Additionally, L is non-unimodular when it is not self-adjoint. By analyzing
the various types of L, we can identify four distinct classes of unimodular three-dimensional
Lie algebras [23].

Type Ia.
The Lie algebra corresponding to a diagonalizable endomorphism L with three real

eigenvalues {α, β, γ} regarding an orthonormal basis {e1, e2, e3} of signature (+ + −) is
presented by

(gIa) : [e2, e3] = αe1, [e1, e3] = −βe2, [e1, e2] = −γe3.

In this case, Lie groups G admitting a Lie algebra gIa are listed in Table 1.
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Table 1. Type Ia. Lie groups G admitting a Lie algebra gIa.

G α β γ

O(1, 2) or SL(2,R) + + +

O(1, 2) or SL(2,R) + − −
SO(3) or SU(2) + + −

E(2) + + 0

E(2) + 0 −
E(1, 1) + − 0

E(1, 1) + 0 +

H3 + 0 0

H3 0 0 −
R⊕R⊕R 0 0 0

In this case, the Levi-Civita connection is specified by

(∇ei ej) =

⎛⎜⎜⎜⎜⎝
0 − 1

2 (γ + β− α)e3 − 1
2 (γ + β− α)e2

1
2 (α− β + γ)e3 0 1

2 (γ− β + α)e1

1
2 (α + β− γ)e2

1
2 (γ− β− α)e1 0

⎞⎟⎟⎟⎟⎠.

Let ∇ be the Levi-Civita connection; by using the formula R(X, Y) = ∇[X,Y] −
[∇X ,∇Y], the only non-vanishing terms of the curvature tensor are presented by

R2332 = 1
4

(
− γ2 − β2 + 3α2 + 2βγ− 2αγ− 2αβ

)
,

R1313 = 1
4

(
γ2 − 3β2 + α2 + 2βγ− 2αγ + 2αβ

)
,

R1221 = 1
4

(
− 3γ2 + β2 + α2 + 2βγ + 2αγ− 2αβ

)
,

its Ricci tensor is expressed by

R11 = − 1
2

(
α2 − (γ− β)2

)
,

R22 = − 1
2

(
β2 − (γ− α)2

)
,

R33 = 1
2

(
γ2 − (β− α)2

)
,

and other components are 0. The Lie derivative of the metric, LX g, for an optional left-
invariant vector field X = ∑3

i=1 xiei is given by

(LX g) =

⎛⎜⎜⎜⎜⎝
0 (α− β)x3 (γ− α)x2

(α− γ)x3 0 (β− γ)x1

(γ− α)x2 (β− γ)x1 0

⎞⎟⎟⎟⎟⎠.

Then,

R =
1
2

(
γ2 + α2 + β2 − 2αβ− 2αγ− 2βγ

)
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and

P11 =
1
4

(
− 3α2 + β2 + γ2 + 2αβ + 2αγ− 2βγ

)
,

P22 =
1
4

(
α2 − 3β2 + γ2 + 2αβ− 2αγ + 2βγ

)
,

P33 =
1
4

(
− α2 − β2 + 3γ2 + 2αβ− 2αγ− 2βγ

)
,

and other components of Pij are 0. Throughout the paper, we assume that (Pij) is invert-
ible. Therefore, the only non-vanishing terms of the cross curvature tensor are obtained
as follows:

h11 = − 1
16

(γ2 − 3β2 + α2 + 2βγ− 2αγ + 2αβ)(3γ2 − β2 − α2 − 2βγ− 2αγ + 2αβ),

h22 = − 1
16

(γ2 + β2 − 3α2 − 2βγ + 2αγ + 2αβ)(3γ2 − β2 − α2 − 2βγ− 2αγ + 2αβ),

h33 = − 1
16

(γ2 + β2 − 3α2 − 2βγ + 2αγ + 2αβ)(γ2 − 3β2 + α2 + 2βγ− 2αγ + 2αβ).

Type Ib.
Suppose that L has complex eigenvalues γ ± iβ and one real eigenvalue α. Then,

by considering an orthonormal basis {e1, e2, e3} of signature (+ + −), we have

L =

⎛⎝ α 0 0
0 γ −β
0 β γ

⎞⎠, β �= 0,

then the related Lie algebra is provided by

(gIb) : [e2, e3] = αe1, [e1, e3] = −γe2 − βe3, [e1, e2] = βe2 − γe3.

In this case, G = O(1, 2) or G = SL(2,R) if α �= 0, while G = E(1, 1) if α = 0. The
Levi-Civita connection is specified by

(∇ei ej) =

⎛⎜⎜⎜⎜⎝
0 1

2 (α− 2γ)e3
1
2 (α− 2γ)e2

α
2 e3 − βe2 βe1

α
2 e1

α
2 e2 + βe3 − α

2 e1 βe1

⎞⎟⎟⎟⎟⎠.

With respect to the basis {e1, e2, e3} the only non-vanishing terms of the curvature
tensor are described by

R1231 = −(2γ− α)β, R2332 =
3
4

α2 − αγ + β2, R1313 = R1221 =
1
4
(4β2 + α2),

and its Ricci tensor is expressed by

Ric =

⎛⎜⎜⎜⎜⎜⎜⎝

− 1
2 (α

2 + 4β2) 0 0

0 1
2 α(α− 2γ) −β(α− 2γ)

0 β(2γ− α) 1
2 α(2γ− α)

⎞⎟⎟⎟⎟⎟⎟⎠.
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For an optional left-invariant vector field X = ∑3
i=1 xiei, we obtain

(LX g) =

⎛⎜⎜⎜⎜⎝
0 βx2 + (α− γ)x3 βx3 + (γ− α)x2

βx2 + (α− γ)x3 −2βx1 0

βx3 + (γ− α)x2 0 −2βx1

⎞⎟⎟⎟⎟⎠.

Hence,

R =
1
2

(
α2 − 4β2 − 4αγ

)
and

(Pij) =

⎛⎜⎜⎜⎜⎝
1
4 (−3α2 − 4β2 + 4αγ) 0 0

0 1
4 (α

2 + 4β2) β(α− 2γ)

0 β(α− 2γ) − 1
4 (α

2 + 4β2)

⎞⎟⎟⎟⎟⎠.

Let
A1 = −

( 1
16

(α2 + 4β2)2 + β2(α− 2γ)2
)

then,

(Vij) =
1

A1

⎛⎜⎜⎜⎜⎜⎝
−4

1
16 (α

2+4β2)2+β2(α−2γ)2

−3α2−4β2+4αγ
0 0

0 − 1
4 (α

2 + 4β2) −β(α− 2γ)

0 β(2γ− α) 1
4 (α

2 + 4β2)

⎞⎟⎟⎟⎟⎟⎠.

Therefore, the cross curvature tensor is described by

(hij) = −1
4
(−3α2 − 4β2 + 4αγ)

⎛⎜⎜⎜⎜⎜⎝
−4

1
16 (α

2+4β2)2+β2(α−2γ)2

−3α2−4β2+4αγ
0 0

0 − 1
4 (α

2 + 4β2) β(2γ− α)

0 β(2γ− α) 1
4 (α

2 + 4β2)

⎞⎟⎟⎟⎟⎟⎠.

Type II.
Suppose that the minimal polynomial of L has two roots, α and β, such that (L− αI)

(L− βI)2 = 0 holds. So, regarding the orthonormal basis {e1, e2, e3} of signature (+ + −)
we have

L =

⎛⎜⎜⎜⎜⎝
α 0 0

0 β + 1
2 − 1

2

0 1
2 β− 1

2

⎞⎟⎟⎟⎟⎠,

then the related Lie algebra is provided by

(gI I) : [e2, e3] = αe1, [e1, e3] = −1
2

βe3 −
(

1
2
+ β

)
e2, [e1, e2] =

(
1
2
− β

)
e3 +

1
2

e2.

In this case, Lie groups admitting a Lie algebra gI I are listed in Table 2.
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Table 2. Lie groups admitting a Lie algebra gI I .

G α β

O(1, 2) or SL(2,R) �= 0 �=0

E(1, 1) 0 �=0

E(1, 1) <0 0

E(2) >0 0

H3 0 0

The Levi-Civita connection in this case is expressed by

(∇ei ej) =

⎛⎜⎜⎜⎜⎝
0 − 1

2 (2β− α)e3
1
2 (α− 2β)e2

1
2 (−1 + α)e3 − 1

2 e2
1
2 e1

1
2 (−1 + α)e1

1
2 e3 +

1
2 (1 + α)e2 − 1

2 (1 + α)e1
1
2 e1

⎞⎟⎟⎟⎟⎠.

With respect to the basis {e1, e2, e3}, the only non-zero terms of the curvature tensor
are described by

R1231 =
1
2

α− β, R2332 =
1
4
(−4αβ + 3α2),

R1313 =
1
4
(−4β + 2α + α2), R1221 =

1
4
(4β− 2α + α2),

and its Ricci tensor is given by

Ric =

⎛⎜⎜⎜⎜⎝
− 1

2 α2 0 0

0 1
2 (−2β + α)(1 + α) β− 1

2 α

0 − 1
2 α + β − 1

2 (2β− α)(1− α)

⎞⎟⎟⎟⎟⎠.

For X = ∑3
i=1 xiei as an optional left-invariant vector field, we obtain

(LX g) =

⎛⎜⎜⎜⎜⎝
0 1

2
(
x2 + (2α− 2β− 1)x3

) 1
2
(
x3 + (2β− 2α− 1)x2

)
1
2
(
x2 + (2α− 2β− 1)x3

)
−x1 x1

1
2
(
x3 + (2β− 2α− 1)x2

)
x1 −x1

⎞⎟⎟⎟⎟⎠.

Thus,

R =
1
2

α2 − 2αβ

and

(Pij) =

⎛⎜⎜⎜⎜⎜⎜⎝
− 3

4 α2 + αβ 0 0

0 1
2

(
1
2 α2 + α− 2β

)
1
2 α− β

0 1
2 α− β − 1

2

(
1
2 α2 − α + 2β

)

⎞⎟⎟⎟⎟⎟⎟⎠.
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Then,

(Vij) =
−16
α4

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
1

16 α4

− 3
4 α2+αβ

0 0

0 − 1
2

(
1
2 α2 − α + 2β

)
− 1

2 α + β

0 − 1
2 α + β 1

2

(
1
2 α2 + α− 2β

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the cross curvature tensor is described by

(hij) = −(−3
4

α2 + αβ)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
1

16 α4

− 3
4 α2+αβ

0 0

0 − 1
2

(
1
2 α2 − α + 2β

)
β− 1

2 α

0 − 1
2 α + β 1

2

(
1
2 α2 + α− 2β

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Type III.
Suppose that the minimal polynomial of L has one real root α such that (L− αI)3 = 0

holds. So, regarding the orthonormal basis {e1, e2, e3} of signature (+ + −) we have

L =

⎛⎜⎜⎜⎜⎜⎜⎝
α 1√

2
1√
2

1√
2

α 0

− 1√
2

0 α

⎞⎟⎟⎟⎟⎟⎟⎠,

then the related Lie algebra is provided by

(gI I I) :

⎧⎨⎩[e1, e2] = − 1√
2

e1 − αe3, [e1, e3] = − 1√
2

e1 − αe2,

[e2, e3] = αe1 +
1√
2

e2 − 1√
2

e3.

In this case, G = O(1, 2) or G = SL(2,R) if α �= 0 and G = E(1, 1) if α = 0. The
Levi-Civita connection in this case is expressed by

(∇ei ej) =

⎛⎜⎜⎜⎜⎜⎜⎝

1√
2

e2 − 1√
2

e3 − α
2 e3 − 1√

2
e1 − α

2 e2 − 1√
2

e1

α
2 e3

1√
2

e3
1√
2

e2 +
α
2 e1

α
2 e2

1√
2

e3 − α
2 e1

1√
2

e2

⎞⎟⎟⎟⎟⎟⎟⎠.

The only non-zero terms of the curvature tensor are described by

R1223 =
1√
2

α, R1313 = 1− 1
4

α2, R1231 = 1,

R2323 =
1
4

α2, R1221 =
1
4
(4 + α2).
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and its Ricci tensor is expressed by

Ric =

⎛⎜⎜⎜⎜⎜⎜⎝
− 1

2 α2 − 1√
2

α − 1√
2

α

− 1√
2

α − 1
2 α2 − 1 −1

− 1√
2

α −1 −1 + 1
2 α2

⎞⎟⎟⎟⎟⎟⎟⎠.

For X = ∑3
i=1 xiei as an optional left-invariant vector field, the Lie derivative of the

metric is presented by the following relation.

(LX g) =
1√
2

⎛⎜⎜⎜⎜⎝
−2(x3 + x2) x1 x1

x1 2x3 x3 − x2

x1 −x2 + x3 −2x2

⎞⎟⎟⎟⎟⎠.

Hence,

R = −3
2

α2

and

(Pij) =

⎛⎜⎜⎜⎜⎜⎜⎝

1
4 α2 − 1√

2
α 1√

2
α

− 1√
2

α 1
4 α2 − 1 1

1√
2

α 1 −1− 1
4 α2

⎞⎟⎟⎟⎟⎟⎟⎠.

Thus,

(Vij) =
−16
α4

⎛⎜⎜⎜⎜⎜⎜⎝
− 1

4 α2 −1√
2

α −1√
2

α

−1√
2

α −3− 1
4 α2 −3

−1√
2

α −3 −3 + 1
4 α2

⎞⎟⎟⎟⎟⎟⎟⎠.

Therefore, the cross curvature tensor is described by

(hij) = −α2

4

⎛⎜⎜⎜⎜⎜⎜⎝
− 1

4 α2 −1√
2

α −1√
2

α

−1√
2

α −3− 1
4 α2 −3

−1√
2

α −3 −3 + 1
4 α2

⎞⎟⎟⎟⎟⎟⎟⎠.

2.2. Non-Unimodular Lie Groups

Moving on, we will address the non-unimodular case. We will use the class G to
represent a set of solvable Lie algebras g where, for any x, y ∈ g, [x, y] is a linear combination
of x and y. According to [24], the Lorentzian non-unimodular Lie algebras with non-
constant sectional curvature that do not fall under class G can be represented using the
following relation in a suitable basis E = {e1, e2, e3},

(gIV) : [e2, e3] = δe2 + γe1, [e1, e3] = βe2 + αe1, [e1, e2] = 0,
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we have δ + α �= 0 and one of the next modes is established:

IV.1 E is orthonormal and 〈e3, e3〉 = 〈e2, e2〉 = −〈e1, e1〉 = 1; also, the constants of structure
satisfy βδ = αγ.

IV.2 E is orthonormal and −〈e3, e3〉 = 〈e2, e2〉 = 〈e1, e1〉 = 1; also, the constants of structure
satisfy βδ = −αγ.

IV.3 E is a pseudo-orthonormal basis and

〈·, ·〉 =

⎛⎝ 1 0 0
0 0 −1
0 −1 0

⎞⎠
also, the constants of structure satisfy αγ = 0.

Type IV.1.

In this case, the Levi-Civita connection is given by

(∇ei ej) =

⎛⎜⎜⎜⎜⎜⎝
αe3 − β−γ

2 e3 αe1 +
β−γ

2 e2

− β−γ
2 e3 −δe3 − β−γ

2 e1 + δe2

− β+γ
2 e2 − β+γ

2 e31 0

⎞⎟⎟⎟⎟⎟⎠.

With respect to the basis E , the only non-vanishing terms of the curvature tensor are
described by

R2332 =
1
4
(−3γ2 + β2 + 2βγ + 4δ2),

R1313 =
1
4
(−3β2 + 4α2 + 2βγ + γ2),

R1212 =
1
4
(γ2 + β2 − 2βγ + 4αδ),

its Ricci tensor is expressed by

R11 = −1
2
(
− γ2 + β2 − 2(δα + α2)

)
,

R22 =
1
2
(
− β2 + γ2 − 2(δ2 + δα)

)
,

R33 =
1
2
(
− 2(δ2 + α2) + (γ− β)2),

and other components are 0. For X = ∑3
i=1 xiei as an optional left-invariant vector field,

the Lie derivative of the metric LX g is equal to

(LX g) =

⎛⎜⎜⎜⎜⎝
−2αx3 (β− γ)x3 αx1 + γx2

(β− γ)x3 2δx3 −βx1 − δx2

αx1 + γx2 −βx1 − δx2 0

⎞⎟⎟⎟⎟⎠.

Then,

R =
1
2
(

β2 − γ2 − 4α2 − 4δ2 − 2βγ− 4αδ
)
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and

P11 =
1
4
(
− β2 + γ2 − 4δ2 − 2βγ

)
,

P22 =
1
4
(
4α2 − 3β2 + 3γ2 + 2βγ

)
,

P33 =
1
4
(
3γ2 + β2 + 4αδ− 2βγ

)
,

and other components are 0. Therefore, the only non-vanishing terms of the cross curvature
tensor are described by

h11 = − 1
16
(
4α2 − 3β2 + 3γ2 + 2βγ

)(
β2 + 3γ2 − 2βγ + 4αδ

)
,

h22 = − 1
16
(
− β2 + γ2 − 4δ2 − 2βγ

)(
β2 + 3γ2 − 2βγ + 4αδ

)
,

h33 = − 1
16
(
− β2 + γ2 − 4δ2 − 2βγ

)(
4α2 − 3β2 + 3γ2 + 2βγ

)
.

Type IV.2.
The Levi-Civita connection of Type IV.2 concerning E is determined by

(∇ei ej) =

⎛⎜⎜⎜⎜⎜⎝
αe3

β+γ
2 e3 αe1 +

β+γ
2 e2

γ+β
2 e3 δe3 δe2 +

γ+β
2 e1

−−γ+β
2 e2

−γ+β
2 e1 0

⎞⎟⎟⎟⎟⎟⎠.

With respect to the basis E , the only non-vanishing terms of the curvature tensor are
described by

R2323 =
1
4
(−3γ2 + β2 − 2βγ− 4δ2),

R1331 =
1
4
(3β2 + 4α2 + 2βγ− γ2),

R1212 = −1
4
(γ + β)2 + αδ,

and its Ricci tensor is expressed by

R11 =
1
2
(−γ2 + β2 + 2(δα + α2))

R22 =
1
2
(−β2 + γ2 + 2(δ2 + δα)),

R33 = −1
2
(2(δ2 + α2) + (γ + β)2),

where other components of Ricci tensor are 0. For X = ∑3
i=1 xiei as an optional left-invariant

vector field, we obtain

(LX g) =

⎛⎜⎜⎜⎜⎝
2αx3 (β + γ)x3 −αx1 − γx2

(β + γ)x3 2δx3 −βx1 − δx2

−αx1 − γx2 −βx1 − δx2 0

⎞⎟⎟⎟⎟⎠.
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Then,

R = (α + δ)2 + δ2 + α2 +
1
2
(γ + β)2

and

P11 =
1
4
(
− 3γ2 + β2 − 4δ2 − 2βγ

)
,

P22 =
1
4
(
− 4α2 − 3β2 + γ2 − 2βγ

)
,

P33 =
1
4
(
− β2 − 2βγ− γ2 + αγ

)
,

and other components are 0. Therefore, the only non-vanishing terms of the cross curvature
tensor are described by

h11 = − 1
16
(
− 4α2 − 3β2 + γ2 − 2βγ

)(
− β2 − γ2 − 2βγ + αγ

)
,

h22 = − 1
16
(

β2 − 3γ2 − 4δ2 − 2βγ
)(
− β2 − γ2 − 2βγ + αγ

)
,

h33 = − 1
16
(

β2 − 3γ2 − 4δ2 − 2βγ
)(
− 4α2 − 3β2 + γ2 − 2βγ

)
.

Type IV.3.
The Levi-Civita connection in this type is specified by

(∇ei ej) =

⎛⎝ αe2
γ
2 e2 αe1 − γ

2 e3
γ
2 e2 0 γ

2 e1
− γ

2 e3 − βe2 −δe2 − γ
2 e1 δe3 − βe1

⎞⎠.

The only non-zero components of the curvature tensor are given by

R1213 = 1
4 γ2, R1331 = α2 − αδ + βγ, R2332 = 3

4 γ2,

and its Ricci tensor is expressed by

Ric =

⎛⎝ − 1
2 γ2 0 0
0 0 − 1

2 γ2

0 − 1
2 γ2 −(β + α2 − αδ)

⎞⎠.

For X = ∑3
i=1 xiei as an optional left-invariant vector field, we obtain

(LX g) =

⎛⎝ 2αx3 γx3 −αx1 − γx2 − βx3
γx3 0 −δx3

−αx1 − γx2 − βx3 −δx3 2(βx1 + δx2)

⎞⎠.

Thus, R = 1
2 γ2.

(Pij) =

⎛⎜⎜⎜⎜⎝
− 3

4 γ2 0 0

0 −(α2 − αδ + β) − 1
4 γ2

0 − 3
4 γ2 0

⎞⎟⎟⎟⎟⎠,
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and

(Vij) =

⎛⎜⎜⎜⎜⎜⎜⎝
− 4

3γ2 0 0

0 0 − 4
3γ2

0 − 4
γ2

16
3γ4 (α

2 − αδ + β)

⎞⎟⎟⎟⎟⎟⎟⎠.

Therefore, the cross curvature tensor is given by

(hij) =

⎛⎜⎜⎜⎜⎝
3
16 γ4 0 0

0 0 3
16 γ4

0 9
16 γ4 3

4 (αδ− β− α2)γ2

⎞⎟⎟⎟⎟⎠.

According to the research conducted by Calvaruso in [25], there has been a significant
study of three-dimensional Lorentzian locally conformally flat Lie groups. It has been
proposed that these groups possess certain characteristics that are worth exploring further.
From [25], we have the following proposition.

Proposition 1. One of the defining characteristics of a Lorentzian three-dimensional Lie group
(G, g) is that it is locally conformally flat if and only if one of the following conditions applies:

(1) (G, g) is locally symmetric and

(1a) of Type Ia with γ = β = α or any cyclic permutation of β = α,γ = 0
(1b) of Type II with β = α = 0
(1c) of Type IV.1 with constant sectional curvature, or otherwise δ = γ = β = 0 and α �= 0,

or γ = α = β = 0 and δ �= 0
(1d) of Type IV.2 with constant sectional curvature, or otherwise δ = γ = β = 0 and α �= 0,

or γ = β = α = 0 and δ �= 0
(1e) of Type IV.3 and flat, or otherwise δ = γ = 0 and α �= 0
(1f) of Type G and therefore of constant sectional curvature.

(2) (G, g) is not locally symmetric and

(2a) of Type Ib with β = ±
√

3γ and α = −2γ
(2b) of Type III with α = 0
(2c) of Type IV.3 with αδ(α− δ) �= 0 and γ = 0.

3. Lorentzian Cross Curvature Solitons on Lorentzian 3-Dimensional Lie Groups

In this section, we will delve into the investigation of left-invariant solutions to (4) on
the Lorentzian Lie groups that were examined in Section 2. Our aim is to solve the related
equations completely and provide a comprehensive explanation of all left-invariant cross
curvature solitons.

