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Advances in Difference Equations

Azhar Ali Zafar

Department of Mathematics, Government College University, Lahore 54000, Pakistan; azharalizafar@gcu.edu.pk

1. Introduction

This editorial concerns the Special Issue of Axioms entitled “Advances in Difference
Equations”. It is well known that difference equations provide an extreme and yet widely
recognized representation of complex dynamical systems. The kernel of non-integer order
derivative operators holds significant relevance as an empirical explanation for these
complex phenomena. In recent years, the theory of non-integer order derivative operators
has been successfully applied to the study of anomalous behaviors in both social and
physical sciences. This Special Issue thus highlights high-quality research papers featuring
novel findings, with a focus on the theory and applications of differential and difference
equations, particularly in the fields of science and engineering.

2. An Overview of the Published Papers

This Special Issue includes 10 papers that were accepted for publication following a
thorough and rigorous review process.

In the first contribution, several new types of partial fractional derivatives in both
continuous and discrete settings are introduced. Moreover, some classes of the abstract
fractional differential equations and the abstract fractional difference equations depending
on several variables are investigated.

The second contribution presents new nonlinear delayed integral inequalities which
can be utilized to study the existence, stability, boundedness, uniqueness, and asymptotic
behavior of solutions of nonlinear delayed integro-differential equations. These inequalities
can be used in the symmetrical properties of functions and also generalize several well-
known inequalities in the literature.

In the third contribution to this Special Issue, a class of nonlinear ordinary differential
equations with impulses at variable times is considered. The existence and uniqueness of
the solution are given. Simultaneously, the classical definitions of continuous dependence
and Gâteaux differentiability are modified. The results provide a foundation to study
optimal control problems of systems governed by differential equations with impulses at
variable times.

The fourth contribution deals with the oscillatory behavior of solutions of a new class
of second-order nonlinear differential equations. Some new criteria, that guarantee the
oscillation of all solutions of the dynamical model without additional restrictions, are
introduced. This new approach improves the standard integral averaging technique to
obtain simpler oscillation theorems for new classes of nonlinear differential equations.

The Special Issue’s fifth contribution aims to describe the dynamics of a discrete
fractional-order reaction–diffusion FitzHugh–Nagumo model. Acceptable requirements for
the local asymptotic stability of the system’s unique equilibrium are established. Moreover,
it is established that the constant equilibrium solution is globally asymptotically stable.

In the sixth contribution, the problem of synchronization-control in a fractional discrete
nonlinear biological model is investigated using the Caputo h-difference operator and
an L1 finite difference scheme. Furthermore, this research revealed that the L1 finite
difference scheme and the second-order central difference scheme may successfully retain
the properties of the related continuous system.

Axioms 2024, 13, 651. https://doi.org/10.3390/axioms13090651 https://www.mdpi.com/journal/axioms1
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In the seventh contribution to this Special Issue, topological degree and fixed point
theorems are applied to investigate the existence, uniqueness, and multiplicity of solutions
for a boundary value problem associated with a fractional-order difference equation. The
results are validated by the provision of appropriate examples.

In eighth contribution, the qualitative properties of solutions to a general difference
equation are investigated. Necessary and sufficient conditions for the existence of prime
period-two and period-three solutions are provided. Furthermore, the boundedness and
global stability of the solutions is investigated.

The ninth contribution forwards a neural network approach based on Lie series in
Lie groups of differential equations to solve Burgers–Huxley nonlinear partial differential
equations, where initial or boundary value terms in loss functions are investigated. The
proposed technique yields closed analytic solutions that possess excellent generalization
properties. Moreover, a thorough comparison with its exact solution is carried out to
validate the practicality and effectiveness of the proposed method, using vivid graphics
and detailed analysis.

Finally, the tenth contribution to this Issue offers novel adequate conditions for dif-
ference equations with forcing, positive, and negative terms to ensure non-oscillatory
solutions. To help establish the main results, an analogous representation for the main equa-
tion, called a Volterra-type summation equation, is constructed. Two numerical examples
are provided to demonstrate the validity of the theoretical findings.

Conflicts of Interest: The author declares no conflicts of interest.
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Article

Multidimensional Fractional Calculus: Theory and
Applications

Marko Kostić

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia;
marco.s@verat.net

Abstract: In this paper, we introduce several new types of partial fractional derivatives in the
continuous setting and the discrete setting. We analyze some classes of the abstract fractional
differential equations and the abstract fractional difference equations depending on several variables,
providing a great number of structural results, useful remarks and illustrative examples. Concerning
some specific applications, we would like to mention here our investigation of the fractional partial
differential inclusions with Riemann–Liouville and Caputo derivatives. We also establish the complex
characterization theorem for the multidimensional vector-valued Laplace transform and provide
certain applications.

Keywords: multidimensional fractional calculus; multidimensional discrete fractional calculus; mul-
tidimensional generalized Weyl fractional calculus; abstract partial fractional differential equations;
abstract partial fractional difference equations; multidimensional vector-valued Laplace transform;
multivalued linear operators

MSC: 26A33; 39A14; 45D05; 39A99; 47D99

1. Introduction and Preliminaries

Fractional calculus is an important field of theoretical and applied mathematics which
generalizes the classical differential and integral calculus with the operations of integration
and differentiation of noninteger order. Fractional calculus and fractional differential
equations have earned considerable popularity and importance in the past few decades
in various fields of applied science; for further information in this direction, see [1–8]
and the references quoted therein. We will only mention here that fractional differential
equations are invaluable and important in modeling of various phenomena appearing in
mathematical physics, viscoelasticity, optics, acoustics, rheology, bioengineering, control
theory, electrical and mechanical engineering and so on.

Discrete fractional calculus is also a rapidly developing branch of mathematics. The
first serious study of discrete fractional differences can be attributed to F. Atici and
P. Eloe ([9], 2009); for more details about this topic, we refer the reader to the research
monograph [10] by C. Goodrich and A. C. Peterson, and the references quoted therein.
Fractional difference equations are extremely useful in modeling discrete phenomena in
different fields such as economics, physics, engineering and biology, and undoubtedly,
there is a vast literature on them; for example, T. Zhang and Y. Li [11] recently analyzed the
global exponential stability of discrete-time almost automorphic Caputo–Fabrizio BAM
fuzzy neural networks (it would be very difficult to summarize and quote here all relevant
references concerning discrete fractional calculus and its applications). The stability, bound-
edness, periodicity and asymptotic behavior of solutions for various classes of the fractional
difference equations are very well explored by now. Concerning the existence and unique-
ness of almost periodic solutions to the abstract fractional difference equations and the
abstract Volterra difference equations, we refer the reader to the research monograph [12]
and the list of references quoted therein.

Axioms 2024, 13, 623. https://doi.org/10.3390/axioms13090623 https://www.mdpi.com/journal/axioms3
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The partial fractional derivatives of functions have not attracted as much attention
of the authors working in the field of fractional calculus to date. With the exception of
the structural theory developed in Chapter 5 of the fundamental research monograph [7]
by S. G. Samko, A. A. Kilbas and O. I. Marichev and some structural results about the
partial fractional differential equations given in Chapter 7 in the fundamental research
monograph [4] by A. A. Kilbas, M. Srivastava and J. J. Trujillo, we can freely say that almost
all established results about partial fractional derivatives of functions and partial fractional
differential equations given to date are rather fragmentary and concern some very special
kinds of functions and partial fractional differential equations. In this research study, we
tried to overcome the shortcomings of existing research by investigating many interesting
topics that have not attracted the attention of authors working in the field of fractional
calculus yet; for example, we initiated the study of the abstract partial fractional differential-
difference inclusions with multivalued linear operators here (the multidimensional Laplace
transform of functions with values in complex Banach spaces is also a very unexplored
chapter of the theory of integral transforms).

For example, H. M. Srivastava, R. C. Singh Chandel and P. K. Vishwakarma analyzed,
in [13], the partial fractional derivatives of certain generalized hypergeometric functions
of several variables (see also [14]); the partial fractional differential equations with Riesz
space fractional derivatives of positive real order (see [7] (Section 25, p. 357) for the notion
and more details) were analyzed by H. Jiang et al. in [15] (see also [16]). It is also worth
mentioning the recent research article [17] by V. Pilipauskaitė and D. Surgailis, where the
authors analyzed certain fractional operators and fractionally integrated random fields
on Zn. Further on, M. O. Mamchuev [18] and A. V. Pshku [19] considered the systems of
multidimensional fractional partial differential equations containing the terms of form
D

αj
xj u(x1, ..., xn) with just one index j ∈ Nn and not the general forms of partial fractional

derivatives introduced in this paper. More precisely, A. V. Pshku considered, in [19], the
well-posedness of the following multidimensional fractional partial differential equation:

n

∑
k=1

ak
∂σk

∂xσk
k

u(x) + λu(x) = f (x), x ∈ [0, ∞)n, (1)

where (∂σk /∂xσk
k u) denotes the fractional partial derivative of order σk with respect to the

variable xk with origin xk = 0 (in the sense of the Riemann–Liouville, Caputo or Dzhrbashyan–
Nersesyan approach); here ak > 0 for 1 ≤ k ≤ n, λ ∈ R and f (·) is a locally integrable
function. We also refer the reader to the works mentioned in [7] (pp. 623–624) and some
recent results about nonlinear fractional partial differential equations obtained in [20–25].

The structure and main ideas of this paper can be briefly summarized as follows.
First of all, we explain the notation and terminology used throughout the paper and
recall the basic facts about the generalized Hilfer fractional derivatives and differences
(cf. Section 1.1). Section 2 examines the multidimensional generalized Hilfer fractional
derivatives and differences. We first introduce the notion of a multidimensional generalized
Hilfer fractional derivative Dα

a,bu for a class of locally integrable functions u : [0, ∞)n → X;
here and hereafter, (X, ‖ · ‖) denotes a complex Banach space. After that, we introduce the
multidimensional generalized Hilfer fractional discrete derivative Dα

a,bu, for any sequence
u : Nn

0 → X. It seems that the notion introduced in this section is not considered elsewhere
in the existing literature, even for the Riemann–Liouville or Caputo fractional derivatives.

Section 3, which is broken down into two subsections, examines the multidimensional
generalized Weyl fractional derivatives and differences. The first subsection investigates
the generalized Weyl fractional derivatives and differences in the one-dimensional setting.
In Definition 3, we introduce the notion of a generalized Weyl fractional derivative Dα,a

W u
of function u(·). After that, we examine the basic structural properties of the introduced
fractional derivatives. If a : N0 → C and f : Z → X are given sequences, then we define
the Weyl fractional difference operator ΔW,a,m f . We show that the approach of R. Hilfer [3]
is meaningless for the definitions of Weyl fractional derivatives and differences.

4
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The second subsection investigates the generalized Weyl fractional derivatives and
differences in the multidimensional setting (concerning some predecessors of this work,
we would like to mention here the research articles [26] by V. B. L. Chaurasia and R. S.
Dubey, [27] by S. P. Goyal and Trilok Mathur, [28] by B. B. Jaimini and H. Nagar and [29] by
R. K. Raina; see also the lists of references quoted therein). We first introduce the notion
of a generalized Weyl (α, a)-fractional derivative D

α,a
W u; a very special case of the partial

fractional derivative D
α,a
W u is the generalized Weyl (α, a)-fractional derivative Dα

Wu. After
that, if the sequences aj : N0 → C and u : Zn → X are given and mj ∈ N is a given integer
(1 ≤ j ≤ n), then we introduce the multidimensional Weyl fractional difference operator
DW,a,mu. We investigate the law of exponents for generalized Weyl derivatives and integrals
and provide an interesting open problem about the generation of C-regularized solution
operator families by the Weyl fractional differential operators with constant coefficients.
Furthermore, we reconsider the well-known Clairaut’s theorem on equality of mixed
partial derivatives (sometimes also called Schwartz’s theorem or Young’s theorem) in
the fractional setting and prove that it is not valid for the Riemann–Liouville and Caputo
fractional derivatives (see [7], p. 342) for the first results established in this direction) as well
as that it is valid for the Weyl fractional derivatives under certain reasonable assumptions.

In Section 4, we introduce and analyze the partial fractional derivatives of functions
defined on some special regions in Rn and the partial fractional differences of sequences
defined on some special subsets of Zn (we tried to furnish an illustrative example for
each partial fractional derivative introduced in this paper; unfortunately, in the present
situation, we cannot precisely explain the physical meaning for each partial fractional
derivative introduced here). Further on, the investigation of two-dimensional scalar-valued
Laplace transform starts probably with the works of D. L. Bernstein [30,31] and J. C.
Jaeger [32] (1939–1941); for more details about the multidimensional scalar-valued Laplace
transform and its applications to (fractional) partial integro-differential equations, we refer
the reader to the research articles [33–38] and the doctoral dissertations [39–41]. For the
purpose of our investigations of the partial fractional integro-differential inclusions, we
provide the basic details and results about the multidimensional vector-valued Laplace
transform in Section 5 (we will systematically analyze multidimensional vector-valued
Laplace transform elsewhere). Our main structural result established in this section is
Theorem 1, where we clarify the complex inversion theorem for the multidimensional
vector-valued Laplace transform.

The fractional partial differential inclusions with Riemann–Liouville and Caputo
derivatives are investigated in Section 6.1, whose main results are Theorems 2 and 3 (cf. also
Remarks 3 and 4); Section 6.2, whose main result is Theorem 4, investigates the abstract
multiterm fractional partial differential equations with Riemann–Liouville and Caputo
derivatives, while Section 6.3 investigates the fractional partial difference equations with
generalized Weyl derivatives. Many other types of fractional partial differential-difference
equations will be considered in [12].

We introduce many new types of partial fractional derivatives in this paper. Before
fixing the notation and explaining some preliminaries, we would like to emphasize that it is
our duty to say that the motivation behind our innovations is still not sufficiently explained
as well as that future research studies should shed a light on these new concepts.

Notation and terminology. In the sequel, we will always assume that m, n ∈ N, (X, ‖ · ‖)
is a complex Banach space, L(X) is the Banach space of all bounded linear operators on
X and C ∈ L(X); Nn := {1, ..., n}, Nn

0 := {0, 1, ..., n} and �s� := inf{k ∈ Z : s ≤ k}
(n ∈ N; s ∈ R). If A is a closed linear operator on X, then [D(A)] denotes the Banach
space D(A) equipped with the graph norm. The finite convolution product ∗0 of the
Lebesgue measurable functions a(·) and b(·) defined on [0, ∞) is given by (a ∗0 b)(t) :=∫ t

0 a(t− s)b(s) ds, t ≥ 0; if the sequences (ak)k∈N0 and (bk)k∈N0 are given, then we define
(a ∗0 b)(·) by (a ∗0 b)(k) := ∑k

j=0 ak−jbj, k ∈ N0. If A and B are non-empty sets, then we
define BA := { f | f : A → B}. By Γ(·) we denote the Euler Gamma function; we set
gα(t) := tα−1/Γ(α), t > 0 and g0(t) := δ(t), the Dirac δ-distribution. If α ∈ (0, π], then

5
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we define Σα := {z ∈ C \ {0} : | arg(z)| < α}; further on, if ∅ 
= Ω ⊆ Rn is a Lebesgue
measurable set, then L1

loc(Ω) denotes the space of all locally integrable complex-valued
functions defined on Ω. For more details about the multivalued linear operators, we refer
the reader to [5]; we will use the same terminology as in this monograph.

If u ∈ L1
loc([0, ∞)n), j ∈ Nn and αj > 0, then we define

J
αj
tj

u
(
x1, ..., xj−1, xj, xj+1, ..., xn

)
:=
∫ xj

0
gαj

(
xj − s

)
u
(
x1, ..., xj−1, s, xj+1, ..., xn

)
ds,

x =
(
x1, ..., xj−1, xj, xj+1, ..., xn

)
∈ [0, ∞)n.

If α > 0, then the Cesàro sequence (kα(v))v∈N0 is defined by

kα(v) :=
Γ(v + α)

Γ(α)v!
.

It is well-known that for every α > 0 and β > 0, we have kα ∗0 kβ ≡ kα+β. Define
k0(0) := 1 and k0(v) := 0, v ∈ N; then kα ∗0 kβ ≡ kα+β for all α, β ≥ 0.

If (uk) is a one-dimensional sequence in X, then the Euler forward difference operator
Δ is defined by Δuk := uk+1 − uk. The operator Δm is defined inductively; then, for every
integer m ≥ 1, we have

Δmuk =
m

∑
j=0

(−1)m−j
(

m
j

)
uk+j.

If A and B are non-empty sets, then we define BA := { f | f : A→ B}.
If j = (j1, ..., jn) ∈ Nn

0 and k = (k1, ..., kn) ∈ Nn
0 , then we write j ≤ k if and only if

jm ≤ km for all 1 ≤ m ≤ n. If the sequences (ak)k∈Nn
0

and (bk)k∈Nn
0

are given, then we define
(a ∗0 b)(·) by

(a ∗0 b)(k) := ∑
j∈Nn

0 ;j≤k
ak−jbj, k ∈ N

n
0 ;

and it can be simply proved that the convolution product ∗0 is commutative and associative.
If the sequences (ak)k∈Nn

0
and (bk)k∈Zn are given, then we define the Weyl convolution

product (a ◦ b)(·) by

(a ◦ b)(v) := ∑
l∈Zn ;l≤v

a(v− l)b(l), v ∈ Z
n,

whenever the last series is absolutely convergent.
Finally, if a(·) is a given sequence in X which depends on the variables v1, ..., vn, then

we define

Δvi a
(
v1, ..., vi, ..., vn

)
:= a

(
v1, ..., vi + 1, ..., vn

)
− a
(
v1, ..., vi, ..., vn

)
.

After that, we set Δ2
vivj

a := Δvi Δvj a and Δ2
vivi

a := Δvi Δvi a; the terms

Δm
vi1

...vim
a and Δ|α|

v
α1
1 ·...·v

αn
n

a

are defined recursively, as for the partial derivatives of functions (αi ∈ N0; |α| = α1 + ... +
αn). It is worth noting that for every permutation σ : Nn → Nn, we have

Δ|α|
v

α1
1 ·...·v

αn
n

a = Δ|α|
v

ασ(1)
σ(1) ·...·v

ασ(n)
σ(n)

a, (2)

6



Axioms 2024, 13, 623

as easily proved. Many other important results of mathematical analysis, like Green’s for-
mula in the plane and the Grönwall inequality, have analogues for the difference operators;
see [42] (pp. 23–25, 43–44) for more details in this direction.

1.1. Generalized Hilfer Fractional Derivatives and Differences

If δ(t) denotes the Dirac delta distribution, then we accept the formal convention∫ t
0 δ(t− s) f (s) ds ≡ f (t). Suppose now that u : [0, ∞) → X is locally integrable, α > 0,

m = �α�, a ∈ L1
loc([0, ∞)) or a(t) = δ(t), and b ∈ L1

loc([0, ∞)) or b(t) = δ(t). Set

va(t) :=
∫ t

0
a(t− s)u(s) ds, t ≥ 0.

The following extension of the usual Hilfer fractional derivative Dα,β
t u(t), when a(t) =

g(1−β)(m−α)(t) and b(t) = gβ(m−α)(t) for some β ∈ [0, 1], was recently introduced in [43]
(for β = 0, resp. β = 1, we obtain the usual Riemann–Liouville fractional derivative Dα

Ru of
order α, resp., the Caputo fractional derivative Dα

Cu of order α).

Definition 1. The generalized Hilfer (a, b, α)-fractional derivative of function u(·), denoted shortly
by Dα

a,bu, is defined for any locally integrable function u(·) such that the function v(m−1)
a (t) is

locally absolutely continuous for t ≥ 0, by

Dα
a,bu(t) :=

(
b ∗0 v(m)

a

)
(t) =

(
b ∗0

(
a ∗0 u

)(m)
)
(t), a.e. t ≥ 0. (3)

Suppose now that u : N0 → X, α > 0, m = �α�, a : N0 → C and b : N0 → C. The
following is a discrete version of the notion considered above (cf. [44] (Definition 3.1)).

Definition 2. The generalized Hilfer (a, b, α)-fractional derivative of sequence u(·), denoted shortly
by Dα

a,bu, is defined by

Dα
a,bu(v) :=

(
b ∗0 Δm(a ∗0 u

))
(v), v ∈ N0.

If 0 ≤ β ≤ 1, then the usual Hilfer fractional derivative Dα,βu of order α and type
β is defined as the generalized Hilfer (a, b, α)-fractional derivative of u(·), with a(v) =
k(1−β)(m−α)(v) and b(v) = kβ(1−α)(v).

In both cases, the continuous one and the discrete one, we define

D0
a,bu := a ∗0 b ∗0 u.

2. Multidimensional Generalized Hilfer Fractional Derivatives and Differences

Suppose that 0 < Tj < +∞ and Ij = [0, Tj), Ij = [0, Tj] or Ij = [0,+∞) for 1 ≤ j ≤ n.
Set I := I1 × I2 × ...× In. Suppose that u : I → X is a locally integrable function, and for
every j ∈ Nn, aj ∈ L1

loc(Ij) or aj(t) = δ(t), and bj ∈ L1
loc(Ij) or bj(t) = δ(t). Suppose further

that αj ≥ 0 for all j ∈ Nn. Define α := (α1, ..., αn) and

D
α
a,bu
(
x1, ..., xn

)
:=

[
Dα1

a1,b1

(
Dα2

a2,b2

(
...

(
Dαn

an ,bn
u
(
·, ..., ·

))
...

))](
x1, ..., xn

)
, (4)

for a.e. (x1, ..., xn) ∈ I, provided that the right-hand side of (4) is well-defined. Here,
we assume that the variables x1, x2, ..., xn−1 are fixed in the computation of the term
Dαn

an ,bn
u(x1, ..., xn), ..., as well as that the variables x2, x3, ..., xn are fixed in the computation of

the final term on the right-hand side of (4). We call Dα
a,bu the multidimensional generalized

Hilfer (a, b, α)-fractional derivative of the function u(·). If for each j ∈ Nn, we have
D

αj
aj ,bj

= D
αj
R , resp., for each j ∈ Nn we have D

αj
aj ,bj

= D
αj
C , then the corresponding partial

7



Axioms 2024, 13, 623

fractional derivative Dα
a,b is called the multidimensional Riemann–Liouville fractional

operator (cf. also [7] (pp. 340–342)), resp., the multidimensional Caputo fractional operator,
and it is denoted by Dα

a,b = Dα
R, resp. Dα

a,b = Dα
C.

In the discrete setting, we assume that u : Nn
0 → X, aj : N0 → C and bj : N0 → C are

given sequences (1 ≤ j ≤ n). We define

D
α
a,bu
(
v1, ..., vn

)
:=

[
Dα1

a1,b1

(
Dα2

a2,b2

(
...

(
Dαn

an ,bn
u
(
·, ..., ·

))
...

))](
v1, ..., vn

)
, (5)

for any (v1, ..., vn) ∈ Nn
0 ; note that the right-hand side of (5) is always well-defined. We

call Dα
a,bu the multidimensional generalized Hilfer (a, b, α)-fractional derivative of the

sequence u(·); the multidimensional Riemann–Liouville fractional difference operator Dα
R

and the multidimensional Caputo fractional difference operator Dα
C are defined similarly.

We continue by providing certain illustrative examples.

Example 1.

(i) Suppose that ∅ 
= D ⊆ [0,+∞)n is a finite set, cβ ∈ C for all β = (β1, ..., βn) ∈ D and

u
(
x1, ..., xn

)
:= ∑

β∈D
cβgβ1

(
x1
)
· ... · gβn

(
xn
)
, x1 ≥ 0, ..., xn ≥ 0.

Suppose further that αj ≥ 0, aj(t) = gγj(t) and bj(t) = gδj(t) for some non-negative num-
bers γj ≥ 0 and δj ≥ 0 such that γj + β j ≥ mj (1 ≤ j ≤ n). Set fj(t) := gδj+γj+β j−mj(t),
t > 0, if γj + β j > mj and fj(t) := 0, t ≥ 0, if γj + β j = mj. Then we have

D
α
a,bu
(
x1, ..., xn

)
= ∑

β∈D
cβ f1

(
x1
)
· ... · fn

(
xn
)
, x1 ≥ 0, ..., xn ≥ 0.

This formula enables one to clarify a great number of various partial fractional differential
equations which do have the function u(x1, ..., xn) as its solution; for example, we have

D
α
a,bu
(
x1, ..., xn

)
=

[
∑

β∈D
cβ

xδ1+γ1−m1
1

Γ(δ1 + β1 + γ1 −m1)
· .... · xδn+γn−mn

n
Γ(δn + βn + γn −mn)

]
· u
(
x1, ..., xn

)
,

for any x1 ≥ 0, ..., xn ≥ 0, provided that δj + γj > mj for 1 ≤ j ≤ n.
(ii) Suppose that ∅ 
= D ⊆ [0,+∞)n is a finite set, cβ ∈ C for all β = (β1, ..., βn) ∈ D and

u
(
v1, ..., vn

)
:= ∑

β∈D
cβkβ1

(
v1
)
· ... · kβn

(
vn
)
, v1 ∈ N0, ..., vn ∈ N0.

Suppose further that αj ≥ 0, aj(v) = kγj(v) and bj(v) = kδj(v) for some non-negative
numbers γj ≥ 0 and δj ≥ 0 such that γj + β j ≥ mj (1 ≤ j ≤ n). Set

fj(v) := kδj+γj+β j−mj
(
v + mj

)
−

v+mj

∑
l=v+1

kγj+β j−mj
(
v + mj − l

)
kδj(l), v ∈ N0.

We know that (see [45] (Example 3)):

Δαkβ(·) = kβ−α(·+ �α�), β ≥ α > 0.

8
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This simply implies

D
α
a,bu
(
v1, ..., vn

)
= ∑

β∈D
cβ f1

(
v1
)
· ... · fn

(
vn
)
, v1 ∈ N0, ..., vn ∈ N0.

Remark 1.

(i) Instead of the generalized Hilfer fractional derivatives and differences, we can consider here
any other type of fractional derivatives of functions defined on the segment of the non-negative
real axis ([46]). In such a way, we can extend the notion considered in this section and obtain
much more general forms of the partial fractional derivatives.

(ii) It is well-known that the composition of the Riemann–Liouville (Caputo) fractional derivatives
of orders α > 0 and β > 0 is not the Riemann–Liouville (Caputo) fractional derivative of order
α + β; see [6] (Sections 2.3.5 and 2.3.6) for more details. We can further extend the notion
of fractional derivative Dα

a,bu by replacing some terms D
αj
aj ,bj

in its definition by the finite

compositions D
αj1
aj1

,bj1
D

αj2
aj2 ,bj2

· ... · Dαjs
ajs ,bjs

of terms with respect to the variable xj (1 ≤ j ≤ n).

Let us recall that Clairaut’s theorem on equality of mixed partial derivatives states that
if a function u : Ω→ R defined on a non-empty set Ω ⊆ Rn is given, as well as that x ∈ Rn

is a point such that some neighborhood O(x) of it belongs to Ω, and u(·, ·) has continuous
second partial derivatives on O(x), then we have

∂2u
∂xi∂xj

(x) =
∂2u

∂xj∂xi
(x).

This equality cannot be so easily interpreted for the generalized Hilfer partial fractional
derivatives, because the equality[

Dα1
a1,b1

(
Dα2

a2,b2
u
)](

x1, x2
)
=

[
Dα2

a2,b2

(
Dα1

a1,b1
u
)](

x1, x2
)
, (6)

is not true, in general (of course, it is true in the case that b = d, a = c and m1 =
m2, at least almost everywhere). The Formula (6) does not hold even for the Riemann–
Liouville fractional derivatives and the Caputo fractional derivatives, as the following
simple counterexample shows.

Example 2. Suppose that 0 < α1 < 1, 0 < α2 < 1 and α1 
= α2. Let us consider the Caputo
approach, in which a1(t) = a2(t) = δ(t), b1(t) = g1−α1(t), b2(t) = g1−α2(t) and m1 = m2 = 1.
Then a simple computation shows that the equality (6) is equivalent with∫ x1

0
g1−α2

(
x1 − r

) d
dr

∫ x2

0
g1−α1

(
x2 − l

)∂u
∂l

u(r, l) dl dr

=
∫ x1

0
g1−α1

(
x1 − r

) d
dr

∫ x2

0
g1−α2

(
x2 − l

)∂u
∂l

u(r, l) dl dr. (7)

Take now u(x1, x2) := x1x2 for x1 ≥ 0 and x2 ≥ 0. Then (7) is equivalent with

g2−α2

(
x1
)
· g2−α1

(
x2
)
= g2−α1

(
x1
)
· g2−α2

(
x2
)
,

which is wrong. In the discrete setting, we cannot expect the validity of nontrivial fractional
analogues of Equation (2).

9
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We continue with the observation that the formulae [1] (1.13, 1.21) can be straightfor-
wardly extended to the multidimensional setting. For example, if u ∈ L1

loc([0, ∞)n) and
αj ≥ 0 for all j ∈ Nn, then we have

Dα1
R Dα2

R · ... · D
αn
R Jαn

tn
· ... · Jα2

t2
Jα1
t1

u = u

and
D

α1
C Dα2

C · ... ·D
αn
C Jαn

tn
· ... · Jα2

t2
Jα1
t1

u = u,

with the meaning clear. The situation is a little bit complicated if we consider the second
formulae in Equations (1.13) and (1.21) from [1]; for example, in the two-dimensional
setting, we have

Jα2
t2

Jα1
t1

Dα1
R Dα2

R u
(
x1, x2

)
= u
(
x1, x2

)
−

m2−1

∑
k=0

∂k

∂xk
2

[
Jm2−α2
t2

∗0 u

](
x1, 0

)
· gα2+k+1−m2

(
x2
)

−
m1−1

∑
k=0

{∫ x2

0
gα2

(
x2 − s

)[ ∂k

∂xk
1

[
Jm1−α1
t1

∗0 Dα2
R u

](
x1, x2

)]
x1=0,x2=s

ds

}
· gα1+k+1−m1

(
x1
)
, (8)

for any (x1, x2) ∈ [0, ∞)2, provided that u ∈ L1
loc([0, ∞)2), m1 = �α1�, m2 = �α2�, for each

x2 ≥ 0 the function x1 �→ Dα2
R u(x1, x2), x1 > 0 is locally integrable and satisfies Jm1−α1

t1
∗0

Dα2
R u ∈ Wm1,1

loc ([0, ∞) : X), and for each x1 ≥ 0 we have Jm2−α2
t2

∗0 (∂
m2−1/∂xm2−1

2 )u ∈
Wm2,1

loc ([0, ∞) : X), as well as

Jα2
t2

Jα1
t1

D
α1
C Dα2

C u
(
x1, x2

)
= u
(
x1, x2

)
−

m2−1

∑
k=0

[
∂k

∂xk
2

u
(
x1, 0

)]
· gk+1

(
x2
)

−
m1−1

∑
k=0

[∫ x2

0
gα2

(
x2 − s

)[ ∂k

∂xk
1

Dα2
C u
(
x1, x2

)]
x1=0,x2=s

ds

]
· gk+1

(
x1
)
, (9)

for any (x1, x2) ∈ [0, ∞)2, provided that m1 = �α1�, m2 = �α2�, u ∈ L1
loc([0, ∞)2), for

each x2 ≥ 0 the function x1 �→ f (x1) := (∂m1−1/∂xm1−1
1 )Dα2

C u(x1, x2), x1 ≥ 0 is con-
tinuous, gm1−α1 ∗0 f ∈ Wm1,1

loc ([0, ∞) : X), for each x1 ≥ 0 the function x2 �→ g(x2) :=
(∂m2−1/∂xm2−1

2 )u(x1, x2), x2 ≥ 0 is continuous and gm2−α2 ∗0 g ∈ Wm2,1
loc ([0, ∞) : X). Here,

Wm1,1
loc ([0, ∞) : X) and Wm2,1

loc ([0, ∞) : X) denote the usual Sobolev spaces; cf. [1] for the
notation used.

3. Multidimensional Generalized Weyl Fractional Derivatives and Differences

In this section, which consists of two separate subsections, we investigate the multidi-
mensional generalized Weyl fractional derivatives and differences.

3.1. Generalized Weyl Fractional Derivatives and Differences

If u : R → X is a locally integrable function, α ≥ 0 and m = �α�, then the Weyl
fractional derivative Dα

Wu of function u(·) of order α is well-defined if the mapping x �→∫ x
−∞ gm−α(x− s)u(s) ds, x ∈ R is well-defined and m-times continuously differentiable, by

[
Dα

Wu
]
(x) :=

dm

dxm

∫ x

−∞
gm−α(x− s)u(s) ds, x ∈ R;

cf. [47] for more details. Now we would like to propose the following notion.

10
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Definition 3. Suppose that a ∈ L1
loc([0, ∞)), u : R→ X is a locally integrable function, α ≥ 0

and m = �α�. The generalized Weyl fractional derivative Dα,a
W u of function u(·) is well-defined

if the mapping x �→
∫ x
−∞ a(x − s)u(s) ds, x ∈ R is well-defined and m-times continuously

differentiable, by [
Dα,a

W u
]
(x) :=

dm

dxm

∫ x

−∞
a(x− s)u(s) ds, x ∈ R.

We call the function x �→ IW,a(x) :=
∫ x
−∞ a(x− s)u(s) ds, x ∈ R, if it is well-defined,

the generalized Weyl a-integral of function u(·). If a(t) = gζ(t) for some ζ ∈ (0, 1), then the
class of functions for which the above integral absolutely converges and behaves nicely
was considered for the first time by M. J. Lighthill in [48], where it was called the class of
“good functions”. In the general case, we have∫ x

−∞
a(x− s)u(s) ds =

∫ +∞

0
a(s)u(x− s) ds, x ∈ R

and the dominated convergence theorem implies

d
dxn

∫ x

−∞
a(x− s)u(s) ds =

∫ +∞

0
a(s)u(n)(x− s) ds, x ∈ R, n ∈ N,

provided that there exists m ∈ N such that
∫ +∞

0 |a(s)|(1 + s)−m ds < +∞, and the function
u(·) and all its derivatives are differentiable almost everywhere and for each n ∈ N and
α ∈ N0 there exists a finite real number Mn,α ≥ 1 such that ‖u(α)(x)‖ ≤ Mn,α(1 + |x|)−n,
x ∈ R; we call such functions “vector-valued good functions” and denote the corresponding
class by S(X). If (G) holds, where

(G) There exists an integer m ∈ N such that
∫ +∞

0 |a(s)|(1 + s)−m ds < +∞ and∫ +∞
0 |b(s)|(1 + s)−m ds < +∞,

then we can repeat verbatim the argumentation from [47] (Section 3, pp. 239–240) in order
to see that the law of exponents for generalized Weyl integrals holds true:

IW,a Iw,bu = IW,a∗0bu, u ∈ S(X); (10)

Here, we we will only note that the Dirichlet integral formula given on [47] (p. 239,
l.-7–l.-4) in our new framework takes the form

∫ w

t
a(x− t)

[∫ w

x
b(s− x) f (s) ds

]
dx =

∫ w

t

(
a ∗0 b

)
(s− t) f (s) ds,

which follows from an elementary change of variables in the double integral. Furthermore,
if (G) holds, then we can repeat verbatim the argumentation from [47] (Section 4, pp. 240–244)
in order to see that the law of exponents for generalized Weyl derivatives holds true:

Dα,a
W Dβ,b

W u = D�α�+�β�,a∗0b
W u, u ∈ S(X). (11)

In connection with the above issue, we would like to note that the approach of R.
Hilfer is insignificant for the definitions of Weyl fractional derivatives introduced above.
Without going into full detail, we will only note here that the following formula holds true:∫ x

−∞
b(x− s)

dm

dsm

∫ s

−∞
a(s− r)u(r) dr ds =

dm

dxm

∫ x

−∞

(
a ∗0 b

)
(x− s)u(s) ds, x ∈ R, (12)

provided that u ∈ S(X) and (G) holds; furthermore, the assumption u ∈ S(X) can be
slightly relaxed and all abovementioned statements can be slightly generalized keep-
ing in mind the concrete value of integer m ∈ N satisfying (G); details can be left to
interested readers.

11
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Suppose now that a : N0 → C and f : Z → X are given sequences. If the series
∑+∞

s=0 a(s) f (v− s) is absolutely convergent for all v ∈ Z, then we define

(
ΔW,a f

)
(v) :=

v

∑
s=−∞

a(v− s) f (s) =
+∞

∑
s=0

a(s) f (v− s), v ∈ Z. (13)

Assume that the sequence ΔW,a f : Z→ X is well-defined and m ∈ N. Then we put(
ΔW,a,m f

)
(v) :=

(
ΔmΔW,a f

)
(v), v ∈ Z.

It is worth noting that if m = �α� and a ≡ km−α for some α > 0, then the operator
Δa,m reduces to the Weyl fractional derivative Dα

W f of sequence f (·) of order α; cf. [49]
(Definition 2.3). Because of that, we will call the sequence ΔW,a,m f the generalized Weyl
(a, m)-fractional derivative of sequence f (·).

Concerning the discrete counterpart of Formula (12), let us first define (0 ≤ β ≤ 1;
b : N0 → C)

Δα,β
W f := Δβ(m−α)ΔmΔ(1−β)(m−α) f and Δa,b f := ΔaΔmΔb f .

Then, under certain logical assumptions, we have the following (the multidimensional
analogues of these formulae can be also achieved):

Δα,β
W f = Dα

W f and Δa,b f = Δa∗0b f . (14)

Both formulae can be proved in the same manner, with the help of the discrete Fubini
theorem and the result established in [50] (Theorem 3.12(ii), (iii)). For the sake of brevity, we will
prove here the first formula in (14) only, extending thus the result established in [49] (Remark 2.4):

[
Δα,β

W f
]
(v) =

v

∑
s=−∞

kβ(m−α)(v− s)

[
ΔmΔ(1−β)(m−α) f

]
(s)

=
v

∑
s=−∞

kβ(m−α)(v− s)
m

∑
i=0

(−1)m−i
(

m
i

)[
Δ(1−β)(m−α) f

]
(s + i)

=
m

∑
i=0

(−1)m−i
(

m
i

) v+i

∑
s=−∞

kβ(m−α)(v + i− s)
[
Δ(1−β)(m−α) f

]
(s)

=
m

∑
i=0

(−1)m−i
(

m
i

) v+i

∑
s=−∞

kβ(m−α)(v + i− s)
s

∑
l=−∞

k(1−β)(m−α)(s− l) f (l)

=
m

∑
i=0

(−1)m−i
(

m
i

) v+i

∑
s=−∞

km−α(v + i− s) f (s) =
[

Dα
W f
]
(v), v ∈ Z.

3.2. Continuation: Multidimensional Generalized Weyl Fractional Calculus

Suppose now that aj ∈ L1
loc([0, ∞)) for all j ∈ Nn, u : Rn → X is a locally integrable

function and αj ≥ 0 for all j ∈ Nn. Define α := (α1, ..., αn) and

D
α,a
W u
(
x1, ..., xn

)
:=

[
Dα1,a1

W

(
Dα2,a2

W

(
...

(
Dαn ,an

W u
(
·, ..., ·

))
...

))](
x1, ..., xn

)
, (15)

for a.e. (x1, ..., xn) ∈ Rn, provided that the right-hand side of (15) is well-defined. Here,
we assume that the variables x1, x2, ..., xn−1 are fixed in the computation of the term
Dαn ,an

W u(x1, ..., xn), ..., as well as that the variables x2, x3, ..., xn are fixed in the computa-
tion of the final term on the right-hand side of (15). We call Dα,a

W u the multidimensional
generalized Weyl (α, a)-fractional derivative of the function u(·). If aj ≡ gmj−αj , where

12
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mj = �αj� for all j ∈ Nn, then we call Dα
Wu := D

α,a
W u the multidimensional generalized Weyl

α-fractional derivative of function u(·); cf. also [7] (p. 343) for the scalar-valued version of
this notion. We call the function

x �→ IW,a(x) :=
∫ x1

−∞

∫ x2

−∞
·... ·

∫ xn

−∞
a1
(
x1 − s1

)
a2
(
x2 − s2

)
· ... · an

(
xn − sn

)
× u
(
s1, s2, ..., sn

)
ds1 ds2 · ... · dsn, x =

(
x1, x2, ..., xn

)
∈ R

n,

if it is well-defined, the generalized Weyl a-integral of function u(·).
Suppose now that u : Zn → X, aj : N0 → C are given sequences and mj ∈ N are

given integers (1 ≤ j ≤ n). Then we introduce the following multidimensional fractional
difference operator

DW,a,mu
(
v1, ..., vn

)
:=

[
ΔW,a1,m1

(
ΔW,a2,m2

(
...

(
ΔW,an ,mn u

(
·, ..., ·

))
...

))](
v1, ..., vn

)
, (16)

for any (v1, ..., vn) ∈ Zn, provided that the right-hand side of (16) is well-defined. We call
DW,a,mu the generalized multidimensional Weyl (a, m)-fractional derivative of u(·). If mj =

�αj� and aj ≡ kmj−αj for 1 ≤ j ≤ n, then we call DW,a,mu the generalized multidimensional
Weyl α-fractional derivative of u(·), where α = (α1, ..., αn).

Remark 2. It is clear that in place of the generalized Weyl fractional derivatives and differences,
we can consider here any other type of fractional derivatives of functions defined on the whole real
axis (see, e.g., [7] (Chapter 5) and [46,51]).

The formulae [47] ((7.4), (7.6), (7.10), (7.12), (7.13)) can be simply formulated in the
multidimensional setting. For example, we have

Dα1
W Dα2

W ...Dαn
W ea1x1+a2x2+...+anxn = aα1

1 aα2
2 · ... · aαn

n ea1x1+a2x2+...+anxn , (17)

provided that aj > 0 and αj > 0 for 1 ≤ j ≤ n, with the meaning clear.
If all partial derivatives of a function u : Rn → X are continuous almost everywhere

and for each m ∈ N and α ∈ Nn
0 there exists a finite real number Mm,α ≥ 1 such that

‖u(α)(x)‖ ≤ Mm,α(1 + |x|)−n, x ∈ Rn, then we say that u(·) is a vector-valued good
function of several variables; the corresponding class of vector-valued good functions
will be denoted by Sn(X) henceforth. If u ∈ Sn(X), then the function IW,a(·) is infinitely
differentiable and for each α ∈ Nn

0 and x ∈ Rn we have

I(α)W,a(x) =
∫
[0,+∞)n

a1
(
s1
)
a2
(
s2
)
· ... · an

(
sn
) ∂αu

∂xα1
1 · ... · ∂xαn

n
(x− s) ds.

Furthermore, if the following condition holds:

(G1) There exists an integer m ∈ N such that
∫ +∞

0 |aj(s)|(1 + s)−m ds < +∞ and∫ +∞
0 |bj(s)|(1 + s)−m ds < +∞ for all j ∈ Nn,

then we can apply the Fubini theorem and (10) in order to see that the law of exponents for
generalized multidimensional Weyl integrals holds true:

IW,a Iw,bu = IW,a∗0bu, u ∈ Sn(X), (18)

where a ∗0 b := (a1 ∗0 b1, ..., an ∗0 bn). If (G1) is valid, then the following multidimensional
analogue of (11) holds:

D
α,a
W D

β,b
W u = D

�α�+�β�,a∗0b
W u, u ∈ Sn(X), (19)

13
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where �α�+ �β� := (�α1�+ �β1�, ..., �αn�+ �βn�); in particular, we can clarify Clairaut’s
theorem on equality of mixed partial Weyl fractional derivatives of type (6).

The generation of C-regularized solution operator families in Lp(Rn) by the Weyl
fractional differential operators of the form

A = ∑
α∈D

cαD
α
Wu,

where D is a non-empty subset of Nn
0 and cα ∈ C for all α ∈ D, is a rather nontrivial

problem. We will consider this issue elsewhere.

4. Multidimensional Fractional Calculus on Some Special Regions of Rn

Keeping in mind the notion introduced in the previous two sections, we have an open
door to consider the partial fractional derivatives of functions defined on the subsets I ⊆ Rn

which have the form I = I1 × I2 × ...× In, where Ij = [0, Tj), Ij = [0, Tj], Ij = [0,+∞) or
Ij = R for 1 ≤ j ≤ n; for example, in the two-dimensional setting, we can consider functions
defined on the half-space I = [0, ∞)×R or the closed rectangle [0, T]×R, where T > 0.

Suppose that f : I → X and I has the above form. Suppose, further, that αj ≥ 0 for all
j ∈ Nn and α = (α1, ..., αn). We define

D
αu
(
x1, ..., xn

)
:=

[
Dα1

(
Dα2

(
...

(
Dαn u

(
·, ..., ·

))
...

))](
x1, ..., xn

)
, (20)

for a.e. (x1, ..., xn) ∈ I, provided that the right-hand side of (20) is well-defined, where
Dαj = D

αj
aj ,bj

for some aj ∈ L1
loc(Ij) or aj(t) = δ(t), and bj ∈ L1

loc(Ij) or bj(t) = δ(t), provided

that Ij = [0, Tj), Ij = [0, Tj] or Ij = [0,+∞), and Dαj = D
α,aj
W with some aj ∈ L1

loc([0, ∞)), if
Ij = R. We will not consider here the partial fractional derivatives of functions defined
on some other regions of Rn; for example, it could be interesting to consider the partial
fractional derivatives of functions defined on convex polyhedrals in Rn.

In the discrete setting, we will only consider the sets I ⊆ Zn which have the form
I = I1 × I2 × ...× In, where Ij = N0 or Ij = Z for 1 ≤ j ≤ n. If I has such a form and
u : I → X, then we define the partial fractional derivative Dαu(v1, ..., vn) similar to the
continuous setting; for example, in the two-dimensional setting, we can consider sequences
defined on the set I = N0 ×Z or I = Z×N0.

We continue by providing the following illustrative example.

Example 3. Suppose that n ≥ 2, ∅ 
= D ⊆ [0,+∞)n is a finite set, cβ ∈ C for all β =
(β1, ..., βn) ∈ D, βn > 0 and

u
(
x1, ..., xn

)
:= ∑

β∈D
cβgβ1

(
x1
)
· ... · gβn−1

(
xn−1

)
eβnxn , x1 ≥ 0, ..., xn−1 ≥ 0, xn ∈ R.

Suppose further that αj ≥ 0, aj(t) = gγj(t) and bj(t) = gδj(t) for some non-negative numbers

γj ≥ 0 and δj ≥ 0 such that γj + β j ≥ mj (1 ≤ j ≤ n− 1). Let Dαj u = D
αj
aj ,bj

u for 1 ≤ j ≤ n− 1,

and let Dαn u = Dαn
W . If we define the functions fj(·), for 1 ≤ j ≤ n− 1, as in Example 1(i), then

we have

D
αu
(
x1, ..., xn

)
= ∑

β∈D
cββαn

n f1
(
x1
)
· ... · fn−1

(
xn−1

)
eβnxn ,

for any x1 ≥ 0, ..., xn−1 ≥ 0 and xn ∈ R; cf. also (17).

14
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As in Example 1(i), we can construct a great number of various partial fractional differential
equations having the function u(x1, ..., xn) as their solution; for example, we have

D
α
a,bu
(

x1, ..., xn
)

=

[
∑

β∈D
cββαn

n
xδ1+γ1−m1

1
Γ(δ1 + β1 + γ1 −m1)

· .... ·
xδn−1+γn−1−mn−1

n−1
Γ(δn−1 + βn−1 + γn−1 −mn−1)

]
· u
(

x1, ..., xn
)
,

for any x1 ≥ 0, ..., xn−1 ≥ 0 and xn ∈ R, provided that δj + γj > mj for 1 ≤ j ≤ n− 1.

5. Multidimensional Vector-Valued Laplace Transform

The multidimensional vector-valued Laplace transform has not attracted as much
attention of the authors to date. Suppose that f : [0,+∞)n → X is a locally integrable
function. Then the multidimensional vector-valued Laplace transform of f (·), denoted by
F(·) = f̃ = L f , is defined through

F
(
λ1, ..., λn

)
:=
∫ +∞

0
...
∫ +∞

0
e−λ1t1−...−λntn f

(
t1, ..., tn

)
dt1 ... dtn, (21)

if it is well-defined. We say that f (·) is Laplace transformable if and only if there exist
real constants ω1 ∈ R, ..., ωn ∈ R such that F(λ1, ..., λn) is well-defined for �λ1 >
ω1, ..., �λn > ωn. This is always the case if there exist finite real constants M ≥ 1 and
ω1 ∈ R, ..., ωn ∈ R such that ‖ f (t1, ..., tn)‖ ≤ M exp(ω1t1 + ... + ωntn) for a.e. t1 ≥ 0, ...,
tn ≥ 0, when we say that f (·) is exponentially bounded; then F(λ1, ..., λn) is well-defined
for �λ1 > ω1, ..., �λn > ωn and F(·) is analytic in this region of Cn (see L. Hörmander [52]
for the basic introduction to the theory of analytic functions of several complex variables).
The uniqueness theorem for Laplace transform holds in the multidimensional framework.

The numerical inversion of a multidimensional vector-valued Laplace transform has
been considered in many research articles to date (these papers can be easily located online
and we will not quote them here). On the other hand, it seems that the complex inversion
theorem for the multidimensional Laplace transform in both the scalar-valued setting and
the vector-valued setting has not been properly formulated by now. Concerning this issue,
we will state and prove the following extension of [53] (Theorem 2.5.1):

Theorem 1. Suppose that M > 0, ω1 ≥ 0, ..., ωn ≥ 0, ε1 > 0, ..., εn > 0 and F : {λ ∈ C :
�λ > ω1} × ...× {λ ∈ C : �λ > ωn} → X is an analytic function such that∥∥∥F

(
λ1, ..., λn

)∥∥∥ ≤ M|λ1|−1−ε1 · ... · |λn|−1−εn , �λj > ωj (1 ≤ j ≤ n). (22)

Then there exist a real number M1 > 0 and a continuous function f : [0,+∞)n → X such
that ∥∥ f (t1, ..., tn)

∥∥ ≤ M1[t
ε1
1 eω1t1 · ... · tεn

n eωntn ] for all t1 ≥ 0, ..., tn ≥ 0 (23)

and F(λ1, ..., λn) = (L f )(λ1, ..., λn) for �λj > ωj (1 ≤ j ≤ n).

Proof. We present the main details of the proof only. Let aj > ωj be pairwisely distinct
numbers (1 ≤ j ≤ n), and let

f
(
t1, ..., tn

)
:=

1
(2πi)n

∫ a1+i∞

a1−i∞
...
∫ an+i∞

an−i∞
eλ1t1+...+λntn F

(
λ1, ..., λn

)
dλ1 ... dλn, (24)

for any t1 ≥ 0, ..., tn ≥ 0; it can be easily shown that the integral appearing in (24) is
absolutely convergent so that f (·) is well-defined. The dominated convergence theorem
implies that f (·) is continuous; moreover, we can use the Fubini theorem, the growth rate

15
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of F(·) and the computation carried out in the proof of the last mentioned theorem in order
to see that there exists a constant M1 > 0, independent of a1, ..., an, such that∥∥ f (t1, ..., tn)

∥∥ ≤ M1[t
ε1
1 ea1t1 · ... · tεn

n eantn ] for all t1 ≥ 0, ..., tn ≥ 0.

On the other hand, an elementary contour argument shows that the definition of
function f (·) does not depend on the choice of numbers a1 > ω1, ..., an > ωn. In actual
fact, we can fix the numbers a1 > ω1, ..., an−1 > ωn−1 and prove first that the definition
of function f (·) does not depend on the choice of number an > ωn; after that, we can
repeat this procedure (n− 1) times. Using this fact and letting aj → ωj+ for 1 ≤ j ≤ n,
we obtain (23). It remains to be proved that F(λ1, ..., λn) = (L f )(λ1, ..., λn) for �λj > ωj
(1 ≤ j ≤ n). Let the numbers λ1, ..., λn enjoy the above properties and let ωj < aj < �λj for
1 ≤ j ≤ n. Then the Fubini theorem and an elementary argumentation shows that

(L f )(λ1, ..., λn) =
1

(2πi)n

∫ a1+i∞

a1−i∞
...
∫ an+i∞

an−i∞

F
(
z1, ..., zn

)
(λ1 − z1) · ... · (λn − zn)

dz1 ... dzn.

Using the residue theorem and deforming the line [an − i∞, an + i∞] into the union
of the segment [an − iR, an + iR] and the semi-circle an + {Reiθ : −π/2 ≤ θ ≤ π/2},
we obtain

(L f )(λ1, ..., λn) =
1

(2πi)n−1

×
∫ a1+i∞

a1−i∞
...
∫ an−1+i∞

an−1−i∞

F
(
z1, ..., zn−1, λn

)
(λ1 − z1) · ... · (λn−1 − zn−1)

dz1 ... dzn−1.

Repeating this argument, we simply obtain the required equality.

6. Some Classes of Fractional Partial Differential-Difference Inclusions

In this section, we investigate some classes of the fractional partial differential-difference
inclusions. We will divide the material of this section into three separate subsections.

6.1. Fractional Partial Differential Inclusions with Riemann–Liouville and Caputo Derivatives

Suppose that α1 ∈ [0, 2), α2 ∈ [0, 2), m1 = �α1�, m2 = �α2� andA is a closed MLO in X
(the precise assumptions aboutAwill be clarified a little bit later). In this subsection, we will
provide certain results about the well-posedness of the following abstract two-dimensional
Cauchy inclusions:

Dα1
R Dα2

R u
(
x1, x2

)
∈ Au

(
x1, x2

)
+ f
(
x1, x2

)
, x1 ≥ 0, x2 ≥ 0, (25)

subjected to the initial conditions of the form

∂k

∂xk
2

[
Jm2−α2
t2

∗0 u

](
x1, 0

)
= fk

(
x1
)
, 0 ≤ k ≤ m2 − 1; (26)

∫ x2

0
gα2

(
x2 − s

)[ ∂k

∂xk
1

[
Jm1−α1
t1

∗0 Dα2
R u

](
x1, x2

)]
x1=0,x2=s

ds = hk
(

x2
)
, (27)

for 0 ≤ k ≤ m1 − 1, and

D
α1
C Dα2

C u
(
x1, x2

)
∈ Au

(
x1, x2

)
+ f
(
x1, x2

)
, x1 ≥ 0, x2 ≥ 0, (28)

16
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subjected to the initial conditions of the form

∂k

∂xk
2

u
(
x1, 0

)
= fk

(
x1
)
, 0 ≤ k ≤ m2 − 1; (29)

∫ x2

0
gα2

(
x2 − s

)[ ∂k

∂xk
1

Dα2
C u
(
x1, x2

)]
x1=0,x2=s

ds = hk
(
x2
)
, 0 ≤ k ≤ m1 − 1. (30)

Our basic assumption will be that f (·, ·) is a Laplace transformable function.
Let us consider first the problem (28) equipped with the initial conditions (29)–(30).

