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Raman Spectroscopy of Disperse Systems with Varying Particle Sizes and Correction of
Signal Losses
Reprinted from: Sensors 2024, 24, 3132, doi:10.3390/s24103132 . . . . . . . . . . . . . . . . . . . . 28

Gabriel Cibira, Ivan Glesk, Jozef Dubovan and Daniel Benedikovič
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Abstract: Soil visible and near–infrared reflectance spectroscopy is an effective tool for the rapid esti-
mation of soil organic carbon (SOC). The development of spectroscopic technology has increased the
application of spectral libraries for SOC research. However, the direct application of spectral libraries
for SOC prediction remains challenging due to the high variability in soil types and soil–forming
factors. This study aims to address this challenge by improving SOC prediction accuracy through
spectral classification. We utilized the European Land Use and Cover Area frame Survey (LUCAS)
large–scale spectral library and employed a geographically weighted principal component analy-
sis (GWPCA) combined with a fuzzy c–means (FCM) clustering algorithm to classify the spectra.
Subsequently, we used partial least squares regression (PLSR) and the Cubist model for SOC predic-
tion. Additionally, we classified the soil data by land cover types and compared the classification
prediction results with those obtained from spectral classification. The results showed that (1) the
GWPCA–FCM–Cubist model yielded the best predictions, with an average accuracy of R2 = 0.83
and RPIQ = 2.95, representing improvements of 10.33% and 18.00% in R2 and RPIQ, respectively,
compared to unclassified full sample modeling. (2) The accuracy of spectral classification modeling
based on GWPCA–FCM was significantly superior to that of land cover type classification modeling.
Specifically, there was a 7.64% and 14.22% improvement in R2 and RPIQ, respectively, under PLSR,
and a 13.36% and 29.10% improvement in R2 and RPIQ, respectively, under Cubist. (3) Overall,
the prediction accuracy of Cubist models was better than that of PLSR models. These findings
indicate that the application of GWPCA and FCM clustering in conjunction with the Cubist modeling
technique can significantly enhance the prediction accuracy of SOC from large–scale spectral libraries.

Keywords: soil spectroscopy; LUCAS; GWPCA; FCM

1. Introduction

Soil organic carbon (SOC) plays a key role in terrestrial ecosystems [1] and is essential
for food, soil, water, and energy security [2]. The fast and accurate determination of SOC
is important for global food supply and environmental protection [3]. Traditionally, SOC
measurements were based on laborious soil sampling and complicated laboratory chemical
analysis, which were time–consuming, costly, and environmentally unfriendly [4–6].

As an effective alternative, visible and near–infrared reflectance (Vis–NIR) spectra
have been widely used in soil property prediction [7,8] because of their fast, convenient,
and inexpensive advantages [9]. To better understand and analyze soil properties using
Vis–NIR spectra, researchers developed and analyzed various spectral libraries at regional,
continental, national, and global scales [5,10,11]. Previous studies, such as those by Clin-
gensmith et al. [12] and Sarkodie et al. [13], used large–sample soil spectral libraries from
the U.S. to predict SOC content through direct modeling, but the results were unsatisfactory
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due to the diversity of spectra and the complex relationships between soil properties and
soil spectra [14].

To improve the accuracy of soil property predictions from large soil databases, re-
searchers have explored various methods. One approach is to enhance model accuracy
using deep learning and machine learning algorithms [15]. For example, Wang et al. [16]
combined nonlinear modeling with memory–based learning in regional spectral libraries to
predict soil pH, soil organic matter, and other properties, and achieved successful results.
Another approach is based on classification principles and aims to improve model accuracy
through classification modeling [17,18]. For example, Ogen et al. [19] used a spectral angle
mapper algorithm, spectral gradient, and fuzzy k–means clusters for spectral clustering,
followed by modeling. Stevens et al. [20] used the Land Use and Cover Area frame Survey
(LUCAS) spectral library to predict SOC content and suggested that, in subsequent studies,
researchers could improve prediction accuracy by classifying samples according to the soil
type or SOC content and then locally modeling the samples. Previous research has shown
that local modeling through classification yields superior results. For example, Shi et al. [10]
used principal component analysis (PCA) and the fuzzy k–means method to predict soil
organic matter for 1581 soil samples from 14 provinces in China. This combination signifi-
cantly improved prediction accuracy (R2 = 0.899; RPD = 3.158) compared with using partial
least squares regression (PLSR) alone (R2 = 0.697; RPD = 1.817). Liu et al. [21] established
the Chinese forest soil spectral library containing 11, 213 soil samples and combined the
density peaks clustering algorithm with the Cubist model. The prediction ability of SOC
content (R2 = 0.96, RPIQ = 5.83) improved significantly compared to the traditional global
PLSR modeling method (R2 = 0.75, RPIQ = 1.95). In these studies, researchers have proved
that spectral classification using soil reflectance spectral properties significantly enhances
the accuracy of model predictions [22,23].

The key to effective classification lies in how the spectral features are used to classify
soil samples. Because of the multidimensionality of spectral data, data dimensionality
reduction is performed prior to classification. Previous studies mainly used PCA for data
dimensionality reduction [10,24]. However, PCA does not consider the spatial variation
of locations, which can result in less accurate principal component extraction, especially
on large scales. Our study is the first attempt to apply geographically weighted princi-
pal component analysis (GWPCA) for spectral data processing. GWPCA considers the
uniqueness and spatial variation of locations, overcoming the limitations of traditional
PCA in determining the weights of spatially varying indicators [25,26]. Therefore, we used
GWPCA to extract principal components and reduce the dimensionality of spectral data.

Fuzzy c–means (FCM) is a clustering method based on fuzzy theory that demonstrates
good adaptability by assigning membership values to each sample, thereby effectively clus-
tering the data [27]. Previous studies have shown the excellent results of FCM in the digital
mapping of taxonomic soil units and the delineation of natural soil environments [28].
However, few studies have used FCM for spectral classification to predict soil properties.
In this study, we propose a spectral classification method based on GWPCA–FCM to clas-
sify and localize the modeling of large–scale soil spectral libraries in a simple, fast, and
accurate manner.

Various data analysis techniques have been explored continuously to build predictive
models of soil properties using Vis–NIR, such as convolutional neural networks [29,30],
multiple linear regression [31,32], and PLSR [8,33]. PLSR is the most widely used lin-
ear model, and for high–dimensional multicollinearity, it is more stable and has higher
prediction accuracy than traditional methods [23]. However, in spectral libraries with
large–scale samples, the multivariate nature of soil spectral data and the nonlinear relation-
ship between soil properties and spectral data [14] make it difficult for the linear model
to directly explain the relationship between the spectra and soil properties [34]. Cubist is
an advanced, nonparametric regression tree algorithm that can handle nonlinear relation-
ships [35]. Peng et al. [36] found that Cubist achieved the best performance in modeling
when PLSR, random forest (RF), and Cubist were used to predict soil salinity. There is no
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consensus on the best spectroscopic calibration method. In this study, we use the classical
linear model PLSR and the machine learning method Cubist to establish SOC prediction
models and compare the prediction effects for linear and nonlinear models.

Therefore, we aim to integrate classification approaches and machine learning tech-
niques to provide an effective and accurate spectral prediction method for SOC content in
large–scale regions. The main objectives are as follows: (1) to evaluate the performance of
GWPCA–FCM in improving SOC spectroscopic prediction based on the LUCAS large–scale
spectral library; (2) to compare the prediction accuracy of spectroscopic models based on
spectra classification and land cover type classification; and (3) to determine the optimal
modeling strategy for SOC prediction.

2. Materials and Methods

2.1. Study Area

We obtained data from LUCAS conducted by the Statistical Office of the European
Union in 2008–2012 and used indoor soil Vis–NIR (400–2500 nm) spectra for the study [37].
The study area covered 23 Member States of the European Union, including Sweden, Spain,
and the Netherlands. The terrain of the study area is diverse, with plains dominating and
little relief, and land cover types such as cropland, woodland, and grassland dominating,
with a total area of 4.38 million km2. The climate types are complex and diverse, covering
35 climate zones, most of which have temperate oceanic climates, with warm winters
and cool summers, and a small annual temperature difference. A few of them have
Mediterranean, temperate continental, and polar climates. The region is characterized by
major European soil types, such as gray soil, brown soil, desert soil, charcoal soil, and
chestnut calcium soil. The main crops grown in the region include wheat, maize, and sugar
beet. See Figure 1.

 
Figure 1. Location of soil samples from the Land Use and Cover Area frame Survey (LUCAS) soil
spectral library. The color indicates the corresponding land cover type.
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2.2. Soil Sampling and Spectra Measurement

A total of 19,967 topsoil samples (0–20 cm) were collected for different land cover
types, including cropland, woodland, shrubland, and grassland, which covered all major
soil types in Europe. After the sampling locations were determined using a multi–stage
stratified random sampling approach, five soil samples were taken within 2 m of the
sampling points using the criss–cross method. The latitude and longitude of the sampling
points were recorded using GPS during sampling.

The soil samples were air–dried and sieved (2 mm) following the protocol described
by the manufacturer and the Soil Spectroscopy Group [38]. The Vis–NIR soil spectra were
measured using a FOSS XDS Rapid Content Analyzer (FOSS NIR Systems Inc., Laurel, MD,
USA), operating in the 400–2500 nm wavelength range with a spectral resolution of 0.5 nm.

2.3. Spectral Data Preprocessing

To reduce data redundancy and improve modeling efficiency, the original spectral
reflectance was first resampled with a resampling interval of 10 nm. The resampled spectra
were transformed to absorbance (log(1/R)), which can enlarge the spectral differences
between samples and highlight the spectral characteristics of the soil. To remove back-
ground and noise effects, such as environmental factors, intrinsic factors of the samples’
own reflections, and the electrical noise of the spectrometer, the spectra were smoothed
using the Savitzky–Golay algorithm which was fitted using a constant with a polynomial
of order 2 and a window size of 15.

2.4. GWPCA

GWPCA aims to account for certain spatial heterogeneity in data and is one of the
main methods for multivariate data analysis [39]. Unlike conventional PCA, GWPCA takes
into account spatial variation in the covariance structure of the variables, whose covariances
are appropriately weighted using a distance function between the target and neighboring
variables:

∑ u, v = XTW(u, v)X, (1)

where X is an n × m matrix, n is the number of samples, m is the number of variables, and
W(u, v) represents the diagonal matrix of distance weights at position coordinates (u, v).
At position (ui, vi), GWPCA defines the local feature structure as follows:

L(ui, vi)V(ui, vi)L
T(ui, vi) = ∑(ui, vi), (2)

where L(ui, vi) is the eigenvector matrix, which represents the loading of each independent
variable for each principal component. V(ui, vi) is the diagonal matrix of eigenvalues. The
score of each principal component can be expressed as

Z(ui, vi) = X(ui, vi)L(ui, vi). (3)

Prior to the application of PCA, first, the data are standardized for the independent
variables, and PCA is specified using the covariance matrix. The number of principal
components is determined using the magnitude of the eigenvalues (eigenvalues greater
than one are chosen for this study). The optimal bandwidth of the retained principal
components is chosen based on the weighting function “bisquare”. The bisquare kernel
function is given by

wij =

⎧⎨⎩
(

1 −
( dij

b

)2
)2

, i f
∣∣dij
∣∣ < 0

0, otherwise
(4)

where the bandwidth is the geographical distance b, and dij is the distance between the
spatial locations of the ith and jth row in the data matrix. The final results of the principal
component scores for each variable at each point are used as inputs to the FCM algorithm
for cluster analysis.
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The GWPCA was implemented in R using the “GW model” package [40].

2.5. Spectral Classification Methods

In this study, the FCM classification method was used to optimize the clustering results
by minimizing an objective function that contained the distance between the affiliation
degree and clustering centers and to provide an analytical index of the optimal number of
classifications. The value function of the FCM method can be expressed as

Jm
PCM(U,C,X) = ∑c

i=1 ∑n
j=1 μm

ij d2
ij, (5)

where n is the number of sample points, which is the number of principal components used
in this study. C is the number of classifications; μij indicates the degree to which xj belongs
to Xi, and must satisfy 0 ≤ μij ≤ 1 and ∑c

i=1 μij = 1, ∀j = 1, 2, . . . , n; and d2
ij is equal to the

square of the Euclidean distance from xj to the center of Xi clustering. m is the degree of
fuzziness, which is a parameter that controls the flexibility of the algorithm. If m = 1, the
result of FCM is hard c–means clustering, and as m increases, the clustering results become
fuzzier.

The validity of the clustering results is evaluated using a fuzzy performance index
(FPI) and normalized classification entropy (NCE):

FPI = 1 − c
c − 1

[
1 − ∑n

k=1 ∑c
i=1(μik)

2

n

]

NCE =
n

n − c

[
−∑n

k=1 ∑c
i=1 μik loga(μik)

n

]
, (6)

where c is the number of clusters, n is the number of samples, and μik is the fuzzy affiliation
degree. FPI represents the degree of separation between the c clusters in the data matrix
and ranges from 0 to 1. The closer the value of FPI to 0, the less data are shared by the
clusters, and the division of the clusters is obvious. The opposite case indicates that the
division is ineffective. NCE is used to estimate the amount of decomposition of fuzzy
c–partitioning. The smaller the value of NCE, the better the clustering effect.

2.6. Model Construction and Evaluation

In this study, PLSR and Cubist were used to model the inversion of SOC content and
compare prediction accuracies. Before modeling, the sample soil spectra and corresponding
SOC data were divided into a modeling dataset and validation dataset, and the Kennard–
Stone (KS) algorithm was used to divide the data. The Euclidean distance between the
spectral variables of the samples was computed. The modeling samples were selected
uniformly in the feature space of the samples. The ratio of the number of modeling sets
to the number of validation sets was 2:1. A log transformation was performed on the
dependent variable SOC to make it conform to the normal distribution.

PLSR is a multivariate statistical analysis method with wide applicability that was
proposed by Wold and Alban in 1983 and has been developed in recent years. It combines
PCA, multiple linear regression, and typical correlation analysis into one regression model
for solving the problem of multicollinearity encountered in multiple linear regression
analysis. The PLSR algorithm integrates compression and regression steps and selects
continuous orthogonal factors to maximize the covariance between the predictor and
response variables [41], which are used to build a predictive model for predicting the
values of the response variable. It has the advantages of simplicity and stability, easy
qualitative interpretation, higher prediction accuracy, and is suitable for spectral analysis,
which has more independent variables [21].

The Cubist model is a comprehensive decision tree–based learning algorithm that pre-
dicts or categorizes data by constructing multiple decision trees. A decision tree represents
a segmented multivariate linear function that predicts the value of a variable through a
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series of independent variables. The basic concept is to create subsets of samples with simi-
lar attributes in the original data set when a variable is predicted through the constructed
multivariate linear function [42], and then model each subset separately. The training rule
is simple and effective and is suitable for solving the problem of the nonlinear relationship
between SOC and predictor variables.

In this study, the root mean square error (RMSE), coefficient of determination (R2), and
ratio of performance to inter–quartile distance (RPIQ) were used to verify the performance
of the models. The higher the R2 and lower the RMSE, the higher the model prediction
accuracy. RPIQ takes into account both the prediction error and variation in observations,
thereby providing a more objective and easier approach to compare model effectiveness
metrics in model validation studies. The larger the RPIQ, the better the predictive ability
of the model. According to Salazar et al. [43], prediction ability can be divided into four
categories based on the RPIQ value: RPIQ < 1.5 indicates that the model is very bad; if
RPIQ is between 1.5 and 2.0, this indicates that the model is poor; if RPIQ is between 2.0
and 2.5, this indicates that the model is good; and RPIQ > 2.5 indicates that the model is
very good.

2.7. Important Band Analysis

RF was used in this study for band importance analysis. It is an integrated machine
learning algorithm that can aggregate ideas in addition to solving classification and re-
gression problems [44]. It is applied gradually in feature importance analysis [45]. RF can
quantify the degree of contribution of input features to the model output. The importance
of variables is influenced by two main parameters: the size of the subset of input variables
(mtry) and the number of trees in the forest (ntree).

3. Results and Discussion

3.1. Statistical Analysis of SOC Content

The histograms of raw SOC and log–transformed logSOC distributions are shown
in Figure 2. The raw SOC data were positively skewed, and the logSOC data essentially
conformed to a normal distribution, which satisfied the requirements of data analysis and
prediction modeling [24]. Specifically, the SOC content ranged from 0 to 586.8 g kg−1,
with a mean, median, and standard deviation of 50 g kg−1, 20.8 g kg−1, and 91.3 g kg−1,
respectively. The skewness coefficient was 3.68, and the kurtosis coefficient was 13.46. The
logSOC content ranged from 0.69 to 6.37 g kg−1, with a mean value of 3.22 g kg−1, standard
deviation of 1.01 g kg−1, and skewness coefficient and kurtosis coefficient of 0.997 and
1.13, respectively.

To enable a further comparison and analysis of the differences in the distribution
of SOC content, soil samples from four land cover types were divided. The distribution
characteristics of grassland, cropland, shrubland, and woodland logSOC content are shown
in Figure 3b. The distribution of SOC content in different land cover types showed obvious
differences. The woodland SOC content distribution was the most dispersed, with a median
value of 3.77 g kg−1 and the highest mean value of 3.90 g kg−1. This is because of the
enhancement of the CO2 absorption capacity of woodland in the atmosphere [46]. The
woodland samples were mainly taken from evergreen broadleaf forests and coniferous
forests, which had a higher content of organic carbon than the other forests. Additionally,
woodland was less affected by human influence and had a greater accumulation than
depletion of organic carbon, which led to the highest content of organic carbon. This
was followed by shrubland (mean = 3.49 g kg−1) and grassland (mean = 3.33 g kg−1).
Cropland had the lowest mean SOC content of 2.72 g kg−1, which was mainly attributed to
the generally higher carbon loss caused by soil disturbance that resulted from traditional
farmland management compared with grassland and forest ecosystems [47].
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(a) (b) 

Figure 2. Histogram of soil organic carbon content SOC (a) and log–transformed logSOC (b).

 
(a) (b) 

Figure 3. Box line plot of SOC content for land cover type (a) and spectral cluster (b).

3.2. Spectra Classification and SOC Content

Given the considerable volume of data in the soil spectral library and the issue of mul-
tiplicity correlation between bands, all soil samples were subjected to data dimensionality
reduction using GWPCA. The cumulative contribution of the first four principal compo-
nents exceeded 99.45%. The FCM was then used for rational classification of soil spectra
and the determination of the optimal number of classifications. The data from the first four
principal components were imported for FCM cluster analysis. The maximum number of
iterations was 300, the convergence threshold was 0.001, and the fuzzy weighting index was
1.5 [48]. To determine the optimal number of categories, all the samples were divided into
2, 3, 4, 5, 6, 7, 8, 9, and 10 clusters. The values of FPI and NCE for each cluster are shown in
Figure 4. The optimal number of clusters in this study was finally determined to be 4 by
taking into consideration the matching of the land cover types and the clustering index.
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Figure 4. Plot of NCE and FPI value versus the number of clusters.

The distribution characteristics of the SOC content of soil samples for the four clusters
are shown in Figure 3a. After GWPCA–FCM was used, the difference in SOC content was
obviously reduced, and the distribution was essentially the same. For Cluster 3, which
consisted of 5145 soil samples, 4778 soil samples were mainly from four land cover types,
that is, cropland (2173 samples), grassland (1111 samples), shrubland (117 samples), and
woodland (1377 samples), which accounted for 93% of the soil samples for Cluster 3. The
distribution of SOC content was most concentrated, with the lowest mean value of only
2.99 g kg−1. This is mainly because cropland soil samples account for 42% of the total
number of soil samples, which is greatly influenced by cropland. Cluster 4 consisted of
4992 soil samples, mainly from four land cover types, that is, cropland (1605 samples),
grassland (1235 samples), shrubland (113 samples), and woodland (1629 samples), for a
total of 4582 samples, which accounted for 92% of the total soil samples for Cluster 4. The
distribution of SOC was relatively scattered, with the highest mean value of 3.50 g kg−1.
This is attributed to the fact that the woodland and grassland soil samples accounted for
57% of the total soil samples and were highly influenced by woodland and grassland. The
SOC contents for Cluster 1 and Cluster 2 were comparable, with average contents of 3.15
and 3.24 g kg−1, respectively. This is mainly because the proportion of woodland and
grassland soil samples from Cluster 2 is larger than Cluster 1.

3.3. Spectral Characteristics of Different Soil Types

The average spectral reflectance and its range of variation for each type of soil sample
based on land cover type and GWPCA–FCM are shown in Figure 5. The spectral curves
obtained by the two classification methods had basically the same morphology; however,
the difference in spectral reflectance based on GWPCA–FCM was more obvious. Under the
GWPCA–FCM classification, the slope of the curve was large, and the reflectance increased
rapidly in the visible range. In the near–infrared region, the curve tended to flatten and
the reflectance increased slowly; between 700 nm and 2500 nm, the difference in spectral
reflectance gradually increased. The spectral curves had distinct absorption valleys near
1400 nm, 1900 nm, and 2200 nm, which were mainly caused by moisture, organic matter,
iron oxides, and clay fractions [49]. The highest spectral reflectance was found in Cluster 3,
followed by Clusters 1 and 2, and the lowest spectral reflectance was found in Cluster 4. The
average spectral reflectance of Cluster1, Cluster2, Cluster3, and Cluster4 was 3.15 g kg−1,
3.24 g kg−1, 2.99 g kg−1, and 3.50 g kg−1 respectively, which showed a significant negative
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correlation with the increase in SOC content. The position of spectral curves decreased,
and the spectral reflectance decreased.

Figure 5. Comparison of mean soil reflectance curves based on the land cover type and GWPCA–
FCM classification.

For the land cover type, four land cover types had a similar curve shape. In the range
of 400–750 nm, reflectance values increase rapidly, while they decrease slowly in the range
of 800–1800 nm. Absorption features could be identified near 1400 and 1900 nm, which are
assigned to soil hygroscopic water in clay minerals [50]. The highest spectral reflectance
was found in cropland, followed by shrubland and grassland, and the lowest in woodland,
which is consistent with the findings of Liu et al. [51]. This is because cropland soils have a
lower mean SOC content (2.72 g kg−1) than woodland soils (3.94 g kg−1), shrubland soils
(3.49 g kg−1), and grassland soils (3.33 g kg−1).

3.4. Spectral Prediction of SOC

To further explore the spectral prediction effect after GWPCA–FCM classification, the
KS algorithm was used to divide the datasets of the four clusters into a modeling set and
a validation set in a 2:1 ratio. The SOC spectral prediction models for the clusters were
established using two methods: PLSR and Cubist. Additionally, the SOC spectral prediction
models of the four land cover types were also established for comparative analysis.

