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Abstract: This paper presents the thermal behavior of non-resonant (quasi-static) piezoelectric biaxial
MEMS scanners with Bragg reflectors. These scanners were developed for LIDAR (LIght Detection
And Ranging) applications using a pulsed 1550 nm laser with an average power of 2 W. At this power,
a standard metal (gold) reflector can overheat and be damaged. The Bragg reflector developed here
has up to 24 times lower absorption than gold, which limits heating of the mirror. However, the use
of such a reflector involves a technological process completely different from that used for gold and
induces, for example, different final stresses on the mirror. In view of the high requirements for optical
power, the behavior of this reflector in the event of an increase in temperature needs to be studied and
compared with the results of previous studies using gold reflectors. This paper shows that the Bragg
reflector remains functional as the temperature rises and undergoes no detrimental deformation even
when heated to 200 ◦C. In addition, the 2D-projection model revealed a 5% variation in optical angle
at temperatures up to 150 ◦C and stability of 2D scanning during one hour of continuous use at
150 ◦C. The results of this study demonstrate that a biaxial piezoelectric MEMS scanner equipped
with Bragg reflector technology can reach a maximum temperature of 150 ◦C, which is of the same
order of magnitude as can be reached by scanners with gold reflectors.

Keywords: thermal behavior; 2D MEMS mirror; piezoelectric; Bragg reflector; high optical power
management

1. Introduction

For most applications, including pico-projection and automotive and biomedical
applications, MEMS scanners are of great interest due to their small size, low cost and low
power consumption compared to standard mechanical beam-scanning systems. Numerous
publications present potential applications for MEMS scanners, as well as the related
requirements [1,2]. There has been particular focus recently on the development of LIDAR
systems for autonomous driving systems. For long-range applications (distances greater
than 100 m), the MEMS-LIDAR approach, based on a MEMS-scanner and using an incident
laser wavelength of 1550 nm, currently appears to be the best option [3,4]. The main reason
for using a 1550 nm laser is that the maximum allowable exposure for human eyes is higher
at this wavelength than at 905 nm.

The 2D MEMS-scanner was developed with PZT (lead zirconium titanate) piezoelectric
actuators on 8-inch silicon wafers using VLSI (very large-scale Integration) technology.
The scanner’s design is compact compared with electromagnetic scanners, which require
a bulky magnet to be integrated into the packaging. In addition, the PZT actuator is low-
voltage (<25 V) compared to other types, such as electrostatic actuators (>150 V). Using
this actuator, we obtained a total optical angle close to 8◦, with a maximum driving voltage
of 20 V [5]. As will be discussed later, the optical angle can be improved by pushing the
design-drawing rules. In addition to these advantages, PZT actuators offer fast response
times and low power consumption.

Sensors 2023, 23, 9538. https://doi.org/10.3390/s23239538 https://www.mdpi.com/journal/sensors1
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Long-range LIDAR detection requires high incident power. Our specification is an
average incident optical power, at 1550 nm, of 2 W on the 2 × 2 mm2 mirror, which
corresponds to a power density of 5000 W/m2. With a pulse laser, this specification
corresponds to a few kW of peak power.

Thus, the absorption (A) of the reflector is key to handling this significant incident
optical power while also limiting heating of the mirror. Indeed, the power absorbed (P a)
inside the mirror is proportional to the reflector’s absorption (A): Pa = A × Pi, where Pi
is the incident optical power. When the mirror is at thermal equilibrium, this absorbed
optical power is equal to the power dissipated (P d). Incident power can be dissipated in
three ways: by surface radiation, by conduction through the arms or the air surrounding
the scanner, or by convection. Free convection is often neglected because of the mirror’s
dimensions, and dissipation is mainly attributed to conduction [6,7]. For our specific design,
the main route of power dissipation was conduction through the arms. Air conduction
is much lower because of the distances (of the order of 700 μm) between the mirror and
the substrate. The thermal power dissipated by conduction (Q cond) is proportional to the
mirror’s temperature: Qcond = (Tm − Ts)

R , where Tm and Ts are the temperature of the mirror
and silicon substrate (considered at ambient temperature), respectively. R is the overall
thermal resistance of the PZT arm ( Rarm) and of the hinge ( Rhinge

)
, which are in series, as

shown in Figure 1. This approximation leads to the following equations: Pa ∼= Qcond and
A × R × Pi ∝ Tm − Ts.

  

Figure 1. MEMS mirror, top view (left) and zoom on hinge and PZT arm (right).

R can be expressed as follows: R = Rarm +Rhinge =
earm

λ ∗ Sarm
+

ehinge
λ ∗ Shinge

, with Rarm = earm
λ ∗ Sarm

and Rhinge =
ehinge

λ ∗ Shinge
. In this equation, earm/hinge are the length of the arm and hinge, respectively,

and Sarm/hinge is the cross-section area (product of width and thickness) of the arm and hinge,
respectively. The value of λ can be defined, initially, as the thermal conductivity of silicon in view
of the very low thickness of the other layers. In the specific case of our mirror, with an optical
angle of 8◦, Rarm is 15× lower than Rhinge, and consequently R ≈ Rhinge.

Finally, the temperature of the mirror Tm can be expressed as follows:

Tm − Ts ∝ A × Rhinge × Pi

One way of increasing the optical angle in the near future will be to limit the stiffness
of the hinge and therefore further reduce its width, which will result in a greater Rhinge.
This increase in the value of Rhinge will limit the power dissipated by conduction through
the arms and therefore lead to an increase in mirror temperature. One way of limiting this
temperature rise is to reduce the reflector’s absorption in order to reconcile greater angular
deflection with limited mirror heating.

As a potential solution, a low-absorption Bragg reflector compatible with piezoelectric
actuation was previously developed [5]. The optical absorption by this Bragg reflector
was up to 24-fold lower than absorption by a standard gold reflector. This Bragg reflector
consists of repeated (n times) dielectric bilayers of amorphous silicon (a-Si, 110 nm) and
oxide (SiO2, 305 nm).

2



Sensors 2023, 23, 9538

However, the impact of increased temperature on scanner performance needs to be
assessed in the context of high optical power or high-temperature environments. The
impact of increasing scanner temperature on the performance and characteristics (flatness,
absorption, laser-induced damage threshold, etc.) has been studied elsewhere [6–9]. How-
ever, only technological processes using metal reflectors have been reported. Because the
technological process with the Bragg reflector is different, the final stress of the multilayers
will also be different, as will the way they change with increasing temperature. Their
performance as the temperature rises must be investigated.

The main aims of the study are to ensure that the mirror remains functional even when
the temperature rises, to study the deformations a rise in temperature could induce and to
determine the maximum operating temperature for this Bragg scanner. The results will enable
us not only to extend the use of such a mirror to a high-temperature environment, but also to
consider applications other than the LIDAR that might require higher optical power.

2. Results and Discussion

The Bragg reflector was manufactured by physical vapor deposition (PVD) to avoid
degradation of the PZT performance. It consists of several (n) bilayers of amorphous
silicon (110 nm) and oxide (305 nm), depending on the target reflectivity and absorption. A
two-bilayer (n = 2) Bragg reflector was chosen for the LIDAR application.

In the PZT process, process used was the most efficient in terms of material thickness,
annealing and electrodes [10]. The 535 nm PZT piezoelectric film was deposited by sol-gel
chemical solution deposition (CSD) on 8-inch silicon wafers. This film consists of 10 layers
of a commercial PZT (52/48) solution from Mitsubishi Materials Corporation. Each layer of
PZT was spun, dried at 130 ◦C and calcinated at 360 ◦C. Crystallization and densification
annealing were performed at 700 ◦C under oxygen for 1 min using a Jipelec RTA (Rapid
Thermal Annealing) furnace from Annealsys (Fr.). A first round of annealing was done on
the first layer after it was coated to promote the desired (100) orientation. Subsequently,
annealing was performed after coating of every three layers. This standard process does
not include a hot-poling step after the deposition of PZT.

Figure 2 shows a schematic cross-section view of our scanner. The fabrication process
flow and PZT characterizations have been previously reported [5].

Cross-Section Bragg Process  

 

 

Figure 2. Cross-section of scanner with Bragg reflector.

To create the Bragg bilayers, an Endura PVD magnetron sputtering chamber from
Applied Material (U.S.A.) was used, having been loaded with a silicon target for the 110 nm
amorphous silicon layers. The 305 nm silicon dioxide layers were deposited in the same
chamber by reactive sputtering of DC-generated plasma.

The evolution of the mirror’s flatness and of the 2D-scan patterns with increasing
temperature were experimentally characterized. These characterizations were carried out
with the scanner thermalized on a hot plate. This experimental protocol has two principal

3
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advantages: it allows precise control of the scanner temperature, and it is compatible with
a wide range of temperatures (from ambient to 200 ◦C).

2.1. Mirror Planarity with Temperature

Due to residual stresses in the multiple layers making up the mirror, the mirror
was not perfectly flat. A concave or convex deformation of the mirror is often observed
after fabrication, and this deformation affects beam reflection. The deformation can be
minimized through technological means, for example, by changing the thickness and stress
of the layers on the top and bottom of the mirror. The deposition process was first optimized
to minimize internal multilayer stress. The average internal stress of the Bragg reflector
bilayers (n = 2) was measured at −155 MPa on a complete wafer after deposition. This low
compressive stress makes it possible to minimize mirror deformation induced by stress.

At the same time, the scanner’s Z-deformation was measured after the Bragg process,
using an Altisurf 520 tool from Altimet (Fr.). Figure 3 shows an overview of the scanner’s
deformation along the Z axis at ambient temperature.

Figure 3. Scanner deformation of a Bragg reflector (n = 2) along the Z-axis near ambient temperature (30 ◦C).

The mirror clearly displayed a convex deformation at 30 ◦C. The static radius of
curvature (SRC), measured along the diagonal of the mirror over 2 mm and centered on
the mirror, was estimated to be 230 mm. The 4 mm-long actuators had a positive deflection
of 57 μm, which was induced by compressive stress affecting the whole multilayer stack.

The evolution of Z deflection by the actuators and the mirror, as a function of tempera-
ture, was characterized over the temperature range from 30 ◦C to 200 ◦C. To carry out this
evaluation, the scanner was thermalized on the heating plate integrated into the Altisurf
520 tool. As shown in Figure 4, increasing scanner temperature resulted in a 10% decrease
in the Z-deflection, which reached a value close to 50 μm at 150 ◦C.

Figure 4. Z deflection of the PZT arms decreases with increasing temperature.

4
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This expected evolution is consistent with published analytical models of multilayers [11,12].
The thermal stress (σTi) between a film (i) and a substrate (s) is defined by the equation

σTi = Ei
′(αi − αs)

(
Tdep − Tsub

)
,

where αi,S are the thermal expansion coefficients of the film (i) and substrate (s), E′
i,S =

Ei,S

(1 − ϑi,S)
corresponds to their biaxial Young modulus, ϑi,S is the Poisson ratio and Tdep and Tsub are,
respectively, the temperatures of deposition and operation.

Taking the values of Ei,s
′ and αi,s reported in [8] and our Tdep values, as shown in

Table 1, the formula clearly shows that increasing the operating temperature, Tsub, from
30 ◦C to 200 ◦C induces a decrease in overall stress, which in turn reduces beam deflection.

Table 1. Values of material characteristics from [8] and our actuator technology process.

Material Ei,s
′ [GPa] [8] αi,s(10−6) [8] ti,s (μm) Tdep [ ◦C]

Pt 271 9 0.1 450
PZT 119 6 0.55 700
Pt 271 9 0.1 450

SiO2 100 0.6 0.5 250

Si 236 4.3 (30 ◦C)
5.5 (150 ◦C) 20 N/A

SiO2 100 0.6 1 1050 [8]

The radius of curvature of a multilayer beam can be estimated using the following
formula [11]:

1
r
=

n

∑
i=1

6Ei
′ti(αi − αS)ΔT

Es
′tS

2

where ti,S the thickness of the layer (i) or substrate (s). This last equation is a first-order
approximation that omits terms with orders higher than ti. This omission is consistent with
the ti layer thicknesses being at least 20-fold thinner than the substrate thickness. However,
these models do not account for any bending moment on the beams. This assumption
does not apply in our case because the beams are connected to the mirror. Nevertheless,
the model allowed us to determine that the largest Ei

′ti contributions were related to the
bottom 1 μm-SiO2 film, which was present under the substrate. To a lesser extent, the PZT
layer contributed as well. Some layers, like TiO2, may not be taken into account because of
their negligible thickness. As a result, the overall radius of curvature of the actuators, and
the degree of deflection, is mainly to the result of the compressive 1 μm-bottom SiO2 film
present under the mirror. It should be noted that the initial deformation of the actuators had
no direct impact on the optical angle attained; it affected only the Z-position of the mirror.

Figure 5 shows changes to the mirror’s flatness as a function of temperature. The
multilayer stack on the mirror is different from that present on the actuator. The mirror
tends to flatten as the temperature increases. The increase in Z-signal noise with increasing
temperature is linked to the measurement tool and does not reflect a change in the reflector
surface, as the reflector was deposited at a higher temperature (250 ◦C).

Figure 5. Bragg (n = 2) mirror planarity at different temperatures. The mirror was scanned along its diagonal.

5
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Despite this noise, from experimental measurements, the SRC was estimated to be
close to 340 mm at 150 ◦C. In future developments, this mirror curvature will need to be
reduced to achieve the Rayleigh criteria: a Z-deformation of less than λ/4. This result could
be achieved by, for example, increasing the thickness of the SiO2 layer present under the
mirror or by adding a tensile layer on top of the silicon substrate.

2.2. 2D Projected Scan with Temperature

A key parameter to characterize is how the 2D scan of the reflected beam evolves as a
function of scanner temperature. This measurement is used to determine and extrapolate
the potential variation in the total optical angle depending on the mirror’s temperature in
the context of a LIDAR application. The X and Y coordinates of the optical angle determine
the size of the scene that the LIDAR can image.

The scanner was thermalized at temperatures between 30 ◦C and 150 ◦C, and the
optical angles were measured using a class-2 visible laser reflected by the mirror and
projected onto a screen. A camera was used to track the position of the laser on the screen
by continuously measuring its barycenter. If the optical path (l) (around 130 mm) between
the screen and the scanner and the position (x, y) of the barycenter of the laser on the screen
are known, the X and Y

(
θx, θy

)
coordinates of the optical angle of the spot can be deduced

using tan
(
θx or y

)
= x or y

l . The absolute uncertainty of the optical angle, which is linked
to how precisely the optical path is measured, was estimated to be 0.2◦ on our test bench.
The scanner temperature was limited to 150 ◦C because electrical breakdowns are often
observed when our technological process is used at temperatures exceeding 200 ◦C.

A 2D scan was performed with a 200 Hz sinusoidal driving signal (X-axis) for the fast
axis and a 4 Hz ramp for the slow axis (Y-axis). The PZT supply voltage was swept from
0 V to a maximum of 20 V with VAC = VDC = 10 V. The total optical angle θx and θy was
measured at y = 0 and x = 0, respectively. In addition, for each of the four temperatures
tested, the total duration of the measurement was at least 30 min, including thermalization
and the time required for 2D scanning. Figure 6 shows the optical angles measured for
one of our scanners at 30 ◦C and 150 ◦C. A slight decrease can be observed in both axes of
the scanning pattern. Additionally, it is worth noting a minor distortion in the 2D scan at
150 ◦C. This distortion will require further examination.

 

Figure 6. 2D-scanning representation at 30 ◦C (black) and 150 ◦C (red).

6
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Four identical Bragg mirrors were used for this test, as shown in Figure 7. These
mirrors have exactly the same design, the same Bragg reflector and the same technological
process flow. The evolution of the effective optical angle, θe =

√
θxθy, as a function of

changes in scanner temperature from 30 ◦C to 150 ◦C is reported. The changes observed
correlated well with previously published results [8,13–15].

Figure 7. Optical angle θe (normalized relative to angle measured at 30 ◦C) as a function of scanner
temperature done with four identical mirrors.

Mirror deflection thus results from the movement of the PZT actuators and, conse-
quently, of the effective transverse piezoelectric coefficient e31, f , based on the inverse piezo-
electric effect. Indeed, the piezoelectric stress ( σP) can be expressed as σP = −e31, f Ez [13],
where Ez is the transverse electric field. In addition, e31, f is proportional to PS, the saturation
polarization, and ε33, the relative permittivity measured out of plane, as e31, f ∝ −2ε33P3.
This coefficient is highly dependent on the operating temperature of the mirror. Theoretical
calculations [14] predict that e31, f will increase with temperature. In contrast, other au-
thors [8,15] have reported experimental results showing that e31, f increases to a maximum
(near 40 ◦C) and then gradually decreases at higher temperatures (up to 200 ◦C).

After deposition, ferroelectrics like PZT may not be polarized, in which case they will
have poor piezoelectric properties. Poling treatment, which involves applying a voltage
well above the coercive voltage, orients the piezoelectric domains in the same direction.
However, after poling, the piezoelectric coefficient slowly decays due to rearrangement of
the domains towards their equilibrium state. If poling is performed at a high temperature
(hot poling), the mobility of the ferroelectric domains increases significantly, allowing a
better alignment in the direction of the poling field [10]. Nevertheless, it should be noted
that this increase in e31, f after hot poling has been observed only at ambient temperature.
Another study [15] with an initial poling step of 25 V at ambient temperature and inter-
mediate poling steps at higher temperatures found that e31, f decreases with increasing
temperature. The two curves converged at high temperatures (near 200 ◦C).

This case is different, as the temperature of the scanner increases progressively with
continuous polarization of the PZT. A similar case has been reported elsewhere [8]. Dahl-
Hansen et al. followed the deflection tilt of a unipolar micro-mirror driven by a 20 V signal
at a frequency of 1.5 kHz while varying the mirror temperature stepwise from ambient
temperature to 175 ◦C. Our study shows a similar trend, with an increase in the optical
angle between 50 ◦C and 100 ◦C and a decrease at 150 ◦C. The value of the maximum is
more difficult to determine given the uncertainty of the measurements. In addition, one
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of our samples underwent an electrical breakdown at 100 ◦C, reflecting degradation at
high temperature. This decrease in optical angle with increasing temperature has been
attributed mainly to the decrease in Ps as the scanner temperature approaches the Curie
temperature (near 350 ◦C in our case) [8,16,17]. Alteration of film stress is also reported to
have a potential impact [8] but is considered to contribute only slightly to the evolution of
e31, f [17].

The decrease in optical angle observed in Figure 7 was close to 5%, which is consistent
with values reported elsewhere [8]. However, this evolution of the optical angle, which is
linked to the actuation power, even if it is limited to a change of few percent, must be taken
into account in the context of future use within a LIDAR system. This value has direct
implications for the global area scanned from the scene. Limiting the temperature increase
by means of a low-absorption reflector is a first response to this issue, but that solution
could also be coupled to others, like those based on the influence of PZT poling or hot-
poling conditions, as has been reported [9]. These and other studies, such as investigations
focusing on the evolution of Ps, should be explored further in the future.

The last parameter checked was the stability of the 2D scan at an operating temperature
of 150 ◦C. To conduct this investigation, an image of four spots, as shown in Figure 8, was
continuously projected onto the screen for one hour. An image of the screen was taken every
minute by a 720-by-540-pixel camera (X and Y) and the barycenter of each of the spots was
calculated. The shift in the X and Y positions of the barycenter, is reported in pixels.

 

Figure 8. Projected image of the four spots on the screen (left) and shift in the barycenter (X and Y)
of the four spots (right).

The standard deviation Sn−1 of the barycenter positions of the four spots, calculated in

pixels for both X and Y axis, was estimated using the following formula: Sn−1 =
√

∑ (x − x)2
n − 1 ,

where x is the value for one sample, x is the mean value of all the samples and n is the
number of samples. In our case, n = 60. The maximum value of Sn−1 is close to 1 pixel.
This value is the smallest deviation that can be measured using our test bench. Thus, in our
case, the relative deviation of the optical angle was close to 0.03◦.

In conclusion, no significant deviation of the optical angle at a scanner temperature
of 150 ◦C was observed for continuous one-hour measurements, demonstrating the stable
performance of the PZT actuator.

Further studies are needed to verify that PZT performance is not affected by a return
to ambient temperature after operation at different temperatures. The potential impact of a
hot-poling step remains to be investigated as well.

3. Conclusions

In this paper, we report on the thermal behavior of a biaxial piezoelectric MEMS-
scanner with integrated Bragg-reflector technology. We first demonstrate that the flatness
of the mirror and actuators compensates for increases in internal stresses in the multilayer
stack with increasing temperature. Better adaptation of the thickness of the layers making
up the mirror could further improve initial planarity to provide better optical quality of the
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reflected beam. We then looked at the evolution of the 2D projected pattern with increasing
scanner temperature. An optical angle variation close to 5% was observed at 150 ◦C, which
is consistent with previously reported values. Such results could be taken into account in
the case of application at elevated temperature to adapt the FoV of the scanner. Finally, no
significant deviation of the optical angle was observed for continuous measurements lasting
one hour at a scanner temperature of 150 ◦C. The results presented here demonstrate that a
biaxial piezoelectric MEMS scanner equipped with Bragg reflector technology can reach a
maximum operating temperature near 150 ◦C, which is of the same order of magnitude
as scanners equipped with a gold reflector. Moreover, thanks to its low-absorption Bragg
reflector, this technology will make it possible in the future to increase angular deflection
by reducing the width of the mirror hinge while limiting mirror heating. This technology
thus paves the way for applications requiring high optical power or high-temperature
environments. Finally, now that the maximum operating temperature is known, future
simulation models will be able to estimate the maximum permissible incident power using
the design of the scanner and the absorption of the Bragg reflector.
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Abstract: Micromachined electric field mills have received much interest for the measurement of DC
fields; however, conventional designs with lateral moving shutters could have shutter lifting in the
presence of strong fields, which affects their performance. This paper presents a MEMS electric field
mill utilizing a vertical movement shutter to address this issue. The sensor is designed and fabricated
based on a flexible PCB substrate and is released using a laser-cutting process. The movement of
the shutter is driven by an electrostatic actuator. When the driving signal is a sine wave, the shutter
moves in the same direction during both the positive and negative half-periods. This facilitates the
application of a lock-in amplifier to synchronize with the signal at twice the frequency of the driving
signal. In experimental testing, when the vertical shutter is driven at a resonance of 840 Hz, the
highest sensitivity of the sensor is achieved and is measured to be 5.1 V/kVm−1. The sensor also
demonstrates a good linearity of 1.1% for measuring DC electric fields in the range of 1.25 kV/m to
25 kV/m.

Keywords: electric field sensor; electric field mill; flexible PCB; MEMS; micromachining; electrostatic
actuator; laser micromachining

1. Introduction

A DC (direct current) electric field sensor (EFS) is a device designed to measure and
quantify the strength of static or slowly changing electric fields in a given environment.
They are useful for applications that involve static or slowly changing electric fields. In
power utilities, they can be used to evaluate the electromagnetic environment in an electric
power transmission system [1] and the design of insulators [2], and to ensure the safety
of power workers [3]. In industrial manufacturing processes, they can be used to prevent
electrostatic discharges (ESDs) to protect electronic equipment [4]. In atmospheric science,
they are used to study the mechanisms of thunderstorms [5] and predict lightning [6]. They
are also useful in the study of climate and geophysics [7].

Common techniques to measure DC electric fields include induction probes, optical
sensors, and electric field mills (EFMs). An induction probe has a sensing electrode placed
in an electric field, and when it is in equilibrium status, the voltage on the electrode
is proportional to the field, which can be measured by using a high-input impedance
electrical meter. Some benefits of induction probe type EFSs include a low cost and small
size, but they require re-zeroing in shielding conditions, which is inconvenient in long-term
applications. Optical sensors are usually based on Pockel’s effect, where an electric field
can change a light waveguide crystal’s birefringent properties, and thus, the polarity of
the light transversing the light waveguide will be changed [8]. Optical sensors cause
minimal distortion of the electric field to be measured, but the optical equipment is often
expensive and not stable in a variable temperature environment [9]. An EFM usually has
a rotating grounded shutter over a set of sensing electrodes. The rotation of the shutter
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exposes and covers the sensing electrodes periodically, which generates an AC current
with an amplitude proportional to the strength of the electric field. Traditional EFMs can
stably work outside in various weather conditions, but they are bulky and require high
power consumption and frequent maintenance. Besides these three common measurement
techniques, some other types of electric field sensors reported in the literature include a
graphene-based device [10], a ferroelectric material-based sensor [11], and a steered-electron
sensor [12].

Recently, microelectromechanical field mills (MEFM) have been reported by multiple
research groups [13–18]. They offer the benefits of small size, low cost, light weight, low
power consumption, and minimal maintenance requirements. Similar to a traditional
EFM, MEFMs employ grounded shutters vibrating above or adjacent to sensing electrodes.
However, when these sensors are exposed to a strong electric field, grounded shutters
will lift toward the field, which can affect their shielding ability, significantly reducing the
sensor sensitivity. This is because the induced charge on MEFM electrodes is very sensitive
to the gap between the shielding shutter and the underlying sensor electrodes. A vertical
vibrating shutter type EFM is a promising design to overcome this issue, as the lifting of
the shutter can be compensated for by adjusting the vibration range. The concept was first
simulated by C. Gong et al. in 2004 [19], where they demonstrated that a vertical movement
shutter has a similar shielding effect. However, until now, no MEFM has been reported
using a vertical vibration shutter, except S. Ghionea et al., who reported a device that only
works for measuring AC fields in 2013 [20].

In this work, we designed a vertical movement shutter type of MEFM by using
a flexible PCB (FPCB) substrate. FPCB has the benefit of leveraging a commercialized
manufacturing process that is faster and lower cost, making it an ideal choice for academic
research in prototyping many MEMS devices without the need for a cleanroom. Recently,
an increasing number of devices based on FPCB have been implemented [21–24]. In
comparison to traditional silicon-based devices, their FPCB-based counterparts exhibit
comparable performance levels while concurrently showcasing a marked improvement
in durability. In this design, the shutter movement is driven by an electrostatic actuator.
A simulation was performed to investigate the micro-spring spring constant, resonant
frequency, and interference from the driving signal. After the simulation, the sensor was
fabricated and tested, and it demonstrated a sensitivity of 5.1 V/kVm−1 when operating
at resonance.

2. Sensor Design

2.1. Working Principle

Figure 1 illustrates the working principle of this sensor. It consists of a grounded
shutter and grounded sensing electrodes. The shutter is supported by micro-springs, which
are not shown in Figure 1. In the center of the shutter, there is a grounded area to form
an electrostatic actuator together with an electrode under it. When a voltage is applied
to this electrode, the shutter will move. Obviously, if the electrode is closer to the shutter,
a stronger electrostatic force can be generated. If the voltage provided is a sine wave
V = V0sin(ωt), where ω = 2πf, at t = 0 and t = π, the voltage on the actuator is V = 0, and
the shutter has no movement (Figure 1a). At t = π

2 , the voltage on the actuator is V0, and
at t = 3π

2 , the voltage on the actuator is −V0. In both situations, the actuator will drive
the shutter to move downward for a distance of d (Figure 1b). If the shutter moves up and
down periodically within an electric field, the sensing electrodes detect variations in the
field caused by the changes in the fringing effect. As a result, varying charges are induced,
leading to the generation of an alternating current. Based on Gauss’s law, the total induced
charge on the sensing electrodes is equal to the total electric flux. At t = 0 and t = π, the
electric field on the sensing electrodes is E1, and the induced charge can be calculated as:

Q1 =
∮

S
E1ε0ds (1)
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Figure 1. Sensor working principle. When an AC voltage is applied to the electrostatic actuator:
(a) At t = 0 and t = π, the shutter is at the same height as the sensing electrodes. (b) At t = π

2 and
t = 3π

2 , the shutter is pulled down and the sensing electrodes are exposed to a stronger field and
more surface area is exposed.

At t = π
2 and t = 3π

2 , the shutter movement is d, the electric field on the sensing
electrodes is E2, and the induced charge can be calculated as:

Q2 =
∮

S
E2ε0ds (2)

where ε0 ≈ 8.85 × 10−12 F/m is the vacuum dielectric constant and S is the surface area of
the sensing electrodes.

Considering the shutter has the same direction of movement for both the positive and
negative half period of the sine wave on the actuator, the induced charge equation can be
written as:

ΔQ = |(Q1 − Q2)sin(ωt)| (3)

This is equivalent to (Q1 − Q2)sin(ωt) modulated with an amplitude 1 square wave at
the same frequency. Substituting the Fourier series of the ideal square wave into (3), then:

ΔQ =
4
π
(Q1 − Q2)sin(ωt)

∞

∑
n=1

1
2n

sin((2n − 1)ωt) (4)

Expanding Equation (4) we obtain:

ΔQ =
4
π
(Q1 − Q2)sin(ωt)

[
sin(ωt) +

1
3

sin (3ωt) +
1
5

sin (5ωt) + · · ·
]

ΔQ =
4
π
(Q1 − Q2)

[
sin(ωt) sin(ωt) +

1
3

sin(ωt) sin(3ωt) +
1
5

sin(ωt) sin(5ωt) + · · ·
]

ΔQ =
4
π
(Q1 − Q2)

{
1
2
(1 − cos(2ωt))− 1

6
[cos(4ωt)− cos(2ωt)]− 1

10
[cos(6ωt)− cos(4ωt)] + · · ·

}
(5)
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Ignoring all high frequency components in Equation (5), and substituting (1) and (2)
into (5), if only considering components at frequency 2ω, Equation (5) can be simplified as:

ΔQ2ω = −4cos(2ωt)
3π

∮
S
(E 1 − E2)ε0ds (6)

And so, the generated current at frequency 2ω is:

I2ω =
dΔQ2ω

dt
(7)

Substituting (6) into (7), we get the equation for the current at frequency 2ω:

I2ω =
8ωsin(2ωt)

3π

∮
S
(E1 − E2)ε0ds (8)

This current signal is detectable after being amplified using a high impedance amplifier
and then extracted from the noise by using a lock-in amplifier.

2.2. Working Principle

COMSOL Multiphysics software 6.0 was used for the simulations. The COMSOL
material library was employed for defining the material properties of copper and polyimide.
The 3D model created in COMSOL is shown in Figure 2a, and its dimension parameters are
listed in Table 1. Figure 2b illustrates the schematic diagram of the model, demonstrating
the arrangement of the sensor components. As we can see, the sensing electrodes and
shutter are on one polyimide substrate, while the driving electrode, guard line, and bottom
shielding electrode are on another polyimide substrate. In practice, they can be separated
by using a spacer, but in the simulation, a spacer is not used in the model. The grounded
shutter is supported by four S-shaped micro-springs and is placed 100 μm over the driving
electrode. The sensing electrodes are at the same height as the shutter. The first simulation is
to find the spring constant and shutter movement distance driven by the actuator. Figure 3a
shows the shutter’s downward movement when a voltage of 200 V is applied on the
actuator, which results in a peak deflection of 5.59 μm. Cross-section views of the shutter
downward movement are shown in Figure 3b–d. Figure 4 plots the simulated deflection
for the drive voltages of 50 V, 100 V, 150 V, and 200 V, resulting in electrostatic forces on
the shutter of 4.82 × 10−6 N, 1.97 × 10−5 N, 4.6 × 10−5 N, and 8.69 × 10−5 N, respectively.
The overall spring constant is calculated to be 15.5 N/m.

(a) (b) 

Figure 2. Sensor 3D model. (a) COMSOL 3D model. (b) 3D model schematic diagram.
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(a) (b) 

 
(c) 

 
(d) 

Figure 3. Shutter movement simulation. (a) Shutter movement under force of 86.9 μN. (b) x-y plane
view. (c) y-z plane view. (d) x-z plane view.

Figure 4. Simulation results for the shutter displacement and electrostatic force on the shutter when
driven by the actuator.

Table 1. COMSOL 3D model properties.

Property Value (μm)

Spring length 2000
Spring width 60

Copper thickness 18
Polyimide thickness 25

Sensing electrodes length 1000
Sensing electrodes width 60

Shutter finger length × width 1000 × 60
Gap between sensing electrodes and shutter finger 10

Electrostatic driving electrode width 2120
Electrostatic driving length 1920
Guard line length × width 1920 × 120

Distance from electrostatic driving electrode to shutter 100

The resonant frequency of a micro-springs supported shutter is also simulated. It has
multiple orders of vibration modes, and Table 2 lists the results of the first three modes. As
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we can see, the first order is up and down at 493 Hz, the second order is tilt along the x-axis
at 568 Hz, and the third order is tilt along the y-axis at 1045 Hz. Both the secondary and
third orders have half of the structure move up and half move down, where the induced
charges on each side will cancel each other; therefore, no signal will be generated. The
first-order vibration mode will have a maximized induced charge.

Table 2. Resonant frequency simulation results.

Mode Picture Frequency (Hz)

1 493

2 568

3 1045

The high voltage on the driving electrode is a concern in that it may produce extra
induced charges on the sensing electrodes. To minimize this interference, in the design,
two grounded guard lines are placed on each side of the driving electrode to separate it
from the sensing electrode, and another grounded electrode is placed under the driving
electrode and guard lines to prevent an electric field from emanating from below (on the
other side of the PCB). Figure 5 depicts the distribution of the electric field between the
driving electrode and the surrounding grounded structures. We can see that the sensing
electrodes are minimally affected by the driving voltage. For example, when 200 V at
246.5 Hz is applied to the driving electrode (the shutter has a resonant frequency of 493 Hz),
the induced charge on the sensing electrodes is 2.5 fC. The generated current is:

Iω =
dΔQ

dt
= ω(Q1 − Q2)cos(ωt) (9)
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Using Equation (9), the amplitude of the current is calculated to be 3.9 pA. In an
electric field of 10 kV/m, the movement of the shutter (driven by 200 V) results in an
induced charge of 0.17 pC, while at rest (0 V drive), the induced charge is 0.153 pC. Using
Equation (8), the amplitude of the generated current is calculated to be 44.7 pA. Compared
to the interference from the driving electrode, the sensing signal is 11.5 times stronger than
the driving signal interference, and the frequency is two times higher.

 
Figure 5. Driving electric field distribution.

3. Sensor Fabrication

After the simulation, the sensor patterns were designed using a free and open-source
PCB design tool named KiCAD 7.0 The generated Gerber and drill files are demonstrated
in Figure 6a. These files were sent to a PCB manufacturer called PCBway (https://www.
pcbway.com/, accessed on 30 November 2023) to fabricate the structure. The flexible PCB
samples are shown in Figure 6b,c, where Figure 6b is the shutter and sensing electrodes,
and Figure 6c is the actuator driving electrode. These samples have two conductive layers,
where Figure 6b,c shows the front view, and the black features on these two pictures are
the features on the back side. According to the manufacturer’s datasheet, the thickness of
the copper is 18 μm and that of the polyimide is 25 μm, and minimum line width is 60 μm.

The shutter sample needs to be released to separate the sensing electrodes. This
was completed by using a laser etching process. The equipment used is the A Series
Laser Micromachining system, which is an ultraviolet (355 nm) diode-pumped solid-state
picosecond laser dicer from Oxford Lasers Ltd. (Didcot, Oxfordshire, UK). The cutting
paths were created by using AlphaCAM 2023 R2 software. The laser beam peak pulse
energy was set to 0.12 mJ and the pulse duration was 6 ps. The laser pulse frequency setting
was 400 Hz, cutting speed 1 mm/s, and the diameter of the laser beam was 10 μm. Using
30% of this laser power, 15 cutting passes were required to cut through the polyimide-only
areas and 30 passes were required for areas having both copper and polyimide.

The released micro-springs, shutter, and sensing electrodes are shown in Figure 6e,
where two corners are cut to expose the electrodes on the layer below it. After soldering
wires to the sample, then the sensor is assembled by aligning the released sample on top of
the actuator driving electrode and using taps to fix all of the parts. As the polymer substrate
is partially transparent, in the alignment process, the cross-shaped alignment marks on
both layers will make the process easier.

Figure 7a shows the picture of the released micro-springs, shutter, and sensing elec-
trodes. The picture was taken using a Leica DM6 M microscope (Leica Microsystems,
Wetzlar, Germany). As we can see, the micro-springs, shutter, and sensing electrodes have
slight deformations, but the shutter and the sensing electrodes are still aligned very well.
After assembly, the separation distance from the shutter to the driving electrode under it is
measured to be 105 μm by using a microscope. Figure 7b shows the initial location of the
shutter fingers and sensing electrodes in the zoomed-in area of Figure 7a. As an illustration
of the shutter movement test, the application of 200 V to the driving electrode results
in noticeable shutter finger movement, shown in Figure 7c. We can see that the sensing
electrodes remain focused and unchanged, while the shutter fingers move downward,
altering the focal status. By refocusing the shutter finger and observing the displacement
of the fine object adjustment knob of the microscope, the movement of the shutter fingers
was measured as 10 μm. As detailed in Section 2.2, the electrostatic force exerted on the
shutter at 200 V is 8.69 × 10−5 N. Therefore, the spring constant of the shutter’s supporting
springs is calculated to be 8.7 N/m.
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Figure 6. Sensor fabrication process. (a) The view of the design PCB and generate Gerber files.
(b) Manufactured shutter and sensing electrodes. (c) Manufactured actuator driving electrodes.
(d) Bending the sample manually to show the flexibility. (e) After laser cutting, the micro-springs
are released and the shutter and sensing electrodes are separated. (f) Place (e) on top of (c) to form
the sensor.

 
  

(a) (b) (c) 

Figure 7. Released shutter and sensing electrodes under the microscope. (a) Whole area. (b) Zoom
picture of the electrodes at the initial rest position. (c) Zoom picture after applying 200 V on the
driving electrode.

4. Sensor Testing

4.1. Test Setup

The fabricated sensor was tested in the laboratory. Figure 8 shows a functional diagram
of the test setup. The sensor was placed on a grounded metal plate, and the distance from
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the sensor surface to the metal plate was measured to be 0.5 mm. Another metal plate was
placed above the sensor, and the two metal plates were separated by two 4.5 mm thick
spacers on each side, then the distance from the top metal plate to the surface of the sensor
was 4 mm. A DC power supply was connected to the top metal plate to generate a test DC
electric field. The actuator driving sine wave was generated by an Agilent 33120A signal
generator (Agilent Technologies, Santa Clara, CA, USA), followed by three 1:7 transformers
in parallel in the primary side and in series in secondary side. When an amplitude 10 V
sine wave was provided by the signal generator, the output driving signal amplitude was
measured to be 193 V. The output of the sensing electrodes was sent to a transimpedance
amplifier (TIA), with a gain of 107. After the TIA, an interfering signal was detected, which
had the same frequency as the actuator driving signal and overloaded the lock-in amplifier.
This is because the deformation of the shutter after release and the flatness of the electrodes
was not perfect, which caused the electric field from the driving electrode to reach the
sensing electrodes more easily.

Figure 8. Test function diagram.

To minimize this interference while not attenuating the sensing signal, a sixth-order
high-pass Butterworth filter with a cutoff frequency of 500 Hz was employed. The gain
for infinite frequency was set to 1, and the quality factor Q was selected to be 0.707.
The frequency response of this filter was simulated by using Cadence Orcad 22.1 Pspice
(Cadence, San Jose, CA, USA), and Figure 9 shows the result. Since the driving signal
frequency was only half the sensing frequency, it was attenuated more. After the high-pass
filter, the signal was fed to an SR510 lock-in amplifier. During the test, the lock-in amplifier
integration time was set to be 1 s, and the lock-in frequency was set to be 2f. The output of
the lock-in amplifier was sent to an oscilloscope and a digital multimeter. By adjusting the
lock-in amplifier sensitivity, different ranges of electric field can be measured.

Figure 9. High pass filter frequency response simulation.
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4.2. Frequency Response Test

After setting up the test apparatus, the first test performed was to find the actual
resonant frequency, where the sensor has its maximum response. In this test, we selected
the lock-in amplifier sensitivity to be 2 mV. Then we set the signal generator amplitude to
be 8 V. After transformer amplification, the amplitude of the signal driving the actuator was
153 V. The frequency was swept from 160 Hz to 580 Hz with an increment of 10 Hz. The
DC power supply output voltage was set to be 100 V, which can create a test electric field
of 25 kV/m at each frequency, enabling and disabling the output of the DC power supply.
The responses of the sensor shown on the digital multimeter were recorded and are plotted
in Figure 10. The analog output of the SR510 lock-in amplifier is given by the equation:

Vout = 10Ae(AvVi cos∅+ VOS) (10)

where Ae is the expanded setting on the lock-in amplifier panel; Av equals the reciprocal of
the sensitivity setting, which is 2 mV in this test; Vi is the magnitude of the input signal
to the lock-in amplifier; Φ is the phase difference between the signal and reference; and
VOS is the offset. However, the SR510 only gives the in-phase component X of Vout. The
amplitude of Vout can be derived by both the in-phase and quadrature component Y:

Z =
√

X2 + Y2 (11)

In this test, for each frequency, we measured the X component by setting the phase to
be 0◦, and measured the Y component by setting the phase to be 90◦, then calculated the Z
component using Equation (11). The test results are shown in Figure 10. The Z component
maximum occurs at 420 Hz, which indicates that the shutter resonant frequency is 840 Hz.

Figure 10. Sensor frequency response test results.

4.3. Sensor Sensitivity Test

In this section, we explore the sensor sensitivity. For a linear sensor, the transfer
function can be described by:

E = A + Bs (12)

where s is the input signal, E is the output signal, A is the output signal E at zero input
signal s = 0, and B is the slope of the line. B is also called sensitivity [25]. Therefore, the
sensor sensitivity is:

B =
E − A

s
(13)
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For this test, we set the signal generator amplitude to be 10 V, and after transformer
amplification, the amplitude of the signal driving the actuator was 193 V. As the in-phase X
component peaked at 800 Hz (the driving signal at 400 Hz), we chose the lock-in amplifier to
display the X component, the phase was set to be 0◦, and we set the signal generator output
frequency to be 400 Hz. The DC power supply output voltage was set to be 10 V, which
provided a 2.5 kV/m test electric field when turned on. To explore the highest sensitivity of
the sensor, the SR510 lock-in amplifier sensitivity was pushed to the lowest before overload
to be 100 μV. Figure 11 shows the test results. As we can see, when the 2.5 kV/m field
turns on and off, the sensor output is averaged to be 12.8 V. The sensor sensitivity can be
calculated to be 5.1 V/kVm−1. The noise level of the sensor is 0.3 V, and the resolution
of the sensor is calculated to be 62.5 V/m. Table 3 compares the EFMs presented in this
paper and some reported in recent years. This sensor demonstrates significantly higher
sensitivity and comparable resolution.

Figure 11. Sensor sensitivity test results.

Table 3. Comparison between references and this work.

Reference Year Sensitivity Resolution

MEMS EFM [13] 2001 40 μV (kV/m)−1 N/A
Thermal actuator EFM [14] 2009 0.1 mV (kV/m)−1 42 V/m
Thermal actuator EFM [15] 2006 0.4 mV (kV/m)−1 240 V/m

Torsional Resonance EFM [16] 2018 5 mV (kV/m)−1 N/A
Comb drive EFM [18] 2017 10 mV (kV/m)−1 N/A

EFM in this paper 2023 5.1 V (kV/m)−1 62.5 V/m

4.4. Sensor Response Linearity Test

In order to explore the sensor response linearity, a test was performed to measure the
sensor response from 1.25 kV/m to 25 kV/m. In this test, the driving signal amplitude
was 193 V, and the frequency 400 Hz. The lock-in amplifier sensitivity was selected to be
1 mV. When the DC power supply swept the voltage from 5 V to 100 V, electric fields from
1.25 kV/m to 25 kV/m were generated. Figure 12 plots the sensor response (each reading
has an error of ±0.03 V). The linearity of the sensor is calculated to be 1.1%, with an average
sensitivity of 0.49 V/kVm−1.
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Figure 12. Sensor response to DC electric fields from 1.25 kV/m to 25 kV/m.

5. Conclusions

This paper introduces an MEFM employing a vertical movement shutter based on a
flexible PCB substrate. The shutter is driven by an electrostatic actuator. The sensor struc-
ture was fabricated by a commercial PCB manufacturing process followed by laser cutting
for release. The fabricated sensor demonstrated a linear response in electric fields ranging
from 1.25 kV/m to 25 kV/m. The highest sensitivity was measured to be 5.1 V/kVm−1.
This sensor has the potential to compensate for the shutter lift-up issue of common MEFMs
by providing an initial bias voltage on the actuator. This allows this type of sensor to be
applied in a wide range of DC electric field measurements from sub-kV/m to over MV/m.
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Abstract: Waste material classification is a challenging yet important task in waste management. The
realization of low-cost waste classification systems and methods is critical to meet the ever-increasing
demand for efficient waste management and recycling. In this paper, we demonstrate a simple,
compact and low-cost classification system based on optical reflectance measurements in the short-
wave infrared for the segregation of waste materials such as plastics, paper, glass, and aluminium.
The system comprises a small set of LEDs and one single broadband photodetector. All devices are
controlled through low-cost and low-power electronics, and data are gathered and managed via a
computer interface. The proposed system reaches accuracy levels as high as 94.3% when considering
seven distinct materials and 97.0% when excluding the most difficult to classify, thus representing a
valuable proof-of-concept for future system developments.

Keywords: discrete spectroscopy; feature selection; SWIR; material classification; optical sensor

1. Introduction

Material classification plays a crucial role in various industries such as manufacturing,
healthcare, environmental monitoring, and security. The ability to accurately identify and
classify different materials is essential for ensuring product quality, safety, and compliance
with industry standards. In recent years, the importance of material classification has
been further amplified by the growing emphasis on sustainability and environmental
conservation [1].

In this era of rapid technological advancements, sensors have emerged as indispens-
able tools for material classification. Unlike traditional methods that often rely on manual
inspection or chemical analysis, sensors offer real-time, non-destructive, and precise ma-
terial identification capabilities. For this aim, various technologies such as spectroscopy,
imaging, and X-ray analysis can be employed [2]. Among such approaches, those relying
on optical sensors stand out, due to their ability to use infrared light to gather information
about material characteristics that are often invisible to the human eye. Optical sensors
offer remarkable precision and speed in distinguishing materials, without the need for
extensive sample preparations or prolonged laboratory tests [3]. Moreover, these sensors
operate in non-contact mode, facilitating the analysis of moving materials.

The integration of optical sensors with cutting-edge technologies such as hyperspectral
imaging and Raman spectroscopy has further elevated their capabilities. Machine learn-
ing algorithms, fuelled by data collected from optical sensors, enable intelligent pattern
recognition, resulting in highly accurate material classification outcomes [4]. Industries
spanning pharmaceuticals, food processing, aerospace, and environmental monitoring
have significantly benefited from the advanced capabilities of optical sensors [5–7].

Optical sensors typically exploit spectral information to identify materials based
on their reflectance and/or transmittance fingerprint. Different spectral ranges can be
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employed, depending on the materials of interest and on the morphological characteristics
of the samples. Short-wave infrared (SWIR) spectroscopy stands out as a beacon of precision.
Operating within the wavelengths from 1000 to 2500 nm, SWIR spectroscopy offers an
unparalleled depth of analysis. Its ability to penetrate materials, coupled with its sensitivity
to various molecular vibrations, makes it indispensable in material classification [8]. SWIR
spectroscopy and SWIR-based hyperspectral imaging have been extensively employed in
the last decade for material classification purposes, when used together with classification
algorithms [9–11].

Spectral analysis and hyperspectral imaging can reach very high performance in
material classification, but, on the other hand, they rely on cumbersome and expensive
instrumentation, thus hampering their adoption for high-volume applications. Recently,
a simplified approach to spectral measurements has been proposed, employing imaging
systems and photodetectors with a large spectral response and quasi-monochromatic light
sources (LEDs), selected in order to investigate only those wavelengths where target mate-
rials express specific reflectance signatures [12–14]. The extension of such a discrete-light-
source spectroscopy approach to SWIR wavelengths can further enhance the achievable
performance, allowing for better material recognition.

In this study, we explore SWIR-based material classification using discrete LED sources
for spectral analysis. Our preliminary study utilized 10 carefully chosen LEDs, achieving
98% accuracy in classifying waste materials [15]. The current research aims to further
improve the proposed system by revisiting the initial set of LEDs and optimizing the
achievable accuracy while reducing the number of employed LEDs. The proposed system
measures the reflectance of solid samples at specific wavelengths, acquiring discrete re-
flectivity spectra while minimizing data redundancy. The goal is to create a cost-effective,
user-friendly instrument for material sorting, applicable in recycling and waste manage-
ment. Despite potential performance trade-offs, our approach ensures quick and efficient
implementation, making it ideal for distributed waste segregation, enabling the accurate
differentiation of waste materials.

Figure 1 presents a schematic overview of the principle of operation of the system.
In this configuration, LEDs function as light sources, sequentially controlled by electronic
drivers, while the photodetector measures the reflected intensities. These signals undergo
conditioning through a trans-impedance amplifier, before being acquired through a com-
mercial data acquisition interface. The MATLAB suite is employed for the classification of
the acquired data, corresponding to different materials.

Figure 1. Schematic representation of the system working principle.

2. Materials and Methods

2.1. Materials

In our study, we analysed seven materials, including polyethylene terephthalate
(PET), polypropylene (PP, transparent and white), a composite polymer made of polylactic
acid (PLA) and polybutylene succinate (i.e., AB400L), glass, paper, and aluminium. It is
important to note that these samples represent only a subset of the materials found in
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industrial and domestic waste, and they were utilized in the forms of flakes and pellets,
which might not fully represent real waste materials in terms of physical properties. Hence,
our system serves as a proof of concept, demonstrating the potential of discrete spectroscopy
for waste segregation. We specifically selected transparent or white materials as reference
samples, except for light-grey PET, since SWIR spectroscopy still poses challenges in
analysing dark-coloured samples due to their high absorption levels [16]. In addition,
cutting the materials into macro-sized flakes provided several advantages, such as an
increased sample surface area, material homogenization, and reduced effects of extraneous
reflections like specular reflections.

2.2. SWIR Spectral Acquisition

The spectra for each material were collected using two distinct Ocean Insight compact
spectrometers (Orlando, FL, USA) operating in the VIS (450 nm to 1030 nm) and SWIR
(954 nm to 1710 nm) ranges, with a step size of 1 nm. Subsequently, the individual VIS
and NIR spectra were rescaled, merged, and presented as a unified spectrum spanning
the range from 450 nm to 1710 nm. A total of 50 spectra were recorded for each material.
Figure 2 illustrates the combined averaged reflectance spectra obtained from the two
compact spectrometers. The right side of the figure shows photographs of each material.

Figure 2. Spectra of all materials using compact spectrometers. The numbers in the photographs
align with the labels provided in the plot legends.

The reflectance spectra reveal that glass distinguishes itself from other materials by
virtue of its exceptional transparency, characterized by a solitary peak in the 600 nm wave-
length range. The white PP material exhibits elevated reflectance values in comparison to
other materials, featuring two prominent peaks within the wavelength range of 1200 nm to
1600 nm. Transparent PP shares peaks with white PP, but its reflectance values are signifi-
cantly lower, and the peaks appear broader. The paper displays distinctive characteristics
with high reflectance values, featuring two notable troughs at 550 nm and 1550 nm in the
spectrum. Much like transparent PP, AB400L unveils distinct features solely in the SWIR
range, displaying two peaks, with one exhibiting a broader profile. Additionally, it shows
a nearly constant spectrum in the NIR and VIS ranges. In contrast, aluminium exhibits a
consistent spectrum in the SWIR range with high reflectance values, whereas in the NIR
range, it features a notable wide reduction between 800 nm to 950 nm. PET exhibits a low
reflectance level, akin to transparent PP, with closely aligned spectra. This similarity can be
attributed to the selected materials being both white and more transparent than the others.
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It is evident from Figure 2 that each material exhibits unique characteristics in the
SWIR range as opposed to the VIS range. Therefore, despite the available data in the
spectral range between 450 nm to 1710 nm, in our data analysis, we exclusively considered
the spectral values within the SWIR range from 810 nm to 1710 nm.

2.3. LED Selection Method

The LED selection was executed by simulating the system response for all the different
LEDs employing the spectral data reported in Figure 2 and the spectral emissions of the
LEDs as obtained from the datasheets.

Figure 3 illustrates the process of LED selection, encompassing data preparation
and optimization methods. Initially, fourteen commercially available LEDs ranging from
890 nm to 1700 nm (as shown in Figure 4) were selected, spanning the SWIR spectrum.
Subsequently, a hybrid approach was employed to narrow down the selection to the
top four LEDs. This hybrid method [17] was instrumental in ensuring that the eventual
experimental setup would be equipped with the most fitting and efficient LEDs to achieve
precise and reliable results.

 

Figure 3. LED optimization process.

Figure 4. Spectral distribution of 14 LEDs with peak emission of wavelengths reported in the leg-
end (left), and accuracy achieved with different classifiers for an increasing number of LEDs (right).

The data preparation process initiated with the collection of reflectance spectra for
each material using compact spectrometers, as explained in Section 2.2. Subsequently,
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the 14 LED spectral irradiance data were gathered from datasheets and normalized based
on the intensity at the peak wavelength. The normalized irradiance spectra were then
interpolated to be aligned with the wavelength range and step of the materials’ reflectance
datasets. The theoretical amount of light reflected by each sample, when illuminated with a
single LED, was calculated as the overlap integral of the LED irradiance spectrum and the
material reflectance spectrum measured using the compact spectrometers. The coefficients
derived from this process indicated the ratio of reflected light from the sample to the
total incident light from the LED. This produced, for each measurement, a reduced set
with 14 features that captured essential information from the reflectivity spectrum of each
material. For each of the seven considered materials, the 50 collected reflectance spectra
were employed for feature (i.e., LED) selection purposes.

In our hybrid approach, we adhered to a standard methodology for effective feature
selection and classification model construction. We started by splitting the dataset into
distinct training (80%) and testing subsets (20%). The training set became the focal point for
employing the Correlation-based Feature Selection (CFS) algorithm [18], which carefully
evaluates features to identify their relevance. The algorithm scores features based on their
relevance, assigning priorities. Subsequently, the top 10 features with the highest scores
were preselected. This subset then served as input for a Sequential Forward Selection
(SFS) wrapper method [19]. Resorting to a 5-fold cross-validation, this wrapper-based
optimization ensured the selection of a focused and informative feature subset comprising
only 4 LEDs. Subsequently, the chosen features were utilized to construct a classification
model. For a proper performance assessment, the model underwent evaluation using the
untouched testing data, offering insights into its accuracy and generalization capabilities.
To perform a comprehensive analysis, our methodology was applied by considering widely
used classification algorithms such as Support Vector Machine (SVM) [20], K-Nearest
Neighbours (KNN), Linear Discriminant Analysis (LDA), and Random Forest (RF) [21].
This standardized approach ensured a thorough exploration of feature relevance and
model efficacy across diverse classifiers, contributing to the reliability and versatility of our
mixed method.

After thorough evaluation, each method consistently achieved high accuracy, exceed-
ing 95% with the set of the four selected LEDs. Notably, LDA achieved an accuracy of
99.70%, closely followed by SVM at 99.60%. We strategically selected LEDs at wavelengths
of 1085 nm, 1600 nm, 1300 nm, and 910 nm due to their significant and consistent accuracy
across the LDA, SVM, KNN, and RF classifiers. This choice was based on the selection of
each of these LEDs within the set of the best four, for at least three classifiers out of the
four considered ones, as shown in Table 1, highlighting the robustness of these LEDs in the
optimization approach. Figure 4 visually presents the spectra of all 14 selected LEDs on the
left side, with the filled area representing the spectra of the LEDs chosen after optimization.
On the right side, the graph illustrates the LEDs alongside their corresponding accuracies at
each step of the selection process for the four classification methods. Notably, as additional
features were introduced, the accuracy levelled off and remained stable after selecting
6 LEDs in each method, confirming the chosen 4 LEDs were sufficient to guarantee the
desired classification performance.

Table 1. Ranked list of LEDs (expressed in terms of emission peak wavelength, in nm) selected for
each classifier.

Methods LED 1 LED 2 LED 3 LED 4

SVM 1085 nm 1600 nm 910 nm 1300 nm

KNN 1085 nm 910 nm 1600 nm 1300 nm

LDA 1085 nm 1600 nm 1450 nm 930 nm

RF 1085 nm 910 nm 1450 nm 1300 nm
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2.4. Simulation Results

To provide further details on the performed analysis, and to assess the robustness
of our proposed spectral acquisition and classification analysis using the selected four
features (LEDs), we report in Figure 5 the confusion matrix obtained considering the
LDA classifier, which demonstrated superior performance compared to the SVM, KNN,
and RF algorithms. Notably, the overall accuracy rate reached 98.6%, with only a minor
misclassification observed for aluminium, glass, and paper.

 
Figure 5. Confusion matrix obtained during the feature selection process to simulated LED data.

2.5. Methodology

Following the analysis performed to select the best four LEDs, an experimental setup
was built, as depicted in the schematic block diagram shown in Figure 6. This system
was composed of three main components: a sensor head, an analogue front-end, and a
multifunction interface connected with a computer. The sensor head was housed in a 3D-
printed case with dimensions of 5 cm in diameter and 1.5 cm in height. Within this casing,
there was a germanium photodetector surrounded by four strategically positioned LEDs.
To prevent direct illumination, the LEDs were evenly spaced. These LED light sources
are commercially available and come equipped with epoxy and glass lenses, measuring
4 mm in diameter, and have a maximum current of 25 mA. All the LEDs were biased with
a custom circuit in order to provide a mean optical power of 2 mW ± 10%. The germanium
photodiode operated within the spectral range of 700–1800 nm, with a peak responsivity of
0.85 A/W at 1550 nm.

The analogue front-end of the system consisted of a 4-channel current amplifier
responsible for driving the LEDs and a variable-gain transimpedance amplifier designed
for the photodiode. This analogue front-end was connected to a computer through a
multifunction input/output interface, leveraging the National Instruments DAQ USB6009
(Austin, TX, USA). The USB6009 facilitated the sequential activation of the LED current
drivers and performed analogue-to-digital conversion of the output from the photodiode
amplifier. This conversion was achieved at a precision of 14 bits with a sample rate of 1 kS/s.
To streamline the measurement process, a user-friendly graphic interface, developed using
LabVIEW (version 2023.Q1), was employed. This interface allowed for the management
of measurements, the real-time monitoring of each light source’s status, the configuration
of measurement parameters (such as sampling rate, number of readings to be averaged,
duration of LED illumination, and measurement timing), and the display and storage of
sensor readings.
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Figure 6. Schematic representation of the system set-up.

Each material sample was placed and stored in a separate black box. The samples
underwent exposure to each LED light source for a duration of 10 ms. During this time,
reflectance values were captured and used to calculate the ratio of reflected light to incident
light. The total incident light amount was pre-calibrated and stored in a look-up table. The
system output was presented graphically in LabVIEW. Maintaining a uniform illumination
of the sample was ensured by placing the sensor at a fixed distance of 7 cm. A 5 V
power supply was utilized to power the entire system which, along with the sample under
measurement, was enclosed in a dark box. To enhance measurement accuracy, each sample
was measured 10 times and averaged. Before each reading, the sample box was shaken to
minimize artifacts associated with preferential reflection angles from the grains.

Upon exposure to each LED, the sample material underwent partial reflection of
the incident optical radiation. The diffused reflection was captured by the photodiode,
generating a photocurrent that was proportional to the optical power. This photocurrent
was then amplified and converted to a voltage using the trans-impedance amplifier before
being acquired by the DAQ. This acquisition process was repeated for all the different
LEDs, resulting in a set of 4 values. To account for variations in the emission intensity of
the 4 LEDs, all measurements were normalized with respect to a calibration dataset. This
dataset was obtained by substituting the sample with a metal mirror during the calibration
process. The sample’s reflectivity was calculated using Equation (1), where V0(λ) represents
the voltage value obtained during the calibration with a flat mirror (proportional to the
incident light intensity), and Vs(λ) is the voltage acquired while illuminating the sample
under analysis (proportional to the reflected light intensity).

R(λ) = Vs(λ)/V0(λ) (1)

The measurements were conducted on the seven considered materials over a period
of three days. Specifically, 50 spectra were collected from each material daily, amounting to
a total of 350 spectra per day. Across the entire study, 1050 spectra were gathered, creating
a comprehensive dataset that encompassed a broad range of variations and measurements
for subsequent analysis. This extensive dataset enabled the consideration of the potential
impact of environmental conditions on the proposed setup. In the subsequent section,
various classifiers were employed on the collected data. The objective was to identify the

30



Sensors 2024, 24, 809

most effective approach and to explore the relationship between achievable performance
and the intra-class variability observed in the conducted measurements.

3. Results

The collected data were classified using various methods through a MATLAB (version
2022a) script. Table 2 below presents the classification accuracy achieved on each of the three
days, employing an 80%–20% division for training and test data, and the four considered
classification methods. Better results are typically obtained when using an SVM classifier,
which provides the best average performance when considering data from all the three
different acquisition sessions.

Table 2. Classification accuracies achieved using four optimized LEDs across four different classifica-
tion methods over the considered three-day dataset. Values in bold indicate the best results obtained
for each acquisition session.

Data Set SVM LDA KNN RF

1st day 95.7% 96.0% 94.3% 92.9%

2nd day 94.6% 93.4% 92.6% 88.6%

3rd day 93.4% 92.9% 89.7% 90.0%

Overall, classification performances were similar for the different days, but some slight
differences could be observed, with data from day 3 providing the worst classification
results irrespective of the classification algorithm. This behaviour was expected, since we
purposely did not control environmental conditions (e.g., temperature, room illumination,
relative humidity) during measurements. It is therefore evident that the specific acquisition
conditions may have had a non-negligible impact on the reliability of the measurements
and on the resulting classification performance.

For a better assessment of the actual capabilities of the proposed system and to
enhance its generalization capabilities, additional data analysis was conducted by splitting
the collected samples according to two distinct modalities, that is, day-wise split and
random split. The day-wise split means that data from one specific day were exclusively
assigned for training, and data from another day were reserved for testing. This approach
allowed for a targeted assessment of the model’s performance on unseen data from a
different day, providing insights into its ability to generalize and handle variations specific
to distinct timeframes. Evaluating the model under such day-wise conditions helps gauge
its adaptability to changing circumstances and ensures a comprehensive understanding of
its performance across different temporal contexts. The random split modality implies that
the data obtained during the 3 days are mixed and then randomly divided into training
(80%) and test (20%) samples in a 5-fold cross validation. Random split helps ensure a
representative distribution of data across training and test sets, reducing bias and enhancing
the model’s generalization to unseen data.

Figure 7a–d show the confusion matrices associated with four out of the seven consid-
ered scenarios, that is, 1st vs. 2nd day (with LDA classifier), 1st vs. 3rd day (with SVM), 3rd
vs. 2nd day (SVM), and shuffled data (SVM). The accuracies achieved in all considered tests
are detailed in Table 3, where the results related to the conditions considered in Figure 7
are marked in bold. When checking the reported confusion matrices, certain noteworthy
misclassifications are evident. Figure 7a reveals a significant error rate, i.e., 62%, in classify-
ing aluminium with other materials. AB400L follows with a 40% misclassification, and PP
(transparent) exhibits a 22% error rate. In Figure 7b, a persistent 62% misclassification is
observed between aluminium and other materials, accompanied by a 16% misclassification
between PP (transparent) and AB400L, emphasizing the complexity of accurate classifi-
cation for these material pairs. Figure 7c,d continue to show a consistent trend of high
misclassification for aluminium materials with other substances. Notably, in Figure 7c,
there is a 38.0% misclassification with other materials, and in the shuffled dataset, a similar
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pattern is observed with a 23% misclassification rate. These findings highlight the difficulty
in accurately categorizing aluminium using classification models applied to training/test
data collected in different scenarios, which significantly impacts the overall accuracy. On
the other hand, consistently high accuracy, close to 100%, is achieved for both glass and PP
(white) across all the considered situations. These results suggest that these two materials
have highly characterizing spectral signatures that allow effective differentiation within a
classification framework.

Figure 7. (a) Confusion matrix of 1st (training) vs. 2nd (test) acquisition sessions for LDA classifier.
(b) Confusion matrix of 1st (training) vs. 3rd (test) acquisition sessions for SVM classifier. (c) Con-
fusion matrix of 3rd (training) vs. 2nd (test) acquisition sessions for SVM classifier. (d) Confusion
matrix of shuffled data acquisition sessions for SVM classifier.

The misclassification of aluminium in comparison to other materials can be attributed
to the distinct surface characteristics of the materials, where one side exhibits a shiny
appearance while the other is coloured. Notably, these aluminium samples were sourced
from used soft drink cans obtained from the environment. To address this challenge, we
opted to exclude aluminium from our dataset and focused on classifying the remaining
materials. The results revealed a promising improvement in our data analysis. Actually,
Table 3 outlines a comparison of the performance obtained when employing SVM and
LDA classifiers, and both with and without aluminium, for all the considered data divi-
sions. The findings from Table 3 clearly indicate that the dataset excluding aluminium
exhibits substantial improvements across all scenarios. Particularly noteworthy is the fact
that, out of the seven considered scenarios, five of them consistently provided overall
classification accuracy above 90% without aluminium. Figure 8a–d show the confusion
matrices obtained when excluding aluminium for the four scenarios considered in Figure 7.
Actually, the considered scenarios, with the associated classifiers, are those showing the
largest differences between considering or excluding aluminium.
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Table 3. Comparative analysis of classification accuracy using SVM and LDA methods in different
data sets. Values in bold indicate the scenarios considered in Figures 7 and 8.

Scenario
All Materials

(SVM)

Without
Aluminium

(SVM)

All Materials
(LDA)

Without
Aluminium

(LDA)

1st (Training) vs.
2nd (Testing) 79.4% 87.3% 79.0% 92.0%

1st (Training) vs.
3rd (Testing) 83.0% 91.3% 67.7% 88.7%

2nd (Training)
vs. 1st (Testing) 76.3% 82.7% 66.6% 83.0%

2nd (Training)
vs. 3rd (Testing) 80.0% 91.7% 81.4% 88.0%

3rd (Training) vs.
1st (Testing) 86.0% 95.3% 73.0% 87.7%

3rd (Training) vs.
2nd (Testing) 82.6% 90.0% 74.0% 89.7%

Shuffled data 94.3% 97.0% 93.0% 96.0%

Figure 8. (a) Confusion matrix of 1st (training) vs. 2nd (test) acquisition sessions, without aluminium,
for LDA. (b) Confusion matrix of 1st (training) vs. 3rd (test) acquisition sessions, without aluminium,
for SVM. (c) Confusion matrix of 3rd (training) vs. 2nd (test) acquisition sessions, without aluminium,
for SVM. (d) Confusion matrix of shuffled data acquisition sessions, without aluminium, for SVM.

The observed improvement underscores the positive impact of excluding aluminium
on the model’s ability to accurately classify materials in various scenarios. Likewise, data
shuffling facilitates improved the training of the classifier, enhancing its generalization
capability and resulting in an overall higher accuracy of 94.3% when considering all materi-
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als, with a further improvement to 97.0% when excluding aluminium, further highlighting
the positive impact of data shuffling on the model’s performance. Finally, it can be seen
that the performance of the SVM classifier is consistently higher than that attained by LDA.

Despite removing aluminium from the dataset, the confusion matrices in Figure 8
highlight significant misclassifications, particularly among AB400L, PP (transparent), and
paper. The classification models encounter challenges in distinguishing these three ma-
terials, particularly in the case of PP (transparent), which consistently experiences minor
misclassifications with PP (white) due to their shared material properties. Glass, on the
other hand, proves to be the easiest material to classify, achieving almost 100% accuracy
across all cases, thanks to its distinctively low reflectance values. Furthermore, PP (white)
stands out as another material with high accuracy within this system setup, attributed to
its distinctive high reflectance characteristics, as evident in Figure 1, which depicts the
continuous spectra of the materials. While our current system setup with 4 LEDs has
demonstrated good performance in material classification, our previous analysis using
a larger number of LEDs revealed superior classification for “critical” materials. This
underscores the significance of achieving finer spectral discrimination for enhanced results
in material classification. The utilization of a more extensive set of LEDs seems to boost
the model’s capacity to differentiate and classify materials, highlighting the importance of
spectral precision in achieving accurate results, particularly for critical materials.

4. Conclusions

This paper introduces a cost-effective approach for waste material classification
through discrete optical analysis in the short-wave infrared (SWIR) range. The system
integrates four LEDs and a single photodetector, controlled by basic electronic drivers
and a transimpedance amplifier, respectively. The conditioned photodetector signal is
acquired via a commercial data acquisition interface. With respect to our previous work
using 10 LEDs and a 98% accuracy rate, our new feature selection method focuses on four
LEDs, attaining 97% accuracy with support vector machines. The system is applied to
classify diverse materials, including glass, paper, and three types of plastic. Challenges
arise in classifying aluminium due to its reflective properties and the presence of plastic
coatings on the samples.

The proposed system should be interpreted as a proof-of-concept and has been tested
with a small number of samples and in a reduced complexity framework. More specifically,
no coloured plastics were employed, and all the samples shared similar surface characteris-
tics in terms of roughness. In order to assess the real extent of the proposed classification
approach, further systematic analyses including samples with different colours and surface
characteristics should be executed. However, it should be considered that, apart from black
pigments, plastic colourings do not typically show any peculiar absorption or reflection in
the SWIR range. In addition, the scattering characteristics of a certain material depend both
on its surface roughness and on its complex refractive index; thus, different finishes can act
as confounding parameters in the classification system, but this issue could be addressed
by increasing the amount of samples and data employed for the training.

It may also be noted that, due to the employment of a single photodetector, our system
may fail in the classification of samples made of mixed materials (e.g., glass bottles with
plastic or metallic caps) or when dealing with very small samples with respect to the
field of view of the detector. A straightforward approach to improve the performance of
the system consists of the implementation of an imaging sensor as a replacement for the
single photodetector, thus allowing for the acquisition of images with embedded spectral
data. However, this performance enhancement would come at the cost of a more expensive
measurement set-up. Despite such constraints, our research demonstrates that the proposed
system is promising and highlights the potentialities of discrete spectrometric analysis for
material recognition.

In summary, our research contributes to the development of an affordable and reliable
system for material classification. While refining the accuracy of aluminium classifica-
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tion remains a challenge, our system demonstrates significant potential for accurately
categorizing plastic, paper, and glass waste materials.
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Abstract: Heat flux measurement shows potential for the early detection of infectious growth. Our
research is motivated by the possibility of using heat flux sensors for the early detection of infection
on aortic vascular grafts by measuring the onset of bacterial growth. Applying heat flux measurement
as an infectious marker on implant surfaces is yet to be experimentally explored. We have previously
shown the measurement of the exponential growth curve of a bacterial population in a thermally
stabilized laboratory environment. In this work, we further explore the limits of the microcalorimetric
measurements via heat flux sensors in a microfluidic chip in a thermally fluctuating environment.

Keywords: heat flux measurement; microfluidics; microbiology

1. Introduction

Heat flux measurements are very interesting for measuring the metabolic heat output
of chemical and biological systems [1]. For example, heat produced by living organisms
reflects metabolic activity and metabolic changes [2,3]. Large instruments such as mi-
crocalorimeters have been used for studying the heat produced during the growth of
different bacterial strains in medicine [4] and microbiology [5,6]. On-chip calorimetric
measurements such as micro- [7,8], nano- [9–11] and pico-calorimetric chips [12] have also
been utilized for investigating metabolic changes through exothermic heat production.
Microfluidic systems offer a number of benefits, such as optical access, controllable fluid
mixing and lab-on-chip/in vitro systems capabilities, as summarized in the literature [13].
Many different microfluidic chips have been developed to emulate the in vivo environment
in the body for diagnostic [14,15] or research purposes of different regions in the body
such as the kidney [16], lung [17] or tumors [18]. These systems focus on the detection
of biochemical markers or on optical investigations of the in vitro system. We wish to
adapt the concept of in vitro microfluidic systems to emulate the in vivo environment of
an infection and use physical sensors as opposed to biochemical sensors to avoid drift
and promote long-term stability of the sensor in vivo. Having heat flux measurements
accessible in microfluidic chips would expand the range of tools for bioengineering with
tabletop access to microcalorimetric data. This work is an extension of work presented at
the XXXV Eurosensors Conference 2023 in Lecce (10–13 September).

Microcalorimetric microfluidic chips have been proposed to mimic the thermal envi-
ronment of a growing infection on a vascular graft implant surface [19,20]. For example,
Figure 1a shows a 2 + 1 channel microfluidic system, where a growing infection is emulated
by an exothermic chemical reaction. The heat produced is measured differentially by
two heat flux sensors. Heat transfer to blood flowing in an aorta is accounted for by a
top channel. Its heat transfer coefficient, h, is designed to match that of a physiological
aorta [19].
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Figure 1. (a) Sketch of a 2 + 1 channel microfluidic chip [19] reproduced with permission. The heat
transfer coefficient of the top channel matches that of aortic heat transfer. (b) Microfluidic chip in a
thermally stabilized environment able to resolve bacterial growth though heat flux measurement [1].
Schematics adapted from [1,19].

In another system, shown in Figure 1b, the exponential growth curve of a bacterial
population was measured using a similar concept involving differential heat flux sensors [1]
in a microfluidic chip. The individual bacterial thermal power could be determined thanks
to a thermally stabilized environment. This system was developed to facilitate calorimetric
measurements on microfluidic chips in laboratory environments. The thermally stabilized
environment consists of an incubator at 37 ◦C, a PMMA (Poly(methyl methacrylate))
thermally stabilizing box and a block of copper placed on top of the two channels to keep
the thermal fluctuation to a minimum.

These in vitro experimental systems have shown the potential application of heat flux
sensing towards the early detection of infection. However, some aspects still need to be
investigated before considering in vivo applications. On implant surfaces, to detect an
infection early, one has to resolve the onset of bacterial growth prior to biofilm formation,
after which bacteria stop responding to antibiotic treatment. Such early detection could
significantly decrease the patient mortality rate of, for example, vascular graft implant
infections, which is currently between 17 and 40% of cases [21]. In the system shown
in Figure 1b, the resolution with respect to the number of bacteria is supported by a
thermally stabilized environment [1]. In contrast, in vivo, the thermal environment of
the implant would undergo temperature fluctuations (sleep cycles, outside temperature,
level of patient activity, and fever, for example). To determine the feasibility of the early
detection of infection in vivo, it is thus important to investigate the influence of higher
temperature fluctuations on the measurement capabilities of microcalorimetric chip systems.
Furthermore, smaller heat flux sensors than those used in [1,19] would be needed for
integration of the heat flux sensor in an aortic vascular graft, for example in a mesh
structure [20]. Since smaller sensors might be more limited by noise, their impact on the
resolution of measuring bacterial growth needs to be studied.

Here, we present a microfluidic chip measuring bacterial growth through heat flux in
a thermally not-stabilized environment. The system uses smaller heat flux sensors and a
smaller microfluidic channel (smaller thermal mass). We investigate the system in a fluctu-
ating temperature range of 1 K, which matches the standard body temperature fluctuations
in the human body (36.5–37.5 ◦C) [22]. This study gives further information about the limit
of detection with respect to bacterial growth possible on implant surfaces, a step closer
towards in vivo conditions, and extends the study presented at the Eurosensors Conference.

2. Materials and Methods

2.1. Experimental System and Setup

Two different experimental systems, as illustrated in Figure 2, will be compared. To the
left, Figure 2a,c,e show the microfluidic chip in the thermally not-stabilized environment,
and to the right, Figure 2b,d,f show the thermally stabilized system as introduced in [1].
Pictures of both experimental systems are shown in the Supplementary Information in
Figures S1 and S2.
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Figure 2. Left column (a,c,e) show the channels of the microfluidic chip in the thermally not-stabilized
environment. Right column (b,d,f) show the channels of the microfluidic chip in the thermally
stabilized environment [1] with the additional thermally stabilizing copper block. (e,f) show the
cross-section of the chip. The groove is to ensure a given thickness of the PDMS above the heat flux
sensor. Sketches not to scale.

The two channels shown in Figure 2a,c,e are 170 μm tall, 6 × 6 mm wide and long
with a volume of 6 μL. The heat flux sensor is a gSKIN XM (greenTEG, Zurich, Switzerland,
resolution: 0.41 W/m2) with dimensions measuring 5 mm × 5 mm × 0.5 mm, whereas
the two channels shown in Figure 2b,d,f are 320 μm tall and 12 × 12 mm wide and long
(volume = 46 μL) with a heat flux sensor of 10 mm × 10 mm and 0.5 thickness [1]. The
heat flux sensor used is the gSKIN XP (resolution: 0.06 W/m2). In both systems, one of the
channels is filled with bacteria and the other one is filled with sterile lysogeny broth (LB)
media for differentially compensated heat flux measurements. The heat flux sensors are
embedded in polydimethylsiloxane (PDMS) and placed 150 μm above the channels.

Both the thermally not-stabilized setup and the thermally stabilized setup are shown
comparatively in Figure 3. In the former, the microfluidic chip is placed in a temperature-
controlled room at 37 ± 0.5 ◦C without any further temperature stabilization. A PT1000
temperature sensor measures the temperature in close proximity to the microfluidic chip. In
the thermally stabilized system [1], the microfluidic chip is placed within a double-walled
PMMA box with an additional thermally insulating air layer, as illustrated in Figure 3. The
PMMA box is placed inside an incubator at 37 ± 0.15 ◦C. As also shown in Figure 2b,d,f, a
copper block is placed directly above the microfluidic chip for further thermal stability of
the heat flux sensors.

Escherichia coli (E. coli) MG 1655 in lysogeny broth (LB) is utilized for bacterial experi-
ments. The LB medium consists of 10 g of Tryptone, 5 g of yeast extract, and 5 g of NaCl per
1 L of media. To prevent bacterial cells sticking to the tubing walls or in the channel, a 1:100
ratio of Tween20 is added to the LB medium. Each experiment is performed in two steps,
with an initial calibration phase in a sterile environment. First, the flow is controlled using a
peristaltic pump connected to both channels of the microfluidic chip. LB without bacteria is
pumped at a flow rate of 98.75 μL/min. Second, bacteria are added to one of the channels,
into the flask connected to the respective channel. PTFE tubing of an inner diameter of 0.02
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in is inserted in the microfluidic chip inlet and outlet and connected to the peristaltic pump.
The growth of the bacteria is measured via optical density (OD) analysis of the bacterial
population at the outlet of the tubing from the microfluidic chip. The samples collected at
the outlet are put on ice and measured subsequently using an optical density (OD) meter.
This experimental process is based on a previously published protocol of the thermally
stabilized system [1]. During the setup and the initial filling of the channels with liquid, it
is important to ensure that no air bubbles are present in the microfluidic channels prior to
the start of the measurement.

Figure 3. A schematic of the measurement setups of the thermally not-stabilized and the thermally
stabilized systems. In the thermally not-stabilized system, the microfluidic chip is placed directly
on an arbitrary surface in a temperature-controlled room without further thermal stabilization
measures. The thermally stabilized system is a previously published system which shows the data of
a microfluidic chip placed inside a thermally stabilizing PMMA box and with a block of copper on
the top side of the microfluidic chip [1].

2.2. Microfluidic Chip Fabrication Steps

The lithography and soft lithography microfluidic chip fabrication steps are illustrated
step-by-step in Figure 4. The microfluidic chip is fabricated by patterning SU8 on a silicon
wafer. A 4 mL quantity of SU8-100 is spin coated on the wafer, with parameters as described
in the Supplementary Information (SI), for a total thickness of 170 μm. The wafer is soft
baked at 95 ◦C for 70 min and subsequently exposed with 400 mW/cm2 on a mask aligner
(MA6 Karl Suss, Suss Microtec SE, Garching, Germany). The mask used for the exposure
contains the dimensions of the two channels, as shown in Figure 2. Following the exposure,
the SU8 is baked at 95 ◦C for 16 min and subsequently developed in Mr Dev600 (micro resist
technology GmbH, Berlin, Germany) for 16 min. After cleaning the wafer with isopropyl
alcohol and DI water, it is ready for dicing and the soft lithography steps with PDMS.

PDMS (Sylgard 184, Suter-Kunststoffe AG, Fraubrunnen, Switzerland) is mixed in a
1:10 ratio between the elastomer and crosslinker and poured on the prepared and diced
silicon wafer with the desired channel diameters fabricated on top, as shown in Figure 4.
Following 40 min of degassing in a vacuum desiccator, the PDMS is cured at 80 ◦C for 3 h.
Spacers are used to define the 150 μm PDMS thickness above the microfluidic channels, as
shown in the sketch. Following the first layer of PDMS, the two heat flux sensors are placed
on top of the cured PDMS and above the SU8 structures. More uncured PDMS is poured
on top of the sensors and degassed for 40 min. The PDMS is again cured at 80 ◦C for 3 h.

The PDMS with the embedded heat flux sensors is cut out from the SU8 patterned
wafer mold. Inlet and outlets are punched out of the PDMS using a 20 G needle. The PDMS
is then fused with a glass slide using oxygen plasma ashing for 1 min and 30 s at 100 W in
an O2 environment. For further adhesion improvement, the fused chip is directly placed in
an oven at 80 ◦C for 15 min.
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Figure 4. Fabrication steps of the microfluidic chip with two integrated heat flux sensors. A patterned
silicon wafer with SU8 is used as the basis of the microfluidic chip channel fabrication. Multiple steps
of PDMS curing are applied to create and control different layer thicknesses around the heat flux
sensors. After removing the cured PDMS from the wafer, the inlets and outlets are punched out, and
it is fused with a glass slide using oxygen plasma.

The fabrication steps are different to the fabrication steps of the microfluidic chip used
in the thermally stabilized environment. The channel height for that system is 320 μm, and
the specific fabrication steps are described in detail elsewhere [1].

3. Results

Temperature Measurement
Temperature fluctuations of the environment of both the thermally not-stabilized and

thermally stabilized environment, as measured by the PT1000 temperature sensors, are
shown in Figure 5. The thermally not-stabilized system shows a temperature fluctuation
range of about 1 K for 2.3 h, and the thermally stabilized system shows a temperature
fluctuation range of 0.3 K for over 4.2 h. The different temperature fluctuation ranges are
due to differences in thermal shielding of the microfluidic chip from the environment, as
described in the previous sections.

Figure 5. Temperature measurements in both the (a) thermally not-stabilized and (b) thermally
stable environments. The fluctuations in (a) are in the range of 1 K from 1.0 h to 3.3 h, whereas in
(b) the range of temperature is 0.3 K over 4.2 h. The data shown is for the duration of the whole
experiment—both calibration and bacterial phase. The temperature data shown in (b) is part of the
previously published heat flux data [1].

As shown in Figure 2a, two microfluidic channels with different functions are used.
One contains only LB media for control purposes, and the other contains LB media together
with growing E. coli. In the calibration phase, parameters for the differential compensation
scheme are determined. These are thereafter applied to heat flux signals in the sensing
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phase when bacteria are added. The differential compensation scheme allows for the
extraction of heat produced by the bacterial growth via a common-mode rejection scheme,
as described previously [1]. Figure 6 shows the heat flux signal of the two sensors in the
calibration phase (Figure 6a,b) and upon the addition of E. coli.

Figure 6. Raw and differentially compensated heat flux values. (a) Data during the calibration phase
and (b) data after the differential compensation is applied. The peaks in the heat flux correspond
to peaks in the temperature of the temperature-controlled room, as visible in Figure 5a. (a,c) Both
have a blue heat flux signal and a red heat flux signal where the different heat fluxes represent the
different channels. The blue data belong to the channel in which the bacteria is subsequently added,
and the red data belong to the calibration channel. (c,d) Heat flux data upon addition of E. coli. Peaks
in the heat flux correspond to peaks in the temperature, as visible in Figure 5a (shifted by time). The
raw data are shown as opaque, and the data averaged over 200 datapoints are shown in the darker
color and with a thicker line.

Figure 6a shows raw and averaged data for the calibration phase where both channels
are filled with LB media only. The differentially compensated heat flux signal is shown in
Figure 6b and is calculated according to the scheme introduced in [1]:

q = q1 − q∗2 (1)

With q as the differentially compensated heat flux signal, q1 as the heat flux in
the channel in which bacteria is to be added, q2 as the heat flux in the control chan-
nel, q indicates the average over 200 datapoints, Lc is the ratio of the standard deviations
σc1/σc2, and qc1 and qc2 indicate the calibration phase [1]. q∗2 is defined as

q∗2 = Lc(q2 − qc2) + qc1 (2)

The differential compensation scheme manages to cancel out temperature peaks in the
heat flux upon thermal fluctuations [1]. Figure 6c shows the data of the different channels
upon addition of E. coli in one of the channels. The blue signal is from the heat flux sensor
above the channel with bacteria, and the red signal is from the heat flux sensor above
the calibration channel. Equations (1) and (2) yield the differentially compensated heat
flux value, which are also used upon the addition of bacteria, as shown in Figure 6d. At
around 8000 s, the heat flux signal increases like a step-function, as indicated by the arrow
in Figure 6c,d.
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4. Discussion

Figure 7 compares the differentially compensated heat flux signals in the thermally
not-stabilized and the thermally stabilized system. Figure 7a,d show the measured heat
flux data in parallel with the optical density measurement of the bacterial population.
Data for the thermally not-stabilized system shown in Figure 7a is only able to reveal a
step-function-like increase in the heat flux. On the other hand, heat flux measurements in
the thermally stabilized setup in Figure 7d is able to show a clear exponential growth of
the bacteria with the heat flux measurement. In our previous work [1], we have shown
that the exponential region of the heat flux measurement matches the exponential region
as measured in the optical density measurement. The larger noise in the heat flux values
around the averaged signal visible in Figure 7a,c, reflects the two different models of heat
flux sensors used.

Figure 7. Differentially compensated heat flux measurements in the two systems. (a) Data in the
thermally not-stabilized system. A change in the heat flux is distinguishable in the exponential
growth phase (as indicated by the arrow at 7500 s). Region 1 is indicated by a line in the first part
before the arrow, and Region 2 is indicated by the line starting around 7500 s. (b) Comparison of
the cumulative distribution functions of the calibration phase with raw data with those of Regions 1
and 2. (c) Data for the thermally stabilized system, shown previously in [1]. The data shown are the
points at which the bacteria was added to the system (t = 0 s is the addition of bacteria). In all figures,
the opaque data is the raw heat flux signal, and the dark line shows a 200-point moving average.
(d) Semilogarithmic plot of the data. An exponential increase in both the measured heat flux and also
the bacterial population growth is identifiable in the same region.

