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Preface

The modern power system is going through a significant transition due to global concerns
on the use of conventional fossil fuels and meeting the emission limitation protocols. These
additional regulations compel developing countries to place greater emphasis on renewable energy
resources. Renewable resources are widely dispersed and often located over remote geographical
areas. Although these resources are mostly small scale, they are rapidly growing and have not
only enhanced the capacity of but also catalyzed the power system. The increasing penetration of
renewable energies (RE) into the grid introduces numerous challenges for power utility engineers.
The stochastic nature and strong dependencies on the atmospheric condition of renewable resources
create stability issues and sometimes cascading failure in the grid system. The context of
energy transition presents several challenges associated with grid stability, reliability, protection,
and security, as well as energy production/consumption optimization regarding the inclusion
of RE resources. Addressing these challenges requires the development of scalable advanced
optimization techniques for energy consumption in order to facilitate the penetration (integration)
of distributed/centralized renewable energy systems into electric grids, to reduce the peak load, to
maintain frequency and voltage stability, and to reinforce grid protection. The advent of prosumers
as participants in the grid restricts the application of conventional relaying methodologies in modern
power systems. All these factors have forced power engineers to develop advanced and competent
artificial intelligence-based control and protection systems to handle all network uncertainties that
have evolved due to RE sources.

The central objective of this reprint is to present the vital factors associated with smart grid
systems, reliability assessment, protection methodologies, and design advancements through recent
research findings to utility engineers, engineering students, research scholars, and power managers.

This reprint includes ten chapters, covering all the prime critical aspects of modern power
systems like uncertainty in electricity pricing due to solar or wind systems, distribution system
coordination, frequency control challenges due to RE, and artificial intelligence-based protection
methodologies. In addition, it also covers optimization issues and challenges of electric vehicles’
integration in the modern grid network. Finally, we thank the Editorial team, authors, co-authors,

and MDPI; without their valuable support, this reprint would not have been so successful.

Veerapandiyan Veerasamy, Shailendra Singh, and Sunil Kumar Singh
Editors
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Abstract: As the proportion of new energy sources, such as wind power, in the electricity system
rapidly increases, their participation in spot market competition has become an inevitable trend.
However, the uncertainty of clearing price and wind power output will lead to bidding deviation and
bring revenue risks. In response to this, a bidding strategy is proposed for wind farms to participate
in the spot market jointly with carbon capture power plants (CCPP) that have flexible regulation
capabilities. First, a two-stage decision model is constructed in the day-ahead market and real-time
balancing market. Under the joint bidding mode, CCPP can help alleviate wind power output
deviations, thereby reducing real-time imbalanced power settlement. On this basis, a tiered carbon
trading mechanism is introduced to optimize day-ahead bidding, aiming at maximizing revenue in
both the electricity spot market and carbon trading market. Secondly, conditional value at risk (CVaR)
is introduced to quantitatively assess the risks posed by uncertainties in the two-stage decision model,
and the risk aversion coefficient is used to represent the decision-maker’s risk preference, providing
corresponding strategies. The model is transformed into a mixed-integer linear programming model
using piecewise linearization and McCormick enveloping. Finally, the effectiveness of the proposed
model and methods is verified through numerical examples.

Keywords: carbon capture; electricity spot market; bidding strategy; wind and thermal power;
conditional value at risk

1. Introduction

In the context of developing a low-carbon economy, augmenting the integration of
renewable energy into the power system and decarbonizing traditional fossil energy (e.g.,
coal and oil) are important means to achieve the goals of carbon emission reduction and
carbon neutrality as scheduled [1]. With the accelerated construction and development
of the electricity spot market, China’s renewable energy sector has essentially shifted
from the initial support phase involving benchmark electricity prices and preferential
subsidies to a subsidy-free grid-connection phase at parity [2]. The generation capacity of
renewable energy sources, including wind and photovoltaic, has experienced consistent
growth. Nevertheless, they are no longer afforded the comprehensive grid-connection
protection facilitated by the power grid; instead, they engage in competition within the
electricity spot market alongside conventional power sources.

The strong randomness and volatility of wind power output make it difficult to
accurately predict [3]. The participation of wind power in the spot market not only poses
challenges to the secure operation of the power system but also results in penalties for wind
power producers arising from the imbalances between the actual output and the winning
bid [4]. This significantly weakens the profitability of wind power companies, which is
not conducive to the enthusiasm for subsidy-free bidding and the healthy development
of new energy. By optimizing resource allocation in the market [5], the combination of
wind power with thermal power, energy storage systems, pumped storage power stations,

Energies 2024, 17, 1714. https:/ /doi.org/10.3390/en17071714 1
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and other types of flexible resources enables energy complementation. As a result, this
method efficiently alleviates the anticipated revenue losses arising from deviation penalties,
as referenced in [6-8]. For the electricity market, this approach is beneficial for solving the
problem of insufficient grid reserves, ensuring a continuous and reliable power supply,
thereby alleviating the pressure on grid dispatching. Ref. [9] discussed the participation of
“new energy + storage” power plants as independent entities in the day-ahead market by
controlling the charging and discharging behavior of the storage system to optimize the
plant’s power output. Ref. [10] considered the strong uncertainty of wind power output
and formulated a bidding strategy for the wind-storage system in the energy market and
the frequency regulation auxiliary service market, also taking into account the cycle life cost
of storage. Ref. [11] designed a data-driven classification aggregation method for electric
vehicles and proposed a day-ahead bidding strategy for the joint participation of electric
vehicle fleets and wind power in the electricity and frequency regulation markets. Ref. [12]
conducted joint bidding with demand response aggregators and wind power companies,
introducing a balancing coefficient to balance the interests of multiple entities. In the above
literature, wind power and new market entities such as energy storage collaborate to reduce
upper and lower deviations. However, as the installed capacity of new energy continues to
increase, there is still an issue with the insufficient scale of storage allocation due to high
investment costs.

As traditional market entities, hydroelectric and thermal power possess excellent con-
trollability, enabling them to meet the flexibility demands of integrating large-scale wind
power into the grid within a short timeframe. Moreover, the collaborative participation
in the market of these traditional market entities alongside wind farms also contributes
to enhancing the stability of the electricity market. Ref. [13] investigated the bidding
strategy of a coalition of multiple wind farms and pumped storage power stations, using
the Shapley value and core solution to address revenue allocation among wind-pumped
storage power stations and multiple wind farms. Hydropower is characterized by its sus-
tainability and efficiency, but it entails significant construction costs and resource demands.
Furthermore, the establishment of hydropower stations is constrained by geographical
conditions. Currently, in China’s “Three Norths” area, where wind power is developed
intensively, the power source structure is still dominated by thermal power units and
the wind-thermal bundling approach is applied to promote the grid connection of large-
capacity wind farms. Therefore, encouraging thermal power companies and new energy
companies to carry out substantive joint operations is an effective solution to promote the
high-quality development of new energy. In [14-16], thermal power units were leveraged
to offset stochastic wind power output, demonstrating that the joint bidding strategy can
effectively increase the bidding profits for both parties. Ref. [14] proposed a dual-objective
bidding strategy for wind—thermal-photovoltaic systems in the electricity and spinning
reserve markets. Ref. [15] established a multi-objective, three-stage bidding and scheduling
model for maximizing profits and minimizing carbon emissions of a wind-thermal-storage
system based on mixed-integer programming. In [16], a wind-thermal joint bidding model
was established utilizing the traditional information-gap decision theory method, with the
cogeneration units supplying reserved capacity to minimize real-time imbalances. How-
ever, traditional thermal power units have a slow ramping rate, resulting in significant costs
due to frequent starts and stops for offering adjustment services, and their high carbon
emissions are contrary to China’s current “dual carbon” targets.

In the context described above, this paper studies the joint bidding strategy for wind
farms and CCPP in the spot market, taking into account imbalance costs. The transfor-
mation of traditional thermal power plants into CCPP not only results in lower carbon
emission intensity but also provides a wider operating range and faster ramping rate [17],
enhancing the environmental, efficiency, and flexibility levels of thermal power units. Con-
sequently, it can serve as an ideal low-carbon power source to implement joint bidding
with wind power. On this basis, a tiered carbon trading mechanism is introduced to reduce
carbon emissions from thermal power units to achieve the maximum economic benefits in
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both electricity and carbon markets. The conditional value at risk (CVaR) is introduced to
quantify various uncertainties, allowing decision-makers to set an appropriate risk aversion
coefficient according to their risk tolerance, thus coordinating profit and risk optimization.
Finally, the effectiveness of the proposed model is verified through numerical examples.

2. Theory and Methods
2.1. Mechanism Analysis of Flexible Operation of CCPP

Post-combustion carbon capture technology separates CO, directly from the flue gas
produced by fuel combustion in boilers, capturing it through three stages: absorption,
desorption, and compression. This technology has reached a mature state and is widely
applied [18]. However, there is a coupling issue between the scrubber and the stripper
in CCPP. Specifically, when the ratio of flue gas entering the scrubber from the venting
channel to that directly discharged into the atmosphere remains constant, the CCPP cannot
independently adjust the energy distribution of the carbon capture facilities. The sole
available control option is the adjustment of power output in the CCPP. This results
in conflicts between the loads of the generation system and the carbon capture system,
posing a challenge for CCPP to harmonize the relationship between carbon capture energy
consumption and net power output.

To address these challenges, this paper introduces an integrated, flexible operating
mode for CCPP. The carbon flow and energy flow within a CCPP are shown in Figure 1.

Net Power Fixed Energy

Output Consumption
Total Energy oo T |
Gross Power | Consumption of _| Operating Energy : Energy Flow :
Output Carbson tCapture Consumption | Carbon Flow |
ys cm l I_ ___________ I
___________________________________ 1
| |
Thermal Power | Venting Serubber Solvent (Rich) :
Generation System : Channel €O, Absorption 7 Tank I
| Rich solvent |
| Flue Gas I
| Lean solvent 1 :

. |

Fossil Fuel Solvent (Lean) N . |
Combustion : Atmosphere Tank Stripper —> Compressor :
: CO, Desorption |
| Carbon Capture System |

Figure 1. Carbon flow and energy flow of CCPP under the integrated, flexible operation mode.

This mode introduces two solvent storage tanks between the scrubber and the stripper,
disrupting the traditional balance of solvent volumes within each. Firstly, the proportion
of flue gas passing through the scrubber can be adjustable by the venting channel. The
CO,-containing flue gas has intimate contact with liquid absorbent within the scrubber.
Meanwhile, CO, is absorbed by the MEA (monoethanolamine) solvent. Subsequently, the
“rich” solvent, containing a higher concentration of CO,, is directed to the stripper, where
it desorbs the CO, and regenerates the “lean” solvent. A significant amount of thermal
energy is required during the regeneration of the solvent during this process. The “lean”
solvent is then recirculated back to the scrubber for the next absorption cycle, ensuring a
strictly equal bidirectional flow of solvent between the scrubber and the stripper. During
the above process, the “rich” solvent storage tank can store the “rich” solvent from the
scrubber and pump it to the stripper for further processing when needed. By introducing
these auxiliary facilities and decoupling the loads of power generation and carbon capture
facilities, the CCPP is able to control the volume of CO, captured, thus giving the CCPP
the opportunity to be operated flexibly [19].
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The formula for calculating the mass of CO, captured by the carbon capture system is
generally represented as follows:

{ Eq: = nviEg + Eny W
Eg: = BcPg ’

where Eg ; represents the carbon emissions of the thermal power unit before being captured
at hour t. # stands for the carbon capture efficiency. 7; denotes the proportion of flue gas
entering the scrubber through the venting channel at hour t. Bg is the carbon emission
coefficient of the thermal power unit, representing the CO, emission intensity per unit of
gross power output. Efy; is the mass of CO; released by the “rich” solvent storage tank at
hour ¢, with CO, mass related to the solvent volume as follows:

dsy = En,:MmEA , o)
&p fO’ f MCOZ

where d;; represents the volume of “rich” solvent pumped out from the “rich” solvent

storage tank at hour t. Myiga is the molar mass of the MEA solution. Mco, is the molar

mass of CO;. E is the quantity of desorption in the stripper. pf and o7, respectively, denote

MEA solvent concentration and density.

The gross power output of the generation system equals the sum of the net power
output and the power consumed by the carbon capture system. When the gross power
output is fixed, an increase in power consumption by the carbon capture system leads
to a decrease in the net power output. This enhances the spinning reserve capacity of
the thermal power unit, ensuring greater flexibility and reliability. Under the integrated,
flexible operation mode, the solvent storage tank can provide additional CO;. This allows
the carbon capture facilities to capture more CO,, resulting in increased capture energy
consumption. As a result, the thermal power unit is capable of achieving a significant
reduction in its net power output, enabling the CCPP to possess an extended range for net
output adjustment.

Compared to conventional coal-fired power units, where the generation cycle is
limited by their large thermal inertia and boiler state changes require significant time, the
carbon capture facilities in post-combustion CCPP operate downstream of the generation
system, providing greater independence. This independence allows for direct adjustment
of the energy supply to the carbon capture system, enabling rapid adjustments to the net
power output. Additionally, it can store CO,, which is not to be treated in the stripper,
so the thermal power unit can provide more power for the load during the peak load
period. The carbon capture power plant can realize “energy time shifting” by adjusting
the solvent storage, effectively resolving the contradiction between power generation and
carbon capture.

2.2. Joint Bidding Strategy for Wind Farms and CCPPs

The generation alliance of wind and thermal power makes bidding decisions at two
stages: the day-ahead market and the real-time balancing market. The day-ahead market
bid is based on disclosed market information, generation cost functions, forecasted market
clearing price, and wind power output. In the first stage, the day before the operation,
the generation alliance submits its offering curve that aligns its economic interests to the
electricity trading institution. In the MCP (market clearing price) mechanism, the settlement
of all the winning generators is based on the unified clearing price A. Since the capacity
of the generation alliance only accounts for a small ratio in the whole market transaction,
it is not a determinant of the market clearing price. Its bidding behavior exerts minimal
impact on the system’s marginal electricity price. Therefore, this paper assumes that the
generation alliance acts as a price taker in the market. Thus, it only needs to submit power
bid quantities instead of bidding curves to the market. In the second stage, the power
generation plan formulated in the day-ahead market is put into action. Given the existence
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of forecasting errors, the CCPP performs rapid and precise control of real-time power
output on an operational day, ensuring that the actual generation quantities align closely
with the scheduled quantities in the day-ahead plan. When the actual electricity deviation
of the wind farm surpasses the adjustment capability of the CCPP, the generation alliance
enters the real-time balancing market. The imbalance price is used for the settlement of
imbalanced electricity, which involves shortages or surpluses of electricity in real time.

Currently, the spot market mechanism in China is not yet mature. To prevent specu-
lators from exploiting the arbitrage between day-ahead and real-time price differences, a
dual-pricing mode is adopted in the real-time balancing market to incentivize participants
to enhance their forecasting capabilities and provide reliable electricity supply [13]. The
penalty coefficients meet the following conditions:

0 < 7Tgown <1 < Tup, 3)
)\?OWH = ndown)\?a (4)
)\];p — nup/\?a ’

where 7Tgown and 7typ, respectively, represent the penalty coefficients for positive and
negative imbalances. A{? represents the day-ahead market clearing price. Ad°"" and A;?
represent the positive and negative imbalance prices, respectively.

The two-stage decision-making framework is illustrated in Figure 2; the uncertainties
of clearing prices and wind power output are modeled via a set of scenarios. Assume that
the forecast errors of random variables follow a normal distribution, and the scenarios
are generated via random sampling from the probability distribution. Subsequently, a
Kantorovich distance-based scenario reduction technique is utilized to establish a set
of typical scenarios and their corresponding probabilities. The bidding strategy aims
to maximize expected profits and minimize risk as multi-objectives. The risk aversion
coefficient is determined based on the risk tolerance levels of generators. The optimal
solution is calculated by combining all scenarios along with their respective probabilities.
The wind power uncertainty is described through scenarios where the CCPP adjusts its
actual net power output based on wind power variations within each scenario.

I
I
; e ey

Wind Power | Participating in Day-Ahead |r Phase One: -: |
Forecasting and [ Market Bidding | Day-Ahead | !
Day-Ahead N ! I I
Market Clearing I ¢ E J :

. . S xpecte
Price Prediction : Submit Bidding Plans Revenue |
| Before Day-Ahead Market |« |
v | Closure :
Monte Carlo : ¢ I
i I
sampllig : Day-Ahead Market |
| Revenue |
4 R |
Scenario R S R 'i
Reduction | - r T T |
Techniques Operating scheme of | Phase Two: | |
I Carbon Capture Plants | Real-Time | |
: v : Operation | |

v i I

I Real-Time Balancing I Scenarios | :
Scenario Set I Market and Carbon @|— — 77777 I
: Trading Market Revenue I
I
S 4

Figure 2. The decision-making framework.
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2.3. Conditional Value at Risk

Should the day-ahead forecast results deviate significantly from the actual values, it
can lead to a significant divergence between actual and expected profits. To mitigate the
adverse impact of risks on the bidding model, CVaR is utilized as a risk measurement
indicator to assess risk, thereby bolstering the robustness of the model. Unlike value at risk
(VaR), which focuses on estimating the maximum potential loss within a confidence level,
CVaR considers the expected value of losses that exceed the VaR threshold.

The loss function f (x,y) is related to the decision vector and uncertain vector. Here,
x represents the decision variables, and y denotes the random variables associated with
risk factors. When the joint probability density function p(y) of y is known, the conditional
value at risk function under continuous distribution can be formulated as follows:

B=15 [ feypma ©
fxy)>zp(x)
zg(x) = min{z € R: ¢(x,z) > B}, (6)

where B is the confidence level. zg represents the VaR value at confidence level B. (x)
denotes the probability that f (x,y) does not exceed the threshold z. Fg(x) is the expected
value of f (x,y) exceeding the VaR.

To address the integral problem, we can utilize a set of sampled scenarios to obtain an
equivalent calculation formula for CvaR under discrete distribution as follows:

N
Folxa) =25+ 775 L ulf00) 2", @)
[f(xy) = 2] " = max[f(xy) — 25, 0], ®)

where N is the total number of sampled scenarios. @; is the probability of the scenario s.
CVaR is often used as a risk measure for cost-based loss functions. A smaller CVaR
implies a lower level of tail cost, indicating a relatively better risk profile. For benefit-based
functions, the loss function could be defined as the portion where actual benefits fall below
expected benefits [20]. For ease of calculation, this paper defines CVaR as the average
benefit when the outcome falls beyond a specified confidence level. CVaR provides a
measure of the expected benefit in extreme adverse scenarios, focusing solely on the tail of
the distribution beyond the chosen confidence level. The formula is articulated as follows:

XV (B =XV(B) ~ 1= qus{xv )-E} ©)

where XV represents the VaR, which is the variable in the decision model. E; is the benefit
corresponding to scenario s. XV represents the average benefits that are less than the
XV threshold.

To facilitate calculation, auxiliary variables & (s =1, 2, ..., N) are introduced to relax
Equation (9), resulting in a linearized calculation formula for CVaR as follows:

XCV(/%) XV 1 — 5 Z (PSSS/ (10)
XV(B) — Es < s, (11)
s > 0. (12)
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2.4. Two-Stage Joing Bidding Model Based on CVaR
2.4.1. Objective Function

The objective function of the joint bidding decision model can be expressed as follows:

¢sEs +6XCV(B), (13)

N
maxF =

s=1

Es=RPA 4+ RMH G —cM 9 —CF, (14)

where E; is the profit function, X<V is the conditional value at risk. J is the risk aversion

coefficient, with § > 0 indicating an attitude towards risk aversion. It reflects the balance
between expected profit and the degree of profit fluctuation, simplifying multi-objective
optimization into a single objective through a weighted sum method. RP4 is the day-ahead
market revenue under scenario s. R{H is the real-time balancing market revenue under
scenario s. CS, CM, C9, and CF, respectively, represent the fuel cost, solvent loss cost,
start-up and shutdown cost, and carbon trading cost under scenario s.

T .
RPA = Y AGHPYE, (15)
t=1
PH L d d up pup
RS = Z (AS,?WnPy,(S),‘:‘m - /\s,t Py,s,t)f (16)

t=1

where T is the number of hours. P}t,’/itd represents the bidding quantity at hour ¢. P49%™ and

ysit
P; P, respectively, represent the positive and negative imbalance electricity under scenario

s at hour t.

The operating costs of CCPP primarily consist of power generation costs, depreciation
costs of carbon capture facilities, and MEA solvent loss costs. Generation costs mainly arise
from the energy supplied to the carbon capture system and the net output. The depreciation
costs of carbon capture facilities and storage tanks are constants and are unrelated to the
operation state of the CCPP; thus, they are not considered in the model.

(1)  Fuel Cost for Thermal Power Units

T
2
CsG = Z[a(PG,s,t) +bPgs, + us,tc]/ (17)
t=1

where g, b, and ¢ are the quadratic, linear, and constant coefficients of the coal cost function
for the thermal power generation unit. Us; is a binary variable representing the on/off
status of the thermal power unit at hour ¢, where 0 and 1 represent shutdown and start-up,
respectively. Pg s is the gross output power at hour ¢ under scenario s.

(2) Solvent Loss Cost

During the carbon capture process, the daily solvent loss of the MEA solution is
calculated as follows:

T
Cévl = Z CrgrEQ,s,t/ (18)
t=1

where ¢, is the solvent cost coefficient. g; is the operating loss coefficient. Eq is the mass
of CO; being captured at hour t under scenario s.

(3) Carbon Trading Cost

The carbon trading market organizes the buying and selling of carbon emission
rights among market members, thereby incentivizing power generators subject to carbon
emissions assessments to manage power generation and carbon emissions, promoting
carbon reduction on the generation side. If a power generator’s actual carbon emissions
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exceed government-issued carbon allowances, additional carbon emission rights must
be purchased. Conversely, if a power generator holds more carbon allowances than its
actual emissions, it can sell the surplus carbon allowances. This paper breaks down carbon
trading costs on a daily basis, recording actual carbon emissions and settling carbon trading
costs at the end of each electricity spot market cycle. The quantity of carbon allowances
involved in trading in the carbon market is as follows:

T

Eact,s - Eceq,s - Z(EG,s,t - E],s,t - PG,s,theq)/ (19)
t=1

where E,s represents the actual carbon emissions under scenario s. Eceq,s represents
the carbon allowances under scenario s. Zceq is the carbon emission baseline per unit of
electricity for the thermal power unit. Eg ,; is the carbon emissions of the thermal power
unit at hour ¢ under scenario s. Ej is the mass of CO, captured at hour ¢ under scenario s.
Ys,t is the proportion of flue gas entering the scrubber at hour ¢ under scenario s.

A tiered carbon trading mechanism establishes distinct intervals for the trading of
carbon emission rights. When the purchased quantity of carbon emission rights surpasses
a certain interval, the carbon trading price increases accordingly. Compared to a uniform
pricing mechanism, the tiered pricing mechanism can strengthen penalties for exceeding
carbon emissions and incentives for carbon reduction. The cost calculation model for tiered
carbon trading is as follows:

—A(240)d 4+ A(1 4 20) (Eacts — Eceqs +24),
_Eceq,max < Eact,s - Eceq,s <-2d

—Ad + A(l + 0') (Eact,s - Eceq,s + d)/

_Zd S Eact,s - Eceq,s S _d

A(Eact,s - Eceq,s)/ —d S Eact,s - Eceq,s S d
Ad + /\(1 + T)(Eact,s - Eceq,s - d)/ ’ (20)
d S Eact,s - Eceq,s S Zd

AM2+71)d 4+ A1+ 27) (Eacts — Eceqs — 2d),
2d < Eact,s - Eceq,s <3d

AB+37)d + A(1+437)(Eacts — Eceqs — 34),
3d S Eact,s - Eceq,s < EG,max - Eceq,max

@)
@
|

where A is the carbon trading benchmark price. T is the penalty coefficient for tiered carbon
trading. o is the compensation coefficient for tiered carbon trading. d is the interval length
of carbon emission rights.

(4) Start-up and Shutdown Costs for Thermal Power Units
T

Cso = Z[US,t(l - us,tfl) =+ us,tfl (1 - Us,t)]COI (21)
t=1

where ¢, represents the cost of a single start-up or shut-down of the thermal powerunit.

(5) Operating Costs of Wind Farms

T
W t
Cs = Z CWPJV,s,t/ (22)
t=1
where ¢ represents generation cost coefficients for wind farms.

2.4.2. Constraints

(1) Power Balance Constraint

rt rt bid __ pdown up
Pc,s,t + pw,s,t - Py,t —lyst T Py,s,t' (23)
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where P, and Py ; |, respectively, represent the net power output of the CCPP and the

actual power output of the wind farm under scenario s at hour ¢.

The power generation status of the alliance under each scenario s and each hour ¢
exists in one of three states: overgeneration, undergeneration, or the amount of output
exactly equal to the bid quantities. Thus, the constraints for positive /negative imbalance
power must meet the constraint P, ,P4o"" = 0. To avoid introducing Boolean variables,

V.S tTy,s.t
the constraint conditions are equivalently transformed as follows.

u bid t t
Py,g,t 2 Py,lt - Pg,s,t - Psv,s,tr (24)
d t t bid
Py,(s),vtvn 2 Pg,s,t =+ le:v,s,t - y,lt ’ (25)
PP, >0, Ploy™ > 0. (26)

(2) Bidding Quantity Constraints

0< P;ifi < Pemax + Pw,max, (27)

where Pcmax and Py, max, respectively, refer to the maximum net power output of the
thermal power unit and the capacity of the wind farm.