The introduction of GWPCA–FCM significantly improved prediction accuracy. Specif-
ically, the use of PLSR improved the R2 mean from 0.72 to 0.74 and the RPIQ mean from
2.36 to 2.43 compared with unclassified global modeling. Similar conclusions were reached
by Ward et al. [24] and Liu et al. [52], who modeled spectral classification based on k–means
clustering with PCA and found that the prediction of SOC improved, while significantly
reducing the algorithm’s run time. By contrast, the accuracy of land cover type classification
did not improve but declined, with the R2 reducing from 0.72 to 0.69 and the RPIQ reducing
from 2.36 to 2.13. Using Cubist, compared to unclassified global modeling, R2 increased
by 10.33%, RMSE decreased by 17.42%, and RPIQ increased by 18.00%. However, the
accuracy of land cover type classification did not improve, with R2 decreasing from 0.75
to 0.73, RMSE improving from 0.33 g kg−1 to 0.39 g kg−1, and RPIQ reducing from 2.50
to 2.29. Stenberg et al. [53] noted that the prediction error of spectral models increases as
the standard deviation of predicted soil properties increases. Ignoring the spatial extent
and distribution of samples, the large variation in SOC content across land cover types
resulted in a decrease in prediction accuracy. As shown in Figures 6 and 7, after the land
cover classification, the scattered points were distributed in a certain area, and the whole
was more dispersed, indicating that the correlation between the predicted values and the
measured values is weak. After the classification based on GWPCA–FCM, the distribution
of points was more concentrated in a straight line, and the trend line was closer to a 1:1
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line compared with the land cover classification, indicating that the predicted values were
closer to the measured values as a whole, and the prediction effect was better.

Figure 6. Observed vs. predicted SOC values of the validation samples for the GWPCA–FCM approaches.
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Figure 7. Observed vs. predicted SOC values of the validation samples for land cover type approaches.

The prediction performance of PLSR and Cubist was explored further. For GWPCA–
FCM–Cubist compared with GWPCA–FCM–PLSR, the mean value of R2 improved from
0.74 to 0.83, the mean value of RMSE decreased from 0.48 g kg−1 to 0.39 g kg−1, and the
mean value of RPIQ improved from 2.43 to 2.95, which is consistent with previous research
results [23,54]. This is because the performance of PLSR is affected by multicollinearity [55].
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Different data types, differences in dataset sizes, and the distribution of organic carbon
content can have multiple effects on the prediction accuracy of the model. The results
show that Cubist achieved higher accuracy when the spectral prediction of SOC content
was performed in the context of large spatial and temporal variability, significant spatial
heterogeneity, and the large data volume of the European LUCAS spectral library. See
Tables 1 and 2.

Table 1. PLSR and Cubist predictions of SOC for different spectral clusters.

Subsets N
Cubist PLSR

R2 RMSE RPIQ R2 RMSE RPIQ

All 18,921 0.75 0.33 2.5 0.72 0.35 2.36

Cluster1 3870 0.86 0.35 2.86 0.82 0.4 2.5
Cluster2 4914 0.85 0.4 2.96 0.78 0.49 2.42
Cluster3 5145 0.73 0.38 2.31 0.55 0.51 1.72
Cluster4 4992 0.87 0.42 3.67 0.81 0.5 3.08

Mean 4730 0.83 0.39 2.95 0.74 0.48 2.43

Table 2. PLSR and Cubist predictions of SOC for different land cover types.

Subsets N
Cubist PLSR

R2 RMSE RPIQ R2 RMSE RPIQ

All 18,921 0.75 0.33 2.5 0.72 0.35 2.36

Cropland 7476 0.67 0.32 2.06 0.6 0.35 1.88
Grassland 4200 0.64 0.34 2.02 0.59 0.38 1.8
Shrubland 443 0.79 0.45 2.25 0.77 0.45 2.25
Woodland 5218 0.82 0.45 2.81 0.79 0.49 2.58

Mean 4334 0.73 0.39 2.29 0.69 0.42 2.13

3.5. Important Band of SOC for Each Soil Type in RF Models

The results of the land cover classification and GWPCA–FCM spectral classification of
importance bands in RF models are shown in Figure 8. In Figure 8a, the curves of the four
land cover types are significantly different. For grassland, the most important bands were
mainly distributed in the regions of 400–550 nm and 2210–2350 nm, with obvious peaks
and valleys at 540, 1480, and 1990 nm, which may be influenced by hydroxyl vibration
in the samples. For woodland, the most important bands were mainly distributed in the
regions of 490–590 nm and 830–1030 nm, with distinct peaks and valleys at 920, 1660,
and 1850 nm. For shrubland, the most important bands were mainly distributed in the
regions of 520–610 nm and 790–940 nm, with distinct peaks and valleys at 610, 1370, and
2040 nm. For cropland, the most important bands were mainly distributed in the regions of
400–570 nm and 1800–1870 nm, with distinct peaks and valleys at 480, 980, and 1560 nm.

As shown in Figure 8b, the curves did not differ much based on GWPCA–FCM,
and the distributions of higher values of feature importance, peaks, and valleys were
essentially the same. The most important bands were all mainly distributed in the spectral
regions of 400–600 nm and 2200–2340 nm, and obvious peaks appeared near 530, 1330, and
2030 nm. There were obvious valleys near 670, 1230, and 1970 nm, which were because of
the content of, for example, organic carbon, iron oxides, and clay minerals. The features in
the near–infrared band were mainly caused by the multiplicative or combined frequency
absorption of the molecular vibrations of C–H, N–H, C–O, O–H, and Fe–O groups in
minerals [53,54,56]. The higher importance value of the features in the 400–600 nm band
was mainly affected by soil carbon and iron oxides. The main moisture absorption bands
were near the 1400 nm and 1950 nm bands. Moisture absorbed electromagnetic waves in
this band, and the combined frequency jump of stretching vibration and corner vibration
of O–H functional groups in water molecules formed the largest absorption coefficient in
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the near–infrared region. The absorption band of Al–OH clay minerals mainly existed near
2200 nm in the synchrotron region, and an organic matter–related C–H characteristic peak
existed near 2300 nm [52].

(a) Land cover type 

(b) GWPCA–FCM cluster 

Figure 8. Important band diagram in RF models.

4. Conclusions

In this study, we used PLSR and Cubist models to compare SOC prediction accu-
racy based on full sample data, land cover classification data, and spectral classification
data by GWPCA–FCM in a large spectral library. The main conclusions are as follows:
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(1) The prediction accuracy of the GWPCA–FCM classification model was significantly
higher than that of the unclassified global model and the land cover type classification
model. This approach enhanced the accuracy of SOC predictions for large spectral libraries.
(2) Among the modeling approaches, Cubist was found to be superior to PLSR, with the
GWPCA–FCM–Cubist model achieving the optimal prediction results. This research un-
derscores the potential of integrating advanced data reduction and classification techniques
with robust modeling algorithms to improve the precision of SOC content prediction on a
large scale.
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Abstract: Advanced glycation end-products (AGEs) are complex compounds closely associated with
several chronic diseases, especially diabetes mellitus (DM). Current methods for detecting AGEs
are not suitable for screening large populations, or for long-term monitoring. This paper introduces
a portable autofluorescence detection system that measures the concentration of AGEs in the skin
based on the fluorescence characteristics of AGEs in biological tissues. The system employs a 395 nm
laser LED to excite the fluorescence of AGEs, and uses a photodetector to capture the fluorescence
intensity. A model correlating fluorescence intensity with AGEs concentration facilitates the detection
of AGEs levels. To account for the variation in optical properties of different individuals’ skin,
the system includes a 520 nm light source for calibration. The system features a compact design,
measuring only 60 mm × 50 mm × 20 mm, and is equipped with a miniature STM32 module for
control and a battery for extended operation, making it easy for subjects to wear. To validate the
system’s effectiveness, it was tested on 14 volunteers to examine the correlation between AGEs and
glycated hemoglobin, revealing a correlation coefficient of 0.49. Additionally, long-term monitoring
of AGEs’ fluorescence and blood sugar levels showed a correlation trend exceeding 0.95, indicating
that AGEs reflect changes in blood sugar levels to some extent. Further, by constructing a multivariate
predictive model, the study also found that AGEs levels are correlated with age, BMI, gender, and a
physical activity index, providing new insights for predicting AGEs content and blood sugar levels.
This research supports the early diagnosis and treatment of chronic diseases such as diabetes, and
offers a potentially useful tool for future clinical applications.

Keywords: fluorescence monitoring; advanced glycation end-products (AGEs); portable detection
system; diabetes management

1. Introduction

Advanced glycation end-products (AGEs) are complex molecules formed through
non-enzymatic reactions [1]. They can be ingested from food, as well as produced en-
dogenously, gradually accumulating within the human body [2]. The accumulation of
advanced glycation end-products (AGEs) occurs in the progression of various chronic
diseases, including diabetes, renal diseases, cardiovascular diseases, and neurological disor-
ders [3–5]. For instance, research on AGEs has uncovered their pivotal role in accelerating
the development of complications associated with diabetes [6,7]. This influence extends
beyond mere hyperglycemia to encompass profound damage at the microscopic molecular
level [8,9]. Investigating the dynamics of advanced glycation end-products (AGEs) in the
human body is essential for the early detection and intervention of chronic diseases [10].
For example, diabetes mellitus presents a significant and increasing challenge globally,
affecting both developed and developing countries. As of 2021, approximately 537 mil-
lion adults worldwide are living with diabetes. This number is projected to increase to
643 million by 2030 and 783 million by 2045 [11]. It is noteworthy that a substantial propor-
tion of diabetes cases remain undiagnosed, with about half of the individuals unaware of
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their condition [12,13]. Although diabetes can be managed through medication, effective
treatment necessitates early detection. Unfortunately, diagnosis often occurs several years
after the onset of diabetes, typically at the commencement of complications [13].

AGEs are implicated in numerous chronic diseases through two primary formation
pathways: exogenous and endogenous [2]. Exogenous AGEs accumulate from environmen-
tal exposures such as cigarette smoke, consumption of highly processed foods, particularly
those processed with heat, and sedentary lifestyles, all of which contribute to increased
formation rates of these harmful compounds [5,6]. Conversely, endogenous AGEs orig-
inate internally under conditions of elevated blood sugar, where reducing sugars like
glucose, lactose, and fructose undergo non-enzymatic glycation reactions with proteins
and lipids [14]. This internal process is known as the Maillard reaction, a crucial pathway
for AGEs formation within the body.

AGEs are present in human blood and tissues, and their detection relies on drawing
blood [15] or obtaining bodily fluids [16] for biochemical analysis [17]. This biochemi-
cal testing is not only costly, but is also time-consuming, requiring 8–9 h. Developing
non-invasive, convenient, and pain-free methods of detection is essential for the practical
continuous measurement of advanced glycation end-products (AGEs) in human blood and
tissues, serving as a foundation for long-term monitoring and research into their role in
chronic diseases. Over the past decades, a multitude of technologies and corresponding
equipment have been developed to pursue more convenient and cost-effective detection
methods [18–20]. Within this domain, numerous optical spectroscopic methods have at-
tracted considerable attention due to their potential in enhancing analytical precision and
reducing operational complexities [21–24]. The optical non-destructive testing method
is implemented by analyzing the autofluorescence characteristics of AGEs, utilizing the
unique fluorescence properties of molecules to specifically detect target molecules. The
primary absorption band of advanced glycation end-products (AGEs) lies between 340 nm
and 420 nm, with the fluorescence spectrum spanning the 420 nm to 600 nm range [3].
Instruments designed for detecting autofluorescence have been developed and validated
through small-scale clinical trials targeting human AGEs. Researchers utilize fiber optic
spectrometers for detection, employing an excitation light source ranging from 300 to
400 nm to irradiate the skin and capture signals with a glass fiber optic spectrometer. How-
ever, transdermal detection is hindered by the low efficiency of spontaneous fluorescence.
In vivo, where the concentration of AGEs is relatively low, the fluorescent peaks of AGEs
are significantly diminished by the skin’s strong and time-varying spontaneous fluores-
cence, further compounded by associated shot noise, rendering the AGEs’ fluorescence
even weaker. This presents substantial challenges in constructing reliable predictive mod-
els for AGEs concentration. Furthermore, the propagation characteristics of fluorescence
signals are influenced by the skin’s color composition, contact pressure, and the optical
parameters of biological tissues. Researchers have attempted to circumvent the influence
of skin color by analyzing tissues such as the retina and wrist, but the fragile structure
of the retina is not conducive to long-term monitoring. Correcting AGEs’ fluorescence
signals through calibration models requires prior information such as skin type, age, and
the subject’s habits, among others. The introduction of additional information necessitates
preliminary collection, which is not favorable for reducing detection costs. Building on the
fluorescence properties of advanced glycation end-products (AGEs), this paper introduces
a novel portable skin fluorescence detection device designed for the assessment of AGEs.
The device comprises a control module, an LED emission module, and a detection module.
The LED emission module emits a 395 nm wavelength laser to excite the AGEs in the
skin, causing them to fluoresce. This fluorescence is then captured by a photodiode within
the detection module, enabling the measurement of AGEs concentration based on the
intensity of the fluorescence signal. To account for the impact of tissue optical parameters
on the fluorescence signal, a 520 nm LED is utilized to measure skin reflectance, facilitating
the correction of AGEs’ fluorescence values. The device is equipped with a miniaturized
STM32 microcontroller and a 3.7 v battery, serving as both the control and power modules,
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which simplifies the process of long-term monitoring of AGEs’ fluorescence intensity. To
validate the effectiveness of this system, a study was conducted with 14 volunteers to
analyze the correlation between AGEs and glycated hemoglobin levels. Moreover, the
device was used to perform long-term monitoring of AGEs’ fluorescence and blood glucose
levels in volunteers, revealing a correlation exceeding 0.95 between the two, indicating that
AGEs levels reflect changes in blood glucose levels to a significant extent. Furthermore,
by developing a multivariate prediction model, the study also found that AGEs levels are
associated with age, BMI, gender, and a physical activity index, providing new insights into
predicting AGEs content and blood glucose levels. This integration of portable technology
with fluorescence measurement offers a promising tool for the non-invasive and continuous
monitoring of biomarkers that are critical for diabetes management, and potentially other
age-related conditions.

2. Materials and Methods

2.1. Structural Design of the Portable Autofluorescence Detection System

As depicted in Figure 1a, the device, designed for attachment to the wrist, has a
length of 60.00 mm and a width of 50.00 mm, enabling portability and continuous, on-
the-go monitoring. It employs a dual-LED configuration with an emission wavelength
of 395 nm to elicit the characteristic fluorescence of AGEs. The emitted fluorescence is
detected by an S1223 photodetector. To ensure the integrity of the signals and facilitate
data processing, the device integrates a three-layered circuit board that controls the system,
processes the signals, and manages data handling. The LEDs are encased within a black
housing fabricated using 3D printing technology, which serves to prevent light leakage
that could potentially interfere with the accuracy of detection. Additionally, filters are
embedded within this housing to refine the wavelength specificity, as detailed in the
structural representation in Figure 1c. This design exemplifies a seamless amalgamation
of functionality and sophistication, crucial for the effective non-invasive monitoring of
AGEs in clinical and everyday settings. Table 1 enumerates all of the critical components
incorporated within the device, detailing their specifications, parameters, and individual
prices. This facilitates the evaluation of the device’s operational capabilities and aids in
budgetary planning.

Figure 1. Structural design of the portable autofluorescence detection system. (a) Schematic of the
device worn on the arm, with dimensions of 60 mm × 50 mm × 20 mm, secured with an elastic band.
(b) Actual device displaying various modules. (c) Three-dimensional structural design illustrating
the 395 nm excitation module with a bandpass filter emitting light onto the forearm to stimulate
AGEs’ fluorescence; the emitted fluorescence is then received by the detector through a 520 nm long
pass filter.
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Table 1. Key Components of the Portable Autofluorescence Detection System Used in This Study.

Device Parameters Cost

Excitation light 395 nm\3 W 0.69$
Calibration light source 520 nm\1 W 0.69$
Batteries 3.7 V\500 mAh 2.00$
Photodetector 0.45 A\W 9.00$
Excitation filter 10 mm\395 ± 10 nm 13.00$
Optical emission filter 10 mm\520 ± 10 nm 4.80$
Total 30.18$

2.2. Enhanced Control Module Design for Precision and Portability

At the heart of the device’s control apparatus lies an STM32 circuit board, strategically
positioned on the uppermost layer with dimensions of 39.00 mm by 33.40 mm, featuring
an STM32 microcontroller chip. The control of LED pulsation is governed by the I/O
port voltage fluctuations on the STM32 circuit board, while the onboard analog-to-digital
converter (ADC) of the STM32 reads the voltage output from the detection module for
analog-to-digital conversion and data processing. To address the issue of insufficient output
power from the STM32 microcontroller’s I/O ports, a dedicated transistor amplification
circuit has been devised. A high-gain NPN transistor with a collector current of 3 A and a
collector-emitter breakdown voltage of 30 V forms a common-emitter current amplification
circuit with negative feedback, which effectively amplifies the nominal 10 mA current
from the control board. By meticulously adjusting the transistor’s operating point and
the negative feedback network, the 10 mA output from the STM32 chip is amplified to
approximately 500 mA, which is sufficient to drive the LED lights, thus ensuring their stable
and uniform irradiation. For enhanced portability, a compact charging and discharging
module (as shown in Figure 2) is connected to a 3.7 V lithium battery. This module stabilizes
the boost output to 5 V, supplying power to the STM32 circuit board and the entire system.

Figure 2. Compact integrated charging and discharging module dimensions: 16.00 mm × 12.00 mm
× 2.60 mm.

2.3. Optimized LED Emission Module for Enhanced Autofluorescence Excitation

The study by M. Koetsier et al. suggests that within the 355–405 nm wavelength
range, the induced autofluorescence in skin shows no significant variance [25]. Based on
these findings, our chosen excitation light source consists of two LED beads with a peak
emission wavelength of 395 nm. These LEDs feature a 15 mm spectral half-width, a 60◦
emission angle, and a 3 W output power, and are soldered onto Control Board 2. Utilizing
two 395 nm bandpass filters, extraneous wavelengths from the light source are eliminated,
allowing the directed light to excite the autofluorescence of AGEs within the volunteer’s
wrist skin. Additionally, an LED with a central emission wavelength of 520 nm serves as
the calibration light source to mitigate the influence of varying skin types on fluorescence
detection. By processing the fluorescence signal intensities under both wavelengths through
algorithms, we can more accurately assess the AGEs content. The circuit design includes
three unused LED positions, ensuring they do not interfere with the detection outcome.
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Control Board 2 measures 60.00 mm in length and 50.00 mm in width, featuring a central
circular recess in its design.

2.4. Advanced Detection Module with Precision Filtering and Amplification Circuitry

The intricate design of the detection module is centralized within Control Board 1, a
highly specialized spectral analysis circuit board with dimensions of 50.00 mm by 50.00 mm.
The photodetector S1223 is expertly interfaced with Control Board 1, penetrating the circular
recess of Control Board 2 to sit within a 3D-printed black enclosure. This strategic placement
ensures the detector is optimally close to the volunteer’s skin for maximum signal capture.
A dedicated 520 nm optical filter is adeptly utilized to discriminate against any extraneous
light, selectively passing only the fluorescence emanating from AGEs proteins. The S1223
photodetector captures this filtered light, converting it into a measurable voltage signal. To
bolster detection precision, Control Board 1 incorporates a bespoke circuit for filtering and
signal amplification to ensure that even the most delicate fluorescent signals are effectively
discerned and amplified. These processed signals are then routed through an output
terminal to the STM32 circuit board, where they undergo meticulous analog-to-digital
conversion and further processing for accurate AGEs quantification.

3. Results

3.1. Study on the Correlation between Glycated Hemoglobin and AGEs’ Fluorescence Intensity

Glycated hemoglobin (HbA1c) is a product of the binding of glucose in the blood with
hemoglobin in red blood cells. It forms a stable compound through the covalent bonding
of glucose with the N-terminal valine of the hemoglobin beta chain, and serves as an index
of average blood plasma glucose levels over the preceding 8–12 weeks [26,27]. It is a gold
standard for assessing glycemic control and gauging the risk of chronic complications
in diabetes patients [28]. Notably, individual glucose levels are influenced by dietary
habits, health status, and physical exercise load over time [29]. Furthermore, serum AGEs
levels correlate with dietary intake, with high-protein or high-fat foods cooked at high
temperatures being rich in dietary AGEs [30]. This section explores the correlation between
HbA1c levels and AGEs’ fluorescence intensity in volunteers. Figure 3a illustrates the
process of detecting glycated hemoglobin. To ensure experimental accuracy, blood samples
from all volunteers were collected after fasting. The ELISA assay, utilizing a kit designed for
blood glucose detection, provided an effective and precise means of quantifying glycated
hemoglobin. The ELISA plates were coated with HbA1c-specific antibodies to capture the
analyte effectively. The volunteers’ blood samples were then incubated in the plate wells at
4 ◦C for 24 h, allowing for the binding of HbA1c to the coated antibodies. After incubation,
the wells were thoroughly washed to remove non-specifically bound proteins and potential
interferences. Horseradish peroxidase (HRP)-conjugated secondary antibodies, which
have a high affinity for HbA1c, were then added, forming stable immune complexes
with the bound HbA1c during a secondary incubation. Additional washing removed any
unbound enzyme-labeled secondary antibodies, preparing them for signal detection. TMB,
a chromogenic substrate, underwent an oxidation reaction catalyzed by HRP, changing
from colorless to blue, indicating the presence of HbA1c. The reaction was initiated by
adding TMB to the system and halted at a predetermined time by a stop solution to prevent
over-catalysis. This ensured the stability of the color change for reliable optical density (OD)
measurements. The OD values were obtained by using a microplate reader, correlating with
the HbA1c concentration in the samples. After an ELISA measurement, AGEs’ fluorescence
intensity was measured on the volunteers’ wrists using a fluorescence detector, and the
data were statistically fitted with the HbA1c levels determined by ELISA.
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Figure 3. ELISA measurement and regression analysis of glycated hemoglobin and AGEs. (a) The
ELISA process with coating plates, incubation, antibody-antigen complex formation, addition of
labeling enzymes, microplate reading, and application of termination liquid. (b) The regression
analysis demonstrating the relationship between glycated hemoglobin concentration and AGEs’
fluorescence, with a correlation coefficient of 0.61, a p-value of 0.015, and a coefficient of determination
(R2) of 0.38.

