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Preface

We are pleased to present the topical collection ”Air Pollution Control and Sustainable

Development: Innovative Methods and Policy Implications.” The topical collection brings together a

collection of research that addresses one of the most pressing challenges of our time—the control of air

pollution in the context of sustainable development. The included contributions span diverse regions

and approaches, reflecting the global nature of air pollution and its far-reaching impacts. Our aim is

to explore and promote innovative methods that not only improve air quality but also contribute to

broader goals of sustainability.

The scope of this topical collection includes studies that focus on advanced modeling techniques,

such as data-driven intelligent systems and geographically weighted regression, as well as analyses

of the effects of urban planning, environmental regulations, and technological innovations on air

quality control. Through these multidisciplinary perspectives, we seek to provide valuable insights

for researchers, policymakers, and practitioners who are designing effective and sustainable solutions

to air pollution.

This topical collection is the outcome of the collaborative efforts of the contributing authors. We

would like to express our deepest thanks to all of the researchers who submitted their work, as well

as the reviewers who provided invaluable comments. Special thanks are also due to the editors of

Sustainability, whose support and guidance have been instrumental in bringing this topical collection

to print.

We hope that this topical collection will serve as a useful resource for anyone interested in the

intersection of air pollution control and sustainable development and that it inspires further research

and policy development in this critical area.

Weixin Yang, Guanghui Yuan, and Yunpeng Yang

Editors
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Abstract: Since China’s reform and opening up, especially after its accession to the World Trade
Organization, its foreign trade has achieved fruitful results. However, at the same time, the extensive
foreign trade growth model with high energy consumption and high pollution has also caused a
rapid increase in carbon emissions. There is a large amount of embodied carbon emissions in the
export trade. In order to achieve the strategic goals of “Carbon Peak” and “Carbon Neutrality’, and
at the same time build a green trading system to achieve coordinated development of trade and the
environment, it is of great significance to study embodied carbon emissions and how to decouple
them with China’s foreign trade. This paper uses the Logarithmic Mean Divisia Index method to
decompose the influencing factors of the embodied carbon in China’s export trade in order to study
the impact of three factors: export scale, export structure, and carbon emission intensity. The results
show that the change in export scale is the most important factor affecting the embodied carbon of
China’s export trade, and the expansion of export scale has caused the growth of trade embodied
carbon. Carbon emission intensity is the second influential factor, and the decline in carbon intensity
would slow down the growth of trade embodied carbon, while changes in the export structure have
the smallest impact on trade embodied carbon. The high carbonization of the overall export structure
will cause growth of trade embodied carbon, but the tertiary industry has seen some improvement in
the export structure, which could facilitate the decline of trade embodied carbon.

Keywords: carbon peak; carbon neutrality; export trade; embodied carbon; Logarithmic Mean
Divisia Index

1. Introduction

Since China’s reform and opening up, its foreign trade has achieved tremendous
growth. According to statistical yearbook released by the National Bureau of Statistics, in
2001, China’s total foreign trade of goods imports and exports was only $509.65 billion
U.S. dollars, while by 2020, this number has increased to $4655.91 billion U.S. dollars,
with an increase of 813.55% and a compound annual growth rate of over 11% [1,2]. On
the other hand, China’s total foreign trade of service imports and exports has increased
from 78.45 billion U.S. dollars in 2001 to $661.72 billion U.S. dollars, with an increase of
743.49% and a compound annual growth rate of 11.26% [1,2]. By 2020, China had become
the world’s largest trader, as well as a major trading partner of more than 100 countries [3].
Its total foreign trade has accounted for more than 13% of total global trade, and its growth
rate is much higher than that of total global trade [4–6]. The growth in foreign trade has
played a huge role in stimulating China’s economic development, but the extensive growth
model of foreign trade has also caused a huge negative impact on the environment [7,8].
China’s over-reliance on factors such as labor and resources in global trade has resulted

Sustainability 2022, 14, 3308. https://doi.org/10.3390/su14063308 https://www.mdpi.com/journal/sustainability1
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in China staying at the low end of the global trade value chain for a long time [9–11]. On
the one hand, in China’s export structure, resource-intensive and labor-intensive products
account for more than 50% of total exports, and this percentage has shown an increasing
trend [12,13]. On the other hand, processing trade still occupies a large proportion in
China’s export trade, especially in the first few years after joining the WTO, during which
the proportion of processing trade was once over 50% [14,15]. The foreign trade growth
model discussed above has resulted in China’s large export scale with a low added value
of export. In addition, China’s export is heavily dependent on consumption of resources,
causing environmental pollution as well as continuous growth of carbon emissions [16].

According to statistics from the Global Carbon Budget Database, China’s total domes-
tic carbon emissions were 3.51 billion tons in 2001, which has increased to 10.67 billion
tons by 2020 with an increase of 203.56%. The proportion of China’s carbon emissions in
total global carbon emissions has also increased from 13.62% in 2001 to 30.64% in 2020,
making China the world’s largest carbon emitter [17]. Excessive carbon emissions will
not only have a negative impact on China’s economic development, but will also threaten
people’s health and even survival [18]. As carbon is being the main greenhouse gas, the
increase of its concentration in the atmosphere has led to global warming, resulting in
temperature rise, sea level rise, and various extreme climates, which could cause immeasur-
able damage to food production, the ecological environment, infrastructure construction,
and the safety of people’s lives and property [19–21]. According to the fifth assessment
report of the Intergovernmental Panel on Climate Change (IPCC), the current impact of
human activities on climate change is negative and large, and we cannot let it continue to
develop [22]. In response to this severe situation, the United Nations adopted the “United
Nations Framework Convention on Climate Change”, with the goal of controlling global
temperature changes within a safe range [23]. As a supplement to this framework, the
“Kyoto Protocol” adopted in 1997 put forward emission reduction requirements for some
countries [24]. Since China’s total carbon emissions were limited at the time, it was not
bound by mandatory emission reduction requirements. However, with the continuous
growth of carbon emissions, China’s carbon emissions have attracted more and more atten-
tion from the international community. In the “Paris Agreement” signed in 2015, China
has been designated as one of the main countries for carbon emission reduction, and all
countries are required to set emission reduction targets by 2030 by means of “independent
contributions” [25]. In this regard, China’s leader Xi Jinping solemnly pledged at the 75th
UN General Assembly in 2020 to achieve the peak of carbon emissions by 2030 and achieve
carbon neutrality by 2060 [26].

As China being a major trading country and a major carbon emitter, its trade growth
has not only driven economic growth, but also continuously increased carbon emissions,
resulting in a large amount of embodied carbon in export trade [27]. In order to achieve
the strategic goals of “Carbon Peak” and “Carbon Neutrality’, it is of great theoretical and
practical importance to study embodied carbon emissions and how to decouple them with
China’s foreign trade.

2. Literature Review

When studying the influencing factors of carbon emissions, the academic community
often use the structural decomposition analysis method based on the input-output analysis
model [28–30]. This method is based on the input-output table and fully considers the
relationship between sectors. This method decomposes the changes in carbon emissions
into the sum of changes caused by different independent variables, and analyzes the con-
tribution of changes in each independent variable to changes in carbon emissions. For
example, Ali et al. (2020) designed an emission multiplier product matrix to estimate the
carbon emissions generated by British industrial activities and decomposed the factors
affecting carbon emissions. They found that technological progress had played a key role
in reducing carbon emissions in the UK. The final demand structure achieved through tech-
nological progress could help reduce carbon emissions [31]. Araujo et al. (2020) conducted
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a quantitative study on the influencing factors of carbon emissions of countries that newly
joined the EU. The results of structural decomposition showed that their total amount of
carbon emissions had increased due to the expansion of the trade scale and changes in their
industrial structure [32]. Engo et al. (2021) used the structural decomposition method and
decoupling model to analyze the carbon emissions of North African countries. They found
that the effects of scale, energy intensity and economic structure are different among those
countries [33]. Kim and Tromp (2021) used the multi-region input-output method and the
structural decomposition model to calculate the embodied carbon in trade between Brazil
and China. The study found that the changes in China’s final demand and export structure
are the main factors accounting for the increase of embodied carbon emissions [34].

However, the structural decomposition analysis method has the issue of incomplete
decomposition when decomposing variables, that is, there could be some “decomposition
residual” [35,36]. In recent researches, the academic circle often handles the decomposition
residual by taking the average of the positive and negative extreme values [37–39]. How-
ever, when researchers adopt different decomposition orders, the results obtained are not
always consistent [40–42].

In view of this, many scholars have adopted the Logarithmic Mean Divisia Index
(LMDI) method of the Divis Decomposition method. For examples, Raza and Lin (2020)
applied the LMDI method to study carbon emissions in Pakistan’s transport sector. Their
findings suggest that economic growth was the main factor responsible for the increase
in carbon emissions from Pakistan’s transport sector during the 1984–2018 period [43].
Pita et al. (2020) used the LMDI-I index method to study the influencing factors of carbon
emissions from road transport in Thailand. The results show that the type of fuel and
energy efficiency are the main factors affecting carbon emissions in this sector in Thailand.
By increasing the proportion of biofuels used and further improving energy efficiency,
the carbon emission level in this sector will be significantly reduced [44]. Chontanawat
et al. (2020) used the LMDI method to study the carbon emission levels and influencing
factors of various industries in Thailand from 2005 to 2017. The results show that the
upgrading of industrial structure has reduced carbon emissions, while the increase in
energy intensity of some industries has led to their carbon emissions rising [45]. Hasan and
Wu (2020) investigated carbon emissions from the power sector in Bangladesh from 1979
to 2018 and used the LMDI method to analyze the industry’s future emissions levels. The
research results show that CO2 intensity and power intensity are the main factors leading
to the increase of carbon emissions, and the widespread application of renewable energy
technologies in the future will be an important policy tool to reduce carbon emissions [46].

This method is very robust. It can deal with zero and negative values very well, and
can achieve complete decomposition without residuals so that the decomposition results
are more reliable. The following studies demonstrate this advantage: Taka et al. (2020)
used Kaya identity and LMDI method to study carbon emissions in Ethiopia’s energy
sector. The results they obtained show that economics, population, and fossil fuel were
the main contributors to the increase in carbon emissions, while the increase in energy
intensity would significantly reduce the increase in carbon emissions [47]. Yasmeen et al.
(2020) used the LMDI method to assess Pakistan’s carbon emissions during 1972–2016.
Their results also show that economic development is the main factor for the increase
in per capita carbon emissions in Pakistan, while improving the energy structure and
improving energy efficiency can help reduce per capita carbon emissions [48]. Ozturk
et al. (2021) used the Tapio decoupling index and LMDI method to study carbon emissions
of three typical representatives of emerging economies, Pakistan, India, and China. The
results show that although the energy intensity of the above three countries has reduced
carbon emissions, their economic development, population, energy structure, and other
factors have increased carbon emissions [49]. Using the LMDI-I model and the Innovative
Accounting Approach, Cansino et al. (2021) studied Ecuador’s carbon emissions from 2000–
2014. They found that the most important factors affecting Ecuador’s carbon emissions are

3
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carbon intensity, population growth and economic development, with the country’s energy
and transportation sectors being the most sensitive to increases in carbon emissions [50].

According to this latest trend in the academic circle, we utilized the LMDI method to
decompose the changes in the embodied carbon of China’s export trade into the export
scale effect, export structure effect, and the carbon intensity effect, in order to analyze
the impact of changes in the export scale, export structure, and carbon intensity on the
embodied carbon of China’s export trade in depth.

In the following sections of this paper, Section 3 introduces the calculation method
of real trade volume and the decomposition model of influencing factors of export trade
embodied carbon. Section 4 calculates and discusses the influencing factors of embodied
carbon in China’s export trade by three major industries by using the World Input-Output
Database (WIOD) (2016 edition). Section 5 provides the conclusions of this paper.

3. Materials and Methods

3.1. Real Trade Volume Calculation

In view of the possibility of double counting in traditional trade statistics, this paper
has conducted research based on trade value-added, and converted the trade value-added
of each year to comparable prices of 2010. In the accompanying economic and social
accounts of the 2016 version of the WIOD database, price indices of value added by sector
for each country are available each year. Since the value-added price of each sector in 2010
has been used as the reference price in the account, and the value-added price index of
each sector in 2010 is set to be 100, we convert the value-added of each sector in other years
into 2010 comparable prices. Similarly, indicators such as trade scale, trade structure and
carbon emission intensity are also calculated based on the above converted trade added
value. The main steps of real trade volume calculation of this paper are as follows.

3.1.1. Trade Value Added

The trade value-added is divided into export trade value-added and import trade
value-added. The former refers to the trade value-added created by domestic production
while the latter refers to the trade value-added created by foreign production in imports.

Due to economic globalization, the production of a final product is often not completed
within one country, but has undergone production and processing in multiple countries.
For example, the primary products are manufactured in one country, and then exported to
another country as intermediate products for further processing, and eventually exported
to a third country as final products for consumption. The international division of labor is
conducive to each country’s comparative advantages and factor endowment advantages to
participate in the production of final products, which is of great significance to promoting
the economic development of all countries [51]. Developing countries in particular can
participate in international trade by virtue of their comparative advantages in resources
and labor and benefit from the international trade. Even trade in intermediate products
could help developing countries mitigate the distortion of factor markets and optimize the
allocation of resources.

However, the rapid growth of intermediate products trade has caused statistical
problems. Since traditional trade statistics normally focus on the total value of commodities,
and do not consider the trade of intermediate products. Therefore, the multiple flows
of intermediate products between countries will cause statistical duplication, thereby
“inflating” the trade volume [52–54]. Taking mobile phone production as an example,
assume that the design and production of core components such as mobile phone chips
and integrated circuits are completed in the United States, and then the components
are exported to China as intermediate products. Chinese companies would process and
assemble the mobile phones, and then the finished products are exported to Japan. In the
above-mentioned trade process, the actual trade volume of China is only the added value
of mobile phones during processing and assembly, and should not be calculated based on
the export value of finished mobile phones according to customs statistics. Therefore, in

4
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the context of rapid growth of international trade in intermediate products, the concept of
trade value added should be adopted to accurately calculate the real trade volume, trade
gains and value flow in order to identify and measure a country’s real trade competitive
advantage [55–57].

3.1.2. Calculation of Trade Value Added

This paper has adopted the input-output method to measure the trade added value of
China’s export. Please refer to Table A1 in Appendix A to find the meaning of variables
used in calculation. First, this paper calculates the direct value-added coefficient vr

i , which
represents the value-added contained in the total output of sector iin country r, that is, the
total input of sector i after removing the intermediate input (that is, the initial input) [58].
The calculation method is shown in the following equation:

vr
i =

Ir
i

Xr
i
(r = 1, 2, . . . , M, i = 1, 2, . . . , N) (1)

Express the above direct value-added coefficient in a matrix form, as shown in the
following equation:

v =

⎡
⎣ v1

. . .
vM

⎤
⎦ (2)

Equation (3) can be obtained by establishing a connection with the Leontief model.

v
⊙

X = v
⊙

(I − A)−1F (3)

where v
⊙

X represents the vector obtained by multiplying the corresponding position
of vector v and vector X. A is the direct consumption coefficient matrix, and its element
Ars

ij is the direct consumption coefficient, representing consumption per unit of output in
sector j in country s to sector i in country r. In the input-output table, from the perspective
of the relationship between the rows, the intermediate output Z plus the final output F
equals the total output X, that is, Z + F = X. The intermediate output can be expressed
by the total output and the direct consumption coefficient, that is, Z = AX. So we can get
AX + F = X. After matrix inversion, we can further get X = (I − A)−1F, which is the
Leontief model [59,60].

Moreover, v
⊙
(I − A)−1 is the complete value-added coefficient, representing the

total value added for each unit of final product produced by different sectors in different
countries. Here, the final demand matrix F is expressed as a block matrix for illustration, as
shown in equation:

F =

⎡
⎣ F11 . . . F1M

. . . . . . . . .
FM1 . . . FMM

⎤
⎦ =

[
F1 . . . FM ]

(4)

The final demand matrix F is divided by columns into the demand vector of each
economy for the final product produced by different sectors in different countries, where Fs

is an (M × N)× 1 dimensional vector, representing the demand of country s for the final
product of different sectors in different countries. By multiplying with the inverse Leontief
matrix [61,62], that is, (I − A)−1Fs, the demand of country s for all products of various
sectors in each country can be obtained. By multiplying with the corresponding position of
the direct value-added coefficient, that is, v

⊙
(I − A)−1Fs, the calculation method of trade

value added can be obtained, as shown in this equation:

V = v
⊙

(I − A)−1F

5
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=
[
v
⊙

(I − A)−1 F1 . . . v
⊙
(I − A)−1Fs . . . v

⊙
(I − A)−1FM

]
(5)

where v
⊙
(I − A)−1Fs represents the total added value of different sectors in different

countries in order to meet the final demand of country s. Based on that, the matrix is further
divided by country, and thus Equation (6) can be obtained:

V =

⎡
⎣ V11 . . . V1M

. . . Vrs . . .
VM1 . . . VMM

⎤
⎦ (6)

in which Vrs is the vector of added value of various sectors in country r in order to meet
the final demand of country s. Thus, the export value-added vector of country r can be
obtained, as shown in this equation:

EVr = ∑
s,s �=r

Vrs (7)

in which EVr is an N × 1 dimensional vector, which represents the added value of export
trade of various sectors in country r. Similarly, the import value-added vector of country r
can be calculated, as shown in this equation:

IVr = ∑
s,s �=r

Vsr (8)

where IVr is an N × 1 dimensional vector, which represents the import value-added of
country r from various foreign sectors.

3.1.3. Data Source and Calculation Process

We used MATLAB (the software of MathWorks, Inc. Natick, MA, USA. Version:
r2018b) to perform calculations. The multi-region input-output table needs to be estab-
lished in order to calculate the trade value added. This paper has established a multi-region
input-output table based on the WIOD database. The value-added price indices of var-
ious sectors in China are from the supporting economic and social accounts of the 2016
version of the WIOD [63]. The economic and social accounts include data such as the
number of employees, compensation of labor and capital, and price indices of 56 sectors in
44 economies during the 2000–2014 period, providing a sound data support for the multi-
region input-output table. In the process of trade value added calculation, inflation must
be dealt with. Due to the existence of inflation, the same goods or services have different
prices in different years, which makes it impossible to directly compare the trade value
added of different years. When dealing with inflation, this paper first uses the international
input-output tables of current prices to calculate trade value-added, and then uses the
value-added price indices of various sectors in the economic and social accounts to obtain
the trade value added at comparable prices. In actual calculation, this paper converts the
trade value-added obtained in the first step with the 2010 comparable prices. Therefore, un-
less otherwise specified, the trade value-added data in this paper are the trade value-added
calculated based on 2010 comparable prices rather than current prices.

3.2. Decomposition Model of Influencing Factors of Embodied Carbon in Export Trade

This paper has used the factor decomposition method to decompose the embodied
carbon in China’s export trade. This method decomposes the change of the target variable
into changes of specific influencing factors to study the role of each factor. As mentioned
in Sections 1 and 2 above, this paper has adopted the LMDI method according to the
latest trends in the academic circle in order to analyze the influencing factors of embodied
carbon in China’s export trade. This method has strong robustness. It can deal with
zero and negative values very well, and can achieve complete decomposition without
residuals [64,65].

6
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The calculation method of the LMDI model is shown in the following equation:

EC = ∑
i

ECi = ∑
i

EV
EVi
EV

ECi
EVi

= ∑
i

QSi Ii (9)

The above equation decomposes the total embodied carbon in export trade into
the sum of embodied carbon of various sectors, which is further expressed as the sum
of the product of export scale, export structure and carbon intensity. In Equation (9),

EC
(
= ∑

i
ECi

)
is the total embodied carbon in export trade; ECi represents the embodied

carbon of sector i; EV
(
= ∑

i
EVi

)
is the total export value-added; EVi represents the export

value-added of sector i. Q(= EV) represents the total export scale. Si(= EVi/EV) is the
ratio of the export value added of sector i to the total export value added, representing the
structural composition of the total export value added. Ii(= ECi/EVi) is the ratio of the
export trade embodied carbon of sector i to the export value added of sector i, representing
the embodied carbon intensity of sector i. This indicator reflects the production technology
and energy technology levels of sector i.

Further, this paper has decomposed the changes in the total embodied carbon in export
trade from period 0 to t according to the decomposition method shown in this equation:

ΔEC = ECt − EC0 = ΔECQ + ΔECS + ΔECI (10)

In the above equation, ΔECQ is the export scale effect, representing the changes in
embodied carbon in export trade caused by changes in export value added. ΔECS is the
export structure effect, representing the changes in embodied carbon in export trade caused
by changes in the export structure. ΔECI is the carbon intensity effect, implying the changes
in embodied carbon in export trade caused by technological changes of various sectors.
According to the LMDI model, the equations of the three variables above are as follows:

ΔECQ = ∑
i

ECt
i − EC0

i
ln ECt

i − ln EC0
i

ln
(

Qt

Q0

)
(11)

ΔECS = ∑
i

ECt
i − EC0

i
ln ECt

i − ln EC0
i

ln

(
St

i
S0

i

)
(12)

ΔECI = ∑
i

ECt
i − EC0

i
ln ECt

i − ln EC0
i

ln

(
It
i

I0
i

)
(13)

4. Results and Discussion

4.1. Analysis of Overall Influencing Factors of Embodied Carbon in China’s Export Trade

Based on the LMDI model and the WIOD data, this paper has decomposed the
influencing factors of embodied carbon in China’s export trade. The results obtained are
shown in Figure 1:

7



Sustainability 2022, 14, 3308

 

-60,000 -40,000 -20,000 0 20,000 40,000 60,000 80,000

2000-2001
2001-2002
2002-2003
2003-2004
2004-2005
2005-2006
2006-2007
2007-2008
2008-2009
2009-2010
2010-2011
2011-2012
2012-2013
2013-2014

Export Scale Effect Export Structure Effect Carbon Intensity Effect

Figure 1. The specific effect value of influencing factors of embodied carbon in China’s export trade
(unit: 10,000 tons).

In the graph above, the bars represent the change in carbon embodied in export trade
between two years. In terms of the export scale effect, the change in the embodied carbon in
export trade caused by the export scale effect from 2000 to 2001 was 37.18 million tons, and
it has been increasing since then. Between 2006 and 2007, the export scale effect reached a
local maximum of 405 million tons. From 2008 to 2009, the export scale declined due to the
financial crisis, and the export scale effect showed a negative value of −226 million tons
during the research period. Between 2009 and 2010, the export scale effect recovered to
403 million tons and then declined, but remained at a level above 90 million tons. Therefore,
the changes in the embodied carbon of export trade caused by the export scale effect are
generally positive and the value of the export scale effect is relatively large, and only has a
negative value in very few cases.

In terms of the export structure effect, the change in the embodied carbon in export
trade caused by the export structure effect from 2000 to 2001 was 9.64 million tons, which
has increased since then. During the period of 2003–2004, the export structure effect was
180 million tons. After a short period of decline, it rose to 159 million tons during the
period of 2006–2007, and then dropped to a negative value. From 2008 to 2009, the export
structure effect reached its lowest value of −183 million tons, and rebounded to 118 million
tons during the period of 2009–2010. During 2010-2011 and 2011–2012, the export structure
effect dropped to a negative value again, but rose to a positive value after that and remained
below 100 million tons. Therefore, the export structure effect in the embodied carbon in
export trade is generally positive, with negative values appear from time to time. The
value of the export structure effect is relatively small compared to the export scale effect.
However, from the perspective of reducing the embodied carbon in export trade as well as
lowering the environmental cost of international trade, China’s export structure has been
deteriorating during most of the research period. Only for a few years has the embodied
carbon declined due to the optimization of the export structure.

In terms of the carbon intensity effect, the change in the embodied carbon in export
trade caused by the carbon intensity effect from 2000 to 2001 was −26.36 million tons,
which showed a downward trend thereafter. From 2006 to 2007, the carbon intensity effect
reached its lowest value of −420 million tons, and then rebounded. During the period of
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2008–2009, the carbon intensity effect showed a positive value of 75.59 million tons, and
then dropped to a negative value, and fluctuated at around −100 million tons. Therefore,
the impact of the carbon intensity effect on the embodied carbon in China’s export trade
is generally negative, which indicates that during most of the research period, the use of
clean energy and technological progress helped reduce the embodied carbon in China’s
export trade.

In summary, during the period of 2000–2014, the cumulative change in embodied
carbon in export trade caused by the export scale effect was 2.85 billion tons; the cumulative
change caused by the export structure effect was 595 million tons; the cumulative change
caused by the carbon intensity effect was −1.96 billion tons. The total cumulative change
caused by these three types of effects was 1.49 billion tons (as shown in Figure 2).
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Figure 2. Cumulative change of embodied carbon in China’s export trade caused by different
influencing factors (unit: 10,000 tons).

In Figure 2, the proportions of the export scale effect, the export structure effect, and
the carbon intensity effect were 191.56%, 40.03%, and −131.60%, respectively. This indicates
that on the one hand, the expansion of the export scale and the deterioration of the export
structure caused the embodied carbon in China’s export trade to increase. The deterioration
here is from the perspective of carbon emissions. It refers to the increase in the proportion
of high energy consuming, high carbon emission, and low value-added sectors in the
export structure, while the proportion of clean and high value-added sectors industries
declines. The export scale effect was the most important driver of such growth. On the other
hand, the use of clean energy and the decline of carbon intensity brought by technological
progress helped reduce the embodied carbon in China’s export trade [66].

4.2. Analysis of Influencing Factors of Embodied Carbon in the Export Trade of the
Primary Industry

Based on the LMDI model and the WIOD data, this paper has decomposed the
influencing factors of embodied carbon in the export trade of China’s primary industry.
The results obtained are shown in Figure 3:
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Figure 3. Influencing factors of embodied carbon in the export trade of China’s primary industry
(unit: 10,000 tons).

In terms of the export scale effect of the primary industry, during the period of
2000–2001, the change of the embodied carbon caused by the export scale effect was
−375.2 thousand tons, which experienced a gradual increase thereafter. During the period
of 2004–2005, the export scale effect increased to a maximum value of 6.00 million tons, but
continued to decline thereafter and reached a minimum value of −2.24 million tons during
the period of 2008–2009. The export scale effect of the primary industry rebounded to
1.47 million tons between 2009 and 2010, and then fluctuated around 1 million tons. Overall
speaking, the changes of the embodied carbon in the export trade of the primary industry
caused by the export scale effect are basically positive, with negative values appearing only
in a few years. During the research period, the export scale effect has shown large positive
values during the early stage, and its absolute value has decreased in the later stage.

In terms of the export structure effect of the primary industry, the changes of the
embodied carbon caused by the export structure effect were relatively small, and mostly
negative. During the research period, the export structure of China’s primary industry has
not experienced major changes, so the changes of embodied carbon caused by the export
structure effect were relatively small.

In terms of the carbon intensity effect of the primary industry, during 2000–2001, the
change of embodied carbon in the export trade of the primary industry caused by the carbon
intensity effect was 142.4 thousand tons, which showed some increase thereafter. Between
2003 and 2004, the change of embodied carbon caused by the carbon intensity effect was 2.48
million tons, which has declined since then. The carbon intensity effect is mostly negative in
terms of the embodied carbon in the export trade of the primary industry.

In summary, during the period of 2000–2014, the cumulative change of embodied
carbon in the export trade of the primary industry caused by the export scale effect
was 19.23 million tons; the cumulative change caused by the export structure effect was
−722.3 thousand tons; the cumulative change caused by the carbon intensity effect was
604.7 thousand tons. The total cumulative change caused by these three types of effects
was 19.11 million tons (as shown in Figure 4).
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Figure 4. Cumulative change of embodied carbon in China’s export trade of the primary industry
caused by different Influencing Factors (unit: 10,000 tons).

In the above Figure 4, the proportions of the export scale effect, the export structure
effect, and the carbon intensity effect were 100.62%, −3.78%, and 3.16%, respectively. This
indicates that on the one hand, the expansion of the export scale is the most important driver
of the embodied carbon in the export trade of the primary industry. The improvement of
the export structure has helped reduce the embodied carbon to a certain extent. However,
since the export structure of the primary industry has not changed much, the impact of the
export structure effect is relatively small. On the other hand, the carbon intensity effect has
led to an increase in the embodied carbon in the export trade of the primary industry. This
is mainly due to the fact that the production technology of China’s primary industry is not
advanced and the emissions from the consumption of non-clean energy would also lead to
the growth of embodied carbon in the export trade [67,68].

4.3. Analysis of Influencing Factors of Embodied Carbon in the Export Trade of the
Secondary Industry

Based on the LMDI model and the WIOD data, this paper has decomposed the
influencing factors of embodied carbon in the export trade of China’s secondary industry.
The results obtained are shown in Figure 5:
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Figure 5. Influencing factors of embodied carbon in the export trade of China’s secondary industry
(unit: 10,000 tons).

In terms of the export scale effect of the secondary industry, during the period of
2000–2001, the change of the embodied carbon caused by the export scale effect was
45.47 million tons, which continued to increase thereafter. Between 2006 and 2007, the
export scale effect reached 500 million tons. The export scale effect only turned negative
(−277 million tons) once during the period of 2008–2009. After that, it rebounded to
463 million tons between 2009 and 2010 with a downward trend, and remained above
100 million tons. Overall, the changes of the embodied carbon in the export trade of the
secondary industry caused by the export scale effect are basically positive, and the value of
the export scale effect is relatively large.

In terms of the export structure effect of the secondary industry, the changes of the
embodied carbon caused by the export structure effect first increased, and then decreased,
and then rebounded. The export structure effect remained positive during most of the
research period, which indicates that the export structure of the secondary industry is
deteriorating, thus leading to the growth of the embodied carbon in the export trade of the
secondary industry.

In terms of the carbon intensity effect of the secondary industry, the changes of the
embodied carbon caused by this effect showed the trend of decline, a short rise, and then
decline again. This effect remained negative for most of the research period, which indicates
that the use of clean energy and technological progress have reduced the embodied carbon
in the export trade of the secondary industry.

In summary, during the period of 2000–2014, the cumulative change of embodied
carbon in the export trade of the secondary industry caused by the export scale effect was
2.9 billion tons; the cumulative change caused by the export structure effect was 376 million
tons; the cumulative change caused by the carbon intensity effect was −1.87 billion tons.
The total cumulative change caused by these three types of effects was 1.41 billion tons (as
shown in Figure 6).
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Figure 6. Cumulative change of embodied carbon in China’s export trade of the secondary industry
caused by different influencing factors (unit: 10,000 tons).

In the above Figure, the proportions of the export scale effect, the export structure
effect, and the carbon intensity effect were 205.67%, 26.67%, and −132.62%, respectively.
This indicates that the export scale effect is the most important driver of embodied carbon
increase in the secondary industry. Secondly, the export structure effect has also caused
growth of the embodied carbon in the export trade, which indicates that from the perspective
of environmental costs, the export structure of China’s secondary industry is deteriorating.
Finally, the decrease of the carbon intensity effect has caused a decline of the embodied carbon
in the export trade of the secondary industry, with a relatively significant impact.

4.4. Analysis of Influencing Factors of Embodied Carbon in the Export Trade of the
Tertiary Industry

Based on the LMDI model and the WIOD data, this paper has decomposed the
influencing factors of embodied carbon in the export trade of China’s tertiary industry. The
results obtained are shown in Figure 7:

In terms of the export scale effect of the tertiary industry, the change of the embodied
carbon in the export trade of the tertiary industry caused by this effect repeated the patterns
of increase first and then decrease during the research period. During most of the research
period, the export scale effect remained positive, which indicates that the expansion of
the export scale has caused the growth of the embodied carbon in the export trade of the
tertiary industry. One exception is that during the period of 2008–2009, due to the impact of
the financial crisis, the decrease of the export scale led to a decline in the embodied carbon
in the export trade of the tertiary industry.
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Figure 7. Influencing factors of embodied carbon in the export trade of China’s tertiary industry
(unit: 10,000 tons).

In terms of the export structure effect of the tertiary industry, the changes of the
embodied carbon caused by this effect showed large fluctuations during the research
period, with no obvious trend that can be identified. Overall speaking, during most of
the research period, the export structure effect was negative, which indicates that the
improvement of the export structure of the tertiary industry has caused a decline in the
embodied carbon of export trade.

In terms of the carbon intensity effect of the tertiary industry, the changes of the
embodied carbon in export trade caused by this effect remained negative for most of the
research period and their values were relatively large, which indicates that the decrease of
the carbon intensity effect has caused a large decline of the embodied carbon in the export
trade of the tertiary industry.

In summary, during the period of 2000–2014, the cumulative change of embod-
ied carbon in the export trade of the tertiary industry caused by the export scale effect
was 1.59 million tons; the cumulative change caused by the export structure effect was
−11.83 million tons; the cumulative change caused by the carbon intensity effect was
−89 million tons. The total cumulative change caused by these three types of effects was
58.53 million tons (as shown in Figure 8).

In the Figure above, the proportions of the export scale effect, the export structure
effect, and the carbon intensity effect were 272.28%, −20.21%, and −152.06%, respectively.
This indicates that the export scale effect is the most important driver of embodied carbon
increase in the tertiary industry. Secondly, the cumulative change caused by the export
structure effect was negative, indicating that the tertiary industry has experienced export
structure optimization during foreign trade, which has led to the decrease of the embodied
carbon in export trade. Finally, technological progress and the use of clean energy have led
to a decline in the carbon intensity effect, as well as a decline in the embodied carbon of the
export trade of the tertiary industry [69,70].

14



Sustainability 2022, 14, 3308

 

-15,000

-10,000

-5,000

0

5,000

10,000

15,000

20,000

Total Effect Export Scale Effect Export Structure Effect Carbon Intensity Effect

Figure 8. Cumulative change of embodied carbon in China’s export trade of the tertiary industry
caused by different influencing factors (unit: 10,000 tons).

4.5. Possible Strategies to Reduce the Impact

Based on the above analysis results of China’s export trade embodied carbon impact
factors, the following strategies may be effective means to reduce the impact:

(1) Calculate the carbon footprint of the relevant sectors. A carbon footprint is a collection
of greenhouse gas emissions caused by an organization, business, product or individ-
ual through various production and consumption processes. It describes the carbon
emissions impact of an individual’s awareness and behavior on the natural world. In
order to reduce the impact of carbon embodied in export trade, China needs to start
calculating the carbon footprint of relevant sectors included in export trade [71].

(2) Promote the development of circular economy. China needs to improve resource
conservation and recycling in export trade, and organize export trade into a circular
process of “resources-products-renewable resources”, so that all materials and energy
can be rationally and lastingly utilized in this continuous cycle to reduce carbon
emissions and the impact on the natural environment [72].

5. Conclusions

This paper has adopted the LMDI method to decompose the influencing factors of
the embodied carbon in China’s export trade, and studies the changes of the embodied
carbon from the perspectives of export scale effect, export structure effect and carbon
intensity effect in order to discuss the impact of the export scale, export structure and
carbon emission intensity of each sector on the embodied carbon of export trade. The
calculation results show that overall speaking, the expansion of the export scale is the most
important driver of embodied carbon growth. The cumulative impact of the export scale
effect was 2.85 billion tons. The deterioration of the export structure is a secondary factor
causing the growth of the embodied carbon in China’s export trade. The cumulative impact
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of the export structure effect was 595 million tons. Meanwhile, the decline of the carbon
intensity was an important factor leading to the decrease of the embodied carbon in China’s
export trade. The cumulative impact of the carbon intensity effect was −1.96 billion tons.

In China’s national economy, the primary industry refers to agriculture, forestry,
animal husbandry and fishery. The secondary industry refers to mining, manufacturing,
electricity, heat, gas and water production and supply, and construction. The tertiary
industry is the service industry [73].

In terms of the three industries of the national economy, the continuous expansion of
the export scale of the primary industry was the most important driver of its embodied
carbon growth. The cumulative impact of the export scale effect in the primary industry was
19.23 million tons. During the research period, the export structure of the primary industry
has been improved, resulting in a small decline in the embodied carbon of the export trade
of the primary industry. The cumulative impact of the export structure effect in the primary
industry (such as agriculture, forestry, etc.) was 722.3 thousand tons. Meanwhile, the
increase of the carbon intensity has caused increase of the embodied carbon in the export
trade of the primary industry. The cumulative impact of the carbon intensity effect in the
primary industry was 604.7 thousand tons.

As for the secondary industry, the continuous expansion of its export scale was also
the most important driver of embodied carbon increase. The cumulative impact of the
export scale effect in the secondary industry was 2.9 billion tons. The deterioration of the
export structure of the secondary industry was the secondary factor of embodied carbon
increase in the export trade of the secondary industry. The cumulative impact of the export
structure effect in the secondary industry was 376 million tons. However, the decrease
of carbon intensity played an important role in the reduction of embodied carbon in the
export trade of the secondary industry. The cumulative impact of the carbon intensity effect
in the secondary industry was −1.87 billion tons.

As for the tertiary industry, the continuous expansion of its export scale was also the
most important driver of embodied carbon increase in the export trade. The cumulative
impact of the export scale effect in the tertiary industry was 159 million tons. The optimiza-
tion of the export structure and the decline of carbon intensity have played an important
role in the reduction of the embodied carbon in the export trade of the tertiary industry.
The cumulative impacts of the export structure effect and the carbon intensity effect in the
tertiary industry during the research period were −11.83 million tons and −89 million tons,
respectively.

Since the statistical period of the WIOD database ends in 2014, the data analysis and
calculation after 2014 need to be explored in future research to reflect the latest changes in
the field of embodied carbon in export trade. This is one limitation of our study.

In addition, with the enrichment of research methods and the continuous updating of
research tools, we will further tackle the technical problems of incomplete decomposition
in the structural decomposition analysis method in the future research, in order to further
improve the existing literature on the analysis of factors affecting the embodied carbon in
export trade.
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Appendix A. The Meaning of Variables Used in Calculation

Table A1. The meaning of variables used in Section 3.

Variable Meaning

M Number of countries
N Number of sectors
I The initial input vector of each sector in every country
Ir
i Initial input in sector i in country r
v The vector of direct value added coefficients of each sector in every country
vr

i The direct value − added coefficient in sector i in country r
A Direct consumption coefficient matrix

Ars
ij Consumption per unit of output in sector j in country s to sector i in country r

F Final demand matrix
Frs

i Demand of country s for final product of sector i in country r

X The total output matrix obtained by multiplying the inverse Leontief matrix (I − A)−1 by the final demand
matrix F

Xrs
i The demand of country s for the total output of sector i in country r

V Value added trade flow matrix
Vrs

i The export value − added transferred from sector i in country r to country s through trade
EVr Value − added export vector of sectors in country r
IVr Value − added import vector of sectors in country r
EC The total embodied carbon in export trade
ECi The embodied carbon in export trade of sector i
EV The total export value-added
EVi The export value − added of sector i
Q The total export scale
Si The ratio of the export value added of sector i to the total export value added
Ii The ratio of the export trade embodied carbon of sector i to the export value added of sector i

ΔEC Total change of embodied carbon in export trade
ΔECQ The export scale effect
ΔECS The export structure effect
ΔECI The carbon intensity effect
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Abstract: This study presents the assessment of the quantitative influence of atmospheric circulation
on the pollutant concentration in the area of Kraków, Southern Poland, for the period 2000–2020.
The research has been realized with the application of different statistical parameters, synoptic mete-
orology tools, the Random Forests machine learning method, and multilinear regression analyses.
Another aim of the research was to evaluate the types of atmospheric circulation classification meth-
ods used in studies on air pollution dispersion and to assess the possibility of their application in
air quality management, including short-term PM10 daily forecasts. During the period analyzed,
a significant decreasing trend of pollutants’ concentrations and varying atmospheric circulation
conditions was observed. To understand the relation between PM10 concentration and meteorological
conditions and their significance, the Random Forests algorithm was applied. Observations from me-
teorological stations, air quality measurements and ERA-5 reanalysis were used. The meteorological
database was used as an input to models that were trained to predict daily PM10 concentration and its
day-to-day changes. This study made it possible to distinguish the dominant circulation types with
the highest probability of occurrence of poor air quality or a significant improvement in air quality
conditions. Apart from the parameters whose significant influence on air quality is well established
(air temperature and wind speed at the ground and air temperature gradient), the key factor was also
the gradient of relative air humidity and wind shear in the lowest troposphere. Partial dependence
calculated with the use of the Random Forests model made it possible to better analyze the impact
of individual meteorological parameters on the PM10 daily concentration. The analysis has shown
that, for areas with a diversified topography, it is crucial to use the variability of the atmospheric
circulation during the day to better forecast air quality.

Keywords: random forests; atmospheric circulation; air quality; machine learning; complex topography

1. Introduction

The abundant air pollution with particulate matter (PM) is a serious environmental
and social problem in many regions all over the world [1–4]. Exposure to ambient PM
concentration with a diameter below 10 μm (PM10) increases the possibility of preterm
birth [5], deaths from respiratory disease [6] and also causes lung irritation, cellular damage,
coughing asthma, and cardiovascular diseases [7]. High PM concentrations in urbanized
areas are the consequence of the interaction of many factors, including anthropogenic and
natural sources of air pollution, chemical and physical reactions between primary and
secondary pollutants, and dispersion conditions determined by atmospheric circulation
types, meteorological conditions, and meso- and microclimatic features of the analyzed
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area [1,8,9]. Numerous studies confirm that atmospheric circulation is an important factor
determining the level of air pollution in the lower troposphere, especially in urbanized
and industrial areas, which are characterized by elevated pollution emissions [3,10–13].
The atmospheric circulation processes contribute not only to the dispersion of pollution
but also to its transport over great distances from emission sources [14]. Previous research
indicated that the duration of air pollution episodes is mainly influenced by the processes
of atmospheric blocking and atmospheric stagnation, which contribute to the accumulation
of pollutants near the ground, especially during wintertime periods [3,15,16]. Analyses of
future climate change indicate that the occurrence of an increase in air stagnation cases
is expected [17,18]. Studies performed for Thessaloniki showed that smog episodes can
also occur often under weak flow conditions, with warm air advection, as a consequence
of stabilization of the lower troposphere and limited vertical mixing [19]. A similar effect
of reducing the available mixing volume caused by warm air advection occurs often in
mountain valleys and is linked to foehn occurrence [20,21]. It is worth mentioning that
similar local weather conditions can occur under very different rearrangements of the
large-scale flow; therefore, there is a need to study the relations between unfavorable local
pollutant dispersion conditions and large-scale atmospheric circulation, with the impact of
particular environmental features.

The problem of the increased PM10 concentration level in the European Union is
common for all the nations which are members; in 2018, the daily PM10 concentration limit
(50 μg·m−3) was exceeded in numerous cities in Poland, Bulgaria, the Czech Republic,
Croatia, Hungary, Italy and Slovenia [22]. In Poland, poor air quality is a problem, especially
in southern regions, both in urban agglomerations and many small localities, where the
highest number of days with exceedance of the daily limit of PM10 concentration on the
national scale is noted [23]. The problem of air quality in Southern Poland also concerns
the area of Kraków, the second largest city in Poland in terms of the number of inhabitants,
where air pollution has been a serious and unsolved environmental and social problem
for several decades [24–26]. In the Małopolska region, where Kraków is located, the main
source of PM10 is the emission from the municipal and housing sector (78.9% of the annual
emission), from transportation (5%), and from industry (7.8%). During recent decades, there
have been many actions aimed to reduce local emissions of PM10 and SO2 from different
sectors. Those actions include liquidation of solid fuel boilers, thermal modernization of
buildings, installation of renewable energy sources, modernization of public transport and
heating networks or the expansion of bicycle routes. As a result, the air quality in the
city has gradually improved, although the PM10 daily limits are still exceeded during the
cold seasons [23]. In addition, on 1 September 2019, the prohibition of solid fuels usage in
individual heating devices in Kraków was introduced, which could partially contribute to
the reduction of PM concentration level during the cold season. The atmospheric circulation
conditions play a crucial role in determining the air quality in the city, as it is located in
the Wisła River valley, in an area of very diversified relief. The properties of planetary
boundary layer (PBL) are strongly modified both by the relief and the synoptic situation,
and so are the air pollution’s dispersion conditions which in turn affect the concentration
of pollutants. Studies of fog occurrence for Kraków city for the period from 1965 to 2015
indicated that fog occurred usually on days with non-advective anticyclonic types Ca and
Ka or cyclonic and anticyclonic advection from sector S-SW (types SWa and Sc) according
to Niedźwiedź classification [27]. This indicated that the majority of winter fogs at Kraków
might be related to air pollution from heating during frosty anticyclonic winter weather.
Research of long-term variability of the cloud for Kraków has shown that the greatest
cloudiness and one of the smallest variabilities are associated with cyclonic situations
involving northerly and northeasterly advection. The relationships between the cloudiness
and atmospheric circulations were stronger during the cold half of the year than during the
warm half, when the radiation factor plays a major role [28]. One of the situations when
the influence of atmospheric circulation on air pollution dispersion is well visible is the
occurrence of foehn winds, which can worsen or improve the air quality in the city [21].
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High weather variability in Poland is associated with frequent movement of low and
high-pressure systems [29]. Studies of circulation types for Kraków in the 20th century were
summarized by Z. Ustrnul [30]. Significant variation in the annual incidence of individual
circulation types according to the Niedźwiedź classification was found; the most frequent
were anticyclonic non-directional types (high-pressure center and anticyclonic wedge or
ridge); they constituted 15% of all cases during the year. The second most common types
were those with the advection of air masses from the western sector (SW-W-NW) (both
during anticyclonic and cyclonic situations), with the frequency reaching a total of 40%
during the year. The least frequent were the cyclonic types, with the advection of air
from the North and the eastern sector. In the individual seasons (from spring to winter),
there was quite large variability in dominant circulation types. A slight positive trend
was observed for circulation types with air advection from the West. In the 20th century,
circulation types were characterized by high inter-annual frequency variability and the
absence of distinct, characteristic periods, with the prevalence of certain types.

Assessment of the role of atmospheric circulation on PM10 concentration level during
a particular period is highly challenging because many factors including emission level,
changeable weather conditions, microclimatic features and chemical and physical processes
affect the air quality levels.

Recently, there has been a growing interest in the application of machine learning
techniques in statistical analysis [31,32] and forecasting air quality over the wide tempo-
ral and spatial scale [33,34]. The most commonly used machine learning tools include
Artificial Neural Network [35], Deep Neural Network, Extreme-Gradient Boosting [36]
and Random Forests [33]. Machine learning techniques have been successfully applied
to assess population exposure to poor air quality in metropolitan areas [33], downscaling
of air pollutants at a higher resolution [37], and also meteorological normalization used
in air quality trend analysis [31]. Random Forests, which is a machine learning method
based on constructing decision trees, is widely used for regression and classification. One
of the main advantages of this method, besides its being accurate and straightforward in
implementation, is the simple and intuitive way of accessing variables that are important
in the process of training the model in complex and nonlinear problems. The research
was undertaken in order to assess the quantitative influence of atmospheric circulation
on the pollutant concentration in the area of Kraków, and to compare the results for the
study period mentioned with the research from earlier decades. The research was also
aimed to evaluate two main groups of the classification methods of atmospheric circulation
types’ used in studies on air pollution dispersion (described in Section 2.5), and to assess
the possibility of their application in air quality management. In our study, we were fo-
cused more on the interpretation of the importance of variables by the Random Forests
technique than predictions of the model itself. Kraków is an adequate study area for such
considerations as, on one hand, it is located in diversified environmental conditions, and
on the other hand, relatively long series of air quality measurements are available. Two
different classifications of atmospheric circulation were used in the present study: a manual
classification by Niedźwiedź [29] and an automatic classification by Lityński [38,39]; those
two different classifications were used with the aim of minimizing the risk of misinterpreta-
tion of the results, and both classification methods were widely used by different groups
of researchers in studies of atmospheric types over Central Europe [14,40,41]. Previous
studies concerning the influence of atmospheric circulation on air quality in Krakow, with
the application of Niedźwiedź classification, have been summarized in the monograph
by J. Godłowska [42]. The research indicated that during air masses advection from S-SW
sector and non-directional circulation types (high-pressure center and anticyclonic wedge
or ridge), wind speed near the ground was reduced, which in consequence could lead
to the occurrence of a high-level PM10 concentration during the cold season. Studies of
atmospheric stability in Kraków using SODAR for the period 1994–1999 showed that, for
types with air masses advection from a direction between 135◦ and 225◦, the anticyclonic
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wedge and the high-pressure center, the duration of elevated thermal inversions in the cold
season was the longest.

Understanding the relationship between the pollutants’ concentration and the atmo-
spheric circulation, at the synoptic and local scale, is crucial for forecasting air pollution
episodes and minimizing the negative impact of air pollution on the health of city residents
and on the condition of the natural environment.

2. Material and Methods

Data used in the present study come from different sources and cover the period
October 2000–September 2020 (additionally, the period October 2021–December 2021 was
selected for operational tests of the predictive model). Data analyses were realized for
two sub-periods: cold half-year (October–March) and warm half-year (April–September),
owing to significant differences in air pollution emissions and concentrations, which have
been observed in Kraków in those sub-periods. First, data sets are described, and their basic
statistical features are shown, then the methods combining data from different data sets
are presented. Air quality in Kraków was characterized with data on PM10 as the allowed
concentrations of that pollutant are exceeded much more frequently than the concentrations
of other pollutants. The authors are aware that the division of the year proposed above is
only one of the options available, as, in particular years, the frequency of circulation types
and meteorological conditions may change significantly; however, such a division was also
used in other climatological studies [43,44].

2.1. Study Area

Kraków is the second largest city in Poland, located in the Małopolska (Lesser Poland)
region, with an area of 326.8 km2 and the number of inhabitants reaching almost 800,000 [45].
The Kraków agglomeration consists of the city itself and the highly populated towns and
villages which surround it, and the total number of inhabitants is estimated to exceed
1 million. The city’s area belongs to three different geographical regions and geological
structures presented at Figure 1, i.e., the Polish Uplands, the Western Carpathians, and the
basins of the Carpathian Foredeep in between. The central part of the city is located in the
Wisła River valley, at an altitude of about 200 m a.s.l. In the western part of Kraków, the
valley is as narrow as 1 km; however, in the eastern part of the city, the valley widens to
about 10 km and there is a system of river terraces (Figure 1b). The hilltops bordering the
city to the north and the south reach about 100 m above the river valley floor, similar to
the hilltops in the western part of the valley which means that the city is located in a semi-
concave landform (open only to the east) and sheltered from the prevailing western winds
(Figure 1b). The local scale processes linked to the impact of relief include, for example,
katabatic flows, cold air pool formation, frequent air temperature inversions, much lower
wind speed in the valley floor than at the hilltops [46]. All the factors mentioned contribute
to the poor natural ventilation of the city, and one of its consequences is the occurrence of
high PM10 concentration levels, especially during heating seasons.
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Figure 1. Location of the region studied: (a). in Central Europe, (b). at the junction of the Wisła River
valley, Polish Uplands and the Western Carpathian Foothills. Numbers included in Figure 1b are
described in Table 1.

Table 1. Location of meteorological and air quality stations in Kraków and its vicinities, and elements
used in the study.

No. Station Lat N Lon E Altitude (m a.s.l.)
Manager of
the Station

Landform Parameters
Data

Availability
Period

Data
Resolution

1 Balice 50.08 19.80 237 IMWM-NRI Valley bottom V, D, T, RH, C,
PP 1960-currently 1 h, 3 h and

1 day

2
TV mast:
2 m a.g.l.

100 m a.g.l.
50.05 19.90

222
272
322

JU Valley bottom T 1.01.2010-currently 3 h

3 Krasińskiego St 50.06 19.93 207 NIEP Valley bottom PM10 1.01.2000-currently 1 day

Explanations: V—wind speed (m·s−1), D—wind direction, T—air temperature (◦C), RH—relative humidity (%),
C—cloudiness (oktas), PP—atmospheric precipitation (mm), PM10—mean daily PM10 concentration (μg·m−3).

2.2. Instrumental Meteorological Data

Weather data for Kraków were obtained from the meteorological station located in
the Wisła River valley (Balice). The station is administered by the Institute of Meteorology
and Water Management—National Research Institute (IMWM-NRI). Measurements of air
temperature in the vertical profile of the valley were performed by the Jagiellonian Univer-
sity (JU) at the television mast of EMITEL company, located in the western part of the city
(Bokwa, 2010). Measurements of meteorological parameters at the point administered by
JU and IMWM-NRI were realized in accordance with WMO guidelines [47]. The location of
measurement points and details on weather data used in the study are included in Figure 1
and Table 1. The measurements from the TV mast were crucial in the analysis of ground
thermal stratification in the Wisła River valley at the local scale. These measurements were
not available for the whole study period.

2.3. Atmospheric Reanalysis

In order to analyze the stratification of the lower troposphere for the period October
2000–September 2020, ERA5 reanalysis provided by European Center for Medium Range
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Weather Forecasts [48] was used in this study. Air temperature, relative humidity and
wind components data from pressure levels 975, 925 and 850 hPa were applied, at 00:00,
6:00, 12:00 and 18:00 UTC, respectively, for grid point representing Kraków (geographical
coordinates 50◦ N and 20◦ E). The pressure level 1000 hPa was not used in the analysis
owing to the fact that, in some cases, this level could be below the ground level.

2.4. Air Quality Measurements

Data on PM10 concentrations in Kraków come from the databases of the National In-
spectorate of Environmental Protection (NIEP) [49]. The methodology for measuring PM10
concentration was realized in accordance with the guidelines of the European Parliament
and of the Council included in Directive 2008/50/EC [50]. Daily data from the measure-
ment point located in Krasińskiego St. for the period October 2000–September 2020 were
used (Table 1). The measurement point is located in a street canyon, in the city center, at the
bottom of the Wisła River valley, with a very busy municipal transportation route and inten-
sive traffic. A comparison of mean daily PM10 concentration from Krasińskiego St. and two
other air quality stations: Kurdwanów district and Bulwarowa St., located in the eastern
and northern part of the city, for the common period 2010–2020 (3556 days), confirmed a
high correlation between measurements from all those points. For the analysis of daily
PM10 concentration the Pearson correlation coefficient was used, for three pairs of stations:
Krasińskiego–Bulwarowa, Krasińskiego–Kurdwanów and Bulwarowa–Kurdwanów, where
correlation coefficients were close to 0.93. The station in Krasińskiego St. is characterized
by an increased level of daily PM10 concentration in comparison with other measurement
points in Kraków during the year.

The period October 2000–September 2020 is suitable for showing the seasonal, long-
term variability of the pollutants’ concentration resulting from changes in the level of air
pollutants emissions as well as fluctuations in circulation conditions.

Appendix A summarized air quality measurements used in this study, with special
focus on the variability of PM10 daily concentration in cold and warm half-years, number of
days with exceedance of selected concentration limits and deseasonalized trend observed
in the multiyear period.