(8) Gross Power Output Constraints for Thermal Power Units

us,tPG,min < PG,s,t < us,tPG,maX/ (28)

where PG max and PG min, respectively, denote the maximum and minimum technical power
output of the thermal power unit.

(4) Ramp Rate Constraints of Thermal Power Units

{ PG,S,tfpc,S,tfl S IJ[_IR (29)
Pgsi-1-Pgst < Pur

where Pyr represents the maximum ramp rate of the thermal power unit.

(5) Start-up and Shutdown Constraints for Thermal Power Units

TR —1
kZ us,k > T&riln<us,t - us,t—l)
t+T§fifn:1t ’ (30)
kZ (1 - Us,k) > T&fifn(us,tfl - Us,t)
=t

where TO" and T | respectively, represent the minimum continuous operating and

shutdown durations.

(6) Operation Constraints for CCPPs

_ t
PG,s,t - Pés,t + Pccs,s,t
Pccs,s,t - pB,t + PI,s,t

Ejst =n7vstEcst (31)
EQISJ = E],s,t + EH,s,t
PI,s,t - q)EQ,s,t

where P s+ represents the carbon capture system energy consumption under scenario
s at hour t. Pp is the fixed energy consumption of the carbon capture system, which is
considered a constant value resulting from structural changes in the power plant. Py is
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the operating energy consumption of the carbon capture system under scenario s at hour .
¢ is the power consumption per unit of CO, captured.

The constraints for the proportion of flue gas entering the scrubber and the captured
CO; mass by the carbon capture system at each hour f are as follows:

0 < Vst < ]-/ (32)

0 < EqQst < 71BGHmax PG max/ (33)
where jimax represents the maximum operation state coefficient of the stripper and compressor.
(7)  Solvent Storage Tank Capacity Constraints

The formula for calculating the volume of the rich and lean solvent in the storage
tanks is as follows:
VEst = VEst—1—dgss
7 7”7 27 , 34
{ VP,s,t - VP,s,t—l + df,s,t ( )

where Vg, and Vp;; represent the volume of the rich and lean solvent in the storage tanks,

respectively, under scenario s at hour ¢.
These volumes satisfy the following constraints:

0< VP,s,t < VLSP,max

0 < Vst < VLSPmax

Vrs2a = Vpspa = Vispiny
VEso0 = Vps0 = VLspinv

(35)

where V1 spmax represents the maximum capacity of the storage tanks. Vigpiny refers to the
initial volume of the rich and lean solvent in the storage tanks.

(8) CVaR constraints are as shown in Equations (11) and (12).

3. Model Solution Strategy

The solving process of the mixed-integer nonlinear programming (MINLP) model is
relatively complex, resulting in higher computational costs and longer computation time.
The complicated model with nonconvex and nonlinear features was transformed into a
stochastic mixed-integer linear programming (MILP) model so that the previous bidding
problem could be solved directly by a commercial solver.

(1) For Equation (17), a piecewise linearization approach is adopted, with the specific
process as follows. Based on the required accuracy, the power output of thermal power
units is discretely divided into L intervals on average:

Pd,min = Pd,l < Pd,2 < -"Pd,L = Pd,max
L+1 , (36)

where Py ; represents the breakpoints of the g interval. Py yin and Py max are, respectively, 0
and PG max- Wy are L+1 continuous auxiliary variables introduced. The additional constraint
conditions to be incorporated are as follows:

w+wy+...+wpp =1

zZ14+z0+...+zp =1

w1 20,?1)2 20,...,ZUL+1 20 P (37)
w1 <z, wy < z14+2,...,

wy < 211+ 2L, W41 < ZL

where [z1,2y,. . .,z1] are L binary auxiliary variables.

10
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The nonlinear function in Equation (17) can be approximated by the following lin-

earization function:
L+1

f(Pe) = ) wyf (Pag), (38)
q=1
where f is the nonlinear function for the squared term in Equation (17).
(2) For the tiered carbon trading cost function in Equation (20), by introducing con-
tinuous variable [¢1,92,. - .,g7] and binary variable [a1,45,. . .,4¢], the linearized function for
carbon trading costs can be derived as follows:

7
Eact — Eceq = 'Zl giAEi
1=

7 , (39)
CEL = '21 8iCE(AE)
1=

where AE; represents the breakpoints of Eact — Eceq- The constraint conditions for the
auxiliary variables ¢ and a are as follows:

S+t +g=1

atay+...4+a5=1

g1>0,82>0,...,97>0 . (40)
g1<a, g <m+ta,...,

86 < as +4dg, g7 < 4ag

(3) In Equation (21), for the binary product term of two binary variables x1x;, a contin-
uous auxiliary variable z is introduced. Then, the constraints equivalent to z and x;x, are

as follows:
z>2x1+x—1
z>0 . 41)
z<x,i=1,2

(4) For the bilinear term yE¢ in Equation (31), McCormick envelope linear relaxation
is used to replace it, thereby reconstructing the original problem into an equivalent convex
problem [21]. The specific expressions are as follows:

h > yYEg + yEgh — yLEGE

h > yYEg +vEgY — yYEGY

h < yYEg +vEgk —vYEG":
h < yEGY + 2 Eg — +LEGY

(42)

where the superscripts U and L, respectively, indicate the upper and lower limits of the variable.

4. Results and Discussion

The case study uses a 600 MW CCPP and a 370 MW wind farm. The detailed param-
eters for the thermal power unit of the carbon capture plant are shown in Appendix A,
Table Al, and the parameters for the carbon capture facilities are referenced from [22]. The
generation cost coefficient of the wind farm is CNY 100/MWh. The penalty coefficients for
positive and negative imbalances are 0.4 and 1.6, respectively. The carbon emission baseline
per unit of electricity is 0.7 t/(MW-h), with a carbon trading benchmark price of CNY 100/t,
a compensation coefficient of 0.1, and a penalty coefficient of 0.2. The interval length of
carbon emission rights is 2000 t. The forecast results for wind power output and day-ahead
clearing price are shown in Figure 3, with standard deviations of the forecast errors set at
25% and 15%, respectively. The Monte Carlo method is used for random sampling to gen-
erate 1000 wind power out and price scenarios. Employing scenario reduction techniques,
the scenarios are reduced to 10 typical ones, each with its corresponding probability. The

11
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risk aversion coefficient J = 1, and the CVaR confidence level § = 0.95. The model is solved
using MATLAB software R2016b and the Gurobi optimizer 10.0.0.

4.1. Analysis of Bidding Results

Figure 3 illustrates the results of joint bidding under the risk-averse strategy. As
depicted in Figure 3, from hours 5 to 9, wind power is abundant, and the predicted power
output of the wind farm is substantial, yet the bidding quantities are relatively low. This is
attributed to the lower electricity price during this period, which is close to the marginal
cost of the thermal power unit, so the bidding quantities are relatively low. At the same time,
in periods when the electricity price is high, the bidding quantities increase to maximize
revenue from electricity sales. This enables the generation alliance to achieve profitability
throughout the entire day. Additionally, limited by weather conditions such as wind
speed, the inclusion of the thermal power unit also somewhat weakens the counter-peak
characteristics of wind power, enabling the generation alliance to respond to clearing price
signals and formulate an hourly generation plan. It is evident that the hourly bidding
quantities align approximately with the trend of electricity price changes, thereby favoring
a responsive approach to meet the market load demand.

1200 - [ bidding quantities 7

1000 ™ clearing prices forecast 106 §
= —= wind power output forecast /* 1 §
= 800+ Z
E — MM 104 €
£ 600 (Ll 8
o . _ a
5 z
z 400 {02 &
= 200 e[ il I3

[ I [
0 0.0

Hours(h)

Figure 3. Optimized bidding results in the day-ahead market.

The bidding strategy takes into account revenues from both the day-ahead market
and real-time balancing market settlements, providing a comprehensive decision-making
perspective. The balancing market aims to eliminate imbalanced electricity. Given the strict
penalties for generation shortage and wind curtailment, day-ahead bidding is conservative.
Under an individual bidding strategy, the wind farm submits a generation plan based on
the optimization results considering day-ahead revenues and real-time balancing market
revenues for the scenario set. In the case of individual bidding by the CCPP, it assumes
no power output deviation. Due to the higher costs associated with the thermal power
unit compared to wind power, the CCPP facilitates the integration of wind power into the
grid, thereby reducing overall operating costs. This results in joint bidding yielding higher
profits than individual bidding, with lower risks associated with joint bidding compared to
individual bidding.

According to Table 1, the total expected profits and total CVaR for individual bidding
are CNY 1675.3 thousand and CNY 1547.6 thousand, respectively, while for joint bidding,
they are CNYY 1790.9 thousand and CNY 1647.9 thousand, with gains of CNY 115.6 thousand
and CNY 100.3 thousand, respectively. Given the prioritization of wind power for grid
integration under this strategy, thermal power inevitably stands to lose the profits it would
have gained under individual bidding during the coordination process. Without adequate
compensation, participating in joint bidding would be contrary to the interests of thermal
power stakeholders. Using the Shapley value [23] to fairly allocate the total profits, Table 2
shows the profit for each member. The expected profit for wind power is CNY 875.3

12
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thousand, an increase of 7.07%, while for thermal power, it is CNY 915.6 thousand, an
increase of 6.74%. The analysis above demonstrates that the adoption of Shapley’s value
ensures mutually beneficial outcomes for participating members.

Table 1. Expected profit of individual bidding and joint bidding.

Wind Power Thermal Power Total Expected Profits Total CVaR
Unit Thousand (CNY) Thousand (CNY) Thousand (CNY) Thousand (CNY)
Individual 817.5 857.8 1675.3 1547.6
bidding
Joint bidding 875.3 915.6 1790.9 1647.9

4.2. Comparison of Different Cases

This section considers the deployment of power generation alliance options. Three
cases are considered: case 1 adopts the integrated flexible CCPP, equipped with solvent
storage tanks. Case 2 employs a traditional CCPP, lacking solvent storage tanks. Case 3
refers to a conventional thermal power plant without carbon capture facilities.

Comparing the bidding results of each case with an individual wind farm, as shown in
Table 2, it is evident that case 1 achieved the best results in both economic and low-carbon.
The expected profit for case 1 increased by CNY 62.2 thousand and CNY 140.7 thousand
compared to cases 2 and 3, respectively. Additionally, carbon trading costs decreased
by CNY 622.5 thousand and CNY 1050.3 thousand, respectively, confirming that CCPPs
have significantly lower carbon emission intensity compared to conventional thermal
power plants.

Due to the fact that both case 1 and case 2 supply energy for the carbon capture
system, the fuel costs are higher than those of case 3. However, the differences between
the revenues from day-ahead market bidding and the total costs for case 1 and case 2
are, respectively, CNY 1810.8 thousand and CNY 1765.2 thousand, while for case 3, it is
only CNY 1715.6 thousand. Thus, the economic feasibility of carbon capture power plants
is ensured.

The carbon trading costs under conditions without and with solvent storage tanks
are CNY 96.7 thousand and CNY —525.8 thousand, respectively, and the solvent loss costs
are CNY 57.0 thousand and CNY 128.1 thousand, respectively. This implies that solvent
storage tanks have increased the amount of CO; that can be captured. The amount of net
carbon emissions for case 1 is lower than the amount of corresponding carbon allowances,
allowing the CCPP to benefit in the carbon trading market and thus bringing additional
revenue. Furthermore, case 3 submitted the least total bidding amount in the day-ahead
market compared to case 2. The reason is that the conventional thermal power plant has a
high carbon emission intensity, and to avoid incurring high carbon trading costs from the
tiered carbon trading mechanism, they reduced the electricity generation amount. Case 1’s
total bidding amount is less than case 2, allowing it to provide greater adjustment capacity
during the real-time stage.

The individual wind farm’s positive and negative imbalances settlement in the balanc-
ing market were CNY 51.8 thousand and CNY —182.3 thousand, respectively, while for
case 3, they were CNY 16.7 thousand and CNY —82.2 thousand, respectively. This indicates
that the joint bidding mode can mitigate wind power output deviations. The imbalance
settlements for the three cases decreased in sequence, with case 1’s imbalance settlements
being CNY 1.8 thousand and CNY —21.7 thousand, respectively. This demonstrates that
case 1 has the smallest imbalance of electricity amount, thus promoting wind power grid
integration to a greater extent. It also further illustrates that CCPPs consider solvent storage
tanks to offer a more flexible operation, with a stronger capability to facilitate the integration
of wind power compared to conventional thermal power plants and traditional CCPPs.

13
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Table 2. Comparison of different cases.

Unit Case 1 Case 2 Case 3 Individual Wind Farm
Total Bidding Amount MWh 13238 14947 14105 4012
Day-Ahead Market Revenue Thousand (CNY) 5123.0 5663.4 5477.2 1358.4
Fuel Cost Thousand (CNY) 3299.6 3334.3 2726.7 —
Solvent Loss Cost Thousand (CNY) 128.1 57.0 — —
Start-up and Shutdown Costs for11ousand (CNY) 0 0 100.0 —
Carbon Trading Cost Thousand (CNY) —525.8 96.7 524.5 —
Total Cost Thousand (CNY) 3312.2 3898.2 3761.6 410.3
Positive Imbalance Settlement Thousand (CNY) 1.8 3.3 16.7 51.8
Negative Imbalance Settlement Thousand (CNY) —-21.7 —-39.7 —82.2 —182.3
Expected Profit Thousand (CNY) 1790.9 1728.7 1650.2 817.5

4.3. Analysis of Risk Preference

This section explores the expected profits and CVaR values under different risk aver-
sion coefficients, with § values ranging from 0 to 10. Figure 4 illustrates the efficient frontier
curve of CVaR, where a J value of 0 represents a risk-neutral attitude, focusing solely on
maximizing bidding profits. It is observed that the joint bidding strategy, when not consid-
ering risk, achieves a maximum expected profit of CNY 1799.4 thousand, which is CNY 23.5
thousand higher than the strong risk-averse joint bidding strategy (J is 10). The purpose of
risk aversion is to reduce the expected profit gap between different scenarios by sacrificing
economic benefits. Hence, the resulting CVaR value when ¢ is 10 is CNY 1653.3 thousand,
which is an increase of CNY 41.7 thousand compared to the situation when ¢ is 0.
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Figure 4. CVaR efficient frontier.

As the J value increases, the expected profit exhibits a declining trend, while CVaR
shows an ascending trend. This implies a positive correlation between risk and profit,
wherein decision-makers aiming for higher profits also face greater risks. Within the &
range of 1 to 10, the decision-making objective shifts from balancing profits and risks
(6 = 1) to placing a stronger emphasis on risk (6 > 1). As J increases, the CVaR value
grows, accompanied by a significant decrease in expected profits. The bidding strategy
becomes more focused on the tail of the profit distribution under a given confidence level.
Therefore, it is necessary to measure the risk attitude of decision-makers in bidding and find
the optimal balance between risk and revenue, thereby formulating appropriate bidding
strategies for market participants.

4.4. Analysis of the Flexible Operation Characteristics of CCPP

The power generation alliance needs to strategically determine its power output based
on the bidding quantities and day-ahead clearing price. Figure 5 illustrates the actual power
output of the wind farm and CCPP. Between hours 1 to 6, in cases where wind power
output exceeds its forecast, the CCPP minimizes wind power curtailment by reducing its
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net power output. The carbon capture system can serve as a dispatchable load. From hours
5 to 10, the net power output of the thermal power unit is significantly below its minimum
technical output. Between hours 18 and 24, the CCPP compensates for the shortage in
wind power output, aiming to closely align the actual power generation quantities of the
generation alliance with the day-ahead bidding quantities (day-ahead generation plan).
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Figure 5. Power output of the wind farm and CCPP.

To further investigate the flexible operation mechanism of CCPP, an analysis of the
power output and carbon flow is conducted. As shown in Figure 6, the net power output
of a CCPP is the difference between its gross power output and the energy consumption of
the carbon capture system. During low electricity price periods, it is observed that CCPP
tend to increase the energy supply to carbon capture systems. This strategy is motivated by
the opportunity to capture CO, and obtain revenue by selling the excess carbon allowances
in the carbon trading market.
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Figure 6. Power allocation of CCPP.

Conversely, during periods of high prices, the CCPP increases its net power output
by raising its gross output and reducing the energy supply to the capture system. This
strategy is motivated by the significantly higher revenue in the electricity spot market
during these times, making it economically advantageous to sell electricity. In summary,
the analysis reveals that the generation preferences of the CCPP depend on electricity prices.
By adjusting the energy supply to the carbon capture system, the CCPP can flexibly modify
net power output, enabling it to operate at an economically optimal point. The adoption
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of distinct strategies during peak and off-peak electricity prices is crucial for maximizing
profits throughout the entire operational cycle.

As indicated by Figure 7, the scrubber and stripper of the integrated flexible CCPP no
longer operate synchronously due to the installation of the solvent storage tank. During
low electricity price periods, as the output of the thermal power unit decreases, the amount
of CO, produced by the plant also decreases. Consequently, a carbon capture system,
functioning as a dispatchable load to absorb excess electricity, may not have a sufficient
supply of CO; for capture during such periods. From hours 4 to 11, as depicted in Figure 7,
there is a reduction in the volume of the “rich” solvent in the tank, as solvents from the
scrubber and “rich” solvent tank are transferred to the stripper. This leads to a substantial
increase in carbon capture energy consumption, leading to a significant reduction in the
net power output of the CCPP.
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Figure 7. Distribution of carbon flow in CCPPs.

During peak electricity price periods, the CCPP requires a higher net power output
to meet the day-ahead generation plan. Simultaneously, the plant will also produce a
significant amount of CO,. The CCPP increases the flue gas entering the scrubber and
stores the absorbed CO, inside the “rich” solvent tank. This not only reduces emissions of
CO, into the atmosphere but also reduces the energy supply to the carbon capture system
by storing CO, without immediate capture. As a consequence, during these periods, the
volume of solvent processed within the stripper decreases, resulting in an increase in the
net power output of the CCPP. Finally, the volumes of both the lean and rich solvents in the
storage tank are restored to their initial levels at the end of the cycle, ensuring the long-term
operation of the carbon capture system.

4.5. Comparison of Results between MILP and MINLP

Table 3 compares the solution results of the MILP and MINLP models using the
Gruobi optimizer. As shown in Table 3, compared to the MILP model, which was solved
in 15.61 s, the MINLP solution was obtained in 1443.37 s. Regarding results accuracy,
the MILP optimization results in an objective function value of 3438.9, while MINLP
optimization yields a value of 3440.8, with a mere difference of 1.9 between the two.
The difference between the two objective function values is rather small. As depicted in
Figure 8, the optimal bidding electricity quantities in the day-ahead market obtained from
MILP and MINLP are rather similar. In summary, based on the comparison of the exact
optimal solution between the MILP and MINLP approaches, MILP can find acceptable
exact solutions in our bidding problem much faster, demonstrating that the MILP approach
holds advantages over the MINLP technique from the viewpoint of solution time.
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Table 3. Comparison of solution results between MILP and MINLP.

Solution Time/s Objective Functions/ Expected Profit/

Thousand (CNY) Thousand (CNY)
MILP 15.61 3438.9 1790.9
MINLP 1443.37 3440.8 1792.0
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Figure 8. Comparison of the optimized bidding quantities in the day-ahead market.

5. Conclusions

Currently, China is in the early stages of constructing electricity spot markets and
carbon trading markets. In anticipation of wind power participating in the electricity spot
market in the future, a two-stage decision-making model is established, which combines
CCPP and wind farm bidding in the spot market to mitigate the imbalance costs under the
uncertainty of wind power output. The specific conclusions are as follows:

(1) Compared to individual bidding, the joint wind-thermal bidding strategy reduces
risk while obtaining excess profits in the spot market.

(2) This paper compares three cases and verifies that the integrated flexible CCPP has clear
advantages in terms of economy, low carbon emissions, and wind power integration.
This is attributed to the installation of a solvent tank, which not only enhances the
flexibility of the CCPP but also improves energy utilization efficiency. Thus, it deeply
reduces carbon emissions while optimizing economic benefits.

(3) The decision model facilitates risk control, providing a comparative result for decision-
makers to choose different risk coefficients. A risk-averse model has been established,
demonstrating a proportional relationship between risk and profit. This can provide a
better reference for market bidding.

(4) This study considers wind farms and CCPPs as price takers jointly participating in
the spot market. As regional market trading rules continue to evolve and develop,
and with the increasing share of renewable energy participation in the market, future
work will focus on the price-making strategies of power generators.
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Appendix A

Table Al. Parameters of thermal power units.

Parameter Unit Value Parameter Unit Value
Coal Cost Coefficient a CNY/MW?2.h 0.012 Carbon Emission Intensity t/MW-h 1.16
Coal Cost Coefficient b CNY/MW-h 250 Ramp Rate MW/h 100
Coal Cost Coefficient ¢ CNY 8700 Per Start-up and Shutdown Cost Thousand CNY 50
Maximum Technical Output MW 600 Minimum Start-up and Shutdown Time h 4
Minimum Technical Output MW 200
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Abstract: Detecting and locating high impedance faults (HIF) in overhead distribution networks
(ODN) remains one of the biggest challenges for manufacturers and researchers due to the complexity
of this phenomenon, where the electrical current magnitude is similar to that of the loads. To
simulate HIF, the selection of the HIF model is important, because it has to correctly reproduce the
characteristics of this phenomenon, so that it does not negatively influence the simulations results.
Therefore, HIF models play a fundamental role in proposing solutions and validating the effectiveness
of the proposed methods to detect and localize HIF in ODN. This paper presents a systematic review
of HIF models. It is intended to facilitate the selection of the HIF model to be considered. The models
are validated based on experimental data from medium voltage (MV) laboratories, specifically,
recorded waveforms from two HIF tests conducted in an MV lab were analyzed and compared with
three established HIF models. The efficacy of these models was assessed against MV lab test data to
ensure a precise representation of both transient and steady-state conditions for fault conductance
and current waveforms. The findings show that the two nonlinear resistor models better approximate
the waveforms obtained in the experimental tests performed in this study.

Keywords: high impedance faults (HIFs); HIF models; overhead distribution networks (ODN);
lab experiment

1. Introduction
1.1. General Considerations

A high impedance fault (HIF) is defined as a disturbance caused by a conductor
that touches a high-resistance nonmetallic surface connected to the ground, producing
an arcing fault current lower than the residual relay pickup setting. According to [1],
HIFs involving downed conductors in contact with a surface, correspond to 10% of all
faults occurring in overhead distribution networks (ODN) [1]. The percentage of HIFs in
ODN is even higher since not all HIF events are reported [2]. In addition, HIFs can occur
without rupture or downfall of conductors on a surface, therefore, the HIF current is so
low that it cannot be detected by conventional overcurrent protection functions [3]. This
protection issue has been a challenge for distribution utility engineers for a long time [4].
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To further complicate matters, HIF current waveforms have diverse characteristics, such as
asymmetry, nonlinearity, build-up, shoulder, intermittence, and randomness [5].

High impedance faults in ODN may cause serious and harmful effects, such as (1) risk
of electric shock; (2) risk of fire in material assets and forests; (3) electricity supply in-
terruptions; and (4) long service restoration times. These effects continuously motivate
the development of new ideas and innovative solutions for HIF detection and location,
since they are challenging issues remaining unsolved or partially solved by the power
distribution industry. In that sense, more reliable algorithms for HIF studies should be
developed based on the above-mentioned HIF current waveform characteristics, which can
be represented by mathematical models that can reproduce them.

Test data from many early staged HIF studies have provided valuable information to-
ward understanding and characterizing HIFs [6,7]. To test the effectiveness and robustness
of these algorithms, time-domain computational simulations must be performed consider-
ing the asymmetric, nonlinear, intermittent, and random nature of the HIF phenomenon. It
is worth highlighting that HIFs are a random and dynamic phenomenon since they produce
arcing and flashing at the point of contact, and the conductor may move around due to
electromagnetic force [8].

The use of accurate HIF models for purposes of designing and testing HIF detection
and location algorithms is essential. HIF computational simulations can provide, at the
very least, initial data for preliminary research. On the other hand, field tests on an actual
medium voltage (MV) distribution network are not a recommended practice due to the
inherent danger involving this type of arcing fault in an uncontrolled environment.

Modeling of HIFs in ODN can be classified into three main categories: (1) model based
on active and passive circuit elements; (2) model based on passive circuit elements; and
(3) arcing model. Modeling based on active and passive circuit elements was proposed
by [9] and analyzed in [10]. The model is based on antiparallel diodes and its parameters
are considered to remain constant during the analyzed period. However, this model cannot
reproduce transient-state conditions of the HIF current waveform. A model based on
passive circuit elements was introduced by [11]. Some proposed modifications by [12] were
included in the model, which allows to simulate HIF on different types of ground surfaces.
Yet, this model depends on the V x I curve at the HIF point for each type of ground surface.
The arcing model was initially introduced by [13,14] in the form of a first-order differential
equation. This model is a simple physical representation that describes the behavior
of an electric arcing. In the last years, arcing models have been investigated in [15,16].
However, representing HIFs by arc models that can reproduce varied characteristics of the
phenomenon is not always possible, which motivates the research in HIF modeling.

1.2. Motivation and Contribution

In the literature there are works related to the review of HIF detection and localization
techniques [5,17-19], but the main goal is not to analyze HIF models. And the works that
include HIF models [10,20], do not perform a validation of the analyzed models, on the
other hand, some authors only validate the selected model separately [12,16,21,22], without
comparing the waveform reproduction, using the different HIF models that exist in the
literature. In that sense, the main contributions of this work are:

e A systematic review of existing works on HIF models for ODN with a critical analysis
on reproducing HIF characteristics. The paper shows the evolution, popularity, limi-
tations, advantages, and disadvantages of HIF models. As a result, researchers and
specialists can save time in the selection of the appropriate HIF model for their studies.

e  The primary contribution of this work is the comparison of three well-known HIF
models for ODN with actual experiments conducted in a high-voltage laboratory at the
Federal University of Para. This analysis highlights both the strengths and limitations
of these models across various applications.