Figure 3b illustrates the correlation between HbA1c and AGEs’ fluorescence values
obtained in this experiment, with a coefficient of determination (R2) of 0.38. This indicates
that the changes in HbA1c levels account for 38% of the variation in AGEs’ fluorescence
intensity, suggesting a moderate correlation between the two. However, the correlation is
not strong, implying that other factors, in addition to HbA1c, may influence the formation
and accumulation of AGEs.

3.2. Study on the Trends of AGEs’ Fluorescence Intensity and Blood Glucose Variation

To investigate the potential connection between the content of AGEs and real-time
blood glucose levels, and to analyze their synchrony and correlation at different times of the
day, we enlisted three volunteers to perform bi-daily tests of AGEs content at fixed times
(8 a.m. and 8 p.m.). This testing continued for 5 days to capture any potential circadian
rhythm fluctuations. In addition to measuring the fluorescence intensity of AGEs with a
fluorescence detector during each test, the volunteers also used an Abbott blood glucose
meter for finger-prick blood sampling to record immediate blood glucose levels.

The experimental data displayed in Figure 4 indicate cosine similarities between
the fluorescence intensity of AGEs and blood glucose levels for the three volunteers,
which were 0.91, 0.93, and 0.95, respectively. This suggests a significant synchronous
fluctuation relationship between AGEs’ fluorescence intensity and blood glucose levels
during the observed time periods, implying a close association between AGEs formation
and daily fluctuations in blood glucose levels, with a certain level of consistency across
different individuals. However, while cosine similarity provides a quantifiable method for
comparing similarities between the two, it does not directly infer causality. Additionally,
we cannot overlook the potential differences among individuals. These differences may be
caused by various factors, including but not limited to dietary habits, sleep quality, daily
activity levels, and genetic factors. Therefore, future research should consider including
more samples and exploring a wider range of potential influencing factors to further
investigate how blood glucose levels affect AGEs formation, and how this influence is
manifested through circadian rhythm changes.
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Figure 4. Investigation of AGEs content and real-time blood glucose levels over time. (a) Fluorescence
intensity of AGEs content for Volunteers 1, 2, and 3 measured at different times. (b) Blood glucose
levels of Volunteers 1, 2, and 3 measured at different times.

3.3. Validation of a Multivariate Prediction Model Based on Analysis of Factors Influencing
Advanced Glycation End-Product Content

A multivariate prediction model validation based on the analysis of factors influencing
the content of advanced glycation end-products (AGEs) was conducted. Fluorescence
intensity of AGEs in the skin of 14 volunteers was measured using a fluorescence detector,
and statistical analysis was performed on potential influencing factors such as age, body
mass index (BMI), gender, and physical activity index (Phys Act) of the volunteers. By
constructing a correlation heatmap, as shown in Figure 5a, we could visually observe the
correlation between AGEs content and these variables.

The statistical analysis revealed a moderate positive correlation between AGEs content
and volunteers’ age, with a correlation coefficient of 0.3824. This suggests that AGEs
accumulation increases gradually with age, consistent with previous findings regarding
the correlation between AGEs and the aging process [31,32]. Additionally, a strong positive
correlation (correlation coefficient = 0.6627) was observed between AGEs content and BMI,
indicating a significant association between obesity and AGEs formation and accumulation.
Obese individuals may have higher levels of AGEs, possibly due to chronic low-grade
inflammation, increased oxidative stress, and consumption of lipid-rich foods. The cor-
relation between gender (Gender) and AGEs content was weaker (correlation coefficient
= 0.1218), suggesting a minor influence of gender on AGEs formation and accumulation.
However, this does not entirely rule out the potential role of gender in AGEs-related
diseases, which may require larger sample sizes and further investigation.
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Figure 5. Analysis of influencing factors on AGEs content in human skin. (a) Correlation heatmap
between AGEs, age, BMI, gender, and physical activity; (b) validation of AGEs prediction model
using age, BMI, gender, and physical activity.

Notably, AGEs content exhibited a negative correlation with physical activity (PhysAct)
(correlation coefficient = −0.3822), implying that higher levels of physical activity may
be associated with lower AGEs levels. This finding supports the potential benefits of
a proactive lifestyle and exercise in slowing AGEs accumulation and improving health
outcomes. Furthermore, a predictive model for individual AGEs content was established
using AGEs, gender, and physical activity, which are highly correlated factors. Regression
analysis of the predictive model’s results against the actual measured AGEs content further
validated the association between these factors and AGEs content (see Figure 5b), yielding a
coefficient of determination (R2) of 0.72. This high R2 indicates a good predictive capability
of the model and underscores the significant predictive value of AGEs, gender, and physical
activity for AGEs content.

4. Conclusions

This study designs and implements a portable AGEs detection device based on the
spontaneous fluorescence of skin AGEs, which effectively measures the fluorescence inten-
sity of skin AGEs. Experimental results indicate a certain degree of correlation between
AGEs concentration and blood glucose levels, and through the validation of a multivariate
predictive model, reveal the complex influencing factors of AGEs accumulation. The device
offers real-time, non-invasive, and portable monitoring, making it suitable for large-scale
screening and long-term monitoring. It provides a new tool for the early detection and
prevention of chronic diseases such as diabetes, and holds promise for playing a crucial
role in the early identification and risk assessment of chronic diseases like diabetes.

5. Discussion

The primary exogenous sources of advanced glycation end-products (AGEs) are
derived from dietary intake, specifically from foods high in AGEs. Increased consumption
of such foods is closely linked to elevated levels of AGEs in plasma and urine [33–35].
These high-AGEs foods, often processed at high temperatures through methods such as
frying and grilling, typically contain high amounts of sugar. Excessive consumption can
lead to increased blood glucose levels, establishing a connection between the intake of
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high-AGEs foods and higher blood glucose levels [36]. The affordability and convenience
of the wearable devices used in this study enable us to expand our research into a broader
population and implement long-term dietary tracking. This expansion will facilitate the
collection of more comprehensive data, thereby enhancing the robustness of our findings.

Moreover, the research has revealed that levels of advanced glycation end-products
(AGEs) are correlated with BMI, gender, and physical activity index, offering new perspec-
tives for predicting AGEs content and blood glucose levels. Notably, BMI, which to some
extent reflects food intake [37], suggests that excessive intake leads to the accumulation of
AGEs. Therefore, a higher BMI may correlate with elevated AGEs levels due to increased
consumption of foods rich in AGEs. However, it is crucial to thoroughly consider and
account for the various biological and social differences that may underlie the observed
variations in AGEs levels and their correlation with blood sugar. For instance, individuals
with the same BMI might exhibit markedly different metabolic conditions. Recognizing
these factors is essential. To improve the accuracy and reliability of our measurements, we
will conduct rigorous dietary control experiments and monitoring. Initially, we will quan-
tify AGEs in the diet and record the sugar content and calories in food to better understand
the relationship between AGEs and blood sugar levels. Secondly, we plan to expand our
research, which will help reduce variability and provide more robust data.

Additionally, understanding the biochemical pathways through which dietary AGEs
influence blood glucose levels could provide further insights into metabolic health and
disease prevention. Advanced glycation end-products (AGEs) have been shown to in-
fluence various biological processes. For instance, recent studies indicate that AGEs can
regulate skin glycation by inhibiting specific transcription activators [38]. Additionally,
the use of dual-channel fluorescence probes has enhanced the accuracy of detecting intra-
cellular changes, which is crucial for understanding the relationship between AGEs and
blood glucose levels [39]. Integrating these methods and insights into our future research
will facilitate a clearer comprehension of the variability in the correlation between AGEs
levels and blood glucose. This integration may enhance the predictive capabilities and
clinical applications of our system. This line of research could lead to the development of
targeted dietary recommendations that mitigate the impact of high-AGEs foods, potentially
reducing the risk of diabetes and other related chronic conditions.

In future studies, we also plan to use our wearable devices for continuous monitoring
and long-term tracking of AGEs and blood sugar levels. The miniaturization and wearabil-
ity of our devices will enable us to conduct more extensive experiments and large-scale
studies. This could enhance the accuracy and robustness of our findings on the relationship
between AGEs and blood sugar levels. By integrating these strategies and methods, we
aim to gain a clearer understanding of the variability in the correlation between AGEs
levels and blood sugar, thereby enhancing the predictive capabilities and potential clinical
applications of our system.
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Abstract: In this paper, a dispersion of glass beads of different sizes in an ammonium nitrate solution
is investigated with the aid of Raman spectroscopy. The signal losses caused by the dispersion are
quantified by an additional scattered light measurement and used to correct the measured ammonium
nitrate concentration. Each individual glass bead represents an interface at which the excitation
laser is deflected from its direction causing distortion in the received Raman signal. It is shown that
the scattering losses measured with the scattered light probe correlate with the loss of the Raman
signal, which means that the data obtained can be used to correct the measured values. The resulting
correction function considers different particle sizes in the range of 2–99 μm as well as ammonium
nitrate concentrations of 0–20 wt% and delivers an RMSEP of 1.952 wt%. This correction provides
easier process access to dispersions that were previously difficult or impossible to measure.

Keywords: disperse phase; continuous phase; optical spectroscopy; particle measurement; process
control; Raman spectroscopy; process engineering; UV/VIS spectroscopy; suspension measurement

1. Introduction

Process analytical technology is a diverse field of measurement techniques for moni-
toring processes and analyzing the composition of mixtures [1–3]. Optical measurement
technology, for example, offers direct access to process parameters such as the concentration
of individual educts or products [4–7].

Frequently used optical measurement methods include UV/VIS, infrared, fluorescence
and Raman spectroscopy. VIS spectroscopy is often used for the analysis of colors in
order to achieve reproducible results [4,6,7]. In the UV and NIR spectrum, on the other
hand, a structural analysis of samples is possible. If a substance has active bands in
these ranges, changes or shifts can occur with concentration, allowing even the smallest
concentrations to be detected [8]. Measurements in the NIR spectrum can require a great
deal of calibration and are very sensitive to changing process parameters [9,10]. Another
method is fluorescence spectroscopy, which is used in biomedicine, for example [11]. A
sample is excited by light irradiation, which then emits a photon of a different wavelength.
A major advantage of this measurement technique is its versatility and sensitivity, which
means that several fluorophores within the same sample can be examined using different
excitation wavelengths. However, this measurement method is limited to substances that
emit photons [11,12].

Raman spectroscopy, which is used in this work, is a constantly developing field. The
advantage of this technology is that non-contact and non-destructive measurements are
possible through a glass pane, which makes process access easy to implement. In addition,
Raman spectroscopy is molecule-sensitive and allows for the precise differentiation of
different components, with very short measurement times in the range of seconds to mil-
liseconds. In Raman spectroscopy, a target is irradiated by a laser, and the photons interact
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with the molecules. The valence electrons are thereby raised to an unstable energy level
and then drop again, causing photons with altered frequencies, energies and wavelengths
to be scattered in all spatial directions. The wavelength shift, also known as the Raman
shift, is dependent on the molecular group and can therefore be used for the qualitative
analysis of material compositions. In addition, the strength of the resulting signal is linearly
dependent on the concentration, which allows for a quantitative evaluation of the target.
The use of this measurement technique in homogeneous mixtures is now widespread and
much researched [4,6,13–16]. However, the analysis of heterogeneous mixtures represents
a special application. Disperse mixtures such as emulsions and suspensions have a high
number of interfaces at which both the excitation light and the resulting Raman signal can
be scattered. This reduces the power density of the laser at the focal point, leading to a
strong attenuation of the measured signal and, therefore, to deviating measurement results
or even results that cannot be interpreted [17–21]. A simple variant of signal correction
is to compare the characteristic peaks of different components. However, this requires
a constant component, such as a solvent, which can be used as a reference. In addition,
the reference peak must lie within the measurement range of the spectrometer [21–23].
In the application example of this paper, a Tec5 (Steinbach, Germany) spectrometer is
used that has a measuring range up to 3200 cm−1 but uses water as the solvent, which
has its characteristic peak at 3400 cm−1. More complex calculation models are also used
in the literature, which have many parameters to be calibrated but have the associated
disadvantage of high computational effort and time-consuming calibration [24,25]. There
are also other approaches to solving the problems of measuring dispersed phases, such
as refractive index matching. Here, an additional component is added to a phase, which
reduces or even completely removes the refractive index difference between the phases. As
a result, optical diffraction no longer takes place. However, adding a further component
to the system can lead to new problems, such as the overlapping of peaks or the later
purification of the product, and is therefore not universally applicable [18,26].

In order to have a simple and more universally applicable correction method, an
additional probe is used in this paper that quantifies the losses of the excitation beam.
This makes it possible to establish a direct correlation between reduced Raman peaks and
increasing light scattering with increasing particle concentration and, finally, to correct the
Raman spectra. For this purpose, the concentration of an ammonium nitrate solution in
which glass beads are added as a disperse phase is investigated. The glass beads do not
have a spectrum of their own that collides with the signal of the ammonium nitrate, which
means that the focus of the observation can be placed on the investigation of the scattering
effects caused by dispersed particles.

2. Materials and Methods

The basic principle of the measurements is that a Raman probe excites the sample
and detects the Stokes signal and, at the same time, a scattering probe detects the losses
of the excitation laser at an increased particle concentration. In a fluid without scattering
losses due to particles or droplets, the laser passes through the fluid in a straight line,
and no excitation photons should reach the scattering probe. Also, no significant amount
of the Stokes signal is detected from the Raman measurements. This is partly because
the scattering probe is not focused and partly because the detection module used is not
designed for Raman measurements and has a much lower sensitivity. As soon as particles
are present in the sample, the excitation light from the laser is scattered and detected by the
probe. This effect and the correlation with the Raman signal are investigated and used for
signal correction.

The measurement setup consists of a macro quartz glass cuvette from Hellma (Müll-
heim, Germany) with a sample that is placed in the focal point of two probes and positioned
on a magnetic stirrer (Figure 1). An InPhotonics (Norwood, MA, USA) RPS785/16-5 probe
was used to excite the sample. It has a focus length of 7.5 mm with a spot size of 158 μm and
a numerical aperture of 0.27. The probe is connected to a Raman spectrometer MultiSpec
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Desk ETH with an LS-LD laser cassette (785 nm excitation wavelength) and an SC-CCD
RAMAN spectrometer cassette (detection range 319–3213 cm−1 with increments of 1 cm−1)
from tec5 (Steinbach, Germany). The laser power can be set between 50 and 500 mW and
was adjusted to the maximum output for the measurements. The detector is a scientific
thermoelectric-cooled CCD detector with a spectral resolution of 7 cm−1. The position
of the probe was adjusted so that the focal point was approx. 2 mm inside the cuvette.
Normally, measurements would be taken in the center of a cuvette, but previous studies [27]
have shown that a lower penetration depth is beneficial for the signal at higher particle
concentrations. The second probe is a self-built scattering probe consisting of seven 200 μm
fibers arranged in a circle. It has already been tested in other applications and has proven
to be robust and cost-effective in the use of scattered light measurements [28]. This probe
does not emit its own light, but it is only used to detect scattered light. For this purpose, it
is connected to an MCS 601 UV-NIR C spectrometer from Zeiss (Oberkochen, Germany)
(detection range of 190–1015 nm with increments of 0.5 nm) with a spectral resolution of
2.4 nm. The inner components consist of a grating with a diode array.

Figure 1. Scheme of the measurement setup with Raman and scattering probes, a cuvette with
suspension on a magnetic stirrer and interaction of light.

In order to ensure the consistency of the measurements, a mount was manufactured
that allows the Raman probe to be placed vertically to the cuvette at the desired distance
and the scattered light probe to be attached aligned with the focal point of the Raman probe
(Figure 2).

The basic substances under investigation have already been examined in a previous
paper [27]. This involves an ammonium nitrate solution into which glass beads (SiO2)
are dispersed. To improve the understanding of disperse systems and their influence on
Raman spectroscopy, four different particle sizes were investigated. The particles used were
Omicron NP3 (2.093 μm), Omicron NP5 (4.089 μm), Micropearl (6.604 μm) and Starmixx
(99.149 μm). The particle sizes refer to the Sauter diameter, which was measured with a
HELOS particle size analyzer from Sympatec (Clausthal-Zellerfeld, Germany) [29]. Five
ammonium nitrate solutions with deionized water were prepared for each of the four
particle sizes. For each ammonium nitrate solution, 12 glass bead concentrations were then
prepared. This corresponds to a total number of 240 samples. The individual concentrations
are listed in Table 1 for one particle size at one ammonium nitrate concentration. It is
expected that the size of the particles will have a measurable influence on the Raman signal.
For example, at the same concentrations, there is a larger number of NP3 particles in the
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same volume than would be the case with Starmixx. As the number of particles increases,
so does the number of interfaces at which light refraction can occur. This means that with
increasing particle size, less refraction and therefore signal loss in the Raman spectrum is
to be expected. This influence is analyzed in more detail in the following measurements
using the selected particle sizes and concentrations shown in Table 1.

 

Figure 2. Setup of the Raman and scattering probes and the cuvette on the magnetic stirrer.

Table 1. Overview of the concentrations of ammonium nitrate solutions and particles.

Particle Name (Size)
Ammonium Nitrate

Solution/wt%

Particle Concentrations per
Ammonium Nitrate
Concentration/wt%

NP3 (2.093 μm) 0–20 in 5 wt% steps
0.00–0.25 in 0.05 wt% steps

0.50–3.00 in 0.50 wt% steps

NP5 (4.089 μm) 0–20 in 5 wt% steps
0.00–0.25 in 0.05 wt% steps

0.50–3.00 in 0.50 wt% steps

Micropearl (6.604 μm) 0–20 in 5 wt% steps
0.00–0.25 in 0.05 wt% steps

0.50–3.00 in 0.50 wt% steps

Starmixx (99.149 μm) 0–20 in 5 wt% steps
0.00–0.25 in 0.05 wt% steps

0.50–3.00 in 0.50 wt% steps

3. Results

Initially, the peak of the Raman spectrum to be examined must be identified. As
an example, the spectra of 20 wt% ammonium nitrate with no particles and with 3 wt%
particles are shown in Figure 3. Ammonium nitrate (NH4NO3) consists of NH4

+ and NO3
−

ions, which can be identified in the Raman spectrum by their characteristic bands. In the
spectrum shown, the NO3

− ions generate relatively weak signals at 716 cm−1, 1390 cm−1

and 1671 cm−1 and a strong signal at 1047 cm−1, which is most suitable for identifying the
ammonium nitrate concentration. NH4

+ only produces a weak signal at 1460 cm−1, which
overlaps with the signal of the NO3

− ions [30–32]. The NO3
− peak at 1047 cm−1 is therefore

best suited for evaluation. This peak has a FWHM (full width half maximum) of 11 cm−1

and is detectable both with and without 3 wt% particles. All intensities of the Raman signal
that were measured refer to this peak. The measurement signal of the water content cannot
be evaluated in these spectra, as the significant OH peak is at approx. 3400 cm−1 and only
a small part of the side at 3200 cm−1 is recognizable [33,34]. The glass beads themselves do
not generate a signal of their own that can be measured in the spectrum.
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Figure 3. Spectra of the ammonium nitrate solution with 3 wt% NP3 particles and without particles
for comparison.

All measured data are processed immediately after acquisition in order to minimize
offset errors between the measurement series. In the first step, a baseline correction is
performed in Formula (1) by subtracting the mean values of the left edge (1107 cm−1) and
right edge (1987 cm−1) from the intensity value of the ammonium nitrate peak.

IAN = I1047cm−1 − I1107cm−1 + I1987cm−1

2
(1)

After the baseline correction, the database is normalized, as there may be a slight
displacement of the probes between the measurements. The measurements at 0 wt%
particles can serve as a reference. These measuring points should provide the same values
for the same ammonium nitrate concentration regardless of the defined particle type. For
correction, all data for each ammonium nitrate concentration are related to the measured
values of Micropearl (6.604 μm) at 0 wt% particles (Formula (2)).

IANnorm =
IAN ·IAN(6.604 μm; 0 wt% particles)

IAN(0 wt% particles)
(2)

All Raman data of the ammonium nitrate peak are plotted in Figure 4 sorted by particle
size over the particle concentration. Because of the previous normalization, the 0 wt%
measurement points of all particle sizes and the same ammonium nitrate concentration
correspond to each other. In principle, there is a linear correlation between a Raman signal
and the concentration of the target. Examining the measurement points at a constant
particle concentration, it can be seen that this correlation exists for the ammonium nitrate
concentration. However, the observation over the particle concentration provides a steep
course up to 0.25 wt% and then a flattening intensity curve. The measurement series of
NP3 and NP5 run into saturation towards 3 wt% and then no longer show any significant
changes with the particle concentration. The curves of Micropearl and Starmixx, on the
other hand, do not yet show any saturation. As the particle size increases, the signal losses
of the measurement decrease. While the peak heights for NP3 decrease by a factor of 6 to
10, the peaks for Starmixx only decrease by a factor of 1.6 to 2. The reduced light scattering
with increasing particle size can be explained by the fact that, overall, larger particles have
a smaller number of boundaries than small particles at the same concentration.

The measurements with the scattering probe are shown as an example in Figure 5,
using 20 wt% ammonium nitrate with no particles and with 3 wt% particles.

The produced peak is a combination of Rayleigh scattering, which is scattered in all
spatial directions during molecular interactions, and direct excitation radiation, which is
deflected by the particles. A differentiation is not possible since both signals have the same
wavelength. The peak is located at 785 nm with a FWHM of 2.5 nm, and the spectrum
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shows no other peaks. With 0 wt% particles, the peak height is approx. 9000 counts and
is therefore 333 times smaller than the peak with 3 wt% particles. This shows, on the one
hand, that light scattering occurs on the cuvette and in the medium even without particles
and, on the other hand, that the light scattering mentioned is not significant compared with
the scattering caused by the particles.

 
(a) (b) 

 
(c) (d) 

Figure 4. Raman measurements of particle sizes of (a) 2.093 μm; (b) 4.089 μm; (c) 6.604 μm and
(d) 99.149 μm with increasing particle and ammonium nitrate concentrations.

Figure 5. Peak of the excitation laser measured by the scattering probe with 3 wt% NP3 particles and
without particles for comparison.

The data are calculated in the same way as in Formula (2) for the Raman data. A
baseline correction is not necessary as the baseline has no relevant influence compared
with the peak height. The peak height is calculated using Formula (3), which is based
on the Beer–Lambert [4] law but uses the reciprocal of the intensity ratio. Typically, the
Beer–Lambert law would be used for transmission measurements to calculate the light
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loss as extinction. For a transmission measurement, the intensity would decrease with
the particle concentration, which corresponds to an increase in extinction. However, as
the measurements of the scattering probe initially measure the opposite effect, that is, the
increase in the measurement signal, as more light is scattered by the particles, the reciprocal
value must be used for the purpose of representation in order to continue to depict an
increase in light loss or extinction with increasing particle concentration. This is performed
in order to have a better representation of the effects occurring and, in addition, to be
comparable to the previous paper where an actual transmission setup was used [27].