To distinguish the regions in which the heat flux produced by the bacteria is below or
above the detection limit for the thermally not-stabilized system, empirical cumulative dis-
tribution functions (eCDF) are utilized in different regions. The first is the calibration phase
shown in Figure 6b. The second is Region 1, as indicated in Figure 7a by a horizontal line
from t = 0 to 7500 s. The third is Region 2, as indicated by the horizontal line from t = 7500
to 13,000 s. Comparing eCDFs of these three regions in Figure 7b, the calibration phase and
Region 1 are very close. Region 2 is significantly different from both the calibration and
Region 1. There is a clear shift in the eCDF at the point where the heat produced by the
bacteria surpasses the threshold of detection of the heat flux sensor. The median of the heat
flux difference in the calibration phase is 0.01 W/m2; in Region 1 it is 0.00 W/m2, and in
Region 2 it is 0.35 W/m2, as indicated by the horizontal lines in Figure 7a. The detection of
bacterial growth in the thermally not-stabilized system occurs at an optical density of 0.3.
In comparison, the system with the larger, more sensitive sensor [1] is able to resolve the
exponential growth of the bacteria in correlation to the optical density measurement.
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Table 1 compares the performance of the thermally not-stabilized and the thermally
stabilized systems. The differential measurement scheme present in both systems mea-
sures metabolic heat flux and suppresses the influence of large temperature peaks and
fluctuations. The spread in heat flux values are mainly related to the resolution limitations
of the heat flux sensors themselves. The different detection limits are calculated via an
optical density conversion, where the optical density unit corresponds to 109 cells/mL.
The detection limit of the cells is the calculated number of cells at the determined heat flux
limit of detection converted using the given channel volume (6 μL or 46 μL). We show in
Figure 7b that it is still possible to detect bacterial growth with smaller sensors and smaller
thermal volumes.

Table 1. Table overview over system performance and design properties of both the thermally
not-stabilized and the thermally stabilized system [1].

Property
Thermally

Not-Stabilized
Thermally Stabilized [1]

Growth detection Yes Yes
Channel size (underneath sensor) 6 mm × 6 mm × 170 μm 12 mm × 12 mm × 320 μm
Channel volume 6 μL 46 μL
Sensor gSKIN XM gSKIN XP
Sensor resolution 0.41 W/m2 0.06 W/m2

Temperature fluctuation 1 K 0.3 K
Standard deviation heat flux 0.32 W/m2 0.05 W/m2

Standard deviation averaged
heat flux 0.20 W/m2 0.02 W/m2

OD limit of detection * 3 × 108 cells/mL 2 × 107 cells/mL
Cell population limit of detection * 1.8 × 106 cells 9.2 × 105 cells

* These values are given for completeness; however, they are determined by different methods, and therefore
direct comparison between the systems should be carefully considered.

5. Conclusions

This work extends our study presented at the Eurosensors conference. Here, we
are able to resolve bacterial growth via the metabolic heat produced in a microfluidic
channel with an integrated differential heat flux sensing system by measuring the bacterial
growth via metabolic heat. In contrast to the previous system involving more controlled
thermal environments and larger sensors and microfluidic channels [1], we expose a
smaller microfluidic chip with a smaller size and worse-resolution sensors to a thermally
fluctuating environment without additional thermal isolation around the microfluidic chip.
The 1 K range of temperature fluctuations matches the in vivo temperature fluctuation
range in the human body [22]. However, the rate of change of temperature is within
minutes, which is faster than in physiological conditions. These higher rates of temperature
change perturb the heat flux measurement of the bacterial growth more than what is
expected in physiological conditions. We demonstrate that, leveraging a differential sensing
strategy, our system can detect bacterial growth in the exponential growth phase (OD = 0.3),
despite the large environmental temperature fluctuations, smaller sensor sizes, and different
sensor performances.

Further, assuming that each E. coli bacteria produces 3.5 pW [23] of thermal power,
we estimate the limit of detection to be 1707 W/m3 for the thermally stabilized system [1].
The limit of detection is determined by extrapolation based on sensitivity and noise. This
method cannot be applied for the thermally not-stabilized system, where the limit of
detection in relation to the bacterial population is determined from the OD level that
causes a detecable increase in the heat flux measurement using the cumulative distribution
function (Figure 7b). Therefore, we refrain from calculating the heat flux limit of detection
in this case.

The bacterial concentration which constitutes the early onset of infectious growth on
implant surfaces is at present unknown. Therefore, we compare the experimentally deter-
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mined heat flux limit of detection to the thermal density of a biofilm of 350,000 W/m3 [1].
The limit of detection in our system corresponds to 0.3% of the thermal density of a biofilm.
Whether or not 0.3% of the heat of a biofilm corresponds to the early stages of biofilm for-
mation is yet to be investigated in a clinically-relevant environment. In the literature, there
are papers investigating implant infections which use implant bacterial seeding amounts
between 2.0 × 106 and 6.2 × 106 [24–26], which is comparable to the determined detection
limit in this study. From this point of view, using bacterial growth in LB media only reflects
the total heat produced by a given bacterial population, which we, due to the low bacterial
population at the determined limit of detection, consider being at the onset of infection.

We thus demonstrate the feasibility of bacterial growth detection using the cumu-
lative distribution function. The detection of bacterial growth is statistically confirmed
by comparing the cumulative distribution functions of the calibration phase to the point
at which the bacterial growth is detected. Admittedly, this scheme is only able to detect
whether a bacterial colony has grown beyond a threshold and is not able to follow the
actual exponential growth curve of the bacterial colony.

These setups prove the possibility of introducing microcalorimetric measurements on
microfluidic chips in thermally fluctuating environments. They may find use as tabletop
microfluidic systems for more accessible microcalorimetric measurements of samples in
microfluidic chips. Furthermore, these results give an additional insight in the possibility of
using heat flux sensors in thermally not-stabilized environments such as implant surfaces.
Further investigations should emulate in vivo environments and investigate the feasibility
of surface-covering infection detection on implants, for example via a mesh of sensors
on the implant [20]. We show that by applying the differential compensation scheme,
the heat flux signal removes the influence of the thermal background fluctuations in the
environment around the area of interest. The smaller size of the sensor could allow for
integration, for example, in the vascular graft implant wall material, and could open the
way to bacterial growth detection directly at the vascular graft implant surface.
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Abstract: In the pursuit of refining the fabrication of three-dimensional (3D) microelectrode arrays
(MEAs), this study investigates the application of ultrasonic vibrations in template-assisted electrode-
position. This was driven by the need to overcome limitations in the deposition rate and the height
uniformity of microstructures developed using conventional electrodeposition methods, particularly
in the field of in vitro electrophysiological investigations. This study employs a template-assisted
electrodeposition approach coupled with ultrasonic vibrations to enhance the deposition process. The
method involves utilizing a polymeric hard mask to define the shape of electrodeposited microstruc-
tures (i.e., micro-pillars). The results show that the integration of ultrasonic vibrations significantly
increases the deposition rate by up to 5 times and substantially improves the uniformity in 3D
MEAs. The key conclusion drawn is that ultrasonic-enhanced template-assisted electrodeposition
emerges as a powerful technique and enables the development of 3D MEAs at a higher rate and
with a superior uniformity. This advancement holds promising implications for the precision of
selective electrodeposition applications and signifies a significant stride in developing micro- and
nanofabrication methodologies for biomedical applications.

Keywords: electrodeposition; MEA; uniformity; three-dimensional; template assisted; deposition rate

1. Introduction

Microelectrode arrays (MEAs) are powerful tools for studying the electrical activity
in cells and tissues and consist of electrodes that record or stimulate electrical activity
in vitro. Three-dimensional (3D) MEAs have become increasingly popular, as they provide
a larger surface area for cell–electrode interactions and can capture more physiologically
relevant data [1–4]. These MEAs are essential in various fields, particularly neuroscience
and neuro-engineering, and serve as the foundation for groundbreaking technologies
like brain–computer interfaces (BCIs). The efficacy of an MEA hinges on its sampling
capabilities, which are determined by the electrode density and its capacity to precisely
target specific regions of interest [5]. Although current fabrication techniques have made
significant strides in enhancing the recording density, primarily through advancements
in micro-electromechanical system (MEMS) fabrication methods [6–8], there are inherent
limitations to existing technologies. Silicon-based arrays, for instance, have a limited volu-
metric electrode density and lack customization options. Similarly, alternative fabrication
approaches such as bead stacking, 3D printing, and direct laser writing techniques provide
options for individual shank customization and allow reproducibility; however, these
techniques lack scalability in production and cost-effectiveness [9–13].

The forthcoming generation of electrophysiological recording tools must transcend
these limitations and allow for the customization of probes to the specific study [14].
Historically, MEA fabrication methods have mirrored trends in the semiconductor industry,
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transitioning from micro-wires to lithography [15–17]. However, the emergence of template-
assisted electrodeposition techniques presents a promising new avenue for the development
of 3D MEAs with customizable shank heights and array topographies. Template-assisted
electrodeposition utilizes a polymeric hard mask as a template to define the shape of the
electrodeposited microstructures [18–21]. More recently, the development of multi-depth
probing 3D MEAs with customizable microelectrode heights has been reported using
the template-assisted electrodeposition technique [22]. Electrodeposited gold electrodes
have a higher surface roughness compared to the electrodes developed using physical
vapor deposition methods; this surface roughness translates to a larger electrochemically
active area at the cell–electrode interface, promoting interactions between the cell and the
electrode [4]. The cell–electrode adhesion could be improved further by functionalizing the
electrode surface with adhesion promoters as a post-processing step [23].

The development of advanced 3D MEAs requires high electrodeposition rates to en-
able rapid prototyping and remain cost-effective, while the uniformity of the thickness of
the electrodeposited microstructures plays a critical role in defining the array topography;
however, conventional processes, particularly template-assisted electrode processes, suffer
from low deposition rates due to localized depletion of ions in the electroplating solution,
leading to a non-uniform deposition. The use of ultrasonic baths, which accelerate chemical
reactions within liquid media using high-frequency pressure waves, appears to be very
promising for overcoming the limitations of the conventional electrodeposition process.
These baths are widely used in various industrial and laboratory applications, such as
cleaning, degreasing, and electroplating [24,25]. In recent years, ultrasonic baths have also
been proposed as a potential solution for accelerating the electrodeposition process, which
is often limited by its low deposition rate. When an ultrasonic bath is used for electrodepo-
sition, the sound waves create microscopic cavitation bubbles in the liquid medium. These
bubbles are subjected to intense pressure and temperature changes, forming highly reactive
sites on their surface. These sites can then act as catalysts, accelerating the electrodeposition
process [26,27]. The potential applications of ultrasonic baths in electrodeposition are
numerous. Ultrasonic baths could be used to produce gold microstructures with a high
accuracy and uniformity. Additionally, using ultrasonic baths can reduce the cost of the
electrodeposition process by increasing the deposition rate without needing an additional
catalytic agent. While the effect of ultrasonic agitation on electrodeposition has been ex-
tensively studied for two-dimensional (2D) structures, its influence on template-assisted
electrodeposition of 3D microstructures remains largely unexplored [28–33].

In this work, we investigate the influence of ultrasonic vibrations on the deposition
rate and uniformity of microelectrode arrays developed using template-assisted electrode-
position. Various characterization techniques, including scanning electron microscopy,
optical profilometry, and X-ray diffraction analysis (XRD), are used to assess the quality of
the fabricated structures. A mechanical shear strength testing tool is utilized to test the ad-
hesion strength of the electrodeposited micro-pillars with the planar substrate. The results
of this study provide a deeper insight into the optimization of ultrasonic parameters for
template-assisted electrodeposition, leading to an improved 3D MEA prototyping process.
This study could also have broader implications for using ultrasonic agitation in other
electrodeposition techniques for micro- and nanofabrication.

2. Materials and Methods

2.1. Materials

An additive-free electroplating solution (AUROLYTE CN200, Atotech Deutschland
GmbH & Co. KG, Berlin, Germany) was chosen for the electrodeposition experiments.
Three types of planar MEAs arranged in a hexagonal pattern (as described in [22]) were
used for the experiments: (S1) consisting of 60 electrodes with a diameter of 65 μm and a
pitch of 265 μm, of which 21 were connected to a custom routing for electrodeposition; (S2)
consisting of 60 electrodes with a diameter of 65 μm and a pitch of 265 μm, of which 41 were
connected to a custom routing for electrodeposition; and (S3) consisting of 60 electrodes
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with a diameter of 35 μm and a pitch of 195 μm, of which 44 were connected to a custom
routing for electrodeposition. A thick negative-type photoresist (KMPR-1035, Kayaku
Advanced Materials, Inc., Westborough, MA, USA) was utilized for template fabrication.
An ultrasonic bath (Sonorex Digitec DT 514 BH-RC, BANDELIN electronic GmbH & Co.
KG, Berlin, Germany) operating at a peak power of 640 W at 35 kHz was utilized for
the experiments. The galvanostat used for these experiments was assembled in-house.
Remover PG (Kayaku Advanced Materials, Inc., Westborough, MA, USA) was used to strip
the photoresist template after completion of the electrodeposition process.

2.2. Template Development

Custom planar MEAs were designed and developed for this study, and the design and
fabrication protocols are described in detail in Appendix B. The planar MEAs were first
coated with a 110 μm-thick layer of KMPR photoresist. This was achieved by using a spin
coater operating at 1000 rpm. This was followed by a 30 min soft-bake at a temperature of
100 ◦C. UV exposure was performed using an i-line mask aligner (KARL SÜSS MA6, SÜSS
MICROTEC SE, Garching, Germany) to define the custom pattern on the photoresist. The
photoresist was subjected to a post-exposure bake at 100 ◦C for a span of 6 min. This step
was crucial to complete the curing reaction of the exposed regions. The final step was to
develop the photoresist using the SU-8 developer solution supplied by MicroChemicals
GmbH, Ulm, Germany. This 20 min process required a shaker plate for mild agitation for
assistance. This process resulted in an array of 110 μm deep, 65 μm diameter cylindrical
holes strategically aligned over the planar electrodes for S1- and S2-type MEAs, while the
S3 MEA had cylindrical cavities with an internal diameter of 35 μm and a height of 110 μm.

2.3. Experimental Setup

All of the electrodeposition experiments were set up inside an ultrasonic bath with a
temperature maintained at 55 ◦C, as illustrated in Figure 1. The electroplating solution bath
was conditioned for 1 h before initiating gold electrodeposition for each experiment. The
experiments were conducted in four phases. Experiment 1: Electrodeposition of gold MEAs
with a high current density (i.e., 8 mA/cm2) for 1 h (H1) and various operational modes
of the ultrasonic bath (i.e., no sonication mode (NS), pulsed sonication (PS) mode with a
duty cycle of 50%, and continuous sonication (CS) mode) to investigate the influence of
the ultrasonic bath operation mode on the deposition rate and electrode height uniformity
across the array, as illustrated in Figure 1.

Figure 1. Schematic representation of the experimental setup including the various operational
modes of the ultrasonic bath, i.e., NSED (electrodeposition without the ultrasonic vibrations), PSED
(electrodeposition with ultrasonic vibrations in pulsed mode with a duty cycle of 50%), and CSED
(electrodeposition with continuous ultrasonic vibrations).
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Experiment 2 (L1): This was a repeat of Experiment 1 with a lower current density
(4 mA/cm2) to determine the influence of the deposition current density on the deposition
rate and the uniformity of the electrode height. Experiment 3: The best electrodeposition
parameters were selected from the previous experiments (i.e., CS-L1, based on the optimal
deposition rate and the highest uniformity). In this case, the tests were repeated for longer
durations of 2 and 3 h (i.e., CS-L2 and CS-L3, respectively) to verify the consistency of
the process. Finally, a fourth experiment was conducted to verify the scalability of the
process for the deposition of high-density (HD) MEAs for long durations. For the first two
experiments, the S1 MEAs with 21 active electrodes were subjected to template-assisted
electrodeposition for 1 h. For the third experiment, the S2 MEAs with 41 active electrodes
were subjected to template-assisted electrodeposition for 2 and 3 h, and the experiment
was repeated to ensure reproducibility. S3 MEAs were used in the fourth experiment by
subjecting them to template-assisted electrodeposition for 4 h. The experimental details are
tabulated in Table 1.

Table 1. Design of experiments. List of experiments performed under various conditions.

Sample Name MEA Type
No. of Active

Electrodes
Electrode

Diameter (μm)

Deposition
Current
Density

(mA/cm2)

Electrodeposition
Duration
(Minutes)

Ultrasonic
Bath Mode *

Experiment 1
NS-H1 S1 21 65 8 60 NS
PS-H1 S1 21 65 8 60 PS
CS-H1 S1 21 65 8 60 CS

Experiment 2
NS-L1 S1 21 65 4 60 NS
PS-L1 S1 21 65 4 60 PS
CS-L1 S1 21 65 4 60 CS

Experiment 3

CS-L2 S2 41 65 4 120 CS
CS-L3 S2 41 65 4 180 CS

CS-L2 r ** S2 41 65 4 120 CS
CS-L3 r S2 41 65 4 180 CS

Experiment 4 CS-L4 (HD) S3 44 65 4 240 CS

* Ultrasonic bath modes: NS—ultrasonic vibrations OFF, PS—ultrasonic vibrations ON in pulsed mode, and
CS—ultrasonic vibrations ON continuously. ** Repeated.

2.4. Analysis

A scanning electron microscope (SEM) was utilized to assess the process yield (defined
as the number of electrodeposited micro-pillars divided by the number of electrodes sub-
jected to electrodeposition for each MEA), and in order to determine the electrodeposition
rate and uniformity, a two-step process was employed. First, an optical profilometer was
used to measure the height of the electrodeposited micro-pillars, which were subjected to
electrodeposition for one hour. To evaluate the height uniformity of the electrodeposited
micro-pillars, the heights of multiple micro-pillars sourced from different regions of the
MEA were analyzed comparatively.

To evaluate the mechanical, or more specifically, the shear strength, of the electrode-
posited micro-pillars, a destructive die shear strength test was performed using the Condor
Ez Pull&Shear test tool from XYZtec, as shown in Figure 2a.

For each experimental condition from the first experiment, five micro-pillars randomly
selected from each MEA were subjected to a shear test at room temperature. A shear
tool, moving at a constant velocity of 2 μm/s, was placed in contact with the side of the
micro-pillar until fracture or split occurred, as illustrated in Figure 2b. To obtain a valid
measure of the adhesion strength at the pillar–substrate interface, it was ensured that failure
occurred at the pillar–substrate interface by placing the shear tool 1 μm above the substrate
surface. The maximum force applied by the tool at the point of failure was recorded for all
five measurements. From the mean maximum shear force and its standard deviation, the
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maximum shear strength τmax was calculated from the maximum shear force Fmax using
the following equation:

Fmax = τmax · A (1)

where A is the cross-sectional area of the pillar, obtained from the measured pillar diameter.

Figure 2. Illustration of the shear test setup. (a) Initial position of the contact tool, (b) final position of
the contact tool.

In order to evaluate the influence of ultrasonic vibrations on the morphological charac-
teristics of the electrodeposited gold microstructures, three separate samples were prepared.
Square (17 × 17 mm2) glass wafer pieces coated with 5 nm chromium (Cr) and 200 nm
gold (Au) deposited via the thermal evaporation technique were utilized as substrates for
this experiment. The substrates were masked with 70 μm-thick Kapton tape consisting
of a circular opening with a diameter of 6 mm. The masked substrates were subjected to
electrodeposition using the parameters from the first experiment. The first substrate was
subjected to electrodeposition for 1 h in the absence of ultrasonic vibrations, i.e., NSED. The
second substrate was subjected to electrodeposition with an ultrasonic bath operating in
pulsed sonication mode for one hour, i.e., PSED. Finally, the third substrate was subjected to
1 h of electrodeposition under continuous sonication mode, i.e., CSED, as shown in Figure 3.
The influence of ultrasonic vibrations on the morphology of the electrodeposited gold films
was determined by measuring the surface roughness using atomic force microscopy (AFM;
PX, NT-MDT SI, Moscow, Russia).

Figure 3. Schematic representation for preparation of the samples for the structural and morphological
characterizations.
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The evaluation of the influence of ultrasonic vibrations on the structural (crystal phase)
characteristics of the electrodeposited structures was carried out via X-ray diffraction (XRD)
on the NSED, PSED, and CSED samples and the substrate with the seed layer using a
high-resolution XRD instrument (ITALSTRUCTURES APD2000, Austin AI, Austin, TX,
USA). The average grain size D was determined via XRD for multiple crystallographic
planes, including (111), (311), (220), and (200), via Scherrer’s equation:

D = K·λ/(β·cos(θ)) (2)

where the Scherrer constant K is typically taken as 0.94 [34], λ = 1.5418 Å is the wavelength
of the Cu Kalpha radiation employed for the XRD, β is the full-width at half-maximum
(FWHM) of the measured peak in radians, and theta is the Bragg angle at which the
peak occurs.

3. Results and Discussions

3.1. Deposition Rate and Uniformity

The deposition rate and uniformity are critical attributes in the template-assisted
electrodeposition process, and they play a pivotal role in determining the quality of the
micro-pillars. An optical profilometer was utilized to measure the height of the elec-
trodeposited micro-pillars across each array to derive the deposition rate and assess the
uniformity of the height of the electrodeposited micro-pillars. In the first experiment, the S1
MEAs were subjected to electrodeposition for 1 h with a high current density of 8 mA/cm2

(H1) under different operational modes of the ultrasonic bath. The MEA subjected to
electrodeposition without ultrasonic vibrations (i.e., NS-H1) showed a deposition rate of
0.10 μm/min and a percentage standard deviation of 35.8%. This indicates a low deposition
rate compared to standard electrodeposition without the use of a template under similar
experimental conditions (i.e., ~0.45 μm/min) and a considerable variation in micro-pillar
heights across the array, revealing a lack of uniformity. The MEA subjected to electrodepo-
sition with pulsed ultrasonic vibrations (i.e., PS-H1) showed an improved deposition rate
of 0.24 μm/min. The percentage standard deviation decreased to 16.19%, suggesting an
improved uniformity compared to NS-H1. Finally, the MEA subjected to electrodeposition
with continuous ultrasonic vibrations (i.e., CS-H1) demonstrated the highest deposition
rate of 0.55 μm/min. It also showed a further decrease in the percentage standard deviation
to 13.52%, implying more consistency in micro-pillar heights and an enhanced uniformity.
The normalized height distributions of electrodeposited microstructures (micro-pillars) for
each sample from individual experiments are plotted in the bar graphs in Appendix A.

In the second experiment, the S1 MEAs were subjected to electrodeposition for 1 h with
a lower current density of 4 mA/cm2 (L1) under different operational modes of the ultrasonic
bath. The MEA subjected to electrodeposition without ultrasonic vibrations (i.e., NS-L1)
showed a deposition rate of 0.06 μm/min proportional to NS-H1 and a percentage standard
deviation of 14.77%, indicating a considerable improvement in the uniformity. The MEA
subjected to electrodeposition with pulsed ultrasonic vibrations (i.e., PS-L1) showed an
improved deposition rate of 0.13 μm/min compared to NS-L1. However, the experiment
revealed a slight increase in the percentage standard deviation (i.e., 16.15%) with respect to
NS-L1. Finally, the MEA subjected to electrodeposition with continuous ultrasonic vibrations
and lower deposition current (i.e., CS-L1) showed a deposition rate of 0.24 μm/min and also
a further decrease in the percentage standard deviation to 9.63%, indicating more consistency
in the micro-pillar heights, and therefore an improved uniformity.

The first experiment clearly indicated that the use of ultrasonic vibrations significantly
increases the deposition rate and improves uniformity. A higher deposition rate is always a
desirable parameter; however, uniformity is an essential parameter for developing MEAs.
The second experiment demonstrated a reduction in the deposition rate compared to the
first experiment but this was proportional to the applied deposition current density in all
three cases, as shown in Figure 4a. The CS-L1 showed the lowest percentage standard
deviation, indicating the highest uniformity compared to all the other samples from the
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first and second experiments, as shown in Figure 4b. Based on these results, continu-
ous sonication with a low current density was chosen as the optimal combination for
further investigations.

Figure 4. Bar graphs comparing the deposition rate and the percentage mean standard deviation
across the height of the electrodeposited micro-pillar array (as a measure of uniformity) for the
various experiments. (a) Comparison of the deposition rate of the different microelectrode arrays
(MEAs) from the first (H1) and the second (L1) experiment. (b) Comparison of the percentage mean
standard deviation in the thickness of 21 electrodeposited micro-pillars for each MEA in the first
and second experiment. (c) Comparison of the deposition rate of the various microelectrode arrays
(MEAs) from the second (CS-L1), third (CS-L2, CS-L3, CS-L2 r, and CS-L3 r), and fourth (CS-L4 (HD))
experiments. (d) Percentage mean standard deviation pertaining to each sample from the second
(CS-L1), third (CS-L2, CS-L3, CS-L2 r, and CS-L3 r), and fourth (CS-L4 (HD)) experiments.

In the third experiment, S2 MEAs consisting of 41 active electrodes were subject to
template-assisted electrodeposition for 2 and 3 h using continuous sonication with a low
current density (i.e., CS-L2 and C3-L3, respectively). The third experiment was repeated
to ensure reproducibility (i.e., CS-L2 r and C3-L3 r). Both CS-L2 and the CS-L3 have
comparable but slightly lower deposition rates (CS-L3 having the lowest deposition rate)
compared to the CS-L1 experiment, and the trend was confirmed when the experiment
was repeated, i.e., CS-L2 r and C3-L3 r, as shown in Figure 4c. This decrease in the
deposition rate during the longer deposition is likely due to the depletion in gold ions in
the electroplating solution, However, this is mere speculation based on the experimental
setup; further investigations are warranted to fully understand this observation. On the
other hand, the percentage standard deviation decreased to as low as 2.13% for the CS-L3
experiment as the duration of the electrodeposition increased, as shown in Figure 4d.

Finally, the fourth experiment was conducted by subjecting an HD MEA (S3) to
template-assisted electrodeposition for 4 h (i.e., CS-L4 (HD)) with continuous ultrasonic
vibrations and a current density of 4 mA/cm2. The experiment led to a deposition rate
of 0.24 μm/min, consistent with the previous experiments, as shown in Figure 4c. The
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experiment resulted in the lowest standard deviation of 1.76%, indicating a very high
uniformity, as shown in Figure 4d.

These observations suggest that employing ultrasonic assistance, especially in contin-
uous mode, substantially boosts the deposition rates in template-assisted electrodeposition.
Moreover, the lower deposition current density significantly enhances the uniformity in the
electrode height across the array, as shown in Figure 5. The empty circular sites within the
images in Figure 5 are the planar electrodes that were not subjected to electrodeposition.
All the MEAs subjected to electrodeposition demonstrated a 100% deposition yield (i.e., the
number of electrodeposited micro-pillars divided by the number of electrodes subjected
to electrodeposition). The data for the micro-pillar heights are available in Spreadsheet
S2 in the Supplementary Materials. This finding may provide a crucial strategy for opti-
mizing the deposition parameters when precise control over micro-pillar dimensions and
uniformity is desired.

Figure 5. SEM images of the MEAs. (a) CS-L2 with a tilt of 10 degrees (scale: 500 μm). (b) CS-L3 with
a tilt of 10 degrees (scale: 500 μm). (c) CS-L4 (HD) with a tilt of 25 degrees (scale: 200 μm).

3.2. Mechanical Strength

The mechanical strength of the electrodeposited micro-pillars was a crucial parameter
evaluated in this study to investigate the influence of ultrasonic vibrations on the shear
strength of the electrodeposited micro-pillars. To this end, a destructive shear stress test
was employed to determine the maximum shear force the micro-pillars could endure before
failure, as shown in Figure 2. The three MEAs (five micro-pillars from each MEA) from the
first experiment and the HD MEA from the fourth experiment were subjected to this test.

For the NS-H1 MEA, the maximum shear force was recorded at 0.610 N with a
percentage standard deviation of 6.58%. The PS-H1 MEA displayed a slightly higher
resistance, having a maximum shear force of 0.707 N and a lower percentage standard
deviation of 3.57%, suggesting a marginally superior and more consistent shear strength
compared to NS-H1. The CS-H1 MEA documented a mean maximum shear force similar
to NS-H1, at 0.636 N, but with a decreased percentage standard deviation of 3.38%, hinting
at a more uniform shear strength under this process.

The CS-L4 (HD) MEA registered a substantially lower shear force resistance at 0.158 N
with a percentage standard deviation of 3.62%. However, it is imperative to note that
the cross-sectional area of the micro-pillars from the CS-L4 (HD) MEA was 3.5 times
smaller than the micro-pillars from the other three methods. As shear strength is directly
proportional to the cross-sectional area, the seemingly weaker shear strength in the CS-L4
(HD) MEA is not an indication of a poor shear resistance but a consequence of a smaller
cross-sectional area. Adjusting for the reduced cross-sectional area, the actual shear strength
(τmax) of the CS-L4 (HD) MEA is similar to the CS-H1 MEA, as shown in Figure 6a. This
observation suggests that the reduced current density in continuous ultrasonic bath-assisted
electrodeposition with a lower deposition rate does not necessarily undermine the shear
strength. The findings from this research highlight the impact of ultrasonic agitation
and the current density on shear strength, having potential implications for the design
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of electrodeposition processes for gold microstructures that require strong resistance to
shear forces on the substrate. The data pertaining to the shear strength measurements are
presented in Table S1 of the Supplementary Materials. Figure 6b shows an optical image
of the shear strength measurement setup with the contact tool at the initial measurement
position for the CS-L4 (HD) MEA.

 
Figure 6. Shear strength analysis. (a) Bar chart presenting the average (n = 5) of the maximum shear
strength τmax faced by the micro-pillars before failure for each MEA subjected to the test. (b) A
microscopic image of the CS-L4 (HD) MEA undergoing the shear test with the contact tool at the
initial position.

3.3. Structural and Morphological Analysis

Figure 7 shows the Y-stacked plot of the XRD spectra for the three electrodeposited
gold samples (i.e., NSED, PSED, and CSED) and the substrate with the gold seed layer
(substrate) deposited via the thermal evaporation technique. As expected, the seed layer
has a crystalline structure with a single peak at 38.2◦ (i.e., the (111) plane). In the case of the
electrodeposited samples, strong peaks were observed in the (111) plane, and weaker peaks
were observed in the (311), (220), and (200) planes, indicating a polycrystalline structure.
No significant shift in the 2theta locations in the XRD spectra was observed for the various
electrodeposited gold samples. As shown in Table 2, the full width at half maximum
(FWHM) of the (111), (311), (220), and (200) planes is highest for the NSED sample and
lowest for the PSED sample, indicating a lower surface roughness and average gain size
compared to the PSED and CSED samples, which could also be observed in the AFM
images in Figure 8.

Figure 7. Measured XRD patterns of the electrodeposited gold (without template) under different
ultrasonic vibration modes and the thermally evaporated gold seed layer (i.e., substrate).
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Table 2. Full width at half maximum (FWHM) of 111, 311, 220, and 200 peaks of electrodeposited
gold.

Sample
(111) 1 (311) (220) (200) Average Grain

Size (nm)FWHM FWHM FWHM FWHM

Substrate 0.20524 - - - 40.96
NSED 0.15433 0.25735 0.21134 0.23835 43.63
PSED 0.14565 0.2244 0.1736 0.23286 48.51
CSED 0.14751 0.23751 0.18359 0.2303 47.01

1 Crystallographic plane.

  
(a) (b) (c) 

Figure 8. AFM 3D image and average surface roughness (Sa) of (a) NSED, (b) PSED, and (c) CSED.

3.4. Implications for 3D MEAs

These results demonstrate that ultrasonic-bath-assisted electrodeposition, especially
under continuous operation (CSED and LC-CSED), significantly improves the performance
of template-assisted electrodeposition. This could allow for the fabrication of higher quality
3D MEAs, as it leads to a higher deposition rate, improved uniformity, and an enhanced
adhesion strength of gold micro-pillars. The findings could also guide the optimization
of ultrasonic parameters in electrodeposition processes, advancing the field of micro-
and nanofabrication. Our results highlight the promising potential of ultrasonic-bath-
assisted electrodeposition for fabricating 3D MEAs. Future research can further validate
these findings by exploring other factors that influence the electrodeposition process and
optimizing them for superior MEA performance.

4. Conclusions

This research explored the impact of ultrasonic vibrations on template-assisted elec-
trodeposition of gold micro-pillars for the development of 3D MEAs intended for in vitro
electrophysiological investigations. This study found that continuous ultrasonic-bath-
assisted electrodeposition, at both high and low deposition current densities, significantly
enhanced the deposition rate and improved the thickness/height uniformity of the micro-
pillars across the array, specifically for template-assisted electrodeposition processes. Along
with the application of continuous ultrasonic vibrations, the deposition time and current
density also play a crucial role in improving uniformity. The direct relationship between the
current density and the grain size is well established. However, the observed relationship
between the electrodeposition duration and uniformity presents an interesting opportunity
for further investigation. The investigation outcomes are crucial in understanding how
to optimize the use of ultrasonic baths in template-assisted electrodeposition, thereby
improving the fabrication of 3D MEAs. These results therefore significantly contribute to
the advancement of micro- and nanofabrication. These findings could serve as a valuable
guide for optimizing the parameters of ultrasonic-bath-assisted electrodeposition.

While the study’s results offer exciting possibilities for ultrasonic-assisted electrodepo-
sition, further investigations are warranted. These could include investigations of different
materials for electrodeposition, alternative ultrasonic setups, and a wider range of ul-
trasonic parameters. Also, further investigations of how these findings translate into
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real-world applications in biomedical devices and MEMSs would be beneficial. The re-
search outcomes, nevertheless, offer promising avenues to explore and optimize ultrasonic-
assisted electrodeposition methods for the fabrication of 3D MEAs, bringing us a step closer
to achieving high-performance biomedical interfaces.
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Appendix A. Normalized Height Distributions of Electrodeposited Micro-Pillars for

Each Experiment

Figure A1. Normalized height distribution of electrodes/micro-pillars for each MEA from Experi-
ment 1. The bar graph clearly indicates that the use of ultrasonic vibrations during electrodeposition
(i.e., PS-H1 and CS-H1) significantly improves the uniformity in the height distribution of the
micro-pillars compared to the MEA subjected to electrodeposition without ultrasonic vibrations
(i.e., NS-H1).
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Figure A2. Normalized height distribution of electrodes/micro-pillars for each MEA from Experiment
2. The bar graph indicates that using the lower current density for electrodeposition leads to a slight
improvement in the uniformity even without the use of ultrasonic vibrations (i.e., NS-L1), and the
use of ultrasonic vibrations further enhances the uniformity (i.e., PS-L1 and CS-L1).

Figure A3. Normalized height distribution of electrodes/micro-pillars for each MEA from Experiment
3. The bar graph indicates that the longer electrodeposition durations with the use of continuous
ultrasonic vibrations also contribute to an enhancement in uniformity.
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Figure A4. Normalized height distribution of electrodes/micro-pillars for each MEA from Experiment
3 (repeated). The bar graph confirms the trends observed in Figure A3 when the experiment was
repeated, demonstrating the reliability and reproducibility of the process.

Figure A5. Normalized height distribution of electrodes/micro-pillars for each MEA from Experiment
4. The experiment was conducted to check the scalability (in terms of higher aspect ratios of the
micro-pillars/template) of the process using a high-density MEA subjected to ultrasonic-vibration-
assisted electrodeposition for a long duration (i.e., CS-L4 (HD)). The bar graph demonstrates the
scalability of the process.
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Appendix B. Design, Layout, and Fabrication of MEA Substrates

Figure A6. Design and layout of the S3 MEA substrate. The layout consists of three layers: M1 defines
the layout of the MEA consisting of 60 channels (inside the scribe line), the scribe line (red dashed),
and the external routing (outside the periphery of the scribe line) to support electrodeposition. The
second layer (M2) defines the device passivation, and the third layer (M3) is designed to define the
template for electrodeposition.

In Figure A6, the layout for the S3 MEA substrate is presented. The initial mask
(M1), designed as a light-field mask, transfers the chip layout onto the wafer’s metal layer.
This chip layout encompasses a planar 60-electrode MEA (10 × 10 mm2, including the
dashed scribe line) and a tailored routing configuration along the MEA chip’s periphery
to facilitate electrodeposition. The planar electrodes, each with a 40 μm diameter, are
arranged in a hexagonal layout with a pitch of 195 μm, optimizing internal routing be-
tween electrodes and contact pads. Notably, 44 of the 60 contact pads are connected to
the external metal ring through custom routing, which is the working electrode during
electrodeposition experiments.

The second mask (M2), designed as a dark-field mask, is required for creating openings
in the passivation layer over the electrodes (circular openings with a 35 μm diameter) and
contact pads. On the other hand, the third mask (M3), designed as a light-field mask, is
tailored to establish a mold for the electrodeposition of gold micro-pillars on the top of the
planar electrodes. This is achieved by creating cylindrical holes in the photoresist.

Figure A7 presents a detailed process for the fabrication of the MEA substrates. The
planar MEA substrates were fabricated in a class 1000 cleanroom, employing polished
borosilicate glass wafers sourced from MicroChemicals GmbH, Ulm, Germany, as the
substrate (Figure A7a). To begin the process, a Cr/Au layer, with a 10/200 nm thickness,
was deposited onto the pristine glass wafer using an ultralow vacuum (ULVAC) metal
evaporator (Figure A7b). The wafer underwent priming through an HMDS (Hexamethyl-
disilazane, MicroChemicals GmbH, Ulm, Germany) process at 150 ◦C, succeeded by the
application of a positive-tone photoresist (AZ® 1518 from MicroChemicals GmbH, Ulm,
Germany) through spin coating (Figure A7c), followed by a pre-exposure bake at 100 ◦C.

The pattern from mask M1 (Figure A7d) was transferred to the photoresist using an
i-line mask aligner setup, followed by a standard post-exposure bake and a subsequent
photoresist development step (Figure A7e). Further, the pattern transfer from the photore-
sist to the metal layers involved wet chemical etching of gold and chrome. Subsequently,
the photoresist was removed using acetone (Figure A7f), followed by a deionized (DI)
rinse and a drying cycle. The Cr/Au-patterned wafer was sintered at 200 ◦C for 60 min.
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Following gold sintering, a 200 nm-thick passivation layer of SiO2 was deposited using the
plasma-enhanced chemical vapor deposition (PECVD) technique (Figure A7g).

Figure A7. Fabrication of MEA substrates utilized for the study. (a) Substrate, (b) Cr/Au layer
deposited thermally over the substrate. (c) Application of photoresist over the Cr/Au layer.
(d) A bright-field photolithography mask is aligned over the wafer stack to pattern the photoresist
through UV radiation. (e) Patterned photoresist. (f) Photoresist pattern transferred to the Cr/Au
layer through wet chemical etching. (g) Deposition of a passivation layer over the patterned substrate.
(h) Photoresist layer coated over the passivated substrate stack. (i) A dark-field photolithography
mask aligned over the substrate stack to pattern the photoresist. (j) Patterned photoresist. (k) Pho-
toresist pattern transferred to the passivation layer through reactive ion etching, yielding partially
passivated planar device architecture. (l) A negative tone photoresist (KMPR) coated over the MEA
substrate. (m) A bright-field photolithography mask aligned over the substrate stack to pattern the
photoresist through UV radiation. (n) Planar MEA consisting of the photoresist template.

The wafer was subject to another lithography process using the second mask (M2)
to define the pattern on the photoresist, following a similar process as described earlier
(Figure A7h–i). The pattern transfer from the photoresist to the passivation layer was
executed through a dry etching technique (AW-903ER Plasma Etch RIE, Allwin21 Corp.,
Morgan Hill, CA, USA), followed by a resist stripping process. The photoresist was stripped
(Figure A7j–k), and the wafer was prepared for the final lithography process.

Finally, to fabricate the template for electrodeposition, the wafer with planar MEAs
was first coated with a 110 μm-thick layer of chemically amplified negative photoresist
(KMPR-1035, Kayaku Advanced Materials, Inc., Westborough, MA, USA), followed by a
30 min soft-bake at 100 ◦C (Figure A7l). The photoresist was then exposed to UV light
through the third mask (M3) using an i-line mask aligner setup (Figure A7m). Further
post-exposure baking was performed at 100 ◦C for 6 min to cure the exposed area of
the photoresist completely. The photoresist was then developed using SU-8 developer
solution for 20 min, assisted by a shaker plate and mild agitation to obtain a template with
110 μm-deep cylindrical holes on top of the planar electrodes (Figure A7n).
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Following the electrodeposition process, it is imperative to highlight that the photore-
sist template, serving as a foundational structure for the 3D MEA, underwent a meticulous
stripping procedure. This is crucial for removing the residual photoresist, leaving behind
the fully realized 3D microelectrode array. Subsequently, the completed 3D MEA was
precisely diced along the predefined scribe line to enhance the practical utility and func-
tionality, as shown in Figure A6. This dicing procedure generated 60 independent channels
by eliminating the traces to the external routing, each equipped to record or stimulate
electrophysiological activity autonomously. It is essential to note that this detailed process
ensures the creation of individualized and functional microelectrode channels, optimiz-
ing the overall performance and versatility of the 3D MEA. Utilizing this precise dicing
method further enhances the adaptability of the 3D MEA for various experimental setups
and applications.

References

1. Choi, J.S.; Lee, H.J.; Rajaraman, S.; Kim, D.H. Recent Advances in Three-Dimensional Microelectrode Array Technologies for in
Vitro and in Vivo Cardiac and Neuronal Interfaces. Biosens. Bioelectron. 2021, 171, 112687. [CrossRef] [PubMed]

2. Lam, D.; Fischer, N.O.; Enright, H.A. Probing Function in 3D Neuronal Cultures: A Survey of 3D Multielectrode Array Advances.
Curr. Opin. Pharmacol. 2021, 60, 255–260. [CrossRef] [PubMed]

3. Jones, I.L.; Livi, P.; Lewandowska, M.K.; Fiscella, M.; Roscic, B.; Hierlemann, A. The Potential of Microelectrode Arrays and
Microelectronics for Biomedical Research and Diagnostics. Anal. Bioanal. Chem. 2011, 399, 2313–2329. [CrossRef] [PubMed]

4. Decker, D.; Hempelmann, R.; Natter, H.; Pirrung, M.; Rabe, H.; Schäfer, K.H.; Saumer, M. 3D Nanostructured Multielectrode
Arrays: Fabrication, Electrochemical Characterization, and Evaluation of Cell–Electrode Adhesion. Adv. Mater. Technol. 2019,
4, 1800436. [CrossRef]

5. Saleh, M.S.; Ritchie, S.M.; Nicholas, M.A.; Gordon, H.L.; Hu, C.; Jahan, S.; Yuan, B.; Bezbaruah, R.; Reddy, J.W.; Ahmed, Z.; et al.
CMU Array: A 3D Nanoprinted, Fully Customizable High-Density Microelectrode Array Platform. Sci. Adv. 2022, 8, eabj4853.
[CrossRef]

6. Berényi, A.; Somogyvári, Z.; Nagy, A.J.; Roux, L.; Long, J.D.; Fujisawa, S.; Stark, E.; Leonardo, A.; Harris, T.D.; Buzsáki, G.
Large-Scale, High-Density (up to 512 Channels) Recording of Local Circuits in Behaving Animals. J. Neurophysiol. 2014, 111,
1132–1149. [CrossRef] [PubMed]

7. Campbell, P.K.; Jones, K.E.; Huber, R.J.; Horch, K.W.; Normann, R.A. A Silicon-Based, Three-Dimensional Neural Interface:
Manufacturing Processes for an Intracortical Electrode Array. IEEE Trans. Biomed. Eng. 1991, 38, 758–768. [CrossRef] [PubMed]

8. Goncalves, S.B.; Peixoto, A.C.; Silva, A.F.; Correia, J.H. Fabrication and Mechanical Characterization of Long and Different
Penetrating Length Neural Microelectrode Arrays. J. Micromechanics Microengineering 2015, 25, 055014. [CrossRef]

9. Soscia, D.A.; Lam, D.; Tooker, A.C.; Enright, H.A.; Triplett, M.; Karande, P.; Peters, S.K.G.; Sales, A.P.; Wheeler, E.K.; Fischer, N.O.
A Flexible 3-Dimensional Microelectrode Array for: In Vitro Brain Models. Lab Chip 2020, 20, 901–911. [CrossRef]

10. Hartmann, J.; Lauria, I.; Bendt, F.; Rütten, S.; Koch, K.; Blaeser, A.; Fritsche, E. Alginate-Laminin Hydrogel Supports Long-Term
Neuronal Activity in 3D Human Induced Pluripotent Stem Cell-Derived Neuronal Networks. Adv. Mater. Interfaces 2023,
10, 2200580. [CrossRef]

11. Bartsch, H.; Baca, M.; Fernekorn, U.; Müller, J.; Schober, A.; Witte, H. Functionalized Thick Film Impedance Sensors for Use in In
Vitro Cell Culture. Biosensors 2018, 8, 37. [CrossRef]

12. Lorenzelli, L.; Spanu, A.; Pedrotti, S.; Tedesco, M.; Martinoia, S. Three-Dimensional Microelectrodes Array Based on Vertically
Stacked Beads for Mapping Neurons’ Electrophysiological Activity. In Proceedings of the 2019 20th International Conference
on Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII, TRANSDUCERS 2019 EUROSENSORS XXXIII, Berlin,
Germany, 23–27 June 2019; pp. 987–990. [CrossRef]
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Abstract: Effective early fire detection is crucial for preventing damage to people and buildings,
especially in fire-prone historic structures. However, due to the infrequent occurrence of fire events
throughout a building’s lifespan, real-world data for training models are often sparse. In this study,
we applied feature representation transfer and instance transfer in the context of early fire detection
using multi-sensor nodes. The goal was to investigate whether training data from a small-scale setup
(source domain) can be used to identify various incipient fire scenarios in their early stages within
a full-scale test room (target domain). In a first step, we employed Linear Discriminant Analysis
(LDA) to create a new feature space solely based on the source domain data and predicted four
different fire types (smoldering wood, smoldering cotton, smoldering cable and candle fire) in the
target domain with a classification rate up to 69% and a Cohen’s Kappa of 0.58. Notably, lower
classification performance was observed for sensor node positions close to the wall in the full-scale
test room. In a second experiment, we applied the TrAdaBoost algorithm as a common instance
transfer technique to adapt the model to the target domain, assuming that sparse information from
the target domain is available. Boosting the data from 1% to 30% was utilized for individual sensor
node positions in the target domain to adapt the model to the target domain. We found that additional
boosting improved the classification performance (average classification rate of 73% and an average
Cohen’s Kappa of 0.63). However, it was noted that excessively boosting the data could lead to
overfitting to a specific sensor node position in the target domain, resulting in a reduction in the
overall classification performance.

Keywords: multi-sensor nodes; early fire detection; gas sensors; transfer learning; electronic nose;
feature fusion; linear discriminant analysis (LDA); classification

1. Introduction

The advantages of multi-sensor approaches to early fire detection over traditional
smoke detectors have been extensively discussed in the previous literature [1–3]. The main
advantages are improved coverage of the detection area [4], a shorter detection time [5–7],
more accurate detection (improved sensitivity to real fires) [8–11] and a reduction in the
false alarm rate [12,13].

In addition to the temporal and robustness aspects of early fire detection, the ability to
differentiate between different types of fire scenarios can provide additional information to
laypersons or first responders during alarms [14]. This can support effective identification
and intervention, especially in the early stages of ongoing incipient fires where combustion
products are barely visible [15].

Previous research has demonstrated the effectiveness of employing multi-sensor ap-
proaches to distinguish various fire materials based on their unique “odor prints” [16–18].
However, these studies faced limitations in their training and validation datasets. Some
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were confined to a single room setting [19], while others were constrained to a binary
output (fire/no fire) when utilizing data from different environments [20,21].

Generally, fire events are infrequent occurrences throughout a building’s lifespan.
The scarcity of real event data poses challenges and necessitates reliance on data obtained
from experimental setups or simulations [22]. However, conducting such (large-scale)
experiments is expensive, and the availability of large-scale test rooms is very limited [21].
Given these constrains, there is an urgent need to investigate the effective transfer of data
from small-scale laboratory setups to real room applications.

In this work, we address the research question (RQ) of whether multi-sensor data
generated in a small-scale laboratory setup can be used to identify various incipient fire
scenarios in a large-scale room setup.

To our knowledge, existing transfer learning methodologies have not been employed
in the field of early fire detection using multi-sensor nodes. Furthermore, it remains
uncertain whether, in general, the differentiation of various incipient fire scenarios during
their initial stages is achievable based on multi-sensor data.

In this study, we employed two primary methodologies from the transfer learning
research domain. We leveraged both feature representation transfer and instance transfer in
order to identify different incipient fire scenarios in a real EN54 standard test room, relying
solely on training data generated in a small-scale laboratory setup. Subsequently, we
assessed the classifier’s performance at various sensor node positions within a large-scale
test room.

The novelty of this work lies in its approach to distinguish between various incipient
fire scenarios in their initial phases using solely training data from a small-scale setup.
Prior research has typically been confined to a single experimental setup for both model
construction and testing, or it has been restricted to binary model prediction (fire/no fire),
simplifying the classification problem and incurring high data generation costs. This study
addresses two primary limitations in the existing literature. Firstly, we present a compre-
hensive workflow for cost-effective data acquisition and model development in the field of
early fire detection employing multi-sensor nodes. Secondly, we apply this workflow to a
multi-classification problem, for which we differentiate between four distinct fire scenarios
in their earliest stages. Previous work has predominantly focused on simpler binary clas-
sification problems and more advanced fire scenarios where detection is generally more
straightforward. The proposed approach provides valuable additional information about
the nature of an ongoing incipient fire event, enabling first responders or firefighters to
make more informed decisions, such as formulating intervention recommendations or
enhancing situational awareness.

2. Related Work

Prior research has explored various methodologies for fire detection and identification
using multi-sensor data.

Solórzano et al. [21] achieved a classification rate of approximately 68% using training
and test data from normative test fires conducted in a standard EN-54 test room. The authors
stated that the classification rate could be increased to 96% by incorporating additional training
and test data from laboratory experiments. In their recent publication [20], Solórzano et al.
corroborated these findings, reporting a classification rate ranging from 52% to 70% (or 88%
with additional training and test data generated in a small-scale setup).

However, in both studies, the model output was confined to a binary prediction
(fire/no fire), leading to a significantly simpler classification problem compared to our
study. Additionally, the test data consistently encompassed data from the same room
environment that had already been utilized for training the model.

Other studies, as summarized in [3], were also primarily constrained to a binary
decision problem (fire/no fire) and/or confined to a single experimental environment.

Milke et al. [23] defined hard rules utilizing a sensor array comprising temperature,
light obscuration, CO2, MOX and O2 sensors in order to distinguish between “flaming fire”,
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“smoldering fire” and “nuisance”. The authors attained a classification rate of 90% and
could enhance the classification rate up to 97% by employing a three-layer neural network
as the model instead of hard rules. However, the training and test data were derived from
experiments conducted in the same test room.

Ni et al. [24] constructed a classification model to categorize various wire insula-
tion materials (PVC, Teflon, Kapton and silicone rubber) based on the volatiles released
during electrical overload. The authors employed dimension reduction (PCA) and a
K-NN classifier as the classification model and achieved a classification rate of up to 82%
for four different classes. However, the training and test data were derived from the same
experimental setup using the leave-one-out method.

Experiments in prior studies primarily utilized standard test fires, resulting in consid-
erably higher emissions and, consequently, clearer sensor signals. In contrast, our study
encompasses the initial phases of ongoing incipient fires within the experimental setup.
Moreover, previous studies often focused on binary or ternary classification problems, with
Ni et al. [24] being a notable exception. Another limitation in previous research is the
generation of training and test data within the same experimental environment, which
poses a constraint for real-world applications. The novelty of our work lies in utilizing data
from two distinct experimental environments.

2.1. Early Fire Indicators

Previous studies have employed various combinations of multi-sensor measurements
for early fire detection. Solórzano et al. [20] utilized hydrogen (H2), methane (CH4),
nitrogen oxides (NOx) and volatile organic compounds (VOCs) in a multi-sensor array.
The authors emphasized the significance of CO and VOCs as early fire indicators due to
their substantial emissions during incipient fire scenarios such as smoldering fires. Nazir
et al. [25] corroborated these findings by including air temperature, humidity, CO2 and
ammonia (NH3) in their study.

Krüger et al. [26] and Hayashi et al. [27] identified substantial releases of H2 during
the smoldering process of various polymeric materials commonly present in households
such as wood, PUR foam and PE. The authors concluded that H2 can serve as an early fire
indicator that precedes the substantial emissions of CO and smoke.

Gutmacher et al. [28] corroborated these findings, emphasizing that CO and H2 are
the most crucial gases for detecting the early stages of smoldering fires.

In our previous study [29], we validated these observations. We examined partic-
ulate matter (PM), VOCs, CO, CO2, H2, ultraviolet radiation (UV), air temperature and
humidity as early fire indicators during different incipient fires conducted in a standard
EN 54 test room. By varying the distance between the sensor node and the fire source,
we identified five significant early fire indicators: H2, CO, PM0.5 (PM < 0.5 μm), PM1.0
(0.5 μm < PM < 1.0 μm) and VOC.

2.2. Transfer Learning

Weiss et al. [30] emphasized the challenges in obtaining training and test data from
the same domain for real-world machine learning applications, particularly in cases where
data collection is impractical due to high costs or difficulty. This challenge is particularly
relevant in the context of (early) fire detection using multi-sensor nodes, where generating
data in real room setups is prohibitively expensive and the availability of fire test rooms
is extremely limited. The authors emphasize the importance of employing less expensive
training data from a different domain for model building. This concept is known as
transfer learning.

Zhuang et al. [31] defined transfer learning as the enhancement of a target learner
using knowledge from a “[. . .] different but related” [31] source domain. The primary
objective is to decrease reliance on (expensive) data from the target domain.

According to Kim et al. [32], transfer learning aims to learn a target predictive function
fT(·) from pairs {xi, yi} generated in a source domain DS, where xi ∈ X and yi ∈ Y . In the
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subsequent work, the notation provided by Kim et al. [32] given in Table 1 is adopted, with
the index S representing the source domain DS and the index T representing the target
domain DT .

Table 1. Transfer learning definitions and notations for source domain DS and target domain DT

according to Kim et al. [32].

Notation Source Domain DS Notation Target Domain DT Description

DS = {XS, P(XS)} DT = {XT , P(XT)} domain
XS = xS1, . . . , xSn XT = xT1, . . . , xTn feature space
P(XS) P(XT) marginal probability distribution
YS = yS1, . . . , ySn YT = yT1, . . . , yTn label space
fS(·) = P(ySi|xSi) fT(·) = P(yTi|xTi) objective predictive function
TS = {YS, fS(·)} TT = {YT , fT(·)} task

According to Cook et al. [33], a certain relationship must exist between DS and DT
in order to be able to transfer knowledge from DS to DT . In our case, the feature space in
both DS and DT is essentially the same (sensors, and selected sensor measurements are
identical), thus satisfying Equation (1).

XS = XT (1)

However, the scaling and rotation of the feature spaces XS and XT differs slightly due
to the distinct room settings.

In these feature spaces XS and XT , the marginal probability distribution P(X ) is
not equal because the “activity” in DS and DT , respectively, is not exactly the same
(the experiments in DS are downscaled; see Section 3.2). This assumption is given in
the following Equation (2).

P(XS) �= P(XT) (2)

In this work, the label space Y in DS and DT is identical, as we conducted the same
types of fire experiments in both domains (see Section 3.2), as given in Equation (3).

YS = YT (3)

As the objective prediction function f (·) is defined as f (·) = P(y|x) and P(X ) varies
between DS with respect to DT (see Equation (2)), f (·) differs for DS and DT , as shown
in Equation (4).

fS(·) �= fT(·) (4)

This finally results in a different task T to learn, so that

TS �= TT (5)

Cook et al. [33] defined two primary types of transfer learning approaches to address
disparities between DS and DT .

The first approach is feature representation transfer, which aims to mitigate the dif-
ferences between the feature spaces XS and XT . According to Cook et al. [33], feature
representation transfer is typically achieved by mapping both XS and XT to a new feature
space X through functions g : XS → X and f : XT → X . Dimension reduction is a
commonly employed technique in this context [33].

The second transfer learning approach is instance transfer, where a small amount of
data from the target domain is utilized to weight instances from the source domain. Since
this approach works particularly well under the condition of equivalent feature spaces
XS and XT , instance transfer is typically applied after feature representation transfer [33].
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A common method for instance transfer is the TrAdaBoost algorithm proposed by Dai [34],
which has already been employed in combination with an SVM classifier to categorize
atmospheric dust aerosol particles in a transfer learning application [30].

3. Materials and Methods

3.1. Sensor Nodes

We employed muti-sensor nodes for data collection, as illustrated in Figure 1. Each
sensor node was equipped with sensors, including an SPS30, SGP40, SHT4x, CO/MF-1000,
UST6xxx and SCD40, that measured parameters such as PM, VOC, relative air temperature,
air humidity, CO, H2 and CO2.

Figure 1. Sensor node with multiple sensors and data transfer via MQTT to Raspberry Pi.

The sensors on each sensor node were controlled by a microcontroller (ESP32). Com-
munication between the microcontroller and the broker/server (Raspberry Pi) was via
WiFi using the MQTT protocol. The microcontroller sent sensor data in JSON format to the
Raspberry Pi, where a Python script decoded the information and recorded it in an Influx
time series database. The database automatically assigned an unique UTC timestamp to
each measurement vector.

For real-time monitoring during the experiments, a Grafana dashboard was utilized.
Data were exported from the Influx time series database as a CSV file using a Python script.
Each sensor node in the network was equipped with the sensors listed in Table 2.

A consistent sampling rate of one sample per 10 s was maintained throughout all
experiments. This decision was influenced by the characteristics of the sensors in use.
Specifically, the CO/MF-1000 sensor had a T90 response time of approximately 25 s:
capturing 90% of the gas concentration within this time frame [35]. Likewise, the UST6xxx
sensor relied on internal temperature cycles with a 10 s interval for H2 detection [36].
Hence, opting for a sampling rate exceeding one sample per 10 s would not yield any
additional information.

To minimize cross-sensitivity between CH4, CO and alcohol, we selected the UST6xxx
sensor containing the GGS 6530 T gas sensing element. The UST6xxx exhibits nearly no
response to CH4 exposure up to 1000 vppm, and it sustains this characteristic at a heating
temperature of 475 °C [36].
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Table 2. Overview of sensors in each sensor node.

Sensor Manufacturer Measurand Unit

SPS30 Sensirion (Stäfa,
Switzerland) PM cm−3

SGP40 Sensirion VOC A.U.

CO/MF-1000
MEMBRAPOR

(Wallisellen,
Switzerland)

CO ppm

UST6xxx UST (Sydney,
Australia) H2 ppm

SCD40 Sensirion CO2 ppm

UVTRON HAMAMATSU
(Shizuoka, Japan) UV photon #

SHT4x Sensirion Temperature, Relative
air humidity °C, %

3.2. Experiments and Datasets

Following the idea of transfer learning discussed in Section 2.2, we used two experi-
mental setups in order to represent the source domain DS and the target domain DT . The
two setups are exemplarily shown in Figure 2.

Figure 2. Experimental setup in DS (left) and DT (right); 4 different incipient fire experiments:
smoldering wood, smoldering cable, glowing lunts and candle fire.

A (2 × 0.6 × 0.8) m3 test chamber served as the small-scale setup (source domain DS),
and we exposed six sensor nodes to various fire loads using cotton, cable insulation, candle
wax and wood (see Figure 2, left). This experimental setup was used to generate the source
domain dataset (ds_dataset).
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An unventilated standard EN54 test room with dimensions (7 × 10 × 4) m3 was
used as the large-scale setup (target domain DT) to generate the target domain dataset
(dt_dataset). The fire source was positioned in the center of the room. Nine distributed
sensor nodes were placed around the source as shown in Figure 3.

In both domains, four distinct fire types—wood, cable, lunt and candle fires—were
executed. Table 3 provides a summary of the burning material mass, repetitions, stages
and ignition source type. A more comprehensive description of the experiments conducted
in the target domain DT is given in [29].

The experiments conducted in DS represent scaled-down setups of the experiments
performed in DT . For equivalence, we employed identical materials in both domains but
adjusted the mass of the burning material and the combustion process as follows.

To represent the smoldering wood fire, we used small pieces of toothpick. The tooth-
picks were standardized, and the mass of one piece of toothpick was 0.04 g. A DC heating
coil (12 A) was used as the ignition source in order to ensure non-flaming combustion.
The heating coil was a 1 mm-thick constantan wire twisted into a spiral consisting of
15 windings and an inner diameter of 100 mm.

The cable fire was simulated using small pieces (0.04 g) of the same cable insulation
material used in DT . As with the wood scenario, the 12 A DC heating coil was used as the
ignition source.

The lunt fire was scaled down equivalently by using small pieces (0.04 g) of the lunts
used in DT . The ignition source was again the 12 A DC heating coil.

Downscaling of the candle fire was not trivial, as the wax fire produces high flames
even with smaller amounts of wax material. To control the size of the flame, we used small
pieces of cotton that were soaked in wax. The cotton acted as a wick. Its surface size served
as the controlling parameter for the size of the flame.

Figure 3. Sensor node positions in DT ; L0 = ground layer, L1 = height at 2.5 m, L2 = height at 3.8 m,
C1–C5 = chains containing two sensor nodes (one at L1 and one at L2), and SK8–SK16: unique sensor
node IDs.

Table 3. Overview of the experiments carried out in DS and DT .

Domain Scenario Mass Stages Repetitions Material Ignition Source

source

wood 0.04 g 5 4 beech wood heating coil (12A)
cable 0.04 g 5 6 cable isolation 1 heating coil (12A)
lunts 0.04 g 6 4 cotton 2 heating coil (12A)

candles 0.90 g 1 6 cellular cloth 3 lighter

target

wood 30.8 g 1 3 beech wood quartz radiant heater 4

cable 29.99 g 1 3 cable isolation 1 electrical overload 7

lunts 100.20 g 1 3 cotton 2 heating coil 5

candles 47.63 g 1 3 tea lights heating plate 6

1 NHXMH-type; 2 manufacturer: “FehrErlen”; 3 soaked with candle wax (100% paraffin); 4 1200 W, distance
between heater and source = 5 cm; 5 surface temperature = 600 °C; 6 surface temperature = 450 °C; 7 130 A DC.
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As depicted in Figure 2, variations were observed in the temporal increase of sensor
measurements in DS and DT . This aligns with the findings reported by Solórzano et al. [21].

This contrast can be attributed to two primary factors. Firstly, there is a significant
difference in the propagation behavior in DT with respect to DS due to the size of the room
and the ventilation conditions. In DS, the combustion products exhibit nearly uniform
distribution due to static ventilation and the small room size. In contrast, the propagation
behavior in the non-ventilated DT is predominantly influenced by agglomeration and
gravitational settling [29].

Secondly, the combustion undergoes variations over time as a consequence of the
downscaling of the sample size in DS. The sub-processes of the combustion process, includ-
ing heating, release of pyrolysis gases, smoldering and glowing, take place at considerably
shorter time intervals in DS due to the small sample sizes.

We simulated various intensity levels that may occur in DT by accumulating the
combustion products from multiple experimental stages in the test chamber in DS. Conse-
quently, we excluded the temporal component from our data and focused on the absolute
values of the sensor measurements in the transfer learning approach, as described in more
detail in Section 3.3 following.

The resulting datasets, ds_dataset and dt_dataset, underwent a data pre-processing
step to achieve balance by randomly down-sampling to the minority class in order to
avoid implicit class weights. After data balancing, the ds_dataset (training dataset) con-
tained 770 datapoints per class and the dt_dataset (validation and boost dataset) contained
432 datapoints per class and sensor node position.

3.3. Methodology

As proposed by Cook et al. [33], we applied both feature representation transfer and
instance transfer in our study. The aim was to investigate the suitability of these two
methods for classification in early fire detection considering the challenge of limited or
no access to extensive data from large-scale experiments during model development. The
overall workflow of data generation and processing is illustrated in Figure 4.

Figure 4. Methodology workflow; (1) data generation, (2) feature representation transfer using LDA,
(3) instance transfer (weighting of training data) and (4) model building.

3.3.1. Feature Representation Transfer

Linear Discriminant Analysis (LDA) was employed as a supervised dimension re-
duction method in the feature representation transfer step. LDA aimed to extract crucial
information (reduced features) that are most relevant for distinguishing between fire sce-
narios based on data from DS. As outlined in Section 2.1, the original input features for the
LDA comprised CO, H2, VOC and PM (PM0.5 and PM1.0).

Both LDA and the scaler (min–max scaler with bounds [0, 1]) were applied to the data
from DS. The resulting transformation parameters were then utilized to transform the data
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in both DS and DT into the new feature space. Subsequently, the transformed data were
employed to train a support vector machine (SVM) classifier using the transformed data
from DS, and its performance was validated at various sensor node positions in DT .

3.3.2. Instance Transfer

In addition to feature representation transfer, we implemented instance transfer using
the TrAdaBoost algorithm presented in [34]. TrAdaBoost is a supervised domain adaptation
method that utilizes limited data from DT to adjust a pre-trained model to new data:
specifically, the target domain DT in our case [34]. The fundamental concept of TrAdaBoost
is to adapt the knowledge learned from DS and apply it to a slightly different DT , assuming
that labeled data from DT are generally rare.

By definition, this approach requires the availability of limited instances from the
target domain, which are employed to re-weight the training instances from DS.

In practical terms, the target domain data for TrAdaBoost could be sourced from
an actual fire event occurring in DT during the operation of the fire detection system
or from a small number of large-scale experiments. Consequently, this method serves
as a means to adapt the fundamental model trained on laboratory data to real-world
application environments.

The objective of this study was to investigate how the performance of a classifier
trained solely on laboratory data (ds_dataset) can be enhanced by incorporating small
amounts of available data from DT . To achieve this, we utilized from 1% up to 30% of the
dt_dataset to re-weight the source domain instances using TrAdaBoost. Higher proportions
of DT instances were employed to identify overfitting boundaries during the instance
transfer step.

4. Results

This section is structured as follows. First, Section 4.1 presents the performance of the
boosted model independent of the sensor node position in DT . This means that instance
transfer (boosting) was executed using data from the same sensor node position in DT as
utilized for validation.

In Section 4.2, the boosting data were selected from a fixed sensor node position,
and the model’s performance was subsequently validated across all sensor node positions
in DT to identify potential overfitting effects based on the amount of boosting data taken
from a specific sensor node position.

Beyond the performance assessments using various boosting strategies, the model was
validated without any boosting; this served as the baseline for performance. This implies
that only the feature representation transfer described in Section 3.3.1 was performed before
applying the model to the DT data. This baseline performance facilitates the assessment of
performance improvement when employing additional boosting strategies.

The Manhattan distance between the sensor node and the fire source in DT was
employed to arrange different sensor node positions along the x-axis.

To enable performance comparisons across different models, the classification rate
(average accuracy) was used as our primary performance metric. According to [37], the
average accuracy for a multi-class classification problem is defined as shown in Equation (6).

∑l
i=1

tpi+tni
tpi+ f ni+ f pi+tni

l
(6)

Since we considered a balanced dataset for model validation, the classification rate is
a suitable performance measure [37].

To compare the performance of the baseline model (non-boosted, only trained on
ds_dataset) with a model that randomly assigns labels based on the given class dis-
tribution, we utilized Cohen’s κ as an additional performance metric, as suggested by
Artstein et al. [38]. Cohen’s κ is a scaled value in the range of [−1, 1] that evaluates the
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model’s classification accuracy against the accuracy achieved by random label assignment
according to a specified class distribution [38].

4.1. Classification Performance Independent of the Node Position

Table 4 shows the results of the baseline model only trained on the ds_dataset in terms
of precision, recall, F1 score, classification rate and Cohen’s κ.

Table 4. Precision, recall, F1 score, classification rate and Cohen’s κ for non-boosted model based on
test sensor node position.

Test
Sensor
Node

Manhattan
Distance

[m]
Boost Precision Recall F1 Score

Classific.
Rate

(Accuracy)
Cohen’s κ

08 3.0 no boost 0.74 0.68 0.69 0.69 0.58
09 4.3 no boost 0.69 0.64 0.65 0.66 0.53
10 7.8 no boost 0.69 0.64 0.65 0.66 0.54
11 6.5 no boost 0.67 0.56 0.58 0.58 0.43
12 10.5 no boost 0.68 0.60 0.62 0.61 0.47
13 8.5 no boost 0.60 0.51 0.52 0.53 0.36
14 7.5 no boost 0.66 0.56 0.58 0.58 0.42
15 7.8 no boost 0.71 0.64 0.66 0.66 0.53
16 6.5 no boost 0.69 0.63 0.64 0.64 0.51

The baseline model exhibits its lowest performance at sensor node positions close to the
wall—specifically, at sensor node 13 (global minimum, classification rate of 53%) and sensor
node 14 (local minimum, classification rate of 58%)—in the dt_dataset, as shown in Table 4.
This implies that the most significant difference between our laboratory setup (DS) and DT
occurs at positions close to the wall in DT.

The Cohen’s κ ranges from 0.36 (minimum at test sensor node 13) up to 0.58 (maximum
at test sensor node position 08). According to Landis et al. [39], this can be categorized as
“fair” (0.2 ≤ κ ≤ 0.4) to “moderate” (0.4 ≤ κ ≤ 0.6) model performance.

To adapt the model derived from DS, additional model boosting was performed.
Initially, boosting was performed assuming knowledge about the distance between the
sensor node and the fire source in DT .

Figure 5 shows the classification rate as a function of the sensor node position used for
boosting and testing. The different lines represent the amount of data used for boosting
(1% to 30%) from the test position in DT . The “no_boost” line represents the classification
performance of the baseline model.

It can be seen from Figure 5 that the classification rate of the non-boosted baseline
model ranges from a global minimum (classification rate of 53% at sensor node position 13)
up to a global maximum at sensor node position 08 (classification rate of 69%; see also
Table 4). There is a continuous decrease in the classification rate from the lowest Manhattan
distance of 3.0 m (sensor node position 08) to a Manhattan distance of 7.5 m (sensor node
position 14). The classification rate then reaches a local minimum of 58% at sensor node
position 14. A local maximum with a 66% classification rate can be observed at sensor
node positions 10 and 15. Moving to the next-higher Manhattan distance (sensor node
position 13), the classification rate reaches a global minimum of 53%. Sensor node position
12 (highest Manhattan distance to the source) shows a classification rate of 61%, which is
3% more than the local minimum at sensor node position 14.

Looking at the different boosting curves (0.01 to 0.3) in Figure 5, it is evident that
additional information from DT used for model boosting cannot completely offset the local
minima in the classification rate at sensor node positions 13 and 14 close to the wall. The
previously described trend in the classification rate remains essentially the same. However,
differences in the classification rate between different sensor node positions (except for
sensor nodes 13 and 14 close to the wall) can be mitigated by using additional boosting,
particularly for boost amounts up to 5%. Although higher boost amounts (from 10% to 30%)
lead to a global maximum of the classification rate (sensor node position 09, 20% boosting
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data), the differences in the classification rates between different sensor node positions
increase compared to boost amounts of around 5%.

Figure 5. Classification rate using instance weighting (boosting) based on test position.

Nevertheless, the differences between the sensor node positions (except for the po-
sitions close to the wall) are increasingly compensated for by additional boosting. This
implies that the model trained only based on DS can be adapted to a new environment
with small amounts of available data from DT .

Figure 6 following illustrates the model’s performance for sensor node position 8 in
DT for the non-boosted model (left) and the boosted model (boosted with 5% of the data
from sensor node 8).

Figure 6. Comparison of confusion matrices for non-boosted case (left) and boosted case (right) for
sensor node position 8 in DT .

It can be seen from Figure 6 that the baseline model only trained on data from DS
primarily misclassifies between the candle scenario and the wood scenario. This misclassifi-
cation can be attributed to the experimental procedure. In DS, we employed small pieces of
cellular cloth soaked with candle wax to represent the candle wax fire in a small-scale test.
However, when the wax was fully burned, the cellular cloth (wick) started to glow and
smolder at the end of each experiment. Since this combustion process closely resembles
the glowing process of wood, it likely led lead to misclassification between the wood and
candle fires.
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Comparing the wick size to the mass of wax in DS and DT , the ratio is considerably
higher in DS than in DT . As discussed in Section 3.2, scaling down a wax fire is challenging.
To regulate the flame size of the wax fire, we had to use a much higher ratio of wick volume
to wax volume. The volume of the wick compared to the volume of the burning wax was
negligible in DT . Consequently, fewer smoldering or glowing artifacts were observed in
the dt_dataset than in the ds_dataset, resulting in the aforementioned misclassification.

This misclassification was evident at other test sensor node positions in DT .
Figure 6 (right) illustrates that the misclassification can be minimized by employing
additional boosting.

Table 5 provides an overview of the average model performance across all sensor node
positions in DT , represented by the mean classification rate and the mean Cohen’s κ for
different boosting scenarios (ranging from no boosting to 30% boosting data).

Table 5. Mean classification rate and mean Cohen’s κ for different boosting strategies (dynamic boost).

Boost Mean Classification Rate Mean Cohen’s κ

no_boost 0.62 0.49
0.01 0.71 0.61
0.02 0.78 0.70
0.03 0.84 0.78
0.04 0.85 0.80
0.05 0.87 0.83
0.10 0.87 0.83
0.20 0.84 0.78
0.30 0.82 0.75

bold: maximum mean classification rate and Cohen’s κ for dynamic boosting.

It can be seen from Table 5 that the mean model performance (mean classification
rate and mean Cohen’s κ) generally improves with model boosting. The model perfor-
mance increases with an increasing amount of boosting data and reaches its maximum
(87% mean classification rate and a mean Cohen’s κ of 0.83) at 5% (up to 10%) of boosting
data. The Cohen’s κ ranges from 0.49 (“moderate”) up to 0.83 (“perfect”) according to
Landis et al. [39].

As the amount of boosting data increases, the average model performance decreases, al-
though it remains higher than the model performance without boosting. This phenomenon
has already been discussed based on Figure 5. Even though higher amounts of boosting
data lead to global maxima for the classification rate, the difference in the classification rate
increases, causing the mean classification rate to decrease.

In summary, we found higher classification rates with boosting compared to the no-
boost baseline model. The sensor node positions close to the wall show a local minimum
of the classification rate regardless of the model used (no boost vs. different amounts of
boosting data).

4.2. Classification Performance Dependent of the Sensor Node Position

The results presented in Section 4.1 represent an optimal boosting scenario with respect
to the distance between the sensor node and the fire source. The data used for boosting were
derived from the same sensor node position used for testing without utilizing the validation
data already employed for boosting from the dt_dataset. However, in a real-world application,
the distance between the sensor node and the fire source will be unknown. To investigate this
scenario, we utilized boosting data from one fixed sensor node position and evaluated the
model performance across all sensor node positions. The results are shown in Figure 7.

The red line in Figure 7 represents the baseline model performance without model
boosting. The sub-figures are labeled based on the sensor node position used for boosting.
We utilized the same amount of boosting data as in Section 4.1 (1% to 30%).

We observed that the global maximum of the classification rate was reached when
the test sensor node position and the sensor node position used for boosting were the
same (e.g., see sub-figure “sensornode0009” at the Manhattan distance of sensor node posi-
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tion 09 in Figure 7). However, it can be seen from Figure 7 that the model performance at
test sensor node positions different from the boosting sensor node achieves higher classifi-
cation rates compared to the baseline model (no boosting). This holds true for boosting
data amounts up to 5%, while higher amounts of boosting data from a particular sensor
node position lead to overfitting to the boosting sensor node position. This effect is visi-
ble in Figure 7 when the classification rate of the boosted model falls below the baseline
classification rate.

Another observation from Figure 7 is that there is still a local minimum in the classifi-
cation rate at sensor node positions 13 and 14 (positions close to the wall). However the
difference between DS and DT can be compensated for (see sub-figures “sensornode0013”
and “sensornode0014” in Figure 7) if data from these sensor node positions are used for
model boosting.

Table 6 shows the mean classification rates and the mean Cohen’s κ values over all
sensor node positions used for testing and boosting as a function of the amount of boosting
data (0–30%).

Table 6. Mean classification rate and Cohen’s κ for different boosting strategies (static boost).

Boost Classification Rate Cohen’s κ

no_boost 0.62 0.49
0.01 0.67 0.56
0.02 0.69 0.58
0.03 0.71 0.61
0.04 0.72 0.62
0.05 0.73 0.63
0.10 0.71 0.61
0.20 0.67 0.56
0.30 0.64 0.51

bold: maximum mean classification rate and Cohen’s κ for static boosting.

Figure 7. Classification rate using instance weighting (boosting) and random sensor node positions.
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It is essential to emphasize that the mean performance measure represents the static
boost scenario (boosting data were taken from only one sensor node position in DT , and
the model was then tested on all sensor node positions in DT).

Table 6 indicates that the mean classification rate, as well as the mean Cohen’s κ, is
significantly higher when using additional boosting compared to the cases without any
boosting (no_boost). Furthermore, it can be observed that the performance increases with
the amount of boosting data used, up to the maximum performance at 5%.

At higher amounts of boosting data, the average performance decreases again due to
increased overfitting to individual sensor node positions. At 30% boosting, the average
performance in terms of mean classification rate and mean Cohen’s κ is comparable to the
average performance without boosting.

5. Discussion

As highlighted by Burgués et al. [40], a common challenge in machine-learning-based
prediction lies in the limitations of examples available in the training data.

In this study, we considered four different incipient fire scenarios that have been
identified as the main initial fire sources in historic and cultural buildings in Germany [41].
However, the model’s predictive accuracy may be compromised in the presence of different
or additional burning materials (or superpositions of different materials) that have not been
accounted for in this study.

Nevertheless, our research demonstrates the feasibility of classifying various incipient
fire scenarios using multi-sensor training data from a small-scale setup. This opens up the
possibility of generating cost-effective and extensive data for other burning materials that
encompass different combustion conditions and/or superpositions with different nuisance
scenarios (such as deodorant, dust, etc.).

Burgués et al. [40] also highlighted the model’s limitation to a specific range of
tested (in their case, odor) concentrations. In our study, we focused on early phases of
incipient fires, which are primarily characterized by the combustion process and the masses
of burning material relative to the room volume. From our current results, we cannot
extrapolate the model performance to more advanced stages of the conducted fire scenarios.
Different combustion conditions result in the distinct release of combustion products over
time. However, the experimental setup presented for DS enables the generation of data for
these diverse combustion conditions, including those of more advanced courses of various
fire scenarios.

Another consideration is that we did not include test positions where the sensor node
is positioned very close to the fire source in DT . This might lead to significantly different
sensor signals due to sensor override. In such cases, deterioration in model performance
would be expected.

We found that the baseline model trained only on DS data tends to misclassify between
the candle and the wood fire scenarios. As discussed in Section 4.1, this misclassification can
be attributed to the experimental setup used for the candle fire in DS. In further experiments,
it would be advisable to alter the wick material to a non-combustible substance to minimize
glow and smolder effects. Alternatively, stopping the experiment before complete wax
combustion could prevent glow and smolder artifacts in the data. In the small-scale setup
(DS), we used a fan to transport combustion products from the combustion chamber
into the test chamber where the sensor nodes were located. The uncertainty regarding
when combustion products from the smoldering wick entered the test chamber makes it
challenging to remove these artifacts from the ds_dataset afterward.

When comparing the classification performance of our study with previous research,
it is noteworthy that our non-boosted model already achieves comparable results (classifi-
cation rate up to 69%) compared to studies such as Solórzano et al. [20] (52% to 70%). With
additional boosting, the model performance can be further increased up to 87%: yielding
results comparable to [20] with additional laboratory data (88%) or only slightly lower
performance than in [23] (90%). It is essential to recognize that, unlike previous research,
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we addressed a four-class classification problem and employed two distinct experimental
settings to generate the test and training data, thereby limiting direct comparisons.

In comparison with a similar classification problem ([24]), our boosted model achieves
an average classification rate that surpasses Ni et al.’s [24] result (82% classification rate)
by 5%. It is important to note that Ni et al. utilized a single experimental setup to generate
the training and test data.

Another limitation to comparing our model’s performance with previous studies
is our consideration of performance across various sensor node positions. It is evident
that positions with lower classification rates will adversely affect the average model per-
formance. The previous literature did not account for position-dependent performance
measures, which hold great relevance in practical applications. Hence, it can be assumed
that the performance comparison of our model with the previous work leans towards the
conservative side.

Drawing from the outcomes presented in this study, we posit that the introduced
approach, which combines transfer learning methods with multi-sensor data, is promising
and highly relevant for the practical application of data-driven models relying on multi-
sensor data. For instance, cost-effective generation of data for various fire materials or
combinations can be accomplished on a small laboratory scale, including overlays with
nuisance variables, to facilitate the early detection of fires in real room environments.

The demonstrated approach can be expanded to diverse application domains. For
instance, investigating outdoor applications such as forest fire detection or air monitoring
in industrial plants is a plausible direction for future investigations. However, outdoor
environments exhibit distinct ventilation conditions, characterized by the formation of
plumes, and a reduced tendency for the accumulation of combustion products. In scenarios
like forest fire detection, combustion products tend to accumulate beneath the canopy or
due to atmospheric inversion, leading to substantial influence of environmental conditions
on the propagation behavior of combustion products.

The misclassification between candles and wood highlights that similar combustion
processes lead to lower classification performance, particularly in the early detection
phase. The classification rate of the non-boosted model (53% to 69%) indicates potential
uncertainty in the classification, which should not be underestimated, especially during
the initial stages of incipient fires. We presume that the classification rate might improve
with more advanced fires that give clearer sensor signals. However, in an application
scenario, an anomaly detector would be connected before the classifier to act as a trigger.
One approach could involve using the time interval between the current classification and
the triggering of the anomaly detector as a measure of the expected information quality
of the classifier.

It is essential to acknowledge that, despite the approach presented in this work,
the individual propagation behavior in the application room significantly influences the
model’s performance. Notably, the model performance experienced a significant reduction
at sensor node positions close to the wall in our study. A classification rate of 53% (sensor
node position 13, non-boosted model) is relatively low even in a four-class classification
problem and may result in misjudgment of the situation in a real application scenario.
Since distance effects have not been considered in the previous literature when calculating
performance measures, there is a pressing need for further research in this area. In general,
a model can only recognize scenarios reliably if the sensor generates reliable input data.
Future work should pay more attention to limitations associated with sensor positioning
and incorporate these limitations into the evaluation process.

6. Conclusions and Outlook

This paper presents the results of employing two transfer learning methodologies—namely,
feature representation transfer and instance transfer—within the context of early fire detection
through multi-sensor nodes. The primary objective (RQ) of this study was to investigate whether
multi-sensor data from a small-scale setup (DS) can be used to classify various incipient fires
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in their early stages within an authentic room setting without the need to generate time- and
cost-intensive data in large-scale setups.

In conclusion, we successfully generated multi-sensor data for four distinct types of
incipient fires in a time- and cost-efficient manner within the small-scale experimental setup
(DS) outlined in this study. The DS data facilitated the extraction of crucial information to
differentiate between various types of incipient fires. Based on this new feature space, a
state-of-the-art classifier (SVM) was trained to classify unseen data from a large-scale setup.

We observed that the baseline model, trained exclusively on the DS data, consistently
demonstrated the ability to classify four different incipient fire scenarios within DT: achieving
a classification rate of up to 69% and a Cohen’s κ of 0.58. However, the model’s performance
is notably influenced by the distance between the sensor node and the fire source. In par-
ticular, we found that sensor node positions close to the wall exhibited lower classification
performance (minimum classification rate of 53% and minimum Cohen’s κ of 0.36).

We identified that the decrease in performance primarily resulted from misclassifica-
tion between the candle and wood scenarios. This misclassification was attributed to the
experimental setup of the candle (wax) fire in DS. In further investigations, we recommend
optimizing the experimental setup to prevent the ds_dataset from acquiring glowing or
smoldering artifacts. Based on our findings, we anticipate that such optimization will
indeed enhance the performance of the baseline model.

Another finding of this study is that the model’s performance can be enhanced through
additional model boosting (instance transfer), which is applicable when there is access to
(small) amounts of real room data. However, it is crucial to keep the amount of boosting data
low to avoid overfitting the model to a particular room situation or sensor node position.
In our study, we determined the optimal amount of boosting data to be approximately
5% of the training instances in DT .

In further research, we aim to extend the ds_dataset to include a broader range of
combustible materials. Additionally, we plan to investigate superpositions of different
combustible materials in DS and DT . This is crucial to investigate, as real-world combustible
objects often consist of mixtures of various materials. Another noteworthy aspect is the
examination of superposition of nuisance scenarios with different fire scenarios, which will
enhance the model’s robustness against side effects such as dust, humidity changes, etc.

To ensure a wider range of applications, future research should involve generating
test data in diverse full-scale environments. This could encompass test rooms with varying
geometries beyond the standard fire test room. Additionally, conducting full-scale outdoor
tests would be valuable for extending the application of this concept to areas such as
wildland fire detection or industrial facilities.

Another aspect to consider is that data processing, including the classification model
presented in this study, is currently executed using the resources of the server (Raspberry Pi).
In future research, we aim to explore the feasibility of conducting data processing directly
on the ESP32. This would enhance the autonomy of the multi-sensor node, potentially
reducing the notification time.
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Abstract: High-energy radiation is known to potentially impact the optical performance of silicon-
based sensors adversely. Nevertheless, a proper characterization and quantification of possible
spectral response degradation effects due to UV stress is technically challenging. On one hand,
typical illumination methods via UV lamps provide a poorly defined energy spectrum. On the other
hand, a standardized measurement methodology is also missing. This work provides an approach
where well-defined energy spectrum UV stress conditions are guaranteed via a customized optical
set up, including a laser driven light source, a monochromator, and a non-solarizing optical fiber.
The test methodology proposed here allows performing a controlled UV stress between 200 nm and
400 nm with well-defined energy conditions and offers a quantitative overview of the impact on the
optical performance in CMOS-based photodiodes, along a wavelength range from 200 to 1100 nm
and 1 nm step. This is of great importance for the characterization and development of new sensors
with a high and stable UV spectral response, as well as for implementation of practical applications
such as UV light sensing and UV-based sterilization.