The motivation and contribution of this study arise from the limitations that the
authors may experience at the beginning of the research on issues developed in HIF, as
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occurred in previous studies presented by the authors in [21,23-28]. Based on the above,
this study contributes directly to the proposal and validation of the most appropriate
detection or localization method in HIF.

2. High Impedance Fault Characteristics
The HIF characteristics contained in the current waveform, as defined follow:

e  Asymmetry: Peak values of current are different in the positive and negative half cycle.
The asymmetric nature of HIF current is influenced by the porosity and moisture of
the surface contact. The presence of silica in the contact surfaces causes asymmetry,
according to [9]. The heated silica forms a type of cathode spot that absorbs electrons,
causing voltage drops when the cable is subjected to a positive voltage.

e  Nonlinearity: Voltage x current characteristic curve is highly nonlinear. This character-
istic is caused by the electric arc associated with the nonlinearity of high-impedance
objects [9,29,30].

e  Build-up: HIF current magnitude gradually increases up to its maximum value. This
is due to: (a) the physical accommodation of the cable in the soil, since the cable can
move or settle into the soil [12-31]; and (b) the arc penetrates the soil surface and
causes soil ionization, increasing the effective area of the equivalent electrode [30].
Shoulder: HIF current magnitude maintains constant right after the Build-up end.
Intermittence: HIF electric arc is extinct during a time due to the loss of moisture in
the surface and physical accommodation of the cable.

e Randomness: Peak values of current randomly oscillate at each half cycle within a
relatively small range due to the random behavior of the electric arc.

Describe these characteristics related to [7], published in 1982. The works in [12] and
in general, works addressing HIFs in ODN describe the first five characteristics of HIF
mentioned above, since they are consolidated in the literature [32,33]. The randomness char-
acteristic of a HIF, mentioned in [15,34-38], is manifested by a random oscillation in the HIF
current waveform. In the technical literature, the characteristic of randomness and some
others can be observed in actual HIF current waveforms presented in [11,12,15,34,37-43],
in which the randomness issue is not addressed [11], among others, consider that the HIF
current waveform can be divided into two distinct conditions: transient and steady-state
conditions. Some HIF models only consider the steady-state condition, in which the HIF
current waveform of a cycle is repeated over time. The transient state condition lasts only
the first few cycles, during the build-up. The steady-state condition starts after the build-up
end. The nonlinearity and asymmetry characteristics are contained in the steady-state
current waveforms. The presence of randomness in the HIF current waveform leads the
steady-state condition to a quasi-steady-state condition, as shown in Figure 1. It is observed
that, after the current peaks build up, a random oscillation appears. HIF current peak
values are within a standard deviation. This characteristic of randomness is contained
practically in any HIF current waveform.
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Figure 1. Typical HIF current waveform.
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References [5,34,38,44] mention other characteristics contained in the HIF current
waveform. However, this paper does not focus on other characteristics, since they are
dependent on the main characteristics (e.g., the harmonic content depending on the nonlin-
earity characteristic). According to [30], HIFs are considered single-phase faults because
an incident involving two or more phases is typically a high current fault event or can be
treated as two isolated single-phase HIF events. Also, it should be borne in mind that the
HIF current is exactly in phase with the voltage at the fault point and the resulting har-
monic currents tend to reach their peaks at the same time as the HIF current fundamental
component, according to [30,45,46].

3. Categories of HIF Models for ODN
3.1. Models Based on Active and Passive Circuit Elements

This section shows the evolution of the models of active and passive circuit elements
used in the studies of the last 30 years for each HIF model in the ODN, classified in terms
of their elements, representation and year of publication. The base model (model “a”)
and the rest of the models in this category can be constructed using Figure 2 and Table 1.
Figure 2 shows the different active and passive elements that can be connected in series
within elements 1, 2, 3 and 4. For example, in model “a”, element 1 consists of a DC voltage
source (Vp) and a diode (Dp) connected in series. Element 2 consists of a DC voltage source
(Vn) and a diode (Dyy) connected in series, and element 3 consists of a resistor (R) and an
inductor (X) connected in series.

I

Feeder line \

]

Control
system

7
Element 3

I

N

¥
—— Element 1
— Element 2

Figure 2. Representation of HIF models based on active and passive circuit elements according to
Table 1.

The electrical circuit elements that compose a HIF model consist of a constant impedance
(resistance R and reactance X) in series with two antiparallel diodes (Dp and Dy). Each
diode is in series with a DC voltage source (Vp or Vy). This antiparallel-diode configuration
allows the current during positive half cycles to circulate only through one branch and the
current during negative half cycles flows through another branch. The fault current magni-
tude is controlled by the impedance value, but the source voltage values also influence the
current magnitude control, as observed in Figure 3, which presents simulation results to
understand the behavior of the model proposed in [9].
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Table 1. Timeline of HID models based on active and passive circuit elements.

Model Year Ref. Element 1 Element 2 Element 3 Element 4 (s:;;ter:;l
a 1990 [9] #Dp T Vooo- - # Dy —LFVN - - % X $R - - -
b 1993 [47] #Dp $R T Vv ooo- #DN $R —irvN - K - - _ _
I
¢ 1998  [48] #Dp éﬂ) - - #DN éﬂ) - - IK IK /?ﬂ K TACS
d 2004 [49] #Dp T Ve - ; #DN —LFVN ; ; K /?R . ] _
I
e 2005 [50] #Dp T Vo é\z) - #DN —LFVN é\) - $R %‘R - - MODELS
f 2006 [51] #Dp %X $R T Ve #DN %X $R _J‘FVN - _ - - -
g 2010 [52] #Dp $R T Vp - #DN ?R TVN - K - - - -
I
h o 2011 [53] #Dp ?{ é@ - #DN ?{ é) - é(R . ) ) ]
i 2015 [54] #Dp $R T voo- #DN $R —irVN - K é’R - - -
I
j 2016 [55] #Dp T v oo- - # Dy TVN - - % X é{ N - .
J‘ L MODELS
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Figure 3. High impedance fault current waveforms: (a) when source voltage varies; (b) when

resistance varies.

In Figure 3a, the variation of the current for different values of voltage Vy are pre-
sented, where: V1 < V2 < Vy3, maintaining both constant impedance and constant
voltage Vp. It can be concluded that the variable parameter (Vy) simultaneously modifies
the current magnitude and the current conduction instants during negative semi-cycles (the
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three currents are superimposed during positive semi-cycles). By analogy, this behavior
will be repeated during the positive semi-cycle, but varying Vp. Therefore, the variations of
Vp and Vy only affect their respective semi-cycles. Figure 3b shows the current variation
for different resistance values, where Ry < Ry < R3, keeping constant the voltage values of
the DC source (Vp and Vy). It is clearly observed that the variable parameter influences on
current during two half-cycles and controls the current magnitude. It is important to note
that the phase angle difference between the voltage at the fault point and the fault current
is negligible, as indicated in the previous section. This fact must be considered to assign a
minimum value of inductive reactance to models that consider this element.

As described in Section 2, the HIF current changes over time. However, in the model
based on active and passive circuit elements, when it considers constant parameters from
the beginning to the end of the simulation, produces a current waveform in which all cycles
are equal over time, not allowing full reproduction of this characteristic. Regarding the
non-linearity characteristic of HIF, the model does not reproduce this characteristic in the
complete cycle, the linearity is maintained within the HIF current conduction intervals.
Therefore, this model does not fully reproduce this feature, a fact that can be seen in
Figure 4, where the current waveform of a typical HIF is shown, as well as the waveform
reproduced from simulations (with the model "a” of Table 1) for a given voltage.

a N —-— \bltage
0.75 s N —— Simulated current
7/ ; —— Typical current

-0.25 4

Magnitude in (pu)

—0.50 4

—0.75 \

/.

-1.00 T T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0014 0.016

Time in (s)

Figure 4. High impedance fault current and voltage waveforms.

In 1993, the model proposed in [9], derived from works [47,56], is modified as shown
in the model “b”, of Table 1. The reactance is neglected, and a resistance is considered in
each branch (Rp and Ry), allowing independent control of the current magnitude at each
half cycle, but without solving other model limitations.

Reference [57] clearly shows how to reproduce different fault current magnitudes,
asymmetries, arc extinctions and arc restarts by modifying Vp, Vy, Rp and Ry. A model
proposed later in [51,58] does not neglect the reactance, unlike [9], but it considers a
resistance for each branch, as observed in the model “f” of Table 1, represented in Figure 2.
The work in [59] proposes two non-linear resistances Rp and Ry, as observed in the
model “b” of Table 1 in Figure 2, but it does not provide knowledge of this characteristic.
With this proposal, the non-linear characteristic can be reproduced in the conducting and
non-conducting intervals as presented in Figure 4. Since HIF is a random and nonlinear
phenomenon, authors in [60-64] propose that the parameters Vp, Vy, Rp and Ry vary
randomly between certain limits at each time interval (ms), following a uniform and/or
Gaussian distribution.

The use of random values for elements of this model has been extended to several
studies, such as [65-68]. By proposing the time-varying parameters, the fault current
waveform is no longer the same as that of the other cycles. However, the build-up and
shoulder characteristics are not guaranteed due to random behavior. Modified models of [9],
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“u_

configured in parallel, are proposed in [52,69] (see model “g” of Table 1 represented in
Figure 2). The energization of each of the models in parallel is done by employing switches.
According to the authors, this model can reproduce the characteristics of randomness and
build-up but adding a greater number of parameters and a switching control system.

In [48,53], DC sources are replaced by sawtooth waveform generators (see models
“c” and “h” of Table 1 represented in Figure 2), to control the phase difference between
the voltage at the fault point and the fault current. But as described in Section 2, it is
not necessary to control this difference, because it is negligible. In addition, a variable
resistance is added to the model. In the model in Figure 2, switch 1, normally open, isolates
the downstream load from the fault point, and switch 2, normally closed, connects the
HIF model to the electrical system. Switch 3 controlled by TACS controls the re-ignition
and extinction of the electric arc, to reproduce the intermittency, which is one of the main
characteristics of the HIF.

Afterwards, in [54], it is proposed to randomly modify the value of the resistance,
in each cycle, and the model is according to the model “i” of Table 1. The references
described ([48,53,54]) are not intended to reproduce buildup and other features. In [49,70],
the reactance of the model proposed in [9] is neglected and the fixed resistance becomes
a non-linear resistance, as can be observed in the model “d” of Table 1, represented in
Figure 2. In [49], the voltage values of the DC sources vary randomly at each half-cycle.
In [70], the resistance value varies randomly under a uniform distribution. However,
in [49] there is the problem of dependence between the beginning of the current conduction
and the magnitude of the current waveform, as can be observed in Figure 3a. The HIF
models proposed in [49,70] reproduce the current waveform nonlinearity and the current
magnitude random behavior.

In [50], a model modification is proposed based on a combination of the model
proposed in [9] with the arc model based on a differential equation, according to the model
“e” of Table 1. This model is based on works [9,48,71]. Some new features have been
added to the model, such as the impedance from [9] which has been replaced by a linear
resistor and a time-varying non-linear resistor, representing the earth resistance and the
dynamic arc, respectively. AC sources have also been added to the model guaranteeing the
variable point of arc ignition and cooling. This model is not simple, since it is practically the
union of two models classified into different categories. Therefore, the model complexity is
increased due to the greater number of elements composing the model.

In [55], the constant resistance of the model from [9] is replaced by a time-varying resis-
tance to correctly simulate the build-up and shoulder. The model remained simple, as can
be observed in the model “j” of Table 1 in Figure 2. The time-varying resistance is modeled
by a polynomial function and a constant for transient and quasi-steady states, respectively.

The modeling proposed in [55] can be associated with [11]. In reference [39], regarding
the circuit configuration, a resistance is added to each branch that represents the arc
resistance. In reference [72], the model proposed in [9] is adapted to be used in the
frequency domain, demonstrating the importance of this modeling in the literature. In
short, this HIF model can reproduce the characteristics of asymmetry, nonlinearity, build-up,
and shoulder considering transient and quasi-steady states.

The model “k” in Table 1, represented by Figure 2 shows the last model based on the
combining of electric circuit elements, which was proposed in [31]. It is basically the model
proposed in [9] with some features of other models. The main difference is that the model
proposed in [31] has a complex control system of resistance and a sectionalizing switch
that controls the current circulation. The resistance consists of three portions that add up to
the total resistance value. The first portion is established to reproduce the build-up. The
second portion is responsible for simulating the asymmetry between half cycles of the same
cycle. Finally, the last part reproduces the arc resistance variation, similarly to [11].

It is important to highlight that the evolution of this category of HIF models has not
been independent of other categories. Some features present in models of other categories
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have helped in the evolution of models in this category and vice-versa. A clear example is
the way described in [11] to model the build-up and shoulder.

An important observation is that, when this category of HIF models is used, the fault
current waveform does not faithfully reproduce waveforms of an actual HIF, especially
in the vicinity of zero crossings. In Figure 4, it can be observed the difference between
the simulated current (Isjm) using the model from [9] and the typical current (Ityp) for a
type of surface (e.g., gravel). It is worth noting that the nonlinear resistance can reproduce
nonlinearity in the current conduction interval, but not in the non-conduction interval. Last,
when DC sources are considered in the model, the reproduced current has limitations in
the zero-crossing.

3.2. Models Based on Passive Circuit Elements

Figure 5 and Table 2 illustrates a representation of the different HIF models based on
passive elements such as resistance and/or reactance. It can be observed that the evolution
of this category of models is not based on a single model, unlike the evolution of models
presented in Section 3.1. First, in 1981, authors in [73] proposed a HIF model based on two
series nonlinear resistance as a function of the current as shown in the model “a” of Table 2
and represented in Figure 5.
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Figure 5. Representation of high impedance fault models based on passive circuit elements according
to Table 2.

Table 2. High impedance fault models based on passive circuit elements.

Model Year Ref. Element 1 Control System
a 1981 [73] é’ﬁ /?R -
L
b 1996 [74] }%%4 R -
c 1998 [46] K %‘R MODELS
[
d 2000 [75] % X %‘R -
L L
e 2001 [11] /?ﬁ R TACS

One resistance represents the arc resistance, and the other represents the earth re-
sistance. Subsequently, in [74], HIF is modeled by a resistance and an inductance, both
non-linear as a function of the current, subject to a second-order polynomial, as can be
observed in Figure 5 and the model “b” of Table 2. Similarly, in [75], HIF is simulated in
two ways: (a) constant resistance and reactance; and (b) non-linear resistance as a function
of current and constant reactance, as can be observed in Figure 5 and model “d” of Table 2.
These models have a common ability to reproduce the characteristic of nonlinearity.
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In 1985, the work in [76] used the simplest model consisting of a constant resistance
connected at the fault point. This model reproduces only the low HIF magnitude. In
recent years, some authors used this model, such as [77], published in 2015. Afterward,
the authors in [78] proposed a model based on a combination of 16 nonlinear impedances
with different degrees of nonlinearity and with an arc start for different voltage values.
HIF simulations can be performed by applying any combination of 16 impedances, that
is, one impedance is used for each half-cycle of the voltage waveform. However, this
model reproduces with limitations in the shoulder and build-up characteristics through a
combination sequence that increases the model complexity. In reference [45], the random
nature of the arc has stochastically been simulated using the MODELS language in ATP
software (Model “c” of Table 2 and Figure 5). This model consists of a normally open
switch connected in series with a variable fault resistance to produce a variety of fault
current waveforms each half cycle. After the fault starts, periodic switching operations
are determined by the voltage values of the corresponding arc, chosen randomly for each
half cycle. This model has the ability to reproduce the intermittency characteristic, but
the reproduction of the build-up and shoulder characteristics is not guaranteed due to the
stochastic simulation.

The work in [11], published in 2001, presents the most important HIF model this
category of models based on passive elements, illustrated in Figure 5 and Table 2, model
“e”, since it is capable of reproducing several characteristics of HIF. This model consists
of two nonlinear resistances in series, one resistance is responsible for simulating the
asymmetry and nonlinearity characteristics, and the other resistance is controlled by TACS
to simulate the build-up and shoulder characteristics. The two resistances are determined
from curves of voltage at the fault point versus fault current.

In reference [12], published in 2013, the model from [11] is combined with the configu-
ration of switches proposed by [48] (see model “c” of Table 1 in Figure 2), and switches S;
and S; are used for disconnecting downstream load from the fault point and connecting the
HIF model at the fault point, respectively. In reference [12], experimental tests were carried
out to establish HIFs of six surface types. The test results were used to model each HIF
associated with a surface type. Subsequently, ref. [79] has proposed a control in the switch
S3 to simulate the intermittency characteristic. Switch operations are the same adopted
in [48], as seen in model “c” of Table 1 in Figure 2. The evolution of this model allows us
to reproduce five basic HIF characteristics described in Section 2. Reference [80] proposes
the use of two series connected resistors, one dielectric resistance and the other constant
bad contact resistance between the conductor and dielectric. The dielectric resistance be-
havior is based on the solid dielectric electrical breakdown theory. The author shows that
the proposed nonlinear resistance model is more consistent in reproducing current wave-
form at zero-crossing points than the traditional arc model based on differential equations
(Mayr model). However, the work does not show the reproduction of the build-up and
shoulder characteristics.

3.3. Arc Model

This subsection presents the third category of HIF modeling, which is expressed in the
form of a first-order differential equation and represented by the Figure 6 and the Table 3.
This HIF model is well known as the arc equation and basically consists of: (1) a single
resistance subject to the arc model, as illustrated in Figure 6 and model “a” of Table 3; and
(2) two resistances, one that represents the arc resistance (modeled by a differential equation)
and the other that can be a constant resistance, shown in Figure 6 and model “b” of Table 3,
or a variable over time, shown in Figure 6 and model “c” of Table 3, which represents the
resistance of a surface. According to [22], the thermal model has been used since the first
descriptions of the arc electrical conductivity shown by Cassie [13] and Mayr [14], in the
form of a first-order differential equation. This model has subsequently been improved
and modified according to needs. For example, ref. [81] details the implementation of the
arc model described in [71] using EMTP. Known as the arc digital model and derived from
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the description of Hochrainer’s arc, the model from [71] is derived from the works of Mayr
and Cassie.

Feeder line
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Figure 6. Representation of high-impedance fault models based on the physical process involved in
the electric arc, according to Table 3.

Table 3. High impedance fault models based on the physical process involved in the electric arc.

Model Year Ref. Element 1 Control System

a 2006 [82] IK g - MODELS

L
b 2007 [21] K ?{ /?ﬁ MODELS
c 2008 [83] /?ﬁ /?R - MODELS

In [82], HIF is modeled by a single resistance based on the first-order differential
equation in (1), as originally proposed in [71]. To simulate the random behavior of the
phenomenon, the arc voltage per unit length parameter of the differential equation assumes
random values within pre-defined limits (Gy is a function of the arc voltage per unit
length parameter). In reference [22], HIF is also modeled using the detailed arc description
from [71], and to implement the model, the implementation method from [81] is used.
Reference [22] models a HIF caused by the cable contact with the tree. This model is
represented by two resistances in series, one constant that represents the tree resistance and
the other variable that represents the arc resistance.

48 Go—gu)
dt T

)

where Gy is stationary arc conductance, T is arc time constant, and g(f) is time-varying arc
conductance [22,71].

In works [83,84], two variable resistances in series are used, one that represents the
surface resistance varying between two limits and the other that represents the arc resistance
modeled by Equation (1). To reproduce the randomness characteristic, parameter 7 takes
random values with uniform distribution within predefined limit values.

References [15,85,86] model the HIF based on the Equation (1), whose parameters are
obtained from the voltage waveform at the fault point and fault current waveform using the
least squares method and the sum of squared deviations from theoretical and experimental
values. In these works, the reproduction of nonlinearity and build-up characteristics can
be observed. Among works addressing HIF modeling based on the arc model, ref. [15] is
recommended because the model is described in a detailed way, showing the calculation of
differential equation parameters. Reading [22] is also recommended. Finally, it is worth
mentioning that, according to [80], the model based on the arc equation is not consistent in
reproducing the HIF waveform at zero-crossing points (see Figure 3 in [80]) and therefore
it has a similar limitation to models of the first category.
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4. High Impedance Fault Models for ODN

The interaction between any HIF model with an ODN can be illustrated in Figure 7.
The configurations of switches S;, Sp and Ss are based on [48]. The switches S, S, and
S3 allow to simulate different HIF classes. Under normal system conditions, S; and S, are
normally closed and S3 is normally open. In the case of a load-side HIF, S; is normally
open and S, and S3 are normally closed, while if the fault is from the source side, S; and S3
are closed, and S; is open, in both scenarios there is a similarity between the waveform,
both from the source and from the load, as analyzed in [87]. It is also possible to simulate
the cable downfall time, which is represented by the time S; takes to close. For faults
involving the unbroken conductor in contact with a tree branch, the three switches are
normally closed. It is worth highlighting that S3 has two functions, one that is to connect
the HIF model to the distribution system model and the other that is to simulate the
intermittence characteristic.

- Electrical power distribution \\\
~ . system , "
/ \ /
/ |
/ g / \ ) \\
o
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Figure 7. Interaction between the HIF model and distribution network model.

Figure 8a,b show the circuits that represent categories of HIF models based on a
combination of electric circuit elements and passive elements, respectively. In the category
of models based on a combination of electric circuit elements, the parameter values can be
modified to reproduce other models in the same category.

V) V()

Li(r) 0)
\/

Dp Dy Rim
Rp Ry

R>
Vi Vy ©

(b)

Figure 8. High impedance fault models: (a) based on active and passive circuit elements; (b) based
on passive circuit elements.

For example, making Rp = Ry, the circuit model of Figure 8a reproduces the same
behavior as the circuit model “d” of Table 1 represented in Figure 2. In this model category,
the inductive reactance X; and other elements proposed to control the phase difference
between the voltage at the fault point and fault current are neglected. Equation (2) relates
the voltage at the fault point and the fault current using the sign function expressed in
Equation (3) to represent the diodes behavior, similar to [88].

o = (Rpeigy + Vp) sgn (i(t)> +(~Ryigy + VN) sgn (i(t)) )
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where sgn (i (t)) is the current sign function, as follows.

1 lf l(t) <0,

sgnie) =4 0if iy =0, §)
-1 Zf l(t) > 0.

Note that HIF models based on a combination of electrical circuit elements are easy to
implement, especially when model parameters are constant. However, such models can
become complex when the dynamic behavior of model parameters is considered due to
the need to employ a control system. To use HIF models of this category, the values of
resistances and DC sources must be known. To simulate the random behavior as suggested
by many authors, it is necessary to randomly modify the interest parameter values during
the simulation. In the case of nonlinear behavior of the resistances, the modification of
parameter values over time can be done following a certain function (e.g., a polynomial
function). It is worth noting that Rp and Ry can be composed of several resistances, as
proposed in [31]. Figure 8b shows the electrical circuit that represents categories of HIF
models based on passive elements and order first differential equations. It is possible to
obtain different HIF models that compose these two categories, defining the constant or
dynamic behavior of the resistances.

The relationship between the voltage at the fault point and fault current is given by:

o) = (Rygy + RZ(t))'i(t) 4)

Equation (4) is apparently very simple; however, the model complexity is proportional
to the dynamic behavior of the resistances, similar to the first category of HIF models.

The HIF models based on passive elements, which reproduce the greatest number
of HIF characteristics, represent the dynamic behaviors of the two resistances. According
to [11], dynamic behaviors of Ry(f) and Ry(t) are expressed by Equations (5) and (6),
respectively. It is worth mentioning it is possible to reproduce the randomness characteristic
adding to the model a third resistance that varies randomly.

t
Ry(t) = ————o) ©
Iy + E—— (U(t) — Un)
Ro(t) = ag 4+ aq-tt +ap-t2 + ... 4 ap,_1-t" 1 +a,-t", (6)

For the HIF model based on the order first differential equation, Ry (f) is determined
by the arc equation in (1) and R;(f) is constant or time-varying. However, ref. [15] shows
that is possible to model a HIF making Ry(t) = 0.

The solution from Equation (1) is expressed by Equation (7), in which the calculation
of parameters Gy and 7 are described in detail by [15]. R;(t) is expressed by Equation (8).

g(t) = Go-(1—e7/7) )

®)

From the mathematic point of view, the three categories of HIF models do not present
a clear difference in terms of model implementation complexity. To use HIF models based
on a combination of electric circuit elements, four parameters (Vp, Vi, Rp, and Ry) of
Equation (2) need to be determined. Simulation of a HIF becomes simple if these four
parameters are constant. However, it is necessary to determine the four parameters if the
resistances are time-varying, increasing the model implementation complexity. To use HIF
models based on passive elements, it is necessary to determine the behaviors of the two
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resistances, which usually are time-varying. This HIF model becomes the simplest of all
HIF models if the two resistances are constant. Lastly, to use HIF models based on the order
first differential equation two parameters need to be determined. These two parameters
usually are constant during simulation, which implies in limitations to reproduce all HIF
characteristics. On the other hand, when these parameters are time-varying is necessary to
determine a time-varying function.