Eλ = log10

(
I

I0 wt% particles

)
(3)

Analogous to the Raman data, the scattered light data are sorted by particle size
and plotted over the particle concentration (Figure 6). The calculation according to the
Beer–Lambert law, which takes the measurement points with 0 wt% particles as a reference,
results in an origin in the zero points of the graphs for all measurement series. The curves
are comparable to those of the Raman measurements, as here, too, the measurement signal
changes very strongly up to 0.25 wt% and then becomes saturated. The correlation can also
be logically explained by the fact that the more laser radiation is scattered, the lower the
excitation of the sample and the intensity of the Stokes scattering. The correlation can also
be seen in the fact that the light scattering decreases with increasing particle size.

 
(a) (b) 

 
(c) (d) 

Figure 6. Scattering measurements of particle sizes of (a) 2.093 μm; (b) 4.089 μm; (c) 6.604 μm and
(d) 99.149 μm with increasing particle and ammonium nitrate concentrations.

One difference to the Raman data is that no dependence of the scattered light on the
ammonium nitrate concentration can be measured. This is also to be expected, as the laser
radiation should not contain any information about it. The variance in the measured values
at a constant particle concentration is on average approx. 0.09 for NP3 and approx. 0.16 for
Starmixx. The gradient of the measured value fluctuations with the particle size could be
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due to the fact that larger particles sink faster and thus have a greater dependence on the
stirrer speed.

Although the representation of the signals via the particle concentration allows for an
explanation of the scattering effects, it provides an incomplete picture of the relationships.
This is due to the fact that the concentration does not contain any information about the size
of the particles. In order to obtain a more accurate picture of the relationships, the specific
disperse surface of all samples is calculated. This value is defined as the total surface area
of all particles per volume. First, the total density of the mixture ρt must be calculated from
the mass fraction (w) and individual densities (ρ) of ammonium nitrate (AN), distilled
water (dw) and particles (p) according to Formula (4):

ρt =
1

wAN
ρAN

+ wdw
ρdw

+
wp
ρp

(4)

The total number of particles (Np) can be determined in Formula (5) from the weighed
mass (mp), the density (ρp) and the diameter (D) of the particles:

Np =
mp

ρp·π·D3

6

(5)

The specific disperse surface (Sd) can then be determined from the number of particles
(Np), mixing density (ρt), total weight of the solution (mt) and surface area of a single
particle (S) (Formula (6)):

Sd = S·Np· ρt

mt
(6)

The measured values of all particle sizes at 20 wt% ammonium nitrate are plotted
against the specific disperse surface in Figure 7. The new plot shows that all measurement
series follow the same course but are distorted when plotted against the concentration.
The linearity of the Starmixx measurements can also be explained, as all data fall off in
an approximately linear pattern up to a specific disperse surface of approx. 3000 m2/m3.
The previously described effect that larger particles at the same concentration have fewer
interfaces than smaller particles is now reflected in the new plot, whereby at 3 wt%, Starmixx
has a specific disperse surface of 810 m2/m3 and NP3 of 37,930 m2/m3.

 
(a) (b) 

Figure 7. (a) Raman and (b) scattering data of all four particle sizes with the 20 wt% ammonium
nitrate solution plotted over the specific disperse surface of the particles.

To view all the measurement data in a collective context, the Raman data are plotted
as a change in peak height (compared to the 0 wt% particle measurement) against the
corresponding scattered light value in Figure 8. A trend comparable to the plot against the
specific disperse surface can be seen, where the Starmixx data are distributed over lower
x-axis values than the remaining data sets. For the NP3, NP5 and Micropearl data points,
the spread across the x-axis also correlates with the particle size. The clear difference to
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Starmixx is due to the particle size being up to 47 times larger. Nevertheless, the overall
picture shows a clear trend between the peak height change and light scattering. Especially
in the range below a scattering of 1, the deviations of 0.02 from the trend are quite small.
Above 1, the curve becomes more of a scatter plot and shows a deviation of 0.57 from the
trend. The diagram demonstrates the direct correlation between Raman peak and scattering
losses, making the measurement data independent of any knowledge of the particle size or
specific dispersed surface area. All factors influencing the measurement signal are reflected
in the form of the scattering loss.

Figure 8. Change in the peak height of all samples plotted over the scattering of light, sorted by
particle size.

To obtain a regression that can be used to correct the Raman values, the amount of data
is first reduced by taking the mean values from the same particle concentration (Figure 9a).
Starting from this, different trend lines are adjusted iteratively until the highest possible
regression is achieved. In order to obtain a good adaptation, it is necessary to split the data
at a scatter value of 0.9 and to describe the data below 0.9 by a second-degree polynomial
function and the data above 0.9 by a third-degree polynomial function. The trend lines and
formulas obtained are shown in Figure 9b.

 

(a) (b) 

Figure 9. Average change in the peak height per particle concentration plotted over the average
scattering of light per particle concentration: (a) sorted by particle size and (b) sorted by best
regression with regression formulas.
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From the formulas shown in Figure 9b, the change in peak height can be calcu-
lated as the correction factor ΔI. If this is multiplied by the measured intensity IAN in
Formula (7), the result is the corrected intensity IAN−corr, which should match a measured
value without particles:

IAN−corr = IAN ·ΔI (7)

For a clear display, the values are converted into mass fractions of the predicted
ammonium nitrate concentration (ωAN), which can be performed using the proximity
Equation (8). The relationship originates from the regression of the measured Raman data
without particles:

ωAN = 9·10−7·IAN−corr + 0.0023 (8)

The mean corrected ammonium nitrate concentrations of the measurement series are
shown in Figure 10. A theoretically optimal correction should lie on the corresponding
horizontal grid line at 0, 5, 10, 15 and 20 wt%, respectively. All deviations from this are
errors in the prediction. As a measure of the error, the RMSEP (Root Mean Squared Error
of Prediction) is calculated according to Formula (9) [35], plotted as an error indicator in
Figure 10 and listed individually in Table 2.

RMSEP =

√√√√ 1
N
·

N

∑
i=1

(yi − y1)
2 (9)

Figure 10. Calculated prediction for the ammonium nitrate concentration based on the measured
scattering of light with increasing particle concentration and plotted RMSEP as an indicator of the
prediction error.

The highest deviation with an RMSEP of 5.386 wt% occurs with NP5 and 15 wt%
ammonium nitrate. The region at 0.1–0.2 wt% particles is significant for this, as the deviation
there ranges from 7.2 to 10.2 wt%. The Raman data and scattered light data initially show
no clear anomalies. Figure 8 shows that the NP5 data tend to be lower than other data
points and are therefore below the regression curve. This results in an over-correction,
which can be seen in the data points in question. The reverse is true for Micropearl at 10
wt% ammonium nitrate, for example, where the data points are above the regression curve
and under-correct the prediction by 3.2–4.1 wt%. The best predictions occur in the range
of the 0 and 5 wt% ammonium nitrate concentrations, where the deviation is as low as
0.25 wt% for Starmixx at 0 wt% ammonium nitrate and 0.311 wt% at 5 wt% ammonium
nitrate. Overall, this results in an RMSEP of 1.176–2.896 wt% for the average observation
per particle size and an RMSEP of 1.952 wt% when considering all measurement data. As
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mentioned before, the lower concentrations have a much lower RMSEP compared with
the average value and some outliers have a higher value. But considering that the signal
approaches zero without the correction, an overall averaged RMSEP of 1.952 wt% of the
prediction gives a good indication of the actual value of the data. While this accuracy
is quite high for precise concentration determinations and compared with homogeneous
mixtures, the accuracy is well suited for reaction tracking or trend measurements.

Table 2. Calculated RMSEP for all predicted ammonium nitrate concentrations.

Particle Name
(Size)

AN-Conc./wt%
RMSEP per

AN-Conc./wt%

RMSEP per
Particle

Size/wt%

Overall
Averaged

RMSEP/wt%

NP3 (2093 μm)

0 0.325

1.356

1.952

5 0.544

10 0.906

15 0.925

20 2.668

NP5 (4089 μm)

0 0.296

2.896

5 1.072

10 1.942

15 5.386

20 2.815

Micropearl
(6604 μm)

0 0.260

1.906

5 0.538

10 2.183

15 1.761

20 3.154

Starmixx
(99,149 μm)

0 0.250

1.176

5 0.311

10 0.578

15 2.219

20 1.225

4. Discussion

The scope of this work was to investigate the relationship between Raman measure-
ments and dispersive systems based on a simple system of ammonium nitrate solution
and glass beads and to find a way to correct the signal losses. In the previous work [27],
this was performed with only one constant particle size by taking a separate transmission
measurement with a separate light source. This measurement was a reference for how
much light is lost due to dispersion. This has now been optimized by first replacing the
transmission measurement with a scattered light probe, which measures the laser radiation,
and then performing both measurements simultaneously. In addition, the substance system
was expanded to include more particle sizes to obtain a more complex assessment.

The measurements of 2–99 μm particles and 0–3 wt% particle concentrations in
0–20 wt% ammonium nitrate solutions show the relationship between increasing particle
concentration, decreasing Raman signal and increasing scattered light signal. The Raman
data of NP3 (2.093 μm), NP5 (4.089 μm) and Micropearl (6.604 μm) provide a steep, almost
linear decrease up to 0.25 wt% and then change into a flattening curve that runs almost
parallel to the x-axis at 3 wt%. The Starmixx (99.149 μm) data, on the other hand, show a
deviating curve over the particle concentration, as the data points fall almost linearly and
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show significantly lower losses. This can be explained by plotting the measured data over
the specific disperse surface area.

It can be concluded that the 99.149 μm particles at the same concentration as the
2.093 μm particles have a significantly lower specific disperse surface area, which means
that there are fewer boundary surfaces and, therefore, less signal interference can occur.
This plot also shows that the same course of signal loss occurs for all particle sizes. For
this reason, a representation via the concentration only provides a distorted image and
delivers an incomplete picture. The Raman data were then plotted over the scattered light
data as a change in peak height to obtain a correction function. This plot also illustrates
the relationship between scattered light data and specific dispersive surface area, as the
plots show the same distribution of data across the x-axis. Starmixx provides significantly
lower scattered light values because of its lower specific dispersive surface area (approx.
1.5 at approx. 800 m2/m3) and NP3 provides the highest scattered light values as it has
the largest specific dispersive surface area (approx. 2.7 at approx. 38,000 m2/m3). This
correlation between scattered light and specific dispersive surface area shows that the
scattered light measurement is a good measure and indirectly contains information on
particle size and concentration.

The resulting correction was then applied to all measurement data, resulting in an
average RMSEP for all measurement data of 1.952 wt%. However, deviations of up to
10 wt% can occur when considering individual data points. This is due to the fact that a
generally applicable model was used, which can be applied to all measurement data, but
is therefore also more susceptible to deviating measurement series. An average RMSEP
of 1.952 wt% appears to be quite high for low concentrations, since in the example of
5 wt% measurements, this would represent a deviation of 40% of the measured value. On
closer inspection, however, the deviations in this range are significantly lower, with an
RMSEP of 0.311–1.072 wt% depending on the particle size under consideration. Even
though for some data points, such as 15 wt% ammonium nitrate with NP5 particles,
the prediction shows significant deviations, it still reflects values in the correct order of
magnitude. The mean RMSEP is therefore not representative of every prediction of the
ammonium nitrate concentration but provides a rough overview for a broad application
of the model. Compared with the measurement of homogeneous mixtures, an average
RMSEP of 1.952 wt% can be quite high, but the accuracy is still sufficient to carry out
reaction tracing or investigations of concentration trends. A more specific regression and
a lower RMSEP for individual ammonium nitrate concentrations or particle sizes would
be conceivable but would have the disadvantage of greater calibration effort and would
require knowledge of the ammonium nitrate concentration or particle size. However,
despite deviations in individual measurement data, it can be shown that a correction is
possible using this measurement technique. In further work, the findings of this study will
be transferred from suspensions to emulsions and applied to more complex systems.

5. Conclusions

It can be concluded that the performed correction is a good and simple option to correct
measurement data of the continuous phase that are influenced by disperse systems. The
scattered light database contains the required information on particle size and concentration
and achieves an RMSEP of 1.952 wt% when considering all measurement data. This means
that no further specific knowledge of the size or number of particles is required.
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Abstract: Many techniques have been studied for recovering information from shared media such
as optical fiber that carries different types of communication, sensing, and data streaming. This
article focuses on a simple method for retrieving the targeted information with the least necessary
number of significant samples when using statistical population sampling. Here, the focus is on the
statistical denoising and detection of the fiber Bragg grating (FBG) power spectra. The impact of
the two-sided and one-sided sliding window technique is investigated. The size of the window is
varied up to one-half of the symmetrical FBG power spectra bandwidth. Both, two- and one-sided
small population sampling techniques were experimentally investigated. We found that the shorter
sliding window delivered less processing latency, which would benefit real-time applications. The
calculated detection thresholds were used for in-depth analysis of the data we obtained. It was found
that the normality three-sigma rule does not need to be followed when a small population sampling
is used. Experimental demonstrations and analyses also showed that novel denoising and statistical
threshold detection do not depend on prior knowledge of the probability distribution functions
that describe the FBG power spectra peaks and background noise. We have demonstrated that the
detection thresholds’ adaptability strongly depends on the mean and standard deviation values of
the small population sampling.

Keywords: statistically small population sampling; two-sided sampling; one-sided sampling; threshold
detection; fiber Bragg gratings; FBG sensing; optical spectrum analysis

1. Introduction

Measuring the resonant wavelengths of fiber Bragg grating (FBG) sensors, finding their
fingerprints, or classifying FBGs themselves in optical sensing systems require denoising
the acquired FBG spectral peaks [1–7]. Meanwhile, all important properties of FBG spectral
peaks have to be preserved.

To mitigate the impact of the background noise on the quality of the optical signals in
telecommunications and sensing systems, hardware pre-processing using real-time wave-
length filtering has been typically used [8–10]. Software approaches based on verification
or post-detection algorithms can be leveraged to detect signals in a complex or fluctuating
background noise environment [11,12]. In the latter case, a variety of statistical detection
techniques are usually applied. Such methods utilize a preset level of an allowable detection
threshold τ, relying on the signal-to-noise ratio (SNR) evaluation [12,13].

The reviewing article [14] deals with Brillouin scattering methods of determining
the frequency shift of signals and approximation methods in fiber optic metrology and
distributed optical fiber sensing. Based on available filtering, fitting, approximation, corre-
lation, and control techniques, they aim to improve denoising and detection of non-FBG
sensing via artificial intelligence approaches. This may be applied to improve qualitative
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parameters (such as resolution and accuracy) of the measurement equipment. Similarly,
Brillouin optical time domain reflectometry [15,16] and optical frequency domain reflec-
tometry [17,18] methods allow for improved signal clarity, better measurement accuracy,
and enhanced signal resolution. The essence of these methods consists of processing the
specified number of averaged data points in time through the data set while taking the set
number of data points in the time window. This is used in various measurement techniques
and is gaining attraction in distributed sensing applications.

Our focus has been on a quasi-distributed system based on FBG sensing in optical
fiber, where methods based on similar (but not the same) principles can be used [19]. The
goal has been to avoid complex mathematical procedures, fingerprinting databases, or
artificial intelligence-based techniques [19–21]. In [22,23], we reported on a denoising
technique based on a digital sliding window. A statistical detector was introduced to detect
the spectral power of FBGs in an additive mixture of the signal and background noise.
The statistical detector controls the power level depending on the given threshold level τ,
as shown in Figure 1, indicating that the power level above the threshold belongs to the
FBG signal. As is typical for FBG sensing, the statistical probability density function (pdf)
achieves higher values for the FBG power spectra compared to the pdf of the background
noise. This is because most of the measured values of the reflected FBG power signal are
higher than the background noise values.

Figure 1. Principle of statistical detection of the FBG power spectra peaks in the additive mixture of
the signal and background noise, where pdf means the respected probability density function, τ is
the threshold in dB and I–IV are zones of correct or incorrect detection determined by the τ and pdfs.

Detection of FBG power spectra using threshold τ in the overlapping power zone
(where the additive mixture contains both FBG signals and background noise) brings
some risk of either loss (Zone III) of FBG detection or false alarms (Zone II) due to the
noise detection. Signals detected above the threshold τ and simultaneously above the
background noise (Zone I) indicate the correct decision about the presence of the FBG.
Finally, the presence of FBG below the threshold (Zone IV) is also evaluated as the correct
decision if it originated from background noise, called the “rejecting detection hypothesis”.
This is depicted in Figure 2. It is noted that the calculation of the detection threshold τ is
based on Bayesian decision theory [24–26]. Typically, practical applications often aim to
either maximize correct detection in Zone I or minimize false alarms in Zone II. Zone III
in Figure 2 represents the detection loss and also shows the “significance level of the
hypothesis test”. Zone IV of the correct rejection of the hypothesis also shows the “power
of the test”. For example, if the desired pFA = 10−3, the power of the hypothesis test is
sufficiently high at 1 − pFA = 0.999. It is understood that numerical values from Zones III
and IV indicate whether or not statistical sampling is representative.
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Figure 2. Basic principle of the decision-making process, where I–IV are zones of correct or incorrect
detection determined by the threshold τ and pdfs.

Neyman and Pearson showed [27] that the likelihood ratio test will maximize the
power of the test for a fixed population sampling for a given false alarm probability. There-
fore, the likelihood ratio test is statistically the strongest hypothesis test in the sampling
signal detection theory. Then, any monotonic likelihood ratio function (i.e., pdf of FBG
power spectra vs. pdf of background noise) can be used as the decision variable based on
comparing mean values μ (of the raw observations across the entire sample) against the
threshold τ. As a consequence, optimal decisions without prior knowledge of likelihood
functions can be constructed regardless of the prior knowledge of the Gaussian process
regression method (or similar) [28].

In a previous study [23], a fixed K-number of the discrete power spectral samples
was processed using the sliding window technique where the K-number corresponded to
a number of discrete wavelength steps within the FBG bandwidth. As was shown, K can
be smaller. This depends on the requirement to either increase the threshold stability or to
reduce the computational complexity. Statistical tests of reliability and validity showed the
limits on the smallest K in the population sampling [24–29].

In this article, we focus on determining the least necessary but sufficient number of
significant samples in statistically small population sampling while minimizing the impact
on statistical numerical characteristics.

1. First, we investigate the impact of two-sided sliding window sampling around the
cell under the test;

2. Second, we investigate the impact of a one-sided sliding window.

In both these methods, K discrete steps related to the bandwidth of FBGs are applied.
Next, K will be gradually reduced to the smallest population sampling. This popu-

lation sampling reduction will be conducted with respect to minimizing the impact on
statistical detection of the FBG power spectra.

In experimental demonstrations, we will investigate how reducing K in the sliding
window will impact the SNR and detection.

2. Statistical Thresholding Using Two-Sided Small Population Sampling

In this section, we study and analyze the symmetrical K-size two-sided population
sampling, composed of left and right sub-windows, see Figure 3.

Figure 3 illustrates the main principle of statistical detection based on a sliding window.
As we have already explained, the comparator in the statistical detector decides whether
the power level in the cell under the test (CUT) is above the threshold level τ. After the
presence of FBG power spectra peaks was evaluated, the window was shifted by one
wavelength step, and the adjacent cell became the CUT. This is why the window is called a
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sliding window along the waveband. The waveband comprises N number of cells each
containing different power levels of the signal with noise.

Based on Bayesian decision theory and the Neyman–Pearson approach, as well as the
minimum required false detection, pFA, the statistical detector is not allowed to exceed the
preset value of pFA. In other words, at pFA = 10−3, a maximum of 1 false threshold detection
is allowed from 1000 CUTs investigated.

Figure 3. Concept of the statistical threshold detector of FBG power spectra peaks level with
a symmetric two-sided K-size sliding window.

2.1. Statistical Threshold Calculation

The calculation of the statistical threshold τ uses statistical characteristics of the
additive mixture of the signal and background noise. This comprises the mean μK and
the standard deviation σK. Both characteristics are calculated from the fixed number of
K cells from the left and the right sub-windows. This can be called K-sized population
sampling around the CUT. By default, a symmetric K-size window is chosen due to the
typical symmetric Gaussian shape of the reflected FBG power spectra peaks [8–11]. The
size of K depends on the properties of FBGs, including the FBG bandwidth BFBG, sensing
interrogator resolution δsens, and the effects of attenuation. In the following example, let’s
assume BFBG = 0.8 nm and δsens = 0.008 nm. Thus, the above-threshold power can be
approximated from M discrete wavelength steps as M ∼= BFBG/δsens = 100. As a rule, it is
recommended to keep K ∼= M.

First, the calculated threshold τ has to contain the noise function fSMF describing the
attenuation approximation of the single-mode fiber (SMF-28). Second, an instrumental
error function εinstr should be included. The εinstr is a sum of all instrumentation errors
and includes fluctuations in the wavelength discretization, quantization, deviations, or
offsets due to internal or external environmental changes. Procedures for calculating
total instrumentation error are explained in [30] using qualitative parameters of involved
devices in the given experimental setup. In this case, the FBG sensing instrumentation
error is influenced by wavelength measurements with an accuracy of ±10 pm and power
measurements of ±2%, regardless of whether a slow or fast scanning mode was used.
Generally, both fSMF and εinstr functions are stabilized during long-term use, assuming
stable operating conditions for the optical fiber and FBG sensing interrogator.

Next, the calculation of τ has to include the required pFA (for example, pFA = ×10−3 . . . ×10−6).
The smaller the pFA, the higher values of τ can be achieved. However, the threshold values
should range from the minimum value slightly above the background noise energy Emin up
to the maximum expected value of the additive mixture Emax (the FBG power spectra peak
value with background noise). Due to the above, the pFA is parameterized in the range from
Emin to Emax. For large sampling populations, a full parametrization is typically required and
is equal to 1. However, for decreasing K-size, the pFA is parameterized with lower weights.
The condition K < M allows for the adequate weakening of the pFA parametrization.

Finally, the calculated threshold τ has to include the additive mixture (N0 + ES)k
obtained in the given kth CUT. This value should be weighted by both the mean μK and the
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standard deviation σK. Both are obtained from the K-size population sampling within the
sliding window. If the K-size is reduced, the accuracy deteriorates and the parametrization
of the (N0 + ES)k value is weakened accordingly. On the contrary, the increased standard
deviation increases the contribution of the additive mixture in the calculation of τ.