Keywords: UV sensing; photodiodes; UV degradation; spectral response; UVC; sterilization

1. Introduction

A wide number of the CMOS-based photodetectors in use today have no (or very poor)
sensitivity in the UV spectral range, mainly because the backend layers are absorbing the UV
light. The junction design is also an important factor, but more likely for degradation effects.
Nevertheless, UV light sensing has become in recent years a topic of increasing interest,
due to the surge of a plethora of new technological applications, such as sterilization, UV
spectroscopy, biological analysis, space imaging, UV-based cure processes, and more [1–8].
Although, there are still a few major challenges in the field of UV light sensing. One of these
challenges is regarding the typical low sensitivity to UV light due to the short penetration
depth in Si. This means that most of the photo-generated carriers within the upper atomic
layers in Si cannot be detected because of the strong recombination through the interface
states. Several approaches dealing, for example, with the photodiode dopant profile [9,10]
or the engineering of photodetectors optimizing design and manufacturing processes have
made it possible to reach not only high UV spectral response [11,12] but also to address
the poor stability or spectral response degradation due to exposure to UV light conditions.
Achieving such optical robustness under high-energy UV-light illumination conditions is
certainly the second major challenge in UV light sensing. Such degradation mechanisms
may be explained due to trap generation [13] or changes in the fixed charges and the
interface states at the Si/SiO2 interface above the photodetector, originating from the very
high photon energy (6.2–4.1 eV for wavelengths between 200 and 300 nm). There exists
also a plethora of approaches for the development of UV photodetectors, which include the
usage of compound semiconductors with a wide bandgap such as SiC or ZnO [14,15], usage
of Silicon-in-Insulator (SOI) structures with a shallow surface detection layer [8], the proper
tunning of doping levels to reach high concentration surface layers near the Si surface [16],
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back side illumination structure approaches, or other thin-film or nanostructure-based
approaches [17]. Our more recent research on the development of new UV photodiodes,
using X-FAB’s Semiconductors Foundries XS018 technology, shows a significant spectral
response improvement especially for wavelengths around 260 nm, which is relevant for
applications in sterilization. It also shows a remarkable robustness (<5% degradation)
under UV light stress conditions.

The UV instability of Si-based photodetectors is certainly a very complex phenomenon,
which may depend on several parameters such as irradiance, duration of UV light expo-
sure, radiant exposure, wavelength of the UV radiation, type of photodetector, etc. [18].
Therefore, the robustness of photodetectors must be investigated systematically, with a
reliable measurement methodology which covers a wide range of experimental parameters.
It is important to precisely quantify the spectral response degradation due to UV light
exposure, at any stress wavelength of interest. In addition, it is also very important that
the impact on the optical performance of photodetectors is determined not only at the
wavelength of exposure but also along the entire spectral range where such photodetectors
are expected to be used. It then becomes necessary to count with a reliable, fast, and
standardized measurement methodology which allows us to perform such systematic
characterizations. Due to the lack of a common standard, the present work intends to
propose a systematic measurement methodology for the investigation and quantification of
spectral response degradation due to UV light exposure in CMOS-based photodetectors. It
is also to determine the overall impact on the optical performance of such photodetectors
along the entire spectral range of operation, while maintaining always well-defined energy
conditions for the UV exposure.

2. Materials and Methods

All the photodetectors characterized and presented in this work were fabricated with
X-FAB’s Semiconductors Foundries XS018 technology [19]. Data are shown for photodi-
odes belonging to three different main modules: module A, which offers a good spectral
sensitivity over a broad wavelength range; module B, which provides specially outstanding
spectral response in the human eye response range, with its maximum point of sensitivity
close to the green region; and module C, which is specially dedicated to performing with a
high and stable spectral response in the UV range. Table 1 briefly summarizes the differ-
ent XS018-based photodetectors for which experimental UV stress and spectral response
degradation investigations are shown in this work.

Table 1. X-FAB’s XS018 technology-based photodetectors investigated in this work.

Photodetector Basic Structure Sensitivity Application

doa Module A, DNWell/p-Sub Wide spectral range

dob Module A, DNWell (pinched to
PWell_1)/p-Sub Red and NIR spectral range

doe Module A, NWell/p-Sub Wide spectral range
doeher Module B, NWell/p-Sub Enhanced Visible and NIR
UVC 1 Module C, PWell_2/DNWell/p-Sub Enhanced for UV range

1 This new photodetector is soon to be released as dosuv.

Figure 1 shows a conceptual diagram of most of the devices listed in Table 1. All
photodetectors are fabricated following X-FAB’s XS018 process flow technology. All devices
can be fabricated scalable in size, as well as in arrays of photodiodes. Nevertheless, for
the investigations performed here, all measurements are performed on single devices. For
simplification, all front-end layers which comprise different metallization levels (M2, M3,
etc.) and the passivation layer are not shown in the diagrams. Some of these metallization
levels may be used as a light shield, for example, to avoid photons reaching other regions
instead of the photodiode’s pn-junction active region. All devices are built over a bulk
p-type substrate, where the electrical connection is realized via a p+ implant and a metal
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contact at the M1 level. In the case of the doa device, the pn-junction proper depth is
realized via an NWell plus a DNWell (deep NWell), which can be contacted via an n+
implant and a metal contact at the M1 level. The dob device conforms its pn-junction also
via a DNWell. Although, in this case, the electrical connection is realized via a p+ implant,
once the DNWell is pinched to a PWell_1. On the other hand, the doe and doeher devices
realize the pn-junction only via an NWell, where electrical contact is possible thanks to an
n+ implant and a metal contact at the M1 level. Different from the doe device, the doeher
photodetector possesses a special layer at the back end with special optical properties which
allows precise optimization of the optical performance, especially in the Visible and NIR
spectral ranges. As described in Table 1, the UVC photodetector is realized by a special
structure comprised by two pn-junctions, the PWell_2 to DNWell upper junction and the
DNWell to p-Sub lower junction.

 

Figure 1. Conceptual cross-section diagram of the different CMOS-based photodiodes investigated in
this work. In accordance with the naming shown in Table 1, top-left corresponds to doa, bottom-left
corresponds to dob, top-right corresponds to doe, and bottom-right corresponds to doeher.

2.1. Test Setup

The photocurrent measurements were performed in situ, during illumination UV
conditions, using a Keithley 4200A DC Parameter Analizer (Tektronix, Beaverton, OR,
USA). All measurements have been performed at 27 ◦C (slightly elevated room temperature,
to ensure precise temperature control). Wafers were placed on the chuck of a Summit
200-FA-AP probe station (Form Factor GmbH, Thiendorf, Germany). All photodetectors
were operated with standard specification conditions, with VCathode = 0.9 V, VGuard = 3.3 V
and VAnode = 0.0 V (substrate/bulk/chuck).

2.2. UV Stress Methodology

Conventional artificial UV light sources such as UV lamps were found to be inconve-
nient for UV degradation wafer-level investigations of photodetectors. On the one hand,
the global illumination may affect other light-sensitive test structures and the close electrical
contact via probe-wedge may induce undesired light reflections, when the illumination is
performed in situ. On the other hand, such light sources provide a poorly defined energy
spectrum, making it challenging to define the specific wavelength of illumination and
consequently quantifying at which wavelength (and intensity) the UV stress is applied.
Despite the points mentioned here, in the case of UV lamps, it is always possible to devise a
way to normalize the illumination area and dose onto the photodetector under test. In fact,
in most research investigations about UV degradation, often an intensity value per area
is given, but without a complete spectrum. So, it remains unknown at which wavelength
(and intensity) the UV stress is provided. Due to the typical broadband nature of a UV
lamp as well as variations on the spectral output, a UV lamp does not provide stress at
all wavelengths of the UV spectrum. Other light sources such as UV LEDs could also be
used, but such LEDs provide non-uniform light, which brings other technical challenges
to improve the illumination uniformity. Nevertheless, in this case, the illumination is also
global, which may also induce undesired light reflections.

To perform the optical characterization of the photodetectors and to quantify the
impact on their optical performance due to UV stress, the spectral response is measured
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before and after a specially devised UV stress step. Here, a laser-driven light source (Model
EQ-99X LDLS, Energetiq (Wilmington, MA, USA), a monochromator (Hyperchromator,
Mountain Photonics GmbH, Landsberg am Lech, Germany), and a non-solarizing optical
fiber (Multimode Solarization Resistant Optical Fiber, 0.22 NA, Ø105 μm core, Thorlabs,
Newton, NJ, USA) are used in a customized manner. A reference detector is also used
before or after every wavelength sweep, as indicated in Figure 2. This allows for a precise
estimation of the light power intensity brought via the optical fiber onto the photodetector.
In addition, a second control detector continuously monitors the output at the light source
to counter for possible fluctuations or variations due to aging and other factors. For
every conventional wavelength sweep, a dark current correction is always performed.
The monochromator receives the white light output of the laser-driven light source and
splits the light into every wavelength between 200 nm and 1100 nm (with a smaller step
possible of 1 nm), thanks to a special optical set up which comprises the usage of proper
filters, mirrors, and gratings. This allows bringing, via the non-solarizing fiber, any desired
wavelength only onto the photodetector of interest, avoiding the illumination (or stress) of
other devices as well as undesired light reflections.

Figure 2. General scheme for photocurrent measurements before (A) and after (C) the UV stress
methodology (B). Differently colored lines indicate different stress wavelengths.

The spectral response measurements before (step A) and after (step C) the UV stress
step (step B) correspond to standard monitoring of the photocurrent level as the wavelength
is swept between 1100 nm and 300 nm, with 1 nm steps (2 nm FWHM). Such measurement
before the UV stress (step A) includes a wavelength sweep on a reference calibrated diode
(which allows the determination of the light power intensity) and a subsequent wavelength
sweep on the photodetector of interest (wafer-level).

For the UV stress step (step B), it is ensured that the UV stress methodology is realized
under well-defined energy conditions. The wavelength is fixed at different values between
400 nm and 200 nm, with a step as small as 1 nm (2 nm FWHM). The stress time at each
wavelength is defined in such a way that the exact illumination conditions (fluence rate)
are maintained. It is important to mention that the UV stress is applied locally and is
delimited only by the optical fiber diameter (~105 nm), which means that not the entire
photodetector has been stressed during the illumination. Also, to perform a reliable
UV stress and subsequent quantification of the photodetector’s degradation, the spectral
response measurement after the UV stress (step C) must be performed in a reversed order
with respect to the initial measurement (step A). This means that first, the wavelength
sweep is performed on the photodiode of interest (wafer level), and subsequently, the
wavelength sweep on the reference diode is performed. In this way, it is ensured that the
electrical contact always remains the same during the entire process and that the optical
fiber also does not change its position over the photodetector. These in situ pre/post optical
photocurrent measurements, as well as the UV stress step, are summarized in detail in
Figure 2.
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2.3. UV Stress Methodology Applied on CMOS-Based Photodetectors

As mentioned previously, the UV stress is carried out at pre-defined fixed stressing
wavelengths, between 400 nm and 200 nm (see Figure 3 for some wavelength examples
between 200 nm and 350 nm). At such wavelength values, the photocurrent is monitored
over a specific stress time (tstress = tfinal − tinitial). A dark current correction is also performed
by subtracting the average dark current which is measured for about 10 s (tdark) before
the shutter is opened (without light exposure). The degradation of the spectral response
(shown in % in Figure 3b) is calculated from the variation in photocurrent measured at
the final measurement time (tfinal) and the initial measurement time (tinitial). For all the
photodiodes tested in this work, it is observed that shorter wavelengths (therefore more
photon energetic) have a higher degradation potential. In the device case shown in Figure 3,
such degradation reaches some level of saturation at around 90% close to 200 nm. Also,
for all the photodiodes tested in this work, for wavelengths > 300 nm, there is no evident
spectral response degradation noticed due to UV light stress.

 
(a) (b) 

Figure 3. UV stress methodology for CMOS photodetectors. Data are shown for the case of module A,
doa photodiode: (a) over-time photocurrent monitoring under UV stress, shown for some pre-defined
wavelength values; (b) estimation of the absolute spectral response degradation suffered at each
stressing wavelength. Dotted line serves merely as a guide-to-the-eye to follow the tendency of the
UV degradation behavior.

The light power per area reaching the photodetector varies with the stress wavelength
used, as shown in Figure 4. Also, as shown in Figure 3, different stress levels (and therefore
UV degradation) can be induced at different stress wavelengths. Therefore, to ensure a fair
comparison and evaluation in terms of UV degradation of different photodetectors, as well
as the stress induced at every stressing wavelength, it is necessary to properly control the
dosage of UV light reaching the photodetector at every stress wavelength. The approach
in this work is to expose the photodetectors to a wide range of stress wavelengths while
always maintaining the same light illumination conditions. In this way, no UV wavelength
is favored, and each stress wavelength will induce the same stress over the photodetector.

Therefore, we employ a constant light fluence over the light-exposed surface of the
photodetector. This is known as the fluence rate or radiant exposure and is defined as the
product of the power of the UV electromagnetic radiation incident on a surface per unit
surface area and the duration of the light exposure or simply the product of the effective
light irradiance and the UV stress time [20]. For simplicity, and in accordance with some
experimental measurement requirements, such as reasonable UV stress and measurement
times, in this work, we defined a fluence rate of 3550.24 W·min/m2. Consequently, the ex-
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posure times at every stress wavelength must be adjusted accordingly. Table 2 summarizes
the stress wavelengths used during the UV stress procedure (step B in Figure 2), as well as
their corresponding exposure times. This is also displayed in Figure 4.

Table 2. UV light exposure stress times applied at each stress wavelength.

Stress Wavelength (nm) Exposure Time (s) 1

200 3151.8
210 1197.0
220 637.3
230 322.9
240 170.0
250 112.8
260 93.2
270 84.6
280 84.8
290 82.8
300 74.1
350 48.0

1 This is precisely controlled by an automated optical shutter mechanism.

 
Figure 4. Light power per area dependency on wavelength and determination of UV stress exposure
times for a constant fluence rate of 3550.24 W·min/m2. The colored arrows indicate the corresponding
proper axis of light power per area (black) and time (red).

3. Results and Discussions

3.1. Quantification of Optical Degradation Due to UV Light Exposure

Once an adequate fluence rate is defined, it is then required to re-normalize the
estimations of UV degradation shown in Figure 3 with precise UV exposure times to
guarantee the same UV light exposure conditions at each stress wavelength. The results
of such normalization are shown in Figure 5, considering the case of the doa device
(previously shown in Figure 3), as well as other examples of X-FAB’s photodetectors (doe,
doeher, and UVC) designed for operation in a variety of spectral ranges (see Table 1 for
further details). In general, these results confirm that non-UV photodetectors should not be
exposed to stress wavelengths below 300 nm. Degradation effects become more evident
around 260 nm, growing exponentially as the photo energy increases and reaching almost
a total loss of optical sensitivity at 200 nm. Due to some structural characteristics, some
non-UV photodetectors (see doeher type in Figure 5) appear to be slightly more resistant
to UV light exposure. Nevertheless, these devices also suffer almost a total loss of optical
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sensitivity as the stress wavelength approaches 200 nm. A remarkable highlight is the
robustness of the UV photodetectors under UV stress conditions, where a spectral response
degradation below 5% is observed for the more energetic wavelength applied in this work.
Due to technical limitations, and to ensure good reliability of the experimental results
presented here, 200 nm is the lower limit investigated in this work. For wavelengths below
200 nm, not only the stability of the light source system may be compromised, but also
strong solarization effects are observed in the optical fiber. This is caused by the formation
of absorbing centers due to the intense UV light flux. Therefore, it is no longer possible to
properly bring the light into the photodetectors without avoiding undesired significant
light loss.

 

Figure 5. Quantification of the degradation induced due to UV light exposure, considering stress
wavelength between 400 nm and 200 nm. Data are shown for some representative examples including
photodetectors with a wide range of spectral applications.

3.2. Overall Impact of Optical Performance for an Extended Spectral Range

Once a robust methodology has been laid down to quantify the degradation of sen-
sitivity suffered by CMOS-based photodetectors due to UV stress, it is of great interest
to determine the impact that such degradation has on the overall optical performance
of such devices. Particularly, when such an impact may possibly be irreversible (to the
best of the author’s knowledge, there is no clear evidence that a UV degradation mecha-
nism can be reversed). The undesired or unproper exposure to UV light may adversely
compromise the safe and successful outcome of the specific technological application in
which a silicon-based photodetector may be implemented. Under UV light exposure, the
optical performance of a photodetector is impacted, not only in the UV wavelength range
but certainly in the entire spectral range. This would turn the device unresponsive, even
in specific spectral ranges where such a device is expected to offer its maximum light
sensing capabilities.

Figure 6 shows the example of three photodetectors which were submitted to the
UV stress methodology proposed in Section 2.3 and following the test sequence shown
in Figure 2. Solid data represent conventional wavelength sweep measurements before
UV stress (step A, Figure 2); meanwhile, dotted data represent conventional wavelength
sweep measurements after UV stress (step C, Figure 2). Dashed back data indicate the ideal
spectral response of a photodetector, which would be the ideal case when its quantum
efficiency is equal to one. Each photodetector in Figure 6 was selected to showcase three
main particular cases. The first case corresponds to a non-UV photodiode (doe), which is
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severely affected under UV stress illumination conditions (especially for wavelengths below
260 nm), as shown also in Figure 5. After UV stress, the optical performance of the device
is severely impacted along the entire spectral range measured (1100 nm to 300 nm). The
strongest impact is clearly in the UV range, where a degradation of about 88% is observed.
Note that the UV range for this device corresponds to wavelengths only from 400 nm to
300 nm, once such non-UV photodiodes are not specified to be operated below 300 nm.
Nevertheless, the responsivity of the device is also affected beyond the UV range, about
23% in the Visible range and about 5% in the NIR range. The second case corresponds also
to a non-UV photodiode, which is especially designed to be responsive for the Red and NIR
spectral range (dob). This device is designed to be non-responsive in the UV spectral range.
Therefore, no impact on its optical performance is expected to appear due to UV stress
light illumination, as clearly shown in Figure 6. The third case considered here is a newly
developed UV photodetector (UVC), which shows high UV response down to 200 nm.
This is the lower wavelength operation limit specified for these kinds of photodetectors.
Such devices also show a strong robustness under UV stress conditions, with a maximum
responsivity degradation of 5–6% in the UV spectral range. Such degradation is almost
unnoticeable in the Visible and NIR spectral ranges (below 3% in both cases). For a fair
comparison, it should be noted that the result shown in Figure 6b does not imply that a
photodetector like the dob is more robust to UV light conditions compared to the UVC
photodetector. The low degradation for dob (in %) is because such a device is specially
designed to be unresponsive for wavelengths below ~450 nm. Therefore, the photocurrent
levels and variations before and after UV stress illumination conditions are extremely small
in this case.

 
(a) (b) 

Figure 6. Overall impact on the optical performance of CMOS-based photodetectors due to UV stress
light exposure: (a) Photodetectors responsivity before (solid data) and after (dotted data) UV stress
conditions. Dashed lines correspond to the ideal responsivity (Qeff = 1). (b) Estimation of the spectral
response degradation suffered along different spectral ranges of interest. (*) For the case of the UVC
photodetector the labels for spectral ranges should be read as full spectrum (200–1100 nm) and UV
range (200–400 nm), once the experimental data collection starts at 200 nm instead of 300 nm.

As a further comparison of the improved optical performance shown by the UVC
photodetector, a comparison is made with other previous X-FAB’s technologies such as the
XH018 technology-based UV detector. Figure 7 shows the clear improvement in optical per-
formance in the UV range for the UVC detector (red solid data), in comparison to the XH018
UV detector (blue solid data). Such improvement starts to be more evident below 300 nm,
and especially of interest is the performance around 260 nm, which opens up important
possibilities for applications of UV sterilization. As a comparison, the case of a commer-
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cially available discrete back side illuminated UV photodetector (gray dotted data) is also
shown. Nevertheless, it must be pointed out that such discrete devices are based on a back
side illumination technology, which is very different from the technology approach for the
case of the UVC photodetector, based on X-FAB’s CMOS XS018 technology. Also, the data
for this case (at 25 ◦C) are obtained from available public documentation and such a device
has not been directly measured with the measurement methodology approach proposed in
this work. Therefore, this serves solely as a first general performance comparison.

 
Figure 7. Optical performance in the UV spectral range for the XS018 technology-based UVC
photodetector, in comparison to other X-FAB’s technologies (XH018) as well as other discrete back
side illuminated commercially available photodetectors.

4. Conclusions

As expected, different photodetectors are impacted differently under UV stress illu-
mination conditions, depending on the specific technical application for which they are
designed. This also defines aspects such as photodiode structure, design or layout char-
acteristics and even adequate operation conditions. Therefore, it becomes very important
to develop a robust measurement methodology which allows a reliable characterization
of CMOS-based photodetectors in terms of UV stress and degradation. The work pre-
sented here is the result of several optimization loops in terms of electrical and optical
measurements methodologies which are easily applied to any kind of front-side illuminated
photodetector in a fully automated manner. In the case of the UV photodetectors shown
here, designs and process flavors have been optimized to achieve high spectral responsivity
and robustness under UV light illumination conditions. Compared with X-FAB’s tech-
nologies (XH018) and even other discrete backside illuminated devices, we have observed
a significant spectral response improvement, especially for wavelengths around 260 nm,
which is of great interest for UV-based sterilization applications. Our planned research on
UV light sensing applications continues and will also include the influence of operation
temperature on spectral response degradation performance due to UV stress conditions,
as well as the impact on other important photodetector parameters such as dark current
(leakage current) and capacitance.

5. Patents

Four patents related to UV light sensing are pending to protect the IP provided by
X-FAB regarding the development and realization of silicon-based photodetectors with an
exceptionally high UV spectral response.
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Abstract: Guiding mechanisms are among the most elementary components of MEMS. Usually,
a spring is required to be compliant in only one direction and stiff in all other directions. We
introduce triangular springs with a preset tilting angle. The tilting angle lowers the reaction force
and implements a constant reaction force. We show the influence of the tilting angle on the reaction
force, on the spring stiffness and spring selectivity. Furthermore, we investigate the influence of the
different spring geometry parameters on the spring reaction force. We experimentally show tilted
triangular springs exhibiting constant force reactions in a large deflection range and a comb-drive
actuator guided by tilted triangular springs.

Keywords: micromechanical spring; constant force mechanism; MEMS; electrostatic actuator

1. Introduction

Guiding mechanisms enable translational in-plane displacement of Micro-Electro-
Mechanical Systems (MEMS) and are, therefore, among the most important components
of microsystems technology. In MEMS, linear guiding mechanisms are used in a wide
variety of applications such as in electrostatic actuators [1], or in inertial MEMS to guide
proof masses. Usually, these applications require a guiding mechanism that is compliant in
the displacement direction and stiff in all other directions. For a solid spring, this means
that it should have a low stiffness, kx, in the deflection direction, x (i.e., the slope of the
force–displacement characteristic (FDC)), but high stiffnesses in the orthogonal y-direction
(ky). The ratio of the stiffness can be defined as the selectivity, S, with

S =
ky

kx

∣∣∣∣
y→0

(1)

Guiding mechanisms have many different forms of appearance and geometries. We
give a comprehensive overview of the guiding mechanisms in [2]. The clamped–clamped
beams are among the most common guiding mechanisms [1,3] that fit the requirements
for guiding springs quite well, as their stiffness in the displacement direction, kx, is much
smaller than their stiffness in the direction orthogonal to the displacement, ky. Figure 1a
shows a clamped–clamped beam and its typical non-linear FDC [4]. Consequently, the
mechanical reaction force, Fx, of the clamped beams increases strongly with progressing
displacement. This characteristic is quite unattractive for, e.g., electrostatic actuators.
Serpentine springs have a linear FDC, as shown in Figure 1b; hence the mechanical force,
Fx, increases only slightly during deflection, making the serpentine springs attractive for
electrostatic comb-drive actuation [1,5]. However, serpentine springs only realize a uni-
directional displacement and suffer from a strongly decreasing selectivity with progressing
displacement that results, e.g., in the side instability of comb-drive actuators [1].
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Figure 1. A sketch of the FDC of a (a) clamped–clamped beam, (b) serpentine spring, (c) triangular
spring [2,3].

Springs with an M-shaped geometry have a non-linear and asymmetric FDC [6]. Both
triangular and sinusoidal springs, presented in [2], have a geometry similar to the M-
shaped springs. The triangular springs (Figure 1c) are characterized by a linear FDC, high
selectivity, and a large displacement range. They achieve large deflections without rupture
and can be deflected in both the positive and negative x-directions. The appearance of these
springs is highly variable, since the number of spring segments n, the angle of inclination α

as well as the thickness, t, and the length, L, can be varied. The triangular springs can be
migrated into sinusoidal shaped springs, which reduces the stress peaks that occur in the
spring kinks and limits the maximum deflection of the spring [2].

There are also springs with a constant FDC [7]. The springs realize a constant force
feedback when applying an external force, e.g., a voltage [8,9]. Consequently, the resulting
force is not proportional to the deflection [9]. In the constant force range, the stiffness, kx,
of such springs is ideally 0 N/m. Constant-force springs are either used to maintain the
functionality of sensitive MEMS, which could be affected by fluctuations of the spring
force [10] or for specific applications that require a constant force [11]. A constant force can
be accomplished by complex force feedback systems that control the force by means of an
actuator [12,13]. To generate constant forces in microsystems, electrostatic actuators with
closed-loop feedback control are often used to control the force in MEMS [14]. Alternatively,
the spring itself can be used to generate a constant and displacement-independent force.
Such systems include, for example, buckling beams combined with a linear spring [8,11,15].
Here, the FDC of the negative buckling spring is superimposed with the FDC of the linear
spring. The superposition of both springs results in a displacement independent constant
force reaction [11,16–19].

In this contribution, we present a tilted triangular shaped spring achieving constant
force reactions. Unlike other solutions, the tilted triangular spring does not require a
superimposing of multiple individual reaction forces making it a simple and compact
solution for a linear guidance with a constant force. In Section 2, we present the spring
design and discuss the simulation results. Here, we take a close look at the influence of the
design parameters on the constant force range. In Section 3, we present the experimental
setup and discuss the results obtained by the experiments. In Section 4, we show a comb-
drive actuator displaced by a tilted triangular spring. Section 5 gives a short summary of
this article.

2. Materials and Methods

2.1. Spring Design

The tilted triangular spring is characterized by a tilting angle, β, as shown in Figure 2a.
The properties of this spring are defined by the number of straight elements, n, their length,
L, the thickness, t, depth, d, of the device layer, and the inclination angle, α. Figure 2 also
shows the projected length, Lproj. Based on the results that we achieved in [2], we aim to
achieve symmetrical force-displacement curves. Therefore, we only used springs with an
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even number of beams, i.e., n = 2, 4, 6, . . ., and the length of the first, L1, and the last beam,
Ln, is half the length of the other beams, i.e., L/2. The triangular spring achieves a constant
force reaction with a preset initial tilting angle, β, as an additional degree of freedom. To
realize a translational displacement, we use a symmetric design (Figure 2b). As shown in
Figure 2b, the constant force range (CFR) arises with the progressing displacement of the
spring; consequently, the tilted triangular spring achieves a partially constant spring force.

 

Figure 2. (a) A sketch of the tilted triangular spring with a preset tilting angle, β, (b) displacement of
the tilted triangular spring with a constant force region.

2.2. Simulation Procedure

The springs are simulated by FEM using COMSOL Multiphysics. We simulate a
system with four identical springs with identical design parameters (Figure 3) to guarantee
a translational displacement and to maintain the system stability. The structures are
simulated with respect to the geometric non-linearity.

 
Figure 3. Simulation setup; applied force or displacement (black); resulting values (green).

The springs are displaced in defined steps, Δx, resulting in a change in the mechanical
reaction force of the spring, ΔFx. With

kx =
ΔFx

Δx
(2)

we determine the stiffness, kx, in the displacement direction. In a second simulation, a
constant force, Fy, also acts in the y-direction, resulting in a displacement, y. With

ky =
Fy

y
(3)

we determine the stiffness, ky, of the spring when displaced in the x-direction. The selectiv-
ity, S, of the spring is given by (1) as the quotient of ky and kx.

The design parameters are given in Table 1. To analyze the influence of the tilting
angle on the reaction force, stiffness, and selectivity, we designed triangular springs with
the ability to vary the tilting angle, β, from 0◦ to 8◦ as shown in Figures 4 and 5. To analyze
the correlation between the position of the maximum selectivity, x(Smax), the projected
length, Lproj., and the tilting angle, the tilting and inclination angle, as well as the number
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of beams were varied in Figure 5b. In Figure 6, the influence of the design parameters
was investigated. Therefore, in each diagram, one single parameter was varied and the
influence on the constant force range was analyzed.

Table 1. Parameters of simulated triangular-shaped springs; the varied parameters are in bold.

Analyzed in β α n L t d Analysis of

Figure 4a–c 0–8◦ 20◦ 6 400 μm 5 μm 20 μm

reaction force
Fx,

stiffness kx
and ky

Figure 5a 0–8◦ 20◦ 6 400 μm 5 μm 20 μm selectivity S

Figure 5b 0◦–8◦ 10◦, 20◦, 30◦ 4, 6 400 μm 5 μm 20 μm
correlation
Smax., Lproj.

and β
Figure 6a
standard

spring
7◦ 20◦ 6 400 μm 5 μm 20 μm

constant
force

Figure 6b 0–30◦ 20◦ 6 400 μm 5 μm 20 μm Influence of β
Figure 6c 7◦ 5–30◦ 6 400 μm 5 μm 20 μm Influence of α
Figure 6d 7◦ 20◦ 4–14 400 μm 5 μm 20 μm Influence of n
Figure 6e 7◦ 20◦ 6 100. . .500 μm 5 μm 20 μm Influence of L
Figure 6f 7◦ 20◦ 6 400 μm 3. . .10 μm 20 μm Influence of t

2.3. Simulation Results
2.3.1. Constant Force Range (CFR) and Selectivity

Figure 4a shows the simulated force reaction of a triangular spring for different preset
tilting angles β. For tilting angles from 0◦ to 5◦, the reaction force increases continuously.
For tilting angles of 6◦ and 7◦, the spring exhibits an approximately constant force range.
For the selected geometry, the force reaction shows local maxima and minima for a tilting
angle β = 8◦ or higher.

Figure 4b shows the resulting spring stiffness, kx, in the displacement direction, x. For
the springs with constant force reaction (β = 6◦ and 7◦), the stiffness is approx. 0 N/m in
the CFR. As shown in Figure 4c, the stiffness orthogonal to the displacement, ky, slightly
increases for springs with no or small tilting angles, whereas springs with larger tilting
angles have a slightly decreasing stiffness, ky.

 

Figure 4. (a) Reaction force, Fx, as a function of β, (b) stiffness, kx, as a function of β, (c) stiffness, ky,
as a function of β; simulation results for an exemplary spring with L = 400 μm, t = 5 μm, n = 6 and
α = 20◦.

Figure 5a shows the resulting selectivity, S. Apart from generating a constant force,
tilted triangular springs exhibit a high level of selectivity, as defined by the stiffness ratio
between the y- and x-directions (cf. (1)). With the increase in the tilting angle, the maximum
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selectivity, Smax, increases, too. Consequently, the tilted triangular spring exhibits a selec-
tivity, S, as a function of the tilting angle. Thereby, the position of the maximum selectivity,
x(Smax), shifts towards larger displacements. Springs with a reaction force featuring a local
maximum and minimum do not have a defined maximum of selectivity. The increase in
selectivity is important, e.g., for the lateral instability of the comb-drive actuators. A higher
selectivity allows a higher voltage, USI, to be applied, and thus allows larger displacements
before lateral-side instability occurs. This correlation results from the analytical model for
the displacement of comb-drive actuators that is highly dependent on the selectivity, S, [1].

U2
SI =

b2kx

2ε0εrdne

⎛⎝√2
ky

kx
+

x2
0

b2 − x0

b

⎞⎠ =
b2kx

2ε0εrtne

⎛⎝√2S +
x2

0
b2 − x0

b

⎞⎠ (4)

Here, USI is the voltage when side instability occurs, b is the distance between two
electrodes, ne is the number of electrodes, d is the thickness of the device layer, and x0 is the
initial overlap of electrodes.

Figure 5b shows that the position of maximum selectivity normalized to the projected
spring length, Lproj., depends only on the tilting angle, β, and increases almost linearly
with it. Consequently, a spring with a tilting angle of, e.g., β = 6◦ reaches its maximum
selectivity at a deflection of about 4.5% of its projected length.

 

Figure 5. (a) Selectivity, S, as a function of β; (b) position of maximum selectivity, x(Smax), normalized
to Lproj. depending on the tilting angle, β; simulation results for an exemplary spring with L = 400 μm
and t = 5 μm.

2.3.2. Influence of the Spring Parameter on the Constant Force Range

To better analyze the influence of the different geometry parameters of the tilted
triangular spring on the constant force reaction, we use a standard spring with a force
reaction, as shown in Figure 6a, with a constant force of 50.1 ± 1.5 μN in the range of
100 μm to 250 μm. In Figure 6b–f, we vary a single geometry parameter.

Figure 6b shows the influence of the tilting angle, β, on the constant force. At small
tilting angles (in this case, β = 5◦), no constant force range is achieved, while at larger tilting
angles, the force response decreases slightly (negative stiffness) after reaching a maximum.

Figure 6c shows the influence of the inclination angle, α, which in this case defines the
constant force range at 20◦. If the inclination angle decreases, the reaction force increases
sharply before it drops sharply. For a larger α (here, α = 30◦), the reaction force increases
with increasing deflection without establishing an extended constant force range.

Figure 6d shows the influence of the number of beam segments, n. If the spring
consists of few beam segments, in this case n = 4, there is no constant force; if there are
many beam segments, the reaction force decreases after reaching a maximum.
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Figure 6e shows that springs with long segments have a low reaction force and a large
linear force range. If the segments of the tilted triangular spring are short, in this case
100 μm and 200 μm, respectively, the spring force is higher and the constant force range is
non-existent or very small.

The segment thickness, t, is used to set the level of the reaction force, so that as the
thickness decreases, the reaction force decreases and the constant force range increases, as
shown in Figure 6f.

 

Figure 6. Simulated force–displacement characteristic of (a) a standard spring (L = 400 μm, t = 5 μm,
n = 6, β=7◦ and α = 20◦), when varying (b) the tilting angle, β, (c) the inclination angle, α, (d) the
number of beams, n, (e) the beam length, L, (f) the beam thickness, t.

The optimal design depends on the application and the design of interacting compo-
nents on the chip. The design can be optimized to, e.g., a large constant force range, a very
high or very low constant force, or a spring with a small length or height. An example of
this is as follows: (1) If a large constant force range is required, it is useful to have a long
beam length, L, or thin beam thickness, t. However, large beams require a lot of space, and
the beam thickness can be limited by the quality of the etching process or the thickness of
the device layer. (2) If a constant and high reaction force is required, the tilting angle or
the thickness can be increased. However, a spring with a high tilting angle requires lots of
space. Consequently, the optimal design always depends on the application, other chips’
design properties or the etching processes, and we cannot derive a single expression for an
optimal spring design.

2.4. Fabrication

Based on the simulations conducted, demonstrator springs were designed. In addition
to that, an electrostatic comb-drive actuator was designed to provide the tilted springs with
a constant force.

The chips were manufactured in a dicing-free process for silicon-on-insulator (SOI)
substrates known from [20] using a device layer of 20 μm and a handle layer of 300 μm;
this is shown in Figure 7. First, a 100 nm aluminum layer was sputtered on the device
layer. The aluminum was used for the electrostatic activation of the comb-drive electrodes.
Afterwards, the electrical contacts were patterned by lithography and wet chemical etching,
so that the mechanical structures were not covered with aluminum (Figure 7a). In the next
step, we etched the handle layer by deep reactive ion etching (DRIE) using a SiO2-hard
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mask (Figure 7b). To structure the device layer, we used a hard mask of aluminum nitride
(AlN) and DRIE (Figure 7c). The chips were released from the substrate by hydrofluoric
vapor etching (Figure 7d). Afterwards, the chips were fixed on PCBs. The simulated
thickness of the springs was 5 μm; however, the fabricated thickness was 4.8 μm. Figure 7e
shows a stacking photo of a fabricated chip with the spring demonstrator. Each spring
system consists of a slider with two tilted guiding springs on each side. We provided
the springs with additional force sensors to experimentally determine the force reaction
on-chip. The chips also contain reference force sensors to determine the stiffness of the
force sensors.

 
Figure 7. (a–d) Fabrication flowchart, (e) stacking photo of the fabricated chip.

2.5. Experimental Charcterization Procedure

First, the integrated force sensors were calibrated. Therefore, we could determine the
spring constant, kFS, of the force sensor. Instead of using the springs that were already
connected to the tested device, we used the reference force sensors shown in Figure 7e. The
calibration procedure included the simultaneous measurement of force and displacement
of the force sensor, as illustrated in Figure 8a. The chips were mounted on a piezoelectric
stage (PI Q-545). A tungsten needle was inserted into the input element of the reference
force sensor. This needle was connected to a load cell (Sartorius WZA224-ND) with a
resolution of 0.1 μN. The piezo stage was shifted upwards stepwise in defined increments.
This resulted in an expansion of the force sensor and changed the force reaction measured
by the load cell. Using (2), the spring constants of the reference force sensors were measured
to be 0.2 N/m for force sensor 1 and 0.55 N/m, 1.5 N/m, and 4.6 N/m for force sensors 2,
3, and 4, respectively.
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Figure 8. (a) sketch of the setup for calibrating the force sensor; left-hand-side of the tilted triangular
spring in (b) the initial position, and (c) the displaced spring.

Knowing the spring constant of the force sensor, the triangular springs could be
characterized using the integrated force sensors on the device under test. Therefore, again,
a needle was connected to the input element of the force sensor and a displacement
controlled by a piezo stage was imposed at the spring, as shown in Figure 8b. Both the
deflection of the slider and the extension of the force sensor were measured visually with a
microscope camera. With

FDUT(x) = FFS(x) = kFSx (5)

the force was measured as a function of the spring displacement, which yielded the FDC. A
deflected spring is shown in Figure 8c. Each experiment was repeated three times and the
mean values and a standard deviation were calculated.

3. Experimental Results and Discussion

3.1. Overview of the Results

Table 2 summarizes the parameters of the selected spring designs.

Table 2. Parameters of selected spring designs.

Analyzed
in

β [◦] α [◦] n L [μm] t [μm]
d

[μm]
Fx,konst. (exp.) Fkonst., range (exp.)

Figure 9 0, 2, 4, 6, 7,
8, 10 20 6 400 4.8 20 6.8 ± 0.3 μN (β = 7◦) 97. . .267 μm (β = 7◦)

Figure 10a 0, 8, 9, 10,
11 30 6 400 4.8 20 6.4 ± 1.1 μN (β = 10◦) 105. . .355 μm (β = 10◦)

Figure 10b 7 20 6 400 4.8, 9.4,
14.8, 19.7 20 147.4 ± 1.1 μN

(t = 9.4 μm)
103. . .228 μm
(t = 9.4 μm)

Figure 10c 7 20 6 400, 600 4.8 20 4.1 ± 0.3 μN
(L = 600 μm)

74. . .324 μm
(L = 600 μm)

3.2. Characterization of the Tilted Triangular Springs

We designed triangular springs where the tilting angle varied from 0◦ to 8◦. The
design parameters of the spring are given in Table 2.

Figure 9a shows the experimentally derived reaction force depending on the tilting
angle β. As shown in the simulation results, a constant force appears within the span
of β = 6◦ to β = 8◦. For β = 10◦, and the force reaction curve has a local maximum. The
experimentally derived reaction force (6.8 ± 0.3 μN for β = 7◦) is smaller than the simulated
reaction force, which correlates to the smaller thickness of the fabricated springs (see
Section 2.3). However, the region with the constant force is also larger, e.g., for β = 7◦, the
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CFR starts with a displacement of 97 μm and ends at 267 μm. Figure 9b shows the resulting
spring stiffness for exemplary springs that is close to 0 N/m for the constant force range of
the springs with a tilting angle of 7◦ and 8◦.

Comparing the experimental results with the simulation presented in Figure 4a, the
reaction force is lower, which is attributed to the reduced thickness of the manufactured
structures (t = 4.8 μm (fabrication) instead of t = 5.0 μm (simulation)). This is because the
thickness, t, of the springs has a cubic influence on the reaction force. The manufactured
springs show a lower increase in the reaction force and a smaller influence of the tilting
angle on the constant force range. In Figure 4a, the simulated springs with a tilting angle
of 4◦ and 8◦ do not show a constant force range, while the fabricated springs with these
tilting angles show a constant force behavior in Figure 9a.

 

Figure 9. (a) Experimentally derived FDC of triangular springs when varying the tilting angle β;
(b) resulting stiffness kx (L = 400 μm, t = 4.8 μm, n = 6 and α = 20◦).

As shown in Figure 6c, the inclination angle, α, also influences the reaction force.
In Figure 10a, we show the corresponding experimental results for a spring with an
inclination angle α = 30◦. To generate a constant force, we need a larger tilting angle when
the inclination angle is higher. Figure 10b shows the influence of the spring thickness, t, on
the reaction force. The reaction force increases with increasing thickness. Thereby, the CFR
is becoming smaller. Figure 8c shows that the larger beam segments also achieve larger
constant force regions with a slightly smaller reaction force.

Figure 10. (a) Experimentally derived FDC of triangular springs when varying the tilting angle,
β, (α = 30◦); (b) experimentally shown influence of the spring thickness, t, on the reaction force;
(c) experimentally shown influence of the beam length, L, on the reaction force.

4. Application in Comb Drive Actuators

An application for the presented springs are comb-drive actuators that struggle with
side instability, which means that electrodes guided by the spring escape to the mounted
electrodes, limiting the displacement of the comb-drive actuator (cf. Section 2.3). This
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happens as soon as the first derivate of the electrostatic force with respect to y becomes
larger than the restoring spring constant in the y-direction [1].

We use the spring characterized in Figure 9 with a tilting angle of β = 7◦ to guide an
electrostatic comb-drive actuator. Figure 11a shows a schematic of the setup of the actuator;
Figure 11b shows the voltage-dependent displacement with a relatively large displacement
at low voltage. The maximum displacement is 71 μm at 28 V, and at larger voltages, side
instability occurs. Figure 11c,d show the displacing electrodes.

 

Figure 11. (a) sketch of the actuator setup; (b) experimentally derived voltage-displacement charac-
teristics of a comb-drive actuator guided by the tilted triangular spring presented in Figure 7 (β = 7◦);
comb-drive actuator at (c) 0 V and (d) 28 V.

5. Conclusions

In this contribution, we present tilted triangular springs that achieve a partially con-
stant reaction force using a preset tilting angle, β. Constant force springs are suitable for
mechanisms which control an object with a defined force, as well as for all MEMS in which
a mechanical overload could lead to a functional restriction or destruction of the sensitive
components. Here, we focus on the influence of the different geometry parameters on
the spring reaction force and analyze the spring selectivity based on the tilting angle. An
exemplary spring achieves a constant force of 6.8 ± 0.3 μN in the range of 97 μm to 267 μm.
We show that tilted triangular springs are very well-suited for guiding large displacement
comb-drive actuators due to their high selectivity.
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Abstract: Silicon photonic sensors based on Mach Zehnder Interferometers (MZIs) have applications
spanning from biological and olfactory sensors to temperature and ultrasound sensors. Although a
coherent detection scheme can solve the issues of sensitivity fading and ambiguity in phase direction,
the measured phase remains 2π periodic. This implies that the acquisition frequency should ensure
a phase shift lower than π between each measurement point to prevent 2π phase jumps. Here,
we describe and experimentally characterize two methods based on reference MZIs with lower
sensitivities to alleviate this drawback. These solutions improve the measurement robustness and
allow the lowering of the acquisition frequency. The first method is based on the phase derivative
sign comparison. When a discrepancy is detected, the reference MZI is used to choose whether 2π

should be added or removed from the nominal MZI. It can correct 2π phase jumps regardless of
the sensitivity ratio, so that a single reference MZI can be used to correct multiple nominal MZIs.
This first method relaxes the acquisition frequency requirement by a factor of almost two. However,
it cannot correct phase jumps of 4π, 6π or higher between two measurement points. The second
method is based on the comparison between the measured phase from the nominal MZI and the
phase expected from the reference MZI. It can correct multiple 2π phase jumps but requires at least
one reference MZI per biofunctionalization. It will also constrain the corrected phase to lie in a limited
interval of [−π, +π] around the expected value, and might fail to correct phase shifts above a few
tens of radians depending on the disparity of the nominal sensors responses. Nonetheless, for phase
shift lower than typically 20 radians, this method allows the lowering of the acquisition frequency
almost arbitrarily.

Keywords: silicon photonics; Mach Zehnder interferometers; phase unwrapping; biosensors;
olfactory sensors

1. Introduction

Silicon photonics make it possible to engineer highly sensitive and miniaturized sen-
sors with high yield and high reproducibility. Among the various transduction components
available, such as micro-ring resonators, photonic crystals or Bragg gratings, Mach Zehnder
Interferometers (MZIs) have been widely explored and optimized [1]. MZIs are probably
the easiest to design and manufacture, as they do not necessarily require a feature size
below 300 nm, which is accessible using 248-UV dry lithography. They also exhibit state-of-
the-art performances while only requiring commercially available optoelectronics parts,
such as VCSELs for light source and CMOS imagers for light detection.

The basis of refractive-index-based sensing with integrated MZIs was introduced in
the late 1980s [2] with proofs of concept for gas and biosensors in the early 1990s [3,4]. Since
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then, one of the major improvements was to use a coherent detection scheme to solve the
issues of absolute intensity noise, sensitivity fading near extrema and ambiguity in phase
direction [5,6]. Nowadays, integrated MZI sensors have been applied to a wide range of
applications such as biosensing [7], temperature monitoring [8], gas detection in the ppb
range [9], odor identification in the ppm range [10], ultrasound recording [11], refractive
index sensing [12] down the the 10−8 RIU range and wavelength tracking [13], just to name
a few.

Typically, the measured light intensity is converted into a phase ϕ expressed in radians.
ϕ corresponds to the phase delay difference between the sensing and reference arm and its
value lies in the interval [0, 2π] or [−π, π]. Thus, the signal measured by interferometric
methods is always intrinsically 2π periodic. To track the physical value of interest over
time, also called the sensorgram, ϕ needs first to be unwrapped in order to measure the
accumulated phase Φ(t) which is not bonded to any interval anymore. This phase is finally
converted into another unit through a calibration.

This 2π periodicity imposes a lower limit on the acquisition frequency (Nyquist fre-
quency) to ensure that less than a π phase shift has happened between each measurement
point. Otherwise, the unwrapping function will output an erroneous Φ(t), offset by multi-
ples of 2π (referred to as “2π phase jumps” later in the text). Unfortunately, the minimum
acquisition frequency is proportional to the sensor sensitivity and can reach tens of Hz
for gas sensing, especially with highly concentrated samples. This implies relatively high-
speed imagers and electronics, as well as powerful light sources with high optical coupling
to reduce the exposure time.

Phase unwrapping error is a well-known issue in many interferometry applications,
such as 3D-imaging [14], displacement sensors [15] or distributed fiber-based strain sen-
sors [16]. However, for silicon photonic sensors, this drawback is rarely mentioned in the
literature. In 2017, Milvich et al. proposed an elegant solution based on coupling a coherent
detection with a wavelength modulation in order to access the absolute interference-
order [17]. However, the wavelength modulation range should exceed the MZI free spectral
range (FSR). Since VCSEL wavelength spanning by current modulation does not exceed a
few nm, this technique requires short FSR MZIs which are more sensitive to laser wave-
length drift, jitter and line-width, whereas large FSR MZIs are compatible with lower-cost
lasers [18], on-chip non-monochromatic organic lasers [19] or even LEDs [20]. Moreover,
low-pass filters or lock-in amplifiers are required to access the precise phase shift since
several modulation periods should be averaged. The acquisition frequency should thus be
tens of times faster than the typical time constant of the physical phenomenon to be tracked.

Here, we describe two different methods to detect and correct 2π phase jumps by
using reference sensors with lower sensitivities. Our solution makes it possible to lower
the acquisition frequency without affecting the optoelectronic hardware or the nominal
MZI design. Our experimental demonstrations are based on MZI sensors but can be easily
extrapolated to micro-ring resonator sensors, which suffer from the same periodicity issue
with respect to their FSR.

2. Materials and Methods

Figure 1 show pictures of two silicon photonic dies. The left die is a typical MZI die
with a 60-MZI matrix and two lower sensitivity MZIs. Each nominal MZI has a sensing
arm length of 9.5 mm. The right die has been designed to assess the presented correction
methods and contains 5 groups of 12 identical MZIs. The MZI arm lengths, and thus their
sensitivities, are increased across the 5 groups. The sensing arm of the less sensitive group
is 250 μm long. The arm lengths of the following groups are increased by factors of 7, 11, 23
and 31 to reach a maximum length of 7.75 mm. A wavelength and a temperature variation
tracker are also visible in both dies but were not used in this study. The silicon photonic
dies were designed and produced at CEA-Leti on a 200 mm CMOS platform as described
in Ref. [10].
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Figure 1. Dies with lower sensitivity reference Mach Zehnder Interferometers (MZIs). (a) Standard
die with only two lower sensitivity reference MZIs highlighted in the red rectangle. (b) Special die
designed to evaluate both methods with 5 sensitivity groups, each composed of 12 identical MZIs .

Measurements were performed on a custom optical bench with a single mode VCSEL
emitting at λ = 850 nm aligned to the input grating coupler (GC) and a CMOS imager
aligned to the output GC array. Data acquisition and processing were performed by custom
MATLAB and Python scripts. Liquid samples were injected by a pressure-regulated system
(Fluigent, Paris, France) at a constant flow rate. Gas samples were manually approached
from the sensor input tubing while the output tubing was connected to a vacuum pump.
A fluidic restriction was used to limit the flow rate. Note that the absolute values of flow
rates or sample concentrations have no particular importance here since performance
comparisons are relative (i.e., how much the frame rate can be reduced without signal
integrity loss). Phase monitoring was performed at 20 Hz for liquid sample injection and
60 Hz for gas sample injection. The frame rate was then artificially lower in post-processing
by skipping measurement points until 2π phase jumps were observed. The experiment
with a liquid sample consisted in acquiring a baseline with deionized water, then injecting
a Phosphate Buffer Saline solution at a concentration of 0.5× (Thermo Scientific Chemicals
(Waltham, MA, USA)), and finally rinsing with deionized water. The experiment with a
gas sample consisted in acquiring a baseline with air, then injecting the head space with a
pure β-pinene solution (1 mL) (Sigma-Aldrich (St. Louis, MO, USA)) contained in a 10 mL
flask, and finally rinsing with air.

3. Results

3.1. Phase Extraction and Phase Unwrapping Errors

Figure 2 presents the main steps to compute the phase shift ΔΦ(t) from the measured
intensity variations P1, P2 and P3 from a three-port coherent MZI.

Each Pi can be written as:

Pi ∝ 1 + V × cos[ϕ + (i − 1)
2π

3
]. (1)

V is the visibility of the interference which varies from 1 to 0. It is a function of the
lengths L and propagation losses α of both arms:

V =
2 × e−

1
2 (αs Ls+αr Lr)

e−αs Ls + e−αr Lr
. (2)

In Equation (1), the MZI phase ϕ is a function of the wavelength, the waveguide
lengths and the effective indices:

ϕ =
2π

λ
(Ls × ne f f−s − Lr × ne f f−r). (3)
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From the three Pi which are phase shifted by 2π/3, it is possible to calculate two
values phase shifted by π/2 called the in-phase (I) and quadrature (Q) components:

I = P2 −
P1 + P3

2
, (4)

Q =
√

3 × P1 − P3

2
. (5)
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Figure 2. Main steps for phase shift calculation: (a) Schematic of a three-port MZI. (b) Acquisition of
the three optical outputs. (c) I and Q diagram. (d) Phase unwrapping. (e) Phase shift.

I and Q can be represented as the x and y coordinates of a point circularly turning in
the IQ diagram. Alternatively, they correspond to the real and imaginary part of a complex
number. In that case, the IQ diagram is equivalent to the complex plane. The phase ϕ
corresponds to the angle of each point with respect to the x-axis:

ϕ = arctan(I, Q) = Arg(I + iQ) (6)

It is obvious from the 4-quadrant inverse tangent function that ϕ can only have values
from −π to +π. To access a meaningful measurement, ϕ needs to be unwrapped to obtain Φ
as shown in Figure 2d. The phase unwrapping algorithm finds the smallest angle between
two successive times t in the IQ diagram and adds it to the accumulated phase Φ with a
positive sign if the smallest angle is found in the counter clockwise direction or a negative
sign if it is found in the clockwise direction. The measured phase ϕ and the unwrapped
phase Φ are thus always equal modulo 2π:

Φ = U(ϕ) = ϕ + 2πn ; n ∈ Z, (7)

where U is the unwrapping function. For gas and biosensors based on long sensing
waveguides, the initial phases of a matrix of MZIs are often randomly distributed because
of small fabrication variations, surface biofunctionalization differences (e.g., different
probe molecules on each MZI) as well as differences in surface interaction from previous
experiments. Therefore, only the phase shift ΔΦ with respect to the initial phase of a
measurement is taken into account:

ΔΦ(t) = Φ(t)− Φ(t = 0). (8)
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From the phase measurement and a calibration, it is finally possible to extract the
physical value of interest (temperature, wavelength, mechanical deformation or constraint,
sample refractive index, surface adsorption, etc. . . . ).

A phase unwrapping error is illustrated in Figure 3 by comparing two MZIs with
different sensitivities. The phase ϕ of the less sensitive MZI, in blue, can be correctly
unwrapped since the phase steps between two successive times t remain well below π.
In contrast, the unwrapping function fails to output the real phase shift evolution for the
most sensitive MZI, in red, as the phase step reaches a value higher than π near 9 s. This
condition can be written as:

max
{
|∂ΔΦ(t)

∂t
|
}
≤ π. (9)

We can derive two different methods to detect and correct phase unwrapping errors.
Both methods are based on at least one reference MZI sensor with a lower sensitivity than
the nominal MZI to be corrected. It is assumed that no 2π phase jump has happened in the
reference MZI.
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Figure 3. Phase unwrapping error. (a) Measured phase ϕ of two MZIs with different sensitivities.
(b) Unwrapped phase shift ΔΦ. (c) IQ diagram highlighting the origin of the phase unwrapping error.

3.2. First Method: Phase Shift Derivative Sign Comparison

As illustrated in Figure 4, in the first method, 2π phase jumps are detected for every
time t when two conditions are met:

1. The nominal and reference MZI phase shift derivatives have opposite signs:

sgn(
∂ΔΦnom(t)

∂t
) �= sgn(

∂ΔΦre f (t)
∂t

). (10)

2. The phase shift derivative of the nominal MZI exceeds a threshold value ε (for instance
0.3 rad). This aims at avoiding random sign noise from the flat parts of the sensorgram.

|∂ΔΦnom(t)
∂t

| ≥ ε. (11)

To obtain the corrected phase shift Δ̂Φnom(t), a 2π offset is added to or removed from
any erroneous point according to the sign of the reference MZI derivative:

Δ̂Φnom(t) = ΔΦnom(t) + sgn(
∂ΔΦre f (t)

∂t
)× 2π. (12)
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Figure 4. Original and corrected phase shifts using the phase shift derivative sign comparison method
for a refractive index step from water to PBS 0.5×. (a) Sensitivity ratio of 4.5, threshold of 0.3 rad.
(b) Sensitivity ratio of 31, threshold of 0.3 rad. (c) Sensitivity ratio of 4.5, threshold of 0.3 rad at a
frame rate divided by 3. This method fails to retrieve the real phase shift.

3.3. Second Method: Phase Shift Ratio Comparison

As shown in Figure 5, in the second method, the phase shift ratio R between the
nominal and reference MZIs is used to detect erroneous points. In the absence of a phase
unwrapping error, this ratio should be equal to the sensitivity ratio of the nominal (Snom) to
the reference (Sre f ) MZI. R can be set by design, for instance, using a sensing waveguide
length difference between the nominal and reference MZI, or measured experimentally
during a calibration protocol as the ratio of maximum phase shifts. In the latter case,
the protocol should ensure that no 2π phase jump can happen. This second method
assumes that R is known and remains constant:

R =
Snom

Sre f
or R =

max(ΔΦnom)

max(ΔΦre f )
. (13)

The algorithm minimizes the discrepancy δ(t) between an expected and a potential
phase shift. The former is equal to the reference MZI phase shift times the sensitivity ratio:

ΔΦnom−expected(t) = R × ΔΦre f (t). (14)

The later corresponds to the nominal MZI phase shift plus a given number of 2π
phase jumps:

ΔΦnom−k(t) = ΔΦnom(t) + 2kπ ; k ∈ Z. (15)

In practice, only a limited number of 2π phase jumps can be tested at every time t,
for instance −K ≤ k ≤ K with K = 8. The smallest discrepancy δ can be written as:

δ(t) = min
−K≤k≤K

{
ΔΦnom−k(t)− ΔΦnom−expected(t)

}
. (16)

Note that |δ| ≤ π. At every time t, there is a corresponding discrepancy δ(t) and a
best 2π phase jump number k̂(t) so that the corrected phase shift can be written as:

Δ̂Φnom(t) = ΔΦnom(t) + 2k̂(t)π = R × ΔΦre f (t) + δ(t). (17)
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Alternatively, this method aims at finding the k value that makes the measured phase
shift ratio Rk(t) = ΔΦnom−k(t)/ΔΦre f (t) approach the expected one R.
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Figure 5. Original and corrected phase shifts using the phase shift ratio comparison method.
(a) R = 4.5. (b) R = 31. (c) R = 4.5 at a frame rate divided by 3. The method remains efficient
regardless the frame rate reduction.

4. Discussion

As seen in Figure 4a,b, the first method can efficiently correct successive phase un-
wrapping errors. Note that the sign discrepancy count increases as the sensitivity of the
reference MZI decreases. This can be attributed to the lower signal-to-noise ratio of the
reference MZI. Depending on the measurement noise floor and sensitivity ratio between the
nominal and reference MZIs, a threshold can also be set on the reference MZI to avoid false
error detection. This method cannot correct more than one 2π phase jump at a given time
(Figure 4c). The threshold condition slightly reduces the maximum phase shift derivative
that can be efficiently corrected to:

max
{
|∂ΔΦnom(t)

∂t
|
}
≤ 2π − ε. (18)

This improves the condition stated in Equation (9) by a factor of almost 2. Since no
assumption is needed on the sensitivity ratio, a single reference MZI can be used for the
correction of a full MZI matrix (Figure 1a), which makes this method efficient in terms of
silicon real estate.

The second method is not restricted in terms of phase shift derivative and is even
able to correct multiple 2π phase jumps at once, as shown in Figure 6. However, it
relies on a constant sensitivity ratio, which, in practice, might slightly evolve during an
experiment or across several experiments. This can be caused by uncompensated drifts,
biofunctionalization aging and variability, poor synchronicity between the reference and
nominal MZIs as well as sample inhomogeneity inside the fluidic chamber. Thus, the higher
the ratio, the higher the uncertainty on the correction truthiness. However, as for the first
method, the higher the ratio, the lower the risk of phase unwrapping errors on the reference
MZI. A trade off must thus be found. As mentioned in Section 2, using sensitivity ratios
corresponding to prime numbers slightly limits the risk of missing 2π phase jumps, as one
jump on a reference MZI should not result exactly in two or more jumps on another
reference or nominal MZI.
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Figure 6. Original and corrected phase shifts using both methods in the case of multiple 2π phase
jumps (frame rate further reduced by a factor of 1.7 compared to Figures 4 and 5). (a) Method 1 fails.
(b) Method 2 succeeds.

In addition, as opposed to the first method, for biosensing experiments, each biofunc-
tionalization group must have its own reference MZI since this would affect the sensitivity
ratio. In addition, if a single reference MZI is used to correct multiple nominal MZIs, it
will force all their phase shifts to lie a in restricted interval of [+π, −π], while true values
might exhibit a higher disparity, especially for the high absolute phase shifts. Figure 7
illustrates the aforementioned limitations and compares methods 1 and 2 for a β-pinene
vapour injection. Here, the phase shifts of the 12 MZIs of the less sensitive group (in black)
were averaged in order to lower the noise of the reference signal.

(b)(a) (c)

Figure 7. β-pinene vapor injection on die b. The 5 different sensitivity groups are clearly visible, each
containing 12 identical MZIs. The mean of the less sensitive group is used as reference. (a) Phase
unwrapping errors happen for the two most sensitive groups during desorption in the original phase
shift. (b) Method 1 succeeds in correcting these errors. (c) Method 2 fails at perfectly correcting the
two most sensitive groups and generates new errors in the three most sensitive groups.
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Figure 8 puts both methods in perspective by defining regions of efficacy with respect
to the nominal MZI absolute phase shift and absolute phase shift derivative, each method
being primarily limited by one of these two aspects. To robustify the correction algorithm,
both methods can be combined and several reference MZIs with different sensitivity ratios
can be used.

Figure 8. Region of efficacy of the presented methods in terms of absolute phase shift (i.e., intensity)
and absolute phase shift derivative (i.e., frame rate).

5. Conclusions

This study propose two new methods to relax the acquisition frequency requirement
for silicon photonics sensors based on Mach Zehnder interferometers. Both methods are
based on reference MZI sensors with lower sensitivities than the nominal sensors. A dedi-
cated photonic MZI sensor die was designed, fabricated and used to acquire representative
experimental data. Both methods are theoretically detailed and applied on datasets to
illustrate their respective strengths and weaknesses. From these examples, we can conclude
that the acquisition frequency can be lowered by a factor of ∼2 in most cases. We can also
predict that if the maximum achievable phase shift can be known in advance and remains
below a few tens of radians, then the acquisition frequency can be almost arbitrarily low-
ered. This work should help photonic designers to make more reliable and power-efficient
sensors for a wide range of applications beyond gas and biosensing.
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Abstract: In the field of neuroscience, brain–computer interfaces (BCIs) are used to connect the human
brain with external devices, providing insights into the neural mechanisms underlying cognitive
processes, including aesthetic perception. Non-invasive BCIs, such as EEG and fNIRS, are critical for
studying central nervous system activity and understanding how individuals with cognitive deficits
process and respond to aesthetic stimuli. This study assessed twenty participants who were divided
into control and impaired aging (AI) groups based on MMSE scores. EEG and fNIRS were used
to measure their neurophysiological responses to aesthetic stimuli that varied in pleasantness and
dynamism. Significant differences were identified between the groups in P300 amplitude and late
positive potential (LPP), with controls showing greater reactivity. AI subjects showed an increase in
oxyhemoglobin in response to pleasurable stimuli, suggesting hemodynamic compensation. This
study highlights the effectiveness of multimodal BCIs in identifying the neural basis of aesthetic
appreciation and impaired aging. Despite its limitations, such as sample size and the subjective
nature of aesthetic appreciation, this research lays the groundwork for cognitive rehabilitation tailored
to aesthetic perception, improving the comprehension of cognitive disorders through integrated
BCI methodologies.

Keywords: BCI; aesthetic; fNIRS; EEG; impaired aging

1. Introduction

The field of neuroscience is constantly evolving in both research and healthcare, and
a major role in this process is assumed by the brain–computer interface (BCI) [1,2]. BCIs
are advanced systems that enable direct communication between the human brain and
external devices [3], and their efficacy has been demonstrated in multiple settings, from
detection to intervention. The main goal of BCI research is to collect the most accurate
real-time data on brain activity in the simplest and least invasive way, with the shortest
calibration and set-up time [4]. Studies have shown significant improvements in motor
function through the use of BCIs, exceeding the performance of traditional control therapies
and highlighting its potential in post-stroke motor rehabilitation [5,6]. Additionally, it has
been noted that adding local network features to BCIs based on steady-state visual evoked
potentials (SSVEPs) can greatly increase the information transfer rate and classification
accuracy, providing new opportunities for BCI optimization of performance across a broad
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spectrum of application domains [7]. The integration of BCIs with other technologies, such
as neural signal analysis and data processing, is improving the accuracy and effectiveness
of these systems. For example, the use of advanced machine learning algorithms [8] and
brain connectivity [9] has refined the decoding of neural signals, improving the interface
between the brain and external devices.

To classify and understand the wide range of BCI technologies available, an impor-
tant distinction is made between invasive and non-invasive systems, each with distinct
characteristics and application areas [10]. Invasive BCI systems, which require surgical
implantation of electrodes in the brain, including intracortical electrodes [11] and electrocor-
ticography (ECoG) [12], offer high-quality signals with high spatial and temporal resolution,
making them particularly useful in research settings and for applications that require very
precise control [10]; however, these systems carry greater risks and complications related to
the surgical procedure [13].

Non-invasive BCIs capture neural signals directly from the surface of the skull us-
ing devices such as electroencephalography (EEG), functional near-infrared spectroscopy
(fNIRS), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG),
and positron emission tomography (PET), without the need for invasive surgery [14]. These
methods provide unprecedented access to brain activity and enable advanced communica-
tion between the brain and external devices in a safe and non-invasive manner. However,
MEG, PET, and fMRI are still technically demanding and expensive [15].

In the context of neurosciences, these non-invasive techniques are fundamental for
the study of central nervous system activity, and among them, EEG emerges as the most
widely used method for measuring electrical brain activity [16]. EEG is particularly prized
for its portability, non-invasiveness, and, most importantly, its ability to monitor brain
activity with high temporal resolution, making it one of the most effective techniques
in this field [17]. In EEG signals, it is possible to identify so-called evoked potentials,
which are specific neurophysiological responses measured in reaction to standardized and
known sensory stimuli. These evoked potentials provide a functional assessment of sensory
systems, including auditory, visual, and somatosensory [18]. The various categories of
evoked potentials, which include event-related evoked potentials (ERPs), visual evoked
potentials (VEPs) [19], acoustic evoked potentials (AEPs), motor evoked potentials (MRPs),
and steady-state visual evoked responses (SSVEPs) [20], are fundamental tools for reflecting
brain activity in response to specific sensory stimuli and find application in the monitoring
and diagnosis of various neurological disorders in clinical and domestic settings.

Similarly, fNIRS is praised for its ability to monitor cognitive activity by measur-
ing task-related hemodynamic responses in the prefrontal cortex, providing a unique
window into brain function during mental tasks [21,22]. Recent studies have shown
that fNIRS can be effectively used to record signals from cognitive, visual, and auditory
functions [20,23]. This significantly expands the field of application of BCIs, allowing not
only the improvement of motor functions as demonstrated in post-stroke rehabilitation [5,6]
but also the exploration of new frontiers in the monitoring and intervention of complex
cognitive functions. The ability to detect responses related to problem-solving tasks and
activities requiring concentration and memory underscores the adaptability of fNIRS to a
variety of BCI applications, making the signals not only easily monitored by users, but also
closely related to the underlying cognitive activity [24].

Neuroscience research has investigated the impact of visual stimuli, both static and
dynamic, on the motor areas of the brain during aesthetic perception [25]. Studies have
shown that viewing dynamic works of art, such as those by van Gogh, not only enriches the
perceptual experience through complex details but also activates movement-related brain
areas, such as the M+ area [26]. These findings suggest a link between aesthetic perception
and motor processing [27]. Research suggests that observing static human actions involved
in motion can increase cortical activation. The brain areas involved in this process include
V5/MT, EBA, and motor cortices [28]. Therefore, it is important to consider the motor area
when discussing aesthetic appreciation.
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The combination of EEG and fNIRS offers new directions for a comprehensive analysis
of brain function by integrating electrical and hemodynamic data [29]. This integrated ap-
proach, EEG-fNIRS, has demonstrated its value in various areas of neuroscience, providing
a holistic perspective on brain functioning [30].

With this in mind, the purpose of this study is to explore aesthetic perception in
individuals with mild impairment using a multimodal approach that combines EEG and
fNIRS in the context of non-invasive BCI technologies. The study investigates how changes
in brain activity, as measured through these two methodologies, may reflect differences in
response to aesthetic stimuli. Our study aims to provide new insights into the underlying
neural dynamics and offer suggestions for the development of more effective diagnostic and
therapeutic tools by analyzing responses evoked by aesthetic stimuli. We will contribute to
exploring the potential of BCI technologies in clinical and research contexts.

2. Materials and Methods

2.1. Study Participants

Twenty participants were recruited from the Psychology and Clinical Neuropsychol-
ogy Clinic and the U.O.C. University Neurophysiopathology Unit of Bari General Hospital.
All participants had a Mini-Mental State Examination (MMSE) score greater than 18 to
exclude moderate to severe cognitive impairment [31]. The sample was then divided ac-
cording to their MMSE score (Figure 1), creating two groups of ten subjects each: a clinical
group with MMSE scores from 18 to 23, indicating impaired aging (IA), and a control (CT)
group with MMSE scores from 24 to 30 [31]. Healthy and impaired aging groups did not
differ in terms of age (t(18) = −0.67, p = 0.510).

Figure 1. Flow chart of the study design illustrating the stages of recruitment, recording, data
processing, and group comparison.

The study was conducted from May 2022 to February 2023. All participants were
right-handed and older than 65 years of age. The experimental procedures were approved
by the ethics committee of the General Polyclinic of Bari and were performed in accordance
with the Declaration of Helsinki. Participants were informed of the purpose of the study
before the experiment and provided written informed consent. None of the subjects in this
study had any prior experience with the recording devices or the experimental task, and
they were all able to independently follow the study’s instructions.
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2.2. Recording Techniques

The cerebral hemodynamic and bioelectrical activity was recorded using an EEG-fNIRS
co-recording cap with an additional black cap placed over it to block out any potential
ambient light interference (Figure 1).

The EEG cap consisted of 61 encephalic EEG channels positioned according to the
enlarged international standard 10–20 system, as shown in Figure 1 (Fp1, FPZ, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2, AF7, AF3, AFz, AF4, AF8,
F5, F1, F2, F6, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, C5, C1, C2, C6, TP7, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, TP8, P5, P1, P2, P6, PO7, PO3, POz, PO4, and PO8). A
biauricular reference electrode was used. In addition, to remove any ocular blink artifacts,
two electrooculogram detection electrodes were applied at the level of the outer canthus
of the right and left eye, while the ground electrode was placed on the right forearm. The
impedance was kept below 5 KW. During the EEG recording, we used a digital filter in the
0.1–70 Hz range and a 50 Hz notch filter to allow signal inspection.

fNIRS sensors were placed on the EEG headset, allowing the simultaneous acquisition
of both parameters (Figure 2). The continuous wave fNIRS system (NIRSport 8 8, Nirx
Medical Technologies LLC, Berlin, Germany) was used to conduct the current investigation.
The fNIRS device consists of a multi-channel system able to measure hemodynamic activity
fluctuations. For data acquisition, NIRStar 14.2 software was adopted (Version 14, Revision
2, Release Build, 15 April 2016 NIRx Medizintechnik GmbH, Berlin, Germany). The easy-
to-use device involved light-emitting diode (LED) sources and photosensitive detectors
(sensitivity: >1 pW, dynamic range: >50 dB). More exactly, the data were recorded by eight
light sources, from which lights were emitted from each source at two different wavelengths
(760 nm and 850 nm), and eight detectors. The transmitter–receiver distance was 30 mm,
as recommended in the scientific literature [32]. Sources, detectors, and the layout of the
20 fNIRS channels were located as illustrated in Figure 1. For these specific registrations,
the probes were placed on the cap over the primary motor cortex (M1) and supplementary
motor cortex. The sampling rate was 7.81 Hz. The optical density was converted to
variations in oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR), using the modified
Beer–Lambert law (mBLL) [33]. Before each fNIRS recording, a calibration procedure was
employed to determine the signal amplification required for every source–detector pattern.

Figure 2. Combined EEG/fNIRS system with 10/20 64 electrodes and 20 NIR channels resulting
from 16 optodes (8 sensors in red and 8 detectors in green).
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2.2.1. Paradigm

Participants were examined in a well-ventilated room and positioned in front of a
screen in an ergonomic position. The tasks included an initial two-minute resting state
baseline, in which the subject was asked to fix a cross in the center of the black screen.
The methodology adopted consisted of presenting an odd-ball paradigm to the subjects in
which frequent and rare stimuli were alternated. A total of 165 visual stimuli were selected,
divided into 115 single-color frequent images and 50 target images, consisting of 25 static
and 25 dynamic aesthetic stimuli (Figure 3). Each visual stimulus had a duration of 5 s, and
the inter-stimulus interval was 9 s. The frequency of occurrence of the standard stimulus
was 70%, while for the target stimulus, it was 30%. The motor task at the appearance of
the target stimulus (static or dynamic images) consisted of pressing, as quickly as possible,
the space bar of a PC keyboard provided to the participant. This keyboard was triggered
on the EEG and NIRS trace, and each time it was pressed, an indicator marker appeared
on the trace. At the end of the task, participants were asked to rate each image on a Likert
scale from 1 to 10 based on their aesthetic appreciation.

Figure 3. Experimental paradigm, showing (a) common stimuli; (b) target dynamic stimuli on the
left side and target static stimuli on the right; (c) Likert scale for evaluation of aesthetic appreciation.

2.2.2. fNIRS Data Processing

Data preprocessing was performed using NirsLAB v.2019.04 software. Before data
preprocessing, the images were separated into different files according to the level of
attractiveness of the images for each subject, dividing into separate files the images that
each subject had considered attractive (scores of 7 or higher), neutral (scores of 5 and
6), and unattractive (scores of 4 or lower). Markers were then set to indicate the onset
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of each condition (common stimulus, target static image, target dynamic image, and
resting state period), with a stimulus duration of 14–14–14–120 s, respectively. For fNIRS
data preprocessing, discontinuities were removed (STD threshold = 5) and channels were
interpolated (maximum frames = 4). Subsequently, the signals recorded in each channel
were inspected by removing channels containing sufficient noise (gain setting > 8; coefficient
of variation > 7.5), and a bandpass filter of 0.01–0.2 Hz was applied. The hemodynamic
states were then calculated for each channel, and the Beer–Lambert law was used to
convert the processed signals into variations of oxygenated and deoxygenated hemoglobin
concentrations (baseline in frames = 39–195, corresponding in 5–25 s of baseline).

During our fNIRS analysis, we specifically observed the changes in oxyhemoglobin
(HbO) triggered by the P300 test. Our analysis focused on stimulus-related changes
within a 14-s time window after stimulus onset. This enabled us to capture the immediate
hemodynamic dynamics evoked by the different levels of image attractiveness assessed by
the subjects.

2.3. EEG Data Processing

The EEG data analysis was performed using an automated workflow based on
EEGLAB (version 2022) in MATLAB. We applied an FIR filter to limit the frequency range
between 1 and 30 Hz. Next, we implemented the Artifact Subspace Reconstruction (ASR)
method to correct the continuous data by discarding unsuitable channels and data seg-
ments. We then interpolated the bad channels and recalibrated the entire dataset to the
mean. For each 0.5-s time window, we set a maximum deviation in the standard deviation
of 20. In addition, we eliminated channels that were inactive for more than 5 s, those with a
high-frequency noise standard deviation of less than 4, and those with a correlation greater
than 0.8 with adjacent channels. Next, an independent component analysis (ICA) was
performed, and artifactual components were automatically excluded through the use of
a machine learning algorithm called the Multiple Artifact Rejection Algorithm (MARA).
Components with a greater than 50% probability of being artifacts were removed. Finally,
the data were divided into epochs in the time interval from −0.3 s to 1 s, and the baseline
was corrected.

2.4. Statistical Methods
2.4.1. fNIRS

To conduct an in-depth investigation of the brain areas involved, we performed a
topographical analysis using the Generalized Linear Model (GLM) based on Statistical
Parametric Mapping for fNIRS (NIRS-SPM), implemented via SPM 8 software in NirsLAB.
This approach enabled us to accurately identify the brain regions that were active during
task execution for each case. The study employed the Hemodynamic Response Function
(HRF) to represent the hemodynamic response to the experimental tasks in the Statistical
Parametric Mapping analysis (SPM1, intra-subject). The degree of activation of each channel
relative to the baseline was calculated via the beta value.

The study analyzed the differences between subjects using SPM 2, a function imple-
mented in NirsLab, to identify fNIRS channels that showed significant changes in HbO
during the P300 task between the different groups.

2.4.2. EEG

In our study, we used two approaches to analyze the EEG data, focusing on the P300
evoked potential. Using Letswave7 software, we first performed a permutation-based
ANOVA to identify significant differences in ERP responses between subject groups. This
method allowed us to assess statistical differences while maintaining strict control of the
type I error rate by generating null distributions from permuted data.

We then implemented a non-parametric cluster-based permutation analysis [34], a
robust technique for comparing ERP distributions between control groups and subjects
with impaired aging in all conditions (static vs. dynamic * pleasant vs. unpleasant vs.
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neutral). This approach, which uses cluster statistics to maximize statistical power while
maintaining adequate control over multiple comparisons, is based on the construction of
clusters of adjacent electrodes that show statistically significant differences.

For the analysis, electrode neighbors were defined based on the physical distance to
construct the neighbor matrix, and ERP averages for the static and dynamic conditions
were calculated separately, aggregating data from all subjects for each condition.

A cluster-based analysis was performed on a time interval between 300 and 500 ms, focus-
ing on differences between ERP averages. We identified clusters of electrodes that showed
statistically significant differences using a critical value derived from the distribution of the
maximum test statistics observed in the permutations.

3. Results

3.1. fNIRS Results

A Student’s t-test with a significance level of p < 0.05 was used for this analysis. The
results revealed significant differences in the hemodynamic response to the P300 test,
providing valuable insights into the neural dynamics underlying stimulus processing.

3.1.1. Between Groups Comparison

The analysis showed that patients had significantly higher HbO levels than controls in
response to visual stimuli perceived as aesthetically pleasing, in both static (ch1, t = 2.90,
p < 0.05) and dynamic (ch5, t = 2.61, p < 0.05) conditions, indicating greater brain activation
(Figure 4). Conversely, controls showed higher HbO levels than patients in the static condition
when presented with visual stimuli perceived as unpleasant. For neutral dynamic stimuli (ch10,
t = 3, p < 0.05), the patients exhibited higher HbO levels than the controls, indicating differential
responsiveness depending on the aesthetic value of the stimulus and condition.

3.1.2. ANOVA

An ANOVA provided additional information on the interactions between group, con-
dition, and aesthetic valence of the stimuli. Specifically, on channel 10, the interaction
between group and aesthetic valence was significant (F(2) = 3.28, p = 0.042), indicating
that the response to different types of aesthetic stimuli varies significantly between pa-
tients and controls (Table 1). Channel 20 showed a significant interaction between group
(Table 2), condition, and aesthetic valence (F(2) = 3.45, p = 0.036). This suggests that the two
groups’ brain activation is affected differently by the condition (static or dynamic) and their
aesthetic valence.

Table 1. fNIRS Channel 10: ANOVA on group, condition, and aesthetic appreciation.

ch 10 Sum of
Squares df Mean Square F p

group 4.37 × 10−7 1 4.37 × 10−7 1.63 0.205
condition 4.76 × 10−7 1 4.76 × 10−7 1.77 0.186
aesthetic 1.02 × 10−6 2 5.08 × 10−7 1.89 0.156

group x condition 6.08 × 10−7 1 6.08 × 10−7 2.27 0.135
group x aesthetic 1.76 × 10−6 2 8.80 × 10−7 3.28 0.042 *

condition x aesthetic 1.07 × 10−6 2 5.36 × 10−7 2.00 0.141
group x condition x aesthetic 1.20 × 10−6 2 5.98 × 10−7 2.23 0.113

Residuals 2.63 × 10−5 98 2.68 × 10−7

Note: * p < 0.05.
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Table 2. fNIRS Channel 20: ANOVA on Group, Condition, and Aesthetic appreciation.

ch 20 Sum of
Squares df Mean Square F p

group 2.30 × 10−8 1 2.30 × 10−8 0.06 0.809
condition 9.68 × 10−7 1 9.68 × 10−7 2.47 0.119
aesthetic 3.99 × 10−8 2 2.00 × 10−8 0.05 0.950

group x condition 1.48 × 10−6 1 1.48 × 10−6 3.78 0.055
group x aesthetic 9.25 × 10−8 2 4.62 × 10−8 0.12 0.889

condition x aesthetic 2.22 × 10−6 2 1.11 × 10−6 2.84 0.063
group x condition x aesthetic 2.70 × 10−6 2 1.35 × 10−6 3.45 0.036 *

Residuals 3.83 × 10−5 98 3.91 × 10−7

Note: * p < 0.05.

Figure 4. The analysis of oxyhemoglobin (HbO) is presented in two parts: the left side displays the
raw beta value, while the right side shows the same values filtered to display only areas where brain
activity is statistically significant (p < 0.05).
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3.2. EEG Results

In this study, we conducted an ANOVA to examine the effects of the interaction
between condition, aesthetic appreciation, and group on ERP components, specifically
on the late positive potential (LPP) and P300. The results indicated that the interaction
between condition and aesthetic appreciation significantly influenced the LPP in the parietal
region (POZ) (F = 3.29, p = 0.04; Figure 5). Additionally, the LPP also reached significance
(F = 4.09, p = 0.019) in the prefrontal region (FPZ). Regarding image dynamism, significant
modulation of P300 (F = 8.1, p = 0.005) and LPP (F = 5.24, p = 0.02) was observed in the POZ
(Figure 5). This indicates that the experimental condition has a significant impact on brain
activity measured by these metrics. The analysis also revealed that aesthetic appreciation
has a significant effect on the LPP in the POZ (F = 3.67, p = 0.029; Figure 5), suggesting
that aesthetic evaluations modulate brain activity in this area. The analysis revealed a
significant association between the group factor and brain activity in the POZ (F = 14.1,
p < 0.001; Figure 5), indicating substantial differences between groups. Additionally, a
significant interaction effect was found between the group, experimental condition, and
aesthetic appreciation in the FPZ and PO4 (F = 4.08, p = 0.019; Figure 5), suggesting
that the relationship between brain activity and aesthetic appreciation is influenced by
these factors.

Non-Parametric Cluster-Based Permutation Analysis

To evaluate the robustness of the results of the ANOVA, a non-parametric cluster-based
permutation analysis was performed (Table 3).

Table 3. Summary of cluster-based permutation analysis: Cohen’s d, cluster Mass, and raw effect
differences of clusters.

Max Positive Cluster Max Negative Cluster

Cohen’s
D

Mass
ERP

(Mean)
ERP (sd) Mass

ERP
(Mean)

ERP (sd)

Pleasant dynamic CT vs. IA 2.10 118.10 3.37 3.24 102.92 0.20 1.55
Pleasant static CT vs. IA 2.27 128.42 2.80 4.83 88.80 −0.69 2.76

Unpleasant dynamic CT vs. IA 1.96 38.21 0.57 5.06 16.06 1.30 8.12
Unpleasant static CT vs. IA 2.33 34.67 −1.31 1.57 73.25 1.52 4.18
Neutral dynamic CT vs. IA 2.05 53.02 4.44 4.45 14.24 1.37 6.17

Neutral static CT vs. IA 1.76 21.31 −0.65 2.26 27.98 0.95 3.15
Control dynamic pleasant vs. unpleasant 2.18 11.40 −0.48 2.09 34.99 0.06 2.36

Control dynamic pleasant vs. neutral - - - - - - -
Control dynamic unpleasant vs. neutral 1.95 16.85 0.06 2.36 7.13 −3.48 1.07
Patient dynamic pleasant vs. unpleasant 2.12 130.55 1.37 1.31 75.97 0.28 6.43

Patient dynamic pleasant vs. neutral 1.81 41.33 0.46 1.64 19.79 4.17 7.08
Patient dynamic unpleasant vs. neutral 2.04 11.98 −0.28 4.73 30.83 1.98 6.07
Control static pleasant vs. unpleasant 2.15 20.29 0.21 1.94 7.66 −0.76 2.41

Control static pleasant vs. neutral 2.10 15.41 2.25 3.14 9.44 0.56 1.03
Control static unpleasant vs. neutral 2.82 20.15 0.69 3.99 17.51 −1.70 0.94
Patient static pleasant vs. unpleasant 2.32 24.60 −1.47 2.62 46.32 0.40 3.31

Patient static pleasant vs. neutral 1.75 26.75 −1.17 2.65 12.06 0.42 3.66
Patient static unpleasant vs. neutral 2.16 27.86 0.10 5.33 22.55 0.42 3.66
Control pleasant dynamic vs. static 1.62 15.38 −3.57 2.98 14.80 −0.85 2.60

Control unpleasant dynamic vs. static 2.45 61.84 1.62 4.66 21.37 −1.60 2.18
Control neutral dynamic vs. static 2.23 16.94 0.37 1.60 24.52 −1.85 1.75
Patient pleasant dynamic vs. static 1.57 31.34 0.71 1.04 14.01 −1.86 2.42

Patient unpleasant dynamic vs. static 2.51 60.60 0.22 5.44 57.08 0.93 4.19
Patient neutral dynamic vs. static 1.49 27.86 4.36 5.26 33.90 0.32 3.33
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Figure 5. Statistical analysis and electrophysiological responses were used to evaluate aesthetic stim-
uli. (a) P300 ANOVA p-value in group and condition, showing the topographical map of raw activity
and the wavelet; (b) LPP ANOVA p-value in condition*aesthetic (left), group*condition*aesthetic
(central), and aesthetic (right).

When comparing the healthy control (CT) and impaired aging (IA) groups, significant
clusters reflecting differences in P300 amplitude were identified. Positive clusters were
observed for both pleasant (d = 2.10, Mass = 118.10) and unpleasant (d = 1.96, Mass = 18.21)
dynamic stimuli, indicating that the CT group had a more pronounced P300 amplitude than
the IA group (Figure 6). This suggests a more pronounced neurophysiological reactivity
in controls, indicative of a greater ability to process dynamic stimuli, regardless of their
aesthetic valence.
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Figure 6. Non-parametric cluster-based permutation analysis showing topographical raw difference
(top row) and raw difference filtered by cluster (down row) between groups in pleasant dynamic,
pleasant static, and unpleasant dynamic stimuli.

In the dynamic neutral stimuli, both positive (d = 2.05, Mass = 53.02) and negative
(d = 2.05, Mass = 14.24) clusters were identified, revealing differences in P300 amplitude
in the posterior area of the cortex (Figure 6). Between 300 and 350 ms, the positive cluster
indicates that the CTs have a more pronounced P300 amplitude than the IA group. However,
thereafter, the cluster becomes negative, suggesting a delay in latency response for the
IA group.

4. Discussion

Our pilot study highlights the importance of multimodal neurophysiological assess-
ment, particularly through the combined use of EEG and fNIRS, to investigate cognitive
changes. The integration of these techniques provides a comprehensive view of neural
dynamics, combining the strengths of each method to provide a more detailed and accurate
understanding of brain function. This new BCI technology has gained popularity because
it can more accurately decode brain activity in specific cortical regions while producing
less electrical noise [35].