Assuming that f ∈ L1
loc([0, ∞)2 : X), all conditions for applying the Formula (9) are

satisfied and using the fact that for every locally integrable function u ∈ L1
loc([0, ∞)2 : X),

the assumption
Jα2
t2

Jα1
t1

u
(
x1, x2

)
= 0, x1 ≥ 0, x2 ≥ 0

implies u ≡ 0, we obtain that the problem [(28)–(30)] is equivalent with

u
(
x1, x2

)
−

m2−1

∑
k=0

gk+1
(
x2
)
· fk
(
x1
)
−

m1−1

∑
k=0

gk+1
(
x1
)
· hk
(
x2
)

∈ A
∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
u(s, r) ds dr

+
∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
f (s, r) ds dr, x1 ≥ 0, x2 ≥ 0, (31)

since A is closed. Similarly, if f ∈ L1
loc([0, ∞)2 : X) and all conditions for applying the

Formula (8) are satisfied, the problem [(25)–(27)] is equivalent with

u
(
x1, x2

)
−

m2−1

∑
k=0

gα2+k+1−m2

(
x2
)
· fk
(
x1
)
−

m1−1

∑
k=0

gα1+k+1−m1

(
x1
)
· hk
(
x2
)

∈ A
∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
u(s, r) ds dr

+
∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
f (s, r) ds dr, x1 ≥ 0, x2 ≥ 0. (32)

We will use the following notion (cf. also [5] (Definition 3.1.1(i))).

Definition 4. It is said that a locally integrable function u : [0, ∞)2 → X is

(i) A solution of [(28)–(30)] if and only if∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
u(s, r) ds dr ∈ D(A)

and (32) holds for a.e. x1 ≥ 0 and x2 ≥ 0.
(ii) A strong solution of [(28)–(30)] if and only if there exists a locally integrable function uA,α1,α2 :

[0, ∞)2 → X such that∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
uA,α1,α2(s, r) ds dr

∈ A
∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
u(s, r) ds dr for a.e. x1 ≥ 0 and x2 ≥ 0,

17
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and

u
(
x1, x2

)
−

m2−1

∑
k=0

gk+1
(
x2
)
· fk
(

x1
)
−

m1−1

∑
k=0

gk+1
(
x1
)
· hk
(
x2
)

=
∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
uA,α1,α2(s, r) ds dr

+
∫ x2

0
gα2

(
x2 − r

) ∫ x1

0
gα1

(
x1 − s

)
f (s, r) ds dr for a.e. x1 ≥ 0 and x2 ≥ 0.

We similarly define the notion of a (strong) solution of problem [(25)–(27)].

It is clear that any strong solution of [(28)–(30)] ([(25)–(27)]) is likewise a solution of
the same problem and that the converse statement is not true, in general.

Let us now take a closer look at the abstract Cauchy inclusions (31) and (32). Apply-
ing the two-dimensional Laplace transform and the Fubini theorem, we obtain that the
problem (31) is equivalent with

∫ +∞

0

∫ +∞

0
e−zx1−λx2 u

(
x1, x2

)
dx1 dx2 −

m2−1

∑
k=0

λ−1−k
∫ +∞

0
e−zx1 fk

(
x1
)

dx1

−
m1−1

∑
k=0

z−1−k
∫ +∞

0
e−λx2 hk

(
x2
)

dx2

∈ A
[

z−α1 λ−α2

∫ +∞

0

∫ +∞

0
e−zx1−λx2 u

(
x1, x2

)
dx1 dx2

]

+ z−α1 λ−α2

∫ +∞

0

∫ +∞

0
e−zx1−λx2 f

(
x1, x2

)
dx1 dx2, (33)

for all z ∈ C with �z > ω1 for some ω1 > 0 and λ ∈ C with �λ > ω2 for some ω2 > 0,
under certain logical assumptions, as well as that the problem (32) is equivalent with

∫ +∞

0

∫ +∞

0
e−zx1−λx2 u

(
x1, x2

)
dx1 dx2 −

m2−1

∑
k=0

λm2−1−k−α2

∫ +∞

0
e−zx1 fk

(
x1
)

dx1

−
m1−1

∑
k=0

zm1−1−k−α1

∫ +∞

0
e−λx2 hk

(
x2
)

dx2

∈ A
[

z−α1 λ−α2

∫ +∞

0

∫ +∞

0
e−zx1−λx2 u

(
x1, x2

)
dx1 dx2

]

+ z−α1 λ−α2

∫ +∞

0

∫ +∞

0
e−zx1−λx2 f

(
x1, x2

)
dx1 dx2, (34)

for all z ∈ C with �z > ω1 for some ω1 > 0 and λ ∈ C with �λ > ω2 for some ω2 > 0,
under certain logical assumptions. After setting

ũ(z, λ) :=
∫ +∞

0

∫ +∞

0
e−zx1−λx2 u

(
x1, x2

)
dx1 dx2,

we obtain that the problem (33) is equivalent with

(
zα1 λα2 −A

)
ũ(z, λ) �

m2−1

∑
k=0

zα1 λα2−1−k
∫ +∞

0
e−zx1 fk

(
x1
)

dx1

−
m1−1

∑
k=0

zα1−1−kλα2

∫ +∞

0
e−λx2 hk

(
x2
)

dx2 + f̃ (z, λ), (35)
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for all z ∈ C with �z > ω1 and λ ∈ C with �λ > ω2, while the problem (34) is equivalent
with (

zα1 λα2 −A
)

ũ(z, λ) �
m2−1

∑
k=0

zα1 λm2−1−k
∫ +∞

0
e−zx1 fk

(
x1
)

dx1

−
m1−1

∑
k=0

zm1−1−kλα2

∫ +∞

0
e−λx2 hk

(
x2
)

dx2 + f̃ (z, λ), (36)

for all z ∈ C with �z > ω1 and λ ∈ C with �λ > ω2. In the case that there exists an
injective operator C ∈ L(X) which commutes with A and condition (C1) clarified below
holds, then the inclusion (35), resp., (36), is equivalent with:

ũ(z, λ) =
(

zα1 λα2 −A
)−1

C
m2−1

∑
k=0

zα1 λα2−1−k
∫ +∞

0
e−zx1 fk

(
x1
)

dx1

−
(

zα1 λα2 −A
)−1

C
m1−1

∑
k=0

zα1−1−kλα2

∫ +∞

0
e−λx2 hk

(
x2
)

dx2 +
(

zα1 λα2 −A
)−1

C f̃ (z, λ), (37)

for all z ∈ C with �z > ω1 and λ ∈ C with �λ > ω2, resp.,

ũ(z, λ) =
(

zα1 λα2 −A
)−1

C
m2−1

∑
k=0

zα1 λm2−1−k
∫ +∞

0
e−zx1 fk

(
x1
)

dx1

−
(

zα1 λα2 −A
)−1

C
m1−1

∑
k=0

zm1−1−kλα2

∫ +∞

0
e−λx2 hk

(
x2
)

dx2 +
(

zα1 λα2 −A
)−1

C f̃ (z, λ), (38)

for all z ∈ C with �z > ω1 and λ ∈ C with �λ > ω2.
Now we will formalize all this and state the following result by assuming some special

conditions on the multivalued linear operator A.

Theorem 2. Suppose that C ∈ L(X) is injective and commutes with A, f (·; ·) is Laplace trans-
formable and the following condition holds:

(C1) There exist real numbers ω1 > 0 and ω2 > 0 such that zα1 λα2 ∈ ρC(A) for all z ∈ C with
�z > ω1 and λ ∈ C with �λ > ω2.

Denote by D1 the set of all indexes k ∈ N0
m2−1 such that fk(·) is not identically equal to the zero

function and by D2 the set of all indexes k ∈ N0
m1−1 such that hk(·) is not identically equal to the

zero function. If the following conditions hold:

(i) For every k ∈ D1, there exists a Laplace transformable function u1
k(·; ·) such that

ũ1
k(z, λ) = zα1 λα2−1−k

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−zx1 fk

(
x1
)

dx1,

resp.

ũ1
k(z, λ) = zα1 λm2−1−k

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−zx1 fk

(
x1
)

dx1,

for �z > ω1 and �λ > ω2.
(ii) For every k ∈ D2, there exists a Laplace transformable function u2

k(·; ·) such that

ũ2
k(z, λ) = zα1−1−kλα2

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−λx2 hk

(
x2
)

dx2,

resp.

ũ2
k(z, λ) = zm1−1−kλα2

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−λx2 hk

(
x2
)

dx2,

for �z > ω1 and �λ > ω2.
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(iii) There exists a Laplace transformable function u2
k(·; ·) such that

ũ f (z, λ) =
(

zα1 λα2 −A
)−1

C f̃ (z, λ),

for �z > ω1 and �λ > ω2.

Then there exists a unique solution of problem u(x1, x2) of [(28)–(30)], resp., [(25)–(27)], which is
given by

u
(
x1, x2

)
= ∑

k∈D1

u1
k
(
x1, x2

)
+ ∑

k∈D2

u2
k
(
x1, x2

)
+ u f

(
x1, x2

)
for a.e. x1 ≥ 0, x2 ≥ 0. (39)

Furthermore, suppose that (i)–(iii) and the following conditions hold:

(is) For every k ∈ D1, there exists a Laplace transformable function u1
k(·; ·) such that

ũ1
k(z, λ) = z2α1 λ2α2−1−k

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−zx1 fk

(
x1
)

dx1

− zα1 λα2−1−k
∫ +∞

0
e−zx1 fk

(
x1
)

dx1,

resp.

ũ1
k(z, λ) = z2α1 λα2+m2−1−k

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−zx1 fk

(
x1
)

dx1

− zα1 λm2−1−k
∫ +∞

0
e−zx1 fk

(
x1
)

dx1,

for �z > ω1 and �λ > ω2.
(iis) For every k ∈ D2, there exists a Laplace transformable function u2

k(·; ·) such that

ũ2
k(z, λ) = z2α1−1−kλ2α2

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−λx2 hk

(
x2
)

dx2

− zα1−1−kλα2 C
∫ +∞

0
e−λx2 hk

(
x2
)

dx2,

resp.

ũ2
k(z, λ) = zα1+m1−1−kλ2α2

(
zα1 λα2 −A

)−1
C
∫ +∞

0
e−λx2 hk

(
x2
)

dx2

− zm1−1−kλα2 C
∫ +∞

0
e−λx2 hk

(
x2
)

dx2,

for �z > ω1 and �λ > ω2.
(iiis) There exists a Laplace transformable function u2

k(·; ·) such that

ũ f (z, λ) = zα1 λα2
(

zα1 λα2 −A
)−1

C f̃ (z, λ)− C f̃ (z, λ),

for �z > ω1 and �λ > ω2.

Then there exists a unique solution of problem u(x1, x2) of [(28)–(30)], resp., [(25)–(27)], which is
given by

u
(
x1, x2

)
= ∑

k∈D1

u1
k
(
x1, x2

)
+ ∑

k∈D2

u2
k
(
x1, x2

)
+ u f

(
x1, x2

)
for a.e. x1 ≥ 0, x2 ≥ 0. (40)

Then the function u(x1, x2), given by (40), is a strong solution of problem u(x1, x2) of [(28)–(30)],
resp., [(25)–(27)].

20



Axioms 2024, 13, 623

Proof. Since we assume the conditions (i)–(iii), we simply infer that the function u(x1, x2),
given by (40), satisfies (37), resp., (38). Arguing reversely, we obtain that (35), resp., (36),
holds true. Applying the inverse double Laplace transform, we obtain that (33), resp., (34),
holds true, which simply completes the proof of the first part of theorem. The second part
of theorem follows similarly since, in this case, there exists a locally integrable function
uA,α1,α2(·; ·) such that uA,α1,α2(·; ·) ∈ Au(·; ·) a.e. on [0,+∞)2, which can be proved by
performing the double Laplace transform and (is)–(iiis); see also [5] (Theorem 1.2.4(i)).

The subsequent result follows immediately from Theorems 1 and 2 (we can similarly
clarify the corresponding conditions ensuring the existence of a unique strong solution of
problems under our consideration; we use the symbol ·̃ to denote both the one-dimensional
and the two-dimensional Laplace transform here, which will not cause any confusion).

Theorem 3. Suppose that f (·; ·) is Laplace transformable and the following condition holds:

(C1s):(C1) holds and there exist real numbers M > 0 and β ∈ (0, 1] such that∥∥∥∥∥(zα1 λα2 −A
)−1

C

∥∥∥∥∥ ≤ M
(1 + |z|α1 |λ|α2)β

, �z > ω1, �λ > ω2. (41)

Suppose, further, that the following conditions hold:

(i) For every k ∈ D1, there exist real numbers Mk,1 > 0 , εk
1,1 > 0 and εk

1,2 > 0 such that∥∥∥∥∥|z|α1 |λ|α2−1−k

∥∥ f̃k(z)
∥∥

(1 + |z|α1 |λ|α2)β

∥∥∥∥∥ ≤ Mk,1|z|−1−εk
1,1 |λ|−1−εk

1,2 , �z > ω1, �λ > ω2.

(ii) For every k ∈ D2, there exist real numbers Mk,2 > 0 , εk
2,1 > 0 and εk

2,2 > 0 such that∥∥∥∥∥|z|α1−1−k|λ|α2

∥∥h̃k(λ)
∥∥

(1 + |z|α1 |λ|α2)β

∥∥∥∥∥ ≤ Mk,1|z|−1−εk
2,1 |λ|−1−εk

2,2 , �z > ω1, �λ > ω2.

(iii) There exist real numbers M′ > 0, ε1 > 0 and ε2 > 0 such that∥∥∥∥∥
∥∥ f̃ (z, λ)

∥∥
(1 + |z|α1 |λ|α2)β

∥∥∥∥∥ ≤ M′|z|−1−ε1 |λ|−1−ε2 , �z > ω1, �λ > ω2.

Then there exists a unique continuous solution u(x1, x2) of problem [(28)–(30)], resp., [(25)–(27)],
and we have∥∥∥u

(
x1, x2

)∥∥∥ ≤ M′′
[

∑
k∈D1

xε1,1
1 xε1,2

2 eω1x1+ω2x2

+ ∑
k∈D2

xε2,1
1 xε2,2

2 eω1x1+ω2x2 + xε1
1 xε2

2 eω1x1+ω2x2

]
, x1 ≥ 0, x2 ≥ 0.

If 0 /∈ D1 ∪D2, then the requirements of Theorem 3 are satisfied in many important real
situations, even for the degenerate Poisson heat operator Δ ·m(x)−1; cf. [5] and references
cited therein for further information in this direction.

Remark 3. Suppose that α1 + α2 < 2. Then it is clear that the estimate (41) holds if Σ(α1+α2)π/2 ⊆
ρC(A) and there exists β ∈ (0, 1] such that∥∥∥(λ−A)−1C

∥∥∥ ≤ M
(1 + |λ|)β

, λ ∈ Σ(α1+α2)π/2.

21



Axioms 2024, 13, 623

Unfortunately, we cannot prove that (41) holds if there exists a positive real number a > 0 such
that a + Σ(α1+α2)π/2 ⊆ ρC(A) and∥∥∥(λ−A)−1C

∥∥∥ ≤ M
(1 + |λ|)β

, λ ∈ a + Σ(α1+α2)π/2.

The main problem lies in the fact that for every real number ω1 > 0, we have

lim
x→±∞

dist
({

reiα1 : r ≥ 0
}

,
(
ω1 + ix

)α1
)
= 0.

Remark 4. Suppose that α1 + α2 ≥ 2. Then we can apply Theorem 3, with C 
= I, to a class of
two-dimensional partial fractional differential equations involving the single-valued linear operators
A = A whose C-resolvent is bounded by (1 + | · |)−1 on the set of form C \ K, where K is compact;
see [5] for the corresponding examples. In particular, if α1 = α2 = 1, then we can analyze the
well-posedness of the problem

∂2

∂x1∂x2
u
(
x1, x2

)
= Au

(
x1, x2

)
+ f
(
x1, x2

)
, x1 ≥ 0, x2 ≥ 0,

subjected to the initial conditions u(x1, 0) = f0(x1), x1 ≥ 0 and u(0, x2) = u(0, 0) + h0(x2),
x2 ≥ 0.

Using the multidimensional generalizations of the Formulae (8) and (9), we can
similarly analyze the well-posedness of the abstract fractional Cauchy inclusions

Dα1
R Dα2

R · ... · D
αn
R u
(
x
)
∈ Au

(
x
)
+ f
(
x
)
, x =

(
x1, x2, ..., xn

)
∈ [0,+∞)n

and

D
α1
C Dα2

C · ... ·D
αn
C u
(
x
)
∈ Au

(
x
)
+ f
(
x
)
, x =

(
x1, x2, ..., xn

)
∈ [0,+∞)n,

subjected to certain initial conditions (for the scalar-valued case, see also [54] (Section 3)).
Details can be left to interested readers.

6.2. The Abstract Multiterm Fractional Partial Differential Equations with Riemann–Liouville and
Caputo Derivatives

In this subsection, we investigate the following operator extensions of the partial
fractional differential Equation (1):

n

∑
k=1

AkD(0,...,αk ,...,0)
R u

(
x1, ..., xk, ..., xn

)
= f
(
x1, ..., xn

)
, x1 ≥ 0, ..., xn ≥ 0, (42)

subjected to the initial conditions[
∂j

∂xj
k

Jmk−αk
tk

u
(
x1, ..., xn

)]
xk=0

= fk,j
(
x1, ..., xk−1, xk+1, ..., xn

)
, (43)

for 1 ≤ k ≤ n, 0 ≤ j ≤ mk − 1, and

n

∑
k=1

AkD(0,...,αk ,...,0)
C u

(
x1, ..., xk, ..., xn

)
= f
(
x1, ..., xn

)
, x1 ≥ 0, ..., xn ≥ 0, (44)
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subjected to the initial conditions[
∂j

∂xj
k

u
(
x1, ..., xn

)]
xk=0

= fk,j
(
x1, ..., xk−1, xk+1, ..., xn

)
, (45)

for 1 ≤ k ≤ n, 0 ≤ j ≤ mk − 1, where Ak is a closed linear operator and αk ≥ 0 for
1 ≤ k ≤ n. In order to do that, we essentially apply the multidimensional vector-valued
Laplace transform.

We will use the following notion.

Definition 5.

(i) By a mild LT-solution u(x1, ..., xn) of [(42) and (43)], resp. [(44) and (45)], we mean any Laplace

transformable function u(x1, ..., xn) such that the terms D(0,...,αk ,...,0)
R u(x1, ..., xk, ..., xn), resp.

D(0,...,αk ,...,0)
C u(x1, ..., xk, ..., xn), are well-defined and Laplace transformable for 1 ≤ k ≤ n

as well as that the terms (∂j/∂xj
k)Jmk−αk

tk
u(x1, ..., xn), resp. (∂j/∂xj

k)u(x1, ..., xn), are well-
defined and continuous with respect to the variable xj for 1 ≤ k ≤ n, 0 ≤ j ≤ mk − 1,

n

∑
k=1

Ak

(
LD(0,...,αk ,...,0)

R u
(
x1, ..., xk, ..., xn

))(
λ1, ..., λn

)
= f̃
(
λ1, ..., λn

)
, (46)

for �λj > ωj (1 ≤ j ≤ n) and some non-negative real numbers ω1 ≥ 0, ..., ωn ≥
0, resp. (46) holds with the term D(0,...,αk ,...,0)

R u(x1, ..., xk, ..., xn) replaced with the term

D(0,...,αk ,...,0)
C u(x1, ..., xk, ..., xn) therein, and (43), resp. (45), holds.

(ii) By a strong LT-solution u(x1, ..., xn) of [(42) and (43)], resp. [(44) and (45)], we mean
any mild LT-solution u(x1, ..., xn) of this problem which additionally satisfies that the terms
AkD(0,...,αk ,...,0)

R u(x1, ..., xk, ..., xn), resp. AkD(0,...,αk ,...,0)
C u(x1, ..., xk, ..., xn), are well-defined

and Laplace transformable for 1 ≤ k ≤ n.

The uniqueness theorem for Laplace transform and the closedness of operators Ak for
1 ≤ k ≤ n show that any strong LT-solution of [(42) and (43)], resp. [(44) and (45)], satisfies
that (42), resp. (44), holds for a.e. x1 ≥ 0, ..., xn ≥ 0.

Our main result concerning the well-posedness of Equations (42)–(45) reads as follows

Theorem 4. Suppose that C ∈ L(X) is injective, Ak is a closed linear operator commuting
with C and αk ≥ 0 for 1 ≤ k ≤ n. Suppose, further, that there exist non-negative real numbers
ω1 ≥ 0, ..., ωn ≥ 0 such that the operator ∑n

k=1 λ
αk
k Ak is injective and (∑n

k=1 λ
αk
k Ak)

−1C ∈ L(X)
for �λ1 > ω1, ...,�λn > ωn. Let the following conditions also hold:

(i) There exists a locally integrable, exponentially bounded function h(x1, ..., xn) for x1 ≥ 0, ...,

xn ≥ 0 satisfying that D(0,...,αk ,...,0)
R h(x1, ..., xk, ..., xn), resp. D(0,...,αk ,...,0)

C h(x1, ..., xk, ..., xn),
is well-defined, locally integrable and exponentially bounded (1 ≤ k ≤ n), the terms
(∂j/∂xj

k)Jmk−αk
tk

h(x1, ..., xn), resp. (∂j/∂xj
k)h(x1, ..., xn), are well-defined and continuous

with respect to the variable xj for 1 ≤ k ≤ n, 0 ≤ j ≤ mk − 1, and

h̃
(
λ1, ..., λn

)
=

(
n

∑
k=1

λ
αk
k Ak

)−1

C f̃0
(
λ1, ..., λn

)
, �λ1 > ω1, ..., �λn > ωn, (47)

where f = C f0.
(ii) If 1 ≤ k ≤ n and 0 ≤ j ≤ mk− 1, then there exists a locally integrable, exponentially bounded

function hk,j(x1, ..., xk−1, xk+1, ..., xn) for x1 ≥ 0, ..., xk−1 ≥ 0, xk+1 ≥ 0, ..., xn ≥ 0

satisfying that the terms D(0,...,αv ,...,0)
R hk,j(x1, ..., xk−1, xk+1, ..., xn), resp. D(0,...,αv ,...,0)

C hk,j
(x1, ..., xk−1, xk+1..., xn), are well-defined, locally integrable and exponentially bounded for
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1 ≤ v ≤ n, the terms (∂j/∂xj
v)Jmk−αk

tk
hk,j(x1, ..., xk−1, xk+1, ..., xn), resp. (∂j/∂xj

v)hk,j
(x1, ..., xk−1, xk+1, ..., xn) are well-defined and continuous with respect to the variable xv for
1 ≤ v ≤ n, and

h̃k,j
(
λ1, ..., λk−1, λk+1, ..., λn

)
=

(
n

∑
k=1

λ
αk
k Ak

)−1

CAk f̃k,j,0
(
λ1, ..., λk−1, λk+1, ..., λn

)
, (48)

provided that �λ1 > ω1, ...,�λk−1 > ωk−1, �λk+1 > ωk+1, ...,�λn > ωn, where fk,j =
C fk,j,0.

Then there exists a unique mild LT-solution u(x1, ..., xn) of [(42) and (43)], resp. [(44) and
(45)], and we have

u
(
x1, ..., xn

)
=

n

∑
k=1

mk−1

∑
j=0

hk,j
(
x1, ..., xn

)
+ h
(
x1, ..., xn

)
, x1 ≥ 0, ..., xn ≥ 0. (49)

Furthermore, if the following conditions hold:

(is) If 1 ≤ v ≤ n, then the terms Avh(x1, ..., xv, ..., xn) and D(0,...,αv ,...,0)
R Avh(x1, ..., xv, ..., xn),

resp.D(0,...,αv ,...,0)
C Avh(x1, ..., xv, ..., xn), are well-defined, locally integrable and exponentially

bounded;
(iis) If 1 ≤ v ≤ n, 1 ≤ k ≤ n and 0 ≤ j ≤ mk − 1, then the terms Avhk,j(x1, ..., xk−1, xk+1, ..., xn)

and D(0,...,αv ,...,0)
R Avhk,j(x1, ..., xk−1, xk+1, ..., xn), resp. D(0,...,αv ,...,0)

C Avhk,j(x1, ..., xk−1,
xk+1..., xn), are well-defined, locally integrable and exponentially bounded,

then the function u(x1, ..., xn), given by (49), is a strong LT-solution of [(42) and (43)], resp. [(44)
and (45)].

Proof. Let u(x1, ..., xn) be given by (49), and let �λ1 > ω1, ...,�λn > ωn. Our assumptions
imply that the term D(0,...,αk ,...,0)

R u(x1, ..., xk, ..., xn), resp. D(0,...,αk ,...,0)
C u(x1, ..., xk, ..., xn), is

well-defined as well as that we have the following (see also Equations (1.22)–(1.23) [1]
and Equation (16) [55]):

D(0,...,αk ,...,0)
R u(x1, ..., xk, ..., xn) = λ

αk
k ũ
(
λ1, ..., λn

)
−

mk−1

∑
j=0

[
Lt1,...,tk−1,tk+1,...,tn fk,j

](
λ1, ..., λk−1, λk+1, ..., λn

)
λ

mk−1−j
k , (50)

resp.

D(0,...,αk ,...,0)
C u(x1, ..., xk, ..., xn) = λ

αk
k ũ
(
λ1, ..., λn

)
−

mk−1

∑
j=0

[
Lt1,...,tk−1,tk+1,...,tn fk,j

](
λ1, ..., λk−1, λk+1, ..., λn

)
λ

αk−1−j
k , (51)

where Lt1,...,tk−1,tk+1,...,tn denotes the multidimensional Laplace transform with respect to the
variables t1, ..., tk−1, tk+1, ..., tn. Furthermore, our assumptions simply imply that

ũ
(
λ1, ..., λn

)
=

n

∑
k=1

(
n

∑
k=1

λ
αk
k Ak

)−1

CAk

mk−1

∑
j=0

[
Lt1,...,tk−1,tk+1,...,tn fk,j,0

]

(
λ1, ..., λk−1, λk+1, ..., λn

)
+

(
n

∑
k=1

λ
αk
k Ak

)−1

C f̃0
(
λ1, ..., λn

)
.
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This simply implies[
n

∑
k=1

λ
αk
k Ak

]
ũ
(
λ1, ..., λn

)
−

n

∑
k=1

Ak

×
mk−1

∑
j=0

[
Lt1,...,tk−1,tk+1,...,tn fk,j

](
λ1, ..., λk−1, λk+1, ..., λn

)
λ

mk−1−j
k = f̃

(
λ1, ..., λn

)
,

resp. [
n

∑
k=1

λ
αk
k Ak

]
ũ
(
λ1, ..., λn

)
−

n

∑
k=1

Ak

×
mk−1

∑
j=0

[
Lt1,...,tk−1,tk+1,...,tn fk,j

](
λ1, ..., λk−1, λk+1, ..., λn

)
λ

αk−1−j
k = f̃

(
λ1, ..., λn

)
.

Keeping in mind Equations (50) and (51), it readily follows that Equation (46) and its
analogue with Caputo fractional derivatives hold good. Therefore, the function u(x1, ..., xn)
is a mild LT-solution of problem [(42) and (43)], resp. [(44) and (45)]. The uniqueness
of mild LT-solutions of this problem follows from a simple argumentation involving the
injectiveness of the operator ∑n

k=1 λ
αk
k Ak for �λ1 > ω1, ...,�λn > ωn and the uniqueness

theorem for the Laplace transform. Finally, if the conditions (is) and (iis) hold, then we can
simply prove that the function AvD(0,...,αv ,...,0)

R u(x1, ...xn) is Laplace transformable and

L
[

AvD(0,...,αv ,...,0)
R u(x1, ...xn)

]
= Av

[
Lu(x1, ...xn)

]
,

which simply completes the proof.

Keeping in mind Theorem 1, we can apply Theorem 4 in many concrete situations,
even if αk > 2 for some indexes k ∈ Nn; cf. [5,55] for more details. Let us finally observe
that we can similarly analyze some generalizations of the problems [(42)–(45)] with various
types of generalized Laplace fractional derivatives, especially with the generalized Hilfer
(a, b, α)-fractional derivatives [43].

6.3. Fractional Partial Difference Equations with Generalized Weyl Derivatives

In our recent research article [56], we investigated various classes of the abstract non-
scalar Volterra difference equations of several variables. In order to do that, we introduced
and analyzed the notion of a discrete (k, C, B, (Ai)1≤i≤n, (vi)1≤i≤n)-existence family (cf. [56]
(Definition 2.1)); the generation of discrete (k, C, B, (Ai)1≤i≤n, (vi)1≤i≤n)-existence families
was analyzed in [56] (Theorem 2.1) under certain very mild assumptions.

In [56], (Theorem 2.2(i)), we proved the following result:

Lemma 1. Suppose that v1 ∈ Nn
0 , ..., vm ∈ Nn

0 , (S(v))v∈Nn
0
⊆ L(X) is a discrete (k, C, B,

(Ai)1≤i≤m, (vi)1≤i≤m)-existence family, ∑v∈Nn
0
‖S(v)‖ < +∞ and the following holds:

(a) f : Zn → X is a bounded sequence, k ∈ l1(Nn
0 : C) and ∑v∈Nn

0
|ai(v)| < +∞ for 1 ≤ i ≤ m,

or
(b) f ∈ l1(Zn : X), k : Nn

0 → C is a bounded sequence and ai : Zn → C is a bounded sequence
for 1 ≤ i ≤ m.

Define

u(v) := ∑
l∈Zn ;l≤v

S(v− l) f (l), v ∈ Z
n (52)
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and

g(v) := A1

(
∑

l≤v+v1

−∑
l≤v

)(
a1 ∗0 S

)
(v + v1 − l) f (l) + ...

+ Am

(
∑

l≤v+vm

−∑
l≤v

)(
am ∗0 S

)
(v + vm − l) f (l), v ∈ Z

n. (53)

Then u(·) is bounded if (a) holds, u ∈ l1(Zn : X) if (b) holds, and we have

Bu(v) = A1 ∑
l∈Zn ;l≤v+v1

a1(v + v1 − l)u(l) + ...

+ Am ∑
l∈Zn ;l≤v+vm

a1(v + vm − l)u(l) + g(v), v ∈ Z
n.

For some concrete applications of Lemma 1 to the fractional partial difference equations
with generalized Weyl derivatives, we will particularly consider the situation in which the
sequences ai(·) have the following form:

ai
(
v1, ..., vn

)
= ai

1
(
v1
)
· ... · ai

n
(
vn
)
,
(
v1, ..., vn

)
∈ N

n
0 (1 ≤ i ≤ m). (54)

Suppose now that v1 ∈ Nn
0 , ..., vm ∈ Nn

0 , (S(v))v∈Nn
0
⊆ L(X) is a discrete

(k, C, B, (Ai)1≤i≤m, (vi)1≤i≤m)-existence family, ∑v∈Nn
0
‖S(v)‖ < +∞, (54) and the follow-

ing conditions hold:

(a1) f : Zn → X is a bounded sequence, k ∈ l1(Nn
0 : C) and ∑+∞

v=0 |ai
j(v)| < +∞ for

1 ≤ j ≤ n and 1 ≤ i ≤ m, or
(b1) f ∈ l1(Zn : X), k : Nn

0 → C is a bounded sequence and ai
j : Z → C is a bounded

sequence for 1 ≤ j ≤ n and 1 ≤ i ≤ m.

Let m = (m1, ..., mn) ∈ Nn be fixed, and let the sequences u(·) and g(·) be defined by
(52) and (53), respectively. Then u(·) is bounded if (a1) holds, u ∈ l1(Zn : X) if (b1) holds,
and a simple computation shows that we have(

Δm1+...+mn

v
m1
1 ·...·v

mn
n

Bu

)
(v)

= A1

(
ΔW,a1,mu

)(
v + vi

)
+ ... + Am

(
ΔW,am ,mu

)(
v + vm

)
, v ∈ Z

n. (55)

Further on, if α1 = (α1
1, ..., α1

n) ∈ [0,+∞)n ..., αm = (αm
1 , ..., αm

n ) ∈ [0,+∞)n, mi
j = �αi

j� for

1 ≤ j ≤ n and 1 ≤ i ≤ m, ai
j(vj) = kmi

j−αi
j(vj) for 1 ≤ j ≤ n, 1 ≤ i ≤ m, and

mj = m1
j = ... = mn

j , 1 ≤ j ≤ n,

then we have(
Δm1+...+mn

v
m1
1 ·...·v

mn
n

Bu

)
(v) = A1

(
Δα1

W u
)(

v + vi
)
+ ... + Am

(
Δαm

W u
)(

v + vm
)
, v ∈ Z

n. (56)

We can also analyze some other relatives of (55) and (56) as well as the existence and
uniqueness of almost periodic-type solutions to (55) and (56); cf. [56] for more details.

7. Conclusions

In this paper, we introduced and analyzed several new types of partial fractional
derivatives in the continuous setting and the discrete setting. We investigated the well-
posedness of some classes of the abstract fractional differential equations and the abstract
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fractional difference equations depending on several variables, providing also many il-
lustrative examples and useful remarks. We also provided some new applications of the
multidimensional vector-valued Laplace transform.

We can also consider several new types of partial fractional derivatives using the
multidimensional convolution products

(
a ∗0 b

)
(x) :=

∫ x1

0
·... ·

∫ xn

0
a
(
x1 − s1, ..., xn − sn

)
b
(
s1, ..., sn

)
ds1...dsn,

for x =
(
x1, ..., xn

)
∈ [0,+∞)n, where a, b ∈ L1

loc([0,+∞)n), and

(
a ◦ b

)
(x) :=

∫ x1

−∞
·... ·

∫ xn

−∞
a
(
x1 − s1, ..., xn − sn

)
b
(
s1, ..., sn

)
ds1...dsn, (57)

for x =
(
x1, ..., xn

)
∈ Rn, where a ∈ L1

loc([0,+∞)n) and b ∈ L1
loc(R

n). It is clear that
Equation (57) presents an extension of the generalized Weyl a-integral; if a ∈ L1

loc([0,+∞)n),
u ∈ L1

loc(R
n), αj ≥ 0 for 1 ≤ j ≤ n and α = (α1, ..., αn), then we also define

D
α,a,1
W u :=

∂m

∂xm1
1 · ... · ∂xmn

n

(
a ◦ u

)
(x), x =

(
x1, ..., xn

)
∈ R

n,

where mj = �αj� for 1 ≤ j ≤ n and m = m1 + ... + mn. It is worth noting that the
Formulae (18) and (19) continue to hold in this framework.

In the discrete framework, several new types of fractional partial difference operators
can be introduced and analyzed using the multidimensional convolution products ∗0, ◦
and the sequences a : Nn

0 → C which do not have the form (54). We will consider such
operators elsewhere.

Let us finally note that the multidimensional fractional calculus is still a very unex-
plored field of mathematics. It is our strong belief that the partial fractional differential-
difference equations will receive the considerable attention of authors in the near future.
Without any doubt, this will reinforce the significance of our research and greatly enhance
the impact of this paper.
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Abstract: The purpose of this article is to present some new nonlinear retarded integral inequalities
which can be utilized to study the existence, stability, boundedness, uniqueness, and asymptotic
behavior of solutions of nonlinear retarded integro-differential equations, and these inequalities can
be used in the symmetrical properties of functions. These inequalities also generalize some former
famous inequalities in the literature. Two examples as applications will be provided to demonstrate
the strength of our inequalities in estimating the boundedness and global existence of the solution to
initial value problems for nonlinear integro-differential equations and differential equations which
can be seen in graphs. This research work will ensure opening new opportunities for studying
nonlinear dynamic inequalities on a time-scale structure of a varying nature.

Keywords: retarded integral inequality; Gronwall–Bellman inequality; nonlinear integral; differential
equations

MSC: 39B72; 26D10; 34A34

1. Introduction

It is well known that there exists a class of mathematical models that are described
by differential equations, and a lot of differential equations do not apply directly to ana-
lyze the global existence, boundedness, uniqueness, stability, and other properties of the
solutions. On the other hand, integral inequalities occupy a very privileged position in
all mathematical sciences, and they have many applications to questions of the existence,
stability, boundedness, uniqueness, and asymptotic behavior of the solutions of nonlinear
integro-differential equations. They can be used in various problems involving symmetry
(see [1–7]). In 1919, Gronwall [8] was the first person to introduce the following inequality
(which can be used to estimate the solution of a linear differential equation):

Gronwall’s Inequality [8]. Suppose x to be a continuous function defined on [α, α + k]
with α, k, c, and d being non-negative constants. Then, inequality

0 ≤ x(r) ≤
r∫

α

(c x(μ) + d)dμ, ∀ r ∈ [α, α + k], (1)

implies

0 ≤ x(r) ≤ dk exp(ck), ∀ r ∈ [α, α + k]. (2)
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Axioms 2024, 13, 356

A significant generalization of Gronwall’s inequality was given by Bellman [9] in 1943,
which is stated below as follows:

Gronwall–Bellman Inequality [9]. Assume x and h to be non-negative continuous func-
tions defined on E1 = [0, k] where x0 and k are positive constants. Then, inequality

x(r) ≤ x0 +

r∫
0

h(μ)x(μ)dμ, ∀ r ∈ E1, (3)

gives

x(r) ≤ x0 exp

⎛⎝ r∫
0

h(μ)dμ

⎞⎠, ∀ r ∈ E1. (4)

A huge number of useful generalizations of (1) and (3) were given by many mathe-
maticians and scientists after the establishment of Gronwall’s inequality and the Gronwall–
Bellman inequality which can be found in [4–6,10–20]. Among them, Abdeldaim and
Yakout [16] in 2011 extended the inequality (3) as given below:

x(r) ≤ x0 +

( r∫
0

h(μ)x(μ)dμ

)2

+

r∫
0

h(μ)x(μ)
(

x(μ) + 2

μ∫
0

h(θ)x(θ)dθ

)
dμ, (5)

where x(r) and h(r) are non-negative real valued continuous functions defined on
R+ = [0, ∞) and x0 is a positive constant. Retarded or delayed arguments were introduced
in differential and integral equations to solve real-life problems such as the involvement
of a significant memory effect in a refined model. In these perspectives, retarded integral
inequalities were introduced, where non-retarded argument r is modified into retarded
argument ϑ(r). In 2015, the following inequality was studied in [12] in which the retarded
case of inequality (5) was obtained by replacing r by a function ϑ(r):

x(r) ≤ x0 +

ϑ(r)∫
0

[h(μ)x(μ) + p(μ)]dμ +

ϑ(r)∫
0

h(μ)

μ∫
0

b(θ)x(θ)dθdμ. (6)

In 2020, Shakoor et al. [19] improved the above results, where they generalized inequality
(6) to the general form of

x(r) ≤ q(r) +

ϑ(r)∫
0

(
h(μ)x(μ) + p(μ)

)
dμ +

ϑ(r)∫
0

h(μ)

μ∫
0

b(θ)x(θ)dθdμ, ∀r ∈ R+. (7)

Recently, in 2023, Sun and Xu [6] established new weakly singular Volterra-type integral
inequalities that include the maxima of the unknown function of two variables while in [5]
the new retarded nonlinear integral inequalities with mixed powers were studied and
utilized to study the property of boundedness and the global existence of solutions of the
Volterra-type integral equations with delay.

Motivated by the inequalities mentioned above, we prove more general integral
inequalities with an addition of a differentiable function to replace the constant outside the
integral sign. In addition, the nonlinear function ϕ(x(r)) will be introduced to replace the
linear function x(r). The objective of this article is to establish some new nonlinear retarded
integral inequalities that will generalize and cover the inequalities presented in [3,9,12–16].
These inequalities can be used to analyze the existence, stability, boundedness, uniqueness,
and asymptotic behavior of the solutions of nonlinear integro-differential equations in the
symmetrical properties of functions. Further, two examples, in terms of application, will be
provided to demonstrate the strength of our inequalities in estimating the boundedness and
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global existence of a solution to the initial value problems of nonlinear integro-differential
equations and differential equations, which can be seen in graphs. This research work
will ensure the opening up of new opportunities for the studying of nonlinear dynamic
inequalities on a time-scale structure of a varying nature.

The remaining parts of the article will proceed as follows: Section 2 contains a few
preliminary results of new nonlinear retarded integral inequalities with the addition of a
differentiable function to replace the constant outside the integral sign, and the nonlinear
function ϕ(x(r)) will be introduced replacing the linear function x(r) for the Gronwall–
Bellman–Pachpatte type in Section 3. Section 4 presents applications for the purpose of
demonstrating the strength of our inequalities in estimating the boundedness and existence
of solutions for differential equations and integro-differential equations, which can be seen
in graphs. Lastly, the conclusion of this study will be given in Section 5.

2. Preliminaries

Throughout this article, R presents the set of real numbers, while R+ = [0, ∞) is the
subset of R and ′ represents the derivative, whereas E(R+,R+) and E′(R+,R+) stand
for the sets of all non-negative continuous functions and nondecreasing continuously
differentiable functions from R+ into R+, respectively. Now, we are ready to present some
preliminary results.

The inequality

x(r) ≤ x0 +

r∫
0

h(μ)x(μ)dμ +

r∫
0

h(μ)
( μ∫

0

b(θ)x(θ)dθ

)
dμ, ∀r ∈ R+, (8)

was discovered by Pachpatte [13] in 1973 taking x(r), h(r), and b(r) to be non-negative real
valued continuous functions defined on R+ and x0 to be a positive constant. The inequality

x(r) ≤ x0 +

r∫
0

(
h(μ)x(μ) + p(μ)

)
dμ +

r∫
0

h(μ)

μ∫
0

b(θ)x(θ)dθdμ, ∀r ∈ R+, (9)

was derived by Pachpatte [3] in 1998 considering x(r), h(r), p(r), and b(r) to be non-
negative continuous functions defined on R+ and x0 to be a non-negative constant. The
inequality

xp+1(r) ≤ x0 +

( r∫
0

h(μ)xp(μ)dμ

)2

+ 2
r∫

0

h(μ)xp(μ)

(
x(μ) +

μ∫
0

h(θ)xp(θ)dθ

)
dμ, (10)

was established by Abdeldaim and Yakout [16] in 2011 with the same assumptions as given
in (8) and p ∈ (0, 1). The inequalities

x(r) ≤ x0 +

( ϑ(r)∫
0

h(μ)ϕ(x(μ))dμ

)2

+

ϑ(r)∫
0

h(μ)ϕ(x(μ))
(

ϕ(x(μ))

+2

μ∫
0

h(θ)ϕ(x(θ))dθ

)
dμ, (11)
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and

φ(x(r)) ≤ x0 +

( ϑ(r)∫
0

h(μ)ϕ(x(μ))dμ

)2

+

ϑ(r)∫
0

h(μ)ϕ(x(μ))
(

x(μ)

+2

μ∫
0

h(θ)ϕ(x(θ))dθ

)
dμ, (12)

were developed by Wang [15] in 2012 assuming x, h ∈ E(R+,R+), ϕ, ϕ′, ϑ ∈ E′(R+,R+)
with ϕ′(r) ≤ k, ϑ(r) ≤ r; k, x0 to be positive constants and x, h ∈ E(R+,R+), φ, ϕ, ϑ ∈
E′(R+,R+) with φ′(r) = ϕ(r), ϑ(r) ≤ r; and x0 to be a positive constant. The following in-
equality has the same assumptions as given in (11) studied by Abdeldaim and El-Deeb [14]
in 2015

x(r) ≤ x0 +

ϑ(r)∫
0

h(μ)ϕ(x(μ))
(

ϕ(x(μ)) +

μ∫
0

b(θ)ϕ(x(θ))dθ

)
dμ, ∀r ∈ R+. (13)

The following result was studied by Abdeldaim and El-Deeb [12] in 2015

x(r) ≤ x0 +

ϑ(r)∫
0

ϕ(x(μ))
(

h(μ)ϕ(x(μ)) + q(μ)
)

dμ +

ϑ(r)∫
0

ϕ(x(μ))h(μ)

×
( μ∫

0

b(θ)ϕ(x(θ))dθ

)
dμ, (14)

considering the same assumptions as given in (11).
We now introduce the following basic lemmas, which are very helpful in the proofs of

our main results.

Lemma 1 ([10]). Suppose that a ≥ 0, m ≥ n ≥ 0, and m 
= 0.

(a) If K > 0, then

a
n
m ≤ n

m
K

n−m
m a +

m− n
m

K
n
m .

(b) If K = 1, then

a
n
m ≤ n

m
a + 1− n

m
.

Lemma 2 ([11]). Let x, h ∈ E(R+,R+), and q, ϕ, ϑ,∈ E′(R+,R+) with ϑ(r) ≤ r, ∀r ∈ R+.
If

x(r) ≤ q(r) +

ϑ(r)∫
0

h(μ)ϕ(x(μ))dμ, ∀r ∈ R+,

holds, then

x(r) ≤ Ψ−1
(

Ψ(q(r)) +

ϑ(r)∫
0

h(μ)dμ

)
, ∀r ∈ (0, R1),
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where

Ψ(t) =
r∫

1

dμ

ϕ(μ)
, ∀t > 0,

Ψ−1 is the inverse function of Ψ, and R1 ∈ R+ is the largest number such that

Ψ(q(R1)) +

ϑ(R1)∫
0

h(μ)dμ ≤
∞∫

1

dμ

ϕ(μ)
.

3. Results on Retarded Integral Inequalities

In this section, we state and prove the following nonlinear retarded integral inequality
with the addition of a differentiable function to replace the constant outside the integral sign
for the inequality of the Gronwall–Bellman–Pachpatte type. These results will generalize a
few important inequalities in [3,9,12,13].

Theorem 1. Let x, h, p, b ∈ E(R+,R+) and q, ϑ ∈ E′(R+,R+) with ϑ(r) ≤ r on R+, and
m ∈ (0, 1]. The inequality

x(r) ≤ q(r) +

ϑ(r)∫
0

[h(μ)x(μ) + p(μ)]mdμ +

ϑ(r)∫
0

h(μ)

μ∫
0

b(θ)x(θ)dθdμ, ∀r ∈ R+, (15)

implies

x(r) ≤ q(r) +

ϑ(r)∫
0

(
mp(μ) + (1−m)

)
dμ +

r∫
0

ϑ′(μ) f (ϑ(μ))exp
( ϑ(μ)∫

0

(mh(η) +
1
m

b(η))dη

)

×
(

mq(0) +

ϑ(μ)∫
0

(
mq′(ϑ−1(θ)) + m2 p(θ) + m(1−m)

)

×exp
(
−

θ∫
0

(mh(η) +
1
m

b(η))dη

)
dθ

)
dμ, ∀r ∈ R+. (16)

Proof. With the help of Lemma 1 (b), from (15) we have

x(r) ≤ q(r) +

ϑ(r)∫
0

(
m(h(μ)x(μ) + p(μ)) + (1−m)

)
dμ +

ϑ(r)∫
0

h(μ)

μ∫
0

b(θ)x(θ)dθdμ, (17)

for all r ∈ R+. Let J(r) be the right hand side of (17) that is a non-negative and nondecreas-
ing function on R+, and J(0) = q(0). Thus, from (17) we have

x(r) ≤ J(r), x(ϑ(r)) ≤ J(ϑ(r)) ≤ J(r), ∀r ∈ R+. (18)

After differentiating J(r), we obtain

J′(r) = q′(r) + ϑ′(r)
(

mh(ϑ(r))x(ϑ(r)) + mp(ϑ(r)) + (1−m)

)
+ ϑ′(r)h(ϑ(r))

ϑ(r)∫
0

b(θ)x(θ)dθ,
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by utilizing (18), we have

J′(r) ≤ q′(r) + mϑ′(r)p(ϑ(r)) + ϑ′(r)(1−m) + ϑ′(r)h(ϑ(r))V(r), ∀r ∈ R+, (19)

where

V(r) = mJ(r) +

ϑ(r)∫
0

b(θ)J(θ)dθ, ∀r ∈ R+, (20)

is a non-negative and nondecreasing function onR+, and we also have V(0) = mJ(0) = mq(0),
J(r) ≤ 1

m V(r), and J(ϑ(r)) ≤ 1
m V(ϑ(r)) ≤ 1

m V(r). We obtain the following inequality after
differentiating inequality (20) and utilizing inequality (19):

V′(r) ≤ mq′(r) + m2ϑ′(r)p(ϑ(r)) + ϑ′(r)m(1−m) + ϑ′(r)
(

mh(ϑ(r)) +
1
m

b(ϑ(r))
)

V(r),

which is equivalent to

V′(r)− ϑ′(r)
(

mh(ϑ(r)) +
1
m

b(ϑ(r))
)

V(r) ≤ mq′(r) + m2ϑ′(r)p(ϑ(r)) + ϑ′(r)m(1−m),

for all r ∈ R+. We have the following estimation for V(r) after integrating the above
inequality from 0 to r:

V(r) ≤ exp
( ϑ(r)∫

0

(mh(η) +
1
m

b(η))dη

)(
mq(0) +

ϑ(r)∫
0

(
mq′(ϑ−1(θ)) + m2 p(θ) + m(1−m)

)

×exp
(
−

θ∫
0

(mh(η) +
1
m

b(η))dη

)
dθ

)
, ∀r ∈ R+. (21)

Putting (21) into (19), we have

J′(r) ≤ q′(r) + ϑ′(r)
(

mp(ϑ(r)) + (1−m)

)
+ ϑ′(r)h(ϑ(r))exp

( ϑ(r)∫
0

(mh(η) +
1
m

b(η))dη

)

×
(

mq(0) +

ϑ(r)∫
0

(
mq′(ϑ−1(θ)) + m2 p(θ) + m(1−m)

)

×exp
(
−

θ∫
0

(mh(η) +
1
m

b(η))dη

)
dθ

)
, ∀r ∈ R+. (22)

Setting r = μ in (22) and integrating it from 0 to r, then substituting J(r) in (18), we obtain
(16). The proof is completed.

Remark 1. It is very interesting to observe that Theorem 1 generalizes some former famous results
such as the following:

(1). If we take q(r) = x0 (a constant) and m = 1, then Theorem 1 is converted into inequality
(6) [12].

(2). When we suppose q(r) = x0 (a constant), m = 1, and ϑ(r) = r, then inequality (9) [3]
becomes the corollary of Theorem 1.

(3). If we put q(r) = x0 (a constant), ϑ(r) = r, b(r) = 0, p(r) = 0, and m = 1, then we obtain
the Gronwall–Bellman inequality [9] given in (3).
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(4). When we put q(r) = x0 (a constant), ϑ(r) = r, m = 1, and p(r) = 0, then Theorem 1 is
reduced to inequality (8) [13].

Generalization of the results given in [12,14–16] will be established in the upcoming
new inequalities which can also be utilized to study the global existence of solutions to the
generalized Liénard equation with time delay and to a retarded Rayleigh type equation:

Theorem 2. Let x, b, p, h ∈ E(R+,R+) and q, ϕ, ϕ′, ϑ,∈ E′(R+,R+) with q(r) ≥ 1,
ϕ′(r) ≤ k, (a positive constant) ϕ > 0, ϑ(r) ≤ r, for all r ∈ R+ and m ∈ (0, 1]. The inequality

x(r) ≤ q(r) +

ϑ(r)∫
0

ϕ(x(μ))[h(μ)ϕ(x(μ)) + p(μ)]mdμ +

ϑ(r)∫
0

ϕ(x(μ))h(μ)

×
( μ∫

0

b(θ)ϕ(x(θ))dθ

)
dμ, ∀r ∈ R+, (23)

gives

x(r) ≤ Ψ−1
(

Ψ(q(0)) +

ϑ(r)∫
0

(
q′(ϑ−1(μ) + p(μ) + (1−m) + h(μ)β(μ)

)
dμ

)
, (24)

for all r ∈ R+, where

Ψ(t) =
t∫

1

dr
ϕ(r)

, t > 0, (25)

β(r) =
exp(

ϑ(r)∫
0

(
kp(μ) + k(1−m) + 1

m b(μ)
)
dμ)

C1 − k
ϑ(r)∫
0
(mq′(ϑ−1(μ)) + h(μ))exp(

μ∫
0

(
kp(θ) + k(1−m) + 1

m b(θ)
)
dθ)dμ

, (26)

for all r ∈ R+, C1 = mϕ−1(q(0)), Ψ−1 and ϕ−1 are the inverse functions of Ψ and ϕ, respectively,
such that

C1 − k

ϑ(r)∫
0

(mq′(ϑ−1(μ)) + h(μ))exp(

μ∫
0

(
kp(θ) + k(1−m) +

1
m

b(θ)
)
dθ)dμ > 0.

Proof. Applying Lemma 1 (b) to inequality (23), we obtain

x(r) ≤ q(r) +

ϑ(r)∫
0

ϕ(x(μ))[m(h(μ)ϕ(x(μ)) + p(μ)) + (1−m)]dμ +

ϑ(r)∫
0

ϕ(x(μ))h(μ)

×
( μ∫

0

b(θ)ϕ(x(θ))dθ

)
dμ, ∀r ∈ R+. (27)

Assume that J1(r) is the right hand side of (27) that is a non-negative and nondecreasing
function on R+ and J1(0) = q(0). Thus, from (27), we have

x(r) ≤ J1(r), x(ϑ(r)) ≤ J1(ϑ(r)) ≤ J1(r), ∀r ∈ R+. (28)
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Differentiation of J1(r) gives

J′1(r) = q′(r) + ϑ′(r)ϕ(x(ϑ(r)))[m(h(ϑ(r))ϕ(x(ϑ(r))) + p(ϑ(r)) + (1−m)]

+ϑ′(r)ϕ(x(ϑ(r)))h(ϑ(r))

ϑ(r)∫
0

b(μ)ϕ(x(μ))dμ, r ∈ R+.

By utilizing (28), we have

J′1(r) ≤ q′(r) + ϑ′(r)ϕ(J1(r))[p(ϑ(r)) + (1−m)] + ϑ′(r)ϕ(J1(r))h(ϑ(r))V1(r), (29)

where

V1(r) = mϕ(J1(r)) +

ϑ(r)∫
0

b(μ)ϕ(J1(μ))dμ, ∀r ∈ R+, (30)

and we have V1(0) = mϕ(J1(0)) = mϕ(q(0)), and ϕ(J1(r)) ≤ 1
m V1(r). After differentiating

(30) and using the relation ϕ′(J1(r)) ≤ k and (29), we obtain

V′1(r) ≤ kmq′(r) + ϑ′(r)
(
kp(ϑ(r)) + k(1−m) +

1
m

b(ϑ(r))
)
V1(r)

+kϑ′(r)h(ϑ(r))V2
1 (r), ∀r ∈ R+.