2.5. Atmospheric Circulation Classification

According to the suggestions of many authors [29,51–53], more than one classification
of circulation types was used. Owing to the methodological approach, two classifications
of circulation types have been chosen. Each of them represents a different group of at-
mospheric circulation classifications. Therefore, they differ essentially in many features
and, above all, in the method of distinguishing individual types. The first classification
included is the traditional, manual approach often used in Poland and developed by
T. Niedźwiedź [29]. The second one is an objective classification according to Lityński’s
original concept [38]. Taking into account these 2 different classifications allowed for a more
objective look at the impact of circulation and its changes in the analyzed 20-year period
on the state of the atmosphere, including the concentration of pollution in the study area.

Classification by Lityński is based on an automatic approach, which may be considered,
in simplified terms, as the objective one. In the literal sense, it is not like that, because it is
based on arbitrarily imposed criteria; however, this approach is different from the manual
and obviously subjective one proposed by Niedźwiedź. Both classifications are based
on different input data sources. The division of Lityński uses numerical data (currently
grid data), while the division of Niedźwiedź is based on the assessment of synoptic daily
maps (charts). The spatial scale is also different in both classifications. The Niedźwiedź
classification is a typical mesoscale one, while the Lityński classification characterizes the
circulation on a larger scale. To sum up, both classifications have a different synoptic
approach, and their application seems advisable.
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Detailed information circulation classification characteristics for both approaches
with analysis of multiyear trends for individual atmospheric patterns are summarized in
Appendix B.

2.6. Atmospheric Stratification Determination

Data on air temperature and relative humidity provided by the European Center for
Medium Range Weather Forecasts for atmospheric pressure levels 975, 925 and 850 hPa
representing the point with geographical coordinates 50◦ N and 20◦ E were used to de-
termine the presence of low (layer 975–925 hPa) or upper (925–850 hPa) inversion layers.
The atmospheric stratification gradient was determined as the difference between the two
nearest levels (layers 975–925 hPa and 925–850 hPa). Lower limits for the occurrence of air
temperature inversion and air relative humidity inversion in the lower troposphere were
set to 0 ◦C and 10%, respectively.

Additionally, with the aim of analyzing the near-ground thermal inversion layer, the
measurements in the vertical profile (2 m to 100 m a.g.l.) obtained from the TV mast are
used. The period of the day has been divided into two sub-periods of equal length:

- daytime period: from 6 to 17 UTC;
- nighttime period: from 18 to 5 UTC the next day.

The near-ground thermal gradient was calculated as the difference between lower and
upper measurement points. The lower limit of the occurrence of thermal inversion between
two levels of the TV mast was set equal to +1 ◦C. The condition was checked for each time
period separately, and then summed up for day and night periods for individual days. Data
for the TV mast station were available for the period from January 2010 to September 2020.

2.7. Data Analysis

The data set created to assess the influence of meteorological conditions on air qual-
ity includes:

- Meteorological observations from Balice synoptic station with 6-h resolution: air
temperature, relative air humidity, wind speed and direction, cloudiness, the 6-h sum
of atmospheric precipitation;

- air temperature, relative air humidity and wind speed and direction at three pressure
levels obtained from ERA5 reanalysis (975, 925 and 850 hPa); differences between
neighboring pressure levels of air temperature, relative air humidity, wind speed and
wind direction (layers 975–925 hPa and 925–850 hPa) with 6-h resolution;

- mean daily PM10 concentration from previous day;
- difference of mean daily PM10 concentration between current day and previous day

(used for determining PM10 decrease);
- day of week;
- atmospheric circulation types on a certain day according to Niedźwiedź and Lityńs-

ki classification.

With the aim of investigating the relation between PM10 concentration and meteoro-
logical conditions, the Random Forests algorithm was used, which is an ensemble machine
learning method based on constructing many decision trees. This method combines a large
number of small decision trees into new predictors, and therefore is able to make a better
prediction. By using this method, it is possible to assess which variables have the highest
importance in machine learning. In our study, we compared results from multilinear
regression with stepwise selection and the Random Forests method. Studies of variable
selection for Random Forests models were conducted with use of the Boruta method avail-
able in package Pomona on GitHub repository [54,55]. In order to provide the best of
hyperparametric values, repeated leave-group-out cross-validation (LGOCV) was used.
The resampling method LGOCV was available in the function trainControl in the caret R
package. For the multilinear regression model, the stepwise Akaike Information Criterion
(AIC) algorithm was used [56], which is available in the function stepAIC in the MASS R
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package. The meteorological database from Balice station and ERA-5 reanalysis and PM10
daily concentration at the previous day were used as an input to models that were trained
to predict daily PM10 concentration and its day-to-day changes on a randomly sampled
75% of data. The remaining 25% was used to validate models. Two sets of input data,
which differ in the time resolution of meteorological parameters listed above (6-h resolution
data and daily averages obtained from 6-h resolution data), were used in the studies. This
analysis aimed to answer the question of whether the increase of the temporal resolution of
parameters describing weather conditions during the day would improve model accuracy.
The hyperparameters tuning and selection of crucial variables was done separately for each
Random Forests and multilinear regression model. The plots with variable importance are
presented, for clarity only, for the most important parameters. With the aim of determining
the partial relationship between daily averages of individual meteorological parameters
and the level of the daily PM10 concentration, the optimized Random Forests model was
used. Partial dependencies were obtained with use of the function partial_dependence
available in the open-source package edarf in the R environment.

In both half-years, days with the worst air quality and days with a significant im-
provement of air quality in relation to the previous day were selected. That choice of this
selection of analyses is due to the fact that such situations are important in terms of the
inhabitants’ health protection, but also for various environmental effects. In both groups of
the cases selected, very high concentrations of PM10 occur, so the analyses should support
the assessment of the atmospheric circulation and weather conditions which contribute to
such situations. In the second group of cases, the analyses should additionally support the
assessment of the conditions favorable for a sudden decrease of the PM10 concentrations,
due to the change of the dispersion conditions. Owing to the fact that the distribution of
PM10 daily concentration differs significantly between both half-years (see Figure 2), some
criteria of the cases delimitation in both sub-periods differ, too.

Figure 2. Procedure of data and analyses selection; elements with blue background represent research
steps described in detail in the article. Explanation: CT. N.—atmospheric circulation types by
Niedźwiedź; CT. Lit—atmospheric circulation types by Lityński.

The criteria used to distinguish the two groups of days are the following:

- Group 1: days with high PM10 concentration against the background of a particular
half-year, which meet two conditions: daily PM10 concentration is greater than the
upper quartile in the selected half-year (see Table A3) and greater than 50 or 40 μg·m−3

during cold or warm half-year, respectively. The number of days meeting the above
conditions is 842 and 837 for cold and warm half-years, respectively.

- Group 2: days characterized by significant PM10 concentration decrease in relation
to the previous day, which meet three conditions: the decrease is greater than 25%
of the concentration on the previous day, the decrease of PM10 daily concentration is
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equal at least to 20 or 10 μg·m−3, in cold or warm half-years, respectively, and days
assigned to Group 1 are omitted. The number of days meeting the above conditions is
634 and 461 for cold and warm half-years, respectively.

With the aim of better understanding the role of atmospheric circulation and local
topography on the weather conditions over the analyzed region the distribution of the daily
meteorological parameters from Balice station and vertical profiles from ERA5 reanalysis
have been analyzed for individual circulation types for cold and half-years separately.

In the next step, the types of atmospheric circulation were assigned to the days from
both groups and half-years), and then weather conditions for particular atmospheric
circulation types were analyzed. The meteorological parameters used in this part of the
study were selected based on the parameter importance obtained from the machine learning
analyses. Data used in the study include wind speed and air temperature near the ground,
atmospheric precipitation, vertical gradient of air temperature and relative air humidity, air
temperature, relative humidity and wind speed at pressure level 925 hPa and wind speed
difference in layer between 925 and 975 hPa. The aim of that step was to see whether there
are significant differences in weather conditions during a certain atmospheric circulation
type occurring in the two groups of days described above and the remaining days.

Selection of half-year for further analyses.
Comprehensive research for both half-years indicated that the problem of air quality

in the warm half-year is insignificant compared to the cold half-year. In the analyzed
multi-year period, an average share of days with exceedance of the PM10 daily limit in
warm half-year was twice as low as in the cold half-year (34% and 67%, respectively).
Furthermore, during the period 2016–2020, the average share of days with exceedance of
the PM10 daily limit in the warm half-year was equal to 14%, with the lowest values in 2017
and 2020 (8% and 2%, respectively). Days with exceedance of daily PM10 limit occurred
mostly in April and September (early spring and early autumn periods), while in June-July
such cases almost did not occur. Therefore, only the cold half-year has been described in
detail in this paper.

Selection of atmospheric circulation classification.
The analysis of the influence of atmospheric circulation on the dispersion conditions

and the level of PM10 concentration was performed for both circulation type classifications
(Lityński and Niedźwiedź classifications) for two half-years with particular attention to
selected days with the worst air quality and a significant improvement in air quality.

The aim of the research was to determine which circulation type classification better
separates the circulation patterns that negatively affect dispersion conditions from the
patterns, from those which positively influence the air quality in an urbanized valley. The
analysis with the use of both circulation classifications for both half-years and for both
groups showed similar dependencies. In order to determine which type of circulation
classification is more appropriate for the analysis of air quality in the cold half-year, the
Gini coefficient [57] was determined for Niedźwiedź classification (11 and 21 types) and for
Lityński classification (27 types). The Gini coefficient has been widely used to measure the
inequality among values of a frequency distribution [58,59], the value ranges from 0 to 1.
The zero value of the Gini coefficient indicates full uniformity of the distribution. The zero
value of the Gini coefficient indicates the perfect equality of the distribution, while the
greater the Gini coefficient refers to the greater spread of the distribution. The value of
the Gini coefficient was similar for the two Niedźwiedź classifications (0.346 and 0.347),
a slightly lower value was obtained for the Lityński classification, equal to 0.338. Owing
to this fact and for the better clarity of the article, the paper presents only the analysis
for 11 types of Niedźwiedź classification. Similar studies concerning the relation between
circulation type classifications and smog days, using Gini coefficient, were conducted in
COST Action 733 for air pollution in winter in Polish urban areas [12]. The analysis of the
Gini coefficient for individual cold half-years also showed that the variability variation
in air quality for individual types of circulation was greater for the types of Niedźwiedź
classification (11 and 21 types) than for the Lityński classification (maximum difference was
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equal 0.037 and average difference equal to 0.010). An additional argument in favor of the
selected circulation classification by Niedźwiedź is that it was designed to be most suitable
for Southern Poland, while the Lityński circulation classification describes the atmospheric
circulation in Central Europe [38].

Schematic representation of the scientific analysis has been presented in Figure 2.

3. Results

The analysis was focused on two groups of days determined for cold half-year:

- Group 1—days with the highest daily concentration; of PM10;
- Group 2—days with the greatest decrease day by day in the concentration of PM10.

For both groups of days, the most frequent circulation types according to the Niedźwiedź
classification were selected. Weather conditions during days from both groups were
compared with remaining days for selected atmospheric circulation patterns.

With the aim of estimating the impact of individual meteorological parameters on air
quality, the results of ensemble machine learning methods were used.

All the analyses of the influence of atmospheric circulation on air quality in the light
of PM10 confirmed the significant role of circulation types. In the last 20 years, despite
a significant reduction in emissions, which is the result of administrative pro-ecological
activity, there are still serious smog episodes, when the average daily concentration of
PM10 in the cold half-year period may exceed 100 μg·m−3. This, of course, applies to
non-advective circulation types, although surprisingly high dust concentrations may also
occur during the types from southerly advection. The results of the performed analyses,
i.e., circulation type vs. PM10 concentration is included in the Appendix D.

Random Forests Analyses

At the first step the Random Forests and multilinear regression models were built
to predict daily PM10 concentration with the use of two different meteorological data
resolution sets (6-h resolution and daily averages from 6-h resolution data). The Boruta
variable selection method was applied for Random Forests models, and it showed that
for the model which uses daily averages, the following parameters: daily cloudiness,
wind direction changes in the layer between 925 hPa and 850 hPa and wind direction at
850 hPa were unnecessary. For the Random Forests model which uses meteorological
parameters with 6-h resolution 28 of 111 selected variables were rejected by the Boruta
method, including both circulation types, wind direction at 850 hPa, wind direction and
wind speed change in layer between 925 and 850 hPa, relative air humidity at 2 m a.g.l.
at 0, 12 and 18 UTC, wind direction at 925 hPa at 0, 6 and 18 UTC and day of week. The
results of both Random Forests models were similar, the average value of mean absolute
error (MAE) and root-mean square error (RMSE) for both models were equal 19.6 μg·m−3

and 26.9 μg·m−3, respectively. The Random Forests models analysis for specific measured
PM10 concentration ranges 0–50 (25% testing data), 50–100 (40% testing data) and 100–200
(27% testing data) indicated that the RMSE error was equal respectively to 18, 20, and
32 μg·m−3. The group of observations with PM10 concentration exceeding 200 μg·m−3 was
relatively small (5% testing data), and the RMSE for this group was the largest equal to
42 μg·m−3. An example plot presenting comparison observations with the Random Forests
model forecast is included in Appendix C, Figure A6a). In Figure 3 the most important
parameters affecting daily PM10 concentration are presented. Air quality on the previous
day (PM10 daily concentration) was the most important parameter for both models. For the
sake of clarity of Figure 3, this parameter was not presented in the chart owing to the large
differences between the GINI Index for this parameter and the next one. The analysis of
variable importance for both Random Forests models confirmed the similarity of the results.
Apart from the parameters whose significant influence on air quality is well established (air
temperature and wind speed at the ground and air temperature gradient), the key factor
was also the gradient of relative air humidity and wind shear in the lowest troposphere
(layer between 975 and 925 hPa; Figure 3a).
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Figure 3. Variable importance plots for Random Forests models trained to predict PM10 daily levels
in Krasińskiego air quality station with use (a) daily averages (b) 6-h resolution of meteorological
parameters in cold half-years. Explanation: T2—temperature at 2 m a.g.l.; VS—wind speed at
10 m a.g.l.; VD—wind direction at 10 m a.g.l.; RH975, RH925 and RH850—relative air humidity at
975, 925 and 850 hPa, respectively; T975, T925 and T850—air temperature at 975, 925 and 850 hPa;
VS975 and VS925—wind speed at 975 and 925 hPa; VD975 and VD925—wind direction at 975 and
925 hPa.

With the aim of analyzing the significance of individual parameters concerning the
model accuracy, tests by removing a single variable from the model were performed
(Figure 4). These studies also confirmed that the most important parameter was the PM10
concentration level on the previous day. The lack of this variable in the model affected
on MAE increased by almost 25% compared to the forecast results where all parameters
were included.

Figure 4. Increase in mean square error (MSE) of predicted PM10 daily levels by Random Forests
models with use (a) daily averages (b) 6-h resolution of meteorological parameters in cold half-years.
Explanation: T2—temperature at 2 m a.g.l.; VS—wind speed at 10 m a.g.l.; CC—cloudiness; RH975,
RH925 and RH850—relative air humidity at 975, 925 and 850 hPa, respectively; T975, T925 and
T850—air temperature at 975, 925 and 850 hPa; VS975—wind speed at 975 hPa.

Studies of multilinear regression for both data groups were done for the same teaching
and testing sets. Variable criterion with use of Akaike algorithm showed that for data with
daily averages of meteorological parameters, six variables were excluded in the analysis:
relative air humidity at 2 m a.g.l., wind speed at three pressure levels (975 hPa, 925 hPa
and 850 hPa), relative humidity gradient in layer between 925 and 850 hPa and relative
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humidity at 850 hPa. The results obtained for multilinear models were slightly worse for
the Random Forests model which used the same data set, RMSE and MAE for multilinear
models were equal to 29 μg·m−3 and 21.4 μg·m−3, respectively. A comparison of results
obtained from four Random Forests and multilinear regression models is presented in the
Taylor diagram in Figure 5. The analysis of results presented at Figure 5 indicates that
there are slight differences between the two model groups in Pearson correlation coefficient
and standard deviation of predicted values. In the case of multilinear regression and
meteorological parameters with 6-h resolution, the results of the multilinear model were
close to the previous multilinear model. The application of the Akaike method to select
the best parameters for the multilinear model caused a reduction of the parameters from
111 to 44 variables. The selection of crucial variables did not improve model performance,
RMSE and MAE were equal to 29 μg·m−3 and 21.4 μg·m−3, respectively. In this case the
application of the Random Forests model for numerous variables showed better results than
multilinear regression. The comparison of observations with the multilinear model forecast
with the use of daily averages of meteorological parameters presented at Figure A6b) in
Appendix C indicates that the model underestimates PM10 daily concentration for values
below 25 μg·m−3. In contrast, Random Forests models more often overestimate PM10
concentration than multilinear regression in the range between 0 and 50 μg·m−3 (Figure A7
in Appendix C).

Figure 5. Taylor diagram for (a) predicted PM10 daily concentration and (b) day-to-day PM10

daily concentration changes for Random Forests (RF) and multilinear regression models (MR) in
cold half-years.

In the second part, Random Forests and multilinear regression models were used to
predict day-to-day changes of PM10 daily concentration. The same database as presented
above was used in these studies, including measurements from the Balice station, ERA-
5 reanalysis, two circulation types, day of the week, month, day of the year and PM10
daily concentration at the previous day. The analysis of Random Forests and multilinear
regression models showed similar results, the values of RMSE and MAE were equal on
average to 30 μg·m−3 and 20 μg·m−3, respectively. For this case hyperparameter tuning
and parameter selection for Random Forests models did not significantly improve model
accuracy (change of RMSE and MAE did not exceed 3%). It is worth to mentioning
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that variable selection with the use of the Boruta method for the Random Forests model
which uses data with 6-h resolution were reduced from 110 to 27 variables. An example
plot presenting comparison observations of day-to-day changes with the Random Forests
model forecast is included in Appendix C, Figure A8b). In the case of a multilinear linear
regression model with the same data set, stepwise the Akaike method selected 46 variables
from 110 available. Verification of four models presented with the use of a Taylor diagram in
Figure 6b indicates that the differences between them are negligible; however, comparison
of density curves for Random Forests and multilinear regression with observations indicates
that also the Random Forests model often predicts day-to-day PM10 concentration changes
in a range between −10 and 25 μg·m−3 (Figure A9 in Appendix C). For both models groups
the most important parameter was the PM10 concentration level on the previous day.
Figure 6 presents parameters importance for Random Forests models affecting day-to-day
PM10 concentration changes.

Figure 6. Variable importance plots for Random Forests models trained to predict PM10 daily levels
in Krasińskiego air quality station with the use of: (a) daily averages, and (b) 6-h resolution of
meteorological parameters in cold half-years.

Analyses of the importance of variables presented at Figure 6 showed that the most
important parameters were air temperature and wind speed near the ground and at the
closest pressure level 975 hPa. It is worth mentioning that relative air humidity and relative
air humidity gradient were more crucial parameters than air temperature gradient in the
layer between 975 and 925 hPa concerning the prediction of day-to-day PM10 changes
(Figure 6a). Two additional sensitivity tests were performed. Firstly, one for the whole
period, without dividing the data set into two half-years and another one with training
the model with data from 2000 to 2015 and testing it with data from 2016 to 2020 (also
without dividing data set into cold and warm half-years). In both cases we achieved a
similar order of importance of parameters for both Random Forests models as in Figure 4,
while scores were slightly improved, e.g., with a decrease of RMSE around by 7 μg·m−3

for both models. It can be explained by adding a warm half-year to the data set that is
characterized by lower values of PM10 concentration level. Results obtained by multilinear
linear regression models were slightly worse for both tests, mean differences between
Random Forests models were equal to 3 μg·m−3 for RMSE. As mentioned before, the main
motivation for using Random Forests was to determine which meteorological parameters
should be considered for further analysis, but a comparison of the accuracy of our forecasts
with similar models (both physical and based on machine learning) shows also the good
predictive potential of such an approach [60–62].

The optimized Random Forests model built to predict daily PM10 concentration based
on the daily averages presented above was used to analyze the partial relationship be-
tween individual meteorological parameters and the level of the PM10 daily concentration.
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Figure 7 presents the partial dependence of predicted PM10 daily concentration for selected
meteorological parameters. The plots show the value of the lower and upper quartiles in
the analyzed cold half-years (dashed vertical lines). Detailed analysis of the daily thermal
gradient between 925 and 975 hPa, has shown that predicted PM10 concentration did not
differ significantly for the positive values of vertical gradients (the number of such days in
all analyzed cold half-years did not exceed 25%—Figure 7b). For the range of the daily gra-
dient values between −3 ◦C and 0 ◦C in the layer between 925 and 975 hPa, the influence of
this parameter on the daily value of the PM10 concentration increases significantly. During
the days without absence of the elevated inversion in the layer between 850 and 925 hPa,
the predicted value of PM10 concentration was close to the minimum value (low statistical
importance). When the daily temperature gradient in the layer between 850 and 925 hPa
decreases below −3 ◦C, a significant increase in the predicted pollutant concentration can
be observed. The plots of the dependence of the air humidity at the ground (Figure 7d) and
at the pressure level of 925 hPa (Figure 7e) on predicted PM10 concentration has shown a
different relationship. For the days when daily relative humidity of 2 m a.g.l. exceeds 80%,
there is a linear increase of the predicted daily PM10 concentration. On the other hand, with
a decrease in relative humidity at the height of 925 hPa the predicted PM10 concentration
increases. The plots of predicted PM10 concentration from the relative humidity gradient in
the layer between 925 and 975 hPa have shown gradual deterioration of air quality with the
decrease of humidity gradient in the range of from 0 to −25%. The relationship between
the average daily wind speed at 10 m a.g.l and predicted air pollution level presented at
Figure 7g indicates a strong decrease of PM10 concentration for the wind speed in the range
from 0 up to 5 m·s−1; above this value the increase of wind speed did not significantly
improve the air quality in the city. The relationship between the vertical wind shear in the
layer between 925 and 975 hPa and the pollution concentration is presented in Figure 7h,i.
When wind shear increases wind speed in the vertical profile, the crucial point is the
exceedance of 5 m·s−1. For such situations the increase in the speed difference between
layer 925 and 975 hPa does not significantly improve the air quality. When the wind shear
is associated with a significant change in the wind direction between the level of 925 and
975 hPa, an increase in the difference in wind directions negatively affects the predicted air
quality in the valley.
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Figure 7. Partial dependence plots of daily (a) air temperature at 2 m a.g.l., (b) air temperature
gradient between 925 and 975 hPa, (c) air temperature gradient between 925 and 975 hPa, (d) relative
humidity at 2 m a.g.l., (e) relative humidity at 925 hPa, (f) relative humidity gradient between 925 and
975 hPa, (g) wind speed at 10 m a.g.l., (h) wind speed difference between 925 and 975 hPa and (i) wind
direction difference between 925 and 975 hPa for the cold half-year obtained from Random Forests
model. Subfigures present lower and upper quartiles of selected parameters in the cold half-years.

4. Discussion

The statistical analysis of the impact if meteorological conditions and atmospheric
circulation types on air quality in Kraków with the use of machine learning methods made
possible an objective selection of crucial parameters influencing the pollutant concentration
level. In the studies presented, we have compared results from multilinear regression and
the Random Forests method to predict daily PM10 concentration and its day-to-day changes
for two sets of input data which differed in the temporal resolution of meteorological
parameters. The application of 6-h resolution meteorological data in comparison with daily
averages to predict daily PM10 concentration and its day-to-day changes showed similar
results for both methods. This confirms the statement that the use of daily averages of
meteorological parameters is sufficient to predict PM10 daily concentration a day ahead.
Studies of the importance of variables’ in predicting PM10 day-to-day changes the with the
use of 6-h resolution data indicated that the number of crucial parameters was significantly
lower than for predicting PM10 daily concentration for the Random Forests model (equal
to 27 from 111 possible variables). It is also worth mentioning that in the case of predicting
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PM10 concentration with the use of numerous variables (6-h data resolution), the multilinear
regression model significantly reduced the number of variables while the Random Forests
model selected more variables as important. Analyses of model performance showed that
for this case Random Forests results were better than for multilinear regression models.

Additional tests with the use of measurements from October 2000 to September 2020
were carried out to estimate the impact of changes in meteorology and emissions during
the recent cold season (October 2021 to December 2021). Eight different sets of training
data were prepared for tests for Random Forests models and multilinear regression models
(sets of two temporal resolutions: 6-h and daily averages; data for cold half-years only and
for both half-years; training data for period from October 2000 to September 2020 and from
January 2015 to September 2020). Analysis of the shorter period for model training was
done to answer the question how models’ performance is affected. An analysis of Taylor
diagram plots (Figure A10 in Appendix C) indicated that the multilinear regression models
had a higher standard deviation than the observations, indicating an excessively high
variability of predicted PM10 concentration. The results obtained from Random Forests
models were closer to the observations than the results from linear regression models (lower
value of RMSE and standard deviation closer to the observation’s). Secondly, using shorter
periods for model training showed better results (lower RMSE and lower overestimation of
PM10 concentration), however in individual smog episodes PM10 daily concentration was
underestimated in comparison with forecasts using a longer training data set (Figure A11
in Appendix C). Analysis of the time course of predicted PM10 concentration showed that
the multilinear model in some cases overestimated the PM10 decrease, while the Random
Forests model performed better.

The conducted experimental studies (based on data from 2021) have shown that such
analyses should take into account the circular data with greater resolution than the daily
one. Considering only one type of circulation for the whole day does not make it possible
to take into account the dynamics of circulation changes, which is particularly high over
Central Europe in winter. On the basis of the existing classifications, especially the local
one, a method of assessing the atmospheric circulation should be developed, taking into
account the daily course (at least with 3 h resolution).

Furthermore, more detailed analysis of the importance of individual parameters on
PM10 daily concentration level was available with the use of the Random Forests model.
The results obtained were used in further analysis to investigate the dispersion of selected
parameters for individual types of circulation.

The study on the influence of atmospheric circulation patterns on air quality made
it possible to distinguish the dominant circulation types during which the probability
of occurrence of poor air quality (Group 1) and a significant improvement in air quality
conditions (Group 2) was the highest. Days with the high PM10 concentration at cold
half-year, occurred mostly during the advection of air masses from the S-SW sector, non-
directional anticyclonic situations (Ca + Ka type) and also anticyclonic situations with air
advection from the W-NW sector. Such days were characterized by lower wind speed and
air temperature at ground level and greater stability of the atmosphere during the day and
night periods in comparison with days not assigned to both special groups (remaining days).
According to the Mann–Whitney U test, the distribution of daily sums of precipitation
was similar for dominant circulation types for days in Group 1 and remaining days, but
the frequency of precipitation was lower for days in Group 1. Furthermore, during the
daytime for days with high PM10 concentration, a local minimum of relative air humidity
at level 925 hPa occurred frequently. The partial dependence of meteorological parameters
obtained from the Random Forests model has also confirmed the negative effect of strong
negative relative humidity gradient in layers between 925 and 975 hPa on air quality. In
this case, advection of dry air masses at a height of 925 hPa, especially frequent for the
S + SWa and W + NWa types, contributed to the increase in the stability of the atmosphere
in the valley and resulted in a longer persistence of humid cold air pool. During the winter,
when foehn wind occurs, there is often the advection of warm and dry air masses above
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the analyzed region [63]. Additionally, previous studies pointed out that circulation types
S + SWa, Ca + Ka enhance the occurrence of fog in Kraków which confirms the poor air
pollution dispersion conditions linked to those circulation types [64]; the occurrence of
haze and fog episodes is studied widely in different parts of the world in the context of air
pollution control [65].

The second case studied consisted of days characterized by a significant improvement
of air quality (Group 2). A significant reduction in the PM10 daily concentration occurred
mostly for three circulation patterns (air advection from W-NW sector and cyclonic type
with differentiated air advection—Cc + Bc type). These days were characterized by in-
creased wind speed and a greater share of days with precipitation in comparison with
remaining days. Atmospheric stratification (relative air humidity and air temperature
gradient) was similar for dominant circulation patterns for days assigned to Group 2 and to
remaining days. Near-ground temperature inversion for days in Group 2 during daytime
almost did not occur, which was confirmed by local measurements and ERA5 reanalysis. It
is also worth mentioning that during these days, the local maximum of relative air humidity
in the layer 925 hPa during daytime occurred frequently.

Days with anticyclonic conditions with air advection from the W-NW sector are
characterized by changeable weather conditions, which contributed to improvement or
deterioration of air quality conditions during the cold half-year. The improvement is
observed when air masses could penetrate into the valley and remove the cold air pool,
while deterioration can be seen when air masses pass over the valley. Studies conducted
over the region of the Dead Sea Valley using a high resolution WRF model [66] indicated
that foehn wind intrusion into the valley depends on synoptic and mesoscale conditions
which affect the vertical structure of the lower troposphere. For the cases with a high stable
layer over the Dead Sea Valley, the foehn reached the valley floor, while during a low stable
layer, it did not.

Studies of air quality in cold and warm half-years have shown that weak wind speed
is one of the most important factors which deteriorates air quality. Owing to this fact
circulation patterns which are characterized by weak wind speed, caused by the interaction
of local orography (air advection from S-SW and W-NW sectors) and also atmospheric
stagnation were the most important (non-advective types with anticyclonic situation,
according to Niedźwiedź: type Ca + Ka). The high importance of wind speed on air quality
was confirmed by numerous previous studies [3,67,68]; however, studies of the partial
dependence of meteorological individual parameters for daily PM10 level showed nonlinear
dependency [31].

Furthermore, studies of individual meteorological parameters have shown that vertical
wind shear can worsen but also improve air quality in the valley. An increase of wind
speed difference between the layers 925 and 975 hPa had a positive impact on air quality.
On the other hand, strong wind shear associated with a change of the wind direction in
vertical profile affects the deterioration of air quality by reducing the height of the mixing
layer during the daytime. The study of the PM10 concentration vertical profiles in Kraków
presented in the work of Sekula et al. 2021 [69] indicate that this phenomenon often
occurs at the valley bottom height (approx. 100 m a.g.l.). During the cold half-year, poor
dispersive conditions are more frequent than in the warm half-year, which in combination
with high rates of emission from the residential sector led to accumulation of pollutants
inside PBL. Analysis of the deseasonalized multiyear PM10 trend has shown that in the
decade 2011–2020 a negative trend was observed which may be linked to the positive trend
of air temperature.

According to the Random Forests model, adding a vertical gradient between neigh-
boring pressure fields improved the quality of the PM10 level forecast. Other studies
concerning application of machine learning methods in air quality forecasting confirmed
that meteorological parameters like, wind speed, air temperature, relative air humidity and
atmospheric precipitation were important factors affecting air quality [70]; however, studies
of the effect of atmospheric precipitation on the concentration of particulate matter showed
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that it mainly washes out coarse particles while having little effect on fine particles [71].
Attention should also be paid to the representation of the atmospheric stability in the ma-
chine learning models; in this research we can distinguish two approaches: the application
of planetary boundary layer height [31,72] or a more complex one with the application of
meteorological conditions at different atmospheric pressure levels [73]. Owing to the fact
that the estimation of planetary boundary layer height in numerical atmospheric models
still requires validation and further development [74,75] we would like to suggest applying
vertical profiles of atmosphere rather than PBL height in studies.

5. Conclusions

The analysis of air quality conditions in the multiyear period has proved that wind
speed, air temperature, atmospheric stability connected to relative humidity gradient and
air temperature gradient at lower troposphere and the occurrence of precipitation signif-
icantly influences pollutant concentrations. Apart from the non-directional anticyclonic
conditions which affect air stagnation, air advection from the S-SW sector, strongly modified
by local topography, has usually caused an increase of PM10 levels in the study area. Studies
have shown that for the region analyzed the direction of air advection and its intensity is of
greater importance than the type of pressure system concerning the impact on PM10 levels.
Certain types of circulation can be indicated as significant both in terms of improving
the dispersion of pollution and its deterioration; this is the result of the modification of
large-scale processes by orography and near-ground atmospheric conditions. For example,
air masses advection from the W-NW sector may strengthen near-ground thermal inversion
and reduce wind speed in the valley, but it can also break thermal inversion in the valley
and topographically channel the air flow. Research has indicated that particular types
of circulation may affect the deterioration of air quality conditions in the cold half-year.
During these circulation types lasting for a few or several days, a continuous increase
of air pollution can be observed. Sometimes it leads to extremely high values of PM10
concentrations (e.g., types S-SW, W + NWa).

The analysis of the number of days with PM10 levels exceeding the daily limit in the
study period showed that the emission reduction contributed to a significant improvement
in the air quality in the city; however, the occurrence of days with poor air quality in
the future is very likely due to the strong influence of meteorological conditions on that
element. The number of days with low thermal inversion in the 975–925 hPa layer in a
cold half-year turned out to be particularly important. Significant factors influencing the
improvement of air quality in the cold half-year were the occurrence of longer rainfall
(rainfall during the day and night), high daily wind speed in the valley and negative air
temperature gradient.

One of the limitations in the studies presented above is the assignment of a single
circulation type to the whole day; on days when an atmospheric front or the pressure
center passes over a certain area, the meteorological conditions may change significantly
during the day. Therefore, for the detailed analysis of atmospheric circulation, the daily
fluctuations of circulation conditions should be taken into account. Currently, studies on
application of the Convolutional Neural Network in automatic classification of atmospheric
circulation according to the Niedźwiedź classification with the use of ERA5 reanalysis are
conducted in our research group. The first results obtained are promising, however some
model optimizations are still necessary.

Analysis of hourly PM10 concentration data and meteorological parameters with the
use of cross correlation function have shown the occurrence of delayed time response
of PM10 concentration level in the city to the change in meteorological conditions. For
instance, at Krasińskiego station, the delayed time response obtained for the PM10 level
for the wind speed, wind gusts, air temperature, as well as the ground thermal gradient
was equal to 2 h; however, it should be mentioned here that air quality in the city may
vary significantly on spatial and temporal scale as it was presented in other studies [8].
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Further research on the intra-city spatial dependency from meteorological parameters and
circulation patterns is necessary from the point of view of habitability and health risk.

Previous studies indicated that each technique of circulation patterns classification
has some limitations e.g., there is a problem of equally sized classes, separation of different
types, seasonal or inter-annual variability of a class frequency. In the case of the subjective
classifications, there are high inter-annual variability and larger long-term trends of the
frequencies of the types’ in comparison to the automated circulation classification methods;
however, subjective classification includes important expert knowledge concerning ana-
lyzed geographical regions, which is difficult to formulate in precise rules for automated
classification methods [52]. In conclusion the authors would suggest using local circulation
classification methods in studies for different regions, owing to the effect of topography
on modifications of atmosphere dynamics; however, because of the obvious limitations of
the use of manual approaches, connected to their subjective nature, it seems that the best
solution would be to use a local subjective classification of circulation types, which could
be automated. Such approaches are known in the literature, although, they were applied in
larger spatial scales [51].

Owing to the fact that machine learning methods create great opportunities in air
quality studies, further development works are planned using the Random Forests method
to analyze and forecast air quality on a larger spatial scale (e.g., cities in Central Europe)
by supplementing the model with additional data such as land cover, topography, and
turbulence parameters, as well as the results from operational forecasts of numerical air
quality models to improve model accuracy. The further step in air quality studies will be
an application of multi-step time series forecasting to model daily cycle of air pollution
but also to predict daily pollution levels for three days ahead by using weather forecast
and air pollution levels on the current day [75,76]. The next direction of development of
the current research focuses on the analysis of spatial and temporal variability of pollution
for large cities using data from air quality stations as well as non-governmental air quality
systems. The first tests of using convolutional neural networks to determine air pollution
level with respect to circulation patterns over larger domains are very promising, and so it
is also planned to further investigate those methods.
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Appendix A

Air quality data analysis with measurements from station at Krasińskiego St. has
shown significant differences in the distribution of the daily PM10 concentration during
warm and cold half-years. The multiannual trend of the number of days with exceedance of
limit 50, 100, and 200 μg·m−3 were calculated for cold and warm half-year separately. The
period covered from October 2000 to September 2020. For a selected number of days a linear
curve was fitted by using the Theil-Sen estimator [77] provided in the RobustLinearReg
R package was fitted [78]. The number of days with an exceedance of the daily pollution
level (equal to 50 μg·m−3) is characterized by a decreasing trend equal to −5.33 days/year
for the warm half-year (R-squared was equal to 0.51), while for the cold half-year the
number of days with exceedance of 50 μg·m−3 has no positive or negative multiyear
trend (Figure A1a,b). During the cold half-years in the period 2000–2020 there was a
visible negative trend of the number of days with exceedance of limit 100 μg·m−3 equal
to −2.31 days/year with R-squared equal to 0.23. In the study period, there are visible
fluctuations in the number of days with exceedance of the daily PM10 limit, during warm
and cold half-years (Figure A1c,d), which clearly indicates the impact of weather conditions
on the frequency of smog episodes.

Figure A1. Distribution of daily PM10 concentration at the Krasińskiego station in the cold (a) and
warm half-year (b), and the number of days with exceedance of limit 50, 100 and 200 μg·m−3 in the
cold (c) and warm (d) half-year in the period 2000–2020.
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In an effort to better analyze the multiannual trend in the period from October 2000
to September 2020 of the PM10 concentration, the Theil-Sen estimator with the switched
option of seasonal trend decomposition using loess was used (Figure A2). By default, the
values of the averaging period and autocorrelation were used, equal to month and the
95% confidence level. The function used for this calculation was provided by the openair
R package [79]. Analysis has shown that during the analyzed period there is a negative
trend equal to −1.94 μg·m−3/year. In the study period 2000–2020, the months of January
2001 and 2006 differ significantly from the entire study period. This situation was caused
by anomalies of air temperature at 2 m a.g.l. (Figure A3) and atmospheric stability in
the layer between 975 and 925 hPa (not shown in the article). Detailed analysis of the
multiyear trend of PM10 has shown that stronger negative trend of PM10 concentration
occurred during the period 2011–2019 than for 2002–2010, equal to −2.54 μg·m−3/year
and −0.64 μg·m−3/year, respectively. For the same sub-periods, air temperature trends
also differ significantly, in the period 2011–2019 the trend was equal to 0.21 ◦C/year, while
for the earlier period amounted to −0.07 ◦C/year. On the other hand, analysis of the
deseasonalized air temperature gradient in the layer between 975 and 925 hPa and daily
wind speed at 10 m a.g.l. did not show any significant trends throughout the multiannual
period (not shown in the article). The significant positive trend in air temperature in the
last decade may be a crucial factor in determining PM10 emission in the cold half-years.
Studies of warm temperature extremes for Central Europe in the period 1950–2020 have
shown a positive trend of intensity and frequency of hot events during winter periods [80].

Figure A2. Deseasonalized multiyear trend of PM10 daily concentration in period from October 2000
to September 2020. *** indicates that the obtained trends are significant to the levels 0.001.
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Figure A3. Deseasonalized multiyear trend of air temperature at 2 m a.g.l. in period from October
2000 to September 2020. ** indicates that the obtained trends are significant to the levels 0.01.

Appendix B

Appendix B.1 Niedźwiedź Circulation Classification

The classification of circulation types for Southern Poland [81] is available for the
period from September 1873 to the present day. The classification was based on the
typology of atmospheric circulation developed by Lamb [82] for the British Isles, with
some modifications, especially regarding nonadvection situations. On the basis of synoptic
maps of Europe, the direction of air mass movement (N, NE, E, SE, S, SW, W, NW) and
the type of baric system (a—anticyclonic situation, c—cyclonic situation) were determined.
Finally, 16 types of atmospheric circulation were distinguished. In addition, there are two
non-advectional types: Ca—high-pressure center and Ka—anticyclonic wedge or ridge,
and two cyclonic types of differentiated air advection: Cc—low pressure center and Bc—
cyclonic troughs. The aric col and low-gradient situations, which are difficult to classify, are
marked with the letter “x”. Thus, the entire classification includes 21 types (10 anticyclonic
types, 10 cyclonic types and one indefinite type). By combining adjacent types, a shortened
version is also obtained for 11 situations (N + NEa or c; E + SEa or c; S + SWa or c; W + NWa
or c; Ca + Ka, Cc + Bc, x), which is useful in studies of periods shorter than 30 years [29].

Due to the fact that the study period covers 20 years, the classification version with
11 types of circulation was used, in order to increase the size of samples and obtain more
reliable statistical results. For the analyzed period from October 2000 to September 2020
the multiannual trend was determined for warm and cold half-years, respectively, for
each of 11 Niedźwiedź circulation types (Table A1 in Appendix B). During each half-year,
the number of days with a specific circulation type were determined. At the next step,
linear curves were fitted for each circulation type by using the Theil-Sen estimator from
RobustLinearReg R package. Analysis has shown that the strongest negative trend was
observed for type Ca + Ka during the warm and cold half-year, and it was equal to −0.73
and −0.60 days/half-year, respectively. Studies of 21 Niedźwiedź circulation types has
shown that a strong negative trend was observed for type Ca + Ka was caused by decrease
of number of days with anticyclonic wedge or ridge situation (type Ka), for which the
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trend was equal −0.76 and −0.57 days/half-year, for cold and half-years, respectively
(not shown in the article). During the cold half-year multiyear trend of circulation types
S + SWa and N + NEc was equal to 0.27 and 0.21 days/half-year, while for circulation type
S + SWc the multiyear trend was negative (equal to −0.2 days/half-year). For the warm
half-year, the trend of cyclonic conditions with air masses advection from sectors N–NE,
S–SW was positive equal to 0.44 and 0.26 days/half-year, respectively. On the other hand,
multiyear trend of W + NWc and Cc + Bc types in warm half-years were negative and
equal to −0.50 and −0.33 days/half-year, respectively. The total frequency of particular
atmospheric circulation types in the period October 2000–September 2020 in warm and
cold half-years is presented in Figure A4 in Appendix B.

During the warm half-year, the shares of nonadvection anticyclonic types (Ca + Ka)
and cyclonic types with differentiated air advection (Cc + Bc) are the highest and equal
to 15% and 16%, respectively. Air advection from the W–NW sector during cyclonic and
anticyclonic situations occurs often, and comprises 23% of all cases.

The cold half-year period differs significantly from the warm one; the share of air
advection from the SW-NW sector (cyclonic and anticyclonic types) is greater by 15% in
cold half-year than in the warm one. Parallel, the share of cyclonic types with differentiated
air advection during the cold half-year is lower by 6% compared to the warm half-year.

Table A1. Multiyear trend of 11 atmospheric circulations according to Niedźwiedź classification in
warm and cold half-years in period from October 2000 to September 2020.

Circulation
Type

Cold Half-Year Warm Half-Year

Trend
(Day/Half-Year)

R-Squared
Trend

(Day/Half-Year)
R-Squared

N + NEa −0.09 0.01 0.19 0.06

E + SEa 0.10 0.01 0.13 0.02

S + SWa 0.27 0.07 0.13 0.04

W + NWa 0.00 0.00 0.17 0.02

Ca + Ka −0.60 0.23 −0.73 0.35

N + NEc 0.21 0.02 0.44 0.12

E + SEc 0.15 0.02 0.00 0.00

S + SWc −0.20 0.02 0.26 0.12

W + NWc 0.00 0.00 −0.50 0.16

Cc + Bc 0.16 0.04 −0.33 0.17

x 0.12 0.06 0.00 0.00
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Figure A4. Frequency of Niedźwiedź circulation types during the period October 2000—September
2020 in warm and cold half-year.

Appendix B.2 Lityński Circulation Classification

One of the classifications of atmospheric circulation types widely applied in Poland
is the threshold-based method proposed by J. Lityński. Lityński developed his objective
classification to be applied to Poland and Central Europe [38,53]. Synoptic types were
defined using the following indicators: zonal (Ws), latitudinal (Wp) and Warsaw air
pressure (Cp) using sea-level synoptic maps over an area defined as 40–65 ◦N and 0–53 ◦E.
The Ws indicator was derived using a formula for an average longitudinal component of
the geostrophic wind. A conversion of this formula was used to determine the latitudinal
circulation indicator [38]. The direction of air advection and the type and strength of the
pressure systems were determined on a frequency distribution of the Ws, Wp and Cp
indicator values and using a three-class equal-probability system. The thresholds employed
to calculate the Wp, Ws and Cp indices change from month to month, which results in
flattening the seasonal cycle of the occurrence of circulation types [38]. The resulting
air advection type was described by three numeric parameters: Wp, Ws and Cp. The
following symbols were used to denote the Ws indicator: E (eastern) for most negative
values, 0 for near-zero values and W (western) for most positive values. Similarly, the
Wp indicator was denoted by the symbols: N (northern) for most negative values, 0 for
near-zero values and S (southern) for most positive values. Cp air pressure classes were
marked: C (cyclonic), 0—near-zero and A (anticyclonic). These circulation type symbols
were combined with the Wp and Ws indicators class symbols, and finally, one of the three
Cp air pressure class symbols were added. Lityński distinguished 27 circulation types, three
non-advective types (symbol Oo, Oc, Oa) and 8 directional types (with 3 types, cyclonic,
anticyclonic and intermediate type, known as the near-zero type). It is worth to note
that Litynski’s classification system, as one of the scalable methods, is part of the COST
733 classifications catalogue [83]. In the current artile, the Lityński classification has been
used with modifications introduced by Krystyna Pianko-Kluczyńska [63]. Recent studies
confirm the high level of comparability in the course of circulation indices according to the
classifications of Niedźwiedź and Lityński [29].

Figure A5 in Appendix B presents the frequency of Lityński circulation types during
the warm and cold half-year of the study period. For the analyzed period from October
2000 to September 2020, the multiannual trend was determined for warm and cold half-
years, respectively, for 27 Lityński atmospheric circulation types. During each half-year,
the numbers of days with a specific type of circulation were determined. In the next

44



Sustainability 2022, 14, 3388

step, for each circulation type, linear curves were fitted by using the Theil-Sen estimator
from the RobustLinearReg R package. Detailed analysis has pointed out that during the
warm half-year share of circulation types Ec and Wa have the strongest negative trend
equal to −0.25 and −0.21 days/half-year, respectively. F◦or the type Oa in the warm
half-year, the strongest positive trend equal to 0.25 days/half-year was observed. During
the cold half-year share of types NEa and Sc are characterized by the strongest negative
trend equal to −0.22 and −0.25 days/half-year, respectively. On the other hand, for SEo,
SWc, Wa and NWa positive trend equal on average 0.28 days/half-year was observed.
Detailed information on individual circulation types during the cold and warm half-year
in the period from October 2000 to September 2020 was included in Appendix B, Table A2.
In comparison with warm half-year, during cold half-year there is a visible decrease of
air advection from the NE direction, with a significant increase of air advection from
the SW direction. It is worth noting that the share of cyclonic types with air advection
from the W–NW sector is greater during the cold season, whereas anticyclonic types
with air advection from the same direction have a lower frequency in comparison with
warm half-year.

Figure A5. Frequency of Lityński circulation types during the period October 2000—September 2020
in warm and cold half-year.

Table A2. Multiyear trend of 27 atmospheric circulations according to Lityński classification in warm
and cold half-years in period from October 2000 to September 2020.

Circulation
Type

Cold Half-Year Warm Half-Year

Trend
(Day/Half-Year)

R-Squared
Trend

(Day/Half-Year)
R-Squared

Nc −0.13 0.15 0.00 0.00

No −0.07 0.03 0.20 0.27

Na −0.04 0.00 −0.09 0.00

NEc −0.03 0.00 0.00 0.00

NEo −0.11 0.07 0.08 0.04

NEa −0.22 0.12 0.00 0.00
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Table A2. Cont.

Circulation
Type

Cold Half-Year Warm Half-Year

Trend
(Day/Half-Year)

R-Squared
Trend

(Day/Half-Year)
R-Squared

Ec 0.00 0.00 −0.25 0.18

Eo 0.00 0.00 0.13 0.03

Ea 0.00 0.00 −0.13 0.07

SEc 0.11 0.04 0.00 0.00

SEo 0.25 0.13 0.00 0.00

SEa 0.00 0.00 0.00 0.00

Sc −0.25 0.06 −0.11 0.02

So 0.00 0.00 −0.08 0.04

Sa 0.00 0.00 0.00 0.00

SWc 0.26 0.08 −0.18 0.10

SWo 0.00 0.00 −0.11 0.13

SWa 0.00 0.00 0.08 0.00

Wc 0.00 0.00 0.13 0.07

Wo 0.00 0.00 −0.10 0.05

Wa 0.27 0.13 −0.21 0.14

NWc 0.00 0.00 −0.13 0.03

NWo 0.14 0.08 0.00 0.02

NWa 0.37 0.17 0.18 0.13

Oc −0.12 0.04 −0.08 0.00

Oo 0.00 0.00 0.11 0.03

Oa −0.19 0.11 0.25 0.13

Appendix C

Table A3. Height of PM10 daily concentration upper quartile in warm and cold half-years.

Year Cold Half-Year (μg·m−3) Warm Half-Year (μg·m−3)

2001 47 41
2002 106 94
2003 137 60
2004 116 60
2005 162 73
2006 145 71
2007 134 77
2008 155 69
2009 123 67
2010 135 57
2011 137 53
2012 131 49
2013 130 47
2014 103 43
2015 115 54
2016 99 50
2017 99 38
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Table A3. Cont.

Year Cold Half-Year (μg·m−3) Warm Half-Year (μg·m−3)

2018 87 50
2019 82 42
2020 71 32

Figure A6. Scatterplot of predicted versus observed PM10 daily concentration (a) for Random
Forests model and (b) multilinear regression model with daily meteorological parameters for the
cold half-years.

Figure A7. Density plot observed and predicted PM10 daily concentration for Random Forests (RF)
and multilinear regression (MR) model with daily meteorological parameters for the cold half-years.
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Figure A8. Scatterplot of predicted versus observed PM10 day-to-day concentration changes (a) for
Random Forests model and (b) multilinear regression model with daily meteorological parameters
for the cold half-years.

Figure A9. Density plot observed and predicted PM10 day-to-day concentration changes for Random
Forests (RF) and multilinear regression (MR) models which use daily meteorological parameters for
the cold half-years.
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Figure A10. Taylor diagram plots of predicted PM10 daily concentration for the period between
October 2021 and December 2021 for (a) multilinear regression models and (b) Random Forests
models for different training data sets.

Figure A11. Time course of observed and predicted PM10 daily concentration for period between
October 2021 and December 2021 for (a) multilinear regression models and (b) Random Forests
models with use of daily averages of meteorological data for both half-years for two different
training periods.

Appendix D

Weather Conditions in Relation to the Circulation Types

The following section describes the distribution of the selected meteorological parame-
ters for 11 Niedźwiedź classification types during the cold half-years in the analyzed period.
Studies of daily wind speed for the cold half-year have shown that the lowest wind speed
occurs during the advection from sector S–SW which is caused by the local topography
(surrounded by highlands from the South, North and West—see Figure 1b). The weak
wind in the valley was also frequent at stagnant anticyclonic situations (type Ca + Ka).
The conditional probability of the occurrence of a daily wind speed below 1 m·s−1 was
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the highest for the circulation types S + SWa and Ca + Ka, slightly above 30%. For the
other types, except for the S + SWc and W + NWa types, the conditional probability did
not exceed 5% (for the S + SWc and W + NWa types equal 14% and 10%, respectively).
The highest average value of the daily speed was determined for the type of circulation
W + NWc, equal to 5 m·s−1.

The analysis of the mean daily cloudiness for the individual circulation types pointed
out that the greatest variability of this parameter occurred for the types S + SWa, Ca + Ka
and E + SEa (interquartile ranges were greater than 4 oktas). On the other hand, the lowest
variability of daily cloudiness was observed for cyclonic types with advection from sectors
E–SE and W–NW, as well as for low-pressure center and cyclonic troughs (interquartile
range for these types ranged from 0.7 to 1.6 oktas). The conditional probability of a day with
daily cloudiness not exceeding 2 oktas was the highest for the circulation types S + SWa
and Ca + Ka, equal to 28% and 26%, respectively. The results obtained are consistent with
the research of a longer multiyear period [28].

The median of the daily sum of precipitation differs significantly for cyclonic and
anticyclonic conditions; for anticyclonic types, the value did not exceed 1 mm/day. The
highest value of the median daily precipitation was determined for the types Cc + Bc and
E + SEc, equal to 2.5 mm/day. The percentage of days with daily precipitation above
0.1 mm/day was the lowest for anticyclonic types S + SWa and Ca + Ka, equal to 16%
and 18%, respectively. For cyclonic types, except for the type S + SWc, the share of days
with precipitation in the cold half-years was greater than 70%. A significantly lower share
of days with precipitation for the S + SWc type equal to 53% is related to the orographic
barrier of the Western Carpathians, which as a result affects the air temperature and the
humidity of the air masses and spatial distribution of the atmospheric precipitation [76].

The distribution of the daily relative humidity at the ground level in the cold half-years
is similar for most circulation types, except types N + NEc, E + SEc, Cc + Bc and x for which
a higher daily humidity was observed. For the selected circulation types, the lower quartile
of daily relative humidity ranged from 83% to 87%, while the average value of the lower
quartile for the remaining types is equal to 78%.

Analysis of the daily air temperature showed that the largest interquartile range was
measured for Ca + Ka and E + SEa types. It should also be noted that for the selected
types the value of the lower quartile was the smallest, equal to −4.6 and −3.9 ◦C, for the
types E + SEa and Ca + Ka, respectively. Low values of the daily air temperature for the
Ca + Ka type are associated with strong radiative cooling of the surface with the cloudless
sky. For days with anticyclonic condition with advection from sector E-SE, in most cases,
the analyzed region is under the influence of a strong high-pressure center developed
over the area of Eastern Europe and then moved into the West. For this circulation type,
advection of polar continental air masses dominates (more than 75% of the cases). On the
other hand, the highest values of the median daily air temperature occurred for the types
Cc + Bc, W + NWc and S + SWc, equal to 3.9, 4.2 and 4.4 ◦C, respectively.

The analysis of the vertical profiles obtained from the ERA5 reanalysis indicated
that the relative air humidity at pressure levels 925 and 850 hPa strongly depends on the
direction of advection, during the day and nighttime periods. The air masses moving
from the S-SW sector (for cyclonic and anticyclonic conditions) are characterized by much
lower relative humidity than for the other types of circulation (the median value of relative
humidity at 925 hPa at 12 UTC for both types were equal to 58 and 67%, respectively,
while for the others it was within the range from 77% to 95%). Significant fluctuations in
relative air humidity were also observed for stagnant anticyclonic situations (Ca + Ka) and
anticyclonic conditions with advection from the W-NW sector at 0 UTC in the pressure
level 850 hPa.

It should also be mentioned that for days with advection from the S–SW sector during
the daytime and nighttime period, a strong decrease in relative humidity is visible in the
layer 975–925 hPa. During the night, at 0 UTC, the median of relative humidity gradient

50



Sustainability 2022, 14, 3388

between the levels 925 and 975 hPa for the selected types was lower than −13%, while for
the remaining types, the humidity gradient varied between −5% and 4%.

During the day with advection from sector S–SW, a higher relative humidity gradient
was observed compared to the remaining circulation types in the layer 925–850 hPa.