Recent literature highlights how the multimodal approach allows for a more holistic
and detailed understanding of neural dynamics. This approach is particularly useful
when studying complex neurological conditions [36,37], providing a richer and more
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multifaceted perspective that improves our ability to analyze and intervene in specific
neurological changes.

To the best of our knowledge, this is the first study evaluating the EEG response to
paintings in subjects with impaired aging.

4.1. fNIRS

Our investigation using functional near-infrared spectroscopy (fNIRS) revealed signif-
icant differences in brain activation between individuals with impaired aging and healthy
controls. The study highlights how the nature of visual stimuli, both static and dynamic,
affects brain activation in distinct ways.

Specifically, we observed that the group with impaired aging exhibited significantly
higher levels of oxyhemoglobin (HbO) than controls in response to aesthetically pleasing
stimuli, indicating greater brain activation. This increase in activation in patients can be
explained by the neural inefficiency theory [38], which suggests that individuals with
cognitive impairment may require more brain activation to perform the same cognitive
tasks as healthy controls. According to this theory, individuals with neurological condi-
tions that result in impaired cortical functioning, such as multiple sclerosis, Parkinson’s
disease, and mild cognitive impairment, must compensate for their neural inefficiencies by
increasing activation in specific brain areas to maintain a comparable level of behavioral
performance [39–41]. The heightened activation observed in response to aesthetically pleas-
ing stimuli may indicate the brain’s effort to compensate for challenges in processing such
stimuli, which necessitate more intricate interpretation and appreciation.

The evaluation of beauty, indeed, involves complex cognitive processing that engages
multiple brain areas [42]. This process is known as the ‘aesthetic triad’ and comprises
“neural systems that contribute to emergent aesthetic experience. Aesthetic experiences are
emergent states resulting from interactions between sensory-motor, emotional-evaluative,
and meaning-knowledge neural systems” [42]. Furthermore, our findings align with
previous studies that have explored the processing of complex stimuli in individuals with
mild cognitive impairment (MCI). For instance, Niu et al. [43] and Yeung et al. [44] have
demonstrated that patients with MCI display modified brain activation patterns when
performing tasks that require a greater working memory load.

4.2. EEG

In our EEG results, we observed significant differences in P300 amplitude between
groups of subjects with impaired aging and healthy controls, particularly in response to
aesthetic stimuli.

Neurophysiological markers, such as EEG and event-related potential (ERP) compo-
nents, have been identified as significant indicators of cognitive decline in the scientific
literature [45]. They offer valuable tools for determining pathological stages [46]. P300, in
particular, emerges as a key ERP component for the study of attention, working memory,
and cognitive impairment. P300 is a positive peak that is prominent in the centro-parietal
areas of the scalp. It usually occurs between 250 and 500 ms after stimulus presentation.
The first subcomponent of P300, P3a, is related to attention mechanisms and the handling
of novel stimuli [47]. Research has shown that changes in P300 latency and amplitude
may indicate the progression of neurodegeneration [48], showing a longer latency and a
more attenuated amplitude [49]. Other studies have confirmed significant differences in
P300 parameters between healthy individuals and those with MCI or Alzheimer’s Disease
(AD) [50,51].

Based on the evidence discussed above, these differences appear to be consistent
with studies that have reported reduced P300 amplitude in patients with MCI compared
to healthy controls in both auditory [52] and visual [53] tasks, suggesting an alteration
in cognitive processing ability in this population. The study’s findings suggest that the
processing of aesthetically pleasing stimuli requires a complex set of cognitive functions,
which may be impaired in individuals with impaired aging.
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Indeed, aesthetic appreciation is a complex process that involves perception, inte-
gration of implicit memory, explicit classification, cognitive mastery, and evaluation [54].
This process is also influenced by additional factors, such as the environment and social
interaction. According to our data, healthy controls show greater amplitude in response
to stimuli perceived as pleasant compared to the impaired aging group. This suggests
a greater sensitivity or ability to process aesthetic stimuli and supports the integrity of
the previously discussed processes. In contrast, the group of patients exhibited greater
activation in response to neutral stimuli than to aesthetically pleasing stimuli. This could
indicate a reduced ability to discriminate aesthetics and process the aesthetic qualities of
stimuli, and/or deficits in one or more of those processes [55].

In our study, the LPP, which is associated with emotional and evaluative processing
of stimuli, exhibited a more right-lateralized distribution when comparing the CT and IA
groups, consistent with previous studies that have shown that aesthetic judgments can
elicit a stronger distribution in the right hemisphere of the brain [56]. This statement is in
line with the literature that links the LPP to a heightened response to objects with high
affordance and aesthetic levels [57]. This suggests that objects that are both highly attractive
and perceived as functional elicit a privileged neural response.

4.3. Limitations

Although this pilot study provides significant insights into the combined use of EEG
and fNIRS to explore neurophysiological differences associated with aesthetic appreciation
in individuals with impaired aging, it has some limitations. The small sample size limits the
generalizability of our results, suggesting the need for future studies with larger samples
to confirm and expand our findings. The assessment of aesthetic appreciation, which is
inherently subjective, may have been influenced by uncontrolled factors, such as cultural
and personal preferences. Additionally, the interpretation of ERP data, particularly the
P300 data, despite the extensive literature present, requires caution, as alterations may be
attributable to a variety of factors. Finally, this study highlights the potential of BCIs in the
clinical setting, but further research is needed to refine interfaces and analysis techniques
for targeted clinical applications.

5. Conclusions

This pilot study highlights the relevance of a multimodal approach combining EEG
and fNIRS to investigate the neural dynamics associated with aesthetic appreciation and
impaired aging, demonstrating significant differences in brain activation between the two
groups in response to aesthetic stimuli. Although the group with impaired aging showed
difficulty in the P300-related task compared to the control group, the results suggest
compensation in terms of hemodynamic recruitment. This finding could provide a basis for
cognitive rehabilitation by adjusting the environment according to the subjects’ aesthetic
perception to improve outcomes.

The combined use of non-invasive BCI technologies is a valuable tool for neurophysio-
logical assessment, contributing to the emerging literature on their use in clinical settings.
The results highlight the potential of these technologies in improving the diagnosis and
understanding of cognitive disorders. The ability to detect these dynamics only through the
multimodal use of BCIs emphasizes the effectiveness of integrating different methodologies
for a more comprehensive understanding of the neural processes involved in aesthetic
appreciation and cognitive impairment.
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Abstract: Aerosols, as well as suspended particulate matter, impact atmospheric pollution, the
climate, and human health, directly or indirectly. Particle size, chemical composition, and other
aerosol characteristics are determinant factors for atmospheric pollution dynamics and more. In
the last decade, low-cost devices have been widely used in instrumentation to measure aerosols.
However, they present some issues, such as the problem of discriminating whether the aerosol is
composed of liquid particles or solid. This issue could lead to errors in the estimation of mass
concentration in monitoring environments where there is fog. In this study, we investigate the use
of an optical particle counter (OPC) coupled to a quartz crystal microbalance with an integrated
microheater (H-QCM) to enhance measurement performances. The H-QCM was used not only to
measure the collected mass on its surface but also, by using the integrated microheater, it was able to
heat the collected mass by performing heating cycles. In particular, we tested the developed system
with aerosolized saline solutions of sodium chloride (NaCl), with three decreasing concentrations
of salt and three electronic cigarette solutions (e-liquid), with different concentrations of propylene
glycol and glycerin mixtures. The results showed that the OPC coherently counted the salt dilution
effects, and the H-QCM output confirmed the presence of liquid and solid particles in the aerosols.
In the case of e-liquid aerosols, the OPC counted the particles, and the HQCM output highlighted
that in the aerosol, there were no solid particles but a liquid phase only. These findings contribute
to the refinement of aerosol measurement methodologies by low-cost sensors, fostering a more
comprehensive understanding.

Keywords: aerosol; OPC; QCM; sensors; particulate matter

1. Introduction

An aerosol is a colloidal suspension of fine solid or liquid particles in a gas and
has been investigated in several research fields. In medicine, it is mainly studied as a
method for drug delivery [1]. In material and chemical science, it is studied as a method to
produce or functionalize materials [2]. Aerosols, as well as particulate matter or suspended
particulate matter (PMx), impact atmospheric pollution, the climate, and human health,
either directly or indirectly. For these reasons, the number of publications on atmospheric
aerosols has dramatically increased in the last decade [3]. Aerosols play an important
role in environmental pollution, and the measurements of the particles’ sizes or their
chemical composition are crucial for understanding atmospheric pollution dynamics [4–6].
Knowledge of aerosols is continually deepening thanks to scientific research, but concepts
such as deliquescence transition, efflorescence, coagulation, nucleation, or hygroscopic
growth of salt are not fully understood when the size is submicrometric [7].

In atmospheric pollution monitoring (or PM), aerosols are among the most important
pollutants, and several devices are available to perform automatic measurements, such as
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scanning mobility particle sizer (SMPS), quartz crystal microbalance cascade, beta gauge,
and other vibrating devices [8–10]. While these devices provide accurate and reproducible
responses, they often occupy significant volumes, and their management costs are not
sustainable for use in large-scale mapping applications. In fact, most of these mentioned
measurement systems require a sampling system upstream of the instrument to treat the
air sample (e.g., dryers, thermal conditioning sampler, filters, etc.), which cannot be easily
miniaturized and have a non-negligible impact on costs and energy consumption [11,12].
For these reasons, the research community is addressing the study and development
of low-cost sensors or sensor systems [13]. These devices, with their small size, low
cost, and low power consumption, are suitable for application scenarios where a large
number of sampling points are needed [14–16]. Optical particle counters (OPCs) and
quartz crystal microbalances (QCMs) are low-cost devices widely employed to measure
and study aerosols. OPCs count particles with an equivalent diameter in certain ranges
using the laser scattering method [17]. QCMs measure the thickness or mass of collected
substance on its electrode surface by ultrasonic vibration of the piezoelectric crystal [18–20].
These devices are widely used in biosensing, medical, space, and pollutant monitoring
applications [21–24].

As described by Görner et al., a well-calibrated OPC is suitable for aerosol mass
concentration monitoring in the workplace [25]. Additionally, in a paper by Hand, Jenny L.,
and Sonia M. Kreidenweis, OPC data were used to implement a new data analysis method
to retrieve the refractive index and effective density from aerosol size distribution data [26].

However, measurements carried out only by OPC can be influenced by the different
density or composition of the aerosol, particularly when data about mass concentration are
desirable. In fact, to calculate the mass concentration of aerosols, the OPC uses a fixed par-
ticle mass density value that can vary depending on the aerosol composition [27,28]. QCM
and OPC are powerful tools that can provide valuable information about the properties and
behaviour of particles in a wide range of applications. Using them together can provide
even more comprehensive insights. As described in the research paper by Kyeong-Rak
Lee et al. [29], an OPC and QCM can be used together in certain applications to provide
complementary information about the properties and behaviour of particles.

In this work, we propose combining a low-cost OPC with a modified QCM and
integrating a microheater and a microresistance temperature detector on its surface (H-
QCM) as reported in our previous paper [30]. The developed sensor system produces
both particle counting and the possibility of obtaining information regarding the presence
of liquid or solid phases in the analyzed aerosol sample. In particular, we tested the
developed system with aerosolized saline solutions of sodium chloride (NaCl), with three
decreasing concentrations of salt and three electronic cigarette solutions (e-liquid), with
different concentrations of propylene glycol and glycerin mixtures. The results highlighted
the possibility of using the QCM combined with OPC to determine the presence or absence
of a solid phase in the tested aerosol.

This improvement could be applied in real cases where the measurement of aerosols
(or PM) may not be entirely reliable using only low-cost OPCs, without any kind of sample
processing system, due to the aerosol composition or interference agents such as fog or oil
vapours.

2. Methods and Materials

2.1. Solid and Liquid Aerosols

An aerosol is a colloidal suspension of fine solid or liquid particles in a gas [6,31].
An example of a solid aerosol is aerosol salt. Specifically, NaCl aerosol refers to a type of
aerosol containing sodium chloride particles generated via various methods such as salt
sprays, nebulizers, or humidifiers. These particles vary in size, ranging from fractions of a
sub-micrometre to a few millimetres, and they may be uniformly or unevenly distributed
throughout the gas.
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The salty particles of NaCl easily absorb moisture from the air, making them suscepti-
ble to deliquescence and efflorescence. These phenomena occur when the salty particles,
now in a wet form, either dissolve into a liquid solution (deliquescence) or leave behind
salt crystals on a solid surface as the water evaporates (efflorescence). The incidence of
these dynamics depends on factors like humidity and temperature [32].

Instead, an example of a liquid aerosol is the aerosolization of a mixture of propy-
lene glycol (PG) and vegetable glycerin (VG), commonly used as e-liquid for electronic
cigarettes. This mixture (when vaporized) produces an aerosol that users inhale. Properties
of this aerosol depend on the ratio of PG to VG in the e-liquid. PG produces small liquid
particles and less dense aerosol than VG, while VG produces bigger particles and a denser
aerosol [33,34].

The OPC is able to detect particles using light scattering and faces a fundamental
limitation in differentiating the physical state of the particles. While it provides valuable
information about particle size in aerosols, it cannot distinguish between solid and liquid
particles solely based on light scattering [25,29].

To address this limitation, especially for the study of liquid and saline aerosols, a
combination of the OPC and the H-QCM [30,35] could be very interesting.

The salt particles may initially be found in an aerosol phase, and as soon as they come
into contact with the QCM surface, they may undergo phase transition and form a solid
deposit.

According to Sauerbrey’s Equation (1), the deposition of salt particles on the QCM
surface can lead to an increase in the mass of the QCM, which can be measured as a change
in the resonant frequency of the crystal as follows:

Δ f = − 2 f o2

A √vq ρq
Δm = −

Cf

A
Δm (1)

Δf refers to the frequency shift due to the changing mass Δm; Cf represents a constant,
where f 0 is the fundamental resonating frequency; vq is the velocity of propagation of the
transverse wave in the plane of the quartz; ρq is the density of the quartz; and A is the
effective area of the electrode [36].

The deposition of aerosol salt on an H-QCM can be influenced by various factors,
including the concentration and size distribution of the salt particles in the aerosol, the
relative humidity of the air, and the temperature of the H-QCM surface [35]. In fact,
considering these parameters, phenomena like efflorescence and deliquescence could
potentially occur.

Propylene glycol (PG) and vegetable glycerin (VG) can be mixed to produce a liquid
aerosol that is detectable on a quartz crystal microbalance (QCM). In this case, detecting
liquid particulate matter introduces additional considerations. Liquids may exhibit be-
haviours such as wetting or adherence, affecting how they distribute and adhere to the
QCM surface. This can result in a more nuanced change in mass compared to solid particles.
Additionally, it is important to note that under certain conditions, the liquid aerosol could
evaporate from the QCM surface.

While the core principles of mass detection can be applied to both solid and liquid
particulate matter on a QCM [37], their specific dynamics and interactions can differ.
Understanding these subtleties is crucial for interpreting QCM data accurately in studies
involving both solid and liquid aerosols to obtain analytical results.

2.2. Reagents and Samples Preparation

The chemicals used to prepare the samples, which included two different sets of
solutions, were vegetable glycerol (VG, CAS No. 56-81-5), propylene glycol (PG, CAS No.
57-55-6), and sodium chloride (NaCl, CAS No. 7647-14-5) purchased from Merck (Darm-
stadt, Germany). A stock solution of NaCl (0.15 M, approximately 0.90%) at a physiological
concentration (NaClphy) was prepared by weighing 2.2104 g of NaCl in 250 mL of distilled
water (H2Odist) as the solvent. Two additional solutions were prepared by diluting the
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stock solution by half (NaCl 1:2, 0.075 M) and tenfold (NaCl 1:10, 0.015 M), respectively.
After aerosolization, this set of solutions (NaClphy, NaCl1:2, NaCl1:10) simulated saline
aerosols, where fine particles of NaCl were suspended in the air at different concentrations.

In addition, another set of three solutions was prepared using different ratios of
propylene glycol (PG) and glycerol (VG): liq80:20, liq50:50, and liq20:80 of PG and VG,
respectively. This time, liquid aerosols were generated, where fine particles of PG:VG were
suspended in the air. To summarize, six samples were prepared, three of which are related
to solid aerosol (NaClphy, NaCl1:2, and NaCl1:10) and three of which are related to liquid
aerosol (liq80:20, liq50:50, and liq20:80). In order to observe the differences between liquid
droplets and solid particulate in the samples, a solution of NaCl and one of e-liquid were
nebulized over an optically polished quartz slice. Details of the nebulization system will be
described in the following paragraph. Using an optical microscope (Leica DM2700 M, By
Leica, Milan, Italy) with a 100×/0.85 magnification objective and a 22 mm field of view,
liquid droplets of PG:VG were observed (Figure 1a), while solid particles of NaCl were
observed (Figure 1b) after aerosolization on a quartz crystal slice. In particular, the photo
on the right was captured after a heating treatment of the nebulized sample quartz. In fact,
without heating, even the sample with NaCl appeared in the form of liquid droplets.

Figure 1. Microscope images of liquid droplets of PG:VG (a) and solid particles of NaCl deposited
over quartz crystal slice after aerosolization (b).

2.3. Measurement Setup

For these experiments, an OPC (OPC-N2 by Alphasense Ltd., Great Notley, Braintree
Essex CM77 7AA, Rayne, UK) and an H-QCM were used together to provide complemen-
tary information about the properties of aerosols (e.g., liquid or solid phases). Figure 2
reports the scheme of the measurement setup used to perform all tests presented (Figure S1
in the Supplementary Materials shows a photograph of the setup).

Figure 2. Measurement setup schematic block. The nebulizer was based on ultrasonic vibrating mesh,
and the OPC outlet was connected to H-QCM by a suitable adapter (H-QCM chamber).

Samples were aerosolized using a piezo vibrating mesh nebulizer (1100 holes, 6 um of
diameter, and 110 kHz of vibrating frequency) [38] placed inside a chamber (generation
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chamber) and controlled by a nebulizer control board. The OPC withdrew an aerosol
sample (for a duration of 1 min) from the generation chamber using its integrated fan.
Following this, the sampled aerosol reached the H-QCM connected to the output of the
OPC by a suitable mechanical adapter (H-QCM chamber). The OPC data and the resonant
frequency of H-QCM were acquired by the acquisition and control board. Finally, a PC unit
was used to store all the data. The frequency shift ΔF = f (t) − f 0 was used to signify output
data of H-QCM where f 0 was the resonant frequency obtained without any mass deposition.
Figure S2 in the Supplementary Materials shows a detailed view of the developed sensor
system.

As previously described, the H-QCM, based on AT-cut quartz crystal, was used to
measure the mass of the aerosol sampled by OPC. At the same time, the integrated heater
of the H-QCM heated the collected mass on the surface of the sensor in order to discern the
aerosol characteristics. The microheater was a double omega-shaped thin film (one on the
top and one on the bottom of the crystal) that was connected to a temperature controller
that measured the temperature and regulated the power supplied. The temperature of
the heater was calculated by the controller using a calibration curve concerning the heater
electrical resistance and temperature (measured by several micro-thermocouples during the
calibration activities) [39,40]. During the heating, the crystal frequency changed following
the behaviour of AT-cut crystal, and then, after the heating, the frequency returned to
the previous value [41]. The graph reported in Figure S3 of the Supplementary Materials
illustrates the frequency shift observed at various temperatures provided by the integrated
heater without deposited mass. The steps of temperature were set by the acquisition and
control board to perform the calibration. A maximum value of Δ f = 2909 Hz was reached
for T= 180 ◦C when 1.1 W of power was provided to the heater in the presence of an air
flux produced by the OPC fan (dynamic behaviour of the frequency during the heating
step is reported in the Supplementary Materials in Figure S4).

3. Results and Discussions

The following results were obtained during the test following the nebulization of
saline aerosol (solid aerosol), and PG/VG aerosol (liquid aerosol) will be presented. In
particular, in Sections 3.1 and 3.3, we reported the data obtained from the OPC, and in
Sections 3.2 and 3.4, the results concerning the H-QCM.

3.1. Measurements of the Saline Aerosol with OPC

When an aerosol containing salt particles is introduced to an OPC, the salt particles
may be detected and counted as individual particles. The detection of salt particles depends
on several factors including the size and concentration of the particles and the refractive
index. Salt particles typically have a high refractive index compared to other aerosol
particles, which can make them more easily detectable by an OPC [42,43].

The Count Mean Diameter (CMD) was derived from measurements taken with the
OPC for the three solutions; it can be obtained by calculating a weighted average based
on the number of particles in each size range. Then, CMD provides an estimation of the
average size of saline aerosol particles, allowing us to gain a better understanding of the
particle size distribution [44].

The counts related to the three NaCl solutions were plotted (Figure 3). Specifically,
on the y-axis, normalized counts are plotted, and on the x-axis, the bins corresponding
to different diameters are represented (Figure S5 of the Supplementary Materials reports
an example of the counts as a function of the aerodynamic diameter (d) of NaCl 1:10 and
distilled water, H2Odist).
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Figure 3. Normalized graph of counts as a function of the aerodynamic diameter (d) of NaCl particles
with different concentrations (NaClphy, NaCl1:2, and NaCl1:10).

The blue histogram represents the size distribution of particles in the NaCl physi-
ological solution where the calculated CMD is 2.90 ± 0.45 μm for this sample. The red
histogram refers to the dimensional distribution of the NaCl1:2 solution, which has half the
concentration compared to the physiological one. In this case, a CMD of 2.83 ± 0.44 μm was
obtained. The graph of the latest solution diluted with a 1:10 ratio to the physiological one
(NaCl1:10) is represented by the green histogram. The calculated CMD is 1.75 ± 0.39 μm,
and this value slightly deviates from the first two, considering experimental error as well.
This result may be related to the dilution of this latest solution compared to the initial one.

Both NaClphy and NaCl1:2 exhibit a CMD value that is comparable within experimental
error, indicating a comparable size distribution. The particles in the more concentrated
solution may initially have larger sizes due to the higher solute concentration. Consequently,
during nebulization, the OPC may detect both larger and smaller particles, resulting in a
broader size distribution. Conversely, in the case of the diluted solution, the particles may
be initially smaller. As the droplets fragment during nebulization, predominantly smaller
particles may be generated. The OPC is likely to primarily detect smaller particles, leading
to a size distribution that is more concentrated around smaller diameters.

3.2. Measurements of the Saline Aerosol with H-QCM

The H-QCM offers a complementary approach, measuring frequency variations during
the collection of aerosols to discriminate between solid and liquid phases. The collection of
saline aerosol particles on its electrode induces a frequency shift correlated to the added
mass, as shown in Equation (1). The H-QCM provides a real-time and sensitive method
for monitoring the dynamics of saline aerosol particles. Furthermore, the heating process
facilitated by the integrated heater enables the evaporation of the solvent (H2Odist) from
the prepared solutions. This allows for the correlation of the frequency shift exclusively
to the solid mass deposited on the quartz. This approach allows for the discrimination
between the presence of solid and liquid particulates on the surface.

Figure 4 shows the frequency shift chronogram obtained for the NaClphy sample.
Before turning on the heater, the observed Δf relates to an aerosol deposition, a mix of
solid and liquid phases. In this state, the signal does not settle, unlike after heating. This
could be due to the dynamic processes on the H-QCM surface, where both solid NaCl and
liquid H2O are present. In fact, when salt arrives in the form of an aerosol, it will not be in
its solid crystalline state but will be surrounded by a certain concentration of water [45].
This condition can result in surface dynamics that delay the stabilization of the signal. For
instance, phenomena such as deliquescence and aggregation, where salt particles may
cluster together or adsorb water on the surface, can occur. This can result in the formation
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of more complex structures or the creation of a thicker and more homogeneous layer.
Furthermore, variations in surface tension may still occur, affecting the water’s ability to
wet the surface or influencing other behaviours related to surface properties [46].

Figure 4. The chronogram of NaCl physiological aerosol shows two consecutive depositions before
and after heating on a H-QCM.

After three minutes, the surface heater was turned on, resulting in a rapid positive
variation in Δf and was turned off after two minutes (rapid decreasing and stabilizing
at a frequency of Δf = 354 Hz). The reached temperature resulted in the evaporation of
water, and NaCl was present as a solid crystalline form. During this process, the compound
may undergo changes in its crystal structure. The phenomenon of efflorescence is often
associated with the evaporation of water containing dissolved salts, which leads to the
crystallization of salts on the surface of the material. The frequency shift remains stable
after the heating cycle. In fact, when heated, the bound water is released in the form of
vapour, leaving behind anhydrous sodium chloride, which is devoid of water. A second
measurement was performed consecutively, and once again, it was possible to observe the
first and second rapid variation in the frequency following the activation and deactivation
of the heater, stabilizing at a frequency of Δf = 301 Hz.

It is possible to note that before heating cycles in both measurements, the frequency
shift is smaller compared to that observed after heating. This could be correlated with the
sizes of the salt crystals that initially contain hydration water. The dimensions of some
crystals might be larger than 2 microns and therefore may not be detected by the 10 MHz
QCM, as discussed in our previous article [47]. Conversely, after heating, a larger frequency
shift suggests the evaporation of H2O from the salt particle, resulting in smaller dimensions
that can be detected by the QCM. This is consistent with the results obtained from the OPC,
where the CMD for NaClphy was measured to be 2.90 ± 0.45 μm.

Figures S6 and S7 of the Supplementary Materials present examples of chronograms
of the NaCl1:2 and NaCl1:10 saline solutions. The behaviour of the NaCl1:2 solution is
entirely analogous to that of the physiological solution, including the dimensional effect,
consistent with the values obtained from the calculation of the CMD (2.90 μm and 2.83 μm,
respectively). For NaCl1:10 aerosols, the majority of the crystals are presumably below
2 μm, as detected by measurements with the OPC, resulting in a CMD of 1.75 μm. For
this reason, the decrease in Δf is related to the evaporation of water and, consequently,
to the loss of mass from the quartz crystal surface (Equation (1)). The integration of the
OPC and H-QCM enhances our understanding of the particulate matter an aerosol is
composed of. The OPC, which relies on light scattering, may encounter challenges when
dealing with salt particles, as discussed in the preceding paragraphs regarding humidity
and aggregation phenomena. Meanwhile, the H-QCM, with its heated surface, provides
real-time sensitivity and the ability to discriminate between solid and liquid phases. The
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analysis of NaCl solutions emphasizes OPC’s capability to detect diverse particle sizes,
complemented by the H-QCM’s observations of frequency changes during nebulization
and particle dynamics.

3.3. Measurements of the Liquid Aerosol with OPC

When a liquid aerosol passes through the OPC, the droplets interact with the laser
beam, operating similarly to when dealing with saline aerosols.

This implies that measurements obtained using an OPC do not discriminate between
aerosol phases. To obtain data that closely represents real conditions, a correction for the
density of the different particulate matter detected is necessary. Indeed, one of the main
limitations of the OPC is that particles of different substances may have different densities.
This means that even if two particles have the same optical diameter, they could have
different volumes or aerodynamic masses due to their density [48]. Also, in this case, the
integration of an OPC with a H-QCM could enhance the understanding of the aerosol’s
characteristics.

In Figure 5, the green histogram shows the size distribution of the PG/VG liquid
aerosol in an 80:20 ratio, with a found CMD of 0.90 ± 0.17 μm. The red histogram represents
the dimensional distribution of the 50:50 PG/VG, resulting in a CMD of 1.01 ± 0.15 μm. In
the last case, the blue histogram illustrates the normalized count distribution of the PG/VG
20:80, yielding a CMD of 1.13 ± 0.15 μm. The dimensional distribution is nearly similar for
all three samples with different ratios of PG/VG, considering the obtained CMD value and
the calculated errors.

Figure 5. Normalized graph of counts as a function of the aerodynamic diameter (d) of e-liquid
droplets with different PG/VG ratios (liq80:20, liq50:50, liq20:80).

3.4. Measurements of the Liquid Aerosol with QCM

The liquid aerosol induces a frequency shift of H-QCM related to the deposition of
mass, although the liquid aerosol is expected to undergo natural evaporation (at room
temperature) from the crystal surface over a specific time frame. However, by utilizing
the integrated heater, it becomes possible to accelerate the evaporation of liquid with high
evaporation temperature. This allows us to discern whether the phase of an aerosol detected
by the H-QCM is solid or liquid, a distinction that is not achievable with a standalone OPC
(Section 3.3).

In Figure 6, we present the resulting chronogram of two distinct depositions before
and after heating. The aerosol generated within the nebulization chamber was aspirated for
one minute by the pump of the OPC. Subsequently, the aerosol flow was directed onto the
surface of the QCM. After three minutes of stabilizing the frequency shift, the heater was
activated, reaching a temperature of about 170 ◦C in two minutes. This was followed by a
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waiting period of five minutes to ensure signal stabilization. The experiment reveals that
before activating the heater, a frequency shift occurs that might be mistakenly associated
with the presence of solid particulate (Δf �= 0). However, during the heating process, the
liquid aerosol droplets evaporate from the surface, restoring the initial resonance frequency.
We obtained the same behaviour for the liq80:20 and liq20:80 samples. Figures S8 and S9
in Supplementary Materials show examples of chronograms obtained for the other two
PG/VG liquid solutions. Table 1 summarizes the results of experiments of saline and liquid
aerosols. In particular, the table reports average values and deviations obtained by several
repetitions of measurements.

Figure 6. The chronogram of PG/VG 50:50 shows two consecutive depositions before and after
heating on a H-QCM.

Table 1. Summary of the average frequency shifts for saline and liquid aerosols.

Before Heating
Δf (Hz)

After Heating
Δf (Hz)

CMD (μm)

NaCl phy 219 ± 105 358 ± 40 2.90 ± 0.45
NaCl 1:2 112 ± 125 194 ± 21 2.83 ± 0.44
NaCl 1:10 381 ± 258 96 ± 30 1.75 ± 0.39

liq 80:20 161 ± 5 / 0.90 ± 0.17
liq 50:50 337 ± 13 / 1.01 ± 0.15
liq 20:80 441 ± 29 / 1.13 ± 0.15

Regarding the saline aerosol, it is evident that before heating, the average value of
frequency shift (Δ f ) does not follow the trend of salt concentration in the solutions. In fact,
the Δ f should be higher for the more concentrated saline solution and lower for the one
diluted by a factor of ten. Additionally, the average frequency value shows a significant
standard deviation, reflecting the possibility of different surface dynamics processes at the
interface (e.g., the crystal electrode surface and sample). These dynamics could contribute
to lower reproducibility of the deposition when both solid and liquid phases are present.

After heating cycles, the Δ f values not only align with the saline concentration trend
in different solutions (NaCl phy > NaCl 1:2 > NaCl 1:10) but also exhibit a lower standard
deviation compared to the previous measurements. This indicates improved reproducibility
of measurements after heating cycles.

In the case of liquid aerosols, the observed Δ f values might be mistakenly attributed
to the measurements of solid particles. However, after heating, restoration of the initial
frequency indicates the absence of residual mass on the surface of the H-QCM, associated
with the evaporation of the liquid. This information obtained by using H-QCM could be
used as important feedback for OPC measurements. In simpler terms, if, after heating cycles,
the frequency shift persists, the OPC data are correct and are not affected by the presence of
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a liquid phase of aerosol. In future work, we will analyze the performances of the H-QCM
(e.g., sensitivity, the limit of detection, reproducibility, etc.) to assess the possibility of
correcting the OPC output data when expressed in terms of mass concentration (μg/m3).

The proposed OPC+H-QCM device could be employed in the field of PM measure-
ment, particularly in environments with marine aerosol or fog, which limits the use of
simple OPCs without the use of an air sample treatment system before performing the
count. Moreover, such systems require minimal space and energy for their operation.

In the chemical processing industry, exhaust fumes from process reactor stacks simul-
taneously contain aerosols with different phases. The OPC+H-QCM device could be useful
for analyzing these fumes, enabling a thermogravimetric analysis (TGA) alongside total
particulate matter dimensional counting.

Although this study presents preliminary results, the proposed tool could be useful
for analyzing the fumes produced by e-cigarettes. It could help in identifying solid phases
inhaled by users and correlating the quantity and sizes of the particles to some potential
pathologies.

4. Conclusions

This study investigated the responses of an OPC coupled with an H-QCM to saline and
liquid aerosols. Regarding the saline aerosol, the OPC demonstrated that the CMD values
for NaClphy and NaCl 1:2 were comparable within experimental error, suggesting similar
size distributions, while NaCl 1:10 exhibited a slightly different trend, potentially attributed
to dilution effects. The H-QCM, focusing on the saline aerosol, elucidated the dynamics
during and after heating. In particular before heating, the frequency shifts suggested the
coexistence of solid and liquid phases, influenced by surface phenomena such as deliques-
cence and aggregation. After heating, the separation of solid and liquid phases became
evident, resulting in improved reproducibility in frequency shifts and allowing for a clearer
interpretation of the deposition process. In the case of liquid aerosols (PG/VG mixtures),
the OPC provided consistent CMD values across different ratios, emphasizing the need
for density corrections when OPC is used alone. Conversely, the H-QCM demonstrated
its ability to discriminate between solid and liquid phases. Overall, this study highlights
the complementary strengths of OPC and H-QCM in aerosol analysis. While the OPC
is utilized for size distribution characterization, the H-QCM provides real-time insights
into phase discrimination aerosols. These findings contribute to the refinement of aerosol
measurement using a low-cost sensor, fostering a more comprehensive understanding.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/s24082500/s1. Figure S1. Measurement setup with the nebulization
chamber and the coupled OPC+H-QCM system. Figure S2. Photograph of the developed sensor
system (a). The H-QCM was fixed by a support in the H-QCM measurement chamber (b). Figure S3.
H-QCM frequency shifts versus temperature (12 increasing steps) without deposited mass. The
frequency and temperature errors were 1 Hz and 0.1 ◦C, respectively. Figure S4. The H-QCM
exhibited frequency variations as temperature increased, beginning from 22 ◦C. At the maximum
temperature reached, approximately 181 ◦C, the frequency shift was about 3000 Hz. Figure S5. Counts
as a function of the aerodynamic diameter (d) of NaCl 1:10 and distilled water (H2Odist). Figure S6.
Chronogram of frequency shift due to two consecutive NaCl1:2 aerosol measurements. In particular,
the graph highlighted the behaviour before and after heating cycles. Figure S7. Chronogram of
frequency shift due to two consecutive NaCl1:10 aerosol measurements. In particular, the graph
highlighted the behaviour before and after heating cycles. Figure S8. Chronogram of frequency
shift due to two consecutive liq80:20 aerosol measurements. In particular, the graph highlighted the
behaviour before and after heating cycles. Figure S9. Chronogram of frequency shift due to two
consecutive liq20:80 aerosol measurements. In particular, the graph highlighted the behavior before
and after heating cycles.
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Abstract: This paper presents a suitably general model for resistive displacement sensors where
the model parameters depend on the current sensor conditions, thereby capturing wearout and
failure, and proposes a novel fault detection method that can be seamlessly applied during sensor
operation, providing self-diagnostic capabilities. On the basis of the estimation of model parameters,
an innovative self-compensation method is derived to increase the accuracy of sensors subject to
progressive wearout. The proposed model and methods have been validated by both numerical
simulations and experimental tests on two real resistive displacement sensors, placed in undamaged
and faulty conditions, respectively. The fault detection method has shown an accuracy of 97.2%.
The position estimation error is < ±0.2% of the full-scale span for the undamaged sensor, while
the self-compensation method successfully reduces the position estimation error from ±15% to
approximately ±2% of the full-scale span for the faulty sensor.

Keywords: smart sensor; self-validating sensor; resistive displacement sensors

1. Introduction

Displacement sensors are widely used in different applications and fields, such as
industrial [1,2], medical [3,4] and automotive [5,6]. Within the industrial field, the role
of displacement sensors in control applications is gaining importance since the degree of
industrial automation is continuously growing. In this context, there is a constant interest
in displacement sensors with increasing intelligence, robust measurement methods, and
improved performances [7]. In particular, sensor reliability in producing accurate mea-
surement data is crucial. Augmenting sensor diagnostic capabilities plays an increasingly
important role, as undetected failures may negatively affect the industrial process into
which the sensor is inserted, resulting in efficiency loss, downtimes or even threatening
life safety [8].

Several solutions can be considered to prevent sensor failure and enhance sensor
diagnostic coverage. A first approach is the adoption of a Preventive Maintenance (PM)
policy, which implies sensor calibration and maintenance activities run on a regular time
basis to avoid failures before they occur [9]. Determining in advance when a sensor will
enter the wearout phase is challenging, as predictions typically rely on a theoretical failure
rate rather than on the current sensor conditions. While PM can reduce unexpected process
downtime, it can lead to costly and unnecessary procedures and repairs.

A second possible approach involves employing Fault Detection and Identification
(FDI) theory [10–13]. FDI techniques recognize system faults in process components
by monitoring system inputs and outputs in order to generate residuals highlighting
discrepancies. Thresholds, determined through experimental tests, aid in fault symptom
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identification. Analytical redundancy techniques [14–16] detect and identify sensor failures
from the exploitation of analytical models built on a specific process, which includes
actuators and plants as well as sensors. However, FDI techniques require a deep knowledge
of the entire process and a significant effort in model development. Furthermore, the model
must be updated as the process changes. The economic effort conveyed in the model design
is not easily amortized since the model is related to a specific process. Moreover, technical
staff must be available for maintaining and updating the model as the process evolves
over time.

A third possible approach to detect and identify sensor faults is through the use of
Machine Learning (ML) techniques [17–19]. The ML models are trained on sensor data to
identify patterns or features indicative of faults. The performance of ML techniques are
dependent on the quality and quantity of the available training data. In fact, the training
data could be limited, biased, or not representative of all possible faults, which can limit the
detectable faults. Moreover, the ML approach mainly focuses on detecting the sensor faults
through certain time and/or frequency domain signal characteristic features. In particular,
faults can be identified by changes in signal behavior, e.g., bias, noise, spikes, rather than
by identifying underlying sensor-specific causes for the fault [20].

An alternative approach could be the adoption of smart sensors inherently capable of
providing self-diagnostic information related to the alteration of their conditions due to
incipient wearout or failure. The diagnostic information provided might be exploited by
suitable Predictive Maintenance (PdM) techniques to optimize sensor maintenance schedul-
ing and minimize plant downtime [21]. As opposed to PM approaches, self-diagnostic
sensors could avoid both unnecessary maintenance costs and plant downtime due to unde-
tected sensor failures. Moreover, in contrast to many FDI techniques, self-diagnostic sensors
place the focus within the sensor itself to make it a more reliable component, leaving out
the additional system parts of a given industrial process. Therefore, in principle, a generic
process can be freely modified without requiring any change in the diagnostic techniques
embedded in the self-diagnostic sensor. As such, the research on displacement sensors
equipped with self-diagnostic functionalities is a topic of relevant importance, which, how-
ever, has been explored to a somewhat limited extent. In particular, resistive displacement
sensors would benefit from solutions for embedding self-diagnostic capabilities. How-
ever, to the authors’ best knowledge, the current state of the art does not yet adequately
cover the development of a resistive displacement sensor model for self-diagnostic and
self-compensation purposes.

In this context, this work innovatively proposes a simple yet effective model for a
generic resistive linear displacement sensor where the model parameters directly depend on
the current sensor conditions, thereby capturing wearout, damaging, and failure occurrence.
Furthermore, a method for the continuous estimation of the model parameters is presented.
The method originally offers the advantage that it can be applied while the sensor is kept
in operation online, i.e., without functionally disconnecting the sensor from the monitored
process. The estimated parameters are exploited to detect failures by the proposed fault
detection technique, which aims at detecting faults by identifying the underlying sensor-
specific cause. The continuously updated parameters are used by the self-compensation
method to compensate for the position estimation error arising over time due to progressive
wearout and cumulative damage. This paper considerably extends the preliminary work
previously presented [22], deepening the study and analysis of both the model for a resistive
linear displacement sensor and related self-diagnostic and self-compensation methods.

A schematic comparison between the most common methods to detect and identify
sensor faults and the approach proposed in this work is reported in Table 1.

The paper is organized as follows. A generic resistive linear displacement sensor
model along with the proposed parameter estimation method, method for compensating
position estimation errors, and fault detection method are described in Section 2. In
Section 3 the numerical simulations carried out and the experimental setup arranged to test
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the proposed model and methods are described and the results are reported. The obtained
experimental results are discussed in Section 4. The conclusions are drawn in Section 5.

Table 1. Schematic comparison of the most common methods to detect and identify sensor faults and
the approach proposed in this work.

Approach Description Properties

Preventive Maintenance Regular maintenance based on theoretical failure
rate to avoid failures before they occur. It is costly and prone to cause unnecessary repairs.

Analytical redundancy techniques Detection and identification of sensor failures
from models built on a specific process.

It requires deep knowledge of the entire process. The
model must be updated as the process changes.

Machine Learning Detection and identification of sensor faults
through models trained on sensor data.

Faults are identified by changes in certain signal
characteristic features rather than by underlying

sensor-specific causes.

Method proposed in this work
Detection and identification of sensor failures

from models built on the sensor itself,
independently of the processes.

It can be cost effective and the effort for model
development can be easily amortized. It offers

augmented sensor diagnostic coverage.

2. Materials and Methods

2.1. Resistive Displacement Sensor Model

Resistive displacement sensors measure the linear or angular displacement of an
object by sensing a resistance change related to the object position variation. With specific
reference to linear displacement sensors along the direction x, as shown in Figure 1a, the
sensing element is essentially composed of a resistive track, a sliding cursor, which is
constrained to move along the longitudinal axis of the sensor, and a conductive track. The
resistive and conductive tracks are electrically connected to each other through the sliding
cursor, which is mechanically linked to the moving object under measurement.

(a) (b)

Figure 1. (a) Schematization of a generic resistive linear displacement sensor with (b) the correspond-
ing resistive circuit modeling.

The most common causes of failure for linear sensors include the following:

• Wear: sensor components like the sliding cursor and the resistive/conductive track
can wear out or become contaminated with dust, dirt, or other debris, causing the
sensor to malfunction or eventually fail.

• Mechanical damage: shock, vibrations or impacts can damage or even break the
sliding cursor or the resistive/conductive track.

• Environmental factors: the sensor can be affected by temperature changes or gra-
dients, pressure variations impairing sensor sealing, moisture infiltration, or other
causes producing changes in resistance, which leads to measurement errors up to
complete failure.

• Aging: the electrical properties of materials forming the resistive/conductive track and
the cursor might change over time, causing sensor resistance drift or output instability,
leading to inaccurate measurements up to an unacceptable level.

Considering the above-mentioned failure modes, a tailored sensor model is presented
below to provide information about the actual sensor conditions and its possible alterations
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over time. As shown in Figure 1b, the sensing element is modeled by a resistive circuit
composed of three resistors. The resistor Rc represents the contact resistance between the
sliding cursor and the resistive track. The resistors Rp1 and Rp2 represent the resistive track
resistances originated from its partitioning caused by the sliding cursor according to its
position. Resistances Rp1 and Rp2 as a function of the sliding cursor position x are given by
the following:

Rp1 = (ρ/S)x = ξx (1)

Rp2 = (ρ/S)(L − x) = ξ(L − x) (2)

where ρ, S, L, and ξ = ρ/S are the electrical resistivity, section area, length, and resistance
per unit length of the resistive track, respectively. The conductive track is assumed to have
zero resistance.

The resistances measured between the sensor terminal pairs (1, 2), (2, 3), and (1, 3) can
be expressed as follows:

R12 = Rp1 + Rc = ξx + Rc (3)

R23 = Rc + Rp2 = Rc + ξ(L − x) (4)

R13 = Rp1 + Rp2 = ξx + ξ(L − x) = ξL (5)

Equations (3) and (4) can be combined obtaining the following:

Σ = R12 + R23 = ξx +Rc + Rc + ξ(L − x) = 2Rc + ξL (6)

where the term Σ is independent from the sliding cursor position x at which the resistances
R12 and R23 are measured.

Therefore, the sensor model is expressed by combining Equations (5) and (6) in matrix
form as follows:

Ap = R →
[

2 L
0 L

][
Rc
ξ

]
=

[
Σ

R13

]
, (7a)

p = A−1R →
[

Rc
ξ

]
=

[ 1
2 Σ − 1

2 R13
1
L R13

]
=

[ 1
2 (R12 + R23)− 1

2 R13
1
L R13

]
(7b)

where the vector R is formed by the resistance terms Σ and R13, the vector p includes the
sensor parameters Rc and ξ, and the square matrix A only depends on the resistive track
length L. Notably, the linear model of Equation (7a), expressed in its inverted form in
Equation (7b), is independent from the measurand displacement x. As such, it advanta-
geously allows to estimate p by only knowing the resistive track length L and the resistances
R12, R23, and R13 measured at any unknown cursor position x.

The parameters Rc and ξ offer the advantage to directly relate the measurable sensor
electrical characteristics with the elements that are most susceptible to wear and faults,
i.e., the sliding cursor and resistive track [23]. Although more parameters could be taken
into consideration to obtain a more detailed sensor model, Rc and ξ already allow the
identification of the most common causes of wearout and failure for resistive displacement
sensors, at the same time avoiding excessive model complexity. In addition, the estimation
of Rc and ξ can be advantageously performed without the knowledge of the cursor position
x, allowing their continuous estimation during sensor normal operation.

The parameters p are used to detect alterations in sensor conditions up to sensor faults.
For example, the wearout caused by the contact force between the sliding cursor and the
resistive track can be considered. Repeated cycles of slides and/or an excessive contact
force leads to a reduction in resistive track thickness by abrasion, and in turn a reduction in
section S, with possible overheating and local oxidation and wear [24]. Compared to the
initial conditions of a brand-new sensor, the reduction in S implies an increase in ξ. The
resistive element wear debris deposited between the sliding cursor and the resistive element
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increases the contact resistance Rc because the contact area decreases, and the debris acts as
an insulator. In addition, creep and fatigue in the sliding cursor brush cause the contact
force to decrease, again increasing Rc [23,25]. With respect to possible mechanical damage,
the breakout of the sliding cursor opens the electrical contact between the resistive and
conductive tracks, leading R12 and R23 to infinity, as well as Rc. Other possible mechanical
damages could be cracks in the resistive track, which typically increase the resistance
R13 and thus ξ. Additionally, the resistive track ages, leading to a change in resistivity ρ,
which reflects in a change of ξ. Meanwhile, the slider cursor ages by oxidizing, causing
Rc to increase.

The model assumes operation at constant temperature. Such an assumption is not a
substantial limitation in practice, as in the majority of industrial applications, the sensor,
after a thermal transient at the machine start-up, works at a reasonably constant temperature
thereof. For this reason, though track resistivity may in general depend on temperature, the
proposed model can be conveniently restricted to thermal steady-state operation without
suffering unacceptable inaccuracies.

Sensor condition alterations and failures are detected by monitoring the evolution
of Rc and ξ with respect to their initial values, i.e., those of a brand-new undamaged
sensor. Initial values of Rc and ξ are design parameters subject to the typical variability
of the manufacturing process. In the first analysis, the detection of fault conditions can
be accomplished by comparing each parameter with a respective nominal value taken
as the alarm threshold. Due to product and process variability, the definition of a priori
nominal alarm threshold could be ineffective for diagnostic monitoring of sensor con-
ditions. For this reason, it is proposed to identify specific alarm thresholds for each
individual sensor.

2.2. Parameter Estimation

To determine the initial parameters and monitor their evolution during the sensor
operation, the proposed estimation method derives the parameters of the vector p online,
i.e., without functionally disconnecting the sensor from the monitored process, and without
knowing the cursor position x.

Online estimation is a substantial advantage of the proposed method and is mandatory
for its effective practical application since both the initial parameters and their variations
during operation in the field must be determined.

As illustrated in the flow chart of Figure 2, the estimation method can be divided
into two phases. In the first phase, denoted as the measuring phase, the resistance set
represented by the three-component vector SR = [R12, R23, R13] measured at an unknown
cursor position x is used to evaluate the resistance vector R = [Σ, R13]. In the second
phase, denoted as the estimation phase, the previously evaluated R is used to compute p as
reported in Equation (7b).

In the proposed method, each resistance set SR, measured at an unknown position
x, is used to derive a correspondent estimation of p. The estimated parameters reflect the
sensor local conditions at the unknown position x where SR is measured. This provides
indirect indications of possible nonhomogeneities.

As an alternative, p can be computed using the average of N resistance sets SR mea-
sured in N different cursor positions. Provided that the N positions are sufficiently spread,
this results in spatial averaging along the resistive track with a correspondent reduction
the residual dependence of p on the cursor position x.

In this work, the parameters p are estimated starting from each single resistance set SR,
i.e., N = 1. This offers the advantage of maintaining a biunivocal correspondence between
p and the position x without introducing spatial averaging.

Since the parameters p are estimated starting from the direct measurement of the
resistances R12, R23, and R13, the lower the measurement uncertainty of the resistance
measurement, the better the parameter estimation will be. The uncertainties uc(Rc) and
uc(ξ) resulting from the resistance uncertainties u(R12), u(R12), and u(R13) can be considered
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in defining a fault detection method that is robust with respect to measured data. From
Equation (7b), the composite uncertainties uc(Rc) and uc(ξ) are given by the following:

uc(Rc) =

√
1
4

u2(R12) +
1
4

u2(R23) +
1
4

u2(R13) (8)

uc(ξ) =

√
1
L2 u2(R13) (9)

Figure 2. Parameter estimation method flow chart.

2.3. Cursor Position Estimation and Compensation

There are several methods to obtain the cursor position of a resistive displacement
sensor. Considering the schematization of a generic resistive displacement sensor of
Figure 1a, one common method involves exciting the sensor with a known constant voltage
at the terminal pair (1, 3) while reading at high-input impedance the voltage divider output
at the terminal pair (2, 3), which varies as a function of the cursor position x. This method
does not account for the sensor conditions represented by parameters p. Actually, the
reading is to first order independent from p as long as ξ is uniform along the sensor
stroke L. As no information on the sensor conditions is extracted, sensor faults cannot be
anticipated nor predicted.

On the other hand, the resistances R12 and R23 depend on both the cursor position x at
which they are measured and the parameters p. By manipulating Equations (3) and (4), the
actual cursor position x can be expressed as follows:

x = (R12 − R23)/2ξ + L/2 (10)

An estimated cursor position x’ can be derived from Equation (10) by employing the
current parameter estimates pc = [Rcc, ξc]. The closer the match between pc and p, the
lower the difference will be between x’ and x. The position estimation error epos due to the
difference between the actual unknown ξ and its current estimation ξc is as follows:

epos = x′ − x =
R12 − R23

2

(
ξ − ξc

ξcξ

)
(11)
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where R12 and R23 are the resistances measured in the current sensor conditions. Since the
parameters vary as the sensor conditions change, it is crucial that the current parameters
pc are continuously updated since x’ depends on ξc.

If instead of pc the nominal parameters p0 = [Rc0, ξ0] relative to an undamaged sensor
are used as estimates of p during the sensor life, the estimated position x0′ is subject to an
estimation error epos0 given by the following:

epos0 = x′0 − x =
(
x′0 − x′

)
+
(
x′ − x

)
=

R12 − R23

2

(
ξc − ξ0

ξcξ0

)
+ epos = δ + epos (12)

The position estimation error epos0 can be seen as the sum of epos given by Equation (11)
and an additive error δ related to the difference between the current parameter ξc and
ξ0 employed for estimating position.

The additive error δ is zero when ξc = ξ0, i.e., when ξ does not vary from the undam-
aged conditions. It also shows that the error is higher the farther the cursor is from L/2.
As the position error epos does not depend on Rc as long as Rc is finite and Equation (11)
remains valid, the proposed estimation method is unaffected by Rc.

Starting from Equation (12), if the estimate of ξ is constantly updated, the position
estimation error epos0 can be reduced to epos by nulling the additive position estimation
error δ. In this perspective, the method proposed to reduce the position estimation error
can be seen as a self-compensation method.

2.4. Fault Detection

The parameters Rc and ξ are known to play a crucial role in defining the conditions
of the resistive displacement sensor as they are directly affected by sensor wearout and
faults [23]. Therefore, the proposed fault detection method focuses on assessing progressive
sensor wearout or sudden failure by comparing the variation in Rc and ξ with reference
values by means of alarm thresholds. Innovatively, this approach is built on a model that
allows determination of the sensor conditions during its operation, without disconnecting
it from the host system and without requiring knowledge of the cursor position x.

As illustrated in the flow chart of Figure 3, faults are detected on the basis of parameter
variations Δp = [ΔRc, Δξ] = |pc − p0|, where pc = [Rcc, ξc] and p0 = [Rc0, ξ0] repre-
sent the sensor parameters in the current and initial undamaged conditions, respectively.
The nominal parameters p0 are calculated as the spatial average of the initial parameters
Rc and ξ estimated along the entire sensor stroke. The parameters p0 could be determined
during factory calibration or directly in the field, during the first installation. It is ex-
pected that Rc and ξ variations are mostly related to sliding cursor and resistive track
faults, respectively.

Fault detection is based on threshold surpassing. Specifically, if both ΔRc and Δξ are
lower than their respective alarm thresholds T1 and T2, then no fault is detected. Differently,
the sensor is faulty, and the fault could affect the resistive track, the sliding cursor, or both
depending on which threshold is surpassed.

The thresholds T1 and T2 can be set empirically on the basis of ensemble standard
deviations σ(Rc0) and σ(ξ0) derived from a suitably large population representative of
undamaged sensors, or from each individual sensor at the installation time in the field.
Assuming that model parameters for an undamaged sensor are random variables with
normal distribution, it is reasonable to suppose that changes that exceed the range of
±3σ(Rc0) and ±3σ(ξ0) are ascribable to an occurred alteration in the sensor conditions due
to wearout or fault.
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Figure 3. Fault detection method flow chart.

3. Results

The sensor model, along with the parameter estimation, the self-compensation, and
the fault detection methods have been simulated and experimentally tested.

The simulations have estimated the parameters from a set of resistance values cor-
rupted with pseudorandom numerical noise, while in the experimental tests the parameters
have been derived from measurements on a Device Under Test (DUT), i.e., a resistive dis-
placement sensor, placed in two different conditions, namely undamaged and faulty.

The term undamaged here refers to a sensor that has never been used and has been
stored in compliance with the requirements described in the sensor datasheet. Instead, the
term faulty here indicates a sensor subject to a resistive track and sliding cursor wearout,
where the resistive track wear along x is virtually uniform. Wear has been considered
among the failures listed in Section 2.1 as it represents the main and most common
failure mode.

The simulations have been aimed at evaluating the parameter estimation variability
with respect to the measurement accuracy of resistances R12, R23, and R13. The experimental
tests have been aimed at assessing the fitting accuracy of the sensor model defined as the
difference between the measured resistances R12, R23, and R13 and those synthetized
from the sensor model. Furthermore, the estimated parameters have been employed to
evaluate the self-compensation method in reducing the position estimation error and the
effectiveness of alarm thresholds T1 and T2 in detecting wear failure.

3.1. Simulation Results

Simulations have been performed in MATLAB 2022b to repeatedly estimate the model
parameters Rc and ξ from a set of resistances R12, R23, and R13 corrupted with numerical
noise. The parameter mean values μ and standard deviations σ have been calculated from
the estimates across the repetitions taken at different positions.

The resistances R12, R23, and R13 forming the resistance set SR have been synthetized
from their respective analytical expressions reported in Equations (3)–(5), fixing the ideal
parameters p =

[
Rc, ξ

]
= [100 Ω; 50,000 Ω/m], the sensor stroke L = 100 mm and sweeping
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the displacement from x = 0 to x = L with a step of 1 mm. The values chosen for p are repre-
sentative of the actual sensor that has been experimentally tested as detailed in Section 3.2.
In particular, Rc = 100 Ω includes non-idealities like the conductive track resistance and the
resistance of the connecting terminals. A normally distributed pseudorandom numerical
noise with a standard deviation σn = 1 Ω has been added to corrupt R12, R23, and R13.

For each considered cursor position x, the parameters have been estimated from the
corresponding resistance set SR. Then, the mean values μ and standard deviations σ with
respect to x have been calculated from the estimates. The obtained results are reported in
Table 2 as the difference between p and the estimated parameter mean values μ, along with
their standard deviations σ. Figures 4 and 5 report the parameter estimation errors as a
function of the position along the sensor stroke.

Table 2. Parameter estimation errors and standard deviations σ obtained by ranging x from 0 to
L with a 1 mm step (M = 100 parameter estimations), assuming as a reference the ideal parameters
p =
[
Rc, ξ

]
= [100 Ω; 50,000 Ω/m]. The uncertainties of the parameter mean values μ and standard

deviations σ are derived from the parameter composite uncertainties uc(Rc) and uc(ξ).

Rc Estimation Error
Rc − μ(Rc) [Ω]

Rc Standard Deviation σ(Rc) ξ Estimation Error ξ − μ(ξ)[Ω/m] ξ Standard Deviation σ(ξ)

0.1 ± 0.1 0.8 ± 0.1 −1 ± 1 11.5 ± 0.7

Figure 4. Estimation error of the parameter Rc versus the position x along the sensor stroke.

Figure 5. Estimation error of the parameter ξ versus the position x along the sensor stroke.
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The simulation evaluates the variability of estimated parameters with respect to the
measurement accuracy of resistances R12, R23, and R13. The parameter estimation is adequate
for the application scope because the percentage deviations between the ideal parameters
p and the mean values of the estimated parameters are less than ±0.1%. Furthermore,
the parameter standard deviations σ(Rc) and σ(ξ) agree with the corresponding composite
uncertainties uc(Rc) =

√
3/2 Ω and uc(ξ) = 10 Ω/m, obtained from Equations (8) and (9) by

setting u(R12) = u(R23) = u(R13) = σn = 1 Ω.

3.2. Experimental Setup

The DUT is a resistive linear displacement sensor (Gefran PK), with a displacement
full-scale span (FSS) L = 100 mm, a nominal resistive track resistance of 5 kΩ and an
independent linearity error of ±0.05% FSS.

Sensor wearout has been intentionally provoked by sliding the cursor back and forth
throughout the whole sensor stroke for 106 cycles. Figure 6 shows the stress-test ma-
chine adopted to induce wear, while Figure 7 shows the wearout effect produced on the
resistive track.

Figure 6. Stress-test machine employed to induce wearout in the resistive track and sliding cursor.

(a) (b)

Figure 7. Images obtained with a digital microscopy system (Leica DMS300) of the undamaged (a)
and wearout (b) resistive track.

The assembled experimental setup comprises a linear positioning stage, a digital
multimeter, and a personal computer, as shown in Figures 8 and 9.
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Figure 8. Block diagram of the adopted experimental setup.

Figure 9. Photo of the assembled experimental setup.

The sensor parameters are estimated from the resistance sets SR measured in
M different cursor positions along the sensor stroke. Resistances have been measured
by means of a 6.5-digit digital multimeter (Keithley DAQ6510, Cleveland, OH, USA)
equipped with a multiplexer module (Keithley 7700), providing a specified resistance
measurement accuracy u(R) = 1 Ω in the 10 kΩ range of interest.

The sensor cursor displacement has been set by a precision linear positioning stage
(Physik Instrumente LS-270, Karlsruhe, Germany) with a calibrated position accuracy in
the order of ±1 μm. A LabVIEW script has been developed to implement the parameter
estimation method and handle the experimental setup. The script is designed to move
the linear stage to M different positions and trigger the digital multimeter to measure the
components of SR at each position.

3.3. Experimental Results

Experimental tests have been carried out to estimate the parameters of an undamaged
(U) sensor and a faulty (F) sensor, denoted as pu = [Rcu, ξu] and pf = [Rcf, ξf], respectively.
For the undamaged and faulty sensors, the respective resistance sets SRu and SRf have
been repeatedly measured M times for the position x ranging from 0 to L with a 1 mm
step resulting in M = 100, as schematized in Figure 10. From each set SRu and SRf, the
parameters pu and pf have been estimated according to Equation (7b).

Table 3 reports the mean values Pu = [μ(Rcu), μ(ξu)] and Pf = [μ(Rcf), μ(ξf)], and
standard deviations σu = [σ(Rcu), σ(ξu)] and σf = [σ(Rcf), σ(ξf)] for pu and pf obtained over
the M repetitions at varying x. From Pu and Pf inserted into Equations (3)–(5), the terms
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Rmu = [R12mu, R23mu, R13mu] and Rmf = [R12mf, R23mf, R13mf] have been obtained, where
the subscript m indicates outcomes from the model. Hence the model residuals have been
computed for the undamaged and faulty sensor as ru = [r12u, r23u, r13u] = SRu − Rmu and
rf = [r12f, r23f, r13f] = SRf − Rmf, respectively. The residuals ru and rf have been evaluated
for all the M repetitions at which SRu and SRf have been measured. The root mean square
errors (RMSE) of the residuals are also reported in Table 3. Figure 11 shows the estimated
parameters pu and pf while Figure 12a,b report the residuals ru and rf as a function of
repetition index ranging from 1 to M = 100.

Figure 10. Schematization of SRu and SRf measurement processes. The resistance sets SRu and SRf

are measured from the undamaged and faulty sensor over M repetitions taken for x varying from 0 to
L with a 1 mm step.

Table 3. Parameter mean values μ and standard deviations σ, along with the RMSE of the residuals
r12, r23 and r13 obtained in the experimental test. Parameter estimations are performed from the
resistance sets SR measured M = 100 times for x ranging from 0 to L with a 1 mm step. Since
the resistance measurement uncertainty is u(R) = 1 Ω, the parameter composite uncertainties are
uc(Rc) = 0.9 Ω and uc(ξ) = 10 Ω/m. The uncertainties of the parameter mean values μ, standard
deviations σ, and RMSE of the residuals r12, r23 and r13 are derived from uc(Rc), uc(ξ), and u(R).

Sensor
Condition

Rc Mean
Valueμ(Rc)[Ω]

Rc Standard
Deviation σ(Rc)[Ω]

ξ Mean
Value μ(ξ)[Ω/m]

ξ Standard
Deviation σ(ξ)[Ω/m]

r12 Root Mean
Square Error
RMSE(r12)[Ω]

r23 Root Mean
Square Error
RMSE(r23)[Ω]

r13 Root Mean
Square Error

RMSE(r13)[Ω]

Undamaged (U) 123.0 ±0.1 4.5 ± 0.1 49,058 ± 1 1.3 ± 0.7 10.9 ± 0.1 10.9 ± 0.1 0.1 ± 0.1

Faulty (F) 161.6 ± 0.1 21.9 ± 0.1 62,142 ± 1 9.9 ± 0.7 88.6 ± 0.1 83.1 ± 0.1 1.1 ± 0.1

Figure 11. Parameters pu and pf estimated, respectively, from the measured resistance sets SRu and
SRf as a function of the repetition index ranging from 1 to M = 100.
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(a) (b)

Figure 12. Residuals ru = SRu − Rmu (a) and rf = SRf − Rmf (b) resulting from the measured SRu and
SRf as a function of the repetition index ranging from 1 to M = 100.

The position estimation error epos is evaluated for both the U and F sensors, for all the
cursor positions at which SRu and SRf are measured. The true, i.e., actual, cursor position
x is assumed to be given by the linear positioning stage taken as the reference. The position
estimations x’ are derived from Equation (10) by employing μ(ξu) and μ(ξf) for the U
and F sensor, respectively. Figure 13 shows the position estimation error epos for both
the U and F sensors as a function of x. Figure 14 shows epos obtained for the faulty sensor
both with and without the application of the self-compensation method described in
Section 2.3, where the uncompensated cursor positions are intentionally estimated using
μ(ξu) in order to simulate a mismatch between the nominal, i.e., initial, and the current
sensor conditions.

Figure 13. Position estimation error epos for to the undamaged (U) and faulty (F) sensors versus the
actual cursor position x.

Lastly, the fault detection method discriminates the fault and no-fault conditions on
the basis of the parameter variations Δpu = |pu − Pu| and Δpf = |pf − Pu|. The fault
detection thresholds T1 and T2 have been set based on the pu standard deviations σu,
resulting in T1 = 3σ(Rcu) = 13.5 Ω and T2 = 3σ(ξu) = 3.9 Ω/m.
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Figure 14. Position estimation error epos for to the faulty (F) sensor, with and without the self-
compensation method applied, versus the actual cursor position x. The uncompensated cursor
positions have been deliberately estimated using μ(ξu) to simulate a discrepancy between the nominal
and current sensor conditions.

4. Discussion

Considering the simulation results described in Section 3.1, the normally distributed
pseudorandom numerical noise added to R12, R23, and R13 and the resulting parameter
variability are reflected in the parameter composite uncertainties uc(ξ) and uc(Rc) expressed
in Equations (8) and (9). Assuming the resistance uncertainties equal to the noise standard
deviation, i.e., u(R12) = u(R23) = u(R13) = σn = 1 Ω, the parameter composite uncertainties
result uc(Rc) =

√
3/2 Ω and uc(ξ) = 10 Ω/m., which agree with the simulation results

σ(Rc) = 0.8 Ω and σ(ξ)=11 Ω/m.
The standard deviations of the parameters Rc and ξ can be analyzed to compare the

variability of the parameters obtained in the simulations with those from experimental
results. Although the noise standard deviation σn in simulations is taken equal to the
resistance measurement uncertainty u(R), i.e., u(R) = σn = 1 Ω, the experimental stan-
dard deviations of Rc, σ(Rcu) = 4.5 Ω and σ(Rcf) = 21.9 Ω, are larger than σ(Rc) = 0.8 Ω
for simulations.

This is consistent with the fact that σ(Rcu) and σ(Rcf) cannot be imputed exclusively to
u(R), in fact they can be ascribed to the nonideality of R12 and R23 trends as a function of
x due to the presence of faults, described by the residuals r12 and r23. Similarly, the residual
r13 explains the difference between the experimental standard deviations σ(ξu) = 1.3 Ω and
σ(ξf) = 9.9 Ω with the simulated one σ(ξ) = 11.5 Ω.

Considering the experimental results described in Section 3.3, Figure 11 shows a
visible dependence of Rcf on the repetition index and, in turn, versus position x. Such
dependence shows nonuniform variations along the resistive track length L, with regions
where the contact resistance between the sliding cursor and the resistive track is higher.
The microscope analysis confirms that the regions where the contact resistance is higher
match with the regions where the resistive track is mostly worn. Therefore, the proposed
method theoretically allows detection of local faults through Rc trend analysis.

The sensor model goodness of fit is evaluated on the basis of the residuals ru and rf. As
shown in Figure 12a,b, for the undamaged sensor the RMSEs of ru are ∼0.2% of the resistive
track nominal resistance, which is adequately low for fault detection and estimation of
position x’. For the faulty sensor, the RMSEs of rf increase compared to the undamaged case
due to the trends of R12 and R23 as a function of x caused by nonhomogeneous resistive
track wear along its length.

As shown in Figure 13, the position estimation error epos for the undamaged sensor
is approximately constant throughout the sensor stroke, with a mean value of 0.2 mm.
For the faulty sensor, epos is an order of magnitude higher spanning a range of roughly
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2 mm. As reported in Figure 14, the self-compensation method successfully reduces epos to a
span of about 2 mm in the faulty case versus the value of 30 mm obtained intentionally using
μ(ξu) to represent the case when the parameter estimates are not updated to the
current values.

Given the chosen thresholds T1 = 3σ(Rcu) and T2 = 3σ(ξu), the results obtained in
applying the fault detection method are shown in the confusion matrices of Figure 15.

Figure 15. Confusion matrices for the sliding cursor and resistive track fault detections.

The fault detection method has been evaluated using accuracy, precision, and recall
performance metrics. Accuracy measures the fault detection correctness, precision evaluates
the number of actual faults identified, while recall assesses the effectiveness in detecting
faults among all instances of faults. The performance metrics obtained for the resistive
track and sliding cursor fault detections are reported in Table 4.

Table 4. Accuracy, precision and recall performance metrics for the sliding cursor and resistive
track fault detections. Accuracy = (TP + TN)/(TP + TN + FP + FN), precision = TP/(TP + FP), and
recall = TP/(TP + FN), where TP, TN, FP, and FN are the true positive, true negative, false positive,
and false negative fault predictions, respectively.

Type of Fault Detected Accuracy Precision Recall

Sliding Cursor 95.5% 98.9% 92.0

Resistive Track 99.0% 98.0% 100%

The false negative sliding cursor fault detections are due to the variability of Rc as a
function of x caused by nonhomogeneous wear of the resistive track. A possible solution
could be acting on threshold values. For example, lowering T1 to equal σ(Rcu) results in
the sliding cursor fault detection recall increasing to 96.0%. However, threshold lowering
makes the fault detection method more prone to false positives, leading the precision to
drop to 78.6%.

Moreover, the uncertainty of the standard deviations of the parameters in the
thresholds T1 and T2 has an impact on the accuracy and precision metrics for resistive
track fault detection. In particular, accuracy and precision vary within [97.5%; 100%]
and [95.2%; 100%], respectively.

5. Conclusions

This work introduces a suitably general model for resistive displacement sensors and
proposes thereof an innovative fault detection method that can be applied with the sensor in
operation providing self-diagnostic capabilities. Based on the output of the self-diagnostic
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step, a self-compensation method with automatic updating is in turn derived to increase
the accuracy in sensors subject to progressive wearout. The proposed model and methods
have been validated by both numerical simulations and experimental tests on real devices.

The position is estimated by exploiting the sensor model and the initial value
of ξ. The self-compensation method reduces the position estimation error by consid-
ering the difference between the current and initial values of ξ, which causes a position
estimation error. The self-compensation method successfully reduces the position estima-
tion error epos in the faulty case, intentionally obtained using μ(ξu), from a span of 30 mm
to a span of 2 mm. The proposed fault detection method evaluates the progressive sensor
wearout or sudden failure by comparing the variation in the current parameters Rc and
ξ with respect to their initial values against the alarm thresholds T1 and T2, respectively.
The fault detection method, for T1 = 3σ(Rcu) and T2 = 3σ(ξu), has shown a resistive track
and sliding cursor fault detection accuracy of 99.0% and 95.5%, respectively. Lowering
T1 from 3σ(Rcu) to σ(Rcu) has increased the sliding cursor fault detection recall to 96.0%,
involving the precision to drop to 78.6% as the threshold lowering makes the fault detection
method more prone to false positives.

The future work will involve the implementation of the proposed methods and their
testing in a dynamic industrial process.

6. Patents

There is a patent application resulting from the work reported in this manuscript [26].
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Abstract: The present work deals with the development of Co3O4-based catalysts for potential
application in catalytic gas sensors for methane (CH4) detection. Among the transition-metal oxide
catalysts, Co3O4 exhibits the highest activity in catalytic combustion. Doping Co3O4 with another
metal can further improve its catalytic performance. Despite their promising properties, Co3O4

materials have rarely been tested for use in catalytic gas sensors. In our study, the influence of
catalyst morphology and Ni doping on the catalytic activity and thermal stability of Co3O4-based
catalysts was analyzed by differential calorimetry by measuring the thermal response to 1% CH4. The
morphology of two Co3O4 catalysts and two NixCo3−xO4 with a Ni:Co molar ratio of 1:2 and 1:5 was
studied using scanning transmission electron microscopy and energy dispersive X-ray analysis. The
catalysts were synthesized by (co)precipitation with KOH solution. The investigations showed that
Ni doping can improve the catalytic activity of Co3O4 catalysts. The thermal response of Ni-doped
catalysts was increased by more than 20% at 400 ◦C and 450 ◦C compared to one of the studied Co3O4

oxides. However, the thermal response of the other Co3O4 was even higher than that of NixCo3−xO4

catalysts (8% at 400 ◦C). Furthermore, the modification of Co3O4 with Ni simultaneously brings
stability problems at higher operating temperatures (≥400 ◦C) due to the observed inhomogeneous
Ni distribution in the structure of NixCo3−xO4. In particular, the NixCo3−xO4 with high Ni content
(Ni:Co ratio 1:2) showed apparent NiO separation and thus a strong decrease in thermal response of
8% after 24 h of heat treatment at 400 ◦C. The reaction of the Co3O4 catalysts remained quite stable.
Therefore, controlling the structure and morphology of Co3O4 achieved more promising results,
demonstrating its applicability as a catalyst for gas sensing.

Keywords: cobalt oxide; catalyst; catalytic sensors; morphology

1. Introduction

Catalytic gas sensors, known as pellistors, are commercially available sensors used to
detect flammable gases and to safely monitor gas concentrations below the lower explosive
limit (LEL) [1–4]. The main area of application for pellistors is the identification of explo-
sion risk, which arises if the concentration of flammable gases exceeds the lower explosive
limit [2]. Especially light alkanes such as methane, propane, and butane are of particular
interest for safety monitoring. Methane is an essential gas for various technologies, and as
a main component of natural gas, it is still widely used as energy source in industrial appli-
cations and homes [5–7]. Propane and butane are the components of liquefied petroleum
gas (LPG) commonly used in heating systems, cooking appliances, and vehicles [8]. Gas
leaks in the home are extremely dangerous for people and pose a high risk of property
damage [9].
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Pellistors were first described by Alan Baker in the early 1960s [10]. A pellistor consists
of two sensor elements: the active sensor coated with a catalyst layer and the passive
sensor element without any catalyst. The passive sensor only responds to the changes
in environmental conditions, such as humidity and temperature, while the active sensor
interacts with target gases. Because of these interactions, the target gases are oxidized, and
heat evolves, which is detected as thermal response of the pellistor. To activate catalytic
oxidation of target gases, the sensor is operated at a specified temperature [11,12].

The oxidation of methane requires high operation temperatures (≥450 ◦C) due to high
activation energy caused by the high stability of its C–H bonds [13,14]. However, high
operation temperatures accelerate the aging and degradation of the catalysts. Propane
and butane, as well as other flammable gases, are more reactive gases that are oxidized at
much lower operation temperatures than methane and are therefore easier to detect [1].
Therefore, the focus in development of new catalysts for catalytic gas sensors is on suitable
materials for detecting methane. Aluminum oxide-based catalysts containing a large
amount of catalytically highly active Pd and Pt metals are used in commercially available
pellistors to ensure the proper detection of gases, primarily of inert methane. The high metal
content is used to reduce operating temperature and ensure the required sensor life. This is
mainly due to the strong tendency of Pd-based catalysts to deactivate during operation.
In view of the scarcity of precious metals, these catalysts should be substituted by metal-
oxide catalysts containing none or only a low loading of noble metals. Metal oxides from
transition metals (Co, Mn, Fe, Cr, Ni, Cu, etc.) with perovskite or spinel structure as well as
transition metal-substituted hexa-aluminates are considered as alternative candidates to
noble metal-based catalysts for oxidation of light hydrocarbons, mainly methane, at lean
conditions [7,15–19]. Low concentrations applied at lean conditions in catalysis prevail also
in gas sensing for safety monitoring, thus the target concentration range (the LEL range) for
methane detection is between 0.2% and 4%. Transition metal oxides offer an advantage over
catalytically inert alumina due to their intrinsic catalytic activity. Their catalytic activity
is attributed to the multiple oxidation states (e.g., Co3+/Co2+, Fe2+/Fe2+, Cu2+/Cu+, and
Mn4+/Mn3+/Mn2+), lattice defects (i.e., oxygen vacancies), high oxygen storage capacity,
and oxygen transfer capability [19]. The multiple oxidation states in the crystal structures
are considered as active sites for adsorption and activation of reactant molecules and
oxygen [19]. High oxygen storage capacity and oxygen transfer capability help to restore
the surface-adsorbed oxygen species consumed through the catalytic oxidation by release
of lattice oxygen species and formation of oxygen vacancies.

Co3O4-based materials are the most promising catalysts for oxidation of methane
among all transition metal oxides. Co3O4 possesses a spinel-type structure with two
oxidation states (Co2+/Co3+). The easy reduction of Co3+ to Co2+ in Co3O4 facilitates the
formation of oxygen vacancies as surface defects at low temperatures, promoting oxygen
mobility. High oxygen mobility and highly active surface oxygen species of Co3O4, whose
formation is supported by oxygen vacancies, contribute to the activation and breaking of
the C–H bond at low temperature [14,15,17,20–22]. In addition, the dissociation of the C–H
bond is the rate-controlling step during oxidation of saturated hydrocarbons. The specific
electronic structure of Co3O4 with partially filled d-orbitals of Co3+ and Co2+ (d6 and d7,
respectively) lead to the reduction of the activation energy for methane dissociation via
direct interaction of C–H orbitals with d-type orbitals of Co cations [23].

Moreover, the incorporation of hetero atoms such as Ce, Ni, Cr, etc., into the spinel
structure of Co3O4 can improve further its catalytic ability. Heteroatoms induce lattice
distortion, which could increase the amount of active surface oxygen species and gener-
ate more structural defects (e.g., oxygen vacancies) [24]. On the other hand, doping of
Co3O4 with another metallic element can improve its textural properties [19]. Especially,
cobalt–nickel mixed oxides, i.e., NixCo3−xO4, effectively reduce oxygen vacancy formation
energies compared to pure Co3O4, thus increasing catalytic activity [21,22,25,26]. However,
researchers have disagreed on which nickel to cobalt molar ratio (Ni:Co) exhibits the best
catalytic performance in methane oxidation. NiCo2O4 with the high Ni:Co ratio of 1:2
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was found by many authors to be the most active catalyst compared to other NixCo3−xO4
or pure oxides [15,16,21]. Yet, other authors have reported reduced catalyst stability at
temperatures > 400 ◦C because of sintering and partial decomposition to NiO accompanied
with performance degradation when the Ni:Co ratio is high. Reducing the Ni:Co ratio
can slow down thermal deactivation of NixCo3−xO4 catalysts, improving their long-term
stability at higher operation temperatures (450 ◦C) [27,28].

However, it was demonstrated by several studies on pure Co3O4 catalysts that mor-
phology and textural properties also play a decisive role in catalytic activity due to vari-
ations in the porosity, crystal structure, formation of surface defects, and surface-active
species [14,16,28–31]. In general, the surface atomic configurations and surface defects
of catalyst particles can change the adsorption and desorption properties (e.g., surface
oxygen bond strength) influencing the catalytic activity of the surfaces [23]. Furthermore,
morphology can strongly influence the stability of catalysts. Lyu at al. reported that three-
dimensionally ordered, mesoporous Co3O4 is not appropriate for application in pellistors
due to the high instability of its structure under pellistor operation conditions. Especially,
the mesoporous Co3O4 catalyst functionalized with Au-Pd nanoparticles exhibited strong
deactivation because of strong metal oxide sintering [32]. Thus, the suitable structure and
morphology of the metal oxide had a crucial impact on performance of the catalytic sensors.
Despite the high interest in metal oxides as catalysts for catalytic combustion, metal oxide
materials have hardly been tested for use in catalytic gas sensors [32,33]. Although the
catalytic oxidation of target gases underlies the sensor’s response, the results of standard
catalyst studies using reactors cannot be easily transferred to catalytic gas sensors because
the catalysts are prepared for examination according to the requirements for the catalytic
bed reactors, e.g., by dilution with other components, pelletization, etc. [18]. Moreover, not
all available catalyst morphologies are suitable for application in sensors. For example,
hierarchical morphologies and micrometer-sized particles are not appropriate for sensors.
In addition, the thermal conductivity of the catalyst layer largely determines the thermal
response of the catalytic gas sensor. Therefore, the catalyst morphology is extremely impor-
tant for achieving optimal thermal conductivity, and potential catalysts for catalytic gas
sensors should be examined under appropriate conditions.

In the present work, we investigated the impact of the doping of Co3O4 with Ni on the
catalyst’s morphology and catalytic response towards lean methane (1 vol%) along with
its short-term stability under 400 ◦C and 450 ◦C. Two pure Co3O4 and two Ni-modified
cobalt oxide catalysts, i.e., NixCo3−xO4, with two different Ni to Co ratios (1:2 and 1:5),
were synthetized by co-precipitation techniques commonly used for the synthesis of pure
and heterogeneous metal oxide catalysts due to its simple preparation procedure and easy
scaling-up in industrial production [21,26,30]. The given Ni to Co ratios were chosen to
examine the effect of Ni quantity on the thermal response and stability of Co3O4 catalysts
because, according to literature, the catalysts with a 1:2 ratio showed mostly the highest
activity, and those with a 1:5 ratio had improved stability [16,28]. In the case of Co3O4,
N2 or air was used during synthesis to obtain particles of different morphology according
to [16], which reported on the atmosphere having a key role in controlling the particle
morphology of NixCo3−xO4 catalysts.

The thermal response of the catalysts was measured in the temperature range pertain-
ing to pellistor applications by means of differential scanning calorimetry (DSC). In DSC,
the thermal signal related to the heat evolved by methane oxidation is measured. Details
concerning the DSC method and the procedure adapted for catalysts examinations can
be found in our recent publication [34]. Previous investigations on one of the examined
catalysts (NiCo2O4) confirmed that DSC measurements can be used to check the catalytic
activity of potential catalysts for pellistors [35].

2. Materials and Methods

Pure (mCo3O4 and sCo3O4) and Ni-doped Co3O4 (NiCo2O4 with Ni:Co ratio of 1:2;
Ni0.5Co2.5O4 with Ni:Co ratio of 1:5) catalysts were synthesized by the same precipitating
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procedure as described in [21]. mCo3O4 was synthesized in N2 atmosphere, as reported
in the original publication, while sCo3O4 was prepared in air. In the case of NiCo2O4
and Ni0.5Co2.5O4, N2 atmosphere was applied. Furthermore, a part of the Co precursor
was substituted by a Ni precursor (Ni(NO3)2 6 H2O) in order to obtain the specific Ni:Co
ratio (1:2 or 1:5). The composition of the final NiCo2O4 catalyst was examined by energy
dispersive X-ray analysis. The mean Ni:Co ratio in NiCo2O4 corresponded to the ratio used
in the synthesis (1:2).

The mCo3O4 sample was synthesized by the following precipitating procedure:
Co(NO3)2 6H2O (17.46 g; Carl Roth, Karlsruhe, Germany; >98%) was dissolved in 100 mL
deionized water at 23 ◦C. Then, a KOH solution (1 mol L−1, 300 mL) was added under the
bubbling of nitrogen gas and continuous, strong stirring. A precipitate was collected and
washed three times with hot, deionized water (60 ◦C), followed by drying at 130 ◦C for
24 h. The obtained solid was ground to powder in a mortar and further calcined at 350 ◦C
in air for 24 h, forming the synthesized catalyst, which was denoted as mCo3O4.

To examine the effect of calcination temperature on the catalytic activity, a part of
sCo3O4 was investigated directly after drying at 130 ◦C for 24 h (denoted as nc_sCo3O4),
and a part was additionally calcined at 400 ◦C for 24 h (denoted as nc_sCo3O4 24 h 400 ◦C).

A scanning transmission electron microscope (STEM) equipped with an in-lens sec-
ondary electron detector (SE) and an energy dispersive X-ray (EDX) detector (Hitachi
HF 5000, Hitachi, Tokyo, Japan) was used to visualize the morphology and to analyze
the composition of the catalysts. The SE detector gives access to surface information and
visualizes the surface topography of the sample. In the following, the images are described
as SE-STEM since the images were acquired in STEM mode, although the electrons are not
transmitting the sample.

Crystalline structure and phases of catalysts were checked by means of X-ray diffraction
(XRD) analyses (Empyrean, Malvern Panalytical Ltd., Malvern, UK) using Cu Kα radiation.

Differential scanning calorimetry (DSC) (STA 409 CD-QMS 403/5 SKIMMER, Netzsch,
Selb, Germany) was used to examine the thermal response of the catalysts to 1% methane in
dry air. The investigations using DSC can only be carried out method specifically in a dry
gas atmosphere. DSC is, in its principle, very similar to pellistor measurements. In DSC,
the temperature difference between the empty reference pan and the sample pan filled with
a powder is detected at increasing temperature (dynamic conditions) as an electrical signal
normalized to the sample weight (μV mg−1).

To investigate catalytic activity, the measurement procedure applied for standard
measurements was adapted [34]. In our experiments, the same procedure was used as for
testing the gas sensors. The temperature difference between sample and reference pan
was measured at isothermal conditions, when first, dry compressed air was introduced
into the system to record a baseline and then 1% methane (1 vol% CH4 in synthetic air,
Air Liquide, Düsseldorf, Germany). At each temperature level, the baseline recorded
in air was set to zero [34]. Figure S1 (Supplementary Materials) shows an exemplary
DSC signal obtained for sCo3O4 catalyst upon exposure to 1% methane (orange bars) at a
predefined temperature program (red line). The height of the signal was considered for
catalyst characterization. The dynamic behavior, such as response or recovery time, was
not analyzed since it depends on the instrumentation or sensor used and does not provide
any valuable information in this case.

The measured DSC voltage corresponds to the heat produced during catalytic ox-
idation. The experiments were performed on 8 g catalyst using an aluminum pan at a
constant gas flow rate of 100 mL min−1. To investigate the thermal stability, samples were
held in compressed dry air containing 400 ppm CO2 at 400 ◦C or 450 ◦C for 24 h and 12 h,
respectively. Air was chosen instead of synthetic air to achieve conditions more realistic for
sensor applications. The catalytic activity was measured before and after thermal treatment
of samples using the same temperature profile.
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3. Results and Discussion

3.1. Structure and Morphology of Investigated Catalysts

The X-ray diffraction patterns of undoped and Ni-doped Co3O4 oxides are shown
in Figure 1. The catalysts are fine crystalline with small crystallites or many defects in
crystallites, which is visible from the line broadening of XRD diffraction peaks. The main
peaks can be assigned to the cubic Co3O4 spinel structure (No. 04-025-8553). No peaks
related to Co(OH)2 or partially oxidized CoO(OH) were observed in the XRD patterns of
Co3O4 (Figure 1a), indicating the complete transformation of Co(OH)2 to Co3O4. However,
XRD patterns of all catalysts contain some peaks, e.g., at 2Θ = 33.3◦, 40.3◦, 53.2◦, and
58.4◦, which cannot be assigned to any crystalline phase. No mentions of these additional
peaks were found in the literature, although the crystallinity of catalysts in the literature is
significantly higher. The patterns of mCo3O4 and sCo3O4 catalysts reveal minor variations
in the crystal structure apart from the peak at 2Θ = 19.0◦ assigned to the (111) plane, which
is absent in mCo3O4. DRIFT and DFT calculations revealed that the (111)-plane of Co3O4
is responsible for the facile activation of the C–H bond and its high activity [18]. X-ray
diffraction of Ni-doped Co3O4 oxides (Figure 1b) showed that both NixCo3−xO4 catalysts
have the same spinel structure as Co3O4. That coincides with the results from Tao et al. [21],
who reported that NixCo3−xO4 catalysts synthesized by co-precipitation with KOH exhibit
the same diffraction pattern as Co3O4. This reveals the integration of Ni cations into the
crystallographic lattice of spinel Co3O4. However, in contrast to the literature, some peaks
assigned to NiO ((200) at 2Θ = 43.3◦ and (220) at 2Θ = 62.9◦) were found in the NiCo2O4
catalyst. Additionally, the lattice planes (442), (533), and (622) of Co3O4 are not well formed
in NiCo2O4.