As q(r) ≥ 1, V1(r) ≥ 1 which gives that q′(r)
V1(r)

≤ q′(r), so dividing the above inequality by

V2
1 (r), we have

V−2
1 (r)V′1(r) ≤ ϑ′(r)

(
kp(ϑ(r)) + k(1−m) +

1
m

b(ϑ(r))
)
V−1

1 (r)

+kmq′(r) + kϑ′(r)h(ϑ(r)), ∀r ∈ R+. (31)

If we let V−1
1 (r) = W(r), W(0) = V−1

1 (0) = mϕ−1(q(0)), and V−2
1 (r)V′1(r) = −W ′(r), then

inequality (31) gives

W ′(r) + ϑ′(r)
(

kp(ϑ(r)) + k(1−m) +
1
m

b(ϑ(r))
)

W(r) ≥ −k
(

mq′(r) + ϑ′(r)h(ϑ(r))
)

,

for all r ∈ R+. Applying integration from 0 to r to the above inequality gives an estimation
for W(r) as follows:

W(r) ≥
C1 − k

ϑ(r)∫
0

(
mq′(ϑ−1(μ)) + h(μ)

)
exp
( μ∫

0

(
kp(θ) + k(1−m) + 1

m b(θ)
)
dθ

)
dμ

exp
( ϑ(r)∫

0

(
kp(μ) + k(1−m) + 1

m b(μ)
)
dμ

) ,

for all r ∈ R+, where C1 = mϕ−1(q(0)). Thus, V1(r) = W−1(r) ≤ β(r), where β(r) is
defined in (26). Substituting V1(r) ≤ β(r) in (29), we obtain

J′1(r) ≤ q′(r) + ϑ′(r)ϕ(J1(r))[p(ϑ(r)) + (1−m)] + ϑ′(r)ϕ(J1(r))h(ϑ(r))β(r). (32)

Since q(r) ≥ 1 and ϕ(J1(r)) ≥ 1, which implies that q′(r)
ϕ(J1(r))

≤ q′(r), we can write (32) as
follows:

J′1(r)
ϕ(J1(r))

≤ q′(r) + ϑ′(r)[p(ϑ(r)) + (1−m)] + ϑ′(r)h(ϑ(r))β(r), ∀r ∈ R+. (33)
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Setting r = μ in (33), integrating it from 0 to r, and utilizing (25), we obtain

J1(r) ≤ Ψ−1
(

Ψ(q(0)) +

ϑ(r)∫
0

(
q′(ϑ−1(μ) + p(μ) + (1−m) + h(μ)β(μ)

)
dμ

)
, ∀r ∈ R+.

Putting the above inequality in (28), we obtain the required result of (24). The proof is
completed.

Remark 2. It is very interesting to observe that Theorem 2 generalizes former inequalities such as
the following:

(1). If we take q(r) = x0 (a constant) and m = 1, then we obtain inequality (14) [12].
(2). When we put q(r) = x0 (a constant), p(r) = 0, and m = 1, then we obtain inequality (13) [14].
(3). It is observed that inverse Ψ−1 is well defined, continuous, and increasing in its corresponding

domain as Ψ is strictly increasing.

Generalization of the inequalities given in [15,16] will be established in the following
new inequality:

Theorem 3. Let x, h ∈ E(R+,R+) and q, ϕ, ϕ′, ϑ,∈ E′(R+,R+) with q(r) ≥ 1, ϕ′(r) ≤ k
(a positive constant), ϕ > 0, ϑ(r) ≤ r, for all r ∈ R+ and m ∈ (0, 1]. The inequality

x(r) ≤ q(r) +
( ϑ(r)∫

0

h(μ)ϕ(x(μ))dμ

)2

+

ϑ(r)∫
0

h(μ)ϕ(x(μ))
[
ϕ(x(μ))

+2

μ∫
0

h(η)ϕ(x(η))dη
]mdμ, ∀r ∈ R+, (34)

implies

x(r) ≤ Ψ−1
(

Ψ(q(0)) +

ϑ(r)∫
0

(
q′(ϑ−1(μ) + h(μ)β1(μ)

)
dμ

)
, ∀r ∈ R+, (35)

where

Ψ(t) =
t∫

1

dr
ϕ(r)

, t > 0, (36)

β1(r) =
exp
(

2(1 + 1
m )

ϑ(r)∫
0

h(μ)dμ

)
(
C2
)−1 − k

ϑ(r)∫
0

(
mq′(ϑ−1(μ)) + h(μ)

)
exp
(

2(1 + 1
m )

μ∫
0

h(θ)dθ

)
dμ

, (37)

for all r ∈ R+, C2 = mϕ(q(0)) + 1−m, Ψ−1 is the inverse function of Ψ, such that

(
C2
)−1 − k

ϑ(r)∫
0

(
mq′(ϑ−1(μ)) + h(μ)

)
exp
(

2(1 +
1
m
)

μ∫
0

h(θ)dθ

)
dμ > 0.
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Proof. Applying Lemma 1 (b) to inequality (34), we obtain

x(r) ≤ q(r) +
( ϑ(r)∫

0

h(μ)ϕ(x(μ))dμ

)2

+

ϑ(r)∫
0

h(μ)ϕ(x(μ))
(

mϕ(x(μ))

+2m

μ∫
0

h(η)ϕ(x(η))dη + (1−m)

)
dμ, ∀r ∈ R+. (38)

Let J2(r) be the right hand side of (38) that is a non-negative and nondecreasing function
on R+, and J2(0) = q(0). Thus, from (38), we have

x(r) ≤ J2(r), x(ϑ(r)) ≤ J2(ϑ(r)) ≤ J2(r), ∀r ∈ R+. (39)

After differentiating J2(r), we obtain

J′2(r) = q′(r) + 2α′(r)h(ϑ(r))ϕ(x(ϑ(r)))

ϑ(r)∫
0

h(μ)ϕ(x(μ))dμ + ϑ′(r)h(ϑ(r))ϕ(x(ϑ(r)))

×
(

mϕ(x(ϑ(r))) + 2m

ϑ(r)∫
0

h(μ)ϕ(x(μ))dμ + (1−m)

)
, ∀r ∈ R+.

By using (39), we have

J′2(r) ≤ q′(r) + ϑ′(r)h(ϑ(r))ϕ(J2(r))V2(r), ∀r ∈ R+, (40)

where

V2(r) = mϕ(J2(ϑ(r))) + 2

ϑ(r)∫
0

h(μ)ϕ(J2(μ))dμ + 2m

ϑ(r)∫
0

h(μ)ϕ(J2(μ))dμ + (1−m), (41)

is a non-negative and nondecreasing function on R+, and we also have V2(0) = mϕ(J2(0))+
(1−m) = mϕ(q(0)) + (1−m) and ϕ(J2(ϑ(r))) ≤ 1

m V2(r). After differentiating (41), and
using the relation ϕ′(J2(r)) ≤ k and (40), we obtain

V′2(r) ≤ kmq′(r) + kϑ′(r)h(ϑ(r))V2
2 (r) + 2(1 +

1
m
)ϑ′(r)h(ϑ(r))V2(r), ∀r ∈ R+.

Since q(r) ≥ 1 and V2(r) ≥ 1 which implies that q′(r)
V2(r)

≤ q′(r), dividing the above inequality

by V2
2 (r), we have

V−2
2 (r)V′2(r) ≤ kmq′(r) + kϑ′(r)h(ϑ(r)) + 2(1 +

1
m
)ϑ′(r)h(ϑ(r))V−1

2 (r), ∀r ∈ R+. (42)

If we let V−1
2 (r) = W1(r), W1(0) = V−1

2 (0) =

(
mϕ(q(0)) + (1− m)

)−1

and V−2
2 (r)V′2(r) =

−W′1(r), then inequality (42) implies

W ′1(r) + 2(1 +
1
m
)ϑ′(r)h(ϑ(r))W1(r) ≥ −k

(
mq′(r) + ϑ′(r)h(ϑ(r))

)
, ∀r ∈ R+.
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We have the following estimation for W1(r) after applying integration from 0 to r to the
above inequality:

W1(r) ≥

(
C2
)−1 − k

ϑ(r)∫
0

(
mq′(ϑ−1(μ)) + h(μ)

)
exp
(

2(1 + 1
m )

μ∫
0

h(θ)dθ

)
dμ

exp
(

2(1 + 1
m )

ϑ(r)∫
0

h(μ)dμ

) ,

for all r ∈ R+, where C2 = mϕ(q(0)) + 1−m. Thus, V2(r) = W−1
1 (r) ≤ β1(r), where β1(r)

is defined in (37). Substituting V2(r) ≤ β1(r) in (40), we obtain

J′2(r) ≤ q′(r) + ϑ′(r)h(ϑ(r))ϕ(J2(r))β1(r), ∀r ∈ R+.

Since q(r) ≥ 1 and ϕ(J2(r)) ≥ 1, which implies that q′(r)
ϕ(J2(r))

≤ q′(r), we have

J′2(r)
ϕ(J2(r))

≤ q′(r) + ϑ′(r)h(ϑ(r))β1(r), ∀r ∈ R+. (43)

Setting r = μ in (43), integrating it from 0 to r, and utilizing (36), we obtain

J2(r) ≤ Ψ−1
(

Ψ(q(0)) +

ϑ(r)∫
0

(
q′(ϑ−1(μ) + h(μ)β1(μ)

)
dμ

)
, ∀r ∈ R+.

Putting the above inequality in (39), we obtain the required result of (35). The proof is
completed.

Remark 3. It is very interesting to observe that Theorem 3 generalizes former results such as
the following:

(1). If we take q(r) = x0 (a constant) and m = 1, then we obtain inequality (11) [15].
(2). When we put q(r) = x0 (a constant), ϑ(r) = r, ϕ(x(r)) = x(r), and m = 1, then we obtain

inequality (5) [16].

Now, we present the last inequality of this section which will generalize the inequalities
in [15,16].

Theorem 4. Let x, h ∈ E(R+,R+), and q, φ, ϕ, φ′, ϕ/r, ϑ,∈ E′(R+,R+) with q(r) ≥ 1,
φ′(r) = ϕ(r), ϑ(r) ≤ r, for all r ∈ R+ and m ∈ (0, 1]. The inequality

φ(x(r)) ≤ q(r) +
( ϑ(r)∫

0

h(μ)ϕ(x(μ))dμ

)2

+

ϑ(r)∫
0

h(μ)ϕ(x(μ))

×
(

x(μ) + 2

μ∫
0

h(η)ϕ(x(η))dη

)m

dμ, ∀r ∈ R+, (44)

gives

x(r) ≤ exp
(

Ψ−1
(

Ψ
(

C3 + m

ϑ(r)∫
0

(q′(ϑ−1(μ)) + h(μ))dμ
)
+ 2(m + 1)

ϑ(r)∫
0

h(μ)dμ
))

, (45)
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for all r ∈ (0, R1), where

Ψ(t) =
t∫

1

exp(r)
ϕ(exp(r))

dr, ∀t > 0, (46)

C3 = ln(1 + mφ−1(q(0)) − m), Ψ−1 and φ−1 are the inverses of Ψ and φ, respectively, and
R1 ∈ R+ is the largest number such that

Ψ
(

C3 + m

ϑ(R1)∫
0

(q′(ϑ−1(μ)) + h(μ))dμ

)
+ 2(m + 1)

ϑ(R1)∫
0

h(μ)dμ ≤
∞∫

1

exp(r)dr
φ(exp(r))

. (47)

Proof. Applying Lemma 1 (b) to inequality (44), we have

φ(x(r)) ≤ q(r) +
( ϑ(r)∫

0

h(μ)ϕ(x(μ))dμ

)2

+

ϑ(r)∫
0

h(μ)ϕ(x(μ))
(

mx(μ) + 2m

×
μ∫

0

h(η)ϕ(x(η))dη + (1−m)

)
dμ, ∀r ∈ R+, (48)

Let φ(J3(r)) be the right hand side of (48) that is a non-negative and nondecreasing function
on R+, and J3(0) = φ−1(q(0)). Thus, from (48), we obtain

x(r) ≤ J3(r), x(ϑ(r)) ≤ J3(ϑ(r)) ≤ J3(r) ∀r ∈ R+. (49)

After differentiating φ(J3(r)) and utilizing (49), we have

φ′(J3(r))J′3(r) ≤ q′(r) + 2ϑ′(r)h(ϑ(r))ϕ(J3(ϑ(r)))

ϑ(r)∫
0

h(μ)ϕ(J3(μ))dμ

+ϑ′(r)h(ϑ(r))ϕ(J3(ϑ(r)))
(

mJ3(ϑ(r)) + 2m

ϑ(r)∫
0

h(μ)ϕ(J3(μ))dμ

+(1−m)

)
, ∀r ∈ R+.

Since q(r) ≥ 1 and ϕ(J3(r)) ≥ 1 which implies that q′(r)
ϕ(J3(r))

≤ q′(r), and using the relation
φ′(J3(r)) = ϕ(J3(r)), we obtain

J′3(r) ≤ q′(r) + ϑ′(r)h(ϑ(r))
(

mJ3(r) + 2(m + 1)

ϑ(r)∫
0

h(μ)ϕ(J3(μ))dμ + (1−m)

)
≤ q′(r) + ϑ′(r)h(ϑ(r))V3(r), ∀r ∈ R+, (50)

where

V3(r) = mJ3(r) + 2(m + 1)

ϑ(r)∫
0

h(μ)ϕ(J3(μ))dμ + (1−m), ∀r ∈ R+.
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is a non-negative and nondecreasing function on R+, and we also have V3(0) = mJ3(0) +
(1 − m) = mφ−1(q(0)) + (1 − m), and J3(r) ≤ V3(r). After differentiating V3(r) with
respect to r and utilizing (50), we obtain

V′3(r) ≤ mq′(r) + mϑ′(r)h(ϑ(r))V3(ϑ(r)) + 2(m + 1)ϑ′(r)h(ϑ(r))ϕ(V3(ϑ(r))), ∀r ∈ R+.

As q(r) ≥ 1 and V3(ϑ(r)) ≥ 1 which implies that q′(r)
V3(ϑ(t))

≤ q′(r), dividing the above
inequality by V3(ϑ(r)), we obtain

V′3(r)
V3(r)

≤ mq′(r) + mϑ′(r)h(ϑ(r)) + 2(m + 1)ϑ′(r)h(ϑ(r))
ϕ(V3(ϑ(r)))

V3(ϑ(r))
, ∀r ∈ R+. (51)

Applying integration from 0 to r to (51), we obtain

ln V3(r) ≤ C3 + m

ϑ(r)∫
0

(
q′(ϑ−1(μ)) + h(μ)

)
dμ + 2(m + 1)

ϑ(r)∫
0

h(μ)
ϕ(V3(μ))

V3(μ)
dμ

≤ C3 + m

ϑ(r)∫
0

(
q′(ϑ−1(μ)) + h(μ)

)
dμ + 2(m + 1)

ϑ(r)∫
0

h(μ)
ϕ(exp(ln V3(μ)))

exp(ln V3(μ))
dμ,

where C3 = ln(1 + mφ−1(q(0))−m). Applying Lemma 2 and utilizing (46), we have

ln V3(r) ≤ Ψ−1
(

Ψ
(

C3 + m

ϑ(r)∫
0

(
q′(ϑ−1(μ)) + h(μ)

)
dμ
)
+ 2(m + 1)

ϑ(r)∫
0

h(μ)dμ

)
,

for all r ∈ (0, R1). By using the relation x(r) ≤ J3(r) ≤ V3(r), this gives (45). The proof is
completed.

Remark 4. It is very interesting to observe that Theorem 4 generalizes some famous results such as
the following:

(1). If we take q(r) = x0 (a constant) and m = 1, then we obtain inequality (12) [15].
(2). When we put q(r) = x0 (a constant), ϑ(r) = r, ϕ(x(r)) = xp(r), φ(x(r)) = xp+1(r), and

m = 1, then we obtain inequality (10) [16].
(3). It is noted that R1 is confined by inequality (47). Particularly, (45) is valid for all r ∈ (0, R1)

when φ satisfies
∞∫
1

exp(r)dr
φ(exp(r)) = ∞.

4. Existence and Boundedness of Solution

In this section, we present two examples to demonstrate the strength of our derived
inequalities from Section 3 as well as to study the boundedness and existence of solutions
for integro-differential equations and differential equations.

Example 1. Consider the nonlinear integro-differential equation of the initial value problem⎧⎪⎨⎪⎩x′(r) = q′(r) + F(r, x(ϑ(r)),
r∫

0
G(θ, x)), ∀r ∈ R+,

x(0) = q(0),
(52)
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where F ∈ E(R3
+,R), G ∈ E(R2

+,R), and q(0) is a positive constant. Assume

r∫
0

|q′(μ) + F(μ, x(ϑ(μ)), H)|dμ ≤
r∫

0

(
q′(μ) + ϕ(|x|)[h(μ)ϕ(|x|) + p(μ)]m

+ϕ(|x|)h(μ)|H|
)

dμ, ∀r ∈ R+, (53)

H = G(r, x(r)) ≤ b(r)(ϕ(|x(r)|)), ∀r ∈ R+, (54)

where the functions x, h, q, p, ϑ, ϕ, b, and m are already defined as in Theorem 2. If x is the
solution of (52), then

x(r) = q(r) +
r∫

0

F
(

μ, x(ϑ(μ)),

μ∫
0

h(θ, x(ϑ(θ)))dθ

)
dμ, ∀r ∈ R+, (55)

Utilizing (53) and (54) in (55), we obtain

|x(r)| ≤ |q(r)|+
r∫

0

ϕ(|x(ϑ(μ))|)[h(μ)ϕ(|x(ϑ(μ))|) + p(μ)]mdμ

+

ϑ(r)∫
0

ϕ(|x(ϑ(μ))|)h(μ)
( μ∫

0

b(θ)ϕ(|x(ϑ(θ))|)dθ

)
dμ

≤ |q(r)|+
ϑ(r)∫
0

ϕ(|x(μ)|)
ϑ′(ϑ−1(μ))

[h(μ)ϕ(|x(μ)|) + p(μ)]mdμ

+

ϑ(r)∫
0

h(ϑ−1(μ))

ϑ′(ϑ−1(μ))
ϕ(|x(μ)|)

( μ∫
0

b(θ)ϕ(|x(θ)|)dθ

)
dμ, ∀r ∈ R+. (56)

As an application of Theorem 2, the inequality (56) implies

x(r) ≤ Ψ−1
(

Ψ(q(0)) +

ϑ(r)∫
0

1
ϑ′(ϑ−1(μ))

(
q′(ϑ−1(μ) + p(μ) + (1−m) + h(μ)β(μ)

)
dμ

)
,

for all r ∈ R+, which gives boundedness and global existence for x, where Ψ and k are defined in
Theorem 2 and

β(r) =
exp(

ϑ(r)∫
0

(
kp(μ)+k(1−m)+ 1

m b(μ)
)

ϑ′(ϑ−1(μ))
dμ)

mϕ−1(q(0))− k
ϑ(r)∫
0

(mq′(ϑ−1(μ))+h(μ))
ϑ′(ϑ−1(μ))

exp(
μ∫
0

(
kp(θ) + k(1−m) + 1

m b(θ)
)
dθ)dμ

,

for all r ∈ R+. The estimated boundedness and existence of unknown x for 0 ≤ r ≤ 1 are shown in
Figure 1.
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Figure 1. Estimated boundedness and existence of x(r).

At the end of this section, we present another example to demonstrate the result of
Theorem 3.

Example 2. Consider the nonlinear differential equation of the initial value problem{
x′(r) = q′(r) + F(r, x(ϑ(r)) + H(r, x(ϑ(t)), G(r, x(ϑ(r)))), ∀r ∈ R+,
x(0) = q(0),

(57)

where F, G ∈ E(R2
+,R), H ∈ E(R3

+,R), and q(0) is a positive constant. Assume that
|q′(r) + F(r, x(ϑ(r)))| ≤ h2(ϑ(r))|ϕ(x(ϑ(r)))|2, (58)

|G(r, x(ϑ(r)))| ≤ h(ϑ(r))|ϕ(x(ϑ(r)))|, (59)

|H(r, x, G| ≤ |G|(ϕ|x|)m + 2
r∫

0

|G|mdμ, (60)

for all r ∈ R+, where x, h, q, ϑ, ϕ, ϕ′, k, and m are already defined as in Theorem 3. Taking
integration from 0 to r on (57), we have

x(r) = q(r) +
r∫

0

F(μ, x(ϑ(μ)))dμ +

r∫
0

H(μ, x(ϑ(μ)), G(μ, x(ϑ(μ))))dμ, ∀r ∈ R+. (61)
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Using (58)–(60) in (61), we obtain

|x(r)| = |q(r)|+
r∫

0

h2(ϑ(μ))|ϕ(x(ϑ(μ)))|2dμ +

r∫
0

h(ϑ(μ))|ϕ(x(ϑ(r)))|
(
|ϕ(x(ϑ(μ)))|

+2

μ∫
0

h(ϑ(θ))|ϕ(x(ϑ(θ)))dθ

)m

dμ

≤ |q(r)|+
( ϑ(r)∫

0

h(μ)|ϕ(x(μ))|
ϑ′(ϑ−1(μ))

dμ

)2

+

ϑ(r)∫
0

h(μ)|ϕ(x(μ))|
ϑ′(ϑ−1(μ))

(
ϕ(|x(ϑ(μ))|)

+2

μ∫
0

h(θ)|ϕ(x(θ))|dθ

)m

dμ, ∀r ∈ R+. (62)

As an application of Theorem 3, the inequality (62) implies

x(r) ≤ Ψ−1
(

Ψ(q(0)) +

ϑ(r)∫
0

1
ϑ′(ϑ−1(μ))

(
q′(ϑ−1(μ) + h(μ)β1(μ)

)
dμ

)
, ∀r ∈ R+,

which gives boundedness and global existence for x, where Ψ and k are defined in Theorem 3 and

β1(r) =
exp
(

2(1 + 1
m )

ϑ(r)∫
0

h(μ)
ϑ′(ϑ−1(μ))

dμ

)
(

mϕ(q(0)) + 1−m
)−1

− k
ϑ(r)∫
0

mq′(ϑ−1(μ))+h(μ)
ϑ′(ϑ−1(μ))

exp
(

2(1 + 1
m )

μ∫
0

h(θ)dθ

)
dμ

,

for all r ∈ R+. The estimated boundedness and existence of unknown x for 0 ≤ r ≤ 1 are shown in
Figure 2.
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Figure 2. Estimated boundedness and existence of x(r).
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5. Conclusions

It is well known that there exists a class of mathematical models that are described by
differential equations, and a large number of differential equations do not possess exact
solutions or the existence of solutions or the boundedness of solutions. On the other hand,
integral inequalities occupy a very privileged position in all mathematical sciences, and they
have many applications to questions of existence, stability, boundedness, and uniqueness,
and to the asymptotic behavior of the solutions of nonlinear integro-differential equations
(see [1–4]). But, in certain cases, the existence and boundedness studied by the integral
inequalities given in the current literature (see references) are not directly applicable, and
they are not feasible for studying the stability and asymptotic behavior of the solutions of
classes of more general nonlinear retarded integral, differential, and integro-differential
equations. However, the inequalities established in this manuscript permit us to analyze the
existence, uniqueness, stability, boundedness, and asymptotic behavior, as well as the other
properties of the solutions of classes of more general retarded nonlinear differential, integro-
differential, and integral equations. Many renowned and existing famous inequalities can
be explored on the basis of different choices of parameters (see Remarks 1–4) from the
integral inequalities of this article. The importance of these inequalities stems from the
fact that it is applicable in certain situations in which other available inequalities do not
apply directly. As such, these inequalities can handle the problems of nonlinear partial
differential equations in applied sciences. This research work will ensure the opening up
of new opportunities for the studying of nonlinear dynamic inequalities on a time-scale
structure of a varying nature.
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Abstract: In this paper, a class of nonlinear ordinary differential equations with impulses at variable
times is considered. The existence and uniqueness of the solution are given. At the same time,
modifying the classical definitions of continuous dependence and Gâteaux differentiability, some
results on the continuous dependence and Gâteaux differentiable of the solution relative to the
initial value are also presented in a new topology sense. For the autonomous impulsive system,
the periodicity of the solution is given. As an application, the properties of the solution for a type
of controlled nonlinear ordinary differential equation with impulses at variable times is obtained.
These results are a foundation to study optimal control problems of systems governed by differential
equations with impulses at variable times.

Keywords: differential equation; impulses at variable times; existence; qualitative theory; pulse
phenomena

MSC: 34A37; 34A12

1. Introduction

We begin by introducing the problem studied. Let R+ � [0,+∞), Y(t) = {yi(t)|i ∈
Λ � {1, 2, · · · , p}}, f : R+ × Rn −→ Rn, yi : R+ −→ Rn and Ji : Rn −→ Rn (i = 1, 2,
· · · , p) be given maps. Consider the following differential equations with impulses at
variable times⎧⎨⎩

ẋ(t) = f (t, x(t)), {x(t)}⋂Y(t) = ∅, t ≥ 0,
x(t+) = Ji(x(t)) + x(t), {x(t)}⋂Y(t) = yi(t), t ≥ 0,
x(0) = x0.

(1)

The main purpose of this study is (i) to provide a sufficient condition for the existence
and uniqueness of solution x for impulsive system (1); and (ii) to give the necessary and
sufficient condition for the exact times when solution x meets set Y(t); (iii) to present the
properties of the solution relative to the initial value.

There are some interesting phenomena for impulsive system (1). First, it is clear that
the system ẋ(t) = x(t) + u(t) is controllable (see [1]), but the following impulsive system{

ẋ(t) = x(t) + u(t), x(t) 
= 1,
x(t+) = 0, x(t) = 1

is not controllable. Similarly, the system ẋ(t) = −x(t) is stable, but the impulsive system{
ẋ(t) = −x(t), x(t) 
= 1,
x(t+) = 2, x(t) = 1

Axioms 2024, 13, 126. https://doi.org/10.3390/axioms13020126 https://www.mdpi.com/journal/axioms48
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is not stable when the initial value x(0) ≥ 1. Let us look at the third example. Denote by
x(·; 0, x0) the solution of the following impulsive differential system{

ẋ(t) = 2t, x(t) 
= 1, t > 0,
x(t+) = 0, x(t) = 1, t ≥ 0

with the initial value (0, x0). Then, we have⎧⎪⎨⎪⎩
x
(

t; 0, 1 + 1
n

)
= t2 + 1 + 1

n , t ≥ 0,

x(t; 0, 1) =
{

1, t = 0,
t2 −m, t ∈

(√
m,
√

m + 1
]
, m ∈ N.

This implies that the impulsive system (1) never has any continuous solution with respect to
the initial value in L1. In addition, we can also use simple cases to show that the impulsive
system (1) may not have a global solution.

The motivation for studying this problem is as follows. First of all, many physical
phenomena and application models are characterized by (1). For example, integrate-and-
fire models derived from a physical oscillation circuit [2,3] is widely used in neuroscience
research, which is concerned with current–voltage relations at which the states can be reset
once the voltage reaches a threshold level [4,5]. Again, in the application, it is crucial to
choose appropriate threshold levels for making decisions to trigger or suspend an impulsive
intervention: ref. [6] used glucose threshold level-guided injections of insulin; ref. [7] used
the time that when an economic threshold was reached by the number of pests as the time of
impulsive intervention. Second, the theory of impulsive differential equations has been an
object of increasing interest because of its wide applicability in biology, medicine and more
and more fields (see [8] and its references). The significant interest in the investigation of
differential equations with impulse effects is explained by the development of equipment in
which a significant role is played by complex systems [9–11]. In particular, the qualitative
theory of impulsive system (1) has not been systematically established and it is natural
to investigate it. We discuss the existence and uniqueness of a global solution and its
properties for nonlinear ordinary differential equations with impulses at variable times
(1) under weaker conditions. It is worth pointing out that the solutions of differential
systems with impulses may experience pulse phenomena, namely, the solutions may hit
a given surface a finite or infinite number of times, causing a rhythmical beating. This
situation presents difficulties in the investigation of properties of solutions of such systems.
In addition, it is not suitable for the stronger conditions of a control problem. Consequently,
it is desirable to find weaker conditions that guarantee the absence or presence of pulse
phenomena. More generally, it is significant to find conditions where the solution only
meets a given surface k ∈ N times (N denote the set of natural numbers).

Before concluding this section, we review the previous literature on the qualitative
analysis of impulsive differential equations. In fact, the qualitative analysis of impulsive
differential equations can at least be traced back to the works by N.M. Kruylov and N.N.
Bogolyubov [12] in 1937 in their classical monograph Introduction to Nonlinear Mechanics.
A mathematical formulation of the differential equation with impulses at fixed times was
first presented by A.M. Samoilenko and N.A. Perestyuk [13] in 1974. Since then, the
qualitative theory on differential equation with impulses at fixed times in finite (or infinite)
dimensional spaces has been extensively studied (see [14–17] and the references therein).
For the differential equations with impulses at variable times, A.M. Samoilenko and N.A.
Perestyuk [18] gave in 1981 the mathematical model{

ẋ(t) = f (t, x(t)), t 
= τi(x(t)),
x(t+) = x(t) + Ji(x(t)), t = τi(x(t)).

(2)

Later relevant works were published by D.D. Bainov and A.B. Dishliev [19] in 1984, S.
Hu [20] in 1989, etc. For more details, one can see the monographs of V. Lakshmikan-
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tham [21] in 1989, A.M. Samoilenko [22] in 1995, D.D. Bainov [23] in 1995 and M. Ben-
chohra [24] in 2006 and so on. In a word, these works established the qualitative theory of
(2) under stronger conditions. However, they are not suitable for the stronger conditions
of a control problem and impulsive differential equations in infinite dimensional spaces.
At the same time, when yi, (∀i ∈ Λ) is a one-to-one mapping, x(t) = yi(t) is equal to
t = y−1

i (x(t)). Hence, (2) can be treated as a simplified case of (1). For the linear case of (1),
Peng et al. [25] obtained the existence and uniqueness of the solution and its properties.

The rest of the paper is organized as follows. Section 2 presents the main results. In
Sections 3–5, the proofs of the three main theorems are given in turn. The periodicity of an
autonomous impulsive system is presented in Section 6. As an application, the variation
in the solution relative to the control is presented in Section 7, which is a foundation for
studying optimal control problems of systems governed by differential equations with
impulses at variable times. Finally, some new phenomena of impulsive differential systems
are summarized.

2. Main Results

We present our main results in this section. To state the first one, some preliminaries
are introduced. Throughout this paper, we fix T > 0 and assume that T = +∞, R+ =

[0, ∞), L1
loc(R

+;Rn×n)
�
= {x : (0,+∞) → Rn×n

∣∣|x(·)| ∈ L1(0, T;Rn×n), ∀T > 0}. We first
introduce several definitions. We define the function set PCY([0, T),Rn) =

{
x : [0, T) −→

Rn|x is continuous at t when x(t) /∈ Y(t), x is left continuous at t, and the right limit x(t+)
exists when x(t) ∈ Y(t)

}
. For x ∈ PCY([0, T),Rn), t ∈ [0, T) is called an irregular point if

x(t) ∈ Y(t). Otherwise, t is called a regular point. One can directly verify that the function
set PCY([0, T),Rn) is not linear. Denoted by B(z, θ2), the closed ball (in Rn) is centered at z
and has radius θ2 > 0.

Definition 1. A piecewise continuous function xθ is said to be an approximate PC-solution of (1)
if xθ(·) ≡ xθ(·; 0, x0) satisfies the following integral equation with impulses

xθ(t) = x0 +
∫ t

0
f (τ, xθ(τ))dτ + ∑

0 ≤ tj < t,
xθ(tj) ∈ B(yi(tj), θ2)

Ji
(
xθ(tj)

)
. (3)

In particular, when θ = 0, we call x(·) ≡ x0(·) ∈ PCY([0, T),Rn) a PC-solution of (1).

Meanwhile, we introduce the following basic assumptions.
[F](1) f : R+ ×Rn −→ Rn is measurable in t on R+ and locally Lipschitz continuous in

x, i.e., for any ρ > 0, there exits L(ρ) > 0 such that for all x, y ∈ Rn with |x|, |y| ≤ ρ, we have

| f (t, x)− f (t, y)| ≤ L(ρ)|x− y| for any t ∈ R
+.

(2) There exists a constant k̃ > 0 such that

| f (t, x)| ≤ k̃(1 + |x|) for any t ∈ R
+.

(3) f is continuous, partially differentiable in x, and fx(·, x) ∈ L1
loc(R

+,Rn×n).
[Y](1) yi ∈ C(R+,Rn), and yi(t) 
= yj(t) for all t ∈ R+ and i 
= j (i, j ∈ Λ).
(2) yi ∈ C1([0, T],Rn), and f (t, yi(t)) 
= ẏi(t) (i ∈ Λ).
[J](1) Ji : Rn −→ Rn is continuous, and

Υi(t) ≡ yi(t) + Ji(yi(t)) 
= yj(t) for all t ∈ R
+ and i, j ∈ Λ. (4)

(2) Ji : Rn −→ Rn is continuous, partially differentiable.
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It is clear that when assumptions [F](1)(2) hold, for any fixed (s, zs) ∈ R+ ×Rn, the
differential equation {

ż(t) = f (t, z(t)), t > s,
z(s) = zs,

has a unique solution z(·; s, zs) ∈ C([s,+∞),Rn) given by

z(t; s, zs) = zs +
∫ t

s
f (τ, z(τ; s, zs))dτ. (5)

We define several functions:

Fi(t; s, zs) = 〈z(t; s, zs)− yi(t), zs − yi(s)〉 (i = 1, 2, · · · , p), t ≥ s (6)

and

Fij(t; s, Υi(s)) = 〈z(t; s, Υi(s))− yj(t), Υi(s)− yj(s)〉 (i, j = 1, 2, · · · , p), t ≥ s, (7)

where 〈·, ·〉 denotes the inner product in Rn.
The first main result is presented as follows.

Theorem 1. Suppose assumptions [F](1)(2), [Y](1) and [J](1) hold.
(1) The system (1) admits a unique PC-solution x ∈ PCY(R

+,Rn).
(2) x has exactly one irregular point set {ti|0 ≤ t1 < t2 < · · · < tk < +∞} over R+ if and

only if there exists li ∈ Λ (i = 1, 2, · · · , k) such that

Fl1(t1; 0, x0) = 0, Flili+1
(ti+1; ti, Υli (ti)) = 0 for i = 1, 2, · · · , k− 1, (8)

and
Flk j
(
t; tk, Υlk (tk)

)
> 0 for any t ∈ [tk,+∞) for all j ∈ Λ. (9)

We have to point out that the necessary and sufficient conditions of a pulse phe-
nomenon is also given in Theorem 1. Moreover, for the existence of a solution of system (2),
in order to ensure tk = τk(x) is monotonous with respect to k in [21], it requires that τk(x)
be smooth and satisfy the corresponding inequality conditions. However, using Theorem 1,
we can obtain immediately the following result.

Corollary 1. Suppose assumptions [F](1)(2), [Y](1) and [J](1) hold. If yi is invertible and τi = y−1
i

for any i ∈ Λ, then the system (2) admits a unique PC-solution x ∈ PCY(R
+,Rn).

Now, we state our second and third main results. It follows from Theorem 1 that
for any fixed, sufficiently small θ > 0, (1) has a unique approximate PC-solution xθ

provided that assumptions [F](1)(2), [Y](1) and [J](1) hold. Let v ∈ Rn, xθ(·; θ, x0 + θv) be
an approximate PC-solution of Equation (1) corresponding to (θ, x0 + θv). We note that (1)
is not well posed. Thus, we can never expect to have the continuity of the solution with
respect to the initial value. We have to modify the classical definition of continuity and
differentiability, respectively.

Definition 2. Let v ∈ Rn be fixed. The PC-solution x(·; 0, x0) of (1) is said to have a continuous
dependence relative to the initial value (0, x0) if the following facts hold:
(i) When x(t; 0, x0) 
= yi(t) (i ∈ Λ), xθ(t; θ, x0 + θv) −→ x(t; 0, x0) as θ → 0;
(ii) For any sufficient small ε > 0, there exist δ > 0 and Iε ⊆ [0, T] such that

|xθ(t; θ, x0 + θv)− x(t; 0, x0)| < ε for any t ∈ Iε, (10)

when μ([0, T]\Iε) < ε, 0 < θ < δ, where μ denotes the Lebesgue measure.
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Definition 3. Let v ∈ Rn be fixed. The PC-solution x(·; 0, x0) of (1) is said to be Gâteaux
differentiable relative to the initial value (0, x0) if the Gâteaux derivative ϕ(t) of x(t; 0, x0) exists
at (0, x0) for all t ∈ [0, T] with x(t; 0, x0) 
= yi(t), otherwise,

ϕ(t) = lim
s↗t

ϕ(s),

where

ϕ(t) = lim
ε→0

xε(t; ε, x0 + εv)− x(t; 0, x0)

ε
when x(t; 0, x0) 
= yi(t).

Let us state the following main results.

Theorem 2. Suppose assumptions [F](1)(2), [Y](1) and [J](1) hold. Then, the PC-solution
x(·; 0, x0) of (1) has a continuous dependence relative to the initial value (0, x0) in the sense
of Definition 2.

Theorem 3. Suppose assumptions [F], [Y] and [J] hold. Then, the PC-solution x(·; 0, x0) of (1) is
Gâteaux differentiable relative to the initial value (0, x0) in the sense of Definition 3. Moreover, its
Gâteaux derivative ϕ is a PC-solution of the following differential equation with impulses⎧⎨⎩

ϕ̇(t) = fx(t, x(t))ϕ(t), t ∈ (0, T], x(t)
⋂

Y(t) = ∅,
ϕ(t+) = ϕ(t) +∇Ji(yi(t))[ϕ(t) + ḣt(0) f (t, yi(t))], x(t)

⋂
Y(t) = yi(t),

ϕ(0) = v− f (0, x0).

Here, ht denotes the solution of the equation {xε(t; ε, x0 + εv)}⋂ ∂B
(
yi(t), ε2) 
= ∅ in ε for

some i ∈ Λ.

3. Proof of Theorem 1

Throughout this section, we define the function r : (0,+∞) −→ R+ given by

r(T) Δ
=

1
2

inf
s,t∈[0,T]

{
|yi(s)− yj(t)|,

∣∣yi(s)− Υj(t)
∣∣, |yi(s)− Υi(t)|

∣∣∣∣i, j ∈ Λ and i 
= j
}

,

where Υj is defined by (4). It is easy from assumptions [J](1) and [Y](1) to see Υi ∈
C([0, T],Rn) for all i ∈ Λ. Hence, there exists a constant M(T) such that

|Υi(t)| ≤ M(T) for any t ∈ [0, T] and i ∈ Λ (11)

and

r(T) > 0 for all T > 0. (12)

To claim the existence and uniqueness of the solution of (1), we need the following
Lemma.

Lemma 1. If assumptions [F](1)(2), [Y](1) and [J](1) hold, then for any (s, ξ) ∈ [0, T) ×
{Υi(t)|t ∈ [0, T], i ∈ Λ}, there is a δ > 0 which is independent of (s, ξ) such that the following
differential equation {

φ̇(t) = f (t, φ(t)), t > s,
φ(s) = ξ,

(13)

has a unique solution φ ∈ C([s, s + δ],Rn) and

|φ(t)− yi(t)| ≥
r(T)

2
for any t ∈ [s, s + δ] and i ∈ Λ. (14)
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Proof. It follows from assumptions [F](1)(2) that (13) has a unique solution φ ∈ C([s, T],Rn)
and

|φ(t)| ≤ |ξ|+
∫ t

s
k̃(1 + |φ(τ)|)dτ.

Using Gronwall’s inequality, we have

|φ(t)| ≤
(
|ξ|+ k̃T

)
ek̃(t−s).

Together with (11), this means that

|φ(t)| ≤
(

M(T) + k̃T
)
ek̃T ≡ M̃(T; k̃) for any t ∈ [0, T].

Consequently, for any t ∈ [0, T], we have

|φ(t)− ξ| ≤
∫ t

s
| f (τ, 0)− f (τ, 0) + f (τ, φ(τ))|dτ

≤
∫ t

s
| f (τ, 0)|dτ +

∫ t

s
| f (τ, φ(τ))− f (τ, 0)|dτ

≤
∫ t

s
| f (τ, 0)|dτ +

∫ t

s
L(M̃(T; k̃))|φ(τ)|dτ

≤
∫ t

s
| f (τ, 0)|dτ + L(M̃(T; k̃))M̃(T; k̃)|t− s|

≤
[
k̃ + L(M̃(T; k̃))M̃(T; k̃)

]
|t− s|

Together with (12) and

|φ(t)− yi(t)| ≥ |yi(t)− ξ| − |φ(t)− ξ|,

we have

|φ(t)− yi(t)| ≥ |yi(t)− ξ| − |φ(t)− ξ|
≥ |yi(t)− ξ| −

[
k̃ + L(M̃(T; k̃))M̃(T; k̃)

]
|t− s| (15)

≥ 2r(T)−
[
k̃ + L(M̃(T; k̃))M̃(T; k̃)

]
|t− s|

and there exists a constant δ = δ(T, k̃) = 3r(T)
2[k̃+L(M̃(T;k̃))M̃(T;k̃)]

> 0 such that (14) holds.

Now, we prove conclusion (1) of Theorem 1. For any T > 0, with respect to the number
of irregular point of that system (1), there are only two possibilities: Case (1), x has no
irregular point on [0, T] and Case (2), x has at least one irregular point on [0, T]. For Case
(1), it follows from assumptions [F](1)(2) that (1) has a unique solution x ∈ C([0, T],Rn).
For Case (2), there exists i ∈ Λ and t1 > 0 such that x(t1; 0, x0) = yi(t1), and t1 is the
time of the first impulse. In a similar way, if no more impulse occurs, it follows from
assumptions [F](1)(2) that (1) has a unique solution x ∈ C([t1, T],Rn). If another impulse
occurs, there exists j ∈ Λ and t2 > t1, such that x(t2; t1, yi(t1) + Ji(yi(t1))) = yj(t2),
and t2 is the time of the second impulse. At the same time, from Lemma 1, we have
|t1− t2| > δ. By a mathematical induction method, the system (1) has a unique PC-solution
x ∈ PCY([0, T],Rn). Thus, when T → ∞, Equation (1) admits a unique PC-solution
x(·; 0, x0) on R+.

Next, we discuss the number of irregular points for solution x of (1) over R+.

Lemma 2. If assumptions [F](1)(2), [Y](1) and [J](1) hold, then solution x of (1) has no irregular
point over R+ if and only if the following algebraic equations

Fi(t; 0, x0) = 0 has no solution on R
+ for all i ∈ Λ.
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Proof. For the first step, we prove the sufficient condition. We assume solution x of (1)
has an irregular point over [0,+∞), then there exist i ∈ Λ and t1 ∈ [0,+∞) such that
x(t1; 0, x0) = yi(t1), and together with (5) and (6), we have

Fi(t1; 0, x0) = 〈x(t1; 0, x0)− yi(t1), x0 − yi(0)〉

= 〈x0 +
∫ t1

0
f (τ, x(τ; 0, x0))dτ − yi(t1), x0 − yi(0)〉

= 〈x0 −
(

yi(t1) +
∫ 0

t1

f (τ, x(τ; 0, x0))dτ

)
, x0 − yi(0)〉

= 〈x0 − x(0; t1, yi(t1)), x0 − yi(0)〉
= 〈x0 − x(0), x0 − yi(0)〉
= 0

This contradicts Fi(t; 0, x0) = 0 has no solution on R+ for all i ∈ Λ. the proof of the
sufficient condition is completed.

For the second step, we prove the necessary condition. In fact, we can prove that
under assumptions [F](1)(2), [Y](1) and [J](1), if solution x of (1) has no irregular point
over R+, then Fi(t; 0, x0) > 0 on R+ for all i ∈ Λ. First of all, if solution x of (1) has
no irregular point over R+, then for all i ∈ Λ, Fi(t; 0, x0) ∈ C([0,+∞),R). In addition,
for all i ∈ Λ, Fi(0; 0, x0) = 〈x0 − yi(0), x0 − yi(0)〉 > 0. Combined with the proof of the
sufficient condition, we have Fi(t; 0, x0) > 0 on R+ for all i ∈ Λ. The proof of the necessary
condition is completed.

Now, we prove the necessary condition on (2) in Theorem 1. For convenience, we let
x(·) = x(·; 0, x0) and {ti|0 ≤ t1 < t2 < · · · < tk < +∞} stand for the irregular point set of
x over R+. Then, there exists l1 ∈ Λ such that

x(t1) = yl1(t1).

Together with (6), we can affirm
Fl1(t1; 0, x0) = 0.

For the second irregular point t2 of x, there exists l2 ∈ Λ such that

x(t2) = x(t2; t1, Υl1(yl1(t1))) = yl2(t2).

Together with (7), it follows

Fl1l2(t2; t1, Υl1(yl1(t1)) = 0.

Similarly, for the irregular point tk of x, there is an lk ∈ Λ such that

Flk−1lk (tk; tk−1, Υlk−1
(tk−1)) = 0.

Moreover, we can see from Lemma 2 that x has no irregular point on [tk,+∞) if and only if

Flk j
(
t; tk, Υlk (tk)

)
= 0 has no solution on [tk,+∞) for all j ∈ Λ. (16)

Combined with (7), it is easy from assumptions [J](1) and [Y](1) to see that Flk j
(
·; tk, Υlk (tk)

)
∈

C([tk,+∞),R) and

Flk j
(
tk; tk, Υlk (tk)

)
= 〈z(tk; tk, Υkk

(tk))− yj(tk), Υlk (tk)− yj(tk)〉 > 0 for all j ∈ Λ.

Therefore, together with (16), this means (8) and (9) hold.
For the sufficient condition on (2) in Theorem 1, suppose {ti|0 ≤ t1 < t2 < · · · < tk < +∞}

satisfies (8) and (9). For tk, take Flk−1lk (tk; tk−1, Υlk−1
(tk−1)) = 0 and Flk j

(
t; tk, Υlk (tk)

)
>

0 for any t ∈ [tk,+∞) for all j ∈ Λ, and combine with Lemma 2, then, tk is the irregular

54



Axioms 2024, 13, 126

point. For tk−1, take Flk−2lk−1
(tk−1; tk−2, Υlk−2

(tk−2)) = 0 and Flk−1 j

(
t; tk−1, Υlk−1

(tk−1)
)

>

0 for any t ∈ [tk−1, tk) for all j ∈ Λ, and combine with Lemma 2, then, tk−1 is the irregular
point. Analogously, {ti|0 ≤ t1 < t2 < · · · < tk < +∞} is the irregular point set of x over R+.
This completes the proof.

4. Proof of Theorem 2

Throughout this section, we fix T > 0 and vector v ∈ Rn. It follows from Theorem 1
that the irregular points to the PC-solution x of (1) occur at most a finite number of times
on the interval [0, T]. There are only two possibilities: Case (1), x has no irregular point on
[0, T] and Case (2), x has at least one irregular point on [0, T].

In Case (1), the PC-solution x has a continuous dependence relative to the initial value
in the sense of the classical definition, i.e.,

|xθ(·; θ, x0 + θv)− x(·; 0, x0)|C([0,T],Rn) −→ 0 as θ → 0.

In Case (2), if x0 = yi(0) for some i ∈ Λ, we only study the PC-solution x(·; 0+, Υi(0)).
Consequently, we may assume that x(·; 0, x0) meets the movement obstacle set Y(t) k
times in [0, T], and let t̄i

j be the moments when x(·; 0, x0) hits the movement obstacle line
yi(·), this moment is exactly the jth hits movement obstacle set Y(t), (i ∈ Λ, j = 1, 2,
· · · , k). For convenience, let {t̄i

j|0 < t̄i
1 < · · · < t̄r

k < T} denote the irregular point set of
x(·; 0, x0) on [0, T]. By Theorem 1, one can prove that the impulsive differential Equation (1)
has a unique approximate PC-solution xθ(·; θ, x0 + θv) corresponding to the initial value
(θ, x0 + θv). Note that the approximate PC-solution (3) is the PC-solution of (1), as θ = 0.
According to the continuous dependence of the solution of an ODE on parameters, there
exists ¯̄δ > 0, such that when 0 ≤ θ < ¯̄δ, xθ(·; θ, x0 + θv) and x0(·; 0, x0) have the same
number of irregular points on [t0, T]. Let ti

j(θ) be the irregular moments of xθ(·; θ, x0 + θv).
Notice approximate PC-solution (3) is the PC-solution of (1), again, as θ = 0, and using the
continuous dependence of the solution of an ODE on parameters, there exists ¯̄δ > δ̄ > 0,
such that when 0 ≤ θ < δ̄, max{t̄i

j, ti
j(θ)} < min{t̄r

j+1, tr
j+1(θ)}.

For a sufficient small ε > 0, the PC-solution x0(·; 0, x0) of (1) does not meet movement
obstacle set Y(t) on [0, t̄i

1 − ε
4k ]. Similarly, using the continuous dependence of the solution

of an ODE on parameters, approximate PC-solution (3) is the PC-solution of (1), as θ = 0.
It yields that there is a δ̄ > δ1 > 0 such that for any 0 < θ < min{δ1, ε

4k}, the inequality
|xθ(·; θ, x0 + θv)− x0(·; 0, x0)| < ε holds on [θ, t̄i

1 − ε
4k ]. Furthermore, together with x(t̄i

1) =

yi(t̄i
1), we have xθ(ti

1(θ)) = ỹi ∈ ∂Bθ2
yi

, this means

lim
θ→0

ti
1(θ) = t̄i

1.

Together with the continuity of Ji, we have

lim
θ→0

Ji

(
xθ

(
ti
1(θ); θ, x0 + θv

))
= Ji

(
x
(

t̄i
1; 0, x0

))
.

It follows from (4) that

lim
θ→0

Υi

(
ti
1(θ)

)
= Υi

(
t̄i
1

)
,

where

Υi

(
ti
1(θ)

)
= xθ

(
ti
1(θ); θ, x0 + θv

)
+ Ji

(
xθ

(
ti
1(θ); θ, x0 + θv

))
.

For the time interval
[
t̄i
1 +

ε
4k , t̄j

2 − ε
4k

]
,

|xθ(t; θ, x0 + θv)− x(t; 0, x0)|
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=
∣∣∣xθ

(
t; ti

1(θ), Υi

(
ti
1(θ)

))
− x
(

t; t̄i
1, Υi

(
t̄i
1

))∣∣∣
≤

∣∣∣Υi

(
ti
1(θ)

)
− Υi

(
t̄i
1

)∣∣∣+ ∣∣∣∣∫ t

ti
1(θ)

f (τ, xθ(τ))dτ −
∫ t

t̄i
1

f (τ, x(τ))dτ

∣∣∣∣
≤ 2M(T) +

∣∣∣∣∣
∫ max {ti

1(θ), t̄i
1}

min {ti
1(θ), t̄i

1}
f (τ, xθ(τ))dτ

∣∣∣∣∣
+ L(M̃(T; k̃))

∫ t

max {ti
1(θ), t̄i

1}
|xθ(τ)− x(τ)|dτ

≤ 2M(T) + k̃(1 + M̃(T; k̃))
∣∣∣ti

1(θ)− t̄i
1

∣∣∣+ L(M̃(T; k̃))
∫ t

max {ti
1(θ), t̄i

1}
|xθ(τ)− x(τ)|dτ

From Gronwall’s inequality, we obtain the estimate

|xθ(t; θ, x0 + θv)− x(t; 0, x0)|
≤ exp(L(M̃(T; k̃))[t−max {ti

1(θ), t̄i
1}])
(

2M(T) + k̃(1 + M̃(T; k̃))
∣∣∣ti

1(θ)− t̄i
1

∣∣∣)
which implies that there is a δ2 > 0 with δ2 < δ1 such that for any θ > 0 with θ < δ2,

|xθ(t; θ, x0 + θv)− x(t; u, 0, x0)| =
∣∣∣xθ

(
t; ti

1(θ), Υi

(
ti
1(θ)

))
− x
(

t; t̄i
1, Υi

(
t̄i
1

))∣∣∣
< ε for any t ∈

[
t̄i
1 +

ε

4k
, t̄j

2 −
ε

4k

]
.

Let

Υi

(
ti

j(θ)
)
= xθ

(
ti

j(θ); θ, x0 + θv
)
+ Ji

(
xθ

(
ti

j(θ); θ, x0 + θv
))

, j > 1, i ∈ Λ. (17)

In general, by repeating the above process, one can show that there is a δj+1 > 0 with
δj+1 < δj such that for any θ > 0 with θ < δj+1,

|xθ(t; θ, x0 + θv)− x(t; 0, x0)| =
∣∣∣xθ

(
t; ti

j(θ), Υi

(
ti

j(θ)
))
− x
(

t; t̄i
j, Υi

(
t̄i

j

))∣∣∣
< ε for any t ∈

[
t̄i

j +
ε

4k
, t̄r

j+1 −
ε

4k

]
and

lim
θ→0

tr
j+1(θ) = t̄r

j+1,

lim
θ→0

Jr

(
xθ

(
tr

j+1(θ); θ, x0 + θv
))

= Jr

(
x
(

t̄r
j+1; 0, x0

))
,

lim
θ→0

Υr

(
tr

j+1(θ)
)
= Υr

(
t̄r

j+1

)
,

where

Υr

(
tr

j+1(θ)
)
= xθ

(
tr

j+1(θ); θ, x0 + θv
)
+ Jr

(
xθ

(
tr

j (θ); θ, x0 + θv
))

.

In short, for any sufficient small ε > 0, there exists a δ > 0 such that

|xθ(t; θ, x0 + θv)− x(t; 0, x0)| < ε for any t ∈ Iε when θ < δ,
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and μ([0, T] \ Iε) < ε, where

Iε =
[
θ, t̄i

1 −
ε

4k

]⋃⎛⎝k−1⋃
j=1

[
t̄i

j +
ε

4k
, t̄r

j+1 −
ε

4k

]⎞⎠⋃[t̄r
k +

ε

4k
, T
]
.

This completes the proof.

5. Proof of Theorem 3

Throughout this section, we fix T > 0. It follows from Theorem 2 that there are only
two possibilities: Case (i), x(·; 0, x0) has no irregular point on [0, T] and Case (ii), x(·; 0, x0)
has at least one irregular point on [0, T].

In Case (i), one can directly check that x(·; 0, x0) of (1) is Gâteaux differentiable, and
its Gâteaux derivative ϕ is a weak solution of the following differential equation{

ϕ̇(t) = fx(t, x(t; 0, x0))ϕ(t), t ∈ (0, T],
ϕ(0) = v− f (0, x0).

To discuss Case (ii), we define function ht given by

ht(ε) denotes the solution of the equation H(ε, t) = 0. (18)

Here,

H(ε, t) = xε(t; ε, x0 + εv)− ỹ(t, ε), (19)

where ỹ(t, ε) = ỹi(t, ε) for some i ∈ Λ, ỹi(t, ε) ∈ ∂B
(
yi(t), ε2). By Theorem 2, when

x(t; 0, x0) = yi(t), there is a δ > 0 such that definition (18) holds for all ε ∈ [0, δ], that is,
ht : [0, δ] −→ O(t) is a function, and ht(0) = t, where O(t) denotes some neighborhood of t.
For convenience, let {ti

j|0 < ti
1 < · · · < tr

k < T} denote the irregular point set of x(·; 0, x0)

on [0, T]. If yi ∈ C1([0, T],Rn), it follows from Theorem 2 and (19) that there is an δ > 0
such that

H ∈ C([0, δ]× [0, T]) and H
(

ε, hti
j
(ε)

)
= 0 for any ε ∈ [0, δ], i ∈ Λ, j = 1, 2, · · · , k

and
Ht(ε, t) = f (t, xε(t; ε, x0 + εv))− ỹt(t, ε).