Theorem 1. Suppose that g indicate a Lorentzian unimodular three-dimensional Lie algebra of
Type Ia. Then, the left-invariant cross curvature soliton on g satisfies β = α = γ, α �= 0, and
λ = 1

8 α2, for all X. Also, as β = α = γ, all vectors in g are Killing.
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Proof. Considering (4), there is a cross curvature soliton of Type Ia if and only if the
subsequent system of equations is satisfied:

(β− α)x3 = (α− γ)x2 = (γ− β)x1 = 0,

− 1
8
(γ2 − 3β2 + α2 + 2βγ− 2αγ + 2αβ)(3γ2 − β2 − α2 − 2βγ− 2αγ + 2αβ) = λ,

− 1
8
(γ2 + β2 − 3α2 − 2βγ + 2αγ + 2αβ)(−α2 − β2 + 3γ2 + 2αβ− 2αγ− 2βγ) = λ, (5)

− 1
8
(γ2 + β2 − 3α2 − 2βγ + 2αγ + 2αβ)(γ2 − 3β2 + α2 + 2βγ− 2αγ + 2αβ) = −λ.

The first equation in (5) indicates that α = β or x3 = 0. We consider α = β. Then,
(γ − α)x2 = 0 yields γ = α or x2 = 0. If γ = α, then γ = β. Since the tensor (Pij) is
invertible, we conclude α �= 0. Thus, the last three equations in (5) reduce to λ = 1

8 α2.
In this case, for any left-invariant vector field X, Equation (4) holds.

Now, we consider α = β and γ �= α. Then, β �= γ and x2 = 0. The equation
(β− γ)x1 = 0 yields x1 = 0. In this case, the last three equations in (5) reduce to⎧⎪⎨⎪⎩

− 1
8 γ2(3γ2 − 4αγ) = λ,

− 1
8 γ4 = −λ.

Since the tensor (Pij) is invertible, we have γ �= 0; this implies that γ = α, which is
a contradiction.

Now, assume that α �= β. Then, x3 = 0. From equation (γ− α)x2 = 0, we infer γ = α
or x2 = 0. If γ = α, then the last three equations in (5) reduce to⎧⎪⎨⎪⎩

− 1
8 β2(3β2 + 4αβ) = λ,

1
8 β4 = λ.

This system implies that α = β, which is a contradiction. Hence, this case cannot
happen. We suppose that β �= α, α �= γ and x2 = 0. From (γ− β)x1 = 0, we have β = γ or
x1 = 0. Similarly, the case β = γ cannot occur. Then, we have β �= α, α �= γ, and γ �= β.
Also, x1 = x2 = x3 = 0. In this case, using the last three equations of (5), we obtain⎧⎪⎨⎪⎩

α2 + βγ = β2 + αγ,

γ2 + αβ = β2 + αγ.

Since β �= γ, α �= γ, and α �= β, this system has no solution.

From Theorem 1 and Proposition 1, we conclude the next result.

Corollary 1. If a Type Ia Lorentzian unimodular Lie group is a left-invariant cross curvature
soliton, then it is locally conformally flat.

Theorem 2. A Type Ib Lorentzian unimodular Lie groups does not accept any left-invariant cross
curvature soliton.
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Proof. Considering (4), there is a cross curvature soliton of Type Ib if and only if the
subsequent system of equations is satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8 (α

2 + 4β2)2 + 2β2(α− 2γ)2 = λ,

βx2 + (α− γ)x3 = 0,

βx3 + (γ− α)x2 = 0,

1
8 (−3α2 − 4β2 + 4αγ)(α2 + 4β2) + 2βx1 = λ,

1
2 (−3α2 − 4β2 + 4αγ)β(α− 2γ) = 0,

− 1
8 (−3α2 − 4β2 + 4αγ)(α2 + 4β2) + 2βx1 = −λ.

(6)

The fourth and the sixth equations of (6) give 4βx1 = 0. Since β �= 0, we obtain x1 = 0.
The fifth equation of (6) gives α = 2γ or −3α2 − 4β2 + 4αγ = 0. If −3α2 − 4β2 + 4αγ = 0,
the fourth equation indicates that λ = 0. Thus, the foremost equation gives β = 0 and this
is a contradiction. If α = 2γ, the first and the fourth equations yield 1

8 (α
2 + 4β2)2 = λ and

− 1
8 (α

2 + 4β2)2 = λ, respectively, which imply λ = 0 and β = 0, which is a contradiction.
Hence, the system (6) has no solution. Therefore, no homogeneous cross curvature soliton
of Type Ib exists.

Theorem 3. Consider the Lorentzian unimodular three-dimensional Lie algebra gI I of Type II.
Then, the left-invariant cross curvature soliton on gI I satisfies

α = β �= 0, λ =
1
8

α4, x1 = −1
4

α3, x2 = x3.

Proof. Considering (4), there is a cross curvature soliton of Type II if and only if the
subsequent system of equations is satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8 α4 = λ,

x2 + (2α− 2β− 1)x3 = 0,

x3 + (2β− 2α− 1)x2 = 0,

( 1
2 α2 − α + 2β)(− 3

4 α2 + αβ) + x1 = λ,

(α− 2β)(− 3
4 α2 + αβ)− x1 = 0,

−( 1
2 α2 + α− 2β)(− 3

4 α2 + αβ) + x1 = −λ.

(7)

The fourth and the sixth equations of (7) give λ = 1
2 α2(− 3

4 α2 + αβ). Substituting this into
the first equation in (7), we obtain α = β. Since (Pij) is invertible, α �= 0. Then, Equation (7)
implies that x2 = x3 and x1 = − 1

4 α3.

From Theorem 3 and Proposition 1, we conclude the next result.

Corollary 2. If a Type II Lorentzian unimodular Lie group is locally conformally flat, it is not
necessarily a left-invariant cross curvature soliton.

185



Axioms 2024, 13, 211

Theorem 4. Consider the Lorentzian unimodular three-dimensional Lie algebra gI I I of Type III. A
left-invariant cross curvature soliton on gI I I satisfies

x1 =
1
2

α3, x2 = −x3 = −3
√

2
4

α2, λ =
1
8

α4, and α �= 0.

Proof. In case of Type III, Equation (4) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8 α4 + 2√

2
(x2 + x3) = λ,

1
2
√

2
α3 − 1√

2
x1 = 0,

3
2 α2 + 1

8 α4 − 2√
2

x3 = λ,

3
2 α2 − 1√

2
(x3 − x2) = 0,

3
2 α2 − 1

8 α4 + 2√
2

x2 = −λ.

(8)

The second equation of (8) implies that x1 = 1
2 α3. The first and third equations of (8) give

3
2 α2− 4√

2
x3− 2√

2
x2 = 0. Also, the first and fifth equations of (8) give 3

2 α2 + 4√
2

x2 +
2√
2

x3 = 0.

Thus, x3 = −x2 = 3
√

2
4 α2.

Theorem 5. Let g indicate a Lorentzian non-unimodular three-dimensional Lie algebra of Type
IV.1. Then, the left-invariant cross curvature solitons on g satisfy one of the following facts:

(1) β = α = 0, x2 = x3 = 0, and λ = 9
8 γ4 for all x1, δ, and γ such that γ �= 0 and δ2 = γ2.

(2) α �= 0, γ = βδ
α , λ = 1

8 (α
2 + 3γ2 + 2εαγ), x1 = − γ

α x2, β = εα, and x3 = 0 for all δ,
and x2 such that and ε2 = 1.

(3) α �= 0, δ = γ = x1 = x3 = 0, and λ = 1
8 β4 such that α2 = β2 for all x2.

(4) α = δ �= 0, β = γ, β2 �= α2, x1 = x2 = x3 = 0, and λ = 1
2 (2α2 + β2)2.

Proof. Equation (4) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β− γ)x3 = 0,

αx1 + γx2 = 0,

−βx1 − δx2 = 0,

− 1
8
(
4α2 − 3β2 + 3γ2 + 2βγ

)(
β2 + 3γ2 − 2βγ + 4αδ

)
+ 2αx3 = −λ,

− 1
8
(
γ2 − β2 − 2βγ− 4δ2)(3γ2 + β2 + 4αδ− 2βγ

)
− 2δx3 = λ,

1
8
(
γ2 − β2 − 2βγ− 4δ2)(− 3β2 + 4α2 + 2βγ + 3γ2) = −λ.

(9)

We first analyze the case α = 0. In this case, δ �= 0 and β = 0. Since (Pij) is
invertible, we obtain γ �= 0. The first equation of (9) indicates that x3 = 0. By substituting
α = β = x3 = 0 into the last three equations in (9), we obtain

λ =
9
8

γ4, λ = −3
8

γ2(γ2 − 4δ2),
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then γ2 = δ2. We obtain x2 = 0 from the second equation of (9). Therefore, we have a
left-invariant cross curvature soliton (1) in this case.

Now, let α �= 0; then, γ = βδ
α and the second equation of (9) indicates x1 = − γ

α x2,
while its third equation reduces to (β2 − α2)δx2 = 0. If β2 = α2, then β = εα and δ = εγ,
where ε2 = 1. The last three equations of (9) reduce to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
8
(
α2 + 3γ2 + 2εαγ

)2
+ 2αx3 = −λ,

− 1
8
(
α2 + 3γ2 + 2εαγ

)2 − 2δx3 = λ,

1
8
(
α2 + 3γ2 + 2εαγ

)2
= λ.

Therefore, αx3 = 0; since α �= 0, we obtain x3 = 0 and, in this case, we have a
left-invariant cross curvature soliton (2).

If δ = 0, then βδ− αγ = 0 implies that γ = 0 and x1 = 0. The last three equations
of (9) reduce to ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
8 β2(4α2 − 3β2) + 2αx3 = −λ,

1
8 β4 = λ,

1
8 β2(4α2 − 3β2) = λ.

Thus, αx3 = 0 and since α �= 0, we obtain x3 = 0. Also, α2 = β2; in this case, we have
a left-invariant cross curvature soliton (3).

If α �= 0, β2 �= α2, δ �= 0, and x2 = 0, then x1 = 0. The first equation now gives β = γ
or x3 = 0. We assume that x3 = 0, and by using the last three equations of (9), we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
8
(
4α2 − 3β2 + 3γ2 + 2βγ

)(
β2 + 3γ2 − 2βγ + 4αδ

)
= −λ,

− 1
8
(
− β2 + γ2 − 4δ2 − 2βγ

)(
β2 + 3γ2 − 2βγ + 4αδ

)
= λ,

− 1
8
(
− β2 + γ2 − 4δ2 − 2βγ

)(
4α2 − 3β2 + 3γ2 + 2βγ

)
= λ.

Since (Pij) is invertible, we conclude{
α2 + βγ = β2 + αδ,
β2 + δ2 = γ2 + α2.

(10)

Substituting γ = βδ
α in (10) and using δ + α �= 0, we obtain δ = α, β = γ, and

λ = 1
2 (2α2 + β2)2. In this case, we have a left-invariant cross curvature soliton (4).
Now, we consider the case α �= 0, β2 �= α2, δ �= 0, x2 = 0, x3 �= 0, and β = γ.

The sixth equation of (9) implies that λ = 1
2 (2δ2 + β2)(2α2 + β2), and by substituting

it into the fourth and fifth equations of (9) we obtain x3 = 1
2α (2α2 + β2)(αδ − δ2) and

x3 = 1
2δ (2δ2 + β2)(αδ− α2), respectively. Since x3 �= 0, we obtain α �= δ; hence,

δ

α
(2α2 + β2) = −α

δ
(2δ2 + β2).

Thus, α = 0, which is a contradiction.

From Theorem 5 and Proposition 1, we conclude the next result.
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Corollary 3. If a Type IV.1 Lorentzian non-unimodular Lie group is locally conformally flat, then
it is not necessarily a left-invariant cross curvature soliton.

Theorem 6. Suppose that g indicates a Lorentzian non-unimodular three-dimensional Lie al-
gebra of Type IV.2. Then, the left-invariant cross curvature solitons on g satisfy one of the
following conditions:

(1) β = α = 0, x2 = x3 = 0, λ = 1
8 γ4 for all x1 and δ such that δ �= 0 and δ2 = γ2.

(2) δ = α �= 0, β = −4α = −γ, λ = 2α4, and x1 = x2 = x3 = 0.
(3) δ = α �= 0, β = −γ, x1 = x2 = 0, λ = 2β4, and x3 = − 1

4 α2β− α3.
(4) δ �= 0, α �= 0, γ = −β = −4δ, x1 = x2 = 0, λ = 2β2δ2, and x3 = −α2δ− αδ2.

Proof. Equation (4) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β + γ)x3 = 0,

−αx1 − γx2 = 0,

−βx1 − δx2 = 0,

− 1
8
(
− 4α2 − 3β2 + γ2 − 2βγ

)(
− β2 − γ2 − 2βγ + αγ

)
− 2αx3 = λ,

− 1
8
(

β2 − 3γ2 − 4δ2 − 2βγ
)(
− β2 − γ2 − 2βγ + αγ

)
− 2δx3 = λ,

1
8
(
− 3γ2 + β2 − 2βγ− 4δ2)(− 3β2 − 4α2 − 2βγ + γ2) = λ.

(11)

First, we analyze the case α = 0. Regarding this matter, δ �= 0 and β = 0. Also,
we obtain γ �= 0 since (Pij) is invertible. The first equation of (11) implies that x3 = 0.
By substituting α = β = x3 = 0 into the last three equations of (11), we obtain

λ =
1
8

γ4, λ = −1
8

γ2(3γ2 + 4δ2),

then γ2 = δ2. We obtain x2 = 0 from the second equation of (11). Therefore, we have a
left-invariant cross curvature soliton (1) in this case.

Now, let α �= 0. Then, γ = − βδ
α and the second equation of (11) indicates that

x1 = − γ
α x2, while its third equation reduces to δx2 = 0. If δ = 0, then βδ + αγ = 0 implies

that γ = 0 and x1 = 0. The last three equations of (11) reduce to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
8 β2(4α2 + 3β2) + 2αx3 = −λ,

1
8 β4 = λ,

1
8 β2(4α2 + 3β2) = λ.

Thus, 4α2 + 2β2 = 0 and α = 0, which is a contradiction.
If α �= 0, δ �= 0, and x2 = 0, then x1 = 0. Now, the first equation gives β = −γ or

x3 = 0. We assume that x3 = 0, and by using the last three equations of (11), we have

188



Axioms 2024, 13, 211

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
8
(
− 4α2 − 3β2 + γ2 − 2βγ

)(
− β2 − γ2 − 2βγ + αγ

)
= λ,

− 1
8
(

β2 − 3γ2 − 4δ2 − 2βγ
)(
− β2 − γ2 − 2βγ + αγ

)
= λ,

− 1
8
(

β2 − 3γ2 − 4δ2 − 2βγ
)(
− 4α2 − 3β2 + γ2 − 2βγ

)
= −λ.

Since (Pij) is invertible, we conclude{
β2 + α2 = γ2 + δ2,
β2 + α2 + βγ = 1

4 αγ.
(12)

Substituting γ = − βδ
α in (12) and using δ + α �= 0, we obtain δ = α, γ = −β, γ = 4α,

and λ = 2α4. In this case, we have a left-invariant cross curvature soliton (2).
Now, we consider the case α �= 0, δ �= 0, x2 = 0, x3 �= 0, and β = −γ. Then, x1 = 0

and the sixth equation of (11) implies that λ = 2α2δ2; substituting it into the fourth and the
fifth equations in (11), we obtain x3 = − 1

4 α2β− αδ2 and x3 = − 1
4 αβδ− α2δ, respectively.

We obtain (
1
4

β− δ

)
(α− δ) = 0.

If α = δ, then x3 = − 1
4 α2β− α3; in this case, we have a left-invariant cross curvature

soliton satisfying (3).
If α �= δ and β = 4δ, then x3 = −α2δ− αδ2; in this case, we have a left-invariant cross

curvature soliton satisfying (4).

From Theorem 6 and Proposition 1, we conclude the next result.

Corollary 4. If a Type IV.2 Lorentzian non-unimodular Lie group is locally conformally flat, then
it is not necessarily a left-invariant cross curvature soliton.

Theorem 7. A Type IV.3 Lorentzian non-unimodular Lie group does not accept any left-invariant
cross curvature soliton.

Proof. Considering (4), there is a cross curvature soliton of Type IV.3 if and only if the
subsequent system of equations is satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
8 γ4 − 2αx3 = λ,

γx3 = 0,

−αx1 − γx2 − βx3 = 0,

λ = 0,

−αx1 − γx2 − βx3 + 2δx3 = −λ,

− 3
2 γ2(α2 − αδ + β)− 2(βx1 + δx2) = 0.

(13)

Since (Pij) is invertible, γ �= 0. The condition αγ = 0 yields α = 0. The first and the
fourth equations of (13) imply that γ = 0, which is a contradiction. Therefore, Lorentzian
non-unimodular Lie groups do not accept any left-invariant cross curvature soliton.
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4. Conclusions

The main study of the paper is to classify left-invariant cross curvature solitons
on Lorentzian three-dimensional Lie groups. Three-dimensional locally homogeneous
Lorentzian manifolds are classified into seven classes. The first four classes—Type Ia,
Type Ib, Type II, and Type III—are unimodular, and the last three classes—Type IV.1,
Type IV.2, and Type IV.3—are non-unimodular. In any of such classes, we obtain the
Levi-Civita connection, the Ricci tensor, the Lie derivation of the metric in the direction of
the vector field X, and the cross curvature tensor. By solving the cross curvature soliton
equation LX g + λg = 2h, we show that Lorentzian unimodular Lie groups Types Ia, II, III
and Lorentzian non-unimodular Lie groups of Types IV.1 and IV.2 admit a left-invariant
cross curvature soliton, and Lorentzian unimodular Lie groups of type Ib and Lorentzian
non-unimodular Lie groups of type IV.3 do not admit left-invariant cross curvature solitons.
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Abstract: This article explores the Ricci tensor of slant submanifolds within locally metallic product
space forms equipped with a semi-symmetric metric connection (SSMC). Our investigation includes
the derivation of the Chen–Ricci inequality and an in-depth analysis of its equality case. More
precisely, if the mean curvature vector at a point vanishes, then the equality case of this inequality is
achieved by a unit tangent vector at the point if and only if the vector belongs to the normal space.
Finally, we have shown that when a point is a totally geodesic point or is totally umbilical with n = 2,
the equality case of this inequality holds true for all unit tangent vectors at the point, and conversely.

Keywords: Chen–Ricci inequality; isotropic submanifolds; locally metallic product space forms

MSC: 53B50; 53C20; 53C40

1. Introduction

The investigation of submanifolds immersed in Riemannian manifolds has captivated
the attention of differential geometry scholars for numerous decades. Within this realm,
a fundamental inquiry revolves around comprehending the geometric characteristics of
submanifolds in relation to the curvature of the encompassing manifold.

A renowned inequality in differential geometry, known as the Chen–Ricci inequality,
establishes a connection between the scalar curvature of a submanifold, its mean curvature,
and the norm of its second fundamental form.

In 1996, Chen made a significant breakthrough by formulating an equation that links
two fundamental geometric properties of a submanifold, denoted asM, embedded within a
space known as M(c) with a constant curvature c. These properties are the Ricci curvature
denoted by Ric and the squared mean curvature expressed as ||H||2. According to Chen’s
formula, for any unit vector χ positioned on the submanifold M,

Ric(χ) ≤ (k− 1)c +
k2

2
||H||2, k = dimM

Chen also established the aforementioned inequality for Lagrangian submanifolds [1].
Since then, this inequality has garnered the interest of geometers worldwide, leading to the
proof of similar inequalities by various researchers for diverse types of submanifolds in
various ambient manifolds [2–4]. Furthermore, there are some applications in geometric
flow and tangent bundles. For example, the study of Harnack estimates [5], Li–Yau-type
gradient estimates [6,7], Perelman-type differential Harnack inequalities and Li–Yau-type
estimates [8], the new Harnack inequalities of a variety of geometric flows [9], etc. Recent
works on differential Harnack inequalities can be found in [10–12]. In Ref. [13], Kumar, R.
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et al. considered the problems of NSNMC in the tangent bundle. In Refs. [14,15], Kumar
and R. et al. studied the tangent bundles with QSNMC in an LP-Sasakian manifold. The
properties, theorems, and results of the curvature tensor and Ricci tensor relevant to QSMC
on the tangent bundles were obtained in [16–18]. In the recent years, Li and Khan et al.
conducted the research relevant to inequalities [19], solitons [20], submanifolds [21], and
classical differential geometry [22] under the viewpoint of submanifold theory, soliton
theory, and other related theories [23–25]. The results and methods of those papers motivate
us to write the paper.

Simultaneously, a θ-slant submanifold represents a subtype of the submanifold in
the domain of differential geometry that generalizes the concept of a slant submanifold.
Similar to slant submanifolds, θ-slant submanifolds pertain to submanifolds of Riemannian
manifolds that exhibit a tilted or slanted geometry concerning the ambient manifold. Never-
theless, unlike slant submanifolds, which are defined by the angle between the submanifold
and a vector distribution in the ambient manifold [26–28], θ-slant submanifolds are defined
by a more inclusive angle function θ, which can rely on the submanifold’s position within
the ambient manifold [29,30]. This broader definition allows for increased flexibility and
generality in characterizing the submanifold.

Specifically, a θ-slant submanifold is determined by the prerequisite that its tangent
space at each point be slanted in relation to a particular vector distribution in the ambient
manifold, wherein the angle of slant is determined by evaluating the angle function θ at
that specific point. This angle function enables the capture of various geometric properties
of the submanifold, including its curvature or its embedding within the ambient manifold.
The classification of minimal surfaces in Euclidean space has historically leveraged slant
submanifolds, with Almgren’s renowned theorem asserting that any complete, non-flat
minimal surface in Euclidean space must be either a plane, a catenoid, or a helicoid.
The proof of this theorem employs the theory of slant submanifolds to demonstrate the
impossibility of certain types of minimal surfaces.

In the work by Mastsumoto [31], a bound for the Ricci tensor of slant submanifolds
in complex space forms was obtained. They also demonstrated that a Kaehlerian slant
submanifold satisfying the equality case identically is minimal. Kim et al. [32] derived
the Ricci curvature for integral submanifolds of S-space forms and discussed the equality
case of the inequality. Additionally, they obtained results for various subclasses, including
almost semi-invariant submanifolds, θ-slant submanifolds, anti-invariant submanifolds,
and invariant submanifolds.

In 2010, Mihai and Ozgur [33] established an inequality for submanifolds of real
space forms with a semi-symmetric connection. They also considered the equality case
for this inequality. Mihai and Radulescu improved the inequality for Kaehlerian slant
submanifolds in complex space forms [34]. Deng [35] enhanced the Chen–Ricci inequality
for Lagrangian submanifolds in complex space forms by utilizing an optimization technique.
Mihai [36] improved the Chen–Ricci inequalities for Lagrangian submanifolds of dimension
n (where n ≥ 2) in a 2n-dimensional complex space form with a semi-symmetric metric
connection, as well as for Legendrian submanifolds in a Sasakian space with a semi-
symmetric metric connection.

In their work [37], Khan and Ozel established a relationship between the Ricci curva-
ture and the squared norm of the second fundamental form for contact CR-warped product
submanifolds in generalized Sasakian space forms admitting a trans-Sasakian structure.
Recently, Lee et al. [38] derived Chen–Ricci inequalities for Riemannian maps with different
ambient spaces and discussed numerous applications, for which we can refer to [39–41].