Figure 1. XRD patterns of (a) undoped mCo3O4 and sCo3O4 oxides as well as (b) Ni-doped oxides
NiCo2O4 and Ni0.5Co2.5O4; the reference data are listed below.

The dried, non-calcined_sCo3O4 and calcined sCo3O4 oxides (Figure 2) exhibit similar
XRD patterns revealing that the conversion of Co(OH)2 into Co3O4 was mostly completed
after catalyst drying at 130 ◦C. After calcination at 350 ◦C, only one additional peak appears
at 2Θ = 40.1◦. Thus, most alterations happening during the calcination step concern the
catalyst surface, such as surface defects and oxygen species.

In Figure 3, the morphologies of Co3O4 and Ni-doped NixCo3−xO4 catalysts are shown.
mCo3O4 and sCo3O4 demonstrate similar morphology with small differences. mCo3O4
(Figure 3a) reveals rather angular particles of irregular size and shape, while for sCo3O4
(Figure 3b), particles with sheet morphology are present in addition to small nanoparticles.
Moreover, mCo3O4 particles contain a high number of holes inside (Figure 4a,b), signifi-
cantly more than sCo3O4 particles (Figure 4c,d), as the comparison of the corresponding
HAADF-STEM images clearly shows. Thus, the morphological investigations indicate
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that mCo3O4 and sCo3O4 materials have different particle morphology and structure, so
differences in their interactions with reactants and heat transport are expected.

Figure 2. XRD patterns of the dried and calcined sCo3O4 oxides in comparison; the reference data
are listed below.

Figure 3. SE-STEM images of (a) mCo3O4; (b) sCo3O4; (c) NiCo2O4; (d) Ni0.5Co2.5O4 metal-oxides.

Figure 4. SE-STEM (a,c) and HAADF-STEM (b,d) images in comparison with mCo3O4 (a,b) and
sCo3O4 (c,d).

Both NixCo3−xO4 catalysts exhibit a hexagonal sheet morphology (Figure 3c,d), which
differs from the morphology of pure Co3O4 catalysts (Figure 3a,b). Such a morphology
is beneficial for the catalysis due to high macroporosity and better gas transport inside
the catalyst layer. However, the sheet’s quality of NiCo2O4 catalyst is very low. Moreover,
NiCo2O4 (Figure 3c) reveals in addition to the defective hexagonal sheets an accumulation
of small particles and debris. A high number of diverse defects in the structure of NiCo2O4
is well visible in HAADF-STEM images (compare Figure 5a,b). In contrast to that, well-
formed nanoplatelets of hexagonal shape with a porous surface and holes inside can be
observed for Ni0.5Co2.5O4 (Figures 3d and 5c,d).
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Figure 5. SE-STEM (a,c) and HAADF-STEM (b,d) images in comparison with NiCo2O4 (a,b) and
Ni0.5Co2.5O4 (c,d).

The EDX analysis of mCo3O4 (Figure 6a–c) and sCo3O4 (Figure 6d–f) catalysts shows
that the elemental distributions of Co and O coincides, and hence, no segregation was
observed. Moreover, no further elements were detected, excluding impurities.

Figure 6. EDX analysis of Co3O4 catalysts: HAADF-STEM images of mCo3O4 (a) and sCo3O4 (d);
the corresponding elemental distribution maps of Co (b,e) and O (c,f) in respective metal-oxides.

EDX elemental mapping of NiCo2O4 catalyst (Figure 7) demonstrates that Co and O
are distributed evenly throughout the nanoplates, whereas Ni is predominantly concen-
trated at the edge of the hexagonal plates as well as in the nanoparticles and debris. Less
nickel is found at the center of the hexagonal plates, revealing strongly pronounced phase
separation of Ni as NiO nanoparticles. The phase segregation of NiO and a high number
of debris indicate that an excess of Ni disrupts the Ni integration into the Co3O4 lattice.
The investigations reveal that NiCo2O4 contains a mixture of two metal oxides: the mixed
oxide NixCo3−xO4 with variable Ni:Co content and the pure NiO.
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Figure 7. EDX analysis of NiCo2O4 catalyst: (a) HAADF-STEM image; (b) overlay of the elemental
distribution maps of Ni and Co; the elemental distribution maps of Co (c), Ni (d), and O (e).

EDX elemental mapping of Ni0.5Co2.5O4 oxide indicates that the distribution of Co, O,
and Ni is mainly uniform inside hexagonal plates (Figure 8). Thus, Ni is well integrated
into the structure of Co3O4 oxide. Consequently, the application of a lower Ni:Co ratio
results in a doped spinel structure, i.e., NixCo3−xO4, with highly uniform morphology and
composition. However, for some particles, a slight inhomogeneous distribution of nickel in
the hexagonal plates is still observed.

Figure 8. Cont.
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Figure 8. EDX analysis of Ni0.5Co2.5O4 catalyst: (a) HAADF-STEM image; (b) overlay of the elemental
distribution maps of Ni and Co; the elemental distribution of Co (c), Ni (d), and O (e).

3.2. Characterization of Catalytic Response

Figure 9 shows the results of DSC measurements on the four catalysts obtained in
temperature range between 250 ◦C and 450 ◦C with 1 vol% methane. As expected, the DSC
voltage increases with higher temperature. At 250 ◦C and 300 ◦C, the DSC voltages were
comparably low for all catalysts (0.25–0.32 μV mg−1 at 300 ◦C), caused by the low activity of
metal oxide catalysts at such low temperatures. Only when the temperature increases above
300 ◦C does the difference in the catalyst activity become substantial. The Ni-modified
catalysts, namely NiCo2O4 and Ni0.5Co2.5O4, exhibit clearly higher DSC signals than pure
mCo3O4, particularly at 450 ◦C (3.3 μV mg−1 vs. 2.7 μV mg−1), which is in agreement with
the literature reports about the higher activity of NixCo3−xO4 catalysts compared to pure
Co3O4 [16,27]. The differences in activity between NiCo2O4 and Ni0.5Co2.5O4 are, however,
not significant. The higher Ni ratio in NiCo2O4 does not cause the expected increase in
catalytic activity. This can be explained by the segregation of NiO, which exhibits a much
lower activity than NixCo3−xO4 and Co3O4 [16,28].

Figure 9. Temperature-dependent DSC response of the four investigated catalysts to 1% CH4, with
error bars giving the standard deviation from three measurements.

Interestingly, sCo3O4, precipitated in air, seems to slightly outperform the activity of
the Ni-modified oxides NiCo2O4 and Ni0.5Co2.5O4 at all temperatures. The considerable
differences in response for mCo3O4 and sCo3O4 must be caused by their different mor-
phology and structure, as seen in Figures 3a,b and 4 [29,36]. Obviously, the high structural
defect density of mCo3O4 (Figure 2b) does not improve the catalytic activity of Co3O4,
whereas the sheet morphology of sCo3O4 seems to have a positive impact on its activity. It
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is notable that sCo3O4 exhibits a higher variance in activity compared to mCo3O4, which
correlates with the variations in particle morphology observed for sCo3O4.

Figure 10 shows the activity of the two Co3O4 catalysts before and after the treatment
in pressurized air at 400 and 450 ◦C for 24 and 12 h, respectively. mCo3O4 and sCo3O4
show either no or a slight decrease or even an increase in the DSC signal after the treatment,
revealing their stability under test conditions. The increase in the thermal response after
heat treatment can be explained by an improved contact between individual particles in
the layer, causing better thermal conductivity and thus better transfer of reaction heat to
thermopiles of the detector.

Figure 10. Results of the stability investigations: temperature-dependent DSC response of two Co3O4

catalysts to 1% methane measured before and after treatment at 400 ◦C (a) and at 450 ◦C (b).

Regarding XRD and morphology investigations, it is likely that the significantly
improved thermal response of sCo3O4 compared to mCo3O4 is caused by low defect
density and sheet morphology. It is also possible that the (111) lattice plane present in
sCo3O4 contributes to its improved catalytic activity compared to mCo3O4.

In contrast to Co3O4, NiCo2O4 and Ni0.5Co2.5O4 (Figure 11) show a reduced DSC
signal as a result of the heat treatment. Particularly, the NiCo2O4 catalyst experiences a
considerable decrease in catalytic activity already after a short treatment at both tempera-
tures. The most pronounced decrease from 3.4 μV mg−1 to 3.0 μV mg−1 was observed for
NiCo2O4 at 450 ◦C after treatment at 450 ◦C (Figure 11b). After thermal treatment at 400 ◦C
(Figure 11a), the DSC signal decrease is lower, although it still remains high (difference of
0.3 μV mg−1 at 400 ◦C). Ni0.5Co2.5O4 demonstrated higher thermal stability than NiCo2O4.
After thermal treatment at 400 ◦C (Figure 11a), the DSC signal difference for Ni0.5Co2.5O4
before and after treatment is twice as low (0.15 μV mg−1 at 400 ◦C). The highest decrease
in the DSC signal from 3.3 μV mg−1 to 3.1 μV mg−1 was also obtained at 450 ◦C after
treatment at 450 ◦C (Figure 11b). The high susceptibility of NixCo3−xO4 materials to high
temperatures agrees with earlier reports [27,28].

The fast deterioration of the initial activity in NiCo2O4 correlates with a strongly
pronounced NiO segregation and its defective structure (Figure 7). Ni0.5Co2.5O4 contained
fewer structural defects and no NiO segregation (Figure 8) but showed a slightly inhomo-
geneous Ni distribution inside hexagonal plates. The latter one can affect the catalyst’s
stability at higher operation temperatures. This is because higher operation temperatures
usually promote further phase segregation, causing catalyst destabilization and decreasing
catalyst activity. Otherwise, the thermal stability of 2D materials may be limited com-
pared to nanoparticles [37]. It is conceivable that the stability of NixCo3−xO4 catalysts
could be further improved when Ni ions are completely incorporated into the structure of
Co3O4. This could be achieved by using stabilizing additives or by applying alternative
synthesis methods.
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Figure 11. Results of the stability investigations: temperature-dependent DSC response of two NixCo3−xO4

catalysts to 1% methane measured before and after treatment at 400 ◦C (a) and at 450 ◦C (b).

In addition to the stability experiments performed at 400 ◦C and 450 ◦C, the impact of
the calcination on the catalyst activity was examined. The most active sCo3O4 was chosen
for the examination. All investigated catalysts were dried at 130 ◦C and subsequently
calcined at 350 ◦C. To see the effect of calcination, sCo3O4 was additionally examined
directly after drying without a calcination step (denoted as nc_sCo3O4). For further com-
parison, non-calcined sCo3O4 was then calcined at 400 ◦C for 24 h (denoted as nc_sCo3O4
24 h 400 ◦C). Figure 12 shows the temperature-dependent DSC signals of original sCo3O4,
nc_sCo3O4, and nc_sCo3O4 for 24 h at 400 ◦C.

Figure 12. Effect of calcination temperature on the temperature-dependent DSC signal to 1% methane,
demonstrated for sCo3O4.

nc_sCo3O4 revealed a considerably higher signal than sCo3O4, especially in the low-
temperature range between 250 ◦C and 350 ◦C. The DSC signal at 350 ◦C increased from
1.8 μV mg−1 for nc_sCo3O4 to 1.2 μV mg−1 for sCo3O4. The nc_sCo3O4 sample calcined
at 400 ◦C showed comparable activity to the original sCo3O4. Such an effect of calcination
temperature on the activity of sCo3O4 demonstrates that a Co3O4-based catalyst features
temperature-sensitive catalytic functionalities. Regarding the XRD investigations (Figure 2), it
is obvious that higher temperatures cause a lower amount of active surface oxygen present
on the surface of Co3O4 catalysts. Reduced surface oxygen as active species in the C–H
bond dissociation has a negative effect on the catalytic activity of Co3O4 at low operation
temperatures. Otherwise, catalyst calcination at temperatures higher than later operating
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temperatures is required to stabilize the structure of Co3O4 catalysts despite the associated
reduced activity [38]. Nevertheless, the optimal operation temperature for Co3O4-based
catalysts without precise metals is in the low-temperature range, below ≤350 ◦C.

The next step in the development of the metal-oxide catalysts for catalytic gas sensors
is the examination of metal-decorated Co3O4 catalysts. Metal oxides offer several advan-
tages over aluminum oxide as support material, such as stronger interactions with metal
nanoparticles. Thus, the advantages and disadvantages of such kind of catalysts should be
carefully examined.

4. Conclusions

In conclusion, the investigations of the thermal response of Ni-doped and undoped
Co3O4 metal oxides synthetized by co-precipitation towards 1% methane have shown that
Ni doping improves the catalytic response of Co3O4. However, control of the structure
and morphology of Co3O4 has a comparable impact on the activity and thermal response
compared to doping, as was shown using sCo3O4 catalyst with optimized morphology.
Moreover, the doping of the spinel structure of Co3O4 with nickel requires a balanced Ni:Co
ratio and highly controllable synthesis conditions to reduce or eliminate the appearance of
phase segregation, which is mainly responsible for the low thermal stability of NixCo3−xO4
catalysts. Because of its higher thermal stability, pure Co3O4 is preferable as a catalyst and
for further modification with precise metals, which are applied to increase catalyst activity
and sensor response at lower operation temperatures. Besides the detection of methane,
Co3O4-based materials are of special interest for the detection of hydrogen since hydrogen
can usually be detected at noticeably lower temperatures than hydrocarbons due to its
significantly higher reactivity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s24082599/s1, Figure S1: DSC signal of sCo3O4 catalyst measured in
the temperature range between 250 and 450 ◦C.
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Abstract: Thermal conductivity sensors face an omnipresent cross-influence through varying hu-
midity levels in real-life applications. We present the results of investigations on the influence of
humidity on a hydrogen thermal conductivity sensor and approaches for predicting the behavior
of thermal conductivity towards humidity. A literature search and comparison of different mixing
equations for binary gas mixtures were carried out. The theoretical results were compared with
experimental results from three different thermal conductivity sensors with mixtures of water vapor
in nitrogen. The mixing equations show a large discrepancy between each other. Some of the models
predict a continuously decreasing thermal conductivity and some predict an increasing thermal
conductivity for increasing levels of humidity. Our measurements indicate an increase in thermal
conductivity followed by a decrease after reaching a peak value. It is shown that the measured
behavior is reproducible with different sensors. Depending on the sensor, this corresponds to an
error up to 2 vol.% in the measured hydrogen value. The measured behavior is consistent with only
one of the three models. Compared to this model, our own sensor shows a maximum deviation of
1.4%. Mixing equations for gas mixtures must be chosen carefully, taking into consideration whether
mixing partners include polar or non-polar molecules. Some simplified mixing equations cannot be
used to calculate the thermal conductivity of water vapor in air or nitrogen.

Keywords: thermal conductivity; hydrogen; water vapor; humidity; cross-sensitivity; MEMS

1. Introduction

With increasing efforts being made to develop alternative drive systems, solutions
such as electric and fuel cell vehicles are shifting into focus. Hydrogen as a fuel is seen as
an important component of decarbonization in areas where electrification is not practical or
possible [1]. Germany, for example, even provides a national hydrogen strategy to support
achieving climate neutrality [2]. This development naturally leads to an increased interest
in sensing solutions for hydrogen. The presence of hydrogen in concentrations between
4 and 77 vol.% can lead to explosive gas mixtures. Hydrogen leakage sensors can be used
to avoid endangering passengers or bystanders in the event of leakages in a fuel cell vehicle.
Battery monitoring can be another application for this type of sensor. In the event of a
thermal runaway of a lithium-ion battery, various gases, including hydrogen, are released
from the battery. In a study with 51 batteries, the concentration of hydrogen among the
gases released was 22.27% on average [3]. That means hydrogen sensors can also be used
to detect a thermal runaway event.

We can find many measurement principles for hydrogen sensors. Thermal conductivity
is especially suited to hydrogen detection since the thermal conductivity of hydrogen is
seven times higher than air at room temperature. Electrochemical or catalytic sensors
may show higher sensitivities and a better selectivity towards hydrogen but also show
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drawbacks like a short lifetime and vulnerability to poisoning, respectively [4]. Applications
like leakage detection of hydrogen in a vehicle require a certain lifetime and stability
of the sensor which can be offered by a physical based measurement principle such as
thermal conductivity. In safety relevant applications, the impact of cross-influences such
as temperature, pressure and humidity also gain importance since they directly impact
the accuracy of the sensor. In this study, we focus on the impact of humidity on thermal
conductivity sensors. Humidity here corresponds to another gas in the gas mixture and
thus contributes to the overall thermal conductivity. Thermal conductivity is a non-selective
measurement principle as every material has its own thermal conductivity value. In the
context of hydrogen measurements, this can lead to a distortion of the sensor signal if the
proportion of humidity changes. Even if the hydrogen concentration remains constant,
the sensor signal can either increase or falsely decrease due to an increased proportion of
another gas, in this case moisture. This leads to problems, particularly in safety-relevant
applications, as either false-positive or false-negative results can be obtained. We have
investigated the influence of humidity theoretically and experimentally to determine the
potential error of hydrogen sensor readings due to humidity.

This theoretical study provided numerous approaches for calculating the thermal con-
ductivity of a gas mixture. With models for binary gas mixtures and models that have been
introduced specifically for gas mixtures of water vapor and air, a theoretical comparison
was carried out and then compared to experimental results. The available models use
different input parameters or fitting parameters. We could identify a large discrepancy
between those approaches. Most importantly, the expectation contradicted the measured
behavior. The thermal conductivity of water vapor is lower than the thermal conductivity
of dry air. Using a simple mixing equation based on the volumetric proportions of a gas
mixture, this would lead to a decrease in the thermal conductivity of the overall mixture.
It seems that many models cannot sufficiently describe the thermal conductivity of water
vapor and air mixtures. This mixture of a polar and a non-polar gas leads to the more
complex behavior of thermal conductivity due to the collision behavior of the molecules
and their degrees of freedom.

In this study, we compared common mixing equations with measurements of our
own thermal conductivity sensor for measuring hydrogen and compared them with other
commercially available thermal conductivity sensors. We investigated the influence of
humidity on different thermal conductivity sensors and evaluated whether common mixing
equations can be used to describe and predict the behavior of those sensors.

Therefore, we conducted gas measurements between 25 and 85 ◦C with humidity
variations between 0% and 95% relative humidity at atmospheric pressure. The results of
all sensors were compared to the available mixing models.

2. Materials and Methods

2.1. Theoretical Background

Thermal conductivity is a material property that describes the ability of a material to
conduct heat. Generally, the thermal conductivity of gases is very low compared to liquid
or solid materials. Thermal conductivity values are often only available for pure gases,
and data points for mixtures are limited. Since the target application requires measuring
different concentrations of hydrogen in air, the focus is on the resulting thermal conductivity
of a gas mixture. Measured values at a specific concentration, temperature, and pressure
are hard to find. Therefore, methods with which the thermal conductivity of gas mixtures
can be calculated are being sought.

In this study, two different gas mixtures were in focus, the target mixture of the
sensor being an air–hydrogen mixture in order to investigate the cross-influence of a water
vapor and air mixture. Both mixtures are considered binary gas mixtures in which air
represents one component of the mixture (constant composition). In the literature, we can
find different equations and approaches to estimating the thermal conductivity of binary
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gas mixtures. These equations are of varying complexity. We only concentrate on gas
mixing equations for binary gas mixtures.

Udoetok presents a simple approach using the molar ratios of the gases and their
corresponding thermal conductivity. The resulting thermal conductivity of the gas mixture
is directly dependent on the molar ratios of the components in the gas mixture. Udoetok
derives this from a model in which he considers thermal resistances and their parallel and
serial connection [5].

kmix = 0.5 × kAkB
xAkB + xBkA

+ 0.5 × (xAkA + xBkB) (1)

where kmix is the resulting thermal conductivity of components A and B with their thermal
conductivities kA and kB, respectively. xA and xB are the molar fraction of each component
in the mixture. This approach has already been investigated for binary gas mixtures of
rare gases in a study by Mathur, Tondon and Saxena [6]. Zhukov and Pätz consider this
approach for the calculation of a mixture of hydrogen and oxygen [7].

Mason and Saxena provide a general gas mixing equation which according to them is
derived from kinetic theory by well-defined approximations [8]. Additional to the molar
fractions and the thermal conductivities of the pure components, the molecular weights
and viscosities at the corresponding temperature are needed for calculating a resulting
thermal conductivity.

kmix =
kA

1 +
(

GAB
xB
xA

) +
kB

1 +
(

GBA
xA
xB

) (2)

The parameters GAB and GBA are calculated using the viscosities μA and μB and molar
masses MA and MB for the gases A and B, respectively.

GAB =
γ

2
√

2
×
(

1 +
MA
MB

)−0.5
×
[

1 +
(

μA MB
μB MA

)0.5
×
(

MA
MB

)0.25
]2

(3)

GBA =
γ

2
√

2
×
(

1 +
MB
MA

)−0.5
×
[

1 +
(

μB MA
μA MB

)0.5
×
(

MB
MA

)0.25
]2

(4)

This equation can be used for polyatomic gases in binary gas mixtures, but polar gases
are excluded in the study of Mason and Saxena. The factor γ is an empirical factor and
defined as 1.065 for non-polar gas mixtures [8].

Tsilingiris proposed a gas mixing equation for gas mixtures containing air and water
vapor [9]. The base for this equation is the equation proposed by Mason and Saxena
as described above. Tsilingiris adapted the empirical factor and conducted subsequent
substitutions. He also added empirical equations to calculate the thermal conductivities
and viscosities for water vapor and air for different temperatures.

kmix =
(1 − xv)× kair

(1 − xv) + xv × φav
+

xv × kv

xv + (1 − xv)× φva
(5)

With xv being the molar fraction of water vapor in air and the thermal conductivities
kair and kv of air and water vapor, respectively. The paramterers φav and φva can be obtained
as follows:

φav =

√
2

4
×
(

1 +
Mair
Mv

)−0.5
×
[

1 +
(

μair
μv

)0.5
×
(

Mv

Mair

)0.25
]2

(6)
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φva =

√
2

4
×
(

1 +
Mv

Mair

)−0.5
×
[

1 +
(

μv

μair

)0.5
×
(

Mair
Mv

)0.25
]2

(7)

Melling et al. also proposed a model for calculating the thermal conductivity of a
gas mixture containing air and water vapor [10]. The model includes a set of empirical
equations to calculate the viscosities and thermal conductivities of air and water vapor at
a temperature range from 100 ◦C and 200 ◦C. The gas mixing equation was taken from
Mason and Saxena, but Melling et al. proposed a different empirical factor for this specific
gas mixture containing a polar and a non-polar gas. Thermal conductivity is calculated
using Equations (2)–(4), where the gases A and B represent air and water vapor, respectively.
They state that a γ of 0.8 best fits the available measurement data.

Some of the presented models are based on the same original equation but use different
values for the parameter γ. Melling et al. state that the most suitable value for this parameter
is 0.8 for mixtures of polar and non-polar gases. Tsilingiris uses factor 1 for this polar and
non-polar gas mixture of water vapor and air. Tondon and Saxena generally suggest a
value of 0.85 for polar and non-polar gas mixtures [11]. Mason and Saxena use 1.065 in
their standard equation for binary gas mixtures containing only non-polar gases.

Tondon and Saxena compared different approaches for calculating the thermal con-
ductivity of polar and non-polar gas mixtures [11]. The conclusion of this study was that
all four methods lead to an adequate calculation of thermal conductivity values with an
error of around 2%. One method, which they call the approximate method, is the approach
by Mason and Saxena from Equation (2), which is also used by Melling et al. Another
approach among those investigated is the method by Lindsay and Bromley [12]. As they
could not identify a clearly superior approach, our comparison does not include any further
methods. The presented equations can be used for binary gas mixtures. Calculations of
multicomponent gas mixtures have been performed by Muckenfuss and Curtiss and with a
modification by Mason and Saxena [13,14].

Figure 1 presents a graphical comparison of the different mixing equations for a binary
gas mixture containing hydrogen in nitrogen (a) and water vapor in air (b). Nitrogen is used
as a substitute for air since air consists of 78 vol.% of nitrogen. Both mixing equations for
hydrogen show a linear behavior for the selected range from 0 to 2 vol.% of hydrogen. The
larger the hydrogen concentration, the larger the difference between both calculations. In
the case of the water vapor and air mixture, it is important to notice that all three equations
show a very different outcome. Since the thermal conductivity of water vapor is lower
than that of air, the equation by Udoetok leads to a decrease in the thermal conductivity
with an increasing molar fraction of water vapor. Tsilingiris also predicts a decrease in the
thermal conductivity for higher concentrations of water vapor but at a different slope than
Udoetok. A very different behavior is shown in the equation of Melling et al., where the
thermal conductivity of the water vapor–air mixture first increases, reaches a maximum,
and then decreases again.
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(a) (b)

Figure 1. Comparison of the resulting thermal conductivity at 80 ◦C of gas mixtures containing
(a) hydrogen in nitrogen as calculated by Equation (1) from Udoetok and Equations (2)–(4) from Mason
and Saxena and (b) water vapor in air as calculated by Equation (1) from Udoetok, Equations (5)–(7)
from Tsilingiris and Equations (2)–(4) using the empirical factor from Melling et al. [5,8–10].

2.2. Thermal Conductivity Sensors

The behavior of our MEMS-based thermal conductivity sensor towards humidity was
investigated. The MEMS structure has already been introduced by Emperhoff et al. [15].

The sensor structure will hereafter be referred to as the IFX sensor. It is based on a three-
layer structure wherein a structured silicon wafer is sandwiched between two structured
glass wafers. This stacking leads to two cavities with two silicon heaters each, which act as
heater and resistor. One cavity is hermetically sealed through the two glass wafers, whereas
the other cavity remains open with a gas inlet in the bottom wafer (Figure 2a). That means
two resistors are used as a reference in a constant atmosphere and the other two resistors
are exposed to gas changes. The resistors are connected as a Wheatstone bridge to allow a
stable and low-noise measurement of resistance changes (Figure 2b). The resistors are both
heaters and sensor elements. When a gas enters the open cavity, the thermal conductivity
of the gas changes. This leads to a temperature change at the heater, as it influences how
well the heat is dissipated. This causes a change in resistance, which can be measured via
the Wheatstone bridge.

(a) (b)

Figure 2. (a) Schematic cross-section of the MEMS structure used, as presented in [15]. (b) Schematic
top view of the sensor as presented in [15]. The four resistors are connected as a Wheatstone bridge
where two of them (M1, M2) are in a measurement cavity and the other two (R1, R2) are in a closed
reference cavity.

Additionally, two commercially available sensors with which to compare the IFX
sensor were selected. These are the CO2 sensor STC31 by Sensirion (Sensirion AG, Staefa,
Switzerland) and the H2 sensor PGS1000 by Posifa Technologies (Posifa Technologies, San
Jose, CA, USA) [16,17]. All sensors are based on thermal conductivity as their measurement
principle. Figure 3 shows a schematic overview of the two reference sensors. Figure 3a
shows the structure of the Sensirion STC31 CO2 sensor. It is assumed that a heater structure
in the middle is surrounded by two temperature-sensitive resistors at different distances
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from the heater. The PGS1000 hydrogen sensor consists of a heat source and a thermopile
on a membrane which are above a gas cavity/heat sink (Figure 3b).

(a) (b)

Figure 3. Schematic layout of reference thermal conductivity sensors with (a) the Sensirion STC31 on
the left and (b) the Posifa Technologies PGS1000 on the right [16,17].

2.3. Gas Measuring Station

All measurements were conducted using the gas measurement setup shown in Figure 4.
The HovaCAL® (IAS GmbH, Oberursel, Germany) is a calibration gas generator and can
produce dry and defined humidified gas mixtures. The gas mixing unit is optimized for
hydrogen gas mixtures and provides highly accurate hydrogen–nitrogen mixtures. The water
dosage is administered via precise syringes and fed to the gas flow through an evaporator.

Figure 4. Schematic overview of the utilized measurement setup consisting of a gas-mixing unit
(HovaCAL®) and a climate chamber containing two separate measurement chambers for the sensors
to be tested.

The preheated and humidified gas mixture is fed into the climate chamber via a heated
line to avoid condensation. Two separate measurement chambers containing the devices
under test are located within the climate chamber. Each chamber contains a temperature
and humidity reference sensor to measure the ambient conditions in close proximity to the
sensors. The Sensirion STC31 and the PGS1000 are placed in the first chamber. A humidity
and temperature reference sensor are included in the STC31 module. Both sensors can
be read out via an I2C bus. The communication is conducted with a PSOC MiniProg3
(Infineon Technologies AG, Neubiberg, Germany). The second chamber includes the IFX
sensor and a SHT4x relative humidity sensor (Sensirion AG, Staefa, Switzerland). The
IFX sensor is powered and read out via the Cypress microcontroller CY8C5888LTI-LP097
(Infineon Technologies AG, Neubiberg, Germany).

2.4. Measurement Methods

In this study, the behavior of thermal conductivity sensors towards humidity was inves-
tigated. To evaluate and compare the different thermal conductivity sensors, a calibration
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measurement with hydrogen in nitrogen was carried out first as all sensors deliver different
sensor outputs. The STC31 is a CO2 sensor, and the output is given as a CO2 concentration
in ppm. The PGS1000 is a hydrogen sensor which provides the hydrogen concentration as a
percentage. The IFX thermal conductivity sensor provides a raw voltage signal.

The measurements were conducted in two steps. First, a calibration measurement was
conducted using hydrogen in nitrogen with different concentrations. A humidity measurement
with increasing water vapor concentrations in nitrogen followed the calibration measurement.

The measurements were carried out with a total flow rate of 1500 mL/min and
repeated at different temperatures between 25 and 85 ◦C. The calibration measurement
uses nitrogen as carrier gas and adds hydrogen to receive the concentrations 0%, 1%,
and 2% of hydrogen. In the following measurements, the signal output of all sensors
is converted into a hydrogen concentration using the measured sensitivity to hydrogen
for each sensor at each temperature. Directly following the hydrogen measurement, the
humidity measurement was conducted. The water vapor concentration was increased
stepwise from 0 to 90% relative humidity.

The change in the original sensor output of each sensor is transformed into a hydrogen
concentration on the one hand and a change in the thermal conductivity value on the other
hand. Using the sensor sensitivity of the calibration measurement with hydrogen, all sensor
signals are converted into a hydrogen equivalent. The expected thermal conductivity of a
hydrogen–nitrogen mixture from 0 to 2 vol.% is calculated using the mixing equation by
Mason and Saxena with a γ of 1.065, which, according to Zhukov and Pätz, is most suitable
for hydrogen mixtures [7]. The change in the sensor signal of the hydrogen equivalent is
then transformed into a corresponding change in thermal conductivity.

3. Results

Humidity Response

Two out of three of the presented models predicted a decrease in thermal conductivity
for increasing concentrations of water vapor. This means that there were large deviations
between the results of those equations. We investigated how our thermal conductivity
sensor behaved in actual measurement conditions. To verify the results, we not only tested
the IFX sensor but also tested sensors from other producers, using hydrogen–nitrogen
mixtures and water vapor–nitrogen mixtures. In the theory section, we saw that increasing
the share of hydrogen in nitrogen leads to an increase in the thermal conductivity of the
gas mixture. Within our measuring range, this behavior can be regarded as linear.

This means that according to two out of the three presented models, a signal change
in the other direction is expected for humid gas mixtures. To simplify the presentation of
the measurement results, the signals are displayed as hydrogen equivalents.

Initially, the IFX thermal conductivity sensor sample was measured alone to inves-
tigate the impact of humidity on the IFX sensor signal. Figure 5 shows the result of a
characterization at four different temperatures, with increasing humidity levels between
0 and 90% relative humidity. The sensor output is displayed as a hydrogen equivalent at
the respective temperature. The offset due to temperature changes is compensated. The
first thing to note is that the sensor responded with a positive hydrogen equivalent for in-
creasing levels of humidity. This indicates an increase in the thermal conductivity (contrary
to what some mixing equations predicted). Furthermore, as temperature increased, so did
the non-linearity of the sensor signal in response to the relative humidity. At some point,
this even led to a turning point at which the signal decreased again and dropped below a
0% hydrogen equivalent. The higher the temperature, the larger the maximum hydrogen
equivalent caused by the water vapor.
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Figure 5. Humidity measurement of the IFX sensor at four different temperatures with increasing
humidity levels between 0 and 90% relative humidity.

Figure 6 shows the measurement data at 81.9 ◦C compared to the introduced models.
While comparing the models from the theory section with our measurement data, we can see
that only the model by Melling et al. showed an increase in the thermal conductivity with
increasing relative humidity [10]. The mixing equation of Udoetok and Tsilingiris resulted
in a decrease in the thermal conductivity of water vapor and air mixtures, as was intuitively
expected, since the thermal conductivity of water vapor is lower than that of air [5,9].

Figure 6. IFX sensor measurement compared to gas mixing equations from Udoetok, Tsilingiris and
Melling et al. for the thermal conductivity of water vapor in air at 81.9 ◦C [5,9,10].

To ensure that this result was not just a misleading measurement or fault caused by the
sensor system, the humidity measurement was repeated, and two external sensors based
on thermal conductivity were added to the measurement setup as described in Figure 4.
Those sensors are the STC31 CO2 sensor by Sensirion and the PGS1000 H2 sensor by Posifa
Technologies. The measurements were performed as described in Section 2.

Figure 7 shows the humidity measurements at four different temperatures. Mean
values for every measurement point are displayed for each sensor. The results are given as
hydrogen equivalents over the measured relative humidity. A polynomial curve of second
order is fitted through the measurement points. The first thing to notice is that the humidity
response parallels the hydrogen response for all three sensors. Second, the non-linearity
increases at larger temperatures. Third, all three sensors show the same general behavior
but with different magnitudes. The largest humidity response is shown by the STC31,
which reaches up to 2 vol.% of hydrogen. The IFX and PGS1000 are quite comparable,
especially at lower humidity levels, and show a maximum error between 1.1 and 1.2 vol.%
of hydrogen.
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(a) (b)

(c) (d)

Figure 7. Measurement with three different thermal conductivity sensors (IFX, STC31 and PGS1000)
at four different temperatures (a) 25.5–25.7 ◦C, (b) 59.7–60.7 ◦C, (c) 76.7–77.6 ◦C and (d) 82.8–83.6 ◦C,
with varying humidity from 0 to 95% relative humidity.

Figure 8 displays the change in thermal conductivity as calculated with the equation
from Melling et al. [10] Four different temperatures are displayed, depending on (a) the
relative humidity between 0% and 100% (temperature offset compensated). The general
behavior is quite comparable to what we see in the measurement results, with the two main
characteristics of an increasing thermal conductivity and an increasing non-linearity at
higher temperatures. Relative humidity results in a different absolute humidity at different
temperatures; Figure 8b displays the thermal conductivity of a water vapor in air mixture
depending on the absolute humidity in vol.%. The change in the thermal conductivity
depending on the absolute humidity almost shows a parabola. That means that the change
in thermal conductivity can be regarded as mostly dependent on the absolute humidity.
The relative humidity is converted to an absolute humidity using following approach:

AH = RH × Ps(t)
Pb

(8)

(a) (b)

Figure 8. Result of the mixing equation by Melling et al. displaying the change in thermal conductivity
of a water vapor–air mixture depending on (a) relative humidity and (b) absolute humidity in vol.%
at four different temperatures between 25 and 85 ◦C [10].

The absolute humidity AH in vol.% is calculated using the relative humidity RH in %, the
saturation vapor pressure Ps in mbar at the reference temperature t, and the reference pressure
Pb in mbar. The saturation vapor pressure is calculated with the Goff–Gratch equation.
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Similar to the display of the model in Figure 8, Figure 9 shows the measurement results
depending on the absolute humidity to evaluate whether the sensor output is in fact also
mostly dependent on the absolute humidity share in air. We can see that the output seems
to match well in low humidity ranges. However, at higher humidities, the results at the
same absolute humidity but at different temperatures start to deviate. This applies to all
three sensors, albeit to different degrees.

  
(a) (b) 

 

 

(c)  

Figure 9. Result of the humidity measurement of the (a) IFX, (b) STC31, and (c) PGS1000 thermal
conductivity sensors displayed as a hydrogen equivalent and depending on the absolute humidity in
vol.%, as calculated using Equation (8).

The same measurement data are transformed into a thermal conductivity value for a
direct comparison to the model by Melling et al. [10]. The equation by Mason and Saxena
is used to calculate a corresponding thermal conductivity change for a certain hydrogen
concentration. This can be used to convert the hydrogen equivalent of the humidity
measurements to an expected change in thermal conductivity. This delta is added to the
thermal conductivity of 100% of the carrier gas at the respective temperature. Figure 10
shows the result of this display for all three sensors. The increase in the humidity level in
the gas mixture seems to lead to an increase in thermal conductivity until the curve reaches
its maximum and the thermal conductivity decreases again. Generally, the model shows
the same behavior. A certain degree of uncertainty remains, particularly with the position
of the maximum value and the magnitude, which is different for each sensor.
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(a) (b)

(c)

Figure 10. Thermal conductivity of water vapor and air mixtures at different temperatures as
calculated with the equation of Melling et al. [10] compared to the measurement results of the
(a) IFX, (b) STC31, and (c) PGS1000 thermal conductivity sensors. The results are displayed as a
corresponding thermal conductivity value.

To verify our measurement data, earlier measurement results by Gruess and Schmick
and Vargaftik [18,19], which were taken from Tsilingiris [9], were compared to measured
data from the IFX sensor as well as the presented mixing equations at a temperature of
80 ◦C (Figure 11). The IFX measurement was slightly above 80 ◦C with a temperature of
82.9 ◦C. The experimental data by Gruess and Schmick and Vargaftik are well in line with
our own results.

Figure 11. IFX measurements at 82.8 ◦C and different mixing equations for the thermal conductivity
of water vapor in air at 80 ◦C compared to experimental data from Gruess and Schmick (1928) and
Vargaftik (1983) taken from Tsilingiris [5,9,10,18,19].

4. Discussion

The three models presented showed different thermal conductivities for water vapor
in air mixtures. Two of them are specifically for humid air mixtures. The third model is a
simple mixing equation based on molar ratios. Intuitively, water vapor should decrease the
thermal conductivity of the mixture since the thermal conductivity of pure water vapor
is lower than the thermal conductivity of dry air. As a polar molecule with hydrogen
bonds, water often behaves differently from other materials. During our measurements,
we observed an increase in thermal conductivity with increasing levels of humidity, similar
to what the mixing equation of Melling et al. indicated. At higher humidity levels, the
thermal conductivity decreased again. Tsilingiris, on the other hand, predicted a decrease
in thermal conductivity. The best alignment of experimental data with the models was
achieved with the mixing equation from Melling et al. In general, experimental data for
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gas mixtures of water vapor and air are scarce for the intended temperature and pressure
range. Experimental data were mostly cited from Gruess and Schmick and were taken from
Tsilingiris to compare them with our own results. Tsilingiris also provides experimental
data from Vargaftik. A deviation between experimental data and calculated values was
acknowledged, but the model functioned sufficiently well. The smallest deviation between
experimental and modeled data was found with the approach of Melling et al. [10]. This
applies both to our own measurement results and to earlier data from Gruess and Schmick
and Vargaftik which were taken from Tsilingiris [9,18,19]. When choosing a mixing equation
for the thermal conductivity of gas mixtures, it is important to be aware of the boundary
conditions. Mixtures of polar and non-polar gases cannot be predicted using simple
equations such as the one from Udoetok [5]. We were able to show that the thermal
conductivity of humid air first increases compared to dry air, although many publications
still state that it decreases continuously.

Two commercially available sensors were investigated and compared to experimental
results from our own sensor. All the investigated sensors are based on the measurement
of thermal conductivity. Thermal conductivity sensors consist of a heat source and a
temperature-sensing element which indicates changes in thermal conductivity through
measuring temperature changes. Those two components can be separate, as in the STC31
and the PGS1000, or combined, as in the IFX sensor. If hydrogen or humidity are present in
the vicinity of the sensing elements, the change in thermal conductivity causes a change in
the temperature of the sensor element. In the case of the IFX sensor, this resulted in a change
in resistance, which could be measured through the Wheatstone bridge. All three sensors
qualitatively showed the same behavior towards humidity. The IFX and PGS1000 were also
similar in the magnitude of the effect, which corresponded to 1.1 to 1.2 vol.% in hydrogen
measurement values. The STC31 showed the largest effect towards humidity, with an
equivalent of 2 vol.% in the hydrogen measurement value at maximum. The difference
in the signal level can partly be explained by different heater temperatures. When the
heater is activated, this creates a microclimate around the heater. This causes a temperature
gradient between heater temperature and ambient temperature. Thermal conductivity is a
temperature-dependent material property. The temperature gradient can be different for
different gases. This can lead to an altered ratio of the thermal conductivities of hydrogen
and water vapor. We assumed that the STC31 had the highest heater temperature compared
to the other two sensors.

The behavior of all three sensors towards humidity fit best to the model proposed by
Melling et al. [10]. The IFX, STC31, and PGS1000 showed a maximum error of 1.4%, 4.5%,
1.7%, respectively. There are several possible reasons for these deviations. The mixing
models represent only thermal conductivity. In our measurements, we must also consider
different types of temperature transport, which are always a combination of convection,
conductivity, and heat radiation. Forced convection should be at a minimal level because of
the sensors’ geometry and housing. Free convection, on the other hand, is present inside the
measurement cavities. Furthermore, we must differentiate between thermal conductivity
and thermal diffusivity. Thermal conductivity still contains the specific heat capacity and
density of the gas. Mixing models cannot contain the whole complexity of those factors,
especially since the extent of each factor varies with the sensor type and geometry.

5. Conclusions

In this paper, we investigated the impact of humidity on thermal conductivity sensors.
This included a search of the literature for different mixing equations for calculating
the thermal conductivity of binary gas mixtures and comparative measurements with
different thermal conductivity sensors. Out study of the literature did not provide a
clear result regarding the behavior of the thermal conductivity value for mixtures with
varying humidity. Different approaches provide different solutions. Some models predict
a continuous decrease and others an increase in thermal conductivity with increasing
humidity, which is followed by a decrease at very high absolute humidities. However,
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the measurement results of three different sensors show a behavior comparable to the
model of Melling et al. that indicates an increase followed by a decrease after thermal
conductivity reaches a maximum. In our measurements, the sensor signals caused by
humidity reached up to 2 vol.% in the hydrogen measurement value at maximum. The
behavior of all three sensors was comparable, even if they displayed different degrees of
change. Deviations between the experimental data of the three sensors and the model by
Melling et al. [10] range between 1.4% and 4.5%. Earlier measurements by Gruess and
Schmick or Vargaftik [18,19] are in line with these results. The behavior of the thermal
conductivity depending on humidity is also shown in a study by Kimura, who even uses
this behavior to measure the absolute humidity in air [20].

The results were compared with the identified mixing equations to evaluate whether
these equations can be used to predict the behavior of thermal conductivity sensors and
to show the actual behavior towards humidity for real-life applications. The thermal
conductivity of the gas mixture containing water vapor and air or nitrogen first increased
and then decreased again after it reached its maximum value. Simplified mixing models
cannot be used to describe this behavior. Mixing models must be adjusted to fit the present
gases, as in the approach by Melling et al., where the empirical factor of the equation by
Mason and Saxena was adapted to a gas mixture containing water vapor and air [8,10].

More actual thermal conductivity measurements would be helpful for a more accurate
adaption of the mixing equation to water vapor–air mixtures as the available experimental
data are still limited in lower temperature and pressure ranges, as investigated in this study.
Especially for measurements with the investigated sensors, we must also consider the
microclimate of the heater structures, as the actual temperature around the heater does not
correspond to the measured temperature and leads to a gradient surrounding the heater.
Furthermore, measurements with the available sensors are not only influenced by thermal
conductivity but could also include other types of temperature transport such as convection
and heat radiation or sensor-specific characteristics and dynamic behaviors. The proposed
gas mixing models cannot cover the whole complexity of those factors.

The results herein will help the implementation of thermal conductivity sensors in
real-life applications. Thermal conductivity is mostly dependent on absolute humidity
if it is temperature-compensated. It can be used as a simple way of compensating for
humidity. We have shown that the observed behavior of our thermal conductivity sensor
towards humidity is a general phenomenon that can be reproduced with other sensors
and previous measurement data from other authors, even if some models still suggest a
different behavior. Further investigations are planned to find adequate ways to improve
models for sensor applications and to implement methods of compensating for humidity.
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Abstract: This paper presents the design, development, and validation of a novel e-textile leg sleeve
for non-invasive Surface Electromyography (sEMG) monitoring. This wearable device incorporates
e-textile sensors for sEMG signal acquisition from the lower limb muscles, specifically the anterior
tibialis and lateral gastrocnemius. Validation was conducted by performing a comparative study
with eleven healthy volunteers to evaluate the performance of the e-textile sleeve in acquiring sEMG
signals compared to traditional Ag/AgCl electrodes. The results demonstrated strong agreement
between the e-textile and conventional methods in measuring descriptive metrics of the signals,
including area, power, mean, and root mean square. The paired data t-test did not reveal any
statistically significant differences, and the Bland–Altman analysis indicated negligible bias between
the measures recorded using the two methods. In addition, this study evaluated the wearability and
comfort of the e-textile sleeve using the Comfort Rating Scale (CRS). Overall, the scores confirmed
that the proposed device is highly wearable and comfortable, highlighting its suitability for everyday
use in patient care.

Keywords: e-textile; textile-based electrode; surface electromyography; EMG; wearable sensors;
comfort rating scale; comfort assessment

1. Introduction

Technological advancements have transformed the healthcare sector, with wearable
technologies emerging as a key component of patient monitoring and health manage-
ment [1,2]. These wearable devices, characterised by their constant connectivity, comfort,
and discreet integration into daily life, are rapidly becoming indispensable tools in medi-
cal diagnostics and therapy [3,4]. The evolution from simple step counting to advanced
monitoring of vital signs such as blood pressure and potential arrhythmias underscores the
growing ability of wearable technologies to seamlessly integrate into our daily lives while
improving access to healthcare and disease prevention [5]. The integration of wearable
technologies extends from sports medicine, as demonstrated by Skazalski et al. [1], who
used wearable devices to monitor the jumping load in elite volleyball players, to extreme
conditions, where Chen et al. [2] developed methods to detect heat stroke. Similarly, Dooley
et al. [6] compared and validated key consumer devices for measuring exercise intensity,
highlighting the role of wearable devices in fitness and health tracking.
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The use of wearable devices in healthcare, such as smartwatches, electronic bracelets,
and sensor-embedded garments, represents a move towards patient-centred care. These de-
vices enable real-time monitoring of crucial health metrics such as heart rate, blood pressure,
and body temperature, facilitating immediate medical intervention when necessary [3,7].

Outstanding research has highlighted the potential of wearable technologies in the
medical field, particularly their application in continuous health monitoring and disease
prevention [8]. Wearable devices offer a unique combination of convenience, real-time data
analysis, and personalisation of medical treatments, thereby revolutionising patient care
and disease management.

However, a major challenge in the field of wearable technology is the integration of sen-
sors with everyday clothing to improve usability and comfort. This challenge has led to the
development of Electronic Textiles (e-textiles) or Smart Textiles which seamlessly integrate
electronic components into textile materials and use innovative materials such as graphene
to demonstrate the effectiveness of e-textiles in continuous health monitoring [9–11]. De-
spite their potential, challenges related to signal distortion and reduced stability with
repeated washing remain critical issues to be addressed, highlighting the need for further
advances in the field [12]. E-textiles represent a groundbreaking advancement, as they react
and adapt to environmental stimuli through the integration of smart materials into their
structure. This innovation presents several advantages over traditional electronic devices,
including direct contact with the skin, flexibility and adaptability to the human body’s
contours, and cost-effectiveness thanks to reusability and washability that is comparable
regular clothing [8].

Recent studies, such as the systematic review of e-textiles in biomedical applications
by Cesarelli et al., have highlighted the role of wearable biosensors and fabric-based devices
in health monitoring and disease management, offering new paradigms in patient care [13].
Their comprehensive review illustrates the various applications and potentialities of e-
textiles in various medical settings, reinforcing the importance of these technologies in
improving patient comfort and autonomy in health management. However, the same
review identified a common limitation regarding the small study populations used to
test these novel devices. Typically, devices are tested on a single volunteer. This is likely
correlated with the other relevant issue, which concerns the early stage of development of
the technologies presented in the literature thus far.

sEMG is of great importance due to its wide range of applications and benefits. Among
other interesting applications, during biomechanical analysis of movements and practical
rehabilitation it can provide a simple and objective quantitative assessment of muscle
function with high information content [14–16]. sEMG has emerged as a suitable application
of e-textile technology considering the need to detect the muscle action potentials with
electrodes directly on the skin [17]. However, the main challenge remains developing
electrodes and devices that are accurate and reliable while also being comfortable and easy
for patients to use. Recently, attention has shifted towards the use of flexible materials
and conductive fabrics, which promise to overcome many of the limitations of traditional
electrodes. Recent studies have explored the use of non-invasive flexible electrodes for
sEMG acquisition, exploiting designs inspired by biological structures to improve adhesion
and reduce interference during signal acquisition [18]. For example, the creation of adhesive
microstructures on the surface of electrodes, inspired by natural mechanisms such as tree
roots or marine organisms, has been shown to significantly improve both the adhesion
and extension capability of electrodes. Another significant area of research concerns the
use of conductive fabrics such as Conductive Composite Silicone Material (CCSM), which
have demonstrated superior performance compared to screen-printed materials in terms of
durability and resistance to deformation during use [19]. Conductive plating on flexible
fabrics offers an interesting alternative, with a conductive coating on each individual fibre
of the fabric to improve strength and flexibility.

In addition to these innovations in materials and fabrication techniques, it is crucial
to consider the integration of these advances with wearable devices that can be easily
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adopted by users. This approach requires a focus on functionality and reliability as well as
on ergonomics and user comfort, aspects that are crucial to ensure the wide adoption and
sustained use of these devices.

In this context, several approaches to creating prototype e-textile devices have been
identified in the literature. For instance, Ohiri et al. [19] proposed a modular suit designed
to extensively measure muscle activity, with sensors on key muscle groups such as the torso,
arms, legs, and back. Similarly, Goncu-Berk et al. [20] developed prototype t-shirts with
varying sleeve lengths made of stretch polyester knit fabric and e-textile electrodes sewn
with conductive thread. Alizadeh-Meghrazi et al. [21] proposed a sleeve covering the entire
forearm that integrates knitted textile electrodes using conductive silicone rubber-based
filaments. Ozturk and Yapici [22,23] analysed the performance of wearable graphene-
based electrodes in monitoring the muscular activity the upper and lower limbs, showing
acceptable Signal to Noise Ratio (SNR) values. Similar results regarding graphene-based
electrodes were obtained by Awan et al. [24] in a cohort of eight healthy controls. Other
studies have explored different structures and materials for textile electrodes, as shown by
Katherine Le et al. [25], who analysed the effect of different types of conductive pastes and
textile electrode structures on biopotential monitoring performance. Furthermore, Milad
Alizadeh-Meghrazi et al. [26] examined the importance of skin–electrode impedance and
embroidery technique in the effectiveness of sEMG textile electrodes. A different approach
was followed by Choudry et al. [27], who used flexible conductive threads stitched on
fabric to design textile-based piezoresistive sensors embedded inside a garment to measure
muscle activity based on the small pressure changes exerted by muscles. These different
approaches highlight the continuing innovation in the design and application of e-textiles,
as further demonstrated by the previously mentioned systematic literature review [13]
highlighting the expanding scope and capabilities of e-textiles in the biomedical field.

Furthermore, a topic of debate in scientific discussions concerns the size of the elec-
trodes. Kim et al. [28] reported that electrodes with diameters of 20 and 30 mm outper-
formed those with smaller dimensions in terms of SNR and baseline noise. This finding
is consistent with other studies that have shown lower electrode–skin impedance and
better sEMG signal quality for electrodes with a larger surface area [29–32]. Despite these
advantages, it is important to consider that increasing the size and thereby reducing
the inter-electrode distance can lead to an increase in sEMG cross-talk and production
complexity. The device presented in this work embeds small-diameter (10 mm) circular
electrodes with increased skin contact pressure to overcome this issue. In fact, the studies
by Kim et al. [28] and Taji et al. [33] suggest that increasing the clothing pressure on skin
can lead to better performance with smaller electrodes. An increased contact area can
be achieved by adjusting the tightness of the clothing using arm or leg sleeves [29] or by
inserting pads or foams of various thicknesses between the electrodes and the substrate
fabrics [34,35]. We considered both the solutions to improve the pressure on the electrodes;
the proposed device is an adjustable sleeve made of elastic fabric, and the electrodes are
located on foams fixed on the substrate fabric. On the other hand, excessive increases in the
pressure of the device on the body district can cause discomfort and pain in the wearer, as
reported by An et al. [29]. Therefore, in this study we assessed the wearability and comfort
levels of the device by means of the Comfort Rating Scale.

The focus of this manuscript is on the development and validation of a novel wearable
device, specifically, a textile leg sleeve with e-textile embedded sensors for sEMG. The
proposed textile sleeve aims to provide a non-invasive, comfortable, and efficient tool to
capture sEMG signals from specific muscles of the lower limb during gait in order to con-
tribute to improved patient care and monitoring [17,36]. The sEMG sleeve is developed for
integration into an ankle–foot orthotic device for patients with ankle dorsiflexion deficits.
These supports have positive effects on walking [37]; however, it is of interest to assess the
function of the muscles involved (i.e., the anterior tibialis and lateral gastrocnemius), which
are the principal muscles responsible for foot dorsiflexion. Analysis of their activity, partic-
ularly during walking, can help to to improve biomechanical modeling of walking with
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the aim of diagnosing and monitoring clinical conditions [38]. This manuscript provides a
comprehensive analysis, beginning with the design requirements and specifications of the
e-textile band, followed by the fabrication process of the e-textile sleeve. Insight into the
validation of the device using statistical methods on a study population of eleven healthy
volunteers is presented, and the results of the study are reported and discussed with refer-
ence to the present scientific literature. This research aims to demonstrate the feasibility
and effectiveness of wearable devices based on e-textiles in medical diagnostics and patient
monitoring, which could pave the way for future innovations in healthcare technology.

2. Materials and Methods

2.1. Textile Sleeve for sEMG

The wearable device for acquiring sEMG signals is represented by an adjustable sleeve
with removable e-textile electrodes, designed to create an adaptable device for various
leg sizes that can be washed and reused. The electrodes for detecting sEMG signals are
connected at specific points on the elastic sleeve, which is worn below the knee to capture
signals from the anterior tibial and lateral gastrocnemius muscles.

The device is made of elastic fabric with a rectangular structure. The short ends are
closed on themselves with an adjustable hook closure. This allows for sleeve adjustment
and perfect adherence to various calf sizes. The initial structure is a rectangle measuring
300 mm in length and 240 mm in width, which is then folded and sewn onto itself to
achieve a rectangle measuring 300 mm in length and 120 mm in width. Hook closures are
then sewn onto the lateral edges of this rectangle. Regarding the outer side of the sleeve,
six clips with a diameter of 13 mm are sewn for connection to the acquisition system. These
clips are of the same size as those on standard Ag/AgCl electrodes used for biosignal
collection, ensuring compatibility with sEMG acquisition systems.

For the inner side, which adheres to the calf, six clips with a diameter of 15 mm are
sewn, onto which removable electrodes are applied. The electrode placement follows
the Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM)
guidelines for sEMG detection of the anterior tibial and lateral gastrocnemius muscles [39].
The clips on the inner and outer sides of the sleeve are electrically connected to establish a
connection between the electrode and the acquisition system.

Four removable electrodes with a diameter of 10 mm are used for acquiring the
electromyography (EMG) signal from the two muscles of interest, along with two reference
removable electrodes with a larger diameter (15 mm). The textile electrodes are made from
Silver Fiber Knitted Fabric (Suzhou Yu Gao Radiation Protection Technology Co., Ltd.,
Suzhou, China), a conductive knitted fabric with a resistance of less than 1 Ω per foot in any
direction across the fabric, and are wrapped in a soft non-conductive thickness to improve
adhesion to the skin, then sewn onto a clip (Figure 1). This design allows for the electrodes
to be removed when the acquisition is complete, allowing the sleeve to be washed.

Figure 1. The textile electrode consists of three elements: a textile fabric placed on a non-conductive
pad and then sewn to a metal clip.
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2.2. Experimental Setup

The study involved eleven healthy volunteers (eight women and three men, age
25.7 ± 1.7, height 168.3 ± 5.9 cm, weight 62.2 ± 5.9 kg) and evaluated the performance of
the e-textile sleeve for sEMG in comparison to Ag/AgCl electrodes. The evaluation was
performed by comparing the performance of the two types of electrodes in detecting sEMG
signal characteristics during Maximal Voluntary Isometric Contraction (MVIC) of the lower
limb muscles considered in the analysis. MVICs are commonly used, as they allow for
comparison of muscle activity levels across muscles, tasks, and individuals while limiting
the inhomogeneity due to intrinsic and extrinsic factors [40].

Each volunteer performed two measurement sessions, one with the textile sleeve and
one with the standard electrodes, in random order to avoid ordering effects on the results.
The session protocol involved the subject performing five MVICs, each lasting 5 s, with
a rest of 30 s between contractions [40]. Specifically, EMG signals from the two target
muscles, namely, the anterior tibialis and lateral gastrocnemius, were recorded separately.
The acquisition was conducted with the assistance of a timer. When the timer was started,
the subject remained in the resting position for 30 s. After the rest period, a start signal was
given to the subject, who performed the task and the maximum isometric contraction for 5 s.
Subsequently, the subject returned to the resting position and the protocol was repeated in
the same manner for five cycles. For acquisition of the EMG signal from the anterior tibialis
(Figure 2), the subject was seated and supported the leg, with the ankle joint in dorsiflexion
and the foot in eversion without extension of the big toe (sensor locations: tibialis anterior;
see the SENIAM guidelines). The MVIC of the lateral gastrocnemius (Figure 3) was obtained
with the subject assuming an upright unipodal position, with the knee fully extended (0°)
and the ankle in maximum plantar flexion [40]. Participants repeated the protocol with
both limbs. Three out eleven participants had minor impairments of the left leg which
affected the correct performance of the tasks. The total number of trials analysed was 19.

(a) (b)
Figure 2. Experimental setup for acquisition of anterior tibialis EMG signal by (a) band with e-textile
electrodes and (b) conventional pre-gelled electrodes.
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(a) (b)
Figure 3. Experimental setup for acquisition of lateral gastrocnemius EMG signal by (a) band with
e-textile electrodes and (b) conventional pre-gelled electrodes.

2.3. EMG Acquisition and Feature Extraction

EMG data were collected using the assembled EMG Sensor BITalino (r)evolution BLE
system (PLUX Wireless Biosignals S.A., Lisbon, Portugal) designed for real-time physio-
logical data recording together with the OpenSignals (r)evolution software (public build
2022-05-16). The system was used both in connection to the novel wearable sleeve with e-
textile electrodes and with standard Ag/AgCl electrodes for surface EMG in order to fix the
acquisition protocol and focus on the differences between standard and textile electrodes.
Figure 4 schematically illustrates the connection setup employed during the acquisition
with the textile sleeve. The plug-in textile electrodes are attached to the internal side of the
unit, while the conductive clips on the outer side are connected to the BITalino unit through
a standard electrode cable. EMG signals are wirelessly transmitted to a personal computer,
where they are stored and processed. Two muscles of particular interest were studied,
namely, the anterior tibialis and lateral gastrocnemius. These muscles play a crucial role
in human locomotion, being the major muscles responsible for foot dorsiflexion [41–43].
The muscles on the right side were monitored, as the participants were all right-handed.
Electrodes were placed on these muscles following SENIAM recommendations [39]. EMG
signals were processed in MATLAB R2023a (Mathworks Inc., Natick, MA, USA) to extract
quantitative metrics estimating muscle fatigue exerted during the tasks. The parameters
describing the EMG signals considered in this analysis are as follows: area of the signal,
power of the signal, mean value, and Root Mean Square (RMS). These quantitative metrics
were extracted from the rectified signal during the 5 s contraction windows and then
averaged over a trial.

2.4. Statistical Analysis

In this study, a statistical analysis was conducted to compare the performances of
the e-textile electrodes with the reference pre-gelled Ag/AgCl electrodes for sEMG signal
acquisition. To assess whether a statistically significant difference existed between the
signals acquired with the two methods, either the paired t-test or its non-parametric form,
the Wilcoxon Mann–Whitney test, was applied according to the results of the Shapiro–Wilk
test for normality of the data.

In addition, the Bland–Altman method was used to assess the agreement between the
two measurement techniques. This is the most popular method for measuring agreement
between two measurement systems [44]. It plots the differences between the two sets of
measurements against their averages, allowing for identification of the bias (the mean
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difference) and the Limits of Agreement (LoA), calculated as the bias ±1.96 times the
standard deviation of the differences [45,46]. If the differences between methods do not
have a normal and/or symmetric distribution, then the LoAs are considered to be between
the 2.5% and 97.5% percentiles. The Bland–Altman plot additionally helps to visualize any
proportional or constant systematic error and to identify patterns or anomalies in the data.
Significant statistical errors are said to be present if the LoA of bias does not contain any
zero values. Bland and Altman suggested that the agreement between the methods being
tested should be accepted if this interval contains a zero value [45]. These statistical tools
provided a comprehensive framework for comparing the performance of the two types of
electrodes used in this study, facilitating an understanding of their relative effectiveness
in EMG signal acquisition. Statistical analyses were performed using R, version 4.0.3 (R
Foundation, Vienna, Austria).

Figure 4. Smart textile sleeve: the upper part shows the internal view of the textile electrodes, while
the lower part shows the external view connected to the acquisition system.

3. Results

Analysis of the agreement between the two measurement methods was addressed by
performing the statistical tests described above. Table 1 shows all of the metrics describing
the data. Descriptive statistics, i.e., the mean values and standard deviation, are provided
for each parameter, each muscle, and each measurement system. The results of the statistical
tests, i.e., the normality test and t-test for paired data, are indicated in terms of p-value. The
level of significance was set to 0.05, with p-values higher than the threshold considered to be
not significant (ns in the table). Paired t-tests were run in parametric or non-parametric form
after obtaining the results of the normality test. The hypothesis of no difference between
the systems was tested, with p-values lower than the statistical threshold suggesting
the rejection of agreement between the systems and p-values higher than the level of
significance meaning that the differences are not statistically significant and are the result
of random measurement errors.

The same table shows the descriptive numerical values derived from the Bland–
Altman analysis. The bias represents the average of the differences between the measures
calculated by the systems, and is provided with the values of the LoA. In the graphs in
Figures 5 and 6, the bias is shown by solid red lines; the dashed red lines represent the corre-
sponding confidence intervals. The LoA values reported in the table are shown in the graph-
ical representations as dashed black lines. They are estimated as the 2.5 and 97.5 percentiles
of the differences, as the differences do not have a symmetrical Gaussian distribution.

The results indicate general agreement for all of the analysed muscle parameters.
Statistical tests for paired data did not detect a significant difference between the measure-
ments extracted from the sEMG signals of the lower limb muscles during walking with the
two measurement methods. The Bland–Altman plot shows substantial agreement between
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the systems, as both the confidence interval and the LoA of the bias contain zeros for all
analysed parameters. The recorded differences in the extracted metrics from the signals ac-
quired from the tibialis anterior muscle are lower than those from the lateral gastrocnemius.
The recorded biases are always less than 7% of the mean parameter value for the tibialis
anterior muscle and less than 12% for the gastrocnemius lateralis muscle. However, the
amplitude ranges are narrower for the latter muscle than for the former. All of the biases
have negative values, indicating that the signals recorded with the textile electrodes present
higher magnitude and that the extracted parameters are slightly overestimated compared
to those recorded with standard electrodes.

Table 1. Descriptive statistics of the datasets and results of the statistical tests and analyses.

Area (mV ms)
Anterior Tibialis Lateral Gastrocnemius

Textile Sleeve Ag/AgCl Electrodes Textile Sleeve Ag/AgCl Electrodes

Mean± SD 198 ± 90 195 ± 76 205 ± 100 190 ± 76
Paired t-test 0.314 ns 0.186 ns
Bias −3.27 −14.9
Lower LoA −87.5 −92.8
Upper LoA 138 69.2

Power (mV ms)
Anterior Tibialis Lateral Gastrocnemius

Textile Sleeve Ag/AgCl Electrodes Textile Sleeve Ag/AgCl Electrodes

Mean ± SD 1.88 · 104 ± 1.48 · 104 1.76 · 104 ± 1.26 · 104 2.01 · 104 ± 1.95 · 104 1.68 · 104 ± 1.28 · 104

Paired t-test 0.184 ns 0.134 ns
Bias −1.17 · 103 −1.92 · 103

Lower LoA −1.80 · 103 −1.37 · 104

Upper LoA 2.45 · 103 9.00 · 103

Mean (mV)
Anterior Tibialis Lateral Gastrocnemius

Textile Sleeve Ag/AgCl Electrodes Textile Sleeve Ag/AgCl Electrodes

Mean ± SD 39.7 ± 18.1 39.1 ± 15.3 41.1 ± 20.1 38.1 ± 15.2
Paired t-test 0.314 ns 0.185 ns
Bias −0.649 −3.00
Lower LoA −17.5 −18.5
Upper LoA 27.6 13.9

RMS (mV)
Anterior Tibialis Lateral Gastrocnemius

Textile Sleeve Ag/AgCl Electrodes Textile Sleeve Ag/AgCl Electrodes

Mean ± SD 55.5 ± 25.3 54.8 ± 21.5 57 ± 28 52.8 ± 22.3
Paired t-test 0.334 ns 0.179 ns
Bias −0.727 −4.27
Lower LoA −24.4 −23.9
Upper LoA 40.7 20.3

Tibialis

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Bland-Altman Plots for parameters related to the Tibialis muscle: (a) Area; (b) Power;
(c) Mean and (d) RMS parameters.

Gatrocnemius

(a) (b)

(c) (d)

Figure 6. Bland–Altman plots for parameters related to the gastrocnemius muscle: (a) area; (b) power;
(c) mean; (d) RMS parameters.

194



Sensors 2024, 24, 2763

Comfort Assessment

In addition to validating technical performance, we conducted a wearability and
comfort assessment to evaluate the system’s acceptance by end users and identify areas for
design improvement.

Evaluating a device’s wearability is a multidimensional analysis, as wearable devices
can affect the wearer in various ways. When considering the effects of wearing something,
it is important to take comfort into account. The level of comfort can be influenced by
various factors, including the size and weight of the device, its impact on movement, and
any discomfort it may cause.

Knight and Baber (2005) proposed that comfort should be measured across multiple di-
mensions, including psychological responses such as embarrassment or anxiety in addition
to physical factors. To achieve this, they developed the CRS [47].

The CRS offer a convenient tool for evaluating the comfort of wearable devices. The
CRS aims to provide a comprehensive assessment of the wearer’s comfort status by measur-
ing comfort across six dimensions, as described in Table 2. To rate perceptions of comfort,
the scorer indicates their level of agreement with the statements in the ‘description’ column
of Table 2 on a scale from 0 (low) to 20 (high). The scores are interpreted based on the
five Wearability Levels (WLs) proposed by Knight et al. (2006) [48], which are obtained
by dividing the scales into equal parts. The meaning of each level is shown in Table 3.
According to Knight and Baber (2005), the range used in their study was considered large
enough to elicit a variety of responses that could be analysed in detail [47]. The participants
in our study were invited to complete the CRS and provide their judgments. All subjects
were guided by the same interviewer using standardised instructions. Figure 7 shows the
scores assigned for each field by the subjects involved in our study.

Table 2. Description of CRS fields and results.

Title Description Mean Std.

Emotion I am worried about how I look when I wear this device. I
feel tense or on edge because I am wearing the device. 3.91 3.08

Attachment I can feel the device on my body. I can feel the device
moving. 4.09 2.70

Harm The device is causing me some harm. The device is painful
to wear. 2.00 2.05

Perceived change Wearing the device makes me feel physically different. I feel
strange wearing the device. 3.27 2.41

Movement The device affects the way I move. The device inhibits or
restricts my movement. 4.09 2.74

Anxiety I do not feel secure wearing the device. 0.364 0.674

Table 3. Wearability levels for interpretation of CRS scores.

Wearability Level CRS Score Outcome

WL1 0–4 System is wearable

WL2 5–8 System is wearable, but changes may be necessary,
further investigation is needed

WL3 9–12 System is wearable, but changes are advised, uncomfortable
WL4 13–16 System is not wearable, fatiguing, very uncomfortable

WL5 17–20 System is not wearable, extremely stressful, and potentially
harmful
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Figure 7. Distribution of CRS scores provided by users.

The evaluation was conducted on a small sample of eleven individuals; therefore, these
results should be considered preliminary. Table 2 reports the mean value and standard
deviation of the scores. All of the fields were in the range of WL1, indicating that the
system is wearable and changes are not required. The highest values are for attachment
and movement (4.09); however this could be attributed to the wired electronic device
for acquisition rather than the textile sleeve, which the users may have perceived as an
embedded part of the device. Lower values were registered for the subjective perception
of emotion and perceived change (3.91 and and 3.27, respectively). Subjects reported no
discomfort or pain related to the use of the device (harm score 2.00). The lowest value was
for anxiety (0.364), with all of the subjects indicating they felt safe using the device. The
overall results confirm the high wearability and comfort of the proposed device, despite
its being a prototype with low production costs. In order to better identify the device’s
wearability level and ways to improve it, future analysis will aim to assess its comfort more
extensively by testing it on a wider cohort of subjects.

4. Discussion

The current study introduces an e-textile sleeve for sEMG measurement that is de-
signed to fit different calf sizes and to be both washable and reusable. The device integrates
circular electrodes in a silver knitted fabric with a diameter of 10 mm.

For the purpose of performance analysis in measuring sEMG, this study compared
the performance of the leg sleeve with pre-gelled Ag/AgCl electrodes with eleven healthy
volunteers participating in MVIC testing. This methodology is in line with approaches used
in recent studies exploring the effectiveness of textile electrodes in sEMG monitoring [25,26].

The results indicate good agreement between the two types of electrodes in measuring
characteristic metrics of sEMG signals from the lower leg muscles. Agreement was con-
firmed by means of paired-data statistical tests and quantitative and qualitative analyses of
Bland–Atman plots. All of the sEMG parameters demonstrate correspondence between the
two measurement methods we tested. There were no statistically significant differences
between the groups of measurements obtained with the two methods, and the average
biases were negligible compared to the typical values of the metrics.

As discussed in the Section 1 of this work, the feasibility of sEMG measurements using
dry textile electrodes has been analysed in several works that have focused mainly on the
type of material used and their effect on the quality of the recorded signal. The results were
generally comforting, and indicate that the use of textiles for smart clothes in biosignal
detection is a solution that may have an important future.
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Generally, the production process of these sensors, usually described in works fo-
cused on materials, is very complex and requires collaboration from various industries
that are not accustomed to collaborating. This represents a significant barrier to large-scale
production [49]. Therefore, in this study we aimed to test a commercial, readily available,
and affordable fabric. The electrodes were manually created in order to demonstrate the
feasibility of sEMG measurements with minimal resources and a simple production process.
It seems clear from the scientific literature that the limitations are non-technical and that the
acquired signal quality is satisfactory. However, a common limitation is that most studies
have focused on developing new technologies and only tested the resulting devices on a
single healthy subject. Only a few studies have considered larger study populations to
validate the device and move towards broader diffusion of the technology. With this in
mind, we expanded our analysis to eleven subjects and prioritised evaluating the wear-
ability and comfort of the device for users. When implementing new technologies, it is
important to consider the technical performance, impact on users, and applicability in
real-world contexts. Our evaluation conducted through the CRS yielded positive results,
despite the prototype nature and low production costs of the device. These aspects are
significant, particularly considering that smart clothes for biosignal detection may replace
standard methods in out-of-lab measurements where comfort and ease of use are neces-
sary. The results of our wearability and comfort analysis indicate that the users did not
experience pain from the device and suggested no significant modifications. To the best of
our knowledge, no other reference studies have quantitatively investigated these aspects
on wearable prototype devices for recording sEMG. Regardless, the collected answers fall
within the ranges indicated by the questionnaire developers as indicating the two highest
levels of wearability.

Although larger than the samples usually analysed in similar studies, the sample size
in this study was still relatively small and the subjects fell within a narrow age range, which
may not represent wider variations in the general population. For future research, it would
be worth exploring the use of these textile sleeves in a larger and more diverse sample.
As a further limitation, this study focused on four features extracted from the analysis of
sEMG signals in time domain, which is a useful approach for characterising the intensity
and duration of muscle activations. In future research, further interest may concern the
analysis of other parameters, such as frequency content, signal-to-noise ratio, or measures
of muscular fatigue. In addition, it would be interesting to evaluate the effectiveness of
these electrodes in dynamic applications and under exercise conditions, which would
be a suitable method for analysing muscle activation during walking or dynamic tasks.
In particular, a more comfortable solution than classical methods involving adhesive
electrodes and heavy instrumentation could favour remote monitoring applications, which,
together with telemedicine, are growing in popularity today.
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The following abbreviations are used in this manuscript:

BMI Body Mass Index
CCSM Conductive Composite Silicone Material
CRS Comfort Rating Scale
EMG Electromyography
LoA Limits of Agreement
MVIC Maximal Voluntary Isometric Contraction
RMS Root Mean Square
sEMG Surface Electromyography
SENIAM Surface Electromyography for Non-Invasive Assessment of Muscles
WL Wearability Level
SNR Signal-to-Noise Ratio
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Abstract: Future air quality monitoring networks will integrate fleets of low-cost gas and particulate
matter sensors that are calibrated using machine learning techniques. Unfortunately, it is well known
that concept drift is one of the primary causes of data quality loss in machine learning application
operational scenarios. The present study focuses on addressing the calibration model update of
low-cost NO2 sensors once they are triggered by a concept drift detector. It also defines which
data are the most appropriate to use in the model updating process to gain compliance with the
relative expanded uncertainty (REU) limits established by the European Directive. As the examined
methodologies, the general/global and the importance weighting calibration models were applied
for concept drift effects mitigation. Overall, for all the devices under test, the experimental results
show the inadequacy of both models when performed independently. On the other hand, the results
from the application of both models through a stacking ensemble strategy were able to extend the
temporal validity of the used calibration model by three weeks at least for all the sensor devices
under test. Thus, the usefulness of the whole information content gathered throughout the original
co-location process was maximized.

Keywords: air quality network; concept drift; general calibration; global calibration; importance
weighting; relative expanded uncertainty; calibration model update

1. Introduction

Scientific and technical communities have long recognized the potential of exploit-
ing low-cost sensors in modern air quality monitoring networks [1]. The main derived
advantage is the possibility of deploying a significant number of sensing nodes at rea-
sonable costs while densifying the sparse regulatory monitoring network. This in turn
allows for long-sought high-density assessments of air pollution phenomena known to
exhibit inherent high spatio-temporal variance [2]. The final outcomes include enhanced
awareness, focused, efficient, and shared remediation policies, improving urban planning
and reducing environmental and health inequalities. However, the large-scale application
of such a technology is still hindered by inherent data quality issues. Correcting sensors’
sensitivity to non-target gases and environmental variables is mandatory to achieve the
needed accuracy [3]. Moreover, the deterioration in the quality of the measurements occur-
ring during long-term operational deployment decreases the data quality perception for
these devices. Often, before any real-life deployment, a costly co-location time at certified
reference stations is needed to obtain sufficient data to derive sensor calibration functions.
The calibration obtained in the controlled environment failed to provide the requested
robustness. Unfortunately, sensor fabrication variance forces this process to be repeated for
each and any sensor by determining overall high costs and logistic bottlenecks. Moreover,
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every ab initio-derived calibration function will fail in the long term due to changes in
sensor characteristics like poisoning or ageing [4].

Machine learning (ML) algorithms are recognized as a very convenient methodology
to derive calibration functions [5]. Unfortunately, due to the operational scenario in which
the sensor is forced to operate, the well-known independent and identically distributed
samples hypothesis (i.i.d. assumption) is certainly violated. Indeed, the calibrated devices
will have to operate in different conditions from those learned during the short-term
co-location phase. Factors like seasonal environmental variations, anthropogenic forces,
micrometeorology-related fluctuations in pollutant concentration levels, sensor aging, and
so on will determine significant changes in the ongoing operative conditions [6]. As such,
the data distribution model is a paramount issue [7]. The change in the type (and its
location and spread parameters) of distribution will negatively impact the accuracy of the
model output [8]. When this condition occurs, it defines the presence of a concept drift [9,10].
Concept drift is in fact a condition in which the statistical distribution of the target and input
variables of a machine learning model has changed or continuously changed over time.
The analysis of concept drift occurrence has given rise to the need for machine learning
algorithms that are capable to learn in so-called “non-stationary environments” [6].

How to efficiently update the calibration model, after a concept drift condition has
been recognized, is still an open question. Remote calibration and hierarchical network
management are two of the most often proposed approaches.

With the term Remote Calibration, researchers indicate continuous or repeated recalibra-
tion schemes relying on a reference data stream from remote stations exploiting particular
conditions and hypotheses. After a seminal paper by Tsujita et al. in 2005, different teams
involved in air quality monitoring using low-cost sensor technologies have recently sug-
gested that data coming from remote regulatory grade stations should be exploited, in
low-spatial-variance conditions, to correct the effects of a drifting calibration in low-cost air
quality networks [11]. It is actually reasonable to suppose a uniform spatial distribution
of the pollutant concentration in a restricted geographical area at certain times when local
emissions are negligible [12,13]. Based on this hypothesis and, therefore, thanks to data
from a nearby regulatory station, in the case of uniformly low pollutant concentrations
(e.g., during early morning hours), it could be possible to correct the baseline response of
targeted gas sensors [14]. However, the generalization of such encouraging method find-
ings has to be carefully evaluated since the spatial and temporal variance of the recorded
phenomena may be significantly different depending on the geographic context negatively
affecting the performance of remote calibration approaches [4].

Hierarchical networks, including “golden” reference stations (proxies), on top have
also been proposed as a solution to the problem of the continuous calibration of low-
cost air quality monitoring systems (LCAQMSs). Usually, regulatory instrumentations
are on top in hierarchy, while some well-calibrated low-cost nodes are also entered into
intermediate positions. These latter nodes which are limited in number can be regularly
recalibrated, offering a quasi-gold reference data stream which can be used to continuously
recalibrate other low-cost nodes. This can be achieved, for example, by regularly collocating
these nodes with the latter by relocating the proxy nodes for short calibration-oriented
periods. Alternatively, by carefully designing node deployment, proxy measurements can
be used to remotely adjust the calibration of the low-cost nodes. One notable example
is the Breathe London project, in which quasi-golden node data streams are exploited
remotely [15]. Another way to practically implement this is by matching the mean and
standard deviations between the measures of the proxy itself and low-cost sensor data
over a fixed time window [16]. Based on this methodology, the Aeroqual Inc. company
(Auckland, New Zealand) has developed a virtual calibration service for its own products
(www.aeroqual.com (accessed on 23 April 2024)).

At present, continuous calibration strategies exploiting remote data are feasible and
cost-effective procedures for continuous recalibration, keeping the required accuracy level
for long-term deployments. Hourly averaged pollution data are, in fact, frequently pub-
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lished by regulatory institutions for the convenience of citizens and other users. This
means that such data are reachable for everyone through API REST services. One possible
implementation to be considered is MOMA (the acronym for MOment MAtching), which
is the commercial name of the virtual calibration service distributed by the Aeroqual Inc.
company. This service updates the calibration at fixed time intervals at an early develop-
ment stage [17]. To apply a similar workflow, we took such a service into consideration
and explored the possibility of triggering calibration by updating using a concept drift
detector. This methodology will allow for the performance of recalibration only when
specifically needed, saving precious computational resources and avoiding unwanted
overfitting errors.

In order to select the suitable strategies to mitigate the effects of the concept drift, the
following three main steps have been carried out: (i) understanding which data should
be used to update the model; (ii) evaluation and validation of the general calibration
model and importance weighting calibration model in the presence of a concept drift;
(iii) attempting to improve the quality of pollution estimations data with the stacking
ensemble technique in air quality network scenarios.

2. Materials and Methods

2.1. Experimental Campaign

The LCAQMS employed is based on an electrochemical sensors array using Al-
phasense (Braintree, UK) A4 class sensor units, respectively, targeted to carbon monoxide
(CO-A4), nitrogen dioxide (NO2-A43F), and ozone (O3-A431). Relative humidity (RH)
and temperature (T) sensors complete the sensing array. The electrochemical gas sensors
array is mounted on an analog front-end provided by Alphasense that outputs the signals
related to the concentration of monitored air gases. The working electrode (WE) and the
auxiliary electrode (AE) signals of each type of sensor are acquired and converted by an ST
Microelectronics (Geneva, Switzerland) Nucleo LK432KC board. The node measurements
are packeted in a proper JSON and sent via low-energy Bluetooth to a Raspberry Pi (Galles,
UK) 3B+ Model. A Wi-Fi router shares the WAN connectivity services with the Raspberry
Pi, allowing the data to reach the MONGO DB database server for storage.

Four nodes, named AQ6, AQ8, AQ11, and AQ12, have been deployed against a
mobile regulatory air quality monitoring station for a two-months-long winter co-location
campaign completed in the city of Portici (Naples, Italy) from 2 January to 2 March 2020.
During the campaign, the AQ8 sensor broke, and therefore it will not be considered.

This research study is focused only on nitrogen dioxide NO2, which is considered one
of the most dangerous pollutants, meaning that the value of the NO2 concentration is our
target variable Y. In fact, the experimental data stored on the server were averaged on an
hourly basis and used to calibrate the sensor nodes with an ad hoc multilinear regression
model, characterized by six input features X: relative humidity (RH), temperature (Temp),
AE and WE signals of NO2 sensor, AE and WE signals of O3 sensor [18].

2.2. Concept Drift Detection Trigger

Let (X, Y) be couples of input-target samples and Pt(X, Y) be its joint probability
distribution at the instant time t; a concept drift results if Pt(X, Y) �= Pt+1(X, Y). This
formula can be separated by means of Bayes’ law in the following relation:

Pt(X)Pt(Y|X) �= Pt+1(X)Pt+1(Y|X) (1)

A spatial or temporal change in the characteristics of the features X, but also a change
in the relationship linking the inputs to the target variable, is the cause of the decline
in the performance of the model used. Therefore, the greater the difference, the greater
the error that has been committed. It becomes imperative to be able to identify when
a similar event is occurring. Statistical tools are one of the most widely used and well-
established methods for accomplishing these tasks. A comprehensive guide to the concept
drift detection algorithms is available in [10].
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An immediate and simple implementation of a concept drift detection block can be
implemented (both on the node hardware and on the back-end server-side software) using
the two-sample Kolmogorov–Smirnov test (TSKS test), which is able to evaluate whether
two samples come from the same distribution without making any assumption regarding
the type of distribution. In the case of low-cost air quality sensors calibrated using ML
techniques, the TSKS test can be used to determine whether both the distributions of the
input features X and the distributions of the output variable Y during the training phase
remain the same also throughout the test phase. Of course, concept drift has occurred,
and a recalibration request is triggered if the distributions turn out to be different. Since
X-values are always available during the LCAQMS operational scenario, it is possible to
detect concept drift even without a reference instrument by comparing the X-distributions
obtained during co-location with those obtained during the operational phase (test phase).
The same Is true for the target variable. The value in co-location is compared with the value
predicted by the model in the test phase. Furthermore, if it is possible to access reference
station data from a remote calibration perspective, the same approach is obvious for the
output variable. According to the heuristic rule described in [19], a recalibration request is
only triggered when the maximum difference between the cumulative density functions of
the training and test distributions of the temperature and/or NO2 concentration exceeds
the threshold of 0.3.

By applying this approach to the experimental data collected, divided into eight
batches (T1 to T8), each one week long, the presence of two concept drifts has been detected.
The first is just before the end of the T4 slot time, while the second drift event happens
in T8, but it is not considered in such analysis. A graphic representation of the concept
drift existing in the dataset under analysis is shown in Figure 1. The green dots represent
the trend of the “concept” that characterizes the target variable and an input variable
(temperature, in this case) during the co-location period and, therefore, during the training
process. The red dots represent the trend of the same variables after the concept drift
detection; therefore, the “new concept” characterizes the test set after only one month.

Figure 1. Evidence of concept drift highlighted on the co-location samples of the target and
input variables.

2.3. Calibration Model Update Data Selection

To tackle the problem of concept drift handling, data were analyzed to find those
containing the useful information to update the calibration model.
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Let t0 be the time at which the concept drift detector block implemented in the air
quality monitoring network sends an alarm signal to the network administrator, meaning
that the current calibration model is obsolete and needs to be updated. Now the first
question is to understand which data should be used for the update. Three possible
reference datasets can be used within this scope: the dataset preceding the concept drift
alert, called “Last” and identified with the T3 time slot (Figure 2); the dataset following
the concept drift alert, called “Next” (T5 in Figure 2); or part of both called “Mixed” that
contains the time instant t0 and is reported as the T4 time slot (Figure 2) [20].

Figure 2. Data selection for calibration update when a recalibration request arrives from the concept
drift detector.

Our attention will focus on trying to restore the compliant data quality. The following
tests are fulfilled by updating the model using on-hand reference data (in the proper time
windows) and then evaluating the performance of the new model in T5–T6–T7.

2.4. Calibration Update without Reference Data

Bringing back the data quality at the regulatory level after the detection of a concept
drift event remains the final goal of our study. This means the mitigation of the effects
related to the concept drift. To make the most out of the information content of the co-
location data, two new calibration models beyond the ad hoc one were extracted from
it. The following techniques were explored: the general (also named global or, less often,
universal) calibration model, and the importance weighting calibration model.

2.4.1. General Calibration Model

This methodology has been introduced in recent years as an attempt to reduce the
calibration costs [21,22]. It consists of identifying and applying a general calibration model
to all the nodes involved in the network, thus avoiding the need for additional ad hoc
calibrations. As known, the raw output of most electrochemical gas sensors consists of the
voltage (mV) measured at the working and auxiliary electrodes that is representative of the
measured gas concentration. Let us consider n co-located sensors, and then the median
between these n values is calculated. The same procedure is applied for temperature and
humidity values. The set of medians of all the single quantities (input variables) involved
in model creation accounts for the training set which the global model is trained on. Such a
procedure is depicted in Figure 3.
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Figure 3. Procedure for creating the training set of the general calibration model.