Analysis of air temperature at pressure levels 975, 925, and 850 hPa indicated that
during the daytime air temperature at the height of 925 hPa is significantly higher for days
with advection from the S-SW direction, than for the other types.

The median of the vertical temperature gradient in the layer 925–975 hPa during the
night was the highest with the advection from the S–SW sector. During the day, the largest
share of days with a positive vertical gradient was observed for the type S + SWa, equal
to 30%. The statistically significant share of days with low thermal inversion was also
observed for the types E + SEa and Ca + Ka, close to 16%.

Taking into account the distribution of all meteorological parameters for 11 Niedźwiedź
classification types, the types Ca + Ka and S + SW (cyclonic and anticyclonic situation)
are potentially the most important circulation patterns affecting the deterioration of air
quality in the city. For the selected types, weaker wind speed at the ground level, higher
frequency of thermal inversions, and stronger negative gradient of relative air humidity
were observed in comparison with the remaining circulation patterns. The analysis also
showed that the type E + SEa type can have a significant impact on air quality due to the
occurrence of low daily air temperatures for this type of circulation.

Group 1: days with the highest PM10 concentration.
Table A4 presents the conditional probability of the occurrence of high PM10 mean

daily concentration for individual types of atmospheric circulation during cold half-year,
in the period 2000–2020, according to the Niedźwiedź classification.

Among the 11 types of circulation, only 5 types had the frequency greater than 10%
in the cold half-year (S + SWa, W + NWa, Ca + Ka, S + SWc and W + NWc; Figure A4
in Appendix B). The worst air pollution conditions, that is, situations with the highest
conditional probability of occurrence of high PM10 concentration in Kraków were almost
the same: S + SWa (0.52), S + SWc and Ca + Ka (almost 0.4), and W + NWa (0.2), indicating
that situations with air advection from the western sector, regardless of the baric center
type, have less impact on the deterioration of air quality in the city than other types of
circulation most frequent.

The highest number of days with PM10 concentration greater than the upper quartile
in a cold half-year and exceeding daily limit value of PM10 occurred in December and
January (162 and 195 days, respectively); the number of cases in November, February and
March was similar: 140 days on average. The smallest number of such days was observed
in October: 65 days.

Table A4. Conditional probability of the occurrence of high PM10 concentration during particular
atmospheric circulation types during the cold half-year according to Niedźwiedź classification,
number of days with selected circulation type and the number of days with high PM10 concentration
for individual circulation types in the period 2000–2020.

Circulation Type
Conditional
Probability

Number of Days
with High PM10

Concentration

Total Number of
Days in Cold

Half-Year

N + NEa 0.06 12 196

E + SEa 0.14 50 354

S + SWa 0.52 202 386

W + NWa 0.20 114 562

Ca + Ka 0.39 171 441
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Table A4. Cont.

Circulation Type
Conditional
Probability

Number of Days
with High PM10

Concentration

Total Number of
Days in Cold

Half-Year

N + NEc 0.14 26 190

E + SEc 0.12 21 170

S + SWc 0.37 149 403

W + NWc 0.04 22 521

Cc + Bc 0.14 49 348

x 0.35 26 74

Total number of days 842 3645

Figures A12 and A13 present the weather conditions from the Balice synoptic station
for each circulation type in division into three groups: days with high PM10 concentration
(Group 1), days with a significant improvement of air quality (Group 2) and remaining days.
Comparison of wind conditions for days assigned to Group 1 with the remaining days for
four dominant circulation types (boxplots in blue frames in Figure A12a) has shown that
these days are characterized by the weakest daily wind speed in the cold half-year. The
Mann–Whitney U test calculated for days assigned to Group 1 and the remaining days for
wind speed also confirmed that both groups differ statistically significantly for the four
circulation types (p-value did not exceed 0.002; Table A5); however, it should be noted that
wind speed distribution for circulation patterns S + SWa, S + SWc, and Ca + Ka did not
differ significantly between the days from Group 1 and remaining days (the maximum
difference of median and upper quartile was equal to 0.2 m·s−1 and 0.7 m·s−1, respectively).
During the anticyclonic conditions with air advection from W–NW sector (type W + NWa)
differences of wind speed distribution between days from Group 1 and remaining days
were the highest from all four selected patterns (maximum difference of median and upper
quartile was equal to 1.2 m·s−1 and 1.6 m·s−1, respectively). Studies of daily air temperature
have shown that for days with high PM10 concentration for four selected patterns was
lower than for the remaining days, the difference of median values ranged from 1.2 ◦C for
type S + SWa to 3.3 ◦C for type Ca + Ka. It is also worth mentioning that the lowest daily
air temperatures occurred for type Ca + Ka, which was partly related to small cloudiness
during these days.

Detailed analysis of atmospheric precipitation showed that for anticyclonic conditions
(types S + SWa, Ca + Ka, and W + NWa), the share of days with precipitation greater
than 0.1 mm/day did not exceed 17% of all days in Group 1, and, moreover, precipitation
occurred mostly at nighttime period (more than 90% of all cases). The median and upper
quartile values of daily precipitation for these types of circulation were equal on average
0.6 mm and 1.6 mm, respectively. For the remaining days, the share of days with precipita-
tion for types S + SWa and Ca + Ka were similar to days in Group 1 (differences below 10%),
while for types W + NWa and S + SWc, the share of days with precipitation was higher
compared to days from Group 1 by 25% and 14%, respectively. The Mann–Whitney U test
has proven that the distribution of the sum of precipitation for all four types of circulation
was similar for days assigned to Group 1 and for the remaining days.
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Figure A12. Boxplots of daily (a) wind speed and (b) air temperature for days with the highest
PM10 concentration (Group 1), days with a significant decrease of PM10 (Group 2) and remaining
days at cold half-year for 11 circulation types of Niedźwiedź classification for synoptic station
Balice. The red and blue frames at subfigures a and b cover the dominant types of circulation in
Group 1 and 2, respectively.

Figure A13. Boxplots of daily atmospheric precipitation for days with the highest PM10 concentration,
days with a significant decrease of PM10 and remaining days during cold half-year for 11 circulation
types of Niedźwiedź classification for synoptic station Balice. The red and blue frames cover the
dominant types of circulation in both groups of days.
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Table A5. A p-value calculated with the Mann–Whitney U test between days assigned to Group 1 and
remaining days in cold half-year calculated for daily wind speed, air temperature and atmospheric
precipitation for four selected Niedźwiedź circulation types.

Circulation Type Wind Speed Air Temp. Precipitation

S + SWa 0.000 0.000 0.736

W + NWa 0.000 0.000 0.813

Ca + Ka 0.002 0.000 0.486

S + SWc 0.000 0.000 0.748

The duration of near-ground thermal inversion for selected circulation patterns for
days with the highest PM10 concentration, days with significant improvement of air quality
and remaining days for day (from 6 to 17 UTC) and nighttime (from 18 to 5 UTC on the
next day) were presented at Figure A14. For this purpose, air temperature measurements
from the TV mast from two altitudes (2 and 100 m a.g.l.) were used. The lower limit of the
occurrence of thermal inversion was set equal to +1 ◦C. The results presented in Figure A14
show that duration of thermal inversion at day is longer by 3–6 h for days in Group 1
compared to the remaining days for 3 of 4 selected circulation patterns (S + SWa, W + NWa,
S + SWc). Furthermore, during days with air advection from sector S-SW (cyclonic and
anticyclonic conditions), thermal inversion in special cases persisted for the whole daytime.

The duration of thermal inversion at night for days from Group 1 was the longest for
days with circulation type S + SWa. For types S + SWc and W + NWa in most cases, the
duration of thermal inversion was greater than 6 h.

Figure A14. Boxplots of air temperature near-ground inversion duration during daytime (a) and
nighttime (b) according to the data from TV mast for selected Niedźwiedź circulation types for days
with the highest PM10 concentration (Group 1), days with significant decrease of PM10 (Group 2) and
remaining days during cold half-year in the period 2010–2020. The red and blue frames at subfigures
a and b cover the dominant types of circulation in Group 1 and 2, respectively.

ERA5 reanalysis was used to analyze atmospheric stratification in the lower tropo-
sphere, in the first approach only thermal stratification was analyzed; however, the Random
Forests machine learning methods presented in the previous subsection have pointed out
that air humidity stratification and vertical wind profile were also crucial factors; therefore,
the analysis has been extended. Boxplots of the air temperature and relative air humidity
gradient for selected circulation types have been presented in Figures A15 and A16. Analy-
sis of the air temperature gradient in the layer 925–975 hPa has shown that atmospheric

54



Sustainability 2022, 14, 3388

stability was stronger during night (00:00 UTC current day) and day (12:00 UTC) for all
selected circulation types for days in Group 1 than for remaining days (Figure A15a,b,
boxplots in blue frames). The differences in the median temperature gradient in the layer
975–925 hPa during the daytime ranged from 1 ◦C for type S + SWc to 2.5 ◦C for type
S + SWa. On average, for more than 25% of days in Group 1, for four dominant circulation
patterns, the temperature gradient in the layer 925–975 hPa was positive during the day-
time. In the upper layer (850–925 hPa), the differences in thermal stratification between
days assigned to Group 1 and the remaining days were not significant. The highest share of
upper thermal inversion during the day for days assigned to Group 1 occurred for Ca + Ka
type (56%); for the remaining types of circulation, the frequency of upper inversion was in
the range from 39% to 43%.

Figure A15. Boxplot of air temperature gradient for selected circulation types for days with high
PM10 concentration (Group 1), days with significant improvement of air quality (Group 2) and
remaining days at cold half-year for layer 925–975 hPa at 00:00 UTC (a) and 12:00 UTC (b) and for
layer 850–925 hPa at 00:00 UTC (c) and 12:00 UTC (d) from ERA5 reanalysis data for Kraków city.
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Figure A16. Boxplot of relative air humidity gradient for selected circulation types for days with
high PM10 concentration (Group 1), days with significant improvement of air quality (Group 2), and
remaining days at cold half-year for layer 925–975 hPa at 00:00 UTC (a) and 12:00 UTC (b) and for
layer 850–925 hPa at 00:00 UTC (c) and 12:00 UTC (d) current day from ERA5 reanalysis data for
Kraków city.

Air humidity stratification during days assigned to Group 1 presented for four types
of circulation during the nighttime is characterized by a stronger decrease of humidity in
layer 925–975 than during the remaining days. Furthermore, during the day, for days with
high PM10 concentration, local minimum of relative air humidity at the level of 925 hPa
occurred frequently.

The number of cases in which relative air humidity in the 925–975 hPa layer was lower
than in the neighboring layer (975- 850 hPa) by at least 10%, ranging from 18% for the
S + SWc to 43% for S + SWa type. The percentage of such cases during the day and night
for days with high levels of PM10 and days not assigned to both special groups is presented
in Table A6.
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Table A6. Frequency of days with a minimum of air relative humidity at 925–975 hPa during daytime
and nighttime for days with high PM10 concentration and remaining days for selected Niedźwiedź
circulation types.

Circulation
Type

Days with the Highest PM10

Concentration (%)
Remaining Days (%)

00:00 UTC 12:00 UTC 00:00 UTC 12:00 UTC

S + SWa 5 44 8 19

W + NWa 4 25 2 4

Ca + Ka 4 33 4 5

S + SWc 15 18 16 10

Analysis of relative air humidity at the level of 925 hPa for days assigned for Group 1
indicated that for the types S + SWa, W + NWa and Ca + Ka median values were significantly
lower during the day and night in comparison with the days not assigned for both groups
(the greatest difference in medians equal to 25% during day and night was observed for
type W + NWa). Furthermore, for the days in Group 1 with circulation type W + NWa
and Ca + Ka, the distribution of relative humidity was characterized by a significantly
wider interquartile range than for the remaining days. The average daily value of the
interquartile range for both selected types was equal 41% and 23% for days in Group 1
and remaining days, respectively. In the case of the circulation type S + SWc, the relative
humidity distribution was similar for both groups of days (Group 1 and the remaining
days). The relative humidity distribution at the level of 925 hPa for selected types of
circulation was presented in Figure A17a). Analysis of the air temperature distribution
at the level of 925 hPa for selected circulation types showed no significant differences for
days assigned to Group 1 and the remaining days (Figure A17b). The study of the wind
speed distribution at the level of 925 hPa for four types of circulation pointed out that
the differences of this parameter between days in Group 1 and the remaining days are
lower during the day than at night. The greatest differences of the wind speed distribution
between days in Group 1 and remaining days at night were observed for W + NWa and
S + SWc types. The median values of wind speed at night for days assigned to Group 1
were lower by 3.3 m·s−1 and 2.3 m·s−1 for W + NWa and S + SWc, respectively (not shown
in the article). Furthermore, the analysis of the wind speed difference in layer between 925
and 975 hPa indicated that in the nighttime the wind shear was significantly weaker for
the W + NWa and S + SWc types, while in the daytime period the distribution was similar
or slightly higher than for the remaining days. For the Ca + Ka type, wind shear was the
lowest among the four distinguished circulation types.

Group 2: days with highest decrease of PM10 concentration.
The second Group of days selected in the cold half-year consists of days during which

a significant decrease in daily PM10 concentration occurred in comparison with the previous
day. Table A7 presents the conditional probability of the occurrence in a large decrease of
PM10 concentration for individual types of atmospheric circulation, the number of days
with a particular type of circulation and number of days with a significant decrease in PM10
concentration for individual types of circulation.

The significant improvement of the dispersion conditions occurred mostly with air
advection from the W–NW sector at cyclonic and anticyclonic conditions and nonadvection
cyclonic types (Cc + Bc). It is worth mentioning that during circulation type W + NWa the
highest levels of PM10 concentration occurred, too. The highest conditional probability in
significant decrease of PM10 concentration was obtained for cyclonic types Cc + Bc and
W + NWc (0.29 and 0.25, respectively).

57



Sustainability 2022, 14, 3388

Figure A17. Boxplot of relative air humidity (a), air temperature (b), wind speed (c) at 925 hPa and
wind speed differences between 925 and 975 hPa (d) at 12:00 UTC for selected circulation types
for days with high PM10 concentration (Group 1), days with significant improvement of air quality
(Group 2) and remaining days at cold half-year for layer 925–975 hPa from ERA5 reanalysis data for
Kraków city.

It should be mentioned that the number of days that meet the conditions of significant
pollution decrease (more than 25% decrease and at least 20 μg·m−3) in individual months
in the cold half-year is not even; the smallest number of cases meeting the criteria occurred
in October (67 days), a similar number of days was selected for the months of November,
February, and March (more than 100 days) and the highest number for the period from
December to January (more than 120 days).

Analysis of weather conditions from the Balice synoptic station for selected circulation
types (Figures A12 and A13; boxplots in red frame) showed that air temperature did not
differ significantly for days with a significant decrease of PM10 (Group 2) compared to days
not assigned to both specific groups (remaining days). The p-value calculated with the
Mann–Whitney U with significance level α = 0.05 test has also confirmed the similarity
of both groups for these meteorological parameters (Table A8). The p-values obtained for
wind speed and atmospheric precipitation were lower than 0.05, which pointed out that
distribution in selected groups is statistically different. For the air temperature groups,
the p-value were highest. The daily wind speed distribution for three selected circulation
patterns were higher for days in Group 2 compared to the remaining days. The highest
differences were observed for circulation type W + NWa (the median and upper quartile
for this group were higher by 1.3 m·s−1 and 0.8 m·s−1), while for the remaining types
(W + NWc and Cc + Bc), the wind speed was on average higher by 0.5 m·s−1.
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Table A7. Frequency of days with minimum of air relative humidity at 925–975 hPa during daytime
and nighttime for days with high PM10 concentration and remaining days for selected Niedźwiedź
circulation types.

Circulation Type
Conditional
Probability

Number of Days
with High PM10

Concentration

Total Number of
Days in Cold

Half-Year

N + NEa 0.18 35 196

E + SEa 0.15 53 354

S + SWa 0.06 25 386

W + NWa 0.17 96 562

Ca + Ka 0.06 28 441

N + NEc 0.31 58 190

E + SEc 0.25 43 170

S + SWc 0.13 54 403

W + NWc 0.29 150 521

Cc + Bc 0.25 86 348

x 0.08 6 74

Total number of days 634 3645

The number of days with precipitation for days in Group 2 compared to days not
assigned to both groups for dominant circulation patterns was higher by 18% on average.
For the type W + NWa, the number of days with precipitation above 0.1 mm/day was
equal to 53% of all days, and for the cyclonic types W + NWc and Cc + Bc it was equal to
84% and 88%, respectively. The sum of daily precipitation for the distinguished types was
higher than for the remaining days, the smallest increase was observed for the anticyclonic
type W + NWa (greater on average by 0.5 mm/day), while for the cyclonic types, the daily
sum of precipitation was greater by more than 1 mm/day. The frequency of rainfall during
the day and night was similar for all the distinguished types in Group 2.

Table A8. p-value calculated with the Mann–Whitney U test between days assigned to Group 2 and
days not assigned to both groups in the cold half-year calculated for daily wind speed, air temperature
and atmospheric precipitation for three selected circulation types from Niedźwiedź classification.

Circulation Type Wind Speed Air Temp. Precipitation

W + NWa 0.000 0.750 0.013

W + NWc 0.005 0.918 0.000

Cc + Bc 0.000 0.871 0.008

Analysis of intra-valley thermal stratification from TV mast data (up to 100 m a.g.l.)
indicated that the length of the near-ground inversion persistence did not exceed 3 h for
most of the cases. The duration of inversion in the night period was shorter for all the
selected circulation types for days with a significant decrease in PM10 compared to the
reference group that contained the remaining days (Figure A13; boxplots in red frames).

Analysis of the ERA5 data indicated that the vertical gradient of temperature and rela-
tive humidity did not differ significantly for the group of days with a significant improve-
ment in air quality compared to days not assigned to both groups (Figures A15 and A16 in
Appendix D; data in red frames). Low thermal inversion in the 975–925 hPa layer during
the nighttime period did not exceed 20% of all days for the selected types, and during the
daytime, low thermal inversion almost did not occur. Upper thermal inversions in the layer
925–850 hPa during daytime accounted for more than 50% of cases, with the highest share
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equal to 60% for the W + NWa type. The vertical profile of relative humidity during the day
was characterized by the local maximum at 925 hPa, the median relative humidity gradient
in layers 975–925 hPa and 925–850 hPa was equal on average to +9% and −9%, respectively.
The largest number of days, where relative humidity at the level of 925 hPa was higher
than neighboring levels by at least 10%, occurred for the W + NWa type, equal to 33%,
and the other types accounted for 17% of cases, on average. For the group of remaining
days, similar humidity stratification, with local maximum relative humidity at 925 hPa,
constituted from 20% for Cc + Bc to 28% for W + NWa type.

Analysis of relative humidity and air temperature at 925 hPa level during the daytime
and nighttime period for the three distinguished circulation types did not show significant
differences for the days assigned to Group 2 and the remaining days. The distribution wind
speed at a pressure level of 925 hPa is for days in Group 2, for all selected types was higher
during the day and night in comparison with the remaining days. The wind speed at night
and day for all selected circulation types was on average higher by 1.4 m·s−1 and 2.6 m·s−1

than for the remaining days, respectively (Figure A17c in Appendix D). Furthermore, the
wind shear connected to the wind speed change in layer 925–975 hPa was stronger for days
with the circulation type W + NWc and Cc + Bc during day and night for days in Group 2
compared to the remaining days.
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Abstract: On-road vehicle emissions play a crucial role in affecting air quality and human exposure,
particularly in megacities. In the absence of comprehensive traffic monitoring networks with the
general lack of intelligent transportation systems (ITSs) and big-data-driven, high-performance-
computing (HPC) platforms, it remains challenging to constrain on-road vehicle emissions and
capture their hotspots. Here, we established an intelligent modelling and visualization system driven
by ITS traffic data for real-world, on-road vehicle emissions. Based on the HPC platform (named “City
Brain”) and an agile Web Geographic Information System (WebGISs), this system can map real-time
(hourly), hyperfine (10~1000 m) vehicle emissions (e.g., PM2.5, NOx, CO, and HC) and associated
traffic states (e.g., vehicle-specific categories and traffic fluxes) over the Xiaoshan District in Hangzhou.
Our results show sharp variations in on-road vehicle emissions on small scales, which even fluctuated
up to 31.2 times within adjacent road links. Frequent and widespread emission hotspots were also
exposed. Over custom spatiotemporal scopes, we virtually investigated and visualized the impacts of
traffic control policies on the traffic states and on-road vehicle emissions. Such results have important
implications for how traffic control policies should be optimized. Integrating this system with
chemical transport models and air quality measurements would bridge the technical gap between air
pollutant emissions, concentrations, and human exposure.

Keywords: big-data intelligent system; on-road vehicle emissions; traffic monitoring; hyperfine
modelling; real-time visualization

1. Introduction

With the simultaneous growth of urban scales and vehicle ownerships, on-road ve-
hicles have the potential to overtake industrial and residential sectors as the dominant
emission source in megacities [1–4]. For instance, urban on-road vehicles account for more
than 30% of NOx emissions globally and contribute up to 25% of PM2.5 concentrations in
China [5–7]. Therefore, the reliable assessment of on-road vehicle emissions is central to air
pollution control and human exposure evaluation, which is conducive to the sustainable
development of the social environment [8,9]. The vehicle emission inventory can be a
valuable tool, as it can well reflect the close link between environmental impact and traffic
flow [10]. However, estimating traffic emissions is a very complex process that requires
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large amounts of data on emissions-producing activities (e.g., vehicle travelled distance,
vehicle type, and operating conditions) and a deep understanding of emission rates [11,12].
With the continuous improvement of the spatiotemporal resolution of road vehicle emis-
sions assessments by current urban pollution control policies, it is essential to accurately
quantify real-world road vehicle emissions due to changes in actual traffic characteristics.
Therefore, the reliability of activity data and emission factors is a crucial element in the
quantification of road vehicle emissions and the quality of emissions inventories. Previous
studies have shown that vehicle emissions under actual driving conditions are affected by
a variety of factors, including vehicle characteristics (such as vehicle type, age, emission
control devices, and operating conditions), urban road types and conditions, fuel type, and
environmental conditions (e.g., temperatures and humidity) and traffic conditions [13,14].
Therefore, real-world, on-road vehicle emissions remain largely uncertain in traditional
bottom-up emission inventories. The main concern is that road traffic states (e.g., traffic
fluxes, road conditions, and vehicle type) can change drastically over a short distance
(1~10 km) for a short time (hourly). The traditional inventory of on-road vehicle emis-
sions is established based on historical data on a macro scale. The key concern is that
routine frameworks generally rely on spatially coarse proxies (e.g., 1 × 1~25 × 25 km2) and
temporally static retrospectives (e.g., a historical year or month) [15–17], focusing on the
characteristics or average levels of vehicle emissions, and thus the variations of spatiotem-
poral vehicle emissions are seldom considered. In addition, due to the limited resolution of
vehicle emission calculations [18], they cannot capture on-road vehicle emission hotspots
and drivers.

To date, various monitoring systems that can record real-world traffic situations have
made significant progress [19–22]. These techniques mainly involve floating cars (e.g.,
OBD-instrumented diesel trucks and GPS-equipped probe taxis), navigation maps (e.g.,
Google Map), and on-road video surveillance, each of which has distinct advantages and
disadvantages [23–27]. For instance, an individual GPS-instrumented floating car accurately
records its speeds and trajectories along with its static information (e.g., its vehicle category).
Their fleets enable us to extrapolate surrounding traffic states. Nevertheless, in contrast to
real-world fleets, they remain scarce and thus incapable of revealing hyperfine gradients
(10 m~1 km) of on-road vehicle emissions [28–30]. Better yet, open-access maps (such as the
Google and Baidu Maps) can provide more representative spatiotemporal maps of on-road
vehicle emissions. Technically, they treat trajectories of mobile phones as spatiotemporal
surrogates of traffic fluxes and, on this basis, establish hierarchical traffic congestion indexes.
Despite this, vehicle-specific information remains unavailable, including vehicle-specific
speeds and categories. In order to address this issue, a recent study [31] developed a
full-sample enumeration approach (with 19 billion trajectories) via the BeiDou Navigation
System to construct a big-data-driven vehicle emission inventory, which, however, was
only suitable for trucks. Each technology has distinct advantages and disadvantages, and
no source alone can achieve the high-resolution demand for quantifying road vehicle
emissions. The solution is to use a more comprehensive road traffic system to obtain
sufficient real-time traffic data to support hyperfine-resolution emission inventory and the
development of a real-time road vehicle emission system.

Real-world traffic monitoring (e.g., on-road video surveillance and radio frequency
identifications) can offer a valuable opportunity to recognize instantaneous and heteroge-
neous vehicle-specific states [32–35]. Through the mutual complementation of different
data sources, the specific traffic status information of the vehicle can be obtained in real-
time. Nevertheless, the output data come from independent facilities with distinct formats;
thus, multi-source data is incompatible mutually. Subsequently, they are incompatible with
the existing model frameworks of the on-road vehicle emissions (e.g., the fleet-specific
MOVES) [36–38]. More importantly, the resulting database is projected to be of big data,
thus leading to huge computational burdens [31,39–41]. For instance, the Data Through-
put in a single hour might frequently exceed 200 MB and fluctuate violently. It should
be noted that those facilities freshly achieved full coverage only in a few developed re-
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gions due to vast expenses [42]. Collectively, the unique path towards real-world on-road,
vehicle-specific emissions is given by all-around traffic monitoring coupled with a big-
data-driven ITS and HPC platform [38,43,44]. This systematic framework requires various
intelligent techniques (e.g., image recognition) to interconnect and transfer those big and
incompatible data. It is a unique opportunity to construct a hyperfine-resolution, on-road
vehicle emission model. Besides, real-time data analyses would further maximize the bene-
fit. Web Geographic Information Systems (WebGISs) [45] provide the efficient handling,
visualization, and manipulation of geographic and geospatial information.

As a leading developed region in China, the Xiaoshan District in Hangzhou is facing
serious air pollution, especially with surface O3 continually exceeding the air quality
standard in the summertime; it is mainly caused by the emission of mobile sources [46].
Moreover, the Xiaoshan District has also become a pioneer of digital government reform. A
key achievement is that traffic monitoring has seemingly become ubiquitous since 2017.
More than this, a breaking-through development is a big-data-driven, intelligent HPC
system (named “City Brain”) [47], full of ripe artificial intelligence algorithms. Initially, it
was designed for tackling the digital reform of government affairs. Here, it is applied to
store, fuse, and transfer comprehensive traffic monitoring data, even with incompatible
accesses (due to distinct formats and multiple sources). In this study, we used it to build
a bottom-up road vehicle emission calculation model to calculate single-vehicle-specific
emissions over each fine-scale (10 m–1 km) road link. The objectives of this study are: (1) to
conduct application research of high-temporal and spatial resolution and a visualization
for urban road vehicle emissions based on comprehensive traffic data and a bottom-up
road vehicle emission calculation model; (2) to visualize significant real-time variations
in hyperfine on-road vehicle emissions and analyse the corresponding drivers (such as
traffic fluxes and vehicle-specific speed) with an agile WebGIS system; and (3) to efficiently
validate the benefits of traffic control strategies. Note that such strategies could be precisely
designed for specific road segments and vehicle types via our hyperfine system. Therefore,
this big-data-driven intelligent modelling and visualization system can serve as an effective
and efficient tool for urban on-road vehicle emission management.

2. Materials and Methods

2.1. System Framework

This work aimed to develop and implement a big-data-driven intelligent modelling
and visualization system for real-world, on-road vehicle emissions. As illustrated in
Figure 1, we built up this system based on a classic Browser/Server (B/S) architecture [48]
with four tiers, i.e., the perceptive, data, server, and presentation layers. The last three
layers were erected on the “City Brain”. The first layer consisted of comprehensive traffic
monitoring, which was the foundation of the whole system. After that, the data layer
mainly relied on the MySQL database [49] supported by the Relational Database Service
(RDS) [50] on-board the “City Brain”. Due to its high performance (e.g., large volume
and high flexibility), it took responsibility for the storage and transmission of the big
spatiotemporal data, including both the input and output data from other layers. On this
basis, the server layer implemented an ITS that could interconnect and operate diverse
traffic data from incompatible sources. A hyperfine model for on-road vehicle emissions
served as the core of this system. This layer also received the user requests to invoke the
information in the data layer, accessed the WebGIS application in the presentation layer, and
performed corresponding feedbacks. The WebGIS engine can assemble the comprehensive
spatiotemporal data analysis when the server receives user requests. In addition, the Elastic
Compute Service (ECS) [51] onboard the “City Brain” accounted for basic operations, such
as spatiotemporal data analyses, data sharing, and permission settings.
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Figure 1. The framework of the big-data-driven intelligent modelling and visualization system
for real-world, on-road vehicle emissions. This system based is on a classic Browser/Server (B/S)
architecture with four tiers, i.e., the perceptive layer, data layer, server layer, and presentation layer.
The last three layers were erected on the “City Brain”.

Between the server and presentation layers, the Ajax (Asynchronous JavaScript and
XML) technology made asynchronous HTTP requests without reloading client applica-
tions [52]. Moreover, cascading style sheets (CSS) technologies were applied to improve user
experiences, such as optimizing the interface layout and increasing the response speed [53].
Considering the big data feature of this system, we applied an agile WebGL-powered frame-
work (AntV L7) [54] for large-scale geospatial data visualization and rendering. Hence,
the presentation interface can display GIS applications through the B/S architecture and
share spatial information resources, thus breaking the limitations of traditional operational
methods.

Consequently, this system can map real-time or historical vehicle-specific emissions
(i.e., PM2.5, NOx, HC, and CO) and associated traffic states (i.e., traffic fluxes, vehicle-
specific images, categories, and speed) from the perspective of spatial (e.g., road links) and
temporal (e.g., hourly) dimensions. On this basis, they can be zoomed in and visualized via
button selection. Furthermore, the spatiotemporal analysis, such as the top five roads (e.g.,
in terms of on-road vehicle emissions), was also highlighted. More importantly, relying
on this HPC framework, we could virtually investigate and visualize the consequences of
traffic control strategies over the custom spatiotemporal scopes.
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2.2. Real-World Data Collection

The Xiaoshan District is situated in Hangzhou, Zhejiang Province, China (Figure 2).
From its GDP (i.e., CNY 200 billion) perspective, it ranked fifth among districts in Hangzhou
in 2019. Within its limited geographical extent (i.e., 1417.8 km2), there was roughly
1953.7 km of road networks. In this context, the Xiaoshan District emerged as a vital
urban transportation hub in Zhejiang Province. This indicates that air quality in urban
microenvironment is significantly affected by fine-scale, on-road vehicle emissions.

 

Figure 2. All-around traffic monitoring network. (a) The location of the Xiaoshan District in China.
(b) Spatial distributions of traffic monitoring sites (dot). Correspondingly, all road links are divided
into three types, including residential streets, arterial roads, and highways. (c) Each site includes
radar velocimeters and surveillance cameras. Map data © 2021, AntV L7.

It should be highlighted that all-around traffic monitoring allowed us to collect vehicle-
specific data (Figure 2). Specifically, video surveillance and radar velocimeters measure
vehicle-specific images and speed, respectively. First, in theory, traffic fluxes and vehicle-
specific categories significantly affect the on-road vehicle emission [26,31]. In particular,
traffic congestion and high-duty vehicles generally result in emission hotspots. To this end,
all-around traffic video surveillances were applied to enable vehicle-specific identifications.
From 1 January to 31 December 2021, we established an extensive database of more than
2400 million records. Vehicle-specific categories, licence plates, and fluxes could be identi-
fied via intelligent techniques (e.g., image recognition). We defined six vehicle categories,
including HDTs (heavy-duty trucks), MDTs (middle-duty trucks), LDTs (light-duty trucks),
HDVs (heavy-duty vehicles), MDVs (middle-duty vehicles), and LDVs (light-duty vehicles).
It should be noted that these monitoring data were obtained from distinct video facilities,
and thus were mutually incompatible. They were further required to be fused spatially and
temporally. Detailed information is described in Section 2.3.

Another key driver is vehicle-specific speed, which is of great significance for arrang-
ing on-road vehicle emission factors [26]. Along with traffic video surveillance, radar
velocimeters were utilized to measure vehicle-specific speed concurrently. All these data
were updated in a timely manner (i.e., hourly) and stored in the historical database. More-
over, the vehicle-specific emission factors and road information were relatively static
without being updated in real-time. The former was obtained from the vehicle I/M (vehicle
Inspect/Maintenance) dataset in the Xiaoshan district [55]. The latter came from the Gaode
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Map, divided into 1393 road segments (Figure 2). The spatial resolutions were inconsistent
(i.e., 10~1000 m) across road segments, adaptive to the gaps between sets of traffic monitor-
ing. On this basis, all these road links were grouped into three types: residential streets,
arterial roads, and highways. Collectively, we achieved a hyperfine map of comprehensive
traffic states over the Xiaoshan District, involving vehicle-specific images, speeds, and
categories, traffic fluxes, and road segments.

2.3. Real-Time Data Fusion

Comprehensive traffic states, including vehicle-specific categories, speeds, emission
factors, and road segments, should be interconnected spatiotemporally (Figure 3). Generally,
the standardized data quality controls were completed on respective devices in advance.
Yet, vehicle-specific records came from various devices, the links between which should
be identified. First, on-road video surveillance offered vehicle-specific images, including
vehicle-specific license plates, categories, and fluxes. The I/M dataset would be responsible
for double-checking the identification of the vehicle-specific categories according to the
license plates. Subsequently, such vehicles would fall into two classes: non-registered
vehicles and registered ones. Their emission factors were calculated based on the I/M
dataset. Yet, the emission factors of the latter were speed-dependent and vehicle-category-
specific, while those of the former were averaged based on vehicle-specific categories
(Figure S1). Second, both radar velocimeters and video surveillances were in motion
concurrently. We can thus apply time recorders to synchronize the monitoring for fluxes,
license plates, vehicle-specific categories, and speed. Third, the static road information
was independent of the real-time traffic states. Road links can serve as reliable bridges
between them and interconnect vehicle-specific and road-specific information spatially
and temporally. The resulting extensive database can be transferred into the subsequent
bottom-up emission model and Web GIS interface. The total Data Throughput exceeds
300,000 records and 200 MB per hour.

 

Figure 3. Data fusion. Vehicle-specific records come from diverse devices, the links between which
are highlighted.
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2.4. Model Framework for On-Road Vehicle Emissions

We applied a hyperfine model framework to estimate real-world, on-road vehicle
emissions (i.e., primary PM2.5, carbon monoxide (CO), hydrocarbon (HC), and nitrogen
oxides (NOx)). Compared to most of the current bottom-up on-road vehicle emission
model frameworks, our design was sufficiently elaborate in terms of vehicles, road, space,
and time. Figure 1 presents a theoretical flow diagram of the hyperfine on-road vehicle
emission model. Overall, the results relied on an ensemble estimate of vehicle-specific
speeds, categories, fluxes, emission factors, and road segments [10,25,26]

EFc,j,l = ∑
t

EFc,j(v)× TFc,h,l (1)

Eh,j,l = EFc,j,l × Ll (2)

where h and l represent the temporal (i.e., hour) and spatial (i.e., road segment) dimensions,
respectively. For a given spatiotemporal dimension, EFc,j,l denotes the emission intensity
of the pollutant j (g km−1 h−1).

Relying on the real-time HPC platform, our outcomes can map significant variations in
the on-road vehicle emissions. On this basis, a real-time diagnosis algorithm was generated
by comparing the emissions of all road links and vehicles and tracking their spatiotemporal
evolution. Consequently, the road links and vehicle categories with high emissions were
screened out and identified as key elements. More importantly, with the aid of the vehicle-
road links, we can illustrate the contributions of different vehicle categories to different
road links. This especially offered precise targets for on-road vehicle emission control
strategies.

2.5. “Distance–Decay” Relationship of Hotspot Region

In theory, a comprehensive traffic profile is the basis for estimating hotspot emissions.
To analyse the determinants of emission hotspot patterns, we applied an emission–distance
relationship E(d) that might be faithfully replicated by the three-parameter unconstrained
exponential model as follows:

E(d) = α + β exp(−3d/k) (3)

where there are four parameters in this equation: the background emission (α); the length
to the hotspot (d, m); the slope boosted by the hotspot emissions (β); and the convergence
coefficient (k), which governs the spatial scale over the emission relaxed to background
emission (α). In principle, the sum (α + β) would converge to 1.0, which suggests that the
sums of the background emissions and associated increments would reflect the emission
levels of the hotspots. We modelled the decay of on-road vehicle emissions, traffic fluxes,
and vehicle categories from indicative hotspots outwards on annual weekdays and single
hours of weekdays. Among them, annual data were used to prove the rationality of the
model. Because annual and single-hour data types are homologous, we used single-hour
data fitting to analyse the distance decay characteristics of real-time hotspots emission. The
magnitudes of α and β reflected the amplitude of decay from hotspots at the hourly scale.

2.6. Traffic Control Strategies

Over the Xiaoshan district, routine traffic control policies were implemented to mit-
igate air pollution. A representative measure was on-road vehicle license restrictions,
routinely operated during two typical periods, i.e., from 7:00 to 9:00 and from 16:30 to
18:30 on weekdays, so-called the morning and evening rush hours. In theory, such kinds of
policies would substantially alter on-road vehicle emissions by affecting traffic states (e.g.,
traffic fluxes and vehicle-specific speed). Yet, the influences were still elusive.

Here we integrated the hyperfine map of on-road vehicle emissions with an agile
WebGIS engine. On this basis, we can picture the impacts of traffic control measures on
on-road vehicle emission reductions. We designed four traffic control scenarios with a major

70



Sustainability 2022, 14, 5434

focus on traffic fluxes and fleet composition. The main concern was to investigate how to
implement traffic control policies spatially and temporally (Table 1). Note that we virtually
implemented those policies during a morning rush hour (8:00, Local time) to maximize
their influences. First, the weekday scenario (S1) forbade particular vehicles according to
the tail numbers of license plates. This scenario focused only on the residential and arterial
roads and the morning and evening rush hours. Table 1 summarizes the detailed rules.
Second, on the basis of the S1 scenario, the even–odd scenario (S2) applied the even–odd
rule and thus halved traffic fluxes. This scenario was obviously more stringent than the
weekday scenario (S1). Third, both non-registered and registered trucks were forbidden
over the highways (S3). Fourth, we combined the S2 and S3 scenarios to achieve the strictest
control on all vehicles (S4). Such a scenario was actually implemented over the Xiaoshan
district during the G20 summit in 2016 [56–58].

Table 1. Traffic control policies.

Scenario Strategy Vehicle Category Spatiotemporal Scale

S1

Vehicles with particular tail
numbers of license plates are

forbidden. Specifically, the
prohibited tail numbers were 1
and 9 on Monday, 2 and 8 on

Tuesday, 3 and 7 on Wednesday,
4 and 6 on Thursday, and 5 and

0 on Friday.

All

Over residential and arterial
roads during morning and
evening rush hours from

Monday to Friday

S2
Vehicles with even and odd tail

numbers of license plates are
alternately prohibited.

All

Over residential and arterial
roads during morning and
evening rush hours from

Monday to Friday

S3 HDVs and HDTs are forbidden HDVs and HDTs Over highways all day long

S4 All vehicles follow the
even–odd rule. All Over all roads all day long

3. System Application

3.1. Map of Traffic Characteristics and Hotspots

This system, mainly supported by comprehensive traffic monitoring, ITS, WebGIS, and
the bottom-up emission model, provided an unprecedented hyperfine map of urban traffic
states in a timely manner (i.e., hourly), including vehicle-specific speed, categories, and
traffic fluxes (Figures 4 and 5 and Supplementary File). For instance, regarding the traffic
fluxes, the colours of the links evolved from green to red, indicating a gradual increase in
traffic fluxes from less than 30/h to more than 100/h. For instance, on 28 December 2021,
we found that spatial distributions of traffic states were extraordinarily heterogeneous.
First, as expected, the vast majority of traffic fluxes were centred on residential and arterial
roads (Figure 4b). Figure 4c presents corresponding hyperfine-resolution variations in
a representative 1 km2 zone. Therein, the hourly traffic flows fluctuated significantly
(>25.8 times). Such large fluctuations remained even within individual streets, with an
average of more than eight times. An expected finding was the frequent and widespread
presence of acute geographical “traffic hotspots” across the traffic monitoring dataset. We
treated individual road links or a cluster with traffic flows exceeding the district’s average
level as hotspots. Through the imaging analysis coupled with all-round video surveillance,
Figure 5 presents plausible drivers for some indicative hotspots. We found that traffic
congestion played a key role in shaping such hotspots, which, however, were caused by a
variety of factors, including high traffic volumes on key arterial or residential roads or road
constructions. Further information on the technique for identifying hotspots is given in
Supplementary Information.
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Figure 4. A hyperfine map of traffic fluxes via all-around traffic monitoring on 28 December 2021.
(a) The whole map is first pictured. (b) Hourly (12:00, Local Time) traffic fluxes over the Xiaoshan
district and (c) three indicative urban zones. The rest subgraphs are similar, but (d,e) and (f,g) are
for the morning (8:00) rush hour and the hourly traffic fluxes of HDVs and HDTs, respectively. Red
circles refer to traffic hotspots in Airport Road, Shixin North Road, Jiansheer Road, and Xiaohang
Road. Map data © 2021, AntV L7.
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Figure 5. Imagery analyses for illustrative traffic hotspots. The hotspot locations are presented in
Figure 3. The common drivers of traffic hotspots are (a,b) heavy traffic fluxes, (c) road constructions,
(d,e) morning and afternoon traffic rushes, and (f) heavy traffic fluxes of LDVs and MDVs.

Second, it is worth noting that, on weekdays, the daily averages of traffic fluxes were
comparable to those on weekends (Figure S2). Despite this, there was a noticeable difference
in hourly variation patterns between weekdays and weekends. It was clear that the morning
and evening rush hours had a significant impact on the diurnal traffic fluxes on weekdays, with
two maxima at 08:00 and 17:00. Our findings show that, during these periods when the traffic
congestion was further exacerbated (Figure 5), the widespread hotspots were geographically
stable but quantitatively more conspicuous (Figures 4d,e and S3). By comparison, on weekends,
there was a smaller range of traffic fluctuations, and the morning peak arrived two hours
later (Figure S2). Specifically, the traffic flux peaks on weekends were roughly 80% of
those on weekdays, while their hotspots were also variable, indicating more random
trips (Figure S3). Therefore, the hyperfine-resolution patterns of traffic hotspots were
significantly heterogeneous, and it was necessary to track them in real-time over the entire
district.

Third, the spatial and temporal connections between traffic fluxes and speeds were
shown to be substantial. Figure S2 presents that vehicle-specific speeds fluctuated dramatically
throughout the day as a result of the varying traffic fluxes. As expected, vehicle-specific speeds
were at the lowest level during the peak periods of traffic fluxes. Moreover, those peaks and
valleys simultaneously shifted from weekdays to weekends. Spatially, traffic flux hotspots
may have determined speed hotspots (Figure S4). Vehicle categories, on the other hand, were
unaffected by traffic fluxes. After the morning rush hour, their diurnal changes were stable in
regardless of the kind of roads (Figures 4 and S2). Yet the HDVs and HDTs reached their peaks
in the early morning hours (i.e., from 1:00 to 5:00). Additionally, the spatial distributions of
vehicle categories were especially noteworthy (Figures 4f,g and S5). LDVs, MDVs, LDTs,
and MDTs mainly occupied the residential streets and arterial roads, while other kinds
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of vehicles (i.e., HDTs and HDVs) frequently appeared over the highways. We found the
spatial distributions of HDVs and HDTs, the hotspots of which scattered extensively. A
unique driver can be related to their large traffic fluxes, which were confirmed via video
surveillance. Therefore, the fleet composition can also affect on-road vehicle emission
distributions substantially, especially on small scales.

3.2. Real-Time, On-Road Vehicle Emissions

This system produced a real-time map of on-road vehicle emissions, in which widespread
emission hotspots were also identified (Figures 6 and S6). Such patterns were distinct
from previous maps that can only capture the emissions in downtown areas, which were
noticeably higher than those in suburbs. This was mostly related to the spatial distributions
of vehicle categories and traffic states (Figures 5 and S4). In particular, high traffic fluxes
and low speeds downtown typically led to substantial on-road vehicle emissions hotspots
(Figures S14 and S15). It is worth noting that towards the edge of the district, such a
phenomenon was not consistent. In contrast, on-road vehicle emissions in residential
streets considerably outstripped (>474.2%) those on the neighbouring roads. The spatial
patterns of various vehicle categories might explain this discrepancy (Figures 4 and S5).
For example, emissions from HDTs and HDVs on a residential street (i.e., the Ningdong
Road) contributed 86.2%, far higher than those (8.4%) in its neighbouring arterial roads
(the Shixin North–Jianshe Fourth Roads).

 

Figure 6. Cont.
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Figure 6. Real-time, on-road vehicle emissions on 28 December 2021. (a) The whole system map is
first pictured. (b) Hourly (12:00, Local time) on-road vehicle NOx emissions over the whole district
and (c) three indicative urban zones. The rest subgraphs are similar, but (d,e), (f,g), and (h,i) are
for the morning (8:00) rush hour, the emissions of HDTs and HDVs on local time (12:00), and the
morning (8:00) rush hours of HDTs and HDVs, respectively. “Road Emission Ranking” displays the
five highest road links of specific pollutants in road emissions, and “On-road Vehicle Emission Data”
is the specific emission information of each road link. Map data © 2021, AntV L7.
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Relying on the classified roads, Table 2 summarizes the hourly emissions of primary
PM2.5, NOx, CO, and HC. The top five roads (i.e., Chenhui Road–East of Chaohui Primary
School, Tonghui North Road–Hongda Road north, Airport City Avenue–Liqun River bridge
west, Airport City Avenue–Minhe Road East, and Tonghui North–Hongda Road east) were
also highlighted. We noted that emissions in highways, residential streets, and arterial
roads increased in sequence. The primary reason for this sequence was the distinction
between vehicle categories on different kinds of roads (Table S1). Taking the hourly NOx
emissions (by Equation (1)) as an example, we found that they are 168.2 g/km, 102.2 g/km,
and 126.7 g/km on highways, residential streets, and arterial roads, respectively. It should
be noted that highways were of 3.7% of total traffic flows, while contributing 5.6% of total
emissions.

Table 2. The summary of on-road vehicle emissions on 28 December 2021.

Road Type
Road

Length
Vehicle

Category

Emission (g)/Emission Intensity (g/km)

CO HC NOx PM2.5

Highways 11.1 km
HDVs and

HDTs 113.5/10.2 83.3/7.5 1300.2/116.8 61.1/5.5

Total 2381.1/213.9 247.4/22.2 1872.2/168.2 77.0/6.9

Arterial
roads 63.5 km

HDVs and
HDTs 348.7/5.5 257.6/4.1 3988.2/62.8 187.3/3.0

Total 16,398.9/258.4 1419.1/22.4 8039.3/126.7 299.9/4.7

Residential
streets 232.0 km

HDVs and
HDTs 1308.0/5.6 978.5/4.2 14,891.9/64.2 698.5/3.0

Total 36,085.2/155.5 3501.2/15.1 23,703.0/102.2 944.4/4.1

Figure S7 shows that it was roughly consistent throughout the day when it came to
on-road vehicle emission patterns of primary PM2.5, NOx, HC, and CO.

From the temporal perspective, it was roughly consistent throughout the day when
it came to on-road vehicle emission patterns of CO, HC, NOx, and PM2.5 (Figure S7).
Specifically, there was roughly 76.8% of daily NOx emissions during the daytime. In
addition to this, the NOx emissions fluctuated during the daytime, but were typically stable
throughout the various roads. There were, however, noticeable variations in the emissions
between weekdays and weekends. As expected, the morning and evening rush hours on
weekdays would also lead to peaks of on-road vehicle emissions. On the weekends, though,
such trends were difficult to discern.

3.3. Map of Emission Hotpots and Drivers

Figure 6 depicts the hotspots of on-road vehicle emissions on major road intersections.
Where two major arterial highways (North Shixin and Jiansheer Roads) intersect, the
maximum of hourly average emissions appeared (Figure 4). From the spatial perspective,
these emission hotspots varied significantly across various roads. For instance, hotspots in
two arterial roads (i.e., the Hongda and Tonghui North Roads) emitted almost the same
amount of pollutants as those in two residential streets (i.e., Jinji and Mingxing Roads),
respectively (i.e., arterial roads vs. residential streets: 448.6 g/km vs. 251.1 g/km for
CO; 41.3 g/km vs. 23.5 g/km for HC; 276.3 g/km vs. 161.3 g/km for NOx; and 10.6
vs. 6.2 g/km for PM2.5). However, residential streets had much lower hotspot emissions
than highways and arterial roads. Specifically, hotspot emissions from the arterial roads
(highways) outstripped those from residential roads by 1.8 (1.5) times for CO, 1.8 (2.1) times
for HC, 1.7 (3.0) times for NOx, and 1.7 (3.2) times for primary PM2.5.

Besides, we paid particular attention to highways, in which emission hotspots were
widespread and sometimes intensive (Figure 6). For instance, our emission estimates
for a highway (i.e., the Airport Road) were consistently higher (1.4~2 times) than those
for its neighbouring residential streets (i.e., the Yangfan Road) (Figure S8). The diurnal
emission hotspots, on the other hand, were steady, geographically (Figure S9). In contrast,
their emission magnitude fluctuated diurnally and between weekdays and weekends
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(Figure S10). As expected, the higher emission intensities generally occurred at 08:00
and 17:00.

Generally, such hotspots spanned between 100 and 200 m over the urban zones with
varying emissions. Figure 7 shows that the annual hourly average emissions typically
followed “distance–decay” relationships outward from the hotspot centres. The results
reflected the hourly emission ratios (normalized at the hourly emissions of the hotspots)
from hotspots outwards based on the distance (d). In addition, the ratios of the average
traffic fluxes and vehicle category proportions were calculated in the same way. Overall,
such relationships were the most sensitive for NOx and PM2.5. The annual data reflect
that the locations of the hotspot areas were relatively fixed in the year. As shown in
Figures 3, 5 and 6, we found that the traffic fluxes largely shaped the spatial emission
hotspot patterns over the arterial and residential roads. Additionally, the specific vehicle
category proportions (i.e., HDVs and HDTs) also played an important role.

Figure 7. Relationships between the distance to the hotspot cores and normalized values in annual
hotspot data. Each dot refers to the annual hourly average emission ratio (normalized to the hourly
average emissions of the hotspots).

Moreover, Figure 8 shows the decay patterns of the hourly emissions over urban
zones on 28 December 2021. The results reflected a similar pattern to the average data,
but we found that there existed variations in some pollutant decay patterns, indicating
that road emission hotspots were not fixed consistently, and there existed spatial offsets in
the short term. Meanwhile, according to the boxplot analysis of road traffic and pollutant
emission data for selected hotspots in the Xiaoshan District in 2021 (Figures S12 and S13),
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the highway hotspot data are most consistent with the pattern. This is because there is only
one highway in the Xiaoshan District, and its traffic activities have a high stability. Arterial
roads and residential roads may be affected by various factors and are more sensitive to
the disturbance of hotspots, but in general, they also show the corresponding pattern.

 

Figure 8. Relationships between the distance to the hotspot cores and normalized values. Each dot
refers to the hourly emission ratio (normalized to the hourly emissions of the hotspots). We took
28 December 2021 as an example of the weekdays.

The traffic flows and emissions on highways were likewise relevant to the “distance–
decay” functions, although the vehicle-specific categories kept stable therein (Figure 7).
This demonstrates that traffic flows were crucial in shaping the spatial patterns of emission
hotspots along the highways. Collectively, not only traffic fluxes but also specific particular
vehicle categories (i.e., HDTs and HDVs) played a key role in boosting emission hotspots.

3.4. Impacts of Traffic Control Scenarios

As expected, each scenario significantly altered the traffic states spatiotemporally. The
first two scenarios aimed to reduce the traffic flows, while the last two ones took into
account not only traffic flows but also vehicle categories (Table 1). As a result of Table 3, the
first scenario (S1) had no discernible impact on the traffic fluxes, only reducing the traffic
fluxes by 3.3%. The second scenario (S2) achieved more reductions of traffic flows (8.3%).
In the third scenario (S3), the fleet composition was thoroughly altered. The last scenario
(S4) realized the largest reductions of the traffic flows (53.3%).
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Table 3. Impacts of traffic control policies in custom spatiotemporal scopes.

Scenario
Traffic Fluxes

Reduction

On-Road Vehicle Emissions Reduction

CO NO HC PM2.5

S1 3.3% 3.4% 2.7% 3.1% 2.3%
S2 8.3% 8.5% 6.8% 7.7% 5.6%
S3 3.7% 4.8% 69.4% 33.7% 79.3%
S4 53.3% 53.3% 54.1% 53.6% 54.3%

As a result of Figure 9 and Figure S11, the S1 scenario, the hourly (8:00) emission levels
dropped by the modest portions (2.3% for primary PM2.5, 2.7% for NOx, 3.1% for HC, and
3.4% for CO). By comparison, more decreases were achieved over the urban zones (i.e.,
the residential streets and arterial roads) (5.6% for primary PM2.5, 6.8% for NOx, 7.7% for
HC, and 8.5% for CO) in the S2 scenario. In parallel, the S3 scenario reduced a significant
portion (4.8~79.3%) of on-road vehicle emissions over the highways. As a consequence, the
S4 scenario realized the largest emission reductions (i.e., 54.3% for primary PM2.5, 54.1%
for NOx, 53.6% for HC, and 53.3% for CO). On this basis, as shown in the Figure 9 (S4), the
emission hotspots mostly disappeared. It should be noted that, if such scenarios came true,
additional traffic states, such as vehicle-specific speeds, would also be altered. Hence, we
need to conduct more realistic studies in order to better simulate the feedback associated
with traffic conditions.

 

Figure 9. Effects of traffic control measures on on-road vehicle NOx emissions on 28 December 2021.
The traffic control policies were applied during a morning rush hour (8:00, Local time) to maximize
their influence. Map data © 2021, AntV L7.

4. Conclusions

This paper described a system that establishes and visualizes real-time, hyper-fine,
real-world, on-road vehicle emission distributions. Our results achieved an unprecedented
temporal (i.e., hourly) and spatial resolution (i.e., 10 m~1 km, one to three orders higher
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than ever before). A key technical prerequisite is the comprehensive interconnections
between the ITS and ubiquitous traffic monitoring over the Xiaoshan District. As a result,
this system reveals frequent and widespread on-road vehicle emission hotspots. Around
them, significant variabilities (up to 8~15 times) are exposed and attributed to large traffic
fluxes and distinctive vehicle categories. This system also allows us to simulate the benefits
of traffic control policies. We confirm that the most serious traffic control policy could
achieve far more than 50% of emission reductions.