According to assumption [Y](2), f
(

ti
j, yi

(
ti

j

))

= ẏi

(
ti

j

)
(j = 1, 2, · · · , k, i ∈ Λ), we have

Ht

(
ε, hti

j
(ε)

)
= f
(

hti
j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏi(hti

j
(ε)) 
= 0 in R

n, ∀ε ∈ [0, δ],

where j = 1, 2, · · · , k. Let f =
(

f 1, f 2, · · · , f n)�, yi =
(
y1

i , y2
i , · · · , yn

i
)� (i ∈ Λ). Without

loss of generality, we suppose

f 1
(

hti
j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏ1

i (hti
j
(ε)) 
= 0 in R, ∀ε ∈ [0, δ], j = 1, 2, · · · , k, (20)

We introduce the following functions

Φε(t, s) = exp
(∫ t

s
fx(τ, xε(τ; ε, x0 + εv))dτ

)
; (21)
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then,

Φ(t, s) = lim
ε→0

Φε(t, s) = exp
(∫ t

s
fx(τ, x(τ; 0, x0))dτ

)
.

We let

Φ1
ε (t, s) and Φ1(t, s) denote the first line vector of Φε(t, s) and Φ(t, s), respectively. (22)

We first claim the following lemma.

Lemma 3. Suppose assumption [F](3) holds. Then, ht is differentiable over [0, δ] for some δ > 0,
and its derivative is given by

ḣti
j
(0) =

⎧⎪⎪⎨⎪⎪⎩
Φ1(ti

1,0)( f (0,x0)−v)
f 1(ti

1,yi(ti
1))−ẏ1

i (ti
1)

, j = 1,

ḣtrj−1
(0)Φ1

(
ti
j ,t

r
j−1

)[
f
(

tr
j−1,yr

(
tr
j−1

))
−
(

I+∇Jr

(
yr

(
tr
j−1

)))
ẏr

(
tr
j−1

)]
f 1
(

ti
j ,yi

(
ti
j

))
−ẏ1

i

(
ti
j

) , j > 1.

Here, I is a unit matrix.

Proof. When t ∈
(

0, hti
1
(ε)
)

, it follows from assumption [F](3), (10) and (3) that

Hε(ε, t) = lim
ξ→0

xε+ξ(t; ε + ξ, x0 + (ε + ξ)v)− xε(t; ε, x0 + εv)
ξ

+
∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

ε+ξ

∫ 1

0
fx(s, xε(s; ε, x0 + εv) + θ(xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)

−xε(s; ε, x0 + εv)))
xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)− xε(s; ε, x0 + εv)

ξ
dθds

v− f (ε, x0 + εv) +
∂

∂ε
ỹi(t, ε).

One can see from (21) and the above equality that

Hε(ε, t) = Φε(t, ε)(v− f (ε, x0 + εv)) +
∂

∂ε
ỹi(t, ε).

Combining (20), (21) and (22), we have

ḣti
1
(ε) = −

Φ1
ε

(
hti

j
(ε), ε

)
(v− f (ε, x0 + εv)) + ∂

∂ε ỹ1
i (t, ε)

f 1
(

hti
1
(ε), xε

(
hti

1
(ε); ε, x0 + εv

))
− ẏ1

i

(
hti

1
(ε)
)

and

ḣti
1
(0) =

Φ1(ti
1, 0
)
(v− f (0, x0))

ẏ1
i
(
ti
1
)
− f 1

(
ti
1, yi
(
ti
1
)) ,

In general, when t ∈
(

htr
j−1

(ε), hti
j
(ε)

)
, it follows from assumption [F](3), (10), (3) and (4) that

Hε(ε, t) = lim
ξ→0

xε+ξ(t; ε + ξ, x0 + (ε + ξ)v)− xε(t; ε, x0 + εv)
ξ

+
∂

∂ε
ỹi(t, ε)

= lim
ξ→0

xε+ξ

(
t; htr

j−1
(ε + ξ), Υr

(
htr

j−1
(ε + ξ)

))
− xε

(
t; htr

j−1
(ε), Υr

(
htr

j−1
(ε)
))

ξ
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+
∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

htrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; ε, x0 + εv) + θ(xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)

−xε(s; ε, x0 + εv)))
xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)− xε(s; ε, x0 + εv)

ξ
dθds

+ lim
ξ→0

Υr

(
htr

j−1
(ε + ξ), ε + ξ

)
− Υr

(
htr

j−1
(ε), ε

)
ξ

− lim
ξ→0

∫ htrj−1
(ε+ξ)

htrj−1
(ε)

f (s, x(s; ε, x0 + εv))ds

ξ
+

∂

∂ε
ỹr(t, ε)

= lim
ξ→0

∫ t

htrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; ε, x0 + εv) + θ(xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)

−xε(s; ε, x0 + εv)))
xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)− xε(s; ε, x0 + εv)

ξ
dθds

+
(

I +∇Jr

(
ỹr

(
htr

j−1
(ε), ε

)))[
ḣtr

j−1
(ε)

∂

∂t
ỹr

(
htr

j−1
(ε), ε

)
+

∂

∂ε
ỹr

(
htr

j−1
(ε), ε

)]
− ḣtr

j−1
(ε) f

(
htr

j−1
(ε), ỹr

(
htr

j−1
(ε), ε

))
+

∂

∂ε
ỹr(t, ε).

We can also infer from (21) and the above equality that

Hε(ε, t) =
∂

∂ε
ỹr(t, ε) + Φε

(
t, htr

j−1
(ε)
)(

I +∇Jr

(
ỹr

(
htr

j−1
(ε), ε

)))[
ḣtr

j−1
(ε)

∂

∂t
ỹr

(
htr

j−1
(ε), ε

)
+

∂

∂ε
ỹr

(
htr

j−1
(ε), ε

)]
− ḣtr

j−1
(ε)Φε

(
t, htr

j−1
(ε)
)

f
(

htr
j−1

(ε), ỹr

(
htr

j−1
(ε), ε

))
.

Together with (20) and (22), by the implicit function theorem, we have

ḣti
j
(ε) = −

Φ1
ε

(
hti

j
(ε), htr

j−1
(ε)

)(
I +∇Jr

(
ỹr

(
htr

j−1
(ε), ε

)))
f 1
(

hti
j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏ1

i

(
h

tj
2
(ε)

)
·
[

ḣtr
j−1

(ε)
∂

∂t
ỹr

(
htr

j−1
(ε), ε

)
+

∂

∂ε
ỹr

(
htr

j−1
(ε), ε

)]

−
∂
∂ε ỹ1

r (t, ε)− ḣtr
j−1

(ε)Φ1
ε

(
hti

j
(ε), htr

j−1
(ε)

)
f
(

htr
j−1

(ε), ỹr

(
htr

j−1
(ε), ε

))
f 1
(

hti
j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏ1

i

(
hti

j
(ε)

) .

Further, this means that

ḣti
j
(0) =

ḣtr
j−1

(0)Φ1
(

ti
j, tr

j−1

)[
f
(

tr
j−1, yr

(
tr

j−1

))
−
(

I +∇Jr

(
yr

(
tr

j−1

)))
ẏr

(
tr

j−1

)]
f 1
(

ti
j, yi

(
ti

j

))
− ẏ1

i

(
ti

j

) .

This completes the proof.
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Now, we claim Case (ii). For t ∈
(
0, ti

1
)
, similarly to Case (i), it is not difficult to check

the following result {
ϕ̇(t) = fx(t, x(t; 0, x0))ϕ(t), t ∈

(
0, ti

1
]
,

ϕ(0) = v− f (0, x0),
(23)

Combining with Lemma 3, we first note that

lim
ε→0

xε

(
hti

j
(ε); ε, x0 + εv

)
− x
(

ti
j; 0, x0

)
ε

= lim
ε→0

xε

(
hti

j
(ε); ε, x0 + εv

)
− xε

(
ti

j; ε, x0 + εv
)

ε
+ lim

ε→0

xε

(
ti

j; ε, x0 + εv
)
− x
(

ti
j; 0, x0

)
ε

= ϕ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))
. (24)

Together with assumption [J](2), When hti
j
(ε) > ti

j, we have

ϕ
(

ti
j+
)

= lim
ε→0

xε

(
hti

j
(ε)+; ε, x0 + εv

)
− x
(

hti
j
(ε); 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
hti

j
(ε); ε, x0 + εv

)
+ Ji

(
xε

(
hti

j
(ε); ε, x0 + εv

))
−x
(

hti
j
(ε); ti

j, x
(

ti
j; 0, x0

)
+ Ji

(
x
(

ti
j; 0, x0

)))]
= lim

ε→0

1
ε

[
xε

(
hti

j
(ε); ε, x0 + εv

)
+ Ji

(
xε

(
hti

j
(ε); ε, x0 + εv

))
−x
(

ti
j; 0, x0

)
− Ji

(
x
(

ti
j; 0, x0

))
−
∫ h

tij
(ε)

ti
j

f (s, x(s; 0, x0))ds
]

=
(

I +∇Ji

(
yi

(
ti

j

)))[
ϕ
(

ti
j−
)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
− ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))
= ϕ

(
ti

j−
)
+∇Ji

(
yi

(
ti

j

))[
ϕ
(

ti
j−
)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
.

When hti
j
(ε) < ti

j, we also have

ϕ
(

ti
j+
)

= lim
ε→0

xε

(
ti

j; ε, x0 + εv
)
− x
(

ti
j+; 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
hti

j
(ε); ε, x0 + εv

)
+ Ji

(
xε

(
hti

j
(ε); ε, x0 + εv

))
−x
(

ti
j; 0, x0

)
− Ji

(
x
(

ti
j; 0, x0

))
−
∫ h

tij
(ε)

ti
j

f (s, xε(s; ε, x0 + εv))ds
]

= ϕ
(

ti
j−
)
+∇Ji

(
yi

(
ti

j

))[
ϕ
(

ti
j−
)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
.

Consequently, we have

ϕ
(

ti
j+
)
= ϕ

(
ti

j

)
+∇Ji

(
yi

(
ti

j

))[
ϕ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
, i ∈ Λ, j = 1, 2, · · · , k. (25)
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Therefore, when t ∈
(

ti
j, tr

j+1

)
(j = 1, 2, · · · , k− 1) or t ∈

(
tr
k, T
]
, it follows from assumption

[F](3) and (10), (3), (4), (17), (22) and (24) that

ϕ(t) = lim
θ→0

xθ(t; θ, x0 + θv)− x(t; 0, x0)

θ

= lim
θ→0

xθ(t; hti
j
(θ), Υr(hti

j
(θ)))− x(t; ti

j, Υr(ti
j))

θ

= lim
θ→0

Υi(hti
j
(θ))− Υi(ti

j))

θ
+ lim

θ→0

∫ t

h
tij
(θ)

∫ 1

0
fx(s, x(s; 0, x0) + ξ(xθ(s; θ, x0 + θv)

−x(s; 0, x0)))
xθ(s; θ, x0 + θv)− x(s; 0, x0)

θ
dξds− lim

θ→0

1
θ

∫ h
tij
(θ)

ti
j

f (s, x(s; 0, x0))ds

= −ḣti
j
(0) f

(
ti

j, yi

(
ti

j

))
+ lim

θ→0

∫ t

h
tij
(θ)

∫ 1

0
fx(s, x(s; 0, x0) + ξ(xθ(s; θ, x0 + θv)

−x(s; 0, x0)))
xθ(s; θ, x0 + θv)− x(s; 0, x0)

θ
dξds

+
(

I +∇Ji

(
yi

(
ti

j

)))(
ϕ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

)))
.

Thus, combining with (23) and (25), we obtain from the above equality that⎧⎪⎪⎨⎪⎪⎩
ϕ̇(t) = fx(t, x(t; 0, x0))ϕ(t), t ∈ (0, T] and t 
= ti

j, i ∈ Λ, j = 1, 2, · · · , k,
ϕ(0) = v− f (0, x0),

ϕ
(

ti
j+
)
= ϕ

(
ti

j

)
+∇Ji

(
yi

(
ti

j

))(
ϕ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

)))
, j = 1, 2, · · · , k.

This completes the proof of Theorem 3.

6. Periodicity of an Autonomous Impulsive System

As an application, in this section, we discuss the periodicity of the solution of the
following impulsive differential equation⎧⎨⎩

ẋ(t) = g(x(t)), x(t) 
= y1, t ≥ 0,
x(t+) = y2, x(t) = y1, t ≥ 0,
x(0) = x0,

(26)

where y1, y2 ∈ Rn, and y1 
= y2. We introduce the function

G(t; s, zs) = 〈z(t, s, zs)− y1, zs − y1〉 for any t ≥ s ≥ 0.

Here,

z(t, s, zs) = zs +
∫ t

s
g(z(τ, s, zs))dτ, for any t ≥ s ≥ 0.

For function G(·; 0, x0), it is clear that

G(t; 0, x0) = 0 has no solution on R
+ (27)

or

t1 is the minimum solution of G(t; 0, x0) = 0 on R
+. (28)

Similarly, it is obvious that

G(t; t1, y2) = 0 has no solution on [t1,+∞) (29)
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or

t2 is the minimum solution of G(t; t1, y2) = 0 on [t1,+∞). (30)

Let PCy1y2(R
+,Rn) =

{
x : [0,+∞) −→ Rn|x be continuous at t when x(t) 
= y1, x

is left-continuous at t and the right limit x(t+) exists when x(t) = y1
}

. We check the
following main result for autonomous impulsive system (26).

Theorem 4. Suppose g : Rn −→ Rn is locally Lipschitz continuous in x, and there exists a
constant k̃ > 0 such that

|g(x)| ≤ k̃(1 + |x|) for any t ≥ 0.

(1) If (27) holds, then (26) has a unique solution x ∈ C(R+,Rn).
(2) If (28) and (29) hold, then the solution of (26) has a unique irregular point t1.
(3) If (29) and (30) hold, then the solution of (26) is a periodic function on [t1,+∞).

Proof. Using Theorem 1, we directly check that autonomous impulsive system (26) has
a unique solution x ∈ PCy1y2(R

+,Rn). Further, there are only three possibilities for the
solution: Case (i), x has not irregular point on R+; Case (ii), x has a unique irregular point
on R+; and Case (iii), x has two irregular points on R+ at least.

For Case (i), it follows from (2) of Theorem 1 that x has no irregular point on R+ if
and only if (27) holds. This means (26) has a unique solution x ∈ C(R+,Rn). Similarly, for
Case (ii), together with (28) and (29), we can also infer that x only has a unique irregular
point t1.

For Case (iii), let t1 and t2 denote the smallest two irregular points of solution x on R+

and T = t2 − t1. We claim

x(t + T) = x(t) for any t ∈ [t1,+∞). (31)

By the definitions of t1 and t2 (see (28) and (30)), solution x of (26) has not irregular point
on (t1, t2) and satisfies

x(t) = y2 +
∫ t

t1

g(x(s))ds for any t ∈ (t1, t2] and x(t2) = x(t1) = y1. (32)

When t ∈ (t1, t2], we have t + T ∈ (t2, t2 + T] and

x(t + T) = y2 +
∫ t+T

t1+T
g(x(s))ds = y2 +

∫ t

t1

g(x(s + T))ds. (33)

It is easy to see that by the assumption conditions of g, there exists ρ > 0 such that |x(t)|,
|x(T + t)| ≤ ρ for every t ∈ (t1, t2]. Furthermore, we assert from (32) and (33) that

|x(t + T)− x(t)| ≤
∫ t

t1

|g(x(s + T))− g(x(s))|ds

≤ L(ρ)
∫ t

t1

|x(s + T)− x(s)|ds.

Together with Gronwall’s inequality, one can verify that

x(t + T) = x(t) for any t ∈ (t1, t2].

Consequently, we can infer that (31) holds. Thus, this means that solution x of (26) is a
periodic function on [t1,+∞) with period T. The proof is completed.
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7. Application

As an application, in this section, we discuss the variation in the solution relative to
the control for the following control impulsive differential equation⎧⎨⎩

ẋ(t) = f (t, x(t)) + B(t)u(t), {x(t)}⋂Y(t) = ∅, t ≥ 0,
x(t+) = Ji(x(t)) + x(t), {x(t)}⋂Y(t) = yi(t), t ≥ 0,
x(0) = x0,

(34)

where control function u ∈ L1
loc(R

+,Rm), B ∈ L∞
loc(R

+,Rn×m).
Using the idea of Theorems 1 and 2, for any T > 0 and u ∈ L1((0, T),Rm), one can

prove the following result.

Theorem 5. Suppose assumptions [F](1)(2), [Y](1) and [J] hold. Then, system (34) has a unique
PC-solution x(·; u) ≡ x(·; u, 0, x0) ∈ PCY([0, T],Rn) given by

x(t; u) = x0 +
∫ t

0
[ f (τ, x(τ; u)) + B(τ)u(τ)]dτ + ∑

0 ≤ tj < t,
x(tj; u) = yi(tj))

Ji
(
x(tj; u)

)
.

Moreover, solution x(·; u) has a continuous dependence relative to the control u in the sense of
Definition 2.

Moreover, for any fixed sufficient small θ > 0 and fixed v ∈ L1([0, T],Rm), (34) has a
unique PC-approximate solution xθ(·) ≡ xθ(·; u + θv, 0, x0) which satisfies

xθ(t) = x0 +
∫ t

0
[ f (τ, xθ(τ)) + B(τ)(u(τ) + θv(τ))]dτ + ∑

0 ≤ tj < t,
xθ(tj) ∈ B(yi(tj), θ2)

Ji
(
xθ(tj)

)
. (35)

To discuss the variation in the solution relative to the control, we introduce the follow-
ing definitions.

Definition 4. The PC-solution x(·; u, 0, x0) of (34) is said to be Gâteaux differentiable relative
to the control u if the Gâteaux derivative ψ(·) of x(t; u) exists at u for all t ∈ [0, T] with
x(t; u, 0, x0) 
= yi(t); otherwise,

ψ(t) = lim
s↗t

ψ(s),

where

ψ(t) = lim
ε→0

xε(t; u + εv, 0, x0)− x(t; u, 0, x0)

ε
when x(t; u, 0, x0) 
= yi(t).

Theorem 6. Suppose assumptions [F], [Y] and [J] hold and u ∈ C([0, T],Rm), B ∈ C([0, T],
Rn×m). The PC-solution x(·) = x(·; u, 0, x0) of (34) is Gâteaux differentiable relative to the control
u in the sense of Definition 4. Moreover, its Gâteaux derivative ψ is a PC-solution of the following
differential equation with impulses⎧⎨⎩

ψ̇(t) = fx(t, x(t))ψ(t) + B(t)v(t), t ∈ (0, T], x(t) 
= yi(t), i ∈ Λ,
ψ(0) = 0,
ψ(t+) = ψ(t) +∇Ji(yi(t))[ψ(t) + ġt(0)( f (t, yi(t)) + B(t)u(t)], x(t) = yi(t), i ∈ Λ.

Proof. There are only two possibilities: Case (I), x(·; u, 0, x0) has no irregular point on [0, T]
and Case (II), x(·; u, 0, x0) has at least one irregular point on [0, T].
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In Case (I), one can directly check that x(·; u, 0, x0) of (34) is Gâteaux differentiable,
and its Gâteaux derivative ψ is a weak solution of the following differential equation{

ψ̇(t) = fx(t, x(t; u))ψ(t) + B(t)v(t), t ∈ (0, T],
ψ(0) = 0.

To discuss Case (II), we define function gt given by

gt(ε) denotes the solution of the equation G(ε, t) = 0.

Here,

G(ε, t) = xε(t; u + εv, 0, x0)− ỹ(t, ε).

By Theorem 5, when x(t; u, 0, x0) = yi(t), there is a δ > 0 such that for all ε ∈ [0, δ],
gt : [0, δ] −→ O(t) is a function and gt(0) = t, where O(t) denotes some neighborhood of t.
For convenience, let {ti

j|0 < ti
1 < · · · < tr

k < T} denote the irregular point set of x(·; u, 0, x0)

on [0, T]. If yi ∈ C1([0, T],Rn), it follows that there is a δ > 0 such that

Gt(ε, t) = f (t, xε(t; u + εv, 0, x0)) + B(t)[u(t) + εv(t)]− ỹt(t, ε).

Further, when f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)

= ẏi

(
ti

j

)
(j = 1, 2, · · · , k, i ∈ Λ), without loss of

generality, we assume

f 1
(

gti
j
(ε), xε

(
gti

j
(ε); u + εv, 0, x0

))
+ B1

(
gti

j
(ε)

)
u
(

gti
j
(ε)

)
− ẏ1

i (gti
j
(ε)) 
= 0 in R,

i ∈ Λ, ∀ε ∈ [0, δ], j = 1, 2, · · · , k, (36)

where B1 denotes the first line vector of B. We introduce the following functions given by

Ψε(t, s) = exp
(∫ t

s
fx(τ, xε(τ; u + εv, 0, x0))dτ

)
, (37)

then

Ψ(t, s) = lim
ε→0

Ψε(t, s) = exp
(∫ t

s
fx(τ, x(τ; u, 0, x0))dτ

)
. (38)

We let

Ψ1
ε (t, s) and Ψ1(t, s) denote the first line vector of Ψε(t, s) and Ψ(t, s), respectively.

Now, we calculate the variation in the solution relative to the control in Case (II). For
t ∈
[
0, ti

1
]
, similar to Case (I), it is not difficult to check the following result:{

ψ̇(t) = fx(t, x(t; u, 0, x0))ψ(t) + B(t)v(t), t ∈
(
0, ti

1
]
,

ψ(0) = 0.
(39)

When t ∈
(

0, gti
1
(ε)
)

, it follows from assumption [F](3), (35) and (10) that

Gε(ε, t) = lim
ξ→0

xε+ξ(t; u + (ε + ξ)v, 0, x0)− xε(t; u + εv, 0, x0)

ξ
+

∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

0

∫ 1

0
fx(s, xε(s; u + εv, 0, x0) + θ(xε+ξ(s; u + (ε + ξ)v, 0, x0)

−xε(s; u + εv, 0, x0)))
xε+ξ(s; u + (ε + ξ)v, 0, x0)− xε(s; u + εv, 0, x0)

ξ
dθds
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∫ t

0
B(s)v(s)ds +

∂

∂ε
ỹi(t, ε).

It follows from (37) and the above that

Gε(ε, t) =
∫ t

0
Ψε(t, s)B(s)v(s)ds +

∂

∂ε
ỹi(t, ε).

Using the implicit function theorem, combined with (36), we have

ġti
1
(ε) = −

∫ g
ti1
(ε)

0 Ψ1
ε (gti

1
(ε), s)B(s)v(s)ds + ∂

∂ε ỹ1
i (gti

1
(ε), ε)

f 1
(

gti
1
(ε), xε

(
gti

1
(ε); u + εv, 0, x0

))
+ B1

(
gti

1
(ε)
)

u
(

gti
1
(ε)
)
− ẏ1

i (gti
1
(ε))

.

In the above equation, the vector product is the inner product operation. In the following
operations, the vector product is also the inner product operation. Together with Theorem 5,
we obtain

ġti
1
(0) = −

∫ ti
1

0 Ψ1(ti
1, s
)

B(s)v(s)ds
f 1
(
ti
1, x
(
ti
1; u, 0, x0

))
+ B1

(
ti
1
)
u
(
ti
1
)
− ẏ1

i (t
i
1)

. (40)

Further,

lim
ε→0

xε

(
gti

1
(ε); u + εv, 0, x0

)
− x
(
ti
1; u, 0, x0

)
ε

= lim
ε→0

xε

(
gti

1
(ε); u + εv, 0, x0

)
− xε

(
ti
1; u + εv, 0, x0

)
ε

+ lim
ε→0

xε

(
ti
1; u + εv, 0, x0

)
− x
(
ti
1; u, 0, x0

)
ε

= ψ
(

ti
1

)
+ ġti

1
(0)
[

f
(

ti
1, yi

(
ti
1

))
+ B
(

ti
1

)
u
(

ti
1

)]
. (41)

Together with assumption [J](2), it follows from (40) and (41) that when gti
1
(ε) > ti

1,

ψ
(

ti
1

)
= lim

ε→0

xε

(
gti

1
(ε)+; u + εv, 0, x0

)
− x
(

gti
1
(ε); u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

1
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

1
(ε); u + εv, 0, x0

))
−x
(

gti
1
(ε); u, ti

1, x
(

ti
1; u, 0, x0

)
+ Ji

(
x
(

ti
1; u, 0, x0

)))]
= lim

ε→0

1
ε

[
xε

(
gti

1
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

1
(ε); u + εv, 0, x0

))
−x
(

ti
1; u, 0, x0

)
− Ji

(
x
(

ti
1; u, 0, x0

))
−
∫ g

ti1
(ε)

ti
1

[ f (s, x(s; u, 0, x0)) + B(s)u(s)]ds
]

=
(

I +∇Ji

(
yi

(
ti
1

)))[
ψ
(

ti
1−
)
+ ġti

1
(0)
(

f
(

ti
1, yi

(
ti
1

))
+ B
(

ti
1

)
u
(

ti
1

))]
−ġti

1
(0)
(

f
(

ti
1, yi

(
ti
1

))
+ B
(

ti
1

)
u
(

ti
1

))
= ψ

(
ti
1−
)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j−
)
+ ġti

1
(0)
(

f
(

ti
1, yi

(
ti
1

))
+ B
(

ti
1

)
u
(

ti
1

))]
,
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and when gti
1
(ε) < ti

1, we also have

ψ
(

ti
1+
)

= lim
ε→0

xε

(
ti
1; u + εv, 0, x0

)
− x
(
ti
1+; u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

1
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

1
(ε); u + εv, 0, x0

))
−x
(

ti
1; u, 0, x0

)
− Ji

(
x
(

ti
1; u, 0, x0

))]
− lim

ε→0

1
ε

∫ g
ti1
(ε)

ti
1

[ f (s, xε(s; u + εv, 0, x0)) + B(s)(u(s) + εv(s))]ds

= ψ
(

ti
1−
)
+∇Ji

(
yi

(
ti
1

))[
ψ
(

ti
1−
)
+ ġti

1
(0)
(

f
(

ti
1, yi

(
ti
1

))
+ B
(

ti
1

)
u
(

ti
1

))]
.

Consequently, we have

ψ
(

ti
1+
)
= ψ

(
ti
1

)
+∇Ji

(
yi

(
ti
1

))[
ψ
(

ti
1

)
+ ġti

1
(0) f

(
f
(

ti
1, yi

(
ti
1

))
+ B
(

ti
1

)
u
(

ti
1

))]
, i ∈ Λ. (42)

Generally speaking, we first note that

lim
ε→0

xε

(
gtr

j−1
(ε); u + εv, 0, x0

)
− x
(

tr
j−1; u, 0, x0

)
ε

= lim
ε→0

xε

(
gtr

j−1
(ε); u + εv, 0, x0

)
− xε

(
tr

j−1; u + εv, 0, x0

)
ε

+ lim
ε→0

xε

(
tr

j−1; u + εv, 0, x0

)
− x
(

tr
j−1; u, 0, x0

)
ε

= ϕ
(

tr
j−1

)
+ ġtr

j−1
(0)
[

f
(

tr
j−1, yr

(
tr

j−1

))
+ B
(

tr
j−1

)
u
(

tr
j−1

)]
. (43)

Further, when t ∈
(

gtr
j−1

(ε), gti
j
(ε)

)
, one can infer from assumption [F](3), (35), (10) and

(43) that

Gε(ε, t) = lim
ξ→0

xε+ξ(t; u + (ε + ξ)v, 0, x0)− xε(t; u + εv, 0, x0)

ξ
+

∂

∂ε
ỹi(t, ε)

= lim
ξ→0

1
ξ

[
xε+ξ

(
t; u + (ε + ξ)v, gtr

j−1
(ε + ξ), Υr

(
gtr

j−1
(ε + ξ)

))
−xε

(
t; u + εv, gtr

j−1
(ε), Υr

(
gtr

j−1
(ε)
))]

+
∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

gtrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; u + εv, 0, x0) + θ(xε+ξ(s; u + (ε + ξ)v, 0, x0)

−xε(s; u + εv, 0, x0)))
xε+ξ(s; u + (ε + ξ)v, 0, x0)− xε(s; u + εv, 0, x0)

ξ
dθds

+ lim
ξ→0

Υr

(
gtr

j−1
(ε + ξ), ε + ξ

)
− Υr

(
gtr

j−1
(ε), ε

)
ξ

+ lim
ξ→0

∫ t

gtrj−1
(ε+ξ)

B(s)v(s)ds

− lim
ξ→0

∫ gtrj−1
(ε+ξ)

gtrj−1
(ε)

[ f (s, x(s; u + εv, 0, x0)) + B(s)(u(s) + εv(s))]ds

ξ
+

∂

∂ε
ỹr(t, ε)

= lim
ξ→0

∫ t

gtrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; u + εv, 0, x0) + θ(xε+ξ(s; u + (ε + ξ)v, 0, x0)
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−xε(s; u + εv, 0, x0)))
xε+ξ(s; u + (ε + ξ)v, 0, x0)− xε(s; u + εv, 0, x0)

ξ
dθds

+
∫ t

gtrj−1
(ε)

B(s)v(s)ds + ψ
(

gtr
j−1

(ε)
)
+

∂

∂ε
ỹr(t, ε)

+∇Jr

(
ỹr

(
gtr

j−1
(ε), ε

))[
ψ
(

gtr
j−1

(ε)
)

+ġtr
j−1

(ε)
(

f
(

gtr
j−1

(ε), ỹr

(
gtr

j−1
(ε), ε

))
+ B
(

gtr
j−1

(ε)
)

u
(

gtr
j−1

(ε)
))]

.

Moreover, one can see from (37) and the above equality that

Gε(ε, t) =
∂

∂ε
ỹr(t, ε) + Ψε

(
t, gtr

j−1
(ε)
)
∇Jr

(
ỹr

(
gtr

j−1
(ε), ε

))[
ψ
(

gtr
j−1

(ε)
)

+ġtr
j−1

(ε)
(

f
(

gtr
j−1

(ε), ỹr

(
gtr

j−1
(ε), ε

))
+ B
(

gtr
j−1

(ε)
)

u
(

gtr
j−1

(ε)
))]

+Ψε

(
t, gtr

j−1
(ε)
)

ψ
(

gtr
j−1

(ε)
)
+
∫ t

gtrj−1
(ε)

Ψε(t, s)B(s)v(s)ds.

Together with (36), by the implicit function theorem, we have

ġti
j
(ε) = −

Ψ1
ε

(
gti

j
(ε), gtr

j−1
(ε)

)
∇Jr

(
ỹr

(
gtr

j−1
(ε), ε

))
f 1
(

gti
j
(ε), xε

(
gti

j
(ε); u + εv, 0, x0

))
+ B1

(
gti

j
(ε)

)
u
(

gti
j
(ε)

)
− ẏ1

i (gti
j
(ε))

·
[

ψ
(

gtr
j−1

(ε)
)
+ ġtr

j−1
(ε)
(

f
(

gtr
j−1

(ε), ỹr

(
gtr

j−1
(ε), ε

))
+ B
(

gtr
j−1

(ε)
)

u
(

gtr
j−1

(ε)
))]

−
∂
∂ε ỹ1

r

(
gti

j
(ε), ε

)
+ Ψ1

ε

(
gti

j
(ε), gtr

j−1
(ε)

)
ψ
(

gtr
j−1

(ε)
)
+
∫ g

tij
(ε)

gtrj−1
(ε)

Ψ1
ε (t, s)B(s)v(s)ds

f 1
(

gti
j
(ε), xε

(
gti

j
(ε); u + εv, 0, x0

))
+ B1

(
gti

j
(ε)

)
u
(

gti
j
(ε)

)
− ẏ1

i (gti
j
(ε))

.

Further, it follows from the above expression, (38) and Theorem 5 that

ġti
j
(0) = −

Ψ1
(

ti
j, tr

j−1

)
∇Jr

(
yr

(
tr

j−1

))
f 1
(

ti
j, x
(

ti
j; u, 0, x0

))
+ B1

(
ti

j

)
u
(

ti
j

)
− ẏ1

i

(
ti

j

)
·
[

ψ
(

tr
j−1

)
+ ġtr

j−1
(0)
(

f
(

tr
j−1, yr

(
tr

j−1

))
+ B
(

tr
j−1

)
u
(

tr
j−1

))]
(44)

−
Ψ1
(

ti
j, tr

j−1

)
ψ
(

tr
j−1

)
+
∫ ti

j
tr
j−1

Ψ1
(

ti
j, s
)

B(s)v(s)ds

f 1
(

ti
j, x
(

ti
j; u, 0, x0

))
+ B1

(
ti

j

)
u
(

ti
j

)
− ẏ1

i

(
ti

j

) , i ∈ Λ, j = 1, 2, · · · , k.

Similar to (43), we can obtain

lim
ε→0

xε

(
gti

j
(ε); u + εv, 0, x0

)
− x
(

ti
j; u, 0, x0

)
ε

= ψ
(

ti
j

)
+ ġti

j
(0)
[

f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)]
, i ∈ Λ, j = 1, 2, · · · , k. (45)

Together with assumption [J](2), (45) and (44), it follows that when gti
j
(ε) > ti

j,
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ψ
(

ti
j+
)

= lim
ε→0

xε

(
gti

j
(ε)+; u + εv, , x0

)
− x
(

gti
j
(ε); u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

j
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

j
(ε); u + εv, 0, x0

))
−x
(

gti
j
(ε); u, ti

j, x
(

ti
j; u, 0, x0

)
+ Ji

(
x
(

ti
j; u, 0, x0

)))]
= lim

ε→0

1
ε

[
xε

(
gti

j
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

j
(ε); u + εv, 0, x0

))
−x
(

ti
j; u, 0, x0

)
− Ji

(
x
(

ti
j; u, 0, x0

))
−
∫ g

tij
(ε)

ti
j

[ f (s, x(s; u, 0, x0)) + B(s)u(s)]ds
]

=
(

I +∇Ji

(
yi

(
ti

j

)))[
ψ
(

ti
j−
)
+ ġti

j
(0)
[

f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)]]
−ġti

j
(0)
[

f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)]
= ψ

(
ti

j−
)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j−
)
+ ġti

j
(0)
[

f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)]]
,

and when gti
j
(ε) < ti

j,

ψ
(

ti
j+
)

= lim
ε→0

xε

(
ti

j; u + εv, 0, x0

)
− x
(

ti
j+; u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

j
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

j
(ε); u + εv, 0, x0

))
−x
(

ti
j; u, 0, x0

)
− Ji

(
x
(

ti
j; u, 0, x0

))
−
∫ g

tij
(ε)

ti
j

[ f (s, xε(s; u + εv, 0, x0)) + B(s)(u(s) + εv(s))]ds
]

= ψ
(

ti
j−
)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j−
)
+ ġti

j
(0)
[

f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)]]
.

Consequently, we have

ψ
(

ti
j+
)
= ψ

(
ti

j

)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j

)
+ ġti

j
(0)
[

f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)]]
(46)

for i ∈ Λ, j = 1, 2, · · · , k. Therefore, when t ∈
(

ti
j, tr

j+1

)
(j = 1, 2, · · · , k− 1) or t ∈

(
tr
k, T
]
,

it follows from assumption [F](3), (10), (35), (3), (17), (44) and (45) that

ψ(t) = lim
θ→0

xθ(t; u + θv, 0, x0)− x(t; u, 0, x0)

θ

= lim
θ→0

xθ(t; u + θv, gti
j
(θ), Υi(gti

j
(θ)))− x(t; u, ti

j, Υi(ti
j))

θ

= lim
θ→0

Υi(gti
j
(θ))− Υi(ti

j))

θ
+ lim

θ→0

∫ t

g
tij
(θ)

∫ 1

0
fx(s, x(s; u, 0, x0) + ξ(xθ(s; u + θv, 0, x0)

−x(s; u, 0, x0)))
xθ(s; u + θv, 0, x0)− x(s; u, 0, x0)

θ
dξds + lim

θ→0

∫ t

g
tij
(θ)

B(s)v(s)ds
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− lim
θ→0

1
θ

∫ g
tij
(θ)

ti
j

[ f (s, x(s; u, 0, x0)) + B(s)u(s)]ds

= ψ
(

ti
j

)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j

)
+ ġti

j
(0)
(

f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

))]
+
∫ t

ti
j

B(s)v(s)ds + lim
θ→0

∫ t

g
tij
(θ)

∫ 1

0
fx(s, x(s; u, 0, x0) + ξ(xθ(s; u + θv, 0, x0)

−x(s; u, 0, x0)))
xθ(s; u + θv, 0, x0)− x(s; u, 0, x0)

θ
dξds.

Thus, it follows from (39), (42) and (46) that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ̇(t) = fx(t, x(t; u, 0, x0))ψ(t) + B(t)v(t), t ∈ (0, T] and t 
= ti

j, i ∈ Λ, j = 1, 2, · · · , k,
ψ(0) = 0,
ψ
(

ti
j+
)
=
(

I +∇Ji

(
yi

(
ti

j

)))
ψ
(

ti
j

)
+ġti

j
(0)∇Ji

(
yi

(
ti

j

))[
f
(

ti
j, yi

(
ti

j

))
+ B
(

ti
j

)
u
(

ti
j

)]
, j = 1, 2, · · · , k.

This completes the proof of Theorem 6.

8. Conclusions

In this paper, we proposed a class of widely applied impulsive differential systems
and gave its qualitative theory under some weaker conditions, including the existence,
uniqueness, and periodicity of the solution, as well as the continuous dependence and
differentiability of the solution on the initial value. For the pulse phenomena of the solution,
it is significant to give the sufficient and necessary conditions. It is very interesting that
the pulse may destroy the intrinsic properties of the system, such as the existence, the
continuous dependence, and differentiability of solution. Moreover, these results also lay a
theoretical foundation for the optimal control problem given by impulsive different systems
with impulses at variable times and the applications of such systems.
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Abstract: This paper deals with the oscillatory behavior of solutions of a new class of second-order
nonlinear differential equations. In contrast to most of the previous results in the literature, we
establish some new criteria that guarantee the oscillation of all solutions of the studied equation
without additional restrictions. Our approach improves the standard integral averaging technique to
obtain simpler oscillation theorems for new classes of nonlinear differential equations. Two examples
are presented to illustrate the importance of our findings.
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1. Introduction

In this work, we consider the asymptotic and oscillatory properties of solutions to a
class of differential equations of the form(

r(�)
(
y′(�)

)ξ
)′

+ p(�)
(
y′(�)

)ξ
+ q(�) f (y(�)) = 0, � ≥ �0 > 0, (1)

where ξ ≥ 1 is a ratio of two odd positive integers, and

(H1) r(�) ∈ C1(I�0 ,R+
)
,

p(�) and q(�) ∈ C
(

I�0 ,R
)
, (2)

where I�0 = [�0, ∞);

(H2) f (�) ∈ C(R,R), y f (y) > 0 for y 
= 0, and f (y)/yξ ≥ μ, for y 
= 0 and for some μ > 0.

Definition 1 ([1]). By a solution y of Equation (1), we mean a function y ∈ C([�∗y, ∞)), �∗y ∈
I�0 , which satisfies (1) on [�∗y, ∞) for every � ≥ �∗y ≥ �0, and r(�)(y′(�))ξ ∈ C1([�∗y, ∞)).
Our attention is restricted to those solutions y of (1) that exist on some half line I and satisfy

sup
{
|y(�)| : �y ≤ � < ∞

}
> 0, �y ≥ �∗y .
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Definition 2 ([2]). A solution of Equation (1) is called oscillatory if it has arbitrarily large zeros;
otherwise, it is called non-oscillatory. Moreover, we say that Equation (1) oscillates if all its solutions
oscillate, otherwise we say that it does not oscillate.

Oscillation theory is considered one of the most important theories in all fields of
science, including physics and engineering. It also plays a crucial role in the advancement of
science and technology and in developing solutions to contemporary challenges. Through
continued research and development in this field, significant progress can be achieved
in various scientific and applied fields. It attempts to explain how objects or phenomena
can change over time and is used to understand advanced natural and technological
phenomena in the modern world. Currently, oscillation theory is of particular importance
because of its practical applications in various fields such as communications, astronomy,
and others. Its importance is not diminished even in the field of medicine, as it contributes
to examining and analysing vital signals such as heartbeats and brain waves, which enables
doctors to better evaluate health conditions and diagnose diseases.

Both the concept of symmetry and the oscillation theory play pivotal roles in under-
standing nature at different levels, and there can be overlaps and interactions between them
in certain contexts of physical research. Oscillations can be viewed as a kind of temporal
symmetry in many dynamical systems. Likewise, a physical system that oscillates regularly
can be described as a type of temporal symmetry in that phenomenon, where conditions
repeat periodically. On the other hand, the concept of symmetry plays an important role
in describing fundamental interactions and particle interactions. It is worth noting that
in some cases, symmetries lead to phenomena such as oscillation between different types
of particles, such as neutrino oscillation. Theories that combine symmetry and oscillation
may reveal new and unexpected phenomena. For example, broken symmetry could be
responsible for generating particle masses in the Standard Model of particle physics; see,
for instance [3–9].

Their approximations lead to very large linear systems and many properties can
be understood using the approximated solutions [10–12]. Damping is crucial in control
systems to prevent and minimise feedback-induced oscillations, so the damping differential
equation is used in the models of mechanical systems, electrical circuits, acoustics, civil
engineering, and control theory (economic cycles). Second-order differential equations
with a damping term play a central role in many scientific and engineering fields, helping
to understand and analyse dynamical systems and develop new technologies. They are
used in many different fields, and the analysis of solutions to these equations often includes
the term “damping” to describe resistance to movement or the gradual degradation of
energy, which may be the result of movement in an elastic medium or under the presence of
friction. Second-order differential equations can also be used to study damping vibrations
in structures and machines. Damping is also used to describe the effect that resistors,
capacitors, and coils have on the current and voltage in the system. The term damping
describes the interaction between particles and their surrounding environment, and its
importance extends to planetary science and astronomy, as these equations are used in
studying the motion of planets and other astronomical bodies and the damping effects
resulting from gravity and resistance [13–18].

A number of authors, such as [19–23], have paid attention to the oscillation of equations
of the form (

r(�)ϕ(y(�))y′(�)
)′
+ p(�)y′(�) + q(�) f (y(�)) = 0.

On the other hand, the authors in [24–27] examined the oscillation of the following differ-
ential equation: (

r(�)y′(�)
)′
+ p(�)y′(�) + q(�) f (y(�)) = 0 (3)

and some special cases under conditions

p(�) ≥ 0 and q(�) > 0. (4)
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Moreover, Rogovchenko [28] showed a sufficient condition for the oscillation of Equation (3)
assuming that (2) is satisfied and

f ′(x) exists, f ′(x) ≥ k for some k > 0.

Also, Grace [29] shed light on finding criteria that guarantee the oscillatory behavior of all
solutions of Equation (3).

Motivation

Adding a damping term to a differential equation may change the character of the
solutions, for example, giving rise to oscillations. For example, if we look at equation

y′′′(�) +
(

4�3
)−1

y(�) = 0, (5)

we find that all of its solutions are non-oscillatory as follows: y1 = 1.2696, y2 = 1.83763 and
y3 = −0.10716. While if we introduce the damping term

(
4�2)−1y′(�) into Equation (5) it

becomes as follows:

y′′′(�) +
(

4�2
)−1

y′(�) +
(

4�3
)−1

y(�) = 0.

We find that the behavior of its solutions is different, as we obtain two conjugate
solutions (oscillatory solutions) and another solution (nonoscillatory solution) as follows:
y1,2 = 1.5490± 0.3925i and y3 = −0.097912. Thus, the study of this type of equations can
be considered related to the oscillation theory. Through this work, we aim to establish
new relationships that can be used to obtain new oscillation criteria for the solutions of
the Equation (1). Our results are an extension of the findings presented in the previous
literature, for example [19–22,28,30–32], which studied the Equation (1) with ξ = 1. On
the other hand, our results work to develop and improve some of the previous findings;
for instance, contrary to [24–27], we do not need additional constraints, including the
constraints in (4). Therefore, the scope of application of our results extends to include more
models that previous studies did not cover.

This paper is organized as follows. In Section 1, we present the significance of studying
oscillations in many areas of life, which is the primary motivation for our study. In Section 2,
we present previous findings and the abbreviations that will be used throughout the paper.
Then, in Section 3, we provide some results of oscillation for the solutions of the studied
equation. We also present and discuss some examples to illustrate the importance of our
results in Section 4. Finally, in Section 5, we offer a brief overview of the main conclusions
and present some suggestions and open problems for future work.

2. Preliminaries

Now, assume that U ∈ C(D,R+) and

D = {(�, ς) : �0 ≤ ς ≤ � < ∞} and D0 = {(�, ς) : �0 ≤ ς < � < ∞}.

If U(�,�) = 0, U(�, ς) > 0 and there is (�, ς) ∈ D0 for U has a nonpositive continuous
partial derivative with respect to ς, and there is there is a function ũ ∈ l{loc}(D,R) such that

∂U(�, ς)

∂ς
= −ũ(�, ς)(U(�, ς)))ξ/(ξ+1), (6)

then we say that U ∈Wξ .
Now we present some results obtained previously, in order to compare them with the

main results we reached in this work.
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Theorem 1 ([29], Theorem 6). Assume that there exist functions ρ ∈ C1(I�0 ,R+), φ ∈
C(I�0 ,R), and U ∈Wξ , ξ = 1 and f ′(x) ≥ K. If

0 < inf
ς≥�0

Φ(�) ≤ ∞, (7)

lim sup
�→∞

U−1(�,�∗)
∫ �
�∗

r(ς)ρ(ς)
[

ũ(�, ς)− π(ς)
√

U(�, ς)

]2
dς < ∞,

lim sup
�→∞

U−1(�,�0)
∫ �
�∗

(U(�, ς)ρ(ς)q(ς)−�(�, ς))dς ≥ φ(�∗) ,

and
lim
�→∞

∫ ∞

�0

φ2
+(ς)(v(ς)r(ς))

−1/ξdς = ∞,

for � > �0, and y �∗ ≥ �0, where

Φ(�) = lim inf
�→∞

U(�, ς)

U(�,�0)
,

φ+(�) = max(φ(�), 0)

and

�(�, ς) = (4K)−1ρ(ς)r(ς)
(

ũ(�, ς)− π(ς)
√

U(�, ς)

)2
,

where π(ς) = (r(ς)ρ′(ς)− p(ς)ρ(ς))/(r(ς)ρ(ς)), then (3) is oscillatory.

Theorem 2 ([28], Theorem 2). Assume that there exist functions g ∈ C1(I�0 ,R+), φ ∈
C(I�0 ,R). Assume further that U ∈Wξ , ξ = 1 and f ′(x) ≥ K. Set

ρ̃(�) = exp
(
−2
∫ �

g(ς)dς

)
and

Ψ(�) = K−1ρ̃(�)
(

Kq(�)− p(�)g(�)− [r(�)g(�)]′ + r(�)g2(�)
)

.

If

lim sup
�→∞

U−1(�,�0)
∫ �
�0

r(ς)ρ(ς)
(

ũ(�, ς) +
p(ς)
r(ς)

√
U(�, ς)

)2
dς < ∞ ,

lim sup
�→∞

U−1(�,�∗)
∫ �
�∗

U(�, ς)Ψ(ς)− r(ς)ρ̃(ς)
4K

(
ũ(�, ς) +

p(ς)
r(ς)

√
U(�, ς)

)2
dς ≥ φ(�∗)

and

lim sup
�→∞

∫ �
�0

φ2
+(ς)

ρ̃(ς)r(ς)
dς = ∞,

then (3) is oscillatory.

Now, define the functions

v(�) = exp
[
−(ξ + 1)

∫ �
�0

(
ρ1/ξ(ς)− p(ς)

(ξ + 1)r(ς)

)
dς

]
, (8)

ψ(�) = v(�)
[
μq(�) + r(�)ρ(ξ+1)/ξ(�)− (r(�)ρ(�))′ − p(�)ρ(�)

]
(9)

and

�̃(�, ς) = U(�, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(�, ς), for some β ∈ [1, ∞)
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3. Main Results

In this section we present two main results in the form of theorems. In the first theorem,
using the Riccati technique, we obtained criteria that ensure the oscillation of all solutions
of the studied equation. In the second theorem, using other analytical techniques, we
present another criterion that reaches the same conclusion as in the first theorem.

Theorem 3. Assume that there exists a function ρ ∈ C1([�0, ∞),R) such that, for some β ∈
[1, ∞) and U ∈Wξ ,

lim sup
�→∞

U−1(�,�0)
∫ �
�0

[
U(�, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(�, ς)

]
dς = ∞ (10)

with v(�) and ψ(�) given in (8) and (9), respectively. Then all solutions of Equation (1) are
oscillatory.

Proof. Let x(�) > 0 be a solution of (1) for � ≥ �∗0 ≥ �0. Setting

u(�) = v(�)r(�)
[
(x′(�))ξ

xξ(�) + ρ(�)
]

, � ≥ �∗0, (11)

we have

u′(�) =
v′(�)
v(�) u(�) + v(�)

(
r(�)(x′(�))ξ

)′
xξ(�)

−ξv(�)r(�)
[

u(�)
v(�)r(�) − ρ(�)

](ξ+1)/ξ

+ v(�)(r(�)ρ(�))′. (12)

According to [33], it is

N1+1/ξ
1 − (N1 − N2)

1+1/ξ ≤ N1/ξ
2
ξ

[(ξ + 1)N1 − N2]. (13)

Taking
N1 = u(�)/(v(�)r(�)) and N2 = ρ(�),

in (13), we obtain

(N1 − N2)
(ξ+1)/ξ =

[
u(�)

v(�)r(�) − ρ(�)
](ξ+1)/ξ

≥
(

u(�)
v(�)r(�)

)(ξ+1)/ξ

−ρ1/ξ(�)
ξ

[
(ξ + 1)

u(�)
v(�)r(�) − ρ(�)

]
.

It follows from (1), (8), and (12) that

u′(�) ≤ −ψ(�)− ξ

(
uξ+1(�)

v(�)r(�)

)1/ξ

, (14)

which we rewrite as

U(�, ς)u′(�) ≤ −U(�, ς)ψ(�)−U(�, ς)ξ

(
uξ+1(�)

v(�)r(�)

)1/ξ

. (15)
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By integrating (15) from �∗1 to �, for all � ≥ �∗1 ≥ �∗0 and all β ≥ 1, we have

∫ �
�∗1

U(�, ς)ψ(ς)dς +
∫ �
�∗1

ũ(�, ς)(U(�, ς))ξ/(ξ+1)u(�)dς

+
ξ

β

∫ �
�∗1

U(�, ς)uξ+1/ξ(ς)
1

(v(ς)r(ς))1/ξ
dς

≤ U(�,�∗1)u(�∗1)− ξβ−1(β− 1)
∫ �
�∗1

U(�, ς)uξ+1/ξ(ς)
1

(v(ς)r(ς))1/ξ
dς. (16)

Also, according to [34], it is

M(ξ+1)/ξ
1 − ξ + 1

ξ
M1/ξ

1 M2 ≥ −
1
ξ

M(ξ+1)/ξ
2 . (17)

Taking,

M(ξ+1)/ξ
1 =

ξ

β

U(�, ς)u(ξ+1)/ξ(ς)

(v(ς)r(ς))1/ξ

and

M(ξ+1)/ξ
2 = − ξβξ

(ξ + 1)ξ+1 v(ς)r(ς)ũ(ξ+1)(�, ς),

in (17), we get

u(ς)ũ(�, ς)(U(�, ς))ξ/(ξ+1) +
ξ

β
U(�, ς)

(
uξ+1(ς)

v(ς)r(ς)

)1/ξ

+
βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(�, ς) ≤ 0. (18)

Thus, it follows from (16) and (18) that

U(�,�∗1)u(�∗1) ≥
∫ �
�∗1

(
U(�, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(�, ς)

)
dς

+ξβ−1(β− 1)
∫ �
�∗1

U(�, ς)

(
uξ+1(ς)

v(ς)r(ς)

)1/ξ

dς. (19)

From property (6), we find

∫ �
�∗1

[
U(�, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(�, ς)

]
dς

≤ U(�,�∗1)|u(�∗1)| ≤ U(�,�0)|u(�∗1)|, for all � ≥ �∗1.

Therefore, it is ∫ �
�0

ψ(ς)U(�, ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(�, ς)dς

≤ U(�,�0)

(
|u(�∗1)|+

∫ �∗1
�0

|ψ(ς)|dς

)
.

76



Axioms 2024, 13, 105

Hence,

lim sup
�→∞

U−1(�,�0)
∫ �
�0

[
U(�, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(�, ς)

]
dς

≤ |u(�∗1)|+
∫ �∗1
�0

|ψ(ς)|dς

< ∞,

which contradicts (10).

Theorem 4. Assume that there exist functions ρ ∈ C1(I�0 ,R
)
, φ ∈ C

(
I�0 ,R

)
and U belonging

to the class Wξ such that, for some β > 1 and for �∗ ≥ �0,

lim sup
�→∞

U−1(�,�∗)
∫ �
�∗

�̃(�, ς)dς ≥ φ(�∗) (20)

and
0 < inf

�≥�0
Ũ(�) ≤ ∞. (21)

If ∫ ∞

�0

φ
ξ+1/ξ
+ (ς)(v(ς)r(ς))−1/ξdς = ∞, (22)

then all solutions of Equation (1) are oscillatory.

Proof. Let x(�) > 0 be a solution of (1) on [�∗0, ∞), �∗0 ≥ �0. Proceeding exactly as in the
proof of Theorem 3, we get the inequality (19), it is obvious that

φ(�∗1) ≤ lim sup
�→∞

1
U
(
�,�∗1

) ∫ �
�∗1

[
U(�, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(�, ς)

]
dς

≤ u(�∗1)−
ξ(β− 1)

β
lim inf

1
U
(
�,�∗1

) ∫ �
�∗1

U(�, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς,

for all � > �∗1 and for any β ≥ 1. This implies that

φ(�∗1) + ξβ−1(β− 1) lim inf
�→∞

U−1(�,�∗1)
∫ �
�∗1

U(�, ς)
u

ξ+1
ξ (ς)

(v(ς)r(ς))
1
ξ

dς ≤ u(�∗1) (23)

and

lim inf
�→∞

U−1(�,�∗1)
∫ �
�∗1

U(�, ς)
u

ξ+1
ξ (ς)

(v(ς)r(ς))
1
ξ

dς

≤ β(ξβ− ξ)−1(u(�∗1)− φ(�∗1))
< ∞. (24)

It follows from (21) that there exists υ > 0 such that

Ũ(�) > υ(�). (25)

Now, we claim that ∫ ∞

�∗1

u
ξ+1

ξ (ς)

(v(ς)r(ς))
1
ξ

dς = ∞. (26)
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By (26) and for any constant η > 0, there exists a �∗2 > �∗1 such that

∫ �
�∗1

u
ξ+1

ξ (ς)

(v(ς)r(ς))
1
ξ

dς >
η

υ
, for all � ≥ �∗2. (27)

Integrating from �∗1 to � and using (27), we see that

U−1(�,�∗1)
∫ �
�∗1

U(�, ς)
u

ξ+1
ξ (ς)

(v(ς)r(ς))
1
ξ

dς

= U−1(�,�∗1)
∫ �
�∗1

U(�, ς)d

⎡⎣∫ ς

�∗1

u
ξ+1

ξ (ζ)

(v(ζ)r(ζ))
1
ξ

dζ

⎤⎦,

for all � ≥ �∗1. Hence,

U−1(�,�∗1)
∫ �
�∗1

U(�, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς = U−1(�,�∗1)
∫ �
�∗1

(
−∂U(�, ς)

∂ς

)

×

⎛⎝∫ ς

�∗1

(
uξ+1(ζ)

v(ζ)r(ζ)

) 1
ξ

dζ

⎞⎠dς

≥ η

υ
U−1(�,�∗1)

∫ �
�∗2

(
−∂U(�, ς)

∂ς

)
dς

=
η

υ
U(�,�∗2)U−1(�,�∗1)

≥ η

υ
U−1(�,�0)U(�,�∗2).