5. Comparison of HIF Models for ODN with MV Lab Test Measured Data
5.1. Materials and Methods

Besides the systematic literature review, this study presents an experimental evalua-
tion to verify the three predominant HIF models with real data obtained from oscillographs
in laboratory facilities. Figure 9 shows the methodology used in this study. The computa-
tional evaluation was carried out using the ATP/EMTP software (https://atp-emtp.org/,
accessed on 25 January 2020) for the simulation of all the HIF models. The following types
of HIF models for ODN are compared in this section with lab test results:

Model 1—model based on active and passive circuit elements;
Model 2—model based on passive elements;
Model 3—arcing model.

Medium Voltage Experimental Assessment
Laboratory
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Figure 9. Flowchart of the methodology proposed for the model validation.

For the experimental assessment, the HIF experiments have been carried out at the MV
distribution system laboratory or MV lab, Federal University of Para, Brazil. The MV lab
was designed and developed for HIF testing purposes. Figure 10 shows the facilities and
equipment where the experiments were carried out, and Figure 11 the three-line diagram
of the MV laboratory. The MV lab comprises a 225 kVA, 0.22 V/13.8 kV transformer of
the WEG manufacturer (Wetherill Park, Australia), SEL-751 feeder protection relay of the
SEL manufacturer (Pullman, WA, USA), an alternating current (AC) contactor of the WEG
manufacturer, breaker circuits, fuses, potential transformers (PTs), current transformers
(CTs), conductors, 75 kVA, 13.8 kV/0.22 kV service transformer of the WEG manufacturer
and load.

The 225 kVA transformer is delta connected on the low-voltage (LV) side (0.22 kV) and
grounded wye connected on the medium voltage (MV) side (13.8 kV) to emulate a typical
distribution substation. The MV system is a three-phase three-wire circuit, and the neutral
conductor is grounded on the transformer. In this paper, oscillography records captured by
the SEL-751 relay are used to compare the three HIF models. The oscillography records
were obtained from two HIF experimental tests, one using a Bamboo tree branch and the
other using an Acai tree branch. The SEL-751 relay’s residual overcurrent element was
used for tripping purposes with a sensitive setting.
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Figure 11. Three-line diagram of the MV lab for HIF testing.

5.2. Results and Discussion

From the measurements in the laboratory presented in Figure 10, data were obtained
from the relay for further processing and analysis. Figures 12 and 13 show HIF current
waveforms obtained through experimental laboratory tests using a bamboo tree branch and
an agai tree branch (common trees in the Amazon region, site of the study), respectively,
both subjected to a 13.8/, /3 kV phase voltage. The two waveforms were selected because
they present the typical characteristics of a HIF, such as nonlinearity, asymmetry, shoulder
and build up, especially because they have a marked envelope, one with an increasing
envelope, where the magnitude of the instantaneous current exceeds 10 A, and the other
with an oscillating envelope, where the maximum current does not exceed 3 A. To evaluate
the limitations or capabilities of the studied models, the two HIF current waveforms are
reproduced, using the three selected models. The models are implemented in the ATPDraw
software version 7.0, and the results of the simulations are presented graphically, where
the differences in the reproduced currents in relation to the measured current can be
visually appreciated.
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Figure 12. Measured current waveform obtained from a HIF experimental test with a Bamboo
tree branch.

10 A

Current in (A)
=)

_10 4

025 0.50 0.75 1.00 125 1.50 175 2.00
Time in (s)

Figure 13. Measured current waveform obtained from a HIF experimental test with an Acai
tree branch.

Figure 14 shows the comparison of the conductance reproduced by each type of
HIF model with the measured conductance data (red color curve) from an experimental
HIF test with a bamboo tree branch. The conductance is determined by the relationship
between simulated or measured current and voltage waveforms. When Model 1 is used,

the average conductance calculated for positive and negative cycles are 0.00023084 S and
0.00023094 S, respectively.
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Figure 14. Comparison of the conductance reproduced by each type of HIF model with the measured
conductance data from a HIF experimental test with a bamboo tree branch.
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In this case, they are practically the same, indicating that the asymmetry is negligible.
It is noteworthy that the parameters of Model 1 are constant and therefore the conductance
is represented by a straight (cyan color line). The black color curve is the conductance
calculated using Model 2, represented by a fifth-order polynomial expressed by Equation
(6), where its coefficients were determined by fitting the curve. The blue color curve is
the conductance calculated using Model 3, whose parameters Gy = 0.000232432 S and
T = 0.016045 s were estimated by the least-squares method. Note that the conductance
calculated using the model 2 has better matching with the measured conductance (red
color curve), both in the transient and steady-state conditions. The steady-state condition is
reached when t =0.35s.

Figures 15 and 16 show comparisons of the current waveforms calculated by HIF mod-
els with the measured current waveforms resulting from a HIF experimentally generated
by a bamboo tree branch, for transient and steady-state conditions, respectively. The steady-
state condition is reached when t = 0.3 s. It can be observed that the Model 2 more accurately
replicates the measured transient waveform when compared with Models 1 and 3. As for
the steady-state waveform, all HIF models have similar and sufficiently accurate results.
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Figure 15. Comparison of the simulated current waveforms (transient state) with the measured
current waveform resulting from an experimental test with a bamboo tree branch.
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Figure 16. Comparison of the simulated current waveforms (steady-state condition) with the mea-
sured current waveform resulting from an experimental test with a bamboo tree branch.
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Figure 17 shows the comparison of the conductance reproduced by each type of HIF
model with the measured conductance data (red color curve) from an experimental HIF
testing with acai tree branch. The average conductance calculated using Model 1 for
positive and negative cycles are 0.00059475 S and 0.00059823 S, respectively. The black color
curve is the conductance calculated using Model 2 represented by a sixth-order polynomial.
The blue color curve is the conductance calculated using Model 3, whose parameters
Go = 0.001699 S and T = 2.345621 S were estimated by the least-squares method. It can be

observed that model 2 accurately reproduces the measured conductance in the transient
and steady-state conditions.
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Figure 17. Comparison of the conductance reproduced by each type of HIF model with the measured
conductance data from an HIF experimental test with the Agai tree branch.

Figures 18 and 19 show comparisons of the current waveforms calculated by HIF
models with the measured current waveforms resulting from a HIF experimentally gen-
erated by an Agai tree branch, for transient and steady-state conditions, respectively. The
steady-state condition is reached when t = 0.35 s. It can be observed that the Model 2

accurately replicates the measured current waveform when compared with Models 1 and 3,
for both transient and steady-state conditions.
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Figure 18. Comparison of the simulated current waveforms (transient state) with the measured
current waveform resulting from an experimental test with an Agai tree branch.
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Figure 19. Comparison of the simulated current waveforms (steady-state condition) with the mea-
sured current waveform resulting from an experimental test with an Acai tree branch.

6. Conclusions

Currently, models based on active and passive circuit elements are the most widely
used category in investigations related to the detection and location of HIF. This paper
systematically reviewed three broad categories of HIF models for overhead distribution
network studies performed by EMT-type programs and compared three well-known HIF
models, one of each category, with MV laboratory experimental data. The comparison
presented in this work showed that the model based on two non-linear resistances is
more accurately matched with measured waveforms obtained from two experimental
HIF tests using tree branches when compared with other models. The presented review,
models, studies, and comparison will be useful to researchers and practicing distribution
protection engineers who are actively using EMT simulation tools for modeling and analysis
of overhead distribution networks. The lab experimental results reported in this paper
encourage further research to develop new high-impedance fault models using a large
database repository of lab experimental tests or actual field events.
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Abstract: Distributed energy resources have demonstrated their potential to mitigate the limitations
of large, centralized generation systems. This is achieved through the geographical distribution of
generation sources that capitalize on the potential of their respective environments to satisfy local
demand. In a microgrid, the control problem is inherently distributed, rendering traditional control
techniques inefficient due to the impracticality of central governance. Instead, coordination among its
components is essential. The challenge involves enabling these components to operate under optimal
conditions, such as charging batteries with surplus solar energy or deactivating controllable loads
when market prices rise. Consequently, there is a pressing need for innovative distributed strategies
like emergent control. Inspired by phenomena such as the environmentally responsive behavior
of ants, emergent control involves decentralized coordination schemes. This paper introduces an
emergent control strategy for microgrids, grounded in the response threshold model, to establish
an autonomous distributed control approach. The results, utilizing our methodology, demonstrate
seamless coordination among the diverse components of a microgrid. For instance, system resilience
is evident in scenarios where, upon the failure of certain components, others commence operation.
Moreover, in dynamic conditions, such as varying weather and economic factors, the microgrid
adeptly adapts to meet demand fluctuations. Our emergent control scheme enhances response times,
performance, and on/off delay times. In various test scenarios, Integrated Absolute Error (IAE)
metrics of approximately 0.01% were achieved, indicating a negligible difference between supplied
and demanded energy. Furthermore, our approach prioritizes the utilization of renewable sources,
increasing their usage from 59.7% to 86.1%. This shift not only reduces reliance on the public grid but
also leads to significant energy cost savings.

Keywords: emergent control; energy management systems; distributed control systems; response
threshold model; smart grid

1. Introduction

Distributed energy systems can solve the problems associated with centralized gener-
ation, such as [1]: high energy losses, hazardous waste generation, and expensive infras-
tructure, among others. Specifically, RES with energy storage devices can be integrated to
formulate HES for a reliable power supply (saving and releasing energy at the adequate
time) to overcome the limitations in the wind and solar resources since their performance
characteristics depend on the environment, which reduces the reliability of the power sup-
ply and imposes additional costs for providers and/or consumers [2]. On the other hand, it
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is necessary to consider the effects of energy management on the consumer, especially the
controllable loads, to ensure an efficient energy system [3].

An MG is a distributed energy network with diverse small energy sources that work
autonomously with respect to the main network [4]. An MG is classically made up of a
local generation system, an energy storage system, consumers, and a connection point to
the grid. The main goal of an MG is to reach a more efficient and reliable energy supply,
to provide a higher quality of energy service, and to make it safer and more sustainable.
The MG control problem is a distributed control problem, which requires coordination and
control mechanisms for its agents without a central authority to manage them [1].

One of the incentives of this paper is to effectively coordinate and integrate the various
agents in an energy system, both on the production and consumption side, to meet energy
needs, maximize the use of renewable energy, and reduce energy from the main network [5].
In this way, it is expected to minimize energy costs and the need to manage the natural
uncertainty of RES, along with the limited storage capacity of batteries [6]. In this sense,
optimal management of these energy resources is essential to have a balance between
demand and supply.

In general, an autonomous management approach of an MG for efficient demand
management must be able, among other things, to turn off controllable loads when the
cost of energy is high, and charge storage devices using only renewable energy, among
other things. For this, new distributed control strategies, such as those based on emergent
control, are necessary.

This paper aims to make use of the RTM [7] to define a self-control mechanism, so that
each component takes part in the energy exchange when the circumstances are favorable.
To create an emerging control proposal that enables effective energy management, it is
necessary to identify the local variables and the rules for decision-making, as well as the
feedback mechanisms between them. The use of an emergent control strategy based on
bio-inspired techniques that allows micro-level coordination distinguishes this paper from
earlier ones in the context of MG. The advantage of using the RTM over other control
methods is based on the potential for creating a distributed control strategy. Each agent is
prompted to act or not by its two main variables, the stimulus and threshold. The threshold
is linked to the accomplishment of the goals, and the stimulus takes context information
into account. Both employ RL as a self-control mechanism to control the agent’s response,
enabling autonomous coordination actions. The main contributions of our paper are:

- Specification of an autonomous MG management approach and self-regulating de-
mand and load generation through emergent control mechanisms, enabling MG
self-organization.

- Definition of an emergent control approach based on the RTM, applicable to both the
generation and demand sides. Traditionally used for task assignment problems, this
is the first application of the RTM in coordination and distributed control contexts.

- Development of a scheme to balance generated and demanded power, combining load
from the main network and renewable sources, and controlling controllable loads and
excess energy storage.

- Schematization of a methodology to apply our emergent control approach in MGs in
any context. Following this methodology, an MG autonomy can be specified.

In summary, this paper’s scientific novelty lies in its autonomous MG management
approach, adapting the RTM—commonly used for distributed task assignment problems—as
a solution for distributed control challenges in the energy sector. Our approach ensures
autonomous component coordination to meet demand based on environmental conditions.

The paper is organized as follows: Section 2 discusses related work. Section 3 outlines
the theoretical framework of our proposal and the process under study. Section 4 introduces
our emergent control system design based on the RTM. Section 5 details the experiments
conducted, quality assessment metrics, and comparisons with other works. The paper
concludes with a summary and future work directions.
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2. Related Work

Shahgholian [8] provides a comprehensive literature review on the operations, applica-
tions, and control of MGs, with a particular focus on local control and coordination among
its components. The author also highlights various research areas, including control strate-
gies, optimization methods, stability, and reactive power compensation techniques. This
paper notably introduces control architectures like decentralized systems and variations
based on MAS.

Liu et al. [9] introduce a consensus MAS DRL algorithm where each DER is an agent.
These agents learn control strategies based on local states and messages received from
neighboring agents.

Zhou et al. [10] discuss distributed communication network characteristics for MGs,
distributed control strategies, and communication reliability issues. However, their work
lacks experimental and case study analyses. Maomao et al. [11] analyze recent classifica-
tions, architectures, technologies, and methods for coordinating residential MGs, including
game theory and MAS.

Zhou et al. [12] propose an MG cluster structure with an autonomous coordination
control strategy that combines normalized droop-based control with adaptive control. The
MG consists of an EP, a PEU, and several small MGs. Areekkara et al. [13] utilize the
MAS paradigm for its autonomy, scalability, flexibility, and adaptability in MG energy
management systems. Harmouch et al. [14] describe the implementation of a decentralized
MAS-EMS for controlling an MG cluster. Each MG within the cluster employs a dedicated
MAS-EMS for power dispatch aimed at minimizing grid power exchange. Another dedi-
cated EMS manages power distribution among various MGs. Kofinas et al. [15] propose a
cooperative MA system for managing a standalone MG’s energy. They use a distributed,
cooperative RL method in a continuous action-state space, enabling MG components to
operate as independent learners while coordinating through shared state variables. Fuzzy
Q-learning techniques were recommended for this purpose.

Hu et al. [11] analyze recent developments in residential MG architectures and tech-
nologies, reviewing key coordination and negotiation methods. Chouikhi et al. [16] present
two EM mechanisms in the context of smart buildings. To begin with, they use negotiation
and multi-leader—follower game techniques to simulate the interactions between energy
suppliers and building occupants. Then, in order to reduce consumer interactions and
maximize energy demand cost, they suggest a distributed game theory-based scheduling
method for energy demand. In this paper, the system entities are modeled using MAS.

Xu et al. [17] define a home energy management framework based on RL, using a
finite Markov decision process for hour-ahead energy consumption scheduling and an
extreme learning machine for predicting electricity prices and solar generation.

Arnone et al. [18] suggest a Building Management System for controlling energy
flows in smart buildings integrated with various energy networks and RES, using heuristic
optimization for 24 h energy generation and consumption scheduling. Aguilar et al. [19] de-
scribe a scheduling system that automatically defines hours of utilization of the controllable
load devices in a home, in such a way that the use of renewable energy is maximized. To
do this, they construct an autonomous cycle of data analysis tasks made up of three tasks: a
scheduling task to create appliance usage schedules, and two tasks to estimate the amount
of renewable energy generated and the amount of demanded load. Garcia et al. [20] con-
ducted a systematic literature review on emergent control systems, focusing on conceptual
bases, methodologies, principles, architectures, and their application in Cyber-Physical
Systems, particularly in Industry 4.0.

Du etal. [21] propose a control strategy for coordinating neighboring autonomous MGs
using a smart switch, focusing on power sharing without considering internal component
coordination. Chai and Peng [22] propose a decentralized coordinated power control
approach for islanding MGs, combining bus voltage signals with fuzzy logic control,
without inter-MG interconnections. Rahman et al. [6] design a cooperative MAS for energy
sharing in MGs, using graph theory to establish communication links between controllable

44



Energies 2024, 17, 757

batteries and clients. Arwa and Folly [23] explore the use of RL algorithms for MG power
management, highlighting challenges and solutions.

Zheng et al. [24] analyze the energy dispatch optimization of connected MGs, propos-
ing a distributed predictive control model with local predictive control for each MG com-
ponent. Kyriakou and Kanellos [25] propose a method for coordinated scheduling of the
optimal operation of active distribution networks containing complex MGs (prosumers
and electric vehicles), through a strategy of centralized control [26].

Our literature review indicates that while there are numerous studies on MG control and
optimization strategies, as well as architectures and methodologies, few focus on distributed
control architecture addressing DER coordination. Most employ the MAS paradigm, RL, or
predictive or fuzzy control models. However, case studies are limited, lacking benchmarks
for performance analysis and metrics for proposal quality evaluation. Therefore, our study
makes qualitative comparisons with existing works. To our knowledge, this paper is the first
to propose an autonomous management approach for MGs using emerging approaches with
the RTM. MAS-based control schemes allow for MG adaptation, but our emergent control
approach uniquely adjusts component roles based on contextual uncertainty.

3. Theoretical Framework

The RTM used in this paper is presented in this section, as well as the MG components
that will be analyzed.

3.1. Response Threshold Model (RTM)

Drawing inspiration from the behavior of labor division in ant colonies, the RTM [27]
mimics ants” sensitivity to external and internal stimuli, including the intensity of pheromone
signals. This model allows the colony to adapt to varying environmental conditions [28],
enabling ants to modify their behavior according to the needs and occurrences within the
colony [29]. In general, the sensitivity to external/internal stimuli is quantified using a
parameter called the response threshold (f). An agent (ant) with a lower response threshold is
more likely to become an active worker, while one with a higher threshold is less likely to be
activated. In a conventional RTM for the division of labor [27], an agent j has the probability
qj of work in a given moment according to the Equation (1):

2
g ) (1)
i~ 2 2
S]'(t) + Glj(t)

where s; is the external or internal stimulus and 6;; is the ant’s sensitivity (response thresh-
old) to perform task j at time t. The task assignment problem, which assumes that each
worker i responds to a stimulus for a specific task j when the intensity of the stimulus
exceeds the worker’s threshold for that stimulus, can be solved with the help of this model.
Additionally, the ants change the intensity of the cumulative stimulus (s;) in accordance
with Equation (2) in order to exert control over the system through a process of individual
or group learning by associating rewards with stimuli [27]:

&-Nact
N

S]'(t—‘-l) :Sj(t)+5— (2)

In the conventional model, the variations in the stimulus’s intensity are caused by the
way the task is carried out; here, Nyt denotes the individuals who are actively engaged in
the colony, N are the potential participants, « denotes the task’s efficiency, and 5 denotes
the stimulus’s increase in intensity per unit of time. In contrast, the response threshold is
fixed from a simple reinforcement process, such that the threshold decreases when the cor-
responding task is performed and increases when the corresponding task is not performed.
These combined reinforcement processes [30] allow the appearance of specialized workers;
that is, some workers are more sensitive to the stimuli with a particular task j, starting
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from a group of initially identical individuals. The response threshold incorporating RL is
expressed as follows [7]:

0ij = 03 — yiiPAL + (1 — yi) vAL ®)

where yj; is the proportion of entities of type i performing task j, and 3 and <y are the
learning and forgetting rates, respectively. This means that according to Equation (3), in the
next At time units, yj; fraction of entities of type I do task j, and (1 — yj;) fraction of entities
do nothing or something else. In this way, the RTM refers to the potential for responding to
stimuli connected to tasks to address the issue of labor division in a colony.

3.2. System Modeling

An MG is a distributed electrical network with various small energy sources run-
ning parallel to the main grid [4]. The aim of an MG is to provide a higher quality of
energy service, catering to the growing demand for reliable, safe, sustainable, and efficient
electricity supply. Our focus is on an MG composed of a PV system, an energy storage
system, an external source (the main grid), and controllable loads. Below, we describe each
component’s model.

3.2.1. Photovoltaic System

APV system generates voltage and current from solar cells arranged in series and parallel.
Solar radiation affects the PV (Ppy) array’s maximum power output in a variety of ways.
Therefore, a control strategy is needed to efficiently utilize solar radiation to produce the most
power. The output power is defined in the work of Antonanzas-Torres et al. [31] as:

Ppy = 11S¢[1 — 0.005(T, + 25)] )

where 7 is the conversion efficiency of the PV array, S is the area of the PV array (m?), ¢ is
the solar radiation (kw/m?), and T, is the ambient temperature [°C].

3.2.2. Energy Storage System (ESS)

One of the most popular tools to conserve electrical energy in various applications is
the battery, but in addition, supercapacitors can be used to store electricity. In PV or wind
energy conversion systems, batteries act as a backup. In addition to storing excess solar
or wind energy during sunny or windy days, they are used to release the energy during
stationary periods or at night. Various models have been put forth in the area of battery
modeling. The modified simple battery model 3 is employed for this paper, but it is based
on the power [W] rather than the voltage [V] [32].

K
Vi=Voc— | R — |1 5
t = Voc ( mt+SOC) ©)
where V; is the battery’s terminal voltage, V. is the voltage in the circuit without a load,
Rjnt is the internal resistance of the battery, K is a polarization constant, I is the effective
value of the discharge current, and SOC is the battery’s state of charge at time t (in percent).

3.2.3. Controllable Loads

Controllable loads refer to devices with manageable energy consumption. They are
categorized as follows [33]:

o  Type I: this type consists of various residential loads, like refrigerators, air condi-
tioners, water heating, etc. These loads can be interrupted or controlled (e.g., for
reducing demand).

e  Type II: this type contains battery storage, Vehicle-to-Grid, etc., and it can be charged
from or discharged to the grid (it can inject power into the grid). Furthermore, this
type of load can be controlled to accommodate its grid needs.
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o  Typelll this type includes the rest of the appliances schedulable, which can be deferred
for a suitable moment. There are diverse appliances (phone chargers, microwaves,
washing machines, tumble dryers, dishwashers, vacuum cleaners, etc.).

Our research primarily focuses on controlling the energy demand of Type III control-
lable load appliances.

4. Design of an Emergent Control System Based on the Response Threshold Model

This section describes the components of the MG considered in this study, and our
emerging control approach based on the RTM.

4.1. Distributed Control Architecture of a Microgrid

The MG analyzed in this paper, depicted in Figure 1, is designed to meet the energy
demands of a residential building. Surplus self-generated energy is stored in a battery,
and the power balance in the MG is maintained as per the energy conservation principle,
expressed by Equation (6):

Pr — Pp = AP (6)

where Pr is the total potential delivered or supplied, P, is the total energy consumption of
the building, made up mainly of non-controllable loads (LNC) and controllable loads (LC),
and AP is the error in the supply—demand.
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Figure 1. Distributed control architecture for an MG.

Figure 1 introduces four agents: the PV agent denotes the control mechanism to
deactivate or activate solar energy; the exchange agent manages energy supply from non-
renewable sources; the storage agent handles battery charging and discharging according
to specific conditions; and the load agent deactivates controllable loads when there is no
renewable energy (from solar energy or battery), or the demand is greater than the power
of renewable energy delivered to the energy network, and the energy market cost exceeds
the price that consumers are willing to pay.

Thus, the energy system (ES) includes a PV panel, a battery, a load demand side, and
a connection to the main grid. The batteries store energy during surplus generation and
release it during peak load demand. The main grid is taken as a standby producer that
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begins to compensate when there is a deficit for the demanded energy; that is, when the
storage and /or renewable generation systems fail in the supply of demanded energy. Our
hybrid system’s overall power output (Pr) is indicated as follows (Equation (7)):

Pr = Py + Pg )

where Py is the produced power by the renewable systems (e.g., wind turbines, PV panels
(Ppy), etc.) and the power in the energy storage system (Pp47) (see Equation (8)), and Pr is
the main grid power.

Py = Ppy + Ppar ®)

As well, the demand will be divided into controllable (P; ) and non-controllable
(Prnc) (see Equation (9)):
PL=Pic+ Pine 9

4.2. Specification of the MAS

Utilizing the MultiAgent Systems for INtegrated Automation (MASINA) methodol-
ogy [34,35], we design the emergent control approach based on the RTM. MASINA requires
two steps: (i) specifying the general architecture of the system to derive the MAS, and
(ii) designing each agent.

The first step involves representing the distributed system as a MAS, identifying
agents, relevant variables, parameters, and behaviors, among other aspects. Table 1 sum-

marizes the agent characterization for the MG in Figure 1.

Table 1. Characterization of the agents.

Agent

Behavior

Environment

External Variables

Internal Variables
or Parameters

Photovoltaic system

It is activated when there is
potential to generate solar
energy

Solar radiation
Weather conditions

Demand

Conversion efficiency
Solar panel area

It is a producer when the
demand exceeds the solar
potential and the energy

is stored.

When there is an excess of
renewable energy and not

Renewable sources

ESS enough energy is stored, it Demand S0C

becomes a consumer.
When none of the preceding
suppositions are true, it
does nothing.
When batteries and

. ) renewable energy sources Renewable sources

Utility grid are unable to meet the SOC
demand, it is turned on. Demand
It is activated when there are
conditions to consume Renewable sources
Controllable load energy (low prices, energy Demand Comfort cost
Market cost

from renewable sources, etc.).

Now it is necessary to identify the system variables which have the most influence on
the agents’ behavior, in our case:

Solar radiation.
Demand.

SOC.

Weather conditions.
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e  Energy costs.

The second step involves designing agents based on their behavioral models using the
RIM (see Figure 2). With the RTM variables (probability, stimulus and response threshold)
and the internal and external variables of each agent, it is established when an agent can be
active (its ON/OFF states).

Agent

fs

o | Instant stimulus

o function q
Response
yu threshold model

Instant threshold
function

r 3

v
Increasing

Self

ON/OFF
| 4 !
' oy !
Neighbor 9564 J
agent\\ 7

Organizational relationship

Area of
Environment influence

Figure 2. RTM-based agent architecture.