In this system, the traffic states, including vehicle-specific categories and speeds, are
measured in real-time. By comparison, the vehicle-specific emission factors derived from
the I/M dataset are of higher uncertainties [59]. Additionally, fuel-dependent differences
are not taken into account when determining the emission factors. For instance, HDVs and
HDTs are presumed to run on diesel fuel, whereas other vehicle types run on gasoline. In
addition, the aging impacts of vehicles were overlooked. These hypotheses are supported
by earlier research [26,60]. In the future, near-road emission monitoring might be used to
reduce these errors. More than this, low-cost sensors such as those on taxis and mobile
phones might drastically reduce the expenses of collecting data and thus widely expand
our system.

Overall, the operational application of this system could reform the study of road
vehicle emissions. Once our system is linked to a full CTM, real-time, hyper-fine, real-
world air quality emulations would also become possible. By combining CTM output and
data from near-road air quality managements, a high resolution of air quality response
to emissions becomes possible. This could help investigate the complex response of air
quality to anthropogenic emissions and even address exposure misclassification. Such
results may have additional sociological implications, including for future urban planning
and sustainable development.
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Abstract: It is crucial to the sustainable development of cities that we understand how urban form
affects the concentration of fine particulate matter (PM2.5) from a spatial–temporal perspective. This
study explored the influence of urban form on PM2.5 concentration in 286 prefecture-level Chinese
cities and compared them from national and regional perspectives. The analysis, which explored the
influence of urban form on PM2.5 concentration, was based on two types of urban form indicators
(socioeconomic urban index and urban landscape index). The results revealed that cities with high
PM2.5 concentrations tended to be clustered. From the national perspective, urban built-up area (UA)
and road density (RD) have a significant correlation with PM2.5 concentration for all cities. There was
a significant negative correlation between the number of patches (NP) and the average concentration
of PM2.5 in small and medium-sized cities. Moreover, urban fragmentation had a stronger impact
on PM2.5 concentrations in small cities. From a sub-regional perspective, there was no significant
correlation between urban form and PM2.5 concentration in the eastern and central regions. On the
other hand, the influence of population density on PM2.5 concentration in northeastern China and
northwestern China showed a significant positive correlation. In large- and medium-sized cities, the
number of patches (NP), the largest patch index (LPI), and the contagion index (CONTAG) were
also positively correlated with PM2.5 concentration, while the LPI in small cities was significantly
negatively correlated with PM2.5 concentration. This shows that, for more developed areas, planning
agencies should encourage moderately decentralized and polycentric urban development. For
underdeveloped cities and shrinking cities, the development of a single center should be encouraged.

Keywords: urban form; urbanization; PM2.5; spatiotemporal characteristics; spatial autocorrelation

1. Introduction

In the 21st century, China has undergone rapid development in the terms of urbaniza-
tion. However, at the same time there has been a sharp rise in PM2.5 concentrations [1–3]. In
particular, extensive economic growth has led to the aggravation of this situation, affecting
the sustainable development of cities [4,5]. In the meantime, PM2.5 pollution-induced issues
wreak great damage to natural ecosystems and have a deleterious effect on the physical
and mental health of people [6–8]. In addition, PM2.5 pollution can cause other negative
outcomes such as crises of government trust and social instability [9–12]. Therefore, it is of
great significance to PM2.5 pollution mitigation that we determine the distribution of PM2.5
concentrations and distinguish the determinants of PM2.5 pollution in China.

The relationship between urban form and air quality (especially PM2.5) has been given
more and more attention by urban planners and environmentalists [13]. Different social and
economic conditions and different geographical characteristics affect the development and
characteristics of cities in different regions. In some developed countries, some evidence
suggests that cities with fairly low levels of urban fragmentation and spread have less
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PM2.5 pollution than fragmented, dispersed, and complex cities [14,15]. The higher the
degree of urban fragmentation, the denser the urban population, and the worse the urban
air quality [16]. It seems that compact, low sprawling, and highly contiguous urban
forms provide better air quality in developed countries. Some research results also point
to the negative effects of a scattered population and inconvenient transportation on air
quality [17,18].

China’s environmental and socioeconomic conditions are different from those of devel-
oped countries. Different socioeconomic factors and geographical and climatic conditions
cause great differences in PM2.5 concentrations between China and developed countries [19].
Some researchers have studied the relationship between urban form and PM2.5 concentra-
tion in China. For instance, based on 288 prefecture-level cities, Li [20] pointed out that
small-scale, decentralized, and polycentric urban forms improve air quality in China. She
et al. [21], through the study of the Yangtze River Delta, discovered that urban expansion ac-
celerates energy consumption, resulting in a positive correlation with PM2.5 concentration.
Moreover, Zhang and Zhang [22] revealed that high population densities and numbers
of cars might contribute to air pollution in urban agglomerations in China. Du et al. [12]
came to a similar conclusion in the Pearl River Delta. However, most of these studies focus
on the relationship between individual cities or urban agglomerations. In reality, each
regional or spatial scale has a specific socioeconomic background and geographical and
climatic conditions, which may lead to different research results. A discovery in one region
cannot be used for another. The regional difference standpoint has been proven valid in
several positive research studies [23–25]. In China, a few regions (such as the BTH region,
Yangtze River Delta, and Pearl River Delta) have relatively concentrated populations and
economies. Correspondingly, the PM2.5 pollution level in these regions is higher than that
in other regions. Consequently, it is necessary to study the influence of urban form on
PM2.5 concentration from both national and regional perspectives.

To correct the deviation in space, a spatial econometric model was used to analyze the
impact of urban form on air quality in 286 cities in China. Moreover, spatial autocorrelation
and spatial regression were conducted to distinguish the correlations between urban form
and air quality in different regions of China. The index of urban form can be divided into
two categories: a socioeconomic index and an urban landscape index. The urban landscape
index was based on land-use data derived from satellites and calculated by FRAGSTATS
software. According to their economic situations, the 286 prefecture level cities are divided
into five regions, namely the eastern region, the central region, the northeastern region, the
northwestern region, and the southwestern region. Then, the cities are divided into large
cities, medium-sized cities, and small cities according to their populations. Considering
China’s national conditions and the distribution of data samples, cities with a population
of 3 million or below are defined as small cities. Cities with a population of 3 million
to 5 million are defined as medium-sized cities. Cities with a population of more than
5 million are defined as large cities.

This study differs from existing studies in the following aspects: (1) it conducted
long-term spatiotemporal analyses of PM2.5 concentrations annually in 286 prefecture-
level cities in China. (2) The urban landscape index and urban socioeconomic index were
used to characterize urban form. (3) On the one hand, when the road density low, the
development of road traffic is conducive to reducing PM2.5 concentration. On the other
hand, when road traffic develops to a very high level, increasingly crowded roads will
increase PM2.5 concentration. (4) Excluding the effects of meteorological and geographic
conditions, most of the more-developed cities or areas, which have a higher degree of urban
development (except for fragmentation, other urban-form indicators have less of an impact
on PM2.5), should exhibit moderately decentralized and polycentric urban development.
(5) For less-developed cities and shrinking cities, the single-center development model
can better mitigate PM2.5 pollution than the multicenter development model. The above
points define the specificity of this study. The research results will further analyze the
relationship between urban morphology and PM2.5 concentration in combination with

87



Sustainability 2022, 14, 2187

existing relevant research so as to provide a reliable reference for urban planning and urban
air quality improvement. This paper is separated into five parts: the first part contains the
introduction and research objectives; the second part contains the research methods and
data sources; the third part contains the data sources and variable calculations; the fourth
part contains the analysis and discussion; and the fifth part contains the conclusions and
research prospects with a detailed discussion of the study’s limitations. The flow chart of
the article is shown in Figure 1.
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    Spatial distribution of PM2.5 concentration 
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 socio-economic data

Statistical data of urban form

 Landscape Index
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Influence of urban 
form on PM2.5 
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Figure 1. Flow chart of the article.

2. Materials and Methods

2.1. Data Source and Variable Calculations
2.1.1. Study Area

Prefecture-level cities, with large urban area and population scale, have advantages in
terms of their economic structure and geographical location. They are not only present in
all parts of China but reflect the development trend of urbanization and regional economic
characteristics [24]. In this study, 286 prefecture-level cities were selected as our sample.
According to the degree of urban development in different regions and the different climatic
and geographical conditions, Chinese cities are divided into the eastern region, central
region, northeastern region, northwestern region, and southwestern region. Development
of the above areas was uneven. The eastern regions have large cities, strong economic
strength, and high population density [26]. Being the most developed area of China, the
eastern region consumes large amounts of natural resources to maintain urban development
and socioeconomic growth. The situation is similar in the eastern and central regions.
Relative to the eastern and central regions, on the one hand development of the northeastern
and northwestern regions is unbalanced, on the other hand problem of population loss
is serious in those area. Most cities in northeastern China are resource-based or resource-
exhausted. Urban development has stagnated, and cities have contracted. The degree
of urban development in northwestern China is low; most cities are in a stage of rapid
or embryonic development, and the urban compactness and the stability of their spatial
structure are low. It is worth thinking about how the PM2.5 concentration increased
between 2000 and 2015 in two regions. To cut down PM2.5 concentration, it is essential to
determine the relationship between urban form and PM2.5 concentration in five different
regions. Furthermore, through the comparison between countries and regions, we can
better understand the impact of different urban forms on PM2.5 concentration and provide
better suggestions for decision makers to reduce PM2.5 concentration. The classification of
the study area is shown in Figure 2.
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Figure 2. Study area.

2.1.2. PM2.5 Concentration Data

The PM2.5 concentrations in prefecture-level cities between 2000 and 2015 were taken
from the dataset provided by Donkelaar’s team [27]. This dataset combines the AOD
inversion results from multiple satellite instruments. The geochemical transport model was
used to correlate the total column measurements of aerosols with the near-surface PM2.5
concentration. The geographically weighted regression model (GWR) was combined with
the global ground survey to adjust the residual PM2.5 bias [27]. The gridded data was set
at 0.01 degrees. Compared with 210 ground-monitoring data from North America and
Europe, this dataset showed a high degree of consistency (R2 = 0.81) [28]. The detection
of PM2.5 concentration by the China Environmental Monitoring Station depends on the
ground detection of air monitoring stations in each city. There are three methods for
measuring PM2.5 concentration in China’s air monitoring stations. The methods include
the β Ray plus dynamic heating system method, the β Ray plus dynamic heating system
combined with light scattering method, and the micro oscillating balance plus film dynamic
measurement system method [29]. Compared with ground monitoring data (data from
air monitoring stations in different cities), satellite measurement has both advantages and
disadvantages. Since some of China’s cities lacked air monitoring stations between 2000
and 2015, one of the advantages of this method is that it can measure PM2.5 concentrations
in more cities. Its disadvantage is that it has low accuracy in areas with high reflectivity,
such as snow-covered areas and is prone to extreme values. This will cause the PM2.5
concentrations in snow-covered areas (e.g., some cities in northern China, particularly in
Xinjiang and Heilongjiang Provinces) to be lower than they should be.

2.1.3. Urban Form Metrics

The urban form indicators were divided into two categories: urban index and landscape
metric. The urban index is composed of urban built-up area (UA), population density (PD),
and road density (RD). Urban built-up area (UA) reflects the degree of urban development.
Population density (PD) represents the intensity of human social activities in a city. Road
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density (RD) reflects the development of a city’s transportation infrastructure and can also
represent the horizontal development of a city. The above three factors were obtained
from the Chinese City Statistical Yearbook from 2000 to 2015 [30]. Landscape metric is
extremely useful for describing urban forms. It has several advantages for characterizing
the heterogeneity of urban landscapes and the gap between urban land use patterns and
governance processes, as well as analyzing urban development [31–34]. Three landscape
metrics were ultimately selected to indicate urban forms in this study. These metrics were
number of patches (NP), largest patch index (LPI), and contagion index (CONTAG). NP
describes the heterogeneity of the whole urban landscape and represents the degree of
fragmentation of urban patches. LPI represents the proportion of the largest urban patch to
the whole urban landscape area. It reflects the direction and strength of human activities.
CONTAG describes the agglomeration degree or extension trend of different urban patches
in the landscape. The high value of CONTAG indicates that some urban patches in the
landscape show good connectivity; otherwise, it indicates that the city has a dense pattern.
Urban landscape data were derived from land-use datasets (30 m × 30 m) for China from
1998 to 2015 that were produced by the Institute of Remote Sensing and Digital Earth at the
Chinese Academy of Sciences through the interpretation of Landsat TM or ETM images. The
overall accuracy of classification for these datasets is more than 85% [35]. We used Fragstats
4.2 to calculate three urban landscape indicators for each city.

2.2. Methods
2.2.1. Spatial Autocorrelation Test

Moran’s I statistic is one of the most commonly adopted measures for spatial auto-
correlation. It has been used to test spatiotemporal characteristics by identifying spatial
correlations and spatial heterogeneity [36]. When researching spatial correlations and
spatial distribution patterns, respectively, we usually divide Moran’s I into global Moran’s
I and local Moran’s I [37]. The global Moran index describes the average correlation degree
of all spatial units with the entire surrounding region, allowing us to explore whether there
is spatial correlation at the regional level. The equation for calculating global Moran’s I is
as follows:

IG =
n

∑n
i=1 ∑n

J=1 Wij
× ∑n

i=1 ∑n
j=1 Wij(yi − y)

(
yj − y

)
∑n

i=1(yi − y)2 (1)

where yi and yj represent the attribute values of the ith spatial element and the jth spatial
element, respectively; y denotes the mean value of y; n is the total number of spatial
elements; and Wij is the spatial weight value.

The local Moran index can be used to observe the spatial aggregation in the local areas.
The equation for calculating local Moran’s I is as follows:

IL = (yi − y)∑n
i �=j Wij

(
yj − y

)
(2)

The values of global Moran index and local Moran index both range from −1 to 1. For
the global Moran index, when IG > 0, it means that the attribute values of all regions are
positively correlated; otherwise, the attribute values of all regions are negatively correlated.
For the local Moran index, an IL value above zero means that the indicators of a city
are similar to those of surrounding cities. An IL value below zero means that a city is
surrounded by cities with different indicators. To clarify the spatial aggregation of each
urban form index, we generated a LISA cluster map in GeoDa on the basis of the Moran
scatter diagram and the Moran index.

2.2.2. Spatial Regression Models

Regression analysis has been used in most studies to explore the relationship between
urban form and PM2.5 concentration [27,35,38,39]. Some regression analyses ignore the
influence of spatial heterogeneity, such as least-squares regression analysis and ridge
regression analysis [24]. A multitude of studies has proven that the spatial regression
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model can effectively solve the spatial dependence issue [40]. There are two commonly used
spatial regression models: the spatial lag model (SLM) and the spatial error model (SEM).
The calculation formula is as follows:

y = ρWy + Xβ+ ε(SLM) (3)

y = γWε+ Xβ+ δ(SEM) (4)

where y represents the PM2.5 concentration of each prefecture-level city; ρ is the spatial lag
coefficient of urban forms; W represents the spatial weight; X represents the urban form
index; β represents the regression coefficient vector; ε denotes the random error vector;
γ is the residual correlation parameter, and δ represents a vector of the error terms. To
determine which model to use, mainly relied on the Lagrange multiplier (LM) test and the
robust LM test.

3. Results

3.1. Spatiotemporal Characteristics Analysis
3.1.1. Spatiotemporal Variation of PM2.5

As shown in Figure 3, the average annual concentration of PM2.5 surged from 32.34 μg/m3

in 2000 to 47.33 μg/m3 in 2015; a growth rate of 46.7%. The mean value as a whole showed
a trend of first increasing and then decreasing, and the median also showed the same trend.
The median values for 2000, 2005, 2010, and 2015 were 29.85 μg/m3, 47.3 μg/m3, 47.1 μg/m3,
and 45.4 μg/m3, respectively. It is worth noting that the mean is always greater than the
median. This indicates that there are some cities with more serious PM2.5 pollution, making
the mean value larger. In addition, PM2.5 concentrations increased sharply in 2000–2005. The
annual growth rate of the average concentration of PM2.5 was more than three times that
of the entire 15 years. The change in PM2.5 concentration standard-reaching rate between
cities also illustrates this point. In China’s ambient air quality standards, the concentration
limit of fine particulate matter (PM2.5) is divided into level I and level II, of which the level I
standard is 15 μg/m3. This standard applies to areas such as nature reserves. The secondary
standard is 35 μg/m3. This standard applies to residential areas, commercial areas, and
other areas. In 2000, only 97 of 286 prefecture-level cities had PM2.5 concentrations exceeding
35 μg/m3, with a standard-reaching rate of 66%. However, 225 cities had PM2.5 concentra-
tions above 35 μg/m3 in 2005, and the standard-reaching rate was only 21.1%. Among the
286 prefecture-level cities, the number of cities that met the Grade II Standards was 189, 61, 69,
and 78 in 2000, 2005, 2010, and 2015, respectively. For detailed data on PM2.5 concentration,
see Table S1 in the Supplementary Materials.

 

Figure 3. Mean PM2.5 concentration and annual statistics of the proportion of days with different
PM2.5 levels from 2000 to 2015.

91



Sustainability 2022, 14, 2187

As shown in Figure 4, the distribution of PM2.5 gradually concentrated in some areas
(the northeastern region, the central region, and the eastern region). The northeastern
region exhibited a high concentration of PM2.5 in 2015. This scenario could be attributed to
the coal consumption and winter heating in that region. A similar problem is also present
in developed European countries. In Poland, for example, solid fuel heating in Krakow
causes air pollution in surrounding cities [41]. PM2.5 levels were also extraordinarily high
in some cities in Central China, especially in the BTH region. This may be due to most
cities in the central region being dependent upon secondary industries for their economic
activities [42]. Additionally, heavy vehicle emissions also lead to an increase in PM2.5
concentrations [43]. Apart from the above factors, the PM2.5 pollution level in cities can be
significantly affected by the pollution levels of their neighboring areas, especially in cities
with high concentrations [44,45].

  

  

  
Figure 4. Cont.
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Figure 4. Spatial variation of PM2.5 concentration from 2000 to 2015. (a–d) show the changes of PM
concentration from 2000 to 2015. (e–h) show the spatial clusters of PM concentration from 2000 to
2015. Not significant indicates that the region is not significantly clustered. No data indicates that
there is no data in this area.

The spatial autocorrelation was weaker in 2000 (Moran’s I = 0.734) than in 2005
(Moran’s I = 0.777), 2010 (Moran’s I = 0.78), and 2015 (Moran’s I = 0.779). The trend of the
change in spatial autocorrelation was the same as that of PM2.5 concentration. As shown in
Table 1.

Table 1. Results of the spatial autocorrelation analysis.

Years
PM2.5

Moran’s I Z-score

2000 0.734 17.8813
2005 0.777 18.9055
2010 0.78 19.0748
2015 0.779 19.039

3.1.2. Spatiotemporal Variation of Urban Form

As is shown in Figure 5, the population density of all cities increased slightly from
423.4 in 2000 to 433.9 in 2015, indicating that the urban population has become more
concentrated over the past two decades. Urban built-up areas also became larger during
this period, as is indicated by the urban area index, which increased from 61.69 in 2000
to 137.21 in 2015. Road density increased from 0.1 in 2000 to 0.14 in 2015, reflecting the
concentration of traffic and the degree of urban development. The number of patches
showed a trend of increasing first and then decreasing, from 2206.1 in 2000 to 2278.7 in 2010
to 2209.3 in 2015, indicating that the urban form experienced dispersion and aggregation
as cities developed. The trend of the largest patch index and contagion also reflects this
situation. The largest patch index initially decreased from 32.17 in 2000 to 31.37 in 2010,
followed by an increase to 33.14 in 2015. Contagion decreased initially from 47.1 in 2000 to
46.4 in 2010 but then increased to 47.2 in 2015. The trends of these three types of indicators
indicate that the development of prefecture-level cities changed from decentralization to
centralization. The contiguity and compactness of urban areas as a whole have increased.

The LISA cluster map of urban form in Chinese cities from 2000 to 2015 is shown in
Figure 6. As can be seen, the spatial distribution of population density had hardly changed.
From the graph, high–high clusters of population density mainly exist in the eastern region,
while low–low clusters of population density exist in the northeast, the northwest, and
Guangxi. The main changes were concentrated in Shaanxi Province and Henan Province.
From 2000 to 2015, the spatial aggregation of population density in Shaanxi Province
became stronger, while that of Henan province became weaker. On the whole, urban
built-up areas can be divided into four categories of spatial pattern.
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Figure 5. Urban form metrics for 286 different-sized prefecture-level cities between 2000 and 2015.

High–high clusters of urban built-up areas exist in the BTH (Beijing, Tianjin, and
Hebei) region and Yangtze River Delta region (Shanghai, Zhejiang, and Jiangsu); low–low
clusters of urban built-up areas exist in Shanxi, Ningxia, and central Gansu; high–low
clusters of urban built-up area exist in the southeast coastal regions, including Guangxi
and Guangdong; and low–high clusters of urban built-up area exist in central Liaoning
and Jilin and some areas of Sichuan, Guizhou, and Hebei. The spatial aggregation changes
of urban construction land are mainly concentrated in Hebei, Guangxi, and Chongqing.
From the figure, we can see that the spatial distribution of traffic density in Shandong,
Zhejiang, and Jiangsu is relatively concentrated. The spatial distribution of road density
varies greatly from 2000 to 2015. The spatial aggregation of traffic density in Heilongjiang
Province and Jilin province changed from insignificant to low–low clusters between 2000
and 2005. Shaanxi Province exhibited a high concentration in 2015. As time has gone on,
the low–low clusters in Sichuan, Shanxi, Hunan, and Hubei have disappeared and some
new clusters and outliers have emerged.
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Figure 6. LISA cluster map of urban index in Chinese cities from 2000 to 2015. Panels (a–d) show the
spatial clusters of population density between 2000 and 2015; panels (e–h) show the spatial clusters
of urban areas (built-up areas) from 2000 to 2015. Panels (i–l) show the spatial clusters of road density
between 2000 and 2015. Specifically, HH indicates a city with a high population density (urban
area, road density) surrounded by cities with high population density (urban area, road density);
LL indicates a city with a low population density (urban area, road density) surrounded by cities
with low population density (urban area, road density); HL indicates a city with a high population
density (urban area, road density) surrounded by cities with low population density (urban area,
road density); and LH indicates a city with a low population density (urban area, road density)
surrounded by cities with high population density (urban area, road density).

3.2. Influence of Urban Form on PM2.5 Concentrations at the National Scale

It can be seen from Table 2 that the test results of the correlation coefficient (R2),
bass information content criterion (SC), log likelihood (log likelihood), and Akaike info
criterion (AIC) are significant, which proves that SEM has relatively high goodness of
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fit and can accurately evaluate the influence of urban form on the long-term variations
in PM2.5 concentration. From the perspective of all cities in China, not all urban form
indicators are significantly correlated with PM2.5 concentration. Specifically, UA (0.015 in
2000 and 0.009 in 2015) was significantly positively correlated with PM2.5 concentrations.
RD showed a negative correlation in 2000 (−7.516) and a significant positive correlation
in 2015 (22.432) with PM2.5 concentrations. This phenomenon shows that when the urban
road density is at a low level, increasing road construction will reduce road congestion
and lead to a decrease in PM2.5 concentration, while when the urban road density is at
a higher level, increasing road construction will increase the concentration of PM2.5. In
general, urban expansion and urban road network density have become the major factors
impacting PM2.5 concentrations in all cities in China.

3.3. Influence of Urban Form on PM2.5 Concentrations at the Region Scale

The spatial regression results of five regions by city size are shown in Tables 3–7. Some
coefficients of the influence of urban form on PM2.5 concentration in eastern and central
China are basically consistent with the national results. For instance, the increase in urban
built-up area promoted the increase in PM2.5 concentrations in the eastern cities, especially
in 2000. In addition, for the eastern cities, road density showed a negative correlation with
PM2.5 concentration in 2000, but the results were reversed in 2015; there was a positive
correlation (Table 3). The reasons for this are manifold. On the one hand, the increase
in road density is closely related to economic development. On the other hand, as roads
become more developed, the compactness of cities will also increase correspondingly,
further affecting PM2.5 concentration.

In the northeastern region, only PD had a significant correlation with PM2.5 concentra-
tion between 2000 and 2015 (0.022 in 2000 and 0.065 in 2015). However, when the analysis
was refined according to the size of the cities, the results were different. For large and small
cities in northeastern China, in addition to PD, the impact of NP, LPI, and CONTAG on
PM2.5 was also significant. It is worth noting that NP and LPI were negatively correlated
with PM2.5 concentration in large cities, while CONTAG was positively correlated with
PM2.5. The opposite was true of small cities (Table 5). Cities in the northwest faced the
same situation as those in the northeast. PD was still the most important factor affecting
PM2.5 concentration in northwestern China. For small- and medium-sized cities in north-
western China, UA also played a positive role in PM2.5 concentration, especially in 2015
(medium 0.02 and small 0.064). UA was negatively correlated with PM2.5 concentration in
large cities. Otherwise, LPI (0.048) had the greatest positive impact on PM2.5 in 2015. This
state of affairs also confirms that large cities, which have become diverse, continuous, and
uncompact, have been able to reduce PM2.5 pollution.
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4. Discussion

4.1. The Relationship between PM2.5 and Urban Areafrom a National Perspective

According to the estimated results in Table 2, several important conclusions can be
drawn at the national scale. First, the correlation coefficients of urban areas (built-up areas)
were significantly positive in 286 prefecture-level cities, implying that the expansion of
urban areas aggravates the pollution of PM2.5 at the national scale and especially in large
cities. Liu [46] and She [21] also found a positive relationship between the urban area and
urban air pollution. The emergence of this situation may be due to the expansion of the
urban area, which leads to population growth and increased road traffic. These factors
aggravate energy consumption and increase PM2.5 pollution.

Second, the correlation coefficients of population density were significantly positive in
2000, 2005, and 2010 but not significant in 2015, implying that increased population density
leads to more PM2.5 pollution. An increase in population density not only increases the
demand for consumption and work resources but also aggravates housing congestion and
traffic jams [15].

Third, the correlation coefficients of road density were significantly negative in 2000
but positive in 2015. It is possible that the road density has a positive correlation with PM2.5
when the road density reaches a certain limit, and the correlation increases gradually. It was
found that some emerging cities that are developing show opposite results in terms of road
density compared to some other large cities. For example, in Yangquan, a city located in
the northwestern region of China, the road density increased from 0.095 to 0.1429 between
2005 and 2015, but the annual average concentration of PM2.5 decreased from 63.6 μg/m3

to 57.2 μg/m3. However, further research is needed by the authors to ascertain exactly
what this limit is and whether it is more relevant to industrial development or to urban
planning.

Fourth, the correlation coefficient of NP in small- and medium-sized cities is sig-
nificantly and negative, but not for large cities. This shows that the impact of urban
fragmentation on PM2.5 concentration is only reflected in cities on a general scale. The
correlation coefficients of the large patches index were significant and positive in 2005
and 2010. This indicates that small, dispersed, and polycentric cities exhibited less PM2.5
pollution than compact and larger cities. A similar finding was observed by Wu et al. [32]
and She et al. [21], who both concluded that a more uniform distribution of urban patches
might be better for mitigating particulate matter in large urban agglomerations (for exam-
ple, the YRD region). The more complex the urban form is, the greater the average distance
between urban patches and the smaller the concentration of PM2.5. This shows that the
multicenter urban form can improve air quality.

Lastly, unlike previous studies, we found that urban compactness (CONTAG) does
not promote PM2.5 concentrations at the national scale. Urban connectivity, or connectivity
between centers, had little effect on PM2.5 concentrations. With an increase in the population
and a change in policy, cities, especially larger cities, begin to change from a single center
to a double- or multicenter model.

4.2. The Relationship between PM2.5 and Urban Form from the Sub-Regional Perspective

From the overall situation of each region, the impact of the urban area on PM2.5 con-
centration varies with city size. Compared with small- and medium-sized cities, the change
in PM2.5 concentration in big cities is more easily affected by the urban area. An increased
urban built-up area corresponds to greater traffic demand and energy consumption, caus-
ing comparatively worse air quality [14,47]. The impact of the urban built-up area on PM2.5
concentration in northwestern China is more significant. The reason for this situation may
be that the cities in northwestern China are in the initial stage of development, and the
rapid increase in the urban area makes PM2.5 pollution more serious.

Additionally, the population density of the cities in the northeast and northwest has a
great influence on the concentration of PM2.5, but the population density in the east has
little influence. This kind of regional difference may be caused by differences in the speed
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of land urbanization and population urbanization. On the one hand, the reason is that
the population density of the cities in the northeast and northwest is smaller than that in
the east; on the other hand, in recent years, some cities in northeastern China have been
facing resource depletion contraction, which makes population density more sensitive
to PM2.5 concentration. The differences between northwestern China and northeastern
China are as follows: first of all, most cities in northwestern China are in a period of rapid
development; the built-up area is increasing and population growth is stagnant. The speed
of land urbanization and population urbanization in northwestern cities was in a serious
decoupling state: the urban land expansion speed was faster than that of the population
expansion [48]. Secondly, the urban contraction in northeastern China is more serious
than that in northwestern China, which has resulted in northeastern China becoming a
single-core area, increasing the influence of population and road density on PM2.5. Lastly,
the northwestern region is at a high altitude and has more mountains than the northeastern
region; the less compact urban form helps disperse pollutants over the mountainous terrain,
which results in less urban air pollution [21,49].

The influence of patch number and maximum patch index on PM2.5 concentration
was significant in northeastern China. It is worth noting that the results of large cities are
the opposite of those of small cities. The results of large cities are similar to those of other
developed regions. When cities tend to be polycentric, PM2.5 pollution is reduced. However,
the results obtained by small cities are just the opposite. When cities develop intensively
and reduce the degree of urban fragmentation, it is easier to reduce the concentration of
PM2.5. This result is not consistent with those obtained by other researchers. For instance,
Namdeo et al. [50] found that a more compact urban layout helps to reduce urban traffic
and improve industrial efficiency, thereby improving air quality. Lu and Liu indicated a
negative correlation between compact urban form and air pollution in most cities of China.
Bechle et al. [47] demonstrated that urban compactness was not a significant predictor of
air pollution in 83 global cities. Fan et al. [39] found that a more compact urban form leads
to less PM2.5 pollution in China, especially in the northern region.

In southwestern China, the influence of urban form on PM2.5 concentration was not
significant. This may be caused by topography, weather, or industrial conditions. Most of
the cities in southwestern China are concentrated in intermountain basins, river valleys,
and alluvial fans, and the annual rainfall is substantial [26]. These conditions result in lower
levels of air pollution in these places than in other places [42]. In addition, in southwestern
China, the lack of coal industry was also an important reason for this result.

4.3. Limitations and Future Directions

There are three limitations to this study. The first is that the concentration of PM2.5 is
affected by many factors, and while it is certain that urban form is one of the key factors,
other factors may play a more important role in influencing PM2.5 concentration in some
areas. For example, many of the southwestern cities are located in the mountainous valley
zones, and their terrains are narrow. At the same time, rainfall is more concentrated in
these areas. The terrain and meteorological factors are two of the main reasons for the
changes in PM2.5 concentration. Not all PM2.5 pollution can be attributed to urban form.
The second point is that the mechanism of influence of urban form on PM2.5 concentration is
not completely distinct, and it needs to be further studied in the future. The main reason for
this is that the resolution of land-use data is low, and it is difficult to accurately determine
the spatial distribution of roads, commercial areas, and residential areas through land-use
data with a 1 km resolution. The calculation results of urban forms, such as the road density
and patch number, may be biased. The last point is that based on data availability, our
study focuses on the average annual variation in PM2.5 concentration from 2000 to 2015.
Future studies should analyze the relationship between urban forms, PM2.5 concentrations,
and seasonal variations on a spatiotemporal scale.
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5. Conclusions

This study, using 286 prefecture-level Chinese cities as its sample data, examined the
spatial patterns and temporal trends of PM2.5 concentration from 2000 to 2015 and further
explored the influence of urban form on PM2.5 concentration. The results show that the
PM2.5 concentration significantly increased during the period from 2000 to 2005. The cities
with heavy PM2.5 pollution were mainly concentrated in the eastern and central regions
of China, especially in the large cities and their surrounding areas. The cities with large
changes in PM2.5 concentration were mainly distributed in northeastern China. Specifically,
many cities in the BTH and Yangtze River Delta regions, as well as central Liaoning and
Shandong provinces, had more serious PM2.5 pollution. Moreover, cities with high PM2.5
concentrations be located close to one another, which indicates that PM2.5 concentration
is regional. From the national point of view, urban area and road density are related to
higher PM2.5 concentrations. On the other hand, there is little correlation between urban
fragmentation and PM2.5 concentration.

In the Northeast and Northwest China, the urban form and population density have
more influence on PM2.5 concentration. The reason for this is that the speed of land
urbanization and population urbanization in the northeastern and northwestern regions
of China was in a seriously decoupled state, and there was a serious phenomenon of
urban contraction. Therefore, moderately compact and single-center urban development
is conducive to the air quality of small- and medium-sized cities in northeastern and
northwestern China. For the cities in the eastern and central regions, and most large-scale
cities in China, it is more important to control unplanned urban and road expansion to
encourage cities to develop in a decentralized and multicenter manner.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14042187/s1, Table S1: PM2.5 concentration data for 286 cities
in China.
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Abstract: The Iberian Peninsula, located in southwestern Europe, is exposed to frequent exceedances
of different threshold and limit values of air pollution, mainly related to particulate matter, ozone,
and nitrous oxide. Source apportionment modeling represents a useful modeling tool for evaluating
the contribution of different emission sources or sectors and for designing useful mitigation strategies.
In this sense, this work assesses the impact of various emission sectors on air pollution levels over the
Iberian Peninsula using a source contribution analysis (zero-out method). The methodology includes
the use of the regional WRF + CHIMERE modeling system (coupled to EMEP emissions). In order to
represent the sensitivity of the chemistry and transport of gas-phase pollutants and aerosols, several
emission sectors have been zeroed-out to quantify the influence of different sources in the area, such
as on-road traffic or other mobile sources, combustion in energy generation, industrial emissions
or agriculture, among others. The sensitivity analysis indicates that large reductions of precursor
emissions (coming mainly from energy generation, road traffic, and maritime-harbor emissions)
are needed for improving air quality and attaining the thresholds set in the European Directive
2008/50/EC over the Iberian Peninsula.

Keywords: air pollution; sensitivity; aerosols; zero-out; Iberian Peninsula

1. Introduction

Atmospheric pollution has become one of the most important health and environ-
mental problems worldwide, affecting industrialized and developing countries around
the world. Its importance and implications for sustainability have been recognized by
the United Nations in their Sustainable Development Goals (SDGs) [1]. Health-relevant
indicators of household and ambient pollution exposure and disease burden are included
in the formal system of SDG indicators. Targets of particular relevance to ambient and
household air pollution include SDG target 3.9.1, which calls for a substantial reduction
in the number of deaths and illnesses from air pollution [2,3], or SDG target 11.6.2, which
aims to reduce the environmental impact of cities by improving air quality [4,5].

The exposure of humans to air pollution (both photochemical and particulate matter)
may be the source of many health problems ([6–12], among many others). The use of
chemistry transport models (CTMs) can be a useful tool for assessing these air quality-
related health problems. Recently, the premature deaths and the costs of the health impacts
of air pollution in Europe were calculated by using ground-level concentrations from
different CTMs, indicating that the total number of premature deaths (acute and chronic)
ranges from 500,000 to 800,000; their associated costs are around EUR 300 billion [11,13,14].

The Iberian Peninsula (IP), especially, presents serious problems that are related
mainly to tropospheric ozone (O3) [15], sulphur dioxide (SO2), nitrogen dioxide (NO2), and
particles of different diameters: particulate matter with a diameter of less than 10 (PM10)
and more than 2.5 μm (PM2.5) [16]. In this sense, a number of studies have covered the
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entire IP using modeling techniques [17–22]. The results of these previous works indicate
that achieving the objectives proposed by the EU directives are more difficult in the IP when
compared northern countries, partly due to their particular emission distribution [23,24],
and partly due to different meteorological situations, namely: (1) a lower precipitation rate
(and, hence, a higher resuspension rate due to soil dryness); (2) the increased formation of
secondary aerosols associated with the higher temperatures; (3) an enhanced frequency of
African dust outbreaks; and (4) the higher occurrence of the recirculation of air masses that
prevent air renovation [20,25].

Moreover, air pollution problems will become even more severe under future cli-
mates [26–31]. Therefore, reliable estimations of air pollution for present-day conditions
and an enhanced understanding of the chemico-physical processes occurring in the atmo-
sphere become essential, not only for informing and alerting the population, but also to
understand the causes of those episodes and to implement effective abatement policies.

For that purpose, CTMs are essential for defining, evaluating, and implementing
emission abatement plans through the use of sensitivity analysis strategies [32,33]. These
strategies have, as a first step, the accurate identification of pollution sources and their
individual contributions to the concentrations of atmospheric pollutants. To this end, a
wide range of modeling methodologies has been proposed and applied for the appor-
tionment of atmospheric pollutants [34–37]. Particularly, source apportionment relies on
the determination of the contribution of different sources to pollutant concentrations by
establishing the mass continuity relationships between emissions and concentrations at
receptor locations. Sensitivity analyses measure how pollutant concentrations at receptors
respond to perturbations at sources. Most of the sensitivity questions are left to modelers
since the experimental approach is difficult and expensive.

The traditional approach to sensitivity consists in performing “twin simulations”,
with one parameter perturbed [34]. In the case of the most straightforward method to
assess sensitivity (brute-force method, BFM), the perturbed parameter is emissions. In the
BFM, a model simulation is conducted and repeated with modified emissions, comparing
the outputs of the simulations [38,39]. This method is limited because the computational
cost depends, in a linear way, on the number of perturbations to examine and the strong
influence of the numerical errors when the changes in the concentrations are small. Related
to the BFM, the zero-out method [40,41] sets a specific emissioin sector to zero and measures
the change produced in the output concentrations. In this sense, it can be considered as an
extreme case of the BFM.

Since the management of air pollutant emissions is one of the predominant factors for
abating urban air quality, this work assesses the source contribution of different emitting
sectors to the air pollution levels in the IP, taking a particular look at the number of
exceedances of air quality limits and thresholds related to health issues. For that, the WRF
(meteorology) + CHIMERE (chemistry transport) modeling system has been used for a
summer and a winter period over the IP in order to assess air quality-related problems in
the area.

2. Materials and Methods

2.1. Modeling System

The modeling system applied consists in the Weather Research and Forecasting (WRF,
meteorology) + CHIMERE (chemistry transport model) + EMEP (emissions) methods. The
simulations cover the entire IP (excluding a blending area of five grid points), have a
resolution of 9 km, and have been run and evaluated on an hourly basis during a period
covering a summer and a winter scenario (months of June–July–August 2011, JJA, and
December 2011–January–February 2012, DJF). Precisely, the simulation period ranges from
24 May 2011 to 1 September 2011, and from 23 November 2011 to 1 March 2012, with the
first week being the spin-up period. The election of the 9-km resolution was conditioned
by a compromise between the use of high resolutions and the computational time needed
for the ensemble of simulations to be conducted in this analysis.
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The regional modeling system consists of the Advanced Research Weather Research
and Forecasting (WRF-ARW) Model v3.9.1 [42,43], which provides the meteorology to
the CTM. WRF is a fully compressible, Eulerian, non-hydrostatic model that solves the
equations that govern the atmospheric motions. A total of 33 vertical layers on sigma
coordinates cover the region from the ground level up to 10 hPa. The boundary conditions
used for driving the WRF simulations are obtained from the ERA-Interim reanalysis [44]
every six hours. WRF fields have been coupled off-line on an hourly basis to CHIMERE
CTM [45]. With respect to the CHIMERE configuration, the MELCHIOR2 gas-phase
mechanism has been used [46].

Regarding the inclusion of particles within the CTM, CHIMERE includes aerosol and
heterogeneous chemistry. Different chemical aerosol components have been included in
the model configuration, namely, ammonium, nitrate, sulphate, and organic and elemental
carbon with three subcomponents: (1) primary aerosol, (2) secondary anthropogenic, and
(3) secondary biogenic subcomponents. Marine aerosols (sea salt) have also been included
in the simulation. The aerosol microphysical description is based on a sectional aerosol
approach that includes 6 bins using a geometrical progression and ranging from 10 nm to
40 μm. Table 1 summarizes the physico-chemical options for the regional modeling system.

Table 1. Parameterizations of the meteorological and chemistry transport model used in the simula-
tions for the IP.

WRF (Meteorological Model) [42,43] CHIMERE (Chemistry Transport Model) [45]

Microphysics: WSM6 [47] Chemical Mechanism: MELCHIOR2 [46]

PBL: Yonsei University [48] Aerosol chemistry: Inorganic (thermodynamic equilib-
rium with ISORROPIA module) [49]

Radiation: CAM [50] Organic aerosol chemistry: [51]

Soil: Noah LSM [52] Natural aerosols: dust, re-suspended, and inert sea-
salt [45]

Cumulus: Kain–Fritsch [53]
Emissions: anthropogenic emissions EMEP [54] + bio-
genic emissions MEGAN (Model of Emissions of Gases
and Aerosols from Nature) [55]

Boundary conditions: ERA-Interim [44] Boundary conditions: LMDz-INCA+GOCART [56]

Here, the climatological boundary conditions for the CTM are based on the LMDz-
INCA global chemistry/climate model [57]. Other considerations to bear in mind, with
respect to the boundary conditions, are that (1) the changes in stratospheric ozone are
very limited and, hence, are neglected in the simulations, and (2) it has been assumed that
long-range transport over the IP is limited and overwhelmed by local processes [58]. This
assumption is hampered by the persistent outbreaks of Saharan dust over the IP, which may
exert an important influence on the regional PM10 levels over Spain and Portugal [59,60].
However, this contribution focuses on a sensitivity analysis of antropogenic emissions, and
hence, the impact of desert sources and their influence on the air quality of the IP is beyond
the scope of this work.

Anthropogenic emissions are obtained from the EMEP database [54] and cover the
entire period of simulations. Natural emissions have been estimated with the MEGAN
model [55] and include species such as monoterpene, isoprene, and other biogenic volatile
organic compounds (BVOCs). The meteorological inputs needed for the estimation of
emissions are obtained from the WRF simulations previously described.

2.2. Sensitivity Analysis: The Zero-Out Method

The sensitivity analysis methods perturb inputs to the modeling system (e.g., modify
the emissions of sulphur oxides) and quantify the response of the model output (e.g., change
in sulphate concentration). As commented on before, there are several approaches for a
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sensitivity analysis based on the BFM in order to study the contribution from different
sources; a zero-out method has been applied in this study because of its simplicity. Here, the
methodology includes a base model, run with all emission sources (BC), and ten emission
scenarios in which emissions from anthropogenic sources (classified according to the SNAP)
are excluded, analogously to previous works [37,61,62].

The zero-out method has been extensively used for source attribution because it seems
intuitive and obvious that the removal of an emission source should quantify the corre-
sponding impact of that emission source [40,41,63]. Despite that this methodology is valid
and widely used for sensitivity analysis (as in our case), it should be carefully considered
for areas with a strong secondary production, because the sum of zero-out impacts over all
sources may not be exactly equal to the total concentration when considering non-linear sys-
tems as those represented by atmospheric processes [34]. In this sense, Clappier et al. [36]
warn that, when the non-linearity of the relationship between concentrations and emissions
is noticeable, source apportionment methods may not be appropriate to assess the impact
of mitigation or abatement strategies. When non-linearity is limited or negligible, source
apportionment methods may be acceptable, bearing in mind the complexity of the models
involved in the representation of air pollution.

Since our objective is to conduct a source apportionment analysis for the IP, the
zero-out method has been applied to all the SNAP activities, including anthropogenic
sources (Table 2). The sensitivity to air pollution levels of these sources is covered and
identified in the simulations (harbors and ships, industries, road transport, central heating,
agriculture, etc.).

Table 2. Tags for the different simulations included in this contribution. The scenarios are run while
zeroing-out the emissions specified by the SNAP sector.

SNAP Emissions Zeroed-Out

SNAP1 Combustion in energy and transformation industries
SNAP2 Non-industrial combustion plants, including private wood combustion
SNAP3 Combustion in manufacturing industry
SNAP4 Production processes
SNAP5 Extraction and distribution of fossil fuels and geothermal energy
SNAP6 Solvents and other product use
SNAP7 Road transport
SNAP8 Other mobile sources and machinery (excl. international ship traffic)
SNAP9 Waste treatment and disposal
SNAP10 Agriculture
Base Case (BC) No emissions zeroed-out

3. Results

3.1. Evaluation of the Modeling Results

Despite that the goal of this contribution is not to provide a comprehensive evaluation
of the air quality concentrations simulated by WRF + CHIMERE, the results from the
monitoring network EMEP have been used to characterize the skill of the model for
reproducing the concentrations of air pollutants (EMEP data available online at: http:
//www.emep.int (accessed on 8 May 2012); see [64] for further details). The ten stations
with simultaneous data of tropospheric O3, NO2, and PM10 in the IP (SO2 and PM2.5 have
been excluded because of the scarcity of data for the target period) have been used for the
model evaluation. Their location is shown in Figure 1.
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Figure 1. EMEP stations included for the model validation.

The available EMEP measurements were filtered before comparing the model results
with EMEP data in order to remove uncertain data (for instance, those data before a calibra-
tion of equipment or after an interruption was eliminated). In addition, after the EMEP
data is filtered, the criteria of temporal coverage >85% were selected for measurement
sites. Since EMEP stations are located far from large emission sources (more than 10 km),
the data are assumed to fit the resolution of the model used for regional background
concentrations ([64] and references therein).

A number of common metrics were used to examine the model skills, differencing
between gas-phase and particulate matter. For gases, two scores have been selected: mean
normalized gross error (MNGE)—which indicates the performance of the simulations to
represent the magnitude of the observation—and the mean normalized bias error (MNBE)—
another common parameter that reveals the departure between observations and modeling
data. These provide a useful quantification of the overall under- or overestimations of
the model.

As for the particulate matter evaluation, a number of authors (e.g., [16,65–67], among
many others) suggested using the mean fractional bias (MFB) and the mean fractional error
(MFE) instead of MNBE or MNGE (Table 3). Boylan and Russell [65] propose that a model
performance goal is met when both the MFE and MBE are less than or equal to 50% and
±30%, respectively, and a model performance criterion is met when the MFE ≤75% and
MFB is less than or equal to ±60%.

Table 3. Statistical figures used in the evaluation of the WRF + CHIMERE modeling system. N:
number of observations available. Cmod: model concentration. Cobs: observation concentration.

Value Formula Range

Model Mean (MM) 1
N ∑ Cmod 0, +∞

Observations Mean (OM) 1
N ∑ Cobs 0, +∞

Mean Normalized Bias Error (MNBE) 1
N ∑ (Cmod−Cobs)

Cobs
−∞, +∞

Mean Normalized Gross Error (MNGE) 1
N ∑ |Cmod−Cobs |

Cobs
0,+∞

Mean Fractional Bias (MFB) 1
N ∑

(
(Cmod−Cobs)(

Cmod+Cobs
2

)
)

−200, +200

Mean Fractional Error (MFE) 1
N ∑

(
|Cmod−Cobs |(

Cmod+Cobs
2

)
)

0, +200
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Therefore, MNBE and MNGE have been used for gaseous pollutants, while for partic-
ulate matter, the MFB and MFE have been utilized. A general pattern of the air pollution
levels provided by WRF + CHIMERE simulations can be found in Figure 2. Maximum
O3 concentrations are modeled for summertime in the easternmost part of the IP, with
ground levels that exceed 120 μg m−3 as the daily mean in Catalonia (northeastern IP).
For NO2, monthly means can be as high as 50 μg m−3 in the largest cities of the peninsula
(e.g., Madrid, Lisbon, Porto) and in an industrial area such as Algeciras Bay (southernmost
part of the IP), where industrial emissions are increased by port and maritime activity. The
Algeciras port (the second most important port of Spain), located at the head of the bay,
has a strategic importance in terms of the maritime traffic of fuel and general supplies [68].
Hence, the presence of this port makes the area of the Algeciras Bay a high risk environment
for pollution derived from its commercial activities. For SO2, besides Algeciras, levels are
over 20 μg m−3 downwind of several power plants (As Pontes, in northern Spain; and
Andorra (Teruel), in the eastern IP) that burn coal for the generation of electricity [69,70].
Last, particulate matter does not exhibit a clear spatial pattern in the IP. The spatial patterns
depend both on the industrialization of the regions, especially regarding inorganic particu-
late matter, and the Saharan dust outbreaks [20]. In this sense, PM2.5 and PM10 seasonal
patterns showed maximum concentrations during summertime, as is also indicated by the
scientific literature.

Regarding model validation, overall, negative fractional biases are calculated for PM10
and NO2, while positive deviations for O3 are obtained when comparing the base-case
simulation to EMEP stations (Table 4).

Table 4. Model evaluation against EMEP stations. (Top) Summer (JJA) and (bottom) winter (DJF).

Summer JJA 2011 PM10 NO2 O3

Code
Station Name MFB (%) MFE (%) MNBE (%) MNGE (%) MNBE (%) MNGE (%)
Performance Criteria ≤±60% 1 ≤+75% 1 ≤+50% 2 ≤+50% 2

ES07 Víznar −38.8 68.8 −28.9 41.9 23.1 24.9
ES08 Niembro −9.0 42.6 −19.0 41.6 22.1 22.1
ES09 Campisábalos −54.0 54.1 −35.8 49.0 5.0 25.7
ES10 Cabo de Creus −41.9 43.7 −15.2 33.6 1.5 26.7
ES11 Barcarrota −58.9 68.9 −45.5 46.1 22.3 26.4
ES12 Zarra −52.5 53.0 −46.8 49.3 20.3 24.2
ES13 Peñausende −55.1 57.0 −28.5 59.4 11.2 12.5
ES14 Els Torms −48.6 49.2 −34.7 44.9 20.3 21.0
ES15 Risco Llano −52.5 62.5 −47.3 47.3 24.9 25.6
ES16 O Saviñao 6.8 41.8 18.3 40.9 32.3 33.9

Winter DJF 2011 PM10 NO2 O3

Code
Station Name MFB (%) MFE (%) MNBE (%) MNGE (%) MNBE (%) MNGE (%)
Performance Criteria ≤±60% 1 ≤+75% 1 ≤+50% 2 ≤+50% 2

ES07 Víznar −55.7 55.8 −41.8 48.3 23.0 25.9
ES08 Niembro −17.1 21.7 −17.1 21.7 8.3 8.3
ES09 Campisábalos −28.7 57.2 −36.1 48.0 2.0 15.0
ES10 Cabo de Creus −34.8 35.2 −17.8 27.7 2.2 25.5
ES11 Barcarrota −21.6 34.9 −13.0 31.9 23.6 24.9
ES12 Zarra −20.7 34.2 −20.7 34.2 29.8 29.8
ES13 Peñausende −8.3 35.4 0.3 38.5 19.8 20.2
ES14 Els Torms −34.3 45.8 −31.3 44.2 30.2 32.4
ES15 Risco Llano −37.7 58.0 −39.6 48.9 26.0 26.6
ES16 O Saviñao −11.3 28.2 −7.8 26.3 17.1 17.3

MFB: Mean Fractional Bias; MFE: Mean Fractional Error; MNGE: Mean Normalized Gross Error; MNBE: Mean
Normalized Bias Error. 1 Boylan and Russell [65]; 2 EU Directive 2008/50/EC Uncertainty.
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With respect to gaseous pollutants, the WRF + CHIMERE model presents a MNGE
under 50% for NO2, which is the value set by the EU Directive 2008/50/EC uncertainty
criteria. However, this pollutant is underestimated in both seasons and in all stations
(except for in summer in ES16-O Saviñao and winter in ES13-Peñausende), possibly due to
uncertainties in emission inventories [71] and the relatively coarse horizontal resolution
used, which represents only partially the spatial gradient of the emissions [72]. Negative
biases vary between −8% in wintertime in ES16-O Saviñao (northwestern Spain) and −47%
in ES12-Zarra (at the Levantine Spanish coast). Tropospheric O3 is generally overestimated
(bias under +20% in summer and under +30% during wintertime). This is related to the
NO2 underestimation, limiting the titration of tropospheric O3 by NO2. Moreover, the
CHIMERE lateral boundary conditions for O3 are overestimated [57,72], especially during
wintertime, and therefore, the positive biases during the cold season (ranging from 2% at
ES09-Campisábalos to 30% at ES14-Els Torms, northeastern Spain) are attributable to the
overestimation of the background concentrations at the boundaries of the domain.

For particulate matter (PM10), the magnitude of the MFB and MFE are similar in both
seasons, meeting the performance criteria established by Boylan and Russell [65] for all
stations and during all seasons. There is a pervasive tendency to underestimate PM10
levels (negative MFB in all stations and both seasons, except for station ES16-O Saviñao,
northwestern Spain, in summer). This summer MFB ranges from −9% in ES08-Niembro
station (northern Spain) to −59% in ES11-Barcarrota (southwestern Spain). In wintertime,
the maximum MFB is −56% in ES07-Víznar (southern Spain), while the minimum MFB
is estimated in ES13-Peñausende (western Spain, near the Portuguese border) as −8%.
More interesting is the fact that high MFEs are found in ES07-Víznar station for both
seasons (68% in summer and 56% in winter). The MFB is strongly negative and almost
coincident with the MFE (e.g., −56% for the MFB error in wintertime and 56% for the MFE
during this season). This could be caused by the high contribution of Saharan dust at this
location [25,73], which is pervasively underestimated by CTMs in southern Mediterranean
stations, especially regarding the peak levels [74–76].

3.2. Source Contribution

Figures 3 and 4 represent the results of the source contribution experiment for summer-
time and wintertime, respectively. The information shown in those Figures is quantified
in Table 5, which indicates the relative reductions in the areas with the worst air quality
in the entire IP (that is, reductions in those locations of the target domain where the daily
mean and the daily mean of max. 1-hr ground-level air quality concentrations are the
highest). The results are shown with respect to the base-case scenario (BC), and focus only
on anthropogenic sectors (that is, excluding, for instance, the contribution of background
concentrations or external transport, which cannot be controlled in abatement strategies).
Overall, Table 5 indicates that the maximum reductions in air pollution levels are achieved
when zeroing-out three SNAP sectors, as expected from the scientific literature: combustion
in energy and transformation industries (SNAP1), road transport (SNAP7), and other
mobile sources (SNAP8). The most important added value of this contribution, nonetheless,
is the quantification of the respective contributions of these aforementioned sectors. For
the sake of brevity, our analysis below focuses only on the assessment of the contribution
from these sectors (despite that agriculture, SNAP10, may play also an important role for
SO2 and particulate matter).
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Table 5. Variation in the mean and maximum levels of atmospheric pollutants over the entire IP
when zeroing-out the different SNAP sectors (base case minus zeroed-out SNAP sector simulation;
hence, a positive value indicates an improvement in air quality).