Such an approach can incorporate the inherent variability of each sensor into a single
model, as previously investigated to contrast the effects of concept drift on metal oxide
(MOX) gas sensors [23]. The same approach was applied to the NO2 electrochemical gas
sensors in our case study.

2.4.2. Importance Weighting Calibration Model

The idea behind this procedure is to “weigh” the test set samples in order to “match”
the distribution used during the training phase. Once the weights are obtained, these will
be applied in the training process, obtaining a new calibration model [24].

The importance of a sample (i.e., the “weight”) is calculated as the ratio between the
probability density functions (pdf ) of the test and training set (Figure 4). If such a ratio
w(x) is equal to 1, this means that the sample has the same degree of importance in both
the test and the training set, while if w(x) > 1, the considered sample is more important in
describing the test set rather than the training set.

Figure 4. How the weights are used in the fitting process in MATLB fitlm (x, y, ’Weight’, w) function.
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In the present analysis, the application of the importance of the weighting calibration
model was limited to the target variable only, and the weights were obtained using the ad
hoc model prediction of the time slot T4 (the last useful time slot before the effects of the
concept drift would become disruptive).

2.4.3. Stacking Ensemble Calibration Model

Recently, the stacking ensemble technique has been successfully applied in domain
adaptation under concept drift due to its ability to reduce the deviation and variance in
neural networks, thus producing robust predictions. Such a strategy has also already been
applied in air quality sensor networks [25,26].

Stacking ensemble consists of combining the outputs of several models produced by
different algorithms (generally called base learners or also weak models) in order to increase
the total accuracy and increase generalization. The estimations of the basic learners are
combined in a second level, called meta-learner, which, in the case of regression problems,
can be a simple linear regression. In our case study, instead of implementing additional
algorithms such as base learners, we exploited the estimations of nitrogen dioxide result-
ing from the general calibration model and the importance weighting calibration model.
Figure 5 describes the proposed architectural scheme in detail. The reference data (labels)
for the meta-learner training phase will be requested to the air quality network in the T4
time slot. Such an approach is known as remote calibration, as described in the Introduction,
and in our case study, its usage avoids new co-locations.

Figure 5. The proposed stacking ensemble architecture.

2.4.4. Performance Evaluation

According to the European Directive [27], if a NO2 low-cost sensor is used in an
air quality network for indicative measurements, it should present a relative expanded
uncertainty (REU) below 25%. In this analysis, we labeled this positive operational scenario
with “PASS”, while “FAIL” identified REU > 25%. The REU and the REU plots, reported in
the Supplementary Materials, were computed with an appropriate MATLAB script on the
basis of the formulas and the methodology described in [19,28]. In our analysis, another
main parameter that was taken into account was the pollutant concentration value, at
which the REU graph intercepts the data quality objective (DQO) threshold line at 25%.
Obviously, the following choice between different models would be oriented towards the
model that shows the lowest possible REU, which is translated into the model’s better
capability to mitigate the effects of the concept drift.

3. Results and Discussion

To improve the readability of this section, the reader can refer directly to the fol-
lowing tables, which summarize the outcomes of the REU plots, which are detailed for
completeness in the Supplementary Material.
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3.1. Results with Reference Data

It would be obvious to come to the conclusion that the “Next” approach is to be
preferred over the others because it is after the alert that the new operating conditions fully
manifest themselves, independently, from the metrics used for the assessment.

However, in order to learn the new operating domain, it is necessary to wait for the
necessary time to acquire a certain number of samples to train the new model. This means
continuing, in the meantime, to invalidate the data released by the node (which would
be a PASS level of REU up to T4 and FAIL from T5 onward). An important drawback is
represented by the delayed time needed to obtain reference data before having a running
updated model. It could be possible to wait for T5 reference data and then embed the new
concept into the new updated model. However, such a strategy, even if allowing for good
performances in T6 and T7, would lead to a loss of continuity in the data quality in T5. The
goal, instead, is to achieve a continuity in data quality by wishing the REU in T5–T6–T7 to
be equal to PASS. Therefore, it would be helpful if the “Last” and/or “Mixed” approaches
presented acceptable REU values.

Tables 1 and 2 summarize the results obtained from the REU plots in the “Mixed” and
“Last” scenarios and emphasize their ability to mitigate the concept drift effects and lead to
more accurate and precise NO2 estimations. Both tables show, for each time slot and for
each device, the assigned REU labels (PASS, FAIL) as well as the value corresponding to
the intersection of the pollutant concentration value with the data quality objective (DQO)
threshold line at 25%, as disposed by the European Directive [27]. The missing values in
the tables are related to the REU plot, failing to reach the minimum threshold of 25%.

Table 1. Summary of REU results for the “Mixed” scenario.

T5 T6 T7

REU
Value

[μg/m3]
REU

Value
[μg/m3]

REU
Value

[μg/m3]

AQ6 FAIL - PASS 65 PASS 70
AQ11 PASS 60 PASS 80 PASS 80
AQ12 PASS 55 PASS 55 PASS 51

Table 2. Summary of REU results for the “Last” scenario.

T5 T6 T7

REU
Value

[μg/m3]
REU

Value
[μg/m3]

REU
Value

[μg/m3]

AQ6 FAIL - PASS 80 FAIL -
AQ11 PASS 55 FAIL - FAIL -

Observing the REU plots from T5 to T7 for the AQ12 device in the “Mixed” approach,
it can be seen that the REU drops below 25% from 55 μg/m3 onwards in T5 and T6
(Figures S1.1 and S1.2), while it drops from 51 μg/m3 in T7 (Figure S1.3). Surely such a
situation is to be preferred since it allows for the continuity of data quality, extending
the hoped PASS REU value for 3 more weeks. Regarding the AQ11 device, the “Mixed”
approach worked similarly to AQ12, but the inherent variability of the device negatively
affected the model performance, meaning it failed to repair the effects of the concept
drift. In fact, it can be seen that the intersections with the DQO threshold line at 25% are
higher, at 60 μg/m3 in T5 (Figure S1.4) and 80 μg/m3 in T6 and T7 (Figures S1.5 and S1.6),
respectively. On the other hand, in the “Last” approach, AQ11 exhibits good performances
only in T5 (Figure S1.7), while it does not reach the desired REU levels in T6 and T7
(Figures S1.8 and S1.9). This means that the intrinsic variability of AQ11 and the operating
conditions in T3 used for the fitting of the new model are too different from those present
after the concept drift. The AQ6 device in the “Mixed” approach presents a FAIL in T5,
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while in T6 and T7, a PASS is reached at 65 and 70 μg/m3, respectively (Figures S1.10–S1.12).
The “Last” scenario for AQ6 does not work, except for in T6, but at a higher pollution
level of 80 μg/m3 (Figures S1.13–S1.15). The outcomes for the AQ12 device in the “Last”
scenario are missing due to data transmission issues.

From the analysis carried out, it can be concluded that all in all, if there is a possibility of
drawing on the data of a regulatory reference station, it is possible to update the calibration
model after the trigger signal using the “Mixed” approach, i.e., selecting part of the reference
data before the concept drift alert and remaining data after it.

3.2. Results without Reference Data: General Calibration Model

Proceeding similarly to the previous case, it is essential to evaluate the REU to un-
derstand if the general calibration model is able to positively mitigate the effects of the
concept drift. Table 3 details the obtained results, while the REU plots in the Supplementary
Materials are also shown in comparison with the ad hoc calibration model.

Table 3. Summary of REU results for the general calibration model.

T5 T6 7

REU
Value

[μg/m3]
REU

Value
[μg/m3]

REU
Value

[μg/m3]

AQ6 PASS 45 PASS 63 PASS 80
AQ11 FAIL - FAIL - FAIL -
AQ12 FAIL - FAIL - FAIL -

Applying the general calibration model to the AQ6 node, the REU plot drops below
25% at 45 μg/m3, suggesting that the global calibration model is efficient in mitigating
the concept drift consequences in the T5 time slot (Figure S2.1). This value shifts at higher
concentration levels in T6 and T7, specifically at 63 μg/m3 and 80 μg/m3, respectively
(Figures S2.2 and S2.3). Although the REU does not fall within a considerable range of
values below 25% in T6 and T7, it must be observed that such a situation presents better
results than the ad hoc model. Therefore, a first applicative scenario would be to use the
global model for AQ6 from T5 onwards, instead of continuing with the ad hoc one. For
the AQ12 device, the general calibration model matches the ad hoc model performance
(Figures S2.4–S2.6). The same result has been obtained for particulate matter sensors in
terms of the mean absolute error (MAE) in [29]. The AQ11 intrinsic node variability makes
this instrument too different from the others; therefore, a general model built in this way
is unable to work properly for our purposes. Indeed, its performance is too far also from
the performance of the ad hoc model; thus, we chose not to report the REU plots. Future
research projects could investigate this aspect and evaluate whether it is better to build
more global models among similar devices by means of clustering [30].

3.3. Results without Reference Data: Importance Weighting Calibration Model

As can be seen in Table 4, re-weighing the target variable in T4 produces a considerable
improvement in the performance of the AQ11 device. In fact, looking at the REU plot of
AQ11 in T5, the intersection with the 25% value was observed at 40 μg/m3 (Figure S3.4),
while in T6 and T7, it did not quite reach the DQOs, although the importance weighting
calibration model performs slightly better than the ad hoc one (Figures S3.5 and S3.6). As
far as the AQ6 and AQ12 devices, the REU plots equaled those of the ad hoc model in some
time slots, while they were worse in others (Figures S3.1–S3.3 and S3.7–S3.9).
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Table 4. Summary of REU results for the importance weighting calibration model.

T5 T6 T7

REU
Value

[μg/m3]
REU

Value
[μg/m3]

REU
Value

[μg/m3]

AQ6 FAIL - FAIL - FAIL -
AQ11 PASS 40 FAIL - FAIL -
AQ12 FAIL - FAIL - FAIL -

Summarizing the application of the importance weighting calibration model brings
the AQ11 device in T5 back to the allowed REU values.

3.4. Stacking Ensemble Calibration Model Results

Table 5 shows the summary of the REU values for the stacking ensemble calibration
model. The inference to be drawn comparing the outcomes of Table 5 with those of Table 1
is that the application of the stacking ensemble technique lowers the value at which the
REU reaches 25%, making the mitigation of the concept drift effects more robust in all the
analyzed cases. In principle, the use of better-performing base learner algorithms could
contribute to further error reductions. The proposed solution, although not yet optimal,
constitutes a good compromise, since it guarantees the continuity of the data’s quality
even after the detection of concept drifts. Furthermore, operating within an air quality
network, the implementation of the proposed stacking ensemble approach requires only
the reference data in T4, meaning that any other re-co-location could be avoided in a remote
calibration approach.

Table 5. Summary of REU results for the stacking ensemble calibration model.

T5 T6 T7

REU
Value

[μg/m3]
REU

Value
[μg/m3]

REU
Value

[μg/m3]

AQ6 PASS 44 PASS 56 PASS 65
AQ11 PASS 44 PASS 70 PASS 76
AQ12 PASS 51 PASS 54 PASS 45

4. Conclusions

In this study, we attempted to achieve the data quality objectives in the measurements
of environmental pollutants through machine-learning-calibrated low-cost gas sensors.
Through our results, we hope to accelerate the spread of this technology in smart city
applications. The core of our work is a concept drift adaptation in the context of air quality
monitoring networks but by exploring the possibility of using the whole useful information
content of the data collected in the course of the co-location.

Another noteworthy aspect relates to the choice of calibration models used. With
the general calibration model, we wanted to incorporate the intrinsic variability of each
sensor into a single calibration model. On the other hand, with the importance weighting
calibration model, we tried to reduce the prediction error by matching the distributions
between training and test using accurate weights. Unfortunately, the general calibration
model and the importance weighting calibration model show promising results only for
some devices and only in the one time slot in this specific dataset. On the contrary, their
use in a stacking ensemble architecture succeeds in mitigating the concept drift effects
by allowing an extension of the calibration robustness both for all devices and in all time
slots after concept drift. For example, by turning off the ad hoc model and turning on the
stacking ensemble model, the node is able to output reliable data.

Even though the proposed methodology offers encouraging results, future research
is encouraged to test other models in the first layer of the stacking ensemble to increase
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performance but also to test the assessment and validation of the methodology using wider
datasets with a greater number of devices.

Finally, an important aspect to remark is the feasibility of the implementation on the
backend side of the platform of an air quality network of the proposed approach. This
might deliver a continuous calibration service. Recently, indeed the issue of evaluating and
monitoring machine learning models from validation to production has come to the fore.
Therefore, numerous start-ups have implemented their own platform and began offering
services in many application areas [31]. The low-cost air quality monitoring network could
be one of such applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s24092786/s1, Figures S1.1–S1.15: REU plots of reference data selection
for calibration update; Figures S2.1–S2.6: REU plots of general calibration model; Figures S3.1–S3.9: REU
plots of importance weighting calibration model; Figures S4.1–S4.9: REU plots of stacking ensemble
calibration model.
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Abstract: Packaging solutions have recently evolved to become smart and intelligent thanks to
technologies such as RFID tracking and communication systems, but the integration of sensing
functionality in these systems is still under active development. In this paper, chipless RFID humidity
sensors suitable for smart packaging are proposed together with a novel strategy to tune their
performances and their operating range. The sensors are flexible, fast, low-cost and easy to fabricate
and can be read wirelessly. The sensitivity and the humidity range where they can be used are
adjustable by changing one of the sensor’s structural parameters. Moreover, these sensors are
proposed as double parameter sensors, using both the frequency shift and the intensity variation of
the resonance peak for the measure of the relative humidity. The results show that the sensitivity
can vary remarkably among the sensors proposed, together with the operative range. The sensor
suitability in two specific smart packaging applications is discussed. In the first case, a threshold
sensor in the low-humidity range for package integrity verification is analyzed, and in the second case,
a more complex measurement of humidity in non-hermetic packages is investigated. The discussion
shows that the sensor configuration can easily be adapted to the different application needs.

Keywords: chipless RFID; humidity sensing; smart packaging; microwave sensor; threshold sensor

1. Introduction

As an alternative to traditional packaging, smart packaging today is a smart tool
capable of interacting with the environment and creating a link with manufacturers and
consumers while its functions far exceed the purpose of simply containing products [1].
Its market trend is continuously growing, and it is already estimated to be worth around
several billion US dollars. The uses of smart packaging are widespread, from logistics and
product traceability to safety control and waste reduction [2].

In particular, the food packaging market has been deeply transformed by the intro-
duction of smart packaging [3]. This new technology can provide in real time important
information on food products, reducing the amount of waste and the health risks. To
implement these functions, internal or external electronic sensors and radio frequency
identification (RFID) devices are usually exploited [4]. Electronic sensors can give accurate
data for different kinds of parameters observed in food products, as in the case of electronic
noses and electronic tongues. These types of sensors can sense both chemical and biological
parameters and are rather selective and precise. However, their size and cost make them
hard to embed in packaging, especially compared with the simplicity and low cost of a
barcode as in traditional packaging solutions. Moreover, the typical electronic sensor needs
to be powered, and this means that it has to be either wired or provided with a battery.
Both approaches are difficult and expensive to implement in an efficient and low-cost food
packaging solution.

Sensors 2024, 24, 2879. https://doi.org/10.3390/s24092879 https://www.mdpi.com/journal/sensors213
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On the other hand, RFID technology has progressed significantly in the past few
years, and its identification and traceability capabilities make a major contribution to food
safety and quality monitoring [5]. However, to implement smart packaging functions,
the outstanding tracking functions typical of RFID systems must be coupled with sensing
functionalities [6] to detect environmental parameters, such as the temperature, humidity
and chemical composition, to address food quality and the risk of product deterioration.
RFID tags can, in principle, integrate several types of sensors, providing identification and
sensing in a contactless, wireless, passive and non-visual way at the same time, but this field
of research is still in the explorative stage [5]. The usual approach to coupling identification
and sensing functions is to monitor the impedance of the sensor, which depends on the
parameter being sensed, together with the digital data from an IC chip, which are measured
with a digital RFID reader. However, this complicates the reading system, and the two
functions are often measured separately [6]. Passive RFID sensors require electromagnetic
power to read and write the data stored on the chip. This power comes from the RFID
reader and determines the reading range in UHF tags. This range decreases with the
integration of a sensing device and is one of the most important limitations of RFID sensors.
Chip-based RFID sensors guarantee high accuracy in the reading process but increase the
complexity and cost of the RFID tag, making it less robust and convenient for integration
in the package.

As an alternative and emerging solution, chipless RFID tags [7] have been proposed
in the literature by several authors. The important advantage of this new technology
is the absence of integrated circuits or chips in the tag. This important feature leads to
simpler, low-cost, more robust and less power-demanding devices [8] compared with more
traditional RFID technologies. Moreover, chipless RFID tags have better functionality in
harsh environments and can have their support, like barcode tags, printed on using high-
conductivity inks [9]. The tag structure is composed of several resonating structures, and
much research is available for the design and encoding [10,11] strategies of the identification
(ID) function in chipless RFIDs, as well as for the detection techniques. Given the proposed
application, in this study, we focus on tags called backscattered chipless RFID tags, where
the resonant elements provide the information directly through their spectral signatures, as
opposed to retransmission-based tags [12], which require a transmitting and a receiving
antenna or a microstrip line. The backscattered tags do not need additional elements; hence,
the size of the tag is strongly reduced because it contains only the resonators.

While important results have been obtained for the coding capacity of the tag and
maximization of the information density in chipless RFIDs for tracking and product identi-
fication applications [13], the integration of ID [14] and sensing functionalities [15] is still a
topic of active and explorative research. The two functions are usually embedded in the
structure of the tag, which is composed of a series of different resonators, some of which
are used for ID coding, while others are used for sensing [8]. Even though a large variety
of chipless RFID sensors has already been demonstrated in the literature for physical,
chemical and mechanical sensing of different parameters [8,16], they are intrinsically more
challenging than the ID geometries and are still in the early explorative stage regarding
their implementation in marketable applications. The main obstacles to commercialization
are the reduced information density compared with chipped RFID solutions and the limited
reading distance, which is common among completely passive systems. Both challenges
are currently highly active topics in chipless RFID research and development.

Furthermore, when integrating chipless RFID sensors into real-world smart packaging,
challenges such as a low cost, environmental robustness [17], compatibility and data secu-
rity must be addressed effectively [18]. These barriers highlight the need for standardized
solutions that can ensure reliable operation in different packaging environments while
maintaining cost efficiency and accurate detection performance (e.g., high sensitivity), as
well as addressing privacy issues to gain consumer confidence [19]. Despite their potential,
overcoming these challenges will be essential for the successful implementation of chipless
RFID sensors in smart packaging applications.
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In this contribution, we report the development of a chipless low-cost humidity sensor
for wireless monitoring of moisture levels within packaged goods, which can be easily
enabled with additional identification capabilities, and which is capable of detecting an
extensive range of RH% with high sensitivity. The suitability and adaptation of the sensor
for different packaging requirements is discussed, and the optimization of the sensor
characteristics for each application in terms of sensitivity and operational humidity range
is presented. In particular, the maximization of the sensitivity for quite low-humidity
environments is useful for the packaging of perishable goods, where low levels of internal
humidity are essential for proper conservation. In this case, in order to assure the package
integrity and consequently the stability of an inert atmosphere inside the package, a
threshold sensor for signaling the minimum amounts of humidity is the most convenient
choice. Other applications may require more elaborate solutions, needing more frequent
and precise monitoring of humidity levels inside the package. In this case, the sensor
should be able to measure a wide range of ambient humidity while a high sensitivity in
a specific subrange is not required. Intermediate or mixed solutions are also possible,
depending on the characteristics of the goods to be monitored. A strategy to tailor the
sensor performances while taking into account the needs of the different possible packaging
applications will be presented and discussed.

2. Materials and Methods

The sensors were composed of a metallic resonator over a flexible 168 μm-thick low-
loss substrate (Rogers 4350, Rogers Corp., Chandler, AZ, USA) covered by a 50 μm-thick
Nafion NRE-212 membrane. This polymer was chosen because it is extremely sensitive to
environmental humidity [20]. The geometry of the metallic structure was that of a square
electric field-coupled (ELC) resonator [21,22] with a lateral dimension of 20 mm and was
realized by microlithography and chemical etching. The geometry of the sensing structure
was simulated and described in detail in [21,23], and it is schematically reported in Figure 1.

Figure 1. Structure and dimensions of the chipless sensors. All dimensions are in millimeters.

The measurements were performed on four samples with four different distances
between the metallic surface and the Nafion membrane, namely 0 (contact), 150, 400
and 800 μm. The distance was determined using plastic spacers of low-loss material
(polycarbonate) of a known thickness which were transparent to the electromagnetic field.
The total thickness was additionally verified with a micrometer. The RF characterization
was performed by using a dedicated apparatus with a custom-made gas-flow test chamber
coupled with an Agilent E5061B ENA vector network analyzer. Gas sensing measurements
were performed at room temperature (21 ◦C). The relative humidity (%RH) was monitored
by a digital humidity sensor (Honeywell HIH-4000, 1.0% accuracy) at the chamber’s exit.
Here, %RH control was achieved by injecting a fixed fraction of the total dry air, namely
200 sccm (20% O2 and 80% N2), through mass flow controllers (MKSs) into a gas bubbler
filled with deionized water to create the desired humidity conditions.

The circular antenna probe [9], with an internal diameter of 20 mm, was directly
connected to the VNA outside the chamber while the sensing tag was inside, and the
detection took place wirelessly, measuring the antenna return loss S11. In particular, the
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antenna was a commercial magnetic field probe, namely a model H20 magnetic probe
(Signal Hound, Battle Ground, WA, USA) with a frequency band from 30 KHz up to 6 GHz.
The probe presented a self-resonance value of around 1.36 GHz. The distance between the
tag and the probe was 0.5 cm. The measurement set-up is shown in Figure 2.

 
Figure 2. Set-up used for the measurements. (a) Measurement configuration showing the circular
antenna probe connected to the vector network analyzer above the measurement chamber where the
humidity is controlled. (b) Detailed image of the measurement chamber, showing the probe outside
the chamber and the sensor inside the chamber.

3. Results and Discussion

The sensors investigated in this work were dual sensors, which means that two
independent sensor parameters, the peak frequency and peak intensity, varied with the
analyte concentration. A third parameter, the peak width, varied as well, but it could not
be considered independent from the peak intensity, being almost inversely proportional
to it. This behavior is physically related to the independent variation of both the real
and imaginary part of the dielectric constant of the sensing material upon exposure to
humidity, where the real part variation is principally related to the frequency shift, and the
imaginary part is related to the change in the peak intensity [22]. For sensing purposes, this
is an advantage because the sensor can be adapted to the application-specific needs in a
more versatile way, and the simultaneous determination of two parameters increases the
reliability and accuracy of the sensing process. This advantage has, however, an intrinsic
drawback: the peak broadening and the decreased intensity set a limit to the humidity range
that can be sensed, because the more sensitive the material is, the faster the weakening of the
peak signal with increasing humidity is. This behavior is material-dependent, but the trend
is typically the same for all humidity-sensitive materials because they incorporate water,
which has a rather high real and imaginary part of the dielectric constant as the humidity
increases. At a higher humidity, the resonant peak is therefore expected to shift to lower
frequencies and decrease its intensity up to a limit that makes it no longer detectable. In this
work, Nafion NRE-212 was used as the sensitive material. This material is a commercial
polymeric membrane that has shown a great affinity for water. Moreover, it is mechanically
and chemically very resistant and stable, and its absorption and desorption of water are
quite fast [21,24], making it a rather convenient sensitive material for humidity detection.

In the case of the sensors evaluated in this work, the distance between the resonator
and the sensitive material was varied to explore the effect of this parameter on the detectable
humidity range and on the sensitivity. This was accomplished using a spacer of a variable
thickness between the metallic resonator and the Nafion membrane to adapt the sensor to
different humidity ranges and detection strategies. Four spacer thicknesses were selected,
as reported in the previous section.
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The four sensors were measured in the range of 0–70% RH between 1 and 2 GHz. The
measured return loss intensities of the circular antenna probe are reported in Figure 3 at 0%,
25%, 50% and 70% relative humidity. The data are reported for the four spacer thicknesses,
as indicated in the legend.

μ
μ
μ

μ
μ
μ

Figure 3. (a) Return loss intensity as a function of the frequency in the range of 1–2 GHz for the four
resonators at (a) 0% RH. (b) 25% RH, (c) 50% RH and (d) 70% RH.

The peak intensity, bandwidth and frequency all varied markedly, going from 0 to 70%
RH for all spacer values. The intensity variation is especially evident when considering
the different vertical scales in the four plots of Figure 3. While in Figure 3a, the baseline
signal seems almost negligible, in Figure 3d, the peak intensity is so low that the baseline
signal is comparable with the peak intensities. In addition, the peak at 1.36 GHz, which
was the internal resonance of the probe, did not vary appreciably with the humidity and
spacer thickness and could be used to visualize the intensity variations and as a reference
for sensor calibration. The intensity trend with the spacer thickness was reversed when
going from 0% RH to 70% RH. The resonator with no spacer had the highest intensity at 0%
RH but the lowest one at 70% RH, where it was quite broad and barely detectable. On the
other hand, the 800 μm sensor had the lowest intensity at 0% RH but the highest one at 25,
50 and 70% RH. The 150 and 400 μm sensors had an intermediate behavior.

A more systematic variation of the peak intensity and frequency as a function of the
%RH is reported in Figure 4. In order to better compare the different sensors, Figure 4a
reports the frequency variations and not the frequency values, because the reference value
of the sensors (0% RH) depended on the spacer thicknesses (see Figure 3a). Moreover, the
frequency differences are shown only in the range where they had a linear trend with the
%RH. It is worth noticing that the effects of the frequency shift were only on the second
resonance peak, since the first peak was only due to the antenna characteristics (internal
probe peak frequency). The data were plotted together with a linear fit of the experimental
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data, where the slope of the line represents the sensitivity of the sensor. The numerical
values for the sensitivity are reported in Table 1 together with the standard error. The
Pearson coefficients (R2) for linearity are also reported. More detailed statistics are given in
Supplementary Material S1. The range of linearity of the sensors was estimated by the last
measured %RH value that gave an R2 value larger than 0.99. Even though this is somehow
an arbitrary and restrictive criterion, it should be noted that the peak broadening with
increasing humidity also increased the error in the determination of the peak position,
and this in turn increased the error in the sensitivity determination. The sensitivities
reported in Table 1 show good values for all the spacer thicknesses, but they decreased
when increasing the distance between the sensing material and the metallic resonator.
The best values were given for the sensor with no spacer, where sensitivities of around 1
MHz/%RH were reached, while the sensor with a spacer of 800 μm showed a sensitivity
which was about one fifth of this value. The highest values were better than those of
other chipless RFID humidity sensors measured with a near-field probe [25,26]. The most
sensitive microwave sensors exploit higher frequency ranges [27–30] and show higher
shifts, but they require more sophisticated, large and expensive antenna systems, which are
hardly suitable for applications like smart packaging. A more comprehensive list reporting
the comparable existing literature is given in Table 2. For comparison, two examples of
microstripped tags are also included [22,31]. They showed good performances compared
with the ones measured with a near-field probe, but the detection was not wireless and
required SMA connectors.

The peak intensity as a function of the %RH, reported in Figure 4b, was largest in the
low humidity range, especially below 10% RH, for all the sensors investigated and did not
have a linear behavior range. Below 10% RH, the peaks were quite sharp and well-defined,
allowing for a very precise determination of the peak frequency. In the case of the sensor
with no spacer and with the Nafion membrane in direct contact with the metallic resonator,
the peak intensity and its variation were by far the largest for extremely low %RH values.
In this case, when going from 0% to 5% RH, the intensity reduced to less than half, and the
frequency shift was around 5 MHz. However, at higher %RH values, the intensity drop
was less evident, and at approximately 20–30% RH, the signal approached a plateau, and
the additional variation became difficult to detect.

μ
μ
μ

μ
μ
μ

Figure 4. (a) Peak frequency variation as a function of the %RH in the range of 0–70% for the four
resonators. The value at 0% RH was taken as reference. (b) Peak intensity as a function of the %RH in
the range of 0–70% for the four resonators.
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Table 1. Sensitivity (MHz/%RH) of the investigated sensors.

Spacer
Thickness (μm)

Sensitivity
(MHz/%RH)

Error (Standard
Deviation)

Relative
Error (%)

1

Pearson
Square (R2)

Humidity
Range (%)

0 −0.965 0.044 4.6% 0.99375 0–36
150 −0.547 0.014 2.5% 0.99756 0–47
400 −0.260 0.011 4.1% 0.9917 0–60
800 −0.195 0.006 2.8% 0.99529 0–72

1 Calculated as the standard deviation/sensitivity ratio (%).

Table 2. Performance comparison of chipless sensors for humidity detection from the literature.

Ref. Substrate
Sensitive
Material

Tag Size
(cm2)

Resonator
Reading
Range

%RH
Range

Frequency
Range (GHz)

Frequency
Shift

Intensity 1

Variation

[25] Photopaper
Poly-vinyl

alcohol
(PVA)

- Interdigitated
LC

2 cm:
Near-field

probe
(NFP)

86–91 0.128–0.132 1.2 KHz/%RH 0.014 dB/%

[32] Taconic
TLX 0 PVA 1.5 × 0.68 ELC

30 cm:
horn

antennas
35–85 6–7 12 MHz/%RH 0.02 dB/%

[27] Kapton
HN Substrate 5.4 × 5.4 Van-Atta

reflectarray
5.5 m: horn

antennas 10–75 25–35 40 MHz/%RH Not
reported

[29] Kapton
HN Substrate 7.4 × 7.4 Van-Atta

reflectarray
58 m:
radar 30–75 24 - 0.2 dB/%

[26] PET, paper Substrate 4 × 4 Interdigitated
LC

0.5 cm:
NFP 20–90 0.12–0.3 0.37

MHz/%RH
Not

reported

[31] FR-4 SnO2/
graphene 5 × 2 4 C-shaped

resonators
Microstrip

(wired) 11–98 2.85–3.05 2.95
MHz/%RH Negligible

[30] Polycarbonate Silicon
nanowires 4 × 2 Rectangular

loops

Not
reported:

horn
antennas

74–98 3.295–3.33 1.5
MHz/%RH -

[24] DiClad Nafion117 4 × 2 ELC Microstrip 5–40 2.49–2.60 2.71
MHz/%RH 0.04 dB/%

This 2

work
Rogers

4350 Nafion 212 2 × 2 ELC 0.5 cm:
NFP 0–36 0.965

MHz/%RH 1.12 dB%

1 Average value over the %RH range reported. 2 Values for the contact sensor.

It should be noted that the values reported in Figure 4b include the baseline signal that
can be estimated at approximately 3–4 dB, which means that at %RH values greater than
20%, the peak intensity signal was comparable with the baseline or less. The other three
sensors had a similar behavior, but their detectable %RH range was larger and increased
when increasing the spacer thickness. However, the corresponding drop at low %RH
values also decreased. Furthermore, when comparing the intensity variation of the sensors
reported in this work with those in Table 2, it is clear that the contact sensor reported
in this study showed an intensity variation that exceeded all the other chipless sensors
listed. This specificity enables the use of the intensity variation as the primary detection
parameter or, alternatively, the use of both the frequency shift and intensity variation as
sensing parameters to improve the reliability and sensitivity of the detection. Both of these
approaches will be discussed in detail in Sections 3.1 and 3.2.

3.1. Threshold Humidity Sensor

The high sensitivity of the chipless RFID sensors in the low humidity range, coupled
with remote signal detection, makes it particularly suitable for smart packaging integrity
control in the case of a dry or inert atmosphere inside the package, which is common in the
case of perishable goods. The remote monitoring proposed allows for verification of the
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integrity status of the package’s internal atmosphere in a totally noninvasive manner even
with non-transparent packages. Moreover, the simple integrity check does not require a
precise determination of the humidity but only the detection of a value above a threshold.
This can easily be determined by comparing the intensity at the reference frequency of the
internal probe with the reference peak frequency (0% RH) of the sensor, requiring only
a comparison of the signal at two discrete frequencies, greatly simplifying the detection
mechanism and consequently the cost and complexity of the reader.

In Figure 5, the ratio between the intensity of the peak frequency at 0% RH and the
probe peak intensity at 1.360 GHz is reported for all four resonators. The dashed horizontal
lines are a guide to detect the %RH value, where this ratio is equal to one (black line) or
two (red line). The trend is similar to what is reported in Figure 4b, but the ratio at a
fixed frequency decayed faster with increasing humidity compared with the peak intensity
because the effect of the peak shift added to the resonance broadening. The frequency and
intensity of the probe peak remained remarkably constant within the experimental error of
the measurement.

μ
μ
μ

Figure 5. Intensity ratios of the reference peak frequency (0% RH) and the internal probe peak
frequency for the four resonators investigated. The probe frequency is 1.360 GHz for all and does not
vary with the humidity or spacer thickness of the sensor.

As can be seen from Figure 5, the ratio equal to one was reached only at a high humidity
for all the sensors, with the sensor without a spacer crossing the black line at approximately
30%. The ratio equal to two is preferable because it gave a better differentiation among the
sensors and a sharper drop near the threshold. The sensor with no spacer crosses the red
line at 5%, the 150 μm sensor at 12%, the 400 μm sensor at 15% and the 800 μm sensor near
20% RH.

In order to have a threshold sensor capable of verifying the integrity of a package with
an internal dry atmosphere, the sensor without a spacer can be the best choice because
of its extremely high intensity drop and its low %RH threshold value. However, plastic
packages are never totally hermetic, and a 5% humidity threshold could be too low because
the sensor can detect a package integrity break when this is not real. Considering these
tolerances, which depend on the specific package material and requirements, a sensor with
a thin spacer can be, in this case, a more reasonable choice because the intensity drop is still
high, but the threshold humidity can be tuned to higher %RH values.

3.2. Measurement of %RH inside the Package

When the purpose of smart packaging is not only to verify the package integrity but
also to give precise information about the level of humidity inside the package, a threshold
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sensor is not enough, and a more accurate reading of the sensor signal is required. This may
be the case for a non-hermetic package or packaged food that produces humidity during the
degradation process. In this last case, a high humidity level may be an important indication
of the food preservation status. In these conditions, the reading can still be made only at
two discrete frequencies to reduce the detection complexity, but it must be much more
precise, and the strong nonlinearity of the sensor response is an important problem because
the sensitivity varies considerably with the %RH. This variation was extremely high for the
contact sensor (%RH range: 0–36%) and the 150 μm sensor (%RH range: 0–47%). Therefore,
the thicker spacer sensors are preferable for the usual ambient humidity values, which are
seldom below 20%.

For improving the accuracy, the measurement of the frequency shift, which varies
linearly, may provide a more reliable determination of the %RH levels compared with the
intensity change, even if it needs a more complex reading system. The sensor without
a spacer and the 150 μm sensor had the best sensitivities, but they were linear only up
to 36 or 47 % RH. They are therefore the best choice only up to these humidity values.
If a wide humidity range is required, then sensors with thick spacers must be used. In
particular, the 800 μm sensor offered the widest range of linearity (%RH range: 0–70%) for
the frequency variation, and its intensity trend approached linearity in the same range as
well (see Figure 4b), indicating that the sensitivity did not vary much with the %RH for
this parameter. This gives the opportunity to fully exploit the dual parameter detection,
increasing the reliability and accuracy of the %RH determination. This not only improves
the overall measurement error but can also prevent large errors due to incorrect calibration
or sensor malfunctioning because it requires consistency between the peak frequency and
intensity. In this case, the probe’s internal resonance can be used as a reference for both the
frequency and the intensity. The frequency difference between the resonator peak and the
probe peak and their intensity ratio are reported in Figure 6, together with the correlation
between the two parameters.

Figure 6. (a) Frequency difference (linear fit) and intensity ratio (parabolic fit) for the resonance peak
of the 800 μm sensor relative to the probe peak at 1.36 MHz as a function of the %RH. (b) Correlation
between frequency difference and intensity ratio (parabolic fit).

Together with the data fit, the intervals where the mean %RH value is located (confi-
dence) or the future measurement value is located (prediction) with 95% probability are
also reported. As expected, the frequency difference can be conveniently fitted with a linear
trend, while the intensity ratio requires a parabolic fit. However, as can be seen from the
confidence intervals in Figure 6a, the measurement of the intensity was more accurate
than the frequency in the whole humidity range investigated. The fit parameters and the
relevant statistics for the fitting functions are reported in Supplementary Material S1.

4. Conclusions

In this paper, we proposed the use of chipless RFID humidity sensors using Nafion
212 as the sensitive material for smart packaging of food items. A new methodology for
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tailoring the operating range of the sensor was presented based on the variation of the dis-
tance between the metallic resonator and the sensing material. Four sensors were proposed
with different distances between the sensing material and the metallic resonator. Moreover,
given the specificity of the detection mechanism, the proposed detection methodology can
make use of two sensing parameters: the peak frequency shift and peak intensity variation.
It was then shown how the combined use of the two parameters made the detection more
precise and reliable.

Two different sensor applications were examined. In the first case, a threshold sensor
for a package with a dry or controlled internal atmosphere was considered. In this case,
a sensor able to detect extremely low humidity levels was the best choice to verify the
package integrity, but an accurate determination of the %RH was not necessary. We found
that the sensor with the sensing material in direct contact with the resonator showed an
extremely high intensity variation at low humidity values and was therefore especially
suited for this application. In this specific case, the detection at one or two frequencies was
enough for integrity verification, and consequently, the reading system could be simplified.

In the second case, a non-hermetic package was examined. For this application, a more
exact determination of the humidity is usually required over a wider span of %RH values.
The best solution in this case was the sensor with a spacer of 800 μm. This sensor was worse
in terms of frequency variation but covered a wider range of humidity. Moreover, it allowed
the exploitation of two sensing parameters, the peak frequency and intensity, with the same
measurement, increasing the reliability and accuracy of the %RH determination. Although
the capabilities of the chipless RFID sensor developed in this work for the detection of
different RH% values were successfully demonstrated, it is important to highlight that a
laboratory-assembled configuration was required to perform the detection tests, which
cannot be used as is for real applications. For the effective implementation of these sensors
in smart packages, further research is needed, especially for chipless sensor signal reading
technology, and this will be one of the directions for future work.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s24092879/s1. Contact Sensor: linear fit in Figure 2a, 150 μm
Sensor: linear fit in Figure 2a, 400 μm Sensor: linear fit in Figure 2a, 800 μm Sensor: linear fit in
Figure 2a, 800 μm Sensor: linear fit in Figure 6a, 800 μm Sensor: parabolic fit in Figure 6a, 800 μm
Sensor: parabolic fit in Figure 6b.
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Abstract: With the steady increase in allergy prevalence worldwide, there is a strong need for novel
diagnostic tools for precise, fast, and less invasive testing methods. Herein, a miniatured fluorescence-
based biosensing system is developed for the rapid and quantitative detection of allergen-specific
immunoglobulin-E. An antibody-based fluorescence assay in a microfluidic-patterned slide, combined
with a custom-made portable fluorescence reader for image acquisition and user-friendly software
for the data analysis, enables obtaining results for multiple allergens in just ~1 h with only 80 μL of
blood serum. The multiplexed detection of common birch, timothy grass, cat epithelia, house dust
mite, and dog epithelia shows quantitative IgE-mediated allergic responses to specific allergens in
control serum samples with known total IgE concentration. The responses are verified with different
control tests and measurements with a commercial fluorescence reader. These results open the door
to point-of-care allergy screening for early diagnosis and broader access and for large-scale research
in allergies.

Keywords: biosensor; allergy; allergen; IgE; antibody; microfluidics; point of care; fluorescence;
optical reader; portable reader

1. Introduction

The incidence of immune-mediated disorders such as allergies is on a consistent
rise [1,2]. Yet, there remains a significant gap in our understanding regarding the interplay
of various factors such as genetic predisposition, exposures during prenatal and postnatal
life, and environmental influences in the initiation and progression of these conditions [3].

The current landscape of allergy diagnostics, while rich with historical significance
and clinical utility, highlights a pressing need for innovation to enhance patient comfort
and provide quantitative data for large-scale research and diagnostics [4]. Traditional
methods such as the Skin Prick Test (SPT) and oral food challenges, although foundational
in the identification and confirmation of allergen sensitivities, are often criticized for their
invasiveness and the discomfort they may cause to patients [4–6]. Also, these techniques
face limitations in their qualitative nature, which may not fully satisfy the requirements of
modern, data-driven allergy research and personalized medicine approaches.

As the field progresses towards more sophisticated molecular diagnostics and preci-
sion treatments, there is a noticeable demand for developing less painful, more quantita-
tively precise methodologies [4,7]. This shift aims not only to improve patient experience
but also to enable the detailed, large-scale data collection necessary for advancing our
understanding of allergic diseases [8]. Innovative solutions are urgently needed to bridge
the gap between traditional practices and the potential for targeted, data-rich diagnostic
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approaches, thus opening the door to more effective and less invasive detection [9–11].
Other methods of significant importance for allergy diagnostics is the measurement of spe-
cific immunoglobulin-E (sIgE) in serum by enzyme-linked immunosorbent assay (ELISA)
and fluorescence enzyme immune assay (FEIA) [7]. While fluorescence-based assays are
generally analyzed in standard laboratory settings, after the shipment of the blood samples,
and using commercial microarray scanners, the long time needed for obtaining the results,
their cost, and the size of the commercial scanners render these methods impractical for
point-of-care settings, limiting broader and faster access to allergy diagnostic tools.

In this work, we present the development of a novel portable multiarray system
tailored for specific allergen profiling. The multiarray system is engineered on microflu-
idic chips sized equivalently to standard microscopy slides and is integrated within a
microfluidic channel featuring functionalized microstructures with recombinant proteins of
allergens. To ensure the reliable detection of sIgE, an automated sample-on-chip processing
system has been utilized, employing fluorescence-labeled antibodies to detect the signal
from each pillar with different allergens. Moreover, to facilitate simple measurements of
fluorescence signals and automated quantification of the sIgE responses, a compact, cost-
effective, and rapid fluorescence reader has been developed. This reader is equipped with
cross-platform software having a user-friendly interface, further enhancing its accessibility
and utility.

This platform concept holds promise in facilitating rapid screening of allergen specific
IgEs in various settings, such as doctor’s offices, pharmacies, or university laboratories, for
studying allergic disease causation and possible prevention strategies.

2. Materials and Methods

The microfluidic system, resembling a standard microscopy slide, was fabricated
through injection molding of polycarbonate, with pillars of 300 μm in diameter and spaced
500 μm center to center in the same channel, with a channel width of 750 μm. The slides
underwent coating with a dextran-based photo-linker polymer (OptoDex®, custom from
CSEM, Landquart, Switzerland), serving for immobilizing allergens onto the micropillars,
passivating the surface to mitigate non-specific bindings, and rendering the microfluidic
channel hydrophilic.

Allergen recombinant proteins (including cat and dog epithelia, house dust mite, and
common birch) and one allergen extract (timothy grass) were precisely dispensed onto the
slides using a high-precision dispenser (sciDROP PICO, Scienion AG, Berlin, Germany)
adding ~400 pL drop per pillar of protein solution, at an optimized concentration of
0.8 mg/mL in all cases, each allergen deposited six times for statistical analysis. All the
recombinant proteins were purchased from Inbio (Cardiff, UK) and the allergen extract
from BÜHLMANN Laboratories AG (Schönenbuch, Switzerland). Betula pendula (rBet
v 1) was purified from Pichia pastoris culture by HPLC gel filtration; Felis domesticus (rFel
d 1) from Pichia pastoris, clone N103Q, N-glycosylation site N103 mutated, was purified by
multi-step column chromatography; house dust mite (rDer p 1) from Pichia pastoris (clone
N52Q, N-glycosylation site N52 mutated) was purified by affinity chromatography; Canis
familiar (rCan f 1) from Pichia culture supernatant using His-Trap chromatography. All
recombinant proteins had a purity > 95% by SDS-PAGE. Finally, Timothy grass (BAG-G6)
was an allergen extract (natural allergen) from Phleum Pratense. Also, Atto 647 Bioreagent
(Sigma Aldrich, Buchs, Switzerland), was used to label BSA (Bovine serum albumin) for the
fluorescence signal calibration, with concentrations from 10 to 5000 dye molecules/μm2,
each concentration deposited in triplicate for each slide.

For the control tests in each slide, human IgE (Abcam, Amsterdam, The Netherlands)
and human IgG (Jackson ImmunoResearch Labs, West Grove, PA, USA), at a concentra-
tion IgE/BSA and IgG/BSA of 0.4/0.2 mg/mL, were added into the slide, each solution
deposited in six pillars.

Subsequently, a photo-immobilization process was initiated using a UV chamber
(2 min at 20 mW/cm2, Beltron GmbH, Rödermark, Germany). With the process above, the
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slides with the immobilized proteins have long-term stability for at least 12 months when
stored at 4 ◦C under vacuumed package (400 mbar nitrogen). Following lamination of a
thin plastic foil (Simport T329-1, Simport-Saint-Mathieu-de-Beloeil, QC, Canada), control
serum samples (PathTROL, TECOmedical AG, Sissach, Switzerland) were added into the
fluidic slide channels to validate the efficacy of the multiarray. The control serum sample
had a known total IgE concentration with verified presence of IgEs with specificity to the
following allergens: timothy grass, cultivated rye (S. cereale), mugwort (A. vulgaris), house
dust mite (D. pteronyssinus), house dust mite (D. farinae), cat epithelia, hazelnut, peanut,
and milk.

Parallelized sample handling, accommodating up to 6 slides simultaneously, was
achieved utilizing custom technology, with 80 μL of serum sample injected per slide with a
peristaltic pump and incubated for ~30 min at 37 deg. Subsequent to sample deposition,
detection antibodies (Mouse anti-hIgE) and AlexaFluor 647 Goat-Anti-mIgG (80 μL each,
both from Life Technologies Europe, Zug, Switzerland) were introduced into the system
and incubated for another ~45 min at 37 deg.

Measurement assessments were conducted utilizing both a commercial microarray
reader (InnoScan 710, Innopsys, Carbonne, France) and a custom-made portable reader for
a comparative analysis of their performance.

3. Results

3.1. Development of the Portable Fluorescence System
3.1.1. Microarray Assay

A microarray chip featuring over 300 micropillars was designed (Figure 1a). This
chip comprises a meandering channel featuring an array of microstructures functionalized
with allergen recombinant proteins, with immobilization facilitated through the Optodex
chemistry. Upon introduction of patient serum onto the functionalized chip, there is a
recognition between the sIgEs and the allergen forming a complex, and the subsequent
reaction with fluorescence labeled anti-IgE antibodies reveals sIgEs through distinctive
fluorescence responses from each micropillar (Figure 1b).

Figure 1. Portable system for allergen screening. (a) Image showing the microfluidic slide with a
zoom on the micropillars; (b) simplified schematic of the biosensing assay on the slide; (c) image of
the portable reader with a slide inserted; (d) the fluorescent signals on the micropillars with an image
acquired with the portable reader and custom software.
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3.1.2. Portable Reader

A portable reader was engineered for the fluorescence-based bio-detection (Figure 1c).
Differing from commercial slide scanners that employ confocal scanning, this reader lever-
ages fluorescence imaging, thereby reducing both size and cost while enhancing speed,
albeit with a slightly reduced sensitivity (Figure 2). Key components of the reader include a
camera, collection and beam-forming optics, a light source, emission and excitation filters,
and a light trap (Figure 2a). A 642 nm fiber laser was selected as the light source, aligning
with the spectral properties of the chosen dye Alexa-647. Light-forming optics ensure
uniform sample illumination, while spectral filtering is accomplished through a combina-
tion of color glass and interferometric filters. Fluorescence emission was captured using a
monochromatic CMOS camera featuring manual control for optimal imaging parameters.
Notably, the portable reader boasts compact dimensions of 20 × 16 × 7 cm3, weighing
a mere 1.5 kg, and comes at a fraction of the cost compared to conventional microarray
readers, while still meeting the rigorous performance criteria essential for this assay.

Figure 2. Portable reader components and comparison. (a) Schematic of the different components
inside the developed portable reader; (b) Comparison of the data acquired by InnoScan and the
portable reader, analyzing the microfluidic slide with different gradients of the fluorescent dye
molecules Atto-BSA. Lower part shows correspondent line profile of the gradient from the lowest to
the higher (24 points from about 10 to 5000 dye mol/μm2).

Figure 2b shows the same slide read with the commercial InnoScan system and with
the custom reader and correspondent line profiles. All 24 printed gradient points can be re-
solved with an InnoScan reader with 13 dye mol/μm2 distinguishable and with a standard
deviation of the background signal equal to 6.4 fluorescence intensity (n = 124 points) and
a sensitivity of 0.84 ± 0.04 fluorescence intensity signal/(dye mol/μm2), n = 5, giving a de-
tection limit (LOD) calculated as 3σ/S (σ = standard deviation of the blank/S = sensitivity)
equal to ~20 dye mol/μm2. In our compact reader, with a higher background level and
higher noise, only 15 out of 24 concentration points can be differentiated from the noise,
reaching the lowest distinguishable point of 96 dye mol/μm2, and with a blank signal
variation equivalent to 76 fluorescence intensity (n = 124 points). Taking this into account, it
can be calculated that the LOD of the portable device is 3σ/S, with S equal to 1.1 ± 0.06 flu-
orescence intensity signal/(dye mol/μm2), n = 5, so we have an LOD = ~200 dye mol/μm2

(σ = standard deviation/S = sensitivity), hence 10X higher than the commercial system.
The measurement spectral range can be defined by the set of filters chosen for the

Alexa-647 dye and the camera quantum efficiency; for our chosen components, it is
~670–1100 nm. Considering the dynamic range based on the normalized dye molecule
concentration characterization, the LOD was estimated to be 200 dye mol/μm2 as reported
above, and the higher concentration could be measured by reducing the integration time
and analog gain of the camera. So, theoretically, by using both factors, samples with dye
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concentration from ~200 dye mol/μm2 up to about ~10,000,000 dye mol/μm2 could be
measured with the same system using only software control without any hardware changes.
However, reaching a very high dye concentration does not make practical sense, and the
current upper limit of the range used in the slides is 5000 dye mol/μm2, which is still in the
linear range. Then, the signal-to-noise level for the single measurement without variation
in the integration time is estimated for a relevant signal level to be about SNR = ~130
(Signal/NoiseRMS = 10,000/76).

3.1.3. The Custom Software

The portable reader allows for full-slide imaging, markedly reducing readout times,
as shown in Figures 1d and 2b with the pictures acquired from the portable reader with
the custom software. The software has a locally hosted backend written in Python code,
which is responsible for all the computational parts and data management. Also, we
have developed a user-friendly frontend which is programmed using the software Flutter
(Figure 3).

 

Figure 3. Images showing the custom software features. (a) Portable reader connected to the laptop
with the program and login into the user interface; (b) the feature inside the program to acquire the
image of the slide; (c) automated pillar recognition; (d) automated fluorescence data extraction and
possibility to export in different Excel reports; the colors represent different fluorescence intensities.

Inside the software, you can login to your user profile (Figure 3a), acquire in about
1 s the image of the slide (Figure 3b), then automatically detect and identify the pillars in
the slide (Figure 3c), and visualize and process the fluorescence intensity data extracted
from the image in a table format (Figure 3d). Subsequently, the data can be exported and
analyzed identically to the data extracted from commercial devices in a customizable excel
sheet showing several resulting fluorescence intensity bar plots, as the ones reported in the
data in the next paragraph. The fluorescence frame with high concentration of Atto/BSA
dye enables the automated recognition of the area with the pillars.

The imagining area was optimized for our microfluidic slide to be about 2 cm × 1.5 cm.
As for image acquisition speed, we acquire 10 images (~1 s); then, we take the averages of
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the images to reduce noise (basically instant, ~3 ms), and finally, we have the localization
of points (~1 s) resulting in a total time of ~2 s. Considering the final software settings
without any background subtraction and the rows of the microfluidic array from 1 to
8, the uniformity of the acquired signal can be estimated as the minimum background
(Imin) intensity divided by the average value (Imean), obtaining a percentage uniformity
of (Imin)/(Imean) = (1735/2317) × 100 = 75% (n = 61 for the mean). Considering the frame
around the whole slide, we noticed a decrease in uniformity (65%, n = 76) possibly due
to a non-uniform illumination, which could be corrected by hardware modification, soft-
ware correction, or in the assay by performing a calibration with the dye molecule in both
sides of the slide. In the reported data below, the results are all for allergens and calibra-
tion dye deposited in the first eight rows of the microfluidic array, hence with the 75%
estimated uniformity.

3.2. Specific IgE Detection in Control Serum Samples

The performance of the portable reader was evaluated through comparison with the
commercial confocal microarray reader after the allergen immobilization and incubation
with control serum. Control serum samples with known total IgE concentration, equivalent
to the minimum IgE concentration produced in case of the possible presence of an allergic
condition such as allergic rhinitis, asthma, and atopic dermatitis [12,13], are used for the
validation of our assay and reader. The images acquired with both readers can be seen
in Figure 4a. The fluorescence signal obtained from the microarray system is depicted in
Figure 4b. Utilizing human IgE positive control signals (represented by the brown bar)
along with a negative control (human IgG, depicted by orange bar), the crosstalk threshold
can be established. All the reported signals are <5 to 10% of variations between the six
replicated with the same allergen in different pillars and the control signals in triplicates.

Figure 4. Results for specific IgE detection. (a) Optical image acquired by InnoScan and the portable
reader, using a microfluidic slide with different recombinant allergens; (b) Relative fluorescence
signals extracted and converted in dye molecules/μm2 based on the internal Atto BSA dye calibration.
Tested with control serum (274 IU/mL total IgE). The dashed lines indicate the signal over which
there is a significant IgE signal, highlighting the maximum cross-sensitivity signal from the IgG
negative control.
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The results demonstrate the detection capability for different allergens, particularly
common birch (Betula pendula, indicated by green bars) and cat epithelia (Felis domesticus,
depicted by yellow bars) with both the readout systems. The signal for house dust mite
(Der. pteronyssinus) and dog epithelia (Canis familiaris), while surpassing the IgE crosstalk
signal, has a much lower signal indicating low specific IgEs present for these allergens in the
assay. Specifically, for the commercial reader, the crosstalk signal for the commercial scanner
is equal to 281 ± 12 dye mol/μm2, and the signal for house-dust mite and Canis familiaris
is 1.7× and 2.6× higher, respectively, and 9× and 13× higher for Betula pendula and Felis
domesticus, respectively. In the case of the portable reader, the crosstalk signal extracted is
of 239 ± 14 dye mol/μm2, being similarly slightly higher for house-dust mite and Canis
familiaris (1.4× and 2.8×, respectively) and significantly higher for Betula pendula and
Felis domesticus (6.9× and 10.1×, respectively). This corroborates with control serum
samples testing positive for cat and house dust mites, while common birch and Canis
familiars, not included in the manufacturer’s test, could not be directly confirmed. The
reference test from the manufacturer can be requested online for the product PathTROL
Allergy Control Sera-Level 2 (PW80201). It is possible that the very high specific IgE
measured for common birch is due to a cross-reactivity with the specific IgEs for Cultivated
rye [14], known to be present in the serum, and being in a similar birch and grass pollen
family. The same is applied to different animal allergen, as also to Felis domesticus and
Canis familiaris.

It is also important to remark that since there are appreciable total IgE levels in
patients with allergen sensitization as well as those without, sIgE instead of total IgEs
are the preferred method for determining the presence of allergic diseases [13]. Total IgE
concentration is the addition of all the sIgE to the different allergens the individual has
been exposed to; in non-allergic subjects, sIgE levels are very low and undetectable [7].
Thus, to identify the triggering antigen of allergic manifestations, one of the most common
laboratory test requirements is the determination of sIgE concentration in serum, that can
be performed in a point-of-care fashion with our device.

4. Discussion

The development of the portable fluorescence reader presents a viable option for
point-of-care allergy diagnostics and broader biosensing applications. Its compact design
(size 20× smaller than standard commercial readers), lower cost (40× lower considering
the prices of the current components used, ~1.5 kEUR), and rapid readout time (60× faster
considering 1 min scan with Innoscan versus 1 s with the portable reader) make it highly
accessible, with features including fast image acquisition and automated result computa-
tion enhancing usability. The signal uniformity in the whole slide can be easily improved
by software correction or minor hardware and assay modification. The portable solution
demonstrated significant IgE-sensitivity for specific allergen detection, with a performance
comparable to the commercial system in terms of increased specific IgE signal over the IgG
negative control signal. The system’s adaptability to other fluorophores further underscores
its versatility and potential for multi-allergen, multi-antibody, and multi-analyte detection
in diverse clinical settings. The system also facilitates the parallel testing of up to 88 differ-
ent allergens, considering the current protocol and number of replicates for control and
internal calibration, thus presenting novel avenues for allergen screening directly within
clinical settings. The commercial product ImmunoCAP Immuno Solid-Phase Allergen
Chip (ISAC) by Thermo Fisher Scientific, after further development through the European
Union (EU) project MeDALL, was reported to include, in 2014, a total of 176 allergens,
of which 127 were recombinant allergens and the rest natural allergens, [15,16] includ-
ing multiple allergens from different allergen sources such as latex, peanut, wheat, alder,
olive, Plane Tree, Goosefoot, annual mercury, and many others. Similarly, these different
allergens can be deposited in our developed microfluidic slide and used for the parallel
multiplexed analysis. Finally, we would like to point out that as a secondary antibody
for the immunodetection, the commercially available fluorescent-labeled anti-human IgE
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antibody is still limited by its low activity. The development of a high-active fluorescent-
labeled anti-human IgE antibody conjugate could be carried out in the future with possible
collaborations. Thus, the sensitivity of the assay can be also increased by using labeled
anti-human IgE antibody directly instead of the mouse anti-human IgE/anti-mouse IgG
system currently employed. Further tests with several serum samples and standardization
of the sIgE signal output in μg, ng, or IU through collaboration with allergen diagnostic
associations and doctors could enable the widespread use of this technology in clinical
settings and for standardized research.
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Abstract: Waste treatment plants (WTPs) often generate odours that may cause nuisance to citizens
living nearby. In general, people are becoming more sensitive to environmental issues, and particu-
larly to odour pollution. Instrumental Odour Monitoring Systems (IOMSs) represent an emerging
tool for continuous odour measurement and real-time identification of odour peaks, which can
provide useful information about the process operation and indicate the occurrence of anomalous
conditions likely to cause odour events in the surrounding territories. This paper describes the
implementation of two IOMSs at the fenceline of a WTP, focusing on the definition of a specific exper-
imental protocol and data processing procedure for dealing with the interferences of humidity and
temperature affecting sensors’ responses. Different approaches for data processing were compared
and the optimal one was selected based on field performance testing. The humidity compensation
model developed proved to be effective, bringing the IOMS classification accuracy above 95%. Also,
the adoption of a class-specific regression model compared to a global regression model resulted
in an odour quantification capability comparable with those of the reference method (i.e., dynamic
olfactometry). Lastly, the validated models were used to process the monitoring data over a period of
about one year.

Keywords: e-nose; continuous monitoring; odour measurement; odour concentration; chemical
sensors; gas sensing

1. Introduction

Nowadays, odour pollution is one of the main causes of public complaints to local
authorities [1]. Several human activities, especially those related to waste treatment and
disposal, can lead to the formation of unpleasant odours. Even though odour emissions
are, in general, not harmful to human health, they often generate concerns among the
people living in the proximity of these sources [2,3]. Therefore, odour is now considered a
pollutant, and it has also been included in the Best Available Techniques (BAT) reference
document for waste treatment plants (WTPs) among the pollutants to be monitored and
controlled from this type of installation [4]. Odour monitoring, which is applied whenever
an odour nuisance at a sensitive receptor is expected or has been substantiated, can be
carried out using analytical methods or sensorial approaches [5]. Among analytical tools,
Instrumental Odour Monitoring Systems (IOMSs), including electronic noses (e-noses),
have been recently increasingly studied for air quality monitoring applications [6,7]. Several
studies prove that, if properly trained, IOMSs are able to detect the presence or the absence
of odours and discriminate between different odour emission sources [8,9]. The first studies
describing the application of e-noses for the monitoring of odours at receptors for a limited
duration date back to the early 2000s–2010s [10,11]. Recently, some scientific studies have
also discussed the possibility of using e-noses for estimating odour concentration [12,13].
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For more details on the applicability of e-noses for environmental monitoring, we refer
to some very recent review papers on the topic [6,7]. Still, their application as real-time
air quality monitoring tools for permanent installations is still far from being state-of-
the-art. Nonetheless, in Italy, in the last 2–3 years, there have been some cases in which
the Competent Authority has requested a WTP to realize a permanent installation of
IOMS with the purpose of continuously analysing the ambient air and providing real-time
identification of anomalous odour events. If properly working, this type of installation
could act not just as an emission monitoring instrument but could represent an effective tool
for odour mitigation, allowing the recognition of the causes of the odour events, thereby
enabling the plant operators a prompt and targeted intervention and thus reducing the
impact on the neighbourhoods.

As previously mentioned, despite its potentialities, the implementation of IOMS
for continuous odour monitoring in real-life applications is still challenging [14], and
is mainly hindered by some critical aspects related to prolonged outdoor use in critical
conditions. Such critical aspects include sensors’ drift over time and cross-sensitivity to
atmospheric variables and non-odorous gases [15–17]. Cross-sensitivity towards temper-
ature and humidity is particularly critical for environmental odour monitoring, because
such parameters may vary within a rather wide range of values, thereby negatively
affecting the sensors’ outputs. As an example, typical relative humidity variations that
may occur outdoors range from 20% to 100%, whereby some experimental studies have
proven gas sensors typically used in e-nose systems (i.e., MOX sensors) to be sensitive to
humidity variations of 1%.

For this reason, different humidity and temperature compensation strategies have
been proposed in the literature [18] such as interference compensation models [19–21],
methods based on separation models for environmental factors [22] and methods based
on hardware optimization [23,24]. To the best of our knowledge, such solutions have
been studied and implemented in laboratory conditions, while the application of com-
pensation strategies in real scenarios is still very limited. Indeed, laboratory experiments
are carried out in a controlled environment, whereas when operating outdoors, variable
background conditions, as well as the presence of unknown interferents, may affect
sensors’ responses in an unpredictable way compared to what is observed in the lab, thus
reducing the effectiveness of the compensation strategies developed in lab conditions.

In this context, this paper describes the implementation of a continuous odour emission
monitoring system consisting of two e-noses at the fenceline of a WTP. Besides describing
the experimental procedure involved in training and testing the IOMS in situ, the paper
focuses on the development of a specific pre-treatment procedure to be applied to the
monitoring data with the purpose of compensating oscillations of the e-nose signals due
to temperature (T) and relative humidity (RH) variations. Two approaches, which differ
in the definition of the reference baseline, have been investigated, and the efficacy of the
two methods was evaluated in terms of classification and quantification performance
achieved within specific field verification tests and compared with the ones obtained
without applying any correction.

Furthermore, the paper reports the results of the IOMS monitoring carried out at the
WTP fenceline for about one year. The frequency of odour events and the trend of the odour
concentration at the monitoring sites were evaluated and correlated with other useful
information regarding the plant operation, such as extraordinary maintenance activities,
temporary shutdowns of the biogas upgrading section, etc., which could potentially be
correlated with increased odour emissions, with the purpose of proving the possibility of
using the IOMS network as an effective tool for odour management.

The novelty of this work is not related to the development of new algorithms, but
rather to the whole procedure adopted for the realization of an effective odour monitoring
system capable of providing accurate and useful information in a complex, real-life scenario.
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2. Materials and Methods

2.1. Plant Description

The plant under investigation is a WTP that converts the organic fraction of municipal
solid waste (OFMSW) into biomethane and high-quality compost (Figure 1). After pre-
treatments (plastic and sand separation), the OFMSW is mixed with water and transferred
to anaerobic digestion tanks. Anaerobic digestion leads to the formation of biogas and
digestate. The biogas is then refined to biomethane in an upgrading section, while the
digestate is sent to an aerobic treatment section to produce high-quality compost.

Figure 1. Plant operation scheme.

In order to prevent odour emissions, OFMSW storage and treatments are carried out
in closed sheds operated under a slight vacuum and equipped with ventilators collecting
exhaust air to a biofilter unit, which is the only conveyed emission of the plant. However,
fugitive emissions from sheds cannot be completely neglected.

Thus, the following odour sources were considered in the study: the fugitive emissions
from the sheds used for the storage and pre-treatment of the OFMSW and from the buildings
used for the maturation and storage of compost, fugitive biogas emissions from the digestor
and the upgrading section, and the conveyed emissions from the biofilters treating the air
sucked from the buildings containing the OFMSW and the compost.

2.2. Monitoring System

For this study, as hardware, we used two identical e-noses WT1 (WT1 1179 and
WT1 1180) commercialized by Ellona (Tolouse, France) and one weather station Vantage
Pro2, commercialized by Davis Instruments Corporation (Hayward, Charlotte, NC, USA).
Each WT1 e-nose is equipped with an array of 7 sensors, comprising 4 semiconducting
metal oxides (MOX) sensors, 2 electrochemical sensors specific for the detection of hydrogen
sulphide (H2S) and ammonia (NH3) and 1 photoionization detector (PID) calibrated with
isobutylene. The instruments are also equipped with 2 sensors for monitoring temperature
and relative humidity. The weather station Vantage Pro2 is equipped with a group of
sensors including temperature and humidity, rainfall meter and anemometer, which offers
the possibility to acquire meteorological data with a frequency of 15 min. All the data
acquired by the e-noses and the weather station can be visualized and downloaded through
the Ellona web interface for further elaboration.

Data processing was implemented externally from the Ellona software v. 2.4.2., in
order to develop the compensation models required by the specific application, as described
in the following sections.

The installation points for the e-noses have been defined based on the results of
a parametric dispersion modelling study, which was carried out with the purpose of
evaluating a preliminary correlation between odour concentration at the plant fenceline
and the odour concentration expected at the nearest receptors. From this analysis, the
most impacted receptors were identified and the selection of the instruments’ installation
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points was defined to be representative of the emission plumes reaching the most impacted
receptors most frequently.

Based on this preliminary study and other logistic considerations, it was decided to
install the e-nose WT1 1180 at the Eastern boundary of the plant in the proximity of the
biofilters and the entrance of the shed where the OFMSW is discharged and pre-treated
before the anaerobic digestion process. The installation site of the WT1 1180 is also very
close to the biogas upgrading section. The e-nose WT1 1179 was installed on the opposite
side of the plant (Western boundary), i.e., on the rear of the waste receiving and treatment
sheds, but close to the two digesters and the torch.

2.3. Electronic Nose Training
2.3.1. Data Acquisition

The main purpose of the e-nose training is to create a reference dataset (i.e., training
set, TS) to be used for the implementation of models for classifying and quantifying the
air analysed by the instruments during the monitoring phase. To carry this out, dedicated
olfactometric campaigns are needed to characterize the plant odour emissions sources.
Measurements should be carried out in different periods in order to account for both the
intrinsic variability of the sources and the variability associated with the seasonality and
different weather conditions. In this case, a total of 70 odour samples were collected directly
at the odour sources of the plant as listed in Section 2.1 and analysed by dynamic olfac-
tometry (EN 13725:2022) [25] to assess their odour concentration. Samples were collected
over 5 olfactometric campaigns, conducted in different seasons between February 2022 and
October 2022, and with different meteorological conditions.

In more detail, odour samples were collected in WTP sheds devoted to OFMSW
treatment by means of a mechanical depression pump. Samples of exhaust gas from
biofilters were collected by means of a static hood, which allows the isolation of a part of
the biofilter surface and conveys the exhaust gas flux through the exit duct where the sample
is taken by means of a mechanical depression pump. Finally, samples of fugitive biogas
emissions were taken from the gas transfer pipeline from the digestor to the upgrading
section, exploiting the overpressure of the gas flow for filling the gas sampling bag. In order
to create a TS representative of conditions expected at the monitoring sites, characterized
by lower concentrations than those measured at the emission sources, odour samples were
diluted with odourless ambient air taken at the plant fenceline when odours were not
perceivable by the operators.

After dilution, from the initial 70 samples collected directly at the odour sources, we
obtained a total of 240 samples (Table 1), with odour concentrations ranging from about
20 ouE/m3 to about 1000 ouE/m3.

Table 1. Odour class and concentration range of the samples analysed by the electronic noses for the
training and for the field tests for performance verification.

Class
Number of Diluted Samples

Analysed
Odour Concentration Range

[ouE/m3]

Air 33 20–50
Biogas 65 22–990

Biofilter 49 32–860
Sheds 93 27–950

In more detail, 196 samples collected during the first four campaigns were used to build
the TS, whereas the 44 samples of the fifth campaign were used as external independent
test sets for field performance verification, as described in Section 2.4 (Table 2).

237



Sensors 2024, 24, 3506

Table 2. List of all the samples collected during the different campaigns and their division between
training set and field test set.

Training Set Test Set

22 February 22 April 22 May 22 July 22 October

Number of independent
samples collected at the source 13 17 6 15 19

Number of diluted samples 47 65 25 59 44

Samples were presented to the e-nose directly in the field to account for background
conditions at the monitoring sites and prevent bias in the TS. Odourless ambient air samples
were also analysed to define the baseline of IOMS signals when no odour could be perceived.
Sensor responses accounting for various analyses in the field were registered for the next
steps of data processing.

2.3.2. Data Processing

The general scheme of the data processing procedure developed for this study is
illustrated in Figure 2. The details of each step will be discussed in the following sub-
sections. After an initial pre-treatment aimed at normalizing the data and compensating
potential interferences, different features from the sensors’ signal curves were extracted
and selected by means of the Boruta algorithm [26]. Selected features were used as input
for principal component analysis (PCA) to conduct an exploratory analysis [27,28]. Then, a
two-step machine learning model was implemented. In the first phase, a Support Vector
Machine (SVM) [29,30] classification model was built to predict the class of odours detected
at the fenceline. In the second step, a class-specific regression model based on Support
Vector Regression (SVR) [31] was developed to estimate the odour concentration. These
algorithms were chosen because they proved to have a better performance on the specific
dataset considered in this study compared to other classification algorithms (e.g., Random
Forest and KNN) and other regression algorithms (e.g., PLS) [32]. Different approaches
were compared to find out the optimal data processing procedure for the specific case, as
will be described in the following sub-sections.

Figure 2. Data processing scheme resuming the different steps applied.
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Pre-Treatment and Normalization of the Sensors’ Resistances

As already mentioned, one of the main issues associated with the application of e-
noses for environmental odour monitoring is their cross-sensitivity towards humidity and
temperature variations. Such interference cannot be neglected in the case of outdoor instal-
lations, where considerable changes in temperature and humidity levels of the ambient air
occur because of the day–night cycles, the season, and the variable meteorological condi-
tions. All these variations cause alterations in e-nose sensor resistances comparable to those
observed in the case of odour events. Thus, if not properly treated, they are likely to lead to
misinterpretation of the monitoring results and overestimation of the odour detections.

For this reason, we decided to explore the possibility of applying a specific pre-
treatment aimed at compensating interferences on e-nose sensor responses caused by
temperature and humidity variations occurring during the monitoring, which could have
been misclassified as odour events.

The proposed pre-treatment involves the normalization of raw sensor signals recorded
during the monitoring versus a reference baseline, as reported in (1),

ynorm =
y − yre f

y
, (1)

where ynorm is the normalized value of resistance, y is the raw resistance value of the
sensor and yref is the value of reference baseline. Two approaches for the definition of
the reference baseline have been investigated: the first one uses as parameter yref as the
mean sensor resistance value of the different sensors exposed to odourless ambient air,
while the second approach is characterized by the implementation of a variable ‘dynamic’
yref obtained through a regression model, which correlates the value of resistance in non-
odorous ambient air with the values of absolute humidity (Figure 3).

Figure 3. Example of sensor resistance variation exposed to non-odorous ambient air with different
values of absolute humidity. The x-axis reports the value of absolute humidity in g/m3, while the
y-axis reports the resistance in Ohm.

Figure 3 shows, as an example, how the electrical resistance of one MOX sensor of
the e-nose, exposed to odourless air, changes with the moisture content of the analysed air.
In more detail, Figure 3 compares the MOX sensor baseline with the absolute humidity,
expressed in g/m3 and defined by (2),

AH =
RH Ps

Rw T 100
, (2)

where AH is the absolute humidity, RH is the relative humidity, T is the temperature
of the air expressed in K, Rw is the specific constant of gases for water vapour (equal to
461.5 J/kg/K), and Ps is the water vapour pressure evaluated using the empiric Equation (3)
available on Perry’s Chemical Engineers’ Handbook [33],

ln Ps = C1 +
C2
T

+ C3ln T + C4 TC5 (3)
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where C1, C2, C3, C4, and C5 are empiric constants specific for the evaluation of the vapour
pressure of water and P is the pressure expressed in Pa.

The visual inspection of the plot in Figure 3 points out the existence of a decreasing
trend of the sensor’s baseline with increasing absolute humidity, thereby suggesting the
possibility of finding a correlation between these two variables through a regression model.

The regression model we chose consists of a polynomial regression based on a formula
such as the one reported in (4),

yre f = a1 + a2 AH + a3 AH2 + a4 AH3 + a5 AH4 + a6 AH5 (4)

where the a coefficients are the empiric constants obtained from the regression model
and AH is the absolute humidity value evaluated using the temperature and relative
humidity registered by the instruments during the analysis. Regression models with
different polynomial curves, up to the fifth grade, were tested for each sensor. The choice
of the polynomial model was made mainly by a visual check by trying to select the
polynomial curve with a lower degree that better approximates the sensor trend (e.g.,
first-grade polynomial in the case of a linear decreasing trend or third-degree polynomial
in the case of an exponential-like trend).

It should be pointed out that this polynomial regression does not claim to have a
physical meaning of the sensor’s change in resistance in consideration of the chemical
reactions occurring on the sensor’s surface. However, since the interaction mechanism of
water with the sensor surface is still not fully understood, especially in the case of complex
mixtures with other chemical compounds, thus making mathematical modelling of the
physical phenomena hardly applicable, the only possible way of “correcting” the effect
of humidity on the sensors is to use an empirical regression based on the interpolation of
experimental data obtained from sensor exposure to different humidity levels. It should be
further noted that similar approaches (using polynomials) have been already proposed in
the scientific literature [34] to correct for humidity and temperature effects on MOX sensors.

Feature Extraction and Selection

After normalization of the sensors’ signals, feature extraction [35], calculated on
a 5 min basis, was applied on the TS to extract the numerical parameters useful for the
discrimination of the different odour emission sources considered. This step requires the im-
plementation of mathematical operations on the sensor curves to obtain a multidimensional
vector with informative values to be used as input for classification and quantification. In
this case, 10 features were been extracted for each MOX sensor and 1 feature was extracted
for each electrochemical sensor and for the PID, for a total of 43 features extracted (Table 3).

Table 3. List of the features extracted.

SMOX Sensors Feature Name Description

A Minimum of the resistance
B Exponential moving average (EMA)—area under the curve—alpha 0.05
C Exponential moving average (EMA)—minimum—alpha 0.05
D Exponential moving average (EMA)—area under the curve—alpha 0.1
E Exponential moving average (EMA)—minimum—alpha 0.1
F Difference between maximum and minimum of the resistance
G Minimum of the derivative of the resistance
H Area under the curve
I Mean of the resistance

Electrochemical
Sensor and PID

Feature Name Description

L Maximum of the sensor reading
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To select the best features that entail useful information allowing the discrimination of
a certain type of odour, the data processing procedure includes a step of feature selection.
Different types of feature selection algorithms can be applied [36–38]. Here, we used
Boruta [26], which is an algorithm based on the Random Forest classifier allowing us to
rank the features based on their contribution to the performance of classification/regression.
Compared to other algorithms, which are based on finding the smallest feature set giving
the best classification result, Boruta allows us to identify all the features relevant to the
classification purposes.

As a result, eleven features were selected for WT1 1180, and thirteen for WT1 1179,
respectively. These features comprise the minimum of the resistance (A), the area under
the curve and the minimum of the EMA with alpha 0.1 (D,E) [39], the difference between
the maximum and minimum of the resistance (F), the minimum of the derivative of the
resistance (G) and the maximum reading of the H2S electrochemical sensor (L).

Exploratory Analysis

On the selected features, a principal component analysis (PCA) was applied to reduce
data dimensionality and obtain a graphical visualization of the instrument’s capability to
discriminate the different odour classes (Appendix A). Also, the PCA allows us to identify
possible odour samples acting as outliers, which are removed from the TS before the
implementation of the classification and regression models. In this type of application,
outliers are mainly attributable to sampling issues (e.g., contamination of the sampling
lines, unpredictable variations in the sampled emission, etc.), which are not always clearly
recognizable a priori, and thus are required to be identified through a graphic interpretation
of the sample distribution in the so-called influence plot [28].

Classification and Regression Models

Not all the samples analysed (Section 2.3.1) were used for the implementation of the
classification and regression models. As previously mentioned, the training models were
developed using only 196 out of 240 samples, because the remaining 44 were collected
later and left out as an external test set to assess the e-nose performance during operation
on the field (as described in Section 2.4). Moreover, ca. 10% of the training samples were
identified as outliers and removed to optimize the TS. Furthermore, the PCA allowed us
to observe similarities between some of the odour classes considered, which made them
hardly discriminable. Therefore, the final training model was built based on three classes:
‘Air’, which is representative of the condition of absence of odour; ‘Biogas’, which refers
to potential fugitive emissions from the safety valves on the biodigesters; and ‘Organic
odour’, which refers to the fugitive emissions from the sheds used for the receiving and
pre-treatment of the organic wastes and the building dedicated to the maturation and
storage of the compost and the biofilters.

The odour pattern registered by the e-nose is different depending on the odour class.
As a consequence, samples belonging to different odour classes with the same odour
concentration will provoke a different sensor response pattern, because of the different
chemical composition of the odour classes. For this reason, the construction of an effective
quantification model should be based on the identification of the odour class, first. Also, the
identification of the odour class is of particular importance for the plant managers, because
it enables the identification of the causes of the odour events detected at the fenceline.

The models implemented for classification and regression are based on the non-linear
SVM (Support Vector Machine) with a Gaussian radial basis function (RBF) kernel [30]. As
mentioned in the previous paragraphs, the score of the data processed by PCA is taken and
used as input for the implementation of the classification models, whose outputs define
the odour class of the gas analysed. In particular, for both e-noses, the first three principal
components account for about 90% of the explained variance and so they were selected as
input of the models.

241



Sensors 2024, 24, 3506

In more detail, three classification models deriving from different data analysis pro-
cedures were compared: (1) Model CA—analysis of the raw sensor resistance without
any pre-treatment; (2) Model CB—analysis of the sensor resistance after normalization
of the signal as reported in Equation (1), with the parameter yref fixed at the general sen-
sor resistance value of the different sensors exposed to odourless ambient air; (3) Model
CC—analysis of the sensors resistance after normalization with absolute humidity com-
pensation of the signal as reported in Equation (1), with a variable yref evaluated with the
regression model expressed in Equation (4) at the absolute humidity measured during the
analysis time window. The models obtained were optimized by means of internal 10 k-fold
cross validation and to determine their performance an independent dataset was used for
testing [40].

Regarding odour quantification, two different strategies were compared: the first
approach (Model QA) is based on the application of a global regression model trained
using a training set comprising all samples without differentiation of the odour class;
instead, the second approach relies on a classification of the odour analysed prior to
regression (Model QB). In this case, different regression models are built based on the
number of odour classes defined in the TS (Figure 2). The aim of the comparison is to verify
the assumption that the classification of the odour prior to its quantification can improve
the accuracy of the odour concentration prediction.

The evaluation of the regression models’ performance was conducted by comparing
the odour concentration predicted on the independent test set with the concentration
obtained by the reference method, i.e., dynamic olfactometry, and then by applying a
statistical analysis based on the Bland–Altman (B&A) model [41,42].

2.4. Performance Verification in the Field

During the monitoring phase, it is important to carry out specific field tests to evaluate
the reliability of the instruments’ detections. Field performance testing is also one of the
requirements of the recently published Italian technical norm UNI 11761:2023 [43] on
instrumental odour measurement. In this case, sampling for field performance testing
was carried out as for the training phase, but in a separate campaign after the definition
of the training models: gas samples were withdrawn from the different odour emission
sources considered, analysed by dynamic olfactometry (in accordance with EN 13725:2022),
diluted, and then analysed by the e-noses to verify the instrument accuracy in recognizing
the odour class and quantifying the odour concentration.

The odour classification capability was assessed in terms of the Matthews Correlation
Coefficient (MCC), which is a better indicator compared to the global accuracy when the
classes of interest are not balanced [44].

The Bland–Altman method was then applied to evaluate the odour quantification
capability and compare the odour estimates by the e-noses with the reference method. This
approach was chosen because dynamic olfactometry has a high measurement uncertainty
(generally considered at about 50% [13]), which makes a comparison using traditional cali-
bration methods based on the correlation coefficient (r) unsuitable [45]. For this reason, it is
necessary to adopt “model comparison” methods, which enable us to compare outputs ob-
tained from methods having comparable levels of uncertainty. The Bland–Altman method
has been recently proposed as a suitable approach to provide quantitative information
about the capability of IOMS to estimate odour concentrations [13].

To properly apply the Bland–Altman method, it is first necessary to check whether
the differences in the values calculated with the two methods are normally distributed.
This can be evaluated, for example, by applying a Shapiro–Wilk test [46] and verifying the
resulting p-value. If the p-value is higher than 0.05, then the condition of normality cannot
be rejected. It should be considered that, when dealing with odour concentration values,
the agreement should be evaluated by comparing the differences in their logarithms.

The application of the Bland–Altman method provides the bias, which is the mean of
the differences, and the Limits of Agreement (Lower LoA and Upper LoA), which define
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a range within which 95% of the differences between one measurement and the other
are included.

Performance testing was mainly conducted with the purpose of comparing the differ-
ent compensation strategies and the different regression models developed, finding the
most suitable approach to develop a robust and accurate quantification model.

2.5. Monitoring Data Evaluation

After installation, the e-noses analysed the ambient air continuously, and the sensor
resistance values were registered every 10 s. The monitoring phase lasted for about 1 year,
resulting in a monitoring dataset of 73,685 observations.

These data were processed according to the data processing procedure described in
Section 2.3.2. In more detail, data acquired continuously were divided into time intervals
of 5 min to extract features from the sensor curves and process them with the classification
and regression models developed. This means that the monitoring system produces an
output every 5 min in terms of odour class detected and estimated odour concentration.

Monitoring data were analysed with the purpose of obtaining information about
the detection of odours at the fenceline and their origin. Data were analysed first with
the purpose of evaluating the odour impact in terms of the ratio between all the ‘odour’
detections (i.e., measurements classified differently than ‘air’) and the total number of
measurements. Then, the relative detections of the different odour classes and the odour
concentration trends over time were evaluated as well, with the purpose of identifying the
most critical odour classes causing the majority and/or more intense odour events.

3. Results

3.1. Field Performance Testing
3.1.1. Odour Classification Performances

The different absolute humidity compensation models were evaluated by analysing
the odour classification performances of the e-noses WT1 1179 and WT1 1180 when
applying models.

The models were first validated (by internal cross-validation) and then tested by using
an independent dataset as the test set. The confusion matrices resulting both from the
validation and testing were assessed to compare the models’ performances.

The results, expressed in terms of MCC values obtained with the different classification
models for each electronic nose, are reported in Table 4.

Table 4. Comparison of the performance of different humidity compensation models for the electronic
nose WT1 1179 and WT1 1180. The ‘Validation’ MCC is referred to the Matthews Correlation
Coefficient evaluated on cross-validation, while the ‘Test’ MCC is referred to the same coefficient
calculated on the independent test dataset used for testing.

WT1 1179

Model ‘Validation’ MCC ‘Test’ MCC

Model CA 0.86 0.85
Model CB 0.91 0.9
Model CC 0.91 0.95

WT1 1180

Model ‘Validation’ MCC ‘Test’ MCC

Model CA 0.55 0.69
Model CB 0.85 0.77
Model CC 0.88 1

It is possible to observe similar behaviours for both e-noses: the MCC values relevant
to the models implemented without signal normalization (Model CA) perform the worst,
while the models obtained after normalization and compensation with respect to the
absolute humidity (Model CC) provide the best results. For the e-nose WT1 1179, the
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result performances obtained with the different models are not huge, with a minimum
value of MCC obtained on the independent test set equal to 0.85 for Model CA and a
maximum of 0.95 for Model CC. The e-nose WT1 1180, instead, shows greater variability in
the performances obtained depending on the data processing procedure applied, ranging
from 0.69 to 1 on the independent test set for Model CA and Model CC, respectively.

The results obtained highlight the importance of considering the interference of hu-
midity and temperature in the response of the sensors in order to obtain reliable results in
terms of odour class recognition.

The classification Model CC was further tested with an independent dataset. The
results of this validation, reported as confusion matrixes in Figure 4a,b, show that, after
the application of a suitable model for compensating the sensor responses considering
the instantaneous absolute humidity value, the WT1 1179 and WT1 1180 are capable of
properly discriminating the different odour classes with accuracy indexes of 97% [95% CI:
85–99%] and 100% [95% CI: 88–100%], respectively.
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Figure 4. (a) WT1 1179 confusion matrix for odour classification resulting from testing with an
independent dataset; (b) WT1 1180 confusion matrix for odour classification resulting from testing
with an independent dataset.

3.1.2. Quantification Performances

Field testing was also applied to evaluate the capability of the e-noses to estimate
the odour concentration, thereby comparing the odour concentration estimates from the
instruments with the odour concentration values measured by dynamic olfactometry
(according to EN 13725:2022).