Motivated by the above studies, this article centers its focus on θ-slant submanifolds
within locally metallic product space forms and explores the Chen–Ricci inequality as it
applies to these submanifolds.

Our principal outcome involves the formulation of the Chen–Ricci inequality for
θ-slant submanifolds within locally metallic product space forms, along with deriving the
conditions under which equality to the inequality is established.
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Furthermore, we delve into several applications of our findings, showcasing how our
inequality facilitates the derivation of significant geometric properties specific to θ-slant
submanifolds.

2. Fundamental Results

In the subsequent section, we present the relevant mathematical formulas and concepts
necessary to grasp the Chen–Ricci inequality concerning isotropic submanifolds in locally
metallic product space forms.

Let M denote a Riemannian manifold equipped with the linear connection ∇. A
connection is classified as semi-symmetric if its torsion tensor T satisfies the expression:

T(χ1, χ2) = π(χ2)χ1 − π(χ1)χ2

where π is a 1-form. Consequently, ∇ is referred to as a semi-symmetric connection.
Assuming a Riemannian metric g on M, if ∇g = 0, then ∇ qualifies as a semi-symmetric
metric connection on M. The mathematical form of this connection is given by:

∇χ1 χ2 = ∇̃χ1 χ2 + π(χ2)χ1 − g(χ1, χ2)Γ (1)

where χ1 and χ2 are arbitrary vectors in M, ∇̃ represents the Levi–Civita connection with
respect to the Riemannian metric g, and Γ is a vector field.

Suppose M is an m-dimensional submanifold within the Riemannian manifold M.
Let ∇ denote the semi-symmetric metric connection induced on M, and let ∇̃ denote the
Levi–Civita connection. In this case, the Gauss formulas can be expressed as follows:

∇χ1 χ2 = ∇χ1 χ2 + ζ(χ1, χ2), χ1, χ2 ∈ Γ(TM), (2)

∇̃χ1 χ2 = ∇̃χ1 χ2 + ζ̃(χ1, χ2), χ1, χ2 ∈ Γ(TM), (3)

Let ζ̃ represent the second fundamental form. Additionally, let R and R̃ denote the
curvature tensors of M and M respectively, with respect to the connections ∇ and ∇̃.
Similarly, R and R̃ denote the curvature tensors of M and M respectively, with respect to
the connections ∇ and ∇̃. Given these definitions, we can express the following relations:

R̃(χ1, χ2, χ3, χ4) = R̃(χ1, χ2, χ3, χ4)

+ g(ζ(χ1, χ3), ζ(χ2, χ4))− g(ζ(χ1, χ4), ζ(χ2, χ3)), (4)

for χ1, χ2, χ3, χ4 ∈ TM. Let us introduce the (0, 2) tensors:

β(χ1, χ2) = (∇̃χ1 π)(χ2)− π(χ1)π(χ2) +
1
2

g(χ1, χ2)π(Γ).

According to Wang [42], the expression for the curvature tensor R of the manifold M
is as follows:

R(χ1, χ2, χ3, χ4) = R̃(χ1, χ2, χ3, χ4) + β(χ1, χ3)g(χ2, χ4)

− β(χ2, χ3)g(χ1, χ4) + β(χ2, χ4)g(χ1, χ3)− β(χ1, χ4)g(χ2, χ3). (5)

Let us define λ as the trace of β.
Let M be a Riemannian manifold, and let π ⊂ TxM be a plane section at a point

x ∈ M. The sectional curvature of π is denoted by K(π). For any x ∈ M, if {�1, . . . , �n}
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and {�n+1, . . . , �m} are orthonormal bases of TxM and T⊥x M, respectively, then the scalar
curvature τ can be expressed as follows:

τ(x) = ∑
1≤i<j≤n

K(�i ∧ �j). (6)

H =
1
n

n

∑
i=1

g(ζ(�i, �i)).

The orthonormal frames {�1, . . . , �n} and {�n+1, . . . , �m} represent the tangent and
normal spaces, respectively, on the Riemannian manifold M.

The relative null space of the Riemannian manifold at a point x in M is defined as:

Nx = {χ1 ∈ TxM|ζ(χ1, χ2) = 0 ∀ χ2 ∈ TxM}. (7)

This refers to the subset of the tangent space at point x where the second fundamental
form is constantly zero. It is also referred to as the normal space of M at x.

In the context of minimal submanifolds, it is stated that the mean curvature vector H
is always zero.

On a m-dimensional Riemannian manifold (M, g) with real numbers a1, . . . , an, a
polynomial structure is defined as a tensor field ϑ of type (1, 1) that satisfies the follow-
ing equation:

B(ϑ) ≡ ϑn + an−1ϑn−1 + ... + a2ϑ + a1I = 0,

where I denotes the identity transformation. The following remark presents a few notable
instances of polynomial structures.

Remark 1. 1. ϑ is an almost complex structure if B(ϑ) = ϑ2 + I .
2. ϑ is an almost product structure if B(ϑ) = ϑ2 − I .
3. ϑ is a metallic structure if B(ϑ) = ϑ2 − pϑ− qI ,
where p and q are two integers.

If for all χ1, χ2 ∈ Γ(TM)

g(ϑχ1, χ2) = g(χ1, ϑχ2), (8)

then in such a case, the Riemannian metric g is referred to as being compatible with the
polynomial structure ϑ.

In the context of Riemannian manifolds, a metallic structure refers to a tensor field ϑ
that satisfies two conditions: it is ϑ-compatible with the metric g, and the manifold (M, g)
itself is a metallic Riemannian manifold.

By utilizing Equation (8), we derive

g(ϑχ1, ϑχ2) = g(ϑ2χ1, χ2) = pg(χ1, ϑχ2) + qg(χ1, χ2).

An almost product structure F defined on an m-dimensional (Riemannian) manifold
(M, g) is characterized by being a (1,1)-tensor field that satisfies F 2 = I and F �= ±I .
WhenF additionally fulfills the condition g(Fχ1, χ2) = g(χ1,Fχ2) for all χ1, χ2 ∈ Γ(TM),
the manifold (M, g) is said to be an almost product Riemannian manifold [43].

There exist two almost product structures, denoted asF1 andF2, induced by a metallic
structure φ on M [44]. These structures can be expressed using the following equation:⎧⎪⎨⎪⎩

F1 = 2
2σp,q−p φ− p

2σp,q−pI ,

F2 = 2
2σp,q−p φ + p

2σp,q−pI ,
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where σp,q =
p+
√

p2+4q
2 are the members of the metallic means family or the metallic proportions.

Likewise, for any given almost product structure F on N , two corresponding metallic
structures φ1 and φ2 are induced, and they can be defined as follows:⎧⎪⎨⎪⎩

φ1 = p
2I +

2σp,q−p
2 F ,

φ2 = p
2I −

2σp,q−p
2 F .

Definition 1 ([45]). Consider a metallic structure φ on M and a linear connection ∇ such that
∇φ = 0. In this case, ∇ is referred to as a φ connection. A locally metallic Riemannian manifold
is defined as a metallic Riemannian manifold (M, g, φ), wherein the Levi–Civita connection ∇
associated with the metric g serves as a φ connection.

Here, we recall the following.

Remark 2. It is essential to bear in mind that the metallic family includes various members, which
are categorized as follows [44]:

1. The golden structure, when p = q = 1.
2. The copper structure, when p = 1 and q = 2.
3. The nickel structure, when p = 1 and q = 3.
4. The silver structure, when p = 2 and q = 1.
5. The bronze structure, when p = 3 and q = 1.
6. The subtle structure, when p = 4 and q = 1, and so on.

Suppose we have an m-dimensional metallic Riemannian manifold (M, g, φ) and
an n-dimensional submanifold (M, g) that is isometrically immersed into M with the
induced metric g. For any x ∈ M, the tangent space TxM of M at x can be expressed as
the direct sum of TxM and T⊥x M, where TxM is the tangent space of M at x, and T⊥x M
is the orthogonal complement of TxM in TxM.

In an almost Hermitian manifold M, a submanifold M is considered to be a slant
submanifold if the angle between JM and TxM remains constant for any x ∈ M and a
non-zero vector X ∈ TxM. The slant angle of M in M is denoted by θ and takes values in
the interval [0, π

2 ].
Moreover, if M is a slant submanifold of a metallic Riemannian manifold (M, g, φ)

with a slant angle θ, then according to [45]:

g(Tχ1, Tχ2) = cos2 θ[pg(χ1, Tχ2) + qg(χ1, χ2)]

and

g(Nχ1, Nχ2) = sin2 θ[pg(χ1, Tχ2) + qg(χ1, χ2)],

∀χ1, χ2 ∈ Γ(TM).
Additionally,

T2 = cos2 θ(pT + qI),

Here, I denotes the identity operator acting on Γ(TM), the space of smooth sections
of the tangent bundle of M, and

∇T2 = p cos2 θ∇T.

Consider M1, a Riemannian manifold with constant sectional curvature c1, and M2,
a Riemannian manifold with constant sectional curvature c2. In this case, the Riemannian
curvature tensor R of the locally Riemannian product manifold can be expressed as follows.
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M =M1 ×M2 is given by [43]

R̃(χ1, χ2)χ3 =
1
4
(c1 + c2)

[
g(χ2, χ3)χ1 − g(χ1, χ3)χ2

]
+

1
4
(c1 + c2)

{
4

(2σp,q − p)2

[
g(φχ2, χ3)φχ1 − g(φχ1, χ3)φχ2

]
+

p2

(2σp,q − p)2

[
g(χ2, χ3)X − g(χ1, χ3)χ2

]
+

2p
(2σp,q − p)2

[
g(φχ1, χ3)χ2 + g(χ1, χ3)φχ2

−g(φχ2, χ3)χ1 − g(χ1, χ3)φχ1
]}

±1
2
(c1 − c2)

{
1

(2σp,q − p)
[
g(χ2, χ3)φχ1 − g(χ1, χ3)φχ2

]
+

1
(2σp,q − p)

[
g(φχ2, χ3)χ1 − g(φχ1, χ3)χ2

]
+

p
(2σp,q − p)

[
g(χ1, χ3)χ2 − g(χ2, χ3)χ1

]}
. (9)

From (5) and (9), we have

R(χ1, χ2, χ3, χ4) =
1
4
(c1 + c2)

[
g(χ2, χ3)g(χ1, χ4)− g(χ1, χ3)g(χ2, χ4)

]
+

1
4
(c1 + c2)

{
4

(2σp,q − p)2

[
g(φχ2, χ3)g(φχ1, χ4)− g(φχ1, χ3)g(φχ2, χ4)

]
+

p2

(2σp,q − p)2

[
g(χ2, χ3)g(χ1, χ4)− g(χ1, χ3)g(χ2, χ4)

]
+

2p
(2σp,q − p)2

[
g(φχ1, χ3)g(χ2, χ4) + g(χ1, χ3)g(φχ2, χ4)

− g(φχ2, χ3)g(χ1, χ4)− g(χ2, χ3)g(φχ1, χ4)
]}

± 1
2
(c1 − c2)

{
1

(2σp,q − p)
[
g(χ2, χ3)g(φχ1, χ4)− g(χ1, χ3)g(φχ2, χ4)

]
+

1
(2σp,q − p)

[
g(φχ2, χ3)g(χ1, χ4)− g(φχ1, χ3)g(χ2, χ4)

]
+

p
(2σp,q − p)

[
g(χ1, χ3)g(χ2, χ4)− g(χ2, χ3)g(χ1, χ4)

]}
+ β(χ1, χ3)g(χ2, χ4)− β(χ2, χ3)g(χ1, χ4)

+ β(χ2, χ4)g(χ1, χ3)− β(χ1, χ4)g(χ2, χ3). (10)

3. Ricci Tensor Analysis with Semi-Symmetric Metric Connection

The primary objective of this section is to introduce and analyze the principal outcome.

Theorem 1. Suppose we have a submanifold M of dimension n that is slanted at an angle of θ in a
locally metallic product space form M =M1(c1)×M2(c2) with SSMC.
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Given a point p on M and a unit vector X in the tangent space TpM, the following inequal-
ity holds:

Ric(X) ≤ n2

4
‖H‖2 ± 1

2
c1 − c2√
p2 + 4q

[
2 tr φ− p(n− 1)

]
− (n− 2)β(X, X)− λ

+
1
2

c1 + c2

p2 + 4q
(n− 1)

[
p2 + 2q− 1

n− 1
(p tr φ + q cos2 θ)

]
. (11)

Moreover, if H(p) = 0, then the equality case of this inequality is achieved by a unit tangent
vector X at p if and only if X belongs to the normal space Np. Finally, when p is a totally geodesic
point or is totally umbilical with n = 2, the equality case of this inequality holds true for all unit
tangent vectors at p, and conversely.

Proof. Let {�1, . . . , �n} be an orthonormal tangent frame and {�n+1, . . . , �m} be an or-
thonormal frame of TxM and T⊥x M, respectively at any point x ∈ M. Substituting
χ1 = χ4 = �i, χ2 = χ3 = �j in (10) with the Equation (4) and take i �= j, we obtain

R(�i, �j, �j, �i) =
1
4
(c1 + c2)

[
g(�j, �j)g(�i, �i)− g(�i, �j)g(�j, �i)

]
+

1
4
(c1 + c2)

{
4

(2σp,q − p)2

[
g(φ�j, �j)g(φ�i, �i)

− g(φ�i, �j)g(φ�j, �i)
]

+
p2

(2σp,q − p)2

[
g(�j, �j)g(�i, �i)− g(�i, �j)g(�j, �i)

]
+

2p
(2σp,q − p)2

[
g(φ�i, �j)g(�j, �i) + g(�i, �j)g(φ�j, �i)

− g(φ�j, �j)g(�i, �i)− g(�j, �j)g(φ�i, �i)
]}

± 1
2
(c1 − c2)

{
1

(2σp,q − p)
[
g(�j, �j)g(φ�i, �i)

− g(�i, �j)g(φ�j, �i)
]

+
1

(2σp,q − p)
[
g(φ�j, �j)g(�i, �i)− g(φ�i, �j)g(�j, �i)

]
+

p
(2σp,q − p)

[
g(�i, �j)g(�j, �i)− g(�j, �j)g(�i, �i)

]}
+ β(�i, �j)g(�j, �i)− β(�j, �j)g(�i, �i)

+ β(�j, �i)g(�i, �j)− β(�i, �i)g(�j, �j)

+ g(ζ(�i, �i), ζ(�j, �j))− g(ζ(�i, �j), ζ(�j, �i)). (12)

Using 1 ≤ i, j ≤ n in (12), we find

2τ(x) =
1
4
(c1 + c2)

n(n− 1)
p2 + 4q

{
2p2 + 4q +

4
n(n− 1)

[
tr2φ− cos2 θ(p.trT + nq)

]
− 4p

n
trφ

}
− 2(n− 1)λ

± 1
4

(n− 1)√
p2 + 4q

(c1 − c2)(4trφ− 2np) + n2||H||2 − ||ζ||2. (13)

198



Axioms 2024, 13, 454

Now, we consider

δ = 2τ − n2

2
||H||2 ∓ 1

4
(n− 1)√

p2 + 4q
(c1 − c2)(4trφ− 2np) + 2(n− 1)λ

− 1
4
(c1 − c2)

n(n− 1)
p2 + 4q

{
2p2 + 4q +

4
n(n− 1)

[
tr2φ− cos2 θ(ptrT + nq)

]
− 4p

n
trφ

}
. (14)

Combining (13) and (14), we obtain

n2||H||2 = 2(δ + ||ζ||2). (15)

Consequently, when employing the orthonormal frame {�1, . . . , �n}, Equation (15)
takes on the subsequent expression:

( n

∑
i=1

ζn+1
ii

)2

= 2
{

δ +
n

∑
i=1

(ζn+1
ii )2 + ∑

i �=j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2
}

. (16)

If we substitute d1 = ζn+1
11 , d2 = ∑n−1

i=2 ζn+1
ii and d3 = ζn+1

nn , then (16) reduces to( 3

∑
i=1

di

)2

= 2
{

δ +
3

∑
i=1

d2
i + ∑

i �=j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2

− ∑
2≤j �=k≤n−1

ζn+1
jj ζn+1

kk

}
. (17)

As a result, d1, d2, d3 fulfill Chen’s Lemma [41], that is,

( 3

∑
i=1

di

)2

= 2
(

v +
3

∑
i=1

d2
i

)
.

Clearly, 2d1d2 ≥ v with equality holds if d1 + d2 = d3 and vice versa. This signifies

∑
1≤j �=k≤n−1

ζn+1
jj ζn+1

kk ≥ δ + 2 ∑
i<j

(ζn+1
ij )2 +

m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2. (18)

It is possible to write (18) as

n2

2
||H||2 ± 1

4
(n− 1)√

p2 + 4q
(c1 − c2)(4trφ− 2np)− 2(n− 1)λ

+
1
4
(c1 − c2)

n(n− 1)
p2 + 4q

{
2p2 + 4q +

4
n(n− 1)

[
tr2φ− cos2 θ(ptrT + nq)

]
− 4p

n
trφ

}
≥ 2τ − ∑

1≤j �=k≤n−1
ζn+1

jj ζn+1
kk + 2 ∑

i<j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2. (19)

Invoking the Gauss equation once again and making use of (19), we obtain

Ric(X) ≤ n2

4
||H||2 ± 1

2
(c1 − c2)√

p2 + 4q

[
2trφ− p(n− 1)

]
− (n− 2)β(X, X)− λ

+
1
2
(c1 + c2)

p2 + 4q
(n− 1)

[
p2 + 2q− 1

n− 1
(ptrφ + q cos2 θ)

]
. (20)

Hence, we have obtained the required inequality (1).
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Further, assume that H(p) = 0. Equality holds in (1) if and only if{
ζr

1n = · · · = ζr
n−1n = 0

ζr
nn = ∑n−1

i=1 ζr
ii, r ∈ {n + 1, . . . , m}.

(21)

Then,
ζr

in = 0,

for all i ∈ {1, . . . , n}, and r ∈ {n + 1, . . . , m}, i.e., X ∈ Np.
In conclusion, the equality condition of (1) holds for all unit tangent vectors at p if and

only if {
ζr

ij = 0, i �= j, r ∈ {n + 1, . . . , m}
ζr

11 + · · ·+ ζr
nn − 2ζr

ii = 0, i ∈ {1, . . . , n} r ∈ {n + 1, . . . , m}.
(22)

From here, we separate the two situations:

(i) p is a totally geodesic point if n �= 2;
(ii) It is evident that p is a totally umbilical point if n = 2.

It goes without saying that the converse applies.

4. Some Applications

We can have two different approaches to see the various applications: either by
considering particular classes of locally metallic product space forms, or by considering
particular classes of θ-slant submanifolds.

4.1. Application by Considering Particular Classes of θ-Slant Submanifolds

Two specific classes of θ-slant submanifolds, namely, invariant and anti-invariant
submanifolds, were introduced in [45] for metallic Riemannian manifolds. With the help of
the definitions of these submanifolds in Theorem 1, we obtain the following results.

Corollary 1. Suppose we have a submanifold M of dimension n that is invariant in a locally
metallic product space form M =M1(c1)×M2(c2) with SSMC.

For any unit vector X in the tangent space TpM at a point p on M, the following inequal-
ity holds:

Ric(X) ≤ n2

4
||H||2 ± 1

2
(c1 − c2)√

p2 + 4q

[
2trφ− p(n− 1)

]
− (n− 2)β(X, X)− λ

+
1
2
(c1 + c2)

p2 + 4q
(n− 1)

[
p2 + 2q− 1

n− 1
(ptrφ + q)

]
. (23)

Moreover, if H(p) = 0, then the equality case of this inequality is achieved by a unit tangent
vector X at p if and only if X belongs to the normal space Np. Finally, when p is a totally geodesic
point or is totally umbilical with n = 2, the equality case of this inequality holds true for all unit
tangent vectors at p, and vice versa.

Proof. The result is directly obtained by taking θ = 0 in Theorem 1.

Corollary 2. Suppose we have a submanifold M of dimension n that is anti-invariant in a locally
metallic product space form M =M1(c1)×M2(c2) with SSMC.

200



Axioms 2024, 13, 454

For any unit vector X in the tangent space TpM at a point p on M, the following inequal-
ity holds:

Ric(X) ≤ n2

4
||H||2 ± 1

2
(c1 − c2)√

p2 + 4q

[
2trφ− p(n− 1)

]
− (n− 2)β(X, X)− λ

+
1
2
(c1 + c2)

p2 + 4q
(n− 1)

[
p2 + 2q− 1

n− 1
(ptrφ)

]
. (24)

Moreover, if H(p) = 0, then the equality case of this inequality is achieved by a unit tangent
vector X at p if and only if X belongs to the normal space Np. Finally, when p is a totally geodesic
point or is totally umbilical with n = 2, the equality case of this inequality holds true for all unit
tangent vectors at p, and vice versa.

Proof. The result is directly obtained by taking θ = π
2 in Theorem 1.

4.2. Application by Considering Particular Classes of Locally Metallic Product Space Forms

As a consequence of Theorem 1 and together with Remark 2 (1), we obtained the
following results.

Corollary 3. Suppose we have a submanifold M of dimension n that is slanted at an angle of θ in
a locally golden product space form M =M1(c1)×M2(c2) with SSMC.

For any unit vector X in the tangent space TpM at a point p on M, the following inequal-
ity holds:

Ric(X) ≤ n2

4
||H||2 ± 1

2
√

5
(c1 − c2)

[
2.trφ− (n− 1)

]
− (n− 2)β(X, X)− λ

+
1

10
(c1 + c2)(n− 1)

[
3− 1

n− 1
(trφ + cos2 θ)

]
. (25)

Moreover, if H(p) = 0, then the equality case of this inequality is achieved by a unit tangent
vector X at p if and only if X belongs to the normal space Np. Finally, when p is a totally geodesic
point or is totally umbilical with n = 2, the equality case of this inequality holds true for all unit
tangent vectors at p, and vice versa.

Proof. The result is directly obtained by taking p = q = 1 in Theorem 1.

Corollary 4. Suppose we have a submanifold M of dimension n that is invariant in a locally
golden product space form M =M1(c1)×M2(c2).

For any unit vector X in the tangent space TpM at a point p on M, the following inequal-
ity holds:

Ric(X) ≤ n2

4
||H||2 ± 1

2
√

5
(c1 − c2)

[
2trφ− (n− 1)

]
+

1
10

(c1 + c2)
[
3n− 4− trφ

]
− (n− 2)β(X, X)− λ. (26)

Moreover, if H(p) = 0, then the equality case of this inequality is achieved by a unit tangent
vector X at p if and only if X belongs to the normal space Np. Finally, when p is a totally geodesic
point or is totally umbilical with n = 2, the equality case of this inequality holds true for all unit
tangent vectors at p, and vice versa.

Proof. The result is directly obtained by taking θ = 0 and p = q = 1 in Theorem 1.