Summer
Summer (JJA)

Concentration Base Case w/o SNAP Reduction

Pollutant Mean (μg m−3) Max (μg m−3) Zero-out sector Mean Max

Tropospheric ozone, O3 132.5 164.6 SNAP7 2.3% 5.7%
SNAP8 5.0% 1.9%

Nitrogen dioxide, NO2 66.6 124.2 SNAP8 47.4% 37.1%

Sulphur dioxide, SO2 33.0 70.7 SNAP1 2.0% 2.4%
SNAP8 40.9% 40.3%

Particulate matter φ < 10 μm, PM10 38.7 62.2 SNAP1 6.2% 4.3%
SNAP8 7.0% 2.6%
SNAP10 5.7% 2.6%

Particulate matter φ < 2.5 μm, PM2.5 19.7 29.3 SNAP1 0.0% 4.8%
SNAP8 0.0% 2.4%
SNAP10 5.1% 4.8%

Winter
Winter (DJF)

Concentration Base Case w/o SNAP Reduction

Pollutant Mean (μg m−3) Max (μg m−3) Zero-out sector Mean Max

Tropospheric ozone, O3 95.8 103.7 SNAP7 −1.2% −2.3%

Nitrogen dioxide, NO2 60.0 95.4 SNAP7 32.9% 17.7%
SNAP8 12.3% 9.7%

Sulphur dioxide, SO2 33.0 70.7 SNAP1 4.5% 3.6%
SNAP8 2.5% 22.2%

Particulate matter φ < 10 μm, PM10 54.3 93.5 SNAP4 6.6% 17.5%
SNAP7 3.9% 3.3%
SNAP10 14.0% 13.8%

Particulate matter φ < 2.5 μm, PM2.5 21.0 34.4 SNAP1 4.7% 3.7%
SNAP7 5.3% 4.0%
SNAP10 16.1% 14.3%

For tropospheric O3, on-road traffic (SNAP7) is the most important contributor in sum-
mertime. The highest daily mean levels of tropospheric O3 during summer (133 μg m−3)
reduce by 2%, while 1-hmaximum concentrations (165 μg m−3) decrease by 6%. In addi-
tion, zeroing-out other mobile sources (SNAP8) reduces the highest daily mean and 1-h
maximum O3 summertime levels by 5% and 2%, respectively. On the contrary, zeroing-out
on-road traffic (SNAP7) during winter slightly contributes to an increase in tropospheric
O3 concentrations (1% and 2% in wintertime, mean and maximum concentration, 96 and
104 μg m−3, respectively), but this increase does not involve the exceedance of the objective
value, as will be shown later in Section 3.4.

The response of tropospheric O3 to changes in their precursors (nitrogen oxides, NOx,
and volatile organic compounds (VOCs)) has been widely covered in the scientific literature,
and particularly over the IP [77,78]. Overall, under certain conditions, O3 concentrations are
reduced when NOx emissions decrease. This chemical regime is denoted as NOx-sensitive
conditions. Conversely, under other conditions, tropospheric O3 reduces its levels when
VOC emissions (particularly, non-methane volatile organic compounds, NMVOCs) are
reduced, and might even increase its concentration when NOx emissions are mitigated.
This regime is known as VOC-sensitive conditions. These O3 sensitivity regimes can help
with explaining the variations in the levels of this pollutant over the Iberian Peninsula.
Namely, the increase in winter O3 mean levels in the Algeciras Bay when zeroing-out the
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SNAP8 emissions and the shipping route of the Strait of Gibraltar is a direct consequence
of the high NO2 concentrations over this target area, associated with the important NOx
emissions of the SNAP8 sector. When removing shipping emissions, mostly NOx emissions
are removed, and hence, the increase of tropospheric O3 reveals the strong VOC-limited
chemical regime for O3 formation in that area. At low NMVOC/NOx ratios, the results
are sensitive to the concentrations of volatile compounds [77,79,80], and hence, an accurate
amount of NMVOC ship emissions is essential for studying and understanding their
possible impact on the O3 levels, especially in such polluted areas as the Mediterranean Sea.

The most important pollutant coming from on-road traffic (SNAP7) is NO2, and this
sector is the dominant source in the largest populated areas of the IP. For NO2, reductions
in the highest daily mean levels in the target domain are around 10 μg m−3 in wintertime
(up to 30 μg m−3 as daily mean levels in summertime), especially in the Barcelona and
Madrid Greater Areas, and the axis of highways covering the Levantine and Western areas
of the IP (Barcelona–Murcia and Porto–Lisbon, in that order), representing almost 50% of
the NO2 levels for this pollutant in summertime (Figure 3) and over 60% in wintertime at
those sites and roads (Figure 4).

Other mobile sources (SNAP8) also largely contribute to NO2 and SO2 over the
peninsula (playing also a role regrding the PM10 levels). In this sense, SNAP8 is responsible
for 47% and 37% of the daily mean (67 μg m−3) and maximum (124 μg m−3) levels of NO2
in the target domain in summer (12% and 10% in winter; the concentrations are 60 and
95 μg m−3 for mean and maxima, in that order). For wintertime, on-road traffic contributes
to highest mean and maximum NO2 concentrations by 33% and 18%, respectively. Last, as
shown in Figure 3, combustion in energy and transformation industries (SNAP1) can add
up to 4 μg m−3 in the area close to power plants, representing up to 10% of NO2 levels in
those areas. However, Table 5 indicates that the contribution of this SNAP to maximum
values is not significant when considering the entire IP.

For SO2, combustion in energy and transformation industries (SNAP1) represents
an important source of the contribution to the levels of this pollutant. The simulations
shown in Figure 3 for summertime and Figure 4 for wintertime feature strong reductions
in SO2 ground-level concentrations over land when zeroing-out SNAP1 (mean reduction,
2.5 μg m−3, reaching 7 μg m−3 in large emitting areas associated with coal combustion).
These results are in agreement with Valverde et al. [70], who indicate that the contribution
to SO2 from power plants in the IP ranges from 2 to 25 μg m−3.

This energy sector contribution can be as much as 60% over the IP, except in the
Mediterranean coastal areas, where the reduction is around 30-40%. In summertime, the
contribution of energy facilities can add up to 2% to the mean and maximum levels (39 and
141 μg m−3, in that order) of SO2 simulated by the model. It is, however, SNAP8 (other
mobile sources) which contributes most to summer SO2 highest mean and maximum levels
(41% and 40%, respectively). The winter contribution is much lower, with SNAP8 represent-
ing only 3% and 22% of the highest winter SO2 mean and maxima (33 and 71 μg m−3, in that
order). Analogous contributions of SNAP1 can be found for winter in the target domain
(5 and 4%). The contribution of harbor emissions to sulphur dioxide levels may reach
50% in the Iberian Levantine coast, both for summertime and wintertime (Figures 3 and 4),
reaching up to 2 μg m−3 in the western Mediterranean areas, and around 5 μg m−3 in
the Algeciras harbor and Gibraltar (southern IP) during summertime, highlighting the
importance of this sector.

With respect to PM10, Table 5 indicates that, albeit for summertime the sector with
the largest contribution to highest daily mean and maximum levels (39 and 62 μg m−3) is
combustion in energy and transformation industries (SNAP1) (6.2% and 4.3%), production
processes (SNAP4) is the source that contributes most during wintertime to the PM10
highest mean and maxima (54 and 93 μg m−3), representing 7% and 18% of those levels.
The second largest contributor to PM10 is SNAP8 (other mobile sources) in summer (7%
and 3% to highest mean and maxima) and SNAP7 (road traffic) in winter (4% and 3%). It
is noticeable that removing agriculture emissions (SNAP10) contributes to a decrease in
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PM levels and a simultaneous increase in SO2 concentrations both for summer (Figure 3)
and winter (Figure 4), since zeroing-out the most important contributor to NH3 emission
hampers the formation of ammonium sulphate, and hence, more SO2 is available in the
gas-phase [20,27,81]. Analogous results can be found for PM2.5, but with an enhanced
contribution of agriculture (SNAP10) to the PM2.5 daily mean and maxima, which can
reach 16% and 14%, respectively.

3.3. Source Contribution at Critical Selected Sites

Figure 5 shows the Air Quality Index (AQI) in the IP (estimated from EPA Air Quality
Index [82]) in order to assess the most critical areas in the target domain regarding air
pollution. In this index, the concentrations that correspond to an AQI value of 100 are those
established as the standards of the European Union, compiled in Directive 2008/50/EC. The
election of the AQI in this contribution is not critical, since only the areas with the poorest
air quality are searched to calculate the source contribution at those particular locations.

Good Moderate Unhealthy Hazardous

Barcelona - Downwind

Madrid - Downtown

Algeciras Bay

Figure 5. Total air quality indexes (AQItotal) for summer (JJA) (left) and winter (DJF) (right), indicat-
ing the most polluted areas of the IP (AQI = hazardous).

The AQI has been estimated individually for all pollutants with regulatory values
included in this contribution (O3, NO2, SO2, PM10, and PM2.5) and the AQItotal (shown in
Figure 5) has been estimated as the highest value among all individual indexes. During
the summer and winter periods, air quality was hazardous in the two largest Spanish
cities (Madrid and Barcelona) and the industrial-harbor area of Algeciras Bay, located in
southern Spain (Figure 5). Therefore, this section is devoted to the analysis of the source
apportionment at these locations in order to shed some light on the causes of the strategy to
abate those pollutants. For that, the point with the worst air quality in a domain of 100 km2,
centred over Madrid, Barcelona, and Algeciras, respectively, has been selected for further
analysis.

For gas-phase pollutants, Figure 6 (left) indicates that most of summertime tropo-
spheric O3 comes from the “Other” sector at all the three sites. This “Other” contribution is
not estimated by zeroing-out any emission sector, but estimated as the difference between
the BC and the addition of all anthropogenic sources. Therefore, it includes the contri-
bution of different processes (e.g., long-range transport, background levels, stratosphere–
troposphere exchange, etc.).

118



Sustainability 2022, 14, 2759

20.14%
10.10%

11.37%
22.34%

63.29% 61.05%

1 2

Contribution NO2 - Madrid

88.61%

29.63%

16.17%

6.16%

43.58%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2

Contribution O3 - Madrid

JJA                       DJF                                                JJA                       DJF                  JJA                       DJF

9.88% 5.91%

6.17%
4.22%

6.17%
4.64%

20.99%

53.59%

55.56%

29.54%

1 2

Contribution SO2 - Madrid

SNAP1
SNAP2
SNAP3
SNAP4
SNAP5
SNAP6
SNAP7
SNAP8
SNAP9
SNAP10
OTH

140.0

130.0

120.0

110.0

100.0

90.0

80.0

70.0

60.0

50.0

40.0

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

μg m-3 μg m-3

.91%.91%9191

5.74% 6.59%

19.34% 13.74%

6.65% 8.24%

7.69%

64.65%

58.24%

1 2

Contribution SO2 - Barcelona

17.68%
10.86%

14.38%
20.41%

43.98% 45.48%

8.63% 7.36%
5.39%

9.58% 5.61%

1 2

Contribution NO2 - Barcelona

91.44%
82.01%

4.39%

3.66%
7.82%

1 2

Contribution O3 - Barcelona

0 41

SNAP1
SNAP2
SNAP3
SNAP4
SNAP5
SNAP6
SNAP7
SNAP8
SNAP9
SNAP10
OTH

140.0

130.0

120.0

110.0

100.0

90.0

80.0

70.0

60.0

50.0

40.0

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

μg m-3 μg m-3

5 74%747474 .59%.59%.5959

JJA                       DJF                                                JJA                       DJF                  JJA                       DJF

2.39%

87.32% 85.28%

10.51% 8.24%

1 2

Contribution SO2 - Algeciras Bay

92.36% 87.83%

5.19% 9.04%

1 2

Contribution NO2 - Algeciras Bay

68.94%

50.16%

25.00%

42.19%

1 2

Contribution O3 - Algeciras Bay

SNAP1
SNAP2
SNAP3
SNAP4
SNAP5
SNAP6
SNAP7
SNAP8
SNAP9
SNAP10
OTH

140.0

130.0

120.0

110.0

100.0

90.0

80.0

70.0

60.0

50.0

40.0

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

50.0

45.0

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

0.0

μg m-3 μg m-3

0.160.160.16

JJA                       DJF                                                JJA                       DJF                  JJA                       DJF

Figure 6. (Left axis) Relative contribution (%) of each anthropogenic SNAP sector to the daily mean
levels of O3 (left), NO2 (center), and SO2 (right) over the most polluted areas of the IP (Madrid, top;
Barcelona, center; Algeciras Bay, bottom). (Right axis) Red dot stands for the mean concentrations of
O3 (left), NO2 (center), and SO2 (right) in μg m−3.

During summer (winter), this contribution can be as large as 88% (30%) in Madrid,
91% (82%) in Barcelona. and 69% (50%) in Algeciras Bay. These numbers are in agreement
with previous works. For instance, the background values contribute with more than 50%
to the O3 concentration measured in the westernmost region of the IP [83]. Moreover, the
importance of intercontinental ozone transport in the ground levels of ozone over Europe
has been highlighted [84], and can be as high as 10–16 ppb (20–32 μg m−3). In Barcelona and
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the Algeciras Bay, the anthropogenic sector contributing most to tropospheric O3 levels is
SNAP8 (other mobile sources), especially related to shipping emissions in the area. SNAP8
adds up 4% (25%) and 4% (42%) of summer and wintertime O3, respectively, in Barcelona
(Algeciras). These results are in agreement with those of the literature [85,86]. These works
find out that shipping emissions increase ground levels of summer tropospheric O3 by 5 to
10% in the Mediterranean sea. This may be caused by the large NO2 emissions of ships,
which can enhance the production of ozone [87]. Last, SNAP7 (road traffic) has a limited
contribution to summertime O3 levels in Madrid and Barcelona, around 8%, which is in a
strong agreement with previous works [88].

With respect to NO2 (Figure 6, center), on-road traffic (SNAP7) is the sector with the
highest contribution to the surface levels of NO2 in Madrid and Barcelona (over 60% in
Madrid and over 44% in Barcelona for both seasons), followed by SNAP8 (other mobile
sources). While for Barcelona, it is the shipping and maritime activity that contributes most
to SNAP8 (being responsible for 14% and 20% of summer and winter NO2 levels in the city),
in Madrid, the contribution of SNAP8 (11% in summer and 22% in winter) comes mainly
from the activity of the Madrid airport. In Algeciras, around 90% of NO2 levels can be
attributed to the shipping sector, both in summertime and wintertime. The contribution of
SNAP8 is very similar in Algeciras Bay for SO2 levels (the source apportionment indicates
that over 85% of SO2 mean levels in Algeciras come from SNAP8) (Figure 6, right). How-
ever, in the city of Madrid, most of the summer (winter) SO2 has an origin in combustion
during energy-generation activities (SNAP1): 56% (30%) of monthly means for summer-
time (wintertime), followed by non-industrial combustion plants, including private wood
combustion—SNAP2—(21%/54% of summer/winter levels). In Barcelona, SNAP1 is also
responsible for around 60% of SO2 levels, with a limited contribution of shipping emissions
(19% for summertime and 14% during winter) and agriculture—SNAP10—(around 6% for
both seasons). It should be highlighted that the levels of SO2 in the urban areas of Madrid
and Barcelona are very low, with mean monthly concentrations under 5 μg m−3.

Figure 7 indicates the results regarding the contribution of each SNAP sector to the
daily mean levels of PM2.5 (left) and PM10 (right). The most important contributor to PM2.5
and PM10 concentrations in Madrid, Barcelona, and Algeciras is the sector “Other”, high-
lighting the importance of external sources to the domain during summertime (e.g., Saharan
dust transport). In this sense, the outside contribution represents 72% (73%), 59% (63%),
and 52% (57%) of summertime PM2.5 (PM10) levels in Madrid, Barcelona, and Algeciras,
respectively. However, this contribution is much lower for wintertime, when the external
contribution accounts for only 16% (7%), 31% (29%), and 35% (29%) of PM2.5 (PM10) levels
at the aforementioned sites. The fact that the PM10 contribution is larger than PM2.5 for
summertime, but lower for wintertime, points to an important role of dust outbreaks over
the IP during the summer months, as aforementioned [25,73].

Agriculture (SNAP10) effects on particulate matter levels are much larger in winter-
time than during summertime. SNAP10 has a larger contribution to summer particles in
Barcelona (18% for PM2.5 and 16% for PM10) than in the case of Madrid (6% for PM2.5 and
PM10) or Algeciras (14% and 10% for PM2.5 and PM10, respectively). These contributions
increase notably for wintertime, with agriculture being the most important contributor to
wintertime PM2.5 and PM10 levels in Madrid (49% and 52%, respectively) and Barcelona
(39% and 40%).

120



Sustainability 2022, 14, 2759

72.42%

15.51%

6.33%

48.53%

2.23%
10.74%

3.10%
18.29% 13.29%

1 2

Contribution PM2.5 - Madrid

72.92%

7.11%

6.43%

51.97%

2.44%

2.08%

13.40%

2.63%
3.21%

14.90% 12.00%

1 2

Contribution PM10 - Madrid

JJA                       DJF                          JJA                       DJF

5 55 55511

SNAP1
SNAP2
SNAP3
SNAP4
SNAP5
SNAP6
SNAP7
SNAP8
SNAP9
SNAP10
OTH

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

35.0

32,5

30.0

27.5

25.0

22.5

20.0

17.5

15.0

12.5

10.0

μg m-3

63.38%

28.85%

15.77%

39.92%

6.11%

4.45%

9.62%

3.99%

10.60% 9.76%

1 2

Contribution PM10 - Barcelona

59.41%

31.31%

18.35%

39.02%

4.47%

4.30%
8.18%

10.12% 10.54%

1 2

Contribution PM2.5 - Barcelona

SNAP1
SNAP2
SNAP3
SNAP4
SNAP5
SNAP6
SNAP7
SNAP8
SNAP9
SNAP10
OTH

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

35.0

32,5

30.0

27.5

25.0

22.5

20.0

17.5

15.0

12.5

10.0

μg m-3

4.454.454545

JJA                       DJF                          JJA                       DJF

57.20%

28.81%

9.57%

26.90%

17.57%

18.95%

2.13%
7.95%
2.98%

9.93% 9.23%

1 2

Contribution PM10 - Algeciras Bay

52.49%

35.33%

14.41%

28.83%

17.78% 23.22%

4.47%
4.78%

6.74%

1 2

Contribution PM2.5 - Algeciras Bay

SNAP1
SNAP2
SNAP3
SNAP4
SNAP5
SNAP6
SNAP7
SNAP8
SNAP9
SNAP10
OTH

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

35.0

32,5

30.0

27.5

25.0

22.5

20.0

17.5

15.0

12.5

10.0

μg m-3

.13%

8 8888111%

JJA                       DJF                          JJA                       DJF

Figure 7. (Left axis) Relative contribution (%) of each anthropogenic SNAP sector to the daily mean
levels of PM2.5 (left) and PM10 (right) over the most polluted areas of the IP (Madrid, top; Barcelona,
center; Algeciras Bay, bottom). (Right axis) Red dot stands for the mean monthly concentrations of
PM2.5 (left) and PM10 (right) in μg m−3.
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Combustion in energy and transformation industries (SNAP1) also notably contributes
to particle levels in the city of Madrid (PM2.5: 18% for summer and 13% for winter;
PM10: 15% and 12% in summer and winter, in that order), Barcelona (PM2.5: 10% for
summer and 11% for winter; PM10: 11% and 10% in summer and winter, respectively),
and Algeciras (PM2.5: 7% and 1% for summer/winter; PM10: 10% and 9% in summer
and winter, in that order). On-road traffic (SNAP7) is only noticeable for wintertime
PM2.5(PM10) concentrations, being 11% (13%), 8% (10%), and 5% (8%) in Madrid, Barcelona,
and Algeciras, while the contributions of SNAP8 (other mobile sources) are very high in
Algeciras, being the second largest contributor for particulate matter both in summer (18%
for PM2.5 and PM10) and winter (23% and 19% for PM2.5 and PM10, respectively), due to
the presence of important harbor/industrial activity in the area [89,90]. Over a coastal area
such as Barcelona, the estimated contribution of harbor emissions to the urban background
reached 9–12% for PM10 and 11–15% for PM2.5 [91]. Our results are in agreement with
those numbers (despite being slightly lower), since the estimations of the contribution of
SNAP8 to PM2.5(PM10) background levels in Barcelona is around 4–6%. This contribution
is linked both to primary emissions from fuel oil combustion but also to the formation of
secondary aerosols from gas-phase precursors.

3.4. Response of Air Quality Exceedances to Zeroed-Out Emissions

It is important to characterize the contribution of each emitting sector to air pollution
not only from the point of view of the percent contribution to mean air quality levels, but
also to attribute the role of those sources in the exceedances of limit values for the protection
of human health. In this sense, Table 6 summarizes the contribution over the entire IP of
each SNAP sector (only for those sectors with significant variations with respect to the BC)
to the number of exceedances of different target values selected: objective value for O3,
120 μg m−3, 8 h; limit value for NO2, 200 μg m−3, 1 h, not to be exceeded (n.t.b.e.) more
than 3 times a calendar year; limit value for SO2, 125 μg m−3, 1 day, n.t.b.e. more than
3 times a calendar year; limit value for PM10, 50 μg m−3, 1 day, n.t.b.e. more than 35 times
a calendar year. Additionally, the limit value for PM2.5, 25 μg m−3, 1 calendar year, was
explored, but as we have only simulated summer and winter periods, this latter limit value
cannot be assessed.

With respect to the exceedance of the target, limit, and threshold values set in the
Directive 2008/50/EC, Table 6 indicates a clear improvement in the O3 objective value
(120 μg m−3, max. 8 h) when zeroing-out the on-road traffic emissions (SNAP7) for sum-
mertime (days with exceedances reduce from 23 to 16 in summer; no exceedances are
simulated for winter in the base case); however, this management strategy is hard to take
into practice because of the socio-economical implications of road traffic reduction. More-
over, other mobile sources (SNAP8) contribute to 5 days with exceedances of the object
value for O3 (23 days in BC vs. 18 in noSNAP8).

Additionally, other mobile sources (SNAP8) is the sector causing most of the ex-
ceedances of the limit values related to NO2 (200 μg m−3, 1 h) and SO2 (125 μg m−3, daily
mean) over the IP (playing also a role on PM10 exceedances). In this sense, SNAP8 causes
the two exceedances of the limit value of modeled NO2 and is responsible for six out of
the eight exceedances of the daily limit value for SO2 (125 μg m−3) over the domain for
summertime (no values over the limit value for NO2 or SO2 are modeled during win-
tertime). SO2 concentrations over the limit value are found over the Algeciras Bay, and
are caused mainly from the contribution of the high sulphur emissions coming from ship
fuels. It is noteworthy that the contribution of shipping emissions to the exceedances of
the limit value for PM10 is not as large as for SO2 (in agreement with [92]), since there
are components of particulate matter from shipping not directly affected by the sulphur
content in the fuels. In this sense, just 2 of the 18 summertime exceedances of the daily
mean 50-μg m−3 limit value for PM10 are caused by SNAP8 (no exceedances of the PM10
limit value are caused by other mobile sources in wintertime). For particles, combustion in
energy generation (SNAP1) is responsible of 5 out of the 18 (27) exceedances of the PM10
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limit value for summertime (wintertime), while agriculture (SNAP10) contributes to 2 (6)
exceedances of the daily mean 50-μg m−3 limit value for summertime (wintertime).

Table 6. Variation in the number of exceedances over the entire IP when zeroing-out the different
SNAP sectors (base case minus zeroed-out SNAP sector simulation).

Summer Summer 2011

Concentration w/o SNAP

Pollutant Limit value Zero-out sector N exc. BC N. exc. noSNAP

O3 Objective value for O3, 120 μg m−3, 8 h SNAP7 23 16
SNAP8 18

NO2 Limit value for NO2, 200 μg m−3, 1 h SNAP8 2 0

SO2 Limit value for SO2, 125 μg m−3, 1 day SNAP1 8 5
SNAP8 2

PM10 Limit value for PM10, 50 μg m−3, 1 day SNAP1 18 13
SNAP8 16
SNAP10 16

Winter December 2011

Concentration w/o SNAP

Pollutant Limit value Zero-out sector N exc. BC N. exc. noSNAP

O3 Objective value for O3, 120 μg m−3, 8 h SNAP7 0 0

NO2 Limit value for NO2, 200 μg m−3, 1 h SNAP8 0 0

SO2 Limit value for SO2, 125 μg m−3, 1 day SNAP1 0 0
SNAP8 0

PM10 Limit value for PM10, 50 μg m−3, 1 day SNAP4 27 22
SNAP7 26
SNAP10 21

4. Discussion and Conclusions

Efficient air quality management requires an accurate identification of pollution
sources and of their individual contributions to the ambient pollutant concentrations.
To this end, the zero-out methodology has been proposed and applied for the apportion-
ment of atmospheric pollutants in the IP. This method is based on the application of WRF +
CHIMERE chemistry transport model coupled to EMEP emissions.

Regarding tropospheric O3, on-road traffic is the only anthropogenic sector with a
noticeable contribution to maximum O3 levels during summertime (6%) and is responsible
for 7 summer days with exceedances in the objective value of 120 μg m−3 (max. 8-hr mean)
established by the 2008/50/EC directive. These results are in agreement with those of
the scientific literature [37,62]. These authors found out that the on-road transport sector
(SNAP7) was the largest overall anthropogenic source sector contributing to July 2011 O3
concentrations in Europe, with non-road transport (SNAP8) contributions ranking second,
as in our case (2% contribution to summertime maximum O3 levels and five exceedances
of the objective value). An analogous analysis can be completed for SNAP8 (other mobile
sources) with respect to NO2, with this sector prevailing in the contribution to mean ground-
level concentrations during summertime and contributing to the two exceedances of the
limit value for the protection of human health for NO2 (200 μg m−3, 1 h) modeled over
the IP. The importance of this sector in the IP is larger closer to the major shipping routes
and main harbors, with relative contributions varying from 10 to 50% depending on the
pollutant (the lowest contribution for particulate matter, the largest for SO2 and NO2).

Last, the other anthropogenic sector with a noticeable impact is agriculture. Removing
agriculture emissions (SNAP10) contributes to a decrease in PM levels and a simultaneous

123



Sustainability 2022, 14, 2759

increase of SO2 concentrations. The reduction of the most important source contributing to
ammonia emissions controls the formation of ammonium sulphate. Therefore, reducing the
levels of ammonia permits the SO2 to remain in the gas phase. Agriculture contributes to the
limit value for the protection of human health regarding PM10 (50 μg m−3, daily mean) with
2 exceedances out of 18, while this number increases to 6 out of 27 wintertime exceedances.

With respect to the temporal pattern, in general, the source contribution does not
exhibit a strong seasonality, except for particulate mater under the “Other” sector, which
includes the external contribution to particle levels. Despite this seasonal behaviour for par-
ticulate matter, both gas-phase pollutants and particles exhibit a strong spatial uniformity,
since background concentrations in the modeling system are provided by coarse resolu-
tion chemistry/climate models that do not allow for a sharp gradient in the background
concentrations.

The external contribution of particles to the “Other” sector is mainly composed of
mineral matter from Saharan dust. The fact that the boundary contributions to PM10 are
larger than for PM2.5 for summertime, but lower for wintertime, points to an important
role of dust outbreaks over the IP during the summer months, which contributes mainly
with large particles. These results are in line with those of Karachamdani et al. [37]
for 16 European cities, who indicate that the boundary condition contributions for the
Mediterranean cities are larger than for other European cities, ranging from about 40–50%
during summertime to 10–15% in wintertime, because those Mediterranean cities were
largely influenced by the long-range transport of dust emissions from northern Africa in
the summer months.

Locally, the IP undergoes diverse problems related to air quality both during summer
and winter. Focusing on the most polluted areas of the target domain (the cities of Madrid,
Barcelona, and Algeciras Bay), the impact of road transport (SNAP7) emissions is high
for NO2 ground levels over largely populated areas (Madrid or Barcelona areas), but the
concentration of this pollutant is dominated by other mobile sources (such as maritime or
airport emissions included in SNAP8). Over coastal areas of the target domain, a poor air
quality caused by large NO2 concentrations can be attributed to shipping routes. In this
sense, Merico et al. [87] also highlight the influence of harbor and shipping emissions on
air quality of the nearby coastal areas of the Mediterranean.

For SO2, energy generation (SNAP1) controls the mean levels of this pollutant over
most of the areas considered. Valverde et al. [70] indicate that the contribution of power
plants to the surface concentration of SO2 occurs mainly close to the source (<20 km)
related to a fumigation process when the emission injection takes place within the planetary
boundary layer, but those plumes can reach long distances (>250 km) from the sources.

In the Algeciras Bay, maritime emissions largely contribute to the levels of SO2. The
implementation of low-sulphur fuels in shipping may contribute to substantially reducing
the number of exceedances of the limit values for the protection of human health and to
reduce several pathologies such as cardiovascular and cancer deaths, childhood asthma, or
premature mortality and morbidity [93]. Summertime PM10 and PM2.5 levels are dominated
by the external contribution of Saharan dust, while for wintertime, agriculture can have a
dominant position in Madrid and Barcelona. The important contribution of agriculture to
PM levels was highlighted by Lelieveld et al. [94], who stated that this sector is the largest
contributor to PM2.5 levels in Europe.

Hence, this evaluated contribution has allowed us to identify which sectors contribute
most to air pollution problems in the IP. However, it should be borne in mind that the
uncertainties associated with several factors (principally, the boundary conditions in the
CTMs and emission inventories) can condition the accuracy of the obtained results [37,95].
For instance, Jiménez et al. [17] analyze the impact of initial and boundary conditions
over the Levantine coast of the IP, indicating that, despite the influence of initial condition
reduces with the spin-up time (a 48-h spin-up time is sufficient to reduce the impact factor
of initial conditions to 10% or less), the importance of having accurate boundary conditions
becomes essential, since its influence on the results increases with the time of the simulation,
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reaching up to 5 μg m−3 for certain pollutants. With respect to the emission inventories,
Baldasano et al. [96] point to industrial facilities as the main sources of uncertainties in
emission inventories over the target area.

Nonetheless, this work can provide a very useful contribution to a better understand-
ing of the sensitivity of air pollutants in a complex area such as the IP, and can provide
valuable information for the design of mitigation strategies or plans that lead to an im-
provement in European air quality and the attainment of the SDG over the target area.
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The following abbreviations are used in this manuscript:

AQI Air Quality Index
BC Base Case
BFM Brute Force Method
CTM Chemistry Transport Model
EMEP European Monitoring and Evaluation Programme
IP Iberian Peninsula
MFB Mean Fractional Bias
MFE Mean Fractional Error
MNBE Mean Normalized Bias Error
MNGE Mean Normalized Gross Error
NMVOC Non-Methane Volatile Organic Compounds
SNAP Selected Nomenclature for Air Pollution
VOC Volatile Organic Compounds
WRF Weather Research and Forecasting
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Abstract: Environmental regulations have a certain impact on regional green technology innovation
affected by regional differences. Using the panel data of 30 provincial-level administrative regions in
China (excluding Tibet, Hong Kong, Macao, and Taiwan) from 2011 to 2019, we consider China’s
new environmental protection law (NEPL) as a quasi-natural experiment to evaluate the impact
of environmental regulation on green technology innovation in a difference-in-differences (DID)
framework and further analyze the influences of regional differences. The results indicate that
environmental regulations can promote regional green technology innovation, and that regional
differences have a significant impact on this issue. Furthermore, environmental regulations in regions
with high and low levels of economic development and education, and regions with medium and
low levels of energy consumption have a significant impact on green technology innovation. The
government should reasonably formulate environmental regulation policies on the basis of regional
differences, encourage cross-regional exchanges and cooperation, and more efficiently stimulate
regional green technology innovation to achieve sustainable development.

Keywords: environmental regulations; green technology innovation; regional differences; difference-
in-differences

1. Introduction

The extensive economic development model in the past decades has made environ-
mental pollution one of the factors restricting the sustainable development of China’s
economy. The deterioration of resource and environmental conditions has increased the
uncertainty of global development and the unprecedented challenges of the global gover-
nance system. Many countries have promulgated environmental laws and regulations to
promote environmental protection [1]. Since the green development model has been the
basic strategy to promote the harmonious coexistence of man and nature in the report of
the 19th National Congress of the Communist Party of China (CPC), ecological civilization
construction has become an important strategy for China’s development. The construction
of ecological civilization is not only related to the sustainable development of China’s social
economy, but also to global ecological security and the healthy development of human
beings. The concept of an ecological civilization is increasingly rooted in the hearts of the
people, and while pollution control efforts continue to increase, improving environmental
quality is urgent [2]. The Chinese government, aware of the seriousness of environmental
problems and the importance of green technology innovation, has formulated a series of
environmental regulation policies to urge enterprises to reduce their pollution emissions,
and to encourage enterprises to carry out green technology innovation through capital
investment in recent years.
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The Chinese government released the Environmental Protection Law of the People’s
Republic of China (Old Environmental Protection Law) in 1989. The revised Environmental
Protection Law of the People’s Republic of China (New Environmental Protection Law,
NEPL) was implemented in 2015. Compared to the Old Environmental Protection Law,
the NEPL implemented more severe penalties and significant supervision, emphasized
information disclosure and encouraged public participation. Therefore, the NEPL has been
described as the strictest environmental protection law in China’s history. The promulgation
of the NEPL marked a new stage of Chinese environmental legislation. The policy impact
of environmental regulations has been of wide concern to many scholars.

In April 2019, the National Development and Reform Commission of the People’s
Republic of China and the Ministry of Science and Technology of China jointly issued
guidance on the construction of a market-oriented green technology innovation system,
which further refined the road map and timetable of green technology innovation system
construction [3]. Since then, green technology innovation has become the key task of
the current national ecological civilization construction. In a brief report on the green
patent classification system construction and a green patent statistical analysis of the
China National Intellectual Property Administration, the connotation and standard of
the green patent were preliminarily clarified. Under the guidance of policies and funds,
green industries were represented by energy conservation and environmental protection.
Moreover, clean production, clean energy and a circular economy have increasingly become
the focus of investment.

On the one hand, environmental regulation, as an important part of public regulation
is an effective way to correct market failure. Researching the impact of environmental
regulations on the coordinated development of the environment and economy is conducive
to the design of the most suitable environmental management system for the Chinese
government [4]. On the other hand, green technology innovation is an important means to
guide enterprises to improve production technology and to achieve energy conservation
and emissions reduction. Therefore, understanding the relationship between the environ-
mental regulations and green technology innovation is helpful to clarify the relationship
between environmental protection and economic development, so as to seek the way of a
balanced development of the environment and the economy.

China is vast, with some regional differences in social and economic development and
natural resources. Whether environmental regulation policies will have different effects
in different types of regions is an important research topic. Therefore, based on the study
of the impact of environmental regulation policies on green technology innovation, this
study further analyzes the differences of environmental regulation policy effects from
the perspective of regional differences, with a quasi-natural experiment based on China’s
NEPL. In this study, the NEPL is treated as an exogenous policy shock to identify its policy
impact on green technology innovation via a difference-in-differences (DID) framework.
The impact mechanisms were also investigated to clarify how the NEPL affects green
technology innovation and how regional differences affect the policy impact. It is hoped
this will provide suggestions for the government to formulate environmental regulation
policies according to the actual situation of a region, and for enterprises to carry out green
technology innovation according to their own individual situations.

2. Literature Review

2.1. Research on Environmental Regulation

Environmental regulation as an effective means to restrain corporate behavior and
protect the environment, and the study of its connotations and effects have been the focus of
academic attention. Scholars’ researches on environmental regulation have mainly focused
on the following three aspects. First, many scholars have studied the definition and evolu-
tion of environmental regulation. There are a number of classifications of environmental
regulation according to definitions from different angles. Command-and-control regulation
(CCR) and market-based incentive regulation (MIR) are two commonly mentioned environ-
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mental regulations [5–7]. Some researchers have also proposed environmental regulations
such as informal environmental regulation, implicit environmental regulation and public
participation environmental regulation that are not implemented by the government [8–10].
Second, the research on the measurement of the level of environmental regulation, index se-
lection and measurement method has been one of the most important themes. Considering
the quality of relevant variable data, many empirical studies have certain limitations, and
there is no unified measurement standard. At present, domestic and foreign scholars mainly
measure environmental regulation from the following two perspectives. One is from the
perspective of the specific implementation of environmental regulation, the selection of
pollution control costs, the proportion of pollution control investment in the total cost or
output value of enterprises, or the amount of policy supervision [11–13]. The other is to
consider pollutant treatment efficiency to construct a comprehensive environmental index
from the perspective of an environmental governance effect under environmental regula-
tion [14–16]. In addition, environmental regulation efficiency may vary across regions due
to being influenced by external environmental factors such as the economic base, industrial
structure and education levels [17]. The third aspect reveals that an increasing number of
scholars have studied the impact and driving mechanism of environmental regulation and
the relationships between environmental regulations, green development and enterprises’
innovation have been the main research aspect. Moreover, these relationships may vary in
different regions and periods because of other factors and effects [18,19].

2.2. Research on Green Technology Innovation

The methods for measuring green technology innovation have varied across this re-
search area due to the limitation of data availability. For one thing, some scholars have
constructed the green technology innovation index and calculated the green innovation
efficiency (GIE) to measure green innovation development [20,21], and for another, green
patents have been increasingly used to measure green technology innovation in recent
years [22]. According to the relevant definition of the State Intellectual Property Office of
China, green technology refers to technologies that are conducive to saving resources, im-
proving energy efficiency, preventing and controlling pollution, and achieving sustainable
development [23]. It mainly includes alternative energy, environmental materials, energy
conservation and emissions reduction, pollution control and governance, and recycling
technology. A green patent refers to the invention, utility model and design patent with
the theme of green technology. Patent documents also provide information such as patent
inventors, claims, patent families and citations, which is conducive to identifying the type
of innovation subject and the quality of the innovation.

2.3. The Impact of Environmental Regulation on Green Technology Innovation

Many scholars have researched the impact of environmental regulation tools and
intensity on green technology innovation from the perspective of environmental regula-
tion. At present, there is still much controversy about the research in this area, mainly
manifested as a question of whether environmental regulations will positively promote
or negatively inhibit the development of green technology innovation in the long run.
There are mainly three different views. First is that environmental regulation promotes
green technology innovation. The Porter hypothesis claimed that environmental protection
policies actually increase the net output of enterprises, and finally improve enterprises’
competitive advantages [24]. Lanjouw and Mody (1996) [25] expanded the study to the
United States, Japan, and Germany, and verified the positive effect of environmental reg-
ulation on green technology innovation. In addition, Domazlicky (2004) [26], Yang et al.
(2012) [27], Mazzanti (2009) [28] and other studies have also verified that environmental
regulation has certain technical effects. Xing et al. (2019) [29] found that environmental
commitment and sustainability exploitation innovation are fundamental for realizing the
positive effects of environmental regulation on firm performance and provided deeper
insight into the effect of ambidextrous sustainability innovation in the ‘strong’ Porter hy-
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pothesis. Yuan and Xiang (2018) [30] found that in the long run, environmental regulation
inhibits patent output and does not support the ‘weak’ Porter hypothesis, while improving
energy efficiency hinders labor productivity and does not support the ‘strong’ version of
the Porter Hypothesis. Second, environmental regulations may hinder green technological
innovation. For example, Chintrakam and Weber (2008) [31] selected the relevant data
on the American manufacturing industry to study and concluded that the government’s
environmental regulations caused enterprises to lack sufficient funds for the invention of
environmental protection technology patents. The third view holds that there is no simple
linear relationship between environmental regulations and green technological innovation.
On the one hand, some scholars have found that there is a U-shaped relationship between
environmental regulations and green technological innovation [32,33], while on the other
hand, some scholars have found that there is an inverted U-shaped relationship between
environmental regulation and green technology innovation [10,34].

In recent years, scholars have analyzed this problem from different angles. First, from
the perspective of different environmental regulation means and tools, different means and
tools of environmental regulation have different effects on green technology innovation.
For example, the flexible environmental policies have a significant positive impact on
technological innovation, and the implementation of environmental regulation has actively
alleviated the relationship between flexible environmental policies and technological inno-
vation [35]. The non-linear impact of formal and informal environmental regulations on
green growth, and formal and informal environmental regulations have showed different
effects at different stages [36]. Government direct funding and tax incentives may promote
green technology innovation [37]. The productivity effect driven by market-based incentive
regulation is much stronger than that of command-and-control by investigating how differ-
ent regulatory instruments and the relative stringency impact green productivity based on
China’s reality [38]. Second, from the perspective of international technology transfer, the
research on the mechanism of foreign direct investment (FDI), the environmental regulation
effect, and green technology innovation is one of the most commonly considered aspects.
For example, environmental regulations may have a positive effect on enterprise ecological
technology innovation through FDI [39]. The influence of environmental regulation and
FDI exerted on green innovation efficiency may be different for different manufacturing
industries [40]. In addition, the impact of trade structure upgrading on green technology in-
novation is closely related to environmental regulation [41]. Third, from the perspective of
heterogeneity, industry heterogeneity has been the most popular angle. Scholars have usu-
ally studied the influence of industry heterogeneity from the aspects of pollution-intensive
industries, cleaning industries, technology-intensive industries and labor-intensive indus-
tries. For example, Cai et al. (2020) [42] have found that direct environmental regulation
has a strong and significant incentive effect on green technology innovation in pollution-
intensive industries, and direct environmental regulation can effectively encourage green
technology innovation in technology-intensive industries compared with labor-intensive
industries. In addition, heterogeneity of the enterprises’ ownership may influence the
relationship between the environmental regulations and green technology innovation [43].

2.4. Innovation of This Study

In conclusion, the relationship between environmental regulations and green techno-
logical innovation is a complex problem and researching it from different perspectives is
conducive to a more profound understanding of this problem. This study focuses on the
impact of environmental regulation policies represented by the promulgation and imple-
mentation of China’s new environmental protection law (NEPL) on green technological
innovation and innovates and supplements the research content on the basis of existing
research. Due to the vast territory of China, there are some differences in the scale of
economic development, industrial development models and natural resources between
different regions, so whether environmental regulation policies will have different effects
in different types of regions is an important research topic. In view of this, the innovation
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of this study is that this study researches the relationship between the environmental regu-
lation policy and green technology innovation from the perspective of regional differences
by using the generalized difference method, and further analyzes the influence of regional
differences in it, hoping to provide a reference for the formulation of government policies.

Further, the research steps of this study are as follows: First, the generalized difference-
in-differences method is used to group the empirical research referring to Cai et al. (2016) [44].
According to the policy effect of the new environmental protection law, 30 provinces in
China are divided into 14 treated groups and 16 control groups. Second, the environmental
regulation policy selected in this study is representative. According to the impact of the
NEPL on the number of green patent applications, this study determines its policy effects
and dynamic effects test. Third, this study innovatively sets the grouping and dummy
variables according to regional differences, and divides the provinces into three levels,
namely, at the level of economic development, the level of education and the level of
energy consumption, so as to further identify the impact of environmental regulation
policies in the different regions on green technological innovation at the different levels.
Fourth, robustness tests are used to further illustrate the reliability of this study. This
study changes the explained variables, with the amount of green patent as an indicator
for regression testing, and then changes the explanatory variables, testing the effect of
the environmental regulation policy with fixed regional differences, with multiplication
terms conducted by dummy variables according to the level of the regional differences and
environmental regulation policy effect. Fifth, this study summarizes conclusions, analyzes
reasons, provides corresponding recommendations for the decision-making of government
and enterprises, and finally illustrates the limitations and future research prospects.

3. Mechanism Analysis and Research Hypotheses

This study analyzes the mechanism of environmental regulation affecting enterprise green
technology innovation from three aspects: government, enterprise, and regional differences.

3.1. The Mechanism of the New Environmental Protection Law on Green Innovation Activities

Environmental regulation is a policy tool for governments to use mandatory means
to reduce environmental pollution. The NEPL is an ordered environmental regulation
policy. Compared with other incentive environmental regulation means, its scope of action
is more extensive, and it has more stringent mandatory guidelines. Faced with the severe
constraints caused by the mandatory environmental regulation policy, enterprises will
make decisions according to their own situation, showing heterogeneous self-selection
behavior, namely, transfer, upgrading or transformation [45,46]. For small businesses, due
to their financial and technical constraints, the cost of environmental regulation cannot
be internalized in a short period of time, and relocation or being shut down become the
main responses for dealing with the environmental regulation policy. For medium-sized
enterprises with certain financial and technical support, green technology innovation is
carried out with the goal of energy conservation and emission reduction, and the produc-
tion line can be transformed, so as to move towards upgrading their business. For large
enterprises with strong comprehensive strength, they can carry out all-round resource
reconfiguration in the technical space, geographical space and industrial space according
to their own characteristics, so as to cope with the environmental regulation through the
three ways of transfer, upgrading and transformation [22]. When the compensation effect
of the environmental regulation on enterprise innovation exceeds the offset effect of the
cost internalization caused by the environmental regulation, then enterprise innovation
obtains sustainable conditions, that is, the environmental regulation plays a positive role
in promoting enterprise innovation. As with the opinions of the Porter hypothesis, en-
vironmental regulation can improve enterprises’ innovation abilities and enhance their
competitiveness [24].

With the transfer of time, when mandatory constraints become routine, the society will
generally recognize the green development path. At this time, green innovation becomes
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the main development mode of enterprises. When the enterprise is guided by the concept
of green innovation throughout the whole process of output, this process requires a certain
period of accumulation and precipitation, and this upgrading and transformation cannot
be completed in a short timeframe. Therefore, there is a certain lag in the positive effect
from environmental regulation on green technological innovation.

Hypothesis 1 (H1). The New Environmental Protection Law (NEPL) of China has a positive
impact on green technology innovation, but the policy effect is lagging behind.

3.2. The Mechanism of the Regional Differences Influencing Environmental Regulation and
Enterprises’ Green Innovation

With regard to environmental protection, in the process of carrying out the national
policy, provinces often formulate local laws and regulations according to local conditions
from the aspects of economic development, industrial development, and the technical level
of their respective provinces. China has a vast territory, and the difference in economic
level, education level and energy consumption between the regions will lead to different
intensities and types of environmental regulation policies, leading to different effects on
green technology innovation.

3.2.1. Differences in Economic Development Levels

This study analyzes the influence of the difference in economic development level on
the green technology innovation of the government and from enterprises.

From the perspective of the government, the government’s policy objectives and focus
will transform according to the trend of economic development. When regional economic
development reaches a certain level, the government often transfers the working focus to
industrial transformation and upgrading. Moreover, the relevant literature reveals that
environmental regulation can promote the adjustment and optimization of industrial struc-
tures in the region. Therefore, the government will actively innovate green technology to
accelerate green and clean industrial development. From the perspective of enterprises, the
better the regional economic development, the more active the innovation of enterprises is.

3.2.2. Differences in Education Levels

The difference in education level between regions also affects the policy effect of
environmental regulation. This study explains the mechanism of environmental regulation
in two ways.

First, human capital plays an important role in technological innovation, especially in
the R&D ability of employees. The higher education level in the region can often cultivate
more high-quality innovative talent, thus providing the necessary human capital support
for the green technology innovation of enterprises. Second, as a new engine of economic
development, the industry–university–institute cooperation model can promote the R&D
innovation activities of enterprises by integrating the tripartite resources of industry, uni-
versity, and research institutions [47]. In regions with high levels of education, research
institutions and universities are more intensive, and the combination of production, educa-
tion, and research is more active, which can provide the necessary talents and technical
support for green technology research and development and reduce the cost of information.

3.2.3. Differences in Energy Consumption Levels

In addition to the difference in economic development levels and education levels, the
difference in energy consumption between regions will also affect the green technology
innovation of enterprises. Specifically, a regional industrial structure with more energy con-
sumption is generally characterized by a large proportion of the first and second industries,
and a small proportion of the tertiary industry, while environmental pollution in the region
is often more serious. The government will formulate stringent environmental regulation
policies to reduce pollutant emissions to transform the mode of economic development.
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If the proportion of tertiary industry in the region with less energy consumption is larger,
then the pollutants emitted by enterprises in the region are lower, therefore, the environ-
mental protection policy is more relaxed, and the pressure of green technology research
and development is reduced.

Hypothesis 2 (H2). The impact of environmental regulation policies on green technological inno-
vation is different under different economic levels, education levels and energy consumption levels.

4. Materials and Methods

4.1. Model Building Econometric Strategy
4.1.1. Benchmark Difference-in-Differences

This study uses the difference-in-differences (DID) model to analyze the impact of
environmental regulation on green technology innovation. Therefore, this study constructs
the following regression model and selects the following control variables based on the
theoretical analysis:

Yi,t = α0 + α1·treati,t × posti,t + δ·xi,t + μi,t + γi,t + εi,t (1)

In the upper formula, i denotes a province, t denotes the year. The explained variable
Yi,t measures the growth of green technology innovation activities, represented by green
invention patent applications and posti,t denotes the time-determination variable. This
variable is 0 before the policy shock year and is taken as 1 after the policy shock, while
treati,t denotes the virtual variable of whether each province strengthens the environmental
regulation in response to policy shocks. The indicator variable treati,t × posti,t denotes a
cross variable determined by the value of the annual posti,t and treati,t. The coefficient of
the cross variable reflects the effect of environmental regulation policy, that is, after a policy
shock, whether the enhancement of government environmental regulation will effectively
promote green technology innovation. If the implementation of the province’s policy was
set as the following year, treati,t × posti,t is 1, otherwise treati,t × posti,t is 0. xi,t represents
other control variables that also affect green technology innovation (GTI). Additionally,
μi,t is the city fixed effect, γi,t is the time fixed effect, and εi,t is a random disturbance.

4.1.2. Parallel Trend Assumption and Time Trend Analysis

The parallel trend assumption is the basic premise of DID analysis. Therefore, this
study conducted a dynamic effect analysis to test whether the benchmark regression met
the parallel trend assumption, as well as to identify the time effect of the environmental
regulation policy. An event study approach was employed to study the dynamic effect of the
environmental regulation policy on green technology innovation. In order to observe how
the promulgation of the new environmental law affects the behavior of green technology
innovation over time, reference is made to Chen (2017) [48] and Tao Feng et al. (2021) [22].
The model is described as follows:

Yi,t = β0 + βt·∑2019
t=2011 t �=2014 treati,t × posti,t + δ·xi,t + μi,t + εi,t (2)

where posti,t is the time dummy variable, treati,t × posti,t is the interaction term of the
grouping variable treati,t and the time dummy variable posti,t, and βt represents the policy
effect of the new environmental law on the quantity and quality of green patents in this
year. Here, the first year (2014) of the formal implementation of the new environmental
law was taken as the reference group, and the corresponding interaction term was not
introduced. This model can also be used for the key parallel trend test in a DID estimation.
If the estimated coefficient βt of treati,t × posti,t is not significant before 2015, it means that
the parallel trend condition is satisfied.

136



Sustainability 2022, 14, 1714

4.1.3. Regional Differences Analysis

In addition, this study intended to analyze the environmental regulation policy effect
on green technology innovation with regional differences. The model is further described
as follows:

Yi,t = λ + γ·treati,t × posti,t × H, M, Lgdpi,t + δ·xi,t + μi,t + εi,t (3)

Yi,t = λ + γ·treati,t × posti,t × H, M, Ledui,t + δ·xi,t + μi,t + εi,t (4)

Yi,t = λ + γ·treati,t × posti,t × H, M, Lenergyi,t + δ·xi,t + μi,t + εi,t (5)

where Hgdpi,t, Mgdpi,t and Lgdpi,t represent high, medium and low levels of economic
development, respectively, and Hedui,t, Medui,t, and Ledui,t represent high, medium and
low education levels, respectively. This study also used local unit GDP energy consumption
to measure the level of local energy consumption, grouped by high, medium and low,
generating three virtual variables: Henergyi,t, Menergyi,t, and Lenergyi,t, represent high,
medium and low levels of energy consumption, respectively.

4.1.4. Determination on the Time-Point of Policy Shocks

By consulting the policies and regulations promulgated by the relevant departments
in China in the last 10 years, this study selected the revised Environmental Protection Law
(New Environmental Protection Law, NEPL) adopted by vote on 24 April 2014 and formally
implemented on 1 January 2015, as the time point of the policy impact. The reasons for
choosing the NEPL as a policy shock were as follows: first, the NEPL differs from local
laws and regulations, and its influence is national, dominant and authoritative. The NEPL
also has far-reaching implications because it is accompanied by a large number of legal
documents and technical standards updates. Second, the NEPL is the most significant since
the implementation of China’s Environmental Protection Law, defining the mission and
responsibility of government departments for environmental supervision, and making
environmental regulation operational and enforceable [49]. Finally, the NEPL has exerted
considerable pressure on enterprises, including limiting the emissions standards of some
pollutants, and updating the environmental protection indicators of some products in some
industries. On the one hand, the implementation of these measures has increased the cost
of sewage from enterprises. On the other hand, it also encourages enterprises to develop
green technology innovation, reduce pollutant emissions in their production processes, and
improve the green level of products. Therefore, in terms of the severity of the policy, the
promulgation of the NEPL has an obvious environmental regulation effect, which in turn
has a certain impact on enterprises’ green technology innovation. Considering the accuracy
of the study, this study uses the panel data of 30 provincial-level administrative regions
in China (excluding Tibet, Hong Kong, Macao, and Taiwan) from 2011 to 2019 to verify
whether the promulgation of the NEPL has a significant policy impact effect.

Figure 1 shows the change of total sulfur dioxide emissions in China from 2011 to 2019.
Overall, it can be seen that the promulgation of the new Environmental Protection Law
has a more obvious inhibitory effect on SO2 emissions and industrial SO2 emissions, and
that the emissions of various provinces in China have been reduced to varying degrees.
Therefore, it was reasonable to choose the new Environmental Protection Law as the time
point of the policy shocks.
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Figure 1. SO2 emissions and industrial SO2 emissions in China from 2010 to 2019.

4.1.5. Selection of Treatment Group and Control Group

For empirical analysis, the samples needed to be divided into a treated group and a
control group. Since the implementation of the NEPL is of national significance, it was im-
possible to distinguish between the provinces that do not implement policies and provinces
that do implement policies. Therefore, this study adopted the generalized difference-in-
differences method to divide the treated group and the control group according to the
effect after implementation. Among them, the treatment group was the province with
significantly enhanced environmental regulation after the implementation of the NEPL,
and the control group was the region with insignificant enhancement of environmental
regulation after the implementation of the NEPL. In this study, the degree of decline in
total SO2 emissions was the basis for classification. Therefore, the average reduction ratio
of total SO2 emissions in each province from 2015 to 2019 and 2011 to 2014 was calculated.
Taking 61.24% as the dividing standard, the provinces with higher emissions than 61.24%
were set as the treated group, and the provinces with lower emissions than 61.24% were set
as the control group. Table 1 presents the grouping results, with 14 provinces in the treated
group and 16 provinces in the control group.

Table 1. Results of treated group and control group.