In view of (25), there exists a �∗3 ≥ �∗2 such that

U(�,�∗2)
U(�,�0)

≥ υ(�), for all � ≥ �∗3.

Thus, we have

U−1(�,�∗1)
∫ �
�∗1

U(�, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς ≥ η for � ≥ �∗2.

Since η > 0, we obtain

lim inf
�→∞

U−1(�,�∗1)
∫ �
�∗1

U(�, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς = ∞.

But according to (24), we note that∫ ∞

�∗1
u

ξ+1
ξ (ς)(v(ς)r(ς))

−1
ξ dς = ∞,

and from (23), we get

∫ ∞

�∗1

(
φξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς ≤
∫ ∞

�∗1

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς < ∞.

This completes the proof.
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Remark 1. We observe that the restrictions imposed in Theorem 4 are more tractable than those
in [29] [Theorem 6], since we do not have the complex hypotheses that appear there.

Corollary 1. If one of the following statements is true
(i) All conditions of Theorem 3 are satisfied;
(ii) All conditions of Theorem 4 are satisfied,
then the equation (

r(�)
(
y′(�)

)ξ
)′

+ p(�)
(
y′(�)

)ξ
+ μq(�)yξ(�) = 0, (28)

where μ > 0, is oscillatory.

4. Applications

Example 1. Consider the following differential equation(
1
�
(
y′(�)

)ξ
)′

+ cos�
(
y′(�)

)ξ
+ q(�)yξ(�) = 0, (29)

for � ≥ 1 and ξ ≥ 1, where

q(�) =
1
�3 −

� cos�− 2�−1

�(ξ + 1)

(� cos�− 2�−1

ξ + 1

)
+

(� cos�− 2�−1

ξ + 1

)
cos�

+

(� cos�− 2�−1

�ξ(ξ + 1)

)′
.

Let assume that

ρ(�) =
(� cos�− 2�−1

ξ + 1

)
, Ψ(�) = �−1, v(�) = �3 and β ≥ 1.

By condition (10) in Corollary 1, we conclude that

lim sup
�→∞

1
U(�,�0)

∫ �
�0

[
U(�, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(�, ς)

]
dς

= lim sup
�→∞

1
�2

∫ �
1

[
(�− ς)2

ς
− 2ξ+1βξ

(ξ + 1)ξ+1 ς(�− ς)1−ξ

]
dς = ∞.

That is Equation (29) is oscillatory.

Example 2. Consider the following differential equation

0 =

((
2�3 + 1

)
(2 + sin�)

2�3

(
x′(�)

)ξ

)′
+

(
3
(
2�3 + 1

)
(2 + sin�)

2�4

)(
x′(�)

)ξ
+ q(�)xξ(�), (30)

for � ≥ 1 and ξ ≥ 1, where

q(�) = 1
�3

((
1−�3 + 2�2 − 6�

)
sin�+ 12�

)
.

Now, assume that

ρ(�) = 0, Ψ(�) =
(

1−�3 + 2�2 − 6�
)

sin�+ 12�, v(�) = �3, β = 2−1(1 + ξ)(ξ+1)/ξ .

Set U(�, ς) = (�− ς)2, ũ(�, ς) = 2(�− ς)(1−ξ)/(ξ+1).
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By condition (20) in Theorem 4, we find that

lim sup
�→∞

1
U(�,�∗)

∫ �
�∗

[
U(�, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(�, ς)

]
dς

= lim sup
�→∞

1
�2

∫ �
�∗

[(�− ς)2
((

1− ς3 + 2ς2 − 6ς
)

sin ς + 12ς
)
− 2ξ βξ(ξ + 1)−(ξ+1)

×
(

2ς3 + 1
)
(2 + sin ς)(�− ς)1−ξ ]dς

≥ lim sup
�→∞

1
�2

∫ �
�∗

[(�− ς)2
((

1− ς3 + 2ς2 − 6ς
)

sin ς + 12ς
)

−
(

2ς3 + 1
)
(2 + sin ς)]dς

= 16−�∗3 cos�∗ +�∗2(2 cos�∗ − 6 + 3 sin�∗)− 4�∗ sin�∗ − 3 cos�∗ = φ(�∗).

It is easy to see that condition (22) is satisfied. Therefore, Equation (30) is oscillatory.

Remark 2. If condition (10) in Theorem 3 fails, we can use Theorem 4.

Remark 3. By applying Theorems 3 and 4 when ξ = 1, we obtain the results presented in
references [24] [Theorems 17 and 19], Our results also improve those of [25,26], which imposed
more restrictions on the sign of the coefficients p and q.

5. Conclusions

Through this paper, we focus on studying some oscillatory properties of a particular
class of differential equations with damping. We note that the conditions in Theorem 2
are less restrictive and more efficient than those in Theorem 1. The improvement is due
to the fact that the oscillation criteria obtained in this paper are more flexible compared
to those appearing [29,35], because there are no restrictions on the damping coefficient
p(�). Studying this type of equation without any restrictions imposed on the functions
p(�) and q(�) is an extension and improvement of previous results. Defining the optional
functions U and ρ and then using them in Theorems 3 and 4 to test the oscillatory behavior
of Equation (1) (or its special cases) provide strong results for testing the oscillation of its
solutions. Also, for ξ = 1, Wξ generates the class of functions W, which was studied in [24].
On the other hand, our results do not need additional restrictions to ensure the oscillation
of all solutions of Equation (1) [1,24–28]. It would be worth studying the following more
general form of Equation (1):(

r(�)
(
y′(�)

)ξ
)′

+ p(�)
(
y′(�)

)β
+ q(�) f (y(�)) = 0,

where ξ and β are positive. Furthermore, introducing a delay term into the function
f (y(�)) so that it has the form f (y(τ(�))), where τ(�) < �, will be a fertile field for
researchers. Also, the possibility of providing different conditions without resorting to
setting the restriction ξ ≥ 1 remains an inspiring point for researchers as well.
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Abstract: The aim of this work is to describe the dynamics of a discrete fractional-order reaction–
diffusion FitzHugh–Nagumo model. We established acceptable requirements for the local asymptotic
stability of the system’s unique equilibrium. Moreover, we employed a Lyapunov functional to show
that the constant equilibrium solution is globally asymptotically stable. Furthermore, numerical
simulations are shown to clarify and exemplify the theoretical results.

Keywords: fractional discrete reaction–diffusion equations; FitzHugh–Nagumo model; global asymptotic
stability; Lyapunov functional

MSC: 39A12; 39A30; 39A60; 39B82

1. Introduction

Fractional calculus has been around for three centuries, and recently, it has become more
frequently utilized in the scientific and technical fields. It investigates extensions of the basic
calculus operators, differentiation and integration, defined by letting their order to roam
outside of Z to more extended domains [1–3]. Such extensions are not only a mathematical
novelty; differential equations containing the generalized operators have been employed
in a wide range of scientific domains [4,5], from viscoelasticity [6] to epidemiology [7],
economics [8,9], and electrical circuits [10].

Almost every mathematical theory has a discrete equivalent that enables it to be
comprehended theoretically and practically in the modeling process of real-world issues.
Owing to the availability of a coherent mathematical framework for continuous fractional
calculus, the potential advancement of discrete fractional calculus has been inadequate
until recently. However, there has been significant progress in the development of discrete
fractional calculus. For example, Atici and Eloe [11] implemented a discrete Laplace trans-
form technique for solving a series of fractional difference equations. Atici and Eloe [12]
developed the triggers for the beginning value in discrete fractional calculus. With the
nabla operator, Atici and Eloe [13] investigated the structure of a discrete fractional calculus.
For additional information on recent advances in fractional discrete calculus, see [14–19].
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Reaction–diffusion systems have acquired great theoretical attention and are of tremen-
dous utility in many scientific and technical disciplines due to their capacity to simulate a
range of real-world events and the intricacy of their solutions (see [20–23]). Meanwhile,
the fractional partial differential equation is widely used in practice. Several papers on
the subject have recently been published [24–27]. An effective and common application of
fractional diffusion equations is the simulation of anomalous diffusion in porous media
with rich nano–micro-size characteristics. However, many nonlinear systems in nature
have discrete qualities, such as population models, brain networks, and gene information.
Discrete models may be used to successfully identify parameters from experimental data.
Fractional partial difference equations offer a separate time-discretization model, partic-
ularly for anomalous diffusion, or a time-discretization difference technique, which was
recently described as a discrete fractional modeling [28]. The authors of [29] established a
fractional time discretization diffusion model in the Caputo-like delta interpretation, and
addressed diffusion concentration for various fractional difference orders. Alternatively,
the authors of [30] proposed a variable-order fractional diffusion equation on discrete
periods and created a variable-order function using a chaotic map.

Several neuron models have recently been proposed in the literature to describe neural
dynamics. Among these models, one can find the reaction diffusion FitzHugh–Nagumo
model, which is a classic standard model in neuroscience that has been extensively ex-
amined in periodical literature [31]. This model is a simplified variant of the well-known
Hodgkin–Huxley model, which captures neuron dynamics and, more broadly, the dynam-
ics of excitable systems in several domains such as chemical reaction kinetics and solid
state physics [32–34]. It is made up of two differential equations that describe the voltage
variable’s temporal evolution. In recent years, FitzHugh–Nagumo has received a lot of
attention, and several notable studies have been conducted to examine this system. For
example, in [35], the global existence and asymptotic stability of solutions for a generalized
Lengyel–Epstein and FitzHugh–Nagumo reaction–diffusion system were explored. In [36],
synchronization and control of FitzHugh–Nagumo coupled reaction–diffusion systems
are addressed. In addition, synchronization of the reaction–diffusion FitzHugh–Nagumo
systems using a one-dimensional linear control law was investigated in [37]. Finite element
analysis of a FitzHugh–Nagumo reaction–diffusion system with Robin boundary conditions
was explored in [38]. Moreover, many papers examined the influence of the fractional deriva-
tive on the FitzHugh–Nagumo model. For example, in [39] the low-voltage, low-power
sinh-domain implementations of the fractional-order FitzHugh–Nagumo neuron model
have been presented, as well as the influence of fractional orders on the neuron’s external
excitation current and dynamics. In [40], the effect of the fractional order on the dynamics
of action potentials in the FitzHugh–Nagumo model is discussed.

The goal of this paper is to study the stability of the equilibrium state of a discrete
fractional-order reaction–diffusion FitzHugh–Nagumo model. Both local and global sta-
bility are explored for applicability in the above-mentioned neural model research. To the
best of our knowledge, this is the first time a full theoretical stability study for a discrete
fractional-order reaction–diffusion FitzHugh–Nagumo model has been conducted in which
the effect of the fractional order on the dynamics of the model is investigated and discussed.

The paper is structured as follows. Section 2 is intended to provide some preliminary re-
sults as well as the discrete fractional-order dependent and independent outcomes. Section 3
describes the main findings of the study; the mathematical model is presented, the local
stability of the equilibrium state is addressed, and global stability of the equilibrium state is
examined, both dependently on the fractional orders of the considered model. The findings
are corroborated by numerical simulations. Section 5 draws conclusions from the findings.

2. Preliminaries

This section begins by introducing the subject’s required nomenclature and stabil-
ity theory.
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Definition 1 ([41]). Assume x : N→ R, the forward difference operator Δ is then defined by

Δx(�) = x(�+ 1)− x(�); � ∈ N. (1)

Next, the operators Δn, n = 1, 2, 3, . . . , are recursively identified by

Δnx(�) = Δ(Δn−1x)(�), � ∈ N. (2)

In particular, the second order difference operator of function x(t) is given by

Δ2x(�) = x(�+ 2)− 2x(�+ 1) + x(�). (3)

Lemma 1 ([41]). Here we give some properties of the difference operator Δ,

• Δc = 0, where c is a constant.
• Δ(x + κ)(�) = Δx(�) + Δκ(�).
• Δ(xκ)(�) = x(�)Δκ(�) + κ(�+ 1)Δx(�).

Theorem 1 ([41]). Given two functions x; κ : R → R and a; b ∈ N; a < b; we have the
summation by parts’ formulas:

b−1

∑
j=a

x(j)Δκ(j) = x(j)κ(j)|ba −
b−1

∑
j=a

κ(j + 1)Δx(j), (4)

b−1

∑
j=a

x(j + 1)Δκ(j) = x(j)κ(j)|ba −
b−1

∑
j=a

κ(j)Δx(j). (5)

Definition 2 ([42,43]). Let x ∈ (hN)a → R. For given ϑ > 0, the ϑ-th order h-sum is given by

hΔ−ϑ
a x(t) =

h
Γ(ϑ)

s= a
h

∑
t
h−ϑ

(t− σ(sh))(ϑ−1)x(sh), σ(sh) = (s + 1)h, t ∈ (hN)a+ϑh, (6)

with a ∈ R as the initial value and the h̄-falling factorial function described by

t(ϑ)h̄ = h̄ϑ Γ( t
h̄ + 1)

Γ( t
h̄ + 1− ϑ)

, (7)

while
(hN)a+ϑh̄ = {a + (1− ϑ)h̄, a + (2− ϑ)h̄, . . . }. (8)

Definition 3 ([43,44]). For a function x(t) defined on (hN)a and for a certain ϑ > 0, so that
ϑ ∈ N the Caputo h̄-difference operator is expressed by

C
h̄ Δϑ

a x(t) =h̄ Δ−(n−ϑ)
a Δn

h̄x(t), (9)

where Δn
h̄x(t) =

x(t + h̄)− x(t)
h̄

.

Lemma 2 ([42]). Here are some important properties employed in this work:

• Discrete Leibniz integral law:

h̄Δ−ϑ
a+(1−ϑ)h̄

C
h̄ Δϑx(t) = x(t)− x(a), 0 < ϑ ≤ 1, t ∈ (h̄N)a+h̄. (10)

• Caputo fractional difference of a constant x:

C
h̄ Δϑx = 0, 0 < ϑ ≤ 1. (11)
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Lemma 3 ([42]). The following inequality holds:

C
h Δϑ

a x2(t) ≤ 2x(t + ϑh̄)C
h Δϑ

a x(t), t ∈ (h̄N)a+ϑh̄, (12)

where 0 < ϑ ≤ 1.

Let us consider the nonlinear fractional-order difference system.

C
h̄ Δϑ

a x(t) = ψ(t + h̄ϑ, x(t + h̄ϑ)), t ∈ (hN)a+ϑh. (13)

Theorem 2 ([42]). Let x = 0 be the system’s equilibrium point (13). The equilibrium point is
asymptotically stable if there exists a positive, definite, and declining scalar function. If all the
eigenvalues of ψ′(x∗) are located in Sϑ

h̄ , then x∗ is asymptotically stable, where C
h̄ Δϑ

a V(t, x(t)) ≤ 0.

Theorem 3 ([45]). Let x∗ be an equilibrium point of (13). If all the eigenvalues of ψ′(x∗) are located
in Sϑ

h̄ , then x∗ is asymptotically stable,
where

Sϑ
h̄ =

{
w ∈ C : |Arg(w)| > ϑπ

2
or |w| > 2ϑ

h̄ϑ
cosϑ

(
Arg(w)

ϑ

)}
. (14)

3. The Discrete Fractional-Order FitzHugh–Nagumo Reaction–Diffusion System

In this section, we present the model under discussion, which is approximated using
two well-known approaches. This discrete model is, to the best of our knowledge, the first
in the literature.

The FitzHugh–Nagumo reaction–diffusion system, as is well known, was proposed
in [46] as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= d1Δu− u3 + (β + 1)u2 − βu− v, x ∈ Ω, t > 0,

∂v
∂t

= d2Δv + εu− εγv, x ∈ Ω, t > 0,

∂u = ∂v = 0 , x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(15)

where Ω is a bounded domain in Rn, n = 1, with sufficiently smooth boundary ∂Ω,

Δ = ∑n
i=1

∂2

∂x2
i

. The state u corresponds to the membrane potential in this spatially extended

system, whereas v reflects a combination of potassium activation and sodium inactivation
at point (x, t) ∈ Ω× (0, ∞). The parameters β, ε and γ are positive constants with values

of 0 < β <
1
2

and ε << 1.
Since time fractional systems have been extensively studied by researchers, the following

time fractional FitzHugh–Nagumo reaction–diffusion system was presented in [47] as follows:⎧⎨⎩
C
0 Dδ

t u− d1Δu = −u3 + (β + 1)u2 − βu− v,
C
0 Dδ

t v− d2Δv = εu− εγv.
(16)

where 0 < δ ≤ 1 is the fractional order and C
0 Dδ

t describes the Caputo fractional derivative,
d1, d2 and σ are strictly positive constants with the same initial conditions and Neumann
boundary conditions.

Based on the model (16) and with the discretization used in [29,48], and assuming that
x ∈ [0, L], we have xi+1 = xi + k, i = 0, . . . , m, and using the central difference formula

concerning x,
∂2u(x, t)

∂x2 and
∂2v(x, t)

∂x2 can be approximately expanded as
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⎧⎪⎪⎨⎪⎪⎩
∂2u(x, t)

∂x2 ≈ ui+1(t)− 2ui(t) + ui−1(t)
k2 ,

∂2v(x, t)
∂x2 ≈ vi+1(t)− 2vi(t) + vi−1(t)

k2 .

Using the definition of the second order difference operator of ui and vi we obtain⎧⎪⎪⎨⎪⎪⎩
∂2u(x, t)

∂x2 ≈ Δ2ui−1(t)
k2 ,

∂2v(x, t)
∂x2 ≈ Δ2vi−1(t)

k2 .

Therefore, we consider the following discrete-time reaction–diffusion fractional
FitzHugh–Nagumo system⎧⎪⎪⎨⎪⎪⎩

C
h̄ Δϑ

t0
ui(t) =

d1

k2 Δ2ui−1(t + h̄ϑ)− u3(t + h̄ϑ) + (β + 1)u2(t + h̄ϑ)− βu(t + h̄ϑ)− vi(t + h̄ϑ),

C
h̄ Δϑ

t0
vi(t) =

d2

k2 Δ2vi−1(t + h̄ϑ) + εui(t + h̄ϑ)− εγvi(t + h̄ϑ).
(17)

where C
h̄ Δϑ

t0
is the Caputo-like difference, 0 < ϑ ≤ 1, t ∈ (h̄N)t0 .

With the periodic boundary conditions{
u0(t) = um(t), u1(t) = um+1(t),
v0(t) = vm(t), v1(t) = vm+1(t),

(18)

and the initial condition

ui(t0) = φ1(xi) ≥ 0, vi(t0) = φ2(xi) ≥ 0.

4. Local Stability

In order to investigate the asymptotic stability of the considered discrete-time fractional
FitzHugh–Nagumo system, we consider the unique equilibrium point, which is the solution
of the following system:⎧⎪⎪⎨⎪⎪⎩

d1

k2 Δ2u∗ − u∗3 + (β + 1)u∗2 − βu∗ − v∗ = 0,

d2

k2 Δ2v∗ + εu∗ − εγv∗ = 0.
(19)

As previously stated in [49], the system (17) may have many equilibriums depending
on the sign of ξ, where ξ is determined by

ξ = (1− β)2 − 4
γ

. (20)

Thus, we may have the three cases listed below:

• If ξ < 0, system (17) has the origin (u∗0, v∗0) = (0, 0) as its only fixed point.

• If ξ = 0, system (17) has two fixed points; the origin and (u∗1, v∗1) =
(
− β + 1

2
,

u∗1
γ

)
.

• If ξ > 0, system (17) has three fixed points; the origin,

(u∗2, v∗2) =
(
− β

2
−
√

ξ,
u∗2
γ

)
and (u∗3, v∗3) =

(
− β

2
+
√

ξ,
u∗3
γ

)
.
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4.1. Local Stability of the Free Diffusions System

In this part, we develop suitable requirements for the local asymptotic stability of the
following system:

⎧⎨⎩
C
h̄ Δϑ

t0
u(t) = −u3(t + h̄ϑ) + (β + 1)u2(t + h̄ϑ)− βu(t + h̄ϑ)− v(t + h̄ϑ),

C
h̄ Δϑ

t0
v(t) = εu(t + h̄ϑ)− εγv(t + h̄ϑ).

(21)

The characteristic equation for the eigenvalues is obtained using linear stability analy-
sis around the stable state:

J =

⎛⎜⎜⎝
∂ψ

∂u
∂ψ

∂v
∂Ψ
∂u

∂Ψ
∂v

⎞⎟⎟⎠ =

(−3u2 + 2(β + 1)u− β − 1
εγ − ε

)
, (22)

where

ψ(u, v) = −u3(t + h̄ϑ) + (1 + β)u2(t + h̄ϑ)− βu(t + h̄ϑ)− v(t + h̄ϑ), (23)

and
Ψ(u, v) = εγu(t + h̄ϑ)− εv(t + h̄ϑ). (24)

We may deduce the following:

Theorem 4. System (21) is locally asymptotically stable at the steady state according to the follow-
ing cases:

• If ξ = 0, the equilibrium point (u∗0, v∗0) is locally asymptotically stable.
• If ξ = 0, the equilibrium points (u∗0, v∗0) and (u∗1, v∗1) are locally asymptotically stable.
• If ξ > 0, the equilibrium points (u∗0, v∗0) and (u∗2, v∗2) are locally asymptotically stable, and

(u∗3, v∗3) is stable if the following hold true:

β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ > 0.

Proof. Since the system (21) might have many equilibriums depending on the sign of ξ,
we shall analyze each one separately.

• Given that the origin (u∗0, v∗0) always represents an equilibrium point, we shall investi-
gate the stability of the system (21) regardless of the sign of ξ.

The Jacobian matrix of the equilibrium point (u∗0, v∗0) may be expressed as follows:

J(u∗0 ,v∗0)
=

(−β − 1
εγ − ε

)
, (25)

The Jacobian matrix J(u∗0 ,v∗0)
has the following characteristic equation:

Λ2 − tr(J(u∗3 ,v∗3)
)Λ + det(J(u∗3 ,v∗3)

) = 0, (26)

where
tr(J(u∗0 ,v∗0)

) = −β− ε, det(J(u∗0 ,v∗0)
) = βε + εγ. (27)

This might lead to the following discriminant

ΔΛ= tr2(J(u∗0 ,v∗0)
)− 4det(J(u∗0 ,v∗0)

) = (β + ε)2 − 4(βε + εγ) = (β− ε)2 − 4εγ.
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The solutions of (26) are obviously dependent on the sing of ΔΛ; therefore, we may
analyze the stability in the following situations.

– If (β − ε)2 > 4εγ, and since βε + εγ > 0, the negativity of the eigenvalues
is determined by the sign of tr(J(u∗0 ,v∗0)

). Furthermore, as −β− ε < 0, and the
eigenvalues Λ1 and Λ2 are real, thus we have

Λ1 =
tr(J(u∗0 ,v∗0)

)−√ΔΛ

2
< 0. (28)

As a consequence of this, Arg(Λ1) = π. It is self-evident that Arg(Λ1) =
Arg(Λ2) = π. As a result, according to Theorem 3, the equilibrium (u∗0, v∗0)
is asymptotically stable.

– If (β− ε)2 < 4εγ, then

Λ1 =
tr(J(u∗0 v∗0)

)− i
√−ΔΛ

2
, Λ2 =

tr(J(u∗0 v∗0)
) + i
√−ΔΛ

2
. (29)

Since −β− ε < 0, the system (21) is then asymptotically stable, based on the
identical situation studied before.

– If (β− ε)2 = 4εγ, tr(J(u∗0 ,v∗0)
) cannot be equal to zero. The sign of the eigenvalues

is the same as the sign of tr(J(u∗0 ,v∗0)
). As a result, (u∗0, v∗0) is asymptotically stable

for all ϑ ∈ (0, 1].

We may deduce that the origin is locally asymptotically stable, regardless of the sing
of ΔΛ.

• Now, assuming that ξ = 0, and the origin is clearly stable according to the previous
investigations, we can thus investigate the stability of the equilibrium point (u∗1, v∗1).

In this case, we have the Jacobian matrix of the equilibrium point (u∗1, v∗1) defined by

J(u∗1 ,v∗1)
=

⎛⎝−3
(

β + 1
2

)2
− 2

(β + 1)2

2
− β − 1

εγ − ε

⎞⎠, (30)

and we also have:

tr(J(u∗1 ,v∗1)
) =
−7(β + 1)2

4
− β− ε, det(J(u∗1 ,v∗1)

) =

(
7(β + 1)2

4
+ β

)
ε + εγ. (31)

This may lead us to the discriminant of the eigenvalue problem (26):

ΔΛ=
7
2
(β + 1)2

(
7
8
(β + 1)2 − ε + β

)
− 4ε(β + γ) + (β + ε)2.

We notice that det(J(u∗1 ,v∗1)
) > 0 and tr(J(u∗1 ,v∗1)

) < 0, which indicates that, based on the
results we have reached about the stability of the equilibrium point, (u∗0, v∗0), (u

∗
1, v∗1)

is asymptotically stable.
• In the last case, we suppose that ξ > 0; thus, the equilibrium point (u∗0, v∗0) remains

stable, and we will discuss the stability of the two other equilibriums.

– Concering the equilibrium (u∗2, v∗2) we have

J(u∗2 ,v∗2)
=

⎛⎝−3
(
− β

2
−√ξ

)2
+ 2(β + 1)

(
− β

2
−√ξ

)
− β − 1

εγ − ε

⎞⎠. (32)
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This leads us to:

tr(J(u∗2 ,v∗2)
)= −3

(
− β

2
−
√

ξ

)2
+ 2(β + 1)

(
− β

2
−
√

ξ

)
− β− ε,

= −β

(
7
4

β + 2
)
−
√

ξ(5β + 2)− 3ξ − ε,

det(J(u∗2 ,v∗2)
)= −ε

(
−3
(
− β

2
−
√

ξ

)2
+ 2(β + 1)

(
− β

2
−
√

ξ

)
− β

)
+ εγ,

= −ε(tr(J(u∗2 ,v∗2)
) + ε) + εγ.

= ε

(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ + γ

)
.

The discriminant of the eingenvalue problem (26) is as follows:

ΔΛ=

(
−β

(
7
4

β + 2
)
+
√

ξ(−3β + 2)− 3ξ + ε

)2
− 4εγ.

This case is identical to the case of the equilibrium point (u∗1, v∗1), since det(J(u∗2 ,v∗2)
) > 0

and tr(J(u∗2 ,v∗2)
) < 0, which leads us to the same results as the first and second

cases of the demonstration. As a result, (u∗2, v∗2) is locally asymptotically stable.
– Finally, we investigate the stability of the equilibrium (u∗3, v∗3), and we have

J(u∗3 ,v∗3)
=

⎛⎝−3
(
− β

2
+
√

ξ

)2
+ 2(β + 1)

(
− β

2
+
√

ξ

)
− β − 1

εγ − ε

⎞⎠. (33)

We might observe from the Jacobian matrix that

tr(J(u∗3 ,v∗3)
)= −3

(
− β

2
+
√

ξ

)2
+ 2(β + 1)

(
− β

2
+
√

ξ

)
− β− ε,

= −β

(
7
4

β + 2
)
+
√

ξ(5β + 2)− 3ξ − ε,

det(J(u∗3 ,v∗3)
)= −ε

(
−3
(
− β

2
+
√

ξ

)2
+ 2(β + 1)

(
− β

2
+
√

ξ

)
− β

)
+ εγ,

= −ε(tr(J(u∗3 ,v∗3)
) + ε) + εγ.

= ε

(
β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ + γ

)
.

The characteristic equation (26) has the following discriminant

ΔΛ=

(
−β

(
7
4

β + 2
)
+
√

ξ(5β + 2)− 3ξ + ε

)2
− 4εγ. (34)

Based on (34), we investigate each case independently.

* If ΔΛ > 0 and if det(J(u∗3 ,v∗3)
) > 0, as a result, the eigenvalues’ negativity is

dependent on the sign of tr(J(u∗3 ,v∗3)
), and the eigenvalues Λ1 and Λ2 are real

and may be represented as

Λ1 =
tr(J(u∗3 ,v∗3)

)−√ΔΛ

2
, Λ2 =

tr(J(u∗3 ,v∗3)
) +
√

ΔΛ

2
. (35)
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· If tr(J(u∗3 ,v∗3)
) < 0, then we have

Λ1 =
tr(J(u∗3 ,v∗3)

)−√ΔΛ

2
< 0. (36)

As a result, Arg(Λ1) = π. Since both eigenvalues are real, it is obvious
that Arg(Λ1) = Arg(Λ2) = π. As a consequence, based on Theorem 3,
the equilibrium (u∗3,v ∗3) is asymptotically stable.

· If tr(J(u∗3 ,v∗3)
) > 0, then we have

Λ2 =
tr(J(u∗3 ,v∗3)

) +
√

ΔΛ

2
> 0. (37)

Therefore, Arg(Λ2) = 0, and based on Theorem 3, system (21) is unstable.

* If ΔΛ < 0 and if det(J(u∗3 ,v∗3)
) > 0, then

Λ1 =
tr(J(u∗3 ,v∗3)

)− i
√−ΔΛ

2
, Λ2 =

tr(J(u∗3 ,v∗3)
) + i
√−ΔΛ

2
. (38)

We may discuss the solutions based on the sign of tr(J(u∗3 ,v∗3)
).

· If tr(J(u∗3 ,v∗3)
) < 0 or tr(J(u∗3 ,v∗3)

) > 0, then, following the same case
investigated previously, system (21) is asymptotically stable.

· If tr(J(u∗3 ,v∗3)
) = 0, then

Arg
(−i
√−ΔΛ

2

)
= Arg

(
i
√−ΔΛ

2

)
=

π

2
,

and system (21) is asymptotically stable.

* If ΔΛ = 0, and det(J(u∗3 ,v∗3)
) > 0, tr(J(u∗3 ,v∗3)

) cannot be equal to zero. The sign
of the eigenvalues is the same as the sign of tr(J(u∗3 ,v∗3)

). As a result, (u∗3, v∗3)
is asymptotically stable for all ϑ ∈ (0, 1] if tr(J(u∗3 ,v∗3)

) < 0 and unstable if
tr(J(u∗3 ,v∗3)

) > 0.

The proof is completed.

4.2. Local Stability of the Diffusion System

We shall now show that in the presence of diffusion, the steady state (u∗, v∗) can be
stable under certain parameter circumstances. We will adopt the same approach as in [50],
first considering the eigenvalues of the following equation:

Δ2xi−1(t + hϑ) + Λixi(t + hϑ) = 0, (39)

with the periodic boundary conditions:

x0(t) = xm(t), x1(t) = xm+1(t). (40)

We obtain⎧⎪⎪⎨⎪⎪⎩
C
h̄ Δϑ

t0
ui(t) = −

d1

k2 Λiui(t + h̄ϑ)− u3
i (t + h̄ϑ) + (β + 1)u2

i (t + h̄ϑ)− βui(t + h̄ϑ)− vi(t + h̄ϑ),

C
h̄ Δϑ

t0
vi(t) = −

d2

k2 Λivi(t + h̄ϑ) + εui(t + h̄ϑ)− εγvi(t + h̄ϑ).
(41)

To explore the system’s local asymptotic stability, we will linearize it. If the eigenvalues
of the linearized system fulfill the conditions of Theorem 3, using fundamental linear
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operator theory and keeping the system’s fractional structure in mind, we might state that
(u∗, v∗) is asymptotically stable.

We derive the following by linearizing the reaction diffusion system (41) about the
steady state, and we obtain

Ji =

⎛⎜⎝−d1

k2 Λi − 3u2
i (t + h̄ϑ) + 2(β + 1)ui(t + h̄ϑ)− β − 1

εγ − d2

k2 Λi − ε

⎞⎟⎠. (42)

The following result is conducted.

Theorem 5. System (17) is asymptotically stable if the following hold:

• We suppose that ξ < 0 and (β− ε)2 > 4εγ. System (17) is asymptotically stable at the steady
state (u∗0, v∗0) if the following hold:

– If d1 < d2 and d1
k2 Λi ≤ −β.

– If d1 > d2 and d1
k2 Λi ≤ −β, and in addition, the eigenvalues

μj(Λi) =
tr(Ji(u∗0 ,v∗0)

) +−
√

tr(Ji(u∗0 ,v∗0)
)2 − 4det(Ji(u∗0 ,v∗0)

)

2
, j = 1, 2,

satisfy Arg(μj(Λi)) >
ϑπ

2
.

• We suppose that ξ = 0 and (
7
2
(β + 1)2

(
7
8
(β + 1)2 − ε + β

)
> 4ε(β + γ) − (β + ε)2.

System (17) is asymptotically stable at the steady state (u∗1, v∗1) if the following hold:

– If d1 < d2 and − d1
k2 Λi ≥

7
4
(β + 1)2 + β.

– If d1 > d2 and − d1
k2 Λi ≥

7
4
(β + 1)2 + β, and in addition, the eigenvalues

μj(Λi) =
tr(Ji(u∗1 ,v∗1)

) +−
√

tr(Ji(u∗1 ,v∗1)
)2 − 4det(Ji(u∗1 ,v∗1)

)

2
, j = 1, 2,

satisfy Arg(μj(Λi)) >
ϑπ

2
.

• We suppose that ξ > 0 and we have two cases:

– If
(
−β

(
7
4

β + 2
)
−√ξ(3β + 2)− 3ξ + ε

)2
> 4εγ, system (17) is asymptotically

stable at the steady state (u∗2, v∗2) if the following hold:

* If d1 < d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ.

* If d1 > d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ, and in addition,

the eigenvalues

μj(Λi) =
tr(Ji(u∗2 ,v∗2)

) +−
√

tr(Ji(u∗2 ,v∗2)
)2 − 4det(Ji(u∗2 ,v∗2)

)

2
, j = 1, 2,

satisfy Arg(μj(Λi)) >
ϑπ

2
.

– If
(
−β

(
7
4

β + 2
)
+
√

ξ(3β + 2)− 3ξ + ε

)2
> 4εγ, system (17) is asymptotically

stable at the steady state (u∗3, v∗3) if the following hold:
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* If d1 < d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
−√ξ(5β + 2) + 3ξ.

* If d1 > d2 and − d1
k2 Λi ≥ β

(
7
4

β + 2
)
−√ξ(5β + 2) + 3ξ, and in addition,

the eigenvalues

μj(Λi) =
tr(Ji(u∗3 ,v∗3)

) +−
√

tr(Ji(u∗3 ,v∗3)
)2 − 4det(Ji(u∗3 ,v∗3)

)

2
, j = 1, 2,

satisfy Arg(μj(Λi)) >
ϑπ

2
.

Proof. The proof will be conducted following the same cases investigated in the free
diffusion section.

• We first start with the origin (u∗0, v∗0), and we have(
− d1

k2 Λi − β − 1
εγ − d2

k2 Λi − ε

)
= Ji(u∗0 ,v∗0)

− λ(Λi)I,

which has the eigenvalue equation

μ2(Λi)− tr(Ji(u∗0 ,v∗0)
)μ(Λi) + det(Ji(u∗0 ,v∗0)

) = 0, (43)

where

tr(Ji(u∗0 ,v∗0)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗0 ,v∗0)

), (44)

and

det(Ji(u∗0 ,v∗0)
) =

d1

k2
d2

k2 Λ2
i +

(
d1

k2 ε +
d2

k2 β

)
Λi + det(J(u∗0 ,v∗0)

),

and its discriminant is

Δi= tr2(Ji(u∗0 ,v∗0)
)− 4det(Ji(u∗0 ,v∗0)

) =

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)
(β− ε)Λi + ΔΛ.

The sign of Δi is important to the stability of (u∗0, v∗0). The discriminant of Δi in relation
to Λi is

ΔΛi=

((
d1

k2 −
d2

k2

)
(β− ε)Λi

)2
−
(

d1

k2 −
d2

k2

)2
Λ2

i ΔΛ = 4
(

d1

k2 −
d2

k2

)2
εγ.

Clearly, ΔΛi > 0, because with d1 
= d2 we distinguish two cases:

– If d1 < d2, then (β− ε)2 > 4εγ, and the two solutions of the equation ΔΛi = 0
are both negative. Thus, Δi > 0 and the roots of (43) are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ1(Λi) =
tr(Ji(u∗0 ,v∗0)

) +
√

tr(Ji)2 − 4det(Ji(u∗0 ,v∗0)
)

2
,

μ2(Λi) =
tr(Ji(u∗0 ,v∗0)

)−
√

tr(Ji(u∗0 ,v∗0)
)2 − 4det(Ji(u∗0 ,v∗0)

)

2
.

(45)

Note that the solutions are real, and also μ(Λi)1 < 0. In addition, if − d1
k2 Λ1 ≥ β,

then μ(Λi)2 < 0. This leads to

|Arg(μ1(Λi))| = |Arg(μ2(Λi)2)| = π, (46)
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which ensures the asymptotic stability of (u∗0, v∗0).
– If d1 > d2, we have (β− ε)2 > 4εγ. This returns us to the previous scenario.

Again, for d1
k2 Λ1 ≥ β, det(Ji(u∗0 ,v∗0)

) > 0; thus, μ1(Λi) and μ2(Λi) are negative and
must meet the conditions of Theorem 3.

• Moving on to the second case where ξ = 0, we will investigate the stability of the
equilibrium point (u∗1, v∗1), and in order to do so we consider the following:

⎛⎝− d1
k2 Λi −

7
4
(β + 1)2 − β − 1

εγ − d2
k2 Λi − ε

⎞⎠ = Ji(u∗1 ,v∗1)
− λ(Λi)I,

where

tr(Ji(u∗1 ,v∗1)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗1 ,v∗1)

), (47)

and

det(Ji(u∗1 ,v∗1)
) =

d1

k2
d2

k2 Λ2
i +

(
d1

k2 ε +
d2

k2

(
7
4
(β + 1) + β

))
Λi + det(J(u∗1 ,v∗1)

),

and its discriminant is

Δi= tr2(Ji(u∗0 ,v∗0)
)− 4det(Ji(u∗0 ,v∗0)

) =

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)
(β− ε)Λi + ΔΛ.

In this case, we have the discriminant of Δi in relation to Λi, defined by

ΔΛi=

((
d1

k2 −
d2

k2

)
(β− ε)Λi

)2
−
(

d1

k2 −
d2

k2

)2
Λ2

i ΔΛ = 4
(

d1

k2 −
d2

k2

)2
εγ.

We can clearly notice that the discriminant in this case is identical to the one calculated
previously; therefore, we summarized the dynamics of the system concerning the
(u∗1, v∗1) in Theorem 5.

• Moving on to the last case where ξ > 0, we will investigate the stability of the
equilibrium points (u∗2, v∗2) and (u∗3, v∗3).

– We start by considering the Jacobian matrix of (u∗2, v∗2), and we have⎛⎝− d1
k2 Λi − β

(
7
4

β + 2
)
−√ξ(5β + 2)− 3ξ − 1

εγ − d2
k2 Λi − ε

⎞⎠ = Ji(u∗2 ,v∗2)
− λ(Λi)I,

where

tr(Ji(u∗2 ,v∗2)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗2 ,v∗2)

), (48)

and

det(Ji(u∗2 ,v∗2)
) =

d1

k2
d2

k2 Λ2
i +

d1

k2 ε +
d2

k2

(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ

)
Λi + det(J(u∗2 ,v∗2)

),

and its discriminant is

Δi=

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ − ε

)
Λi + ΔΛ.

The discriminant of Δi in relation to Λi is
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ΔΛi=

((
d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ − ε

))2
−
(

d1

k2 −
d2

k2

)2
Λ2

i ΔΛ,

= 4
(

d1

k2 −
d2

k2

)2
εγ.

The discriminant in this situation is obviously similar to the one determined
previously; therefore, we summarized the dynamics of the system concerning
the (u∗2, v∗2) in Theorem 5.

– Finally, let us consider the equilibrium point (u∗3, v∗3)⎛⎝− d1
k2 Λi − β

(
7
4

β + 2
)
+
√

ξ(5β + 2)− 3ξ − 1

εγ − d2
k2 Λi − ε

⎞⎠ = Ji(u∗3 ,v∗3)
− λ(Λi)I,

where

tr(Ji(u∗3 ,v∗3)
) = −

(
d1

k2 +
d2

k2

)
Λi + tr(J(u∗3 ,v∗3)

), (49)

and

det(Ji(u∗3 ,v∗3)
) =

d1

k2
d2

k2 Λ2
i +

d1

k2 ε +
d2

k2

(
β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ

)
Λi + det(J(u∗3 ,v∗3)

),

and its discriminant is

Δi=

(
d1

k2 −
d2

k2

)2
Λ2

i + 2
(

d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
−
√

ξ(5β + 2) + 3ξ − ε

)
Λi + ΔΛ.

The discriminant of Δi in relation to Λi is

ΔΛi=

((
d1

k2 −
d2

k2

)(
β

(
7
4

β + 2
)
+
√

ξ(5β + 2) + 3ξ − ε

)2
−
(

d1

k2 −
d2

k2

))2

Λ2
i ΔΛ,

= 4
(

d1

k2 −
d2

k2

)2
εγ.

We can easily see that the discriminant in this case is also similar to the one
determined previously; thus, we outlined the dynamics of the system concerning
the (u∗3, v∗3) in Theorem 5.

5. Global Stability

In this part, we define the global asymptotic stability of the constant steady-state
solution. It is possible to rewrite the discrete-time fractional FitzHugh–Nagumo system
(17) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

C
h̄ Δϑ

t0
ui(t) =

k1

Δ2
x

Δ2ui−1(t + h̄ϑ) + ( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗),

C
h̄ Δϑ

t0
vi(t) =

k2

Δ2
x

Δ2vi−1(t + h̄ϑ) + εγ(
ui(t + h̄ϑ)

ϑ
− u∗

ϑ
− (vi(t + h̄ϑ)− v∗)).

(50)

We define the variables Ui = ui − u∗ and Vi = vi − v∗, such that the function f (ui) is
defined as follows:

f (ui) = −u3
i + (β + 1)u2

i − βui. (51)
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Theorem 6. System (17) is globally asymptotically stable if the following holds:

(ui(t)− u∗)( f (ui)− f (u∗)) > 0, 1 ≤ i ≤ m. (52)

Proof. To achieve the unique equilibrium point’s global asymptotic stability (u∗, v∗), we
evaluate the following function:

L(t) =
1
2

m

∑
i=1

((
ui(t)

γ
− u∗

γ

)2

+ (vi(t)− v∗)2

)
. (53)

Taking the Caputo h-difference operator and using Lemma 3, we have

C
h̄ Δϑ

t0
L(t) =

1
2

m

∑
i=1

(
C
h̄ Δϑ

t0

(
ui(t)

γ
− u∗

γ

)2

+C
h̄ Δϑ

t0
(vi(t)− v∗)2

)
,

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
C
h̄ Δϑ

t0

(
ui(t)

γ
− u∗

γ

)
+ (vi(t + h̄ϑ)− v∗)C

h̄ Δϑ
t0
(vi(t)− v∗),

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(

k1

Δ2
x

Δ2ui−1(t + h̄ϑ) + ( f (ui)− f (u∗))

− (vi(t + h̄ϑ)− v∗)) + (vi(t + h̄ϑ)− v∗)(
k2

Δ2
x

Δ2vi−1(t + h̄ϑ)

+ εγ

(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗)

)
,

≤
m

∑
i=1

k1

Δ2
x

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
Δ2ui−1(t + h̄ϑ) +

k2

Δ2
x
(vi(t + h̄ϑ)− v∗)Δ2vi−1(t + h̄ϑ)

+
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗))

+
m

∑
i=1

(vi(t + h̄ϑ)− v∗)(εγ(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗))),

= J1(t) + J2(t),

where

J1(t) =
m

∑
i=1

k1

Δ2
x

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
Δ2ui−1(t + h̄ϑ) +

k2

Δ2
x
(vi(t + h̄ϑ)− v∗)Δ2vi−1(t + h̄ϑ), (54)

J2(t) =
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(( f (ui)− f (u∗)) (55)

− (vi(t + h̄ϑ)− v∗)) + (vi(t + h̄ϑ)− v∗)
(

εγ

(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗)

))
. (56)

We then examine the J1 and J2 signs:
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J1(t) =
m

∑
i=1

k1

Δ2
x

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
Δ2ui−1(t + h̄ϑ) +

k2

Δ2
x
(vi(t + h̄ϑ)− v∗)Δ2vi−1(t + h̄ϑ),

=
m

∑
i=1

k1

γΔ2
x
(ui(t + h̄ϑ)− u∗)Δ2(ui−1(t + h̄ϑ)− u∗) +

k2

Δ2
x
(vi(t + h̄ϑ)− v∗)Δ2(vi−1(t + h̄ϑ)− v∗)

=
m

∑
i=1

k1

γΔ2
x
(ui(t + h̄ϑ)− u∗)Δ(ui−1(t + h̄ϑ)− u∗)|m+1

1

+
k2

Δ2
x
(vi(t + h̄ϑ)− v∗)Δ(vi−1(t + h̄ϑ)− v∗)|m+1

1 −
m

∑
i=1

k1

γΔ2
x
(Δ(ui−1(t + h̄ϑ)− u∗))2

− k2

Δ2
x
(Δ(vi−1(t + h̄ϑ)− v∗))2 < 0.

J2(t) =
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
(( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗))

+ (vi(t + h̄ϑ)− v∗)(εγ(
ui(t + h̄ϑ)

γ
− u∗

γ
− (vi(t + h̄ϑ)− v∗))),

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

γ

)
( f (ui)− f (u∗))− ε

γ
(ui(t + h̄ϑ)− u∗)(vi(t + h̄ϑ)− v∗)

+
ε

γ
(vi(t + h̄ϑ)− v∗)(ui(t + h̄ϑ)− u∗)− (vi(t + h̄ϑ)− v∗)2,

≤
m

∑
i=1

(
ui(t + h̄ϑ)

γ
− u∗

ϑ

)
( f (ui)− f (u∗))− (vi(t + h̄ϑ)− v∗)2.

Now, the following hold:

• If ui(t + h̄ϑ) ≤ u∗ , then (ui(t + h̄ϑ)− u∗)( f (ui)− f (u∗)) < 0.
• If ui(t + h̄ϑ) ≥ u∗ , then (ui(t + h̄ϑ)− u∗)( f (ui)− f (u∗)) < 0.

This means that L(t) < 0, and according to Theorem 2, the system is globally asymp-
totically stable.

6. Numerical Simulations

In this part, we show some exemplary simulations of the theoretical properties of the
stability of the discrete-time fractional FitzHugh–Nagumo reaction–diffusion system. We
can observe the behavior of the system by modifying its parameters and order. We use the
following numerical solution, and the system (17) appears as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(nh̄) = φ1(xi) +
h̄ϑ

Γ(ϑ) ∑n
j=1

Γ(n− j + ϑ)

Γ(n− j + 1)
[s

ui+1((j− 1)h̄)− 2ui((j− 1)h̄) + ui−1((j− 1)h̄)
k2

−u3((j− 1)h̄) + (β + 1)u2((j− 1)h̄)− βu((j− 1)h̄)− vi((j− 1)h̄)],

vi(nh̄) = φ2(xi) +
h̄ϑ

Γ(ϑ) ∑n
j=1

Γ(n− j + ϑ)

Γ(n− j + 1)
[
vi+1((j− 1)h̄)− 2vi((j− 1)h̄) + vi−1((j− 1)h̄)

k2

+εui((j− 1)h̄)− εγvi((j− 1)h̄)],
1 ≤ i ≤ m,
n > 0.

(57)
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Example 1. Consider the following parameter values of model (17): N = 110, (β, ε, γ, d1, d2) =
(0.139, 0.7, 0.18, 2, 3) h̄ = 0.18, t ∈ [0, 20], x ∈ [0, 20] , and the boundary conditions (u0(t), v0(t)) =
(2, 3), (u1(t), v1(t)) = (2, 3), with the initial conditions{

φ1(xi) = 1− sin(πxi),
φ2(xi) = 3− sin(πxi).

We see that all of our model’s solutions converge at some point to the equilibrium point
(u∗, v∗) = (0.64, 0.12). The unique equilibrium is thus asymptotically stable. This numerical
conclusion is consistent with our earlier theoretical results. Figures 1–3 display the results mentioned
earlier for different orders.

Example 2. In this example, we set the following parameter of the model (17): N = 110,
(β, ε, γ, d1, d2) = (0.3, 0.01, 0.1, 0.1, 0.7) h̄ = 0.4, t ∈ [0, 20], x ∈ [0, 20] and the boundary
conditions (u0(t), v0(t)) = (1, 3), (u1(t), v1(t)) = (1, 3), with the initial conditions⎧⎨⎩φ1(xi) = 3 + cos

(πxi
2

)
,

φ2(xi) = 2 + cos
(πxi

2

)
.

We can observe that the solutions of the model converge to the equilibrium point (u∗, v∗) =
(0, 0). As a result, the unique equilibrium is asymptotically stable. This numerical solution
agrees with the theories provided in the previous sections, as displayed in Figures 4–6 for different
fractional orders.
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Figure 1. State trajectories of r ui(t) and vi(t) for ϑ = 0.3.

0
20

0.5

1

15 20

1.5

v i(t
)

2

15

x

10

2.5

t

3

10
5 5

0 0

0
20

0.5

15 20

1

u
i(t

)

15

1.5

x

10

t

2

10
5 5

0 0

Figure 2. State trajectories of r ui(t) and vi(t) for ϑ = 0.05.
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Figure 3. Dynamic behaviors of ui(t) and vi(t) ϑ = 0.3 and ϑ = 0.05.
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Figure 4. Numerical solution of ui(t) and vi(t) for (β, ε, γ, d1, d2) = (0.3, 0.01, 0.1, 0.1, 0.7) and ϑ = 0.2.
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Figure 5. Numerical solution of ui(t) and vi(t) for (β, ε, γ, d1, d2) = (0.3, 0.01, 0.1, 0.1, 0.7) and ϑ = 0.8.
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Figure 6. Dynamic behaviors of ui(t) and vi(t) ϑ = 0.8 and ϑ = 0.2.

7. Conclusions

In this paper, we looked at a discrete-time fractional-order variant of the reaction
diffusion FitzHugh–Nagumo system. We provided adequate constraints for the unique
equilibrium’s local asymptotic stability. Moreover, with the help of the direct Lyapunov tech-
nique, the steady-state solution’s global asymptotic stability was established. Finally, the
simulation results illustrate all of the theoretical investigations’ results. In the future, further
research will be performed to examine this kind of discrete-time reaction–diffusion system.

Moreover, the linearization approach and the Lyapunov functional may be utilized to
solve the issue of stability in discrete fractional reaction–diffusion models. In addition, the
results of this study may be readily applicable to many various types of discrete fractional
spatiotemporal systems with reaction–diffusion terms, as well as to other dynamical issues,
such as chaos and synchronization control.

Author Contributions: T.H., A.H., O.A., Y.A.A.-K., A.A.-H. and A.O.; Conceptualization, T.H. and
A.A.-H.; Formal analysis, O.A.; Investigation, T.H. and Y.A.A.-K.; Methodology, Y.A.A.-K.; Software,
A.H.; Supervision, A.O.; Validation, O.A.; Visualization, A.A.-H.; Writing—original draft, A.H.;
Writing—review and editing, A.O. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: Hoboken, NJ, USA, 1993.
2. Oldham, K.B. The Fractional Calculus; Spanier, J., Ed.; Academic Press: New York, NY, USA, 1974.
3. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Cham,

Switzerland, 1993.
4. Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science

and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [CrossRef]
5. Dababneh, A.; Djenina, N.; Ouannas, A.; Grassi, G.; Batiha, I.M.; Jebril, I.H. A new incommensurate fractional-order discrete

COVID-19 model with vaccinated individuals compartment. Fractal Fract. 2022, 6, 456. [CrossRef]
6. Bonfanti, A.; Kaplan, J.L.; Charras, G.; Kabla, A. Fractional viscoelastic models for power-law materials. Soft Matter 2020, 16,

6002–6020. [CrossRef] [PubMed]
7. Skwara, U.; Martins, J.; Ghaffari, P.; Aguiar, M.; Boto, J.; Stollenwerk, N. Applications of fractional calculus to epidemiological

models. Aip Conf. Proc. 2012, 1479, 1339–1342.
8. Acay, B.; Bas, E.; Abdeljawad, T. Fractional economic models based on market equilibrium in the frame of different type kernels.

Solitons Fractals 2020, 130, 109438. [CrossRef]
9. Tarasov, V.E. Mathematical economics: Application of fractional calculus. Mathematics 2020, 8, 660. [CrossRef]
10. Acay, B.; Inc, M. Electrical circuits RC, LC, and RLC under generalized type non-local singular fractional operator. Fractal Fract.

2021, 5, 9. [CrossRef]

100



Axioms 2023, 12, 806

11. Atici, F.M.; Eloe, P.W. A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2007, 2, 165–176.
12. Atici, F.; Eloe, P. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [CrossRef]
13. Atici, F. M.; Eloe, P. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 2009. [CrossRef]
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Abstract: Discrete fractional models with reaction-diffusion have gained significance in the scientific
field in recent years, not only due to the need for numerical simulation but also due to the stated
biological processes. In this paper, we investigate the problem of synchronization-control in a
fractional discrete nonlinear bacterial culture reaction-diffusion model using the Caputo h-difference
operator and a second-order central difference scheme and an L1 finite difference scheme after
deriving the discrete fractional version of the well-known Degn–Harrison system and Lengyel–
Epstein system. Using appropriate techniques and the direct Lyapunov method, the conditions for
full synchronization are determined.Furthermore, this research shows that the L1 finite difference
scheme and the second-order central difference scheme may successfully retain the properties of
the related continuous system. The conclusions are proven throughout the paper using two major
biological models, and numerical simulations are carried out to demonstrate the practical use of the
recommended technique.