Figure 2 illustrates the RTM model instantiated in each agent of our MAS. The stimulus
s; of each agent (Equation (10)) is characterized by a cumulative function, in which f; is the
instantaneous stimulus based on the behaviors defined in Table 1 and w; is the attenuation
factor of the instantaneous stimulus function.

Sj(t + 1) = S]'(t) + w]fs(t) (10)

In turn, the expression of the RTM response threshold (Equation (3)), which is related to
the sensitivity to the stimulus, represents the current needs in the denominator, and, in the
numerator, the contribution of the agent to satisfy it. In the context of our MAS, it is specific
to the role that each agent has, so it must consider aspects such as the requested demand
and energy generation capacity, among other things. The following section explains these
aspects in detail for each agent. Finally, the activation probability of an agent (Equation (1))
can be directly used by our agents to define their states.

In summary, the initial step in designing an emergent control system based on the
RTM involves identifying the agents to define the MAS. This process includes determining
their local and external variables. Once the agents are identified, we then proceed to model
their behavior. This involves defining the stimulus and response threshold for each agent,
dictating whether an agent will act or not. The stimulus is designed to assess context
information, while the response threshold is aligned with the objectives. These components
facilitate the implementation of an emergent control approach using the RTM, enabling
autonomous energy management.

Equations (1), (3) and (10) are crucial for determining the behavior of each agent. They
incorporate an implicit RL process as a self-control mechanism to regulate the agent’s
response, along with a feedback process for sharing experiences and information. This
allows for autonomous actions by the agents (see the macro-algorithm of each agent in
Algorithm 1).
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Algorithm 1. Behavior of each agent based on the RTM.

Input: local/external variables

Procedure:

1. Definition of the stimulus using Equation (10)
2. Definition of the response threshold using Equation (3)
3. Determination of the state of the agent using Equation (1)

Output: state of the agent (OFF/ON)

4.3. Emergent Control System for a Microgrid

In this section, a control model for each agent is designed based on the RTM, identify-
ing contextual variables and components to formulate mathematical expressions of stimuli
and thresholds, whose integration will form the final control system.

4.3.1. Photovoltaic Agent
Each PV agent will be activated when the stimulus increases, which occurs when energy
can be produced due to weather conditions (there is radiation (Ppy,y), see Equation (4)),
and there is demand (Pr) or capability to store energy ((1 — Soc)Qcap). In addition, it will
be prone to not activate when its response threshold rises, i.e., when the power delivered to
the electrical network is being covered by the PV (I;E—V >0 and ( — %) 2 0); causing the
L L

controller to turn off. Thus, the RTM for one PV agent, in an emergent control scheme, is as
follows, where gpy is its probability to generate solar energy:

spy(t+1) = spy (t) +wpy (Ppymax (P + (1 — Soc)Qcar)) (11)
_ Ppy Ppy
Opy(t+1) = Opy(t) — Bpy (1 - P>At+’YPvPA’f (12)
L 3
2
qPV(t) — SPV(t) (13)

2 2
spv(t)” + Opv (t)
where Ppy is the maximum power output of the PV agent that varies according to solar

radiation (see Equation (4)) and wpy is an attenuation factor to make the differences of the
perceived signals less sensitive.

4.3.2. Energy Storage Agent

This section presents the RTM used with the energy storage agent. This emergent
control system must manage three states: consumer, producer, or passive. The following
are the equations for this emergent control system:

Producer:

Equation (14) defines that the stimulus for the production is when there are demand
needs (Pp) that are not covered by Ppy and there is stored energy (SOC). Thus, the thresh-
old (Equation (15)) is minimized when the power supplied by the solar panels does not

contribute to meeting the demand (( — PPLLV) > 1) and there is also stored energy (Soc).

spaT,s(t+1) = spar,s(t) + wpar,sSoc(PL — Ppy) (14)
0 _ Ppy Ppy
Bar,s(t+1) = 0par,s(t) — Bpar,sSoc| 1— I At + ypaT,s TLAt (15)
spats(t)”
qBaT,s(t) = (16)

spaT,s(t)® + Opars(t)?
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Consumer:

Equation (17) defines that the stimulus happens when the battery is discharged
(1 — Soc) and there is excess energy from the solar panels. The threshold (Equation (18)) is
adjusted to active the agent when there is storage availability ((1 — Soc) = 1) and the solar
panels cover the energy needs and there is an excess (I;IJ’—LV > 1).

spar,c(t+1) = spar,c(t) + wpar,c(1 — Soc)(Ppy — Pr) (17)
_ Ppy Ppy
Opar,c(t+1) = Opar,c(t) — Bpar,c(1— SOC)ITLA’C +vBarc|1— B At (18)
SBAT,C(t)2
qpat,c(t) = (19)

spar.c(t)® + Opar,c(t)*

Passive:

Thus, gt s is the probability of supplying energy and gpar c is the probability of
consuming energy. Finally, state 3 is a passive state (see Equation (20)).

qpar,p(t) =1 — (qpar,s(t) + qpar,c(t)) (20)

4.3.3. Main Grid Agent

The RTM applied for the exchange agent is defined in Equations (21)—(23). The agent
is stimulated when the demand (P ) is greater than the power produced by the renewable
systems in the energy storage systems (P, — Py > 1); see Equation (21). The threshold is
adjusted to activate the agent when the ratio between the available power and demand is
not sufficient (IIJ,—’Z = O); see Equation (22). Lastly, g (t) is the probability of activating, or
not, the exchange agent:

sp(t+1) = sg(t) + we(PL — Py) (21)

Op(t+1) = 0c(t) — Be <1—1;IL{>A’£+’)/EI;TA’E (22)
_se(?

qe(t) = 52 (07 + 0p ()2 (23)

4.3.4. Load Agent

This part of the study focuses on the RTM for the load agent, representing the con-
trollable type III loads of customers. The load agent enables consumers to connect to
the distribution network based on their needs, scheduling the use of controllable loads
to utilize renewable energy or during periods of low energy prices. We assume that the
uncontrollable and controllable loads of other types such as security systems, external
lighting, refrigerators, and heating, are already covered.

Specifically, controllable loads of type III can be switched off when the price of elec-
tricity is high or there is no renewable energy or in the battery, among other reasons. In
particular, in our context, the stimulus to turn on the controllable loads is when the energy
comes from renewable sources (Py — P > 1) or when the minimum acceptable price

of the energy (costcomfort) is not exceeded (costeomfort — COStreq > 1). costeomfort CaN be
defined by the user or can be defined as the minimum or average cost of the previous day’s
invoice, or something similar. The threshold is adjusted to activate the agent when there is
surplus energy that comes from renewable sources (1;—’: > 1) or the price to pay for energy

UStcomfort

is interesting (C ot 1). When cost oy fort is exceeded and there is no surplus energy,
rea
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then this agent must be turned off to avoid overpayments. Finally, ;¢ (t) is the probability
of activating, or not, one of the load agents (controllable loads of type III).

(Py—P), Py>Pr

sic(t+1) =spc(t) +wicfic(t), fic(t) = <C05fcomfart B costml) Py <P, (24)
Orc(t+1) = 0rc(t) — BreYrc(t) At +yrc(1 — Yrc(t))At (25)

Pu o py>p

, Pu>Pp
YLC(t) = { costmmfljft p P (26)

COStreal 4 H < L

2
S t

qre(t) = rc(t) (27)

sic(t)” +0rc(t)?
Table 2 summarizes the different stimulus and response threshold expressions for

each agent of our MAS to model the behavior of each MG component. This allows an
autonomous distributed coordination using our RTM-based emergent control approach.

Table 2. Stimulus and response threshold expressions of each agent.

Agent Instant Stimulus f,(t) Instantaneous Threshold (yi]-)
Photovoltaic system Ppymax(Pp + (1 — Soc)Qcap PPLLV
Producer: Soc(Pp — Ppy) Producer: PPLLV
Battery
Consumer: (1 — Soc)(Ppy — Pp) Consumer: 1 — PPLLV
Utility grid P — Py %,
Controllable load frc(t) 1—Yrc(t)

5. Experiments

This section presents the experimental protocol and scenarios for analyzing the behav-
ior of our emergent control system based on the RTM.

5.1. Experimental Protocol

To validate the proposed controller described in Section 4, we explore a series of
case studies, each with its unique characteristics. The experiments simulate a range of
operational situations that controllers might encounter, such as variations in renewable
generation dynamics due to weather conditions, fluctuations in uncontrolled loads, battery
charging and discharging processes, and compensation from the main grid in case of
deficiencies in other MG supply components. Power units are expressed in Watts [W]. We
use the following performance criteria [36] to evaluate the quality of the results:

e Integral square error (ISE): This metric penalizes errors with higher values more
severely than those with lower values. It is particularly useful for indicating overshoots
and aggressive control, which are common following a disturbance.

ISE = /t 2 (1)t (28)

e Integral Absolute Error (IAE): Unlike ISE, IAE does not differentiate between positive
and negative errors. It is frequently used for online controller tuning and is suitable
for typical operations and non-monotonic step responses.

IAE:/tlt le(#)|dt (29)
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We also define an objective function ] for hyperparameter optimization of our models,
which was defined by Equation (30), which reaches an error close to zero. Mostly, it was
used for the search grid algorithm [37,38] to alter the parameters of our model.

Ji = min{ISE(AP)} (30)

These metrics help compare different case studies in the absence of similar works,
demonstrating the feasibility and potential of our proposal. Real scenarios are modeled to
conduct proof-of-concept tests. The baseline for our paper is maintaining energy balance
(Equation (6)), with on/off delay time inferred through the ISE and IAE metrics. Hyperpa-
rameter optimization is an ongoing process, evolving as new agents are incorporated into
the ecosystem.

5.2. Energy Scenarios

In order to demonstrate the adaptability and effectiveness of our emergent control
strategy, we conducted several case studies, each designed to test the system under different
conditions. Following is an overview of each one:

5.2.1. Case Study 1: Solar Energy in Remote Rural Locations

This case study analyzes the calibration and performance of the PV agent in an
environment without an ESS. Conducted over 10 sunny days (measured in hours) with
a constant demand of 250 W, the study aims to understand the model’s dynamics by
examining the interplay between the stimulus variable and the threshold. The calibration
process involved is as follows:

1.  Setting wpy to modulate the instantaneous stimulus signal such that it allows varia-
tions of the accumulated stimulus in the order of tenths, to prevent overflow.

2. Estimating preliminary values for fpy and py with simulations indicating the tem-
poral trends of the stimulus and the threshold as shown in Figure 3B, with the dotted
gray line representing the orientation of the signals. The adjustment is made using
Equation (30) as the objective function.

3. The space around the previously obtained initial values of Bpy and ypy is explored.
For that, a sweep is made of Bpy between 1 x 1075/100 x 107> and 7py between
1 x 107°/10 x 10>, obtaining the following values: Bpy =2.1 x 10~*and ypy =1 x 107>
and a wpy = 0.0641.

The PV agent is activated in response to solar radiation (¢) (see Equation (4)) and
consumer demand (P ) as there are no ESSs to store the produced energy. Figure 3 exhibits
the key variables involved in the PV agent, with stable sunny days (as shown at the top of
Figure 3).

Figure 3A depicts the consistent solar power available throughout the study, providing
a foundational context for the PV agent’s operation. This consistent availability of solar
radiation is crucial for the agent’s activation. In addition, it is observed how the interaction
between the stimulus variables (context-dependent, such as solar radiation) and threshold
intertwine to exhibit a dynamic (see Figure 3B,E,F) which results in the probability of
activation or deactivation of the PV agent (see Figure 3C,D) that comes into operation when
conditions are favorable, which will be explained below.

Figure 3E shows a day (24 h) during which the PV agent must be used to meet
the demand from sunrise to sunset. Figure 3F illustrates how the stimulus (pink line)
exhibits a decreasing behavior at night and an increasing behavior with sunrise, which is
expected. In addition, the threshold (blue line) decreases when the solar panels contribute
to satisfying the demand, translating into an increase in probability when there is solar
radiation (see Figure 3F). At approximately 7:30 am, the PV agent switch is activated to
supply power to the load, and remains activated for almost 8 h, until its deactivation at
3:20 p.m. when the power generated by the panel is no longer sufficient. This reveals
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that the activation mechanism is based on the probability signal (stimulus due to the sun),
which allows the switches to be automated.
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Figure 3. Solar energy in remote rural locations. From top to bottom: (A) Solar power. (B) Relationship
between stimulus and threshold. (C) Probability of activation of the solar panels. (D) Smart switch
activation. Figures (E,F) are the detailed and bounded views in a period of 24 h.

The simulation was conducted 20 times, and the results, including the averages and
worst results for the ISE and TAE metrics, are summarized in Table 3. The standard deviation
(S), trending towards zero, indicates the control system’s stable performance. This pattern
of stability, as reflected in the ISE and IAE results, is consistent with the results achieved
in the other case studies (see Sections 5.2.2-5.2.8). This pattern of stability, as reflected in
the ISE and IAE results, is consistent with the results achieved in the other case studies
(see Sections 5.2.2-5.2.8).

Table 3. Performance metrics for case study 1.

Metrics AP Worst Cases AP % S
ISE 1.01 x 107 1.5 x 107 67.47% 0.0
IAE 4,03 x 10* 6 x 10% 67.17% 0.0

Table 3 provides a comprehensive overview of the system’s behavior by presenting a
set of metrics. In the worst-case scenario, where the power supply—demand discrepancy
(AP) is at its maximum, ISE and IAE values reach their highest. These values are compared
to the average ISE (1.01 x 107) and IAE (4.03 x 10*) recorded during the experiment. The
difference in magnitude between the worst-case and average scenarios is approximately
67.47% for ISE and 67.17% for IAE. This implies that over the 10-day (or 240-h) study period,
the agent remained deactivated 67% of the time, translating to the PV agent being active
for about 33% of the time. In terms of power supply, this equates to approximately 79 h
or 3.3 days of activation. Table 4 details the parameters derived from the hyperparameter
optimization process specific to this case study.
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Table 4. Optimization of hyperparameters for functional control mode.

Battery Agent Battery Agent Exchange

Parameter Symbol PV Agent Producer Consumer Agent Load Agent
Initial stimulus s; s 100 100 100 100 100
Initial response threshold 6;; 0 100 100 100 100 100
Attenuation factor w 10.1 x 107° 0.005 5x 1078 5x 1078 5x 1078
Learning factor B 1.06 x 107° 1x107° 1x107° 1x10°° 1x107°
Forgetting factor v 3x107° 3.9 x 107° 3.9 x 107> 3.9 x 107° 3.9 x 107>

The most relevant parameters of our model are the initial values of the stimuli and
thresholds, as well as the factors used by each model, which significantly impact the speed
and effectiveness of the reinforcement process. Notably, for each parameter, the forgetting
factor outweighs the learning factor. This characteristic enables the agents to effectively
utilize and build upon the knowledge they have acquired. Additionally, the attenuation
factor, which plays a crucial role in modulating the stimulus, is kept relatively small. This
careful calibration ensures that the stimulus is adjusted in a controlled manner, contributing
to the overall precision and responsiveness of the model.

5.2.2. Case Study 2: Variable Solar Power in Remote Rural Areas

In a typical scenario encountered in rural or remote areas, such as farms without
electricity service, inhabitants often turn to alternatives like solar systems to harness
daylight radiation. This case study, inspired by the research of Yousif et al. [39], examines
renewable energy sources without ESS, focusing on the quality and stability of the power
delivered. Over a 10-day period, marked by variability in weather conditions and demand,
the study explores these dynamics. The findings are presented in Table 5 and Figure 4.

Table 5. Performance metrics for case study 2.

Metrics AP Worst Cases AP % S
ISE 1.40 x 107 1.5 x 107 93.33% 0.0
IAE 456 x 10* 552 x 104 82.6% 0.0

In Figure 4A, there are two significant shifts in energy demand. For the initial five
days, the demand remains low at 100 W, allowing for optimal use of the available solar
power. However, from day 6 onwards, the demand surges to 400 W. Consequently, solar
energy is only sufficient to meet this increased demand on days 6 and 7. Starting from day
8, the solar radiation drops to levels too low to activate the Photovoltaic (PV) agent, as
illustrated in Figure 4D.

Figure 4E highlights the energy deficit resulting from the lack of alternative energy
sources to fulfill the demand. This deficit is corroborated by the data in Table 5, where AP
is close to the worst of the scenarios, with 93.33% for ISE and 82.6% for IAE, which means
the percentage that fails to satisfy the demand. As a result, the PV agent’s contribution is
limited to 17.4%, with the shortfall leading to a blackout.

These outcomes, derived from 20 simulations as shown in Table 5, also reveal a
standard deviation (S) tending towards zero. This indicates that despite the challenging
conditions and the resultant shortfall in energy supply, the control system’s performance
remains stable.
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Figure 4. Variable solar power in remote rural areas with load demand. From top to bottom:
(A) Continuous line represents solar power as a function of irradiance and the dotted line represents
the real demand. (B) Relationship between stimulus and threshold. (C) Probability of activation of
the solar panels. (D) Digital control signal for activation/deactivation of the switch by the PV agent.
(E) Difference between the power delivered and consumed.

5.2.3. Case Study 3: Coordination between Energy Supply Agents

The objective of this case is to evaluate the coordination of the energy supply agents
(solar energy and main grid) over a 10-day period characterized by variable sunny condi-
tions. This scenario, typical of a residential setting, assumes a constant demand of 250 W
with unvarying costs. The study, inspired by the findings in the work of Hu et al. [11], aims
to assess how photovoltaic systems and the main electrical network collaborate to meet the
energy needs of residential consumers.

In this case study, cloudiness significantly impacts the solar energy output, as observed
in Figure 5A. The reduction in solar radiation due to cloud cover, particularly on days 2-5
and 7-10, leads to a decreased contribution from solar energy, which is clearly demonstrated
in Figure 5B. The impact is most pronounced on days 4-5 and 9-10, where the cloudiness
is so substantial that the Photovoltaic (PV) agent remains inactive, unable to generate
adequate power due to insufficient radiation.

During these days, with the PV agent being inactive, the residential demand for power
cannot be met by solar energy alone. Consequently, as depicted in Figure 5C, the electricity
demand is fulfilled by an external power source. This reliance on an external grid during
periods of reduced solar output underscores the importance of having a diversified energy
supply, particularly in residential settings where consistent power availability is crucial.

Figure 5D illustrates the disparity between the energy supplied and the energy con-
sumed. This difference is quantitatively depicted in Table 6, which shows exceptional
demand satisfaction (AP = 0), marked by a singular peak in both the IAE and ISE, each at
0.01%. The distribution of contributions from various components of the energy ecosys-
tem is as follows: solar panels account for 13.13%, the battery contributes 0.0%, and the
external power supply provides the majority at 86.88%. This distribution underscores the
predominant role of the external power supply in this energy mix.
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Figure 5. Failure in the energy storage system. From top to bottom: (A) Continuous line represents
solar power as a function of irradiance and the dotted line represents the real demand. (B) Real power
delivered by the solar panels. (C) Power from the external electrical grid. (D) Difference between the
power delivered and consumed.

Table 6. Performance metrics for case study 3.

Metrics AP Worst Cases AP % S
ISE 1513 1.5 x 107 0.01% 0.0
IAE 6.05 6 x 10* 0.01% 0.0

5.2.4. Case Study 4: Storage System with Failures

This case study centers on examining the coordination among PV agents, the battery,
and the main electrical network in a situation where the battery, initially 100% charged,
experiences a deep discharge due to a malfunction in its recharging mechanism, rendering
its recovery impossible. Uniformity in energy costs and demand is maintained in this typical
residential scenario. However, the battery charge and discharge controller encounter an
issue in its electrical system, preventing proper charging of the storage system. This study
is grounded in the research presented by Hu et al. [11].

Figure 6A displays solar power alongside the constant demand, highlighting days
(such as 4, 5, 9, and 10) where solar power is insufficient due to weather conditions. In
addition, Figure 6B shows how the photovoltaic agent is activated when there is solar
radiation, which influences the time of the power delivered by the solar panels due to the
level of radiation. Also, it is observed between the period of absence of solar radiation or
cloudiness (see Figure 6A) that the battery comes into operation to supply the demand of
consumers (Figure 6C). On day 4, with inadequate irradiation, solar panels fail to activate,
and the storage device must supply energy all day. However, a failure in the battery
agent leads to its complete discharge. (Figure 6D). The exchange agent intermittently
compensates until it fully assumes supply due to the battery’s complete discharge (SOC = 0)
and insufficient solar radiation from day 9 onwards (Figure 6E).
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Figure 6. Storage system charging process failure. From top to bottom: (A) Continuous line represents
solar power as a function of irradiance and the dotted line represents the real demand. (B) Real power
delivered by the solar panels. (C) Battery power. (D) Dotted line represents the SOC battery charge
percentage. (E) Power of the external electrical grid. (F) Difference between the power delivered
and consumed.

Figure 6F depicts the balance achieved in the electrical network, fulfilling demand
through the joint coordination of the agents and compensating for the deficiencies due to
failures. Notably, the utilization of the storage device improves the metrics compared with
case study 2 by reducing peaks caused by the entry of the external electrical network. The
figure shows the difference between the energy delivered and consumed, as quantitatively
represented in Table 7, with excellent demand satisfaction (AP = 0). A single peak is noted
in the IAE (0.02%) and ISE (0.04%) metrics, with the latter being higher. The contributions
from each component of the energy ecosystem are as follows: solar panels at 13.13%, the
battery at 39.95%, and the external power supply at 46.96%. This distribution highlights the
significant influence of climatic conditions on renewable energy production (solar energy)
and the increased reliance on external energy sources due to the battery’s failure.

Table 7. Performance metrics for case study 4.

Metrics AP Worst Cases AP % S
ISE 6013 1.5 x 107 0.04% 0.0
IAE 12.05 6 x 104 0.02% 0.0

5.2.5. Case Study 5: Storage System Failure and Restoration

Case Study 5 examines the ecosystem’s response to a battery failure in a typical
residential setting, where the battery, initially fully charged, encounters a communication
failure. This failure prevents the SOC variable from being detected by any system agent
during the first five days. After 120 h, the communication issue is resolved. The scenario
assumes variable solar radiation due to weather conditions and a constant demand over
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10 days. This study, based on the insights from Hu et al. [11], analyzes the impact of a
battery agent problem and its subsequent restoration on the overall energy supply system.

Figure 7A displays solar power in relation to irradiance alongside the actual demand.
It highlights days, such as 4, 5, 9, and 10, where solar power is insufficient due to weather
conditions. In addition, Figure 7B illustrates the activation of the PV agent and its influ-
ence on the power delivered by the solar panels, dictated by the level of solar radiation.
Figure 7C shows that for the first five days, the battery does not operate due to the failure
in communicating the SOC variables. Once this issue is resolved, the battery resumes
operation and supplies the required power for the subsequent days. In Figure 7D, the
dotted line represents the SOC battery charge percentage throughout the period, and
Figure 7E indicates the periods when the power from the external electrical grid is utilized,
particularly after the battery is fully discharged on the 10th day.
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Figure 7. Storage system failure and restoration. From top to bottom: (A) Continuous line represents
solar power as a function of irradiance and the dotted line represents the real demand. (B) Real
power delivered by the solar panels. (C) Period where the battery power is supplied. (D) Dotted line
represents the SOC battery charge percentage. (E) Period where the power of the external electrical
grid is used. (F) Difference between the power delivered and consumed.

Figure 7F reveals the difference between the energy delivered and that consumed,
whose behavior is represented quantitatively through Table 8, with excellent demand
satisfaction (AP = 0), and with a single peak expressed in the metric IAE (0.03%) and ISE
(0.09%), the latter being higher due to the presence of the peak. The contribution of each of
the components of the energy ecosystem is distributed as follows: 13.13% the solar panels,
39.94% the battery, and 46.96% the external power supply, which demonstrates the high
influence of climatic conditions on production from renewable sources (solar energy), and
the greater participation of the external energy source.
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Table 8. Performance metrics for case study 5.

Metrics AP Worst Cases AP % S
ISE 1.35 x 104 1.5 x 107 0.09% 0.0
IAE 18.05 6 x 104 0.03% 0.0

5.2.6. Case Study 6: Normal Operation of the MG with Constant Demand

The aim of this case study is to evaluate the performance of the energy storage agent in
managing energy supply and consumption processes under constant demand. It operates
under the assumption of stable energy costs over time (costcop fort > €0Styeq1), and varying
solar radiation, as depicted in see Figure 8A. This scenario is typical of a residential
environment powered by various sources, with the study focusing on the coordination of
its components. The foundational research for this case is drawn by Zhou et al. [10].
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Figure 8. Normal operation of the MG with constant demand. From top to bottom: (A) Continuous
line represents solar power as a function of irradiance and the dotted line represents the real demand.
(B) Real power delivered by the solar panels. (C) Period where the battery power is supplied.
(D) Dotted line represents the SOC battery charge percentage. (E) Period where the power of the
external electrical grid is used. (F) Difference between the power delivered and consumed.

Figure 8A shows the solar power with constant demand, evidencing that there are
days where the solar power is not enough to satisfy the demand, such as days 4, 5, 9, and 10,
due to weather conditions. In addition, Figure 8B shows how the PV agent is activated
according to the solar radiation and load demand. On the one hand, it is evident that
in the absence of solar energy, the storage device starts to work and is activated again
when the power of the panel is not enough, which is highlighted between days 1 and 3 of
Figure 8B,C. On the other hand, the battery is completely discharged on day 5, and tries to
recover slowly, but, motivated by the demand and variability of the climatic conditions, the
SOC tends to zero (see Figure 8D). Thus, the external power system comes into operation
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intermittently from day 5, and becomes permanent from day 9, due to insufficient solar
radiation and battery discharge.