To conclude, the parameterized pFA and (N0 + ES)k, will affect the fast dynamic
adaptation of the threshold τ. The calculation of the threshold τ is given by Equation (1):

τ = εinstr + fSMF +
−Emax − Emin

ln 1
pFA

K − G
K

+ (N0 + ES)kμKσK (dB), (1)

where G is the number of guard cells in the neighborhood of the CUT that do not participate
in the threshold calculation. In general, the more guard cells, the smaller the weight of the
parameterized pFA.

2.2. Experimental Demonstration and Results

The experimental setup is shown in Figure 4. Figure 4a shows the investigation of
FBG power spectra in a reflection mode by an optical interrogator, and Figure 4b shows
a transmission mode by a stand-alone detector/optical spectrum analyzer.

Figure 4. FBG sensing experimental setup using (a) an interrogator; (b) a stand-alone light source
and a detector/optical spectrum analyzer.

The non-linear attenuation of the used optical fiber (G.652. D SMF) and the creation of
the approximate broadband fSMF attenuation function is described in [31]. In the experi-
mental demonstration, various optical fiber lengths are considered, representing the range
of attenuation between −1 . . . −45 dB. Several FBG optical sensors with a bandwidth of
BFBG ∼= 0.8 nm and maximum attenuation of −20 dB at the resonant wavelength λFBG are
connected to optical fiber.

The digitized additive mixture of the signal and background noise (in the spectral
domain) is continuously processed in the predefined wavelength sliding window of differ-
ent K sizes. This sliding window systematically shifts and μK, σK, and τ are dynamically
calculated (Equation (1)) for each of the CUTk, see Figure 3. The G neighboring guard cells
are excluded from μK, σK, and τ computing.

In Sections 2.2.1 and 2.2.2, different threshold values of τ will be determined and
investigated for different values of pFA for different FBG power spectra peaks and the
presence of the background noise.

The interrogator processes discrete power values for each discrete wavelength in the
presence of the quantization noise. To compare different effects of instrumental distortion,
a commercial interrogator and a table-top analyzer with a different wavelength resolution
are used in experimental investigations.
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2.2.1. Experimental Investigation of Two-Sided Small Population Sampling Using Interrogator

The commercial interrogator Sylex S-line S-400 [32] was used in this study, having
the wavelength resolution of δsens = 0.08 nm. Because of slightly changing BFBG under
the influence of fluctuating noise, the sampling with M = 9 . . . 13 discrete values and BFBG∼= 0.8 nm was selected. Four FBG sensors (A, B, C, and D) were deployed within the
C-band. The experimental results for various detection thresholds are shown in Figure 5.
In addition, interfering spectra with ten times narrower FBG bandwidths (I to X) were
implemented to demonstrate the advantage of dynamic threshold adaptation. The variety
of detection conditions due to partial overlap of FBG power spectra, and their varying
density distribution were investigated. The calculation of threshold τ follows the procedure
as described in Section 2.1 and includes all the listed components. It respects the schematic
diagram shown in Figure 3. Sliding windows of size K = {8, 10, 12, 16, 24, 32, 40, 60} scan
individual cells (symmetrically on left and right). This enables a step-by-step calculation of
variables μK and σK within the C-band. Obtained results are shown in Figure 5.

Figure 5. Results of dynamic statistical threshold detection of the wideband (A, . . ., D) and narrow-
band (I, . . ., X) FBGs with different power levels, pFA ≈ 10−3 and K = 8 . . . 60.

Due to a rapidly rising or descending σK at FBG power spectra peaks edges, the
dynamic threshold “shakes”, especially when K = 8. In this case, the method is not
appropriate for denoising threshold detection. However, the results for K = 10 or K = 12
indicate already adapted threshold τ to the additive mixture of signals and fluctuated
background noise (see Equation (1)). Despite “shaky” thresholds also being seen here, they
are ~0.5 to 1.5 dB, respectively, above the background noise, and therefore, the statistical
detection of FBG power spectra peak levels becomes more reliable. A further increase in
K over M results in “shakeless” and increased τ values, thus yielding a safer detection of
FBG power spectra. Therefore, the recommended setting is K ∼= M.

2.2.2. Experimental Investigation of Two-Sided Small Population Sampling Using
Table-Top Analyzer

The analyzer AQ6370C [33] is used to process the transmitted power spectra with an
oversampled wavelength resolution of δsens = 0.0035 nm. Here, the sampling is conducted
with discrete values of M = 90 . . . 120 and BFBG ∼= 0.8 nm. Within the C-band, four FBG
sensors (A, B, C, and D) in the C-band are used. The results of various detection threshold
scenarios are shown in Figure 6. Here, the attenuation of the optical fiber was assumed
−35 dB with the highly fluctuated background noise (σK N0 ∼= 4.3 dB) and input power of
SNRin

∼= 8.5 dB. Despite these unfavorable conditions, the detectability and adaptability of
τ are improved, compared to the previous case study.
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Figure 6. Results of dynamic statistical threshold detection of the wideband FBGs with different
power levels, pFA ≈ 10−3 and K = 8 . . . 60: (a) for (A, . . ., D) FBGs; (b) detailed view for B FBG;
(c) detailed view for C and D FBGs.

As in the previous case study described in Section 2.2.1, thresholds for τ are also
“shaky” for the same reasons. However, for M = 90 . . . 120 and K = 8 . . . 60, the results ob-
tained are significantly better despite those unfavorable detection conditions. Surprisingly,
even for K = 12 or K = 16, the threshold detection results are acceptable and are comparable
to the previous results in Section 2.2.1 for K ∼= M.

In Figure 6, a sudden/significant drop in the threshold values τ in the close proximity
of the FBG power spectra peaks can be noted. The deeper the drop of threshold values
(especially when K is much less than M), the higher the difference, which helps to improve
the SNR. These value differences are illustrated in Figure 7.

Figure 7. Illustration of value differences of the wideband (A, . . ., D) FBGs when K = 10 . . . 60:
(a) pFA ≈ 10−3; (b) pFA ≈ 10−4.
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In Figure 7a, pFA ≈ 10−3 and K = 10 . . . 32, a random low-level false detection occurred
for power levels below 1.5 dB and the detected FBG power level spectra approaching 5 dB.

When pFA ≈ 10−4 (case Figure 7b), all thresholds rise to their higher level. As
a consequence, no false detections were observed for any K-size. This maintained the
reliable detection of the FBG power spectra peak levels without false detections. However,
the highest level of K = 60 (the strictest threshold) causes a decrease in those values above
the threshold.

2.3. Threshold Behavior Analysis and Discussion

In this subsection, a mathematical analysis of the threshold calculation is presented
and implications for the detection of the FBG power spectra peaks are derived.

Let us first analyze the parameterization of the 3rd component of Equation (1). We
assume a typical FBG power attenuation ranging in the interval (Emax . . . Emin) = 20 dB and
a typical maximum value of pFA ≤ 10−3. As a result, the 3rd component in Equation (1)
ranges from −1.45 to −2.8 dB for the population sampling K = 4 . . . 60, and assuming 1
guard cell adjacent to the CUT in each of the sub-windows:

−Emax−Emin
ln 1

pFA

K−G
K = |Emax−Emin |

ln 1
pFA

K−G
K = 20

ln 1
0.001

K−G
K =

= 20
−6.90776

K−G
K = −2.895 K−G

K = −2.895

⎧⎪⎨⎪⎩
4−2

4 = 0.5
...

60−2
60 = 0.96

=

⎧⎪⎨⎪⎩
−1.4476

...
−2.7985

(dB).
(2)

If K = 60, the 3rd component parametrization is equal to −2.8 and will cause a reduced
threshold τ. On the contrary, for K = 4, the 3rd component parametrization is equal to
−1.45 and will cause an increased τ, see Equation (1). This property can be used to set the
value of τ which will be used later.

Next, the 4th component in Equation (1) will be analyzed in the presence of background
noise only ((N0 + ES)k = N0k). Here, the K value affects the threshold calculation through
changes of statistical characteristics of μK and σK as follows:

μK =
1
K

K

∑
i=1

xi = N0 =
K

∑
i=1

xi

⎧⎪⎨⎪⎩
1

30−2 = 1
28 = 0.0357

...
1

60−2 = 1
58 = 0.0172

(dB) , (3)

σK =

√√√√√ K
∑

i=1
(xi − μK)

2

K − 1
=

√
K
∑

i=1
(xi − μK)

2

√
K − 1

=

√√√√ K

∑
i=1

(xi − μK)
2

⎧⎪⎪⎨⎪⎪⎩
1√

30−2
= 0.189
...

1√
60−2

= 0.131

(dB) . (4)

Finally, the total contribution of the 4th component to the threshold calculation of Equation
(1) without the occurrence of FBG power spectra peak is:

μKσK =
K

∑
i=1

xi

√√√√ K

∑
i=1

(xi − μK)
2

⎧⎪⎨⎪⎩
0.0357·0.189 = 0.006747

...
0.0172·0.131 = 0.002253

(dB). (5)

From the above, it can be shown that an approximately 3-fold increase in the contribution
of the 4th component (from 0.002253 in the case of K = 60 to 0.006747 in the case of K = 30,
respectively) can be achieved, thus contributing to the threshold level increases.

Let’s now analyze the μK-parameterization of (N0 + ES)k in Equation (1) when the
approximately Gaussian-shaped FBG power spectra peak overlaps with the sliding window.
Using the example from Section 2.2.1, and using K = M/2 ∼= 60, the mean values keep
increasing from the lowest to the highest values just in 30 wavelength steps. At the 60th step,
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where CUTk contains the FBG power spectra peak maxima, the two-sided sampling reaches
the value μK=60 ∼= 2 · 0.25 · (Emax . . . Emin) above the N0 noise level, see Figure 8a. When the
sliding window touches the falling edge of the FBG power spectra peak and starts to leave it,
the mean value μK starts decreasing. However, for M/2 ∼= 60 and K = 30, the behavior of the
mean values will remain mostly unchanged. To be noted, for the 60th step, the shorter the
sliding window, the higher the mean value μK. When K = 10, μK=10 ∼= 0.707 · (Emax . . . Emin).

Figure 8. Statistical characteristics of the additive mixture of the (A, . . ., D) FBGs signal and back-
ground noise within sliding windows when K = 10 . . . 60: (a) mean values μK; (b) standard deviation
values σK.

Now we analyze the σK-parameterization of (N0 + ES)k in Equation (1) when the
approximately Gaussian shaped FBG power spectra peak overlaps with the sliding window.
This is shown in Figure 8b. For K = M/2 ∼= 60, the standard deviation values achieve the
highest values in the ~30th and ~90th steps. Here, the square root multiplier in Equation (4)
achieves the widest span of input values. It is worth noting that the σK-parametrization
on the leading and falling edges can reach similar effects as the μK-parametrization. This
depends on the steepness of the edges. When the sampling window slides from the
30th to the 90th step, the σK value drops. For M ∼= 60 and K = 30, the behavior of the
standard deviation values will be similar to the case of K = M/2 ∼= 60. To be noted, the
longer the sliding window, the larger the standard deviation σK. This is the origin of
threshold adaptability.

Finally, a comparison of the magnitudes μK and σK in Figure 8 shows the difficulty
of meeting the three-sigma rule (known also as the 68-95-99.7 rule) that is used to verify
the normality of population sampling. This rule is also used for percentage quantification
of reliability of population sampling from selected values (here, the selection of cells
in the two-sided sliding window) in the following way. If ~68% of these values are
from the interval (μ ± 1σ), ~95% from the interval (μ ± 2σ), and 99.7% from the interval
(μ ± 3σ), respectively, a randomly selected sample can be considered the Gaussian normal
distribution. As an example, we analyze one of the measured FBG spectral peaks measured
by the table-top analyzer (see Section 2.2.2). Here, the FBG B maxima of μK values spanning
from −70.3659 to −69.3485 dB (depending on K-size) is reached for λFBG = 1547.25 nm
(see Figure 7a). This corresponds to values of σK spanning from 0.08286 to 1.01195 dB (see
Figure 7b). Based on the three-sigma rule, 99.7% of the values should have been within
the interval (−69.3485 ± 3 · 0.08286) = (−69.5971 . . . −69.0999) dB for two-sided K = 10 but
is not. As shown in Figure 6, the values inside the sliding window are from the interval
(−69.308 . . . −68.734) dB. Similarly, the three-sigma rule is not fulfilled for two-sided K = 60
because the values span in interval (−78.688 . . . −68.734) dB, which is out of the required
interval (−70.3959 ± 3 · 1.01195) = (−73.43175 . . . −67.36) dB, see Figure 6. The same
applies to the other K-sizes and μ and σ values of other wavelengths. However, it needs to
be noted that in cases for K = 10 . . . 16, the three-sigma rule is less broken compared to cases
for K = 40 . . . 60. In spite of this, the use of two-sided small population sampling is reliable
for successful statistical threshold detection. This is illustrated by results in Figures 5–7.
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3. Statistical Thresholding Using One-Sided Small Population Sampling

In this section, we study and analyze the impact of the population sampling using one (left)
sided window having an asymmetrical K/2-size, see Figure 9.

Figure 9. Concept of the statistical threshold detector of FBG power spectra peaks level with
an asymmetric one-sided K/2-size sliding window.

3.1. Statistical Threshold Calculation

The calculation of the statistical threshold τ uses the mean μK/2 values and the standard
deviation σK/2 values obtained from the fixed number of K/2-cells contained in the left
sub-window. Please note that the sliding window is asymmetrically located, in this case
sitting on the left side, see Figure 9. This reduces the computation complexity by excluding
the right-side sub-window from population sampling. In the next step, we will investigate
the impact of this approach on the quality of the threshold detection results. Since the shape
of the reflected FBG power spectra is typically a symmetric Gaussian function, we need to
learn if in this approach the μK/2, σK/2, and τ would differ from the two-sided μK and σK/2,
respectively. Similar to Section 2.1, the calculation of the threshold τ will use Equation (1).

3.2. Experimental Demonstration and Results

To compare the effect of halving the population sampling, the same considerations,
instrumentation, and conditions are applied in the experimental investigation as in the
previous Section 2.2.

3.2.1. Experimental Investigation of One-Sided Small Population Sampling Using Interrogator

Here, as described in Section 2.2.1, the same commercial interrogator and the same
deployment scenario of four FBG sensors A, B, C, and D along the C-band with M = 9 . . . 13,
interfered by narrowband FBGs I . . . X, was used.

Results are shown in Figure 10 indicating various threshold detection. As the sliding
window approaches individual FBG power spectra levels (Note: sliding window shifts
from lower to higher wavelengths), the thresholds keep increasing very slowly. This is due
to a weak mean value of μK/2. Please compare the results in Figure 5 and the discussed effect
of μK in Section 2.3. After passing through the FBG power spectra peaks, the threshold
behavior stabilizes. This is similar to the behavior shown in Figure 5. However, the cell
reduction from K to K/2 noticeably causes higher fluctuations of σK/2 thus calculated τ,
especially when K/2 < M. Therefore, this scenario is not recommended for system operation.
On the other hand, thresholds τ for K/2 = 8 . . . 16 ∼= M adapt very well to the signal/noise
behavior. For further increases in K/2, when K/2 > M, threshold τ rises accordingly, which
may lead to the power loss related to the right side of the FBG power spectra. In summary
of the above, it is recommended to use K/2 ∼= M.
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Figure 10. Results of dynamic statistical threshold detection (a) of the wideband (A, . . ., D) and
narrowband (I, . . ., X) FBGs with different power levels, pFA ≈ 10−3 and K/2 = 4 . . . 30; (b) detailed
view for A, I and II FBGs; (c) detailed view for C, IX and X FBGs.

3.2.2. Experimental Investigation of One-Sided Small Population Sampling Using
Table-Top Analyzer

The same table-top analyzer was used to process the transmitted power spectra of
four deployed FBG sensors within the optical fiber C-band using values M = 90 . . . 120.
The experimental results of various detection thresholds τ are shown in Figure 11.

Figure 11. Results of dynamic statistical threshold detection of the wideband FBGs with different
power levels, pFA ≈ 10−3 and K/2 = 4 . . . 30 (a) for (A, . . ., D) FBGs; (b) detailed view for B FBG;
(c) detailed view for C and D FBGs.
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It can be noted again that the thresholds “shake”, here slightly more than in the case
illustrated in Section 2.2.2. This is due to the smaller mean μK/2 values compared to “shaky”
μK values. As the sliding window approaches FBG power spectra peaks, the threshold
values increase slowly and better adapt to FBG power spectra levels with background
noise. After passing the FBG power spectra peak maxima, the behavior of the threshold
levels stabilizes similarly to those in Figure 6. A greater “shaking” was observed for
K/2 = 4 . . . 6 << M. This causes rising in false detection. For K/2 = 8 . . . 16 (smaller than M),
the detection results are acceptable and comparable to the investigation in Section 2.2.2
with K = 12 or K = 16 when K = M. The previously observed phenomenon of dropping τ
values in the vicinity of FBG power spectra peaks appeared also here and again helped to
improve the SNR, see Figure 12.

Figure 12. Illustration of value differences of the wideband (A, . . ., D) FBGs when K/2 = 8 . . . 30:
(a) pFA ≈ 10−3; (b) pFA ≈ 10−4.

The detected power levels of the 4 FBGs by using one-sided sliding windows for
K/2 = 5 . . . 30 are shown in Figure 12. In cases when K/2 = 5 or K/2 = 6, thresholds are “shaky”
thus the threshold detection is not reliable, leading to increased false detections. In contrast
to Figure 7, all FBG power spectra are tilted and sharpened. This is an artifact caused by
one-sided population sampling. When pFA ≈ 10−3 (see Figure 12a), false detections are
noted at levels below 1 dB when K/2 = 8. No false detections occur for K/2 > 8. Contrary
to the results shown in Figure 7, here the detected power levels of the FBG power spectra
are slightly higher, thus the one-sided population sampling performs better than using
two-sided population sampling in Section 2.2.2.

When pFA ≈ 10−4, shown in Figure 12b, all threshold levels are increased. Therefore, no
false detections are noted when K/2 = 8 . . . 30. Here, the large fluctuation of the background
noise resulted in the “shaky” threshold behavior. Similar to the situation in Figure 12a,
the K/2 = 12 . . . 30 values allow maintaining the FBG power spectra levels at the reliable
detection level thus without false detections. However, in contrast to Figure 7, there is
no loss in the FBG power spectra detection when K/2 = 60.

3.3. Threshold Behavior Analysis and Discussion

In this subsection, a brief analysis of the threshold calculation and behavior is given.
Let’s analyze the parameterization of the 3rd component of Equation (1). Considering

the same conditions as in Section 2.3, but half K to K/2 = 2 . . . 30, Equation (2) will be
as follows:

−Emax − Emin

ln 1
pFA

K/2 − G
K/2

=
20

ln 1
0.001

K/2 − G
K/2

= 2.895

⎧⎪⎨⎪⎩
2−1

2 = 0.5
...

30−1
30 = 0.96

=

⎧⎪⎨⎪⎩
−1.4476

...
−2.7985

(dB).

(6)
The solutions of Equations (2) and (6) in terms of K is a value equal to K/2 that is identical
for both one-sided and two-sided population sampling.
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Let us now analyze the parameterization of the last component of Equation (1) with
the presence of the background noise only, (N0 + ES)k = N0k. Here, the K/2 value affects the
threshold calculation through changes of statistical characteristics of the μK/2 and σK/2:

μK/2 =
1

K/2

K/2

∑
1=1

xi = N0 =
K/2

∑
1=1

xi

⎧⎪⎨⎪⎩
1

15−1 = 1
14 = 0.0714

...
1

30−1 = 1
29 = 0.0344

(dB) , (7)

σK/2 =

√√√√√K/2
∑

i=1
(xi − μK/2)

2

K/2 − 1
=

√√√√K/2

∑
i=1

(xi − μK)
2

⎧⎪⎪⎨⎪⎪⎩
1√

15−1
= 0.267
...

1√
30−1

= 0.186

(dB) (8)

Here, the numerical values of μK/2 found in Equation (7) are half of the μK values found in
Equation (3). Because the number of the selected values xi is also halved, then μK/2

∼= μK
in cases of uniform statistical distribution. The numerical values of σK/2 found from
Equation (7) differ from σK given by Equation (4). In summary, due to computational
demands, the selection of K/2 over K is preferable but is governed by the availability of
a number of cells with required properties.

Based on Equation (7), we have also analyzed the μK/2-parameterization of (N0 + ES)k
in the case of when the leading edge of FBG power spectra overlaps with the sliding window.
This is shown in Figure 13a in the case of small population sampling when K/2 = 4 . . . 30.
The increase of the mean μK/2 values is similar to the case of μK when K = 8 . . . 32 (see
Figure 8a). Overall, the behavior of the mean of μK/2 values related to any FBG power
spectra in the presence of noise is nearly identical, except when K = 32 . . . 60 where μK is
slightly lower, see Figure 8, and σK fluctuates massively.

Figure 13. Calculated statistical characteristics of the (A, . . ., D) FBG power spectra levels plus
background noise within sliding windows when K/2 = 4 . . . 30: (a) mean values μK; (b) standard
deviation values σK.

Based on Equation (8), we then analyzed the σK/2-parameterization of (N0 + ES)k in
the case when the leading and falling edges of FBG power spectra are part of the sliding
window. For K/2 << M or K/2 < M, the standard deviation exhibits two local maxima in
close proximity to the FBG power spectra peak, see Figure 13b. It can be seen that the
σK/2 value drops in between the two σK/2 maxima. The smaller the population sampling,
the deeper the drop of σK/2. When comparing σK/2 in Figure 13b to σK in Figure 8b, due
to smaller population sampling, the σK/2 maxima values are smaller. The left one-sided
population sampling causes a higher rise of the left σK/2 maxima compared to the one on its
right. This obscures the threshold detection levels. From the above and Figures 10 and 11,
it can be concluded that the thresholds on the left side of the FBG power spectra peaks
are better adapted to the signal plus background noise levels. Therefore, the outcomes of
the “K/2 approach” described in Section 3 are superior to those “K approach” described in
Section 2.
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Finally, a comparison of the magnitudes of μK and σK in Figure 13 indicates that the
three-sigma rule has not been met. Figure 14 reflects an in-depth analysis of the non-
fulfillment of the three-sigma rule. It is based on 8750 measurement points taken within the
optical fiber C-band. The results obtained for different sizes of K from 4 to 60 are shown for
two-sided (blue line) and one-sided (magenta line) sliding windows, respectively. It can be
seen that the three-sigma rule is better fulfilled for sliding window K = 11, . . ., 16 (when
compared to the rest of the cases). Near plateau response has been observed for both plotted
dependencies when K was between 22 and 60 leading to 45 to 56 cases of the three-sigma
rule violations. The local minima of both dependencies can be seen around K = 12 (11 to 16
is acceptable). In a given additive mixture of the FBG power spectra signal and background
noise, those values are considered as optimal and, therefore, recommended for denoising
and threshold detection. It can also be concluded that, despite the fact that the three-sigma
rule is not fulfilled, the detection using one-sided small population sampling would also be
reliable. This can be confirmed by examining Figures 5–7 and 10–12.