The comparison was made by applying the Bland–Altman analysis, which can be used
to estimate the agreement between two different methods [41,42]. The Shapiro–Wilk test
was applied to both e-noses and for both models (Model QA and Model QB) obtaining
a p-value higher than 0.05 in every case analysed, meaning that the condition of normal
distribution of the differences cannot be rejected. Figure 5 reports the Bland–Altman plots
relevant to Models QA and QB for the two e-noses, WT1 1179 and WT1 1180, respectively.
The x-axis reports the mean of the logarithm of the odour concentrations, while the y-axis
reports the differences in the logarithm of the odour concentrations. The plots further
report the field measurements (black points), the bias (green dash-dot line), the Upper
Limit of Agreement (LoA, blue dash-dot line), the Lower LoA (pink dash-dot line) and
their 95% confidence intervals (delimited by the corresponding coloured dot lines). By
looking at the plots in more detail (Figure 5), both Models QA and QB have their equality
line (i.e., the line where the differences are equal to zero) contained in the 95% confidence
interval of the bias, meaning that the bias is not significant.
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Figure 5. Bland–Altman plots obtained by applying the quantification Model QA and the quantifica-
tion Model QB on the estimates of the electronic nose WT1 1179 and WT1 1180. In both plots, the bias
is reported as a green dash-dot line, the lower limit of agreement as pink dash-dot line and the upper
limit of agreement as blue dash-dot line. Each parameter is reported together with the corresponding
95% confidence interval, represented by the dotted lines of the same colour. The x-axis reports the
mean of the logarithm of the concentration evaluated with the quantification model (IOMS) and the
dynamic olfactometry (DO), while the y-axis reports their difference.

For an easier and more immediate comparison of the two models, the LoA is also
expressed in Tables 5 and 6 in terms of multiplicative factors.

Table 5. Parameters of Bland–Altman model applied on Model QA and QB for the e-nose WT1 1179.

WT1 1179

Model QA Model QB

Logarithmic
Differences

Multiplicative
Factors

Logarithmic
Differences

Multiplicative
Factors

Bias −0.13 −0.1
Upper LoA 0.63 4.27× 0.41 2.6×
Lower LoA −0.89 0.13× −0.61 0.24×

Table 6. Parameters of Bland–Altman model applied on Model QA and QB for the e-nose WT1 1180.

WT1 1180

Model QA Model QB

Logarithmic
Differences

Multiplicative
Factors

Logarithmic
Differences

Multiplicative
Factors

Bias −0.07 −0.08
Upper LoA 0.5 3.13× 0.38 2.39×
Lower LoA −0.63 0.24× −0.55 0.28×

For the e-nose WT1 1179, the Lower and Upper LoA for Model QA are 0.13× and 4.27×,
respectively, instead for Model QB they are equal to 0.24× and 2.6×. For the e-nose WT1 1180,
these values are 0.24× and 3.13× for Model QA and 0.28× and 2.39× for Model QB. The
outcomes of this analysis highlight a difference in the level of agreement between Models QA
and QB for each e-nose. In more detail, Model QB results provide, for both e-noses, better
estimates compared to the odour concentration values measured by the reference method.
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To further compare the different models, we tried to assess the e-nose quantification
performance adopting the same criteria for accuracy and for intermediate precision indicated
in EN 13725:2022 for dynamic olfactometry.

According to the EN, to satisfy the accuracy criterion, the logarithm of the bias needs
to be lower than 0.217 (Equation (5)), while the intermediate precision criteria are satisfied
if the standard deviation(s) of the observations, in a non-logarithm form, multiplied by 1.96,
is lower than 3 (Equation (6)), meaning that the factor that expresses the difference between
two consecutive odour concentration measurements will not be larger than a factor of 3 in
95% of the cases. ∣∣log10bias

∣∣ < 0.217 (5)

1.96 ∗ s < 3 (6)

The same criteria were applied for the evaluation of the e-nose estimates, and the
results are reported in Table 7. The accuracy criterion is satisfied by all the models for
both e-noses since the absolute value of the logarithm of the bias is always lower than
0.217. On the other hand, the intermediate precision criterion is not satisfied by any of the
models developed. Even if the criterion is not respected, comparing Models QA and QB, it
is possible to observe that, for both electronic noses WT1 1179 and WT1 1180, Model QB
is the one performing better, giving a factor closer to the limit value of 3. Based on these
considerations, it was decided to adopt Model QB as a quantification model to predict the
odour concentration of the ambient air analysed by the instruments at the plant fenceline.

Table 7. Results obtained from the Bland–Altman analysis for the quantification Model QA and QB
applied on both electronic noses. For each model, the absolute value of the logarithm of the bias, the
standard deviation of the difference in the measurements and the result of Equation (6) to check the
compatibility with the intermediate precision criteria are reported.

Model |log10(bias)| Standard Deviation
Intermediate Precision

Criterion

WT1 1179—Model QA 0.13 2.41 4.72
WT1 1179—Model QB 0.1 1.82 3.57
WT1 1180—Model QA 0.07 1.91 3.74
WT1 1180—Model QB 0.085 1.71 3.35

The final data processing procedure applied and the different approaches considered
have been resumed in Figure 6.
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Figure 6. Detailed data processing scheme. The final data path flow are highlighted in green, while
the discarded model approaches are coloured in red.

3.2. Monitoring Results

The signals registered by both e-noses from February 2022 to November 2022 were
processed with the aim of obtaining a real-time qualitative and quantitative characterization
of the ambient air at the plant fenceline. Based on the results discussed in the previous
sections, we decided to adopt Model CC to compensate for humidity and assess the odour
class, whereas the estimation of the odour concentration was obtained relying on Model
QB (Figure 6).

The monitoring results have been then elaborated to assess the frequency of detection
of the different odour classes considered at the instruments’ installation sites.

Figure 7 reports the odour detection frequencies for both e-noses, WT1 1179 and WT1
1180. It can be observed that the WT1 1180 detected odour for about 11% of the monitoring
period with a quasi-equal distribution between the two odour classes ‘Biogas’ and ‘Organic
odour’ (5% and 6%, respectively). Instead, the WT1 1179 detected odour for about 7% of
the monitoring period, with the odour events belonging principally to the ‘Organic odour’
class, which was recognized 6% of the time, compared to the odour class of ‘Biogas’, which
was detected only ca. 1% of the time.

  

Figure 7. Odour detection frequency between the months of February and November 2022 for the
electronic nose WT1 1179 and WT1 1180.

These differences can be explained by considering the different positions of the
two e-noses. The WT1 1180 is installed in a more ‘critical’ point that allows the detec-
tion of odour emissions from the biofilters and the sheds where the OFMSW is stored and
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processed; moreover, the WT1 1180 is located also downwind the upgrading section, thus
enabling the detection of fugitive emissions of biogas from that area, which turned out to
be not negligible. Instead, the WT1 1179 is installed close to the biodigester and the torch,
from which fugitive biogas emissions seem to be more limited.

The outputs of the regression models for WT1 1179 and WT1 1180 have been reported
in Figures 8 and 9, showing the predicted odour concentration for the entire monitoring
period. Looking at the results for the WT1 1179, the e-nose detected more frequent odour
events attributed to the ‘Organic odour’ class; odour events related to ‘Biogas’ are rare,
but they result in relatively high odour concentration peaks (up to ca. 1000 [oueeq/m3]).
Conversely, the WT1 1180 detected odours attributed to the two classes ‘Organic odour’
and ‘Biogas’ with similar frequencies, and the relevant odour concentrations reached up to
ca. 500 [oueeq/m3].

What is particularly interesting from the point of view of the plant management is that
the odour events recorded by the two e-noses, and especially those associated with high
odour concentrations, could be often related to specific malfunctioning events or anomalous
operating conditions of the plant. As an example, the increase in the frequency of the odour
events registered by the e-nose WT1 1180 in October and November coincides with a
malfunctioning of the ventilation system of the OFMSW storage buildings, which resulted
in increased fugitive odorous emissions, because of the reduced capacity of keeping the
shed’s interior at a negative pressure. Moreover, the high concentration peaks of biogas
detected by the e-nose WT1 1179 in October could be identified as related to extraordinary
maintenance operations carried out on the pipelines transporting the biogas from the
biodigester to the upgrading section.

Figure 8. Odour class and relative odour concentration resulting from the ambient air analysis by the
electronic nose WT1 1179 at the plant fenceline from February 2022 to November 2022.
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Figure 9. Odour class and relative odour concentration resulting from the ambient air analysis by the
electronic nose WT1 1180 at the plant fenceline from February 2022 to November 2022.

4. Conclusions

The present study discusses the possibility of using e-noses to continuously moni-
tor the odour emissions at the fenceline of a WTP by detecting the presence of odours,
recognizing their provenance (odour source) and estimating the odour concentration. In
more detail, this study focuses on the instrument training methods, thereby comparing the
application of different training models.

First, the training involved extensive field data acquisition: 196 samples of known
odour quality and concentration collected at the plant’s main odour sources over four
different olfactometric campaigns conducted in different seasons were analysed by the
instruments, opportunely diluted to reproduce odour concentration levels that are likely to
be detected at the plant fenceline. Furthermore, other 44 independent samples collected on
a fifth campaign were used for testing.

Then, the work involved the implementation and the comparison of different models
for the compensation of ambient air humidity and temperature, which are known as main
interferents in the application of e-noses for environmental monitoring. Results show that
the implementation of a suitable corrective model of sensor responses to compensate for
changes in absolute humidity of the sample significantly improves the odour classification
performances, passing from accuracies of ca. 70% to 100%. These observations further
highlight the importance of including of a suitable compensation strategy whenever the
e-nose is used outdoors, with variable atmospheric conditions.

Finally, in this study, we also studied and compared different models for the estimation
of the odour concentration. In more detail, we wanted to confirm the hypothesis that a
‘double-step’ model, including first the identification of the odour class and then applying
a regression model specific for the recognized odour class, would be more effective than a
more simplified regression model without prior identification of the odour class. Indeed,
the ‘double-step’ model proved to provide more accurate estimations, resulting in reduced
factors for the Limits of Agreement evaluated by the Bland–Altman method. Moreover,
quantification performances achieved by the trained electronic noses turned out to be
comparable with the quality criteria fixed by EN 13725:2022 for the reference method, i.e.,
dynamic olfactometry.

As a conclusion, the study proves that, if properly trained, by including a suitable
signal pre-treatment method for compensating atmospheric variables and by implementing
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specific quantification models based on a preliminary identification of the odour class for
regression, e-noses can be very effective for environmental odour monitoring, achieving
classification accuracies above 97% and quantification performances comparable to those
considered acceptable by the reference standard for dynamic olfactometry.

Regarding the final application, the most important result consists of the realization of
an effective odour emission monitoring system, enabling the real-time detection of odour
events and the identification of their sources. This is a key feature for plant managers
for identifying the possible causes of anomalous odour emissions and enabling prompt
intervention, thus reducing the odour impact on the neighbourhoods.

Future studies should focus on the optimization of the classification and quantification
models developed on a longer monitoring period, thereby accounting for the well-known
problem of sensor drift over time and developing specific strategies to counteract it.
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Appendix A

Figure A1. PCA score plot of the training set for the e-nose WT1 1179 (above) and WT1 1180 (below).
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Abstract: This paper demonstrates, for the first time, the stability of synthetic diamond as a passive
layer within neural implants. Leveraging the exceptional biocompatibility of intrinsic nanocrystalline
diamond, a comprehensive review of material aging analysis in the context of in-vivo implants
is provided. This work is based on electric impedance monitoring through the formulation of
an analytical model that scrutinizes essential parameters such as the deposited metal resistivity,
insulation between conductors, changes in electrode geometry, and leakage currents. The evolution
of these parameters takes place over an equivalent period of approximately 10 years. The analytical
model, focusing on a fractional capacitor, provides nuanced insights into the surface conductivity
variation. A comparative study is performed between a classical polymer material (SU8) and synthetic
diamond. Samples subjected to dynamic impedance analysis reveal distinctive patterns over time,
characterized by their physical degradation. The results highlight the very high stability of diamond,
suggesting promise for the electrode’s enduring viability. To support this analysis, microscopic and
optical measurements conclude the paper and confirm the high stability of diamond and its strong
potential as a material for neural implants with long-life use.

Keywords: polycrystalline diamond; neural prosthesis; impedance spectroscopy; accelerated aging;
passivated layer; electrodes; bio-interfaces

1. Introduction

Implantable neuroprosthetic devices hold the potential to restore neurological func-
tion in people with disabilities. Experiments have shown that an array of microelectrodes
inserted into the cortex can capture brain activity and trigger movements in prosthetic
limbs [1,2] or elicit certain visual sensations through electrical stimulation [2,3]. In such
applications, the durability and stability of the device are crucial in ensuring consistent
functionality over time [4]. However, over the long term, the polymers used in the device
may swell and allow moisture to seep in, leading to a degradation in performance and
ultimately reducing its lifespan [5,6]. This has been shown as a major hindrance to the
adoption of this technology for human health, especially considering the medical impli-
cations of open brain, spinal cord and peripheral nerve surgery regarding the use of soft
implantable neuroprostheses, each showing specific constraints. While several electrode
designs and materials exist, they all show limitations in their usable lifetime [7]. It is thus
necessary to develop functional electrodes that are as biologically inert and long-lasting as
possible, to reduce the need for replacement [8].
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One solution is to envision an implant based on diamond material [9,10]. Nanocrys-
talline diamond is known as an advantageous material for electrochemistry and biosens-
ing [11,12]. In the last decade, it has demonstrated impressive biocompatibility, making it
one of the most promising materials for living tissue interfacing and particularly for neural
interfacing [13]. Indeed, diamond, as a crystalline form of carbon, shows low toxicity
towards living cells and offers great adherence to cells, facilitating its integration with
tissue. Diamond also does not trigger inflammatory responses and has no natural oxides,
a property that few other non-toxic materials share. Typical implant materials such as
silicon, polyimide and parylene only share some of these properties, which impacts their
performance over time [5,8,14–17].

Diamond’s biocompatible nature has been thoroughly researched for many
years [14,18–23], coupled with its semiconductor properties, allowing targeted functional-
ization [24]. This makes diamond an exceptional implant material.

Thus, in order to address the challenge of neuronal implants with a long lifetime
(several years), a novel, full-diamond implant has been developed using a microfabrication
process. It combines conductive diamond (boron-doped diamond (BDD)) for electrodes in
contact with biological species and intrinsic diamond for full passivation (Figure 1) [25].
This passivation layer is embedded within a conductive layer (titanium nitride) in order to
define the electrical access path and impede its resistivity.

 

Figure 1. (Left) Schematic representation of our full-diamond electrode. (Right) Full-diamond
implant.

This prosthesis shows promising properties in terms of biocompatibility and hermitic-
ity thanks to the strong bonding between the intrinsic and conductive diamond, as well
as its mechanical properties. Indeed, at micrometer scales, a thin layer of diamond shows
appropriate flexibility for biological uses. Here, the thickness of the diamond implant is in
the range of 3 μm. This structure is coated with a polymer to easily manipulate the device
(total thickness around 15 μm) (Figure 1).

This implant has been tested on the visual cortices of rodents at the Paris Vision Insti-
tute and EPFL. The visual evoked potentials (EVP) were recorded after light stimulation of
the contralateral eye. The results are very encouraging [26], showing suitable functionality
for the stimulation or recording of neuronal activity.

However, the question of the long-term stability of the prosthesis requires further
analysis. This paper focuses on this crucial point. In this context, the demonstration is based
on the aging of an interdigitated electrode (IDE) with full-diamond insulating passivation,
as a representative of the actual prosthesis, which is possible thanks to its full-diamond
design.

The in vivo evaluation of electrodes requires highly skilled medical practitioners as
well as the use of extensive facilities and equipment for a long period of time, namely the
period for which it is necessary to evaluate the electrode’s aging. In this particular case, it
must be examined over a period of 10 years. This is not ethical or practical.

Thus, impedance monitoring is used here to evaluate changes in the diamond layer
over time. For long-life testing, a thermally controlled biological environment has been
designed and used for aging acceleration. For a comparative study, samples using a
polymer instead of diamond have been used.
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2. Materials and Methods Used for Longevity Test and Aging Monitoring

2.1. Passivation Layer as an Aging Reference

As the outer surfaces of the prosthesis are entirely covered in diamond, its stability
can be derived from that of the diamond itself, using the same manufacturing process. An
aging-specific design has been developed to evaluate the coating material’s hermeticity in
the test device. An IDE structure is used instead of a simple electrode as a test device to
access the resistive and capacitive behavior over various frequencies through impedance
analysis tools. A titanium nitride (TiN) IDE entirely coated (passivated) with intrinsic
diamond, using the same fabrication process as for the previously described prosthesis,
was fabricated.

Indeed, an electrode would show different impedance according to whether it is
isolated from a conductive medium or not, allowing the evaluation of the insulation layer.

2.2. Design and Fabrication of Test Structures

In order to test the aging of the diamond coating and its insulating performance
compared to classical polymers, two types of samples were created based on an IDE
passivated with (i) intrinsic polycrystalline diamond or (ii) a polymer (SU8) (Figure 2).

 

Figure 2. (A) Schematic representation of the test IDE electrode layers. (B) Schematic representation
of the test electrode design. (C) Microscopic observation of a fabricated electrode.

The IDE was fabricated on silicon wafer with a 1.5 μm silicon dioxide layer. For the
metallic layer, a titanium nitride (TiN) layer was sputtered on the wafer. By photolithog-
raphy, the IDE was patterned and the TiN layer was etched in a liquid solution (TBR 19
Technic Inc., Cranston, RI, USA). Concerning the IDE with polymer passivation, we covered
the TiN IDE with a 2 μm SU8 layer (SU8 2002).

For the IDE with diamond passivation, intrinsic diamond was grown on a diamond
nano-seeded substrate with a microwave plasma-enhanced chemical vapor deposition
(MPECVD) reactor (SDS6K) from the SEKI company (Tokyo, Japan). We grew the intrinsic
diamond at the power of 3 kW at a pressure of 30 mTorr and a temperature of 780–900 ◦C,
with a mixture of hydrogen and methane gas. In these conditions, we grew a 2 μm
diamond layer. To grow diamond, it is necessary to prepare wafers by seeding diamond
nanoparticles. After this step, we deposited an aluminium nitride (AlN) layer, and, by
photolithography, this layer was patterned with AlN where it was desired to grow the
diamond. After diamond growth, the entire AlN layer was etched in a liquid solution and
the wafer was cleaned.

For the IDE design (Figure 2B), the finger parameters were as follows:

- SU8_100 and SU8_50 were IDEs with 100 or 50 fingers covered with SU8;
- Dmd_50 and Dmd-25 were IDEs with 50 or 25 fingers covered with intrinsic diamond;
- All IDEs had the same size—a finger width of 30 μm, with spacing of 20 μm, and a

length of 4.66 mm.

The results obtained for the IDE are presented in Figure 2C. The thickness measure-
ment of the passivating layer was 2 μm for diamond and an average of 2.5 μm for SU8,
with a maximum value of 3 μm (Figure 3).
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Figure 3. Fabricated layer profile for thickness measurements.

Sample parameters for labeling are presented in Table 1.

Table 1. Samples fabricated and their dimensions.

SU8_100 SU8_50 Dmd_50 Dmd_25

Conductor TiN (200 nm)

Passivation material Polymer Polymer Diamond Diamond

Passivation thickness 2 μm to 3 μm

IDE arrays 100 50 50 25

2.3. Aging Analysis

In chemical kinetics, Arrhenius’ law is used to link the rate at which chemical interac-
tions occur in relation to the temperature [27,28]. This method has been extensively used
for many years to evaluate the aging of many objects, including electrodes [29].

Arrhenius’ law postulates that higher temperatures increase the rate of the reaction,
thus increasing the rate of electrode degradation. This relation can be used to calculate the
coefficient of acceleration (k) in relation to the difference between the operation temperature
and elevated temperature (T).

k = A·e−Ea
RT (1)

where k: coefficient of acceleration, Ea: activation energy, A: frequency factor, R: gas
constant, T: temperature in Kelvins.

A and Ea are empirical parameters determined through the comparative measurement
of samples aged under different temperatures. Following previous work on the aging of
bio-implants [29–31], the ASTM guidelines [32] provide values for the typical evaluation
of such systems in the form of k = Q

ΔT
10 with a conservative value of Q = 2. These values

would give an acceleration factor of 19.03. Considering a chemically isolated aging medium,
limited testing allowed the empirical determination of an acceleration factor of 12.9 in the
conditions presented in this study.

2.4. Impedance Analysis

To evaluate the material’s degradation, an analytical model of the device, based on
the electrical behavior, was developed in relation to the electrode’s geometry. The model
was reduced to three passive components to reflect the main electric behaviors [33] of the
device (Figure 4):

(i) Rs represents the deposited metal’s resistivity’
(ii) Ce is the isolation between the conductors; since it includes the electrodes, it depends

on the evolution of the electrode geometry;
(iii) Rl represents the leakage currents through the substrates or between the electrodes.
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Figure 4. (Left) Simplified electrical model of the device. (Right) Schematic representation of the test
pseudo-electrodes and their correlations with the model’s parameters.

Considering Ce’s expected capacitance, with a constant medium of permittivity (ε0εr)
and an equivalent distance between the electrodes (d), its variations are mainly due to
changes in the IDE’s surface area (A): Ce = ε0εr

A
d .

To take into account the statistical distribution of the capacitance over the IDE’s surface,
a constant phase element (CPE) has been introduced as a model for Ce. In this case, the
impedance associated with Ce is Zce = 1

Ce(jω)β
.

The value variation of β can be seen as a reflection of the charge distribution along
the different electrodes and the surface roughness. For a better interpretation, Ce can be
considered as a fractional capacitor, which offers a means to evaluate charge distributions
as an indicator of the surface conductivity variation [34,35].

The described transfer function is defined in Equation (2):

Z(tot) = Rs +
1

1
Rl + (jωCe)β

(2)

The measurement setup is automated using a dedicated Python 3.7 script to allow
the analysis of the changes in the parameters (impedance, temperature, time, etc.) over
time. The data collected are then adapted using VBscript 5.6 and the parameters are finally
extracted and plotted using Matlab R2021a. Lastly, fitting is automated and supervised
using the least-squares method.

2.5. Aging Experimental Setup with Accelerating Behavior

To test the stability of the sample, an accelerating long-life setup has been fabricated.
Figure 5 shows the setup based on an aluminum block (for thermal stability) placed on
a hotplate. The block contains three tanks where a jar can be inserted. To ensure good
thermal conductivity, each tank is filled with mineral oil. Each jar is filled with PBS solution
and 6 samples can be placed in each one. To measure the temperature of the solution,
thermocouples are inserted into the jar. The temperature of the PBS is maintained at 78 ◦C
to ensure the acceleration of the aging according to the law of Arrhenius [29,36,37], as
seen previously.

The whole system is placed inside a Styrofoam box to protect it from the environment
and ensure good thermal insulation from the outside. To check the integrity of the sample,
impedance measurements are conducted regularly (every hour) with a large frequency
range, from 100 Hz to 10 MHz. The results are coupled with an analytical model for the
monitoring of the implants’ aging over time. The system also allows the stimulation of the
electrode strip via current injection. The current stimulation mimics the behavior of the
implant during artificial spiking activity (induced by stimulation).
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Figure 5. (Left) Schematic representation of the test setup. (Right) Test bench setup with samples.

3. Results

The collected data consist of four samples: two, denoted SU8_100 and SU8_50 (Table 1),
are associated with the polymer passivation layer, and the two others concern the diamond
passivation layer, labeled Dmd_50 and Dmd_25 (see Table 1). The data include a total
of 7009 impedance spectra (modulus and phase) over 100 frequency points logarithmi-
cally spaced between 100 Hz and 15 MHz, with a measurement occurring every hour for
each sample. This represents continuous recording for 39 weeks under accelerated aging
conditions.

Considering that there are 7009 measurements for each electrode, data analysis is
required for the interpretation of the results. Thus, for a better understanding, further
visual analysis is performed on a single frequency point considered representative of neural
activity recording: 1 kHz. Parameter evolution is extracted using automated supervised
least-squares fitting.

3.1. Stability Comparison

To evaluate the stability of the pseudo-electrodes over time, the evolution of each
sample’s impedance modulus and phase at 1 kHz is considered, as in Figure 6 (dotted lines
refer to diamond; continuous lines refer to the SU8 polymer). The values presented are
normalized compared to the first measurement. Our tests show different aging changes and
potential failure modes for each material. At first consideration, the diamond passivation
layer shows higher insulation properties, represented by the mean |Z| value over time,
presented in Table 2. The diamond passivation also shows more stable behavior compared
to the SU8 layer, which presents some failure, which is visible as a high modulus and phase
variation, potentially indicating the occurrence of a distinct failure.

Figure 6. Extracted impedance variation (modulus and phase) for each sample design at 1 kHz over
time.
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Table 2. Sample parameters’ evolution over time, including initial transient period.

SU8_100 SU8_50 Dmd_50 Dmd_25

Passivation Polymer Polymer Diamond Diamond

Mean |Z| @1 kHz 5.2 kΩ 6 kΩ 15 kΩ 35 kΩ

Module variation ±51.1% ±27.6% ±14.1% ±9.8%

Phase variation ±24.8% ±29.4% ±14.3% ±9%

Rs variation ±104.4% ±135.4% ±47.9% ±34.3%

Rl variation ±58% ±115.8% ±28% ±37%

Ce variation ±71% ±136.4% ±24.9% ±35.5%

Stabilized Ce 1.15 μF 524 nF 540 nF 356 nF

Equivalent
stabilized Ce surface 14.2 μm2 6.5 μm2 6.7 μm2 4.4 μm2

β variation ±12.1% ±14.2% ±2.9% ±5.2%

−30% functionality
(equivalent time) 6.4 years 8.1 years ∅ ∅

The diamond sample’s phase shows a synchronous variation after an equivalent aging
time of 7.5 years of comparable amplitude, indicating a common cause. This effect seems
to be correlated to the acceleration of the degradation of the SU8 samples, which may have
altered the PBS medium.

To evaluate the reproducibility, several sets of diamond electrodes have been separately
aged for a longer period, to extract the statistical variance from the process. The results can
be observed in Figure 7. Although these samples have not been monitored over time, their
final impedance values at 1 kHz after being aged together show two main aging behaviors:
one set increased in modulus, as the Dmd_50 sample previously showed, while the second
set progressively decreased, as Dmd_25 did. Further studies are needed to analyze the
reasons for such differences as no obvious pattern emerged. One sample failed with a
−64% modulus variation, which may have been due to an error in this particular sample’s
preparation as the wire connections were found to be exposed to the medium. This sample
has, nevertheless, been retained in our data.

Figure 7. Impedance variations of diamond electrodes over 23 years of equivalent aging time on
6 sets of 3 electrodes.
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3.2. Model’s Parameters’ Evolution

For each material and spectrum, the extraction of the model parameter values was
performed, and this allowed the monitoring over time of the degradation occurring within
the samples. Figure 8 shows the side-by-side comparison of the Rs, Rl, Ce and β parameters’
evolution throughout the experimental duration.

Figure 8. Evolution of the variations in the extracted model parameters for the SU8 and diamond
samples as a function of the equivalent time.

The capacitance of polymer samples tends to increase over time, which may be due to
an increase in their surface, eventually becoming porous, which reflects the degradation of
the passivation layer. Rl and β seem to offer some indications on this matter, as the current
leakage increases for the polymer layer (Rl decreases), while the charge distribution (β)
shows imperfect capacitive behavior (β decreased). β is also related to the roughness of
the surface; a decrease in β over time can be associated with an increase in the roughness
value. As such, it is inferred that, over time and successive measurements, the polymer
passivation tends to degrade and leak.

Comparatively, after an initial stabilization period, the diamond samples show rel-
atively stable capacitance values over time. This is confirmed by the stability of the β

parameter, showing very little variation over time, also confirming the stability of the
surface electrode capacitance Ce. The Rl value tends here to increase at first until reaching
a plateau, in synchronization with Ce. This indicates that the diamond passivation starts in
a less conductive state before stabilizing, meaning an increase in its electrical insulation
behavior. It can be assumed that the diamond layer is in a more hydrogenated state after
growth, which stabilizes as the hydrogen reacts [38,39].

This comparison, across more than nine months of experiments under accelerated
aging conditions, highlights the very good stability of diamond as a passivation layer
compared to the polymer material (SU8). Indeed, its capacitance and charge distribution
show high stability over time, indicating no loss in functionality, besides an initial settling
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time due to the fabrication process. This confirms the potential of using diamond as an
electrically stable layer for biomedical devices.

3.3. Microscopic Observation

To correlate the previously shown analytical results, a sample analysis has been
performed, starting with profilometer measurements (Figure 9), which can be compared
with Figure 3. The diamond samples retain their original shape, indicating no loss in
structural integrity, while the SU8 samples show distortion and a diminished profile,
indicating the clear instability of the passivation layer.

Figure 9. Thickness profile comparison before and after aging. (A) Dmd_50 after aging. (B) SU8_50
after aging.

Several more observations have been made using both microscopic and SEM observa-
tion, as shown in Figure 10, where the comparison before and after aging shows a clear
passivation failure for SU8. The diamond layer has retained its original shape, further
confirming its structural integrity, although some undefined particles appear lodged be-
tween the IDE’s elements. These particles are supposed to originate from the SU8 sample’s
degraded layers, as previously mentioned during the analysis. The high density of these
particles on the SU8 samples, and near their degraded parts in particular, further increase
our confidence in their origin, without leading to a conclusion (Figures 10 and 11).

 
Figure 10. Microscopic and SEM observation of IDE’s surface before and after aging. (A) SU8_50
before aging. (B) SU8_50 after aging. (C) Dmd_50 before aging. (D) Dmd_50 after aging.
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A further analysis of the SU8 passivation failures shows the progress of the localized
structural decohesion of the passivation, as seen in Figure 11. This delamination seems to
further progress until the SU8 layer’s structure breaks, exposing the inner layers. These
effects accumulate over the electrode’s surface, explaining the relatively high impedance
variations compared to diamond, as discussed previously. For the diamond samples, no
delamination was optically found.

 

Figure 11. Optical microscopic observation of SU8_50’s surface after aging with a focus on different
failure types.

4. Discussion

This work serves to demonstrate that the diamond material will be the next-generation
material for long-term medical implants. With its intrinsic properties, carbon interface,
lack of oxidation, high stability and biocompatibility, the diamond material shows great
promise for the medical field. To validate these assumptions, this study of IDE structures
provides a complete analysis of the aging characteristics of the material and an analysis on a
simple device. This choice was made to allow a fine comparison between the bioimpedance
measurements over time under specific aging conditions and to obtain analytical models
expressing several significant parameters, such as capacitance, resistance or charge varia-
tions. Our analytical model, focusing on a fractional capacitor, provides clear insights into
the surface conductivity variation, and the presented results highlight the superior stability
of diamond as a passivation layer compared to polymer materials like SU8.

The next step will be to complete the aging setup with additional varying conditions,
such as temperature ramps, pH cycling or mechanical stress, with samples in separate media
to avoid potential cross-contamination. A deeper analytical model coupled with micro-
photography monitoring could allow the extraction and validation of more parameters,
paving the way towards a deeper understanding of the material’s properties and improving
our initial predictions. Our methodology has proven its efficiency and will be extended to
converge towards an improved and fully characterized neuro-implant.

Furthermore, to validate the attractiveness of diamond materials for medical applica-
tions, a comparison between different materials is planned, such as silicon nitride or silicon
dioxide as a passivation layer in an accelerated long-life setup, as well as validating the
stability of conductive diamond as an interface for sensing, while recording or stimulating
neuronal activity. These studies will result in a full-diamond implant that combines conduc-
tive and intrinsic diamond for long-life use in medical devices. Thanks to this development
based on diamond materials, the production of medical implants that are stable throughout
a patient’s life can be envisaged.

The sample’s fabrication is based on a completely new manufacturing process based
on MPCVD diamond growth on 4-inch wafers and is fully compatible with standard
cleanroom microfabrication and commercial equipment [26]. Therefore, the production
of diamond-based neural implants will be directly transferable, and previous projects
have already conducted some diamond implant manufacturing [40]. Furthermore, today’s
microelectronics sector is investing widely in this material for the development of new
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applications in MEMS sensors [41] or high-energy devices [42,43] as examples. Thus, in the
near future, it is expected to become possible to easily produce diamond layers on larger
wafers, thus multiplying the production output of such devices.

Introducing a new material for medical application requires many years of research
and regulatory processes; as such, it is necessary to use animal experiments to validate
the innocuity of the material. In the European project NEUROCARE, several preliminary
studies have been performed with diamond samples in animals to validate their biocom-
patibility [44], but it will be necessary to continue these experiments in a future project to
accelerate the transfer of this technology to the medical field.

5. Conclusions

This study aimed to assess, for the first time, the long-term stability and aging charac-
teristics of intrinsic polycrystalline diamond as a biocompatible coating material for in vivo
implants.

This investigation was based on an electric impedance analysis of diamond-passivated
IDE samples compared to polymer-coated IDE samples. The results obtained demonstrated
evolving impedance patterns over time, revealing information about the behavior of the
test devices and therefore the materials. The key parameters concerning electrical insulation
were clearly stable for the diamond compared to the polymer, where failures appeared
during the experiments. Accelerated aging over an equivalent time of 12 years with thermal
activation was used to obtain these results.

The impedance analysis of isolated test electrodes, coupled with the developed analyti-
cal model, provides valuable insights into the material efficiency of full-diamond electrodes
at a low cost and with ease of use. The consideration of Ce as a fractional capacitor has
allowed the evaluation of the charge distributions as indicators of the surface conductivity
variation and behavior, offering a better understanding of diamond’s aging dynamics while
used as a passivation layer.

This work demonstrates the strong interest in diamond materials for the in vivo long-
term use of neuronal implants.
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9. Malisz, K.; Świeczko-Żurek, B.; Sionkowska, A. Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical
Applications—A Review. Materials 2023, 16, 3420. [CrossRef]
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Abstract: L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore,
there is a high interest for its detection in biological fluids including blood, urine, and saliva for
medical studies, but also in food products. Towards this goal, we report on a new electrochemilu-
minescence (ECL) method for L-tryptophan detection involving the in situ production of hydrogen
peroxide at the surface of boron-doped diamond (BDD) electrodes. We demonstrate that the ECL
response efficiency is directly related to H2O2 production at the electrode surface and propose a
mechanism for the ECL emission of L-tryptophan. After optimizing the analytical conditions, we
show that the ECL response to L-tryptophan is directly linear with concentration in the range of
0.005 to 1 μM. We achieved a limit of detection of 0.4 nM and limit of quantification of 1.4 nM in
phosphate buffer saline (PBS, pH 7.4). Good selectivity against other indolic compounds (serotonin,
3-methylindole, tryptamine, indole) potentially found in biological fluids was observed, thus making
this approach highly promising for quantifying L-tryptophan in a broad range of aqueous matrices of
interest.

Keywords: boron-doped diamond; electrochemiluminescence; L-tryptophan

1. Introduction

L-tryptophan is an amino acid that is essential to the metabolism of humans [1]. It
is involved in the biosynthesis of proteins, but it also plays other important roles, along
with its metabolites such as serotonin, in neurophysiological functions [2,3]. L-tryptophan
can only be obtained through food intake, and the recommended daily dose for adults
is estimated to be between 250 mg and 425 mg [4,5]. Low levels of the amino acid could
be compensated for by the consumption of L-tryptophan-based dietary supplements as
a possible strategy to help in the treatment of disorders such as depression, insomnia,
obesity, or Parkinson disease [6,7]. High levels of L-tryptophan may also be harmful for the
central nervous system and have been suggested to accelerate aging and neurodegenera-
tion processes [8–10]. Therefore, there is a high interest in the detection of this important
amino acid in biological fluids, including blood, urine, and saliva, in medical studies, in
particular in the area of neuroscience and oncology [11–13]. A variety of analytical methods
have been reported for the determination of L-tryptophan, which include for instance
high-performance liquid chromatography (HPLC) [14–16] and colorimetric and spectroflu-
orometric methods [17–20]. These methods require expensive equipment and trained
personnel and are time-consuming. Therefore, there is a need for alternative solutions that
are low-cost, rapid, accurate and easy to use. In this context, a range of electrochemical
sensors has been investigated with promising results [11,21–25]. Electrogenerated chemi-
luminescence (ECL) is also attractive here because it offers potentially higher sensitivity
than voltammetric methods and good selectivity. ECL methods usually take one of two
different approaches. In the first approach, L-tryptophan’s ability to enhance or quench
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the luminescence of certain metal complexes is used. For example, tryptophan has been
utilized as a luminescence enhancer of the Ru(bpy)3

2+ and KMnO4 system [26]. A very low
limit of detection (LOD), around 10 nM, was achieved; however, selectivity was found to
be poor in this case. In particular, an increase in luminescence observed from other amino
acids like histamine were present. A similar approach was also used as an end HPLC
detector in order to distinguish between the two different enantiomers (L-tryptophan and
D-tryptophan) down to the picomolar level [27]. Moreover, the ECL quenching ability of
tryptophan has also been extensively investigated, in particular its effect on iridium com-
plexes [28–30]. This relies on indole being subjected to electrochemical oxidation, which
reduces the generation of electrogenerated excited states and quenches ECL emission of
the iridium complex. While this method has been shown to be more selective than the
signal-enhancing technique, it was found to display a non-linear response, meaning that
quantitative measurements may be limited. In the second approach, L-tryptophan may
be detected using ECL through its direct oxidation into an excited intermediate state that
luminesces itself. This phenomenon was firstly reported by Sakura et al., who found
that tryptophan would luminesce when oxidized on a platinum electrode at 0.78 V in a
0.1 M NaOH solution and in the presence of a bromating agent [31]. However, this method
required very high concentrations of tryptophan to be present (>1 μM), and so it was not
deemed to be useful for routine analysis. This process has recently been refined, first by
Chen et al., who found that upon the addition of hydrogen peroxide, both indole and
tryptophan would luminesce in a basic solution (0.03 M NaOH and 0.1 M KCl) [32]. Using
this method, they were able to achieve an LOD of both indole and tryptophan around
100 nM. Since then, further attempts to improve the sensitivity of this method have been
investigated, most notably by Zholudov et al., who tested the use of another oxidizing
coreactant, namely tetraphenylborate (TPB), with tryptophan in aqueous solutions on
glassy carbon electrodes [33]. Although this method did work in near-neutral conditions,
meaning that it was good for biological assays, ECL emission was rather weak, with an
LOD of 300 nM. Thus, hydrogen peroxide has been demonstrated to be the best coreactant
so far for assisting the electro-oxidation of tryptophan. Moreover, boron-doped diamond
(BDD) electrodes are known for their exceptional electrochemical properties, including
a wide potential window in aqueous media > 3 V, low double-layer capacitance, high
stability and low adsorption properties [34–38]. Such electrodes have recently shown to be
capable of opening new perspectives in ECL analysis [39]. In this paper, we investigate the
feasibility and performance of electrogenerated hydrogen peroxide at the surface of BDD
electrodes as a new efficient way to detect L-tryptophan in aqueous solutions without the
need for adding further co-reactant to the analytical solution.

2. Materials and Methods

2.1. Chemicals

L-tryptophan, luminol, phosphate buffer saline (PBS) tablets, tryptamine, indole,
serotonin, and 3-methylindole were all purchased from Sigma-Aldrich, Saint Quentin
Fallavier, France and were of analytical grade. Deionized water was obtained from a
Direct-Q UV 3 water purification system (Merck Millipore, Guyancourt, France).

2.2. Electrochemical Cell

A three-electrode system was used, including lab-grown boron-doped diamond (BDD)
electrodes as both working and counter electrodes, and a platinum wire as pseudo-reference
electrode. Polycristalline BDD was grown by plasma enhanced chemical vapor deposition
(PE-CVD) on a highly conductive 4-inch <100> silicon wafer in a SekiDiamond AX6500
diamond growth reactor. The growth parameters were 1% methane in hydrogen at a
pressure of 40 Torr and microwave power 3.5 kW. Trimethylboron was added to the gas
phase as a source of boron dopant. The thickness of the resulting diamond film was ca.
800 nm with a doping level of 2 × 1021 boron atom.cm−3, as determined by SIMS measure-
ments. A scanning electron microscopy (SEM) image of the surface of the BDD layer is
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shown in Figure S1. Electrodes were fabricated using a 10 × 10 mm2 (working electrode,
WE) or 15 × 15 mm2 (counter electrode, CE) section of BDD. Electrical contact was taken
through the silicon backside using copper tape. Moreover, electrodes from cut sheets of
0.128 mm foil gold and 1 mm foil glassy carbon (Sigma-Aldrich, Saint Quentin Fallavier,
France) were fabricated for comparison with BDD.

2.3. ECL Measurements

The two electrodes (working and counter), along with a Pt quasi-reference wire
electrode, were then placed inside a 10 mL custom three-dimensional (3D)-printed cell fitted
with an optical glass window, so that the worker electrode was facing the optical detector.
When measuring total light emission, electrochemical measurements were performed
using a potentiostat Autolab PGSTAT128N and the photon emission was measured with a
PDM03-9107-USB photomultiplier tube (ET Enterprises, Uxbridge, UK) using the following
parameters: acquisition time 500 ms, high voltage 950 V. All measurements were carried
out in the dark. Spectral data were obtained by placing the electrochemical cell into a
Fluoromax 4P spectrofluorometer (Horiba Jobin Yvon, Paris, France). In this latter case,
a portable PalmSens EMStat4 potentiostat was used for electrochemical excitation. ECL
intensities were recorded at different fixed wavelengths with a slit size of 25 nm (i.e.,
±12.5 nm). For example, point ‘350 nm’ was measured from 337.5 to 362.5 nm, and so on.

3. Results

3.1. In Situ Generation of Hydrogen Peroxide on BDD Electrode

BDD electrodes are particularity suitable for in situ generation of reactive oxygen
species (ROS) in solution, due to their large potential window in aqueous solutions and
low adsorption properties. ROS are a product of oxygen reduction reactions (ORRs) from
dissolved oxygen and/or water, either through oxidation or reduction reactions. The
simplest of these ROS is the superoxide anion radical, which is formed as dissolved oxygen
gains an electron. This is often the first step towards the production of other molecules
such as hydrogen peroxide [40–42]. The production of hydrogen peroxide on electrode
surfaces may be assessed using the luminol molecular probe. ECL emission from luminol
is enhanced in the presence of both the superoxide radical cation and H2O2, but at high
cathodic overpotential ECL enhancement from H2O2 is predominant [43]. Figure 1 shows
the evolution of ECL intensity of luminol on either gold, glassy carbon (GC), or BDD
electrodes as cyclic voltammetry was performed starting from 0 V to a lower cathodic
potential and then back to 1 V vs. Ag|AgCl, at a scan rate of 0.1 V.s−1. The lower potentials
tested started from 0 V down to −3 V vs. Ag|AgCl in 0.5 V increments. As the result-
ing signals span several orders of magnitude, the results are displayed in a logarithmic
scale. A typical voltammogram and resulting ECL signal recorded in such conditions is
shown in Figure S2 for the BDD electrode. When no reduction potential is applied (lower
potential = 0 V), both the GC and Au electrodes perform better in the standard luminol/O2
system. As the lower potential is decreased to −1 V, there is a clear increase in ECL efficiency
for all electrodes. This increase is less significant for Au electrodes, which start producing
superoxide radicals at −1 V, where a reduction peak is observed on the voltammogram.
However, the electrolysis of water occurs, producing hydrogen gas that will compete with
the formation of ROS. The GC electrode features the largest increase in luminescence at
this point. The generation of hydrogen peroxide seems to be maximal on GC electrodes
from −1 V vs. Ag|AgCl. BDD has also a large increase in ECL emission, starting from
−0.5 V vs. Ag|AgCl. However, as observed from ECL during the reduction reaction, the
formation of H2O2 is not fully optimized until after −1.5 V due to the lower inner sphere
reaction rate of BDD electrodes. When using a lower potential below −1 V for the Au and
GC electrodes, steady ECL emission is reached as the generation of ROS is limited due
to the high surface adsorption and the lower potential window in aqueous solution. The
BDD electrode, however, continues to increase its luminescence as the lower voltage is de-
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creased to the –3 V limit set, thus suggesting much higher efficiency of H2O2 generation on
this electrode.

Figure 1. Lower applied voltage plotted against the corresponding oxidation ECL peak emission
during the oxidation of luminol in log10 scale. Three electrodes, Au (short dash line) GC (long dash
line), and BDD (continuous line), were tested, starting at 0 V before then sweeping to the lower
potential and finally sweeping to 1 V, at a scan rate of 0.1 V.s−1 in a 0.1 M PBS solution with 1 μM of
luminol (n = 3).

3.2. ECL Reaction in the Presence of L-Tryptophan

Simply oxidizing L-tryptophan on a BDD electrode in neutral conditions does not
result in any luminescence, suggesting that the conditions that will produce an excited
intermediate are not met. Thus, successive application of cathodic and then anodic po-
larization on BDD electrodes was examined in the presence of 500 nM tryptophan in
0.1 M PBS solution by cyclic voltammetry (Figure 2a). The appearance of an ECL signal
is observed upon anodic polarization at approx. 0.9 V vs. Ag|AgCl. This occurs only
after the reduction potential applied during CV reaches at least approximately −1.5 V
vs. Ag|AgCl. According to previous experiments with luminol, this corresponds to
the potential from which a large increase in the production of H2O2 occurs. This sig-
nal was found to gradually increase as a reduction potential was decreased further, down to
−3.3 V vs. Ag|AgCl (Figure S3). However, potentials below −3 V were found to have
significantly lower reproducibility between five replicate measurements. After this voltage,
it can be assumed that other reactions, like the evolution of hydrogen gas at the cathode,
disrupt the production of ROS that aid in enhancing the ECL signal. Similarly, the ECL
signal was found to gradually increase while increasing the upper oxidation potential up to
1.7 V vs. Ag|AgCl. Above 1.5 V, reproducibility was also affected, hence an optimum
value of 1.5 V vs. Ag|AgCl was considered. The effects of scan rate on the ECL signal
emitted from L-tryptophan were also examined while scanning from 0 V to −3 V and then
back to +1.5 V vs. Ag|AgCl in a solution of 100 nM L-tryptophan in 0.1 M PBS (Figure S4).
Here it was found that ECL emission increased almost linearly from 10 to 250 mV.s−1.
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After ca. 300 mV.s−1, a plateau seemed to be reached, where the ECL signal intensity
remains constant. Therefore, 250 mV.s−1 was found to be optimal. Taking into account
the CV optimum values as determined above, a calibration curve was drawn in the range
0–1 μM L-tryptophan in 0.1 M PBS (Figure 2b). ECL measurements over 5 replicates demon-
strated good reproducibility with the percentage relative standard deviation (%RSD) ranging
from typically 3–9%. Calibration graph showed excellent linearity across the whole range
(0–1000 nM) with a linear fit coefficient of determination of R2 = 0.99%. LOD (Blank + 3 × SD)
and LOQ (Blank + 10 × SD) of 0.4 and 1.4 nM were achieved in PBS solution, respectively.

Figure 2. (a) CV (dashed line) and ECL (solid line) emission from 500 nM L-tryptophan in 0.1 M PBS
solution. CV scan was 0 V → −3 V → 1.5 V → 0 V, at a scan rate 0.25 V.s−1. (b) Resulting calibration
curve for L-tryptophan obtained in the same experimental conditions (inset: ECL peak emission for
each concentration of tryptophan measured (0, 5, 10, 25, 50, 100, 250, 500, 1000 nM) in 0.1 M PBS
(pH 7.4) on BDD electrodes after successive reduction and oxidation).

In order to establish the reaction mechanism and strengthen the hypothesis that
the generation of hydrogen peroxide is responsible for the ECL of L-tryptophan, spec-
tral data can provide valuable information. L-tryptophan is known to fluoresce at ca.
350 nm [44] when excited by UV light. However, all ECL measurements have shown maxi-
mum emission at different wavelengths, meaning that it generally goes through a chemical
transformation before becoming ECL emitter. A spectrum with a peak at around 550 nm
has been observed in the cases where a bromating agent is used as a coreactant. This is
known to be associated with the chemiluminescence of the indole ring with the addition of
a hydroperoxide group [45]. Moreover, L-tryptophan ECL can also produce luminescence
at around 450 nm, which is said to be due to the formation of a dioxetane group [31]. In
our study, ECL emission maximum intensity from L-tryptophan was recorded using the
same electrochemical conditions as used for calibration in a spectrofluorimeter at different
wavelengths in the range 350–700 nm with a slit size of 25 nm. The graph presented in
Figure 3a is a reconstruction of the light emission recorded in these conditions according to
wavelength. A maximum emission at ca. 425 nm is observed, suggesting that it is through
the formation of the dioxetane intermediate that the ECL of L-tryptophan is generated.
Dioxetane is common to ECL reactions and is known to be enhanced through the presence
of ROS. Moreover, the same reaction was examined on the four different electrode materials
(Au, Pt, GC and BDD) in 500 μM L-tryptophan solution. A range of lower potentials
were tested (0, −0.5, −1, 1.5, −2, −2.5, −3 V) for each of the electrodes. It appeared that
only the BDD electrode was able to generate an ECL signal from tryptophan in these
conditions (Figure 3b). This unique ECL reaction to BDD suggests again that it is favored
by the production of H2O2 produced at the surface of the diamond electrode and made
available to ECL reaction through low adsorption at the electrode surface. Thus, a reaction
mechanism is proposed in Figure 4. It is based partially on the work already performed by
Sakura et al. and Chen et al., who examined the ECL reactions of tryptophan/H2O2/Br−
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and tryptophan/H2O2 systems, respectively [31,32]. During electro-oxidation, H2O2 is
generated through several steps of reduction and protonation through proton exchange
with water. The tryptophan molecule firstly goes through electro-oxidation at 0.9 V and
then is further oxidized through interaction with H2O2 to a hydroperoxide tryptophan inter-
mediate. From this, a dioxetane group is formed, which is then protonated and rearranged
to form the excited intermediate.

 

Figure 3. (a) ECL signal intensity versus wavelength from BDD electrode and (b) ECL emission
plotted against time for four electrodes (yellow: Au, red: Pt, black: GC and turquoise: BDD) recorded
with the PMT. In both cases a solution containing 0.1 M PBS (pH 7.4) and 500 nM tryptophan was
used; CV scan was 0 V → −3 V → 1.5 V → 0 V, at a scan rate 0.1 V.s−1.
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Figure 4. Proposed mechanism for the ECL of L-tryptophan at BDD electrode using successive
electro-reduction and electro-oxidation.

ECL presents the advantage of potentially being a very selective method, as only
certain types of molecules are able to undergo this reaction. By examining the list of known
ECL emitters, the most likely interfering species that occur naturally in human blood
would be other polyaromatic compounds featuring specifically an indole ring. Four indolic
compounds that have been reported to produce ECL emission under certain conditions
were measured: (i) tryptamine, an indole ring with a 2-aminoethyl group substitution
(ii) indole, the base indole ring, (iii) 3-methylindole, an indole ring with a methyl group
substitution and finally a (iv) serotonin with a 2-aminoethyl and alcohol group substitution.
10 μM of each of the compounds were examined on BDD electrodes using the same
conditions presented above. The ECL peak heights from each of the chemicals tested are
presented in Figure 5. None of the compounds except for tryptophan gave a significant
ECL signal over the blank.
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Figure 5. ECL maximum peak emission from 10 μM of five different indolic compounds (tryptophan,
tryptamine, indole, skatole (3-methylindole) and serotonin) on BDD electrodes after successive
reduction and oxidation. CV scan was 0 V → −3 V → 1.5 V → 0 V, at a scan rate 0.1 V.s−1.

4. Discussion

We have demonstrated that ECL emission from L-tryptophan can be achieved in aque-
ous solutions at the surface of BDD electrodes through successive reduction and oxidation
processes. This unique reaction does not take place when other electrode materials such as
gold or glassy carbon are used. Also, it appears to be highly specific to L-tryptophan in our
experimental conditions among the few indole derivatives tested. The chemiluminescence
of indole and some derivatives induced by electrogenerated superoxide ion on glassy
carbon electrode in aprotic solvent was investigated by Okajima and co-workers [46]. They
showed that superoxide ions produced at the electrode’s surface from dissolved oxygen
could act as proton acceptors to indole compounds carrying hydrogen at the N-position.
The so-formed hydroperoxy radical may proceed to the chemical oxidation of indole deriva-
tives having an electron releasing group at the 3-position, leading to the formation of a
1,2-dioxetane intermediate through radical-radical coupling. A similar reaction has been
observed in aqueous solution, e.g., on N-centered radicals derived from tryptophan at
pH 10, when the latter radicals are produced by pulse radiolysis [47]. In this case, hy-
droperoxy radicals are produced from dissolved oxygen and water. However, the reaction
described by Okajima and co-workers has been observed to be completely inhibited in
acetonitrile upon the addition of water, quenching for instance the chemiluminescence of
3-methylindole [48]. This is thus explained here by the absence of indole radical formation
in the presence of water (proton donor). Those observations suggest that the hydroperoxy
radical could play a role in the chemiluminescence of tryptophan in water in some adequate
pH conditions, given that an indole radical can be formed. This is supported by the fact
that, according to Mahé and coworkers, hydroperoxy radicals are indeed mostly adsorbed
on GC and Au surfaces and only made available in solution from BDD electrodes. Never-
theless, we have shown that at the high overpotentials used, hydrogen peroxide is the main
species produced on BDD upon cathodic polarization. Therefore, we assume that H2O2
is the main contributor to tryptophan chemiluminescence in our study. When reversing
polarization, an indole-derivative radical is formed on tryptophan and all interferences
under test through electrochemical oxidation on the N-position [49]. Except for serotonin,
all indole derivatives under testing have a similar structure but for the functional group
in the 3-position. Hence, selectivity toward tryptophan can only be due to the nature of
this group. At pH = 7.4, tryptophan is a zwitterion in which the amino group is protonated
and the carboxylic acid is deprotonated. Thus we assume that, by contrast with the other
interference species, the carboxylic group act as a proton acceptor, allowing interaction of
hydrogen peroxide with the indole radical at the 3-position, leading to the dioxetane-like
intermediate and subsequent excited state. We have investigated this reaction at physiolog-
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ical pH, which correspond to the pH of interest in many biological assays. However, the
reaction is expected to be highly pH-dependent. A thorough investigation of ECL emission
according to pH would certainly help with our understanding of the reaction mechanisms
involved in the detection of tryptophan in water at BDD electrodes.

5. Conclusions

We have reported on a new electrochemiluminescence (ECL) method for L-tryptophan
detection involving the in situ production of hydrogen peroxide at the surface of boron-
doped diamond (BDD) electrodes. In analytical terms, this means that the reaction can be
achieved without the need for an additional coreactant in solution. An ECL mechanism
has been proposed based on spectroscopic data that involves the generation of a dioxetane
group and subsequent excited state. A low limit of detection in the order of 0.4 nM has
been observed, which to our knowledge is the lowest reported to date. Moreover, the
detection has been shown to be rather selective against other indolic compound that may
be found in particular in biological samples. Altogether, this makes this approach attractive
for L-tryptophan detection in biological fluids or food products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24113627/s1, Figure S1: Typical scanning electron microscope
(SEM) images of the surface of the BDD electrodes (worker or counter electrodes); Figure S2: Typical
response of BDD electrode to a 0.1 M PBS solution containing 1 μM luminol. CV scan was 0 V →
−2.5 V → 0 V → 0 V, at a scan rate 0.1 V/s. Figure S3: Influence of the lower cathodic potential on
the ECL emission of 500 nM L-tryptophan in 0.1 M PBS. Scan 0 V → x V → 1.5 V → 0 V at a scan
rate of 0.1 V.s−1. Figure S4: Influence of scan rate on the ECL emission of 500 nM L-tryptophan in
0.1 M PBS. Scan 0 V → −3 V → 1.5 V → 0 V. Figure S5: ECL peak emission for each concentration of
tryptophan measured (0, 5, 10, 25, 50, 100, 250, 500, 1000 nM) in 0.1 M PBS (pH 7.4) on BDD electrodes
after successive reduction and oxidation.
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Abstract: Hydrogels are of great importance for functionalizing sensors and microfluidics, and
poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel
precursor inks. In this study, 1–10 kDa PEG-DMA based hydrogels were characterized by gravimetric
and electrochemical methods to investigate the diffusivity of small molecules and proteins. Swelling
ratios (SRs) of 14.43–9.24, as well as mesh sizes ξ of 3.58–6.91 nm were calculated, and it was found
that the SR correlates with the molar concentration of PEG-DMA in the ink (MCI) (SR = 0.1127 ×
MCI + 8.3256, R2 = 0.9692) and ξ correlates with the molecular weight (Mw) (ξ = 0.3382 × Mw + 3.638,
R2 = 0.9451). To investigate the sensing properties, methylene blue (MB) and MB-conjugated proteins
were measured on electrochemical sensors with and without hydrogel coating. It was found that on
sensors with 10 kDa PEG-DMA hydrogel modification, the DPV peak currents were reduced to 8% for
MB, 73% for MB-BSA, and 23% for MB-IgG. To investigate the diffusion properties of MB(-conjugates)
in hydrogels with 1–10 kDa PEG-DMA, diffusivity was calculated from the current equation. It
was found that diffusivity increases with increasing ξ. Finally, the release of MB-BSA was detected
after drying the MB-BSA-containing hydrogel, which is a promising result for the development of
hydrogel-based reagent reservoirs for biosensing.

Keywords: hydrogels; electrochemical sensors; diffusivity study; methylene blue; MB-conjugated
proteins

1. Introduction

Biosensors enable the rapid and sensitive monitoring of analytes in human body
fluids and are thus highly promising in realizing rapid tests and point-of-care devices [1].
Electrochemical sensors are reliable transducers, can be produced cost-effectively using
roll-to-roll screen printing, and are suitable for a wide range of analytes in various medical
and environmental applications [2–5]. The assays used for detection usually differ only
marginally from the assays used in gold standard methods such as microarrays, lateral
flow tests, or enzyme-linked immunosorbent assays [6–11]. This is because of the high
selectivity and specificity of the established and well-researched assays, which, however,
may require sample preparation steps (e.g., target analyte extraction, sample dilution) and
target analyte preparation steps (e.g., the addition of chemicals, proteins, enzymes, or
antibodies). In this respect, well-designed microfluidic systems, such as those produced by
injection molding, micromilling, PDMS punching, or roll-to-roll compatible lithographic
processes [12,13], support the automation of sample handling. To make microfluidics
operational for various applications in molecular diagnostics, the integration of reagents is
a fundamental challenge. Various concepts have been pursued for this purpose, such as
blister bags, freeze-dried pellets, functionalized beads, sponges, paper strips, biopolymers,
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and hydrogels [14–18]. For the large-scale production of microfluidics, automated pick-
and-place tools, lamination systems, and spotting and printing technologies have been
developed for the assembly process [14].

Among these techniques, spotting methods are particularly suitable because they
are also used for the functionalization of biosensor systems [19–22] and are compatible
with roll-to-roll manufacturing processes [13]. Moreover, they can be used for spotting
liquid reagents in a microfluidic chamber. In order to increase the shelf life of the reagents,
they are commonly embedded in biopolymers or hydrogel networks [23–26]. In contrast
to polymers, hydrogel networks are insoluble and specifically release only the desired
substance. This is a decisive advantage, as it prevents a change in viscosity and thus the
flow and reaction properties. In addition to their role as reservoirs, hydrogels also play the
role of protective and filter layers in biosensing [27–30], e.g., to prevent nonspecific blood
cell binding on the sensor surface [22,30].

In this study, poly(ethylene glycol) di-methacrylate (PEG-DMA)-based hydrogels
are investigated in combination with electrochemical sensors. The main focus lies in the
diffusion properties of biomolecules through hydrogel films attached to the sensor ele-
ment in order to use the hydrogels as reagent reservoirs and/or molecular filters. Despite
various other methods described in the literature [31–34], we investigate the diffusion of
biomolecules using electrochemical (EC) screen-printed sensors. To better understand
the diffusion properties, PEG-DMA-based inkjet printable hydrogel inks with 5.4% (w/w)
1–10 kDa PEG-DMA are formulated using di(ethylene glycol) vinyl ether (DEGVE) as a
monomer and lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) as a photoinitia-
tor [22].

Figure 1 depicts the workflow of this study. It starts with the modification of the
EC screen-printed sensor with hydrogel (Figure 1A). The characterization of the hydro-
gels via a gravimetric method enables the calculation of the swelling ratio, the polymer
content, the water content, the average molecular weight of polymer chains between two
crosslinks (Mc), and the mesh size (ξ) [33,35]. For the EC measurement, the hydrogel is
then overlayed with a methylene blue (MB) or MB-conjugate protein solution (Figure 1B).
As proteins, bovine serum albumin (BSA) and mouse IgG are chosen because they are
good representatives for bioanalytical assays [14,18]. The measurement is immediately
started after applying the MB-(conjugate), and the diffusion is monitored using differential
pulse voltammetry (DPV) (Figure 1C). In order to understand the diffusion properties, the
following experiments are carried out: (i) measurement of MB(-conjugates) on sensors
without hydrogel, (ii) measurement of MB(-conjugates) on sensors coated with a 10 kDa
PEDG-DMA hydrogel, (iii) measurement of MB(-conjugates) on sensors coated with differ-
ent molecular weight (MW) PEG-DMA hydrogels, and (iv) measurement of MB-BSA on
sensors coated with wet and dry hydrogels.

 

Figure 1. (A) Sensors covered with a hydrogel are overlayed with (B) MB(-conjugate) solution for
(C) electrochemical diffusion monitoring with DPV.
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2. Materials and Methods

2.1. Materials

Mouse IgG, bovine serum albumin (BSA), hexaamine ruthenium (III) chloride
[Ru(NH3)6]Cl3, Poly(ethylene glycol) dimethacrylate (PEG-DMA) 10 kDa, 2 kDa, and
1 kDa, di(ethylene glycol) vinyl ether (DEGVE), lithium phenyl (2,4,6-trimethylbenzoyl)
phosphinate (LAP), and Dimethyl sulfoxide (DMSO), as well as the chemicals for the physi-
ological phosphate-buffered saline buffer referred to as PBS buffer (10 mmol/L Phosphate,
137 mmol/L NaCl, 2.7 mmol/L KCl; pH 7.3), were purchased from Sigma Aldrich Europe
(St. Gallen, Switzerland).

PEG-DMA 5 kDa was purchased from Biopharma PEG Scientific Inc., Watertown, NY,
USA. PEG-DMA 3.4 kDa from Alfa Aesar (Haverhill, MA, USA) and the dialysis membrane
3.5 kDa Side-A-Lyser from Thermo Fisher Scientific were purchased from VWR Austria
(Vienna, Austria). The methylene-blue N-hydroxy succinimide ester (MB-NHS) for labeling
the biomolecules was purchased from Biotium, Fremont, MA, USA.

2.2. Electrochemical Sensors and Measurement Setup

Screen-printed electrochemical (EC) sensor arrays with graphite working electrodes
(WE) were produced by RISE Research Institutes of Sweden (Digital Systems, Smart Hard-
ware, Bio- and Organic Electronics, Norrköping, Sweden) according to the AIT design
elaborated in the GREENSENSE Project (European Union’s Horizon 2020 research and
innovation program under Grant Agreement No. 761000). The screen-printed sensor array
consists of six graphite working electrodes (WEs) surrounding a central counter electrode
(CE) and a common silver/silver chloride reference electrode (RE) on a PET substrate
(Figure 2A). This configuration enabled the measurement of six values simultaneously
(WEs = 6). The working electrode area was determined by using a microscope on ten
sensors at different positions on the screen-printed sheet (see Section 3.1). For the electro-
chemical characterization, a 1000 μM hexaamine ruthenium(III) chloride [Ru(NH3)6]Cl3
solution in 50 mmol/L NaCl or MB- and MB-conjugates (see Section 2.6) were used. As the
electrochemical measurement method, DPV was chosen with the following parameters:
equilibration time tequ = 8 s, initial potential Ei = −0.6 V, final potential Ef = −0.1 V, step
potential Es = 0.005 V, interlevel potential Ep = 0.05 V, step time tp = 0.005 s, and scan
rate SR = 0.5 V/s. A PalmSens MUX8 R2 potentiostat (Figure S1) was used for the DPV
measurements. The monitoring measurements of MB(-conjugates) were carried out for up
to 160 min (one DPV per minute, or per five minutes), and the DPV peak currents Ipeak
were recorded. From the Ipeak, the diffusivity (also called diffusion coefficient) D of the
electrochemical species can be calculated according to Equation (1) [35].

Ipeak =
nFAD

1
2 C

π
1
2 t

1
2
p

(
1 − σ

1 + σ

)
, with σ = e

2FEp
2RT (1)

In Equation (1), n is the number of electrons (2 for methylene blue, and 2 multiplied by
the degree of labeling for BSA or IgG, which are 5.4 and 3.8, respectively (see Section 2.6)), F
is the Faraday constant (96,485 C × mol−1), A is the working electrode area (see Section 3.1),
C is the concentration of the analyte, R is the gas constant, and T the temperature in Kelvin
(293.15 K = 20 ◦C).

2.3. Hydrogel Preparation

The hydrogel inks were fabricated by mixing 30 μL of 166 mg/mL PEG-DMA
(1–10 kDa) in water with 60 μL di(ethylene glycol) vinyl ether (DEGVE) and 2 μL of a
lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) solution (10 mg LPA per 100 μL
in a 1:1 mixture of ethanol and ultrapure water). The PEG-DMA weight percent was kept
constant at 5.4 % (w/w) in each ink by decreasing the molar concentration (μmol/L) with
respect to the increase in molecular weight of PEG-DMA (see Section 3.2). This strategy
was chosen to fulfill the following requirements: (a) the inks should have a viscosity of
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<3.0 cP (to be applicable later in a printing process) and (b) the hydrogels should have good
solidity after crosslinking. Preliminary tests showed that the inks prepared with 5.4% (w/w)
of 1, 2, 3.4, and 10 kDa PEG-DMA composition fulfilled these criteria. No hydrogel with
good solidity could be prepared with 5.4% (w/w) of 5 kDa PEG-DMA. As a consequence,
only the 1, 2, 3.4, and 10 kDa hydrogel could be investigated in this study.

For the hydrogel preparation on the EC-sensor, 80 μL of the inks were applied and
UV-crosslinked at a wavelength of 365 nm (1 J/cm2) using the UVP crosslinker CL-3000
(Analytik Jena US, Jena, Germany). The crosslinking step forms acrylate radicals that
are highly reactive and can bind to untreated organic surfaces. This process is so strong
that even screen-printed graphite-based sensor surfaces can be modified with hydrogels
without any pre-treatment. This process led to an approximately 2 mm thick wet hydrogel
layer on the sensor surface, which was washed two times with PBS buffer (1 × 10 min,
1 × 15 min) (Figure 1A). The hydrogel layers were tested in wet (Figure 1A) and dry states.

2.4. Gravimetric Hydrogel Characterization

The gravimetric analysis of hydrogels allows for calculating parameters that character-
ize the mesh structure of the hydrogel [36]. Therefore, hydrogel structures were fabricated,
as described in Section 2.3, and gravimetric analyses were performed using a sensitive
scale. For each PEG-DMA ink variation, a set of three sensors was prepared with hydrogel
coatings, and the weights and volumes were determined. The variables used for this
analysis are also listed in Table S1.

For a better understanding of water uptake and, therefore, of the hydrophilic properties
of the hydrogel, the swelling ratio (SR) and water content of the hydrogel was calculated.
The weight of the screen-printed sensor (Wsens), the weight of the washed hydrogel on
the sensor (Wwash), and the weight of the dried hydrogel on the sensor after drying for
24 h at room temperature (Wdry) were determined. The weight of the swollen hydrogel
(Wsh) was calculated by Wsh = Wwash − Wsens and the weight of the polymer (Wp) by
Wp = Wdry − Wsens. The SR was finally calculated according to the equation SR = Wsh/Wp.
The weight of the water in the hydrogel (Ww) was determined according to the equation
Ww = Wwash − Wdry.

Another interesting parameter is the number-average molecular weight of the polymer
chains between crosslinks (Mc). Using this parameter in combination with other variables,
the mesh size ξ of the hydrogel can be calculated. As Mc and ξ allow for different hydrogels
to be compared with each other, they are the primary objective of this calculation. The Mc
can be calculated using Equation (2) [37].

1
Mc

=
2

Mn
−

ṽ/V1

[
ln(1 − v2,s) + v2,s + χv2

2,s

]
v2,r

[(
v2,s
v2,r

) 1
3 − v2,s

v2,r

] (2)

In Equation (2), Mn is the number-average molecular weight of PEG-DMA, ṽ is
the specific volume of the polymer (ṽ = 1/ρp with ρp being the density of the polymer of
1.1 kg × L−1), V1 is the molar volume of the solvent (18 × 10−3 L × mol−1 for water), χ is the
Flory–Huggin’s polymer–solvent interaction parameter (0.495 for PEG-water system) [37],
v2,s is the volume fraction of the swollen gel, and vs,r is the volume fraction of the relaxed
gel (gel after crosslinking). The parameter v2,s is given by v2,s = Vp/Vs, where Vp is the
volume of the polymer and Vs the volume of the gel. The parameter v2,r is given by v2,s
= Vp/Vr, where Vr is the relaxed volume of the gel. From Mc, the mesh size ξ can be
calculated using Equation (3) [38]

ξ = v−1/3
2,s ∗ C
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n
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Mr

) 1
2

∗ l (3)
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In Equation (3), Cn is the rigidity factor of the polymer (4 for PEG) [39], Mr is the
molecular weight of repeating units (44 × 10−3 kg/mol for PEG), and l is the carbon–carbon
bond length (0.154 nm).

2.5. Hydrogel Characterization with Scanning Electron Microscopy

For SEM imaging analyses, 10 kDa PEG-DMA hydrogels were processed on a screen-
printed Ag layer to provide an electrical contact to the sample. Next, lyophilization was
performed in a Christ Alpha 2–4 LCSplus freeze dryer. The freeze dryer was set, and
the pre-cooling was switched on. The settings are listed in Table 1. During the warm-up
of the system, two of the sensors were shock-frozen in liquid nitrogen. Subsequently,
they were transferred into the freeze drier, and the main drying process was performed
overnight. After lyophilization, the sensors were stored under vacuum until further use.
The sputtering of a gold/palladium mixture was deliberately omitted, as otherwise, the
fine structure of the hydrogel would no longer have been visible (Figure S2).

Table 1. Settings for the lyophilization.

Freeze Warm-Up Main Drying Post-Drying

Time (min) 90 30 Setting: ∞ 20

Temperature (◦C) −40 −50 −50 25

Vacuum (mbar) 0.015 0.015

Pressure (mbar) off off

A ZEISS Gemini SEM was used to image the hydrogel layers after drying in vacuum (in
the desiccator) and after lyophilization. SEM imaging was performed with a SE2 secondary
electron detector at an electron high tension (EHT) voltage of 5 kV.

2.6. Conjugation of Biomolecules with Methylene Blue

To obtain MB-BSA (or MB-IgG) conjugates, 300 μL of a 5 mg/mL BSA or IgG solution
in physiological PBS and 121 μL for BSA (53 μL for IgG) of a 5 mg/mL solution of MB-NHS
in DMSO were mixed and incubated for 1.5 h at room temperature. The MB-NHS/protein
solutions were then dialyzed in a 3.5 kDa Side-A-Lyser against physiological PBS buffer at
4 ◦C for 12 h. Then, the liquids were transferred to a 1 mL volumetric flask and filled up to
1 mL using physiological PBS buffer. By using UV-VIS absorption measurements, a degree
of labeling (DOL) of 5.4 could be detected for MB-BSA and 3.8 for MB-IgG.

3. Results

3.1. Sensor Characterization

The area of the working electrode was determined on ten sensors by a microscope
image analysis, which comprised sixty working electrodes. The measured areas showed
good homogeneity of 2.13 ± 0.05 mm2. Functionality and reproducibility were tested with
a 1000 μmol/L hexaamine ruthenium(III) chloride [Ru(NH3)6]Cl3 solution in 50 mmol/L
NaCl by performing DPV (Figure 2C) on nine sensors (six working electrodes each) taken
from different positions on the screen-printed sheet (Figure 2B). The average peak current
amounted to 16.44 ± 0.61 μA.
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Figure 2. (A) Graphite sensor, (B) screen-printed sheet, and (C) peak currents measured on nine
sensors of the screen-printed sheet.

3.2. Gravimetric Hydrogel Characterization

Hydrogels with different PEG-DMA molecular weights were prepared as described in
Section 2.3. Gravimetric analyses were performed according to Section 2.4. The swelling
ratio, the number-average molecular weight of the polymer chain between the crosslinks,
Mc (g/mol), and the mesh size ξ (nm) were calculated for each PEG-DMA hydrogel. Table 2
summarizes the results. (A more detailed list is given in Table S2).

Table 2. Values of the swelling ratio, the number-average molecular weight of the polymer chain
between the crosslinks Mc (g/mol), and mesh size ξ (nm).

Molecular Weight of
PEG-DMA, Mw (kDa)

Molar Concentration
in the Ink, MCI

(μmol/L)

Swelling Ratio,
SR = Wsh/Wp

Number-Average Molecular
Weight of Polymer Chain
between CrossLinks, Mc

(g/mol)

Mesh Size, ξ
(nm)

1 54.1 14.43 407.37 3.58
2 27.1 11.66 630.38 4.46

3.4 15.9 9.53 900.61 5.15
10 5.4 9.24 1238.22 6.91

It was found that the higher the molecular weight of PEG-DMA, the lower the degree
of swelling (SR). This may seem surprising at first glance. However, as shown in Table 2,
the molar concentration in the ink (MCI) decreases with the increasing molecular weight
of PEG-DMA. Therefore, there are more dimethacrylate crosslink points available in the
1 kDa PEG-DMA ink than in the 10 kDa PEG-DMA ink, which affects the swelling ratio.
Linear fitting revealed that the two quantities correlate via the linear equation SR = 0.1127
× MCI + 8.3256 with an R2 = 0.9692 (Figure S3A), which proves the plausibility of the
assumption. The swelling ratio does not correlate linearly with the molecular weight of
PEG-DMA (Mw) (Figure S3B). However, a clear linear correlation between the mesh size
and the molecular weight of PEG-DMA was found with ξ = 0.3382 × Mw + 3.638, with an
R2 = 0.9451 (Figure S3D).

3.3. Hydrogel Characterization with Scanning Electron Microscopy

To better understand the 3D structure of the PEG-DMA hydrogel, SEM images of the
10 kDa PEG-DMA hydrogel were taken after lyophilization and after drying in the vacuum
chamber, which reflects the wet and dry structure of the hydrogel. At magnifications
<600, the lyophilized hydrogel shows an extended network structure that appears to be
interrupted by polymer walls, in contrast to the vacuum-dried hydrogel. At magnifications
of around 3000, only the vacuum-dried hydrogel shows a clear pore structure with a pore
diameter of about 1 μm. With a magnification of 10,000, a nano-pore structure becomes
visible on the polymer wall of the lyophilized hydrogel, although this is very difficult to
resolve with the SEM (see Figure 3).
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Figure 3. SEM images of vacuum-dried and lyophilized hydrogel structures.

3.4. MB-Conjugate Measurement without Hydrogel

The MB-conjugation leads to a redox-labeling of the biomolecules. In the first ex-
periment, different concentrations of MB(-conjugates) in physiological PBS buffer were
measured on sensors without a hydrogel layer. It was found that when the DPV Ipeak
values (at 0 min) for MB-BSA and MB-IgG conjugates are normalized by dividing them by
the degree of labeling (DOL), comparable results are obtained for both conjugates. This
indicates that conjugated MB molecules equally contribute to the current output (Figure 4).

 

Figure 4. (A) Concentration-dependent measurement of MB-BSA and MB-IgG on unmodified sensors.
(B) Normalization of the DPV peak current Ipeak with the DOL of 5.8 for MB-BSA and 3.8 for MB-IgG.

3.5. Response of MB-Conjugates of Sensors with and without Hydrogel

The unmodified sensors and the sensors modified with a 10 kDa PEDG-DMA hydrogel
were measured with MB(-conjugates) for 60 min to allow the signals to equilibrate (see
Figure S4). A DPV measurement was performed every minute for the first five minutes of
the test and every five minutes thereafter. The DPV Ipeak current values after 60 min were
plotted versus the concentration of MB. Figure 5A shows the concentration-dependent
measurement results of methylene blue (MB) on EC sensors with and without a hydrogel
coating. The DPV Ipeak values were found to have decreased to 8% for MB (Figure 5A), to
73% for MB-BSA (Figure 5B) and to 23% for MB-IgG (Figure 5B) compared to the results of
the unmodified sensor. Furthermore, the DOL normalization of the DPV Ipeak currents (see
Section 3.4) obtained from the sensors with the hydrogel coating did not lead to comparable
results for MB-BSA and MB-IgG. This indicates different transport properties of BSA and
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IgG in the hydrogel. However, the results demonstrate a good migration property of
MB(-conjugates) through the ~2 mm thick wet hydrogel.

Figure 5. (A) Detection of MB with and without a hydrogel coating. (B) Detection of MB-BSA
(19.9 μmol/L) and MB-IgG (10 μmol/L) with and without a hydrogel coating.

3.6. Hydrgel Characteriazion with Different PEG-DMA Molecular Weights

Hydrogels with different MW PEG-DMAs (1, 2, 3.4, and 10 kDa) were compared
regarding the diffusion properties for the MB(-conjugates). For this purpose, 50 μmol/L
MB, 22.7 μmol/L MB-BSA, and 10 μmol/L MB-IgG were measured on the sensors modified
with the different hydrogel layers.

The hydrogel layers were used directly after washing with PBS, without an intermedi-
ate drying step. The measurements were started after the application of the MB(-conjugate)
solutions and performed for 60 min.

The diffusivity of the MB(-conjugates) was calculated using Equation (1), and the peak
currents after 60 min on the sensor with or without hydrogel were used.

Table 3 shows the results of the calculated diffusivity. Measurements without hydrogel
result in electrochemical diffusivity values for MB, MB-BSA, and MB-IgG with a deviation
from the values reported in the literature of 6.74 × 10−10 [40], 5.9 × 10−11 [32,33,41], and
4.0 × 10−11 m2 × s−1 [33,41], respectively. This deviation might be explained by the
fact that the literature values were calculated values using the hydrodynamic radius of
the molecules and did not consider the migration properties under the given conditions
(temperature, buffer solution composition) or alternated migration properties of the loaded
MB(-conjugates) in electrochemical fields. Furthermore, the diffusivity of the MB-conjugates
is significantly reduced in the case of hydrogel modification on the sensor (see Table 3).
For a better comparison of the current values, the peak currents were normalized with
respect to the MB concentration in μM (for MB, Inorm= Ipeak/(MB concentration in μM), for
MB-BSA and MB-IgG, Inorm= Ipeak/(DOL × protein concentration in μM)) (Figure S5). To
compare the maximum current and the equilibrium times, a Langmuir fit was performed
using the equation Inorm(t) = Inorm_max × t/(kt + t), where current Ipeak_max is the maximum
equilibration current, t is the measurement time of each data point, and kt is the equilibrium
rate constant (Figure S5, Table S3). The highest Inorm_max was found for MB, followed by MB-
BSA and MG-IgG (see Table 3). Figure 6A shows a plot of Inorm_max versus diffusivity and
Figure 6B shows diffusivity versus mesh size ξ, where a clear correlation can be observed.

285



Sensors 2024, 24, 3678

Table 3. Results of the comparison of different PEG-DMA hydrogels for the sensing of
MB(-conjugates).

PEG-DMA
(kDa)

Methylene Blue MB-BSA MB-IgG

Diffusivity
(m2 × s−1)

Inorm_max ± sd,
(nA/(μM MB)

Diffusivity
(m2 × s−1)

Inorm_max ± sd,
(nA/(μM MB)

Diffusivity
(m2 × s−1)

Inorm_max ± sd,
(nA/(μM MB)

no
hydrogel

1.6 × 10−8 4.8 × 10−12 1.5 × 10−11

1 3.3 × 10−11 17.8 ± 0.2 7.4 × 10−13 5.0 ± 0.2 3.7 × 10−12 2.6 ± 0.1
2 2.2 × 10−11 15.1 ± 0.6 2.0 × 10−12 6.5 ± 0.4 4.8 × 10−13 2.6 ± 0.1

3.4 6.1 × 10−11 26.4 ± 1.1 1.8 × 10−12 7.2 ± 0.9 6.4 × 10−13 5.1 ± 0.7
10 8.3 × 10−11 29.7 ± 1.2 2.5 × 10−12 9.0 ± 0.8 7.5 × 10−12 3.7 ± 0.1

 ξ

I

ξ

ξ

ξ

Figure 6. Plots of (A) Inorm_max versus diffusivity and (B) diffusivity versus mesh size ξ.

3.7. MB-BSA Diffusion into and out of the Wet Hydrogel and of the Dry Hydrogel

For the fabrication of hydrogel reservoirs, the hydrogel structure must be filled with
a reagent. After the drying procedure, this reagent should be able to migrate out of the
hydrogel into the supernatant solution. To test this ability, 10 kDa PEG-DMA hydrogels
were fabricated on EC sensors, and the MB-BSA diffusion into and out of a wet hydrogel
and a dry hydrogel was investigated.

Figure 7A shows the EC measurement in the wet hydrogel, where, in the first 60 min,
MB-BSA migrated from the top solution (22.7 μmol/L MB-BSA, 200 μL) into the hydrogel
until it was evenly distributed in the gel (noticeable by the fact that all six WE showed a
stable current) and Ipeak reached the value of 282.96 ± 16.80 nA. Subsequently, the MB-BSA
solution was replaced with PBS buffer (200 μL). From this point onwards, the current
decreased again as MB-BSA migrated out of the hydrogel, and thus, the redox-active MB
moved away from the sensor surface. At minute 90, a new equilibrium was reached with
an average Ipeak of 165.45 ± 11.25 nA, and the top solution was exchanged again with fresh
PBS buffer (200 μL). After 130 min, an equilibrium with 93.12 ± 14.46 nA was reached.
After changing the buffer again, the current only dropped to 63.93 ± 22.35 nA at minute
158. A further buffer change did not lead to a further significant drop in current (at 175 min,
65.55 ± 20.34 nA). If this current value is calculated as a percentage of the current after
diffusion of MB-BSA in the wet hydrogel, it can be said that around 22 % of the MB-BSA
remains in the hydrogel and cannot be washed out any further. Subsequently, the PBS
buffer was replaced with an MB-BSA solution, and again, the migration of MB-BSA into
the hydrogel could be monitored until minute 241 (Ipeak 361.24 ± 36.48 nA), which proves
the reversibility of the diffusion process.

For the fabrication of hydrogel reservoirs, the prior drying of the hydrogel is important
to avoid a dilution of the reagent with the water in the gel. Because of this fact, the hydrogel
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was dried in vacuum and subsequently, the migration of MB-BSA into the dry hydrogel
layer was monitored by EC measurements. Figure 7B depicts the measurement. After the
application of the MB-BSA solution (22.7 μmol/L, 200 μL), the signal increased and the
hydrogel swelled. After 60 min, the current was 2.32 ± 0.60 μA (n = 6), with a quite high
standard deviation, and thus, in a similar μA range as the current without the hydrogel
(1.30 ± 0.08 μA for 19.9 μmol/L, see Figure 4A). After the saturation of the hydrogel
with MB-BSA, the top solution was removed, and the hydrogel was dried. Drying leads
to the inclusion of the reagents in the dry hydrogel polymer structure. The inclusion of
proteins in the dense polymeric network of the dry hydrogel can also stabilize their 3D
structure [42–44] After the drying step, the hydrogel network was overlayed with PBS
buffer (200 μL). Figure 7C shows the plot of the current. At minute 30, an equilibrium was
reached with an average Ipeak of 1.07 ± 0.26 μA, and the top solution was again exchanged
with fresh PBS buffer (200 μL). The reduction in the Ipeak current can be explained by the
dilution effect of MB-BSA. The hydrogel can only take up 128.5 μL of the MB-BSA solution
(Table S2, 10 kDa Ww), but it becomes diluted with 200 μL PBS buffer in the hydrogel. Then,
60 min after the PBS buffer application, an equilibrium with 0.82 ± 0.23 μA was reached.
After changing the buffer again, the current only dropped to 0.40 ± 0.35 μA by minute 90.
Another buffer change further reduced the current to 0.28 ± 0.26 μA, which corresponds to
12% of the MB-BSA current after filling and 26% of the current after the first addition of PBS
buffer. The latter indicates a reduced mobility of MB-BSA in the dried hydrogel network.

Figure 7. Diffusion study of MB-BSA in the wet (A), in the dry hydrogels (B), and out of the dry
hydrogel (C).

4. Discussion

The diffusion properties of biomolecules are an important parameter and must be
considered in the production of hydrogels for biosensor applications. In our study, we
approached this topic by preparing and characterizing different printable PEG-DMA-based
hydrogels. Gravimetric and electrochemical characterization methods were used and finally
brought into relation. The gravimetric method showed that the swelling ratio (SR) can be
adjusted primarily via the molar concentration of the PEG-DMA compound in the hydrogel
ink. This is crucial and must be considered if either excessive swelling should be prevented
in a microfluidic channel or excessive swelling of the hydrogels is desired, e.g., if hydrogels
are used as valves in a microfluidic channel.

The calculated number-average molecular weight of the polymer chain between the
crosslinks (Mc) and mesh sizes ξ are in good agreement with values from the literature [39],
where a PEG-DMA mixture was used for the preparation of hydrogels.

Therefore, the addition of DEGVE to hydrogel inks only has the purpose of ensuring
good printability and minimally influences the formation of the network structure.

The number-average molecular weight of the polymer chain Mc and the mesh size ξ

provide information about the strength of the hydrogel and enable the estimation of the
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diffusion properties of the hydrogel, as demonstrated further below. Several experiments
were systematically conducted to investigate the diffusion properties. First, MB(-conjugates)
were measured on sensors without the hydrogel. It was found that the degree of labeling
(DOL) influences the level of the measured current, and the normalization of the currents
enables the direct comparison of MB-conjugates with different DOLs.

First, this result is decisive because it demonstrates the accuracy of the method of label-
ing the biomolecules. Moreover, this result also shows that the methylene blue molecules
bound to the biomolecules contribute equally to the resulting DPV peak current. This is
particularly important for the calculation of the diffusivity from the electrochemical DPV
equation (Equation (1)) for the number of electrons per mole of MB(-conjugate) (n), as we
will discuss further below.

Second, the sensors coated with a 10 kDa PEG-DMA-based hydrogel showed that
hydrogel coatings on sensors lead to a reduction in DPV peak currents to 8% for MB, 73%
for MB-BSA, and 23% for MB-IgG with respect to the measurements without the hydrogel.
This is probably because fewer molecules reach the electrode surface in the presence of a
hydrogel coating, leading to limited diffusion. As the sensing kinetics depends significantly
on the thickness of the hydrogel layer, the thickness of the hydrogel layer must also be
considered when producing filter layers over sensors to avoid a limitation in the sensitivity
of the sensor.