Groups Provinces

Treated group

Beijing (78.23%), Tianjin (75.07%), Shanxi (61.77%), Shanghai (75.40%),
Zhejiang (69.12%), Shandong (61.31%), Henan (70.23%), Hubei

(61.78%), Guangdong (64.51%), Guangxi (64.96%), Chongqing (67.15%),
Sichuan (61.45%), Shaanxi (65.07%), Gansu (62.40%)

Control group

Hebei (58.32%), Inner Mongolia (55.25%), Liaoning (56.05%), Jilin
(56.69%), Heilongjiang (54.36%), Jiangsu (50.72%), Anhui (50.62%),

Fujian (49.48%), Jiangxi (36.54%), Hunan (50.64%), Qinghai (30.26%),
Hainan (57.31%), Guizhou (58.11%), Yunnan (46.57%),

Ningxia (51.62%), Xinjiang (49.62%)

4.2. Variable Setting

This part introduces the selection of explained variables, explanatory variables and
control variables. The main variables and the associated definitions are in Table 2.
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Table 2. Main variables and the associated definitions.

Type of Variable Definition Variable Description

Explained variable Level of enterprises’ green
technology innovation app_inventioni,t

The logarithm of the number of
patent applications for green

technology inventions for each
year in each province is used as a

measurement index.

Explanatory variable of
policy effect

Time effect posti,t

The variable value is set to 0
before 2015 and taken as 1 after

2015 (including 2015).

Policy effect treati,t

The variable value is set to 0 in
the control group and taken as 1
after 2015 in the treated group.

Cross term treati,t × posti,t
The variable value is determined
by the value of treati,t and posti,t.

Explanatory variable of
regional differences

Economic development levels gdpi,t

GDP per capita with 2000 as base
is used as a group of indicators,
divided into high, medium and

low groups:
Hgdpi,t, Mgdpi,t, Lgdpi,t.

Education levels edui,t

The number of years of education
is used as a grouping indicator
and di-vided into three groups:

Hedui,t, Medui,t, Ledui,t.

Energy consumption levels energyi,t

Energy consumption per unit
GDP as a grouping indicator,

divided into high, medium and
low groups:

Henergyi,t, Menergyi,t, Lenergyi,t.

Cross term

treati,t × posti,t ×
H, M, Lgdpi,t

treati,t × posti,t ×
H, M, Ledui,t

treati,t × posti,t ×
H, M, Lenergyi,t

The variable value is determined
by the value of treati,t, posti,t and

H, M, Lgdpi,t
(
edui,t , energyi,t).

Control variable

Government subsidies subsidyi,t

Proportion of environmental
protection subsidy to total fiscal
expenditure in each province is
used as a measurement index.

Collection of sewage charges taxi,t

Proportion of collection of sewage
to total fiscal expenditure per year

in each province is used as a
measurement index.

R&D Investment of
the enterprise rdi,t

The logarithm of the internal
expenditure of R&D funds per

year in each province is used as a
measurement index.

Foreign trade dependence tradei,t

The ratio of the total export to
GDP in each province per year is

used as a measurement index.

Ownership structure shareholdi,t

The ratio of state-owned and
collective-owned enterprises to
total number of enterprises in

each province per year.

4.2.1. Explained Variable

The explained variable is the level of green technological innovation. Constructing
the green technological innovation index and green patents are currently the two most
popular methods to measure the level of green technological innovation. The number
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of patent applications reflects the active degree of innovation, which is mainly divided
into invention patents and utility model patents. According to the Chinese patent survey
report, compared with utility model patents, invention patents have more R&D investment,
longer R&D cycles, more stringent audits and thus more difficulties to apply. Therefore,
invention patents can better reflect the innovation ability [50]. This study mainly used
the number of green invention patents to measure the number of green technological
innovation activities, and then reflected the level of green technological innovation. This
study used the logarithm of the number of green invention patent applications in each
province from 2011 to 2019 as the explained variable.

4.2.2. Explanatory Variable

The core explanatory variable is the environmental regulation policy effect. On the
connotation and measurement of environmental regulation, it is mainly analyzed from the
perspective of command-and-control regulation (CCR) and market-based incentive regula-
tion (MIR). Different authors have measured the intensity of environmental regulations
in a variety of ways, including the method of comprehensive index and the method of
single index. The DID model is one of the most common methods for measuring the policy
effect. Some scholars have taken the implementation of environmental regulation policy
as a policy impact and used the DID method to verify the effect of command-and-control
environmental regulation policy [7]. In recent years, some scholars have begun to measure
and analyze from the perspective of implicit environmental regulation, and to measure the
intensity of environmental regulation from the perspective of public awareness of environ-
mental protection and participation. This study’s authors believe that it is important to
improve public awareness of environmental protection and participation, but in the current
situation, such implicit environmental regulation cannot achieve the expected significant
effect, therefore the measurement of such environmental regulation was not included in the
main research scope of this study. This study took the implementation of the NEPL as a pol-
icy shock point, set up a treatment group and a control group, constructed a time dummy
variable and a policy dummy variable, and took the product of the two variables as the core
explanatory variable to measure the policy effect of mandatory environmental regulation.

Moreover, this study took the explanatory variables reflecting regional differences.
First, this study used local per capita GDP data to measure the level of local economic
development reflecting differences in economic development, and grouped them by high,
medium and low, generating three virtual variables: Hgdpi,t, Mgdpi,t, and Lgdpi,t. Second,
this study measured the level of local education with the per capita years of education,
and grouped them by high, medium and low, generating three virtual variables: Hedui,t,
Medui,t, and Ledui,t. Third, this study used local unit GDP energy consumption to measure
the level of local energy consumption, and grouped them by high, medium and low,
generating three virtual variables: Henergyi,t, Menergyi,t, and Lenergyi,t.

4.2.3. Control Variable

This study set the control variables from both government and enterprise aspects.
Here follows the five control variables.

Government subsidy reward and government pollution tax punishment. Environ-
mental regulation is a policy tool for governments to use mandatory means to reduce
environmental pollution. Generally speaking, the ultimate goal of environmental regula-
tion is not to stimulate green technological innovation in enterprises. Previous studies have
found that environmental regulation policies have positive technical effects and negative
distortion effects. On the one hand, the policy compulsion of environmental regulation
urges enterprises to perform green technology innovation to reduce environmental pol-
lution. On the other hand, the high environmental tax in environmental regulation may
crowd out the R&D investment in green technology innovation, and enterprises can obtain
green technology through patent purchases rather than through their own R&D; in sum-
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mary, the effect of environmental regulation policy is different from that of the technical
and distortion effects.

Green technology R&D investment. R&D investment has a direct positive impact
on enterprise innovation performance [51]. Green R&D investment is the premise and
foundation of green technology innovation, and related research points out that the rela-
tionship between them is not a simple linear relationship. In particular, only reasonable
and sustained R&D investment can make the innovation activities of enterprises achieve
obvious results. If R&D investment is insufficient and innovation activities lack the neces-
sary financial support, the technological R&D progress of enterprises will be affected. If
R&D investment is excessive, the unreasonable allocation of resources within the enterprise
will reduce the economic benefits of the enterprise and ultimately have a negative impact
on the enterprises’ green technology innovation.

Foreign trade dependence of enterprises. There are two reasons why the level of
foreign trade affects enterprises’ green technology innovation. First, the level of green
technology and environmental standards for products are different, so countries import
and export products in accordance with their own standards. Second, based on traditional
trade protection and trade sanctions, an increasing number of countries have begun to
adopt ‘green trade barriers’ to protect their markets [52]. Specifically, green trade barriers
refer to laws, regulations, standards, and other means to limit the import of products with
higher pollution. To achieve trade protection, this standard is generally not lower than
the national environmental standards. From the perspective of theoretical research, many
scholars have analyzed and demonstrated from various industries that domestic enterprises
should increase the level of green environmental protection of their own products in order
to deal with the constraints of ‘environmental trade barriers’ in various countries.

Ownership structure of enterprises. China’s corporate ownership forms are diverse,
and the impact of environmental regulation on green technology innovation may differ
under different ownership structures. First, state-owned enterprises and collectively owned
enterprises have the attributes of policy tools [53], and they need to play the role of policy
tools in environmental protection. Therefore, under the background of environmental
regulation, the green technology innovation effect of this type of enterprise is more obvious.
Second, to alleviate the pressure of capital investment in enterprises’ innovative activities,
the government often subsidizes these enterprises; however, it is difficult to obtain govern-
ment subsidies for enterprises with different forms of ownership. Related documents point
out that compared with state-owned and collectively owned enterprises, other types of
ownership enterprises have more difficulties in applying for government subsidies. Third,
green technology innovation has the characteristics of large investment and a lagging
return on income so that it cannot bring economic benefits to enterprises in the short term.
Therefore, compared with state-owned and collectively owned enterprises, other ownership
types of enterprises lack the initiative to perform green technology innovation.

4.3. Data Sources

This study used the panel data of 30 provincial-level administrative regions in China
(excluding Tibet, Hong Kong, Macao, and Taiwan) from 2011 to 2019. For the purpose
of ensuring the accuracy and rigor of this study, the data used in this study were from
the following official sources: the data on GDP, government’s fiscal expenditure, fiscal
revenue, and population education level derived from the National Bureau of Statistics
of the People’s Republic of China. The data on SO2 emissions, environmental subsidies
and sewage charges were derived from the China Environmental Statistics Yearbook. The
energy consumption was derived from the China Energy Statistics Yearbook; and the relevant
data of enterprises were derived from the China Industrial Economic Statistics Yearbook. The
green patent data was taken from the China Research Data Service Platform (CNRDS) and
filtered by province. Table 3 provides some descriptive statistical results for the variables.
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Table 3. The statistical description of the main variables.

Variables Observation Mean Std. Dev. Min Max

app_inventioni,t 270 7.4402 1.4531 2.6391 10.7811
treati,t 270 0.4667 0.4998 0.0000 1.0000
posti,t 270 0.5556 0.49069 0.0000 1.0000

treati,t × posti,t 270 0.2593 0.4390 0.0000 1.0000
treati,t × posti,t × Hgdpi,t 270 0.1111 0.3149 0.0000 1.0000
treati,t × posti,t × Mgdpi,t 270 0.0741 0.2624 0.0000 1.0000
treati,t × posti,t × Lgdpi,t 270 0.0741 0.2624 0.0000 1.0000
treati,t × posti,t × Hedui,t 270 0.0926 0.2904 0.0000 1.0000
treati,t × posti,t × Medui,t 270 0.0926 0.2904 0.0000 1.0000
treati,t × posti,t × Ledui,t 270 0.0741 0.2624 0.0000 1.0000

treati,t × posti,t × Henergyi,t 270 0.0556 0.2295 0.0000 1.0000
treati,t × posti,t × Menergyi,t 270 0.0926 0.2904 0.0000 1.0000
treati,t × posti,t × Lenergyi,t 270 0.1111 0.3149 0.0000 1.0000

subsidyi,t 270 0.0299 0.00098 0.0118 0.0681
taxi,t 270 0.0029 0.0021 0.0001 0.0151
rdi,t 270 14.7163 1.3118 11.5494 17.2490

tradei,t 270 0.1396 0.1381 0.0069 0.6602
shareholdi,t 270 0.1058 0.0749 0.0171 0.2953

Note: Table 3 is a statistical description of the standard numerical values (no logarithm) of the main variables in
this study. This study used exponential smoothing to interpolate sewage charges data due to data missing for
individual years in individual provinces.

5. Empirical Results and Discussions

5.1. Benchmark Regression Results

This study first conducted a regression analysis of the full sample data without consid-
ering the regional differences to prove that the green technology innovation in provinces
with an enhanced environmental regulation also improved after the policy shock. As
mentioned above, this study used the DID method for empirical analysis. The benchmark
regression results are shown in Table 4.

Table 4. Benchmark regression results.

app_inventioni,t
(1) (2) (3) (4) (5) (6)

treati,t × posti,t
1.0189 ***
(0.1013)

0.9586 ***
(0.1034)

0.8010 ***
(0.0957)

0.2432 ***
(0.0632)

0.2236 ***
(0.0645)

0.2153 ***
(0.0627)

subsidyi,t
14.0406 **
(5.8608)

15.7923 ***
(5.2874)

0.6152
(3.2439)

−0.2664
(3.2959)

0.9730
(3.2147)

taxi,t
−181.1505 ***

(24.2092)
−62.8807 ***

(15.5571)
−63.9463 ***

(15.5417)
−49.4819 ***

(15.5286)

rdi,t
1.2434 ***
(0.0663)

1.5540 ***
(0.0795)

1.6553 ***
(0.0814)

tradei,t
−0.9124
(0.6421)

−0.3797
(−0.6379)

shareholdi,t
4.9062 ***
(1.2492)

Constant 7.1760 ***
(0.0433)

14.0406 **
(5.8608)

7.2930 ***
(0.1715)

−15.7796 ***
(1.1205)

−15.1643 ***
(1.1990)

−17.3253 ***
(1.2873)

Year effects Yes Yes Yes Yes Yes Yes
City effects Yes Yes Yes Yes Yes Yes

Observations 270 270 270 270 270 270
R−squared 0.2973 0.3138 0.4449 0.8026 0.8043 0.8164

Note: Standard errors in parentheses; ** and *** represent 5% and 1% significance levels, respectively.

According to the regression results of the model (6), the coefficient of interaction term
treati,t × posti,t was significantly positive at the 1% level, indicating that the environmental
regulation policy had a positive effect on green technology innovation. Furthermore, the
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treati,t × posti,t increased the app_inventioni,t statistically significantly, by approximately
21.53% with all the control variables. Meanwhile, the promotion effect of government
subsidies on green technology innovation was not obvious, but the negative effect of a
government pollution tax on green technology innovation was obvious. As expected, R&D
investment promoted green technology innovation, and state-owned or collective-owned
enterprises had stronger green technology innovation capabilities. The coefficient of the
foreign trade dependence was negative but not obvious, indicating that foreign trade
dependence is not the main reason affecting green technology innovation.

5.2. Parallel Trend Assumption and Time Trend Analysis

In addition to the premise of randomness, the DID method also needed to verify the
parallel trend assumption, that is, it needed to verify that if the treated group was not
affected by policy shocks, then the change trend should be the same as the control group.
Therefore, if this assumption does not hold, it cannot be explained that the impact on the
treated group was caused by policy shocks. At present, for the assumption of a parallel
trend, the treated group and the plotting method can be generally used to observe the
change trend of the two groups of data. In addition, the year before the policy shock
could also be selected as the time dummy variable to observe whether the corresponding
interaction terms were significant. If they are not significant, this indicates that the data
basically meets the parallel trend assumption. The latter detection method is also more
common in practical applications. In this study, we generated the interaction terms between
the year virtual variables and the processing group virtual variables, and then regressed
these interaction terms as explanatory variables. The coefficients of the interaction terms
reflected the difference between the treated and control groups in a specific year. We needed
to confirm whether the coefficients of the interaction terms were significant or not, and if
not significant, then the data basically met the parallel trend assumption.

Figure 2 shows the dynamic effect of the promulgation and implementation of the
NEPL on the green technology innovation activities. The regression results of the parallel
trend assumption and time trend are in Appendix A. It can be seen that the estimated
coefficients of the years before the implementation of the NEPL were negative and basically
insignificant, which indicated that the parallel trend assumption of the DID estimation
was satisfied. After the promulgation and implementation of the NEPL, the number of
green patent applications had increased significantly from 2015 to 2019. Specifically, the
coefficients of the interaction terms in 2015 to 2019 were significantly positive, while the
coefficients of the interaction terms from 2013 to 2015 were basically not significant. The
above results show that the promulgation and implementation of the NEPL had increased
the number of green innovation patents, and that the policy effect was lagging behind.
Therefore, Hypothesis 1 was verified.

Figure 2. Dynamic effect analysis.
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5.3. Regression Results Based on Regional Differences

In addition to the two direct entities of government and enterprise, the differences
between the different categories are also worth discussing. This study holds that from
the three angles of economic development difference, education difference, and energy
consumption difference, the regional interaction terms are constructed to perform regres-
sion analysis. The regression results are presented in Table 5. The coefficients of control
variables are not showed in Table 5 for simplicity.

Table 5. Regression results based on regional differences.

app_inventioni,t

Difference in economy levels (1) (2) (3)

treati,t × posti,t × Hgdpi,t
0.2278 **
(0.1037)

treati,t × posti,t × Mgdpi,t
0.1020

(0.1082)

treati,t × posti,t × Lgdpi,t data 0.2533 **
(0.1042)

Observations 270 270 270
R-squared 0.8110 0.8079 0.8119

Difference in education levels (4) (5) (6)

treati,t × posti,t × Hedui,t
0.1885 *
(0.1100)

treati,t × posti,t × Medui,t
0.0627

(0.0962)

treati,t × posti,t × Ledui,t
0.3361 ***
(0.1034)

Observations 270 270 270
R-squared 0.8095 0.8075 0.8155

Difference in energy consumption (7) (8) (9)

treati,t × posti,t × Henergyi,t
0.0290

(0.1216)

treati,t × posti,t × Menergyi,t
0.2371 **
(0.0950)

treati,t × posti,t × Lenergyi,t
0.2639 **
(0.1020)

Observations 270 270 270
R-squared 0.8072 0.8121 0.8125

Note: Standard errors in parentheses; *, ** and *** represent 10%, 5%, and 1% significance levels, respectively.

According to the regression results of the environmental regulation policy effect with
differences in economic development, the coefficients of treati,t × posti,t × Hgdpi,t, treati,t ×
posti,t × Mgdpi,t, and treati,t × posti,t × Lgdpi,t were positive. To be exact, the coefficients
of treati,t × posti,t × Hgdpi,t and treati,t × posti,t × Lgdpi,t were significantly positive at the
5% level. Furthermore, treati,t × posti,t × Hgdpi,t and treati,t × posti,t × Lgdpi,t separately
increased app_inventioni,t statistically by approximately 22.78% and 25.33% with all the
control variables, indicating that the environmental regulation policy was more likely to
promote green technology innovation in regions with high or low economic development
levels. Conversely, the coefficient of treati,t × posti,t × Mgdpi,t was not obvious, indicating
that the environmental regulation policy had little positive effect on green technology
innovation in areas with a medium economic development level.

As far as the difference in education level is concerned, the coefficients of the treati,t ×
posti,t × Hedui,t, treati,t × posti,t × Medui,t, and treati,t × posti,t × Ledui,t were positive. To
be exact, the coefficients of treati,t × posti,t × Hedui,t and treati,t × posti,t × Ledui,t were
significantly positive at the 10% level and 1% level, respectively. Furthermore, treati,t ×
posti,t × Hedui,t and treati,t × posti,t × Ledui,t increased app_inventioni,t statistically by
nearly 18.85% and 33.61% with all the control variables, indicating that the environmental
regulation policy was more likely to promote green technology innovation in regions with
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high or low education levels. Additionally, the coefficient of treati,t × posti,t × Medui,t was
not obvious, indicating that the environmental regulation policy had little positive effect
on green technology innovation in areas with a medium education level.

In terms of the difference in energy consumption, the coefficients of treati,t × posti,t ×
Henergyi,t, treati,t × posti,t × Menergyi,t, and treati,t × posti,t × Lenergyi,t were positive. To
be exact, the coefficients of treati,t × posti,t × Menergyi,t and treati,t × posti,t × Lenergyi,t
were significantly positive at the 5% level. Furthermore, treati,t × posti,t × Menergyi,t and
treati,t × posti,t × Lenergyi,t increased app_inventioni,t statistically by approximately 23.71%
and 26.39% with all the control variables, indicating that the environmental regulation
policy was more likely to promote green technology innovation in regions with a lower
energy consumption levels. The coefficient of treati,t × posti,t × Henergyi,t was not obvious,
indicating that environmental regulation policy had little positive effect on green technology
innovation in areas with a high energy consumption level.

Therefore, Hypothesis 2 was verified.

5.4. Robust Check
5.4.1. Replace Explained Variable into Green Invention Patent Acquisition

Although the number of patent applications can reflect the degree of activity and
ability of green technology innovation to some extent, not all the patents applied for can be
approved. Therefore, this study further selected the quantitative index of patent acquisition
as the explained variable and took its logarithm for the regression test to verify the reliability
of the research conclusion. The regression results are shown in Table 6.

Table 6. Results of the robustness checks 1.

acq_inventioni,t
(1) (2) (3) (4) (5) (6)

treati,t × posti,t
0.7782 ***
(0.0768)

0.7380 ***
(0.0787)

0.6264 ***
(0.0738)

0.2086 ***
(0.0513)

0.1945 ***
(0.0525)

0.841 ***
(8.060)

subsidyi,t
9.3644 ***
(4.4564)

10.6058 ***
(4.0823)

−0.7620
(2.6348)

−1.3932
(2.6796)

−0.4343
(2.6217)

taxi,t
−128.3800 ***

(18.6917)
−39.7943 ***

(12.6359)
−40.5571 ***

(12.6355)
−29.3662 ***

(12.6641)

rdi,t
1.1871 ***
(0.0623)

1.1650 ***
(0.0646)

1.2434 ***
(0.0663)

tradei,t
−0.6531
(0.5221)

−0.2410
(0.5202)

shareholdi,t
3.7959 ***
(1.0187)

Constant 5.8751 ***
(0.0328)

5.6059 ***
(0.1322)

5.9748 ***
(0.1324)

−11.3069 ***
(0.9101)

−10.8664 ***
(0.9748)

12.5383 ***
(1.0498)

Year effects Yes Yes Yes Yes Yes Yes
City effects Yes Yes Yes Yes Yes Yes

Observations 270 270 270 270 270 270
R-squared 0.3033 0.3131 0.4271 0.7745 0.7760 0.7886

Note: Standard errors in parentheses; *** represents 1% significance level.

In models (1) to (6), the coefficients of the interaction terms treati,t × posti,t were
significantly positive at the 1% level, indicating that the promulgation of the NEPL had
a certain positive promotion effect on green technology innovation, which was basically
consistent with the benchmark regression results, indicating that the research conclusions
are robust.

5.4.2. Replace Explanatory Variables into Interaction Terms with Regional Differences

According to the regional economic development level, education levels and energy
consumption levels, the different provinces were divided into high level and low level.
Among them, the provinces with a high economic development level corresponded to the
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dummy variable 1, and the provinces with a low economic development level corresponded
to the dummy variable 0; the provinces with a high education level corresponded to the
dummy variable 1, and the provinces with a low education level corresponded to the
dummy variable 0; provinces with a high energy consumption level corresponded to the
dummy variable 0; and provinces with a low energy consumption level corresponded to
the dummy variable 1. The regression results are shown in Table 7.

Table 7. Results of the robustness checks 2.

app_inventioni,t acq_inventioni,t
(1) (2) (3) (4) (5) (6)

treati,t × posti,t × gdpi,t
0.2398 **
(0.0928)

0.1665 **
(0.0762)

treati,t × posti,t × edui,t
0.1491 *
(0.0869)

0.1294 *
(0.0711)

treati,t × posti,t × energyi,t
0.2373 ***
(0.0686)

0.2069 ***
(0.0559)

subsidyi,t
0.8468

(3.2614)
0.7513

(3.3253)
0.9939

(3.2129)
−0.3660
(2.6799)

−0.6213
(2.7193)

−0.4148
(2.6204)

taxi,t
−55.9687 ***

15.8030
−50.3484 ***

(15.8145)
−55.3665 ***

(15.5676)
−34.1441 ***

(12.9853)
−30.1273 ***

(12.9328)
−34.5012 ***

(12.6965)

rdi,t
1.7175 ***
(0.0784)

1.7372 ***
(0.0784)

1.6520 ***
(0.0816)

1.3034 ***
(0.0644)

1.3150 ***
(0.0641)

1.2406 ***
(0.0665)

tradei,t
−0.0215
(0.7031)

−0.4556
(0.6711)

−0.2694
(0.6446)

−0.0717
(0.5777)

−0.3095
(0.5488)

−0.1454
(0.5257)

shareholdi,t
5.1061 ***
(1.2618)

5.1012 ***
(1.2719)

5.1992 ***
(1.2487)

3.9607 ***
(1.0368)

3.9660 ***
(1.0401)

4.0517 ***
(1.0184)

Constant −18.2645 ***
(1.2512)

−18.4954 ***
(1.2554)

−17.3028 ***
(1.2880)

−13.4239 ***
(1.0281)

−13.5614 ***
(1.0267)

12.5206 ***
(1.0505)

Year effects Yes Yes Yes Yes Yes Yes
City effects Yes Yes Yes Yes Yes Yes

Observations 270 270 270 270 270 270
R-squared 0.8125 0.8095 0.8165 0.7808 0.7794 0.7887

Note: Standard errors in parentheses; *, ** and *** represent 10%, 5%, and 1% significance levels, respectively.

In models (1) to (3), the number of green invention patent applications was used
as the explained variable indicator, and the coefficients of interaction terms were signifi-
cantly positive. In models (4) to (6), the number of green invention patents acquisitions
was used as the explained variable indicator, and the interaction coefficients were also
significantly positive. The coefficients of the product terms of environmental regulation
policy effects were significantly positive, indicating that on the basis of controlling regional
differences, the promulgation of the NEPL can have a certain positive promotion effect on
green technology innovation, which is basically consistent with the benchmark regression
results. It also further explains the impact of regional differences on the impact of the
environmental regulation on green technology innovation effect and verifies the empirical
results’ robustness.

6. Conclusions

6.1. Research Findings

While examining the policy effect of the environmental regulation on green technology
innovation, this study further introduced the influence of regional differences on the basis
of previous literature research, clarified the mechanism from three levels of economy, edu-
cation and energy consumption, and deepened the research on the impact of environmental
regulation on green technology innovation. From the results of the mechanism analysis
and empirical analysis, the key findings of this study are as follows:

First, the New Environmental Protection Law (NEPL) of China has a positive impact
on green technology innovation. According to the benchmark regression results and ro-
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bustness checks, the coefficients interaction terms are significantly positive. That is, the
weak Porter hypothesis is established, which shows that the implementation of environ-
mental regulation policy in China has a certain effect at this stage; however, it should be
emphasized that the empirical results of this study cannot judge the competitiveness of
enterprises so that this study cannot verify whether a ‘strong’ Porter hypothesis is estab-
lished. According to the empirical results, the government’s pollution charge punishment
will crack down on the development of green technology innovation activities, while the
R&D investment of enterprises promotes the development of green technology innovation
activities, and they show that state-owned and collective enterprises have more enthusiasm
to carry out green technology innovation activities.

Second, the impact of the environmental regulation policy on green technological inno-
vation is affected by regional differences. That is, the environmental regulation policy has
different effects on green technology innovation under different economic levels, education
levels and energy consumption levels. According to the regression results based on regional
differences, treati,t × posti,t × Hgdpi,t, treati,t × posti,t × Lgdpi,t, treati,t × posti,t × Hedui,t,
treati,t × posti,t × Ledui,t,treati,t × posti,t × Menergyi,t and treati,t × posti,t × Lenergyi,t can
increase app_inventioni,t statistically significantly with all the control variables, but the
coefficients of treati,t × posti,t × Mgdpi,t, treati,t × posti,t × Medui,t and treati,t × posti,t ×
Henergyi,t are not obvious. On the one hand, in regions with high and low levels of eco-
nomic development and education, the promulgation and implementation of the new
environmental law has a significant positive promoting effect on green technology innova-
tion, while the policy effect in regions with medium levels of economic development and
education is not significant. Theoretically, regions with a higher economic development
level and higher education levels have richer social resources, and the effect of policy
implementation should be more obvious. In fact, regions with low levels of economic
development and education will receive more government attention and support than
medium-level regions. This may be the main reason for the insignificant policy effect in the
medium economic development and education level areas in the regression results. On the
other hand, in regions with medium and low energy consumption levels, the promulgation
and implementation of the new environmental law has a significant positive promoting
effect on green technology innovation, while the policy effect in regions with high energy
consumption levels is not significant. This is consistent with common sense. The envi-
ronmental problems in regions with high energy consumption levels are relatively more
serious. Environmental regulation policy has played a more regulatory role in limiting their
pollution emissions, and their impact on innovation activities is not obvious compared
with regions with medium and low energy consumption levels.

6.2. Suggestions

In view of the above findings, this study proposes several suggestions on how to
improve the effect of the environmental regulation policy and green technology innovation,
so as to provide a reference for government and enterprise decision-making.

On the one hand, for the government, there are four policy suggestions. First, the
central government of China should take into account the impact on the optimal level
of green technology innovation exerted by decision-making models of enterprises and
local governments when formulating effective environmental regulation policies [54]. The
government should fully consider the differences between regions and clarify the char-
acteristics of performance and root causes of regional development differences, such as
the actual situation of regional industrial structure characteristics and business develop-
ment. Furthermore, the government should realize that the level of regional economic
development, education and energy consumption can impact the level of the effects of
government policies [55,56]. The government needs to pay attention to the policy effect
results of those regions with medium levels of economic development and education, and
to not reduce their attention, but rather they need to provide targeted guidance policies.
Second, regional governments should promote interregional exchanges and cooperation
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while paying attention to their own development. Government departments can act as
intermediaries to promote the transfer of green technology innovation among regions and
make good use of the external characteristics of green technology innovation. For regions
with weak innovation ability, the introduction of green technology should be strengthened,
while for regions with strong innovation ability, the output of green technology innovation
should be encouraged, so that the efficient transfer and diffusion of green technology inno-
vation can be promoted [57]. Third, environmental problems are not short-term. Similarly,
the solution to environmental problems should be viewed from a long-term perspective,
rather than being solved overnight. The government should formulate environmental
regulation policies that conform to the long-term development of regions and the long-term
operation of enterprises, adjusting the regulatory means according to the development
stage. It is necessary to avoid business difficulties that may be caused by too strict an
environmental regulation, while also avoiding too much environmental pollution from
enterprises caused by a weak environmental regulation policy [58–60]. For example, the
government should appropriately reduce pollution tax pressure when the level of green
technology innovation reaches a certain level in the future. Finally, the government needs
to measure the balance between strengthening environmental protection and encouraging
green innovation when choosing positive incentive policies and negative punitive policies.
If the policy choice is more inclined to encourage green technology innovation, then the
government can appropriately reduce the collection of unnecessary punitive emission
fees. While encouraging enterprises’ innovation activities, the government should also
pay attention to the quality of those enterprises’ innovation and formulate an evaluation
system of the innovation development from multiple perspectives.

On the other hand, in terms of enterprises, first of all, the necessary R&D investment
contributes to the improvement of enterprises’ innovation abilities. Enterprises can ap-
propriately increase R&D investment for green technology innovation when their own
capital base is strong and their operation ability is strong, which is the most important
way to enhance enterprises’ green technology innovation abilities and to carry out green
transformation. Second, the improvement of enterprise nationalization and collectivization
contributes to the improvement of that green technology innovation ability [61,62]. Enter-
prises should learn to cooperate with the government in projects while maintaining their
independent development. Compared with large enterprises, small-sized and medium-
sized enterprises need more government support and project funding because of their
weak capital base and operation ability. In this way, while responding to the development
of national green innovation and the protection of the environment, enterprises can also
improve their adaptability for survival and thus have a longer-term development.

6.3. Limitations and Future Study

This study had some limitations that should be addressed in future work. First, the
number of indicators that measure regional green technology innovation quality was lim-
ited. Only one indicator was chosen for measuring green technology innovation: the
number of green patent applications and acquisitions; however, green technology innova-
tion activities are not only documented by patents. Therefore, the number of indicators
representing the green technological and economic benefits of innovation activities should
be increased in future studies, and the measurement of green innovation quality will be
involved in further studies. Second, the definition of environmental regulation in this
study was relatively simple, the measurement method adopted was relatively singular,
and many aspects were not refined. In future research, the definition and measurement of
environmental regulation will be more accurately refined and classified. Third, this study
measured the impact of environmental regulation on regional green technology innovation
from the three aspects of regional economy, education, and energy consumption through
a regression analysis. In particular, innovation may bring social benefits to the region,
such as the reduction of the unemployment rate, an improvement in people’s income and
consumption levels, and an increase in people’s happiness, which will be addressed in
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future research. Future studies will extend the influence factors of the regional innovation
quality, such as the characteristics of green technology innovation subjects and the degree
of urbanization.
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Appendix A

The regression results of parallel trend assumption and time trend are in Table A1.

Table A1. The regression results of parallel trend assumption and time trend.

app_invention

Before4 −0.8143 ***
(0.2034)

Before3 −0.4575 **
(0.2034)

Before2 −0.2160
(0.2034)

Current 0.2172
(0.2034)

After1 0.5551 ***
(0.2034)

After2 0.7886 ***
(0.2034)

After3 0.1082 ***
(0.0673)

After4 0.8108 ***
(0.2034)

Year effects Yes
City effects Yes

Observations 270
R-squared 0.3813

Note: Standard errors in parentheses; ** and *** represent 5%, and 1% significance levels, respectively.
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Abstract: A lot of research on international convention-controlled halogenated gases (CHGs) has
been carried out. However, few bibliometric analyses and literature reviews exist in this field. Based
on 734 articles extracted from the Science Citation Index (SCI) Expanded database of the Web of
Science, we provided the visualisation for the performance of contributors and trends in research
content by using VOSviewer and Science of Science (Sci2). The results showed that the United
States was the most productive country, followed by the United Kingdom and China. The National
Oceanic and Atmospheric Administration had the largest number of publications, followed by the
Massachusetts Institute of Technology (MIT) and the University of Bristol. In terms of disciplines,
environmental science and meteorological and atmospheric science have contributed the most. By
using cluster analysis of all keywords, four key research topics of CHGs were identified and reviewed:
(1) emissions calculation, (2) physicochemical analysis of halocarbons, (3) evaluation of replacements,
and (4) environmental impact. The change in research substances is closely related to the phase-out
schedule of the Montreal Protocol. In terms of environmental impact, global warming has always
been the most important research hotspot, whereas research on ozone-depleting substances and
biological toxicity shows a gradually rising trend.

Keywords: global research trend; SCI-Expanded database; scientometrics; halogenated gases; climate
change; ozone depletion

1. Introduction

Halogenated gases deplete ozone and contribute to global warming and have received
widespread attention. One of the major characteristics is their extremely high reactivity
with electrons [1]. When they reach the stratosphere after being emitted from the Earth’s
surface, they absorb ultraviolet radiation and decompose, generating halogen radicals.
Halogen radicals are involved in very effective catalytic chain reactions that deplete the
ozone layer, causing a decrease in the ozone concentrations of the stratosphere. Ozone
depletion allows more solar ultraviolet-B radiation (290–320 nm wavelength) to reach the
surface [2], which can cause severe harm to animals, plants, and microorganisms [3–5]. In
addition, these halogenated gases are potent greenhouse gases. The Synthesis Report (SYR)
of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report [6]
highlighted that the cumulative radiative forcing of all halocarbons from 1750 to 2011
accounted for approximately 13% of the total radiative forcing of greenhouse gases. Due
to the dual environmental impact of halogenated gases, the Montreal Protocol and its
amendments included chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs),
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and carbon tetrachloride (CCl4) as ozone-depleting substances that need to be regulated.
Subsequently, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride
(SF6), and nitrogen trifluoride (NF3) were listed by the Kyoto Protocol and the Paris
Agreement as greenhouse gases that need to be regulated. The Kigali Amendment to the
Montreal Protocol called for the phase-down of HFCs in 2016. Hence, the research object
of this study is the above-mentioned international convention controlled halogenated
gases (CHGs).

The international community attaches great importance to the impact of ozone deple-
tion on the environment. The United Nations Environment Programme (UNEP) organised
the Environmental Impact Assessment Committee for Ozone Depletion. Since 1988, re-
search progress on the impact of ozone layer depletion on the environment has been
announced to the world in the form of assessment reports every four years. Since the
implementation of the Montreal Protocol, ozone depletion has been alleviated to a certain
extent [7,8]. Stratospheric ozone is expected to return to the 1960 levels by the end of the
21st century [9]. However, recent scientific studies have found that some CHG concen-
tration and emission trends are different from those expected. For example, the study of
Montzka et al. [10] shows that although reported production has been close to zero since
2006, CFC-11 emissions have increased by 13 ± 5 gigagrams (25 ± 13%) per year since
2012. This discovery brought more attention to CHGs.

The greenhouse effect and global warming caused by CHGs have also received wide in-
ternational attention, and the focus has increased more in recent years. IPCC has published
reports on climate change since 1990. The reports show the growth trend of halogenated
compounds over several decades and indicate that the atmospheric content of HFCs,
PFCs, SF6, etc. has increased rapidly since the 1990s. In April 2021, at the China-France-
Germany Video Summit, China announced that it decided to accept the Kigali Amendment
to strengthen the control of non-CO2 greenhouse gases such as HFCs. The joint statement
issued by China and the United States in response to the climate crisis also highlighted that
the two countries will separately implement measures to gradually reduce the production
and consumption of HFCs.

CHGs are concerned with two major scientific issues of global concern; however, there
are few quantitative summaries and critical reviews in this field. Therefore, it is necessary
to systematically summarise the literature and clarify the research hotspots and future
research trends in this field.

Bibliometrics was first introduced by Pritchard (1969). It has been widely used as
an effective and useful tool for evaluating scientific results and research topics in specific
research fields [11,12]. The performance of national contributors, institutional contributors,
and authors at different levels is an important factor in understanding a field [13,14]. These
studies assume that the number of publications of a country in a specific scientific subfield
reflects its commitment to the state of science and is a reasonable indicator of its contribution
to research and development in that field. Collaboration has intensified in recent years
owing to the rapid development of scientific communication [15]. Collaboration also leads
to a higher citation impact in practically all science areas [16–18]. Therefore, the study of
collaboration patterns between researchers and regions could provide important references
for other scientific researchers and policy managers.

Another important concern in bibliometric studies is the identification of the research
topics. The performance of contributors and their collaborations is not a complete indication
of trends or future directions in the research field [19]. Information closer to the study itself,
including source title, author keyword, keywords plus, and abstracts [20,21], should be
introduced to study the research trend. The analysis combining the words in the title, author
keywords, and keywords plus could minimise some limitations, such as the incomplete
meaning of single words in the title, small sample size for author keywords, and indirect
relationship between keywords plus and the research emphases [11]. These types of words
are checked by time periods to show the trends and to minimise year-to-year fluctuations.
Therefore, word cluster analysis combining author keywords, keywords plus, and title
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content words has proved to be a more effective and comprehensive bibliometric method,
which has been successfully applied to reveal research trends and hotspots in the research
fields of risk assessment [22], drinking water [14], and pluripotent stem cells [23]. The
researchers express the opinion that the collaborative application of co-occurrence analysis
and word cluster analysis can shed light not only on research trends, but also on the role of
landmark works in the evolution of the research field.

In recent years, there has been increasing interest in visualising scientometrics using
data mining and information retrieval to uncover possible collaborative behaviour patterns
among contributors. VOSViewer [18] and Science of Science (Sci 2) [24] are newly devel-
oped tools that are interactive visualisation and exploration platforms for various networks
and complex systems. These tools have been used to develop interactive superposed
scientific maps based on the relationship between text words [25], co-author [26], and
cooperation among research institutes [27].

Based on the relevant publications retrieved from the web of science database from
1990 to 2018, this study carried out a bibliometric measurement of the CHGs field. Through
the quantitative analysis of the literature, the contributions of countries/regions, insti-
tutions, individuals, and disciplines are studied. More importantly, through co-citation
analysis and word clustering analysis, the themes and hotspots in the field of CHGs are
elaborated to provide a quick and in-depth understanding of the field.

2. Methodology

2.1. Data Collection

Data were obtained from the online version of the Science Citation Index (SCI)
Expanded database of the Web of Science from Thomson Reuters in September 2019.
(“chlorofluorocarbon*”, “hydrochlorofluorocarbon*”, “hydrofluorocarbon*”, “hydrofluo-
roolefin*”, ” perfluorocarbon*”, “sulphur hexafluoride”, “nitrogen trifluoride”, ”halons”,
“carbon tetrachloride”, “methyl bromide”, “bromochloromethane”, “dichloromethane”,
“chloroform”, “trichloromethane”, “perchloroethylene”) AND (“global warming”, “climate
warming*”, “ozone deplet*”, “climate chang*”, “climatic chang*”, “Greenhouse gas”, “ra-
diation forc*”) were searched in terms of topic within the publication years of 1999–2018.
A total of 1116 publications met the inclusion criteria. Journal articles were selected for
further analysis because they are the predominant article type, and the entire research
objectives and results are also included in the article [20]. The “front page” was another
filter condition [28]; therefore, only articles that contain search terms in the text of their
“front page” (including article titles, abstracts, and keywords) were included. This resulted
in 734 publications on CHGs over an 18-year period that were considered herein.

To obtain an overview of CHG research, the number of articles published annually
from 1999 to 2018 is shown in Figure 1. The number of CHGs publications increased
with several fluctuations from 31 in 1999 to 60 in 2018. An increasing number of journals
published articles on CHGs. The average article length fluctuated slightly, with an overall
average of 8.6 pages. In 1999, there were 40 references per paper, whereas in 2018, there
were 48 references per paper—a slight increase over the past two decades.
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Figure 1. Annual number of publications on CHGs research during 1999–2018.

2.2. Methods

The downloaded content included author names, title, journal, abstract, contact ad-
dresses of the authors, year of publication, keywords, and keywords plus and Web of
Science categories of the article. Records were downloaded into a spreadsheet; the country
of origin of the collaborator, impact factor of the journals, and number of authors for addi-
tional coding [29] were incorporated manually. Articles from England, Scotland, Northern
Ireland, and Wales were defined as coming from the United Kingdom (UK). Articles origi-
nating from Hong Kong were classified as originating from China. The contributions of
different countries and institutions were set to include at least one author in the publication.
The type of collaboration was determined by the researchers’ address; if all the researchers
were from the same country, the term “single-country article” was specified. The term
“international collaborative articles” referred to articles written jointly by researchers in
more than one country.

VOSviewer was developed by researchers at Leiden University in 2007. It is used to
build a visual bibliometric network, such as researcher collaboration networks. VOSviewer
also provides text mining functions, creating a visual co-occurrence network of important
terms extracted from scientific literature [30]. In this study, VOSviewer was used to analyse
the collaboration networks of contributors and co-occurrence networks. The Science of
Science (Sci2) Tool is a modular toolset specifically designed to visualise scholarly datasets,
study of science, network analysis, and supporting geospatial [24]. In this study, the
Sci2 Tool was used to analyse the global geographic distribution of publications and the
collaboration model of publications.

3. Performance of Contributors

3.1. Macro Contributors of Country/Territory

Cooperation between countries was discussed in depth using the Sci2 and Gephi
tools. Figure 2 reveals the different patterns of the global geographic distribution of
CHGs research publications. The shades of yellow to blue colour correspond to the total
number of publications in the country from 1999 to 2018. The deeper the shade, the more
papers the country publishes. The lines between any two countries represent a cooperative
relationship between them. The thicker the line, the more intensive the international
cooperation between the two countries.
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Figure 2. Global geographical distribution of publications and collaboration patterns of CHGs
publications. Color represents the number of publications between 1999 and 2018; the darker the
color, the greater the number of publications. Lines between any two countries represent a cooperative
relationship between them. The thicker the line, the more intensive the international cooperation
between the two countries.

Judging from the geographical distribution of publications, the number of coun-
tries/regions contributing articles to CHGs publications has increased significantly. There-
fore, international cooperation has been greatly strengthened. The United States of Amer-
ica (USA) showed the highest contribution with 335 articles (46%), followed by the UK
(125 articles; 17%) and Germany (75 articles).

To demonstrate international collaboration, Figure 2 shows the current partnerships
among the 60 countries with high citation rates in the field. The map has 60 nodes and
263 undirected weighted edges, indicating 263 cooperative country pairs for the 60 coun-
tries. Nodes with more international cooperation articles are larger, whereas countries with
more cooperation are connected through thicker edges. The United States is at the centre
of the global network of cooperation. The US–UK collaboration was the strongest with
60 articles, followed by the Australia–UK collaboration with 35 articles. The United States
is the most favoured national scientific partner in the field of electronics and electrical engi-
neering, possibly due to its high level of research and its leading position. About half of the
pairs (129 out of 263) had only one article. Other countries have not developed significant
research networks between them, possibly because of the small number of publications. It
was not surprising that countries with fewer publications dominate because this pattern
has emerged in most scientific fields [31].

It should be noted that there is little research on CHGs in emerging countries. The
rapid development and industrialization of those regions meant that large quantities of
halogenated gases could be released from the region and cause damage to the ozone layer.
It would be interesting to further stimulate more research in those regions and to foster
international collaboration with more mature research teams.

3.2. Meso Contributors of Institution

The top 10 institutions in terms of productivity are listed in Table 1. Research institutes
are concentrated in North America, Europe, and Asia. National Oceanic and Atmospheric
Administration (NOAA) (65) published the most articles in North America, the University
of Bristol (51) published the most articles in Europe, and the Peking University published
the most articles in Asia (14). NOAA had the greatest number of publications with a total
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of 65 papers. At the second position is the Massachusetts Institute of Technology (MIT),
with 52 publications, followed by the University of Bristol (51 publications), University of
Colorado (50 publications), and University of California-San Diego (UCSD, 48 publications).
In terms of citations, NOAA (3107 publications) was the most prolific institution, followed
by MIT (2577), UCSD, National Aeronautics and Space Administration (NASA, 2489), the
University of Bristol (2357), National Center for Atmospheric Research (NCAR) (2123), and
Commonwealth Scientific and Industrial Research Organization (CSIRO) (2078).

Table 1. Top 10 research institutions in the field of CHGs.

Rank
The Name of

Institution
Number of

Publications
Citations/Publications

Number of
Collaborators

1 NOAA 65 48 63
2 MIT 52 50 49
3 Univ Bristol 51 46 48
4 Univ Colorado 50 44 46
5 UCSD 48 52 52
6 NASA 47 53 44
7 NCAR 28 76 34
8 UNIV CALIF IRVINE 27 63 36
9 CEIRO 25 83 38
10 Ford Motor Company 20 882 10

The co-authorship institutional analysis network had a minimum threshold of five
publications. The cooperative relationships among 87 institutions are shown in Figure 3.
Each node in the figure represents an institution, the size of nodes represents the number
of articles, the line between nodes represents the cooperation between institutions, and
the thickness of the line represents the link strength between institutions. NOAA and the
University of Colorado were the most strongly linked with 32 articles. In addition, the
institutions with more cooperation are MIT, UCSD, and Univ Bristol. The cooperation
between each of these organizations has reached more than 26. These phenomena are
very reasonable. The work of NOAA Earth System Research Laboratories (ESRL) is
dominated by its work in University of Colorado Boulder, so it is no surprise that there
is a strong NOAA–Univ Colorado connection. MIT, UCSD, and Univ Bristol are research
institutions of Advanced Global Atmospheric Gases Experiment (AGAGE), one of the most
advanced, most systematic, and most contributing international observation networks for
ozone-depleting substances (ODS) and fluorine-containing greenhouse gas observation
technologies, and the results are shared among member institutions. This network is
mainly sponsored by NASA’s Atmospheric Composition Focus Area in Earth Science,
and its research institutions also include CSIRO, Swiss Federal Laboratories for Materials
Science and Technology (EMPA), University of Urbino, etc. It can be seen in Figure 3
that the AGAGE member units are all marked in blue, which shows that they have close
cooperation and similar research.

3.3. Micro Contributors of Authors

The minimum number of publications for each author was set to five, and 82 authors
were screened. Some of the 82 authors in the network were not connected to each other.
To improve the visualisation, we eliminated unconnected authors, and finally presented
39 authors in the final network map of co-authorship authors. Due to this process, some
authors do not appear in Figure 4.

158



Sustainability 2022, 14, 806

Figure 3. Cooperation relationship among different institution. Dots represent institutions, while
dot size represents the number of published documents. Lines between dots indicate a connection
between two institutions; thicker lines show a stronger connection and indicate a higher number of
collaborated articles.

Figure 4. Cooperation relationship among different authors. Each node represents an author, the
size of nodes represents the number of papers, the line between nodes represents the cooperation
between authors, and the thickness of the line represents the link strength between authors.

159



Sustainability 2022, 14, 806

McCulloch, A was the most prolific author, with 16 publications, followed by Weiss,
RF with 15 publications. The top 10 authors are listed in Table 2. There were five clusters
with different colours; authors in the same cluster usually suggested that they studied a
similar field and had close cooperation with each other. There are two clusters of authors
who collaborated more with others: blue cluster represented by Weiss, RF, Salameh, PK,
Harth, CM, Jens Mühle, etc. (the main research direction was atmospheric observation);
green cluster represented by Rigby, M, O’Doherty, S, and Martin K, whose main research
direction was emission estimation. The authors in the red and yellow clusters are also
doing observation and emission research, but there are slight differences. The research
in yellow clustering is more inclined to aircraft-based observations, and more emphasis
is placed on the emission of short-lived halocarbons. The main research direction of the
author in purple clustering is to establish emission inventories based on production and
consumption data.

Table 2. Top 10 authors ranked by publications.

Rank The Name of Author
Number of

Publications
Citations/Publications

Number of
Collaborators

1 McCulloch, A 16 102 -
2 Weiss, RF 15 23 25
3 O’Doherty, S 13 8 27
4 Reimann, S 13 10 25
5 Fang, Xuekun 12 8 23
6 Fraser, PJ 11 12 28
7 Simmonds, PG 10 135 21
8 Montzka, SA 10 20 19
9 Shine, KP 10 61 -
10 Prinn, PG 9 4 27

4. Research Topics

4.1. Macro Topic of Category

To show the interdisciplinarity and distribution of disciplines, the interdisciplinary
relationship among 90 disciplines in the current CHGs field was analysed (Figure 5). In
total, 90 categories and 189 undirected weighted edges are present on the map, indicating
189 interdisciplinary pairs in these 90 categories. The node size is directly proportional
to the number of articles published. Thicker edge connections represent more frequent
interdisciplinary categories. Environmental sciences represent the largest macro-field
with 650 articles, followed by physical sciences (456 articles), life sciences, and medicine
(138 articles). Environmental sciences contributed the most (248 articles, 34%), followed by
meteorology and atmospheric sciences (147 articles, 20%), and environmental engineering
(71 articles, 9.6%). The interdisciplinarity of the environmental sciences, meteorology, and
atmospheric sciences was the strongest with 100 articles, followed by the interdisciplinary
pair of environmental sciences and environmental engineering with 64 articles, and the
pair of the mechanical engineering and thermodynamics with 30 articles.
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Figure 5. Current interdisciplinary relationships among categories of CHGs field. Nodes show
web of science categories used to categorize CHGs research articles. The node size is directly
proportional to the number of articles published. Thicker edge connections represent more frequent
interdisciplinary categories.

4.2. Micro-Topic of Keywords

High-frequency keywords can reflect research hotspots. A total of 4526 co-occurrence
keywords were extracted from 734 articles. The minimum occurrence of each keyword
was set to eight times, and 181 co-occurrence keywords were finally presented. A keyword
co-occurrence network map is shown in Figure 6. The top three keywords ranked by
number of occurrences were as follows: emission (n = 89), chlorofluorocarbons (n = 86),
and ozone (n = 85).

Nodes with the same colour belong to a cluster. The keywords were classified into four
clusters. This study sorts out the topics of each cluster by reading the articles contained in
each cluster to provide references for future research directions.

4.2.1. Cluster 1 (Green): Research on CHGs Emissions Calculation

Keywords: emission, halocarbons, in situ measurements, mixing ratios, global emis-
sions, European emissions.

Two types of methods, bottom-up and top-down methods, are often used to calculate
CHG emissions. The bottom-up methods include the mass balance method and emission
factor method recommended by the IPCC National Greenhouse Gas Inventory Guidelines
and are used based on the acquired chemical substance sales data or market data. The
top-down methods include the tracer ratio correlation method, model inversion method,
and box model method and are used based on the observed concentration data and the
atmospheric behaviour of substances. Both types of emission calculation methods have
advantages and disadvantages. Therefore, the 2019 Refinement to the 2006 IPCC Guidelines
for National Greenhouse Gas Inventories proposed for the first time a method for retrieving
greenhouse gas emissions based on atmospheric concentration to verify the bottom-up
inventory results.
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Figure 6. Cluster of CHGs co-occurrence keywords. The sizes of the nodes in Figure 6 represent the
weights of the nodes. The larger the node, the larger the weight. The line between two keywords
indicates that they appeared together. The thicker the line, the more co-occurrence they have.

Researchers often select appropriate emission calculation methods based on different
research scales. The emission factor method and tracer ratio correlation method are mostly
used to estimate emissions at the city or country scale [32–38]; the model inversion method
is suitable for national and regional emission estimation [38–44]; and the box model is
suitable for the estimation of emissions at the global scale.

4.2.2. Cluster 2 (Yellow): Physicochemical Analysis of CHGs

Keywords: atmospheric chemistry, kinetics, global warming potential, lifetime, rate
constants, degradation, gas-phase reaction.

The research objective of physical and chemical experiments is to obtain the reaction
rate, atmospheric lifespan, and radiation efficiency of the CHGs. These are important
parameters for determining the global warming potential (GWP) and ozone-depleting
substance potential (ODP) of CHGs. Some scholars have also used physical and chemical
experiments to study the technologies for the removal of CHGs. In the study of reaction
rate and atmospheric life, chemical experimental methods such as the relative rate method
and absolute rate method are often used to determine the reaction rate of CHGs with OH
radicals or chlorine atoms [45–53]. The reaction rate determines the atmospheric lifetime
of a substance. In terms of radiation intensity efficiency, physical experimental methods,
such as Fourier infrared spectroscopy, are often used to measure the infrared absorption
cross-section of CHGs. In cases where the infrared (IR) spectrum cannot be measured, the
radiation efficiency (RE) estimation based on computational chemistry is also very effective.
In the study of halide molecule removal, chemical techniques such as thermal combustion
or incineration are the most widely used [54–56]. These reactions often produce large
quantities of complex chlorinated products; therefore, researchers are exploring combined
processes or new alternatives, such as plasma-assisted technologies [57–60]. In addition,
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catalytic Decomposition, photooxidation, and biodegradation have also been studied as
removal technologies [61–63].

4.2.3. Cluster 3 (Red): Evaluation of CHG Replacements

Keywords: global warming, climate change, refrigerant, temperature, system, perfor-
mance, energy, dynamics, simulation.

Halogenated gases are widely used in refrigeration, foaming, and fumigation. How-
ever, due to its environmental impacts, such as ozone depletion and global warming, the
search for replacements with little or no environmental impacts has gradually become a
research hotspot. Performance tests are used to evaluate the feasibility of a substance as a
replacement for halogenated gases. Refrigerant and synonyms appeared 41 times, higher
than the words for other consumer applications, indicating that research on the replacement
of refrigerants is the most popular research topic in this regard. The indicators that need
to be examined for refrigerants replacement includes the cooling capacity, coefficient of
performance, consumption, volumetric efficiency of the compressor, and safety [64–72].
For example, the latest experimental results show that R744, HFO-1234yf, etc. can replace
the existing refrigerant in the use of refrigeration equipment. Research on the replacement
of blowing agents is also a hot spot, which can be seen from the fact that blowing agents
and their synonyms have appeared for 20 times. The substitution effect of blowing agents
is usually evaluated from the aspects of foam opening rate, thermal insulation, and foam
size stability [73]. For example, azeotropic mixtures such as HCFC-142b and HCFC-22 can
be used instead of CFC-12 in the foam. The replacements for fumigants were evaluated
in terms of soil fungal population, microbial biomass C (MBC), respiration, nitrification
potential, and changes in enzyme activity after using various fumigants.