Figure 8F presents the difference between the energy delivered and consumed. This
behavior, quantitatively depicted in Table 9, shows excellent demand satisfaction (AP = 0),
with occasional peaks in the IAE (0.09%) and ISE (0.16%) metrics, the latter being higher
due to the quantity and magnitude of the peaks. Meanwhile, the IAE remains lower than
the ISE due to the infrequent occurrence of these peaks. The energy contributions are
distributed as follows: solar panels at 13.11%, the battery at 46.58%, and the external power
supply at 40.31%. This distribution highlights the significant impact of climatic conditions
on renewable energy production (solar energy) and the subsequent effects on the battery
charging processes.

Table 9. Performance metrics for case study 6.

Metrics AP Worst Cases AP % S
ISE 2.328 x 104 1.5 x 107 0.16% 0.0
IAE 57.11 6 x 10% 0.09% 0.0

5.2.7. Case Study 7: Normal Operation of the MG with Variable Consumption

The focus of this case study is to analyze the coordination between the components
of an MG—specifically the solar panels and external power source—in a scenario where
there is variable consumption against a backdrop of constant solar radiation over a 10-day
period. The battery in this scenario is fully functional and charged (charge and discharge).
This residential scenario, drawing on various energy sources, examines the coordination
between the MG components in response to demand variations. The study is based on the
research conducted by Zhou et al. [10].

Figure 9A shows the solar power and the variation in the demand of the electrical
network, highlighting the excess energy that will allow the battery to be charged. The power
generated by Ppy (solar panels) is used depending on the demand needs and availability
of storage in the battery (SOC << 1). For example, on days 1 and 2, only what is required
by the load is supplied, while for the rest of the days, both the demand and the battery
charge are covered (see Figure 9B). It can also be seen in Figure 9C,D, the power delivered
by the battery and the percentage (SOC), respectively, where it is fully discharged on day 6
and begins a gradual recovery process, due to the demand decreases at the end of day 7.
Between days 6 and 8, the battery is completely discharged, so the external power source
comes into operation (see Figure 9E).

Figure 9F presents the difference between the energy delivered and consumed. This
behavior, as quantified in Table 10, indicates excellent demand satisfaction (AP = 0), with
occasional peaks expressed in the metrics IAE (0.73%) and ISE (0.19%). The ISE is lower
due to the frequency and magnitude of the peaks, whereas the IAE is higher, reflecting
an increase in magnitude due to demand variations on days 6 and 7. The energy contri-
butions are distributed as follows: solar panels at 27.92%, the battery at 58.38%, and the
external power source at 13.72%. This distribution signifies that 86.26% of the energy comes
from renewable sources, underscoring the MG'’s effective management and utilization of
renewable energy.

Table 10. Performance metrics for case study 7.

Metrics AP Worst Cases AP % S
ISE 2.84 x 10* 1.5 x 107 0.19% 0.0
IAE 73.26 6 x 104 0.73% 0.0
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Figure 9. Normal operation of the MG with variable consumption. From top to bottom: (A) Con-
tinuous line represents solar power as a function of irradiance and the dotted line represents the
real demand. (B) Real power delivered by the solar panels. (C) Period where the battery power is
supplied. (D) Dotted line represents the SOC battery charge percentage. (E) Period where the power
of the external electrical grid is used. (F) Difference between the power delivered and consumed.

5.2.8. Case Study 8: Energy Price Variability

This case study investigates the functionality of the entire energy ecosystem amidst
energy price fluctuations over a 10-day period, focusing on how these changes affect
behavior around the cost of comfort. The scenario assumes constant solar radiation, a fully
charged (100%) battery at the start, and normal operation for charging and discharging
processes. The non-controllable loads consume 200 W, and the controllable loads consume
50 W, representing a scenario with diverse energy sources and fluctuating energy costs.

The dotted line in Figure 10A indicates solar power related to irradiance, while the
solid line shows the actual potential delivered by the solar panels. For the initial two days,
the energy supply is solely from the battery and solar agents, as shown in Figure 10B.
Despite high battery charge levels and solar panel energy surpluses, these surpluses are
not utilized until the third day.

The battery has a high percentage of load, and the energy surpluses of the solar
panels are not used, but from the third day on, the excess energy from the solar panels
is gradually used to charge the battery, which is evidenced by the overlapping of both
signals (see Figure 10A) This charge is very tenuous (See Figure 10C). Figure 10B shows the
three states of the battery: when Pgar > 0 then it supplies power; when Ppar = 0 then it
does nothing; and when Pgat < 0 then it charges. On day 7th, the batteries are completely
discharged for the first time, and that is when the external electrical energy comes into
operation to supply the energy deficiencies (see Figure 10D). It should be noted that the
batteries manage to partially charge themselves in periods of excess solar energy, but are
not enough to achieve 100% charge. So, coordinated control is obtained between the solar
panels, the batteries and the external electrical network.
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Figure 10. Energy price variability. From top to bottom: (A) The dotted line represents solar power
as a function of irradiance and the solid line represents the real potential delivered by the solar
panels. (B) Continuous line is the battery power supplied. (C) Dotted line represents the SOC battery
charge percentage. (D) Period where the power of the external electrical grid is used. (E) The dotted
line represents the cost of comfort and the continuous line the variations in the price of energy.
(F) Demand or power consumed by the apartment. (G) Difference between the power delivered
and consumed.

Figure 10E shows the variations in the price of energy. When the batteries are charged
in the first 6 days, despite the cost increase, it is not relevant because the external source
does not act. But then, in the second cycle of variations in the price of energy that occurs
between days 8 and 9, it affects the operation of the electrical network, which causes the
deactivation of controllable loads to reduce consumption. Most of the time (91.46%), full
energy supply is guaranteed to both controllable and non-controllable loads, but only 8.54%
of the time, controllable loads are turned off due to high energy prices.

Figure 10G quantitatively represents the difference between the energy delivered
and consumed. In other words, a measure of satisfaction of consumers who seek to have
the trend as close to zero as possible, which is shown in Table 11, when the peaks and
transitions of the energy sources are minimal with values of 0.10% in the case of the IAE
and 0.17% in the ISE. The latter is higher because it penalizes the peaks that appear. To
calculate the above measurements, the worst case is considered when the error is maximum
(250 W) during the 10 days.

Table 11. Performance metrics for case study 8.

Metrics AP Worst Cases AP % S
ISE 2.54 x 10% 1.5 x 107 0.17% 0.0
IAE 66.53 6 x 104 0.10% 0.0
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5.3. General Discussion

The results of the case studies, reflecting the contributions of the MG generation sources,
are summarized in Table 12. The data are expressed in hours, days, and percentages relative
to a period of 240 h/10 days/100 percent. Each case study explores a variety of scenarios
that can occur in electrical networks. These scenarios include weather variations, component
failures, market price fluctuations, and changes in consumer demand, among others.

Table 12. Summary of the case studies.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Hours 78.02 41.75 31.52 315 31.52 31.47 67 65.17

Ppy Day 3.25 1.74 1.31 1.31 1.31 1.31 2.79 2.72
% 32.51% 17.40% 13.13% 13.13% 13.13% 13.11% 27.92% 27.15%

Hours 0 0 0 95.87 95.86 111.8 140.1 141.4

Ppats Day 0.00 0.00 0.00 3.99 3.99 4.66 5.84 5.89
% 0.00% 0.00% 0.00% 39.95% 39.94% 46.58% 58.38% 58.92%

Hours 0 0 208.5 112.7 112.7 96.75 32.93 335

Pg Day 0.00 0.00 8.69 470 4.70 4.03 1.37 1.40
% 0.00% 0.00% 86.88% 46.96% 46.96% 40.31% 13.72% 13.96%

Figure 11 graphically represents the percentage contribution of each component. In
cases 1 and 2, only the solar panels are involved, with differences between the two cases
due to climatic variability.

120.0%
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40.0%
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Figure 11. Contribution of supply sources in each case study.

According to Figure 11, blackouts are caused by an energy deficit when other supply
sources are absent, leading to a vulnerable and deficient electricity supply. Conversely,
from cases 3 to 8, there is evident perfect coordination among the various agents to ensure
energy supply under any condition. Cases 4-6 exhibit similar behaviors, as do cases 7 and §,
where most of the energy supply is from renewable sources. This situation is advantageous
for consumers, as renewable energy is generally cheaper and less polluting than fossil
fuel-based sources such as gas and oil.
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This paper has demonstrated the technical feasibility of our proposal through sim-
ulations. However, for real-world implementation, other technological aspects must be
considered. Specifically, the emerging agent-oriented RTM-based controller would operate
at the tertiary level of an MG control architecture, necessitating coordination, control, and
communication processes with higher-level agents. This would require communication
capabilities depending on the distributed nature of the MG components. For wireless
communication needs, technologies like GSM, GPRS, 3G, 4G, and Wi-Max could be utilized;
ZigBee, WiFi, or Bluetooth are suitable for shorter distances. Wired solutions might include
Power Line Communication (PLC), fiber optics, and DSL for longer distances, or RS5485
and Ethernet for shorter distances [9].

5.4. Qualitative Comparison with Previous Works

In comparing our work with previous studies (refer to Table 13), several criteria have
been considered:

1. Context of Distributed Control: one criterion is whether the study is within the context
of distributed control.

2. Energy Problem Involving Both Supply and Demand: another criterion is whether the
study addresses the energy problem involving both supply and demand simultaneously.

3.  Consideration of New Agents: lastly, we consider if the study incorporates dynami-
cally new agents, such as new renewable energy sources.

The x symbol on Table 13 indicates that this work meets that criterion.

Table 13. Comparison with previous works.

Criteria vs. Works 1 2 3
[14] X
[15] X X
[16] X
[20] X X
[40] X
[10] X X
[12] X
[13] X X
Our approach X X X

Following is a qualitative comparison with some of the previous works: Harmouch
et al. [14] suggest a decentralized MA-EMS with the goal of minimizing power exchange
with the main grid. While it shares a similar architecture with our paper, it does not search
into the coordination between different elements or variations in market prices, and the
study time periods are shorter. Additionally, its objective is to minimize grid reliance rather
than satisfy consumer needs.

Kofinas et al. [15] recommend a cooperative MAS for managing the energy of a
stand-alone MG. The MAS learns to control the MG components, but it requires previous
experience to define the control rules. Moreover, it does not consider the participation of
controllable loads on the demand side. Zhou et al. [9] propose an autonomous coordination
control strategy for MGs, and Areekkara et al. [13] study a MAS approach to model an MG
EMS with diverse forecasting agents and a real-time correction agent.

Chouikhi, et al. [16] present electricity management mechanisms in smart buildings
to reduce total energy cost and the peak to the average consumption ratio, and maximize
the exploitation of renewable energy. Unlike our proposal, which focuses on controllable
loads, this work analyzes various loads within building apartments but does not detail
their distribution within the building.
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Zheng et al. [40] examine self-organization algorithms that are appropriate for task
distribution in industrial manufacturing processes with significant task dependencies. They
propose two algorithms based on the RTM for task dependencies. They only rely on local
interactions between the relevant agents and the environment for decision-making. It is a
different application of the RTM compared to our approach as an emergent control strategy.

The rest of the works [9,11,17,18] fall along the same lines as the previous ones: they
do not simultaneously consider both sides (producer and consumer), or they do not allow
distributed control or the natural integration of new agents. These aspects are covered
by our proposal. It is worth highlighting the works [11,12,19] that address trends in
coordination strategies around energy management systems as an MG. In these works, it
can be verified that the RTM has not been previously used, showing that our RIM-based
approach is an innovative proposal. Additionally, this paper indicates the way to specify an
MG using the MAS paradigm with an emergent coordination approach between its agents
(see Section 4.2).

6. Conclusions

Based on the emergent control paradigm, this paper proposes a distributed control
architecture for MGs. Specifically, it is based on the RTM, which was inspired by how
ants react to internal or external stimuli of local variables in their environment. The
paper suggests an emergent control approach for MGs composed of heterogeneous agents,
including batteries, solar panels, controllable loads, and external energy sources. These
agents must coordinate to satisfy consumer demand.

One of the main features of our emergent control method is its robustness. It adapts
to component failures, changes in climatic conditions, or economic variables, ensuring
the achievement of global goals. The activation mechanisms derived from this approach
significantly improve performance, with IAE metrics as low as 0.01% (in case study 3),
indicating minimal difference between supplied and demanded power.

The research results demonstrate the potential of this approach to address several
challenges in the energy ecosystem: (i) MG component decentralized coordination based
on local environmental knowledge; (ii) Robustness in distributed control actions in the
face of different failures (see cases 3, 4 and 5); (iii) RES prioritization. From cases 3 to §,
there is evidence of perfect coordination between the various agents to guarantee the
energy supply in any condition AP = 0. Cases 4-6 show similar behaviors, as well as
cases 7 and 8, where most of the energy comes from renewable energy sources, 59.7% and
86.1%, respectively. The main findings of the research work focus on the definition of an
autonomous distributed control based on the RTM, and the definition of a methodology to
apply our emergent approach to control an MG. Our approach allows maximizing the use
of renewable energy, uses controllable charging when it is least expensive, and optimizes
the use of batteries, among other things. On the other hand, one of the main limitations of
this work is the implementation in a reduced number of energy agents.

Future work aims to integrate additional RES such as wind and geothermal and con-
sider their joint performance. The study will also dig into controllable loads and other
agents like electric vehicles, exploring various user comfort levels for load adjustment.
The emergent control proposal will be integrated into a MAPE-K (Monitor-Analyze-Plan-
Execute plus Knowledge) model [41] for smart energy management in smart grids. Fur-
thermore, the approach will be implemented in an energy simulator like ESDL-based
Energy System Simulator (ESSIM) [42] and investigated for compatibility with advanced
RL models, including Deep RL.

Additionally, other conditions, such as penalties stipulated in electricity supply con-
tracts for interruptions to consumer supply, can be incorporated into the design of our
emerging controller. Under these conditions, maintaining the stability of the MG requires
action on the electricity supply networks rather than on the consumers. Another aspect
for future studies is the monitoring of frequency values to control the balance between the
electrical energy produced and consumed. Finally, while future work will concentrate on
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distributed control issues, there is also a potential to explore more complex component
models and apply MG design methods to size components appropriately according to
various needs and operational requirements.
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Nomenclature and Abbreviations

Subscripts

i For agents/individuals

j For tasks, j = {PV, ESS, UG}

Variables

0 Response threshold

5 Stimulus

q Activation probability

Nact Quantity of active entities

N Quantity of entities that may be active in the colony
fs Instant stimulus

Yij Portion of entities of type i doing task j

Ppy Maximum active power output PV [W]

¢ Solar radiation [kw/m?2]

T, Ambient temperature [°C]

Vi Terminal voltage of the battery [V]

s0C Battery state of charge at t [%].

I The effective value of the discharge current [A]
Pr Total active power generated [W]

AP Error in the supply-demand [W]

Py Generated active power by the renewable systems [W]
Pr Main grid active power [W]

Ppar Active power in the energy storage system [W]
Pr Total energy consumption or demand [W]

Prc Power consumed by controllable loads [W]
Prne Power consumed by uncontrollable loads [W]
costeomfort  Comfort cost

COSt yeq) Market cost

Abbreviations

DER Distributed energy resources

DRL Deep Reinforcement Learning

EP Energy pool

PEU Power exchange unit

EMS Energy Management System

ES Energy system
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ESS Energy storage system

HES Hybrid energy systems

LC Controllable loads

LNC Non-controllable loads

MAS Multiagent Systems

MASINA  Multiagent Systems for Integrated Automation
MG Microgrid

PV Photovoltaic

RES Renewable Energy Systems

RTM Response Threshold Model

RL Reinforcement Learning

UG Utility grid

WECS Wind energy conversion systems

Parameters

o Scale factor that measures the efficiency in performing the task
5 Increase in the stimulus’s intensity per unit of time
B Learning rate

0% Forgetting rate

N Conversion efficiency of the PV array

S Area of the PV array [m?]

Voc Circuit voltage [V]

Rint Internal resistance of the battery [()]

K Polarization constant

wj Attenuation factor of the instantaneous stimulus function (fs)
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Abstract: Adaptive protection schemes have been developed to address the problem of behavior-
changing power systems integrated with inverter-based generation (IBG). This paper proposes
a machine-learning-based fault detection and classification technique using a setting-group-based
adaptation approach. Multigroup settings were designed depending on the types of power generation
(synchronous generator, PV plant, and type-3 wind farm) connected to a transmission line in the
39-Bus New England System. For each system topology, an optimized pretrained ensemble tree
classifier was used. The adaptation process has two phases: an offline learning phase to tune the
classifiers and select the optimum subset of features, and an online phase where the circuit breaker
(CB) status and the active output power of the generators are continuously monitored to identify the
current system topology and to select the appropriate setting group. The proposed system achieved an
average accuracy of 99.4%, a 99.5% average precision, a 99.9% average specificity, and a 99.4% average
sensitivity of classification. The robustness analysis was conducted by applying several fault scenarios
not considered during training, which include different transmission network configurations and
different penetration levels of IBGs. The case of incorrect selection of the appropriate setting group
resulting from selecting the wrong topology is also considered. It was noticed that the performance
of developed classifiers deteriorates when the transmission network is reconfigured and the incorrect
setting group is selected.

Keywords: adaptive protection; machine learning; fault detection and classification; inverter-based
generators; groups setting

1. Introduction

Adaptive protection schemes have emerged in the last few decades to address the
problem of behavior-changing power systems with IBGs. Examples of system-changing
problems include the fault level contribution, the fault characteristics of the IBGs, and
system reconfigurations [1]. Analyzing the fault characteristics becomes difficult because
the IBGs have unique electricity-generating principles due to the integration of power
electronic converters [2]. Adaptive protection was suggested to automatically adjust
protection functions to make them more attuned to prevailing power system conditions [3].
These adaptive protection schemes grant the power system protection the ability to identify,
categorize, and localize faults in power systems that have been penetrated by inverter-

Copyright: © 2023 by the authors.
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Several adaptive protection methods were proposed in the literature to mitigate the
issues of integrating renewable resources and changing system topologies. One of the
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advantages of ML techniques are accuracy, self-adaptiveness, and robustness to parame-
ter variations [4]. Classical ML techniques face several challenges, such as updating the
training dataset for newly discovered faults and continuously tuning the classifier’s pa-
rameters [5]. Adaptive ML algorithms have been introduced to address the power systems’
changing behavior. The adaptation may occur at feature extraction, feature selection, or
classification levels. Continuous data streaming for training should be supported by the
adaptive classifier, which should be able to adjust to the changing behavior of the power
system thanks to integrated renewables. This process is known as incremental or online
learning [6].

An adaptive microgrid protection strategy employing traditional protection relay
settings and a machine learning classifier was proposed by Hengwei et al. [7]. The rule-
based method was able to choose the appropriate setting group of overcurrent and distance
relays relevant to the current system topology, while the ML classifier was utilized to detect
the faults. A support vector machine (SVM) classifier was used in [8] to predict the remote
CBs’ status, identify the circuit topology, and select the correct relay setting. Marin-Quintero
et al. [9] developed an adaptive protection scheme for an active distribution network with
distribution generators (DGs) using an ML algorithm. Different system topologies were
considered, and each topology used a different ML classifier for fault detection. For each
system topology, the relays in the network were equipped with the classifier that achieved
the best classification accuracy during offline training. In this application, the different
classifiers used a common set of features, which may not be an optimal subset. Yavuz
et al. [10] proposed an adaptative algorithm that computes the optimum weights using
particle swarm optimization for different ML classifiers to achieve a high performance
independent of the system topology and the type of connected generators. The adaptation
was made online using only the voltage, frequency, and phase angle signals obtained from
the PMUs. Tang and Yang [11] developed an adaptive protection scheme by extracting
features from the continuous wavelet transformation of the positive, negative, and zero
sequences of voltage and current and the three-phase currents and voltages. Two system
topologies were considered, namely fixed topology and changing topology. Features were
selected using Pearson’s correlation coefficient. For the fixed topology case, the relay
operation thresholds, obtained using the DT classifier, were embedded in the relays to
enable fault detection. For the changing topology, a neural network was adopted.

This paper proposes an adaptive transmission line protection connected to three
generations: synchronous generators, PV plants, and wind farm. The adaptation design
depends on online system topology identification using a combination of the CBs’ status
and real-time measurement of the active output power of the connected generating units
behind the protected transmission line and the ML model for fault detection classification.

The combination of CB status and power measurement ensures more reliable topology
identification. It is worth noting that the definition of the system topology in this paper
differs from the definition in the literature. Our definition of the system topology is the
generation mixture available in the busbar behind the protected line, whereas the topology
defined by others was the lines or buses connected/disconnected in the power system
network.

The fault detection and fault type classification for each system topology were designed
using an ML model in the offline process. After appropriate topology identification, the
designed ML model parameters were saved in the setting groups. The correct setting
group is selected based on the relative topology in the online process. More specifically, the
proposed method:

e  defines the system topology as the generation mixture available at the busbar behind
the protected line;
considers two types of IBGs, namely large-scale PV and DFIG wind farms (WF);
combines ML-based classifiers with setting group selection based on circuit breaker
statuses and real-time active power measurements;
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e tunes the hyperparameters of the classifier associated with each system topology using
the Bayesian optimization algorithm to achieve the best classification performance;

e  uses the ensemble feature method, an embedded-type feature selection method, to
select the optimal feature subset associated with each system topology;

e  selects the appropriate setting group online according to the system topology obtained
from the lookup table.

The adaptive scheme in this study refers to the online topology identification from
CB states and active power measurements of the connected generating units, followed by
the appropriate selection of the setting groups equipped with pretrained ML classification
models to detect and classify the faults.

This paper is organized as follows. Section 2 identifies different system topology
identification methods in the literature. Section 3 describes the methodology used to
identify the generation topology and to build the datasets for the adaptive fault detection
and classification technique. It also describes the ML protection setting method. Section 4
presents and discusses the obtained results. It evaluates the performance of the classification
models using different classification metrics: accuracy, specificity, precision, and sensitivity.
The performance of the proposed adaptive scheme system was evaluated using new fault
events, different IBG penetration levels, and transmission system configurations. Section 5
provides the conclusion.

2. System Topology Identification Methods

Identifying or detecting system topology changes is crucial in selecting the appro-
priate adaptive protection scheme. Several topology identification approaches have been
proposed in the literature.

Identification with CB status: The CB status approach has been widely used for adaptive
protection scheme design. Poudel et al. [8] developed an adaptive protection scheme
for medium-voltage feeders by collecting the CB status of that feeder in the substation
computer, along with the statuses of the loads, DGs, and autoreclosers. The computer
substation saves predefined settings corresponding to each system topology. An adaptive
overcurrent was established and proposed in [12] to detect the faults in two different
setting groups, the islanded mode and the grid-connected mode, by defining the CBs of
the network circuits and the CB status of the distributed generators using the IEC61850
communication protocol. The setting groups were changed after loss of mains, loss of DG,
or islanding. Lin et al. [13] proposed lookup tables for the circuit breaker (CB) and relay
events. The protection settings for different states were calculated offline and stored in the
settings table (action table).

Identification using dynamic state estimation (DSE): When the operating system point
changes more frequently and quickly, it becomes crucial to keep track of the system’s
dynamic state variables, including voltage and current magnitude and angle, current
magnitude and angle, and real and reactive power [14]. The data were collected from
PMUs, merging units (MUs), and digital fault recorders (FRs). The dynamic variables
of the system equipment could be estimated using differential-algebraic equations [15].
Adaptive protection can be developed by estimating the dynamic states to identify the
system topology. Korres et al. [16] utilized the state estimation algorithm to define the
IEEE RTS-96 substation configuration via the circuit breaker status identification using
the active and reactive power flows as continuous state variables. The authors in [16]
tested two algorithms for topology identification: the recursive Bayesian estimation (RBE)
and generalized state estimation (GSE). The GSE provided good model identification
accuracy, even when the number of possible network configurations was increased. The
state estimation approach, however, faces several challenges [17] such as dependency on
the communication system to transfer the data from measuring devices, considering the
network bandwidth and capacity, and limiting the accuracy and rate of data exchange. In
addition, the higher penetration of renewable power resources introduces a higher level
of uncertainty.
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Identification using machine learning: ML can be used to detect and identify the sys-
tem configuration changes by collecting measurements at different locations of the power
system, such as lines, generators, and supplementary devices (fault current limiters, re-
active power compensators, and others). The SVM classifier was used in [18], where the
three-phase voltage and current, RMS values, and the zero-sequence current were the input
features measured at different locations in the IEEE 123-node distribution test system. The
authors in [19] proposed using several ML classifiers (SVM, k-NN, and ensemble algo-
rithms) to identify the system configurations of a simulated standard power distribution
system. The SVM outperformed the other classifiers by achieving 100% detection accuracy.
Rajendra et al. [20] estimated the system configuration of the tie lines in the modified IEEE
123-bus distribution system using deep learning (CNN) and compared it with the SVM.
The CNN outperformed the SVM.