Corollary 5. Suppose we have a submanifold M of dimension n that is anti-invariant in a locally
golden product space form M =M1(c1)×M2(c2) with SSMC.
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For any unit vector X in the tangent space TpM at a point p on M, the following inequal-
ity holds:

Ric(X) ≤ n2

4
||H||2 ± 1

2
√

5
(c1 − c2)

[
2trφ− (n− 1)

]
+

1
10

(c1 + c2)
[
3n− 3− trφ

]
− (n− 2)β(X, X)− λ. (27)

Moreover, if H(p) = 0, then the equality case of this inequality is achieved by a unit tangent
vector X at p if and only if X belongs to the normal space Np. Finally, when p is a totally geodesic
point or is totally umbilical with n = 2, the equality case of this inequality holds true for all unit
tangent vectors at p, and vice versa.

Proof. The result is directly obtained by taking θ = π
2 and p = q = 1 in Theorem 1.

Remark 3. Similar results can also be obtained for other particular classes such as copper, silver,
nickel, bronze, etc., by providing different particular values to p and q with the help of Remark 2.

5. Conclusions

This article has not only explored the Ricci tensor of slant submanifolds within locally
metallic product space forms equipped with a semi-symmetric metric connection but has
also contributed to our understanding of these mathematical constructs. The derivation
of the Chen–Ricci inequality, the analysis of its equality case, and the applications arising
from our findings collectively demonstrate the significance and relevance of this research.
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1. Introduction

The theory of product manifolds encompasses significant implications in both physics
and geometry, particularly in the realm of Hermitian geometry. In physics, Einstein’s
general theory of relativity describes space time as a product of three-dimensional space
and one-dimensional time, each possessing its own metrics that determine the overall
topology. Various theories such as Kaluza–Klein, brane theory, and gauge theory have
intriguing applications involving product manifolds.

Modern physics relies on gauge theories, which are based on the geometric framework
given by moduli spaces. These moduli spaces enable the categorization and exploration
of characteristics of bundle configurations on compact Riemann surfaces or algebraic
curves [1,2]. Notably, at the forefront of the construction of novel gauge theories are
subvarieties of the moduli space of primary bundles with exceptional structure groups.
Gauge theories are further illuminated by investigating the stratifications and fixed points
in the moduli space of principal and Higgs bundles [3–6].

Moreover, the connection between Riemannian surfaces and gauge theories extends
beyond the study of bundles. The moduli space of vector bundles over a compact Riemann
surface or algebraic curve provides valuable insights into the formulation of gauge theories,
offering a geometric understanding of the topological and geometric properties inherent in
these theories [7,8].

A significant development in the study of manifolds with negative sectional curvature,
referred to as warped product manifolds, was introduced by R. L. Bishop et al. in 1969 [9].
These generalized Riemannian product manifolds have found prominence in differential
geometry and physics, particularly in general relativity [10,11]. Warped products have
been widely used to examine energy, angles, and lengths through the lens of the second
fundamental form. From a mathematical perspective, warped product manifolds extend
the concept of Riemann product manifolds and provide examples of manifolds with strictly
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negative curvature. Notably, the best relativistic representation of Schwarzschild space time,
which describes the region surrounding a massive star or black hole, can be expressed as a
warped product [11]. Moreover, these manifolds have practical applications in modeling
bodies with significant gravitational fields from a mechanical standpoint.

From a mathematical standpoint, warped product manifolds, a generalization of the
Riemann product manifold [12–14], also give instances of manifolds with strictly negative
curvature. A warped product, for example, is supplied as the best relativistic representation
of the Schwarzschid space time, which describes the outer space around a massive star or
black hole. From a mechanical aspect, they may also be employed to simulate bodies with
massive gravitational fields.

The construction of warped product manifolds is defined as follows:
Let us consider a Riemannian manifold NT of dimension d1 with Riemannian metric g1,

Nθ of dimension d2 with Riemannian metric g2, and let f be positive differentiable functions
on NT . Consider the warped product NT × Nθ with its projections ι1 : NT × Nθ → NT and
ι2 : NT × Nθ → Nθ . Then, their warped product manifold M = NT × f Nθ is the product
manifold equipped with the structure

g(X, Y) = g1(ι1∗X, ι1∗Y) + ( f ◦ ι1)
2g2(ι2∗X, ι2∗Y),

for any vector fields X, Y on M, where ∗ denotes the symbol for tangent maps. The
function f is called the warping function of the warped product [15–17]. This concept has
been extensively explored, leading to numerous research articles in the field of complex
geometry [18,19] and contact geometry [20–22].

However, despite the extensive exploration of warped product manifolds, the immersibility/
non-immersibility of Riemannian manifolds in space forms remains a fundamental problem
in submanifold theory. In this regard, the groundbreaking work of Chen and his intro-
duction of new Riemannian invariants, notably Chen’s inequality, established an optimal
relationship between extrinsic and intrinsic invariants on submanifolds.

Motivated by these considerations, the objective of this article is twofold: first, to
derive Chen’s inequality for warped product submanifolds in locally metallic product
space forms with a quarter-symmetric metric connection, and secondly, to explore a few
applications of the obtained result.

2. Preliminaries

LetM be a Riemannian manifold endowed with the linear connection∇. A connection
is deemed semi-symmetric if its torsion tensor T satisfies the elegant expression

T(U, V) = π(V)U − π(U)V

where π is a one form. Consequently, ∇ is referred to as a semi-symmetric connection.
Assuming a Riemannian metric g on M, if ∇g = 0, then ∇ qualifies as a semi-symmetric
metric connection on M. The mathematical form of this connection is given by

∇UV = ∇̃UV + π(V)U − g(U, V)Γ (1)

where U and V are arbitrary vectors in M, ∇̃ represents the Levi-Civita connection with
respect to the Riemannian metric g, and Γ is a vector field.

Furthermore, if ∇ satisfies the condition

∇UV = ∇̃UV + π(V)U, (2)

then it is termed a semi-symmetric non-metric connection.
Additionally, a linear connection ∇ on a Riemannian manifold M with metric g is

classified as a quarter-symmetric connection if its torsion tensor T is given by

T(U, V) = ∇UV −∇VU − [U, V]
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which satisfies the condition

T(U, V) = π(V)φU − π(U)φV

where π(U) = g(U, Γ) and φ is a (1,1) tensor field.
Consequently, a special quarter-symmetric connection can be defined as follows

∇UV = ∇̃UV + ψ1π(V)U − ψ2g(U, V)Γ (3)

where ψ1 and ψ2 are real constants.
Remarkably, from Equations (1)–(3), it is evident that [23]

1. If ψ1 = ψ2 = 1, a quarter-symmetric connection reduces to a semi-symmetric metric
connection.

2. If ψ1 = 1 and ψ2 = 0, a quarter-symmetric connection becomes a semi-symmetric
non-metric connection.

It is worth mentioning that the quarter-symmetric connections generalize several
well-known connections.

Moving on, the curvature tensor R associated with ∇ is expressed as

R(U, V)Z = ∇U∇V Z−∇V∇UZ−∇[U,V]Z. (4)

Similarly, the curvature tensor ˜̄R can also be defined.
Let us introduce the (0, 2) tensors

β1(U, V) = (∇̃Uπ)(V)− ψ1π(U)π(V) +
ψ2

2
g(U, V)π(Γ),

and

β2(U, V) =
π(Γ)

2
g(U, V) + π(U)π(V).

The curvature tensor R̄ of the manifold M is then given by [24]

R̄(U, V, Z, W) = ˜̄R(U, V, Z, W) + ψ1β1(U, Z)g(V, W)

− ψ1β1(V, Z)g(U, W) + ψ2β1(V, W)g(U, Z)

− ψ2β1(U, W)g(V, Z) + ψ2(ψ1 − ψ2)g(U, Z)β2(V, W)

− ψ2(ψ1 − ψ2)g(V, Z)β2(U, W). (5)

Moreover, let us define λ as the trace of β1 and μ as the trace of β2.
Let M be an m-dimensional submanifold in a Riemannian manifold M. Let ∇

and ∇̃ be the induced quarter-symmetric metric connection and Levi-Civita connection,
respectively, on M. Then, the Gauss formulas are

∇UV = ∇UV + ζ(U, V), U, V ∈ Γ(TM), (6)

∇̃UV = ∇̃UV + ζ̃(U, V), U, V ∈ Γ(TM), (7)

where ζ̃ is the second fundamental form that satisfies the relation

ζ(U, V) = ζ̃(U, V)− ψ2g(U, V)Γ⊥,

where Γ⊥ is the normal component of the vector field Γ on M.
Moreover, the equation of Gauss is defined by [24]

R̄(U, V, Z, W) = R(U, V, Z, W)

− g(ζ(U, W), ζ(V, Z)) + g(ζ(V, W), ζ(U, Z))
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+ (ψ1 − ψ2)g(ζ(V, Z), Γ⊥)g(U, W)

+ (ψ2 − ψ1)g(ζ(U, Z), Γ⊥)g(V, W). (8)

Let K(π) denote the sectional curvature of a Riemannian manifold M of the plane sec-
tion π ⊂ TxM at a point x ∈ M. If {e1, . . . , en} is the orthonormal basis of TxM and
{en+1, . . . , em} is the orthonormal basis of T ⊥

x M at any x ∈ M, then

τ(x) = ∑
1≤i<j≤n

K(ei ∧ ej), (9)

where τ is the scalar curvature.
Let {e1, ..., en} and {en+1, ..., em} be the tangent and normal orthonormal frames on M,

respectively. Then,

H =
1
n

n

∑
i=1

g(ζ(ei, ei).

is known as the mean curvature vector field.
A tensor field ϑ of type (1, 1) earns the title of a polynomial structure when it satisfies

the following remarkable equation on an m-dimensional Riemannian manifold (M, g),
adorned with real numbers b1, .., bn:

B(X) = Xn + bn−1Xn−1 + ... + b2X + b1I = 0

Here, I represents the identity transformation [25,26].

Remark 1. Behold the following revelations:

1. When B(X) = X2 + I , ϑ unveils itself as an almost complex structure.
2. When B(X) = X2 − I , ϑ emerges as an almost product structure.
3. When B(X) = ϑ2 − pϑ + qI , ϑ takes on the form of a metallic structure.

In this case, p and q are two integers.

If

g(ϑX, Y) = g(X, ϑY), ∀X, Y ∈ Γ(T M), (10)

then the Riemannian metric g is bestowed with the grand title of being ϑ-compatible.
Imagine a scenario where g is ϑ-compatible and ϑ assumes the form of a metallic

structure on the Riemannian manifold M. In this wondrous situation, we refer to (M, g)
as a metallic Riemannian manifold.

Exploiting the power of Equation (10), we can unfold the following revelation:

g(ϑX, ϑY) = g(ϑ2X, Y) = p.g(X, ϑY) + q.g(X, Y). (11)

It is worth mentioning that when we set p = q = 1 in (11), a metallic structure magically
transforms into a golden structure.

The esteemed members of the metallic family are elegantly categorized as follows [27]:

1. The golden structure ϑ = 1+
√

5
2 for p = q = 1, entwined with the ratio of two

consecutive classical Fibonacci numbers.
2. The copper structure κ1,2 = 2 with p = 1 and q = 2.

3. The nickel structure κ1,3 = 1+
√

13
2 if p = 1 and q = 3.

4. The silver structure κ2,1 = 1 +
√

2 if p = 2 and q = 1, enchanted by the ratio of two
consecutive Pell numbers.

5. The bronze structure κ3,1 = 3+
√

13
2 with p = 3 and q = 1.

6. The subtle structure κ4,1 = 2 +
√

5 if p = 4 and q = 1, and so forth.
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Let (M, g) be an m-dimensional Riemannian manifold and let ϑ be a (1,1)-tensor
field on M such that ϑ2 = I , ϑ �= ±I ; then, ϑ is called an almost product structure. The
structure ϑ with

g(ϑX, Y) = g(X, ϑY), ∀X, Y ∈ Γ(T M)

is known as an almost product Riemannian manifold [26].
Any metallic structure φ on M is known to induce two almost product structures φ

on M [27]:

ϑ1 =
2

2σp,q − p
φ− p

2σp,q − p
I , (12)

ϑ2 =
2

2σp,q − p
φ +

p
2σp,q − p

I (13)

where σp,q =
p+
√

p2+4q
2 .

Also, an almost product structure ϑ on M induces two metallic structures:

φ1 =
p
2
I +

2σp,q − p
2

ϑ,

φ2 =
p
2
I − 2σp,q − p

2
ϑ.

Definition 1 ([28]). (i) Let ∇ be a linear connection and φ be a metallic structure on M such
that ∇φ = 0. Then, ∇ is called a φ-connection.

(ii) A locally metallic Riemannian manifold is a metallic Riemannian manifold (M, g, φ) if the
Levi-Civita connection ∇ of g is a φ-connection.

Consider an almost Hermitian manifold M and a submanifold M embedded within
it. We refer to M as a slant submanifold if, for any point x on M and any non-zero vector
X in the tangent space TxM, the angle between the tangent space JM and TxM remains
constant. In other words, this angle does not vary based on the specific choice of x and X
on M. The constant angle is known as the slant angle θ, which lies in the range [0, π

2 ] and
characterizes the slant submanifold within M.

Moreover, if M is a slant submanifold of a metallic Riemannian manifold (M, g, φ)
with a slant angle θ, the following relationships hold [28]:

g(T X, T Y) = cos2 θ[pg(X, T Y) + qg(X, Y)],

and

g(NX, NY) = sin2 θ[pg(X, T Y) + qg(X, Y)],

for all X, Y ∈ Γ(T M).
Furthermore, we have the additional relations

T 2 = cos2 θ(pT + qI),

where I represents the identity operator on Γ(T M) and

∇T 2 = pcos2θ.∇T .

These expressions provide valuable insights into the geometric properties of slant
submanifolds and their relationships within the broader context of metallic Riemannian
manifolds.
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Also, let M1 be a Riemannian manifold with constant sectional curvature c1 and M2 be
a Riemannian manifold with constant sectional curvature c2. Then, the Riemannian curvature
tensor R of the locally Riemannian product manifold M =M1 ×M2 is given by [29]

˜̄R(X, Y)Z =
1
4
(c1 + c2)

[
g(Y, Z)X − g(X, Z)Y

]
+

1
4
(c1 + c2)

{
4

(2σp,q − p)2

[
g(φY, Z)φX − g(φX, Z)φY

]
+

p2

(2σp,q − p)2

[
g(Y, Z)X − g(X, Z)Y

]
+

2p
(2σp,q − p)2

[
g(φX, Z)Y + g(X, Z)φY

−g(φY, Z)X − g(Y, Z)φX
]}

±1
2
(c1 − c2)

{
1

(2σp,q − p)
[
g(Y, Z)φX − g(X, Z)φY

]
+

1
(2σp,q − p)

[
g(φY, Z)X − g(φX, Z)Y

]
+

p
(2σp,q − p)

[
g(X, Z)Y − g(Y, Z)X

]}
. (14)

From (5) and (14), we have

R̄(X, Y, Z, W) =
1
4
(c1 + c2)

[
g(Y, Z)g(X, W)− g(X, Z)g(Y, W)

]
+

1
4
(c1 + c2)

{
4

(2σp,q − p)2

[
g(φY, Z)g(φX, W)− g(φX, Z)g(φY, W)

]
+

p2

(2σp,q − p)2

[
g(Y, Z)g(X, W)− g(X, Z)g(Y, W)

]
+

2p
(2σp,q − p)2

[
g(φX, Z)g(Y, W) + g(X, Z)g(φY, W)

− g(φY, Z)g(X, W)− g(Y, Z)g(φX, W)
]}

± 1
2
(c1 − c2)

{
1

(2σp,q − p)
[
g(Y, Z)g(φX, W)− g(X, Z)g(φY, W)

]
+

1
(2σp,q − p)

[
g(φY, Z)g(X, W)− g(φX, Z)g(Y, W)

]
+

p
(2σp,q − p)

[
g(X, Z)g(Y, W)− g(Y, Z)g(X, W)

]}
+ ψ1β1(X, Z)g(Y, W)− ψ1β1(Y, Z)g(X, W) + ψ2β1(Y, W)g(X, Z)

− ψ2β1(X, W)g(Y, Z) + ψ2(ψ1 − ψ2)g(X, Z)β2(Y, W)

− ψ2(ψ1 − ψ2)g(Y, Z)β2(X, W).

(15)

3. Unveiling the Pinching Phenomenon: Main Result

The proof of the major finding is the focus of this section.
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Theorem 1. Let M be an n-dimensional warped product θ-slant submanifold of an m-dimensional
locally metallic product space form (M = M1(c1) ×M2(c2), g, φ) with quarter-symmetric
metric connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ

− cos2θ(p.trT)
]}

± 1
8

(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
− (ψ1 + ψ2)

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
− ψ2(ψ1 − ψ2)

[
μ(n− 1) + μ|M1(n1 − 1) + μ|M2(n2 − 1)

]
+ (ψ1 − ψ2)

[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
, (16)

where Δ is the Laplacian operator on M1. The equality case holds in (16) if and only if M is a
mixed totally geodesic isometric immersion and the following satisfies

H1

H2
=

n1

n2
, (17)

where H1 and H2 are the mean curvature vectors along Mn1
1 and Mn2

2 , respectively.

Proof. Let {e1, ..., en} be an orthonormal tangent frame and {en+1, ..., em} be an orthonormal
frame of TxM and T⊥x M, respectively, at any point x ∈ M. Putting X = W = ei,
Y = Z = ej in (15) with Equation (8) and take i �= j, we have

R(ei, ej, ej, ei) =
1
4
(c1 + c2)

[
g(ej, ej)g(ei, ei)− g(ei, ej)g(ej, ei)

]
+

1
4
(c1 + c2)

{
4

(2σp,q − p)2

[
g(φej, ej)g(φei, ei)

− g(φei, ej)g(φej, ei)
]

+
p2

(2σp,q − p)2

[
g(ej, ej)g(ei, ei)− g(ei, ej)g(ej, ei)

]
+

2p
(2σp,q − p)2

[
g(φei, ej)g(ej, ei) + g(ei, ej)g(φej, ei)

− g(φej, ej)g(ei, ei)− g(ej, ej)g(φei, ei)
]}

± 1
2
(c1 − c2)

{
1

(2σp,q − p)
[
g(ej, ej)g(φei, ei)

− g(ei, ej)g(φej, ei)
]

+
1

(2σp,q − p)
[
g(φej, ej)g(ei, ei)− g(φei, ej)g(ej, ei)

]
+

p
(2σp,q − p)

[
g(ei, ej)g(ej, ei)− g(ej, ej)g(ei, ei)

]}
+ ψ1β1(ei, ej)g(ej, ei)− ψ1β1(ej, ej)g(ei, ei)

+ ψ2β1(ej, ei)g(ei, ej)− ψ2β1(ei, ei)g(ej, ej)

+ ψ2(ψ1 − ψ2)g(ei, ej)β2(ej, ei)

− ψ2(ψ1 − ψ2)g(ej, ej)β2(ei, ei)

+ g(ζ(ei, ei), ζ(ej, ej))− g(ζ(ej, ei), ζ(ei, ej))
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− (ψ1 − ψ2)g(ζ(ej, ej), Γ⊥)g(ei, ei)

− (ψ2 − ψ1)g(ζ(ei, ej), Γ⊥)g(ej, ei). (18)

Applying 1 ≤ i, j ≤ n in (18), we obtain

2τ(x) =
1
4
(c1 + c2)

n(n− 1)
p2 + 4q

{
2p2 + 4q +

4
n(n− 1)

[
tr2φ− cos2θ(p.trT + nq)

]
− 4p

n
trφ

}
± 1

4
(n− 1)√

p2 + 4q
(c1 − c2)(4trφ− 2np) + n2||H||2 − ||ζ||2

− (ψ1 + ψ2)λ(n− 1)− ψ2(ψ1 − ψ2)μ(n− 1) + n(n− 1)(ψ1 − ψ2)π(H). (19)

We take

δ = 2τ − 1
4
(c1 + c2)

n(n− 1)
p2 + 4q

{
2p2 + 4q

+
4

n(n− 1)
[
tr2φ− cos2θ(p.trT + nq)

]
− 4p

n
trφ

}
∓1

4
(n− 1)√

p2 + 4q
(c1 − c2)(4trφ− 2np)− n2(n− 2)

(n− 1)
||H||2

+(ψ1 + ψ2)λ(n− 1) + ψ2(ψ1 − ψ2)μ(n− 1)− n(n− 1)(ψ1 − ψ2)π(H).

(20)
Then, from (19) and (20), we have

n2||H||2 = (n− 1)(δ + ||ζ||2). (21)

As a result, when using the orthonormal frame {e1, ..., en}, (21) assumes the following form:( n

∑
i=1

ζn+1
ii

)2

= (n− 1)
{

δ +
n

∑
i=1

(ζn+1
ii )2 + ∑

i �=j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2
}

.

(22)

If we substitute a1 = ζn+1
11 , a2 = ∑n1

i=2 ζn+1
ii , and a3 = ∑n

t=n1+1 ζn+1
tt , then (22) reduces to

( n

∑
i=1

ai

)2

= (n− 1)
{

δ +
n

∑
i=1

a2
i + ∑

i �=j≤n
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2

− ∑
2≤j �=k≤n1

ζn+1
jj ζn+1

kk − ∑
n1+1≤s �=t≤n

ζn+1
ss ζn+1

tt

}
. (23)

As a result, a1, a2, a3 fulfill Chen’s Lemma (for n = 3), i.e.,( 3

∑
i=1

ai

)2

= 2
(

b +
3

∑
i=1

a2
i

)
.

Clearly, 2a1a2 ≥ b with equality holds if a1 + a2 = a3, and conversely, this signifies

∑
1≤j<k≤n1

ζn+1
jj ζn+1

kk + ∑
n1+1≤s<t≤n

ζn+1
ss ζn+1

tt

≥ δ

2
+ ∑

1≤α3<β3≤n
(ζn+1

α3β3
)2 +

p+q

∑
r=n+1

n

∑
α3β3=1

(ζr
α3β3

)2
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(24)

and equality holds if and only if

n1

∑
i=1

ζn+1
ii =

n

∑
t=n1+1

ζn+1
tt . (25)

Again taking into consideration Equation (3.3) in [15], we arrive at the following conclusion:

n2
Δ f
f

= τ − ∑
1≤j<k≤n1

κ(ej ∧ ek)− ∑
n1+1≤s<t≤n

κ(es ∧ et).