Keywords: fractional discrete reaction-diffusion Degn-Harrison system; discrete-time fractional
reaction-diffusion Lengyel–Epstein system; second-order difference operator; Caputo h̄-difference
operator; complete synchronization; Lyapunov method

MSC: 39A12; 39A30; 39A60; 34K24

1. Introduction

One of the most essential components of dynamic system analysis is the construction
of adequate functions identified as controllers to ensure synchronization. To understand
how these systems achieve their distinctive synchronization behavior, a great variety of
mathematical models have been suggested and studied. For continuous-space systems,
mathematical modeling of oscillating biological or chemical media, for example, takes
the form of reaction-diffusion equations. This type of model shows intricate dynamical
structures such as bifurcations, spatial patterns, and turning instability. It has been demon-
strated that reaction-diffusion systems, such as low-dimensional oscillators, may exhibit
synchronization. For example, Mesdoui et al. [1] examined the synchronization of the

Axioms 2023, 12, 728. https://doi.org/10.3390/axioms12080728 https://www.mdpi.com/journal/axioms103



Axioms 2023, 12, 728

Degn–Harrison reaction-diffusion system. Ref. [2] was concerned with the synchronization
control of the Lengyel–Epstein reaction-diffusion system. Furthermore, the synchronization
of the FitzHugh–Nagumo reaction-diffusion model using a particular control rule was
detailed in [3]. Other works regarding this subject may be found in [4,5].

In real-world applications, fractional-order nonlinear equations are frequently em-
ployed to describe a wide range of physical phenomena [6–9]. Scientists are still fascinated
by fractional calculus because of its numerous applications in physics, chemistry, biology,
electronics, electrical engineering, mechanics, signal processing, and control [10–15]. As a
result, in recent years, scholars have grown particularly interested in it. However, over
the last decade, there has been a spike in attention to fractional reaction-diffusion systems,
particularly on the topic of synchronization. For instance, in [16], a hybrid technique
for synchronizing between two integer and fractional-order reaction-diffusion systems is
proposed, with applications to particular chemical models. Moreover, In [17], the dynamics
of the activator–inhibitor system known as the Gierer–Meinhardt system, which is utilized
to describe the interactions of chemical and biological phenomena, was investigated.

The discrete form of fractional calculus is a novel approach with enormous potential
applications in a variety of scientific and industrial fields. The application has attracted
tremendous attention in the past few years (see [18–25]). The purpose of the latest inves-
tigations in this area is fundamental. Fractional difference equations, on the one hand,
enhance classical differential equations. In addition, they provide for a feasible comparison
of the behaviors of fractional difference and fractional differential equations.

Many physical phenomena rely on spatially discrete systems, often known as dis-
crete reaction-diffusion systems. In fact, the discreteness and structure of the underlying
spatial domain influence dynamical behavior significantly. Active PIN-induced transport
across cell membranes, for instance, is required for auxin spreading across plant leaves [26].
Peierls–Nabarro barriers are often used to prevent tiny faults from propagating across
discrete media, although they can be avoided by carefully modifying system characteris-
tics [27]. Discrete reaction-diffusion systems are more similar to biological systems than
continuous ones, and certain investigations on the behavior of such systems are particularly
fascinating (see [25,28–30]). Nevertheless, fractional discrete reaction-diffusion equations
have not yet been extensively studied [31]. A fractional discrete diffusion equation was
presented by [32]. In [33], the chaotic behavior of a variable fractional diffusion equation
on discontinuous time scales is examined. Clearly, there is a gap in our comprehension of
the dynamics of such systems.

To the best of the authors’ knowledge, this is the first work dealing with the synchro-
nization and control of discrete fractional reaction-diffusion systems. This has prompted us
to investigate the issue of complete synchronization in coupled discrete fractional reaction-
diffusion systems. With the help of the fractional Lyapunov approach, linear control laws
for the discrete fractional reaction-diffusion Degn–Harrison system and Lengyel–Epstein
systems have been proposed after driving the discrete version of the considered systems
using the L1 finite difference scheme and the second-order central difference scheme.
The following is how the paper is managed: Section 2 introduces some essential concepts
and lemmas for discrete fractional calculus. Section 3 describes the models investigated in
this study, which are the fractional discrete reaction-diffusion Lengyel–Epstein and Degn–
Harrison systems, and presents a unique discrete temporal fractional reaction-diffusion
system. Section 4 contains the discrete fractional Lengyel–Epstein reaction-diffusion sys-
tem’s master-slave formulation, along with unique control rules and demonstrations of
convergence based on an appropriate Lyapunov functional. Section 5 employs the same
approach to drive the master-slave discrete fractional Degn–Harrison reaction-diffusion
system, as well as control laws and proofs of convergence. In Section 6, control laws
are derived analytically and numerically in two dimensions to achieve synchronization
between the master-slave systems of the investigated models.
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2. Preliminaries

This part starts with an overview of some of the topic’s primary concepts.

Definition 1 ([21]). Assuming x : N→ R, the forward difference operator Delta is expressed by

Δx(i) = x(i+ 1)− x(i), i ∈ N.

Additionally, the operators Δn; n = 1; 2; 3; ..., are recursively determined by

Δnx(i) = Δ(Δn−1x(i)), i ∈ N.

More specifically, the second-order difference operator of the function x(i) is provided by

Δ2x(i) = x(i+ 2)− 2x(i+ 1) + x(i). (1)

Theorem 1 ([21]). Given two functions x; y : Na → R and a; b ∈ N; a < b; we have the
following formulae for summation by parts:

b−1

∑
i=a

x(i)Δy(i) = x(i)y(i)|ba −
b−1

∑
i=a

y(i+ 1)Δx(i),

b−1

∑
i=a

x(i+ 1)Δy(i) = x(i)y(i)|ba −
b−1

∑
i=a

y(i)Δx(i).

Definition 2 ([22]). Let x ∈ (hN)a → R. The h-sum of the ζ−th order for each ζ > 0 has been
provided by

hΔ−ζ
a x(t) =

h

Γ(ζ)

t
h−ζ

∑
s= a

h

(t− σ(sh))(ζ−1)
h x(sh),

σ(sh) = (s + 1)h, t ∈ (hN)a+ζh.

where a ∈ R is the initial value and the h-falling factorial function is stated as

t
(ζ)
h = hζ

Γ( t
h + 1)

Γ( t
h + 1− ζ)

.

while
(hN)a+ζh = {a + (1− ζ)h, a + (2− ζ)h, ...}.

Definition 3 ([22]). For x(t) given on(hN)a and a stated 0 < ζ < 1, the Caputo h-difference
operator is supplied:

C
hΔζ

ax(t) =h Δ−(n−ζ)
a Δn

hx(t).

where Δn
hx(t) =

x(t+ h)− x(t)
h

.

The following are a few essential properties that have been used in this work.

Lemma 1 ([22]). For t ∈ (hN)a+ζh and 0 < ζ ≤ 1, the following proprieties hold:

•

hΔ−ζ
a+(1−ζ)h

C
hΔζx(t) = x(t)− x(a).

• For a constant x
C
hΔζx = 0.
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Lemma 2 ([22]). For t ∈ (hN)a+ζh, inequality (2) holds true.

C
hΔζ

ax2(t) ≤ 2x(t+ ζh)C
hΔζ

ax(t), (2)

where 0 < ζ ≤ 1.

Considering the fractional-order difference system:

C
hΔζ

ax(t) = Φ(t+ hζ, x(t+ hζ)), t ∈ (hN)a+ζh, (3)

Theorem 2 ([22]). Suppose x = 0 is the equilibrium point of system (3) . If a positively definite
and decreasing scalar function V(t, x(t)) exists so that C

hΔζ
aV(t, x(t)) ≤ 0, the equilibrium point is

asymptotically stable.

3. Model Description

The models in question are now approximated using two well-known approaches.
These discrete models are, to our knowledge, the first in the literature. Wu et al. [32]
proposed an interesting discretization of the fractional reaction equation shown below.⎧⎪⎪⎨⎪⎪⎩

∂κ

∂t
= KΔκ, x ∈ Ω, t > 0,

∂κ = 0, x ∈ ∂Ω, t > 0,
κ(x, 0) = κ(x) > 0, x ∈ Ω.

(4)

This equation represents a classical diffusion equation with the initial boundary condi-
tions, 0 is the initial point, and K is the diffusion coefficient.

According to the structure of the model (4) and the discretization employed by
Wu et al. [32,33]. Considering x ∈ [0, L], we obtain xi+1 = xi + Δx, i = 0, ..., m, and

by applying the central difference formula for x,
∂2u(x, t)

∂x2 as well as
∂2w(x, t)

∂x2 may be
approximated as ⎧⎪⎪⎨⎪⎪⎩

∂2u(x, t)
∂x2 ≈ ui+1(t)− 2ui(t) + ui−1(t)

Δ2
x

,

∂2w(x, t)
∂x2 ≈ wi+1(t)− 2wi(t) + wi−1(t)

Δ2
x

.

With the aid of the description of the second-order difference operator of ui and wi,
we obtain: ⎧⎪⎪⎨⎪⎪⎩

∂2u(x, t)
∂x2 ≈ Δ2ui−1(t)

Δ2
x

,

∂2w(x, t)
∂x2 ≈ Δ2wi−1(t)

Δ2
x

.

As a result, we may identify the previously mentioned model by Wu et al. [32,33].

C
hΔζ

t0
κi(t) =

1
Δ2

x
Δ2

κi−1(t+ hζ). (5)

With the periodic boundary conditions

κ0(t) = κm(t), κ1(t) = κm+1(t). (6)

Moving on to the models in question, the Degn–Harrison model and the Lengyel–
Epstein model, we present the discrete fractional version of each.
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Mesdoui et al. [1] designed the reaction-diffusion model commonly referred to as the
Degn–Harrison reaction-diffusion model, which is represented as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= k1Δu + a− u− wu
1 + qu2 , x ∈ Ω, t > 0,

∂w
∂t

= k2Δw + b− wu
1 + qu2 , x ∈ Ω, t > 0,

∂u = ∂w = 0, x ∈ ∂Ω, t > 0
u(x, 0) = u0(x) > 0, w(x, 0) = w0(x) > 0, x ∈ Ω.

(7)

where Ω is a bounded domain in Rn, and ∂Ω is a suitably smooth border, while k1 and
k2 are the respective diffusion coefficients of the reacting substances u and w, which are
supposed to be positive constants throughout the reaction phase.The Laplace operator is

given by Δ = ∑n
i=1

∂2

∂x2
i

.

Because time-fractional systems have been widely explored by scholars, Mesdoui et al. [1]
presented the following fractional-time Degn–Harrison reaction-diffusion system.⎧⎪⎨⎪⎩

C
0 Dδ

tu− k1Δu = a− u− uw
1 + qu2 ,

C
0 Dδ

tw− k2Δw = b− uw
1 + qu2 .

(8)

where 0 < δ ≤ 1 is the fractional order, C
0 Dδ

t denotes the Caputo fractional derivative,
k1, k2 and σ are strictly positive constants with the same initial conditions and Neumann
boundary conditions considered by Mesdoui et al. [34].

Following the discretization defined previously, we may now provide the discrete
fractional reaction-diffusion Degn–Harrison system.⎧⎪⎪⎨⎪⎪⎩

C
hΔζ

t0
ui(t) =

k1

Δ2
x

Δ2ui−1(t+ hζ) + a− ui(t+ hζ)− ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2 ,

C
hΔζ

t0
wi(t) =

k2

Δ2
x

Δ2wi−1(t+ hζ) + b− ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2 .
(9)

With the periodic boundary conditions{
u0(t) = um(t), u1(t) = um+1(t),
w0(t) = wm(t), w1(t) = wm+1(t),

(10)

and the initial condition

ui(t0) = ψ1(xi) ≥ 0, wi(t0) = ψ2(xi) ≥ 0.

Regarding the remaining model, the Lengyel–Epstein reaction-diffusion system was
provided as a simulation of the chlorite-iodide-malonic-acid chemical reaction (CIMA).
Yi et al. [35] investigated a specific model described by:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= Δu + a− u− uw
1 + u2 , x ∈ Ω, t > 0,

∂w
∂t

= σ

(
dΔw + b

(
u− uw

1 + u2

))
, x ∈ Ω, t > 0,

∂u = ∂w = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) > 0, w(x, 0) = w0(x) > 0, x ∈ Ω.

(11)

where Ω is a bounded domain in Rn, with a properly smooth boundary ∂Ω. u reflects the
chemical concentration of the activator iodide, whereas w indicates the inhibitor chlorite at
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a point x ∈ Ω, a and b are related to the supply concentration, d is the value of the ratio of
the coefficient of diffusion, and σ > 0 is an adjusting parameter determined by the amount
of starch concentration.

Given that fractional systems have been thoroughly studied over the years, the next
fractional Lengyel–Epstein system was investigated:⎧⎪⎨⎪⎩

C
0 Dδ

tu− d1Δu = a− u− 4uw
1 + u2 ,

C
0 Dδ

tw− d2Δw = σb
(

u− uw
1 + u2

)
,

(12)

where d1, d2 and σ are constants that are positive and have similar initial conditions and
Neumann boundaries.

We analyze the discrete fractional reaction-diffusion Lengyel–Epstein system (15) via
the model (12) and the discretization described above.⎧⎪⎪⎨⎪⎪⎩

C
hΔζ

t0
ui(t) =

d1

Δ2
x

Δ2ui−1(t+ hζ) + a− ui(t+ hζ)− 4ui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2 ,

C
hΔζ

t0
wi(t) =

d2

Δ2
x

Δ2wi−1(t+ hζ) + σb
(

ui(t+ hζ)− ui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2

)
.

(13)

Using periodic boundary conditions:{
u0(t) = um(t), u1(t) = um+1(t),
w0(t) = wm(t), w1(t) = wm+1(t),

(14)

as well as the initial condition

ui(t0) = ψ1(xi) ≥ 0, wi(t0) = ψ2(xi) ≥ 0.

4. Synchronization of Discrete-Time Fractional Reaction-Diffusion
Lengyel–Epstein System

The most typical method for testing synchronization is to employ a controller to
have the slave system output duplicate the master system output in some similar way.
In this part, we create a controller that minimizes the state difference between synchronized
systems to zero, which is known to be complete synchronization. Let the discrete reaction-
diffusion master system (13) and the slave system be⎧⎪⎪⎨⎪⎪⎩

C
hΔζ

t0
Ui(t) =

d1
Δ2

x
Δ2Ui−1(t+ hζ) + a−Ui(t+ hζ)− 4Ui(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2 + V1(t),

C
hΔζ

t0
Wi(t) =

d2

Δ2
x

Δ2Wi−1(t+ hζ) + σb
(

Ui(t+ hζ)− Ui(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2

)
+ V2(t).

(15)

With the periodic boundary conditions{
U0(t) = Um(t), U1(t) = Um+1(t),
W0(t) = Wm(t), W1(t) = Wm+1(t),

(16)

and the initial condition

Ui(t0) = Φ1(xi) ≥ 0, Wi(t0) = Φ2(xi) ≥ 0.

The purpose of synchronization is to reduce the error regarding the master and slave
systems to zero, which is described as

(e1i, e2i) = (Ui − ui, Wi − wi). (17)
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In what follows, we will identify the linear controllers V1 and V2 that cause the
error system solution to be 0 as t approaches +∞. In other words, to be able to accom-
plish complete synchronization within the master-slave systems (13)–(15), we examine the
asymptotical stability of the zero solution of the synchronization error system described
in (17).

First, According to Ouannas et al. [2], it is easy to verify that∣∣∣∣ 4Ui(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2 − 4ui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2

∣∣∣∣≤ |Ui − ui|+ 4|Wi − wi|,∣∣∣∣ σbUi(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2 − σbui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2

∣∣∣∣≤ |Ui − ui|+ σb|Wi − wi|.

Theorem 3. If there is a control matrix M = (mij)2×2 that satisfies 1−m1 > 0 and m2− σb > 0
the master-slave reaction-diffusion system identified in (13)–(15) is synchronized applying the linear
control rule indicated below.⎧⎨⎩V1(t) = −

(
m1 +

29
4

)
e1i(t),

V2(t) = −m2e2i − (σb + 1)e2i(t).
(18)

Proof. When (18) is substituted into the error system described in (17), the result is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
hΔζ

t0
e1i(t) =

d1

Δ2
x

Δ2e1,i−1(t+ hζ)− e1i(t+ hζ)

−
(

4Ui(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2 − 4ui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2

)
−
(

m1 +
29
4

)
e1i(t),

C
hΔζ

t0
e2i(t) =

d2

Δ2
x

Δ2e2,i−1(t+ hζ) + σb
(

e2i(t+ hζ)

−(Ui(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2 − ui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2 )

)
−m2e2i − (σb + 1)e2i(t).

(19)

Developing a Lyapunov function of the type

L(t) =
1
2

m

∑
i=1

(
e2

1i(t) + e2
2i(t)

)
, (20)

gives

C
hΔζ

t0
L(t) ≤

m

∑
i=1

e1i(t+ hζ)C
h Δζ

t0
e1i(t) + e2i(t+ hζ)C

h Δζ
t0

e2i(t),

=
m

∑
i=1

e1i(t+ hζ)[
d1

Δ2
x

Δ2e1,i−1(t+ hζ)− e1i(t+ hζ)− (
4Ui(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2

− 4ui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2 −
(

m1 +
29
4

)
e1i] +

m

∑
i=1

e2i(t+ hζ)[
d2

Δ2
x

Δ2e2,i−1(t+ hζ)

+ σbe2i(t+ hζ)−
(

σbUi(t+ hζ)Wi(t+ hζ)

1 + (Ui(t+ hζ))2 − σbui(t+ hζ)wi(t+ hζ)

1 + (ui(t+ hζ))2

)
− (m2e2i + (σb + 1)e2i)],

≤
m

∑
i=1

d1

Δ2
x

e1i(t+ hζ)Δ2e1,i−1(t+ hζ) +
d2

Δ2
x

e2i(t+ hζ)Δ2e2,i−1(t+ hζ)

−
m

∑
i=1

(1−m1)e2
1i(t) + |e1i(t)|(|Ui − ui|+ 4|Wi − wi|)

− 29
4

e2
1i(t+ hζ) +

m

∑
i=1

(σb−m2)e2
2i(t+ hζ) + |e2i(t+ hζ)|(|Ui(t+ hζ)− ui(t+ hζ)|

109



Axioms 2023, 12, 728

+ σb|Wi(t+ hζ)− wi(t+ hζ)|)− (σb + 1)e2
2i(t+ hζ),

≤ d1

Δ2
x
(Δe1,i−1Δe1,i−1(t+ hζ)|1m+1 −

m

∑
i=1

(Δe1,i−1(t+ hζ))2) +
d2

Δ2
x
(Δe2,i−1Δe2,i−1(t+ hζ)|1m+1

−
m

∑
i=1

(Δe2,i−1(t+ hζ))2)−
m

∑
i=1

(1−m1)e2
1i(t) + (σb−m2)e2

2i(t+ hζ)

+ e2
1i(t) + 4|e1i(t)||e2i(t)| −

29
4

e2
1i(t+ hζ) + |e1i(t+ hζ)||e2i(t+ hζ)|+ σbe2

2i(t+ hζ)

− (σb + 1)e2
2i(t+ hζ),

≤ −
m

∑
i=1

(
d1

Δ2
x
(Δe1,i−1(t+ hζ))2 +

d2

Δ2
x
(Δe2,i−1(t+ hζ))2

)
−

m

∑
i=1

(1−m1)e2
1i(t)

−
m

∑
i=1

(m2 − σb)e2
2i(t)−

m

∑
i=1

(
5
2
|e1i(t+ hζ)| − |e2i(t+ hζ)|

)2
< 0.

This means the global asymptotic stability of the error system’s zero solution (19),
based on the Lyapunov stability theory presented in Theorem 2. As a result, the master-
slave systems (13)–(15) are completely synchronized.

5. Synchronization of Discrete Fractional Degn–Harrison Reaction-Diffusion Systems

We investigate the synchronization of the fractional discrete Degn–Harrison models
using the master-slave formalism, in which the discrete fractional Degn–Harrison reaction-
diffusion systems are linked in such a way that the slave system asymptotically matches
the master system. In this scenario, we create controllers that cause the difference between
the states of synchronized systems to converge to zero, indicating that the systems are fully
synchronized. The slave system that is linked to the master system (13) may be expressed as⎧⎪⎪⎨⎪⎪⎩

C
hΔζ

t0
Ui(t) =

k1

Δ2
x

Δ2Ui−1(t+ hζ) + a−Ui(t+ hζ)− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 + S1(t),

C
hΔζ

t0
Wi(t) =

k2

Δ2
x

Δ2Wi−1(t+ hζ) + b− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 + S2(t).
(21)

With the periodic boundary conditions{
U0(t) = Um(t), U1(t) = Um+1(t),
W0(t) = Wm(t), W1(t) = Wm+1(t),

(22)

and the initial condition

Ui(t0) = Φ1(xi) ≥ 0, Wi(t0) = Φ2(xi) ≥ 0.

The goal of this part is to identify a control Si to induce the synchronization errors
ei(x, t) = (e1

i (x, t), e2
i (x, t)) described by

e1i(x, t) = Ui(t, x)− ui(t, x), e2i(x, t) = Wi(t, x)− wi(t, x). (23)

where (ui(x, t), wi(x, t)) and (U(x, t), W(x, t)) are the solutions of systems (13) and (21) that
converge to zero as t approaches infinity.
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The error system is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
hΔζ

t0
e1i(t) =

k1

Δ2
x

Δ2e1,i−1(t+ hζ) + a− e1i(t+ hζ)− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2

+
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2 + S1(t),

C
hΔζ

t0
e2i(t) =

k2

Δ2
x

Δ2e2,i−1(t+ hζ) + b− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2

+
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2 + S2(t).

(24)

The error system (24) may be seen to satisfy the periodic boundary conditions.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e1,0(t) = U0(t)− u0(t) = Um(t)− um(t) = e1m(t),
e1,1(t) = U1(t)− u1(t) = Um+1(t)− um+1(t) = e1,m+1(t),
e2,0(t) = W0(t)− w0(t) = Wm(t)− wm(t) = e2m(t),
e2,1(t) = W1(t)− w1(t) = Wm+1(t)− wm+1(t) = e2,m+1(t).

(25)

Before proceeding to the synchronization of master-slave systems, consider the follow-
ing lemma.

Lemma 3 ([34]). The following inequality holds∣∣∣∣ ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2 −
Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2

∣∣∣∣≤ Q(|Ui − ui|+ |Wi − wi|), (26)

where

Q ≥ max
{

5
4

k,
1

2
√

q

}
, |Wi| < k.

The controllers S1 and S2 are determined in the following Theorem to establish syn-
chronization between the systems provided in (13) and (21).

Theorem 4. Under the following control law, the master system (1) and slave system (2) are
completely synchronized. {

S1(t) = (1− 2Q)e1i(t),
S2(t) = −2Qe2i(t).

(27)

Proof. By substituting the control described in the Theorem in the error system, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C
hΔζ

t0
e1i(t) =

k1

Δ2
x

Δ2e1,i−1(t+ hζ)− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 +
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2

−2Qe1i(t+ hζ),

C
hΔζ

t0
e2i(t) =

k2

Δ2
x

Δ2e2,i−1(t+ hζ)− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 +
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2

−2Qe2i(t+ hζ).

(28)

Next, we design a Lyapunov function as

L(t) =
1
2

m

∑
i=1

(
(e1i(t))

2 + (e2i(t))
2
)

, (29)

then, we have

111



Axioms 2023, 12, 728

C
hΔζ

t0
L(t) =

1
2

C
hΔζ

t0

m

∑
i=1

(e1i(t))2 + (e2i(t))
2,

≤
m

∑
i=1

e1i(t+ hζ) C
h Δζ

t0
e1i(t) + e2i(t+ hζ) C

hΔζ
t0

e2i(t),

=
m

∑
i=1

e1i(t+ hζ)(
k1

Δ2
x

Δ2e1,i−1(t+ hζ)− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 +
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2

− 2Qe1
i (t+ hζ)) + e2i(t+ hζ)(

k2

Δ2
x

Δ2e2,i−1(t+ hζ)

− Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 +
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2 2Qe2
i (t+ hζ)),

=
m

∑
i=1

k1

Δ2
x

e1i(t+ hζ)Δ2e1,i−1(t+ hζ) +
k2

Δ2
x

e2i(t+ hζ)Δ2e2,i−1(t+ hζ)− 2Q((e1i)
2 + (e2i)

2)

+

(
Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 +
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2

)
(e1i + e2i),

≤ k1

Δ2
x

m

∑
i=1

e1i(t+ hζ)− (ΔΔe1,i−1(t+ hζ)) +
k2

Δ2
x

m

∑
i=1

e2i(t+ hζ)− (ΔΔe2,i−1(t + hζ))

− 2Q
m

∑
i=1

((e1i)
2 + (e2i)

2) +
m

∑
i=1
|Ui(t+ hζ)Wi(t+ hζ)

1 + q(Ui(t+ hζ))2 +
ui(t+ hζ)wi(t+ hζ)

1 + q(ui(t+ hζ))2 |(|e1i|+ |e2i|),

≤ k1

Δ2
x

(
Δe1,i−1Δe1,i−1(t+ hζ)|1m+1 −

m

∑
i=1

(Δe1,i−1(t+ hζ))2

)
− 2Q

m

∑
i=1

((e1i)
2 + (e2i)

2)

+
k2

Δ2
x

(
Δe2,i−1Δe2,i−1(t+ hζ)|1m+1 −

m

∑
i=1

(Δe2,i−1(t+ hζ))2

)
+ Q

m

∑
i=1

(|e1i|+ |e2i|)2,

≤ − k1

Δ2
x

m

∑
i=1

(Δe1,i−1(t+ hζ))2 − k2

Δ2
x

m

∑
i=1

(Δe2,i−1(t+ hζ))2 −Q
m

∑
i=1

(|e1i| − |e2i|)2 ≤ 0.

According to the Lyapunov stability theory stated in Theorem 2, this implies the
global asymptotic stability of the zero solution of the error system (24). Consequently, the
master-slave systems (13) and (21) are completely synchronized.

6. Numerical Simulation

To demonstrate and confirm the synchronization techniques proposed in the preceding
section. We provide the following examples with numerical simulations:

Example 1. We consider the master-slave systems (13)–(15) with the following parameters:
(a, b, σ, d1, d2) = (10, 1, 2, 1, 1.5), N = 100, h = 1.5, t ∈ [0, 150], x ∈ [0, 20], the boundary
conditions (u0(t), w0(t)) = (1, 5), (u1(t), w1(t)) = (1, 5) and with the following initial conditions.{

(ψ1(xi), ψ2(xi)) = (7 + 0.3 sin(5πxi), 7 + 0.6 sin(5πxi)),
(Φ1(xi), Φ2(xi)) = (7 + 0.2 cos(5πxi), 7 + 0.2 cos(5πxi)).

First, the assumptions given in Theorem 3 is satisfied for controlling the master-slave discrete
fractional reaction-diffusion systems using the following linear controllers.

M =

(
0.9 0
0 3

)
.
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As a result, systems (13) and (15) are completely synchronized. We provide the numerical
solution of the system (13) in (30). Moreover, Figures 1 and 2 show the solutions ui, wi, Ui and Wi,
also, Figure 3 illustrate the time development of error system states e1i and e2i in this case.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(nh) = ψ1(xi) +
hζ

Γ(ζ) ∑n
p=1

Γ(n− p+ ζ)

Γ(n− p+ 1)
× [

ui+1((p− 1)h)− 2ui((p− 1)h) + ui−1((p− 1)h)
Δ2

x

+a− ui((p− 1)h)− 4ui((p− 1)h)wi((p− 1)h)
1 + (ui((p− 1)h))2 ],

wi(nh) = ψ2(xi) +
hζ

Γ(ζ) ∑n
p=1

Γ(n− p+ ζ)

Γ(n− p+ 1)
× [

wi+1((p− 1)h)− 2wi((p− 1)h) + wi−1((p− 1)h)
Δ2

x

+σb
(

ui((p− 1)h)− ui((p− 1)h)wi((p− 1)h)
1 + (ui((p− 1)h))2

)
],

1 ≤ i ≤ m,
n > 0.

(30)
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Figure 1. Dynamic behaviors of of the master system ui(t) and wi(t) for N = 100, (a, b, σ, d1, d2)

= (10, 1, 2, 1, 1.5) and ζ = 0.1.
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Figure 2. Dynamic behaviors of the slave system Ui(t) and Wi(t) for N = 100, (a, b, σ, d1, d2) =

(10, 1, 2, 1, 1.5) and ζ = 0.1.
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Figure 3. State trajectories of the error e1i(t) and e2i(t).
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Example 2. To keep track of the system’s (13) performance, we alter the system’s parameters and
order, taking into account parameter values: (a, b, q, k1, k2, ζ) = (1.2371, 0.1, 9, 3, 2, 0.35) and{

ψ1(xi) = 0.2(3 + 0.1 cos(0.5xi)),
ψ2(xi) = 0.2(4 + 0.3 sin(0.2xi)).

(31)

Additionally, we set {
Φ1(xi) = 0.7 sin(0.3xi)),
Φ2(xi) = 0.5 cos(0.3xi)).

(32)

With the periodic conditions (u0(t), w0(t)) = (3, 1), (u1(t), w1(t)) = (3, 1) and (U0(t),
W0(t)) = (4, 2), (U1(t), W1(t)) = (4, 2).

As a consequence of the numerical simulations, we can see that by adding appropriate con-
trollers as shown in (27), the dynamics of (13) and (21) are synchronized, and the zero constant state
of the synchronization error system expressed in (28) is asymptotically stable. Figures 4 and 5 are
numerical simulations of the master-slave systems under the considered parameters. Furthermore,
Figure 6 indicates that the system’s zero steady-state is asymptotically stable, moreover, Figure 7
shows the same results in the 2D spatial domain.
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Figure 4. State trajectories of the master system (13).
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Figure 5. State trajectories of the master system (21).
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Figure 6. State trajectories of the error ei(t).
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Figure 7. State trajectories of the error ei(t) in 2D.

7. Conclusions

In this study, we present a unique version of the Degn–Harrison reaction-diffusion
systems and the Lengyel–Epstein reaction-diffusion systems that depend on the Caputo h-
difference operator. We developed unique approaches for investigating synchronization in
a spatiotemporal model of nonlinear bacterial colonies. First, for complete synchronization,
suitable control schemes for synchronization are presented. The results of synchroniza-
tion are based on Lyapunov theory and the master-slave formulation. To demonstrate
the efficacy as well as the validity of the suggested synchronization schemas, numerical
simulations of discrete time-fractional order Degn–Harrison systems and Lengyel–Epstein
systems are provided. In the future, our plan is to further investigate bacterial colonies
and the related reaction-diffusion synchronization phenomena, with the aim of developing
sensor-based applications.
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Abstract: In this current work, we apply the topological degree and fixed point theorems to investigate
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with a fractional-order difference equation. Moreover, we provide some appropriate examples to
verify our main conclusions.
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1. Introduction

Let [κ, δ]Nκ
:= {κ, κ + 1, κ + 2, · · · , δ} (δ− κ ∈ N1), where Nκ := {κ, κ + 1, κ + 2, · · · }.

In the current work, we shall discuss the solvability of the fractional difference boundary
value problem⎧⎨⎩

−Δv
v−3ψ(t) = g(t + v− 1, ψ(t + v− 1)), t ∈ [0, b+ 2]N0 ,

ψ(v− 3) =
[
Δα

v−3ψ(t)
]∣∣

t=v−α−2 =
[
Δβ

v−3ψ(t)
]∣∣∣

t=v+b+2−β
= 0,

(1)

where v ∈ (2, 3], β ∈ (1, 2), v− β ∈ (1,+∞), α ∈ (0, 1), b ∈ (3,+∞)(b ∈ N), and Δv
v−3 is a

discrete fractional-order operator defined by

Δν
aψ(t) :=

⎧⎨⎩ 1
Γ(−ν)

t+ν

∑
s=a

(t− s− 1)−ν−1ψ(s), N − 1 < ν < N,

ΔNψ(t), ν = N,

where N ∈ N with 0 � N − 1 < v � N. As in [1], this definition is equivalent to (2) in
Section 2.

The theory of fractional calculus has been widely used in modern mathematics for
more than 300 years, and the study of solutions of fractional differential (difference) equa-
tions arises in real-world problems in the field of physics, mechanics, chemistry, and
engineering. For example, in [2], the authors extended the variational approach to the
fractional discrete case and introduced the Gompertz fractional difference equation

Δα
0 lnG(t− α + 1) = (b− 1) lnG(t) + a,

which can be used to describe tumor growth, a special relationship between tumor size and
time, and is of special interest since growth estimation is very critical in clinical practice.
Here, a, b are parameters and α ∈ (0, 1]. One can also find some other applications for the
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Gompertz fractional difference equation in [1]. In [3], the authors introduced the following
discrete logistic map and investigated the chaotic behavior:{

CΔv
aψ(t) = μψ(t + v− 1)(1− ψ(t + v− 1)), t ∈ Na+1−v, 0 < v ≤ 1,

ψ(a) = c,

where CΔv
a is the left Caputo-like delta difference defined by

CΔv
aψ(t) =

1
Γ(m− v)

t−(m−v)

∑
s=a

(t− s− 1)m−v−1Δm
s ψ(s),

where t ∈ Na+m−v, m = [v] + 1.
We note that in [4], the author mentioned that discretization is inevitable for fractional

differential equations. To date, they are only used as the starting point for approximate
solution calculations, and there is no special research on fractional difference equations.
Therefore, from the perspective of theory and application, this is a big gap. Many devel-
opments in the theory are now taking place, and two books [5,6] are sources for mathe-
maticians who are interested in this area. However, we still note that most works focus
on fractional-order differential equations, while the research on fractional-order difference
equations is quite small (we refer the reader to [5–26]). In [7], the authors investigated
positive solutions for the discrete fractional boundary value problems⎧⎨⎩−Δv

v−2χ(t) = F (t + v− 1, χ(t + v− 1)), 1 < v ≤ 2,

χ(v− 2) = Δv−1
v−1χ(v + N) = 0,

where t ∈ [0, N + 1]N0 and F : [v− 1, v + N]Nv−1 ×R→ R+ satisfies some superlinear or
sublinear conditions. In [8], the authors utilized fixed-point methods to investigate the
solvability of a fractional difference equation with a p-Laplacian operator⎧⎪⎨⎪⎩

Δβ[φp(Δαχ)](t) +F (α + β + t− 1, χ(α + β + t− 1)) = 0, t ∈ [0, b]N0 ,
Δαχ(β− 2) = Δαχ(β + b) = 0,
χ(α + β− 4) = χ(α + β + b) = 0,

where F : [α + β − 4, α + β + b]Nα+β−4 × R → R satisfies a Lipschitz condition, and
φp(z) = |z|p−2z, p > 1, z ∈ R. In [9], the authors utilized the fixed point index to consider
the solvability of the system of fractional-order difference boundary value problems⎧⎪⎪⎨⎪⎪⎩

Δvχ1(t) = F1(t + v− 1, χ1(t + v− 1), χ2(t + v− 1)), t ∈ [0, T]Z,

Δvχ2(t) = F2(t + v− 1, χ1(t + v− 1), χ2(t + v− 1)), t ∈ [0, T]Z,

χ1(v− 1) = χ1(v + T), χ2(v− 1) = χ2(v + T),

where Fi(i = 1, 2) are semipositone nonlinearities.
We note that usually one expresses the solutions of fractional-order equations by a

Green’s function. However, not all fractional-order difference equations can be obtained in
this way, for example, in [10], the authors studied the problem{

Δαχ(t) = F (t + α− 1, χ(t + α− 1)), t ∈ [0, T]N0 , α ∈ (1, 2],

χ(α− 2) = 0, χ(α + T) = Δ−βχ(ζ + β), ζ ∈ Nα−2,α+T−1, β > 0,

and showed it is equivalent to
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χ(t) =− tα−1

ΘΓ(α)

[
1

Γ(β)

ζ

∑
s=α

s−α

∑
ξ=0

(ζ + β− σ(s))
β−1

(s− σ(ξ))
α−1F (ξ + α− 1, χ(ξ + α− 1))

−
T

∑
s=0

(T + α− σ(s))
α−1F (s + α− 1, χ(s + α− 1))

]
+

1
Γ(α)

t−α

∑
s=0

(t− σ(s))
α−1F (s + α− 1, χ(s + α− 1)),

where

Θ =
ζ−α+2

∑
s=1

(ζ + β− s− α + 1) β−1 Γ(s + α− 1)
Γ(β)Γ(s)

− Γ(α + T + 1)
Γ(T + 2)

.

Clearly, the integral form is very complicated and cannot be formulated via some
suitable Green’s function.

Inspired by the aforementioned works, in this paper, via a Green’s function, we use
the topological degree and fixed point theorems to consider the existence, uniqueness, and
multiplicity of solutions to (1). Furthermore, we present some examples to illustrate our
main results.

2. Preliminary

In this section, we first offer some basic materials for discrete fractional calculus;
see [5–26] and the references therein.

Definition 1. Let
tv := Γ(t+1)

Γ(t+1−v) , ∀t, v ∈ R. If t + 1− v is a pole of Γ(·) and t + 1 is not a pole, then tv = 0.

Definition 2. For v > 0, a function F ’s v-th fractional sum is defined by

Δ−v
a F (t) =

1
Γ(v)

t−v

∑
s=a

(t− s− 1)v−1F (s), t ∈ Na+v.

F ’s v-th fractional difference is defined by

Δv
aF (t) = ΔNΔv−N

a F (t), t ∈ Na+N−v, (2)

where N ∈ N with 0 � N − 1 < v � N.
Let χ : [v− 1, b+ v + 1]Nv−1 → R be a given function. Then, we consider the problem{ −Δv

v−3ψ(t) = χ(t + v− 1), t ∈ [0, b+ 2]N0 ,

ψ(v− 3) =
[
Δα

v−3ψ(t)
]∣∣

t=v−α−2 =
[
Δβ

v−3ψ(t)
]∣∣∣

t=v+b+2−β
= 0, (3)

where v, α, β, b can be founded in (1).

Lemma 1 (see [11]). Problem (3) has a unique solution

ψ(t) =
b+2

∑
s=0

G(t, s)χ(s + v− 1), t ∈ [v− 1, b+ v + 1]Nv−1 ,

where G is the Green’s function given by

G(t, s) =
1

Γ(v)

⎧⎪⎪⎨⎪⎪⎩
tv−1(v+b−β−s+1)v−β−1

(v+b−β+2)v−β−1 − (t− s− 1)v−1, 0 ≤ s < t− v + 1 ≤ b+ 2,

tv−1(v+b−β−s+1)v−β−1

(v+b−β+2)v−β−1 , 0 ≤ t− v + 1 ≤ s ≤ b+ 2.
(4)

Lemma 2 (see [11]). The Green’s function (4) has the properties
(G1) G(t, s) > 0, (t, s) ∈ [v− 1, b+ v + 1]Nv−1 × [0, b+ 2]N0 ,
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(G2) tv−1G(b+v+1,s)
(b+v+1)v−1 � G(t, s) � tv−1(v+b−β−s+1)v−β−1

Γ(v)(v+b−β+2)v−β−1 , (t, s) ∈ [v − 1, b + v + 1]Nv−1

×[0, b+ 2]N0 ,
(G3) q(t)G(b+ v + 1, s) � G(t, s) � G(b+ v + 1, s), q(t) = tv−1

(b+v+1)v−1 , (t, s) ∈ [v−
1, b+ v + 1]Nv−1 ×[0, b+ 2]N0 .

Lemma 3 (see [11]). Let ϕ(s + v− 1) = G(b+ v + 1, s), s ∈ [0, b+ 2]N0 . Then, the following
inequalities hold:

b+v+1

∑
t=v−1

G(t, s)ϕ(t) � κ2 ϕ(s + v− 1), κ2 =
b+v+1

∑
t=v−1

ϕ(t), s ∈ [0, b+ 2]N0 , (5)

and

b+2

∑
s=0

G(t, s)q(s + v− 1) ≥ κ1q(t), κ1 =
b+2

∑
s=0

G(b+ v + 1, s)q(s + v− 1), t ∈ [v− 1, b+ v + 1]Nv−1 . (6)

Let E be a set of all maps from [v − 3, b + v + 1]Nv−3 to R, and
‖ψ‖ = maxt∈[v−3,b+v+1]Nv−3

|ψ(t)|. Then, E is a Banach space. Moreover, define a set

P =
{

ψ ∈ E : ψ(t) � 0, t ∈ [v− 1, b+ v + 1]Nv−1

}
. Then, P is a cone on E. Lemma 3 enables us

to obtain that (1) is equivalent to the sum equation

ψ(t) =
b+2

∑
s=0

G(t, s)g(s + v− 1, ψ(s + v− 1)) := (Bψ)(t), t ∈ [v− 1, b+ v + 1]Nv−1 ,

where G is defined in Lemma 3. Obviously, ψ ∈ E\{0} is a solution for (1) when ψ ∈ E\{0} is a
fixed point of B.

Lemma 4. Let P0 =
{

ψ ∈ P : ψ(t) � q(t)‖ψ‖, ∀t ∈ [v− 1, b+ v + 1]Nv−1

}
. Then,

L(P) ⊂ P0, where

(Lψ)(t) =
b+2

∑
s=0

G(t, s)ψ(s + v− 1), t ∈ [v− 1, b+ v + 1]Nv−1 .

Lemma 5 (see [27] Theorem A.3.3). Let E be a Banach space, Ω ⊂ E a bounded open set, and
T : Ω→ E be a continuous compact operator. If there is an x0 ∈ E\{0} such that

x− T x 
= μx0, ∀x ∈ ∂Ω, μ ≥ 0,

then deg(I − T , Ω, 0) = 0, where deg denotes the topological degree.

Lemma 6 (see [27] Lemma 2.5.1). Let E be a Banach space, Ω ⊂ E a bounded open set with
0 ∈ Ω, and T : Ω→ E be a continuous compact operator. If

T x 
= μx, ∀x ∈ ∂Ω, μ ≥ 1,

then deg(I − T , Ω, 0) = 1.

Lemma 7 (see [28,29]). Let X be a Banach space and P be a cone on X. Define functionals as
follows: α, γ : P→ R+ are continuous increasing and β : P→ R+ is continuous. Moreover, there
exists M > 0, 0 < ã < c̃ such that

α(0) < ã, γ(x) ≤ β(x) ≤ α(x) and ‖x‖ ≤ Mγ(x), ∀x ∈ P(γ, c̃) := {x ∈ P : γ(x) < c̃}.

Furthermore, there is a completely continuous operator T : P(γ, c̃)→ P and a constant b̃ > 0
with 0 < ã < b̃ < c̃ such that β(λx) ≤ λβ(x) for λ ∈ (0, 1], x ∈ ∂P(β, b̃), and
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(E1) γ(T x) < c̃, ∀x ∈ ∂P(γ, c̃);
(E2) β(T x) > b̃, ∀x ∈ ∂P(β, b̃);
(E3) α(T x) < ã, ∀x ∈ ∂P(α, ã).
Then, T has at least three fixed points x1, x2, x3 ∈ P(γ, c̃) such that

0 ≤ α(x1) < ã < α(x2), β(x2) < b̃ < β(x3), γ(x3) < c̃.

In the following, we present some lemmas involving the theory of mixed monotone operators.
Let (E, ‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E, i.e., x ≤ y ⇔
y− x ∈ P. If x ≤ y and x 
= y, then we mean that x < y or y > x. Moreover, for a fixed h > 0,
we define Ph = {x ∈ E | x ∼ h}, in which ∼ is an equivalence relation, i.e., x ∼ y implies that
there are λ, μ > 0 such that λx ≥ y ≥ μx, ∀x, y ∈ E.

Definition 3 (see [30,31]). If ui, vi(i = 1, 2) ∈ P, u1 < u2, v1 > v2 imply A(u1, v1) ≤
A(u2, v2), then A : P× P→ P is called a mixed monotone operator.

Definition 4 (see [30,31]). If A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P, then A : P → P is said to be
sub-homogeneous.

Lemma 8 (see [30,31]). LetB : P→ P be an increasing sub-homogeneous operator,A : P× P→ P
a mixed monotone operator and satisfy

A
(

tx, t−1y
)
≥ tαA(x, y), t, α ∈ (0, 1), x, y ∈ P. (7)

If
(C1) There is a h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;
(C2) There is a constant δ0 > 0 such that A(x, y) ≥ δ0Bx, ∀x, y ∈ P.
Then,
(D1) A : Ph × Ph → Ph,B : Ph → Ph;
(D2) There are u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0, u0 ≤ A(u0, v0)+Bu0 ≤

A(v0, u0) + B(v0) ≤ v0;
(D3) A(x, x) + Bx = x has a unique solution x∗ in Ph;
(D4) For any initial values x0, y0 ∈ Ph, the sequences xn = A(xn−1, yn−1) + Bxn−1, yn =

A(yn−1, xn−1) + Byn−1 converge to x∗ as n→ ∞.

3. Main Results

In the section, we will state our main theorems and give their proof. In the first
theorem, we obtain an existence result on nontrivial solutions for (1) when the nonlinearity
can change sign.

Theorem 1. Suppose that the following assumptions hold:
(H1) g(t, ψ) : [v− 1, b+ v + 1]Nv−1 ×R→ R is a continuous function;
(H2) There are nonnegative continuous functions γ1(t), γ2(t) and M(ψ) with γ2(t) 
≡ 0,

t ∈ [v− 1, b+ v + 1]Nv−1 such that

g(t, ψ) ≥ −γ1(t)− γ2(t)M(ψ), (t, ψ) ∈ [v− 1, b+ v + 1]Nv−1 ×R;

(H3) lim|ψ|→+∞
M(ψ)
|ψ| = 0;

(H4) lim inf|ψ|→+∞
g(t,ψ)
|ψ| > κ−1

1 , uniformly in t ∈ [v− 1, b+ v + 1]Nv−1 ;

(H5) lim inf|ψ|→0+
|g(t,ψ)|
|ψ| < κ−1

2 , uniformly in t ∈ [v− 1, b+ v + 1]Nv−1 .
Then, (1) has one nontrivial solution.
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Proof. From (H3), for any given ε > 0, there exists Y0 > 0 such that M(ψ) ≤ ε|ψ| for
|ψ| > Y0. LetM∗ = max|ψ|∈[0,Y0]

M(ψ). Then, we have

M(ψ) ≤ ε|ψ|+M∗, ψ ∈ R. (8)

By (H4), there exist δ1 > 0 and Y1 ≥ Y0 such that g(t, ψ) ≥ (κ−1
1 + δ1)|ψ| for |ψ| > Y1

and t ∈ [v− 1, b+ v + 1]Nv−1 . Furthermore, let C̃g = max(t,ψ)∈[v−1,b+v+1]Nv−1
×[0,Y1]

|g(t, ψ)|.
Then, we obtain

g(t, ψ) ≥ (κ−1
1 + δ1)|ψ| − C̃g, t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ R.

Note that δ1 can be greater than ε‖γ2‖; then, from (H2) and (H3) and (8), we have

g(t, ψ) ≥ (κ−1
1 + δ1 − ε‖γ2‖)|ψ| − γ1(t)− Cg, t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ R, (9)

where Cg = C̃g + ‖γ2‖M∗. Let

R > max

⎧⎨⎩κ2
(
‖γ1‖+ ‖γ2‖M∗ + Cg

)
1− εκ2‖γ2‖

,
(‖γ1‖+ ‖γ2‖M∗ + Cg)

[
κ2(δ1−ε‖γ2‖)
(b+v+1)v−1 + (κ−1

1 + δ1 − ε‖γ2‖)N1

]
δ1−ε‖γ2‖

(b+v+1)v−1 (1− εκ2‖γ2‖)− ε‖γ2‖N1(κ
−1
1 + δ1 − ε‖γ2‖)

⎫⎬⎭, (10)

where

N1 =
b+2

∑
τ=0

(v + b− β− τ + 1)v−β−1

(v + b− β + 2)v−β−1Γ(v)
.

We prove that
ψ−Bψ 
= μq, ψ ∈ ∂BR, μ ≥ 0, (11)

where q is given in Lemma 4, and

BR = {ψ ∈ E : ‖ψ‖ < R}, ∂BR = {ψ ∈ E : ‖ψ‖ = R}.

Proof by contradiction. Then, there are ψ ∈ ∂BR, μ ≥ 0 such that

ψ−Bψ = μq. (12)

Note that if μ = 0 and ψ ∈ ∂BR is a nontrivial solution to (1), the theorem has been
obtained. So, we only consider the case μ > 0. Moreover, we also find that

q ∈ P0.

In order to prove our theorem, we need to define a function ψ̃ as follows:

ψ̃(t) =
b+2

∑
s=0

G(t, s)
[
γ1(s + v− 1) + γ2(s + v− 1)M(ψ(s + v− 1)) + Cg

]
, t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ ∂BR.

Then, we get the following claims:
Claim i. Note that γ1 + γ2M(ψ) + Cg ∈ P, and Lemma 6 implies that

ψ̃ ∈ P0. (13)

Claim ii. From (12), we find

ψ(t) + ψ̃(t) = (Bψ)(t) + ψ̃(t) + μq(t)

=
b+2

∑
s=0

G(t, s)
[
g(s + v− 1, ψ(s + v− 1)) + γ1(s + v− 1) + γ2(s + v− 1)M(ψ(s + v− 1)) + Cg

]
+ μq(t),
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for all t ∈ [v− 1, b+ v + 1]Nv−1 . Note that g + γ1 + γ2M+ Cg ∈ P and q ∈ P0, and we
have

ψ + ψ̃ ∈ P0. (14)

Claim iii. From (8) and (10), we have

‖ψ̃‖ ≤
b+2

∑
s=0

G(b+ v + 1, s)
[
‖γ1‖+ ‖γ2‖(ε‖ψ‖+M∗) + Cg

]
= κ2

[
‖γ1‖+ ‖γ2‖(ε‖ψ‖+M∗) + Cg

]
< R.

From Claim ii and (9), we have

(Bψ)(t) + ψ̃(t) =
b+2

∑
s=0

G(t, s)
[
g(s + v− 1, ψ(s + v− 1)) + γ1(s + v− 1) + γ2(s + v− 1)M(ψ(s + v− 1)) + Cg

]
≥

b+2

∑
s=0

G(t, s)
[
g(s + v− 1, ψ(s + v− 1)) + γ1(s + v− 1) + Cg

]
≥

b+2

∑
s=0

G(t, s)
[
(κ−1

1 + δ1 − ε‖γ2‖)|ψ(s + v− 1)| − γ1(s + v− 1)− Cg + γ1(s + v− 1) + Cg

]
≥ (κ−1

1 + δ1 − ε‖γ2‖)
b+2

∑
s=0

G(t, s)ψ(s + v− 1)

= (κ−1
1 + δ1 − ε‖γ2‖)

[
b+2

∑
s=0

G(t, s)
[
ψ(s + v− 1) + ψ̃(s + v− 1)

]
−

b+2

∑
s=0

G(t, s)ψ̃(s + v− 1)

]

≥ κ−1
1

b+2

∑
s=0

G(t, s)
[
ψ(s + v− 1) + ψ̃(s + v− 1)

]
.

(15)

The last inequality in (15) holds if

(δ1 − ε‖γ2‖)
b+2

∑
s=0

G(t, s)
[
ψ(s + v− 1) + ψ̃(s + v− 1)

]
− (κ−1

1 + δ1 − ε‖γ2‖)
b+2

∑
s=0

G(t, s)ψ̃(s + v− 1) ≥ 0, (16)

for t ∈ [v− 1, b+ v + 1]Nv−1 . In what follows, we prove (16). Indeed, from Claim ii we have
ψ(t) + ψ̃(t) ≥ q(t)‖ψ + ψ̃‖ ≥ q(t)(‖ψ‖ − ‖ψ̃‖), t ∈ [v− 1, b+ v + 1]Nv−1 . Therefore, from
(4) and (10), we obtain

(δ1 − ε‖γ2‖)
b+2

∑
s=0

G(t, s)
[
ψ(s + v− 1) + ψ̃(s + v− 1)

]
− (κ−1

1 + δ1 − ε‖γ2‖)
b+2

∑
s=0

G(t, s)ψ̃(s + v− 1)

≥ (δ1 − ε‖γ2‖)
b+2

∑
s=0

G(t, s)q(s + v− 1)(‖ψ‖ − ‖ψ̃‖)

− (κ−1
1 + δ1 − ε‖γ2‖)

b+2

∑
s=0

G(t, s)
b+2

∑
τ=0

G(s + v− 1, τ)
[
γ1(τ + v− 1) + γ2(τ + v− 1)M(ψ(τ + v− 1)) + Cg

]
≥ (δ1 − ε‖γ2‖)

b+2

∑
s=0

G(t, s)
(s + v− 1)v−1

(b+ v + 1)v−1 (‖ψ‖ − ‖ψ̃‖)

− (κ−1
1 + δ1 − ε‖γ2‖)

b+2

∑
s=0

G(t, s)
b+2

∑
τ=0

(s + v− 1)v−1(v + b− β− τ + 1)v−β−1

(v + b− β + 2)v−β−1Γ(v)

[
‖γ1‖+ ‖γ2‖(ε‖ψ‖+M∗) + Cg

]
≥

b+2

∑
s=0

G(t, s)(s + v− 1)v−1

[
δ1 − ε‖γ2‖

(b+ v + 1)v−1

(
R− κ2

[
‖γ1‖+ ‖γ2‖(εR+M∗) + Cg

])
− (κ−1

1 + δ1 − ε‖γ2‖)
[
‖γ1‖+ ‖γ2‖(εR+M∗) + Cg

] b+2

∑
τ=0

(v + b− β− τ + 1)v−β−1

(v + b− β + 2)v−β−1Γ(v)

]
≥ 0.

123



Axioms 2023, 12, 650

This implies that (15) holds, as required. Consequently, we have

(Bψ)(t) + ψ̃(t) ≥ κ−1
1 L(ψ + ψ̃)(t), t ∈ [v− 1, b+ v + 1]Nv−1 .

Using (12), we obtain

ψ + ψ̃ = Bψ + ψ̃ + μq ≥ κ−1
1 L(ψ + ψ̃) + μq ≥ μq, ψ ∈ ∂BR, μ > 0.

Define
μ∗ = sup{μ > 0 : ψ + ψ̃ ≥ μq}.

Note that μ∗ ≥ μ and ψ + ψ̃ ≥ μ∗q, and from (6), we have

ψ + ψ̃ ≥ κ−1
1 L(μ∗q) + μq = κ−1

1 μ∗Lq + μq ≥ (μ∗ + μ)q,

which contradicts the definition of μ∗. Hence, (11) holds, and Lemma 7 enables us to find

deg(I −B, BR, 0) = 0. (17)

From (H5), there exist δ2 ∈ (0, κ−1
2 ) and r > 0 such that

|g(t, ψ)| ≤ (κ−1
2 − δ2)|ψ|, |ψ| ∈ [0, r], t ∈ [v− 1, b+ v + 1]Nv−1 . (18)

For this r, we prove that

Bψ 
= μψ, ψ ∈ ∂Br, μ ≥ 1. (19)

Proof by contradiction. Then, there are ψ ∈ ∂Br, μ ≥ 1 such that

Bψ = μψ⇒ |ψ| = 1
μ
|Bψ| ≤ |Bψ|.