4.2.4. Cluster 4 (Blue): Environmental Impact Research on CHGs

Keywords: chlorofluorocarbons, ultraviolet radiation, stratospheric ozone, trends,
recovery, destruction, toxic, asthma.

The harm caused by increased UV radiation, impact of climate change, and biological
toxicity of CHGs are the main research directions in the field of environmental impacts
of CHGs.

The depletion of stratospheric ozone caused by CHGs results in an increase in the
UV radiation flux. Many scholars have studied the effects of increased UV radiation flux
on human, plant, animal, and microbial growth [3,74–81]. The research on the impact of
climate change mainly focuses on the surface temperature changes caused by greenhouse
gas emissions, contribution of radiative forcing, and adverse impacts of global warming
on microorganisms and plants [82–88]. The toxicology of halides has been well studied,
and the methods of biotoxicity assessment often include exposure experiments on mice
or follow-up studies on long-term exposures [89–95]. Studies have shown that human
exposure to specific halides may increase the risk of immune-mediated hepatitis or lead to
tumorigenesis and/or have severe toxic effects on reproductive systems.

5. Trends of Hotspots

Exploring research hotspots in different periods is very necessary to understand a
re-search field. We have counted the numbers of each word appearing in title, author key-
words, abstract, keywords plus in multiple consecutive time periods (1999–2003, 2004–2008,
2009–2013, 2014–2018), and then “Aggregate class” is identified. “Aggregate class” can
represent a possible research hotspot, including important synonym words and phrases
(supporting words), which is often summarized by the professional researchers in this
field. Finally, an overview of research hotspots was revealed by analyzing the number of
publications containing these supporting words [22]. In this study, two hot themes are
obtained, including research substances and environmental impact.
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5.1. Research Substances

The Aggregate class of Research substances consists of “chlorofluorocarbons”, “CFCs”,
“CFC-11” and “CFC-12”, “halons” and “CCl4” and their substitutes, HCFCs, HFCs, and
HFOs constitute the research hotspots of research substances. As shown in Figure 7 that
most of the early studies focused on the first generation of ODS, and the research object of
the first generation of ODS accounted for more than 50% of the literature from 1999 to 2004.
With the control and elimination of the first generation of ODS by the Montreal Protocol,
the proportion of literature with the first generation of ODS as the research object decreased
gradually, accounting for 29% in 2018. In contrast, substitutes for HCFCs, HFCs, and
HFOs have attracted more attention, and the number of articles has increased significantly.
In 1999, the percentage of HCFCs literature was 10% and peaked in 2011, accounting
for 21%. Compared with HFCs and HFOs, which are gradually being widely used, the
proportion of research on HCFCs has decreased, with an average of 16% in 2012–2018. In
1999, HFCs literature accounted for 15% and HFOs literature accounted for 10%. By 2018,
HFCs literature accounted for 35% and HFOs literature accounted for 21%.

Figure 7. Number of articles published annually on different research substances.

5.2. Environmental Impact

The Aggregate class of Research substances consists of “ozone depletion”, “global
warming”, “global warming potential” and “biological toxicity” and “inhalation toxicity”
constitute the research hotspots of environmental impact. When the halogenated gases
reach the stratosphere, they are exposed to ultraviolet radiation, and photolysis produces
halogen radicals. Excessive halogen radicals accelerate the decomposition of ozone and
destroy the balance between the generation and decomposition of the ozone layer. Fur-
thermore, the absorption and reflection of infrared radiation by CHGs strengthened the
greenhouse effect. CHGs are also biologically toxic. In this study, the annual literature
on ozone depletion, global warming and biotoxicity was extracted to reveal hot research
directions. Based on Figure 8, in 1999, the various environmental impacts of CHGs have
been noticed. However, at this time, neither of them received much attention, with less than
20 papers published annually. As the impact of global warming became more apparent,
research on the greenhouse effect of halides increased sharply, with the highest number
of papers (58) being published in 2013. The number of publications on ozone depletion
research and biological toxicity research is slowly increasing, and the trends of the two are
very similar. Ozone depletion research reached its peak in 2014 (16 articles), and biological
toxicity research reached its peak in 2013 (20 articles).
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Figure 8. Number of articles published annually on different environmental impacts.

6. Conclusions

Based on 734 SCI publications on CHGs, this study provides an overview of the
research on CHGs using two bibliometrics software VOSviewer and Sci2. The results
showed that the United States was the most productive country, followed by UK and
China. China has shown a strong growth momentum over the past decade. NOAA had
the largest number of publications, followed by MIT and the University of Bristol. The
most prolific authors were McCulloch, A, Ray F. Weiss, O’Doherty, S. and the authors
who collaborated more with others mainly focused on the atmospheric concentrations and
emissions of CHGs.

Using cluster analysis of all keywords and reading the articles in each cluster, four re-
search hotspots of CHGs were identified and reviewed: (1) emissions calculation,
(2) physicochemical analysis of halocarbons, (3) evaluation of replacements, and (4) en-
vironmental impact. Two types of methods are often used to estimate CHG emissions:
top-down and bottom-up methods, and they can be used to verify each other’s results.
Physicochemical experiments are mainly carried out to study the removal process of CHGs
and to obtain the key parameters, including reaction constants, atmospheric lifetime, and
radiation efficiency, which can be used to calculate GWP and ODP. The purpose of replace-
ment research is to find suitable substances to replace CHGs. The main evaluation index is
the appraised index that includes cooling capacity, coefficient of performance, consumption,
volumetric efficiency of the compressor, and safety. The environmental impact of CHGs is
generally focused on ozone depletion, global warming, and biological toxicity.

The emerging topics and changes in research trends are closely related to the phase-
out schedule of the Montreal Protocol. The original research topic was mainly CFCs and
other ozone-depleting substances. With the phase-out of CFCs, research of HCFCs, as the
transitional substitutes of ODSs, has gradually increased. Around the year when HCFCs
began to freeze under the Montreal Protocol (2009 and 2010), research on HCFCs was
gradually replaced by that on HFCs, HFOs, and other new substances. Global warming
has always been the most concerning research hotspot, while research on ozone depletion
shows a gradually rising trend. A total of 189 journals published articles on CHGs, referring
to 90 disciplines, and the main disciplines were environmental science and physical science.

The purpose of this study is to provide an analysis of the publication knowledge re-
lated to CHGs. In addition, it provides guidance for researchers who want a comprehensive
and quick understanding of the field.
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Abstract: Air pollution is fatal. Fine particles, such as PM2.5, in ambient air might be the cause of
many physical and psychological disorders, including cognitive decline. This is why educational
policymakers are adopting sustainable mobility, and other policy measures, to make their campuses
carbon-neutral; however, car-dependent cities and their university campuses are still lagging behind
in this area. This study attempts to model the spatial heterogeneity and determinants of PM2.5 at
the King Abdulaziz University campus in Jeddah, which is ranked first among the Saudi Arabian
universities, as well as in the MENA region. We developed four OLS and GWR models of different
peak and off-peak periods during weekdays in order to estimate the determinants of the PM2.5

concentration. The number of cars, humidity, temperature, windspeed, distance from trees, and
construction sites were the estimators in our analysis. Because of a lack of secondary data at a finer
scale, we collected the samples of all dependent and independent variables at 51 locations on the
KAU campus. Model selection was based on RSS, log-likelihood, adjusted R2, and AICc, and a
modal comparison shows that the GWR variant of Model-2 outperformed the other models. The
results of the GWR model demonstrate the geographical variability of the PM2.5 concentration on the
KAU campus, to which the volume of car traffic is the key contributor. Hence, we recommend using
the results of this study to support the development of a car-free and zero-carbon campus at KAU;
furthermore, this study could be exploited by other campuses in Saudi Arabia and the Gulf region.

Keywords: King Abdulaziz University; PM2.5; GWR; zero-carbon campus; spatial heterogeneity

1. Introduction

Contaminated air is an issue of serious concern worldwide and causes one out of
every nine deaths. It is also frightening to consider that exposure to PM2.5 has lowered the
average life expectancy by one year, according to 2016 data [1]. The UNEP data further
shows that fine particle pollution caused 17,795 deaths in 2019; this can be translated into
500 fatalities per 1 million people. There is no doubt that clean air is a boon for public health
and an essential prerequisite for the healthy living of all human beings [2]. There are many
root causes of air pollution, including several voluntary and nonvoluntary human activities,
such as fossil-fuel-based vehicular transportation, manufacturing, and construction [3].
Furthermore, rapid urbanization and population growth have made the problem of air
pollution even worse in both developed and developing countries [4–6]. Automobiles
are the major source of fine particle air pollution—a study in Sao Paulo confirmed that a
trucker’s strike was associated with potential economic and health benefits [7]. A study
in Mexico showed that people living in spatial proximity to high-traffic roads are highly
exposed to traffic-related air pollution, which is a matter of grave concern for urban
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planners and public health professionals, while another study in Santiago, Chile, identified
three distinct episodes of fine particle air pollution, which is helpful in the mitigation of
PM2.5 and PM10 pollutants in urban settings [8,9].

In the past few decades, several studies, including those of Englert [10] and Valavani-
dis et al. [11], have confirmed that air pollution damages the physical and neurological
health of urban residents, increases economic costs, and aggravates the unpleasant impacts
of climate change. According to the EPA [12], outdoor air pollution encompasses a diverse
blend of chemical, physical, and biological substances; however, this study considers solely
the concentration of PM2.5 (fine particles with a diameter of less than 2.5 μm), as these fine
particles pose serious threats to human health.

University campuses worldwide are faced with fine particle pollution, mainly PM2.5,
and this is negatively affecting the health of university attendants [13,14]. We chose
King Abdulaziz University (KAU) campus for our study for two reasons: firstly, the
university mimics a small city and, secondly, campuses are a hub of innovation and
sustainable development. In addition, universities have realized that pollution and resource
consumption have increased on their campuses and in classrooms in the past few decades.
This has compelled university administrations to consider devoting their best efforts to
achieving sustainability in their indoor and outdoor environments [15,16].

Although several studies have modeled the determinant factors of PM2.5 levels and
their spatial heterogeneity through GWR, there is a lack of studies performed at the micro
level of the local geographical region, particularly at the level of a university campus.
This gap is due to the unavailability of fine data at micro geographical scales, such as
university campuses. Therefore, this study attempts to model the spatial distribution
and determinants of PM2.5 at the campus of King Abdulaziz University, utilizing primary
data collected by the authors. This paper is further organized into the following sections:
Literature Review, Material and Methods, Results, Discussions, and Conclusions.

2. Literature Review

2.1. Health Consequences of Particulate Matter (PM2.5)

A number of epidemiological studies have been carried out to date demonstrating the
impacts of deteriorated ambient air quality on human health, although the health effects of
fine particulate matter depend on four factors: the source and composition of particulate
matter, the time of exposure, its depth of travel inside the human body, and the age of
the affected person. Persistent exposure to human-induced PM2.5 is positively associated
with a series of pulmonary and cardiovascular diseases. For instance, in children, chronic
exposure to PM2.5 poses risks for acute lung respiratory infections (ALRI), while in adults, it
can generate chronic obstructive pulmonary disease (COPD), ischemic heart disease (IHD),
cardiopulmonary disorders, lung cancer, and stroke [17–19]. Pope et al. [20] highlight
that there is a 4–6% increased risk of cardiovascular and lung cancer mortality with each
10 mg/m3 increase in fine particulate matter in the air.

Ambient air pollutants might not only harm physical health, but can also cause dam-
age to people’s nervous systems and cognitive abilities, leading to neurological disorders of
different magnitudes, ranging from headaches and migraines, to strokes and various types
of dementia [21]. In addition, a few studies have stated that the PM2.5 in the air contains
certain neurotoxicants that can either produce or accelerate neurodegenerative diseases
related to cognitive decline, schizophrenia, and brain damage. These studies strongly
suggest that persistent exposure to the fine particulate matters present in ambient air might
harm the central nervous system [22–26]. A recent study by Ranzani et al. [27] reported that
adult human lungs have the capacity to purify 10,000 liters of air daily; however, increasing
levels of pollutants could reduce immunity, resulting in increased inflammation and poor
bone health.
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2.2. Campus Response to Challenges of Poor Ambient Air Quality

Educational administrators have launched several initiatives to tackle toxic particulate
matter and the other pollutants present in ambient air. The low-carbon campus project
at the Massachusetts Institute of Technology [28] is an endeavor of the MIT Office of
Sustainability (MITOS) to establish a healthy and low-carbon campus by exploiting the
competence and experience of prestigious MIT alumni to create the testbed for expandable
solutions. Four core components were explored to accomplish the goal of carbon neutrality
at the MIT campus, including mobility, building, climate, and energy. Under the mobility
theme, the students, faculty, and staff members of MIT are encouraged to select flexible,
affordable, and low-impact modes of transportation, including walking and bicycle riding,
with only a small number of members commuting by car.

Similarly, the University of Leeds [29] launched a living lab for their air quality project
in 2017 that uses the inhouse air quality and pollution to enhance the environment and
health of the community’s members. The living lab regularly helps to diminish emissions
from vehicles and curb exposure to poor air quality. In a recent related project, the Institute
for Transport Studies has been investigating pollution exposure to university staff, faculty,
and students via commuter routes. Volunteers carry air quality monitoring devices while
walking, using public transport, or driving; the results are used to make comparisons on
the levels of pollution exposure between different transport modes and routes.

It is also noteworthy that smoking emits 10 times more air pollutants into the ambient
air than a car. The smoking of one cigarette daily produces an equivalent PM2.5 level of
22 μg/m3 [30,31]. Considering this, universities, including KAU [32], have formulated
strategies to create smoking-free campuses. In compliance with the Smoke Free Envi-
ronments Act, 1990, of New Zeeland, which prohibits smoking in workplaces, Lincoln
University [33] accepted the “Clean Air Policy”, aimed at providing a healthy and safe
smoke-free working and learning environment on their campus.

Moreover, universities in developing economies are the worst affected by PM2.5
exposure and are struggling to transform their campuses towards carbon neutrality. Ac-
cording to Express Web Desk [34], the University of Hyderabad in India has recently
introduced e-rickshaw services on weekdays from 8:00 a.m. to 6:00 p.m. This afford-
able (USD 0.14 per trip) and zero-emission commuting service might improve ambient
air quality inside the university campus. Some other universities are trying to increase
awareness about air pollution by disseminating and displaying information on air quality.
The Central University of Columbia at Bogota has established an Air Quality Monitoring
Network (Red de monitoreo de calidad del aire) that is equipped with low-cost sensors
and Internet of Things technology [35]. The Times News Network [36] reported on Punjab
University at Chandigarh (India) as an excellent example of this, as they have set up a
Continuous Ambient Air Quality Monitoring Station (CAAQMS) that offers hourly data in
real time. Air quality information is thus available to everyone through large electronic
display panels. Xi’an Jiao Tong University in China is transforming its campus into a
green energy-fueled smart campus, aiming to enhance ambient air quality for the academic
community [37].

Furthermore, Monash University [38] has suggested that a future without change will
be dismal; on the dangers of air pollution, they state, “We don’t believe in a future where
people can’t go outside”.

If the current trends of air pollution continue, then breathing in ambient oxygen might
significantly risk the health of people. The Monash Climate and Air Quality Research
Group (CARE) maintain that the fine-particulate matter in ambient air can significantly
accelerate the risk of miscarriage among pregnant women, and the group also found a
robust association between air pollution and autism. In their plan to combat air pollution,
Monash set the goal of attaining net zero emissions on Australian campuses by 2030. In
Canada, the University of Victoria [39] has developed a Campus Cycling Plan to make their
campus bicycle-friendly, with the goal of maximizing cycling, walking, public transit use,
and carpooling up to 70% by expanding facilities for cycling by 10%. To promote bicycle

172



Sustainability 2021, 13, 12043

riding in and around the campus, the university plans to improve the cycling network,
the safety of bike-users in shared spaces, bicycle parking, bicycle sharing, and end-of-trip
amenities for users of all age groups.

The Surgeon General [40] of the USA has urged American universities to construct
walkable campuses, suggesting that walking is a win–win strategy for community health,
as increased physical activity offers significant health benefits. Bopp, Kaczynski, and
Wittman [41] suggest that colleges and universities should become the ultimate locations
for walking. Policies related to walkable campuses may not only inspire students, faculty
members, and personnel to embrace active living, but may also encourage students to
consider future roles as public health professionals, urban planners, urban designers,
transport planners, and architects. Stevens [42] reported that the University of Kentucky has
installed a large amount of signage on their campus, with QR codes in collaboration with
the WALK [Your City] app, which helps university students approximate the time required
for traveling by foot as an alternative to driving. This also helps university researchers in
their investigations into how university attendees use information technology to plan their
day. Scott et al. [43] state that Canadian universities are working to make their campuses
car-free. The University of British Columbia [39] has been successfully implementing its
Transport Strategic Plan (TSP) since 1999 (reviewed in 2005). UBC has a large cycling and
pedestrian network and is aspiring towards sustainable campus transit by 2040.

2.3. PM2.5 Modeling and Geographically Weighted Regression

Several studies before now have investigated the spatial heterogeneity and spatial
dependence of PM2.5 on the associated socioeconomic and environmental factors, using
geographically weighted regression (GWR). GWR permits the exploration of spatially
varying relationships [44]. Nearly all the studies have validated that GWR addresses
the implicit spatial attributes of PM2.5 data, and improves upon the outcomes offered by
traditional OLS regression, which is nonspatial in nature [45].

Lin et al. [46] emphasize the urban green belt area, population density, and economic
growth as the key factors affecting the concentration of PM2.5 in Chinese cities. Guan
et al. [47] stressed that China’s foreign trade is responsible for most of the PM2.5 pollution.
According to Hao and Liu [48], motor vehicles and industrial activities are the factors of
PM2.5 exposure. Zhang et al. [49] deployed the enhanced vegetation index (EVI) with
GWR, and concluded that meteorological parameters, together with fused aerosol optical
depth (AOD) products, explain nearly 87% of the spatial variance in PM2.5 concentrations.
Similarly, Pateraki et al. [50] concluded that humidity and temperature fluctuations were
strongly correlated with PM2.5 concentration, while Onat and Stakeeva [51] affirmed that
accelerated wind speed (>2m/s) might significantly lower the intensity of PM2.5.

In recent years, researchers have frequently used GWR models to understand PM2.5
exposure in various cities and regions. Through a generalized additive model (GAM),
He and Lin [52] confirmed that the PM2.5 concentration change in Nanjing was strongly
correlated with air pressure, water vapor pressure, and temperature. The seasonal and daily
variability in PM2.5 levels was modeled by several spatial scientists in the Yangtze River
delta region via GWR, while the spatiotemporal mapping of fine particle concentrations in
mainland China was carried out by combining Bayesian maximum entropy (BME) with
GWR [53,54].

Many types of GWR models have been effectively employed to quantify the spa-
tiotemporal heterogeneity of PM2.5 pollution in Chinese cities. Zhai et al. [55] developed
an enhanced-subset regression model, which combines Principal Component Analysis
(PCA) and GWR to predict the independent variables responsible for spatial variations in
the levels of PM2.5. Hajiloo, Hamzeh, and Gheysari [56] developed models to understand
the impacts of metrological and environmental parameters on the intensity of PM2.5 using
satellite data and GWR analysis. Other GWR-based studies by Cheng et al. [57], Dong
et al. [58], and Lou et al. [59] demonstrated the various determinant factors responsible for
the geographical heterogeneity of PM2.5.
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A recent study by Gu et al. [60] suggested that PM2.5 increases in Chinese cities are
positively associated with people’s income; growths in income in certain geographical
areas have aggravated PM2.5 emissions. Wang and Wang [61] observed that the density of
the population, the proportions of industrial land uses, car ridership, and the amount of
foreign direct investment (FDI) all contribute significantly to the level of PM2.5, and show
qualities of spatial heterogeneity. There were also significant variations in the levels of
influence of these factors between different time periods and locations.

3. Material and Methods

3.1. Study Area

King Abdulaziz University, Jeddah, is a renowned public university in Saudi Arabia.
The main campus of the university is situated between Prince Majid Road and Al-Haramin
Expressway, spread over 6.35 square kilometers (Figure 1). It was set up in 1964 as a
private university and, later, in 1974, became a public university by royal order. There
are 77,000 full time students in the university at present, with 4059 academic faculty staff
members, 4000 administrative staff members, and an additional 4200 support staff. The
Vice Presidency for Projects KAU data show that the number of total daily trips through all
six gates is approximately 56,000 during the academic semester.

Figure 1. Location of study area: (a) Kingdom of Saudi Arabia; (b) Jeddah City; and (c) King
Abdulaziz University campus.

The university has five main gates through which one can enter and exit the campus
and sample locations near these gates capture the attributes of adjacent districts. In the
north, where Gates no. 2, 3 and 4 are located, the Al-Sulaymaniyah district is residential.
The Al-Jamia district is in the south; it is residential, with some commercial streets, and is
accessed via Gate no.6. The main gate, or Gate no. 1 (The Eagle Gate), opens into the west
towards Al-Fahya district, which is also residential with some commercial streets. Gate no.
5 opens onto a service road next to Al-Haramin highway (Abruq Ar Rughama district) in
the east. More than 90% of the traffic around the campus is directed towards or away from
the university.

3.2. Methods

We chose our independent variables from previous studies that are relevant to the
KAU campus, including the number of cars, the windspeed, the temperature, the humidity,
distance from trees, and distance from construction sites [46,56,61]. In addition to the
dependent variable, PM2.5, the data on the independent variables were collected at 51
locations inside the KAU campus, including the six entry and exit gates. The sampling
period was from 29 September 2019 to 31 October 2019, with four distinct time points
during weekdays (from Sunday to Thursday), inclusive of both peak and nonpeak traffic,
and hourly data were recorded at 7 a.m., 9 a.m., 11 a.m., and 2 p.m. All of the independent
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variables were tested for multicollinearity. To ensure the representativeness of the sample
locations, we employed the stratified random sampling technique in the QGIS environment,
which has been found to be reliable in numerous ecological studies [62].

Multicollinearity may adversely affect the quality of estimators in a GWR model; hence,
the detection of multicollinearity is a prerequisite when developing statistical models. The
variance inflation factor (VIF) is a popular measure for detecting multicollinearity among
independent variables [63]. We confirmed the absence of multicollinearity, as the VIF value
for each predictor among the parameters was lower than 4 [64] (Table 1).

Table 1. VIF and descriptive statistics for the variables.

Variables Min. Max. Mean Std. Dev. VIF

Dependent
Variables

PM2.5 off-peak 7 am (Model-1) 17 37 24.1 4.8 -
PM2.5 peak 9 am (Model-2) 19 68 35.3 10.3 -

PM2.5 peak 11 am (Model-3) 18 65 33.3 8.7 -
PM2.5 peak 2 pm (Model-4) 21 70 36.6 9.2 -

Independent
Variables

Number of cars 25 6989 1022.0 1452.4 2.9
Windspeed 12 21 18.2 2.4 1.4

Temperature 27 34 30.5 1.8 2.2
Humidity 28 33 30.4 1.3 1.3

Distance from construction sites 74 937 312.1 201.4 2.5
Distance from trees 51 650 215.7 163.0 1.9

Thereafter, four OLS and GWR models were developed to assess the contributory
factors for the PM2.5 concentration on the KAU campus.

Ordinary least squares (OLS) is a linear least squares method for assessing the un-
known parameters in a linear regression model. The OLS equation could be expressed as:

yi=

m

∑
j=0

βi+εi, i = 1, 2, ..., n (1)

where m is the total number of predictors, while n denotes the number of observations, βi
shows the coefficient to be estimated, and εi is used for random errors.

A GWR model is a special type of regression model that considers geographically
varying parameters. The GWR4 software was used to calibrate the GWR models [65]. A
conventional GWR equation is:

yi = Σk βk (ui,vi) xki + εi (2)

where yi, xki, and εi are the dependent variable, the kth independent variable, and the
Gaussian error at location i, respectively; (ui,vi) is the x–y coordinate of the ith location; and
the coefficients, βk (ui,vi), are the varying conditionals for the location.

We developed four models to understand the spatial variability and the determinants
of PM2.5 at the KAU campus. The OLS and GWR alternatives of each model were compared
to choose the best fit, as suggested by Grekousis [64].

To test the significance of the regression coefficient in our models, we used a t-test
under the set of assumptions called the Gauss–Markov conditions [66]. The equation for
the t-scores is:

tβ1 =
β1
S β1

(3)

where t is the t-score for the regression estimate, β1, and S is the standard error. The null
hypothesis for the t-test states that the t-score for the regression coefficient β1 is 0. For
better visualization of the local t-scores (and local R2), we drew Voronoi polygons around
sample locations. In general, Voronoi or Thiessen polygons help in mapping the influence
area of an individual data point [67].

AICc estimates prediction errors. By default, GWR 4 facilitates comparisons of the
relative quality of statistical models for a given dataset.
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4. Results

4.1. OLS and GWR Regression Results

As mentioned earlier, we developed four different geographically weighted regression
models to understand the key predictors that explain the levels of PM2.5 in the ambient air
of the KAU campus.

The results of the OLS regression and GWR are summarized in Tables 2–6. The results
in all four models are quite similar. However, the GWR models performed better than the
OLS regression models.

The results of Model-1 reveal that the two environmental parameters of wind speed
and temperature, along with the distances from trees and construction sites, were not
significant (p-value > 0.5) in either the OLS or GWR models (Table 2). The OLS results
indicate that the number of cars and the humidity were significant predictors (p-value ≤ 0.5)
in Model-1. Additionally, the regression coefficient suggests that a 1 unit increase in the
number of cars increases the PM2.5 concentration by 0.915 units, and a 1 unit increase
in humidity decreases the PM2.5 concentration by 0.122 units. The GWR models show
that humidity was a significant parameter at 29.41% of the locations with a negative sign
(Figure 2), while the number of cars was a significant predictor at 100% of the locations
with a positive sign (Figure 3a).

Figure 2. Local t-scores for humidity in Model-1 (GWR).

The results of Models -2, -3, and -4 were not very dissimilar; however, the number
of cars was the sole significant predictor (p-value ≤ 0.5) in all three models, while other
parameters were found to be statically insignificant (p-value >0.5) in both the OLS and
GWR models (Tables 3–5).

In comparison to the OLS model, the benefit of the GWR models is that they facilitate
the coefficient estimation of the predictor parameter for each geographical location. The
spatial distribution of the local coefficient estimates from the GWR models are shown in
Figures 2 and 3.
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Table 2. OLS and GWR estimates (Model-1).

OLS Model GWR Model

Est. SE
T

(Est/SE)
p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.001 0.051 0.019 1.000 0 0 0
Number of cars 0.915 0.058 15.809 0.000 100 100 0

Wind speed −0.049 0.053 −0.920 0.357 0 0 0
Temperature −0.084 0.056 −1.503 0.133 0 0 0

Humidity −0.122 0.055 −2.227 0.026 29.41 0 100.0
Distance from
construction 0.032 0.056 0.579 0.563 0 0 0

Distance from trees −0.032 0.060 −0.530 0.596 0 0 0

Table 3. OLS and GWR estimates (Model-2).

OLS Model GWR Model

Est. SE
T

(Est/SE)
p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.000 0.045 0.000 1.000 0 0 0
Number of cars 0.953 0.056 17.167 0.000 100 100 0

Wind speed −0.037 0.048 −0.782 0.434 0 0 0
Temperature 0.010 0.051 0.195 0.846 0 0 0

Humidity 0.003 0.052 0.066 0.947 0 0 0
Distance from
construction −0.090 0.043 −2.097 0.036 0 0 0

Distance from trees −0.027 0.046 −0.581 0.561 0 0 0

Table 4. OLS and GWR estimates (Model-3).

OLS Model GWR Model

Est. SE
T

(Est/SE)
p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.000 0.069 0.000 1.000 0 0 0
Number of cars 0.855 0.076 11.285 0.000 100 100 0

Wind speed −0.029 0.071 −0.405 0.685 0 0 0
Temperature 0.120 0.073 1.650 0.099 0 0 0

Humidity −0.003 0.076 −0.040 0.968 0 0 0
Distance from
construction −0.78 0.070 −1.124 0.261 0 0 0

Distance from trees −0.34 0.072 −0.475 0.635 0 0 0

Table 5. OLS and GWR estimates (Model-4).

OLS Model GWR Model

Est. SE
T

(Est/SE)
p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.000 0.066 0.000 1.000 0 0 0
Number of cars 0.868 0.073 11.886 0.000 100 100 0

Wind speed 0.046 0.071 0.648 0.517 0 0 0
Temperature −0.072 0.068 −1.061 0.288 0 0 0

Humidity −0.089 0.068 −1.313 0.189 0 0 0
Distance from
construction 0.067 0.065 1.040 0.298 0 0 0

Distance from trees 0.045 0.067 0.67 0.562 0 0 0
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4.2. Model Comparison

We used the residual sum of squares (RSS), log-likelihood, adjusted R-squared, and
corrected Akaike information criterion indices to estimate the suitability of the models.
RSS, or the sum of the squared estimate of error (SEE), which is used to quantify the
variance in a dataset, remained unexplained by the regression model [68]. Additionally,
the corrected Akaike information criterion (AICc) is an estimator of estimation error, and
thereby an indicator of the quality of the regression models for a given dataset. By default,
GWR 4 facilitates comparisons between the relative quality of statistical models for a given
dataset [69]. AICc facilitates a better model fit if the AICc value declines [64].

In effect, the lower values of RSS and AICc indicate the better fit of the model. Ad-
ditionally, the log-likelihood function is a measure of how well a specific model fits the
data. This function explains the suitability of a parameter for explaining an observed
value [70]. Furthermore, R-squared is a coefficient of determination, and a modified ver-
sion of R-squared is adjusted for the number of predictors in the model. This assesses
the explanatory power of the linear regression models [71]. As regards the log-likelihood
function-adjusted R-squared, comparatively higher values suggest a better fit.

 

Figure 3. Local t-scores for numbers of cars in GWR models (a) Model-1, (b) Model-2, (c) Model-3, and (d) Model-4
(all t-scores are significant because of t-values > 1.96).

The model comparison demonstrates (in Table 6 and Figure 4) that the RSS values in
all four models are lower for the GWR variants than for OLS. For GWR, the RSS value is
lowest (4.526) in Model-2, and highest (8.640) in Model-4. Similarly, the AICc value in all
four models is again lower for the GWR variants, and the lowest AICc (38.435) is present
in the GWR variant of Model-2. Next, the log-likelihood values are higher in all four
GWR models than in OLS, and the GWR variant of Model-2 has the highest log-likelihood
value (−10.667). Furthermore, the adjusted R2 values are higher in all GWR models in
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comparison to the OLS models. The highest adjusted R2 value (0.897) was reported in the
GWR variant of Model-2. In brief, Model-2 has a better fit in all four models.

Table 6. Goodness of fit comparison for all four OLS and GWR models.

Model-1 Model-2 Model-3 Model-4

OLS GWR OLS GWR OLS GWR OLS GWR

RSS 6.214 5.475 4.830 4.526 11.272 6.476 10.113 8.640
Log-likelihood −18.688 −15.459 −12.263 −10.607 −33.874 −19.741 −31.107 −27.091

Adjusted R2 0.871 0.868 0.893 0.897 0.760 0.844 0.784 0.795
AICc 54.89 51.285 45.594 38.435 81.658 66.094 73.581 72.213

 

Figure 4. Model comparison of (a) log-likelihood; (b) AICc; (c) adjusted R2; and (d) RSS.

5. Discussion

This study investigates the effects of various independent variables on the PM2.5
concentration at the KAU campus through OLS and GWR models. We showed that car
traffic is the single most significant factor contributing to the presence of fine particles in
the ambient air of KAU at the ground level.

This study has certain limitations related to sampling. We collected samples from
51 locations at four distinct times of the day for one month; however, extending the time of
data collection to one year or more may capture seasonal variations in PM2.5 concentrations,
resulting in more sophisticated models.

An earlier study by Khodeir et al. [72] confirmed that the main source of PM2.5 at the
KAU campus is dense vehicular traffic; however, this study does not provide any evidence
regarding the spatial variability of PM2.5 within the campus. A higher concentration of
PM2.5 during peak hours (68–70 μg/m3) is a frightening result.

As mentioned earlier, prolonged exposure to fine particles might result in a higher
prevalence of diseases, and even premature casualties. In general, ambient air quality at
the KAU campus is the worst for pedestrians during peak hours. This makes a robust case
for policymakers to make the campus car-free, as curbing sources of fine particle emissions
might reduce deadly health consequences [73]. Our study reinforces the findings of Ruben
Garnica-Monroy et al. [8], which suggest that the exposure of a population to roads with
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heavy traffic exposes it to higher health risks and necessitates changes in urban planning
and public health policies.

Health consequences associated with fine particles have been well-researched in
the global north and the global south, but there are very few studies in the Middle East
region, particularly in Saudi Arabia. An important study by Nayebare et al. [73] noted
that the PM2.5 concentration in Jeddah City is increasing the risk of cardiopulmonary and
respiratory morbidity.

Through GWR models, we have specified the locations on the KAU campus that are
at the greatest risk of PM2.5 exposure because of car use for on-campus mobility.

We recommend addressing the PM 2.5 concentration on the KAU campus through
policies promoting walkability and bicycle riding, which will help to discourage car traffic,
similar to other universities in the global north that are trying to make their campuses
car-free and carbon-neutral.

6. Conclusions

Higher concentrations of PM2.5 at the ground level might accelerate many physical
and cognitive diseases. In this study, we assembled data on dependent and independent
variables at 51 locations on the KAU campus, and developed OLS- and GWR-based regres-
sion models to explain the spatial variability and determinants of PM2.5 exposure at the
micro geographical scale. Unlike other studies, we used primary data to develop four OLS
and GWR models, suggesting that car traffic is a significant factor in PM2.5 concentration
on the KAU campus, while environmental factors and other activities (construction) are
not significant at this scale. We compared all four models based on RSS, log-likelihood,
adjusted R-squared, and AICc, and concluded that all the GWR estimates are better than
the traditional OLS estimates, with Model-2 (attributing peak hour traffic in the morning)
representing the best fit. On the basis of our findings, we recommend adopting sustainable
mobility policies on the KAU campus in order to improve the general health of KAU
students and staff.
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Abstract: The central Liaoning urban agglomeration is an important heavy industry development
base in China, and also an important part of the economy in northeast China. The atmospheric
environmental problems caused by the development of heavy industry are particularly prominent.
Trajectory clustering, potential source contribution (PSCF), and concentration weighted trajectory
(CWT) analysis are used to discuss the temporal and spatial pollution characteristics of PM2.5 and
ozone concentrations and reveal the regional atmospheric transmission pattern in central Liaoning
urban agglomeration from 2015 to 2020. The results show that: (1) PM2.5 in the central Liaoning
urban agglomeration showed a decreasing trend from 2015 to 2020. The concentration of PM2.5 is the
lowest in 2018. Except for Benxi (34.7 μg/m3), the concentrations of PM2.5 in other cities do not meet
the standard in 2020. The ozone concentration in Anshan, Liaoyang, and Shenyang reached the peaks
in 2017, which are 68.76 μg/m3, 66.27 μg/m3, and 63.46 μg/m3 respectively. PM2.5 pollution is the
highest in winter and the lowest in summer. The daily variation distribution of PM2.5 concentration
showed a bimodal pattern. Ozone pollution is the most serious in summer, with the concentration
of ozone reaching 131.14 μg/m3 in Shenyang. Fushun is affected by Shenyang intercity pollution,
and the ozone concentration is high. (2) In terms of spatial distribution, the high values of PM2.5 are
concentrated in monitoring stations in urban areas. On the contrary, the concentration of ozone in
suburban stations is higher. The high concentration of ozone in the northeast of Anshan, Liaoyang,
Shenyang to Tieling, and Fushun extended in a band distribution. (3) Through cluster analysis, it
is found that PM2.5 and ozone in Shenyang are mainly affected by short-distance transport airflow.
In winter, the weighted PSCF high-value area of PM2.5 presents as a potential contribution source
zone of the northeast trend with wide coverage, in which the contribution value of the weighted
CWT in the middle of Heilongjiang is the highest. The main potential source areas of ozone mass
concentration in spring and summer are coastal cities and the Bohai Sea and the Yellow Sea. We
conclude that the regional transmission of pollutants is an important factor of pollution, so we should
pay attention to the supply of industrial sources and marine sources of marine pollution in the
surrounding areas of cities, and strengthen the joint prevention and control of air pollution among
regions. The research results of this article provide a useful reference for the central Liaoning urban
agglomeration to improve air quality.

Keywords: PM2.5; O3; transmission pathways; backward trajectory; PSCF; CWT

1. Introduction

With the rapid development of the social economy, air pollution has become an increas-
ingly serious environmental problem. Epidemiological studies have found that long-term
exposure to air pollution will increase the risk of disease. For example, fine particulate
matter (PM2.5) is significantly associated with an increase in the prevalence of diabetes;
short-term exposure to high concentrations of PM2.5 and ozone(O3) will increase cardio-
vascular disease, respiratory disease, and non-risk of accidental death [1–3]. Since 2013,
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regional atmospheric environmental problems mainly characterized by PM2.5 pollution
have attracted widespread attention in China. Therefore, China has formulated and issued
a series of policies to alleviate air pollution. From 2015 to 2020, PM2.5 pollution in China has
been significantly reduced, while ozone pollution has become increasingly serious [4–9].

Central Liaoning Urban Agglomeration (CLUA) is located in the Northeast Plain.
Due to the concentrated urban distribution, dense population, and industrial structure
dominated by heavy industry, air pollution is serious. In 2020, the proportion of PM2.5 and
O3 as the primary pollutants in Liaoning Province in the days exceeding the standard was
62.9% and 33.8% respectively. The annual average concentration of PM2.5 was 38 μg/m3

which exceeds the secondary standard of ambient air quality [10]. The air quality of Central
Liaoning Urban Agglomeration may be affected by regional anthropogenic emissions.
In winter, the transboundary pollution of PM2.5 is extremely significant. Some studies
also found that there was regional transmission of pollutants in Central Liaoning Urban
Agglomeration and Harbin-Changchun urban agglomeration [11,12]. Straw burning and
coal-burning heating during winter resulted in heavy PM2.5 pollution, and the interannual
change of PM2.5 in Northeast China showed an obvious upward trend from 1998 to 2016.
MDA8 (maximum daily 8 h average) O3 increased and the number of days exceeding the
standard continued to increase which can be attributed to the superimposed effects of
atmospheric long-distance transport and anthropogenic emissions [13–17].

Many studies have mentioned the occurrence of air pollution in various urban agglom-
erations, such as the Beijing-Tianjin-Hebei region, Harbin-Changchun region, Yangtze River
Delta, etc., while there are few studies on Northeast China and Central Liaoning Urban Ag-
glomerations [18–20]. This study collected PM2.5 and O3 concentration data in CLUA (Anshan,
Benxi, Fushun, Liaoyang, Shenyang, and Tieling) from 2015 to 2020 and analyzed its temporal
and spatial characteristics to determine the level of pollutants. Specifically, the aim was to
(1) study the long-term temporal and spatial changes of the mass concentrations of PM2.5 and
O3 and (2), through the back trajectory HYSPLIT model and cluster analysis, discuss the regional
transportation of PM2.5 and ozone in Shenyang, which is the center of Central Liaoning Urban
Agglomeration, in order to provide a useful reference for CLUA to improve air quality.

2. Data Sources and Methods

2.1. Data Sources

The geographical location of the study area is shown in Figure 1. This study used in
situ data from a total of 38 air quality monitoring stations (Table 1) in six cities in central
Liaoning urban agglomeration from 2015 to 2020 (http://www.cnemc.cn/ accessed on
14 May 2021). Among them, O3 data used ozone eight-hour moving average (O3-8 h), and
PM2.5 used hourly monitoring data. Ozone is measured by UV spectrophotometry (Thermo
Scientific Model 49iQ Ozone Analyzer). PM2.5 is passed β X-ray absorption method
and light scattering method were used for real-time determination (Thermo Scientific
Model 5030i Sharp Particulate Monitor). The season division refers to the meteorological
industry-standard “Climate Season Division” (QX/T152-2012) and the annual difference is
adjusted. The results are: spring (1 April–31 May), summer (1 June–31 August), autumn
(1 September–31 October), winter (1 November–31 March of the following year).

2.2. Research Method

The Geographical Information System (GIS)-TrajStat software is used for backward
trajectory clustering, potential source contribution analysis, and concentration weighted
trajectory analysis, and grids were divided by 1◦ × 1◦ within the trajectory range [21,22].

2.2.1. Cluster Analysis

The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(http://ready.arl.noaa.gov/HYSPLIT.php accessed on 12 July 2021) developed by the
National Oceanic and Atmospheric Administration (NOAA) was used to simulate 72 h
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backward trajectories at 100 m altitude for Shenyang to analyze atmospheric
pollutant transportation [23,24].

In the study, to understand the regional transport processes effects, we used 1◦ × 1◦
Global Data Assimilation System (GDAS) data from National Centers for Environmental
Prediction (NCEP). We also calculated the 72 h backward airflow trajectory at 0:00, 6:00,
12:00, and 18:00 every day from 2015 to 2020. Euclidean classification method is used to
analyze the transport path of regional air mass through data statistics of various trajectories
after clustering, which can distinguish trajectories with similar directions but large differ-
ence in length [25]. Then we could better distinguish the contribution of long-distance and
short-distance transmissions from different directions.

Table 1. The details of 38 air quality monitoring stations.

Cities
Air Quality Monitoring Sites

Name Abbr. Longitude (◦E) Latitude (◦N)

Anshan

MingDa New District MD 123.1289 41.0228
QianShan Mountain QS 123.0156 41.0831
ShenGouSi SG 123.044 41.1196
TaiPing TP 123.0485 41.1442
TieXi District Industrial Park TD 122.9481 41.0833
Tiexi Sandao Street TSS 122.9642 41.0971
TaiYang Cheng TYC 123.011 41.0931

Benxi

Cai Tun CT 123.7308 41.3047
Da Yu DY 123.8436 41.3283
Dong Ming DM 123.7669 41.2864
Wei Ning WN 123.8142 41.3472
Xi Lake XL 123.7528 41.3369
Xinli Tun XT 123.7989 41.2692

Fushun

DaHuoFang Reservoir DHF 124.0878 41.8864
DongZhou District DZ 124.0383 41.8625
ShenFuXinCheng SF 123.7117 41.8417
ShunCheng District AC 123.9169 41.8828
WangHua District WH 123.81 41.8469
XinFu District XF 123.9 41.8594

Liaoyang

BinHe Road BH 123.1761 41.2736
HongWei District HW 123.2 41.1953
TieXi District industrial park TXD 123.1417 41.2894
XinHua Yuan XY 123.15 41.2553

Shenyang

CangHai Road CH 123.284 41.7694
LingDong Street LD 123.428 41.8472
DongLing Road DL 123.542 41.8336
JingShen Street JS 123.3783 41.9228
TaiYuan Street TY 123.3997 41.7972
YuNong Road YN 123.5953 41.9086
WenHua Road WH 123.41 41.765
XiaoHeYan Road XHY 123.478 41.7775
SenLin Road SL 123.6836 41.9339
Eastern of HunNan Road HN 123.535 41.7561
ShenLiaoXi Road SLX 123.2444 41.7347

Tieling

Western of HuiGong Street HG 123.8139 42.3022
Northern of JinShaJiang Road JSJ 123.7153 42.2217
ShuiShang Park SP 123.8469 42.292
Eastern of YinZhou Road YZE 123.8489 42.2864
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Figure 1. Air quality monitoring station in CLUA.

2.2.2. PSCF Analysis

Potential source contribution analysis (PSCF) is also called residence time analysis
(RT). The ratio of the length of track l in the grid (i, j) to the length of the whole track is
multiplied by the backward track 72 h, and the result is the residence time of pollutants in
the grid [26]. PSCF identifies the possible pollution emission source areas by combining
the air mass clustering trajectory and pollutant concentration value. PSCF function is a
conditional probability function that pollutants carried by air masses passing through a
unit area exceed the set pollutant threshold [27]. The PSCF value calculated by this function
is the ratio of the number of pollution tracks as mij passing through the grid (i, j) in all track
ranges to the number of tracks as nij passing through the grid [28]. The calculation method
is shown in Equation (1).

PSCFij =
mij

nij
(1)

In this paper, potential source contribution analysis (PSCF) is used to further iden-
tify the potential sources of air pollution in Shenyang [29,30], setting PM2.5 concentration
threshold of 35 μg/m3 and O3 concentration threshold of 100 μg/m3 for all pollution tra-
jectories, to determine the location of potential pollution sources affecting the atmospheric
environment in Shenyang. However, in order to reduce the uncertainty of PSCF value, the
weight factor Wij is introduced and called WPSCF [31], such as Equations (2) and (3).
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Wij =

⎧⎪⎪⎨
⎪⎪⎩

1.00 (80 < nij)
0.70 (25 < nij ≤ 80)
0.42 (15 < nij ≤ 25)
0.17

(
nij ≤ 15

) (2)

WPSCFij =
mij

nij
Wij (3)

where mij is the number of pollution tracks passing through the grid (i, j); nij is the total
number of tracks passed.

2.2.3. CWT Analysis

The values calculated by the PSCF method are the same when the pollutant concentra-
tions of the trajectories are only slightly higher or much higher than the standard [32,33].
As a result, it may be difficult to distinguish between moderate and strong sources by PSC
method. Therefore, in this paper, the concentration-weighted trajectory (CWT) analysis
method is used to calculate the average weighted concentration of each trajectory, which
reveals the contribution of different regions to the air pollution in Shenyang by setting the
mesh precision of CWT to be the same as that of PSCF [34,35]. The same weight factor
Wij from the PSCF method is introduced to distinguish the source intensity of potential
sources, which is called the weighted average concentration value (WCWT value), as shown
in Equation (4).

Cij =
Wij

∑M
l=1 τijl

∑M
l=1 Clτijl (4)

where Cij is the average weight concentration in the grid (i,j), l is the index of the track, Cl is
the pollutant concentration measured when track l arrives, M is the total number of tracks,
and τijl is the time that the trajectory l stays in the mesh (i,j). The higher the value of Cij,
the greater the contribution of the trajectory to the air pollution in Shenyang.

3. Results and Discussion

3.1. Temporal Variation

The annual average concentrations and change trends of PM2.5 and O3 in six cities of
CLUA are investigated as shown in Figure 2. PM2.5 basically showed a trend of declining
from 2015 to 2020. The average concentration of PM2.5 in Fushun decreased by 18% from
2015 to 2016, and increased slightly in 2017 and 2019, but was still lower than 53 μg/m3 in
2015. China began to implement the environmental protection tax law in 2018 to strengthen
the management of air pollution punishment, which explains why the PM2.5 concentration
in each city was the lowest in 2018. In addition, straw burning was prohibited in the study
area, and Liaoning Province began to completely ban small coal-fired boilers of 10 tons and
below in 2016 to improve air quality. The average concentration of PM2.5 in Anshan City
decreased from 67 μg/m3 to 41.6 μg/m3, which was 66.4% lower in 2020 than in 2015. In
2020, the lowest PM2.5 value appeared in Benxi City, which was 34.7 μg/m3. Except for Benxi,
PM2.5 in other cities (Anshan, Fushun, Liaoyang, Shenyang, Tieling) did not meet China
Class II Environmental Air Quality Standard (CAAQS) limited to 35 μg/m3. This shows
that the government needs to strengthen particulate matter control in these cities. Unlike
PM2.5, the annual average concentration of ozone does not change much in various regions,
and the trend of change is slightly different. This can be attributed to the fact that ozone
is affected by more meteorological conditions and chemical reactions [36,37], so its regional
characteristics are less obvious. The average concentration of O3 in Shenyang increased from
2015 to 2017 and decreased significantly after reaching peak value in 2017. Among them, the
ozone concentration in Anshan, Liaoyang, and Shenyang reached the peak concentrations in
2017, which were 68.76 μg/m3, 66.27 μg/m3, and 63.46 μg/m3 respectively.
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Figure 2. Inter-annual changes of PM2.5 and O3 years in CLUA from 2015 to 2020.

Figure 3 shows the monthly variation of the 24-h multi-year average concentration of
PM2.5 in CLUA from 2015 to 2020. It can be found that PM2.5 pollution is the most serious
at the beginning and the end of the year (January to March and October to December), and
the PM2.5 pollution is lower from May to September. In Northeast China, there is a large
area of open burning of crop residues, which is one of the reasons for PM2.5 pollution in
autumn and winter. In addition, PM2.5 pollution peaked in the heating period. Due to
the long heating period, PM2.5 pollution continued until the next spring. It can be seen
that the frequency of low PM2.5 concentration in Benxi area is higher, which also indicates
that the PM2.5 pollution in Benxi is relatively lower than in other areas, because Benxi is
rainy in summer and autumn, and the wind direction is southeast, which is conducive to
the diffusion of pollutants. In general, the PM2.5 concentration in several cities resulted in
high values at night and low values during the day. In this latter case, low-concentration
PM2.5 were registered from 14:00 to 17:00, while the peak of PM2.5 mainly were registered
from 7:00 to 9:00 and from 18:00 to 23:00. The first peak is related to atmospheric stability
and the increase of human activities during this period [38]. This can be attributed to the
intensification of atmospheric turbulence and the gradual decrease of PM2.5 concentration
with the increase of temperature in the morning. The evening peak in the cities appears
after sunset, so the PM2.5 emission increases. In addition, the surface radiation cooling
reduces the height of the boundary layer, and the atmosphere tends to be stable, leading
PM2.5 concentration to continue to rise [39].
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Figure 3. Hourly variation of multi-year average concentration of PM2.5 in different months in CLUA
from 2015 to 2020.

Figures 4 and 5 are box charts of daily average concentrations of PM2.5 and O3 in
different seasons in CLUA from 2015 to 2020 respectively. The upper and lower frames
of the box represent 75% and 25% quantiles respectively. The data points next to the box
in the figures correspond to the daily average concentration of pollutants, and a normal
distribution curve is added according to the concentration value. It is obvious that PM2.5
pollution trends are the same in all cities. PM2.5 pollution is the most serious in winter,
followed by spring and autumn, and significantly lower in summer than in other seasons.
In summer, the concentration of PM2.5 in the Anshan area is the highest, 32.02 μg/m3

(<35 μg/m3). However, the concentration of PM2.5 in other cities does not exceed 30 μg/m3.
It may be related to the fact that Anshan is a heavy industrial city and the main pollution
source is a fixed source. Compared with other seasons, the rainy weather in summer has an
obvious effect on the wet deposition of pollutants, so the PM2.5 concentration is relatively
lower [40]. In spring and autumn, PM2.5 pollution is the most serious in Shenyang, followed
by Tieling and Anshan. The concentration of PM2.5 in Benxi is the lowest. In winter, PM2.5
pollution in Shenyang is the most serious (69.57 μg/m3), which is 2.46 times higher than
that in summer. The concentration of PM2.5 in Benxi City is the lowest, 57.9 μg/m3. This
is consistent with other results obtained using MODIS inversion data [41,42]. The high
concentration in winter is mainly due to the high population density in the built-up area
and the low temperature in winter in the north, so the amount of coal combustion increases.
In addition, inversion is more likely to occur in winter, which is not conducive to the
diffusion of pollutants [43,44].
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Figure 4. Seasonal variation of PM2.5 in CLUA from 2015 to 2020.

Being affected by the seasonal variation of meteorological conditions, the ozone con-
centration is opposite to that of PM2.5. In spring and summer, it is significantly higher
than that in autumn and winter. The seasonal pattern of ozone in central Liaoning
urban agglomeration is the same as that in other regions, with the overall pattern as
summer > spring > autumn > winter [45–47]. In summer, the O3 concentration in Shenyang
is 131.14 μg/m3, and the O3 concentration in Benxi is 95.3 μg/m3. Some studies have
shown that direct emission of surface ozone is different from that of other air pollutants.
O3 is mainly generated by nitrogen oxides (NOx) and volatile organic compounds (VOCs)
through a series of complex photochemical reactions [48,49]. The high temperature and
high chemical reaction rate in spring and summer make the ozone concentration much
higher than that in other seasons. In addition, Benxi is different from other regions, and
ozone concentration in summer is lower than that in spring. The ozone concentration
in Fushun is higher in six cities. Huang et al. mentioned that there is intercity pollution
between Fushun and Shenyang. Therefore, the ozone concentration in the monitoring
stations near Shenyang is higher (Figure 6).

 

Figure 5. Seasonal variation of O3 in CLUA from 2015 to 2020.
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3.2. Spatial Analysis

The spatial sites distribution of O3 and PM2.5 in CLUA is shown in Figures 6 and 7.
PM2.5 and O3 of all monitoring stations in Shenyang showed an obvious downward trend
from 2015 to 2020. In 2015, the high concentrations of PM2.5 were mainly located in LD,
TY, SLX in Shenyang, TD, and TSS in Anshan. On the whole, since 2016, the concentration
values of monitoring stations near the junction of Shenyang and Fushun have been higher.
The stations with high concentrations of PM2.5 are mainly concentrated in Shenyang urban
areas, TD, SF, and WH. These stations are mostly concentrated in urban areas with high
population, which leads to a higher concentration of pollutants caused by motor vehicles
and industrial discharge.

The spatial distribution trend of ozone is basically the opposite of PM2.5. The con-
centration of O3 in rural areas is higher, such as XT, DY, DM, HW, and JSJ, etc. As a
secondary pollutant, the formation of surface ozone is mainly related to its precursors
(NOx and VOCs). The source analysis of atmospheric VOCs in some areas shows that
the contribution rate of motor vehicle sources is high, which is the main source of urban
atmospheric VOCs [50,51]. The ozone pollution occurring in the urban areas is transported
to the suburbs with certain meteorological conditions [52]. The higher vegetation coverage
is conducive to photochemical reaction, resulting in higher ozone concentration in the sub-
urbs [53]. In addition, it can be found that the O3 concentration is higher at the stations near
the junction of Liaoyang and Anshan. From 2015 to 2020, the O3 concentration in western
cities are lower than that in eastern cities. The high ozone concentration is distributed
in a belt from Anshan, Liaoyang and Shenyang to Tieling and Fushun in the northeast.
While the ozone concentration of Benxi in the east is always low, which is consistent with
the results in Figure 2. Figure 8 shows that the ozone concentration in CLUA increased
significantly from 2015 to 2017, and began to decrease gradually in 2018. It shows that
while dealing with climate change, controlling pollutant emission reduction plays an active
role in ozone mass concentration control.