(26)Then, from (24) and (26), we compute

n2
Δ f
f
≤ τ − 1

8
(c1 + c2)

1
p2 + 4q

{
(n(n− 1)− 2n1n2)(p2 + 4q) + 8

[
tr2φ

− 4cos2θ(2p.trT + nq)− 4p(n− 2)trφ
]}

∓ 1
8

(c1 − c2)

(
√

p2 + 4q)

{
4trφ(n− 2)− 2pn(n− 1)− 4pn1n2)

}
− δ

2

− (ψ1 + ψ2)
[
λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
− ψ2(ψ1 − ψ2)

[
μ|M1(n1 − 1) + μ|M2(n2 − 1)

]
+ (ψ1 − ψ2)

[
n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (27)

Using (20) in the above equation, we obtain

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ

− cos2θ(p.trT)
]}

± 1
8

(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
− (ψ1 + ψ2)

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
− ψ2(ψ1 − ψ2)

[
μ(n− 1) + μ|M1(n1 − 1) + μ|M2(n2 − 1)

]
+ (ψ1 − ψ2)

[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
, (28)

which implies the required inequality.
We deduce from (24) and (25) that the equality in (16) holds if and only if

m

∑
r=n+1

n1

∑
i=1

ζr
ii =

2m

∑
r=n+1

n

∑
t=n1+1

ζr
tt = 0. (29)

Moreover, from (25), we obtain

ζ jt = 0, ∀ 1 ≤ j ≤ n1, n + 1 ≤ t ≤ n, n + 1 ≤ r ≤ m. (30)

This shows that (30) is equivalent to the mixed total geodesicness of the doubly warped
product M =M1(c1)×M2(c2) and (25) and (29) imply n1H1 = n2H2.
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4. Some Applications of the Result

The significance and applicability of the findings can be observed from three distinct
perspectives. Firstly, they can be regarded as specific instances within the realm of quarter-
symmetric connections, shedding light on the broader understanding of this field. Secondly,
the results can be viewed as particular cases within the framework of slant submanifolds,
contributing to the knowledge and characterization of these geometric structures. Lastly,
they hold relevance as specific instances within the domain of metallic space forms, pro-
viding valuable insights into the properties and behavior of such spaces. The multifaceted
nature of these applications underscores the depth and breadth of the implications derived
from this research, making it a compelling contribution to the respective fields and offering
new avenues for exploration and discovery.

4.1. Results on Specific Instances within the Realm of Quarter-Symmetric Connection

It is known that a quarter-symmetric connection becomes a semi-symmetric metric
connection with ψ1 = 1 and ψ2 = 1. Taking this into consideration together with Theorem 1,
we have the following result:

Corollary 1. LetM be an n-dimensional warped product θ-slant submanifold of an m-dimensional
locally metallic product space form (M =M1(c1)×M2(c2), g, φ) with semi-symmetric metric
connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ

− cos2θ(p.trT)
]}

± 1
8

(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
− 2

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
. (31)

The equality in (31) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

We also know that a quarter-symmetric connection becomes a semi-symmetric non-
metric connection with ψ1 = 1 and ψ2 = 0. Taking this into consideration together with
Theorem 1, we have the following result.

Corollary 2. LetM be an n-dimensional warped product θ-slant submanifold of an m-dimensional
locally metallic product space form (M =M1(c1)×M2(c2), g, φ) with a semi-symmetric non-
metric connection. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ

− cos2θ(p.trT)
]}

± 1
8

(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
−
[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
+
[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (32)

The equality in (32) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).
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4.2. Results on Specific Instances within the Realm of θ-Slant Submanifold

We know that the particular classes of the θ-slant submanifold are either invariant or
anti-invariant with θ = 0 or θ = π

2 , respectively. Thus, we have the following result as a
consequence of Theorem 1.

Corollary 3. Let M be an n-dimensional warped product invariant submanifold of an m-dimensional
locally metallic product space form (M = M1(c1) ×M2(c2), g, φ) with quarter-symmetric
metric connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ− p.trT

]}
± 1

8
(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
− (ψ1 + ψ2)

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
− ψ2(ψ1 − ψ2)

[
μ(n− 1) + μ|M1(n1 − 1) + μ|M2(n2 − 1)

]
+ (ψ1 − ψ2)

[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (33)

The equality in (33) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Corollary 4. Let M be an n-dimensional warped product anti-invariant submanifold of an m-
dimensional locally metallic product space form (M = M1(c1)×M2(c2), g, φ) with quarter-
symmetric metric connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ

]}
± 1

8
(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
− (ψ1 + ψ2)

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
− ψ2(ψ1 − ψ2)

[
μ(n− 1) + μ|M1(n1 − 1) + μ|M2(n2 − 1)

]
+ (ψ1 − ψ2)

[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (34)

The equality in (34) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Further, from Corollary 1, we mind the following results.

Corollary 5. LetM be an n-dimensional warped product invariant submanifold of an m-dimensional
locally metallic product space form (M =M1(c1)×M2(c2), g, φ) with semi-symmetric metric
connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ− p.trT

]}
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± 1
8

(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
− 2

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
. (35)

The equality in (35) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Corollary 6. Let M be an n-dimensional warped product anti-invariant submanifold of an m-
dimensional locally metallic product space form (M = M1(c1) ×M2(c2), g, φ) with semi-
symmetric metric connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ

]}
± 1

8
(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
− 2

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
. (36)

The equality in (36) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Moreover, from Corollary 2, we obtain the following results.

Corollary 7. LetM be an n-dimensional warped product invariant submanifold of an m-dimensional
locally metallic product space form (M =M1(c1)×M2(c2), g, φ) with a semi-symmetric non-
metric connection. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ− p.trT

]}
± 1

8
(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
−
[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
+
[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (37)

The equality in (37) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Corollary 8. Let M be an n-dimensional warped product anti-invariant submanifold of an m-
dimensional locally metallic product space form (M = M1(c1) ×M2(c2), g, φ) with a semi-
symmetric non-metric connection. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
8
(c1 + c2)

1
p2 + 4q

{
2n1n2(p2 + 4q)− 4

[
tr2φ + trφ

]}
± 1

8
(c1 − c2)√
(p2 + 4q)

{
4pn1n2 − 4trφ

}
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−
[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
+
[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (38)

The equality in (38) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

4.3. Results on Specific Instances within the Realm of Metallic Product Space

A metallic structure can be characterized as a golden structure, copper structure,
nickel structure, silver structure, bronze structure, subtle structure, and so on for providing
different particular values to p and q. For instance, the metallic structure implies a golden
structure when p = 1 and q = 1. Hence, from Theorem 1, we obtain the following results.

Corollary 9. LetM be an n-dimensional warped product θ-slant submanifold of an m-dimensional
locally golden product space form (M =M1(c1)×M2(c2), g, φ) with quarter-symmetric metric
connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
40

(c1 + c2)

{
10n1n2 − 4

[
tr2φ + trφ− cos2θ(trT)

]}
± 1

8
√

5
(c1 − c2)

{
4n1n2 − 4trφ

}
− (ψ1 + ψ2)

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
− ψ2(ψ1 − ψ2)

[
μ(n− 1) + μ|M1(n1 − 1) + μ|M2(n2 − 1)

]
+ (ψ1 − ψ2)

[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (39)

The equality in (39) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Corollary 10. LetM be an n-dimensional warped product θ-slant submanifold of an m-dimensional
locally golden product space form (M = M1(c1)×M2(c2), g, φ) with semi-symmetric metric
connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2

+
1
40

(c1 + c2)

{
10n1n2 − 4

[
tr2φ + trφ− cos2θ(trT)

]}
± 1

8
√

5
(c1 − c2)

{
4n1n2 − 4trφ

}
− 2

[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
. (40)

The equality in (40) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Corollary 11. LetM be an n-dimensional warped product θ-slant submanifold of an m-dimensional
locally golden product space form (M = M1(c1) ×M2(c2), g, φ) with semi-symmetric non-
metric connections. Then,

n2
Δ f
f
≤ n2(n− 2)

2(n− 1)
||H||2
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+
1

40
(c1 + c2)

{
10n1n2 − 4

[
tr2φ + trφ− cos2θ(trT)

]}
± 1

8
√

5
(c1 − c2)

{
4n1n2 − 4trφ

}
−
[
λ(n− 1) + λ|M1(n1 − 1) + λ|M2(n2 − 1)

]
+
[
n(n− 1)π(H) + n1(n1 − 1)π(H1) + n2(n2 − 1)π(H2)

]
. (41)

The equality in (41) is attained if and only if M is a mixed totally geodesic isometric immersion and
meets the condition (17).

Remark 2. We can obtain results similar to the results (9), (10), and (11) for copper, silver, nickel,
bronze, subtle, etc., by proving specific values to p and q.

Remark 3. We can also obtain the results (9), (10), and (11) for particular classes of the θ-slant
submanifolds, i.e., invariant and anti-invariant submanifolds by providing particular values θ = 0
and θ = π

2 , respectively.

5. Conclusions

We have the following conclusions from our findings in this article:

1. We delved into the realm of geometric inequalities, with a particular focus on Chen’s
inequality. Our investigation revolved around its application to assess the square
norm of the mean curvature vector and the warping function of warped product
slant submanifolds. Within the framework of locally metallic product space forms
with quarter-symmetric metric connection, we successfully established this geometric
inequality and explored its implications.

2. By examining the conditions under which equality is achieved within the inequality,
we gained valuable insights into the intricacies of warped product slant submanifolds.
Our findings shed light on the underlying geometric properties and the relationships
between the mean curvature vector, the warping function, and the ambient space.

3. The implications of our research extend beyond the theoretical realm. The established
geometric inequality and its equality conditions provide a powerful tool for studying
and characterizing warped product slant submanifolds in locally metallic product
space forms. This has potential applications in various fields, such as differential
geometry, mathematical physics, and even in applied sciences where understanding
the geometric properties of submanifolds is crucial.

Overall, our study contributes to the existing body of knowledge by providing a
deeper understanding of Chen’s inequality and its significance in the context of warped
product slant submanifolds. We hope that our findings will inspire further research and
stimulate new avenues of exploration in the fascinating field of geometric inequalities and
their applications.

Future Work

The following could be future research topics for the study of Chen’s inequality in the
context of warped product slant submanifolds within locally metallic product space forms
with quarter-symmetric metric connections:

1. Further studies may involve extending Chen’s inequality to other classes of geometric
spaces or submanifolds. One possible approach to this would be to examine whether
it can be applied to other kinds of submanifolds, including minimum submanifolds,
hypersurfaces, Lagrangian submanifolds, etc., and to examine the implications in
those situations.

2. Further investigation into the characteristics and properties of warped product slant
submanifolds is possible. This might involve creating additional geometric inequali-
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ties unique to this class of submanifolds, as well as analyzing the behavior of warping
functions and mean curvature vectors in various dimensions and situations.

3. Beyond the quarter-symmetric metric connection, different kinds of metric connections
can be taken into consideration to advance the research. Analyzing Chen’s inequality
in relation to other metric connections may yield insightful comparisons.

4. Subsequent investigations may utilize computational or numerical techniques to
verify and investigate the outcomes derived from analytical procedures. In order to
investigate the behavior of mean curvature vectors and warping functions and to
confirm the accuracy and applicability of Chen’s inequality in real-world situations,
this can include running numerical experiments or simulations.

5. Interdisciplinary research can be facilitated by working with scientists in adjacent
domains like mathematical physics, geometric analysis, or differential geometry.
Collaboration with specialists in other fields can result in fresh insights, alternative
uses, and a better understanding of Chen’s inequality’s significance.

Future research can advance geometric inequalities, our knowledge of warped prod-
uct slant submanifolds, and the field of differential geometry as a whole by exploring
these directions.
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Abstract: Gerbes and higher gerbes are geometric cocycles representing higher degree cohomology
classes, and are attracting considerable interest in differential geometry and mathematical physics. We
prove that a 2-gerbe has a torsion Dixmier–Douady class if and only if the gerbe has locally constant
cocycle data. As an application, we give an alternative description of flat twisted vector bundles
in terms of locally constant transition maps. These results generalize to n-gerbes for n = 1 and
n ≥ 3, providing insights into the structure of higher gerbes and their applications to the geometry of
twisted vector bundles.

Keywords: gerbe; 2-gerbe; smooth Deligne cohomology; Dixmier–Douady class; twisted vector bundles
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1. Introduction

In modern differential geometry, the study of higher categorical structures has led to
significant advancements in our understanding of manifolds and their invariants. Gerbes
and higher gerbes, as geometric realizations of such structures, play a crucial role in this
landscape, connecting diverse areas such as algebraic topology, complex geometry, and
mathematical physics.

U(1)-gerbes are geometric objects representing degree 3 integral cohomology classes,
just as line bundles represent degree 2 integral cohomology classes. Gerbes were originally
introduced by Giraud [1], and began to be used more often in the context of algebraic
topology and differential geometry after Brylinski [2]. In particular, Murray [3] conceived
and constructed an explicit and geometric model of a gerbe, called a bundle gerbe, as
opposed to a description as a certain sheaf of groupoids. This model by Murray has been
further developed by several authors. Most notably, Stevenson has developed a geometric
model of a 2-gerbe, and the 2-stack structure of gerbes was considered [4,5], which was
further studied by Waldorf [6], and equivariant refinements were studied in [7,8]. Gerbes
and higher gerbes have been applied to several problems in mathematics and physics.
For example, twisted K-theory and Ramond–Ramond field classifications [9–12], local
formulas for 2d Wess–Zumino (WZ) action [13] and its Feynman amplitude interpreted as
a bundle gerbe holonomy [14,15], geometric string structures [16], and even topological
insulators [17–19].

As mentioned above, there are several models for higher gerbes with connection. To list
a few, there are bundle n-gerbes with connection, sheaves of higher groupoids, and a map
into a classifying ∞-stack Bn+2

∇ . However, one of the most classical and elementary models
would be the Deligne cocycle model, consisting of Čech cocycles and local differential form
data. Indeed, the Deligne complex is the natural home for studying differential geometric
cocycles such as line bundles with connections and (higher) gerbes with connection.

This article is a brief technical report on differential geometry of torsion gerbes.
Namely, we prove that a necessary and sufficient condition for the Dixmier–Douady
class of a 2-gerbe to be torsion is that its cocycle data consist of locally constant maps, and
its proof essentially generalizes for the case of n-gerbes with n = 1 or n ≥ 3. The idea comes
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from a well-known fact on flat vector bundles, i.e., a necessary and sufficient condition for
a vector bundle to admit a flat connection is that the Čech-cocycle data of the underlying
vector bundle consists of locally constant maps. Using our results on torsion 2-gerbes, we
also prove a generalization of this fact to flat twisted vector bundles.

As is well-known, a gerbe being torsion or not is crucial in studying geometric cocycles
of twisted K-theory. Indeed, if a geometric cocycle admits a nontorsion twist, it has to be
an infinite dimensional construction (see [9,12]). Therefore, we expect that our results will
be useful in studying finite-dimensional constructions such as twisted vector bundles or
bundle gerbe modules with finite-dimensional fibers.

This paper is organized as follows. In Section 2, we review the U(1)-gerbe with
connections and its higher analogues. This section also serves the purpose of setting up
notations and terminologies we will be using throughout this paper. In Section 3, we prove
that a 2-gerbe is torsion if and only if its cocycle data consists of locally constant functions.
In Section 4, we apply our main theorem to prove a twisted analogue of a classical fact that
a vector bundle is flat if and only if there exist local trivializations whose transition maps
are locally constant.

2. Preliminaries

In this section, we review (higher) gerbes with connection. Throughout this paper,
all of our manifolds are smooth manifolds, and all of our maps are smooth maps, unless
specified otherwise. In particular, X always denotes a manifold. By gerbes, we will
always mean U(1)-gerbes. We will use the notation Ui1···in to denote an n-fold intersection
Ui1 ∩ · · · ∩Uin . If an open cover is locally finite and every n-fold intersection is contractible
for all n ∈ Z+, we will call it a good cover. On a smooth manifold, a good cover always
exists. A Čech cocycle ζ = (ζi1···in) is said to be completely normalized if ζi1···in ≡ 1 whenever
there is a repeated index, and ζσ(i1)···σ(in) = (ζi1···in)

sign(σ) for any σ ∈ Sn, where Sn is the
symmetric group on n letters.

2.1. gerbes with connection

In this subsection, we shall review a Čech cocycle description of a gerbe with connec-
tions. See Gawędzki and Reis [15] and Hitchin [20] for a broader account.

Definition 1. Let X be a manifold and U := {Ui}i∈Λ an open cover of X. A gerbe over X subor-
dinate to U is a U(1)-valued completely normalized Čech 2-cocycle {λkji} ∈ Ž2(U , U(1)). A con-
nection on a gerbe {λkji} on U is a pair ({Aji}, {Bi}) consisting of a family of differential 1-forms
{Aji ∈ Ω1(Uij;

√
−1R)}i,j∈Λ, and a family of differential 2-forms {Bi ∈ Ω2(Ui;

√
−1R)}i∈Λ,

satisfying the following relations:

• λkjiλ
−1
l ji λlkiλ

−1
lkj = 1;

• d log λkji = Aji + Aik + Akj;
• Bj − Bi = dAji.

From dBi = dBj for all i, j ∈ Λ, the family of exact 3-forms {dBi}i∈Λ defines a global closed
differential 3-form H. The differential form H is called the curvature of the gerbe, or the Neveu–
Schwarz 3-form.

A gerbe with connections on U is therefore a Deligne cocycle of degree 2. Notice that
our total differential is D = d + (−1)qδ on Čp(U , Ωq). Throughout the rest of this paper,
λ̂ = ({λkji}, {Aji}, {Bi}) always denotes a gerbe with connections defined on an open
cover U = {Ui}i∈Λ of X, and H denotes the 3-curvature form of λ̂.

Definition 2. Two gerbes with connections λ̂ and λ̂′ are isomorphic if λ̂′ is obtained by adding a
total degree 2 Deligne coboundary to λ̂, i.e., λ̂′ = λ̂ + Dμ̂ for some μ̂ ∈ Č1(U , Ω0)⊕ Č0(U , Ω1).
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Remark 1. Let {λkji} ∈ Ž2(U , U(1)) be a gerbe, and δ : Ȟ2(U , U(1)) → H3(X; 2πiZ) be the
connecting map. The image in H3

dR(X;
√
−1R) of the cohomology class δ([λ]) ∈ H3(X; 2πiZ)

coincides with the cohomology class of H ∈ H3
dR(X;

√
−1R) (see Brylinski ([2] p. 175) Corollary

4.2.8.). Here, the cohomology class δ([λ]) is a topological invariant of a gerbe, called the Dixmier–
Douady class.

2.2. Higher gerbes with connection

In the previous subsection, we have seen that a gerbe with connections is a degree 2
Deligne cocycle. It is possible to generalize it to higher degrees for a cocycle definition of
an n-gerbe with connections. Compare Stevenson [4,5] and Gajer [21].

Definition 3. Let X be a manifold, and U := {Ui}i∈Λ be an open cover of X. An n-gerbe over
X subordinate to U is a U(1)-valued completely normalized Čech (n + 1)-cocycle {λin+2···i1} ∈
Žn+1(U , U(1)). A connection on an n-gerbe {λin+2···i1} on U is an (n + 1)-tuple ({A(1)

in+1···i1},

{A(2)
in ···i1}, · · · , {A(n+1)

i1
}), consisting of a family of differential k-forms {A(k)

in+k−2···i1 ∈
Ωk(Uin+k−2···i1 ;

√
−1R)}in+k−2,··· ,i1∈Λ, satisfying that the (n+ 2)-tuple λ̂ = (λ, A(1), · · · , A(n+1))

is a degree (n + 1)-Deligne cocycle, i.e., Dλ̂ = 0. The differential (n + 1)-forms {A(n+1)
i } defined

on each open set satisfy dA(n+1)
i = dA(n+1)

j for all i, j ∈ Λ; the family of exact (n + 2)-forms

{dA(n+1)
i }i∈Λ defines a global closed differential (n + 2)-form H. The differential form H is called

the curvature of the n-gerbe.

Definition 4. Two n-gerbes with connection λ̂ and λ̂′ are isomorphic if λ̂′ is obtained by adding
a total degree n + 1 Deligne coboundary to λ̂, i.e., λ̂′ = λ̂ + Dμ̂ for some μ̂ ∈ Čn(U , Ω0) ⊕
Čn−1(U , Ω1)⊕ · · · ⊕ Č0(U , Ωn)

Similarly for gerbes, an n-gerbe λ ∈ Žn+1(U , U(1)) has an higher analogue of
the Dixmier–Douady class in Hn+2(X; 2πiZ) as its topological invariant. Its image in
Hn+2

dR (X;
√
−1R) coincides with the curvature H of n-gerbe (Cf. Stevenson [4], Chapter 11).

Remark 2. For later use, we give explicit formula of the cocycle condition for a 2-gerbe with
connection ({λlkji}, {Akji}, {Bji}, {Ci}).
C1. λkjiλ

−1
l ji λlkiλ

−1
lkj = 1;

C2. d log λlkji = Akji − Alji + Alki − Alkj;
C3. dAkji = −Bji + Bki − Bkj;
C4. dBji = Ci − Cj.

3. Main Theorems

In this section, we shall state and prove our main theorems on a necessary and
sufficient condition for a 2-gerbe having a torsion Dixmier–Douady class. We state and
prove the sufficiency and then the necessity.

Theorem 1. Let X be a manifold, U = {Ui}i∈Λ be an open cover of X, and λ = {λlkji} be a
2-gerbe on X. If each λlkji is a locally constant map, then this 2-gerbe determines a torsion class
δ([λ]) in H4(X; 2πiZ).

Proof. Suppose that ({Akji}, {Bji}, {Ci}) is a connection on the given 2-gerbe λ. Since
λlkji are locally constant maps, it follows that Akji − Alji + Alki − Alkj = λ−1

lkjidλlkji = 0.
Accordingly, we could have chosen a connection with Akji ≡ 0, Bji ≡ 0, and Ci := ζ|Ui for
some ζ ∈ Ω3(X;

√
−1R), since the quadruple ({λkji}, {0}, {0}, {ζ|Ui}) satisfies the cocycle

conditions C1 to C4 in Remark 2. Moreover, since the curvature 4-form of this 2-gerbe with
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connections is exact, it follows that δ([λ])⊗R = [dζ] = 0, i.e., δ([λ]) is a torsion class in
H4(X, 2πiZ). Here, δ : Ȟ3(U , U(1))→ H4(X; 2πiZ) is the connecting map.

Proceeding similarly as in the above proof, a similar theorem also holds for n-gerbes
for n = 1 or ≥ 3, as stated in the following corollary.

Corollary 1. Let X be a manifold, U = {Ui}i∈Λ be an open cover of X, and λ = {λin+2···i1} be
an n-gerbe on X. If each λin+2···i1 is a locally constant map, then this n-gerbe determines a torsion
class δ([λ]) in Hn+2(X; 2πiZ).

Theorem 2. Let X and λ be as above. Suppose that the 2-gerbe λ is defined on a good cover
U = {Ui}i∈Λ, and also that λ determines a torsion class δ([λ]) in H4(X; 2πiZ). Then, given any
connection ({Akji}, {Bji}, {Ci}) on this 2-gerbe, there exists a 2-gerbe with connection (λ̃, Ã, B̃, C̃)
that has an underlying 2-gerbe consisting of a family of locally constant maps λ̃lkji : Uijkl → U(1),
such that the difference between (λ, A, B, C) and (λ̃, Ã, B̃, C̃) is a Deligne coboundary of degree 3.

Proof. Suppose a 2-gerbe λ determines a torsion class δ([λ]) in H4(X; 2πiZ). We first
choose an arbitrary connection ({Akji}, {Bji}, {Ci}) on the 2-gerbe λ. For the curvature H
of the 2-gerbe, δ([λ])⊗R = [H] is satisfied, and since the 2-gerbe is a torsion, [H] has a
representative dζ, where ζ is a differential 3-form on X. Now, from dCi = H|Ui = dζ|Ui , we
have d(ζ|Ui − Ci) = 0, and since Ui is contractible, by Poincaré’s Lemma, ζ|Ui − Ci = dΠi
for some Πi ∈ Ω2(Ui; iR). We define

C̃i := Ci + dΠi = ζ|Ui .