Figure 14. Number of three-sigma rule non-fulfilling occurrences for the mixture of the FBG power
spectra and background noise for K = 4, . . ., 60 when using a two-sided (blue line)/one-sided
(magenta line) sliding window, respectively.

4. Conclusions

In our recent [23] digital sliding window denoising technique, a number of discrete
power spectral population samples were processed. In order to increase computational
efficiency, it is possible in some cases to reduce population sampling while maintaining
the success of statistical detection. In this article, we focused on determining the small
population sampling for sufficient detection of fiber Bragg gratings power spectra in
an optical fiber sensing system. For such statistical threshold detection, the highest allowed
number of false detections is set, which is based on the Bayesian principle.

In this article, the two-sided and one-sided statistical detectors have been introduced
with reduced population sampling. In addition to the explanation of the method and the
introduction of the main algorithms, a mathematical assessment of the impact of statisti-
cal characteristics, mean, and standard deviation, are presented for various population
sampling reductions. Next, reduced population sampling is applied using two common
instrumentations for fiber optic sensing: a commercial interrogator with standard wave-
length resolution and a laboratory analyzer with improved wavelength resolution. We
thereby confirmed the success of the statistical threshold detection under various condi-
tions of fluctuating background noise, signal-to-noise ratio, approaching the adjacent fiber
Bragg grating power spectra, and interferences by other signals. As from the demonstrated
examples, statistical characteristics’ impact on statistical threshold detection was deeply an-
alyzed for different false detection requirements. We have also shown that for the two-sided
K = 11 . . . 16 and for the one-sided K/2 = 5 . . . 8 population sampling the majority of cases
obey the three-sigma rule. As a result, in the case of a reduced number of samples (11 to 16),
the denoising and detection will benefit from implementing the two-sided sliding window.
Similarly, in the case of implementing the one-sided sliding window, using 5 to 12 samples
is recommended. For higher K values, where the three-sigma rule is only loosely fulfilled,
some decrease in the detected FBG power spectra will be observed.
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Abstract: Scene recognition is the task of identifying the environment shown in an image. Spectral
filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral
images is usually performed after demosaicing the raw image. Along with adding latency, this makes
the classification algorithm limited by the artifacts produced by the demosaicing process. This work
explores scene recognition performed on raw spectral filter array images using convolutional neural
networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral
filter array camera. The classification is performed using a model constructed based on the pretrained
Places-CNN. This model utilizes all nine channels of spectral information in the images. A label
mapping scheme is also applied to classify the new dataset. Experiments are conducted with different
pre-processing steps applied on the raw images and the results are compared. Higher-resolution
images are found to perform better even if they contain mosaic patterns.

Keywords: spectral filter array; scene recognition; convolutional neural networks

1. Introduction

Scene recognition is a challenging computer vision task that entails classifying an
image into various scene categories based on the present visual information [1]. In contrast
to object recognition, it requires modeling of the entire context in the image, including object
presence, spatial location, illumination condition, viewing angle, distance, and scale [1,2]. It
has applications in autonomous driving, robotics [3,4], video surveillance [5–7], augmented
reality [8], and image retrieval [9,10]. It is a difficult task for the machine due to the large
interclass similarities and intraclass variations present in different scene categories such as
book store, library, and archive, all having similar objects present in the image and having
similar layouts and ambient conditions [2].

In this work, the problem of scene recognition in raw spectral filter array (SFA) images
is investigated using convolutional neural networks (CNN). The goal is to assess the effec-
tiveness of using raw SFA images for this task. Usual spectral imaging acquisition setups
consist of either capturing images in different spectral bands by cycling through multiple
optical filters or by capturing the whole multispectral range using diffraction gratings,
but one line at a time. Both of these approaches have a limitation of high acquisition time
depending on the number of spectral bands or image size. They are also prone to artifacts
due to movement during acquisition. Spectral filter array (SFA) technology [11] solves
both of these problems by capturing the multispectral image in a single exposure at the
expense of spatial resolution. It is similar to the color filter array (CFA) in RGB cameras. It
is based on a single sensor overlayed with a Bayer-like pattern of different spectral filters
with different spectral sensitivities over each pixel. The number of spectral bands used
depends on the design of the SFA pattern. Demosaicing must be performed to reconstruct
the full-resolution multispectral image, lowering the spatial resolution compared to other
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spectral imaging methods. Demosaicing is an ill-posed problem, where interpolation is
required to reconstruct the missing intensity values for each pixel. It also introduces es-
timated values that might be incorrect, which requires extra processing to rectify. This
rectification process is scene-specific and requires identification of the targeted scene before-
hand. To avoid these problems, in this work, scene recognition is performed on SFA images
without demosaicing them. This speeds up the acquisition time even further because no
pre-processing step is applied, and this also enables exploitation of spectral bands for scene
classification. Furthermore, a large and diverse raw SFA dataset for scene recognition is
introduced, and finally CNN models are investigated to perform scene recognition in raw
SFA images.

One of the earliest works in scene recognition is by Szummer and Picard [12]. They
classified scene images into indoor or outdoor categories based on low-level image fea-
tures. They used the Ohta color space and multi-resolution simultaneous autoregressive
model [13] to represent color and texture information. They computed these features on
sub-blocks of the input image and then classified them; finally, they combined the classifi-
cation result from each sub-block to obtain a final prediction using the K-nearest neighbor
model. The approach was tested on a fairly small dataset of 1300 images and only for
binary classification. Oliva and Torralba [14] proposed the Spatial Envelope representation
for general scene classification. It is a global feature representation of the scene image.
It describes a scene using five perceptual properties: naturalness, openness, roughness,
ruggedness, and expansion. The classification prediction is performed using K-nearest
neighbors. The authors also assembled a large dataset consisting of 8100 images over
4000 categories of natural scenes and 3500 categories of urban scenes. The Spatial Envelope
representation does not consider local object information, making it sensitive to occlusions
and spatial variations [1]. To overcome this, the Bag-of-Visual-Words (BoVW) framework
was introduced in which local feature descriptors are extracted from the image. Then,
the feature descriptors are quantified in terms of visual words. The image can now be
classified on the basis of the frequency of occurrence of these visual words. Fei-Fei and
Perona [15] proposed an approach where the scene image is first represented as a bag
of codewords, then a probabilistic Bayesian hierarchical model is learned for each class.
The model can learn to categorize the local regions of the image in an unsupervised way. It
requires only the ground truth categories of the images for training. The model showed
limitations in classifying complex indoor scenes because the BoVW approach does not take
into account the spatial relationship of local features. To improve on this, Lazebnik et al. [16]
proposed Spatial Pyramids. They repeatedly subdivided the image and computed the
histogram of the local image features over the subregions. This hierarchical multiscale
representation is a generalized form of the BoVW framework capturing spatial information.
However, it is not invariant to geometric variation.

The recognition of outdoor scenes is easier than the recognition of indoor scenes.
Indoor scene recognition is more difficult because of high inter-class variability present
in the images, such as images of library, archive, and book store look similar. Quattoni
and Torralba [17] tackled improving performance in indoor scene classification tasks. They
devised a prototype-based model that combines global and local discriminative features.
The model is based on the idea that images containing similar objects must have similar
labels and that the presence of some objects in a scene is more important than that of
others for determining the scene label. The authors created prototype images by annotating
discriminative regions of interest in those images. Then, spatial pyramids were used extract
features from query image, and the features were compared with the prototype regions of
interest for similarity.

Until recently, approaches to recognizing scenes have relied on handcrafted features
and classical machine learning models such as support vector machines [18] and K-nearest
neighbors. Krizhevsky et al. [19] demonstrated the feasibility and superior performance of
using deep convolutional neural networks (CNNs) in the large-scale image classification
task, ushering in a new era in computer vision. It allows for end-to-end learning of the
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classification task. The CNN model is composed of a set of convolution layers and then an-
other set of fully connected layers. The convolution layers extract features from the dataset,
while the fully connected layers perform the classification. The entire network is tasked
with minimizing the loss function using gradient descent, enabling it to automatically learn
to extract useful discriminative features and perform classification. Deep learning models
outperform classical methods by a large margin; however, they require large datasets and
more time for training.

Zhou et al. [20] used the CNN model for scene recognition and also introduced a new
large-scale scene recognition dataset called Places [21] with 10 million images. The Places-
CNN model achieved state-of-the-art performance on existing benchmark datasets and on
the new Places dataset. After this, many variants of deep learning models have been used
for scene recognition tasks, improving performance, and pushing the state of the art forward.
Some notable works include DAG-CNN [22], which uses a hierarchical CNN model to
improve the extraction of local feature and gradient flow, and GAP-CNN [23], which
replaces fully connected layers with global average pooling layers, biasing the model to
attend to class-specific regions of the scene and reduce the number of learnable parameters.

Most of the work in scene recognition uses RGB images. The performance of scene
recognition algorithms can be improved by exploiting additional spectral bands. Brown
and Süsstrunk [24] proposed an extension of the Scale-Invariant Feature Transform [25]
descriptor for multispectral images for scene recognition. Xiao et al. [26] extended the CEN-
TRIST [27] descriptor to use multispectral images for scene recognition by capturing joint
channel information from the RGB and NIR channels. Recently, Sevo and Avramović [28]
used the convolutional neural network (CNN) on multispectral images of scenes to predict
the scene label. However, in all of these works, one point to note is that the dataset consists
of images with only four channels, RGB+NIR. Additionally, Elezabi et al. [29] collected a
dataset of raw SFA images of textures to perform texture classification using CNNs and also
investigated the impact of different illumination and exposure variations on performance.

To the best of our knowledge, there is no dataset of raw spectral filter array images
of indoor and outdoor scenes. Also, to the best of our knowledge, there has been no prior
work solving task of scene recognition in raw SFA images using CNNs.

This paper is organized as follows. Section 2 covers the details of the novel raw SFA
dataset. Section 3 introduces our architecture to solve scene recognition in raw SFA images
based on CNNs. The results are presented in Section 4, and finally the conclusions are
presented in Section 5.

2. Dataset

A novel dataset consisting of raw SFA images of indoor and outdoor scenes was
collected, entitled CID:Places. The dataset was collected using the SILIOS CMS-C SFA
camera [30]. It captures nine bands ranging from 430 nm to 700 nm with a resolution of
1280 × 1024. Figure 1 shows the arrangement of the SFA pattern along with the spectral
bands of the sensor. The dataset is comprised of various indoor and outdoor scenes. All
images are 8-bit raw and mosaiced. Each image has a label indicating whether it is an
indoor or an outdoor scene, as well as the specific scene category. In total, it has 402 raw SFA
images, of which 201 are indoor scenes and the other 201 are outdoor scenes. It consists of
24 specific scene categories that are shown together with the number of images in Figure 2.
Figure 3a shows a random sample of outdoor images, and Figure 3b shows a random
sample of indoor images.

60



Sensors 2024, 24, 1961

Figure 1. Arrangement of spectral bands in SFA pattern of SILIOS CMS-C sensor as well as transmis-
sion and wavelengths of spectral bands of each filter. Reproduced from [29–31].

Figure 2. All scene categories and their sizes in our raw SFA scene recognition dataset. Blue color
means outdoor scene and orange color means indoor scene.

(a) (b)
Figure 3. Random sample of indoor and outdoor datasets. (a) Outdoor raw SFA images. (b) Indoor
raw SFA images.

The SILIOS CMS-C camera was mounted on a Joby GorillaPod 5K tripod. To capture
the scenes, a 12.5 mm lens with a widest aperture of f/1.3 was used. The camera was
connected to a Windows laptop with the IDS uEye Cockpit [32] program running. Two
people were needed to carry out the captures. One person framed the picture, monitored
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the histogram, modified the parameters, triggered the capture on the laptop, and the other
person held the camera setup. All images were captured in 8-bit sensor raw using the
uEye Cockpit 2023 software. It allows for live view of what the camera is seeing along
with the image histogram. It also performs live auto-exposure to properly expose the
images, although in some extreme lighting situations the lens aperture and focus were
manually adjusted.

In the dataset, the classroom category is the largest indoor class, and the smallest are
laundromat and staircase. On the other hand, parking lot is the largest outdoor class and soccer
field is the smallest. Very few images are found in the construction site, soccer field, laundromat,
staircase, and storage room classes due to the limited encounters with these scenes during
acquisition trips. The dataset was collected on and around a university campus.

Images of library, office, and restaurant classes were captured under varying lighting
conditions. These classes have high dynamic range conditions with daylight entering
through the windows, while the camera is exposed to the indoor light level. The dataset
also contains images captured at night in artificial lighting. Examples of these images are
shown in Figure 4.

Figure 4. Examples of similar scenes taken during day time and night time. Top row corresponds to
images taken at night under artificial lighting and bottom row corresponds to images taken during
the day time.

The category naming scheme of the Places dataset [21] was followed, with the bike
stand class being an exception, as it is not present in the Places dataset. This scheme was
chosen for its convenience in training Places-CNN with this dataset, given that Places is a
widely recognized large-scale scene recognition dataset.

3. Methodology

This section covers the details of the proposed method for classifying scenes in raw
SFA images. The proposed model is based on Places-CNN [20]. The model is not trained on
the raw SFA dataset; instead, the pretrained weights of the Places-CNN are used. For details
of the Places-CNN training methodology, we refer to [20]. Places-CNN is trained on RGB
images of the Places dataset [21] so it cannot be used readily with the raw SFA images,
which consist of one channel. We introduce a three-pathway network which accepts
three pseudo-RGB images, performs inference on each image independently, and finally
combines the Softmax probability scores. The three RGB images are obtained from the
9-band raw SFA image. This scheme enables full utilization of the spectral information.
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Considering the raw SFA to be a grayscale image reformulates the problem and shifts the
multispectral aspect to be implicit in the model. It also makes the model applicable to any
nine-channel multispectral camera. We selected three bands from the 3 × 3 filter array to
create a 3-channel pixel in the pseudo-RGB image. Figure 5 shows the selected bands that
form the pseudo-RGB pixels in each of the three pseudo-RGB images. These bands were
selected based on their wavelengths that correspond to the red, green, and blue colors in
the visible wavelength range. One exception is that the panchromatic band is assigned to
the B channel in the pseudo-RGB 3 image. It was assigned because it was left over after all
other bands were selected. Figure 6 shows an example of these three pseudo-RGB images.
These pseudo-RGB images have a resolution of 427 × 342, while the original raw SFA
is 1280 × 1024.

Figure 5. Selected bands that form pseudo-RGB pixel in each pseudo-RGB image.

(a) (b) (c)
Figure 6. Example Pseudo-RGB images. (a): Pseudo-RGB 1. (b): Pseudo-RGB 2. (c): Pseudo-RGB 3.

The proposed model illustrated in Figure 7 takes three input images with three chan-
nels, the inference on each image is performed independently by a pretrained 11 million
parameter Places-CNN network, and finally the prediction is calculated by combining the
softmax probabilities of all three networks and selecting the class with the highest score.
The Places-CNN architecture is a residual network with skip connections [33] consisting of

63



Sensors 2024, 24, 1961

18 residual layers. All three networks have shared weights and return a 365 length vector of
Softmax probabilities corresponding to each class of the Places dataset. The three resulting
probability vectors are summed element-wise and then divided by three to normalize back
to the 0 to 1 range. Then, this normalized vector is sorted in descending order, and the
highest scoring class is picked.

Figure 7. Proposed methodology with Three-Pathway Network.

The Places dataset on which Places-CNN is trained contains 365 fine-grained classes.
It includes specific classes such as apartment building, office building, hospital, etc. Our dataset
has 24 general classes, including those that do not exist in Places (bike stand). Therefore,
it encapsulates all buildings in the building class that does not exist in the Places dataset.
To solve this mismatch, a label mapping is performed before combining the scores. So, all
specific classes are replaced with general classes that exist inside our dataset, and their
scores are summed. All Places dataset labels are analyzed, and the visually and semantically
similar classes are mapped to the general class label in our dataset. Figure 8 shows all the
label mappings from the Places dataset labels to the labels of our dataset.
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Indoor vs. outdoor binary classification is also performed. The Places dataset assigns
an additional indoor/outdoor label to the scene class label. After inference, to predict
whether the image is of an indoor scene or an outdoor scene, the first 10 largest scores
and their corresponding classes are taken and a majority vote of indoor/outdoor labels
determines the resulting category.

Figure 8. Mapping of Places dataset labels to our raw SFA dataset (CID:Places) labels.

4. Results

In this section, experiments are performed to assess the effectiveness of using pre-
trained Places-CNN and the proposed three-pathway network for scene recognition in raw
SFA images. Accuracy and F1 scores are considered for both indoor vs. outdoor classifica-
tion and scene classification. Six models with different configurations are compared. Class
activation maps returned by Places-CNN are also examined to explain the judgments.
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The details of the configurations compared are as follows:

Config 1: Raw SFA image as input to Places-CNN. The raw SFA image is a single chan-
nel image with the mosaic patterns indicating the 9 bands. It is treated as a
grayscale image. The single channel is duplicated along the z-axis to obtain
a three-channel image. It is sent to the unmodified pretrained Places-CNN
for inference.

Config 2: Pseudo-RGB 1 image as Input to Places-CNN. The first pseudo-RGB image
constructed by selecting band 699 nm as R, 545 nm as G, and 425 nm as B as
shown in Figure 5 is sent as input to Places-CNN for inference and metrics
are computed.

Config 3: Pseudo-RGB 2 image as Input to Places-CNN. The second pseudo-RGB image
is used as input to the unmodified Places-CNN.

Config 4: Pseudo-RGB 3 image as Input to Places-CNN. The third pseudo-RGB image
is used as input.

Config 5: Grayscale image as Input to Places-CNN. The middle panchromatic channel
is taken and a three-channel grayscale image is produced by duplicating the
value three times along the z-axis. The size is similar to that of the pseudo-RGB
images, and the mosaic pattern seen in Configuration 1 is absent. Figure 9
shows an example grayscale image.

Config 6: Three Pseudo-RGB images as Input to Three-pathway Network. The pro-
posed method is as follows: three pseudo-RGBs are constructed and sent to the
three inputs of the three-pathway network to perform inference on each image
independently, and then the results are combined.

Figure 9. Example grayscale image.

Indoor vs. outdoor accuracies and F1 scores are presented in Table 1. All configurations
performed very well, achieving almost perfect accuracy. Configuration 1 where we input
the raw SFA image performed the best; we can see from Figure 10a that it made only
3 errors. Configuration 4 performed the worst; in Figure 10b, we can see that it incorrectly
predicted 14 outdoor scenes as indoor. Finally, Configuration 6, the proposed method,
misclassified 5 images as outdoor, as seen in Figure 10c. Overall, the performance of all
approaches is very similar.

The performance metrics for the scene recognition task are shown in Table 2. Config-
uration 1 has the best accuracy, while Configuration 6 has the highest F1 score. Since the
dataset for scene recognition is imbalanced, unlike for indoor vs. outdoor classification,
the F1 score is the more useful metric here. Figure 11 shows the confusion matrix for Con-
figuration 6 which is the proposed method. Confusion matrices for other configurations
are available in Appendix A. Overall, the performance is not good, with the best F1 score of
0.63 and an accuracy of 0.59, and there is a big difference compared to indoor vs. outdoor
classification performance.
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Table 1. Accuracy and F1 scores on the indoor vs. outdoor task. The red text indicates the highest values.

Configuration Accuracy F1 Score

1: Raw SFA 0.99 0.9901
2: Pseudo-RGB 1 0.9826 0.9829
3: Pseudo-RGB 2 0.9876 0.9877
4: Pseudo-RGB 3 0.9652 0.9663
5: Grayscale 0.9801 0.9804
6: Three-pathway 0.9876 0.9874

(a) (b) (c)
Figure 10. Confusion matrices of the indoor vs outdoor classification task. (a): Confusion matrix of
Configuration 1. (b): Confusion matrix of Configuration 4. (c): Confusion matrix of Configuration 6.

Table 2. Accuracy and F1 scores on the scene recognition task. The red text indicates the highest values.

Configuration Accuracy F1 Score

1: Raw SFA 0.5995 0.6313
2: Pseudo-RGB 1 0.5547 0.6202
3: Pseudo-RGB 2 0.5572 0.6193
4: Pseudo-RGB 3 0.5224 0.569
5: Grayscale 0.5697 0.6064
6: Three-pathway 0.5771 0.6354

The model struggles with classes that are related to each other. The parking lot is the
most misclassified category. It is confused with the building category. In the dataset, there
are many parking lots next to or in front of buildings. The parking lot is also confused with
the junkyard. Both categories contain images of cars parked in a line. Similarly, the office is
confused with the conference room, the restaurant with the classroom because both have
arranged tables and chairs, and the residential neighborhood with the building. The model
struggles to distinguish subtle details; for example, the junkyard has cars that are not in
good condition, or the restaurants usually have tablecloths and other decorations on the
tables while classrooms do not.

Two main reasons for the disparity in performance of both tasks is that the indoor vs.
outdoor classification decision is taken with a majority vote of the top 10 scores, while for
scene recognition only the top 1 score is considered. Configuration 6 performs better on the
more difficult scene recognition task, demonstrating a better bias–variance trade-off based
on the F1 score. This is because it combines the decision of three networks. Another reason
is that the model is not trained on our dataset, and thus the input is out of distribution
for it. Configuration 4 has the worst performance due to the panchromatic channel set
to the blue channel, resulting in the most color-incorrect image compared to the other
pseudo-RGB images.
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Figure 11. Confusion matrix of Configuration 6 on the scene recognition task.

Further analyzing the configurations, we generate class activation maps from the
model. The class activation map is a heat map that indicates which area of the image the
model found to be the most discriminating or helpful in its classification. We analyzed
class activation maps for two correct classifications and two incorrect classifications, one
for the indoor case and one for the outdoor case. Figure 12 shows the class activation
maps for an image of a building that was correctly classified by all configurations. All
configurations focus on the different parts of the building in the image, which explains their
correct predictions. A similar pattern is seen in Figure 13 where the models focus on the
display, the cubicles, and the bottom of the revolving chairs to correctly predict the image
belonging to the office class. Then, we considered misclassification cases. In Figure 14, the
image of the parking lot is misclassified as a building. The class activation maps indicate
that the models paid attention to the building in the background rather than the cars parked
in front. Finally, Figure 15 shows class activation heat maps of an image of an auditorium
incorrectly classified. The models focused on the top right of the image, where the staircase
and its railing are along with some tables. The misclassifications for this image were varied.
Configurations 1, 4 and 6 were classified as jail cell, Configurations 2 and 3 as bowling alley,
and Configuration 5 as staircase. The class activation maps did not explain the reason for
these predictions. Class activation maps provided some insight into the behavior of neural
networks but not the entire explanation. Neural networks remain difficult to explain.
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(a) (b) (c)

(d) (e) (f)
Figure 12. Class activation maps of a building image correctly classified by all configurations. (a) Con-
figuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4. (e) Configuration 5.
(f) Configuration 6.