This, together with (18), implies that

|ψ(t)| ≤
b+2

∑
s=0

G(t, s)|g(s + v− 1, ψ(s + v− 1))| ≤ (κ−1
2 − δ2)

b+2

∑
s=0

G(t, s)|ψ(s + v− 1)|. (20)

Multiplying by ϕ(t) on the both sides of (20) and summing over [v− 1, b+ v + 1], then
(5) implies that

b+v+1

∑
t=v−1

|ψ(t)|ϕ(t) ≤ (κ−1
2 − δ2)

b+v+1

∑
t=v−1

b+2

∑
s=0

G(t, s)ϕ(t)|ψ(s + v− 1)|

≤ (κ−1
2 − δ2)κ2

b+2

∑
s=0
|ψ(s + v− 1)|ϕ(s + v− 1)

= (κ−1
2 − δ2)κ2

b+v+1

∑
t=v−1

|ψ(t)|ϕ(t).

This implies that
b+v+1

∑
t=v−1

|ψ(t)|ϕ(t) = 0, and thus ψ(t) ≡ 0, t ∈ [v− 1, b+ v + 1]Nv−1 .

Clearly, this is contradictory to ψ ∈ ∂Br. Hence, Lemma 8 shows that

deg(I −B, Br, 0) = 1. (21)

Equations (17) and (21) enable us to obtain

deg
(

I −B, BR\Br, 0
)
= deg(I −B, BR, 0)− deg(I −B, Br, 0) = −1.
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This implies that B has a fixed point in BR\Br, and (1) has a nontrivial solution.

In the following theorem, using the generalized Avery–Henderson fixed point theorem
(Lemma 9), we obtain triple positive solutions for (1) when the nonlinearity satisfies some
bounded conditions.

Theorem 2. Suppose that there exist positive constants ã, b̃, c̃ with ã < b̃ < c̃,

c̃
b̃
>

b+2
∑

s=0
G(b+v+1,s)

b+v+1
∑

t=r
G(b+v+1,t−v+1)

(r is a fixed point in (v− 1, b+ v + 1)Nv−1 ) such that

(H6) g(t, ψ) : [v− 1, b+ v + 1]Nv−1 ×R+ → R+ is a continuous function, and g(t, 0) 
≡ 0,
t ∈ [v− 1, b+ v + 1]Nv−1 ;

(H7) g(t, ψ) < c̃

q0
b+2
∑

s=0
G(b+v+1,s)

, for t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ [0, c̃q−2
0 ];

(H8) g(t, ψ) > b̃

q0
b+v+1

∑
t=r

G(b+v+1,t−v+1)
for t ∈ [r, b+ v + 1]Nv−1 , ψ ∈ [b̃, b̃q−2

0 ];

(H9) g(t, ψ) < ã
b+2
∑

s=0
G(b+v+1,s)

for t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ [0, ã].

Then, (1) has at least three positive solutions y1, y2 and y3 satisfying

0 < α(y1) < ã < α(y2), β(y2) < b̃ < β(y3), γ(y3) < c̃.

Proof. Note that if q0 = mint∈[v−1,b+v+1]Nv−1
q(t) > 0, then from Lemma 6 and (H6) we

have
B(P) ⊂ P0.

Let α(ψ) = maxt∈[v−1,b+v+1]Nv−1
ψ(t), β(ψ) = mint∈[r,b+v+1]Nv−1

ψ(t) and

γ(ψ) = q0 maxt∈[v−1,r]Nv−1
ψ(t). We easily know that α, γ : P → R+ are continuous, in-

creasing functionals with α(0) = 0, ∀t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ P and β(λψ) = λβ(ψ).
Moreover, for ψ ∈ P0, we have

γ(ψ) = q0 max
t∈[v−1,r]Nv−1

ψ(t) ≤ q0‖ψ‖ ≤ min
t∈[v−1,b+v+1]Nv−1

ψ(t) ≤ min
t∈[r,b+v+1]Nv−1

ψ(t) = β(ψ) ≤ α(ψ),

and
γ(ψ) ≥ q0 min

t∈[v−1,r]Nv−1

ψ(t) ≥ q0 min
t∈[v−1,b+v+1]Nv−1

ψ(t) ≥ q2
0‖ψ‖,

i.e.,

‖ψ‖ ≤ 1
q2

0
γ(ψ).

(i) For ψ ∈ ∂P(γ, c̃), we have

c̃ = γ(ψ) ≥ q2
0‖ψ‖,

which implies that
0 ≤ ψ(t) ≤ c̃q−2

0 , t ∈ [v− 1, b+ v + 1]Nv−1 .
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By (H7), we find

γ(Bψ) = q0 max
t∈[v−1,r]Nv−1

b+2

∑
s=0

G(t, s)g(s + v− 1, ψ(s + v− 1))

≤ q0 max
t∈[v−1,b+v+1]Nv−1

b+2

∑
s=0

G(t, s)g(s + v− 1, ψ(s + v− 1))

<
c̃

q0
b+2
∑

s=0
G(b+ v + 1, s)

q0

b+2

∑
s=0

G(b+ v + 1, s)

= c̃.

(ii) For ψ ∈ ∂P(β, b̃), we have

b̃ = β(ψ) = min
t∈[r,b+v+1]Nv−1

ψ(t) ≤ ‖ψ‖ ≤ 1
q2

0
γ(ψ) ≤ 1

q2
0

β(ψ) =
b̃
q2

0
.

This implies that

b̃ ≤ ψ(t) ≤ b̃
q2

0
, ψ ∈ ∂P(β, b̃), t ∈ [r, b+ v + 1]Nv−1 .

This, combined with (H8), enables us to obtain

β(Bψ) = min
t∈[r,b+v+1]Nv−1

b+2

∑
s=0

G(t, s)g(s + v− 1, ψ(s + v− 1))

≥
b+2

∑
s=0

min
t∈[r,b+v+1]Nv−1

q(t)G(b+ v + 1, s)g(s + v− 1, ψ(s + v− 1))

≥
b+2

∑
s=0

min
t∈[v−1,b+v+1]Nv−1

q(t)G(b+ v + 1, s)g(s + v− 1, ψ(s + v− 1))

= q0

b+2

∑
s=0

G(b+ v + 1, s)g(s + v− 1, ψ(s + v− 1))

= q0

b+v+1

∑
t=v−1

G(b+ v + 1, t− v + 1)g(t, ψ(t))

≥ q0

b+v+1

∑
t=r

G(b+ v + 1, t− v + 1)g(t, ψ(t))

>
b̃

q0
b+v+1

∑
t=r

G(b+ v + 1, t− v + 1)
q0

b+v+1

∑
t=r

G(b+ v + 1, t− v + 1)

= b̃.

(iii) For ψ ∈ ∂P(α, ã), we have

0 ≤ α(ψ) = max
t∈[v−1,b+v+1]Nv−1

ψ(t) = ã,

and
0 ≤ ψ(t) ≤ ã, ψ ∈ ∂P(α, ã), t ∈ [v− 1, b+ v + 1]Nv−1 .
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This, together with (H9), implies that

α(Bψ) = max
t∈[v−1,b+v+1]Nv−1

b+2

∑
s=0

G(t, s)g(s + v− 1, ψ(s + v− 1))

<
ã

b+2
∑

s=0
G(b+ v + 1, s)

b+2

∑
s=0

G(b+ v + 1, s)

= ã.

Now, we have established that all the conditions in Lemma 9 hold, and note that
B0 
= 0, so we conclude that (1) has at least three positive solutions yi ∈ P\{0} such that
0 < α(y1) < ã < α(y2), β(y2) < b̃ < β(y3), γ(y3) < c̃.

In what follows, we study the problem⎧⎨⎩
−Δv

v−3ψ(t) = f (t + v− 1, ψ(t + v− 1), ψ(t + v− 1)) + g(t + v− 1, ψ(t + v− 1)), t ∈ [0, b+ 2]N0 ,

ψ(v− 3) =
[
Δα

v−3ψ(t)
]∣∣

t=v−α−2 =
[
Δβ

v−3ψ(t)
]∣∣∣

t=v+b+2−β
= 0,

(22)

where v, α, β, b are founded in (1). By Lemma 3, (22) is equivalent to the following equation

ψ(t) =
b+2

∑
s=0

G(t, s)[ f (s + v− 1, ψ(s + v− 1), ψ(s + v− 1)) + g(s + v− 1, ψ(s + v− 1))], t ∈ [v− 1, b+ v + 1]Nv−1 ,

and let A : P× P→ P and B : P× P→ P be defined by

A(y, x)(t) =
b+2

∑
s=0

G(t, s) f (s + v− 1, y(s + v− 1), x(s + v− 1)), (By)(t) =
b+2

∑
s=0

G(t, s)g(s + v− 1, y(s + v− 1)).

Obviously, y∗ is a solution of (1) when y∗ = A(y∗, y∗) +By∗. In the following theorem,
we study the operatorsA,B to help us to obtain the existence of solutions to (22). Moreover,
the positive solution is unique, and it can be uniformly approximated by two appropriate
iterative sequences.

Now, we list some assumptions for our nonlinearities f , g as follows:
(H10) f (t, u, v) : [v − 1, b + v + 1]Nv−1 × R+ × R+ → R+, g(t, u) : [v − 1, b + v +

1]Nv−1 ×R+ → R+ are continuous functions;
(H11) f (t, u, v) is increasing about u ∈ R+ for fixed t ∈ [v − 1, b+ v + 1]Nv−1 and

v ∈ R+ and decreasing about v ∈ R+ for fixed t ∈ [v− 1, b+ v + 1]Nv−1 and u ∈ R+, and
g(t, u) is increasing about u ∈ R+ for fixed t ∈ [v− 1, b+ v + 1]Nv−1 ;

(H12) For every t ∈ [v − 1, b+ v + 1]Nv−1 , γ ∈ (0, 1), u, v ∈ R+, there is a constant
ξ ∈ (0, 1) such that f

(
t, γu, γ−1v

)
≥ γξ f (t, u, v) and g(t, γu) ≥ γg(t, u);

(H13) For every t ∈ [v− 1, b+ v + 1]Nv−1 and u, v ∈ R+, there is a constant δ0 > 0 such
that f (t, u, v) ≥ δ0g(t, u).

Theorem 3. Suppose that (H10)–(H13) hold. Then, we get
(T1) There are y0, x0 ∈ Ph and r ∈ (0, 1) such that rx0 ≤ y0 < x0,

y0(t) ≤
b+2

∑
s=0

G(t, s)[ f (s + v− 1, y0(s + v− 1), x0(s + v− 1)) + g(s + v− 1, y0(s + v− 1))],

and

x0(t) ≥
b+2

∑
s=0

G(t, s)[ f (s + v− 1, x0(s + v− 1), y0(s + v− 1)) + g(s + v− 1, x0(s + v− 1))],
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where h(t) = tv−1;
(T2) (22) has a unique positive solution y∗ ∈ Ph;
(T3) For each initial value x0, y0 ∈ Ph, the sequences

xn =
b+2

∑
s=0

G(t, s)[ f (s+ v− 1, xn−1(s+ v− 1), yn−1(s+ v− 1))+ g(s+ v− 1, xn−1(s+ v− 1))],

yn =
b+2

∑
s=0

G(t, s)[ f (s+ v− 1, yn−1(s+ v− 1), xn−1(s+ v− 1))+ g(s+ v− 1, yn−1(s+ v− 1))],

converge to y∗ as n→ ∞.

Proof. From (H10) and (H11), we know that A : P× P→ P is a mixed monotone operator
and B : P → P is an increasing operator. Using (H12), for all γ ∈ (0, 1) and x, y ∈ P, we
obtain

A(γy, γ−1x)(t) =
b+2

∑
s=0

G(t, s) f (s + v− 1, γy(s + v− 1), γ−1x(s + v− 1))

≥ γξ
b+2

∑
s=0

G(t, s) f (s + v− 1, y(s + v− 1), x(s + v− 1))

= γξA(y, x)(t),

and hence A satisfies (7) in Lemma 12. In addition, for any y ∈ P and γ ∈ (0, 1) we find

(Bγy)(t) =
b+2

∑
s=0

G(t, s)g(s + v− 1, γy(s + v− 1))

≥ γ
b+2

∑
s=0

G(t, s)g(s + v− 1, y(s + v− 1))

= γ(By)(t).

Thus, B is a sub-homogeneous operator.
Let h0 = h = tv−1, and h0 ∈ Ph. From Lemma 4, we have

A(h0, h0)(t) =
b+2

∑
s=0

G(t, s) f (s + v− 1, (s + v− 1)v−1, (s + v− 1)v−1)

≤
b+2

∑
s=0

tv−1(v + b− β− s + 1)v−β−1

Γ(v)(v + b− β + 2)v−β−1 f (s + v− 1, (s + v− 1)v−1, (s + v− 1)v−1)

≤
b+2

∑
s=0

tv−1(v + b− β− s + 1)v−β−1

Γ(v)(v + b− β + 2)v−β−1 f (s + v− 1, (b+ v + 1)v−1, 0)

=
b+2

∑
s=0

(v + b− β− s + 1)v−β−1

Γ(v)(v + b− β + 2)v−β−1 f (s + v− 1, (b+ v + 1)v−1, 0) · h0,

and

A(h0, h0)(t) =
b+2

∑
s=0

G(t, s) f (s + v− 1, (s + v− 1)v−1, (s + v− 1)v−1)

≥
b+2

∑
s=0

tv−1G(b+ v + 1, s)
(b+ v + 1)v−1 f (s + v− 1, (s + v− 1)v−1, (s + v− 1)v−1)

≥
b+2

∑
s=0

tv−1G(b+ v + 1, s)
(b+ v + 1)v−1 f (s + v− 1, 0, (b+ v + 1)v−1)

=
b+2

∑
s=0

G(b+ v + 1, s)
(b+ v + 1)v−1 f (s + v− 1, 0, (b+ v + 1)v−1) · h0.
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Let l =
b+2
∑

s=0

G(b+v+1,s)
(b+v+1)v−1 f (s + v− 1, 0, (b+ v + 1)v−1), L =

b+2
∑

s=0

(v+b−β−s+1)v−β−1

Γ(v)(v+b−β+2)v−β−1 f (s +

v − 1, (b + v + 1)v−1, 0). Then, we have lh0 ≤ A(h0, h0) ≤ Lh0, i.e., A(h0, h0) ∈ Ph0 .
Similarly, from (H11), we have

tv−1
b+2

∑
s=0

G(b+ v + 1, s)
(b+ v + 1)v−1 g(s + v− 1, 0)

≤ (Bh0)(t) =
b+2

∑
s=0

G(t, s)g(s + v− 1, (s + v− 1)v−1)

≤ tv−1
b+2

∑
s=0

(v + b− β− s + 1)v−β−1

Γ(v)(v + b− β + 2)v−β−1 g(s + v− 1, (b+ v + 1)v−1).

Thus, we obtain Bh0 ∈ Ph0 . Therefore, (C1) in Lemma 12 holds.
Finally, for every x, y ∈ P, from (H13) we have

A(y, x)(t) =
b+2

∑
s=0

G(t, s) f (s + v− 1, y(s + v− 1), x(s + v− 1))

≥ δ0

b+2

∑
s=0

G(t, s)g(s + v− 1, y(s + v− 1))

= δ0(By)(t).

Thus, (C2) in Lemma 12 holds. Then, our conclusions are true from Lemma 12.

4. Examples

In this section, we will provide some examples to verify our main results.

Example 1. Let g(t, ψ) = a|ψ| − bM(ψ),M(ψ) = ln(|ψ| + 1), ψ ∈ R, t ∈ [v − 1, b +

v + 1]Nv−1 , where a ∈
(

κ−1
1 ,+∞

)
and b ∈

(
a, a + κ−1

2

)
. Then, lim|ψ|→+∞

M(ψ)
|ψ| = 0, and

lim|ψ|→+∞
a|ψ|−bM(ψ)

|ψ| = a > κ−1
1 , lim|ψ|→0+

|a|ψ|−bM(ψ)|
|ψ| = |a − b| < κ−1

2 . Therefore,
(H1)–(H5) hold.

Example 2. Let b = 4, v = 2.5, α = 0.5, β = 1.4. Then, [v − 1, b + v + 1]Nv−1 =
{1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5}, [0, b + 2]N0 = {0, 1, 2, 3, 4, 5, 6}, q0

= mint∈[v−1,b+v+1]Nv−1

t1.5

7.51.5 = 0.068, and if r = 6.5 we also obtain

6

∑
s=0

G(7.5, s) =
6

∑
s=0

7.51.5(6.1− s)0.1

7.10.1 − 5.51.5 = 112.26,

b+v+1

∑
t=r

G(b+ v + 1, t− v + 1) =
b+2

∑
t=r+1−v

G(b+ v + 1, t) =
6

∑
t=5

G(7.5, t) = 19.86.

Let ã = 1, b̃ = 4, c̃ = 24, and

g(t, ψ) =

⎧⎪⎨⎪⎩
0.008, ψ ∈ [0, 1],
ψ− 0.992, ψ ∈ [1, 4],
3.008, ψ ∈ [4,+∞).

Then, g satisfies
(I) g(t, ψ) < c̃

q0
b+2
∑

s=0
G(b+v+1,s)

= 3.144, for t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ [0, 5190.3];
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(II) g(t, ψ) > b̃

q0
b+v+1

∑
t=r

G(b+v+1,t−v+1)
= 2.96 for t ∈ [r, b+ v + 1]Nv−1 , ψ ∈ [4, 865.1];

(III) g(t, ψ) < ã
b+2
∑

s=0
G(b+v+1,s)

= 0.009 for t ∈ [v− 1, b+ v + 1]Nv−1 , ψ ∈ [0, 1].

Therefore, (H6)–(H9) hold.

Example 3. Let f (t, u, v) = (b+ v+ 1− t)−
1
3 t−

2
3 u

1
3 + v−

1
5 , g(t, u) = (b+ v+ 1− t)−

1
3 t−

2
3 u

1
3 ,

(t, u, v) ∈ [v− 1, b+ v + 1]Nv−1 ×R+ ×R+. Then, f is increasing about u and decreasing about
v, and g is increasing about u. For any γ ∈ (0, 1), u, v ∈ R+, taking ξ = 1

2 , then γξ ∈ (γ, 1) and
we obtain

f
(

t, γu, γ−1v
)
= (b+ v + 1− t)−

1
3 t−

2
3 (γu)

1
3 +
(

γ−1v
)− 1

5

= γ
1
3 (b+ v + 1− t)−

1
3 t−

2
3 u

1
3 + γ

1
5 v−

1
5

≥ γ
1
2

[
(b+ v + 1− t)−

1
3 t−

2
3 u

1
3 + v−

1
5

]
= γξ f (t, u, v),

and
g(t, γu) = (b+ v + 1− t)−

1
3 t−

2
3 (γu)

1
3

= γ
1
3 (b+ v + 1− t)−

1
3 t−

2
3 u

1
3

≥ γ
[
(b+ v + 1− t)−

1
3 t−

2
3 u

1
3

]
= γg(t, u).

Moreover, it is easy to see that f (t, u, v) ≥ g(t, u) for (t, u, v) ∈ [v− 1, b+ v + 1]Nv−1 ×
R+ ×R+. Therefore, (H10)–(H13) hold.

Example 4. In [31], the authors consider nonlinearities like:

f (t, u, v) = u
1
4 + [v+ 2]−

1
3 + b(t) + d, g(t, u) =

u

1 + u
a(t) + c− d, (t, u, v) ∈ [v− 1, b+ v + 1]Nv−1 ×R

+ ×R
+,

where a, b : [v − 1, b + v + 1]Nv−1 → R+ with a 
≡ 0, and c, d are positive constants with
c > d > 0. Note that f is increasing about u and decreasing about v, and g is increasing about u.
Moreover, for γ ∈ (0, 1), t ∈ [v− 1, b+ v + 1]Nv−1 , u, vs. ∈ R+, we have

g(t, γu) =
γu

1 + γu
a(t) + c− d ≥ γu

1 + u
a(t) + γ(c− d) = γg(t, u),

and

f
(

t, γu, γ−1v
)
= γ

1
4 u

1
4 + γ

1
3 [v+ 2γ]−

1
3 + b(t) + d ≥ γ

1
3

{
u

1
4 + [v+ 2]−

1
3 + b(t) + d

}
= γξ f (t, u, v).

Furthermore, we note that

f (t, u, v) ≥ d =
d

maxt∈[v−1,b+v+1]Nv−1
a(t) + c− d

×
(

max
t∈[v−1,b+v+1]Nv−1

a(t) + c− d

)

≥ d
maxt∈[v−1,b+v+1]Nv−1

a(t) + c− d
×
(

u

1 + u
a(t) + c− d

)
:= δ0g(t, u), (t, u, v) ∈ [v− 1, b+ v + 1]Nv−1 ×R

+ ×R
+.

Therefore, (H10)–(H13) hold.
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5. Conclusions

Fractional-order difference equations are a new form of differential equation that have
wider applications compared to traditional integer-order differential equations. They are
generalized differential equations whose derivative index can be a decimal or a fraction,
rather than an integer. This form of differential equation has wide applications in fields
such as physics, engineering, and finance. Therefore, the importance of studying fractional
difference equations is now becoming apparent. In this paper, we consider a boundary
value problem with a fractional-order difference equation and use Green’s function to
express its solution. Moreover, we obtain some existence theorems for the considered
problem, i.e., when the nonlinearities satisfy some appropriate conditions, we study the
existence, uniqueness, and multiplicity of solutions via the topological degree and fixed
point theorems. Finally, we provide some examples to verify our main results.
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Abstract: This article investigates the qualitative properties of solutions to a general difference
equation. Studying the properties of solutions to general difference equations greatly contributes to
the development of theoretical methods and provides many pieces of information that may help to
understand the behavior of solutions of some special models. We present the sufficient and necessary
conditions for the existence of prime period-two and -three solutions. We also obtain a complete
perception of the local stability of the studied equation. Then, we investigate the boundedness and
global stability of the solutions. Finally, we support the validity of the results by applying them to
some special cases, as well as numerically simulating the solutions.

Keywords: difference equations; qualitative properties; stability; periodicity; boundedness;
numerical simulations

MSC: 34C10; 34K11

1. Introduction

In both pure and applied mathematics, meteorology, physics, population dynamics,
and engineering, there are many applications for the study of functional differential equa-
tions (FDEs) and difference equations (DIEs). The properties of these equations of different
sorts are a topic that is addressed by all of these fields. For global existence and uniqueness
theorems for differential equations, see books [1], and for the fundamentals of DIEs, see
books [2–5]. Pure mathematics is concerned with the existence and uniqueness of solutions.
The rigorous justification of the qualitative properties of solutions, such as oscillation,
periodicity, stability (local and global), Hopf bifurcation, control, etc., is emphasized in
applied mathematics [4,6–8].

DIEs are used to describe how a phenomena evolves in the real world when most
observations of a temporally changing variable are discrete. These equations consequently
become essential in mathematical models. Applications heavily rely on nonlinear DIEs of
an order larger than one. Additionally, these equations naturally occur as discrete analogs
and numerical answers to differential and delay differential equations that model a variety
of diverse phenomena in different sciences; see [5,9–15].

Investigation of the qualitative properties of the DIE

un+1 =
un−1

P(un, un−1)
(1)

is the focus of this paper, where P(t, s) : [0, ∞)2 → (0, ∞) is continuous and homogenous
with degree α, where α is a non-negative real number. Furthermore, the initial conditions
u−1, u0 are nonnegative real numbers.
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The study of the qualitative properties of solutions of DIEs was and still is a vital and
active research field. As a result of the rapid development of science and technology, many
biological, technological, geological and other issues have arisen. Many mathematical
models have emerged with these issues. Studying the qualitative behavior of the general
DIEs may significantly contribute to eliciting the characteristics of the solutions of these
new models.

In this work, we are interested in investigating some qualitative properties of solutions
to the general DIE (1). We begin by deducing the sufficient and necessary conditions for
the existence of prime period-two solutions of DIE (1). Then, we investigate the local
asymptotic stability of a two-cycle solution of DIE (1). Moreover, we obtain criteria that
guarantee the existence of prime period-three solutions, and apply the results in this
section to some special cases to support the theoretical results. We also study the local
and global stability of solutions to DIE (1). We present several lemmas and theorems that
set sufficient criteria for the convergence of solutions to the equilibrium point. Finally,
through examples and numerical simulations, we present some theoretical results for some
special cases of the studied equation and simulate the results numerically through the
MATHEMATICA program.

In order to verify the periodicity of solutions, the methodology of this study is based
on the use of an improved technique discussed in [16,17]. Using some theorems in [18], we
investigate the local and global stability of the equilibrium points of the studied equation.

In the following, we review some of the previous results in the literature, which
contributed significantly to the development of the study of the qualitative properties of
solutions of DIEs.

The Riccati DIEs model
un+1 =

a1 + a2un

a3 + a4un
, (2)

is one of the most intriguing ones, where ai ∈ R, for i = 1, 2, 3, 4, see [12]. A special
application of DIE (2) offers the traditional Beverton–Holt model on the dynamics of
exploited fish populations [10]. In [19], Kuruklis et al. examined some properties of
solutions of the Pielou’s discrete logistic model [20]

un+1 =
aun

1 + un−1
, (3)

where a ≤ 1. May [21] offered the DIE

un+1 =
unexp(c(1− 2un))

1− un + unexp(c(1− 2un))
, (4)

where c > 0, as an illustration of a map produced by a straightforward model for frequency-
dependent natural selection. The model of the expansion of the flour beetle population

un+1 = a1un + a2un−2 exp(−a3un − a4un−2),

was proven to be globally stable by Kuang et al. [22], where a1 ∈ (0, 1), a2, a3, a4 ∈
[0, ∞), a2 
= 0 and a3 + a4 > 0.

Many researchers have been interested in studying general models of DIEs. In [23],
Stevic studied the periodic nature of the general DIE

un+1 =
F(un, un−1)

a + un
,

where a, u−1, u0 ∈ R+ and F ∈ C(R+ ×R+,R+) and

F(k, l)− F(l, m) = (k−m)G(k, l, m)− a(k− l),
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for some G ∈∈ C(R+ ×R+,R+), such that

1
k

G(k, l, m)→ 0 as k, l, m→ ∞ and sup
1

a + k
G(k, l, m) < ∞.

Karakostas and Stevic [24] studied the qualitative properties of solutions to the gen-
eral DIE

un+1 = a +
un−r

F(un, un−1, . . . , un−r+1)

where a ≥ 0. In [25], the global stability of solutions to the general DIE

un+ = F(un−k, un−l),

has been studied, where k, l ∈ N, k < l. Moaaz et al. [26] discussed the qualitative properties
of solutions to the DIE

un+1 = f (un−l , un−k) (5)

where k, l ∈ N, and f is a homogenous function with degree zero.
Recently, Elsayed et al. [27–29], Al-Basyouni and Elsayed [30], and Kara and Yazlik [31]

established solutions to for certain categories of DIEs. In [27], Elsayed and Alofi studied the
properties of solutions to a system of DIEs and provided solutions to this system. Elsayed
et al. [28] considered the DIE

un+1 = aun−1 +
bun−1un−4

cun−4 + kun−2
,

and provided solutions to this DIE. The periodic properties and construction of the solution
for some rational system of DIEs were presented in [29,30]. Moreover, for fractional
difference equations and systems, there are many interesting results in [32,33].

2. Definitions and Preliminary Results

The fundamental definitions, including equilibrium points, local and global stabil-
ity, boundedness, and periodicity, are presented in this section. We also review some
basic theorems.

Consider a DIE in the form

un+1 = ψ(un−l , un−k), n = 0, 1, . . . , (6)

where ψ ∈ C(I × I, I), l, k ∈ Z+ ∪ {0}, I is some interval of R, and m = max{l, k}.

Definition 1. If a point ue is a fixed point of ψ, then it is said to be an equilibrium point (EQP) of
DIE (6).

Definition 2. Assume that ue is an EQP of (6).

S1. If for all ε > 0 there is a δ > 0 such that |un − ue| < ε for all n ≥ −m, for u−j ∈ I,
j = 0, 1, . . . , m with ∑m

j=0
∣∣u−j − ue

∣∣ < δ, then ue is said to be locally stable.
S2. If ue is locally stable and there is γ > 0 such that limn→∞ un = ue for u−j ∈ I, j = 0, 1, . . . , m

with ∑m
j=0
∣∣u−j − ue

∣∣ < δ, then ue is said to be locally asymptotically stable.
S3. If limn→∞ un = ue for all u−j ∈ I, j = 0, 1, . . . , m, then ue is said to be a global attractor.
S4. If ue is locally stable and a global attractor, then it is said to be globally asymptotically stable.
S5. If ue is not locally stable, then it is said to be unstable.

Definition 3. A sequence {un}∞
n=−m is called a periodic solution with period � if un+� = un for

all n � −m.
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Definition 4. A sequence {un}∞
n=−m is called a periodic solution with prime period � if

� = min{s ∈ Z+ : un+s = un for all n � −m}.

Definition 5. The linearized equation of (6) about the EQP ue is defined by Zn+1 = ∑m
i=0 λiZn−i

where

λi =
∂ψ(ue, ue)

∂un−i
.

Theorem 1 ([18], Theorem 1.4.6). Suppose that ψ ∈ C
(
I2, I

)
, where I ⊂ R, and ψ(t, s)

satisfies the following properties:
(a) ψt ≤ 0 and ψs ≥ 0, for all (t, s) ∈ I2,
(b) The DIE

un+1 = ψ(un, un−1) (7)

has no solutions of prime period two in I .
Then, DIE (7) has a unique EQP ue and all solutions of (7) converge to ue.

Theorem 2 ([18], Theorem 1.4.5). Suppose that ψ ∈ C
(
I2, I

)
, where I ⊂ R, and ψ(t, s)

satisfies the following properties:
(a) ψt ≥ 0 and ψs ≤ 0, for all (t, s) ∈ I2,
(b) If (s, B) ∈ I2 is a solution of the system{

ψ(s, B) = s,
ψ(B, s) = B,

then s = B.
Then, DIE (7) has a unique EQP ue and all solutions of (7) converge to ue.

3. Dynamics of Equation (1)

In the following, we study the behavior of solutions to DIE (1). Through the next
results, we need to define the following functions:

P1(t, s) =
∂

∂t
P(t, s)

and
P2(t, s) =

∂

∂s
P(t, s).

3.1. Periodic Behavior of Solutions

In the following, we provide the necessary and sufficient conditions for the existence
of prime period-two and -three solutions to DIE (1).

3.1.1. Existence of Prime Period-Two Solutions

Theorem 3. Suppose that α > 0. The necessary and sufficient condition for the existence of
periodic solutions with period-two of DIE (1) is the existence of a constant � ∈ R+/{1} that
satisfies P(�, 1) = P(1, �).

Proof. Suppose that DIE (1) has the solution of the form . . . , σ, �, σ, �, . . . . Then, we
can obtain

σ =
σ

P(�, σ)
;

� =
�

P(σ, �)
.
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Therefore,

�αP
(

1,
σ

�

)
= 1,

and

�αP
(

σ

�
, 1
)
= 1.

Hence, there is a � = σ/� such that P(�, 1) = P(1, �).
On the other hand, we suppose that P(�, 1) = P(1, �). Now, we choose u−1 =

�P−1/α(1, �) and u0 = P−1/α(1, �), where � ∈ R+/{1}. Thus,

u1 =
u−1

P(u0, u−1)

=
�P−1/α(1, �)

P
(
P−1/α(1, �), �P−1/α(1, �)

)
=

�P−1/α(1, �)
P−1(1, �)P(1, �)

= �P−1/α(1, �)

= u−1.

Also,

u2 =
u0

P(u1, u0)

=
P−1/α(1, �)

P−1(1, �)P(�, 1)

= P−1/α(1, �)

= u0.

Similarly, we have u2r = u0 and u2r+1 = u−1 for all r = 1, 2, . . . .
Then, the proof is complete.

Theorem 4. Suppose that α = 0. The necessary and sufficient condition for the existence of
periodic solutions with period-two of DIE (1) is the existence of a constant � ∈ R+/{1} that
satisfies P(�, 1) = 1 = P(1, �).

Proof. Proceeding as in the proof of Theorem 1, we can prove that the condition is necessary.
On the other hand, we suppose that P(�, 1) = P(1, �). Now, we choose u−1 = c and

u0 = ck, where � ∈ R+/{1}. Thus,

u1 =
c

P(c�, c)
=

c
P(�, 1)

= c

Also,

u2 =
c�

P(c, c�)
=

c�
P(1, �)

= c�.

Similarly, we have u2r = c and u2r+1 = c� for all r = 1, 2, . . . .
Then, the proof is complete.

Example 1. Let the DIE
un+1 =

un−1

aun + bun−1
, (8)

where a, b ∈ R+. We note that P(t, s) = at + bs is homogenous with degree one. Using
Theorem 3, the necessary and sufficient condition for the existence of periodic solutions with period-
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two of DIE (1) is the existence of a constant � ∈ R+/{1} that satisfies a�+ b = a + b�, and so
(a− b)(�− 1) = 0, i.e., a = b, see Figure 1.

Figure 1. Periodic solutions of DIE (8) at a = b = 1, 2, or 3.

3.1.2. Local Asymptotic Stability of a Two Cycle

Suppose that DIE (1) has a solution with two cycle . . . , σ, �, σ, �, . . . . Now, we set

tn = un−1 and sn = un.

Then, DIE (1) is equivalent to the system⎧⎨⎩ tn+1 = sn,

sn+1 =
tn

P(sn, tn)
.

Next, we define F : [0, ∞)2 → [0, ∞)2 by

F
(

t
s

)
=

⎛⎝ s
t

P(s, t)

⎞⎠.

Therefore, we have that (
σ
�

)
is a fixed point of F[2] := F ◦ F, where

F[2]
(

t
s

)
=

⎛⎜⎜⎝
t

P(s, t)
s

P
(

t
P(s,t) , s

)
⎞⎟⎟⎠

The Jacobian matrix JF[2] at (σ, �) takes the form

JF[2]

(
σ
�

)
=

(
A B
C D

)
,
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where

A : =
P(�, σ)− σP2(�, σ)

P2(�, σ)
,

B : =
−σP1(�, σ)

P2(�, σ)
,

C : =
−A�

P2
(

σ
P(�,σ) , �

)P1

(
σ

P(�,σ) , �
)

,

and

D :=
1

P2
(

σ
P(�,σ) , �

)[P( σ
P(�,σ) , �

)
− �
[

BP1

(
σ

P(�,σ) , �
)
+ P2

(
σ

P(�,σ) , �
)]]

.

In the event that the eigenvalues of JF[2] at (σ, �) are inside the unit disk, the two-cycle
solution is locally asymptotically stable. Using Theorem 1.1.1 (c) in [18], the eigenvalues of
JF[2] at (σ, �) are inside the unit disk if

K < 1 + L and L < 1,

where
K = A + D

and
L = AD− BC.

Example 2. Consider the DIE (8) where a, b ∈ R+. From Theorem 3, for � ∈ R+/{1}, there is a
prime period two solution

. . . ,
�

a(1 + �)
,

1
a(1 + �)

,
�

a(1 + �)
,

1
a(1 + �)

, . . . . (9)

It is easy to verify that

A =
1

1 + �
, B = − �

1 + �
, C = − �

1 + �
,

and

D =
�(2 + �)

(1 + �)2 .

The two cycle solution (9) of DIE (8) is locally asymptotically stable if �(1 + �) < 1.

3.1.3. Existence of Prime Period-Three Solutions

Theorem 5. Assume that α > 0. Then, DIE (1) has a prime period-three solution if and only if
the system ⎧⎪⎨⎪⎩

P(l, 1) = k2−αlP(k, 1),
P(1/kl, 1) = l1−α

k P(l, 1),
P(k, 1) = k2−1l2−2P(1/kl, 1),

(10)

has a solution (k, l), where k, l ∈ R+, and at least one of {k, l} is not equal to one.
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Proof. Suppose that DIE (1) has the solution . . . , δ, β, γ, δ, β, γ, . . . . Then, we can obtain

γ =
δ

P(β, δ)
,

δ =
β

P(γ, β)
,

β =
γ

P(δ, γ)
.

Set β/δ = k and γ/β = l, we arrive at

γ =
δ1−α

P(k, 1)
,

δ =
β1−α

P(l, 1)
,

β =
γ1−α

P(1/kl, 1)
.

Thus, we obtain
P(l, 1) = k2−αlP(k, 1),

and

P(1/kl, 1) =
l1−α

k
P(l, 1).

Then, system (10) has the solution (β/δ, γ/β).
On the other hand, we suppose that system (10) has a solution (k, l), where k, l ∈ R+,

and at least one of {k, l} is not equal to one. Now, we choose

u−1 =

(
1

klP(k, 1)

)1/α

,

u0 =

(
k

P(l, 1)

)1/α

.

Thus, by using (10), we have

u1 =
u−1

P(u0, u−1)

=
1

k1/αl1/αP1/α(k, 1)
1

P
(

k1/α

P1/α(l,1)
, 1

k1/α l1/αP1/α(k,1)

)
=

kl
k1/αl1/αP1/α(k, 1)

=
kl

k1/αl1/α 1
k

1−α
α l

2−α
α
P1/α(1/kl, 1)

=

(
l

P(1/kl, 1)

)1/α

.
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Additionally,

u2 =
u0

P(u1, u0)

=
k1/α

P1/α(l, 1)
1

P
(

l1/α

P1/α(1/kl,1)
, k1/α

P1/α(l,1)

)
=

k1/α

P1/α(l, 1)
1
k

=
k1/α

k
2−α

α l1/α

1
k

1
P1/α(k, 1)

=

(
1

klP(k, 1)

)1/α

= u−1

Similarly, we can prove that u3 = u0. Proceeding with the same approach, we
conclude that

u3r−1 = u−1, u3r = u0, and u3r+1 = u1, for all r = 1, 2, . . . .

Therefore, the proof is complete.

Theorem 6. Suppose that α = 0. DIE (1) has a prime period-three solution if and only if the system⎧⎨⎩
0 = 1− klP(k, 1),
0 = k−P(l, 1),
0 = l −P(1/kl, 1)

(11)

has a solution (k, l, m), where k, l, m ∈ R+, and at least one of {k, l, m} is not equal to one.

Proof. Suppose that DIE (1) has the solution . . . , δ, β, γ, δ, β, γ, . . . . As in the proof of
Theorem 5, we arrive at

γ =
δ

P(k, 1)
,

δ =
β

P(l, 1)
,

β =
γ

P(1/kl, 1)
.

Thus, we obtain
klP(k, 1) = 1

k = P(l, 1)

and
l = P(1/kl, 1).

Then, system (10) has the solution (β/δ, γ/β).
On the other hand, we assume that (10) has a solution (k, l), where k, l ∈ R+, and at

least one of {k, l} is not equal to one. Now, we choose u−1 = c and u0 = ck, where k ∈ R+

and c is an arbitrary positive real number. Therefore,

u1 =
c

P(ck, c)
=

c
P(k, 1)

= ckl,

u2 =
ck

P(ckl, ck)
=

ck
P(l, 1)

= c = u−1,
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and
u3 =

u1

P(u2, u1)
=

ckl
P(c, ckl)

=
ckl

P(1/kl, 1)
= ck = u0.

Proceeding with the same approach, we conclude that

u3r−1 = u−1, u3r = u0, and u3r+1 = ckl, for all r = 1, 2, . . . .

Therefore, the proof is complete.

Example 3. Consider the DIE

un+1 =
unu2

n−1

aunun−1 + bu2
n + cu2

n−1
, (12)

where a, b and c ∈ R/{0}. We note that

P(t, s) = a + b
t
s
+ c

s
t

is homogenous with degree zero. Using Theorem 5, DIE (12) has a prime period-three solution if
the system

0 = 1− kl
(

a + bk + c 1
k

)
,

0 = k−
(

a + bl + c 1
l

)
,

0 = l −
(

a + b 1
kl + ckl

)
has the solution.
Consider the special case when a = − 2521

561 , b = 380
187 , and c = 223

187 . DIE (12) has a prime period-three
solution . . . , 1, 2, 6, 1, 2, 6, . . . , see Figure 2.

Figure 2. Prime period-three solution of DIE (12).

3.2. Stability Behavior of Solutions

Now, we define φ : (0, ∞)2 → (0, ∞) by

φ(t, s) =
s

P(t, s)
.
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The EQP of DIE (1) is given by ue = φ(ue, ue). Therefore,[
1

P(ue, ue)
− 1
]

ue = 0,

this implies that the positive EQP

ue =
1

P1/α(1, 1)
, α > 0. (13)

The linearized equation of DIE (1) is

Ln+1 − λLn − μLn−1 = 0, (14)

where

λ =
∂φ(ue, ue)

∂t
=
−ueP1(ue, ue)

P2(ue, ue)
= − P1(1, 1)

uα
eP2(1, 1)

and

μ =
∂φ(ue, ue)

∂s
=
P(ue, ue)− ueP2(ue, ue)

P2(ue, ue)
=
P(1, 1)−P2(1, 1)

uα
eP2(1, 1)

.

From (13), we obtain uα
e = 1/P(1, 1), and so

λ = −P1(1, 1)
P(1, 1)

and μ = 1− P2(1, 1)
P(1, 1)

.

Remark 1. Since P(t, s) is homogenous with degree α, we have P1(t, s) and P2(t, s) are homoge-
nous with degree α − 1. Moreover, from Euler Theorem for homogeneous functions tP1(t, s) +
sP2(t, s) = αP(t, s). Thus, P1(1, 1) + P2(1, 1) = αP(1, 1).

Lemma 1. The EQP ue of DIE (1) is locally asymptotically stable (sink) if

|η| < ρ < 2κ, (15)

otherwise it is unstable. Furthermore, it has the following unstable cases:
(a) ue is repeller if

|κ − ρ| > κ and |η| < |ρ|,
(b) ue is a saddle point if

η2 + 4κ2 > 4κρ and |η| > |ρ|,
(c) ue is a nonhyperbolic point if

η = |ρ|,
or

2κ = ρ and |η| ≤ 2κ,

where κ = P(1, 1), η = P1(1, 1), and ρ = P2(1, 1).

Proof. The proof results directly from Theorem 1.1.1 in [18], so it was deleted.

Lemma 2. Assume that P1(t, s) ≥ 0, P2(t, s) ≤ 0, and

P(�, 1) = P(1, �)→ � = 1. (16)

Then, all solutions of DIE (1) converge to ue.
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Proof. From the definition of the function φ, it is easy to conclude that

∂φ(t, s)
∂t

=
−sP1(t, s)
P2(t, s)

≤ 0,

∂φ(t, s)
∂s

=
P(t, s)− sP2(t, s)

P2(t, s)
≥ 0.

Since P(�, 1) 
= P(1, �) for all � ∈ R+/{1}, we obtain from Theorem 3 that DIE (1)
has no solutions of prime period two. Therefore, from Theorem 1, all solutions of DIE (1)
converge to ue. Hence, the proof is complete.

Lemma 3. Assume that α ≤ 1, P1(t, s) ≥ 0, and (16) holds. Then, all solutions of DIE (1)
converge to ue.

Proof. From Remark 1, we have αP(t, s)− sP2(t, s) ≥ 0, which with the fact that α ≤ 1
gives P(t, s) ≥ sP2(t, s). The rest of the proof is exactly as the proof of Theorem 2.

Lemma 4. Assume that α ≥ 1, P1(t, s) ≤ 0, and

P(1, �) = �2P(�, 1)→ � = 1. (17)

Then, all solutions of DIE (1) converge to ue.

Proof. From Remark 1 and the fact that α ≥ 1, we get P(t, s) ≤ αP(t, s) ≤ sP2(t, s).
From the definition of the function φ, it is easy to conclude that ∂φ/∂t ≥ 0 and ∂φ/∂s ≤ 0.

Now, we suppose that (s, B) is a solution of the system{
φ(s, B) = s,
φ(B, s) = B.

Thus, we obtain
B = sP(s, B) and s = BP(B, s).

Hence, we conclude that

B = s sαP
(

1,
B
s

)
and s = B sαP

(
B
s

, 1
)

.

Set B/s = �, we arrive at
P(1, �) = �2P(�, 1).

Using (17), we obtain that � = 1, and so B = s. Therefore, it follows from Theorem 2
that all solutions of DIE (1) converge to ue. This completes the proof.

Lemma 5. Assume that P1(t, s) ≥ 0, P(�, 1) ≥ P2(�, 1) for all � ∈ R, and (16) holds. Then, all
solutions of DIE (1) converge to ue.

Proof. From the definition of the function φ, it is easy to note that ∂φ/∂t ≤ 0, and

∂φ(t, s)
∂s

=
P(t, s)− sP2(t, s)

P2(t, s)
=

sα
[
P
( t

s , 1
)
−P2

( t
s , 1
)]

P2(t, s)
≥ 0.

The rest of the proof is exactly as the proof of Theorem 2.

Lemma 6. Assume that α = 0, and there is a h0 ∈ R+ such that P(�, 1) ≥ h0 > 1 for all � ∈ R+.
If {un}∞

n=−1 is a solution of DIE (1), then limn→∞ un = 0.
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Proof. From DIE (1), we have

0 <un+1 =
un+1

P(un, un−1)
=

1

uα−1
n−1P

(
un

un−1
, 1
) ≤ 1

h0
u1−α

n−1 (18)

≤ 1
h0

un−1. (19)

Now, let yn+1 = 1
h0

yn−1. Then,

yn =

⎧⎨⎩
1

hn/2
0

y0, if n is even,
1

h(n+1)/2
0

y−1, if n is odd.

Therefore,
lim

n→∞
yn = 0, if h0 > 1.

which with (19) gives limn→∞ un = 0. This completes the proof.

Lemma 7. Assume that α = 1, and there is a h0 ∈ R+ such that P(�, 1) ≥ h0 for all � ∈ R+.
Then, all solutions of DIE (1) are bounded.

Proof. From DIE (1), we have that (18) holds. Thus, un+1 ≤ 1/h0 for all n ≥ 0. Hence,

un ≤ max
{

1
h0

, u0, u−1

}
for all n ≥ −1.

This completes the proof.

Theorem 7. Assume that α ≤ 1, P1(t, s) ≥ 0 and (16) holds. Then, the EQP of (1) is globally
asymptotically stable if (15) holds.

Theorem 8. Assume that P1(t, s) ≥ 0, P(�, 1) ≥ P2(�, 1) for all � ∈ R, and (16) holds. Then,
the EQP of (1) is globally asymptotically stable if (15) holds.

3.3. Examples and Numerical Simulations

In this part, we provide some examples that support the previous theoretical results.
Examples are presented later, including what has been studied and what has not been
studied before.

3.3.1. Special Case 1

Consider the DIE
un+1 =

aun−1

bun + cun−1
, (20)

where a, b, and c are positive real numbers. Using the substitution un = a
bzn

, DIE (20)
reduces to zn+1 = c

b +
zn−1

zn
, and this equation has been studied in [34].

It is easy to notice that P(t, s) = b
a t + c

a s is homogenous with degree one. Using our
previous results, the following information can be obtained

1. DIE (20) has a prime period-two solution⇐⇒ b = c.
2. The positive EQP of DIE (20) is ue = a/(b + c).
3. The EQP ue of DIE (20) is locally asymptotically stable (sink) if b < c.
4. If b < c, then EQP of DIE (20) is globally asymptotically stable.
5. We note that P(�, 1) = 1

a c + 1
a b� ≥ c/a. Then, all solutions of DIE (20) are bounded if

c > a.
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3.3.2. Special Case 2

Consider the DIE

un+1 = un−1exp
(
−a− b

un

un−1
− c

un−1

un

)
, (21)

where a, b and c are real numbers. It is easy to notice that

P(t, s) = exp
(

a + b
t
s
+ c

s
t

)
is homogenous with degree zero.

1. DIE (21) has a prime period-two solution⇐⇒ there is a � ∈ R+/{1} such that

b�+ c
1
�
=

(
b

1
�
+ c�

)
,

i.e., b = c < 0, see Figure 3.

Figure 3. Periodic solutions of DIE (21) at a = 1, and b = c = −2/5.

2. DIE (21) has a prime period-three solution⇐⇒ there is a �, l ∈ R+/{1} such that

bk2 + ak + c = −k ln(kl),

bl2 + al + c = l ln k,

ck2 + akl + bl2 = kl ln l,

see Figure 4.
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Figure 4. Periodic solutions of DIE (21) at a = −8.7829, b = 1.9489, and c = 0.684 16.

3. Assume that b, c ∈ R+. We note that P(�, 1) = ea+b�+ c
� ≥ ea. Then, every solution of

DIE (22) converges to zero if a > 0.

3.3.3. Special Case 3

Consider the DIE
un+1 =

un−1

au2
n + bunun−1 + cu2

n−1
, (22)

where a, b and c are real numbers, and one of them is not equal to zero at least. It is easy to
notice that

P(t, s) = at2 + bts + cs2

is homogenous with degree two.

1. DIE (22) has a prime period-two solution⇐⇒ there is a � ∈ R+/{1} such that

(a− c)
(
�2 − 1

)
= 0

i.e., a = c, see Figure 5.

Figure 5. Periodic solutions of DIE (22) at b = 2, and a = c = 1.
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2. DIE (22) has a prime period-three solution⇐⇒ there is a �, l ∈ R+/{1} such that

c + al2 + bl − cl − ak2l − bkl = 0,

a− akl3 − bkl2 + ck2l2 + bkl − ckl = 0,

a− ckl2 − ak3l2 − bk2l2 + ck2l2 + bkl = 0,

see Figure 6.

Figure 6. Periodic solutions of DIE (22) at a = 38
41 , b = − 196

123 , and c = 1.

3. The positive EQP of DIE (22) is

ue =
1√

a + b + c
, a + b + c > 0.

4. The EQP ue of DIE (22) is locally asymptotically stable (sink) if

|2a + b| < b + 2c < 2(a + b + c).

If a, b, and c are positive, then ue is locally asymptotically stable (sink) if a < c, is a
saddle point if c < a, and is a nonhyperbolic point if a = c, see Figure 7.

Figure 7. Stability behavior of solutions (22).
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4. Conclusions

Our interest in this work was centered on the examination of some features of solutions
to the general DIE (1). We considered the periodic behavior, stability, and boundedness of
solutions to DIE (1). In detail, we fulfilled the sufficient and necessary conditions for the
existence of periodic solutions with periods two and three. We then obtained a complete
perception of the local stability of the EQPs for DIE (1). Moreover, we presented a number
of lemma and theorems that discuss the global stability and boundedness of the studied
equation. Finally, we obtained many properties of the solutions for some special cases of
the studied equation, and we showed numerical simulations of their solutions.

Studying the qualitative behavior of the general DIEs may significantly contribute to
eliciting the characteristics of the solutions of some new models that appear as a result of
scientific and technological development in various fields. It is interesting, as an extension
of our results in this work, to study the qualitative properties of solutions to the general
DIE un+1 = K(un, un−1), where K = G(P(t, s)) is a homothetic function.
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Abstract: The study of non-linear partial differential equations is a complex task requiring sophis-
ticated methods and techniques. In this context, we propose a neural network approach based on
Lie series in Lie groups of differential equations (symmetry) for solving Burgers–Huxley nonlinear
partial differential equations, considering initial or boundary value terms in the loss functions. The
proposed technique yields closed analytic solutions that possess excellent generalization properties.
Our approach differs from existing deep neural networks in that it employs only shallow neural
networks. This choice significantly reduces the parameter cost while retaining the dynamic behavior
and accuracy of the solution. A thorough comparison with its exact solution was carried out to
validate the practicality and effectiveness of our proposed method, using vivid graphics and detailed
analysis to present the results.

Keywords: Burgers–Huxley equation; optimization; neural network method; Lie groups; Lie series

MSC: 65M99

1. Introduction

Partial differential equations (PDEs) are ubiquitous and fundamental to understanding
and modeling the complexities of natural phenomena. From mathematics to physics to
economics and beyond, PDEs play a critical role in virtually all fields of engineering and
science [1–3]. Through their mathematical representation of physical phenomena, PDEs
provide a powerful means of gaining insight into complex systems, enabling researchers
and engineers to predict behavior and uncover hidden relationships. However, solving
PDEs can be a daunting and challenging task. The complexity of these equations often
requires sophisticated numerical methods that must balance accuracy and efficiency while
solving high-dimensional PDEs. Despite these challenges, PDEs remain a cornerstone of
modern science, enabling researchers to unlock discoveries and technological advancements
across disciplines.

As numerical and computational techniques continue to rapidly develop, the study
of PDEs has become increasingly vital. In recent years, advances in numerical methods
and high-performance computing techniques have made it possible to solve complex PDEs
more accurately and efficiently than ever before. These new tools can precisely solve specific
problems across a broader range of equations while simultaneously computing data faster,
reducing the time and cost of solving pending problems. Moreover, these new techniques
have allowed researchers to gain deeper insights into the physical meaning behind PDEs,
enabling them to revisit natural phenomena from fresh perspectives and explore those
that prove challenging to explain by traditional methods. This has led to groundbreaking
research discoveries and innovations in various fields of science and engineering.
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Machine learning methods [4,5], particularly in the area of artificial neural networks
(ANNs) [6,7], have piqued considerable interest in recent years due to their potential to
solve differential equations. ANNs are well-known for their exceptional approximation
capabilities and have emerged as a promising alternative to traditional algorithms [8].
These methods have a significantly smaller memory footprint and generate numerical
solutions that are both closed and continuous over the integration domain without requiring
interpolation. ANNs have been applied to differential equations, including ordinary
differential equations (ODEs) [9,10], PDEs [11,12], and stochastic differential equations
(SDEs) [13,14], making them a valuable tool for researchers and engineers alike. Neural
networks have become a powerful and versatile tool for solving differential equations due
to their ability to learn intricate mappings from input–output data, further cementing their
role as a critical component in the machine learning fields.

In recent years, the application of neural networks in solving differential equations
has gained significant attention in the scientific community. One prominent model is the
neural ordinary differential equations, which approximates the derivative of an unknown
solution using neural networks, parameterizing the derivatives of the hidden states of
the network with the help of the differential equation, thus creating a new type of neural
network [15]. Another approach is the deep Galerkin method [16], which uses neural
networks to approximate the solution of the differential equation in a bid to minimize error.
Gorikhovskii et al. [17] introduced a practical approach for solving ODEs using neural
networks in the TensorFlow machine-learning framework. In addition, Huang et al. [18]
introduce an additive self-attention mechanism to the numerical solution of differential
equations based on the dynamical system perspective of the residual neural network.

By utilizing neural network functions to approximate the solutions, neural networks
have also been used to solve PDEs. The physics-informed neural network (PINN) method
uses the underlying physics of the problem to incorporate constraints into the solution of the
neural network, resulting in successful applications to various PDEs such as the Burgers and
Poisson equations [19]. Compared to traditional numerical methods, PINNs offer several
advantages, including higher accuracy and more efficient computation. Berg et al. [20]
introduced a new deep learning-based approach to solve PDEs on complex geometries.
They use a feed-forward neural network and an unconstrained gradient-based optimization
method to predict PDE solutions. Furthermore, Another exciting development in the
field of neural networks and PDEs is the use of convolutional neural networks (CNNs).
Ruthotto et al. [21] used a CNN to learn to solve elliptic PDEs and incorporated a residual
block structure to improve network performance. Quan et al. [22] presented an innovative
approach to addressing the challenge of solving diffusion PDEs, by introducing a novel
learning method built on the foundation of the extreme learning machine algorithm. By
leveraging this advanced technique, the parameters of the neural network are precisely
calculated by solving a linear system of equations. Furthermore, the loss function is
ingeniously constructed from three crucial components: the PDE, initial conditions, and
boundary conditions. Tang et al. [23] demonstrate through numerical cases that the
proposed depth adaptive sampling (DAS-PINNs) method can be used for solving PDEs.
Overall, the advancements made in the domain of neural networks have revolutionized
how we approach solving complex PDEs in unimaginable ways. These developments
suggest that neural networks are a promising tool for solving complex PDEs and that there
is great potential for further research and innovation in this area.