Identification using data-driven approaches: The system topology can be identified by
collecting data from different locations of the power system network and recognizing the
available system components (lines, generators, and loads). The required data are voltage,
current, real power, reactive power, or frequency signals and can also be extracted features
from these signals. Razmi et al. [19] used transient voltage signals at different system-
switching devices to identify the system topology and circuit status. The transient voltage
was obtained from instantaneous voltage signals measured at each end of the distribution
lines in an ANSI standard distribution system and extracted the maximum, minimum, and
rate of change as features. The dataset was classified using SVM, k-NN, DT, and ensemble
tree classifiers. The SVM classifier outperformed the others with its 100% achieved accuracy.
In [8], The circuit status was identified according to the measurements of RMS voltage,
current, real and reactive power collected from the lines of the modified IEEE 34-bus system
and two-bus power system with the PV system. Then, the overcurrent protection settings
were adopted for each circuit topology. The topology identification was achieved using
the SVM classifier, and the results showed that using all measured signals resulted in a
classification accuracy of 100%, whereas using current and voltage measurements only
resulted in lower performance (98%). The authors in [21] designed an ML data-driven
approach to identify the system topology by constructing a connectivity matrix that showed
the status of switches with voltage and current phasors recorded by PMUs. The proposed
method approximates network parameters using an ensemble-based deep learning model
for a modified IEEE 33-bus network and real feeder in Queensland, Australia. Their design
performance was a detection error rate of only 1.2%. For transmission system topology
identification (IEEE 39-bus and 118-bus systems), the authors in [22] identified the line
outage using the phasor angles at buses. Logistic regression (LR), random forest (RF), and
graph convolutional network (GCN) were the models used for identification. The proposed
classifiers were evaluated with two performance metrics (precision and recall). The results
showed that logistic regression outperformed the others with 99% precision and recall.

3. Methodology

In this section, the proposed methodology is described in detail. It consists of three
parts: topology identification procedure, machine learning design requirement, and the
overall proposed adaptive scheme using ML-based protection setting approach.

3.1. Topology Identification Procedure

The proposed topology identification in this paper depends on the circuit breaker
status of the generating units connected at one end of the protected transmission line and
the active output power of these units. Depending on the circuit breaker status alone is not
always reliable. The circuit breaker may fail due to mechanical or electrical reasons and the
intermittency behavior of renewable resources where the output power ranges from zero
to maximum, depending on weather conditions. There are cases where the output power is
zero while the circuit breaker is in a closed position. Figure 1 shows a real case of PV plant
and wind farm output power that varies from zero to maximum during the day’s hours.
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As a result, the circuit breaker status and the active power measurements are used for the
reliability of topology identification. If the power measurement exceeds zero, the output
is one; otherwise, it is set to zero. Considering the three generators connected at one bus
(synchronous generator, PV plant, and wind farm), the topology lookup table is shown in
Figure 2. Individual plant availability status is obtained using the AND gate between the
CB status and the output power, and then the topology can be identified with the lookup
table using the three statuses of the generating plants. The resulting number of topologies
is eight, noting that the ‘No generation’ topology means that none of the three generation
plants are in service. However, other generators connected at different system parts feed

the faults incepted in the protected lines.

Figure 1. Measurements of the active power output of the PV plant and wind farm during the
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Figure 2. Lookup table for topology identification.
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3.2. Machine Learning Design Requirement

This section explains the dataset construction phases, the feature selection method,
the classification model, and the classification performance metrics.

3.2.1. Data Collection and Preparation

The datasets were simulated using the 39-Bus New England System model [23] shown
in Figure 3. The data were simulated using the Power Factory DigSilent software pack-
age [24]. The details related to the parameters of the synchronous generators, transmission
lines, power transformers, and loads can be found in [25]. The protected transmission line
was line 1-2. The following signals were measured at bus -2: the instantaneous three-phase
voltage, instantaneous three-phase current, and the angle between voltage and current.
The signals included fault and nonfault events. The PV plant and wind farm, whose
characteristics are shown in Table 1, were introduced at bus 2.

Wind Farm PV Plant 9
. . Q )
— 1 [ 1 | ”Thzg
28
:v‘,‘-:,r, — 27 2|4

2 ST
Protected Line ———» |
1% ;'

E G4 !
39 I 22
4 14

@
12
“ : 6 | " é
9 28

Figure 3. The 39-Bus New England System.

Table 1. PV plant and wind farm characteristics.

IBG

Characteristics Dynamic Model Type

PV Plant

Wind Farm
(Type 3: Doubly fed

induction generator)

10 kVA per inverter, local controller: constant Q,
Short circuit model: Dynamic voltage support,
Sub-transient short circuit: 1.21 kVA, R to X” ratio:
0.1, K Factor: 2, Max. current: 1.1 pu, Td”=0.03 s,
Td' =1.2s

2MVA, 1.0 power factor, local controller: constant
Q, Short circuit model: Dynamic voltage support,
Sub-transient short circuit: 2.39 MVA, R to X” ratio:  WECC Wind Turbine Model Type 3
0.1, K Factor: 2, Max. current: 1.1 pu, Td”=0.03 s,

Td' =1.2s

WECC Large-scale Photovoltaic
Plant model

Swing conditions and normal system behavior make up the nonfault events. The
swing conditions were incorporated into the nonfault class because they should prevent
the protection device from operating during power swing situations. Different fault types,
locations, and resistances were simulated as part of the fault events. Power swing was
detected using the swing center voltage (SCV) signal, as suggested in [26]. The magnitude
of the SCV changes between 0 and 1 per unit of system nominal voltage. The SCV’s
magnitude remains constant under typical load situations. The voltage magnitude at the
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relay point is multiplied by the local voltage and current angle difference to determine it.
The fault scenarios contain combinations of the following fault types: A-G, B-G, C-G, A-B,
A-C, B-C, A-B-G, A-C-G, B-C-G, and A-B-C. They also feature fault resistances of 0 and 100
ohms, fault locations of 10%, 50%, and 90%, and three-phase faults occurring during power
swing situations.

Eight datasets were created for this investigation that represented the generators
attached to bus 2 behind the protected transmission line. Three different generator types
might be coupled, as shown in Figure 3. (G10: synchronous generator, PV plant: connected
to the system with inverters, and wind farm: doubly fed induction machines).

There are eight different system topologies: T1 (SG only), T2 (PV only), T3 (WF only),
T4 (SG and PV), T5, T6, and T7 (SG, PV, and WF) (No generation). Seventy percent of the
total observations were utilized in the training dataset to fine-tune the hyperparameters,
and the remaining observations were used to test the ML classification model.

Eight balanced classes make up each dataset: “0” for normal and swing conditions,
“1” for A-G fault events, “2” for B-G fault events, “3” for C-G fault events, “4” for A-B and
A-B-G fault events, “5” for A-C and A-C-G fault events, “6” for B-C and B-C-G fault events,
and “7” for three-phase fault events. The dataset’s balanced classes have an equal amount
of observations for each class.

3.2.2. Feature Extraction and Selection

According to Table 2, the features were derived from three domains: time, frequency, and
time—frequency. Each dataset contained 343 characteristics in total (7 Signals x 49 features).
These elements were taken into account in our previously published research [27].

Table 2. Extracted features.

Domain Features Number of
Features for Each Signal
Statistical features of the squared signals 9
Time Statistical features of first-order difference 9
of the squared signals
Statistical features of spectrogram 9

Statistical features of wavelet
decomposition of first and second detail 18
coefficients [28]

Time-frequency

Estimated instantaneous frequency [29] 1

R Spectral entropy [30] 1
requency

Mean and median frequency [31] 2

This research suggests using the ensemble-based feature selection strategy because it
maximizes classification accuracy. For the same dataset, the ensemble tree classifier out-
performed the k-nearest neighbor, support vector machine, and decision tree classification
models, as described in [27]. The ensemble approach is a strategy for embedded feature
selection that makes use of weak learners to choose the ideal subset of features that optimize
classification accuracy and reduce error. The construction of a linear prediction model using
embedded techniques aims to decrease the number of input features while simultaneously
maximizing the goodness of fit of the model [32]. The rationale behind utilizing decision
trees to assess the significance of a feature is that they perform splits that optimize impurity
reduction. Calculating the mean reduction in impurity for each feature across all trees
yields the feature significance [33]. Impurity-based feature importance is another name for
this technique. The importance calculation follows the following procedure:
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Construct training
and testing
dataset according
to the defined
system topology.

For each given feature
For each tree

Compute the impurity decrease (Gini or entropy)

Weight by the number of examples at that node

Average overall trees (i.e., average impurity decrease)

Normalize importance values so that the sum of feature importance values equals one

L\ e

The feature that experiences a greater impurity reduction at each split is given more
weight. This strategy’s mathematical model can be found in [34].

3.2.3. Classification Model

There are several ML-based classification models, each with advantages and limita-
tions. In our study [27], the results demonstrated that the ensemble classifier outperformed
decision trees, k-nearest neighbors, and support vector machines. The ensemble tree classi-
fication model is, therefore, adopted in this paper. Additionally, the ensemble tree was also
used in feature selection. The classifier’s hyperparameters were tuned using the Bayesian
optimization (BO) algorithm.

3.2.4. Classification Performance Metrics

The accuracy, sensitivity, specificity, and precision are used to describe classification
performance indicators in this paper. Their mathematical definitions, derived from the
confusion matrix, can be found in [27].

3.2.5. Machine Learning Protection Setting Method

As explained in Section 3.1, the suggested adaptive technique is based on gathering
the CB statuses of these units (1: closed position, 0: open position) and the active power
measurements of these units in order to track the availability of various generating types
connected in bus 2.

Following the procedures shown in Figure 4, the ML classifier setting associated
with each system topology was created offline. This graphic explains how to identify the
ideal hyperparameters for each system topology using ensemble-based feature selection
and an optimized ensemble classifier customized by Bayesian optimization. Each system
topology’s setup group is made up of the classifier hyperparameters and the chosen subset
of features. This procedure could be regarded as offline.

Train the ensemble

Select the features
. classification model Save the setting
using ensemble- using Bayesian oup for online
based feature & baye group
. optimization process.
selection. :
algorithm.

Figure 4. Steps to find out the setting groups.
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On the other hand, the online procedure was accomplished by performing the follow-
ing steps: (1) checking the information pertaining to the current topology; (2) choosing the
classifier associated with the current topology; and (3) identifying and classifying new fault
events. Figure 5 depicts the offline and online processes.

System Topology identification Identify System Topology

I SG CB status PV Plant CB status I I WF CB status | | SG CB status | | PV Plant CB status

| WF CB status |
SGMW PV plant MW WF MW SGMW PV plant MW WF MW
measurement measurement measurement measurement measurement measurement

Corresponding Datasets

E=N

Dataset-2 || 5 I | Dataset-8 |

Lookup table (Figure 2)
Feature Selection (Fit Ensemble —embedded type)

Generate subset

Ensemble learning
algorithm + Performance

‘ Selected feature subset

(=
Bayesian Optimization l
v Select the corresponding Group setting
Ensemble classifier
training and evaluation Group setting Group setting Group Group
‘ 1 2 a2 setting -7 setting -8
Termination: iteration count = max l
NO
: N
"
¥ s Fault detection and . ‘“\ AR \
Save trained classifier with Optimal classification e—§ V| ”’ ( \ !\
parameters '. vy \',‘ \
l — l s
New event
Fault /Non-fault
Best Classifier hyperparameters
Ensemble Number of - Number of Fault type
method splits caming rate learners
(@ ®)

Figure 5. The proposed adaptive ML-based fault detection and classification workflow. (a) Offline
process, (b) online process.

4. Results and Discussion of Results

The offline settings in this part begin with creating the best classifiers and choosing the
best collection of features for each preselected topology using the training data. The system
is then tested using test data, and the results are presented in terms of the performance
metrics indicated earlier. The system is then tested for robustness utilizing faults on the
protected line, faults at various degrees of IBG penetration (10, 50, and 100 percent of their
maximum output power), and faults at various transmission system configurations (line
outages). Finally, the classifier’s performance under incorrect topology identification is
assessed.

4.1. Offline Settings

In the offline settings, the system topologies are identified beforehand, the best feature
subsets are chosen, and the various ensemble-based classifiers are trained and optimized.
The number of features that were chosen, the ensemble classifier model hyperparameters
for each system topology, and the performance metrics for validation and testing data are
all displayed in Table 3. The training data represent 70% of the data (five cross-validation
folds), and the testing data represent 30%. Figure 6 shows the importance estimation of the
features for each system topology using the impurity-based feature importance.
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Table 3. Results of the offline settings.

Topology (T) Classification Model Number of Performance Using Performance Using

pology Hyperparameters Selected Features Training Data (%) Testing Data (%)
Ensemble method: Adaboost Precision: 98.93 Precision: 97.56

T1 Maximum number of splits: 5 39 Recall: 98.84 Recall: 97.76
SG only Number of learners: 13 Accuracy: 98.62 Accuracy: 96.77
Learner rate: 10 Specificity: 99.79 Specificity: 99.51
Ensemble method: Bag Precision: 99.17 Precision: 99.66

T2 Maximum number of splits: 128 190 Recall: 98.88 Recall: 99.46
PV only Number of learners: 131 Accuracy: 98.8 Accuracy: 99.60
Number of predictors to sample: 79 Specificity: 99.82 Specificity: 99.94
Ensemble method: Bag Precision: 99.31 Precision: 99.34

T3 Maximum number of splits: 13 155 Recall: 98.80 Recall: 99.46
WE only Number of learners: 18 Accuracy: 99.14 Accuracy: 99.60
Number of predictors to sample: 82 Specificity: 99.87 Specificity: 99.95
Ensemble method: RUSboost Precision: 98.35 Precision: 97.28

T4 Maximum number of splits: 159 20 Recall: 98.23 Recall: 97.12
SG + PV Number of learners: 25 Accuracy: 97.58 Accuracy: 96.47
Learner rate: 0.873 Specificity: 99.63 Specificity: 99.48
Ensemble method: Bag Precision: 99.77 Precision: 99.31

T5 Maximum number of splits: 168 157 Recall: 99.57 Recall: 98.81
SG + WF Number of learners: 45 Accuracy: 99.66 Accuracy: 99.20
Number of predictors to sample: 18 Specificity: 99.95 Specificity: 99.88
Ensemble method: Bag Precision: 99.52 Precision: 98.98

T6 Maximum number of splits: 46 204 Recall: 99.53 Recall: 99.17
PV + WF Number of learners: 10 Accuracy: 99.65 Accuracy: 99.19
Number of predictors to sample: 10 Specificity: 99.95 Specificity: 99.89
Ensemble method: Bag Precision: 99.89 Precision: 99.21

T7 Maximum number of splits: 28 163 Recall: 99.76 Recall: 99.02
SG + PV + WF Number of learners: 16 Accuracy: 99.90 Accuracy: 99.52
Number of predictors to sample: 10 Specificity: 99.99 Specificity: 99.93

Ensemble method: Bag Precision: 99.45 Precision: 100

T8 Maximum number of splits: 40 168 Recall: 98.74 Recall: 100

No generation

Number of learners: 10
Number of predictors to sample: 3

Accuracy: 99.12
Specificity: 99.86

Accuracy: 100
Specificity: 100

4.2. Performance Evaluation with New Fault Events

Applying new fault events could further assess the resulting classifiers” performance.
At 70 percent of the protected line (line 1-2) from the measurement point, three cascading
within-the-line faults were simulated. A-G fault (class 1) was the first fault, followed by
A-B fault (class 4) and A-B-C fault (class 7) at 1.0, 2.0, and 3.0 s, respectively. The fault
durations were 100 msec. The faults were created for all previously defined generation
topologies, each with hyperparameters and a subset of features.

As shown in Figure 7, the proposed classifiers for each generation topology were suc-
cessful in precisely identifying and classifying the incepted faults. The proposed classifiers
can detect and classify the faults accurately for each generation topology determined by
the CB statuses and active power measurements, with the exception of a two-phase fault in
topology T6 (PV and WEF), where the classifier’s output was classified as class 7 (three-phase
fault). In addition, after clearing the three-phase fault in T6, there was an output of fault
detection as A-B fault. The misclassification occurred due to the percentage error of the
classification model with this topology, which was reported as 0.81%.

4.3. Performance Evaluation with Different IBG Penetration Levels

The training and testing datasets used to train the classifiers in the offline mode and
the testing dataset were thus far simulated assuming either 0% penetration (not connected
or zero output power) and 100% penetration of IBGs (wind farm and PV plant). The present
section aims to evaluate the proposed classifiers” performance at different penetration levels
other than zero or 100% (i.e., 10% and 50%) for T2 and T3 generation topologies. Only
these two topologies were taken into account because the synchronous generator’s (G10)
fault contribution was frequently dominating and the IBGs’ (PV and wind turbines’) fault
contributions were constrained by the controller parameters of the inverters.
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Figure 6. Feature importance estimation using ensemble tree feature selection algorithm for each

system topology.
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Figure 7. Classifiers’ outputs for different line faults at each generation topology.
The contributions of the PV plant and the wind farm for various faults and locations
are given in Figure 8 and Figure 10, respectively, at each penetration level (10%, 50%,
and 100%). The minimum fault current contribution provided by the PV plant was the
three-phase fault at the end of the protected line (near bus 1), and the maximum was for a
single-phase fault at the beginning of the protected line near the PV plant (Figure 8). This
observation can also be made for the wind farm connected to bus 2 (Figure 10).
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Figure 8. PV plant fault contribution at different output power.

Figures 9 and 10 display the topological performance of the T2 classification model
for two distinct PV plant penetration levels and two different fault types (single- and
three-phase faults) at the 10% and 50% fault locations. As can be seen, the classifier detected
the faults accurately. For A-G and three-phase faults, the classifiers” output was classes

81



Energies 2023, 16, 5775

4 and 7, respectively. The results can be generalized for other PV penetration levels and

fault types.
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Figure 9. T2 classification model performance at different PV plant penetration levels.
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Similarly, the classifier’s performance for the T3 setting topology was investigated for
different wind farm penetration levels. Figure 11 shows that the classifier proposed for
T3 could also detect all types of faults at different locations and for two levels of the wind
farm output power (10% and 50%) of its maximum power. For A-G and three-phase faults,
the classifiers” output was classes 4 and 7, respectively. The results can be generalized for
other wind farm penetration levels and fault types.

4.4. Performance Evaluation with New Transmission System Configurations

In the previous results, the investigation was achieved considering the same trans-
mission system configuration with different generation topologies at bus 2. This section
examines the performance of the developed classifiers at different transmission system
configurations. Three scenarios are considered, which are shown in Figure 12. The first
case is to cut off the supply from G1 by disconnecting the line 1-39. The second is to limit
the contribution of G8 by switching the line 2-25 to the OFF position. The third is the
disconnection of both lines. This line selection will impact different sources’ contribution
to faults that occurred in the protected line (the line 1-2).

Case 1: line 1-39 outage

The outage of line 1-39 prevents the contribution of G1 to faults that occurred in line
1-2, but still, the faults are fed through bus 2 generators, line 2-25, and line 3-2. Figure 13
shows the outputs of the classifiers for each generation topology for the following faults
Phase A fault (Class 1), A-B fault (Class 4), and three-phase fault (Class 7). Topologies 1,
2,3, 4,5, and 8 classifiers performed well in detecting and classifying these faults, which
predicted them as classes 1, 4, and 7. However, the effect of line 1-39 outage was clear
on topologies 6 and 7. For topology T6 (wind farm and PV plant were connected), the
classifier still had outputs after a three-phase fault detection, although the fault was cleared.
On the other hand, the T7 classifier detected faults after each clearing time, which should
be reset to zero as the faults were cleared. By retraining them using these new batches of
data, the classifier’s hyperparameters can be updated, which will enhance detection and
classification performance.
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Figure 13. Classifiers” outputs for different line 1-2 faults with the outage of line 01-39 (Case 1).

Case 2: line 2-25 outage

The outage of line 2-25 prevents the contribution of G8 to faults in line 1-2, so that
the faults were fed through bus 2 generators, line 1-39, and line 3-2. Figure 14 shows the
outputs of the classifiers for each generation topology for the following faults: Phase B
fault (Class 2), Phase B to C fault (Class 5), and three-phase fault (Class 7). It could be
noted that although the magnitude of the RMS current for single- and two-phase faults was
minimum, the classifiers were able to detect these faults in topologies 1, 2, 3, 4, 5, and 8. The
misclassification rate was high in the case of topologies 6 and 7, where the PV plant and
WF were connected to bus 2. Retraining the classifiers with this new dataset or taking into
account the new setting group for each transmission network configuration could increase
the detection and classification performance. The classifiers performed worse in this case
than they did in the first.
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Case 3: line 2-25 and line 1-39 outages

The combination outage of lines 2-25 and 1-39 allows the fault to be fed through
bus 2 generators and lines 3-2. Figure 15 shows the outputs of the classifiers for each
generation topology for the following faults: Phase B fault (Class 2), B-C fault (Class 5), and
three-phase fault (Class 7). As in case 2, the magnitude of the RMS current of single-phase
and phase-phase faults is low, but the classifiers were able to detect these two faults in
most cases using other proposed features in different domains. The classifiers at each
generation topology can efficiently detect the three types of faults, except for topologies
6 and 7. The misclassification events in topology 6 were more, and an update of the
classifier’s hyperparameters was required to include this transmission topology with the
PV system connection. Generation topology 7 had an issue with fault detection after each
fault-clearing event, with misclassification between classes 5 and 7.

- T1: SG only - T2: PV only
3 T T T 3 T T T T T
i=3 RMS current i3 | | “ RMS current
S 5r o | — — — — Classifier Signal S 5r *“yw : — — — — Classifier Signal
— | — il
K | }‘KW 8 i i
| Il | M
E | & Iy I I
6 0 1 2N - I A 6 0 L b A b A L
0 0.5 1 1.5 2 25 3 3.5 4 0 0.5 1 1.5 2 25 3 3.5 4
Time in sec Time in sec
- T3: WF only " T4: SG and PV
2 ' ‘ ! RMS current 25 ! ' r ! f RMS current
35+ = - — — — — Classifier Signal 3 | “‘ | Classifier Signal
3 I bl & :l ‘M
3 L | M 3 1y [Ivd ! [‘
| | 1 it
g 0 L = A bk 4 L 8 0 s r\l\\ A I L
0 0.5 1 1.5 2 25 3 35 4 0 0.5 1 1.5 2 25 3 3.5 4
Time in sec Time in sec
- T5: SG and WF - T6: PV and WF
Ej— I I I I “ | RMS current E— I | ‘ Ih-‘\ [ ‘ ‘I“ \u ‘MJ W ! I J 1\ RMS current
35F ; i — — — — Classifier Signal 35F “‘w VIR n‘”,\‘ﬂ‘d‘;"‘-' I i = = = — Classifier Signal
5 | )M g (i S ':“ ‘: “1\1‘4 ! "“ir" ! dir
B ) | £ i | (TSR P INTA T
£ 1 ! L § I il ”"?‘H‘“/!’\L I
o ) ! = b
oo I b " b s oy oo 1 | 1 i
0 0.5 1 1.5 2 25 3 3.5 4 0 0.5 1 1.5 3 3.5 4
Time in sec Time in sec
- T7: SG,PV and WF - T8: No generation
a2 T T T T T T > T T T T T T
5 g [ RMS current = ‘ RMS current
35r i {4 |=— - Classifier Signal 35 7 Classifier Signal
o ! > [
= ) [ I =3 |
2 | i i % H [M
Kol Ly - v © | 11
Q0 L 2 A YUAW i | L = L = A ok 4 | L
O 0o
0 0.5 1 15 2 25 3 3.5 4 0 0.5 1 1.5 2 25 3 3.5 4
Time in sec Time in sec

Figure 15. Classifiers’ outputs for different line 1-2 faults with the outage of lines 1-39 and 2-25 (Case 3).

By implementing a new system topology and following the instructions in Figure 4 to
identify the setting groups, as well as by converting the existing classifiers’ models into
incremental learning to update hyperparameters by retraining them with any new data
stream, the misclassification events in cases 2 and 3 can be reduced.

4.5. Performance Evaluation for Incorrect Topology Identification

The previous analysis assumes the correct identification of generation topology. How-
ever, there is a possibility of incorrect identification of the topology, and, hence, the setting
group is inappropriately selected. To investigate this case, the performance of the classifiers
is assessed by creating faults in the protected line at a specific generation topology with the
different selected setting groups.

Fault scenario: Three cascaded in-zone faults at 70% of the protected line (Line 1-2)
from the measurement point were simulated. The first fault was an A-G fault (class 1) at 1.0
s, the second was followed by an A-B fault (class 4) at 2.0 s, and the third was a three-phase
fault (class 7) at 3.0 s. The fault durations were 100 ms. The faults were created when the
PV plant was only connected to bus 2. This means that T2 should be selected as the setting
group. The selected setting group (wrong selection): topology 1 (SG only).

Results: Figure 16 depicts the RMS current signal for each of the three faults: A-G
fault (Class 1), A-B fault (Class 4), and three-phase fault (Class 7) and the prediction of
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Classifier output

the classifiers in setting group 1 (wrong selection) and setting group 2 (correct selection).
It is evident that the prediction of a single-phase fault was correct in the case of correct
and wrong topology identification, but the classifier of setting group 1 misclassified the
two-phase fault (A-G fault), which was predicted as classes 4 and 7, and the three-phase
fault, that was also predicted as classes 5 and 7. Moreover, there were incorrect predictions
of normal events after clearing the second fault using the classification model of setting
group 1. This result can be generalized for other setting groups. Correct identification
of the generation topology resulted in the appropriate selection of the setting group and,
hence, correct detection and classification of the faults. One way to mitigate this issue is to
convert the classification models into incremental learning models where they are retrained
and the hyperparameters are updated to fit the new system events.

Classification performance with incorrect topology identification

I I | I [ I I

RMS fault current signal

----- Prediction with correct topology identification
""""" Prediction with wrong topology identification

1 1.5 2 25 3 35 4 4.5 5

Time (Sec)

Figure 16. Classification performance with incorrect topology identification.