(a) (b) (c)

(d) (e) (f)
Figure 13. Class activation maps of an office image correctly classified by all configurations. (a) Con-
figuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4. (e) Configuration 5.
(f) Configuration 6.

As mentioned earlier, the scene recognition prediction is based on the class with the
largest softmax score, while the indoor vs. outdoor classification considers the majority
class in the top 10 largest scoring labels. Increasing the top k scores used for the decision
improves performance. We considered the example of misclassification shown in Figure 14
where the model predicted the building class instead of parking lot. The image has the
building in the background, while the parking lot is in the foreground. This image can be
correctly classified as both building and parking lot.
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(a) (b) (c)

(d) (e) (f)
Figure 14. Class activation maps of a parking lot image incorrectly classified as building by all con-
figurations. (a) Configuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4.
(e) Configuration 5. (f) Configuration 6.

(a) (b) (c)

(d) (e) (f)
Figure 15. Class activation maps of an auditorium image incorrectly classified as jail cell by Con-
figurations 1, 4 and 6, as bowling alley by Configurations 2 and 3, as staircase by Configuration 5.
(a) Configuration 1. (b) Configuration 2. (c) Configuration 3. (d) Configuration 4. (e) Configuration 5.
(f) Configuration 6.

Table 3 presents the results in which the top k = 1, 2, 3, 5, and 10 scores were considered
and if the correct label was present, the image was marked as correctly classified. As the
considered top k scores increase, performance also increases. At the top k = 10, the same
level of performance is reached as the indoor vs. outdoor classification. For the top k = 10,
Configuration 1 is the best performing configuration, while Configuration 6 is the third best.
Figure 16 compares the improvements in accuracy and the F1 score as K increases. There is
an improvement of approximately 10% when increasing k by one. The improvement slows
to approximately 5% after the top k = 3 and higher. Converting the objective to multi-label
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classification improves performance. However, it is important to emphasize that this is not
needed if the model is trained on the dataset as the highest scoring category is most likely
to be the correct one. Reasons for not retraining the model are discussed in Section 5.

Table 3. Top K scene recognition accuracy and F1 score. If the label is present in the top k predictions,
then the classification is correct. The red text indicates the highest values.

Configuration Top K Accuracy F1 Score

1: Raw SFA

1 0.5995 0.6313
3 0.7761 0.8043
5 0.8408 0.8602
10 0.8955 0.909

2: Pseudo-RGB 1

1 0.5547 0.6202
3 0.7438 0.7897
5 0.8109 0.842
10 0.8731 0.8946

3: Pseudo-RGB 2

1 0.5572 0.6193
3 0.7562 0.7976
5 0.8159 0.8391
10 0.8607 0.8847

4: Pseudo-RGB 3

1 0.5224 0.569
3 0.7463 0.7785
5 0.8085 0.8328
10 0.8582 0.8763

5: Grayscale

1 0.5697 0.6064
3 0.7463 0.7735
5 0.8408 0.8614
10 0.8806 0.8958

6: Three-pathway

1 0.5771 0.6354
3 0.7711 0.8058
5 0.8433 0.8674
10 0.8706 0.8914

For scene recognition, Configuration 1 performs best overall. In Configuration 1,
the raw SFA image is duplicated along the z-axis to convert to three channels and input
to a pretrained Places-CNN model. The image has a resolution of 1280 × 1024 while
the image in all other configurations is smaller at 427 × 342. However, the image in
Configuration 1 has mosaic artifacts, whereas the images in other configurations do not.
Comparing Configuration 1 and Configuration 5, Configuration 1 still performs better.
In Configuration 5, the image is a grayscale image constructed from the panchromatic
channel duplicated along the z-axis three times. Both images are grayscale (Configuration 1
raw SFA is treated as grayscale), and the difference is in resolution and mosaic artifacts.
Table 4 shows the results when the resolution of the grayscale image (Configuration 5) is
increased from 427 × 342 to 1280 × 1024 and is compared with Configuration 1. It also
shows the result when the resolution of the images in Configuration 1 is decreased to match
the images in Configuration 5 (427 × 342). Increasing the resolution of Configuration 5
improves the results slightly, but does not match what is achieved by Configuration 1.
Decreasing the resolution of Configuration 1 decreases the results slightly, but not enough,
to match the metrics obtained by Configuration 5. More experimentation is required to
know why Configuration 1 which has mosaic artifacts works best. Increasing the resolution
of images in Configuration 5 improves performance, and decresing the resolution of images
in Configuration 1 degrades performance. Resizing images to a bigger size results in blurry
images as the process interpolates more pixels. So, if the images in Configuration 5 have a
native resolution of 1280 × 1024, they will be sharper and might match the better results of
simply using a raw SFA image. The model benefits from the higher resolution of the raw
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SFA image enough that the noise of mosaic pattern does not cause the performance to be
worse than the configurations where the images are smaller.

Further comparisons were made with the selection of other channels to construct a
grayscale image. Only one channel was selected from the nine bands and duplicated on
the z-axis to form a three-channel pixel. The results were similar and can be found in
Appendix B.

Configuration 6, which is the proposed model, surpassed Configuration 1 with raw
SFA at K = 1, 3, and 5. It was the best performing model at these values of K. The model
utilizes the raw SFA image by constructing three pseudo-RGB images and performing
inference independently. The results of the three forward passes were combined, and the
prediction was chosen. This introduced robustness and reduced noise in the predictions,
leading to better results.

Table 4. Comparison of scene recognition accuracy and F1 score of Configurations 1, 5, 1 resized to
427 × 342, and 5 resized to 1280 × 1024. The red text indicates the highest values.

Configuration K Acccuracy F1 Score

1: Raw SFA

1 0.5995 0.6313
3 0.7761 0.8043
5 0.8408 0.8602
10 0.8955 0.909

1: Raw SFA (resized to 427 × 342)

1 0.5945 0.6257
3 0.7711 0.7958
5 0.8408 0.8602
10 0.8955 0.909

5: Grayscale

1 0.5697 0.6064
3 0.7463 0.7735
5 0.8408 0.8614
10 0.8806 0.8958

5: Grayscale (resized to 1280 × 1024)

1 0.5697 0.6068
3 0.7488 0.7763
5 0.8458 0.8671
10 0.8781 0.8933

Figure 16. Cont.
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Figure 16. Top K accuracies and F1 scores for each configuration.

5. Conclusions

The aim of this work was to assess the effectiveness of using raw spectral filter array
imaging for scene recognition. To achieve this, a raw SFA scene dataset was acquired using
the SILIOS CMS-C spectral camera and labeled with indoor/outdoor class, as well as scene
class following the labels in the Places dataset.

The pretrained Places-CNN was used as the convolution neural network model for
scene recognition and indoor vs. outdoor classification. It was trained on the Places dataset
with 10 million images and 365 classes. Six configurations (type of input; Configuration 6
also has a different architecture) and variations were evaluated, one of which was a novel
architecture that utilized the individual bands of the spectral filter array by separating
them into individual images. All models achieved F1 scores above 90% on the indoor vs.
outdoor classification task. F1 scores were not good on the multi-class scene recognition
task with the proposed model achieving the best score of 63%. Further experiments were
carried out to improve performance on the scene recognition task by considering the top K
prediction scores for the decision. When K = 10, the scene recognition F1 scores reached
90% for all models.

Experiments were conducted to explain the good performance of Configuration 1.
In Configuration 1, the raw SFA image is treated as a grayscale image. The pixels are
duplicated along the z-axis to form a three-channel image because Places-CNN requires a
three-channel image as input. It retains all the spectral information in the image, albeit with
redundancy. The raw SFA image contains the mosaic pattern; however, it has the highest
resolution of all the other configurations. In Configuration 5, the middle panchromatic
channel is selected and duplicated over the z-axis to form a grayscale image. These two
Configurations are compared because there are visual similarities to explain the affect
of presence of mosaic pattern and resolution. It is found that higher resolution leads to
better predictions.

Places-CNN was used pretrained on the Places dataset. It was not trained on our
custom raw SFA dataset, that is why scene recognition performance was limited when
considering only the highest scoring label in the prediction. However, it was not below 50%
accuracy, indicating that due to its large-scale training it has the ability to extract relevant
features and discriminate them. Places-CNN was not fine-tuned on our dataset because our
dataset is highly imbalanced with some classes, such as the laundromat that contains only
one image. Fine-tuning on it results in high accuracies and overfitting. The dataset contains
402 images; more images need to be collected to make training a neural network viable.
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The pseudo-RGB images were constructed from the selection of the spectral bands
from the raw SFA image. More experimentation can be performed to optimize the selection
of the bands. Another comparison which was not conducted was with a demosaiced RGB
image of the same scenes.

In this work, the role of illuminations was not explored. Further investigation can
be carried out to determine whether correcting the illumination in the raw SFA captures
has an impact. Higher resolution was found to have a positive impact on performance
regardless of mosaic patterns. Further experiments can be conducted to explain this
behavior. The Places-CNN model was not trained on the raw SFA dataset. A logical next
step is to collect more data and fine-tune the model on it. Additionally, smaller architectures
can be explored, such as Mobilenet [34], to make deployment on edge devices possible for
real-time applications.
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Appendix A. Scene Recognition Confusion Matrices for Other Configs

Scene recognition task confusion matrices for Configurations 1, 2, 3, 4, and 5 are
presented in Figures A1–A5.
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Figure A1. Confusion matrix of Configuration 1 on the scene recognition task.

Figure A2. Confusion matrix of Configuration 2 on the scene recognition task.
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Figure A3. Confusion matrix of Configuration 3 on the scene recognition task.

Figure A4. Confusion matrix of Configuration 4 on the scene recognition task.
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Figure A5. Confusion matrix of Configuration 5 on the scene recognition task.

Appendix B. Quantitative Results with Grayscale Constructed by Selecting other Bands

Table A1. Comparison of scene recognition accuracy and F1 score for grayscale images constructed
by considering different spectral bands. K = 1 for configurations. Red text indicates the best value in
the column.

Configuration Acccuracy F1 Score

Grayscale (699 nm) 0.5597 0.5896
Grayscale (656 nm) 0.5572 0.5874
Grayscale (614 nm) 0.5572 0.5972
Grayscale (425 nm) 0.5746 0.6069
Grayscale (PAN) 0.5697 0.6064
Grayscale (573 nm) 0.5597 0.6015
Grayscale (465 nm) 0.5696 0.5976
Grayscale (505 nm) 0.5696 0.5989
Grayscale (545 nm) 0.5672 0.6089
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Abstract: Most existing multi-channel spectrometers are constructed by physically stacking single-
channel spectrometers, resulting in their large size, high weight, and limited number of chan-
nels. Therefore, their miniaturization is urgently needed. In this paper, a microlens array grating
is designed for miniature multi-channel spectrometers. A transmissive element integrating mi-
crolens arrays and gratings, the MLAG, enables simultaneous focusing and dispersion. Using soft
lithography, the MLAG was fabricated with a deviation of less than 2.2%. The dimensions are
10 mm × 10 mm × 4 mm with over 2000 available units. The MLAG spectrometer operates in the
400–700 nm wavelength range with a resolution of 6 nm. Additionally, the designed MLAG multi-
channel spectrometer is experimentally verified to have independently valid cells that can be used in
multichannel spectrometers. The wavelength position repeatability deviation of each cell is about
0.5 nm, and the repeatability of displacement measurements by the chromatic confocal sensor with
the designed MLAG multi-channel spectrometer is less than 0.5 μm.

Keywords: microlens array; grating; fabrication; PDMS; soft lithography; miniature multi-channel
spectrometer

1. Introduction

Spectrometers are used to obtain wavelength–light intensity relationships, which
have important applications in many research fields, such as the spectral characteristics
of different clinical conditions acquired by spectrometers including diagnosis of human
eye diseases, monitoring of multiple gaseous air pollutants, chromatic confocal micro-
scopes, and climate monitoring [1–5]. In recent years, spectrometer research has evolved
towards broad spectral ranges, miniaturization, and ease of installation [6–8]. Meanwhile
with the abundance of measurement scenarios, the demand for flat scanning and even
three-dimensional information measurements has increased dramatically, which requires
multi-channel spectrometers with multi-line processing capabilities, with requirements
for measurement efficiency and data processing speed [9–12]. Thus, some novel methods
for multi-spectrometers have been proposed in recent years, such as spectrometer arrays,
which can be used to obtain and analyze multi-channel signals [13–16].

There are already a number of proven and reliable commercial multi-channel spectrom-
eters available. The multi-channel spectrometer made by Ocean Optics has eight channels
that can detect wavelengths from 180 to 1100 nm with a resolution of 0.1 nm and which
weighs of 7 kg [17]. The multi-channel spectrometer made by HORIBA has 96 channels that
can detect wavelengths from 360 to 780 nm with a resolution of less than 3.5 nm [18]. The
dimensions and weights of these current products are too big and heavy due to the simple
combination of the multi-channel spectrometers. Therefore, some novel products, in which
the functions of focusing and dispersing are integrated into a small optical component,
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are proposed for the miniaturization of spectrometers [19,20]. The channel number is less
than 100, which could not meet the requirement of industry manufacturing. Moreover, the
multi-channel spectrometers here are constructed by physically stacking single-channel
spectrometers, resulting in their large size, high weight, and limited number of channels.
So, their miniaturization is urgently needed.

In existing research, there are several studies that propose some innovative multi-
channel spectrometers. Silke Traut et al. used photoresist and holography to fabricate
a composite structure with a microlens array on one side and a microlens array grating
on the other, whose resolution is more than 10 nm [21]. In Tadayuki Hirano’s research,
the structure is designed as a blazed grating-air gap-microlens array and is fabricated by
physical vapor deposition and electron beam direct writing. The element can resolve color
images but with a low resolution [22]. Jun Shi et al. fabricated a microlens array grating
structure by hot melting, self-assembly, and replication on the same surface. A resolution
of up to 6.9 nm in the wavelength range of 450 nm~650 nm was achieved [23]. However,
these fabrication methods require a high level of environmental cleanliness and materials.
The lack of cleanliness during the production process and the curing shrinkage effect of the
material can have a negative impact on the results [24,25].

In this paper, a microlens array grating (MLAG) structure [26–28], which has a mi-
crolens array on one side and a grating on the other side, was designed, fabricated, and
verified [29,30]. Soft lithography was employed to fabricate the MLAG with PDMS [31–36].
The surface form of the fabricated component was inspected by AFM for the fabrication
quality. The performance of the miniature multi-channel spectrometer with the fabricated
microlens array grating was verified by some experiments. Furthermore, the application of
this multi-channel spectrometer with the microlens array grating for the confocal sensor
array was introduced, which can be developed for line-scanning measurements and/or
confocal microscopy.

2. Theoretical Analysis

Conventionally, the lens and grating are employed in the spectrometer as two different
elements for focusing and dispersing, respectively [37,38]. In this paper, the lens and
grating are integrated into one component for the miniature spectrometer. As shown in
Figure 1, a structure with many microlenses arrayed on one side and a grating on another
side of the component surface, which is called microlens array grating, was designed for
the multi-channel spectrometer.

Figure 1. Schematic of a miniature multi-channel spectrometer with the microlens array grating.

2.1. Principle of the Microlens Array Grating

As shown in Figure 2a, a miniature multi-channel spectrometer can be realized since
only a single unit of the microlens array grating can have the function of focusing and
dispersing. A miniaturization of a conventional lens is employed as the microlens for
focusing. Considering the complexity of the process and the requirements of the array
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design, the focusing of the core unit of the spectrometer is realized with a spherical convex
lens, whose structure and main parameters are shown in Figure 2b, with fef as the effective
front focal length, feb is the effective back focal distance, Rc is the radius of curvature,
D is the lens diameter, and H is the unit thickness. A transmission grating, which can
periodically modulate the amplitude and phase of the incident light, is employed for
diffraction. The grating line density is 600 lines/mm.

Figure 2. Design of a single unit of the microlens array grating: (a) the schematic of a single unit of
the microlens array grating; (b) the principle of focusing and dispersing by the microlens grating.

2.2. Design of the Microlens Array Grating

Designing a microlens array grating (MLAG) spectrometer requires consideration
of performance and dimensional goals and ensuring manufacturing feasibility. Follow-
ing an analysis of research spectrometers, the target specifications were established as
follows: physical dimensions below 1 cm × 1 cm × 1 cm, a measurement spectral range
of 400–760 nm, and a resolution exceeding 10 nm. According to the fundamental imaging
principle, the object distance roughly equals half the size of the spectrometer. Initially, a
convex lens with an effective focal length (EFL) of 4 mm was selected to ensure an ap-
propriate size. The grating period was set at 600 lines/mm, favoring a smaller grating
period to achieve a larger diffraction angle and enhance optical performance. The preset
MLAG parameters included a microlens diameter of 220 μm, microlens focal length of
4 mm, grating line density of 600 lines/mm, and microlens grating thickness (H) of 4 mm.

By utilizing an MLAG as its core component, the spectrometer model can be estab-
lished with fiber optic arrays serving as the light source input and CMOS photodetectors
as the signal reception. Through careful parameter design, simultaneous parallel analysis
of various detection channels can be achieved, resulting in an array-type multi-channel
micro-spectrometer.

The resolution of the spectrometer is significantly influenced by the pupil diameter.
Theoretically, when the aperture diameter is excessively large, the image is magnified,
resulting in reduced resolution. Conversely, if the aperture diameter is too small, there is a
greater loss of available optical power, leading to reduced resolution as well. Therefore, after
careful consideration, a pupil diameter of 10 μm was selected for the spectrometer. When
light waves pass through the aperture, diffraction occurs. It is important to note that longer
wavelengths result in larger divergence angles. Hence, the maximum divergence angle
within the visible range (the maximum wavelength is 760 nm) is as shown in Equation (1)
where θ0 is the divergence angle, λ is wavelength D is entrance pupil diameter:

θ0 = 1.22
λ

D
(1)

And the maximum incident half-angle width allowed by the preset microlens parame-
ters is shown in Equation (2) where θ′0 is the maximum incident angle.

θ= θ′0 (2)
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As a consequence, the spot radius within this range will exceed the maximum limit
permissible for the microlens surface element. To mitigate optical power loss and minimize
the divergence angle of the light source, a three-piece objective lens set was implemented
between the entry pupil and the MLAG. This integration ensures that the exit angle remains
at or below 0.0125 rad.

2.3. The Simulation of the Designed Microlens Array Grating for the Miniature
Multi-Channel Spectrometer

The simulation was carried out using ZEMAX for testing the performance of the
spectrometer. For the spectrometer with the proposed microlens array grating, 11 groups of
22 wavelengths ranging from 400 nm to 700 nm were selected. Each group consisted of two
wavelengths with similar values. The resolution of the spectrometer could be evaluated
based on the relative positions of these two wavelengths in the image-plane spot.

A set of discrete sampling field-of-view points with different positions was established.
The simulated fiber core diameter was 105 μm, with seven sampling points at horizontal
positions (0, ±0.5 HFOV, ±0.707 HFOV, ±HFOV) and five sampling points at vertical
positions (0, ±0.707 HFOV, ±HFOV). Subsequently, the spectrometer system simulation
model was created using the lens data. The diffracted spectra from the MLAG, resulting
from the passage of light waves through the lens group, were observed to fall on the image
plane according to their respective wavelengths.

Table 1 presents the measured resolution of the MLAG spectrometer in each spectral
band. The results demonstrate that the system achieved excellent resolution in the 400 nm
to 700 nm band, with most positions achieving a resolution of 10 nm or less. In the lower
frequency bands, the system achieved an optimal resolution of up to 6 nm.

Table 1. Resolution of the spectrometer at different wavelengths.

Wavelength/nm Resolution/nm

400 13
450 12
470 11
550 9
600 9
625 7
650 6
675 8
700 9

This performance may not be as favorable compared to commercial spectrometers.
However, it is important to note that the primary focus of the MLAG spectrometer is
its size reduction and increased processing speed as a multi-channel, array-based minia-
ture spectrometer. Therefore, the loss of resolution is within an acceptable range given
these priorities.

3. Fabrication and Characterization

3.1. Fabrication Process

Soft lithography technology was chosen to fabricate microlens array gratings in a
“sandwich” style. The main body of the microlens array grating consists of an elastic
mold, while the grating and microlens array molds were used for printing on the two sides,
respectively. It is worth noting that the imprinting of the microlens array involved the use of
a negative mold, which was utilized to obtain the desired structure. The overall fabrication
process is illustrated in Figure 3. This technique does not rely on expensive lithography
equipment, and it enables the shaping of microstructures with nanometer resolution.
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Figure 3. Fabrication process of microlens array grating (MLAG).

Prior to the fabrication process, the imprinting mold was selected according to the
designed spectrometer unit. The microlens array was selected from the ML-S220-F4 lens
array produced by Shanghai Microlight Technology Co., Shanghai, China. The lens is a
square spherical mirror with a focal length of 4 mm, a subunit edge length of 220 μm, and
a subunit size of ϕ16 mm × 2 mm with a size of 12.7 mm × 12.7 mm × 6 mm.

In the first step, PDMS was chosen as the elastic mold material due to its low interfacial
separation energy (21.6 dyn/cm), chemical stability, thermal stability, homogeneity, isotropy,
and high replication accuracy. The PDMS used was the Sylgard 184 two-component
PDMS from Dow Corning, mixed in a ratio of 10:1 with the curing agent. The mixture
was thoroughly stirred, and any air bubbles were eliminated using a vacuum to achieve
transparency and readiness for use.

The primary replication process was designed to create a negative microlens array
mold, as shown in Figure 4a. Special molds were used to pre-mount the microlens arrays,
and a bubble-free PDMS mixture was poured slowly over the microlens arrays inside the
replica molds. The assembly was then placed in a vacuum-drying oven and baked at 80 ◦C
for 2 h to solidify the PDMS. The negative microlens array was obtained by demolding
the solidified PDMS. Since both the negative microlens array and the MLAG are made of
PDMS, they tend to adhere to each other. To prevent this, an anti-adhesive coating was
applied in Step 3.

Molecular vapor deposition (MVD) was used for the anti-adhesive treatment of the
negative microlens array. Two coating materials, Parylene C and Fluorine Nano, were
selected. Both coatings had a thickness of 400 nm, which corresponds to approximately 12%
of the microlens thickness of 3.32 μm. It can be assumed that the film layer has minimal
impact on the microlens morphology, size, and focusing effect. Subsequently, separate tests
were conducted on the MLAGs fabricated using the two different coatings.