This paper proposes a novel approach for solving the Burgers–Huxley equation ,
which uses a neural network based on the Lie series in the Lie groups of differential
equations, adding initial or boundary value terms to the loss function to approximate the
solution of the equation by minimization. Slavova et al. [24] constructed a cellular neural
network model to study the Burgers–Huxley equation. Shagun et al. [25] employed a
feed-forward neural network to solve the Burgers-Huxley equation and investigated the
impact of the number of training points on the accuracy of the solution. Kumar et al. [26]
proposed a deep learning algorithm based on the deep Galerkin method for solving the
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Burgers–Huxley equation, which outperformed traditional numerical methods. These
studies demonstrate the potential of neural networks in solving differential equations.
Nonetheless, it is simple to ignore the underlying nature of these equations, in other words,
to fail to capture the nonlinear nature of the equations, which is essential to comprehend
the behavior of complex systems. To address this issue, the aim of our proposed method
is to approximate the solution of the differential equations by combining the Lie series
in Lie groups of differential equations and the power of neural networks. Our proposed
method accurately simulates the physical behavior of complicated systems, and the first
part of the constructed solution has well captured the nonlinear nature of the equation
while reducing the parameter cost of the subsequent neural network and by minimizing
the loss function, making the solution converge quickly by introducing initial or boundary
value terms required for exact approximation. This work demonstrates the effectiveness
of combining neural networks with Lie series to solve differential equations and provides
insights into the physical behavior of complex dynamical systems.

The essay is set up as follows. The basic framework and fundamental theory of
neural network algorithms based on Lie series in Lie groups of differential equations are
introduced in Section 2. The specific steps for the Lie-series-based neural network method
to solve the Burgers–Huxley equation are described in Section 3. The method is also applied
to the Burgers–Fisher equation and the Huxley equation. Summary and outlook are presented
in Section 4.

2. Basic Idea of a Lie-Series-Based Neural Network Algorithm

2.1. Differential Forms and Lie Series Solution

With respect to the Lie group transformation of the parameter ε,

u∗ = T(ε; u) ∈ G, u∗(0) = u (1)

where G is a Lie group, and ε is a group parameter.
By employing Taylor expansion about neighborhood of ε = 0,

u∗ = T(ε; u) = u +
∂T(ε; u)

∂ε

∣∣∣∣
ε=0

ε + O
(

ε2
)

. (2)

Then, u∗ = u + εζ is known as the infinitesimal transformation. D = ζ(u)∂u is called
the infinitesimal operator, where ζ(u) = ∂T(ε;u)

∂ε

∣∣∣
ε=0

.
The following differential equation is given

u′ = F(ξ, u), u(0) = u0 (3)

F(ξ, u) is a differentiable function, and if (2) is a symmetry of (3), then it has a Lie
series solution to the initial value problem (3) and can be written as [27]

u = eξDu|ξ=0 (4)

2.2. Algorithm of a Lie-Series-Based Neural Network

The idea of Lie groups is based on the study of continuous symmetry, which at first
may seem abstract and complex. However, in the realm of solving differential equations,
Lie group methods are a unique approach that goes beyond traditional mathematical
techniques. Lie series in the Lie transform groups of differential equations can be used
to construct approximate solutions of PDEs and to study their symmetries and other
properties. Lie series provide a powerful framework for studying the behavior of dif-
ferential equations and have many important applications in various fields of science
and engineering.
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From [28], it is known that

D = D1 + D2 (5)

The solution of (3) can be written as u = eξDu|ξ=0 = eξ(D1+D2)u|ξ=0.

Theorem 1. ū(ξ; u) = eξD1 u|ξ=0, ξ ∈ Rn, is the decomposition part of D. The solution of
problem (3) belonging to D expanded as follows:

u = ū(ξ; u) +
∫ ξ

0
D2

(
e(ξ−τ)Du

)
|u→ū(τ;u)dτ (6)

The proof is given below and is detailed in the literature [28].

Proof.

u = eξDu = eξ(D1+D2)u =
∞

∑
v=0

ξv

v!
Dv

1u +
∞

∑
v=1

ξv

v!
Dv−1

1 D2u

+
∞

∑
v=2

ξv

v!
Dv−2

1 D2Du + . . . +
∞

∑
v=α

ξv

v!
Dv−α

1 D2Dα−1u + . . .
(7)

It is known that

ξv

v!
=
∫ ξ

0

(ξ − τ)α−1

(α− 1)!
τv−α

(v− α)!
dτ, (v ≥ α ≥ 1, integers)

Equation (7) is rewritten as

u = ū +
∫ ξ

0

∞

∑
v=0

τv

v!
Dv

1 D2udτ +
∫ ξ

0
(ξ − τ)

∞

∑
v=0

τv

v!
Dv

1 D2Dudτ + . . .

+
∫ ξ

0

(ξ − τ)α−1

(α− 1)!

∞

∑
v=0

τv

v!
Dv

1 D2Dα−1udτ + . . .

From the form of the series solution [27], it follows that

∞

∑
v=0

τv

v!
Dv

1

(
D2Dα−1u

)
=
(

D2Dα−1u
)

u→ū(τ;u)

Hence,

u = ū +
∞

∑
α=1

∫ ξ

0

(ξ − τ)α−1

(α− 1)!

(
D2Dα−1u

)
u→ū(τ;u)

dτ

after commuting the signs of the series and the integral which is allowed within the circle
of absolute convergence, the formula

u = ū +
∫ ξ

0

(
D2

∞

∑
α=0

(ξ − τ)α

α!
Dαu

)
u→ū(τ;u)

dτ (8)

is obtained, which may also be written as follows:

eξDu = eξD1 u +
∫ ξ

0

(
D2e(ξ−τ)Du

)
u→ū(τ;u)

dτ (9)

The complexities inherent in the integration of the second component, as elucidated by
Equation (6), necessitates a sophisticated approach to computation. To tackle this daunting
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challenge head-on, as elaborated in the reference [29] of our previous work, the functional
form of the neural network is utilized to simplify this part and ensure the accuracy of
our results.

From [29], û = eξDu|ξ=0 = ū + ξN(θ; ξ). The determination of ū from the equation
ū′ = D1ū is inspired by the idea of the Lie series solution of the first-order ODE, where
the initial value of ū(0) = u(0) = u0 is kept constant throughout the process, ensuring the
reliability and truthfulness of our results. N(θ; ξ) is a single output neural network with a
single input of ξ, the parameter θ consists of the weight W and the bias b. The Algorithm 1
is described in detail below, as shown in Figure 1.

Figure 1. Flow chart of Lie-series-based neural network algorithm.

Algorithm 1: A Lie-series-based neural network algorithm for problem (3)
Require Determine the operator D according to (3), and solve it with the

decomposed part D1 to obtain ū.
Begin

1. Consider a uniformly spaced distribution of discrete points within the initial
condition ξ�(� = 1, 2, . . . , λ).

2. Determining the structure of a neural network. (The number of hidden
layers and the number of neurons, the selection of the activation function σ.)

3. Initialization of the neural networks parameters W, b.
4. Get û = ū + ξN(θ; ξ) and substitute back into (3).
5. Minimize the loss function L(θ).
6. Update the parameter θ so that û approximates the solution u of problem (3).

End

In general, the loss function L(θ) is defined as follows:
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L(θ) = LF +LI

=
1
λ

λ

∑
�=1

n

∑
i=1

∥∥∥∥∥ ∂

∂ξ
ûi(ξ, θ)

∣∣∣∣
ξ=ξ�

− Fi(û1, û2, . . . , ûi)

∥∥∥∥∥
2

2

+
1
2

p

∑
l=1

n

∑
i=1

∥∥∥( ûi(ξ, θ)|ξ=ξl
− K(ξ)|ξ=ξl

)∥∥∥2

2

(10)

as additional terms with K(ξl), l = 1, 2, . . . , p as initial value or boundary conditions. The
LF part of the loss function is derived by substituting the network solution û into the mean
squared error generated on both sides of the problem (3). In addition, the mean squared
error generated by the network solution û under the initial or boundary value terms are also
used to derive the LI component of our loss function. By constructing the components of
LF and LI , we can satisfy both the differential equations and the initial values or boundary
conditions of the problem under study.

The above algorithm also applies to the system of differential equations dui
dξ = Fi(u1, u2,

. . . , un), ui(0) = αi ∈ R1, i = 1, 2, . . . , n, where D = ∑n
i=1 Fi(ui)

∂
∂ui

. For higher-order ODEs
or PDEs, the above form can also be transformed with the help of some transformations or
calculations.

2.3. The General Structure of the Neural Network

As depicted in Figure 2, our study delves into the complexities of multilayer percep-
trons and their unique characteristics, with a particular emphasis on those with a single
input unit, m hidden layers of H neurons, a neural network with activation function σ in
the hidden layer, and a linear output unit. We present a detailed analysis of this neural
network architecture. Specifically, for a given input vector ξ�(� = 1, 2, . . . , λ), the output
of the network N = ∑H

i=1 Wm+1σ(Zm
i ) + bm+1, Zm

i = ∑H
j=1 wm

ji σ(Zm−1
j ) + bm

i , where wm
ji is

the weight of the jth neuron in layer m− 1 to the ith neuron in layer m, and bm
i is the bias of

the ith neuron in layer m. It can be seen that Z1
1 = w1

11ξ� + b1
1. In this paper, the activation

function σ is chosen tanh(Z) = eZ−e−Z

eZ+e−Z .

Figure 2. Neural network structure.

3. Lie-Series-Based Neural Network Algorithm for Solving Burgers Huxley Equation

The generalized Burgers–Huxley equation [30] is a nonlinear PDE that describes the
propagation of electrical impulses in excitable media, such as nerve and muscle cells. It is a
widely used mathematical framework for modeling intricate dynamical phenomena and
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has been instrumental in advancing research across multiple domains including physics,
biology, economics, and ecology. The equation takes the form

∂u
∂t

+ αuδ ∂u
∂x
− ∂2u

∂x2 = βu
(

1− uδ
)(

ηuδ − λ
)

(11)

where α, β, λ, η are constants and δ is a positive constant.
When α = −1, β = 1, λ = 1, η = 1, δ = 1, the Burgers–Huxley equation is as follows:

∂u
∂t

=
∂2u
∂x2 + u

∂u
∂x

+ u(1− u)(u− 1), u(0, x) =
1
2

(
1− tanh

x
4

)
(12)

The exact solution of (12) is u(t, x) = 1
2
(
1− tanh

( x
4 + 3t

8
))

. Using the traveling wave
transform ξ = x − ct, problem (12) is transformed into an ODE, u′′ + cu′ + uu′ + u(1−
u)(u− 1) = 0. Naturally, it is transformed into the form of the following system of ODEs

u′1 = u2, u′2 =
3
2

u2 − u1u2 − u1(1− u1)(u1 − 1) (13)

with c = − 3
2 , u1(ξ) = u and initial values u1(0) = 1

2 , u2(0) = − 1
8 .

In this study, we address the problem of solving the Burgers–Huxley equation us-
ing a Lie-series-based neural network algorithm. The operator D = u2∂u1 + ( 3

2 u2 −
u1u2 − u1(1 − u1)(u1 − 1))∂u2 of (13) is chosen as D1 = u2∂u1 +

3
2 u2∂u2 , and the solu-

tion of the corresponding initial value problem is ū1(ξ) =
1
12

(
7− cosh

(
3ξ
2

)
− sinh

(
3ξ
2

))
,

ū2(ξ) = − 1
8 cosh

(
3ξ
2

)
− 1

8 sinh
(

3ξ
2

)
. The solution of this part has been able to capture

the nonlinear nature of the equation within a certain range, as shown in Figure 3. To
minimize the loss function L(θ), we employ two structurally identical neural networks
and boundary value terms, each with 30 neurons in a single hidden layer, and the in-
put ξ�(� = 1, 2, . . . , 100) is 100 training points spaced equally in the interval [−5, 3],
making û1(ξ) as close as possible to the exact solution u(ξ) of the equation. The gen-
eralization ability of the neural network was confirmed in 120 test points at equidistant
intervals of ξ� ∈ [−5, 3.3]. The Lie-series-based neural network algorithm solves the
Burgers–Huxley equation model as shown in Figure 4. Furthermore, we demonstrate
the ability of neural networks to fit the training and test sets in Figure 5. By plotting the
loss function L(θ) = LF + LI against the number of iterations in Figure 6, where LF =
1
λ ∑λ

�=1

((
û′1(ξ�)− û2(ξ�)

)2
+
(
û′2(ξ�)− 3

2 û2(ξ�) + û1(ξ�)û2(ξ�) + û1(ξ�)(1− û1(ξ�))

(û1(ξ�)− 1))2
)

, and LI = 1
2 (û1(−5)− u(−5))2 + 1

2 (û2(−5)− u′(−5))2, λ = 100. Some

1100 iterations later, L(θ) = 3.042× 10−8.
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u

Figure 3. Comparison of the ū1(ξ) solution of the Burgers–Huxley equation with the exact
solution u(ξ).

We compare the solution û(t, x) containing the neural network training and the exact
solution u(t, x) in the interval t ∈ [0, 1], x ∈ [−5, 2] in the upper panel of Figure 7. Addition-
ally, the lower panel displays the behavior of the solution at t = 0.3, 0.5, 0.8, demonstrating
the solitary wave solution of the Burgers–Huxley equation. The contour plots for solution
û1(t, x) and the exact solution u(t, x) are shown in Figure 8, further illustrating the accuracy
of our proposed algorithm.

Figure 4. Schematic diagram of a Lie series-based neural network algorithm for solving Burgers–
Huxley equation.
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Figure 6. Curves of Loss function versus number of iterations for Burgers–Huxley equation.
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x x x

Figure 7. (Top) The true solution u(t, x) = 1
2

(
1− tanh

(
x
4 + 3t

8

))
of the Burgers–Huxley equation is

on the left, the predicted solution û(t, x) is on the right. (Bottom) Comparison of predicted and exact
solutions at time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and
the solid red line indicates the predicted solution û(t, x)).

u

Figure 8. Contour plot of the Burgers–Huxley equation with respect to the solution û1(t, x) and the
exact solution u(t, x).

To verify the validity and generality of our proposed equation, the method was applied
to two classical equations, the Burgers–Fisher, and the Huxley equations. For this purpose,
we performed a thorough analysis and obtained strong results that proved the validity of
our method. Specifically, when α = −1, β = 1, λ = −1, η = 0, δ = 1, the Burgers–Fisher
equation is as follows:

∂u
∂t

=
∂2u
∂x2 + u

∂u
∂x

+ u(1− u), u(0, x) =
1
2

(
1 + tanh

x
4

)
(14)

The exact solution of (14) is u(t, x) = 1
2
(
1 + tanh

( x
4 + 5t

8
))

. Similarly, using the travel-
ing wave transform ξ = x− ct, problem (14) is transformed into an ODE, u′′ + cu′ + uu′ +

160



Axioms 2023, 12, 429

u(1− u) = 0, with initial value u(0) = 1
2 , u′(0) = 1

8 . Transformation of ODEs into the form
of a system of differential equations,

u′1 = u2, u′2 =
5
2

u2 − u1u2 − u1(1− u1) (15)

where u1(ξ) = u, c = − 5
2 , and initial values u1(0) = 1

2 , u2(0) = 1
8 . The operator

D = u2∂u1 + ( 5
2 u2 − u1u2 − u1(1− u1))∂u2 of (15), D1 is chosen as u2∂u1 +

5
2 u2∂u2 − u1∂u2 ,

the predicted solution û1(ξ�) = − 1
12 eξ�/2(−7 + e3ξ�/2) + ξ�N1, û2(ξ�) = 1

24 (7eξ�/2) −
1
6 e2ξ� + ξ�N2, where the structure of the neural network is a single hidden layer containing
30 neurons with inputs ξ� ∈ [−5, 2] of equidistant intervals of 100 training points and test
points are 120 points of the interval [−5, 2.2], and the training results are shown in Figure 9.
As shown in Figure 10, our method achieves an impressive performance with the loss
function L(θ) reaches 8.861× 10−8 in about 700 iterations. This exceptional result again
illustrates that the solution of the D1 part of our proposed method captures the nonlinear
nature of the solution, thereby reducing the computational cost associated with additional
parameters which are evident from Figure 11. In addition, we provide a three-dimensional
representation of the dynamics of the predicted solution û(t, x) with the exact solution
u(t, x) in the interval t ∈ [0, 1] and x ∈ [−5, 2], as shown in Figure 12.

−5 −4 −3 −2 −1 0 1 2

ξ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
a
lu

e
s

Neural solution - ̂u1

Exact solution - u

−5 −4 −3 −2 −1 0 1 2

ξ

0.1

0.2

0.3

0.4

0.5

0.6

0.7
V
a
lu

e
s

Neural solution - ̂u1

Exact solution - u

Figure 9. (Left) Comparison of solution û1(ξ) with the exact solution u(ξ) = 1
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in the training set. (Right) Comparison of û1(ξ) with the exact solution u(ξ) = 1
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of (15) in the test set.
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Figure 10. Curves of loss function versus number of iterations for Burgers–Fisher equation.
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u

Figure 11. Comparison of the ū1(ξ) solution of the Burgers–Fisher equation with the exact
solution u(ξ).

x x x

Figure 12. (Top) The true solution u(t, x) = 1
2

(
1 + tanh

(
x
4 + 5t

8

))
of the Burgers–Fisher equation is

on the left, the predicted solution û(t, x) is on the right. (Bottom) Comparison of predicted and exact
solutions at time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and
the solid red line indicates the predicted solution û(t, x)).

We investigate the Huxley equation under the conditions where α = 0, β = 1, λ = 1,
η = 1, δ = 1. The equations are as follows:

∂u
∂t

=
∂2u
∂x2 + u(1− u)(u− 1), u(0, x) =

1
2

(
1 + tanh

x
2
√

2

)
(16)

The exact solution of (16) is u(t, x) = 1
2

(
1 + tanh

(√
2x
4 − t

4

))
. Similarly, using the

traveling wave transform ξ = x− ct, problem (16) is transformed into an ODE, u′′ + cu′ +
u(1− u)(u− 1) = 0. It is transformed into the following differential equation form
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u′1 = u2, u′2 = −
√

2
2

u2 − u1(1− u1)(u1 − 1) (17)

where initial values u1(0) = 1
2 , u2(0) = 1

4
√

2
, and c =

√
2

2 , it is clear that u1(ξ) = u(ξ),

u2(ξ) = u′(ξ). In the case of D1 = u2∂u1 −
√

2
2 u2∂u2 , the system of differential equations

ū′1 = ū2, ū′2 = −
√

2
2 ū2, the initial values are ū1(0) = 1

2 and ū2(0) = 1
4
√

2
, this time

ū1(ξ) =
3
4 − 1

4 e−ξ/
√

2, ū2(ξ) =
1

4
√

2
e−ξ/

√
2.

For predicting the solution û1(ξ) and û2(ξ), the same neural network with two single
hidden layers containing 30 neurons with the same structure is trained by optimization
technique Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimizes the Loss function L(θ).
The input ξ� is the interval [−2, 7] equidistantly spaced by 100 points. The test set is the
150 points in the interval [−2, 7.5]. As shown in Figure 13, our proposed method produced
excellent predictions for both the trained predicted and exact solutions. The variation of
the loss function throughout the process is depicted in Figure 14, and it can be observed
that the loss function decreased remarkably during training. Figure 15 shows the dynamics
of û1(t, x) with the exact solution u(t, x), when ξ = x− ct is substituted into û1(ξ) and the
predicted solution û1(t, x) compared with the exact solution u(t, x) at t = 0.3, 0.5, 0.8. The
contour plot in Figure 16 provides a more visualization of the network solution û1(t, x)
compared to the exact solution u(t, x).
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Figure 13. (Left) Comparison of solution û1(ξ) with the exact solution u(ξ) = 1
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of (17) in the training set. (Right) Comparison of solution û1(ξ) with the exact solution
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Figure 14. Curves of loss function versus number of iterations for Huxley equation.
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x x x

Figure 15. (Top) The true solution u(t, x) = 1
2

(
1 + tanh

(√
2x
4 − t

4

))
of the Huxley equation is on

the left, the predicted solution û(t, x) is on the right. (Bottom) Comparison of predicted and exact
solutions at time t = 0.3, 0.5, and 0.8. (The dashed blue line indicates the exact solution u(t, x), and
the solid red line indicates the predicted solution û(t, x)).

u

Figure 16. Contour plot of the Huxley equation with respect to the solution û1(t, x) and the exact
solution u(t, x).

4. Discussion and Conclusions

The exponential growth of information data has resulted in limited data becoming
a significant issue in various fields, especially in data-driven applications. Addressing
this challenge has become a critical area of research in recent times. To contribute towards
finding solutions to this problem, this paper proposes a novel method for resolving the
Burgers-Huxley equation using a neural network based on Lie series in Lie groups of
differential equations, which is an emerging field with great potential in solving complex
problems. To the best of our knowledge, this study represents the first time the Burgers-
Huxley equation has been solved using a Lie-series-based neural network algorithm. In
physics, engineering, and biology, the Burgers–Huxley equation is a well-known mathe-
matical model that is frequently utilized. Our novel approach offers a unique perspective
on solving this equation by adding boundary or initial value items to the loss function,
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which leads to more accurate predictions and a better understanding of the underlying
system. This research opens up new avenues for further exploration of the Lie-series-based
neural network algorithm, specifically regarding its applications to other complex models
beyond the Burgers–Huxley equation.

In this study, we present a novel method for obtaining a differentiable closed analytical
form to provide an effective foundation for further research. The proposed approach is
straightforward to use and evaluate. To verify the effectiveness of the suggested method,
we applied it to two classic models of the Burgers–Fisher and Huxley equations that have
well-known exact solutions. The proposed algorithm exhibits remarkable potential in cap-
turing the nonlinear nature of equations and accelerating the computation process of neural
networks. The performance of our method is demonstrated in Figures 3 and 11, which
show how the proposed algorithm can capture the nonlinear behavior of the equations
more effectively and speed up the computation of subsequent neural networks. To further
evaluate the effectiveness of the proposed technique, we plotted the relationship between
the loss function and the number of iterations in Figures 6, 10 and 14. Our results indicate
that under the influence of the Lie series in Lie groups of differential equations, our algo-
rithm can converge quickly and achieve more precise solutions with fewer data. Moreover,
the accuracy of the obtained solutions is significant, and the generalization ability of the
neural network is demonstrated by its ability to maintain high accuracy even outside the
training domain, as shown in Figures 5, 9 and 13. We compared the performance of each
neural network using small parameters (60 weight parameters and 31 bias parameters)
with the exact solution to the problem. Our results highlight that the addition of the Lie
series in Lie groups of differential equations algorithm remarkably enhances the ability of
the neural network to solve a given equation.

Undoubtedly, the proposed method has several limitations that need to be carefully
considered. Firstly, the method requires the transformation of PDEs into ODEs before
applying the suggested algorithm. Although the results obtained after this transformation
are preliminary, they provide useful insights for researchers. Additionally, an inverse
transformation must be employed to produce the final solution û(t, x), taking into account
the range of values for various variables. The choice of the operator D1 may also influence
the outcomes. Secondly, the current study only addresses nonlinear diffusion issues of the
type F(u) = αuδux + uxx + βu

(
1− uδ

)(
ηuδ − λ

)
, and the suitability of the technique was

assessed via the computation of the loss function. Therefore, the applicability of the method
to other types of non-linear PDEs is yet to be investigated, and it might require further
adjustments to accommodate such problems. Despite some inherent challenges, our work
offers a promising strategy for solving complex mathematical models using neural network
algorithms based on Lie series. The computational performance of the proposed algorithm
is noteworthy, achieving high solution accuracy at a relatively low time and parameter cost.
In light of these findings, it is worth considering the prospect of applying this algorithm to
financial modeling, where accurate predictions can have a significant impact.

Moving forward, there is ample scope for extending and improving the proposed
algorithm further. Future research could explore how to optimize the performance of
the algorithm by addressing its limitations and weaknesses for nonlinear PDE problems.
For example, choosing a different neural network framework, CNN or recurrent neural
network, etc., may improve the efficiency and accuracy of the method. Additionally,
expanding the method’s applicability beyond nonlinear diffusion issues may also yield
valuable insights into other areas of mathematical modeling.

In summary, we believe that our work presents an exciting avenue for future research.
By building upon our findings and addressing the limitations of the proposed algorithm,
we can develop more sophisticated techniques for solving complex mathematical models
in finance and other areas. Solving the above problems is the main goal of our next
research work.
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Abstract: This work provides new adequate conditions for difference equations with forcing, positive
and negative terms to have non-oscillatory solutions. A few mathematical inequalities and the
properties of discrete fractional calculus serve as the fundamental foundation to our approach. To
help establish the main results, an analogous representation for the main equation, called a Volterra-
type summation equation, is constructed. Two numerical examples are provided to demonstrate
the validity of the theoretical findings; no earlier publications have been able to comment on their
solutions’ non-oscillatory behavior.

Keywords: non-oscillatory solutions; asymptotic behavior; caputo nabla fractional difference; nabla
fractional difference equations

MSC: 34K11; 34N05

1. Introduction

Fractional order differential equations (FDEs) are generalized, non-integer order dif-
ferential equations that can be obtained in time and space with a power law memory kernel
of the nonlocal relationships; they offer an effective means of describing the memory of
various substances and the characteristics of inheritance. The authors, who have shown
a great deal of interest in studying the qualitative characteristics of the solution of FDEs,
such as existence, uniqueness, oscillation, stability, and control, have provided details of
significant findings in this area; see some of the illustrious monographs [1–3] and recent
papers [4–10]. In particular, the oscillation of solutions was a subject that was taken into
account for FDEs; the review paper in [11] is available to readers.

In recent years, academics have started to pay significant attention to discrete frac-
tional calculus. The arbitrary order difference and summation features have considerably
demonstrated their utility and validity due to their long memory nature and their flexible
capability in carrying out mathematical computations [12]. As a result, numerous studies
that investigate the qualitative traits of fractional difference equation solutions have been
published, including their oscillation properties [13–16].
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Let Nχ = {χ, χ + 1, χ + 2, . . .} for any χ ∈ R. Research on the oscillation of solu-
tions of nabla fractional difference equations was started by Alzabut et al. [15] with the
following problems:⎧⎨⎩∇

η
σ+κ−2 ϕ(�) + ξ1(�, ϕ(�)) = ζ(�) + ξ2(�, ϕ(�)), � ∈ Nη+σ−1,

∇−(1−η)
σ+κ−2 ϕ(�)

∣∣∣
�=σ+κ−1

= χ, χ ∈ R,
(1)

and {
∇η

σ+κ−1∗ϕ(�) + ξ1(�, ϕ(�)) = ζ(�) + ξ2(�, ϕ(�)), � ∈ Nσ+κ−1,
∇my(σ +κ − 1) = χm, χm ∈ R, m = 0, 1, 2, · · · ,κ − 1,

(2)

where η > 0 and κ ∈ N1 such that κ − 1 < η < κ; ξ1, ξ2 : Nσ+κ−1 × R → R and
ζ : Nσ+κ−1 → R.

Then, Abdalla et al. [13,14] continued to study the oscillation of solutions of different
types of mixed nonlinear nabla fractional difference equations:⎧⎨⎩∇

η
σ+κ−2 ϕ(�)− b(�)ϕ(�) + ∑k

j=1 bj(�)|ϕ(�)|αj−1 = ζ(�), � ∈ Nσ+κ ,

∇−(κ−η)
σ+κ−2 ϕ(�)

∣∣∣
�=σ+κ−1

= χ, χ ∈ R,
(3)

and{
∇η

σ+κ−1∗ϕ(�)− b(�)ϕ(�) + ∑k
j=1 bj(�)|ϕ(�)|αj−1 = ζ(�), � ∈ Nσ+κ−1,

∇m ϕ(σ +κ − 1) = χm, χm ∈ R, m = 0, 1, 2, · · · ,κ − 1,
(4)

where b, bj : Nσ+κ−1 → R, j = 1, 2, · · · k; α1, α2, · · · , and αk are the ratios of odd natural
numbers with α1 > · · · > αi > 1 > αi+1 > · · · > αk.

In this vein, Alzabut et al. [16] derived the conditions for the oscillation of solutions of
a forced and damped nabla fractional difference equation:⎧⎨⎩(1− p(�))∇∇η

0 ϕ(�) + p(�)∇η
0 ϕ(�) + p2(�)ξ(ϕ(�)) = p1(�), � ∈ N1,

∇−(1−η)
0 ϕ(�)

∣∣∣
�=1

= χ, χ ∈ R,
(5)

where 0 < μ < 1; ξ : R→ R; p, p1 : N1 → R and p2 : N1 → R+.
Motivated by the above studies, which concentrated on oscillation discussion, and for

the sake of giving an affirmative response about the behavior of non-oscillatory solutions,
in this work, we consider the higher-order forced nabla fractional difference equation with
positive and negative terms of the following form:

∇x
c∗z(�) + φ(�, y(�)) = η(�) + ζ(�)yβ(�) + Φ(�, y(�)), � ∈ Nc+1, (6)

where
z(�) = ∇n−1

[
d(�)(∇y(�))β

]
, � ∈ Nc, n ∈ N1, (7)

where 0 < x < 1, β is the ratio of two odd natural numbers, c ∈ N1, and ∇x
c∗z denotes the

xth Caputo nabla fractional difference of z. Throughout this work, we need the following
conditions in the sequel.

(i) ζ, d : Nc → (0, ∞), η : Nc → R and Φ, φ : Nc ×R → R are real valued continuous
functions;

(ii) There exist two continuous functions Θ1 and Θ2 : Nc → (0, ∞), and positive real
numbers λ and γ, where λ > γ such that

yφ(�, y) ≥ Θ1(�)|y|λ+1, 0 ≤ yΦ(�, y) ≤ Θ2(�)|y|γ+1
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for y 
= 0 and � ∈ Nc.

Unlike most existing results, which often discuss the oscillation of solutions, the asymp-
totic behavior of the Equation (6)’s non-oscillatory solutions is examined in this study. Our
method is essentially based on some mathematical inequalities and the properties of dis-
crete fractional calculus. A Volterra-type summation equation is built as an analogous
representation for Equation (6) to aid in establishing the key conclusions. In order to
demonstrate the validity of the theoretical findings, we offer numerical examples.

2. Essential Preliminaries

The results in this section are adopted from the two main monographs [12,17].

Definition 1 (See [12]). For � ∈ R \ {. . . ,−2,−1, 0} and θ ∈ R such that (� + θ) ∈ R \
{. . . ,−2,−1, 0}, we define the generalized rising function by

�θ =
Γ(� + θ)

Γ(�)
.

Furthermore, if � ∈ {. . . ,−2,−1, 0} and θ ∈ R such that (� + θ) ∈ R \ {. . . ,−2,−1, 0}, then
�θ = 0.

Definition 2 (See [12]). Let κ be a real valued function defined on Nχ. The first nabla difference of
κ is given by

∇κ(�) = κ(�)− κ(�− 1), � ∈ Nχ+1.

Definition 3 (See [12]). Let κ be a real valued function defined on Nχ+1 and x > 0. The xth nabla
fractional sum of κ based at χ is given by

∇−x
χ κ(�) =

1
Γ(x)

�

∑
�1=χ+1

(�−�1 + 1)x−1κ(�1), � ∈ Nχ,

where, by convention, ∇−x
χ κ(χ) = 0.

Definition 4 (See [3]). Let 0 < x < 1 and κ be a real valued function defined on Nχ. The xth
Caputo nabla fractional difference of κ based at χ is given by

∇x
χ∗κ(�) = ∇−(1−x)

χ ∇κ(�), � ∈ Nχ+1.

Theorem 1. The initial value problem{
∇x

a∗κ(�) = ω(�), � ∈ Na+1,
κ(a) = κ0,

(8)

has the unique solution

κ(�) = κ0 +
1

Γ(x)

�

∑
�1=a+1

(�−�1 + 1)x−1ω(�1), � ∈ Na (9)

where 0 < x < 1 and ω : Na+1 → R.

Lemma 1. The following properties hold well.

1. If r3 < � ≤ �1, then �−r3
1 ≤ �−r3 ;

2. �r1(� + r1)
r2 = �r1+r2 ;
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3. If 0 < r3 < 1 and ϑ > 1, then

[
�−r3

]ϑ
≤ Γ(1 + r3ϑ)

[Γ(1 + r3)]
ϑ

�−r3ϑ, � > r3ϑ.

Lemma 2. Under the assumption that b, x and p are positive constants with b > 1 and
p(x− 1) + 1 > 0, we obtain

�

∑
�1=1

(�−�1 + 1)p(x−1)bp�1 ≤ Qbpt, � ∈ N1,

where

Q =

(
bp

bp − 1

)p(x−1)+1
Γ(p(x− 1) + 1).

Lemma 3. If R and S are nonnegative, 1
γ + 1

υ = 1, and γ > 1, then

RS ≤ 1
γ

Pγ +
1
υ

Sυ, (10)

where equality holds if and only if S = Rγ−1.

We denote

m(�) =

[
Θλ

2 (�)

Θγ
1 (�)

]( 1
λ−γ

)
, (11)

and

A(�, c) =
�

∑
�1=c+1

d−
1
β (�1). (12)

3. Main Results

In this section, we provide sufficient conditions for which any non-oscillatory solution
of (6) satisfies

|y(�)| = O
([

�n−1
] 1

β b
�
β A(�, c)

)
as � → ∞.

Theorem 2. Under the assumptions that (i)–(ii), 0 < x < 1, p(x− 1) + 1 > 0 for p > 1 and

∞

∑
�1=c+1

ζq(�1)
[
�n−1

1

]q
Aβq(�1, c) < ∞, q =

p
p− 1

, (13)

lim
�→∞

[
1

Γ(x)

�

∑
�1=c+1

(�−�1 + 1)x−1|η(�1)|
]
< ∞, (14)

lim
�→∞

[
1

Γ(x)

�

∑
�1=c+1

(�−�1 + 1)x−1m(�1)

]
< ∞, (15)

every non-oscillatory solution of (6) satisfies

lim sup
�→∞

|y(�)|[
�n−1

] 1
β b

�
β A(�, c)

< ∞. (16)
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Proof. Let y be a non-oscillatory solution of (6), say y(�) > 0 for � ∈ N�1 for some
�1 ∈ Nc+1. Take z(c) = c0. Letting F(�) = Φ(�, y(�))− φ(�, y(�)), it follows from (6)
and (i)–(ii) that, for � ∈ Nc,

∇n−1
[
d(�)(∇y(�))β

]
= c0 +

1
Γ(x)

�

∑
�1=c+1

(�−�1 + 1)x−1
[
η(�1) + ζ(�1)yβ(�1) + F(�1)

]
≤ |c0|+

1
Γ(x)

�1

∑
�1=c+1

(�−�1 + 1)x−1|F(�1)|+
1

Γ(x)

�

∑
�1=c+1

(�−�1 + 1)x−1|η(�1)|

+
1

Γ(x)

�

∑
�1=�1+1

(�−�1 + 1)x−1
[
Θ2(�1)yγ(�1)−Θ1(�1)yλ(�1)

]
(17)

+
1

Γ(x)

�1

∑
�1=c+1

(�−�1 + 1)x−1ζ(�1)
∣∣∣yβ(�1)

∣∣∣
+

1
Γ(x)

�

∑
�1=�1+1

(�−�1 + 1)x−1ζ(�1)yβ(�1).

Applying Lemma 3 to
[
Θ2(�)yγ(�)−Θ1(�)yλ(�)

]
with

δ =
λ

γ
> 1, X = yγ(�), Y =

γ

λ

Θ2(�)

Θ1(�)
, η =

λ

λ− γ
,

we obtain

Θ2(�)yγ(�)−Θ1(�)yλ(�) =
λ

γ
Θ1(�)

[
yγ(�)

γ

λ

Θ2(�)

Θ1(�)
− γ

λ
(yγ(�))

λ
γ

]
=

λ

γ
Θ1(�)

[
XY− 1

δ
Xδ

]
≤ λ

γ
Θ1(�)

[
1
η

Yη

]
(18)

=

(
λ− γ

γ

)
Θ1(�)

[
γ

λ

Θ2(�)

Θ1(�)

] λ
λ−γ

= (λ− γ)

[
γγ

λλ

]( 1
λ−γ

)
m(�).

Substituting (18) into (17) and applying Lemma 1, for � ∈ Nc, we obtain

∇n−1
[
d(�)(∇y(�))β

]
≤ |c0|+

1
Γ(x)

�1

∑
�1=c+1

(�1 −�1 + 1)x−1|F(�1)|+
1

Γ(x)

�

∑
�1=c+1

(�−�1 + 1)x−1|η(�1)|

+
1

Γ(x)
(λ− γ)

[
γγ

λλ

]( 1
λ−γ

)
�

∑
�1=�1+1

(�−�1 + 1)x−1m(�1) (19)

+
1

Γ(x)

�1

∑
�1=c+1

(�1 −�1 + 1)x−1ζ(�1)
∣∣∣yβ(�1)

∣∣∣
+

1
Γ(x)

�

∑
�1=c+1

(�−�1 + 1)x−1ζ(�1)yβ(�1).
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In view of (14) and (15), we see from (19) that, for � ∈ Nc,

∇n−1
[
d(�)(∇y(�))β

]
≤ Cn−1 +

1
Γ(x)

�

∑
�1=�1+1

(�−�1 + 1)x−1ζ(�1)yβ(�1), (20)

where Cn−1 > 0 is defined by

Cn−1 = |c0|+
1

Γ(x)

�1

∑
�1=c+1

(�1 −�1 + 1)x−1|F(�1)|+
1

Γ(x)

�

∑
�1=c+1

(�−�1 + 1)x−1|η(�1)|

+
1

Γ(x)
(λ− γ)

[
γγ

λλ

]( 1
λ−γ

)
�

∑
�1=�1+1

(�−�1 + 1)x−1m(�1)

+
1

Γ(x)

�1

∑
�1=c+1

(�−�1 + 1)x−1ζ(�1)
∣∣∣yβ(�1)

∣∣∣.
By the integer order variation of constants formula, it follows from (20) that

d(�)(∇y(�))β

≤
n−2

∑
k=0

(
∇k
[
d(�)(∇y(�))β

])
�=�1−1

(�−�1 + 1)k

Γ(k + 1)

+
�

∑
r=�1

(�− r + 1)n−2

Γ(n− 1)

[
Cn−1 +

1
Γ(x)

r

∑
�1=�1+1

(r−�1 + 1)x−1ζ(�1)yβ(�1)

]

≤
n−2

∑
k=0

∣∣∣∣(∇k
[
d(�)(∇y(�))β

])
�=�1−1

∣∣∣∣ (�−�1 + 1)k

Γ(k + 1)

+ Cn−1

�

∑
r=�1

(�− r + 1)n−2

Γ(n− 1)

+
�

∑
r=�1+1

(�− r + 1)n−2

Γ(n− 1)

[
1

Γ(x)

r

∑
�1=�1+1

(r−�1 + 1)x−1ζ(�1)yβ(�1)

]
(21)

=
n−2

∑
k=0

∣∣∣∣(∇k
[
d(�)(∇y(�))β

])
�=�1−1

∣∣∣∣ (�−�1 + 1)k

Γ(k + 1)

+ Cn−1
(�−�1 + 1)n−1

Γ(n)

+
�

∑
�1=�1+1

[
�

∑
r=�1

(�− r + 1)n−2

Γ(n− 1)
(r−�1 + 1)x−1

Γ(x)

]
ζ(�1)yβ(�1)

=
n−1

∑
k=0

Ck
(�−�1 + 1)k

Γ(k + 1)
+

�

∑
�1=�1+1

(�−�1 + 1)x+n−2

Γ(x + n− 1)
ζ(�1)yβ(�1).

where

Ck =

∣∣∣∣(∇k
[
d(�)(∇y(�))β

])
�=�1−1

∣∣∣∣ > 0, k = 0, 1, 2, · · · , n− 2.

Note that (21) holds for n = 1. Hence, (21) holds for all n ∈ N1 and for all � ∈ N�1 . Next,
we proceed to estimate (21) as
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d(�)(∇y(�))β ≤
n−1

∑
k=0

Ck
�k

Γ(k + 1)
+

�

∑
�1=�1+1

(�−�1)
n−1(�−�1 + n)x−1

Γ(x + n− 1)
ζ(�1)yβ(�1)

≤ �n−1

[
n−1

∑
k=0

Ck
k!

+
1

Γ(x + n− 1)

�

∑
�1=�1+1

(�−�1 + 1)x−1ζ(�1)yβ(�1)

]
,

implying that

d(�)(∇y(�))β ≤ �n−1

[
Θ1 + Θ2

�

∑
�1=�1+1

(�−�1 + 1)x−1ζ(�1)yβ(�1)

]
, (22)

where

Θ1 =
n−1

∑
k=0

Ck
k!

> 0, Θ2 =
1

Γ(x + n− 1)
> 0.

Applying Lemmas 1 and 2, and Holder’s inequality to the sum on the far right in (22),
we have

�

∑
�1=�1+1

(�−�1 + 1)x−1ζ(�1)yβ(�1)

=
�

∑
�1=�1+1

[
(�−�1 + 1)x−1b�1

][
b−�1 ζ(�1)yβ(�1)

]

≤
(

�

∑
�1=�1+1

[
(�−�1 + 1)x−1

]p
bp�1

)1/p( �

∑
�1=�1+1

b−q�1 ζq(�1)yβq(�1)

)1/q

≤
(

A
�

∑
�1=�1+1

(�−�1 + 1)p(x−1)bp�1

)1/p( �

∑
�1=�1+1

b−q�1 ζq(�1)yβq(�1)

)1/q

(23)

≤
(

AQbp�
)1/p

(
�

∑
�1=�1+1

b−q�1 ζq(�1)yβq(�1)

)1/q

= (AQ)1/pb�

(
�

∑
�1=�1+1

b−q�1 ζq(�1)yβq(�1)

)1/q

,

where

A =
Γ(1 + (1− x)p)
[Γ(2− x)]p

.

Using (23) in (22), we obtain from (22) that

d(�)(∇y(�))β ≤ �n−1b�ω(�), (24)

where

ω(�) = Θ1 + M3

(
�

∑
�1=�1+1

b−q�1 ζq(�1)yβq(�1)

)1/q

,

with
M3 = Θ2(AQ)1/p > 0.

We rewrite (24) as

∇y(�) ≤
(

�n−1b�ω(�)

d(�)

) 1
β

, � ∈ N�1 . (25)
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Noting that �n−1, b�, and ω(�) are all increasing, summing (25) from �1 + 1 to �
yields that

y(�) ≤ y(�1) +
�

∑
�1=�1+1

[
�n−1

1

] 1
β b

�1
β ω

1
β (�1)d

− 1
β (�1)

≤ y(�1) +
[
�n−1

] 1
β b

�
β ω

1
β (�)

�

∑
�1=�1+1

d−
1
β (�1)

= y(�1) +
[
�n−1

] 1
β b

�
β ω

1
β (�)A(�, �1)

=

⎛⎜⎜⎝ y(�1)[
�n−1

] 1
β b

�
β A(�, �1)

+ ω
1
β (�)

⎞⎟⎟⎠[�n−1
] 1

β b
�
β A(�, �1)

≤

⎛⎜⎜⎝ y(�1)[
�n−1

2

] 1
β b

�2
β A(�2, �1)

+ ω
1
β (�)

⎞⎟⎟⎠[�n−1
] 1

β b
�
β A(�, �1),

holds for � ∈ N�2 with �2 > �1. Thus,

y(�)[
�n−1

] 1
β b

�
β A(�, �1)

≤ M4 + ω
1
β (�), � ∈ N�2 , (26)

where

M4 =
y(�1)[

�n−1
2

] 1
β b

�2
β A(�2, �1)

.

Applying one of the elementary inequalities

(y + z)q ≤
{

2q−1(yq + zq), q ≥ 1,
yq + zq, 0 < q < 1,

(27)

with y, z ≥ 0, to (26) gives⎛⎜⎜⎝ y(�)[
�n−1

] 1
β b

�
β A(�, �1)

⎞⎟⎟⎠
β

≤ M5 + M6ω(�), � ∈ N�2 , (28)

where M5 and M6 > 0 are defined by

M5 =

{
2β−1Mβ

4 , q ≥ 1,

Mβ
4 , 0 < q < 1,

(29)

and

M6 =

{
2β−1, q ≥ 1,
1, 0 < q < 1.

(30)
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Recalling the definition of ω(�), from (28), we have that⎛⎜⎜⎝ y(�)[
�n−1

] 1
β b

�
β A(�, �1)

⎞⎟⎟⎠
β

≤ M7 + M8

(
�

∑
�1=�1+1

b−q�1 ζq(�1)yβq(�1)

)1/q

, (31)

holds for � ∈ N�2 , where

M7 = M5 + Θ1M6 > 0, M8 = M3M6 > 0.

Applying the inequality (27) to (31) gives that⎛⎜⎜⎝ y(�)[
�n−1

] 1
β b

�
β A(�, �1)

⎞⎟⎟⎠
βq

≤ M9 + M10

�

∑
r=�1+1

b−qrζq(r)yβq(r), (32)

holds for � ∈ N�2 , where

M9 = 2β−1Mq
7 > 0, M10 = 2β−1Mq

8 > 0.

Denoting the left-hand side of (32) by w(�), (32) yields that

w(�) ≤ M9 + M10

�

∑
�1=�1+1

[
�n−1

1

]q
Aβq(�1, �1)ζ

q(�1)w(�1), (33)

holds for � ∈ N�2 , and this can be rewritten as

w(�) ≤ M11 + M10

�

∑
�1=�2+1

[
�n−1

1

]q
Aβq(�1, �1)ζ

q(�1)w(�1), (34)

which holds for � ∈ N�2 , where

M11 = M9 + M10

�2

∑
�1=�1+1

[
�n−1

1

]q
Aβq(�1, �1)ζ

q(�1)w(�1) > 0.

Using (13) and Gronwall’s inequality, we have the conclusion to the theorem. The proof
for an eventually negative solution is similar. So, we omit it here. Thus, the theorem
is proved.

Next, we consider β = 1 and we provide sufficient conditions for which any non-
oscillatory solution of (6) is bounded.

Theorem 3. Assume that (i) − (ii), 0 < x < 1, p(x − 1) + 1 > 0 for p > 1 and that (14)
and (15) hold. Furthermore, assume that there exist real numbers S > 0 and τ > 1 such that(

�n−1

d(�)

)
≤ �1b−τ� (35)

and
∞

∑
�1=c+1

b−q�1 ζq(�1) < ∞, q =
p

p− 1
, (36)

hold; then, all non-oscillatory solutions of (6) are bounded.
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Proof. Let y be a non-oscillatory solution of (6), say y(�) > 0 for � ∈ N�1 for some
�1 ∈ Nc+1. Proceeding as in the proof of Theorem 2, we obtain (25) when β = 1. Since ω is
increasing, summing (25) from �1 + 1 to � yields

y(�) ≤ y(�1) +
�

∑
�1=�1+1

�n−1
1 b�1 ω(�1)

d(�1)

≤ y(�1) +
�

∑
�1=�1+1

Sb(1−τ)�1 ω(�1)

≤ y(�1) + Sω(t)
�

∑
�1=�1+1

b(1−τ)�1

≤ y(�1) + Sω(t)
�

∑
�1=�1+1

(
1

b(τ−1)

)s

= y(�1) + Sω(t)

(
b(τ−1)

b(τ−1) − 1

)[(
1

b(τ−1)

)�1+1
−
(

1
b(τ−1)

)�+1
]

= y(�1) + Sω(t)
(

1
b(τ−1) − 1

)[(
1

b(τ−1)

)�1

−
(

1
b(τ−1)

)�]
≤ y(�1) + Sω(t)

(
1

b(τ−1) − 1

)(
1

b(τ−1)

)�1

.

Using the definition of ω, we obtain

y(�) ≤ M12 + M13

(
�

∑
�1=�1+1

b−q�1 ζq(�1)yq(�1)

)1/q

, (37)

for � ∈ N�2 , where

M12 = y(�1) + Θ1S
(

1
b(τ−1) − 1

)(
1

b(τ−1)

)�1

> 0,

and

M13 = M3S
(

1
b(τ−1) − 1

)(
1

b(τ−1)

)�1

> 0.

Using the inequality (27) to (37), we have

yq(�) ≤ M14 + M15

�

∑
�1=�1+1

b−q�1 ζq(�1)yq(�1), (38)

for � ∈ N�1 , where

M14 = 2q−1Mq
12 > 0, M15 = 2q−1Mq

13 > 0.

Now, using (36) and Gronwall’s inequality, we have the conclusion to the theorem. The proof
for an eventually negative solution is similar. So, we omit it here. The theorem is proved.
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4. Examples

We conclude this paper with the following examples to illustrate our main results.

Example 1. Consider the equation

∇0.75
1∗
(
∇3(e3�(∇y(�))3))+ φ(�, y(�))

= (�− 1)−0.9 +
y(�)

�(� + 1)(� + 2)e�/2 + Φ(�, y(�)), � ∈ N2. (39)

Here, we have z(�) = ∇3(e3�(∇y(�))3), n = 4, x = 0.75, c = 1, β = 3, d(�) = e3�,
η(�) = (�− 1)−0.9, ζ(�) = 1

�(�+1)(�+2)e�/2 , and

A(�, c) = A(�, 1) =
�

∑
�1=2

d−
1
3 (�1) =

�

∑
�1=2

e−�1 =
1

e(e− 1)

[
1−
(

1
e

)�−1
]
≤ 1

e(e− 1)
.

Clearly, condition (i) holds. Let b = e and p = 2. Clearly, p(x− 1) + 1 > 0. Additionally,
we have q = 2, and

∞

∑
�1=c+1

ζq(�1)
[
�n−1

1

]q
Aβq(�1, c) ≤ 1

e2(e− 1)2

∞

∑
�1=2

e−�1 < ∞,

implying that (13) holds. Considering φ(�, y(�)) = Θ1(�)|y(�)|λ−1y(�) and Φ(�, y(�))

= Θ2(�)|y(�)|γ−1y(�) with λ > γ, Θ1(�) = Θ2(�) = (�− 1)−0.9, we see that (ii) holds.
To check (14), we assume

1
Γ(0.75)

�

∑
�1=1+1

(�−�1 + 1)0.75−1|η(�1)| =
1

Γ(0.75)

�

∑
�1=2

(�−�1 + 1)0.75−1
∣∣∣(�1 − 1)−0.9

∣∣∣
=

1
Γ(0.75)

�

∑
�1=2

(�−�1 + 1)0.75−1(�1 − 1)−0.9

= ∇−0.75
1 (�− 1)−0.9

=
Γ(1− 0.9)

Γ(1− 0.9 + 0.75)
(�− 1)−0.9+0.75

=
Γ(0.1)
Γ(0.85)

(�− 1)−0.15

≤ Γ(0.1)
Γ(0.85)

1−0.15

= Γ(0.1),

that is,

lim
�→∞

[
1

Γ(0.75)

�

∑
�1=1+1

(�−�1 + 1)0.75−1|e(�1)|
]
< ∞.

Similarly, it is easy to verify that (15) holds. Therefore, all conditions of Theorem 2 are
satisfied. Thus, every non-oscillatory solution of (6) satisfies

lim sup
�→∞

|y(�)|[
�3
] 1

2 e
�
2 A(�, 1)

< ∞. (40)
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Example 2. Consider the equation

∇0.5
1∗
(
∇2
(

�(� + 1)e5�
(
∇v(�)

)))
+ φ(�, y(�))

= (�− 1)−0.75 + e2�/3y(�) + Φ(�, y(�)), � ∈ N2. (41)

Here, we have z(�) = ∇2(�(� + 1)e5�
(
∇v(�)

))
, c = 1, x = 0.5, n = 3, d(�) =

�(� + 1)e5�, e(�) = (�− 1)−0.75, and ζ(�) = e2�/3. Hence, condition (i) holds. Assum-
ing b = e, �1 = 1, and τ = 5, we find(

�2

d(�)

)
= e−5�.

Therefore, (35) holds. Now, if we take p = 3/2, then we have q = 3, and

∞

∑
�1=c+1

b−q�1 ζq(�1) =
∞

∑
�1=2

e−3�1 e2�1 =
∞

∑
�1=2

e−�1 =
1

e(e− 1)
< ∞,

that is, (36) holds. Again, if

φ(�, y(�)) = Θ1(�)|y(�)|λ−1y(�) and Φ(�, y(�)) = Θ2(�)|y(�)|γ−1y(�)

with λ > γ, Θ1(�) = Θ2(�) = (� − 1)−0.75, then it is easy to verify that condition (ii)
holds. To check that (14) holds, we assume

1
Γ(0.5)

�

∑
�1=1+1

(�−�1 + 1)0.5−1|η(�1)| =
1

Γ(0.5)

�

∑
�1=2

(�−�1 + 1)0.5−1
∣∣∣(�1 − 1)−0.75

∣∣∣
=

1
Γ(0.5)

�

∑
�1=2

(�−�1 + 1)0.5−1(�1 − 1)−0.75

= ∇−0.5
1 (�− 1)−0.75

=
Γ(1− 0.75)

Γ(1− 0.75 + 0.5)
(�− 1)−0.75+0.5

=
Γ(0.25)
Γ(0.75)

(�− 1)−0.25

≤ Γ(0.25)
Γ(0.75)

1−0.25

= Γ(0.25),

that is,

lim
�→∞

[
1

Γ(0.5)

�

∑
�1=1+1

(�−�1 + 1)0.5−1|e(�1)|
]
< ∞.

Similarly, it is easy to verify that (15) holds. Therefore, all conditions of Theorem 3 are
satisfied. Thus, every non-oscillatory solution of (41) is bounded.

5. Concluding Remarks

Unlike most existing results in the literature that have been dedicated to oscillation
criteria, we introduced a number of additional necessary conditions for non-oscillatory
solutions to forced nabla difference equations with positive and negative terms. The main
equation is of a general nature, and it covers many particular cases. By creating an equiva-
lent representation of the primary equation in the form of a summation equation similar to
Volterra and using some mathematical inequalities, the results are stated and proved. Some
earlier findings in the literature were enhanced by the results. In fact, we give two brand-
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new cases, the non-oscillatory behavior of whose solutions has never been discussed in
earlier studies. The existing methodology can be used in the future to produce comparable
outcomes for higher order dynamic equations with forcing, positive and negative terms.
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