Applying C4, we see that d(Bji + Πi −Πj) = 0. Again by Poincaré’s Lemma, there
exists ξ ji ∈ Ω1(Uij;

√
−1R), such that

Bji + Πi −Πj = dξ ji. (1)

We set
B̃ji := Bji + Πi −Πj − dξ ji = 0.

Applying C3 and Equation (1), we have d(Akji + ξ ji − ξki + ξkj) = 0. Again, there
exists χkji ∈ Ω0(Uijk; U(1)) such that Akji + ξ ji − ξki + ξkj = d log χkji, so we define

Ãkji := Akji + ξ ji − ξki + ξkj − d log χkji = 0

λ̃lkji := λlkjiχ
−1
kji χl jiχ

−1
lki χlkj.

It can be readily seen that ̂̃λ = ({λ̃lkji}, {Ãkji}, {B̃ji}, {C̃i}) satisfies conditions from
C1 to C4, where Ãkji ≡ 0 ≡ B̃ji and C̃i is a restriction of a global 3-form ζ to Ui. The 2-gerbe

cocycles being locally constant follows from the cocycle condition C2 for ̂̃λ. In addition,

λ̂ = ({λlkji}, {Akji}, {Bji}, {Ci}) satisfies ̂̃λ = λ̂ + Dχ̂ where χ̂ = ({χ−1
kji }, {−ξ ji}, {Πi}).

Proceeding similarly as in the above proof, a similar theorem also holds for torsion
n-gerbes for n = 1 or ≥ 3, as stated in the following corollary.

Corollary 2. Let X and λ be as above. Suppose that the n-gerbe λ is defined on a good cover
U = {Ui}i∈Λ, and also that λ determines a torsion class δ([λ]) in Hn+2(X; 2πiZ). Then,
given any connection ({A(1)

in+1···i1}, {A(2)
in ···i1}, · · · , {A(n+1)

i1
}) on this n-gerbe, there exists an

n-gerbe with connection (λ̃, Ã(1), · · · , Ã(n+1)) that has an underlying n-gerbe consisting of a
family of locally constant maps λ̃in+2···i1 : Uin+2···i1 → U(1), such that the difference between
(λ, A(1), · · · , A(n+1)) and (λ̃, Ã(1), · · · , Ã(n+1)) is a Deligne coboundary of degree n + 1.

224



Axioms 2024, 13, 504

4. Application: Flatness of Twisted Vector Bundle

In this section, we briefly review what a twisted vector bundle with connections
is. After that, we recall an alternative characterization of a flat vector bundle via locally
constant transition maps. We apply Corollary 2 to state and prove its twisted analogue.

Definition 5. Let U = {Ui}i∈Λ be an open cover of X, and λ be a U(1)-valued completely
normalized Čech 2-cocycle. A λ-twisted vector bundle E of rank n over X consists of a family of
product bundles {Ui ×Cn : Ui ∈ U}i∈Λ together with transition maps

gji : Uij → U(n)

satisfying
gii = 1, gji = g−1

ij , gkjgji = gkiλkji.

The gerbe λ in this definition is also called a twist. A λ-twisted vector bundle is smooth
if all transition maps and gerbe cocycle data are smooth maps. We shall write a λ-twisted
vector bundle E over X of rank n as a triple (U , {gji}, {λkji}).

Definition 6. Let λ̂ = ({λkji}, {Aji}, {Bi}) be a gerbe with connections, and E = (U , {gji}, {λkji})
be a smooth λ-twisted vector bundle of rank n. A connection on E compatible with λ̂ is a family
Γ = {Γi ∈ Ω1(Ui; u(n))}i∈Λ satisfying

Γi − g−1
ji Γjgji − g−1

ji dgji = −Aji · 1, (2)

where Aji ∈ Ω1(Uij; iR). Here, u(n) denotes the Lie algebra of U(n), and 1 the identity matrix.

It is easy to see that Equation (2) is compatible with the cocycle condition of gerbes
with connection, i.e., δ(A)kji · 1 = d log λkji · 1. A standard argument using partitions
of unity shows that, for any λ-twisted vector bundle E, there exists a connection on E
compatible with λ̂.

Definition 7. Let λ̂ = ({λkji}, {Aji}, {Bi}) be as above, and (E, Γ) be a λ-twisted vector bundle
(U , {gji}, {λkji}) of rank n with a connection Γ compatible with λ̂. The curvature form of Γ is the
family R = {Ri ∈ Ω2(Ui; u(n))}i∈Λ, where Ri := dΓi + Γi ∧ Γi.

The following proposition is a well-known characterization of a flat vector bundle.

Proposition 1. If a vector bundle E over X admits a flat connection ∇, then there exists a cocycle
consisting of locally constant transition maps. Conversely, if a cocycle (gji) of a vector bundle E
over X defined on an open cover U = {Ui}i∈Λ consists of locally constant maps, then E admits a
flat connection.

Proof. Since ∇ is a flat connection, there exists a locally trivial open cover U = {Ui}i∈Λ
such that the connection form ωi on Ui is identically zero. Let {gji} be a cocycle of the vector
bundle E over X defined on the open cover U . Connection forms satisfy the following
gauge transformation formula:

ωi = g−1
ji ωjgji + g−1

ji dgji.

It follows that dgji = 0, and hence each gji is a locally constant map. Conversely, if
each gji is locally constant, then dgji = 0. So, we can take ω ≡ 0 for each i ∈ Λ.

A λ-twisted vector bundle admits only torsion twists. By Corollary 2, a torsion gerbe
with connections is always isomorphic to a gerbe with connection λ̂ = ({λkji}, {Aji}, {Bi})
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where all λkji are locally constant, Aji ≡ 0, and Bi = ζ|Ui for a globally defined differential
form ζ ∈ Ω2(X; iR).

Theorem 3. Let λ̂ = ({λkji}, {Aji}, {Bi}) be a gerbe with connections, provided that every λkji
is locally constant, and Aji = 0 for all i, j ∈ Λ. E = (U , {gji}, {λkji}) is a λ-twisted vector bundle
that admits a connection Γ = {Γi}i∈Λ compatible with the connection of λ̂ such that Ri ≡ 0 for
each i ∈ Λ, if and only if each gji is locally constant.

Proof. Suppose a λ-twisted vector bundle with connection (E, Γ) is flat, i.e., Ri ≡ 0. Then,
over each Ui ∈ U , it admits a parallel framing such that the connection form Γi ≡ 0. By
Equation (2), we obtain dgji = 0 and, hence, gji is locally constant. Suppose each gji is
locally constant. The family Γi i∈Λ with Γi ≡ 0 is a connection on E. The corresponding
curvature form Ri ≡ 0.

5. Discussion

In this paper, we have investigated the differential geometry of torsion gerbes, focusing
on providing a necessary and sufficient condition for the Dixmier–Douady class of a 2-gerbe
to be torsion. Our primary result demonstrates that a 2-gerbe is torsion if and only if its
cocycle data consists of locally constant functions. This insight extends to n-gerbes for
n = 1 and n ≥ 3, offering a generalized perspective on the structure of higher gerbes.

We drew upon the well-established understanding of flat vector bundles, wherein
the existence of a flat connection is characterized by locally constant Čech cocycles. This
analogy underscored the significance of locally constant cocycle data in the context of gerbes.
We extended this result for the case of flat twisted vector bundles, thereby broadening the
applicability of our findings.

In summary, this paper contributes to the deeper understanding of the geometry and
topology of torsion gerbes and their higher analogues, offering new tools and perspectives
for future research in both mathematics and theoretical physics. For example, our results
can be applied to investigating the role of locally constant cocycle data in the differential
geometry of twisted vector bundles over orbifolds, and more general stratified spaces.
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Abstract: In this paper, quasi-canonical biholomorphically projective and equitorsion quasi-canonical
biholomorphically projective mappings are defined. Some relations between the corresponding
curvature tensors of the generalized Riemannian spaces GRN and GRN are obtained. At the end,
the invariant geometric object of an equitorsion quasi-canonical biholomorphically projective map-
ping is found.
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1. Introduction and Preliminaries

Differentiable manifolds GRN with a non-symmetric metric tensor, GAN with a non-
symmetric affine connection and their mappings were, and still are, the subject of interest
of many scientists [1–14]. The use of a non-symmetric basic tensor and non-symmetric
connection became especially relevant after the appearance of the works of A. Einstein
related to creating the unified field theory, where the symmetric part of the basic tensor is
related to gravitation, and the antisymmetric one to electromagnetism. We can say that,
after A. Einstein [15,16], the main steps were made by L. P. Eisenhart [17,18].

Geometric mappings are interesting, both theoretically and practically. Geodesic and almost
geodesic lines play an important role in geometry and physics [1,2,6,19]. The movement of many
types of mechanical systems, as well as bodies or particles in gravitational or electromagnetic
fields, in continual constant surroundings, is often conducted in paths, which can be looked upon
as geodesic lines of Riemannian or affine connected spaces, which are defined by the energetic
regime along which the process takes place. So, for example, two Riemannian spaces, which
admit reciprocal geodesic mapping, describe processes which are unfolded by an equivalent
exterior load and equal orbit, but different energetic regimes. In this case, one of these processes
can be modeled by another. During recent years, many papers have been devoted to the theory
of holomorphically projective mappings; let us mention J. Mikeš, S.M. Minčić, M.S. Stanković,
Lj. S. Velimirović, M. Lj. Zlatanović, etc. [7,12–14,19]. This paper is a natural continuation of the
research published in paper [20] in which biholomorphically projective mappings were studied,
and they can be observed as a kind of generalization of holomorphically projective mappings.

A generalized Riemannian space GRN in the sense of Eisenhart’s definition [18] is a
differentiable N-dimensional manifold, equipped with a non-symmetric metric tensor gij.
The connection coefficients of the space GRN are the generalized Cristoffel’s symbols of the
second kind [19]:

Γi
jk = gipΓp.jk, (1)
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where ||gij|| = ||gij||−1, gij =
1
2 (gij + gji) and

Γi.jk =
1
2
(gji,k − gjk,i + gik,j),

where, for example, gij,k =
∂gij

∂xk . We suppose that det ||gij|| �= 0, det ||gij|| �= 0. In the

general case, the connection coefficients are not symmetric, i.e., Γi
jk �= Γi

kj, and they can be
represented as the sum of the symmetric and antisymmetric parts

Γi
jk = Si

jk + Ti
jk, (2)

where the symmetric and antisymmetric part of Γi
jk are given by the formulas

Γi
jk =

1
2
(Γi

jk + Γi
kj) = Si

jk, Γi
jk
∨
=

1
2
(Γi

jk − Γi
kj) = Ti

jk. (3)

The magnitude Ti
jk is the torsion tensor of the space GRN .

In a generalized Riemannian space, one can define four kinds of covariant deriva-
tives [9]. For example, for a tensor ai

j in GRN we have

ai
j|
1
m = ai

j,m + Γi
pmap

j − Γp
jmai

p,

ai
j|
2
m = ai

j,m + Γi
mpap

j − Γp
mja

i
p,

ai
j|
3
m = ai

j,m + Γi
pmap

j − Γp
mja

i
p,

ai
j|
4
m = ai

j,m + Γi
mpap

j − Γp
jmai

p,

(4)

where |
θ

(θ = 1, 2, 3, 4) denotes a covariant derivative of the kind θ and ai
j,m =

∂ai
j

∂xm .

In the case of the space GRN , we have twelve curvature tensors, and S. M. Minčić
proved that there are five independent ones. In this paper, we will consider the following
five independent curvature tensors [9]:

R
1

i
jmn = Γi

jm,n − Γi
jn,m + Γp

jmΓi
pn − Γp

jnΓi
pm,

R
2

i
jmn = Γi

mj,n − Γi
nj,m + Γp

mjΓ
i
np − Γp

njΓ
i
mp,

R
3

i
jmn = Γi

jm,n − Γi
nj,m + Γp

jmΓi
np − Γp

njΓ
i
pm + Γp

mn(Γi
pj − Γi

jp),

R
4

i
jmn = Γi

jm,n − Γi
nj,m + Γp

jmΓi
np − Γp

njΓ
i
pm + Γp

nm(Γi
pj − Γi

jp),

R
5

i
jmn =

1
2
(Γi

jm,n + Γi
mj,n − Γi

jn,m − Γi
nj,m

+ Γp
jmΓi

pn − Γp
jnΓi

mp + Γp
mjΓ

i
pn − Γp

njΓ
i
pm).

(5)

Let GRN and GRN be two generalized Riemannian spaces. We will observe these
spaces in the common system of coordinates defined by the mapping f : GRN → GRN . If
Γh

ij and Γh
ij are connection coefficients of the spaces GRN and GRN , respectively, then

Ph
ij = Γh

ij − Γh
ij (6)

is the deformation tensor of the connection for a mapping f .
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The relations between the corresponding curvature tensors of the spaces GRN and
GRN are obtained in [19] as follows:

R
1

i
jmn = R

1
i
jmn + Pi

jm|
1
n − Pi

jn|
1
m + Pp

jmPi
pn − Pp

jnPi
pm + 2Tp

mnPi
jp,

R
2

i
jmn = R

2
i
jmn + Pi

mj|
2
n − Pi

nj|
2
m + Pp

mjP
i
np − Pp

njP
i
mp + 2Tp

nmPi
pj,

R
3

i
jmn = R

3
i
jmn + Pi

jm|
2
n − Pi

nj|
1
m + Pp

jmPi
np − Pp

njP
i
pm + 2Pp

nm(Ti
pj + Pi

pj
∨
),

R
4

i
jmn = R

4
i
jmn + Pi

jm|
2
n − Pi

nj|
1
m + Pp

jmPi
np − Pp

njP
i
pm + 2Pp

mn(Ti
pj + Pi

pj
∨
),

R
5

i
jmn = R

5
i
jmn +

1
2
(Pi

jm|
3
n − Pi

jn|
4
m + Pi

mj|
4
n − Pi

nj|
3
m

+ Pp
jmPi

pn − Pp
jnPi

mp + Pp
mjP

i
np − Pp

njP
i
pm),

(7)

where Ph
ij is a deformation tensor for a mapping f , Ph

ij
∨

is its antisymmetric part and Th
ij is

a torsion tensor.

2. Quasi-Canonical Biholomorphically Projective Mappings

In paper [20], we define biholomorphically projective mappings between two gener-
alized Riemannian spaces GRN and GRN with almost complex structures that are equal
in a common system of coordinates defined by the mapping f : GRN → GRN . We have
considered a generalized Riemannian space GRN with a non-symmetric metric tensor
gij and almost complex structure Fh

i such that Fh
i �= aδh

i , where a is scalar invariant, and
we have defined the biholomorphically projective curve of the kind θ (θ = 1, 2) and the
biholomorphically projective mapping of the kind θ (θ = 1, 2).

Definition 1 ([20]). In the space GRN, a curve l given in parametric form

xi = xi(t), (i = 1, ..., N),

is said to be biholomorphically projective of the kind θ (θ = 1, 2) if it satisfies the following equation:

λh
|
θ
p(t)λ

p(t) = a(t)λh(t) + b(t)Fh
pλp(t) + c(t)

2
Fh

pλp(t),

where a, b and c are functions of parameter t, λi =
dxi

dt
and

2
Fh

p = Fh
q Fq

p .

Definition 2 ([20]). A diffeomorphism f : GRN → GRN is a biholomorphically projective
mapping of the kind θ (θ = 1, 2) if biholomorphically projective curves of the kind θ (θ = 1, 2) of
the space GRN are mapped to the biholomorphically projective curves of the kind θ of the space GRN.

Since it holds [20]

λh
|
1
pλp =

dλh

dt
+ Γh

pqλpλq = λh
|
2
pλp,

we conclude that the biholomorphically projective curves of the first kind and the biholo-
morphically projective curves of the second kind match, so we will simply call them the
biholomorphically projective curves. Therefore, the biholomorphically projective curves of
the spaces GRN and GRN , respectively, satisfy relations [20]

dλh

dt
+ Γh

pqλpλq = aλh + bFh
pλp + c

2
Fh

pλp, (8)
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dλh

dt
+ Γh

pqλpλq = aλh + bFh
pλp + c

2
Fh

pλp, (9)

where a, b, c, a, b and c are functions of parameter t, λi =
dxi

dt
, and Γh

pq and Γh
pq are

connection coeficients of the spaces GRN and GRN , respectively,
2
Fh

p = Fh
q Fq

p .
From Equations (8) and (9) we obtain [20]

(Γh
pq − Γh

pq)λ
pλq = ψλh + σFh

pλp + τ
2
Fh

pλp,

where we denote ψ = a− a, σ = b− b, τ = c− c. We can set ψ = ψpλp, σ = σpλp, τ = τpλp.
Now, we have [20]

(Γh
pq − Γh

pq − ψpδh
q − σpFh

q − τp
2
Fh

q)λ
pλq = 0.

From this we conclude that the following relation is satisfied [20]:

Γh
ij = Γh

ij + ψ(iδ
h
j) + σ(iF

h
j) + τ(i

2
Fh

j) + ξh
ij, (10)

and the deformation tensor has the form

Ph
ij = ψ(iδ

h
j) + σ(iF

h
j) + τ(i

2
Fh

j) + ξh
ij, (11)

where (ij) is a symmetrization without division by indices i, j; ψi, σi and τi are vectors;
2
Fh

p = Fh
q Fq

p and ξh
ij is an antisymmetric tensor.

Inspired by the form of the deformation tensor (11), we will define a new type of
mapping. Let GRN and GRN be two generalized Riemannian spaces with almost complex
structures Fh

i and Fh
i , respectively, where Fh

i = Fh
i in the common system of coordinates

defined by the mapping f : GRN → GRN , and assume that it holds that Fh
i �= aδh

i , where a
is scalar invariant.

The mapping f : GRN → GRN is a quasi-canonical biholomorphically projective
mapping if in the common coordinate system the connection coefficients Γh

ij and Γh
ij satisfy

the relation

Γh
ij = Γh

ij + ψ(iδ
h
j) + τ(i

2
Fh

j) + ξh
ij, (12)

where (ij) is a symmetrization without division by indices i, j; ψi and τi are vectors;
2
Fh

p = Fh
q Fq

p and ξh
ij is an antisymmetric tensor.

Let Ph
ij be a deformation tensor with respect to the quasi-canonical biholomorphically

projective mapping f : GRN → GRN . Then, from (6) and (12), we have

Ph
ij = ψ(iδ

h
j) + τ(i

2
Fh

j) + ξh
ij. (13)

3. Some Relations between Curvature Tensors

In this section, we will find the relations between the corresponding curvature tensors
of the spaces GRN and GRN .
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According to relations (5), (7) and (13), for the curvature tensor of the first kind
we have

R
1

i
jmn = R

1
i
jmn + ψ

1
j<nδi

m> + ψ<m|
1
n>δi

j + ψpξ
p
j<mδi

n> + 2ψjξ
i
mn

+ τjτ<n
4
Fi

m> + τm
2
Fi

j|
1
n − τn

2
Fi

j|
1
m + τj|

1
<n

2
Fi

m> + τj
2
Fi
<m|

1
n> + τ<m|

1
n>

2
Fi

j

+ τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j + ξ
p
jmξ i

pn − ξ
p
jnξ i

pm + ξ i
j<m|

1
n> + τ(p

2
Fi

n)ξ
p
jm

+ τ(j
2
Fp

m)
ξ i

pn − τ(j
2
Fp

n)ξ
i
pm − τ(p

2
Fi

m)ξ
p
jn + 2Tp

mn(ψ(jδ
i
p) + τ(j

2
Fi

p) + ξ i
jp),

(14)

where (ij) is a symmetrization without division , < ij > is an antisymmetrization without
division by indices i, j and

2
Fh

j = Fh
p Fp

j ,
3
Fh

j = Fh
p Fp

q Fq
j ,

4
Fh

j = Fh
p Fp

q Fq
r Fr

j ,

ψ
1

jn = ψj|
1
n − ψjψn − ψpτ(j

2
Fp

n).
(15)

Based on the facts given above, we have obtained the following statement.

Theorem 1. A quasi-canonical biholomorphically projective relation between the curvature tensors
of the first kind of the generalized Riemannian spaces GRN and GRN is given by Formula (14),
where Th

ij is the torsion tensor and the notation is the same as in (15).

From relations (5), (7) and (13), for the curvature tensor of the second kind, we obtain
the following:

R
2

i
jmn = R

2
i
jmn + ψ

2
j<nδi

m> + ψ<m|
2
n>δi

j − ψp(ξ
p
njδ

i
m − ξ

p
mjδ

i
n )

+ 2ψjξ
i
nm + τjτ<n

4
Fi

m> + τm
2
Fi

j|
2
n − τn

2
Fi

j|
2
m + τj|

2
<n

2
Fi

m>

+ τj
2
Fi
<m|

2
n> + τ<m|

2
n>

2
Fi

j + τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j

+ τ(p
2
Fi

n)ξ
p
mj + τ(j

2
Fp

m)
ξ i

np − τ(j
2
Fp

n)ξ
i
mp − τ(p

2
Fi

m)ξ
p
nj

+ ξ
p
mjξ

i
np − ξ

p
njξ

i
mp + ξ i

mj|
2
n − ξ i

nj|
2
m + 2Tp

mn(ψ(jδ
i
p) + τ(j

2
Fi

p) + ξ i
pj),

(16)

where
2
Fh

j ,
4
Fh

j , are determined by Formula (15) and

ψ
2

jn = ψj|
2
n − ψjψn − ψpτ(j

2
Fp

n). (17)

Therefore, the following theorem is valid.

Theorem 2. A quasi-canonical biholomorphically projective relation between the curvature tensors
of the second kind of the generalized Riemannian spaces GRN and GRN is given by
Formula (16), where Th

ij is the torsion tensor and the notation is the same as in (15) and (17).
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Considering relations (5), (7) and (13), for the curvature tensor of the third kind we
have the following:

R
3

i
jmn = R

3
i
jmn + ψ

2
jnδi

m − ψ
1

jmδi
n + (ψm|

2
n − ψn|

1
m)δ

i
j + 2ψjξ

i
nm

− ψp(ξ
p
njδ

i
m − ξ

p
mjδ

i
n ) + τjτ<n

4
Fi

m> + τm
2
Fi

j|
2
n − τn

2
Fi

j|
1
m

+ τj|
2
n

2
Fi

m − τj|
1
m

2
Fi

n + τj(
2
Fi

m|
2
n −

2
Fi

n|
1
m) + (τm|

2
n − τn|

1
m)

2
Fi

j

+ τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j + ξ
p
jmξ i

np − ξ
p
njξ

i
mp − ξ i

jm|
2
n − ξ i

nj|
1
m

+ τ(p
2
Fi

n)ξ
p
mj + τ(j

2
Fp

m)
ξ i

np − τ(j
2
Fp

n)ξ
i
pm − τ(p

2
Fi

m)ξ
p
nj

+ 2(ψ(nδ
p
m)

+ τ(n
2
Fp

m)
+ ξ

p
nm)(Ti

pj + ξ i
pj),

(18)

where the notation is the same as in (15) and (17).
In this way, the following theorem is proven.

Theorem 3. A quasi-canonical biholomorphically projective relation between the curvature tensors
of the third kind of the generalized Riemannian spaces GRN and GRN is given by Formula (18),
where Th

ij is the torsion tensor and the notation is the same as in (15) and (17).