4.6. Comparative Analysis of Different Methods in the Literature

The proposed adaptive scheme in this paper is compared with the previous methods
of adaptive approaches using system topology identification and machine learning. Table 4
presents four research studies along with our proposed approach. It could be noticed
that each method follows different approaches to define the topology, identify the system
configuration, and utilize ML procedures. Our approach’s classification accuracy outper-
formed the approach in [7] for the 39-bus IEEE power system. This could be due to the
dataset having more valuable features, including features from different domains, as well
as the performance of the feature selection method, which selects features that maximize
classification accuracy. The references [10,11] depend on deep learning techniques to iden-
tify the system topologies, which require lots of data gathered at different locations in the
power system.

Moreover, it is evident that the definition of system topology in this research was
specific to the types of generation units connected to one bus, while others were related to
the connection and disconnection of lines, buses, and other system elements.

In comparison to [7], which used the PSO algorithm to optimize the hyperparameters
of the classifier, the proposed approach used a Bayesian optimization algorithm, resulting
in better performance.
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References

5. Conclusions

This paper proposes an adaptive ML-based fault detection and classification approach
for transmission lines connected to inverter-based renewables like PV plants and wind
farms with type-3 wind turbines. The adaptative scheme tracked the availability of a
synchronous generator, PV plant, and wind farm behind the protected transmission line.
The generation topology was identified using two field data: circuit breaker status and
active output power measurement.

The setting groups were selected for the eight system topologies, including optimized
ensemble tree classification models” hyperparameters for fault detection and classification.
The reported averaged classifiers’” performance was 98.79% accuracy, 98.92% precision,
98.76% recall, and 99.82% specificity.

Several system events were evaluated for the robustness of the classifiers: fault events
at the protected line, different IBG penetration levels, and new transmission system config-
urations. The proposed classifiers can efficiently detect and classify faults incepted in the
protected lines and for different IBG penetration levels (10%, 50%, and 100%). Changing the
transmission system configuration and incorrect selection of the setting group degraded the
performance of the developed classifiers in several cases. One of two methods can be used
to overcome this. The first is creating new setting groups, and the ML models are used for
each one. This approach has limitations to the number of available setting groups equipped
with protective devices and the difficulty of assuming all expected scenarios of the system
topologies for large-scale power systems. The second is retraining the same classifiers
with new system events or converting the existing classifiers into incremental models.
Incremental learning updates the models without ignoring the previously accumulated
knowledge, and adapts to any new system event at each topology. Incremental learning
algorithms will be considered in future studies.

Furthermore, a practical implementation of the scheme is suggested for proof of
concept (POC) using a real-time digital simulator. The scheme can also be improved by
facilitating fault localization and fault direction. The improvement requires more data
samples for fault localization and adding features to indicate the fault direction. In addition,
the design framework of this research was limited to allocating protection at only one end
of the transmission line in the power system. The scheme may be developed similarly to
other transmission lines with appropriate coordination procedures. Moreover, advanced
methods of incipient fault diagnosis analysis, such as [35,36], can be studied further to
improve detectability and speed.
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Abstract: The leakage currents are appropriate for determining the contamination level of insulators
in the power distribution system, which are efficiently cleaned or replaced during the maintenance
schedule. In this research, the hybrid convolution neural network and gated recurrent unit model
(CNN-GRU) are developed to categorize the leakage current pulse of the 15 kV HDPE insulator in the
transmission towers in Taiwan. Many weather parameters are accumulated in the online monitoring
system, which is installed in different transmission towers in coastal areas that suffer from heavy
pollution. The Pearson correlation matrix is computed for selecting the high correlative features with
the leakage current. Hyperparameter optimization is employed to decide the enhancing framework
of the CNN-GRU methodology. The performance of the CNN-GRU is completely analyzed with other
deep learning algorithms, which comprise the GRU, bidirectional GRU, LSTM, and bidirectional
LSTM. The developed CNN-GRU acquired the most remarkable improvements of 79.48% CRE,
83.54% validating CRE, 14.14% CP, 20.89% validating CP, 66.24% MAE, 63.59% validating MAE,
73.24% MSE, and 71.59% validating MSE benchmarks compared with other methodologies. Therefore,
the hybrid CNN-GRU methodology provides comprehensive information about the contamination
degrees of insulator surfaces derived from the property of leakage currents.

Keywords: classify 15 kV HDPE insulator’s leakage current; convolutional neural network; gated

recurrent unit; deep learning machine; hyperparameter optimization

1. Introduction

The insulators installed in severe environments near the sea or industrial areas com-
monly cause flashovers and disruptions in the transmission power line. These insulators
are contaminated by salt fog or dust, which increase the electrical conductivity on the
surface because of equivalent salt deposit density (ESDD) and non-soluble deposit density
(NSDD). Many electrical power companies have developed insulator monitoring systems
to evaluate the pollution severity of insulators, which provide the maintenance procedures
for periodical washes [1-4]. The insulator monitoring technologies combined with leakage
current prediction are the most appropriate methods to continuously measure without
interruption of the transmission lines [5-8].

Many laboratory experiments and research proved that the prediction of the insulator
leakage current could be utilized to determine the process of contaminative levels on the
insulator surface [9-11]. The insulator leakage currents are affected by the environmental
parameters and the contaminative levels on the insulator surface [12-14]. Research on
leakage current prediction has been accomplished using many neural networks (NN) and
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mathematical models with environmental features. Li et al. enhanced the neural network
model to predict the ESDD in the security stage [15]. The 10-set training and validating data
were recorded from the laboratory experiments, and the accurate predictions were reliable
for practical applications. Zhao et al. employed linear and nonlinear regressive methods
to predict the leakage current of the insulator from the environmental variables [16]. The
eight-month data were utilized to evaluate the regressive model, which needed to adjust
the coefficients in the actual applications. Ali et al. implemented the leakage current
prediction on silicone rubber insulators by a neural network [17]. The predicted leakage
current with the feed-forward backpropagation neural network obtained less than 12%
in the tested cases. Ayman et al. employed the Gaussian radial basis function NN to
forecast the leakage current of non-ceramic insulators in the salt fog condition [18]. The
proposed algorithm acquired a 3.5-5.3% accuracy with a random optimizing algorithm in
the identical insulators. Felix et al. proposed the linear stochastic and statistical flashover
prediction with a signature analysis tool [2]. The digitized samples of leakage current
were collected offline for statistical investigation of the leakage current envelope with a
new twist method [19]. In the previous research, Phuong et al. employed the particle-
swarm-optimization-based backpropagation NN to forecast the leakage current of 69 kV
and 161 kV high-voltage insulators [20]. The enhanced algorithm combined with the
surface spark discharge data improved the effectiveness and accuracy of the predicting
application, which were 8.35 x 10~* MSE, 8.92% MAPE, and 0.0857% R square. Santos
and Holtzhausen proposed a novel method to classify the leakage current with different
weather variables and the cumulative pollution index [21]. The authors utilized the random
forest methodology to predict the leakage current of ceramic and RTV silicone-coated insu-
lators in twenty-two consecutive months, which obtained a higher accuracy. Jahromi et al.
proposed an NN to forecast the leakage current in the early aging interval [22]. The two-
layer feed-forward backpropagation achieved a higher performance with a 15% maximum
error with the data from 15 kV commercial silicon rubber insulators. Pinotti and Meyer
proposed the mathematical models with the validation of the least squares method and
statistical hypothesis testing to predict the leakage current with reasonable accuracy [23].
The prediction method utilized the weather data, which included temperature, pressure,
humidity, wind speed, and rain for 25 kV distribution insulators. Hadi et al. proposed a
statistical method to predict flashover occurrence by utilizing the harmonic components of
leakage current [24]. The ratio between the fifth and third harmonic components combined
with geometric distribution was proposed to approximately predict the contaminative
level of insulators. Sheik et al. proposed the salt contaminant accumulation prediction
by utilizing the feed-forward backpropagation neural network and statistical data of the
leakage current [25]. The research utilized the statistical character of leakage current to
predict the contaminant level and provide the pre-warning of flashover. Ali et al. extracted
the ESDD, NSDD, wetting rate and pollution level to effectively evaluate the insulator
condition [26]. These proposed indicators could provide more critical information about the
insulator condition and the leakage current characteristic, which can be implemented in the
monitoring system or prototype application. Volat et al. deployed the ANN to evaluate the
leakage current development through the melting session [27]. The ANN was integrated
into the monitoring system to forecast the appearance of the discharge phenomenon for
protection with an average delay of 9 min. Zahra et al. developed the real asymmetric
contamination to evaluate the leakage current of the 20 kV polymeric insulator [28]. The
experiment illustrated that the various parameters of contamination layers were crucial
for the electrical conductivity of insulators. The data from the non-uniform fan-shaped
contamination were utilized in ANN to predict the leakage current, which achieved less
than 5% relative error. Hui proposed the prediction theory with an extreme value risk
function to forecast the leakage current by calculating the probability density function [29].
The developed method could predict the evolutional trend of the leakage current, which
provided more information on flashover prevention procedures. Li et al. extracted three
main statistical characteristics of leakage current, which were utilized in the ANN for
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predicting the ESDD level on the insulator surface [30]. The predicted performance was less
than 0.035 mg/cm?, which was appropriate for the pre-warning system before the flashover.
In another study, the leakage current was predicted by utilizing the multi-regression model
with the weather parameters in 10-min intervals [31]. Nameer and Ayman proposed the
Bayesian neural network to predict the first and third harmonic components in the salt fog
environment [32]. The research results proved that the nonlinear autoregressive neural
network achieved the highest performance in terms of prediction error. The developed
method was integrated into the condition monitoring system to prevent flashover accu-
mulation. Wang et al. proposed a deeper mathematical model to predict the leakage
current of 110 kV insulators based on the relative humidity [33]. The experiment results
proved the strong correlation between the leakage current and the environmental features,
especially the temperature and relative humidity. Suhas et al. classified the contamination
levels based on the short-time modified Hilbert transform, which combined with local
characteristic current waveform [34]. The comparable performance was better than the
literature review, which included ANN, neuro Fuzzy classifier, and Rough set classifier,
and could be implemented in many applications with 95% overall classification accuracy.
Abouzeid et al. developed a non-intrusive algorithm to predict the ESDD on silicone rubber
insulators [35]. The proposed method achieved an overall predicting improvement from
68% to 95% compared with KNN, polynomial, and fuzzy neuro methodologies. Sun et al.
developed the least square SVM (LSSVM) and exploratory factor analysis (EFA) for the
contamination level of the distribution insulator [36]. The research utilized the air pollution
parameters and meteorological parameters as input factors to predict the ESDD and NSDD
values. The effectiveness of EFA and LSSVM outperformed other traditional models in
different evaluation indexes. Therefore, many researchers have proved the accuracy and
effectiveness of utilizing the weather parameter to predict the insulator leakage current for
evaluating the contaminative level.

Recently, with the development of computational resources and accurate sensor de-
vices, deep learning methods which require more accumulated data are widely proposed
for many applications, especially computer vision, language processing, and sequential
data. The deep learning algorithms outperform the traditional methodologies, which
obtain more accuracy and higher stability. Medeiros et al. utilized different neural network
models to predict the increase in leakage current and compared the performance between
them [19]. The experiment results proved that the RNN outperformed other methodologies
and achieved an accuracy of up to 97.25%. Yeh et al. proposed the bidirectional long
short-term memory (Bi-LSTM) to categorize the leakage current of insulators [37]. The
accumulated data from the outdoor insulator were utilized in the predicting model, which
obtained an improvement of 49.529%, 72.736% error, and 12.761%, 36.641% accuracy in
the training and validating operations. Nguyen et al. developed the hybrid model, which
combined the convolution neural network (CNN) and Bi-LSTM to categorize the insulator
leakage current [38]. The experiment proved that the CNN-Bi-LSTM outperformed other
deep learning methods, which achieved improvements of 71.331% and 91.250% errors in
the training and validating data with a 24-sequential window size. Therefore, the deep
learning algorithms proved better performance in predicting the insulator leakage current
compared with the traditional methodologies.

Although many researchers conducted many deep learning algorithms, the novel
hybrid model, which combines the CNN and gated recurrent unit (GRU) algorithm, has
not been evaluated and compared in predicting the leakage current of the insulator. In
this research, the authors propose the novel CNN-GRU to more accurately and effectively
categorize the leakage current of 15 kV HDPE distribution insulators. The innovative
contributions in this study are as follows: (1) calculating the Pearson correlation between
different climate features and the 15 kV high-voltage insulator leakage current, (2) de-
veloping the novel hybrid CNN and GRU to distinguish the leakage current levels of
15 kV HDPE insulators, (3) employing the hyperparameter optimization to establish the
framework of the developed model, (4) analyzing and comparing the effectiveness and
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15kV HDPE
insulators on Tower

Advanced Meter
Infrastructure (AMI)

Administrative users

accuracy with other deep learning models, which include the recurrent neural network
(RNN), the LSTM, the Bi-LSTM, and GRU. The methodologies are presented in the next
section. The third section illustrates the hyperparameter results, and the fourth section
presents the comparative tables between different deep learning methodologies.

2. Algorithm Flow and Methodology

The high frequent leakage currents come from the pollution particles in the environ-
ment, which accumulate on the insulator surface. The accumulated layer is influenced by
many features, including air pollutants, wind direction, temperature, humidity, etc. In this
research, many weather parameters were accumulated every hour for more than a two-year
period, which is illustrated in Figure 1. The general timelines of this study are illustrated in
the following aspects:

Database Server - Hourly

Historical Data (5/2020-8/2022) Filter mput
Leakage current pulses Data features with
Preparation and - Pearson - Hype.rpqrar;eter
Accumulating Many Weather Normalization Correlation 2 o
Parameters: Temperature, Matrix
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Figure 1. The algorithm flow for implementing the predicting methodology.

1.  Collecting data: The weather parameters were gathered for more than two years.
The advanced meter infrastructure (AMI) with accurate sensors was installed on the
different transmission towers in Taiwan. The AMI systems transferred all the collected
information to the database server. Moreover, the leakage current pulses were also
accumulated and categorized based on their values in four locations. This research
utilizes the weather parameters as input features and leakage current level as the
target vector. All the collected information needs to be normalized by the min-max
methodology, as in Equation (1), where in;, inpyi, and inmax are the variable, the
minimum value, and maximum of the input data, respectively.

In_nor; = 1 Mmin_ 1)
Mmax — Mmin

2. Selecting input features: To completely evaluate the influence of accumulated features
on the insulator leakage current, this research calculates the Pearson correlation
matrix between variables. The Pearson values present the correlation between two
factors which vary from —1 to 1, as calculated in Equation (2), where In;, In, Out;,
and Out are the input, average value of input, output, and average value of output,
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respectively [39,40]. The correlation coefficients are calculated for each collected
environmental factor with the leakage current pulses. The influences of weather
parameters are evaluated based on the interaction with the leakage current levels. The
environmental indexes with high correlation are selected as dominant input features
for utilization in the predicting model.

¥ (In; — In) ¥.(Out; — Out)
VX (In; - Tn)? £ (Out; — Out)®

@

Corrin—_out =

Performing the hyperparameter optimization to analyze the effectiveness of setting
parameters on the deep learning models: This research identifies the most appropriate
parameter which significantly improves the performance of classifying models. The
simple grid search method is deployed to define the optimized setting parameter of
the proposed models [41]. Moreover, the simple grid search analyzes the effects of
setting variables on the predicting accuracy.

Comparing the performance and accuracy between the proposed algorithm and other
deep learning methodologies with the optimized architecture: The CNN-GRU is
completely analyzed with the RNN, LSTM, Bi-LSTM, and GRU models by utiliz-
ing the K-fold cross-validation [42,43]. This method could effectively evaluate the
performance of deep learning algorithms on the collected data.

The collected data come from the natural insulators which were installed in Kaohsiung
City, a coastal area in Taiwan. The test site is the 15 kV transmission line which is
normally operated, as shown in Figure 2. The performance between predicting models
is analyzed through different evaluation indexes, which include the mean square
error (MSE), category cross entropy (CRE), cosine proximity (CP), and mean absolute
error (MAE), as in the following Equations (3)—(6), where out;, out;, out, and K are
the actual, predictive, average vectors, and the number of testing set, respectively.
The collected leakage current surges are transformed into one-hot vectors for the
category purpose, which are utilized as target vectors in the forecasting algorithms, as
in Figure 3. A total of 5 leakage current levels are categorized with different leakage
current surges.

eSp
CRE = —log(—— 3
(e s ®)
MSE = 1 i(out- —oliy)? 4)
- K 1:1 1 1
Y, out; out;
CP = ! 5)
V/ iy out?y/Ti ot
18 .
MAE = X Z|outi — out;| (6)

i=1
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Figure 3. Transforming the leakage current surges to one-hot vector.

2.1. Primary Influence of Environmental Factors on Insulator Leakage Current

Previous research proved that the weather indexes correlate critically with the leak-
age current. These weather factors accumulated the pollution particles in the air, which
gradually deposited on the surface of insulators. Moreover, high humidity and rainfall
conditions intensify the wet deposition, which makes contamination accumulate obviously.
However, the effect of other weather factors on the insulator leakage current is compar-
atively complex. In this research, the authors calculate the Pearson correlation matrix to
effectively analyze the significant correlation with leakage current, as presented in Figure 4.
Each collected insulator leakage current surge is computed in the correlation index with
the weather parameters. The analysis of the influence parameters of the insulator leakage
current is detailed as follows:

1. Level 3, level 4, and level 5 have a weak correlation with all of the collected weather
parameters, which indicates a weak relationship between the high level of leakage
current and other environmental parameters. However, level 1 and 2 prove substantial
similarity with the weather factors. Therefore, the leakage current levels from 0 to
2 are utilized as target variables in the categorizing models.
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Level 1
Level 2
Level 3
Level 4
Level 5

The average, the maximum, and the minimum temperature during a 1-h interval have
the most negative correlation with leakage current, which are —0.60223, —0.60086,
and —0.60276, respectively. In addition, the dew point, wind direction, and maximum
wind direction have a contradictory connection with the leakage current, which
could be applied in the predicting model. The wind chill index, heat index, insulator
temperature, and temperature humidity sunshine wind index are also implemented
as input variables for effectively distinguishing the leakage current levels.

The air pressure has the most positive connection with the leakage current due to the
installed high mountain area, which is the 0.440471 Pearson index. Moreover, the wind
speed, wind path, maximum wind speed, and equilibrium moisture content have an
ordinary relationship with the leakage current levels 1 and 2, and are employed as
high correlation components in the predicting methodology. The increase in these
environmental factors will enhance the number of surges of 15 kV HDPE insulators
because of their positive correlation magnitudes.

Moreover, some weather factors have a weak correlation with the leakage current,
but they have formidable relationships with other weather parameters and are also
included in the predicting methodology. Solar illuminance, maximum solar illumi-
nance, and solar energy are also engaged in the categorizing algorithm to enhance
accuracy and stability effectively.
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Figure 4. The correlation between different leakage current and various natural environmental features.
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From the Pearson correlation matrixes, some natural environmental features which
have formidable correlations with leakage current are selected as input parameters for
categorizing the 15 kV HDPE insulators from level 0 to level 2.

2.2. The Series Sequential Predicting Methodologies

The leakage current requires an accurate categorization which is a non-linear function
with other natural environmental factors. This study provides a better solution for this
challenge, which utilizes many sequential predicting algorithms. The LSTM is an appro-
priate solution that could solve the gradient vanishing exploding issues in the recurrent
neural network (RNN) [44,45]. The LSTM is the sequential dependency methodology that
effectively reaches a better performance. The LSTM is generally composed of input, output,
and forget gates which effectively memorize the sequential historical information for a
long time, as in Figure 5. The forget gate, Fy, calculates the sequential input with a sigmoid
activation function, which controls the output value between 0 and 1, as in Equation (7),
where Wry, Wiy, and by are the weight matrixes and bias vectors. If the output value is
nearly zero, the achieving data will be forgotten, and on the contrary, more data could be
retained. This gate will forget unnecessary previous information and check the reserved
information in the memory cell. The sequential data navigate to the input gate I,, which
is computed by a sigmoid activation function, as in Equation (8), where Wiy, Wix, by,
Hy_1, and X, are the weight matrixes, bias vector, the previous cell hidden state, and
the input gate, respectively. The input gate takes responsibility for checking whether the
information is worth reserving in the long memory. The candidate state, Cp,, is updated
by a TANH operation which controls the output data in range —1 and 1, and the input
vector, Xy, as in Equation (9). The cell state, C,, is computed with the previous state, C;,_1,
and the candidate state, as in Equation (10). Conclusively, the output gate, O, and the
cell hidden state, Hy, are computed by the sigmoid and TANH activation function, as in
Equations (11) and (12). The hidden layer cell state is computed based on the cell state
and the output gate, which controls the long- and short-term dependency in the LSTM
algorithm.

Fn = 0(WpgHn -1 + WexXn) + b 7)
In = o(Wi.Hn_1 + WixXa) + by 8)
Cn = tanh(WepHp_1 + WexXn) + be )
Cn = FaCno1 +InCn (10)

On = o(Wop-Hn_1 + WoxXa) + bo (11)
H;, = Optanh(GCy) (12)

v

1 Xn\I/

Figure 5. The diagrammatic representation of the LSTM structure.
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Another LSTM variant is the gated recurrent unit (GRU), which consists of a simplified
configuration and fewer training weights. In many applications, the GRU demonstrated its
ability to obtain similar prediction accuracy to LSTM while utilizing a few training epochs.
The GRU and LSTM algorithms could hold more periods of historical serial information
to enhance the feature augmentation and improve the multistep ahead categorization
ability [46,47]. The GRU cell includes the reset gate, R, and update gate, Z,,, as illustrated
in Figure 6. The update gate, Z,,, controls the new update state of the hidden state, whereas
the reset gate, Ry, is employed to ignore the information in the previous hidden state, as
calculated in Equations (13) and (14), where W and b are the weight and bias matrixes and
H;,—1 and X, are the hidden state and input vector. The cell state, H,,, and hidden state, Hy,
are combined into one hidden unit, representing the GRU algorithm’s stored memory, as
computed in Equations (15) and (16).

Zn = c(WzuHp_1 + WzxXn) +bz (13)
Rn = 0(Wrn-Hn-1 + WrxXn) +br (14)
Hy, = tanh(Wy[Ry ® Hy_1 + Xa]) + be (15)
Hy = (1 - Zn) ® Hy_1 + Zn @ Hyy (16)

\ 4

Figure 6. The basic configuration of GRU cell.

The LSTM and GRU are self-connected units that adapt to reduce error over time.
These internal gates maintain the content in the memory cell, update necessary information,
and forget unrelated contents. However, both LSTM and GRU only process the information
in the forward direction, which could not reconstruct the memory in the backward direction.
Therefore, the bidirectional models, which include the Bi-LSTM and Bi-GRU, are developed
to procedure the sequential data in both directions, as in Figure 7. The bidirectional
model consists of two dependent layers for inputting the forward and backward sequential
information, which could better capture the long-term dependencies and facilitate more
accurate predictions [48]. The forward and backward propagatlve processes are combined

into one output by Equation (17), where Wa Hn, We and Hn are the weight and hidden
state of forward and backward directions, respectlvely

— —
Outy = W Hn + We Hn + bout (17)

100



Energies 2023, 16, 2500

Bidirectional layer
il S x / x]
® ©® @
LSTM/ LSTM/ LSTM/ Backward
GRU GRU GRU layer

Forwardl LSTM/ l LSTM/ [ LSTM/
layer GRU GRU GRU

-1 t r+1
Xy Xn Xn

Bidirectional layer

Figure 7. The structure of the Bi-GRU/Bi-LSTM model.

2.3. The Proposed Hybrid Convolution Neural Network and Gated Recurrent Unit

The convolution neural network (CNN) was inspired by the natural perception in
the animal visual cortex, which was discovered by Fukushima in 1980 [49,50]. CNN is a
well-known algorithm that has been successfully and effectively utilized in many applica-
tions. The CNN includes two main layers named convolutional and pooling layers which
concentrate on learning feature representation of the information. The convolutional layers
implement several kernel matrixes to calculate different feature maps and then deploy a
nonlinear activation function to convolve the consequences. Equation (18) calculates the
feature map value at the nth layer in the location (i,j) of the kth feature map, where f is
the activation function and w and b are the weight term and bias vector. The activation
function is the ReLU, which is generally desirable in stacked multilayer structures [51,52].
The pooling layer decreases the resolution of the feature map by employing shift invariance.
The pooling layer is connected consequently to the convolution layers for extracting the
dominant features by mathematical average and maximum operation [53]. By combining
many CNN layers, the higher-level property representations are extracted for the subse-
quent layers. In this research, the max pooling layer is utilized in the CNN-GRU model for
distinguishing the leakage current of 15 kV HDPE insulators.

out ) = f(wﬂ Txﬂj + b{() (18)

The extracted dominant features from the CNN are transferred to the GRU layers,
which perform high-level training operations. The last layers are fully connected layers with
a SoftMax activation function for the classification task. The general architecture of CNN-
GRU is illustrated in Figure 8. The proposed methodology is employed in distinguishing the
leakage current level of the 15 kV HDPE insulator in the natural environmental experiment.
The developed method first utilizes the CNN layers to decrease the dimension of the
original matrix, which reduces the complexity while retaining most of the initial data.
Then, the GRU is established to improve the predicting ability and accuracy during the
optimizing process. The proposed CNN-GRU algorithm is analyzed and assessed with
other deep learning methodologies, including LSTM, GR