Third, sensors coated with PEG-DMA hydrogels of different molecular weights (Mw)
show that a higher Mw leads to higher equilibrium currents and faster diffusion. As
the mesh sizes do not change following the diffusion of MB-BSA and MB-IgG into the
hydrogel network, the calculated values from the independent gravimetric method can be
correlated with the diffusivity of these molecules, again demonstrating the plausibility of
the chosen methods. It was found that the diffusivity increases for MB-BSA, MB-IG, and MB
with increasing mesh sizes. This can be explained by increased molecule mobility due to a
reduced interaction between the molecules and the polymer chains of the hydrogel network.

Fourth, wet and dry hydrogels were used to study the diffusion of MB-BSA. It was
found that up to 88 % of the MB-BSA introduced into dried hydrogels could be released
from the hydrogel. Therefore, the hydrogel inks investigated in this study have a good
potential to be used as a reagent reservoir.

In future studies, the use and long-term stability of hydrogels as reagent reservoirs
on sensors and in microfluidics will be investigated. Spotting and dispensing methods,
as already demonstrated for the measurement of lactate on microneedles [22], will be
investigated for printing in microfluidics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24113678/s1, Figure S1: Measurement setup: (1) PalmSens
multiplexer MUX8-R2 (PSTrace software 5.7), (2) connector, (3) sensor, and (4) computer; Table
S1: Variables of the gravimetric analysis; Table S2: Determined values from gravimetric hydrogel
characterization; Figure S2: SEM images of vacuum-dried and lyophilized hydrogel structures; Figure
S3: Correlation between (A) the swelling ratio and the molar concentration in the ink, (B) the swelling
ratio and the molecular weight of PEG-DMA (kDa), (C) mesh size and the molar concentration in the
ink, and (D) mesh size and the molecular weight of PEG-DMA (kDa); Figure S4: DPV measurement of
electrochemical sensors of MB-BSA and MB-IgG (A) without and (B) with the hydrogel (10 kDa PEG-
DMA as crosslinker) over 60 min. During the first five minutes, a DPV measurement was performed
every minute and afterward, every five minutes; Figure S5: Normalized DPV peak currents (nA/μM
MB) of MB, MB-BSA, and MB-IgG measurements on 1, 2, 3.4, and 10 kDa PEG-DMA hydrogel-
modified sensors over 60 min. Curves were fitted with a Langmuir fitting function; Table S3: Values
of the equilibrium rate constant kt.
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Abstract: Salivary pH is one of the crucial biomarkers used for non-invasive diagnosis of intraoral
diseases, as well as general health conditions. However, standard pH sensors are usually too bulky,
expensive, and impractical for routine use outside laboratory settings. Herein, a miniature hydrogel
sensor, which enables quick and simple colorimetric detection of pH level, is shown. The sensor
structure was manufactured from non-toxic hydrogel ink and patterned in the form of a matrix with
5 mm × 5 mm × 1 mm individual sensing pads using a 3D printing technique (bioplotting). The
authors’ ink composition, which contains sodium alginate, polyvinylpyrrolidone, and bromothymol
blue indicator, enables repeatable and stable color response to different pH levels. The developed
analysis software with an easy-to-use graphical user interface extracts the R(ed), G(reen), and B(lue)
components of the color image of the hydrogel pads, and evaluates the pH value in a second. A
calibration curve used for the analysis was obtained in a pH range of 3.5 to 9.0 using a laboratory
pH meter as a reference. Validation of the sensor was performed on samples of artificial saliva
for medical use and its mixtures with beverages of different pH values (lemon juice, coffee, black
and green tea, bottled and tap water), and correct responses to acidic and alkaline solutions were
observed. The matrix of square sensing pads used in this study provided multiple parallel responses
for parametric tests, but the applied 3D printing method and ink composition enable easy adjustment
of the shape of the sensing layer to other desired patterns and sizes. Additional mechanical tests of
the hydrogel layers confirmed the relatively high quality and durability of the sensor structure. The
solution presented here, comprising 3D printed hydrogel sensor pads, simple colorimetric detection,
and graphical software for signal processing, opens the way to development of miniature and
biocompatible diagnostic devices in the form of flexible, wearable, or intraoral sensors for prospective
application in personalized medicine and point-of-care diagnosis.

Keywords: pH sensor; hydrogel ink; bioplotting; 3D printing; hydrogel sensor; colorimetric detection;
salivary diagnostics

1. Introduction

The interest in biocompatible polymer materials has dynamically increased in the
biomedical and biopharma sectors in the last few years [1–3]. Among them, hydrogels
provide unique physiochemical properties, including relatively good mechanical stability,
high liquid absorption, and insolubility, allowing versatile applications where biocompat-
ibility and fabrication feasibility are critical [4,5]. Hydrogel layers have been commonly
used as smart, pain-relieving wound patches [6,7], as well as precise structural scaffolds
for cell culture and tissue engineering [8,9]. On the other hand, the responsive character
of hydrogels, showing notable changes in their rheology, resistivity, or color tunability
when exposed to variable external environments, make them a perfect tool for biosensing
applications [10,11], including pH measurements.
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Recent advances in additive manufacturing techniques have provided new possibili-
ties for the fabrication of hydrogel-based devices [12,13]. Hydrogel inks of different content
can be printed automatically, rapidly, and more easily in the process of bioplotting. This
technique enables the formation of repeatable and more advanced hydrogel structures
compared to manual methods [14,15]. As mentioned above, hydrogel matrices find ap-
plication in cell culture, ensuring the 3D spheroid growth of microbials [16,17]. These
microfluidic-based hydrogel platforms provide a passive physiological cellular environ-
ment and also become novel integrated perfusion systems, with drugs encapsulated in a
polymer protective cover [18]. These approaches are interesting and commonly available
alternatives to standard lab-on-chip technologies [19], which are based on more demanding
and advanced silicon, glass, and PDMS microengineering.

Bioplotting of hydrogel matrices also opens the way for dedicated, low-cost, and
biodegradable sensor platforms. According to the state of the art [20–22], considerable
attention has been paid to hydrogel biosensors and their possible role as new diagnostic
tools for modern and personalized medicine. In this regard, hydrogel matrices can be used
as stimuli-responsive materials, as immobilization substrates for sensing molecules, and
as protection surfaces. However, the main focus has recently been on the development of
simple and non-toxic biosensors that allow the real-time monitoring of chemical biomarkers
in human fluids in a wide detection range [23–25]. Such point-of-care devices can be used
in a disposable way, for single ex vivo use, and in a constant wearable mode. As much
effort has recently been put to provide non-invasive medical diagnostics, the monitoring of
potential health disfunctions based on tears, sweat, or saliva can provide a real revolution
in biopharma strategies.

Saliva, also called a “mirror of the body”, is a valuable diagnostic specimen that can
directly reflect many pathological states of the human body condition [26]. Due to the ease
of sample collection, storage, and acceptable sensitivity, saliva evaluation can constitute an
important alternative to standard blood examination, which without the need for qualified
personnel appears to be a perfect solution for home care devices [27]. Variations in saliva
pH levels can be an indication of a number of health issues, including systemic illnesses,
metabolic disorders, and malfunctioning salivary glands. For instance, too high or too
low saliva pH can be a sign of various health issues, whereas too low pH can encourage
gum disease and tooth decay. Salivary diagnostics may provide rapid insight into both
intraoral disfunctions (e.g., periodontal diseases), as well as serious systemic disorders (e.g.,
diabetes mellitus, cancer). According to the most current WHO guides, intraoral testing
can be a chance for developing countries to provide inexpensive and easy-to-use medical
diagnostics, notably improving the rapid profiling of health conditions in underserved
groups [28,29]. However, the general need for accurate and low-cost biosensors, produced
using available and simple fabrication methods, is a key issue that requires global interest
and novel development strategies.

A recent trend toward the use of biocompatible hydrogel matrices that are sensitive
to local environmental changes (e.g., pH, temperature, gases) and the presence of specific
biomarkers (e.g., glucose, urea, antigens, drugs) in combination with microfluidics and mi-
crosystem techniques can provide new solutions of both extraoral and intraoral biosensors.
Accompanied by rapid bioplotting technology, a new generation of portable salivary diag-
nostic systems can be developed. Thanks to the unique properties of hydrogels, different
sensing methods are available, strictly related to their composition and application. The
most popular are hydrogel sensors based on colorimetry, conductance, and piezoresistivity.
Utilizing hydrogel sensors for determining changes in pH in saliva is useful to assess
the condition of the oral mucosa and detect metabolic disorders, dysfunctional salivary
glands, candida, and even systemic diseases like diabetes, gastroesophageal reflux, cancer,
or autoimmune diseases [30].

For example, Wen et al. [31] proposed a polyacrylamide structure for the detection of
ammonia based on the color change of the hydrogel induced by the pH value. A similar
approach was presented in the work of Tang et al. [32], where a composition of polyvinyl
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alcohol and sodium alginate was used as a functional layer of the hydrogel. Lee et al. [33]
and Wu et al. [34] also presented an interesting solution to enable the rapid detection of
glucose using agarose and methacrylate gelatin (GelMA). Apart from the color change of
hydrogels exposed to water solution, including different proportions of glucose, a visible
shrinkage in the hydrogel geometry was observed in such structures [34].

Conductance detection, as well as piezoresistivity changes, are in turn typically used
for ethanol [35,36] and drug detection [37]. The literature review shows that the hydrogels
based on gelatin, polyacrylamide, and bisacrylamide are the most common in this regard.
Nevertheless, in these cases, the hydrogel sensor fabrication procedures may seem rather
complicated, often requiring multistep protocols as well as specialized equipment and
laboratories [25,38]. Moreover, in the case of exclusively bisacrylamide structures, these
solutions are considered toxic [39], thus the potential application of such sensors for near-
oral diagnostics is rather controversial.

Based on the aforementioned issues, the preparation of a hydrogel sensor with to-
tal biocompatibility and simplified manufacturing steps is not trivial and needs further
investigation. In this work, a hydrogel structure for pH assessment toward salivary di-
agnostics utilizing rapid colorimetry detection is shown. Non-toxic and polymer inks of
unique but simple and available composition were prepared, based on sodium alginate and
polyvinylpyrrolidone, for simplified and automated bioplotting of the small-scale sensor
matrices. Dedicated software was developed to quickly and easily process and analyze the
color tunability of the hydrogel sensor exposed to pH changes. The hydrogel structures
proposed in this work were investigated in terms of mechanical properties (tensile tests)
and sensing capabilities in response to defined saliva samples (raw or with additives). The
results of the experiments confirmed fine mechanical durability and appropriate opera-
tional stability of the sensor, as well as quick response to pH changes, which in combination
with simple software-based signal detection reveal the prospective application of the device
in future point-of-care diagnostics.

2. Materials and Methods

2.1. Fabrication of the Hydrogel pH Sensor

Hydrogel pads were bioplotted on a dedicated substrate, which contained a matrix
of 25 square cavities, 5 × 5 × 1 mm3 each (Figure 1a). The matrix was used to enable
easy and repeatable capture of the image for testing various pH samples at the same
conditions. However, the sensing hydrogel layer may be plotted onto other surfaces and in
a more sophisticated pattern on demand. The substrate was manufactured using a multi-
jet 3D printing technique (Projet 3500 SD Max, 3D Systems, Rock Hill, SC, USA) using
photocurable and biodegradable VisiJet M3 Crystal construction material (3D Systems,
Rock Hill, SC, USA) and VisiJet S300 support material (3D Systems, Rock Hill, SC, USA).
The substrate was treated to obtain repeatable surface properties, according to the post-
processing protocol described elsewhere [40]. Post-processing included an air heating
process followed by an oil bath at 65 ◦C, a water-based detergent bath in an ultrasonic
cleaner, and a final washing step with isopropyl alcohol (IPA).

The hydrogel ink solution was composed of 5% (v/v) sodium alginate (Sigma Aldrich,
Saint Louis, MO, USA), 1% (v/v) polyvinylpyrrolidone (Sigma Aldrich, Saint Louis, MO,
USA), and 0.1% (v/v) bromothymol blue pH indicator (Warchem, Zakręt, Poland). The
chemical characteristics and their impact on the output hydrogel structure were taken into
consideration during the choice of ink composition and the proportions of the ingredients.
Physical characteristics, including the sensor material’s strength, permeability, absorption
capacity, and stability under various environmental conditions, were also taken into account.
The water-based mixture was prepared by stirring (400 RPM) at 60 ◦C for 60 min using a
laboratory hot plate with a magnetic stirrer. Sensor pads were filled with a repeatable dose
of a hydrogel ink utilizing a commercially available 3D printer (BioX, Cellink, San Diego,
CA, USA) with the process parameters as follows: p = 20 kPa, v = 4 mm/s, and T = 30 ◦C
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(Figure 1b). Next, a 4% (v/v) calcium chloride solution (Warchem, Zakręt, Poland) was
gently pipetted into the pads to enable cross-linking of the hydrogel structures in 10 min.

Figure 1. Preparation of the hydrogel pH sensors: (a) 3D printed substrate (outer dimen-
sions: 54 × 51 × 1.1 mm3) containing a matrix of 25 bioplotted 5 × 5 mm2 hydrogel sensor pads,
(b) hydrogel pattern bioplotting process utilizing a BioX Cellink printer.

2.2. Mechanical Properties of the Hydrogel Structures

Due to the high water content in their structure, hydrogels pose relatively poor me-
chanical properties compared to other materials. The mechanical durability of hydrogel
materials depends mainly on the fluid content, as well as the strength of the bonds between
the polymer chains of the structure, which are directly affected by the cross-linking process.
Appropriate durability is essential to ensure the resilience of thin layers, preventing them
from tearing during use and enabling prolonged storage capability. Furthermore, the
use of additive manufacturing technology ensures precise deposition of layers of equal
thickness, ensuring repeatable results. To assess the mechanical durability of the hydrogel
layers, the tensile strength and compression tests were performed using the MultiTest-i-1
instrument (Mecmesin, Slinfold, United Kingdom). The apparatus was equipped with
the ILC-S strain gauge sensor with a measuring range of 100 N, operating at a constant
velocity of 5 mm/min (Figure 2). Tensile tests were conducted for both pure hydrogel
structures (including sodium alginate and polyvinylpyrrolidone), as well as structures con-
taining the pH indicator (bromothymol blue). Cuboidal hydrogel samples with dimensions
5 × 0.7 × 50 mm3 were fabricated on a 3D BioX bioplotter to ensure replicability. Mechani-
cal tests were also conducted for hydrogel structures subjected to various pH environments
to verify their potential shrinkage or swelling under different ambient conditions. In this
case, a compression test was conducted on 5 × 5 × 5 mm3 hydrogel cuboids with a pH
indicator included in the structures, placed in different pH solutions for 10 min. Three pH
values (extremes and typical for saliva: pH 3.5, 9.0, and 6.5) were used for examination.
Based on instrument force indication, Young’s modulus (E) and compressive modulus of
elasticity (Ec) values for the hydrogel samples were calculated.

Afterward, statistical analysis was performed with the Statistica package (version 13,
TIBCO Software Inc., Palo Alto, CA, USA) to visualize the maximum, mean, and minimum
values of Young’s modulus and the compressive modulus of elasticity for each group of
samples in box-and-whisker chart form.
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Figure 2. Tensile strength of the hydrogel matrices. Emperor Force software v1.18-408 for visualiza-
tion of the maximum tensile strength.

2.3. Colorimetric Detection—Software-Enhanced Analysis of the Sensor Responses

The response of the hydrogel sensor was obtained by first capturing a color image
of the matrix using a 24 MP CMOS camera. Next, the image was digitally processed
by dedicated software with a graphical user interface (LabVIEW, National Instruments),
developed based on our previous experience with optical signal processing [41,42]. As
the color of the individual pad changed proportionally to the change of the pH level, the
software-based algorithm was used to extract red (R), green (G), and blue (B) components
from individual regions of interest (ROIs) of the image. The software enables manual or
programmed selection of ROIs, and the measured data is presented in both graphical and
tabularized forms (Figure 3). The numerical components of RGB plots are stored and may
be compared, enabling measurement of pH values of the samples, as well as preparation of
the calibration curve for the pH pattern (e.g., when the composition of the ink is changed).
Due to the applied algorithm, the colorimetric detection is rapid and simple and can be
performed for numerous pads in parallel. The shape of the ROIs can also be adapted to
other patterns of the sensor pads.

 

Figure 3. Front panel of the developed LabVIEW application for image colorimetry. RGB plots are
automatically processed for selected rectangular ROIs selected in the image of the sensor matrix.

2.4. Calibration Curve for Hue Values and Tests of the Hydrogel Sensor

All experiments were carried out under stabilized laboratory conditions at 22 ◦C and
35% humidity. The sensor calibration curve was obtained for a pH range of 3.5–9.0 with a
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0.5 step. The calibration curve was determined based on the hue value, which is derived
by the ratio of the dominant wavelength to other wavelengths in the color, indicated by
its position (in degrees) on the RGB color wheel: H = [0◦, 360◦]. The hue value can be
calculated based on the RGB components from Formula (1).

(A) H = 60◦ ×
[(

G′ − B′)/(R′ − B′)] for R ≥ G ≥ B (1)

(B) H = 60◦ ×
[
2 −
(

R′ − B′)/(G′ − B′)] for G > R ≥ B

(C)H = 60◦ ×
[
2 +
(

B′ − R′)/(G′ − R′)] for G ≥ B > R

(D) H = 60◦ ×
[
4 −
(
G′ − R′)/(B′ − R′)] for B > G > R

(E) H = 60◦ ×
[
4 +
(

R′ − G′)/(B′ − G′)] for B > R ≥ G

(F) H = 60◦ ×
[
6 −
(

B′ − G′)/(R′ − G′)] for R ≥ B > G

where R′G′B′ value are calculated from:

R′ = (R value)/255
G′ = (G value)/255
B′ = (B value)/255

Next, a ready-to-use hydrogel sensor was tested with solutions of artificial saliva for
medical and dental research (Pickering Labs, Mountain View, CA, USA) and its mixtures
with beverages: lemon juice, black tea, green tea, bottled water, tap water, and coffee.
The concentrations of the beverages examined included 100% (pure beverage) and their
mixtures with artificial saliva in proportions of 50%, 20%, and 10%. Furthermore, the
examination involved sensor response time (pH-based color change) as a function of time.
Therefore, colorimetric data were collected every 30 s within the first 5 min after the
application of the test sample, and additionally after 10 and 15 min.

3. Results and Discussion

3.1. Mechanical Properties of the Bioplotted Hydrogel Matrices

Mechanical strength tests of hydrogel structures based on sodium alginate and polyvin-
ylpyrrolidone showed a Young’s modulus (E) value of 731 ± 110 kPa, whereas the addition
of the bromothymol blue pH indicator slightly increased the value to 765 ± 128 kPa
(Figure 4a). Based on the change in pH of the environment, sodium alginate-based hydro-
gels react by shrinking or swelling, which directly affects the strength of the polymer’s
chemical bonds. This relationship may affect the degree of response of the pH indicator
incorporated into the hydrogel structure. Compressive modulus of elasticity (EC) values in-
crease with pH increases, therefore EC for pH 3.5 is 12.9 ± 2 kPa, for pH 6.5 is 18.8 ± 1 kPa,
and for pH 9.0 is 24.7 ± 1.8 kPa (Figure 4b).
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Figure 4. Tensile strength tests of the hydrogel sensor. (a) Young’s modulus (E) of hydrogel and
hydrogel with pH indicator added (N = 10), (b) comparison of the compressive modulus of elasticity
(Ec) of hydrogel exposed to different pH (3.5, 6.5, 9.0) (N = 10).

3.2. Calibration of the Colorimetric Hydrogel Sensor and pH Salivary Diagnostics

In Figure 5a, the sensor calibration curve is presented. As shown, hydrogel pads
containing bromothymol blue pH indicator provided appropriate responses to the defined
pH solutions. Ranging from 3.5 to 9.0 with 0.5 step, visible color tunability of the hydrogel
pads can be observed 30 s after measurement begins. Observation by the naked eye suggests
the color change from light green for acidic solutions to dark green for alkaline solutions
(Figure 5a), but the RGB analysis clearly indicated an increase in the sum of the green
and red components (resulting in a yellow hue) in the first case and a blue component
in the latter, which confirms the proper response of the bromothymol blue indicator [43].
Moreover, software-enhanced analysis of the responses of the sensors was conducted and
presented in Figure 5b in the form of the hue values as a function of pH values. The
tendency of the components R and G to decrease with the simultaneous increase of the
B component is consistent with the decimal code tables [44], in which R and G achieved
maximum values for the yellow color, and minimum for the blue one. These results
confirmed the appropriate operation of the hydrogel sensor and suggested further research
with artificial salivary samples.
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Figure 5. Colorimetry response of hydrogel sensor to pH values in the range 3.5 to 9.0. (a) Visible
color tunability of hydrogel sensors after 30 s of various pH application, (b) calibration curve for hue
values as a function of pH with fitted polynomial curve after 30 s of various pH application (mean
values, N = 5).

The investigation shows repeatability of measurements, where this is noticeable in
the triangular plot for the hydrogel sensor control group (Figure 6a). The sensor shows an
increase in the values of the color components in the time function, slight for acidic solutions
(pH 3.5, Figure 6b) and noticeable for neutral solutions (pH 7.0, Figure 6c) and alkaline
solutions (pH 9.0, Figure 6d). An acidic reaction causes shifts toward the R component, for
neutrals toward the G component, and for alkalis toward the B component.
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Figure 6. Triangle charts of RGB components for color changes for various pH 3.5–9.0 (mean values,
N = 5) at (a) 0 min, (b) 1 min, (c) 5 min, (d) 15 min.

The stability of the sensor is shown using a radar plot (Figure 7), where similar results
can be seen in the analysis of the RGB components from the beginning of the measurement
to 4 min with a slight upward trend toward the G component and a slight downward trend
toward R component. Measurements after 4 min show larger changes in component values,
which may be the result of a chemical reaction of the indicator or evaporation of water from
the hydrogel structure of the sensor.

Figure 7. Radar chart of hydrogel sensor responses at 0–15 min (example for ph 6.5 solution)—stability
of the hydrogel sensor (mean values, N = 5).
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3.3. Measure of Salivary pH and pH of Saliva Mixed with Beverages

In this paper, the hydrogel sensor response to color changes under the influence of the
pH of synthetic saliva, beverages (100%), and a mixture of saliva and beverages in ratios of
50%, 20%, and 10% were examined. Prior to the experiments, artificial saliva and saliva with
the beverage mixture were measured with a pH meter. The pH values for each beverage
were as follows: artificial saliva—pH 6.0, lemon juice—pH 2.3, coffee—pH 4.2, black tea—
5.0, green tea—pH 5.5, tap water—7.1, bottled water—pH 7.3. The pH measurements of
each beverage for hue values were plotted onto the calibration curve (Figure 8). At the
same time, the pH values of the artificial saliva and the beverage mixture changed due
to the pH value of the saliva. The values of the RGB components of the color-changing
hydrogel under the influence of a mixture of beverages and saliva are shown in triangular
charts in Figure 9 for 50% concentration.

Figure 8. Hue values of beverages as a function of pH after 30 s of measurement (mean values, N = 5).

Figure 9. Triangle chart of the RGB component for hydrogel sensor responses to saliva and saliva-
beverages mixtures after 15 min of application (mean values, N = 5); (a) beverages, 100% concentra-
tion; (b) beverages and saliva mixtures, 50% concentration; (c) beverages and saliva mixtures, 20%
concentration; (d) beverages and saliva mixtures, 10% concentration.
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Analysis of RGB components shows noticeable changes in the presence of beverages
in saliva at a concentration of 50%. Minor correlations were observed for the concentration
of 20% and 10% beverage content in saliva. While more acidic reactions of the substances
tested tended to shift toward the R and G components (successively, mixtures with lemon
juice, coffee, black tea, green tea, and pure artificial saliva), for the neutral reaction, a trend
of increase toward the B component was observed (values close to pH 7 for bottled water
and tap water).

4. Conclusions

The research carried out in this study showed the possibility of fabrication using
additive manufacturing technologies of a colorimetric hydrogel sensor based on sodium
alginate and polyvinylpyrrolidone with the addition of a pH indicator. The results showed
the possibility of a fast (30 s) and reproducible response to pH range (3.5 to 9.0) with
simultaneous high sensor stability. To confirm the durability of the bioplotted hydrogel
sensor, the mechanical properties of the sensor were tested, which showed the strength
of the thin films, reaching above 700 kPa of Young’s modulus value. For the purpose of
the sensor validation, dedicated software with an easy-to-use graphical user interface was
developed to extract the R(ed), G(reen), and B(lue) components of the color image of the
hydrogel pads and evaluate the pH value. After a sensor calibration, it was validated
using samples of artificial saliva and its mixtures with beverages (lemon juice, coffee, black
and green tea, bottled and tap water). As a result, a clear response to acidic and alkaline
solutions of the sensor was observed, revealed in the form of substantial color change,
visible also with the naked eye. However, consistent with the recent literature reports,
the influence of different reactions on the hydrogel structure can lead to shrinkage of
the hydrogel (in acidic conditions) or swelling of the hydrogel (in neutral and alkaline
environments). This can, in turn, affect the rate of response, relax the polymer chains
upon swelling, and release the pH indicator from the material structure. On that basis,
further research to enhance the sensor reliability and provide the best pH indications is
needed. Attention should also be paid to the rate of evaporation of water from the hydrogel
structure, and methods should be developed to enable the preservation or storage of the
sensor after its production to prevent the hydrogel from drying out.
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Abstract: Health assessment and preventive maintenance of structures are mandatory to predict
injuries and to schedule required interventions, especially in seismic areas. Structural health monitor-
ing aims to provide a robust and effective approach to obtaining valuable information on structural
conditions of buildings and civil infrastructures, in conjunction with methodologies for the identifica-
tion and, sometimes, localization of potential risks. In this paper a low-cost solution for structural
health monitoring is proposed, exploiting a customized embedded system for the acquisition and
storing of measurement signals. Experimental surveys for the assessment of the sensing node have
also been performed. The obtained results confirmed the expected performances, especially in terms
of resolution in acceleration and tilt measurement, which are 0.55 mg and 0.020◦, respectively. More-
over, we used a dedicated algorithm for the classification of recorded signals in the following three
classes: noise floor (being mainly related to intrinsic noise of the sensing system), exogenous sources
(not correlated to the dynamic behavior of the structure), and structural responses (the response of
the structure to external stimuli, such as seismic events, artificially forced and/or environmental
solicitations). The latter is of main interest for the investigation of structures’ health, while other
signals need to be recognized and filtered out. The algorithm, which has been tested against real data,
demonstrates relevant features in performing the above-mentioned classification task.

Keywords: structural health monitoring; sensing system; embedded architecture; time–frequency
analysis; signals classification

1. Introduction

The continuous monitoring of buildings and structures is strategic, particularly with
the aim of health assessment and preventive maintenance planning, especially in seismic
areas [1]. Actually, the possibility of identifying potential risks associated with aging, as
well natural hazards and environmental factors, is essential for disaster prevention [2].

Structural health monitoring (SHM) aims to provide a robust and effective approach
to obtaining valuable information on structural conditions and supporting methodologies
for the identification and, under specific conditions, localization of potential damages.
Comprehensive reviews on SHM are available in [3–6], while their specific use in bridge
monitoring is addressed in [7]. SHM can be implemented at either a global or local level [1].
Global monitoring is very convenient as it allows for assessing the overall behavior of
the entire structure by measuring dynamic responses through the use of sensors (e.g.,
accelerometers or tiltmeters). On a different scale, the analysis of local cracks or fatigues
requires other techniques like nondestructive testing (NDT).

SHM can be approached through two main strategies: discrete monitoring and contin-
uous monitoring of health-related quantities. Discrete monitoring involves highly accurate
measurements, typically sparse in time and performed only at specific locations. This
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approach lacks both time-continuous and spatially dense monitoring due to its requirement
for accurate and costly instrumentation [8,9]. Conversely, the use of low-cost sensing nodes,
often based on micro-electromechanical sensors (MEMS), can be conveniently adopted
for the implementation of solutions allowing for the continuous monitoring of structural
health. The development of a multi-sensor node for applications in the field of structural
monitoring is addressed in [10], along with its assessment by real seismic signals.

Although these systems will show lower accuracy with respect to high-cost instru-
mentation, they offer the possibility of realizing sensor networks for time-continuous and
spatially dense monitoring. This approach is valuable for the implementation of early
warning systems (EWSs), allowing for the timely detection of anomalous structural behav-
iors [11,12]. It clearly emerges that EWSs are hence strategic in implementing monitoring
tasks in many contexts, such as schools, hospitals, public or private buildings, and civil
infrastructures (e.g., bridges). The commonly adopted methodology to fix the number and
the location of sensing nodes often relies on the knowledge of reliable structural models,
which could allow for optimizing the sensor network and identifying the most relevant
monitoring locations [1]. Also, introducing redundancy in the number and location of
monitoring nodes allows for improving the system’s information reliability. Optimizing
data transmission strategies is also strategic for wireless sensor networks in general and,
particularly, for EWSs involving the use of dense network architectures [13].

It is important to bear in mind that data provided by monitoring systems must be
appropriately processed to extract relevant features, which are crucial for feeding dedicated
algorithms aimed at assessing structural health and identifying the nature and potential
locations of damage [14]. To such an aim, different approaches can be adopted. As an
example, in [15], signal decomposition implemented through discrete wavelet transform
(DWT) is proposed as a suitable approach to filtering out exogenous sources coming from
the environment while highlighting main seismic sources. The development of a low-cost
multi-sensor node, compliant with the early warning system for SHM and aimed to measure
inertial vibrations and tilt, is reported in [16]. Also, this work presents a dedicated signal
processing to assess the sensing node performance in the time and frequency domains.
In [17], a continuous wavelet transform (CWT) operator has been introduced with the
aim of analyzing the time–frequency content of signals provided by the sensing node
investigated in [16]. In particular, cross-correlation and coherence operators have been
used to validate the system performances against reference instrumentation.

This paper represents a follow-up with respect to the work presented in [15–17]. In
particular, the aim of this work is twofold: a deep assessment of the multi-sensor node
performance [16] and the development of a dedicated methodology to discriminate among
different kinds of signals: (i) noise floor (NF), being mainly related to the intrinsic noise of
the sensing system; (ii) exogenous sources (ES), not correlated to the dynamic behavior of
the structure; and (iii) structural responses (SR), i.e., the response of the structure to external
stimuli, such as seismic events and artificially forced and/or environmental solicitations.
The latter is of main interest for the investigation of structures’ health, while other signals
need to be recognized and filtered out.

Main novelties introduced by this paper concern the following:

• More detailed device assessment is provided by highlighting its behavior under
different kinds of input stimulations.

• The use of dedicated key performance indexes aims to compare the behavior of
the sensor node with respect to the ground truth. In particular, in addition to the
traditional root-mean-square error, a time-correlation index and a Wavelet-correlation
index have been introduced;

• The dedicated methodology for the classification of different signals is provided by
the sensing system, using a threshold approach supported by the receiving operating
curve (ROC) theory.

The main outcomes of the proposed approach are related to the following:
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• There is a possibility to adopt an embedded sensing node for the implementation of
continuous SHM; actually, the low-cost feature of this MEMS-based device, compared
with highly accurate instrumentation usually adopted to perform discrete monitoring,
enables the development of distributed EWSs.

• The use of CWT-based operators, with respect to discrete wavelet transform, shows
a more accurate frequency sampling, thus providing a more reliable analysis of tran-
sients in the output signal.

• The methodology is implemented to separate exogenous dynamics from signals of
interest (i.e., structural response), which are potentially useful to feed paradigms
aimed at extracting health-related quantities and, consequently, tracking short- and
long-term behaviors of the monitored structure. It must be considered that the last
task is outside of the purpose of this work.

The activity presented through this work has been developed in the framework
of the “HCH LowCost GeoEngineering Check” project, which aims to develop suitable
methodologies for the continuous monitoring of buildings. The strategy adopted is based
on the use of sensors and advanced tools for data processing, exploiting both standard
instrumentation and low-cost sensing nodes, such as the one investigated in the following.

A brief description of the low-cost multi-sensor node architecture is reported in
Section 2, along with the approach proposed for the classification of different classes
of signals. Section 3 reports results related to the assessment of the sensing architecture and
the validation of the classification algorithm. To achieve the former aim, the node is prodded
by periodical stimuli with different frequencies. Moreover, tests using signals recorded
during real events are also performed. During these experiments, reference instruments are
used for the sake of comparison along with dedicated metrics. The classification algorithm,
which has been tested against real data, demonstrates relevant features in performing the
above-mentioned classification task.

2. Materials and Methods

2.1. Brief Description of the Multi-Sensor Node

Although the developed sensing platform has already been presented in [15,16], in
the following, a brief description of its architecture and main functionalities is provided.
Considering the addressed application and the need for a low-cost solution, the main
specifications required for the tilt and acceleration measurements are as follows:

• Acceleration: range ±1.5 g, resolution 0.005 g;
• Tilt: range ±10◦, resolution 0.02◦;
• Frequency range: 0.5 ÷ 20 Hz.

As schematized in Figure 1, the sensing node consists of the following main parts [16,17]:

• The triaxial MEMS inclinometer SCL3300-D01-PCB by Murata, with working range set to
±10◦ full-scale and the tilt resolution of 0.0055◦/LSB, with a 0.001 ◦/

√
Hz noise density;

• The MEMS triaxial accelerometer SCA3300-D01-PCB by Murata, set to an operating
range of ±1.5 g and using a 70 Hz 1st-order low-pass filter;

• The embedded module RT1062 Teensy 4.0 series, based on a ARM® Cortex®-M7 MPU
at 600 MHz;

• The DS3234 real-time clock;
• The GPS MODULE—COPERNICUS II DIP;
• A micro-SD card for data storing;
• The HC-05 Bluetooth Bee Master Slave 2 in1 module;
• A lithium EEMB 3.7 V 2000 mAh 103,454 battery.

A real view of the device installed in a real environment is shown in Figure 2 [16].
The adopted sampling rate is 200 Hz, which is compliant with the addressed frequency
range. The node can be connected to a PC through a USB interface and/or a Bluetooth
protocol. Also, a graphical user interface (GUI) has been realized [16], allowing for a
complete management of the node, including data transmission and visualization. Actually,

307



Sensors 2024, 24, 4023

a full set of commands are implemented in order to control and set the node operation. In
particular, the implemented working modes allow for continuous or event-triggered data
storing/transmission. In the latter case, “activation thresholds” are settable by the GUI.

 

Figure 1. Schematization of the multi-sensor node [17].

 

Figure 2. The sensor node [16] installed in a real environment.

2.2. The Classification Algorithm

The main aim of the developed algorithm is the detection and classification of different
classes of signals: noise floor (NF), exogenous sources (ES), and structural responses (SR). In
the following, the proposed classification approach is described, while the results obtained
by its experimental assessment are given in Section 3.2.

The first task accomplished toward the development of the classification methodology
has been the collection of a dedicated dataset, including the following kinds of signals:

• NF recorded by the sensor node.
• ES acquired by exposing the sensor node to environment-related solicitation, such as

human walking, home appliances, and pulse-like dynamics.
• SR whose strength must be compliant with the target sensitivity of the developed

low-cost node.
• Since during the experimental survey, it was not possible to observe SR generated

by natural events showing strength compliant with the sensor node specifications,
signals recorded by a reference accelerometer positioned close to the sensor platform
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were used. Such signals were selected by considering the occurrence of low-strength
seismic events. Dedicated post-processing was then implemented, with the aim of
adapting the strength of acquired signals to values compliant with the characteristics
of the sensor node.

Typical examples of the acceleration trends for the case of the above-mentioned signals
are reported in Figure 3, along with their frequency contents. In particular, the CWT operator
has been used to investigate the time–frequency characteristics of considered signals.

(a) (b) (c) 

Figure 3. Time evolution of typical signals and their time–frequency representation: (a) NF, (b) ES, (c) SR.

Table 1 reports the number of patterns for each class of the collected dataset. Each
pattern consists of a time window of 10 s of the acceleration module. The dataset is divided
into two parts: 100 patterns for each class to be used as the test dataset, while the remaining
patterns (setting dataset) are used for the identification of the classification model.

Table 1. Number of patterns for each class.

NF ES SR

Number of patterns 500 447 432

To develop a feature-based classification methodology, the root-means-square (RMS)
value of the acceleration module, calculated across the 10 s time window, is used. This can
be considered as a key feature conveying a strategic piece of information related to the
signal strength in the considered time interval. Figure 4 shows the distribution of RMS
values for the whole set of considered patterns. As can be observed by such distribution and
the detail embedded in Figure 4, it is not possible to find a separation threshold allowing for
a simple clustering of different kinds of signals. To better substantiate the above statement,
the receiving operating characteristic (ROC) theory is used [18].

To such aim, the following sensitivity (Se) and specificity (Sp) quantities are used [18]:

Se =
TP

TP + FN
(1)
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Sp =
TN

TN + FP
(2)

where standard definitions of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) are used [18].

Figure 5 shows trends of Se and Sp as a function of the considered threshold (Th), for
the two cases discriminating NF from other sources and SR from ES.

Figure 4. Distribution of RMS values for the whole set of considered patterns. The detailed view
aims to show the superposition of patterns belonging to different classes.

 
(a) (b) 

Figure 5. Sensitivity (Se) and specificity (Sp) values as a function of the considered threshold for the
two cases discriminating (a) NF from other sources, (b) SR from ES.

Optimal thresholds
(
Thop

)
, allowing for the implementation of separation tasks, are

estimated by minimizing the distance of Se and Sp from the condition of complete separation
(Se = 1 and Sp = 1), through the following expression [18]:(

1 − Se
(
Thop

))2
+
(
1 − Sp

(
Thop

))2
= min

(
(1 − Se(Th))2 + (1 − Sp(Th))2

)
(3)

In case condition (3) is achieved for different threshold values belonging to an interval,
the mean value calculated across such interval is used as the optimal threshold.

As can be observed by the achieved results (Figure 5b), the classification task is worth
improving. Further outcomes of this analysis are reported and discussed in Section 3.2.

On the basis of the above results, in order to extract other relevant features to effectively
implement the classification task, a deeper investigation of the dataset has been performed.
As evidenced by Figure 3, the three classes of signals show different characteristics in
the frequency domain. In particular, NF shows a wide band energy spectrum, while ES
and SR present opposite behaviors. The first one has most of its energy located at higher
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frequencies, whereas the latter is bounded at lower frequencies. The last statement is also
supported by the literature, in which the typical frequency range of structural responses to
natural/forced solicitation is mainly below 20 Hz, especially for tall buildings [19–21].

On the basis of the above findings, the whole dataset has been processed by a low-pass
(LP) and a high-pass (HP) filter, both with a cutoff frequency of 20 Hz. RMS values of
filtered data, calculated across the 10 s time window, namely, RMSLP and RMSHP, represent
the new features to be used for implementing the classification task.

As can be observed from Figure 6, the distribution of LP-filtered data demonstrates
the possibility for clustering the NF class, while the same applies to the ES class in the case
of HP data.

 
(a) (b) 

Figure 6. Distribution of RMS values for the whole set of considered patterns. The detailed view
aims to show an overlap of patterns belonging to different classes. (a) Low-pass filtered signals;
(b) high-pass filtered signals.

As a first step, optimal thresholds, which allow for implementing the following
separation tasks, have been estimated:

• TrLP: to separate NF from ES and SR, by LP-filtered data;
• TrHP: to separate ES from NF and SR, by HP-filtered data.

Figure 7 shows Se and Sp values for the above tasks as a function of separation thresholds,
TrLP and TrHP. The following optimal thresholds have been estimated: TrLP = 1.38 × 10−4 g,
TrHP = 2.69 × 10−4 g.

 
(a) (b) 

Figure 7. Sensitivity (Se) and specificity (Sp) values as a function of the considered threshold for the
following tasks: (a) separation of NF from other sources by LP data and (b) separation of ES from
other sources by HP data.
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Considering all the above statements, the following classification rules have been identified:

Class =

⎧⎪⎪⎨⎪⎪⎩
NF : RMSLP ≤ TrLP

SR :
{

RMSLP > TrLP
RMSHP < TrHP

ES : RMSHP ≥ TrHP

(4)

The above rules are used to implement the algorithm shown in Figure 8, aimed at the
real-time classification of data acquired by the sensing platform. Although compliant with
its deployment in the adopted microcontroller platform, for the sake of convenience, at this
stage, the classification algorithm is implemented in MATLAB R2022b.

Figure 8. The real-time classification algorithm.

The algorithm operates in time windows of 10 s, extracting the classification features
from the time evolution of the acceleration module. Since the algorithm is expected to work
continuously on real-time data sequences, a storing array is used, which is continuously
updated with new data. As soon as a time increment of 1 s is achieved (condition checked
by “shifting time check” routine), a new pattern containing the last 10 s of the time sequence
is released and processed in order to extract features and estimate its class of belonging.

Summarizing, each pattern is processed as follows:

• A zero-order de-trend is accomplished, thus removing the effect of signal offset;
• The de-trended signal is then processed by LP and HP filters;
• RMSLP and RMSHP values are calculated;
• The set of rules (4) is applied to estimate the class of belonging for the considered pattern.

Results obtained by the above-presented classification algorithm are discussed in Section 3.2.

3. Results and Discussion

3.1. Assessment of the Low-Cost Sensing Node

In this section, results of experimental surveys performed to validate the developed
sensing node are reported. For the sake of convenience, it must be considered that the device
resolution has already been investigated in [16], leading to the results shown in Table 2.

Table 2. Results of the resolution analysis for acceleration and tilt measurements [16].

X Y Z

Acceleration (mg) 0.30 0.30 0.55
Tilt (◦) 0.016 0.016 0.020

In order to test the system response to acceleration stimuli, the experimental setup
shown in Figure 9a is used, equipped with the APS 129 HF ELECTRO-SEIS® long-stroke
vibration exciter, available at the Experimental Dynamics Laboratory of the L.E.D.A. Re-
search Institute at the University of Enna “Kore”, Enna, Italy [22]. The sensing platform
is fixed to the moving platform of the shaker. The system, after a settling time, performs
10 reliable periods at the desired frequency and amplitude. The reference value is provided
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by a QA-700 accelerometer by Honeywell, Charlotte, NC, USA, whose main characteristics
are as follows:

• Operating range: ±30 g;
• Bias: <8 mg;
• One-year composite repeatability: <1200 μg;
• Temperature sensitivity: <70 μg/◦C;
• Intrinsic noise: <7 μg rms (0–10 Hz), 70 μg rms (10–500 Hz).

  
(a) (b) 

 
(c) (d) 

Figure 9. Vibration exciter test. (a) Setup adopted during the test along the X-axis. (b) Time series
of the concatenated time window of 10 periods for each frequency [17]. (c) Wavelet analysis of the
corresponding time window [17]; (d) Discrete Fourier transform of the concatenated signal.

Characteristics of stimulation signals are reported in Table 3 in terms of their nominal
frequency and amplitude values. Figure 9b shows the concatenation of 10 periods of the
signal recorded by the sensing node for each considered frequency [17]. Results obtained
by the wavelet analysis, shown in Figure 9c [17], as well as the discrete Fourier transforms
shown in Figure 9d, confirm the compliance of the system response to the applied stimulus.

Table 3. Nominal value of frequency, f, and the amplitude, A, of applied signals.

f (Hz) 0.5 1.0 2.0 3.0 5.0 8.0 10.0 12.0 15.0 20.0
A (g) 0.015 0.060 0.241 0.510 0.510 0.510 0.509 0.510 0.510 0.510

In order to quantify such performances, the following index has been defined:

δV = 100 ∗ 1
n
∗

n

∑
i=1

∣∣∣∣V1 − V2

V1

∣∣∣∣ (5)

where V states for the amplitude, A, or the frequency, f, of the applied stimulus.
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Moreover, the repeatability, assessing the system performances in the acceleration
domain, is estimated as 3 times the standard deviation of peak values distribution. The
results obtained for above defined indexes, under different operating conditions, are shown
in Figure 10. The δA, for the three axes, is limited to under 1% in most of the investigated
frequencies, with the exception of a few cases where its value reaches 5%. The δf values
show that the frequency discrepancy is extremely low (less than 0.03%) for each solicitation
frequency and for each axis. The repeatability has an upward trend with the frequency,
which rises after 10 Hz, being, however, confined below 4.5% of the nominal values.

 
(a) (b) (c) 

Figure 10. Vibration exciter test. Bar chart of indexes value under different operating conditions for
each axis: (a) δA, (b) δf, (c) repeatability.

The next set of experiments is dedicated to testing the system response to dynamics
imposed by using a controlled moving platform. The sensing node is hooked at the center
of the vibrating platform, as shown in Figure 11. The vibrating platform has 6 degrees of
freedom, with ±1.5 g horizontal acceleration range, ±1 g vertical acceleration range, and an
RT3-S real-time digital control system, exploiting a 2 kHz control loop in position, velocity,
and acceleration. A detailed description of the shaking table facility is reported in [23,24].
For the sake of comparison and validation, a dedicated reference system has been used,
which consists of eight MEMS DC accelerometers (model 3711B1110G by PCB Piezotronics,
Depew, NY, USA) placed in the actuator of the vibrating platform (two along the X-axis,
two along the Y-axis, and four along the Z-axis), whose main specifications are as follows:

• Range ±10 g;
• Frequency range 0–1.0 kHz;
• Nonlinearity ≤1%;
• Transverse sensitivity ≤3%.

 

Figure 11. Setup employed during the tests with the vibrating platform that reports the axis orienta-
tion of the sensing system.

In particular, the response of the sensing node to the following signals is observed:
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• Frequency sweep test: an acceleration stimulus, ranging from 0.5 Hz to 20 Hz, applied
along the X, Y, and Z-axes;

• Tilt test: a periodic tilt, ranging from −2.5◦ to 2.5◦, applied for two different frequency values;
• Seismic test: a typical seismic signal.

The results obtained for the frequency sweep test are reported in Figure 12, which shows
the output from both the reference system and the sensing platform. Figure 13 shows the
wavelet power spectrum of the above signals [25]. In particular, to achieve this goal, the
synchrosqueezing wavelet is used to narrow the frequency distribution in each time instant.
The time–frequency analysis clearly demonstrates the coherence with the adopted frequency
sweep stimulus.

 
(a) (b) 

Figure 12. Time series along the X-axis (top), Y-axis (center), and Z-axis (bottom), in the frequency
sweep test, recorded by (a) reference instrumentation; (b) the sensing platform.

  
(a) (b) 

Figure 13. Wavelet analysis for the frequency sweep test. (a) Wavelet power spectrum of the reference
instrumentation signals; (b) wavelet power spectrum of the sensing platform signals.

The following indexes are used in order to assess the performance of the sensing platform:

ζ = 100 ∗

√√√√∑n
i=1 (V1 − V2)

2

∑n
i=1 (V1)

2 (6)

RV1,V2(l) =

⎧⎨⎩∑
n−|l|−1
i=0 V1(i)∗V2(i+l)

n , l < 0
∑

n−|l|−1
i=0 V1(i)∗V2(i+l)

n , l ≥ 0
(7)

Rnorm =
R1,2(0)√

RV1,V1(0)RV2,V2(0)
(8)
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where

• ζ estimates the percentage error with respect to the nominal values on the whole signal;
• V1, V2 are signals recorded by the reference system and the sensing node, respectively;
• n is the number of samples;
• RV1,V2(l) is the cross-correlation between the two signals, V1 and V2, as a function of

the lag (l);
• Rnorm is the normalized cross-correlation between the reference and the acquired

signals, defined in l = 0.

Moreover, the following index, Cnorm, representing the normalized cross-correlation in
the time–frequency domain, is used to assess the similarity of the time–frequency content
of the sensor output against the reference signal:

Cnorm =
∑xy

((
C1(x, y)− C1

)(
C2(x, y)− C2

))
√

∑x,y
(
C1(x, y)− C1

)2
∑x,y

(
C2(x, y)− C2

)2
(9)

where

• C1 and C2 are two matrixes containing the wavelet coefficients;
• C1 and C2 are mean values of elements belonging to the above matrixes.

The results obtained for performance indexes (6), (8), and (9) are reported in Table 4.
High values of R_norm (close to 1.0) for the three axes prove the capability of the sensing
platform to follow the dynamics of the solicitation in the whole investigated frequency
range. Values of C_norm are over 0.9, which demonstrates the coherence in the frequency
domain of the two signals. The ζ values provide a quantification of the difference in
magnitude between the two signals, which, on average, is about 8.5%. As can be observed,
the Z and Y axes show higher ζ values with respect to the X-axis, most probably due to
the presence of noise superimposed to the output signal along these directions. Further
investigations will be dedicated to identifying possible strategies aimed at reducing the
effect of such influencing quantities on the system performance.

Table 4. Performance indexes estimated for the frequency sweep test.

X-Axis Y-Axis Z-Axis

ζ 2.76% 9.99% 12.86%
Rnorm 0.99 0.99 0.99
Cnorm 0.97 0.92 0.92

Concerning the tilt test, the vibrating platform generates a series of oscillations at fixed
frequencies (0.2 Hz and 0.5 Hz) in the range of ±2.5◦. The test is performed through the
X and Y axes (as defined in Figure 11) of the sensor node, which is intended to measure
a quasi-static tilt. Figure 14 shows the time series provided by both the reference system
and the sensing platform. Performance indexes (6), (8), and (9) calculated for this test are
reported in Table 5. As can be observed, estimated values for ζ are lower than 4%, and
values of Rnorm and Cnorm are close to 1 for both considered axes. Such results demonstrate
the capability of the sensor node to follow the imposed solicitation.

During the last test on the accelerometer, the vibrating platform was used to reproduce
the ground motion recorded during a real earthquake. Particularly, the tree components of
the Kobe earthquake, recorded in Takatori, Japan, on 16 January 1995, were used. This event
was characterized by high horizontal and vertical ground motion (Mw = 6.9). The test aimed
to validate the sensing platform response to this kind of realistic complex solicitation (rich
magnitude and frequency content). Figure 15 shows output signals of both the reference
system and the sensing platform, for the three axes. From the wavelet analysis, shown
in Figure 16, it is possible to observe that the energy of the wavelet in the X and Y axes
is mainly located in the low-frequency range, while the response along the Z-axis shows
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relevant energy content for higher frequency. Table 6 reports performance indexes (6),
(8), and (9) calculated for this test. Values of Rnorm are close to 1.0 for the three axes, thus
validating the capability of the node to measure input with rich frequency content. Values
obtained for the index ζ, along the X and Y axes are in line with the previous test, resulting
in values below than 6%. Values of Cnorm for the X and Y axes confirm a suitable coherence
in the time–frequency domain between the sensing node and the reference system, while
highlighting lower coherence for the Z-axis. The worst performances observed for the
Z-axis are most probably due to the presence of high-frequency noise along this direction.

 
(a) (b) 

Figure 14. Time series recorded during the tilt test, in the case of the node rotation applied around
the Y-axis. Top: 0.2 Hz; bottom: 0.5 Hz. (a) Reference signals; (b) sensing platform signals.

Table 5. Performance indexes estimated for the tilt test.

0.2 Hz 0.5 Hz

Y-Axis X-Axis Y-Axis X-Axis

ζ 1.66% 1.14% 2.15% 3.85%
Rnorm 0.99 0.99 0.99 0.99
Cnorm 0.99 0.99 0.99 0.94

 
(a) (b) 

Figure 15. Time series of the seismic test along the X-axis (top), Y-axis (center), and Z-axis (bottom),
recorded by (a) reference instrumentation; (b) the sensing platform.

Table 6. Performance indexes estimated for the seismic test.

X-Axis Y-Axis Z-Axis

ζ 3.77% 5.05% 19.45%
Rnorm 0.99 0.99 0.98
Cnorm 0.98 0.97 0.84
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(a) (b) (c) 

Figure 16. Wavelet power spectrum of the seismic test recorded by reference instrumentation (top)
and the sensing platform (bottom), along: (a) X-axis, (b) Y-axis; (c) Z-axis.

3.2. Outcomes of the Classification Algorithm

Results obtained by applying the algorithm presented in Section 2.2 are shown in
Figure 17 where blue symbols represent the expected class for each pattern and the
red symbols the output of the classification procedure. For the sake of completeness,
Figure 17a reports results obtained by the classification algorithm exploiting RMS values of
the raw acceleration module and thresholds defined in Figure 5 where misclassifications
of SR and ES patterns are clearly observable. Figure 17b shows results obtained by the
algorithm, shown in Figure 8 and exploiting rules (4), which allows for overcoming the
misclassification issue. To support this finding, Table 7 shows the confusion matrix obtained
for the classification algorithm shown in Figure 8 for the setting and test datasets. As can
be observed, the obtained results confirm the suitability of the classification methodology.

Figure 17. Validation test: expected data (blue symbols) and estimated data (red symbols). (a) Algorithm
based on RMS values of the raw acceleration module; (b) algorithm shown in Figure 8 and exploiting
rules (4).
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Table 7. Confusion Matrix obtained for the classification algorithm shown in Figure 8 for the setting
and test datasets.

Classification Output

NF SR ES

Expected
Output

Setting dataset
NF 400 0 0
SR 0 400 0
ES 0 0 400

Test dataset

NF 100 0 0
SR 0 100 0
ES 0 0 100

4. Conclusions

In this paper, the development of a low-cost sensing platform for applications in the
field of SHM is presented, along with a signal processing approach allowing for the analysis
and classification of different kinds of dynamics recorded by the sensor node. The latter
has shown suitable performances in both acceleration and tilt measurements.

In particular, tests performed by forcing periodic acceleration along the three axes, at
10 different frequencies in the operating range (0–20 Hz), revealed amplitude discrepancies
of less than 1% in most of the frequencies tested, with the exception of a few cases where
its value reached 5%.

Performing a frequency sweep from 0.5 to 20.0 Hz, the value of the correlation between
the signal provided by the reference instrumentation and the signal recorded by the node
was very close to 1, while the difference in magnitude between the two signals was, on
average, about 8.5%.

The tilt test performed in the range of ±2.5◦ has shown a discrepancy lower than 4%.
Finally, the test exploiting the reproduction of a real earthquake has demonstrated suitable
performance of the sensing platform when solicited by realistic time series.

A dedicated approach for the classification of different kinds of signals recorded by the
sensing node has been introduced and assessed. In particular, the algorithm developed allows
us to separate three classes of signals, namely, noise floor, structural response, and exogenous
signals. The algorithm has been tested by using a dedicated dataset, and the results obtained
allow for affirming the excellent performance of the methodology developed.

Future activities will be dedicated to implementing the deployment of the preprocess-
ing and classification algorithm in the embedded architecture of the sensor node. Moreover,
a large experimental survey will be performed by recording long-lasting time series, thus
extending the available dataset. If required, the procedure adopted to set classification
thresholds will be iteratively applied in order to adapt the set of estimated rules to a wide
set of real observations.

Moreover, efforts will be also dedicated to identifying possible strategies aimed at
reducing the effect of influencing quantities on the system performances.
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Abstract: Personal protective equipment (PPE) has been universally recognized for its role in protect-
ing workers from injuries and illnesses. Smart PPE integrates Internet of Things (IoT) technologies to
enable continuous monitoring of workers and their surrounding environment, preventing undesirable
events, facilitating rapid emergency response, and informing rescuers of potential hazards. This work
presents a smart PPE system with a sensor node architecture designed to monitor workers and their
surroundings. The sensor node is equipped with various sensors and communication capabilities,
enabling the monitoring of specific gases (VOC, CO2, CO, O2), particulate matter (PM), temperature,
humidity, positional information, audio signals, and body gestures. The system utilizes artificial
intelligence algorithms to recognize patterns in worker activity that could lead to risky situations.
Gas tests were conducted in a special chamber, positioning capabilities were tested indoors and
outdoors, and the remaining sensors were tested in a simulated laboratory environment. This paper
presents the sensor node architecture and the results of tests on target risky scenarios. The sensor
node performed well in all situations, correctly signaling all cases that could lead to risky situations.

Keywords: wearable; smart personal protective equipment (PPE); safety; particulate matter (PM);
gas exposure; IoT; sensor node; indoor outdoor localization

1. Introduction

According to the INAIL (Italian National Institute for Occupational Accident Insur-
ance) annual report in 2022 [1], the number of reports of accidents at work submitted to the
Institute in the year 2022 was 703,432, representing an increase of 139 thousand cases com-
pared with 2021. There were 1208 reports of fatal accidents, a decrease of 15.2% compared
with 2021. The reports of pathologies of professional origin rose by 18,164 (+25.1%). The
occurrence of accidents in the workplace by mode is shown in Table 1; the most accidents
were the result of falling from heights.

Even one fatal accident at work is too much; this is why research and improvement in
this field are important and desirable. With the recent improvements in the reliability of
cyber–physical systems, new applications can be conceived to make workplaces safer than
they were before. WAs workers can be continuously monitored in workplaces utilizing
modern intelligent systems, it is possible to prevent and warn workers of risks. Smart
PPE devices are cyber–physical systems that incorporate communication, elaboration, and
sensing components that are deeply intertwined to pursue a specific task. This work
presents a smart PPE which, together with a communication infrastructure and a remote
server for visualization and alarm, contributes to the mitigation of risks related to the
duties of workers and eventually improves the overall working conditions in workplaces.
The smart PPE device oversees some quantities in the environment in which the worker
is operating to recognize and prevent uncontrollable or hazardous situations. There are
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studies in the literature that cover the topic of the design of smart PPE [2–4]. In [2], the
authors proposed a system that measures some parameters such as humidity, temperature,
acceleration, and gas and exploits artificial intelligence to optimize choices in terms of
safety at work. Here, sensors were incorporated in the helmet and the belt of the worker.
However, the system designed in [2] does not address the problem of locating the worker
in the working environment. The smart PPE presented in this work introduces an RTLS
(real-time locating system) for indoor locations and a GPS for outdoor locations that lay
the groundwork for an augmented reality remote assistant project covered in future works.
In [3], a specific application is covered, namely the mitigation of risks in the case of workers
who operate in construction sites where the main threat is represented by height. In [4], the
authors presented a device that can monitor the concentration of carbon dioxide present
in the air together with physiological sensors applied on the body of the worker; all this
information is used to assess the worker’s state and, in case of anomaly, issue an alarm.
The novelty in the present work, compared to the state of the art, is that the proposed
solution offers an extensive sensor array and includes locating capabilities for both indoor
and outdoor environments in a compact form factor. The node is equipped with a GPS
sensor and an RTLS, the combined data of which are fed back to the control center with
precise information about the position of the worker. Starting from that knowledge, in
case of emergency, the rescuers can be informed of the exact position of the worker. The
sensor node puts together a large mix of features, retaining reduced dimensions and low
consumption. The features, among the others presented in the continuation of this article,
include gas monitoring (VOC, CO2, CO, O2), air quality monitoring by means of a PM
(particulate matter) sensor, a temperature and humidity sensor; in addition, the proposed
device is equipped with a gyroscope, accelerometer, RTLS, GPS, LORA communication, and
BLE. This work improves the preceding versions of the sensor node [5,6]. Some important
improvements were made to achieve a compact form factor and improve portability. Low-
power policies were introduced to improve battery endurance. A new localization system
was implemented using two different localizing technologies, GPS and RTLS. Finally, a
new experimental sensor array was integrated into the new node. Section 2 describes the
details of the architecture, the sensors, and the devices used. Then, in Section 3, the results
are shown along with the position testing. Section 4 is dedicated to the discussion of the
results. Finally, conclusions and future work are reported in Section 5.

Table 1. Fatal accidents by mode of occurrence.

Height
Fall

Object
Fall

Loss
Control
Vehicles

Contact
with

Moving
Objects

Vehicle
Start

Contact
with

Washing
Machines

Other

32.5% 16.8% 14.6% 6.8% 6.3% 5.5% 17.5%

2. Materials and Methods

A sensor node was developed within an IoT architecture, enabling remote hazard
detection in both indoor and outdoor environments. This architecture utilizes a real-
time locating system (RTLS) combining ultra-wideband (UWB) and global positioning
system (GPS) technologies (Figure 1). The figure depicts the entire system, including the
sensor node (described in the next paragraph), an LoRaWAN™-based wireless network,
and a remote-control center. The control center leverages the TagoIO cloud IoT platform
(version 2.18.0) for data transfer, storage, and visualization. TagoIO was chosen due to
its comprehensive suite of IoT data management features, including real-time alerts, data
visualization, storage capabilities, and seamless integration with other platforms.
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Figure 1. General architecture of the system from smart PPE to control room.

This architecture allows for remote worker status monitoring via a custom-designed
visual interface within the TagoIO platform.

2.1. Signal Processing and Visualization

The node continuously monitors various sensor parameters, ensuring their compliance
with predefined limits. Upon anomaly detection, the node transmits alarm or telemetry
messages along with the worker’s location via an LoRa network.

The communication protocol leverages the standardized Cayenne Low-Power Payload
(CayenneLLP) coding scheme. This approach guarantees compliance with payload size
restrictions and enables the node to transmit diverse sensor data within a single message.
Each data point is preceded by two bytes: a data channel identifier and a data type identifier.
Table 2 details the payload structure.

Table 2. Payload coding.

1 Byte 1 Byte N Byte 1 Byte 1 Byte M Byte . . .

Data 1 Ch. Data 1 Type Data 1 Data 2 Ch. Data 2 Type Data 2 . . .

During normal operation, the packet size is minimized to optimize transmission ef-
ficiency. Alarm status is represented by a 16-bit register, where each bit flag corresponds
to a specific alarm type (refer to Table 3). This register is then embedded within a Cayen-
neLLP packet that also includes worker location information and, in telemetry mode, the
actual sensor value that triggers the alarm. This minimized payload size facilitates faster
transmission, reduces on-network packet collisions, and allows for future expansion of the
message format to accommodate additional data.

The received raw buffer, representing the encoded message, requires decoding to
reach a human-readable format. This is achieved by employing a dedicated “Payload
Formatter” software module (version 1.1), designed to decode newly received messages.
The system dashboard (Figure 2) displays both alarm notifications generated by the node
and a clear map depicting the worker’s location within the monitored environment. In the
telemetry mode, the dashboard additionally displays data from various sensors alongside
the standard information (alert, worker position, and timestamp).
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Table 3. List of alarm coding.

Alarm Type Register Value

Temperature alarm xxxxxxxxxxxxxxx1
Humidity alarm xxxxxxxxxxxxxx1x
Pressure alarm xxxxxxxxxxxxx1xx

VOC alarm xxxxxxxxxxxx1xxx
CO2 xxxxxxxxxxx1xxxx

PMS alarm xxxxxxxxxx1xxxxx
Audio alarm xxxxxxxxx1xxxxxx

BLE broadcast alarm xxxxxxxx1xxxxxxx
Fall alarm xxxxxxx1xxxxxxxx
User alarm xxxxxx1xxxxxxxxx
-Unused- xxxxx1xxxxxxxxxx
-Unused- xxxx1xxxxxxxxxxx
-Unused- xxx1xxxxxxxxxxxx

POZYX timeout xx1xxxxxxxxxxxxx
POZYX sensor failures x1xxxxxxxxxxxxxx

PMS sensor failures 1xxxxxxxxxxxxxxx
No alarms- No sensor failures 0000000000000000

Figure 2. This picture shows the telemetry dashboard with the following info: 1. outdoor position,
2. active nodes, 3. indoor position, 4. raw sensor data, alarm type, and timestamp, 5. heat map, 6.
data plot.

2.2. Sensor Node Description

The IoT node’s core architecture comprises a multi-sensor node (MSN) and a commu-
nication board (CB). The MSN integrates sensors for environmental and motion monitor-
ing, including temperature–humidity (HTS221), pressure (LPS22DF), and 6-axis inertial
(LSM6DSOX) measurement. The CB incorporates the Teseo-LIV3F GNSS module for out-
door positioning and the STeval-STRKT01 LoRa connectivity module. To enhance air
quality monitoring, PM (Plantower PMS 7003), VOC, CO2, CO, and O2 sensors are inte-
grated. Indoor positioning is achieved through an external board in conjunction with fixed
anchors. A dedicated audio board (STLCS01V1) processes noise levels, triggering alarms
when they exceed safety thresholds. Instantaneous alerts are provided via buzzer, LED,
and vibration motor.

Prioritizing a compact, wearable form factor, a custom two-layer PCB minimizes
external cables. The bare sensor node measures approximately 12 cm × 13 cm × 5 cm.
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Figure 3 illustrates the hardware architecture and the final packaged personal protective
equipment (PPE), measuring 20 cm × 16 cm × 10 cm and weighing approximately 800 g
with the 8000 mAh battery.

Figure 3. This picture shows hardware characteristics (block scheme and node photo); (1) MSN—
multi sensor sub-node (STM customized board with sensor expansion area, shield, and DIL24
connectors); (2) CB—communication board, gps, and LoraWan tracker (STM STEVAL-STRKT01);
(3) RTLS tag (POZYX tag); (4) PM—particulate matter sensor (PlantowerPMS7003); (5) PL, SL, MPS:
power/status LEDs and main power switch connectors); (6) AB—smart audio board (STM STEVAL-
STLCS01V1); (7) PMS—power management system (management and distribution); (8) HU—hub
unit (power and data distribution unit); (9) BZ—buzzer; VM—vibration motor; (10) O2 and CO
electrochemical solid polymer sensors (EC sense ES1-O2-25%, EC sense ES1-CO-1000 ppm); (11) VOC
MOX sensor (Sensirion SGP40, 0–1000 ppm eth. Eq.); (12) experimental NDIR CO2 sensors; (13) final
wearable sensor node. The PCB serves the primary function of interconnecting all the aforementioned
boards and integrating the power management system (PMS). Individual power switches facilitate
power-saving algorithms by enabling control over the power supply to each board. This allows
for selective activation, such as engaging the real-time locating system (RTLS) solely during alarm
situations. A lithium-ion battery with a capacity of 8000 mAh furnishes power to the system.

3. Results

The sensor node adopts a modular design, integrating dedicated sections for gas
sensing, power management, localization, particulate matter detection, audio capture,
and inertial measurement onto a single wiring motherboard. The node acquires data at
predetermined sampling rates for various parameters and transmits it to a central control
unit for visualization and data analysis.

To facilitate testing, the node’s functionalities are divided between the communication
board (CB) and the measurement sensor node (MSN). This architecture enables indepen-
dent testing of communication and sensor components but necessitates a synchronized
communication protocol. An asynchronous leader–follower protocol is implemented, with
the CB as the leader, initiating data exchange with the MSN.

Power consumption optimization is crucial due to varying sensor demands. The
RTLS and communication modules consume the most power. To extend battery life, a
hardware switch deactivates the RTLS when inactive, and the communication module
enters a low-power state.

Initial testing revealed noise interference from the audio sensor, which was addressed
by strategically positioning sensors to minimize disturbances. The audio sensor is placed
away from noise sources, gas sensors are positioned for optimal airflow, and the tempera-
ture/humidity sensor is located in a cooler area.

3.1. Gas Detection Capability

The node incorporates commercial sensors. For CO and O2 sensing, EC sensors’
solid-state electrochemical sensors were selected based on TLV-STEL limits of 100 ppm
for CO and 16% v/v for O2 [7]. The ES1-CO-1000 ppm and ES1-O2-25% models offer
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compact dimensions and low power consumption. For VOC sensing, the Sensirion MOX
SGP40 model, with a range of 0–1000 ppm [8], was chosen. To meet the CO2 TLV-STEL of
30,000 ppm [9], a suitable sensor was selected. The gas sensor array is shown in Figure 3.

To evaluate sensor performance, extensive laboratory tests were conducted using a gas
sensing characterization system (GSCS). This system simulates hazardous environments
by controlling gas concentrations within a test chamber. The chamber, equipped with
temperature, humidity, and pressure sensors, allows for precise atmosphere control. An
artificial atmosphere is generated by mixing dry and wet air with the target gas, controlled
by software (version 1.1) and C++ libraries. The sensor node was installed in the test
chamber (Figure 4) and exposed to a constant airflow of controlled atmosphere at 22 ± 2 ◦C
and 500 sccm.

 

Figure 4. Sensor node installed in the gas sensing test chamber inside the GSCS equipment.

To assess gas sensor performance and verify alarm threshold accuracy, three tests were
conducted, as illustrated in Figure 5. The tests involved sequentially exposing the sensor
node to CO concentrations up to 250 ppm, reducing oxygen levels to 10%, and exposing it
to ethanol concentrations exceeding 2000 ppm as a VOC representative. The red lines in
the graphs indicate the sensor node’s alarm thresholds. Custom firmware was developed
to extract data from each gas sensor for analysis.

Figure 5. Sensor node gas sensors test in controlled environment: on the (left), see the time evolution
of the CO-calibrated sensor response under an exposure of a concentration of 250 ppm of CO in
synthetic air humified at 50% RH. The vertical green lines indicate the start injection and the stop
injection while the horizontal red line indicates the alarm threshold; similarly, in the (center), see the
O2 calibrated sensor response to an oxygen decrease in the artificial atmosphere; on the (right), see
the ethanol sensor sensitivity curve from 200 ppm to 2000 ppm correlated to a calibrated PID. The
red vertical line indicates the alarm threshold.
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The sensor node uses a prototype of an experimental NDIR CO2 sensor. The NDIR gas
sensors have traditionally been larger in size compared to some other types of gas sensors,
due to the need of longer optical path length and to place the source and the detector face
to face, increasing the sensitivity. The gas sensor described in this work followed a different
approach. It has been designed to fit into a DIL24 (dual in line) adapter board in order to
be integrated into the IoT node.

The developed solution includes a flat lower internal wall, made of PCB (printed
circuit board), to which the detector and the emitter are fixed, and a biconical upper
internal wall which is configured to reflect the IR radiation issued by the emitter. Both the
emitter and the detector face the upper internal wall so that the IR radiation is reflected by
the upper internal wall before reaching the detector. Thanks to this reflection, the optical
path is no longer formed by a single straight stretch, as mentioned before, and its total
length is greater than the mutual distance between the emitter and the detector. This allows
the size and bulk of the container body to be reduced while maintaining high absorption of
IR radiation.

Thanks to the 3D simulation, the shape and size of the two reflectors have been
optimized to achieve maximum sensitivity without increasing the overall dimensions. The
shape of the lid is a biconical surface and coupling this surface occurs with a flat reflector
on top of a PCB, which permits multiple reflections. Regardless of the direction of the
emissions, every ray launched from the source hits at the detector and then is absorbed.

Since the IR sensor itself is not capable of providing a radiation measurement that
is frequency-selective, the first IR sensor also includes the optical filter, which allows the
frequency of the IR radiation entering the sensor to be selected. In the case of CO2 detection,
where the absorption wavelength of the main absorption peak is approximately 4.3 μm, the
optical filter used is a bandpass filter from 4.2 μm to 4.4 μm.

The second (reference) IR sensor differs from the first regarding the absorption range
of the optical filter; in particular, at the reference wavelength, the absorption peaks of one
or more gases to be detected are absent. For example, the reference wavelength can be
equal to 3.89 μm; therefore, the absorption range of the optical filter of the second IR sensor
can be between 3.79 μm and 3.99 μm approximately.

Reflecting the surface of the lid is achieved by standard gold plating, while the reflector
on the PCB is achieved by rectangular metalization with NiAu plating.

Figure 6 shows the DIL24 with a reflective surface and the internal shape of the lid.

Figure 6. (Left): DIL24 PCB with reflecting surface; (right): internal shape of the lidded 3D rendering
of the final wearable sensor node.
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To evaluate the performance of this sensor and thus understand whether it can meet the
requirements of the scenario in which the multi-sensor node is to operate, we used the same
instrumentation as for the characterization of the commercial gas sensors previously seen.

The node was exposed to a concentration of 10,000 ppm CO2 and its response in terms
of resolution and noise was then evaluated.

Figure 7a shows two different calibration curves to which we subjected the sensor.
As can be seen, the sensor response time was determined to be significantly faster than the
chamber’s estimated 1200 s response time, indicating rapid response to the target gas. This
result allows us to state that the sensor responds to the analyte gas within a few seconds,
and this is a first result that meets the specifications of the scenario.

Figure 7. Calibration curves over time: (a) yellow and red show the concentration trends in the
controlled chamber; green and blue show the relative sensor responses; (b) scatter plot between
chamber concentration and sensor response in the two analyte injections considered, respectively, in
orange and blue.

On the other hand, as can be seen from the scatter plot in Figure 7b, the sensor exhibits
a strong linear relationship with CO2 concentration within the tested range. The correlation
coefficient between the values recorded in the chamber and the sensor response is close to 1.
The sensitivity recorded is 30 ppm per appreciable lsb of the sensor. However, in terms of
noise, we estimated the noise from the baseline; therefore, when the sensor is in a ‘resting’
state (not exposed to the analyte), it is around 30 lsb.

The sensor’s response to common disturbances such as temperature and humidity
was also evaluated. Considering the temperature variation, a drift was recorded, which
was easily corrected with a firmware recalibration, while no drift was recorded when the
sensor was exposed to a relative humidity variation between 20 and 70%.

Considering the data obtained, the sensor under examination is certainly capable of
meeting the specifications dictated by the scenarios in which it will operate, even if noise
rejection can be improved working on the hardware components.

3.2. Power Management

To improve battery life, this study investigates and implements tailored power man-
agement strategies that address the node’s diverse operational scenarios.

Beyond employing low-power sensor solutions (e.g., electrochemical sensors, MEMS
with onboard complex gesture recognition), component activation policies were introduced
to ensure on-demand operation, minimizing unnecessary power consumption. Testing
revealed that localization devices, specifically TAG RTLS, significantly impacted over-
all power consumption. Consequently, a key strategy involved minimizing their active
mode time to strictly necessary periods for localization tasks. Similarly, communication
operations were optimized by limiting data transmission to sampled values and enabling
programmable transmission frequency based on application requirements, further reducing
energy consumption.

To determine the optimal balance between operational endurance and battery capacity,
a series of empirical trials were conducted. These trials measured the operating time from
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full battery charge to complete discharge following some power management policies
(e.g., RTLS module continuously active vs. active on-demand, as shown in Table 4) while
capturing a single alarm event. The trials were performed under the same operational
mode to isolate the impact of specific policies. The final battery selection (8000 mAh) aimed
to ensure a monitoring session of approximately one workday, even in the worst-case
scenario without any power-saving features enabled. Implementing these features demon-
strably extends operational endurance, allowing for extended operation periods in mobility.
Further energy savings can be achieved by leveraging the sleep and deep sleep modes of
specific node modules. Due to the independent operating states of these modules (e.g.,
GPS tracking and LoRaWAN™ communication devices), utilizing their native low-power
and ultra-low-power states can significantly reduce current draw. For instance, switching
from active operation to a low-power state can decrease current consumption from 60 mA
to 200 uA, representing a substantial 36% energy saving compared to operation without
power-saving policies. This highlights the significant potential for further optimization
through strategic use of these built-in functionalities.

Table 4. Battery comparison (RTLS module continuously active vs. active on-demand).

RTLS Battery Capacity (mAh) Endurance (h) Battery Weight (g)

Continuously ON 8000 >7 121

Continuously ON 3800 <4 58

Continuously ON 6600 <6 97

ON-DEMAND 8000 >9 121

ON-DEMAND 3800 >5 58

ON-DEMAND 6600 >7 97

3.3. Localization

Localization is achieved through a dual technology system combining RTLS UWB for
indoor and GPS for outdoor positioning. This approach enhances localization precision,
enabling sub-meter accuracy even in complex outdoor environments.

The RTLS UWB localization system is based on a commercial tag (POZYX developer
tag [10]) incorporated in the node. The whole system, supporting the tag in the node, is a
commercial product (Pozyx developer kit), which works through the dialogue of a master
tag connected to a PC (both constituting the localization engine) and a constellation of
anchors which are used as references for location measurements. Figure 8 illustrates the
POZYX developer kit block diagram (source: POZYX product sheet).

Figure 8. RTLS block scheme.

In order to assess the precision and reliability of the localization system, a series of
experiments were conducted within a controlled indoor environment. In the outdoor
case the locating capabilities are entrusted to the performance of GPS system in a two-
dimensional plane. The indoor case contemplates three-dimensional positioning. The test
area (Figure 9) was a rectangular room measuring 6.2 m by 3.4 m, characterized by the
presence of typical indoor obstacles such as chairs, cabinets, and various tools. The room
is quite noisy in terms of electromagnetic radiation. To establish a reference frame for the
localization data, a Cartesian coordinate system was defined within the room. The origin
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of this coordinate system was situated at the lower left corner of the room. The pavement
corresponds to the x–y plane and the height corresponds to the z-axis. The x-axis coincides
with the south wall and the y-axis coincides with the west wall. Five anchors have been
placed in the locations shown in Figure 9. Two distinct test positions, labeled T1 and T2,
were established within the room to evaluate the system’s performance under different
conditions, while the anchors have been indicated with red cross and the capital letter A.
The anchors have different heights from the pavement, A1 @ 1.5 m, A2 @ 1.6 m, A3 @ 1.5 m,
A4 @ 1.9 m, and A5 @ 1.9 m. T1 (the node position for the test 1) is placed 133 cm from the
north wall and 133 cm from the west wall and the sensor node has been elevated to 60 cm
from the pavement. T2 is placed 66 cm from the south wall and 80 cm from the east wall
and has been elevated to 180 cm.

Figure 9. Two-dimensional map of the test room. In red, the anchors, T1 and T2 are the test points in
the room.

Data analysis was performed using Python-based packages (v.3.6) including Seaborn,
Matplotlib, NumPy, and Pandas. Initially, the zero-position offset was determined to
remove systematic errors from subsequent position measurements. Analysis revealed
accurate zero reference in the x–y plane, with errors within a 10 cm interval, but larger
errors exceeding 10 cm in the z-axis (Figure 10a). Two node positions were then tested. In
both cases, high precision was observed across all axes, as indicated by low variability and
interquartile ranges in the box plots (Figure 10b–d). Considering the system’s application
in worker localization and activity recognition, an error tolerance of 60 cm per axis was
deemed acceptable for distinguishing between normal and abnormal working postures.
Average measured positions were compared to true values (Table 5). While precision was
satisfactory, accuracy was found to be limited, primarily due to the number and placement
of anchors. The POZYX system manufacturer claims sub-10 cm accuracy under optimal
conditions. To enhance accuracy, optimizing anchor positions is recommended.

Table 5. Average of the measured samples versus true values.

X Y Z

T1 84.66 vs. 133 198.82 vs. 207 50.22 vs. 60

T2 485.03 vs. 540 52.5 vs. 66 169.25 vs. 180
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(a) 

 

(b) 

(c) 

 

(d) 

Figure 10. Boxplot representations of the test: the star is the true value, the triangle is the average
value of the measures, and the line in the box is the median (2 quartile). Zero reference for the
z-axis (a). Results for two tests on z, x, and y-axes, respectively (b–d).

3.4. Particulate Matter

To evaluate performance in high-particulate-matter conditions, the sensor node,
equipped with a commercial Plantower PMS7003 dust sensor, was placed within a 500 L
sealed chamber. A variable amount of certified dry Arizona Test Dust (ISO 12103-1) was
injected into the chamber using a TOPAS SAG411 generator. A certified DustTrack 8533
reference instrument was concurrently installed to provide a benchmark measurement of
particulate concentration.

The sensor node’s accuracy and precision were assessed across two PM2.5 concentra-
tion intervals: 0–500 μg/m3 and 500–2000 μg/m3. Figure 11 (top left and right) illustrates
the linear correlation between measured and reference PM2.5 values. The sensor provides
two calibrated outputs: SP and AE, reflecting different calibration standards. While the sen-
sor demonstrates precision in high dust concentrations, accuracy diminishes, indicated by
the increasing discrepancy between measured and reference values. This loss of sensitivity
is likely attributed to the high concentration of submicron particles attenuating the laser
beam used for measurement. Following recalibration, measurement error was reduced to
an average of less than 30%, as shown in Figure 11 (bottom left and right).

331



Sensors 2024, 24, 4993

Figure 11. Sensor node PM measurement accuracy and precision: compared to reference instrument.
The (a,b) images show how the Plantower PMS7003, installed on the sensor node, estimates the real
value of PM2.5, measured by the reference instrument in two ranges: on the (a,c) from 0 μg/m3 to
500 μg/m3 and on the (b,d) from 500 μg/m3 to 2000 μg/m3. The two graphs at the (c,d) refer to the
relative error that the PMS7003 made in a PM2.5 measurement after the recalibration. SP and AE
refer to two different types of calibrated output.

3.5. Audio

The sensor node incorporates an audio section for real-time environmental noise
monitoring. A commercially available sensor tile board (STLCS01V1) equipped with a
low-power, omnidirectional, digital MEMS microphone (MP34DT05-A) is employed for
this purpose. The microphone’s capacitive sensing element, integrated circuit interface,
low distortion, and high signal-to-noise ratio (64 dB) contribute to precise sound pressure
detection and accurate signal representation. Notably, the guaranteed sensitivity of −26 dB
± 3 dB ensures a wide dynamic range for capturing diverse sound levels. The microphone’s
reliable operation across a temperature range of −40 ◦C to +85 ◦C guarantees consistent
performance in various environments. The audio section autonomously measures ambient
sound pressure, triggering an alert when exceeding a predefined threshold. This threshold
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corresponds to noise levels mandating personal protective equipment (PPE) use. The sensor
tile board enables not only real-time monitoring but also potential expansion to advanced
audio analysis, adapting the sensor node to evolving requirements and enabling more
sophisticated noise characterization. The audio section’s performance was evaluated in a
dedicated test chamber (Figure 12).

A test setup was established comprising the sensor node, a reference-grade Deltha
Ohm HD2010UC phonometer, and a Bluetooth speaker for generating controlled sound
stimuli. The speaker emitted sound frequencies ranging from 500 Hz to 4000 Hz in 500 Hz
increments. Sound pressure levels were simultaneously monitored by both the phonometer
and sensor node. The sensor node demonstrated exceptional performance, accurately
detecting all sound events exceeding the 85 dB(A) threshold across the tested frequency
range. These results confirm the sensor node’s reliable sound pressure detection capabilities.

 
Figure 12. Audio test setup.

3.6. Accelerometer and Gyroscope

The LSM6DSOX, a 3D digital accelerometer and gyroscope, was selected for its config-
urable full-scale acceleration (±2 g, ±4 g, ±8 g, ±16 g) and angular rate (±125 dps, ±250 dps,
±500 dps, ±1000 dps, ±2000 dps) ranges, high mechanical shock tolerance, and embed-
ded complex gesture recognition capabilities. The sensor’s integrated pre-programmed
free-fall detection feature, which leverages a dedicated register configuration to identify
zero-gravity conditions, was of particular interest. To evaluate this feature, the sensor node
was dropped from a height of 30 cm thirty times. Free-fall was accurately detected in all
trials, triggering an appropriate alarm on the dashboard.

4. Discussion

This work introduces a novel personal protective device designed to enhance work-
place safety and risk awareness. The device collects real-time data to enable data-driven
security, monitoring worker actions and utilizing historical data with intelligent algorithms
to prevent accidents. Given the safety-critical nature of the application, the hardware
incorporates redundancies to ensure accurate environmental data.

Previous sections detailed the sensor node’s performance in individual components.
Gas sensor tests, conducted in a controlled chamber, successfully detected CO levels exceed-
ing the 100 ppm threshold. Similar tests using ethanol as a TVOC marker demonstrated
strong correlation between sensor and reference instrument outputs, enabling TVOC thresh-
old detection.

Localization, which is essential for worker tracking, was achieved through a combina-
tion of RTLS and GPS technologies. Indoor accuracy was influenced by anchor placement,
while outdoor performance relied on GPS. A target localization accuracy of 5 m was
established to support worker rescue and context-aware safety measures.

The sensor node’s particulate matter sensor accurately measured PM2.5 concentrations
compared to a reference instrument, enabling the identification of excessive exposure levels.
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Early detection of elevated particulate matter allows for timely interventions to mitigate air
pollution and protect worker health.

The integrated audio section monitored noise levels, triggering alerts when noise
exceeded the predefined thresholds. This enables timely interventions to protect workers
from excessive noise exposure. Additionally, the accelerometer and gyroscope detected
falls and abnormal movements, initiating appropriate emergency responses.

Comprehensive system tests simulated real-world scenarios, including exposure to
high noise levels and particulate matter concentrations. The system accurately detected
these hazards, triggered alarms, and transmitted relevant data to the control center. Fall
detection tests were also successful, demonstrating the system’s ability to identify and
respond to emergency situations.

While the system demonstrated promising results, further optimization of anchor
placement is necessary to improve indoor localization accuracy. Overall, the sensor node
effectively collects and processes environmental data, enabling real-time monitoring and
timely interventions to enhance worker safety.

Security and Privacy Issues

The implementation of a system that monitors workers and their environment presents
challenges beyond technical considerations. Paramount among these are the security of
collected information and the protection of workers’ personal data. These factors are crucial
in the widespread adoption of this technology in workplaces.

Smart PPE, integrating computing, communication, and artificial intelligence, offers
dynamic hazard adaptation. To effectively manage emergencies, the system necessitates
confidential, integral, and accessible data. Data confidentiality is essential to prevent unau-
thorized access and tampering, ensuring accurate decision making and intervention. Data
integrity guarantees reliable and representative information for algorithm training and op-
erational effectiveness. Data availability is crucial for timely responses to critical situations.

Privacy concerns arise from the device’s monitoring of worker position, movement,
and audio. The collection of data ranging from device access logs to personal profiles raises
questions about remote worker control. While legal exceptions exist for workplace safety
and asset protection, navigating the evolving legal landscape and maintaining compliance
can be complex and costly, particularly when relying on third-party software.

Comprehensive solutions addressing data security, privacy, and legal compliance are
imperative for the widespread adoption of this technology. This paper focuses on technical
aspects, recognizing the need for further research and development in these critical areas
to fully realize the potential of smart PPE in enhancing workplace safety.

5. Conclusions

This work introduces a novel IoT sensor node for enhancing workplace safety. The
system effectively collects and records environmental data, facilitating rapid intervention
and worker alerts in hazardous situations. In emergency scenarios, it provides crucial
information to rescue teams. Promising test results indicate its potential to significantly
improve workplace safety when implemented and validated.

The sensor node incorporates a comprehensive suite of sensors, prioritizing wearability
and extended battery life. Its dual-technology localization system enables precise indoor
and outdoor positioning, while the multi-sensor array provides a holistic environmental
assessment. These capabilities, combined with potential augmented reality integration,
position the device as a pioneering solution within the emerging field of active PPE.

Future research will focus on device-to-device communication protocols, advanced
AI algorithms for complex pattern recognition, and the development of a robust security
and privacy framework to address legal and ethical considerations. By overcoming these
challenges, this technology can be fully realized as a transformative tool for enhancing
workplace safety.
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