Using relations (5), (7) and (13), for a curvature tensor of the fourth kind we obtain
the following:

R
4

i
jmn = R

4
i
jmn + ψ

2
jnδi

m − ψ
1

jmδi
n + (ψm|

2
n − ψn|

1
m)δ

i
j + 2ψjξ

i
nm

− ψp(ξ
p
njδ

i
m − ξ

p
mjδ

i
n ) + τjτ<n

4
Fi

m> + τm
2
Fi

j|
2
n − τn

2
Fi

j|
1
m

+ τj(
2
Fi

m|
2
n −

2
Fi

n|
1
m) + τj|

2
n

2
Fi

m − τj|
1
m

2
Fi

n + (τm|
2
n − τn|

1
m)

2
Fi

j

+ τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j + ξ
p
jmξ i

np − ξ
p
njξ

i
mp + ξ i

jm|
2
n − ξ i

nj|
1
m

+ τ(p
2
Fi

n)ξ
p
mj + τ(j

2
Fp

m)
ξ i

np − τ(j
2
Fp

n)ξ
i
pm − τ(p

2
Fi

m)ξ
p
nj

+ 2(ψ(nδ
p
m)

+ τ(n
2
Fp

m)
+ ξ

p
mn)(Ti

pj + ξ i
pj),

(19)

where the notation is the same as in (15) and (17). This proves the next statement.

Theorem 4. A quasi-canonical biholomorphically projective relation between the curvature tensors
of the fourth kind of the generalized Riemannian spaces GRN and GRN is given by
Formula (19), where Th

ij is the torsion tensor and the notation is the same as in (15) and (17).
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Considering relations (5), (7) and (13), for the curvature tensor of the fifth kind we
have the following:

R
5

i
jmn = R

5
i
jmn + 2ψjTi

mn + 2ψnTi
mj +

1
2
(ψ

3
jn + ψ

4
jn)δ

i
m

+
1
2
(ψ<m|

3
n> + ψ<m|

4
n>)δ

i
j −

1
2
(ψ

3
jm + ψ

4
jm)δ

i
n

+
1
2

2
Fi

j(τ<m|
3
n> + τ<m|

4
n>) +

1
2

2
Fi

m(τj|
3
n + τj|

4
n)−

1
2

2
Fi

n(τj|
3
m + τj|

4
m)

− 1
2

τn(
2
Fi

j|
3
m +

2
Fi

j|
4
m) +

1
2

τm(
2
Fi

j|
3
n +

2
Fi

j|
4
n) +

1
2

τj(
2
Fi
<m|

3
n> +

2
Fi
<m|

4
n>)

+ τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j + τjτ<n
4
Fi

m> + ξ
p
jmξ i

pn − ξ
p
jnξ i

mp

+
1
2
(ξ i

jm|
3
n − ξ i

nj|
3
m − ξ i

jn|
4
m + ξ i

mj|
4
n),

(20)

where the notation is the same as in (15) and

ψ
3

jn = ψj|
3
n − ψjψn + ψpτ(j

2
Fp

n),

ψ
4

jn = ψj|
4
n − ψjψn + ψpτ(j

2
Fp

n).
(21)

Based on the facts given above, we have proved the next theorem related to curvature
tensors of the fifth kind.

Theorem 5. A quasi-canonical biholomorphically projective relation between the curvature tensors
of the fifth kind of the generalized Riemannian spaces GRN and GRN is given by Formula (20),
where Th

ij is the torsion tensor and the notation is the same as in (15) and (21).

4. Equitorsion Quasi-Canonical Biholomorphically Projective Mapping

The mapping f : GRN → GRN is an equitorsion quasi-canonical biholomorphically
projective mapping,if the torsion tensors of the spaces GRN and GRN are equal in a common
coordinate system after the mapping f . In this case, based on (6) and (13), we conclude that

ξh
ij = 0. (22)

Then, relation (13) becomes

Ph
ij = ψ(iδ

h
j) + τ(i

2
Fh

j). (23)

Considering (22), from (14), we obtain the following:

R
1

i
jmn = R

1
i
jmn + ψ

1
j<nδi

m> + ψ<m|
1
n>δi

j + τjτ<n
4
Fi

m>

+ τm
2
Fi

j|
1
n − τn

2
Fi

j|
1
m + τj|

1
<n

2
Fi

m> + τj
2
Fi
<m|

1
n> + τ<m|

1
n>

2
Fi

j

+ τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j + 2Tp
mn(ψ(jδ

i
p) + τ(j

2
Fi

p)),

(24)

Hence, the next theorem holds.

Theorem 6. An equitorsion quasi-canonical biholomorphically projective relation between the
curvature tensors of the first kind of the generalized Riemannian spaces GRN and GRN is given by
Formula (24), where Th

ij is the torsion tensor and the notation is the same as in (15).
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The relation between the curvature tensors of the second kind (16), after applying
relation (22), becomes the following:

R
2

i
jmn = R

2
i
jmn + ψ

2
j<nδi

m> + ψ<m|
2
n>δi

j + τjτ<n
4
Fi

m>

+ τm
2
Fi

j|
2
n − τn

2
Fi

j|
2
m + τj|

2
<n

2
Fi

m> + τj
2
Fi
<m|

2
n> + τ<m|

2
n>

2
Fi

j

+ τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j + 2Tp
mn(ψ(jδ

i
p) + τ(j

2
Fi

p) + ξ i
pj).

(25)

In this way, the following theorem is proven.

Theorem 7. An equitorsion quasi-canonical biholomorphically projective relation between the
curvature tensors of the second kind of the generalized Riemannian spaces GRN and GRN is given
by Formula (25), where Th

ij is the torsion tensor.

The relation between the curvature tensors of the third kind (16), with respect
to (22), becomes the following:

R
3

i
jmn = R

3
i
jmn + ψ

2
jnδi

m − ψ
1

jmδi
n + (ψm|

2
n − ψn|

1
m)δ

i
j + τjτ<n

4
Fi

m>

+ τm
2
Fi

j|
2
n − τn

2
Fi

j|
1
m + τj|

2
n

2
Fi

m − τj|
1
m

2
Fi

n + τj(
2
Fi

m|
2
n −

2
Fi

n|
1
m)

+ (τm|
2
n − τn|

1
m)

2
Fi

j + τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j

+ 2(ψ(nδ
p
m)

+ τ(n
2
Fp

m)
)Ti

pj,

(26)

and we may formulate the following theorem.

Theorem 8. An equitorsion quasi-canonical biholomorphically projective relation between the
curvature tensors of the third kind of the generalized Riemannian spaces GRN and GRN is given
by Formula (26), where Th

ij is the torsion tensor and the notation is the same as in (15) and (17).

In particular, from relations (19) and (22), we have

R
4

i
jmn = R

4
i
jmn + ψ

2
jnδi

m − ψ
1

jmδi
n + (ψm|

2
n − ψn|

1
m)δ

i
j + τjτ<n

4
Fi

m>

+ τm
2
Fi

j|
2
n − τn

2
Fi

j|
1
m + τj(

2
Fi

m|
2
n −

2
Fi

n|
1
m) + τj|

2
n

2
Fi

m − τj|
1
m

2
Fi

n

+ (τm|
2
n − τn|

1
m)

2
Fi

j + τpτj
2
Fp
<m

2
Fi

n> + τpτ<m
2
Fi

n>
2
Fp

j

+ 2(ψ(nδ
p
m)

+ τ(n
2
Fp

m)
)Ti

pj.

(27)

Therefore,the next theorem holds.

Theorem 9. An equitorsion quasi-canonical biholomorphically projective relation between the
curvature tensors of the fourth kind of the generalized Riemannian spaces GRN and GRN is given
by Formula (27), where Th

ij is the torsion tensor and the notation is the same as in (15) and (17).

235



Axioms 2024, 13, 528

Analogously, from (20), with respect to (22), we obtain the following:

R
5

i
jmn = R

5
i
jmn + 2ψjTi

mn + 2ψnTi
mj +

1
2
(ψ

3
jn + ψ

4
jn)δ

i
m

+
1
2
(ψ<m|

3
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(28)

i.e., the following theorem is valid:

Theorem 10. An equitorsion quasi-canonical biholomorphically projective relation between the
curvature tensors of the fifth kind of the generalized Riemannian spaces GRN and GRN is given by
Formula (28), where Th

ij is the torsion tensor and the notation is the same as in (15) and (21).

5. Invariant Geometric Objects of Quasi-Canonical Biholomorphically
Projective Mappings

In this section, we will obtain an invariant geometric object of an equitorsion quasi-
canonical biholomorphically projective mapping. In relation to that, in relation (23), let
us set

τi = ψpFp
i .

Then, we have

Γh
ij − Γh

ij = ψ(iδ
h
j) + ψpFp

(i

2
Fh

j). (29)

Contractingby indices h and i in (29), assuming that it is valid that

Tr(F2) = 0, i.e.,
2
Fp

p = Fp
q Fq

p = 0 (30)

and
3
Fh

j = Fh
p Fp

q Fq
j = eδh

j (e = ±1, 0), (31)

we obtain
ψj =

1
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(Γp
pj − Γp

pj). (32)

Substituting (32) in (29) we have
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(33)

If we denote

QCT h
ij = Γh

ij −
1

N + 1 + e

(
Γp

piδ
h
j + Γp

pjδ
h
i + Γq

qpFp
(i

2
Fh

j)

)
, (34)

relation (33) can be presented in the form

QCT h
ij = QCT h

ij, (35)
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where QCT h
ij is an object of the space GRN . The magnitude QCT h

ij is called a Thomas
equitorsion quasi-canonical biholomorphically projective parameterand it is not a tensor.

Accordingly, we conclude that the following assertion is valid.

Theorem 11. The geometric object QCT h
ij given by Equation (34) is an invariant of the equi-

torsion quasi-canonical biholomorphically projective mapping f : GRN → GRN, provided that
relations (30) and (31) are valid.

6. Discussion

This paper is a continuation of the research discussed in paper [20]. The form of the
deformation tensor of a biholomorphically projective mapping allows us to define new
types of mappings. Here, we have defined quasi-canonical biholomorphically projective
mappings and equitorsion quasi-canonical biholomorphically projective mappings. Also,
we obtained some relations between the corresponding curvature tensors of the generalized
Riemannian spaces GRN and GRN and we found an invariant geometric object of an
equitorsion quasi-canonical biholomorphically projective mapping which is of the Thomas
type. Apart from the mapping defined in this paper, it is possible to consider some other
types of mapping, which will be the subject of our further research. Also, the goal of further
research will be to find new invariant geometric objects. The findings of this paper also
motivate us to answer the following questions: (i) Are there any interpretations from a
physical point of view? (ii) What is the geometrical significance?
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4. Ivanov, S.; Zlatanović, L.M. Connection on Non-Symmetric (Generalized) Riemanian Manifold and Gravity. Class. Quantum

Gravity 2016, 33, 075016. [CrossRef]
5. Konovenko, N.G.; Kurbatova, I.N.; Cventuh, E. 2F-planar mappings of pseudo-Riemannian spaces with f-structure. Proc. Int.

Geom. Cent. 2018, 11, 39–51. (In Ukrainian)
6. Mikeš, J. Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. N. Y. 1996, 78, 311–333. [CrossRef]
7. Mikeš, J. Holomorphically projective mappings and their generalizations. J. Math. Sci. N. Y. 1998, 89, 1334–1353. [CrossRef]
8. Mikeš, J.; Pokorná, O.; Starko, G. On almost Geodesic Mappings π2(e) onto Riemannian Spaces; Rendiconti del Circolo Matematico di

Palermo, Serie II; Circolo Matematico di Palermo: Palermo, Italy, 2004; (Suppl. 72), pp. 151–157.
9. Minčić, S.M. Independent Curvature Tensors and Pseudotensors of Spaces with Non-Symmetric Affine Connexion; Differential Geometry,

Colloquia Mathematica Societatis János Bolayai: Budapest, Hungary, 1979; Volume 31, pp. 445–460.
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Abstract: We formulate a data-independent latent space regularization constraint for general unsu-
pervised autoencoders. The regularization relies on sampling the autoencoder Jacobian at Legendre
nodes, which are the centers of the Gauss–Legendre quadrature. Revisiting this classic allows us
to prove that regularized autoencoders ensure a one-to-one re-embedding of the initial data man-
ifold into its latent representation. Demonstrations show that previously proposed regularization
strategies, such as contractive autoencoding, cause topological defects even in simple examples, as
do convolutional-based (variational) autoencoders. In contrast, topological preservation is ensured
by standard multilayer perceptron neural networks when regularized using our approach. This
observation extends from the classic FashionMNIST dataset to (low-resolution) MRI brain scans,
suggesting that reliable low-dimensional representations of complex high-dimensional datasets can
be achieved using this regularization technique.

Keywords: autoencoder; regularization; data manifold learning

MSC: 53A07; 57R40; 53C22

1. Introduction

Systematic analysis and post-processing of high-dimensional and high-throughput
datasets [1,2] is a current computational challenge across disciplines such as neuroscience [3–5],
plasma physics [6–8], and cell biology and medicine [9–12]. In the machine learning (ML)
community, autoencoders (AEs) are commonly considered the central tool for learning a
low-dimensional one-to-one representation of high-dimensional datasets. These representa-
tions serve as a baseline for feature selection and classification tasks, which are prevalent in
bio-medicine [13–17].

AEs can be considered as a non-linear extension of classic principal component analysis
(PCA) [18–20]. Comparisons for linear problems are provided in [21]. While addressing the
non-linear case, AEs face the challenge of preserving the topological data structure under
AE compression.

To state the problem: We mathematically formalize AEs as pairs of continuously differ-
entiable maps (ϕ, ν), ϕ : Ωm2 −→ Ωm1 , ν : Ωm1 −→ Ωm2 , 0 < m1 < m2 ∈ N, defined on
bounded domains Ωm1 ⊆ Rm1 and Ωm2 ⊆ Rm2 . Commonly, ϕ is termed the encoder, and ν
the decoder. We assume that the data D ⊆ D is sampled from a regular or even smooth data
manifold D ⊆ Ωm2 , with dimD = m0 ≤ m1.

Axioms 2024, 13, 535. https://doi.org/10.3390/axioms13080535 https://www.mdpi.com/journal/axioms239
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We seek to find proper AEs (ϕ, ν) yielding homeomorphic latent representations
ϕ(D) = D′ ∼= D. In other words, the restrictions ϕ|D : D −→ D′ and ν|D′ : D′ −→ D of
the encoder and decoder result in one-to-one maps, being inverse to each other:

D ∼= D′ = ϕ(D) ⊆ Ωm1 , ν(ϕ(x)) = x , for all x ∈ D . (1)

While the second condition in Equation (1) is usually realized by minimization of a recon-
struction loss, this is insufficient for guaranteeing the one-to-one representation D ∼= D′.

To realize AEs matching both requirements in Equation (1), we strengthen the condi-
tion by requiring the decoder to be an embedding of the whole latent domain Ωm1 ⊃ D,
including ν(Ωm1) ⊃ D in its interior. See Figure 1 for an illustration. We mathematically
prove and empirically demonstrate this latent regularization strategy to deliver regularized
AEs (AR-REG), satisfying Equation (1).

Figure 1. Illustration of the latent representation D′ = ϕ(D) ⊆ Ωm1 of the data manifold D ⊆ Ωm2 ,
dimD = m0 < m1 < m2 ∈ N given by the autoencoder (ϕ, ν). The decoder is a one-to-one
mapping of the hypercube Ωm1 to its image ν(Ωm1 ) ⊃ D, including D in its interior and consequently
guaranteeing Equation (1).

Our investigations are motivated by recent results of Hansen et al. [22–24], com-
plementing other contributions [25–27] that investigate instabilities of machine learning
methods from a general mathematical perspective.

1.1. The Inherent Instability of Inverse Problems

The instability phenomenon of inverse problems states that, in general, one cannot guar-
antee solutions of inverse problems to be stable. An excellent introduction to the topic is
given in [22] with deeper treatments and discussions in [23,24].

In our setup, these insights translate to the fact that, in general, the local Lipschitz constant

Lε(ν, y) = sup
0<‖y′−y‖<ε

‖ν(y′)− ν(y)‖
‖y′ − y‖ , ε > 0

of the decoder ν : Ωm1 −→ Ωm2 at some latent code y ∈ Ω1 might be unbounded.
Consequently, small perturbations y′ ≈ y of the latent code can result in large differences of
the reconstruction ‖ν(y′)− ν(y)‖ ' 0. This fact generally applies and can only be avoided
if an additional control on the null space of the Jacobian of the encoder ker J(ϕ(x)) is given.
Providing this control is the essence of our contribution.
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1.2. Contribution

Avoiding the aforementioned instability, requires the null space of the Jacobian of the
encoder ker J(ϕ) to be perpendicular to the tangent space of D

ker J(ϕ) ⊥ TD . (2)

In fact, due to the inverse function theorem, see, e.g., [28,29], the conditions Equations (1) and (2)
are equivalent. In Figure 1, ker J(ϕ) is illustrated to be perpendicular to the image of the
whole latent domain Ωm1

ker J(ϕ) ⊥ Tν(Ωm1) , ν(Ωm1) ⊇ D ,

being sufficient for guaranteeing Equation (2), and consequently, Equation (1).
While several state-of-the-art AE regularization techniques are commonly estab-

lished, none of them specifically formulates this necessary mathematical requirement in
Equation (2). Consequently, we are not aware of any regularization approach that can
theoretically guarantee the regularized AE to preserve the topological data-structure, as we
do in Theorem 1. Our computational contributions split into:

(C1) For realising a latent space regularized AE (AE-REG) we introduce the L2-
regularization loss

Lreg(ϕ, ν) = ‖J(ϕ ◦ ν)− I‖2
L2(Ωm1 )

(3)

and mathematically prove the AE-REG to satisfy condition Equation (1), Theorem 1,
when being trained due to this additional regularization.

(C2) To approximate Lreg(ϕ, ν) we revisit the classic Gauss–Legendre quadratures (cu-
batures) [30–34], only requiring sub-sampling of J(ν ◦ ϕ)(pα), pα ∈ Pm,n on a
Legendre grid of sufficient high resolution 1 ( |Pm,n| in order to execute the reg-
ularization. While the data-independent latent Legendre nodes Pm,n ⊆ Ωm1 are
contained in the smaller dimensional latent space, regularization of high resolution
can be efficiently realised.

(C3) Based on our prior work [35–37], and [38–41], we complement the regulariza-
tion through a hybridisation approach combining autoencoders with multivariate
Chebyshev-polynomial-regression. The resulting Hybrid AE is acting on the poly-
nomial coefficient space, given by pre-encoding the training data due to high-
quality regression.

We want to emphasize that the proposed regularization is data-independent in the
sense that it does not require any prior knowledge of the data manifold, its embedding,
or any parametrization of D. Moreover, while being integrated into the loss function,
the regularization is independent of the AE architecture and can be applied to any AE
realizations, such as convolutional or variational AEs. Our results show that already
regularized MLP-based AEs perform superior to these alternatives.

As we demonstrate, the regularization yields the desired re-embedding, enhances the
autoencoder’s reconstruction quality, and increases robustness under noise perturbations.

1.3. Related Work—Regularization of Autoencoders

A multitude of supervised learning schemes, addressing representation learning
tasks, are surveyed in [42,43]. Self-supervised autoencoders rest on inductive bias learning
techniques [44,45] in combination with vectorized autoencoders [46,47]. However, the
mathematical requirements, Equations (1) and (2) were not considered in these strategies at
all. Consequently, one-to-one representations might only be realized due to a well-chosen
inductive bias regularization for rich datasets [9].

This article focus on regularization techniques of purely unsupervised AEs. We want
to mention the following prominent approaches:
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(R1) Contractive AEs (ContraAE) [48,49] are based on an ambient Jacobian regulariza-
tion loss

L∗reg(ϕ, ν) = ‖J(ν ◦ ϕ)− I‖2
L2(Ωm2 )

(4)

formulated in the ambient domain. This makes contraAEs arbitrarily contractive in
perpendicular directions (TD)⊥ of TD. However, this is insufficient to guarantee
Equation (1). In addition, the regularization is data dependent, resting on the
training dataset, and is computationally costly due to the large Jacobian J ∈ Rm2×m2 ,
m2 ' m1 ≥ 1. Several experiments in Section 5 demonstrate contraAE failing to
deliver topologically preserved representations.

(R2) Variational AEs (VAE), along with extensions like β-VAE, consist of stochastic en-
coders and decoders and are commonly used for density estimation and generative
modelling of complex distributions based on minimisation of the Evidence Lower
Bound (ELBO) [50,51]. The variational latent space distribution induces an implicit
regularization, which is complemented by [52,53] due to a l1-sparsity constraint of
the decoder Jacobian.
However, as the contraAE-constraint, this regularization is computationally costly
and insufficient for guaranteeing a one-to-one encoding, which is reflected in the
degenerated representations appearing in Section 5.

(R3) Convolutional AEs (CNN-AE) are known to deliver one-to-one representations for
a generic setup theoretically [54]. However, the implicit convolutions seems to
prevent clear separation of tangent TD and perpendicular direction (TD)⊥ of the
data manifold D, resulting in topological defects already for simple examples, see
Section 5.

2. Mathematical Concepts

We provide the mathematical notions on which our approach rests, starting by fixing
the notation.

2.1. Notation

We consider neural networks (NNs) ν(·, w) of fixed architecture Ξm1,m2 , specifying
number and depth of the hidden layers, the choice of piece-wise smooth activation functions
σ(x), e.g., ReLU or sin, with input dimension m1 and output dimension m2. Further, ΥΞm1,m2

denotes the parameter space of the weights and bias w = (v, b) ∈ W = V × B ⊆ RK, K ∈ N,
see, e.g., [55,56].

We denote with Ωm = (−1, 1)m the m-dimensional open standard hypercube, with ‖ · ‖
the standard Euclidean norm on Rm and with ‖ · ‖p, 1 ≤ p ≤ ∞ the lp-norm. Πm,n =
span{xα}‖α‖∞≤n denotes the R-vector space of all real polynomials in m variables spanned
by all monomials xα = ∏m

i=1 xαi
i of maximum degree n ∈ N and Am,n = {α ∈ Nm : ‖α‖∞ =

maxi=1,...,m{|αi|} ≤ n} the corresponding multi-index set. For an excellent overview on
functional analysis we recommend [57–59]. Here, we consider the Hilbert space L2(Ωm,R)
of all Lebesgue measurable functions f : Ωm −→ R with finite L2-norm ‖ f ‖2

L2(Ωm)
< ∞

induced by the inner product

< f , g >L2(Ωm)=
∫

Ωm

f · g dΩm , f , g ∈ L2(Ω,R) . (5)

Moreover, Ck(Ωm,R), k ∈ N∪ {∞} denotes the Banach spaces of continuous functions being
k-times continuously differentiable, equipped with the norm

‖ f ‖Ck(Ωm) =
k

∑
i=0

sup
x∈Ωm

|Dα f (x)| , ‖α‖1 ≤ k .
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2.2. Orthogonal Polynomials and Gauss–Legendre Cubatures

We follow [30–33,60] for recapturing: Let m, n ∈ N and Pm,n = ⊕m
i=1Legn ⊆ Ωm

be the m-dimensional Legendre grids, where Legn = {p0, . . . , pn} are the n + 1 Leg-
endre nodes given by the roots of the Legendre polynomials of degree n + 2. We denote
pα = (pα1 , . . . , pαm) ∈ PAm,n , α ∈ Am,n. The Lagrange polynomials Lα ∈ ΠAm,n , defined by
Lα(pβ) = δα,β, ∀ α, β ∈ Am,n, where δ·,· denotes the Kronecker delta, are given by

Lα =
m

∏
i=1

lαi ,i , lj,i =
m

∏
j �=i,j=0

xi − pj

pi − pj
. (6)

Indeed, the Lα are an orthogonal L2-basis of Πm,n,

〈
Lα, Lβ

〉
L2(Ωm)

=
∫

Ωm

Lα(x)Lβ(x)dΩm = wαδα,β , (7)

where the Gauss–Legendre cubature weight wα = ‖Lα‖2
L2(Ωm)

can be computed numerically.
Consequently, for any polynomial Q ∈ Πm,2n+1 of degree 2n + 1 the following cubature
rule applies: ∫

Ωm

Q(x)dΩm = ∑
α∈Am,n

wαQ(pα) . (8)

Thanks to |Pm,n| = (n + 1)m ( (2n + 1)m this makes Gauss–Legendre integration a very
powerful scheme, yielding

〈Q1, Q2〉L2(Ωm) = ∑
α∈Am,n

Q1(pα)Q2(pα)wα , (9)

for all Q1, Q2 ∈ Πm,n.
In light of this fact, we propose the following AE regularization method.