Figure 6. Spatial site distribution of annual average mass concentration of MDA8 O3 in CLUA PM2.5

annual average mass concentration of CLUA from 2015 to 2020(AS: Anshan; BX: Benxi; FS: Fushun;
LY: Liaoyang; SY: Shenyang; TL: Tieling).
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Figure 7. Spatial site distribution of PM2.5 annual average mass concentration in CLUA from 2015 to
2020 (AS: Anshan; BX: Benxi; FS: Fushun; LY: Liaoyang; SY: Shenyang; TL: Tieling).

3.3. Transmission Path Characteristics in Shenyang Region

As the Shenyang area is the geographical and economic center of CLUA, its PM2.5 and
O3 pollution is severe. Therefore, this study selects Shenyang city for backward trajectory
cluster analysis and potential source area analysis. Cluster analysis of the backward airflow
trajectories transported to Shenyang at 0:00, 6:00, 12:00, and 18:00 every day from 2015 to 2020
(Figure 9). There are six categories of backward trajectories in spring. The air flows in spring are
mainly south (trajectory 1 and trajectory 5) and northwest (trajectory 3 and trajectory 6), which
account for 67.79% of the airflows in spring. There are four categories of backward trajectories
in summer. In summer, affected by the marine airflows, the southerly airflows (trajectory 1)
and southeast airflows (trajectory 4) are predominant, accounting for 68.43% of the airflows in
summer. There are seven categories of backward trajectories in autumn and six categories of
backward trajectories in winter. In autumn and winter, the airflows are mostly northwest and
the transmission distance is longer with faster speed, which may be related to the propagation of
the East Asian winter monsoon. Except in summer, the airflows from the Beijing-Tianjin-Hebei
region have all turned back significantly.

Based on the cluster analysis results of airflow backward trajectories in each season, the
PM2.5 and ozone concentration data in Shenyang are combined (Table 2) to quantitatively
analyze the impact of various trajectories on PM2.5 and ozone in Shenyang.

Consistent with the results discussed above, the PM2.5 concentration corresponding to
each air flow in autumn and winter is higher than that in spring and summer. In winter,
the PM2.5 concentration corresponding to the airflow (trajectory 3) from the junction of
Liaoning and Hebei, Bohai Bay and southwest Liaoning is the highest, 106.02 μg/m3.
The second is the air flow from Northeast Inner Mongolia, northwest Jilin and northeast
Liaoning (trajectory 6), and the corresponding PM2.5 concentration is 105.23 μg/m3. The
corresponding concentration of ozone in the southerly flow (trajectory 1) from the Yellow
Sea in spring is 142.41 μg/m3, followed by the air flow (trajectory 5) is 136.5 μg/m3.

The long-distance transport of northwest air flow from Hunshandak Sandy Land in
Northwest Inner Mongolia and the Gobi Desert in central Mongolia is the main transport
path affecting the PM2.5 concentration in Shenyang in four seasons. In addition, southwest
air flows through densely populated areas such as Beijing, Tianjin, and Hebei. The Bohai
Sea has heavy shipping emissions, making it another main transmission path affecting
PM2.5 pollution in Shenyang.
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Figure 8. Spatial distribution of annual average mass concentration of MDA8 O3 in CLUA from 2015
to 2020 (AS: Anshan; BX: Benxi; FS: Fushun; LY: Liaoyang; SY: Shenyang; TL: Tieling).

Figure 9. Clustering analysis of backward trajectories of each season in Shenyang from 2015 to 2020
(the trajectories are marked with number and frequency).
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Table 2. Statistical results of the mass concentration of all kinds of air flow in the four seasons
of Shenyang.

Season Air Mass Type PM2.5 Stdev Number Ozone Stdev Number

spring

1 60.51 24.70 202 142.41 32.84 189
2 60.64 28.59 65 111.46 7.57 14
3 59.25 23.82 100 118.87 15.45 26
4 69.00 34.10 124 128.95 21.41 50
5 67.13 28.36 138 136.50 26.83 114
6 68.01 31.71 79 126.39 20.51 31

summer

1 50.13 13.82 286 137.58 31.06 301
2 48.56 11.93 87 126.94 21.51 113
3 58.19 23.81 9 125.66 22.24 8
4 49.32 13.65 224 139.83 32.71 230

autumn

1 72.59 38.98 144 119.96 15.78 11
2 57.67 20.13 76 126.97 19.32 5
3 70.91 30.63 117 127.91 20.74 37
4 72.21 59.55 93 113.84 13.10 6
5 63.65 48.37 22 0.00 0.00 0
6 58.04 20.42 5 125.80 0.00 1
7 59.25 25.67 150 121.29 21.59 44

winter

1 78.52 57.48 543 112.41 15.37 4
2 90.24 65.41 506 109.51 5.96 10
3 106.02 85.85 614 114.84 11.12 16
4 66.15 33.99 45 0.00 0.00 0
5 76.45 41.05 222 111.22 5.83 4
6 105.23 54.45 489 120.49 19.19 50

3.4. Characteristics of Potential Source Areas in Shenyang

We conduct the potential source contribution factor (WPSCF) analysis and the concen-
tration weight trajectory (WCWT) analysis based on the backward trajectory of each season
in Shenyang from 2015 to 2020, in order to fully reflect the long-term impact characteristics
and contribution of potential source regions on the mass concentration of PM2.5 and O3
in Shenyang. The results are shown in Figures 10–13. The larger the calculated value of
WPSCF, the greater the impact of the area on the mass concentration of PM2.5 and O3 in
Shenyang. The higher value of WCWT, the greater the contribution of the grid area to the
pollution of PM2.5 and O3 in Shenyang.

The WPSCF value of PM2.5 is the lowest in summer, and it can be found that WPSCF
and WCWT have consistent spatial distribution characteristics in central Shandong. It can
be seen that the regions with a higher contribution to the PM2.5 concentration in Shenyang
in spring were concentrated in the central Shandong Province and the northwestern parts
of Jiangsu Province, with WPSCF value higher than 0.7 and corresponding WCWT value
higher than 50 μg/m3 (Figures 10 and 12). In summer, WPSCF value is higher near
Zaozhuang and Jinan in Shandong Province, and WCWT value is 45~50 μg/m3. The
regions with relatively high WPSCF in autumn are mainly concentrated in Beijing-Tianjin-
Hebei Urban Agglomeration and northwestern part of the Shandong Province, and the
WCWT value is higher than 80 μg/m3. In winter, due to the heavy PM2.5 pollution, the
WPSCF value of PM2.5 is high and wide, indicating that the PM2.5 pollution in Shenyang
has certain regional characteristics. The high value of WPSCF mainly occurs in Beijing
Tianjin Hebei Urban Agglomeration, Bohai Sea area, Lianyungang City, Shandong Province
and Jiangsu Province, the northeast of Liaoning, the middle of Jilin, and the middle
of Heilongjiang, showing a wide coverage of northeast trending potential contribution
source zone (WPSCF > 0.8). It is worth noting that in the WCWT distribution, the central
Heilongjiang shows more than 240 PM2.5. It also mentioned that in winter, Liaoning
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Province is subject to long-distance transportation from Heilongjiang Province, resulting in
serious haze pollution [54].
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Figure 10. WPSCF distribution of PM2.5 in Shenyang from 2015 to 2020.

It can be seen from Figure 11 that there are many regions with higher contributions of
the O3 concentration in Shenyang in spring and summer. They are mainly concentrated in
Bohai Bay, Shandong Province, Jiangsu Province, and the nearby Yellow Sea. The WPSCF
value is higher than 0.6 and the corresponding WCWT value is more than 110 μg/m3.
Among them, Jiangsu Province is an economically developed region in China, with in-
tensive secondary industry and serious pollutant emission. The high WPSCF values in
the Bohai Sea and the Yellow Sea may be the pollutants in their adjacent areas and are
transmitted to the nearby sea areas through the sea land winds. Then they are transported
to the northeast along the Bohai Bay and the Yellow Sea bay, sinking in Shenyang. However,
as mentioned above, compared with PM2.5, ozone is unstable and the formation conditions
are complex, so it is more difficult to determine the potential source area of ozone. PSCF
and CWT methods show that the high ozone content in Shenyang mainly comes from the
transmission in the Yellow Sea, Bohai Sea, and its adjacent areas.

Combined with the analysis of PSCF and CWT, it can be found that the main potential
sources areas affecting the PM2.5 mass concentration of in Shenyang in autumn and winter
are Beijing-Tianjin-Hebei Urban Agglomeration, Shandong Province, Jiangsu Province, and
nearby sea areas. This shows that the atmospheric circulation has an important impact on
the regional transmission of the city. In addition, the main potential source areas of O3 mass
concentration in spring and summer are coastal cities and the Bohai Sea and Yellow Sea.
This is also consistent with the backward air flow trajectory with heavy pollution in each
season, and the influence of long-distance transmission of pollution concentration is small.
Through potential source analysis, we should pay attention to the industrial source supply
in the surrounding areas of cities and the marine source provided by marine pollution, and
strengthen joint prevention and control of air pollution among regions.
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Figure 11. WPSCF distribution of O3 in Shenyang from 2015 to 2020.

Figure 12. WCWT distribution of PM2.5 in Shenyang from 2015 to 2020.
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Figure 13. WCWT distribution of O3 in Shenyang from 2015 to 2020.

4. Conclusions

The PM2.5 concentration has fluctuated from 2016 to 2020 in Fushun, and has declined
year by year from 2015 to 2020 in other areas of the CLUA. The lowest PM2.5 level occurred
in 2018. Except for Benxi, PM2.5 in other cities (Anshan, Fushun, Liaoyang, Shenyang,
Tieling) did not meet the China Class II Environmental Air Quality Standard (CAAQS)
limit of 35 μg/m3. The annual mean concentration of ozone has little change in different
regions, and the variation trend is different. The ozone concentration in Anshan, Liaoyang,
and Shenyang reached the peak value in 2017, which was 68.76 μg/m3, 66.27 μg/m3, and
63.46 μg/m3, respectively. PM2.5 pollution is the most severe at the beginning and the end
of each year (January to March and October to December). The concentration of PM2.5 in all
cities showed the characteristics of high at night and low during the day. Affected by human
activities and atmospheric movements, there are two peaks at 7:00~9:00 and 18:00~23:00.
The seasonal pattern of PM2.5 concentration was winter > spring > autumn > summer. In
winter, PM2.5 pollution in Shenyang is 69.57 μg/m3, which is 2.46 times of that in summer.
The seasonal pattern of ozone concentration is summer > spring > autumn > winter. In
summer, The O3 concentration in Shenyang is the highest, 131.14 μg/m3, 1.37 times of
that in Benxi. The ozone concentration in Fushun area is affected by the intercity pollution
in Shenyang.

In terms of the spatial distribution of PM2.5 and O3 concentrations, the concentrations
of PM2.5 in the western cities (Shenyang, Liaoyang, and Anshan) present higher than that
in the eastern ones (Tieling, Fushun, and Benxi), and the higher values are concentrated in
urban monitoring stations. On the contrary, the concentration of O3 is higher in rural areas,
which is related to its precursors. The high concentration of ozone in Anshan, Liaoyang,
and Shenyang extends to Tieling and Fushun in the northeast. The ozone concentration
of Benxi city in the east is always low. Moreover, the ozone concentration in the central
Liaoning urban agglomeration began to decrease gradually in 2018.

Through backward trajectory cluster analysis, it is found that the main transmission
paths affecting Shenyang are southerly short-distance and northwest long-distance airflows
in spring, southerly short-distance airflow in summer, southerly and northerly airflows in
autumn, and northwestern long-distance airflow in winter. In winter, southwest airflows
and northeast airflows have the highest PM2.5 concentration, which is 106.02 μg/m3 and
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105.23 μg/m3 respectively. The ozone concentration corresponding to the southerly airflows
in spring and summer is the highest, which is 142.41 μg/m3 and 139.83 μg/m3, respectively.

Through the WPSCF and WCWT analysis, it is found that the main potential source
areas affecting the mass concentration of PM2.5 in Shenyang in autumn and winter are
Beijing-Tianjin-Hebei urban agglomeration, Shandong Province, Jiangsu Province, and
nearby sea areas, showing a potential contribution source belt with a wide coverage of
northeast trend. In addition, the main potential source areas of ozone mass concentration
in spring and summer are mainly coastal cities and the Bohai sea and Yellow Sea. Through
the analysis of potential sources, we should pay attention to the industrial source supply
in the surrounding areas and the marine source provided by marine pollution. We will
strengthen joint prevention and control of air pollution between regions.
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Abstract: With the development of digital technologies such as the Internet and digital industries
such as e-commerce, the digital economy has become a new form of economic and social development,
which has brought forth a new perspective for environmental governance, energy conservation,
and emission reduction. Based on data from 30 Chinese provinces from 2011 to 2018, this study
applies the space and threshold models to empirically examine the digital economy’s influence on
haze pollution and its spatial spillover. Furthermore, it investigates the spatial diffusion effect of
regional digital economic development and haze pollution by constructing a spatial weight matrix.
Subsequently, an instrumental variable robustness test is performed. Results indicate the following:
(1) Haze pollution has spatial spillover effects and high emission aggregation characteristics, with
haze pollution in neighbouring provinces significantly aggravating pollution levels in the focal
province. (2) China’s digital economy has positively impacted haze pollution, with digital economic
development having a significant effect (i.e., most prominent in eastern China) on reducing haze
pollution. (3) Changing the energy structure and supporting innovation can restrain haze pollution,
and the digital economy can reduce the path mechanism of haze pollution through the mediating
effect of an advanced industrial structure. It shows a non-linear characteristic that the influence of
haze reduction continues to weaken. Thus, policymakers should include the digital economy as a
mechanism for ecologically sustainable development in haze pollution control.

Keywords: haze pollution; digital economy; industrial structure; spatial spillover

1. Introduction

Since China’s reform and opening up, factor cost advantages have enabled the nation
to achieve rapid economic development. However, this long-term and extensive economic
development model has caused severe environmental pollution. As haze effects are wide-
ranging, long-lasting, and difficult to treat, this form of air pollution has attracted extensive
attention from many researchers. Many studies show that severe haze pollution greatly
harms people’s physical and mental health and reduces life expectancy, and the resulting
welfare cost hinders sustainable economic development [1–4]. Thus, haze pollution detracts
from improvements to health, living standards, and quality of economic development,
making its effective control a priority.

Scholars have studied the influence of haze on different aspects, such as the econ-
omy [5,6], population [7–11], and energy [12–15]. The existing research has comprehen-
sively explored the mechanism of haze pollution. However, technological and industrial
revolutions, global warming, water pollution, air pollution [16,17], and other environmen-
tal problems have occurred frequently. Thus, cloud computing, 5G, artificial intelligence,
big data, and other digital technologies attempt to break the information asymmetry, and
they are expected to play an important role in global environmental governance [18–20].
Moreover, the low-cost, high-efficiency digital economy industry has witnessed constant
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development; as a consequence, many new industries have appeared. The transforma-
tion and upgrading of traditional industries have been accelerated, particularly as the
Chinese government has been making efforts to coordinate environmental protection and
economic development. At the national level, the digital economy is becoming increasingly
important for societal development. According to China’s Digital Economy Development
White Paper [21], the digital economy grew by 15.6% annually to 35.8 trillion yuan in 2019
or 36.2% of the gross domestic product (GDP). Societies worldwide are moving toward
rapid optimal allocation and regeneration of resources through the digital industry. This is
reflected, for example, in the ‘Made in China 2025’ strategy and the ‘Industrial Internet’ in
the United States. The influence of emerging industries on environmental governance can
be analysed through the identification, selection, filtering, storage, and use of big data.

Whether digital technology can improve environmental pollution is related to whether
digitalisation can help reduce both energy consumption and the cost of environmental
governance. The previous literature has studied the overall association between economy-
wide energy consumption and information and communication technologies (ICTs). Some
scholars argue that ICT has reduced the demand for energy through energy efficiency
and sectoral changes. Schulte et al. [22] found that in the Organisation for Economic
Cooperation and Development (OECD) countries, ‘a 1% increase in ICT capital results
in a 0.235% reduction in energy demand’. This is not due to a decrease in electricity
consumption but a decline in other non-electric energy sources, possibly arising from the
direct impact of ICTs and services on electricity and the indirect impact on non-electric
energy carriers in other parts of the economy. ICTs can enrich environmental quality
through dematerialisation of production, thereby supporting a less resource-intensive and
lightweight economy [23,24]. Ren et al. [25] used the provincial data, systematic GMM
method, and intermediate effect model of China from 2006 to 2017 to demonstrate that
the relationship between Internet development and energy consumption structure has
a negative impact. However, some scholars believe that ICT application will increase
energy consumption due to the ‘rebound effect’ [26]; Zhou et al. [27] analysed the carbon
emissions at the industry level in China by using the input–output method; the ICT
sector can induce a large amount of emissions by requiring carbon-intensive intermediate
inputs from non-ICT sectors. In other words, the application of ICT does not significantly
improve the environment and may even worsen environmental problems. Some scholars
believe that this influence is not good or bad. Noussan and Tagliapietra [28] forecasted
the future European scenario and analysed the potential impact of digital technologies
such as the Internet of Things on energy consumption and carbon dioxide emissions in
the transportation field. The impact on green sustainability depends on user behaviour,
economic conditions, transport, and environmental policies.

Information asymmetry is another challenge in environmental governance. It not only
increases environmental governance costs and weakens the effectiveness of environmental
policies, but it also leads to a lack of regulatory bodies in environmental governance and
reduces the public’s enthusiasm for environmental governance. In 2016, China launched
an ecological and environmental protection big data service platform as part of the Belt
and Road Initiative. ‘Internet +’, big data, remote sensing satellites, and other information
technologies provide environmental information support to China and other countries
along the initiative. The Internet’s openness, interactivity, and real-time nature make public
participation in environmental governance both possible and convenient [29]. Moreover,
the Internet promotes environmental supervision, management, intelligence, accurate ser-
vices, and rectifies previous environmental governance deficiencies [30,31]. Zuo et al. [32]
made recommendations to adopt IOT technology to dynamically collect real-time product
data related to energy consumption to improve energy efficiency and large-scale utilisation
of clean energy. Li et al. [33] empirically concluded that digital technology promotes
environmental sustainability in Chinese manufacturing.

Simultaneously, the digital economy is reshaping the global value chain. Accord-
ing to the ‘smiling curve’ theory, high added value is located at both tails of the curve,
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representing the upstream (pre-production research and development) and downstream
(post-production services) of the value chain. Processing and assembly activities are lo-
cated at the midpoint of the curve, indicating little added value [34]. In the past, China’s
manufacturing sector embraced economies of scale for profitability with high volume,
low-value production that also created severe air pollution. As the energy factor shifts
from the industrial to the service sector, growth in the more energy-efficient sectors will
reduce emissions; consequently, the overall economy will be more energy efficient [35–37].
Original elements and resources are transferred from industries with low distribution
efficiency to technology-intensive industries with high distribution efficiency [38]. Thus,
upgrades to the industrial structure would have a substantial impact on pollution.

Additionally, a characteristic of the digital economy is the physical sharing of informa-
tion. Spatial changes have completely overhauled logistics links, resulting in the emergence
of new industries, such as e-commerce, which is witnessing rapid growth due to the high
penetration of the Internet and the large numbers of mobile users [39]. E-commerce can
improve environmental pollution, as it significantly reduces information search costs and
product prices and does a better job of matching. Thus, these supply–demand resources sig-
nificantly reduce transportation and distribution costs, require less energy consumption, and
reduce carbon dioxide emissions compared to in-person shopping [40]. E-commerce can also
significantly optimise the corporate structure and management, thereby improving produc-
tion efficiency [41]. The digital economy changes the smile curve, reconstructs the industrial
value chain, and realises green development under the value chain sharing economy.

By reviewing the previous literature, we find that, first, the existing literature discusses
the impact of digitisation on carbon emissions, SO2 emissions and energy consumption
through the use of the Internet, output value proportion of the tertiary industry, and
investment in the ICT industry as proxy indicators. It is worth noting that the digital
economy has received more and more attention, while little empirical research has been
conducted to explore whether the development of the digital economy can improve air
pollution in China. Second, previous studies have always carried out regression analysis
on ordinary panels or dynamic panels, ignoring the spatial correlation and spatial spillover
effect of haze pollution. In reality, the diffusion of haze between different regions will
lead to spatial correlation and spatial dependence. In spatial econometrics, neglecting
spatial effects may lead to errors in estimation and analysis. In a digital environment,
search costs are lower, which increases the potential scope and quality of the search.
Digital products are often not competitors; that is, they can be replicated at zero cost.
As the cost of transporting digital goods and information approaches zero, the role of
geographical distance is also expected to change. Digital technology makes it easier to track
behaviour [32], and the digital economy containing the above characteristics undoubtedly
brings a new perspective for environmental governance. Therefore, we must ask, what
impact does the digital economy have on haze pollution? Moreover, what are the channels
through which this influence is generated? To answer the above questions, we empirically
test the effects of the digital economy on haze pollution and its spatial spillover using data
from 30 provinces in China. This study aims to provide insights into the potential impact
of the digital economy on future environmental governance. It argues that to take full
advantage of the digital economy in environmental sustainability, it is necessary to adopt
appropriate policies, support efficient deployment, and shape the digital process politically
and socially [42].

This study’s main contributions are as follows: First, we construct the second-level
indicators of digital infrastructure (representing digital technology) and digital industry
(representing emerging industries) and evaluate the development of the digital economy
using the entropy weight method. Second, from the perspective of spatiotemporal evolu-
tion characteristics of the digital economy and haze pollution, the relationship between
them is discussed using the spatial model, filling the gap between the digital economy
and ecological geography. Third, accurately solving the two-way causality between haze
pollution and the digital economy leads to endogeneity problems. Two methods were
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used to test the robustness: the replacement of spatial matrix, and the construction of
instrumental variables. The number of telephones per 10,000 people per city in 1984 further
confirms the robust results of our quantitative research. Finally, this study discusses the
mechanism of digital economy influencing haze pollution through industrial structure
change using the threshold model.

2. Methodology and Data

2.1. Construction of the Spatial Weight Matrix

The spatial weight matrix reflects the spatial interaction between different regional
research samples. Spatial statistical analysis begins with the establishment of a spatial
weight matrix. In this study, we set up a spatial weight matrix with sample size n. All
elements of Wij are i, j = 1, ···, n, and the 0–1 adjacency weight matrix (W1) is expressed as

Wij =

∣∣∣∣∣∣∣∣
W11 W12 . . . W1n
W21 W22 . . . W2n
. . . . . . . . . . . .

Wn1 Wn2 . . . Wnn

∣∣∣∣∣∣∣∣
(1)

where Wij = Wji; at Wij = 0, location j is not a neighbour of location I; and at Wij = 1,
location j is the neighbour of location i, where i = 1, 2, . . . , n; j = 1, 2, . . . , n. At Wij = 1,
province i has a common boundary with province j; otherwise, Wij = 0.

Then, we constructed the weight matrix of geographical distance (W2), which is
expressed as follows:

Wij =

{
Wij =

1
dij

Wij = 0
(2)

Let the distance between the geographic centres of province i and province j be dij; the
latitude and longitude of geographic centre point A of province i be β1 and α1, respectively;
and the latitude and longitude of geographic centre point B of province j be β2 and α2,
respectively. The Earth’s radius is:

dij = R·arc cos[cosβ1cosβ2cos(α1 − α2) + sinβ1sinβ2] (3)

2.2. Spatial Autocorrelation Analysis

For a comprehensive investigation of the spatial spillover effect of haze pollution and
the digital economy, we use the global and local spatial correlation indexes. First, we test
whether the research object has a spatial effect by conducting a spatial autocorrelation test
for the development index of the digital economy and haze pollution. Spatial correlation
analysis can measure the spatial effect of each year in the geographical distance matrix. We
calculate the global Moran’s index (Moran’s I) as

I =

n
n
∑

i=1

n
∑

j=1
Wij|xi − x|∣∣xj − x

∣∣
n
∑

i=1

n
∑

j=1
Wij

n
∑

i=1
(xi − x)2

(4)

The value range of Moran’s I is [−1,1]. When I > 0, a positive autocorrelation exists
between the two regions. Haze pollution or the development of the digital economy is
characterised by spatial agglomeration. When I < 0, a negative correlation exists between
the two regions or spatial discreteness. When I = 0, the distribution of haze pollution is
random, and no spatial autocorrelation exists.

Global spatial correlation analysis examines the aggregation of the entire space. Local
spatial correlation analysis is used to understand the development of the digital economy
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within each region or the degree of correlation between the haze pollution level in the focal
region and nearby regions. The local Moran’s I is calculated as

I =

n|xi − x|
n
∑

j=1
Wij
∣∣xj − x

∣∣
n
∑

i=1
(xi − x)2

(5)

Here, a positive I represents some areas with high (low) values surrounded by other
regions with high (low) values—either high–high (H–H) or low–low (L–L). Moreover, a
negative I represents an area with high (or low) values surrounded by other areas with a
low (or high) value—either high–low (H–L) or low–high (L–H).

2.3. Econometric Methodology

The following model was established:

ln PM2.5i,t = α0 + α1 ln DIGEi,t + α2Xcontroli,t + μi + δt + εi,t (6)

Here, DIGEi,t is an indicator of the development level of the digital economy in
province i in period t; Xcontrol i,t is a series of control variables: population structure (PS),
fixed assets (FA), energy situation (ES), and degree of innovation (IN) in Equation (6); μi,
refers to the individual fixed effect of province i that is time-invariant; δt controls the time
fixed effect; and εi,t is a random perturbation term.

2.3.1. Spatial Autoregressive Model

Spatial correlation existed between our variables, and OLS may lead to inconsistencies
in the parameter estimates. Therefore, this study introduced a spatial econometric model
and analysed the influence of the digital economy on haze pollution in depth from both
the space and time perspective. We selected the spatial autoregressive model (SAR) and
spatial error model (SEM). The SAR is

Y = α + ρWy + Xβ + ε, ε∼ N[0, σ2 I] (7)

A variable is affected not only by its explanatory variable but also by variables in other
spaces. Here, Y is the explained variable, X is the independent variable, α is the constant
term, W is the spatial weight matrix, WY is a vector of the spatial lag dependent variable,
ρ denotes a spatial regression coefficient reflecting the spatial dependence of the sample
observations, and ε is a random perturbation term. Substituting Equation (6) into the test
of Equation (7), we obtain the following spatial econometric model:

ln PM2.5i,t = α + ρW ln PM2.5i,t−1 + β1 ln DIGEi,t + β2Xcontroli,t + ε (8)

2.3.2. Spatial Error Model

Equation (9) represents the SEM. The space disturbance term is related to the space
population, and the disturbance term of a particular space affects and other spaces via the
space effect.

Y = α + Xβ + ε, ε = λWε + μ, μ∼ N[0, σ2 I] (9)

where Y is the explained variable; X is the independent variable of exogenous influencing
factors; α is the constant term; ε is a random error term; β represents the influence of the
independent variable on the dependent variable; λ is the unevaluated coefficient of the
spatial autocorrelation error term (also known as the spatial autocorrelation coefficient);
and μ is an error term. Substituting Equation (6) into the test of Equation (9), we obtain the
following spatial econometric model:

ln PM2.5i,t = α + β1 ln DIGEi,t + β2Xcontroli,t + λWε + μ (10)

206



Sustainability 2021, 13, 9076

2.3.3. Threshold Model

This study tested whether the industrial structure mediates the relationship between
the digital economy and haze pollution measured as particulate matter (PM2.5). The spe-
cific steps are as follows: in the digital economy development index (DIGE), the coefficient
of α1 is significant throughout the analysis in the linear regression model (6) for haze
pollution of PM2.5, based on the construction of DIGE for the mediating variable IS in
the linear regression equation of the industrial structure and DIGE for IS in the regression
equation of PM2.5 by β1, γ1, γ2. The significance of the regression coefficient determines
whether a mediation effect exists. The specific form of the regression model is

ln ISi,t = β0 + β1 ln DIGEi,t + β2Xcontrol i,t + μi + δt + εi,t (11)

and

ln PM2.5i,t = γ0 + γ1 ln DIGEi,t + γ2 ln ISi,t + γ3Xcontroli,t + μi + δt + εi,t (12)

In addition to the mediating effect model, the empirical test for the indirect transmis-
sion mechanism should consider Metcalfe’s law—the value of the Internet is proportional
to the square of the number of users. The development level and industrial structure up-
grading of the digital economy may also indirectly reduce the non-linear dynamic spillover
of haze pollution in the digital economy. Therefore, in order to study whether the digital
economy has a non-linear impact on haze pollution through the intermediary mechanism
of industrial structure change, the following panel threshold model is set:

ln PM2.5i,t = φ0 + φ1 ln DIGEi,t × I(Adji,t ≤ θ)+

φ2 ln DIGEi,t × I(Adji,t > θ) + φ3Xcontroli,t + μi + δt
(13)

In Equation (13), Adji,t is a threshold variable such as the digital economy and indus-
trial structure, and I (·) represents indicator functions valued at 1 or 0, which meet the
conditions in the parentheses—namely 1; otherwise 0. Equation (13) considers a single
threshold case.

2.4. Data Source
2.4.1. Explained Variable

PM2.5 (ug/m3). To address the lack of historical data on PM2.5 concentration levels,
we used raster data from the atmospheric composition analysis group based on the annual
average of global PM2.5 concentrations monitored by satellites [43]. Using ArcGIS soft-
ware, we analysed the specific value of the annual mean PM2.5 concentration in Chinese
provinces from 2011 to 2018. Using these data, the difficulty in using surface monitoring
data based on point source data to measure the PM2.5 concentration of an area accurately
was addressed.

2.4.2. Core Explanatory Variable

The core explanatory variable is the DIGE. With regards to the measurement of the dig-
ital economy’s development level, as officials have not yet disclosed a comprehensive index
of concrete information for it, the calculation faces certain difficulties and challenges [44].
Based on the method of Huang et al. [45], the present study adopted the indicators of
Internet penetration rate, relevant practitioners, relevant output, and mobile phone pen-
etration rate. Based on the 2011–2018 panel data of 30 provinces, to build the digital
infrastructure and digital industry variable, this study developed secondary indices where
the secondary index of digital infrastructure corresponds to mobile telephone exchange ca-
pacity (10,000 families), optical fibre cable line length (km), number of Internet broadband
access ports (10,000 units), number of websites (10,000 units), popularisation rate of mobile
telephones (unit/100), and number of Internet broadband access users (10,000 units). The
secondary index of digital industry is number of computers per 100 people in the enter-
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prise, number of websites per 100 enterprises, proportion of enterprises with e-commerce
transaction activities on the Internet per 100 enterprises, and proportion of e-commerce
sales in the GDP. Using the entropy method, the data of these 10 indicators were processed
to obtain the DIGE.

2.4.3. Intermediate Variable

Industrial structure (IS) is the intermediate variable. The proportion of the tertiary sec-
tor’s output value indicates whether an economy has an advanced industrial structure [46].
The larger the value, the smaller the negative impact on haze pollution. Therefore, the sign
of the coefficient is expected to be negative.

2.4.4. Control Variables

The control variables include the following:
Population structure (PS). Owing to livelihood pressures, young people are more

willing to risk high pollution emissions to earn higher incomes, and an increase in the
proportion of the labour population aggravates haze pollution [47]. In this study, the
proportion of people aged 15–64 years in the total population was used to measure the
influence of total regional population distribution on haze pollution. Therefore, this study
expected the coefficient sign to be positive.

Fixed assets (FA). Following Li et al. [48], FA is expressed as the total investment in
fixed assets. FA investment is positively correlated with digital economy development
and is an essential source of funds for promoting technological innovation. Therefore, this
study expected a negative coefficient sign.

Energy situation (ES). Burning fossil fuels, especially coal, is regarded as an impor-
tant source of haze pollution [49], and China is among the few countries whose energy
consumption structure is dominated by coal. Therefore, the total amount of energy con-
sumption (tons of standard coal) is used. The higher the proportion of coal consumption,
the less likely it is to decrease haze concentration. We expected a positive coefficient sign.

Innovation degree (IN). IN is the number of patents granted by each province. The
larger its value, the stronger the technological innovation ability, which helps improve the
factor utilisation efficiency and reduce pollution emission intensity. Therefore, we expected
a negative coefficient sign.

The index data for the core explanatory variables are available from the China Statistical
Yearbook [50]. The index data for the intermediary and control variables are from the WIND
and China Stock Market Accounting Research databases.

2.5. Data Description

Table 1 shows the descriptive statistics. To reduce errors and heteroscedasticity caused
by different units, each variable was treated logarithmically. The results show that haze
pollution varies significantly among different regions. The development index of the digital
economy (lnDIGE) has a small mean and large standard error, while the standard error
of the industrial structure (the mediating variable) is relatively small. Clear differences
among provinces exist in terms of PS, FA, ES, and IN.

Table 1. Descriptive statistics.

Type of Variable Variable Obs Mean SD Min Max

Dependent Variable lnPM2.5 240 3.500 0.478 2.164 4.426
Independent Variable lnDIGE 240 −1.80 0.665 −3.565 −0.114
Intermediate Variables lnIS 240 3.804 0.190 3.391 4.419

Control Variables

lnPS 240 −0.306 0.048 −0.409 −0.176
lnFA 240 9.451 0.782 7.219 10.941
lnES 240 9.421 0.646 7.378 10.568
lnIN 240 8.061 1.398 4.248 10.882
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3. Results and Discussion

3.1. Spatio-Temporal Evolution of China’s PM2.5 Concentration and Digital Economy

This study selected three cross sections of time—2011, 2014, and 2018. The spatial clus-
tering characteristics of the digital economy development and haze pollution distribution
in 30 Chinese provinces were analysed using the natural fracture method.

As illustrated in Figure 1a–c, for PM2.5 pollution, the 30 provinces showed an overall
decline over the 8 years of the haze index. Maximum PM2.5 concentration by region was
found in east-central China and the provinces of Shandong, Henan, Anhui, and Jiangsu,
among others, in 2011, 2014, and 2018. The PM2.5 concentration in these regions was three
times the smog concentration in the next highest echelon. In Hubei, Shanxi, Guangdong,
Guizhou, and Chongqing provinces, PM2.5 pollution levels improved significantly, while
they deteriorated in Xinjiang, Liaoning, and Gansu. This result was affected not only by
geographical location and meteorological conditions but also by the provinces’ social and
economic development [51]. The possible reasons are as follows: (1) Most economically
developed provinces have relatively high PM2.5 levels and have consequently witnessed
greater efforts to control air pollution. (2) The industrial division of labour in the provinces
is changing. An increase in the proportion of the tertiary sector improves air quality, while
the transfer of the industrial structure aggravates haze pollution in the receiving province.
(3) In the central and western regions, which have low population density, PM2.5 pollution
is not quite as severe, and little attention is paid to, or investments made for, mitigating air
pollution, causing a continuous deterioration of air quality.

  

(a) (b) (c) 

  
(d) (e) (f) 

Figure 1. Spatio-temporal evolution of China’s PM2.5 concentration levels (a–c) and digital economy (d–f) in 2011, 2014,
and 2018.
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Figure 1d–f show that, from 2011 to 2018, digital economy development was on the
rise in all 30 provinces. China’s three major economic belts are the bay area of the Yangtze
River Delta, Guangdong province, and the Beijing–Tianjin–Hebei region, which witnessed
substantial digital economy development in the first phase. Combined with other areas
of the country, these form a clear core–periphery model wherein the eastern region’s digi-
tal economy development index has leading areas, such as Guangdong, Jiangsu, Beijing,
Shanghai, Zhejiang, Shandong, Shanxi, Shaanxi, and Guizhou. Moreover, Sichuan, Jiangxi,
Anhui, Hubei, and other mid-west cities are catching up. Comparative advantage is imple-
mented by digital economy development rotation. Simultaneously, the digital economy
index reflects the imbalance and insufficiency among various regions in China [51]. The
digital economy in Xinjiang, Gansu, Ningxia, and other regions in more remote areas is
developing slowly, forming the bottom of the index. Thus, strengthening the Internet
infrastructure construction in these areas is necessary.

3.2. Spatial Autocorrelation Analysis

To accurately understand the provincial-level digital economy and haze pollution
agglomeration in the country, this study analysed the variables for the provinces with
PM2.5 air pollution and digital economy development. Figure 2 shows the two indicators
in the global Moran’s I calculation formula: the 2011–2018 global Moran’s I of the PM2.5
index, which is between 0.22 and 0.39 (p-value is 0.000–0.010, significant at 1%), with Z
(I) 2.6–3.4 (Z >+ 2.58); and the global Moran’s I of the digital economy, which is between
0.28 and 0.37 (p-value is 0.000–0.004, significant at 1%), with Z(I) 2.6–3.4 (Z >+ 2.58). Thus,
the distribution of haze pollution and the digital economy presented significant spatial
autocorrelation and had a geographical agglomeration feature. The more severe the haze
pollution in the focal province, the higher the haze pollution in the neighbouring provinces.
Moreover, the more advanced the digital economy in the focal province, the higher the
degree of digital economy development in the neighbouring provinces.
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Figure 2. Global Moran’s I of China’s PM2.5 concentration levels and digital economy from 2011 to 2018.
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Figure 3a–c show that haze pollution in 2011, 2014, and 2018 in the H–H agglomeration
areas was mainly distributed in the Beijing–Tianjin–Hebei region and Yangtze River Delta;
this includes the provinces that encompass Beijing, Tianjin, Shanghai, Jiangsu, and Zhejiang.
The economically developed eastern region is the most populous province in China in
terms of population density, urbanisation, industrialisation, new technology industry,
and heavy industry base. Yunnan, Guizhou, and Sichuan in the west and Hunan, Hubei,
and Hebei in the central region show an L–L agglomeration trend, while Gansu, Hainan,
Hebei, Heilongjiang, and Jilin show an H–L agglomeration pattern. Haze pollution is
geographically dispersed due to high pollution in this region [52].

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3. Local Moran’s I of China’s PM2.5 concentration levels (a–c) and digital economy (d–f) in 2011, 2014, and 2018.

Figure 3d–f show the relationship between the local space of the digital economy in
2011, 2014, and 2018. The Yangtze River Delta (Shanghai and Zhejiang in the east and
Jiangsu), Shandong, Fujian, and Henan in central China, along with Hebei, all show H–H
features. These are economically developed eastern coastal areas, with greater employment
opportunities, strong talent agglomeration, and good development prospects, strength-
ening the development of the digital economy. However, the central region follows the
existing trend, with an emerging digital economy. Tianjin, Jiangxi, and Guangxi all show
the characteristics of the H–L agglomeration. Sichuan, Liaoning, and Hubei have an L–H
agglomeration pattern. Compared with these three provinces, their neighbouring provinces
are more attractive for developing the digital economy. Further, the remote western areas
of Qinghai, Ningxia, Gansu, Xinjiang, Heilongjiang, and Inner Mongolia and the central
areas of Shanxi and Hunan form an L–L agglomeration due to their low level of digital
economy development and lack of a driving force in terms of digital economy development
in neighbouring areas.
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3.3. Spatial Panel Model Analysis
3.3.1. LM Test

Moran’s I passed the significance test. The classical OLS regression had a significant
spatial correlation; therefore, a spatial econometric model should be used for parameter
estimation. As presented in Table 2, both LM-Lag and LM-Error passed the 1% significance
level of the spatial dependence test. According to the criteria, LM-Lag and LM-Error
should pass the significance test, and the lag and robust LM-Error should pass the 1%
significance test. Thus, the spatial lag model and the SEM were used to estimate the
regression. We introduced the neighbouring weighting matrix to the model and analysed
the regression results.

Table 2. LM test.

Spatial Autocorrelation Text Z-Value p-Value

LM-lag 77.7777 0.000
Robust LM-lag 21.5651 0.000

LM-Error 105.2038 0.000
Robust LM-Error 48.9912 0.000

3.3.2. Regression Results and Discussion

As shown in Table 3, in the SAR estimation with a time fixed effect, the estimated value
of ρ was 0.2, significant at the 5% level. This value indicates that neighbouring regions
have a significant positive spatial spillover effect on PM2.5; an increase of 1% in PM2.5 con-
centration in neighbouring provinces leads to an increase of approximately 0.2% in PM2.5
concentration in the focal province. Thus, maintaining a province’s particular approach
to haze treatment cannot effectively solve inter-regional haze pollution. Consequently,
transforming local treatment to regional joint prevention and control is necessary. In the
SEM, the λ value was significant at the 10% level. This indicates that haze concentration is
affected not only by observable factors such as population structure but also by observable
factors in adjacent areas. The influencing factors are discussed below.

Table 3. Estimation results for different models (dependent variable is PM2.5).

OLS (FE) (1) SAR (2) SEM (3)

Variables Estimate T Value Estimate T Value Estimate T Value

(Intercept) 3.712 *** 5.55 0.010 *** 10.21 0.010 *** 10.21
lnDIGE −0.263 ** −2.69 −0.216 *** −3.44 −0.276 *** −4.49

lnPS 0.064 0.10 −0.201 −0.36 −0.104 −0.19
lnFA −0.021 −0.58 −0.030 −0.88 −0.038 −1.03
lnES 0.031 ** 2.68 0.025 ** 2.08 0.024 * 1.83
lnIN −0.093 ** −2.32 −0.075 * −1.91 −0.082 ** −2.08

ρ 0.200 ** 2.39
λ 0.172 * 1.78

R2 0.663 0.666 0.662
Note: ***, ** and * represent significance at 1%, 5% and 10% levels, respectively.

First, we focus on the effect and magnitude, of the core explanatory variable of the
digital economy on haze pollution. The panel OLS, SAR, and SEM models showed that the
digital economy development has a significantly negative effect on haze reduction, passing
the significance test with a 99% confidence level. Every 1% increase in the development
level of the digital economy reduces haze concentration in the region by approximately
0.2%. The possible reasons for this are as follows: (1) The digital economy promotes
the construction of digital infrastructure through technological effects. (2) The digital
economy, through structural effects, expands the proportion of digital industries, digitally
empowers traditional industries, improves the energy efficiency and operational efficiency
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of traditional industries, promotes the rapid and efficient transformation and upgrading of
traditional industries, and finally achieves low energy consumption and low emissions [53].

Second, from the perspective of energy, in the OLS and SAR models, the total energy
consumption was significantly positive at 5%, which is consistent with expectations. This
indicator shows a significant promoting effect on haze pollution [54]. The secondary
sector includes industry and construction; the industrial consumption of coal, oil, non-
ferrous metals, and other raw materials creating fine dust, which is the leading cause of
haze pollution. The energy structure is the key factor responsible for aggravating haze
pollution. Therefore, accelerating the transformation and upgrade of this structure is
urgently necessary.

The degree of innovation variable in the OLS and SEM models was significantly
negative at the 5% level. The early stage of economic development involves resource
consumption to expand production and satisfy people’s material needs. Thus, economic
development neglects environmental protection to a certain extent. Moreover, although
living standards are widely improved, natural resources become constrained. These aspects
of early development highlight the importance of environmental protection in the reversed
transmission of technology innovation, transforming economic development patterns, and
optimising economic structure adjustment [55].

The population structure variable in the three models showed inconsistencies; its
coefficient was positive in the OLS model, confirming that young people are willing to
accept high pollution emissions in exchange for high income; thus, an increase in the labour
population can increase or aggravate haze pollution [47]. However, in the SAR and SEM
models, the coefficient was negative, possibly because labour population agglomeration
significantly reverses the transmission of regional environment improvement to reduce
smog pollution.

The coefficients of fixed assets were all negative, indicating that fixed asset investment
is positively correlated with the development of the digital economy and is an impor-
tant source of funds to promote technological innovation. Among the control variables,
population structure and fixed assets were statistically significant.

3.4. Test for Threshold Regression Model

From the analysis of the theoretical model (8), we observed the mechanism through
which the digital economy affects haze pollution. Considering that the development of the
digital economy acts on haze reduction through structural effects, this study introduced
the mediation variable index of industrial structure as the threshold for a threshold ef-
fect analysis to examine the influence of different intervals of the industrial structure on
haze. The form of the panel threshold model was tested first. Subsequently, we followed
Hansen [56] and used the bootstrap sampling method to simulate a likelihood ratio statistic
of 200, estimating the threshold value and relevant statistics. The results show that a single
threshold of F statistic was significant at 5%, while the double and triple thresholds were
not significant. Thus, to analyse the effect of the digital economy on haze pollution, we
considered the industrial structure to be a single threshold effect and assumed that the
industrial structure is the threshold variable. As shown in Table 4, the negative influ-
ence of the digital economy on haze pollution continued to weaken, and the non-linear
characteristics of the negative and diminishing ‘marginal effect’ of the digital economy
remained. This trend shows that the dynamic influence of the digital economy on haze
pollution is affected not only by its development level but also by the regulating influence
of the industrial structure, which is reflected in the positive interaction between the digital
economy and industrial structure. However, this effect gradually weakens with the change
of industrial structure.
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Table 4. Estimation results for the threshold regression model.

Variables Intermediate Variable

lnIS

Threshold
q1 3.927q2

DIGE·I (Th ≤ q1) 0.302 **
DIGE·I (q1 < Th < q2) 0.272 *

Control variables YES
Number of periods 8

Number of provinces 30
R2 0.6929

Note: **, * represent significance at 5%, 10% levels, respectively.

3.5. Heterogeneity Test

Owing to different resource endowments and stages of development, both the devel-
opment level of the digital economy and haze pollution have noticeable heterogeneity in
terms of their regional distribution. Therefore, regional differences may exist in the impact
of the digital economy on haze pollution reduction, which are necessary to consider for an
in-depth discussion.

First, a descriptive statistical explanation is provided for the differences in haze
pollution and digital economy development levels in various regions. As shown in Table 5,
in terms of PM2.5, the logarithmic mean value of haze pollution is the lowest in western
China and highest in eastern China. Thus, the eastern region is significantly ahead of the
central and western regions in terms of digital economic development. The mean difference
between the eastern and the middle and western regions is approximately 0.574 and 0.89,
respectively, reflecting a first-mover advantage. This result sets the foundation for the
regional heterogeneity test of the effects of the digital economy on haze pollution. The
regression analysis of regional heterogeneity is shown in Table 6. The results of models
(1), (2), and (3) show that the digital economy in eastern China has a significant effect on
reducing haze pollution, while the effect is not significant in central and western China.
In other words, considering regional heterogeneity, the digital economy in eastern China
has a higher positive effect on haze pollution reduction. This result is possibly because the
digital economy in eastern China developed earlier and was at a higher level, causing the
dividend of the impact of the digital economy on environmental governance to be released
more fully.

Table 5. Descriptive statistics (different regions).

lnPM2.5

Region Obs Mean Std. Dev. Min Max

East 88 3.639 0.447 2.618 4.426
Middle 64 3.657 0.439 2.629 4.409

West 88 3.247 0.430 2.164 4.046

lnDIGE

Region Obs Mean Std. Dev. Min Max

East 88 −1.324 0.604 −2.760 −0.114
Middle 64 −1.898 0.454 −2.844 −0.929

West 88 −2.214 0.539 −3.565 −0.793

Table 6. Heterogeneity test (dependent variable is PM2.5).

East (1) Middle (2) West (3)

Variables Estimate T Value Estimate T Value Estimate T Value

(Intercept) 3.614 *** 6.09 2.795 0.99 4.545 *** 5.62
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Table 6. Cont.

East (1) Middle (2) West (3)

Variables Estimate T Value Estimate T Value Estimate T Value

lnDIGE −0.324 ** −2.81 −0.323 −0.97 −0.187 −1.76
lnPS −0.256 −0.27 −1.568 −0.58 0.759 0.51
lnFA 0.002 0.11 0.010 0.09 −0.117 ** −2.26
lnES 0.045 2.70 0.034 1.33 0.020 1.00
lnIN −0.103 ** −1.76 −0.081 −0.59 −0.083 −2.18

Number of periods 8 8 8
Number of provinces 11 8 11

R2 0.692 0.587 0.723

Note: ** represent significance at 5% levels, respectively.

4. Robustness Test

4.1. Changing the Spatial Matrix

A spatial econometric model, which is highly dependent on the spatial weight matrix,
was used to study the influence of the digital economy on haze pollution. First, the
neighbouring spatial weight matrix (W1) was used to determine whether the provinces
are adjacent. Adjacency was set to 1, and non-adjacency to 0. Second, the robustness of
the regression results was tested using the geographical distance spatial weight matrix
(W2), which was constructed using the reciprocal of the square deviation of the distance
between provinces.

From the test results in Table 7, we inserted the weight matrix (W2) into the spatial lag
model (4) and SEM (5). We observed that the coefficient of the core variable of the digital
economy was significantly negative in the SEM model. The lnDIGE regression coefficient
was the largest and was significant at 1%, indicating that the digital economy’s spatial
influence on haze pollution is more likely to be in the error term of undetectable than
the spatial correlation between the two in time. Therefore, the development of the digital
economy can effectively reduce haze pollution, which is consistent with the main research
results and proves that the regression results are robust.

Table 7. Estimation results for different models (dependent variable is PM2.5).

SAR (4) SEM (5)

Variables Estimate T Value Estimate T Value

(Intercept) 0.010 *** 10.21 0.010 *** 10.21
lnDIGE −0.132 * −1.83 −0.250 *** −3.88

lnPS −0.344 −0.62 −0.103 −0.19
lnFA −0.042 −1.23 −0.052 −1.41
lnES 0.022 * 1.87 0.017 * 1.23
lnIN −0.064 −1.64 −0.085 ** −2.11

ρ 0.415 *** 3.21
λ 0.450 ** 2.98

R2 0.665 0.659
Note: ***, ** and * represent significance at 1%, 5% and 10% levels, respectively.

4.2. Use of Instrumental Variable

Selecting appropriate instrumental variables for the core explanatory variables can
resolve endogeneity problems. Following Huang et al. [45], this study adopts the 1984
volume of each province’s post and telecommunications business as the core explanatory
variable and the instrumental variable of the comprehensive index of digital economy
development. The instrumental variables must satisfy exogeneity and correlation. On the
one hand, with the continuous development of traditional communications technology,
previous levels of the local telecommunications infrastructure affect the subsequent stage
of application of Internet technology from the technical level perspective and usage habits.
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On the other hand, the impact of the use of traditional telecommunications tools, such as
the use of fixed-line telephones, on economic development should meet the exclusivity.
As their usage frequency gradually declines with social and economic development, the
instrumental variable must satisfy the conditions.

As the original data of the selected tool variable are in cross-sectional form, they cannot
be used directly in the econometric analysis of panel data. Based on Nunn and Qian [57],
a variable that changes over time is introduced to construct the panel tool variable. The
interaction term is constructed by the number of Internet users in the last year and the
number of telephones per 10,000 people in each province in 1984. This statistic is used as
the instrumental variable of the digital economy index of the province in that year. The
results in columns (1) and (2) of Table 8 show that the effect of the digital economy on
reducing haze pollution remains valid after considering endogeneity, and the results are
all significant at 1%. For the test of the null hypothesis of insufficient identification of
instrumental variables, the LM statistic P values are all 0.000, which significantly rejects the
null hypothesis. In the test for weak identification of instrumental variables, the Wald F
statistic is greater than the threshold value above 10% of the weak identification test. In
general, the tests illustrate the rationality of choosing the cross-term, between the historical
postal and telecommunications volumes of various provinces, and the number of Internet
users in China as the instrumental variable of digital economy development.

Table 8. Test of the instrumental variables.

Variable
Instrumental Variable

(1) (2)

lnDIGE −0.424 ***
(−18.70)

−0.239 ***
(−3.01)

Control variables NO YES
Province fixed effect YES YES

Year fixed effect YES YES

LM statistic 196.588
[0.0000]

122.964
[0.0000]

Wald F statistic 308.97
{16.38}

289.62
{16.38}

Number of periods 8 8
Number of provinces 30 30

R2 0.6420 0.6634
Note: *** represents significance at 1% levels, respectively.

5. Conclusions

First, this study constructs an evaluation system for developing the digital economy
at the provincial level in China from the two aspects of digital infrastructure (representing
digital technology) and the digital industry (representing emerging industries). It calcu-
lates the development level of the digital economy in each province using the entropy
weight method. Second, the spatial spillover effects of haze pollution and digital economy
development are tested with the global and local spatial correlation indexes. Third, using
the data of 30 provinces in China from 2011 to 2018, OLS regression and spatial SAR
and SEM models were used to analyse the impact of digital economy development on
haze pollution. Fourth, using the threshold model, the study discusses how the digital
economy mechanism affects haze pollution through industrial structure change. Finally,
the study divides the research samples into three regions (eastern, central, and western
regions) to study the regional heterogeneity impact of digital economic development on
haze pollution.

The findings of the present study are as follows: First, both haze pollution and digital
economy distribution present significant global positive spatial spillover effects and local
characteristics. Second, the digital economy has a positive impact on reducing smog. The
development of the digital economy in neighbouring provinces has a significant positive
spillover effect on reducing haze pollution in key provinces. The change of energy structure
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and innovation degree can effectively restrain the aggravation of haze pollution, and the
conclusion is still valid in the robustness test using the instrumental variable method and
adjusting the spatial matrix. Third, the results of the transmission mechanism show that the
development of the digital economy can affect haze pollution by changing the industrial
structure, showing the non-linear feature that the influence of haze reduction continues to
weaken. Finally, in terms of regional differences, the impact of the digital economy on haze
pollution is most significant in eastern China, while not significant in central and western
China. Based on this study, the following policy recommendations are put forward.

First of all, the penetration and application of digital technology in environmental
governance should be accelerated. We would increase investment in digital technologies;
pay attention to the breadth and depth of applications in advanced fields such as the
Internet, 5G, artificial intelligence, and big data; promote the circulation and sharing of
resources, knowledge, and capital; and promote the improvement of digital economy in
environmental governance, such as energy conservation and emission reduction. Second,
the transformation and upgrading of industrial structure should be promoted, encouraging
enterprises to vigorously develop cutting-edge technologies and promoting the continuous
progress of digital industry and digitization of industry. Third, it is necessary to understand
further the positive impact of the digital economy on reducing haze pollution in central
and western China, indicating that a dynamic and differentiated digital economy strategy
should be implemented. Finally, haze reduction policies should take into account spatial
spillover and decomposition boundaries of administrative areas.

Although this study supplements the relevant research on the impact of the digital
economy on haze and provides some theoretical reference for the digital economy on envi-
ronmental governance, there is still room for further research. First, this paper measures
the digital economy from two aspects: digital infrastructure and digital industry. Because
of the existing data, it may have measurement errors. The evaluation is conducted at
the provincial level, and the sample size is limited. In the future, it can be more detailed
and micro, which may be more accurate in exploring the relationship between the two
from the city level. Second, this study empirically analyses the spatial impact of digital
economy development on haze pollution. The mechanism part is only carried out from
the perspective of industrial structure, and subsequent studies should further explore the
multi-dimensional impact of different mechanisms on haze. Finally, the development of
the digital economy is cyclical, and each stage has a different impact on haze levels. This
should be further investigated in future studies.
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