3. Legendre-Latent-Space Regularization for Autoencoders

The regularization is formulated from the perspective of classic differential geometry,
see, e.g., [28,61–63]. As introduced in Equation (1), we assume that the training data
Dtrain ⊆ D ⊆ Rm2 is sampled from a regular data manifold. We formalise the notion
of autoencoders:

Definition 1 (autoencoders and data manifolds). Let 1 ≤ m0 ≤ m1 ≤ m2 ∈ N, D ⊆ Ωm2 be
a (data) manifold of dimension dimD = m0. Given continuously differentiable maps ϕ : Ωm2 −→
Ωm1 , ν : Ωm1 −→ Ωm2 such that:

(i) ν is a right-inverse of ϕ on D, i.e, ν(ϕ(x)) = x for all x ∈ D.
(ii) ϕ is a left-inverse of ν, i.e, ϕ(ν(y)) = y for all y ∈ Ωm1

Then we call the pair (ϕ, ν) a proper autoencoder with respect to D.

Given a proper AE (ϕ, ν), ϕ yields a low dimensional homeomorphic re-embedding of
D ∼= D′ = ϕ(D) ⊆ Rm1 as demanded in Equation (1) and illustrated in Figure 1, fulfilling
the stability requirement of Equation (2).

We formulate the following losses for deriving proper AEs:

Definition 2 (regularization loss). Let D ⊆ Ωm2 be a C1-data manifold of dimension dimD =
m0 < m1 < m2 and ∅ �= Dtrain ⊆ D be a finite training dataset. For NNs ϕ(·, u) ∈ Ξm2,m1 ,
ν(·, w) ∈ Ξm1,m2 with weights (u, w) ∈ ΥΞm2,m1

× ΥΞm1,m2
, we define the loss

LDtrain,n : ΥΞm2,m1
× ΥΞm1,m2

−→ R+ , LDtrain,n(u, w) = L0(Dtrain, u, w) + λL1(u, w, n) ,
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where λ > 0 is a hyper-parameter and

L0(Dtrain, u, w) = ∑
x∈Dtrain

‖x− ν(ϕ(x, u), w)‖2 (10)

L1(u, w, n) = ∑
α∈Am1,n

‖ I− J
(

ϕ(ν(pα, w), u)
)
‖2 , (11)

with I ∈ Rm1×m1 denoting the identity matrix, pα ∈ Pm1,n be the Legendre nodes, and
J
(

ϕ(ν(pα, w)
)
∈ Rm1×m1 the Jacobian.

We show that the AEs with vanishing loss result to be proper AEs, Defintion 1.

Theorem 1 (Main Theorem). Let the assumptions of Definition 2 be satisfied, and ϕ(·, un) ∈
Ξm2,m1 , ν(·, wn) ∈ Ξm1,m2 be sequences of continuously differentiable NNs satisfying:

(i) The loss converges LDtrain,n(un, wn) −−−→n→∞
0.

(ii) The weight sequences converge

lim
n→∞

(un, wn) = (u∞, w∞) ∈ ΥΞm2,m1
× ΥΞm1,m2

.

(iii) The decoder satisfies ν(Ωm1 , wn) ⊇ D, ∀n ≥ n0 ∈ N for some n0 ≥ 1.

Then (ϕ(·, wn), ν(·, un)) −−−→n→∞
(ϕ(·, w∞), ν(·, u∞)) uniformly converges to a proper au-

toencoder with respect to D.

Proof. The proof follows by combining several facts: First, the inverse function theorem [29]
implies that any map ρ ∈ C1(Ωm, Ωm) satisfying

J(ρ(x)) = I , ∀ x ∈ Ωm , and ρ(x0) = x0 , (12)

for some x0 ∈ Ωm is given by the identity, i.e., ρ(x) = x, ∀x ∈ Ωm.
Secondly, the Stone–Weierstrass theorem [64,65] states that any continuous map

ρ ∈ C0(Ωm, Ωm), with coordinate functions ρ(x) = (ρ1(x), . . . , ρm(x)) can be uniformly
approximated by a polynomial map Qn

ρ(x) = (Qn
ρ,1(x), . . . , Qn

ρ,m(x)), Qn
ρ,i(x) ∈ Πm,n,

1 ≤ i ≤ m, i.e, ‖ρ−Qn
ρ‖C0(Ωm) −−−→n→∞

0.

Thirdly, while the NNs ϕ(·, w), ν(·, u) depend continuously on the weights u, w, the
convergence in (ii) is uniform. Consequently, the convergence LDtrain,n(un, wn) −−−→n→∞

0

of the loss implies that any sequence of polynomial approximations Qn
ρ(x) of the map

ρ(·) = ϕ(ν(·, w∞), u∞) satisfies

∑
α∈Am1,n

‖ I− J
(
Qn

ρ(pα)
)
‖2 = 0

in the limit for n → ∞. Hence, Equation (12) holds in the limit for n → ∞ and consequently
ϕ(ν(y, w∞), u∞) = Q∞

ρ (y) = y for all y ∈ Ωm1 yielding requirement (ii) of Definition 1.
Given that assumption (iii) is satisfied, in completion, requirement (i) of Definition 1

holds, finishing the proof.

Apart from ensuring topological maintenance, one seeks for high-quality reconstruc-
tions. We propose a novel hybridization approach, delivering both.

4. Hybridization of Autoencoders due to Polynomial Regression

The hybridisation approach rests on deriving Chebyshev Polynomial Surrogate Models
QΘ,d fitting the initial training data d ∈ Dtrain ⊆ Ωm2 . For the sake of simplicity, we
motivate the setup in case of images:
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Let d = (dij)1≤i,j≤r ∈ Rr×r be the intensity values of an image on an equidistant pixel
grid Gr×r = (gij)1≤i,j≤r ⊆ Ω2 of resolution r× r, r ∈ N. We seek for a polynomial

QΘ : Ω2 −→ R , QΘ ∈ Π2,n ,

such that evaluating QΘ, Θ = (θα)α∈A2,n ∈ R|A2,n | on Gr×r approximates d, i.e.,
QΘ(gij) ≈ dij for all 1 ≤ i, j ≤ r. We model QΘ in terms of Chebyshev polynomials of
first kind well known to provide excellent approximation properties [33,35]:

QΘ(x1, x2) = ∑
α∈A2,n

θαTα1(x1)Tα2(x2) . (13)

The expansion is computed due to standard least-square fits:

Θd = argmin
C∈R|A2,n | ‖RC− d‖2 , (14)

where R = (Tα(gij))1≤i,j,≤n,α∈A2,n ∈ Rr2×|A2,n |, Tα = Tα1 · Tα2 denotes the regression matrix.
Given that each image (training point) d ∈ Dtrain can be approximated with the same

polynomial degree n ∈ N, we posterior train an autoencoder (ϕ, ν), only acting on the
polynomial coefficient space ϕ : R|A2,n | −→ Ωm1 , νΩm1 −→ R|A2,n | by exchanging the loss
in Equation (10) due to

L∗0(Dtrain, u, w) = ∑
d∈Dtrain

‖d− R · ν(ϕ(Θd, u), w)‖2 (15)

In contrast to the regularization loss in Definition 2, here, pre-encoding the training
data due to polynomial regression decreases the input dimension m2 ∈ N of the (NN)
encoder ϕ : Ωm2 −→ Ωm1 . In practice, this enables to reach low dimensional latent
dimension by increasing the reconstruction quality, as we demonstrate in the next section.

5. Numerical Experiments

We executed experiments, designed to validate our theoretical results, on HEMERA

a NVIDIA V100 cluster at HZDR. Complete code benchmark sets and supplements are
available at https://github.com/casus/autoencoder-regularisation, accessed on 2 June
2024. The following AEs were applied:

(B1) Multilayer perceptron autoencoder (MLP-AE): Feed forward NNs with activation
functions σ(x) = sin(x).

(B2) Convolutional autoencoder (CNN-AE): Standard convolutional neural networks (CNNs)
with activation functions σ(x) = sin(x), as discussed in (R3).

(B3) Variational autoencoder: MLP based (MLP-VAE) and CNN based (CNN-VAE) as in
[50,51], discussed in (R2).

(B4) Contractive autoencoder (ContraAE): MLP based with with activation functions
σ(x) = sin(x) as in [48,49], discussed in (R1).

(B5) regularized autoencoder (AE-REG): MLP based, as in (B1), trained with respect to the
regularization loss from Definition 2.

(B6) Hybridised AE (Hybrid AE-REG): MLP based, as in (B1), trained with respect to the
modified loss in Definition 2 due to Equation (15).

The choice of activation functions σ(x) = sin(x) yields a natural way for normalizing
the latent encoding to Ωm and performed best compared to trials with ReLU, ELU or
σ(x) = tanh(x). The regularization of AE-REG and Hybrid AE-REG is realized due to
sub-sampling batches from the Legendre grid Pm,n for each iteration and computing the
autoencoder Jacobians due to automatic differentiation [66].
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5.1. Topological Data-Structure Preservation

Inspired by Figure 1, we start by validating Theorem 1 for known data manifold
topologies.

Experiment 1 (Cycle reconstructions in dimension 15). We consider the unit circle S1 ⊆ R2,
a uniform random matrix A ∈ R15,2 with entries in [−2, 2] and the data manifold D = {Ax :
x ∈ S1 ⊆ R2}, being an ellipse embedded along some 2-dimensional hyperplane HA = {Ax : x ∈
R2} ⊆ R15. Due to Bezout’s Theorem [67,68], a 3-points sample uniquely determines a circle in
the 2-dimensional plane. Therefore, we executed the AEs for this minimal case of a set of random
samples |Dtrain| = 3, Dtrain ⊆ D as training set.

MLP-AE, MLP-VAE, and AE-REG consists of 2 hidden linear layers (in the encoder and
decoder), each of length 6. The degree of the Legendre grid Pm,n used for the regularization
of AE-REG was set to n = 21, Definition 2. CNN-AE and CNN-VAE consists of 2 hidden
convolutional layers with kernel size 3, stride of 2 in the first hidden layer and 1 in the
second, and 5 filters per layer. The resulting parameter spaces ΥΞ15,2 are all of similar size:
|ΥΞ15,2 | ∼ 400. All AEs were trained with the Adam optimizer [69].

Representative results out of 6 repetitions are shown in Figure 2. Only AE-REG
delivers a feasible 2D re-embedding, while all other AEs cause overlappings or cycle-
crossings. More examples are given in the supplements; whereas AE-REG delivers similar
reconstructions for all other trials while the other AEs fail in most of the cases.

(a) CNN-AE (b) CNN-VAE (c) ContraAE

(d) MLP-VAE (e) MLP-AE (f) AE-REG

Figure 2. Circle reconstruction using various autoencoder models.

Linking back to our initial discussions of ContraAE (R1): The results show that the
ambient domain regularization formulated for the ContraAE, is insufficient for guarantee-
ing a one-to-one encoding. Similarily, CNN-based AEs cause self-intersecting points. As
initially discussed in (R3), CNNs are invertible for a generic setup [54], but seem to fail
sharply separating tangent TD and perpendicular direction TD⊥ of the data manifold D.

We demonstrate the impact of the regularization to not belonging to an edge case by
considering the following scenario:
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Experiment 2 (Torus reconstruction). Following the experimental design of Experiment 1 we
generate challenging tori embeddings of a squeezed torus with radii 0 < r, R, r = 0.7 R = 2.0
in dimension m = 15 and dimension m = 1024 due to multiplication with random matrices
A ∈ [−1, 1]m×3. We randomly sample 50 training points |Dtrain| = 50, Dtrain ⊆ D and seek for
their 3D re-embedding due to the AEs. We choose a Legendre grid Pm,n of degree n = 21.

A show-case is given in Figure 3, visualized by a dense set of 2000 test points. As in
Experiment 1 only AE-REG is capable for re-embedding the torus in a feasible way.
MLP-VAE, CNN-AE and CNN-VAE flatten the torus, ContraAE and MPL-AE cause self-
intersections. Similar results occur for the high-dimensional case m = 1024, see the supple-
ments. Summarizing the results suggests that without regularization AE-compression does
not preserve the data topology. We continue our evaluation to give further evidence on
this expectation.

(a) CNN-AE
(b) CNN-VAE (c) ContraAE

(d) MLP-VAE (e) MLP-AE (f) AE-REG

Figure 3. Torus reconstruction using various autoencoder models, dim = 15.

5.2. Autoencoder Compression for FashionMNIST

We continue by benchmarking on the the classic FashionMNIST dataset [70].

Experiment 3 (FashionMNIST compression). The 70,000 FashionMNIST images separated
into 10 fashion classes (T-shirts, shoes, etc.) being of 32× 32 = 1024-pixel resolution (ambient
domain dimension). For providing a challenging competition, we reduced the dataset to 24,000
uniformly sub-sampled images and trained the AEs for 40% training data and complementary test
data, respectively. Here, we consider latent dimensions m = 4, 10. Results of further runs for
m = 2, 4, 6, 8, 10 are given in the supplements.

MLP-AE, MLP-VAE, AE-REG and Hybrid AE-REG consists of 3 hidden layers, each of
length 100. The degree of the Legendre grid Pm,n used for the regularization of AE-REG
was set to n = 21, Definition 2. CNN-AE and CNN-VAE consists of 3 convolutional layers
with kernel size 3, stride of 2. The resulting parameter spaces ΥΞ15,2 of all AEs are of similar
size. Further details of the architectures are reported in the supplements.

We evaluated the reconstruction quality with respect to peak signal-to-noise ratios
(PSNR) for perturbed test data due 0%, 10%, 20%, 50% of Gaussian noise encoded to latent
dimension m = 10, and plot them in Figure 4. The choice m = 10, here, reflects the number
of FashionMNIST-classes.
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(a) Without Noise (b) 10% Gaussian Noise

(c) 20% Gaussian Noise (d) 50% Gaussian Noise

Figure 4. FashionMNIST reconstruction with varying levels of Gaussian noise, latent dimension
dim = 10.

While Hybrid AE-REG performs compatible to MLP-AE and worse than the other
AEs in the non-perturbed case, its superiority appears already for perturbations with
10% of Gaussian noise and exceeds the reached reconstruction quality of all other AEs
for 20% Gaussian noise or more. We want to stress that Hybrid AE-REG maintains its
reconstruction quality throughout the noise perturbations (up to 70%, see the supplements).
This outstanding appearance of robustness gives strong evidence on the impact of the
regularization and well-designed pre-encoding technique due to the hybridization with
polynomial regression. Analogue results appear when measuring the reconstruction quality
with respect to the structural similarity index measure (SSIM), given in the supplements.

In Figure 5, show cases of the reconstructions are illustrated, including additional
vertical and horizontal flip perturbations. Apart from AE-REG and Hybrid AE-REG (rows
(7) and (8)), all other AEs flip the FashionMNIST label-class for reconstructions of images
with 20% or 50% of Gaussian noise. Flipping the label-class is the analogue to topological
defects as cycle crossings appeared for the non-regularized AEs in Experiment 1, indicating
again that the latent representation of the FashionMNIST dataset given due to the non-
regularized AEs does not maintain structural information.
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Figure 5. Two show cases of FashionMNIST reconstruction for latent dimension m = 10. First
row shows the input image with vertical, horizontal flips, and 0%, 10%, 20%, 50%, 70% of Gaussian
noise. Rows beneath show the results of (2) MLAP-AE, (3) CNN-AE, (4) MLP-VAE, (5) CNN-VAE,
(6) ContraAE, (7) AE-REG, and (8) Hybrid AE-REG.

While visualization of the FashionMNIST data manifold is not possible, we decided to
investigate its structure by computing geodesics. Figure 6 provides show cases of decoded
latent-geodesics ν(γ) with respect to latent dimension m = 4, connecting two AE-latent
codes of the encoded test data that has been initially perturbed by 50% Gaussian noise
before encoding. The latent-geodesics γ have to connect the endpoints along the curved
encoded data manifold D′ = ϕ(D) without forbidden short-cuts through D′. That is why
the geodesics are computed as shortest paths for an early Vietoris–Rips filtration [71] that
contains the endpoints in one common connected component. More examples are given in
the supplements.

Apart from CNN-AE and AE-REG, all other geodesics contain latent codes of images
belonging to another FashionMNIST-class, while for Hybrid AE-REG this happens just
once. We interpret these appearances as forbidden short-cuts of ν(γ) through D, caused by
topological artefacts in D′ = ϕ(D).

AE-REG delivers a smoother transition between the endpoints than CNN-AE, suggest-
ing that though the CNN-AE geodesic is shorter, the regularized AEs preserve the topology
with higher resolution.

5.3. Autoencoder Compression for Low-Resolution MRI Brain Scans

For evaluating the potential impact of the hybridisation and regularization technique
to more realistic high-dimensional problems, we conducted the following experiment.

Experiment 4 (MRI compression). We consider the MRI brain scans dataset from Open Ac-
cess Series of Imaging Studies (OASIS) [72]. We extract two-dimensional slices from the three-
dimensional MRI images, resulting in 60, 000 images of resolution 91 × 91-pixels. We follow
Experiment 3 by splitting the dataset into 40% training images and complementary test images
and compare the AE compression for latent dimension m = 40. Results for latent dimension
m = 10, 15, 20, 40, 60, 70 and 5%, 20%, 40%, 80% training data are given in the supplements, as
well as further details on the specifications.
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(a) MLP-AE

(b) CNN-AE

(c) MLP-VAE

(d) CNN-VAE

(e) ContraAE

(f) AE-REG

(g) Hybrid AE-REG

Figure 6. FashionMNIST geodesics in latent dimension dim = 4.
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We keep the architecture setup of the AEs, but increase the NN sizes to 5 hidden layers
each consisting of 1000 neurons. Reconstructions measured by PSNR are evaluated in
Figure 7. Analogous results appear for SSIM, see the supplements.

(a) Without noise (b) 10% Gaussian noise( )

(c) 20% Gaussian noise

( )

(d) 50% Gaussian noise

Figure 7. MRI reconstruction, latent dimension dim = 40.

As in Experiment 3, we observe that AE-REG and Hybrid AE-REG perform com-
patible or slightly worse than the other AEs in the unperturbed scenario, but show their
superiority over the other AEs for 10% Gaussian noise, or 20% for CNN-VAE. Hybrid
AE-REG specifically maintains its reconstruction quality under noise perturbations up to
20% (maintains stable for 50%). The performance increase compared to the un-regularized
MLP-AE becomes evident and validates again that a strong robustness is achieved due to
the regularization.

A show case is given in Figure 8. Apart from Hybrid AE-REG (row (8)), all AEs show
artefacts when reconstructing perturbed images. CNN-VAE (row (4)) and AE-REG (row
(7)) perform compatible and maintain stability up to 20% Gaussian noise perturbation.

In Figure 9, examples of geodesics are visualized, being computed analogously as
in Experiment 3 for the encoded images once without noise and once by adding 10%
Gaussian noise before encoding. The AE-REG geodesic consists of similar slices, including
one differing slice for 10% Gaussian noise perturbation. CNN-VAE delivers a shorter
path; however, it includes a strongly differing slice, which is kept for 10% of Gaussian
noise. CNN-AE provides a feasible geodesic in the unperturbed case; however, it becomes
unstable in the perturbed case.
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Figure 8. MRI show case. First row shows the input image with vertical, horizontal flips, and
0%, 10%, 20%, 50%, 70% of Gaussian noise. Rows beneath show the results of (2) MLAP-AE, (3) CNN-
AE, (4) MLP-VAE, (5) CNN-VAE, (6) ContraAE, (7) AE-REG, and (8) Hybrid AE-REG.

We interpret the difference of the AE-REG to CNN-VAE and CNN-AE as an indicator
for delivering consistent latent representations on a higher resolution. While the CNN-AE
and AE-REG geodesics indicate that one may trust the encoded latent representations, the
CNN-AE encoding may not be suitable for reliable post-processing, such as classification
tasks. More showcases are given in the supplements, showing similar unstable behaviour
of the other AEs.

Summarizing, the results validate once more regularization and hybridization to
deliver reliable AEs that are capable for compressing datasets to low-dimensional latent
spaces by preserving their topology. A feasible approach to extend the hybridization
technique to images or datasets of high resolution is one of the aspects we discuss in our
concluding thoughts.
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(a) CNN-AE without noise (b) CNN-AE with 10% Gaussian noise

(c) CNN-VAE without noise (d) CNN-VAE with 10% Gaussian noise

(e) AE-REG without noise (f) AE-REG with 10% Gaussian noise

Figure 9. MRI geodesics for latent dimension dim = 40 with various levels of Gaussian noise.

6. Conclusions

We delivered a mathematical theory for addressing encoding tasks of datasets being
sampled from smooth data manifolds. Our insights were condensed in an efficiently
realizable regularization constraint, resting on sampling the encoder Jacobian in Legendre
nodes, located in the latent space. We have proven the regularization to guarantee a
re-embedding of the data manifold under mild assumptions on the dataset.

We want to stress that the regularization is not limited to specific NN architectures,
but already strongly impacts the performance of simple MLPs. Combinations with initially
discussed vectorised AEs [44,45] might extend and improve high-dimensional data analysis
as in [9]. When combined with the proposed polynomial regression, the hybridised AEs
increase strongly in reconstruction quality. For addressing images of high resolution or
multi-dimensional datasets, dim ≥ 3, we propose to apply our recent extension of these
regression methods [35].

In summary, the regularized AEs performed far better than the considered alternatives,
especially with regard to maintaining the topological structure of the initial dataset. The
present computations of geodesics provides a tool for analysing the latent space geometry
encoded by the regularized AEs and contributes towards explainability of reliable feature
selections, as initially emphasised [13–17].

While structural preservation is substantial for consistent post-analysis, we believe that
the proposed regularization technique can deliver new reliable insights across disciplines
and may even enable corrections or refinements of prior deduced correlations.
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