After the negative microlens array was obtained, it and the grating could be used
as molds for “sandwich-type” MLAG fabrication, as shown in Figure 4b. The process is
similar to step 2, that is, the PDMS was poured into a special mold, the negative microlens
array with anti-stick coating and blazed grating fixed in the mold of the upper and lower
layers, and then the whole unit was placed in a vacuum oven, curing at 80 ◦C for 2 h. Then,
the mold was removed, cooled, and demolded to obtain an MLAG with dimensions of
10 mm × 10 mm × 4 mm containing more than 2000 spectrometer units.
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Figure 4. Soft lithography tools and results: (a) primary replication process; (b) inverted mold of the
microlens array; (c) secondary replication process; (d) both sides of microlens array grating.

Dedicated molds were used in both steps 2 and 4 in order to complete the alignment
and fabrication of the two micro-structured graphic planes, the two molds are shown in
Figure 4a,b, respectively, and the specific parameters are shown in Tables 2 and 3.

Table 2. Parameters of primary replication mold.

Parameter Upper Mold Bottom Mold

Side length 40 mm 40 mm

Thickness 5 mm 4 mm

Groove shape Circle Circle

Groove diameter 12.7 mm 16.2 mm

Groove depth 5 mm 2 mm

Positioning hole diameter 4 mm 3 mm

Table 3. Parameters of secondary replication mold.

Parameter Upper Mold Middle Mold Bottom Mold

Side length 40 mm 40 mm 40 mm

Thickness 4 mm 4 mm 10 mm

Groove shape Circle square Square

Groove diameter 16.2 mm 10 mm 13.7 mm

Groove depth 2 mm 4 mm 6 mm

Positioning hole diameter 3 mm 2 mm 2 mm

3.2. Characterization of Microlens Array Grating

The prepared samples were investigated for surface morphology of the grating and
microlens array using Bruker’s Innova AFM at A. The probe lightly touched the grating
surface, moving approximately 10 grating cycles away, and performed five scans on the
same plane. The obtained results were flattened, and a cross-section was taken perpen-
dicular to the grating lines to measure the cross-sectional characteristics of the grating
groove shape, which provided data on grating height and period curves. These results
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are illustrated in Figure 5a–c, with corresponding morphological parameters presented
in Table 4. Analysis of the test results indicates an average depth deviation of 2.2% and
an average width deviation of 0.1% compared to the pristine grating template, aligning
with expectations.

 

Figure 5. Characterization of the finished microlens array grating: (a) the standard grating sur-
face with its depth and period; (b) the grating surface with its depth and period with Parylene
is used as anti-adhesive coatings in the fabrication process; (c) the grating surface with its depth
and period when Fluorine Nano is used as anti-adhesive coatings in the fabrication process; (d) the
standard microlens surface; (e) the microlens when Parylene is used as anti-adhesive coatings in the
fabrication process; (f) the microlens when Fluorine Nano is used as anti-adhesive coatings in the
fabrication process.

Table 4. Grating surface morphology parameters.

Samples Grating in MLGA Grating

Width 8 cycles/μm 13.093 13.115
Average width/μm 1.637 1.639

Width deviation 0.10% -
Average depth/nm 183.4 187.5

Depth deviation 2.20% -
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The lens surface was also measured using AFM to obtain its morphological informa-
tion. The measurement results were flattened, and the surface’s radius of curvature was
fitted by selecting three random points on the surface. This process was repeated five times,
and the average values were calculated to obtain the microlens height curve and determine
its radius of curvature. Since the microlens surface is replicated using an inverted mold,
which is associated with the anti-adhesive coating, the manufactured products with two
different coatings, P (Parylene C) and F (Fluorine nano), were tested separately. The mea-
surement results are depicted in Figure 5d–f, with the microlens morphology parameters
presented in Table 5. The average radius of curvature for the microlens template was 1.768,
while the microlens made with the P coating and F coating had average radii of curvature
of 1.755 and 1.806, respectively. This represents a deviation of 0.7% for the former and
2.1% for the latter compared to the radius of curvature of the original microlens surface. It
is apparent that the samples prepared with the P coating exhibit better quality and were
therefore utilized in subsequent microlens–grating spectrometer experiments.

Table 5. Micro-lens surface morphology parameters.

Samples Micro-Lens in MLGA Micro-Lens

Coating material P F -

Curvature/mm−1 1/1.755 1/1.806 1/1.768

Deviation 0.70% 2.10% -

4. Verification

4.1. Characterization of Spectrometer (Calibration)

An optical setup is shown in Figure 6a. The experimental system consists of the
synthetic laser light source, three-piece objectives, CMOS detector (MV-CA060-10GC by
HIKVISON), and computer. Laser beams of wavelengths of 632.8 nm (red), 473 nm (blue),
and 405 nm (blue–violet) were combined and introduced to the fiber port. The light
emitted from the fiber optic port was dispersive. After reducing the dispersion angle by a
three-piece objective system, the light beam was focused and dispersed by the fabricated
component. Light was imaged and recorded on the CMOS detector surface. Finally, the
images were shown and analyzed by software on the computer. The image obtained by the
CMOS detector is shown in Figure 6b. Since the grating is a diffractive element, the light
spots appearing on the image are diffracted spots at various levels. The brightest spot is
zero level spot and the other three spots are the first level diffraction spots. The centers of
these spots are connected as the sampling axis. The light intensity on the sampling axis was
recorded and is shown in Figure 6b. The intensity of zero level spot was higher than the
intensity of the first level diffraction spot. According to the first level diffraction spots, the
light beams with different wavelengths were distributed at different positions and recorded
by pixels. The larger the wavelength is, the farther the center of the spot is from the zero-
level spot. The mass center method was used to obtain the position of the spot center of
first level diffraction spot. The real calculated method is shown in Equation (3) where PCM
is the focus pixel, Pn is the pixel number, I(Pn) is light intensity at pixel number Pn.

PCM =
∑ Pn · I(Pn)

∑ I(Pn)
(3)

Four surface elements were chosen at random and the images were recorded in order
to test the performance of different surface elements. The results are shown in Table 6. The
standard deviations of pixel positions were 0.81, 0.82, 0.95 for the different laser colors. The
good consistency of different spectrometer units was verified.
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Figure 6. Spectral analysis ability testing system and results: (a) schematic diagram of the miniature
spectrometer system; (b) results in a single microlens surface element.

Table 6. Results in a single microlens surface element.

No. 632.8 nm 473 nm 405 nm

1 773 541 458
2 772 541 457
3 771 542 456
4 772 540 456

Std (pixel) 0.81 0.82 0.95
Sta (nm) 0.48 0.64 0.81

Simulation (nm) Around 0.5

4.2. Application in Chromatic Confocal System

The feasibility of microlens array grating as the core component of the spectrometer
has been verified in the previous section. In this section, the performance of the microlens
array-grating spectrometer in a spectral confocal system is presented.
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In the optical signals containing position information acquired by the chromatic
confocal probe, the focused wavelength has the highest intensity, so it can be regarded
as monochromatic light. The resolution of the chromatic confocal sensor depends on the
wavelength resolution of the spectrometer to some extent.

As Figure 7a shows, the chromatic confocal sensor consists of the polychromatic light
source, dispersive objectives, fiber coupler, and the spectrometer. Microlens array grating
was used as the core element of the spectrometer in this system. In order to fit the small
numerical aperture of microlens array grating, a white laser source, which was synthesized
by three wavelengths, was used and compared with LED. The laser source has higher
energy to make sure the optical signal can be noted by CMOS after the energy loss caused
by the light path.

Figure 7. Application testing of microlens array grating spectrometer in spectral confocal mea-
surement system: (a) schematic of the chromatic confocal system; (b) picture of the chromatic
confocal system.

A z-stage was used to make the calibration experiments. Due to the principle of chro-
matic confocal sensors, different positions of samples correspond to different wavelengths
of reflected light. As shown in Figure 8, the images can be recorded by controlling the
z-stage. When the sample was in different positions, the color of the spot obtained was
different. The curve of the pixel–wavelength relationship can be obtained by calibration
according to the previous section. In the chromatic confocal system, there was a corre-
spondence between the sample position and the spot position in the whole system since
there is a functional relationship between the position and the focused wavelength. In
Figure 8a, the light spot positions of three measurements are P1, P2, and P3, respectively.
The displacement stage was controlled to reach the corresponding position after recording
the position of the z-stage and the pixel position at the center of the spot for each measure-
ment. Figure 8 shows the results of the experiments, which were carried out 20 times. The
standard deviations of pixel positions were 0.31, 0.15, and 0.13, respectively. In conclusion,
the spectrometer showed good stability in the chromatic confocal system.
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Figure 8. Experimental results: (a) optical signal detected by CMOS and its intensity (b) residual error.

5. Conclusions

A microlens array gating (MLAG), which has the functions of focusing and dispersion,
is proposed for the miniature multi-channel spectrometer. The single microlens with a bin
size of 0.22 mm and focal length of 4 mm was arrayed on one side of the component with
a dimension of 10 mm × 10 mm × 4 mm, namely, there are more than 2000 microlenses
on the surface. The other side of the component was a blazed grating with a density
of 600 lines/mm. The fabrication of the microlens array grating was achieved by soft
lithography, which consisted of four steps: PDMS preparation, primary replication process,
anti-adhesive treatment process, and secondary replication process. The quality of the
fabricated MLAG was confirmed through characterization using AFM microscopy. To
verify the performance of the developed miniature multi-channel spectrometer utilizing
the proposed MLAG, the centroid position repeatability of the diffractive light spot was
detected by the centroid method. The results demonstrate that the centroid position re-
peatability of the diffractive light spot was kept within 1 pixel, and the performance of
different microlens grating panels was consistent. The experiments involving spectral con-
focal measurement were carried out to verify the application of a miniature multi-channel
spectrometer with an MLAG. The results reveal that the repeatability of the spot centroid
position was within 0.5 pixels at the three typical positions within the corresponding 400 μm
measuring range, which is expected to bring a measurement resolution of 0.5 μm for the
spectral confocal system.
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Abstract: In this paper, a procedure for obtaining undistorted high derivatives (up to the eighth order)
of the optical absorption spectra of biomolecule pigments has been developed. To assess the effective-
ness of the procedure, the theoretical spectra of bacteriochlorophyll a, chlorophyll a, spheroidene,
and spheroidenone were simulated by fitting the experimental spectra using the differential evolution
algorithm. The experimental spectra were also approximated using sets of Gaussians to calculate the
model absorption spectra. Theoretical and model spectra can be differentiated without smoothing
(high-frequency noise filtering) to obtain high derivatives. Superimposition of the noise track on
the model spectra allows us to obtain test spectra similar to the experimental ones. Comparison of
the high derivatives of the model spectra with those of the test spectra allows us to find the optimal
parameters of the filter, the application of which leads to minimal differences between the high
derivatives of the model and test spectra. For all four studied pigments, it was shown that smoothing
the experimental spectra with optimal filters makes it possible to obtain the eighth derivatives of the
experimental spectra, which were close to the eighth derivatives of their theoretical spectra.

Keywords: chlorophyll; bacteriochlorophyll; carotenoid; gaussian decomposition; absorption spectrum;
multimode brownian oscillator model; differential evolution

1. Introduction

The use of derivatives to increase the spectral resolution was first proposed by Lord
Rutherford and was also initially applied in the work of his colleagues [1]. To date, more
than a thousand papers have been published in which the term “derivative spectroscopy”
is mentioned in the title. The theory and practice of derivative spectroscopy are covered in
detail in many books [2–4], reviews [5–11], and studies [7,12–20].

Mostly the first or the second derivatives are used, although in the software of modern
commercial spectrophotometers it is possible to obtain derivatives of spectra up to four
orders. The accuracy of recording spectra is limited by the noise characteristics of the
electronics of the spectrophotometers. In modern spectrophotometers, the amplitude of the
noise track is usually close to 0.0001 o.u. If, for instance, the long-wavelength absorption
peak of chlorophyll a (Chl) is about one optical unit, then the signal is 10,000 times greater
than the noise. However, a single differentiation of the spectrum decreases this ratio to
~100. With a twofold differentiation, the signal will be equal or so to the noise. Therefore,
more or less satisfactory spectrum derivatives are obtained only for the first derivative
(without smoothing).

In all cases, when it comes to derivatives above the first, different methods of filtering
(smoothing) the data are used in order to suppress high-frequency noise. Among the
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smoothing methods, the most commonly mentioned are adjacent averaging, the Savitsky–
Golay algorithm, FFT-filter, and others. Filtering (smoothing) the spectra makes it possible
to obtain a higher derivative, but at the same time this derivative turns out to be distorted—
the signal bands are broadened, their amplitude drops, and wavy parasitic bands appear.
It is easy to show the distortions of the derivatives due to filtering the spectra by modeling,
but it is not possible to take into account and correct the distortions. This is especially
true for high derivatives, for example, of the eighth order [21–24]. We have previously
used the eighth derivative to reveal the upper exciton band of the bacteriochlorophyll a
(BChl) dimer of the photosynthetic reaction center of purple bacteria [25]. In general, it is
difficult to formalize the procedure of filtering (smoothing) and differentiating to obtain
high derivatives [26].

If we ignore the formal side of obtaining derivative spectra, we can ask how the spectra
of polyatomic dye molecules (pigments, chromophores) and their derivatives should look
like, based on physical considerations. Molecular spectra in the near UV, visible, and near
IR regions consist of bands corresponding to electronic transitions. In addition to electronic
transitions, so-called phonon wings may be present in the spectrum. These bands are due
to the interaction of molecular vibrations with the electronic states. In most cases, the
contribution of rotational components is too small when pigments are studied in solvents,
and their traces are not detected on the spectra.

Ab initio simulations of absorption spectra of polyatomic dye molecules require sub-
stantial computational resources, and when it comes to the relatively fast simulation of
the obtained spectroscopy data, this type of simulation is not promising. The use of semi-
classical quantum theories describing the interaction of the electric field with matter can be
considered promising in this case [27,28]. The optical properties of photosynthetic pigments
such as chlorophylls, bacteriochlorophylls, and carotenoids, as well as the pigment–protein
complexes containing them, are the focus of intensive theoretical research [27,29,30]. The
basic concept of semi-classical calculations is the spectral density function, which carries
information about the vibronic structure of the molecule and about the intensity of interac-
tion of different vibrational modes with electronic excitation [28]. However, modeling with
semi-classical theories has one drawback, which is the need to adjust microparameters that
cannot be measured directly, and their values can only be estimated be fitting experimental
spectra. A successful solution to this problem was the application of a multiparametric op-
timization algorithm—differential evolution [31,32]. The development of quantum models
of the |S0〉 → |S2〉 electronic transition of carotenoids and the |S0〉 → ∣∣Qy

〉
transition of

chlorophylls and bacteriochlorophylls, as well as the fitting of experimental spectra, were
implemented by using differential evolution [33–35].

It is clear that even semi-classical calculations are time consuming, and it can be diffi-
cult to use them directly with spectrometric instruments. One of the possible simplifications
is to apply an approach when the optical spectra of dye molecules are approximated by a
set of bell-shaped Gaussian curves [12,14,23,36–38]. It must be stressed that from the point
of view of quantum theory, such presentation can be considered as a rough approximation.
Thus, the 0-0 electronic transition band of Chl (BChl) in solution at room temperature in the
frequency domain is described by a rather narrow Gaussian function of large amplitude.
The phonon wing components give a broad band of smaller amplitude lying towards
higher frequencies (higher energy). Doppler broadening and other interactions lead to
some deviation of the shape of the electronic transition band from Gaussian. Moreover, this
shape deviation can easily be taken into account by adding one more or, in extreme cases,
two Gaussian bands. Yet, more Gaussian bands are required to fit the electronic transition
of carotenoids than in the case of electronic transition of chlorophylls. Thus, we are faced
with the main problem of the decomposition into Gaussian bands: the approximation
of the spectrum by Gaussian curves is ambiguous and the success of the decomposition
depends on the correct initial choice of the position, width, and amplitude of each Gaussian
curve [19].
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Thus, the main goal of our work is to demonstrate that Gaussian decomposition of
experimental absorption spectra of photosynthetic pigments can be used a suitable approx-
imation of the shape of fitted spectra (for further calculation of high order undistorted
derivatives) instead of simulating the linear optical response within the framework of
semi-classical quantum theory. Moreover, taking into account the computational cost of
data processing, Gaussian decomposition is much faster than modeling the absorption
profile using semi-classical quantum theories; it can then be argued that this method of data
approximation can be used directly in spectroscopic devices (remote sensing) for on-the-fly
data processing (Figure 1).

Figure 1. General scheme of a spectrophotometric setup, data processing, and modeling. The light
source, sample cuvette, and detector, which are the essential elements of any spectrophotometer, allow
for measuring the optical properties of pigment molecules in solvents as a function of wavelength (A).
The measured spectra are subjected to the proper processing, in particular, signal smoothing is
performed, which is necessary for its further analysis and modeling (B).

2. Materials and Methods

2.1. Absorption Spectra of Photosynthetic Pigments

To perform the optical properties simulations, absorption spectra of Chl, BChl, spheroidene,
and spheroidenone were taken from the published studies [35,39]. All spectra were measured
at room temperature; Chl and BChl were diluted in dimethyl ether and taken in a range from
300 to 800 nm with a step of 1 nm, while spheroidene and spheroidenone were diluted in a
7/2 (v/v) acetone/methanol mixture and in a range from 450 to 550 nm (Figure 2).
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Figure 2. Experimentally measured absorption spectra of Chl (A), BChl (B), spheroidene (C), and
speroidenone (D) in solvents at room temperature.

2.2. Multimode Brownian Oscillators Model

The bands of different intensities and widths observed in the absorption spectrum of
an organic pigment in the visible wavelength range are the result of the transition from
one electronic state to another. Assuming that the molecule can be in the ground | g〉 and
excited | e〉 electronic states, it is then possible to simulate the absorption spectrum profile
using a semi-classical theory called the multimode Brownian oscillator model (Figure 3A).

Within the framework of the applied theory, the number of vibronic modes associated
with an electronic state is determined by the spectral density function (Figure 3B–D).
Moreover, it is assumed that these vibrations of the molecular skeleton interact with the
bath modes, which allows us to take into account the influence of the local surroundings.
Each vibronic mode is represented by three parameters, namely the frequency ωj, the
relaxation rate γj, and the Huang–Rhys factor Sj. Depending on the ratio between ωj and
γj, different types of nuclear motions can be represented. Sj is the effective interaction
energy of jth mode with the electronic state. The expression for the spectral density
function is

C′′ (ω) = ∑
j

2Sjω
3
j ωγj(

ω2
j − ω2

)2
+ ω2γ2

j

, (1)
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C′′ (ω) is a real function that is used to calculate the complex correlation function of
the electronic energy gap between | g〉 and | e〉 states [28]. The temperature dependent
correlation function is then written as

g(t) =
1

2π

∫ ∞

−∞
dω

1 − cos ωt
ω2 coth(β�ω/2)C′′ (ω)− i

2π

∫ ∞

−∞
dω

sin(ωt)− ωt
ω2 C′′ (ω), (2)

This function is also called the line-shape function and is used in the expression for
the absorption spectrum lineshape:

σabs(ω) =
1
π

Re
∫ ∞

0
dt ei(ω−Ωeg)te−g(t)e−

1
2 (Δt)2

, (3)

Figure 3. Theoretical modeling of the linear optical response of photosynthetic pigments within the
framework of multimode Brownian oscillator theory. A diagram of the electronic transition from
the ground | g〉 to the excited | e〉 state is shown in plot (A). Thick lines are the electronic states; thin
lines are the manifold of vibronic states of a pigment interacting with the electronic states. Ωge is the
electronic energy gap. σabs(ω) is an integral expression for the absorption spectrum depending on
the lineshape function g(t). The simulated spectra of the |S0〉 → ∣∣Qy

〉
transition of Chl (B) and the

|S0〉 → |S2〉 transition of shperoidene (C) and spheroidenone (D) are presented. Red lines are the
spectral densities of pigments; the linear absorption spectra are blue.
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Here, Ωeg is the 0-0 frequency of the electronic transition |g〉 → | e〉 . Δ = FWHM/2
√

2·ln2
is the inhomogeneous broadening parameter. The inhomogeneous broadening of absorption
is an effect due to the influence of the immediate surroundings on the electronic transition
of the pigment (the effect of the solvent). FWHM is the full width at the half maximum of
Gaussian distribution.

Thus, to simulate a realistic absorption spectrum according to (3), we need to optimize
the following parameters of the quantum model: Ωeg, FWHM, and

{
ωj, Sj, γj

}
, where

j ∈ [1, . . . , n], n is the number of vibronic modes specific for a pigment.

2.3. The Eighth Derivative Calculation Procedure

Original software was developed to process the experimental spectra. It allows us to
upload and download data files, visualize the spectra, as well as smooth the original data
and calculate derivatives of any order. The procedure of gaining high-order derivatives of
the pigment absorption spectrum using Gaussian decomposition involves several steps.
Considering the long-wavelength absorption band of chlorophyll a as an example, let us
explain the series of operations that was used in our calculations. Initially, the Chl spectrum
was measured in diethyl ether at room temperature in a range from 300 to 800 nm with a
step of 1 nm. Only the part of the spectrum from 600 to 800 nm (the so-called Qy band)
was taken for further processing (Figure 2A). This spectral region is used for Gaussian
decomposition. The main electronic peak of the Qy band is shifted to the center of the
figure to avoid edge effects during differentiation.

The input parameters of the procedure of approximation of absorption spectra by
Gaussians are the number of Gaussians, their intensities, the width at half maximum, and
the frequency shift. In general, the fitting can be optimized by using any multiparametric
optimization [19], but specifically for Chl and carotenoid spectra, acceptable results can be
obtained without optimization. It should be emphasized that the approximated spectrum
is a smooth curve, for which it is easy to obtain the derivative of any order. However, the
experimental absorption spectrum is an array of values measured to an accuracy ±0.0001 (if
the maximum of intensities is normalized to 1.0) or worse. When recorded on a spectropho-
tometer, this measurement error gives a “noise track”, the amplitude of which can vary
due to the different sensitivity of the instrument at different wavelengths (Figure 4A,B).

To simulate the effect of real measured data, a noise track taken on a spectropho-
tometer with an empty cuvette was used. This straightened noise array is added to the
model spectrum and the test spectrum is obtained (Figure 4A). The test spectrum and the
experimental spectrum contain approximately the same noise component. Therefore, the
test spectrum can be used to find the parameters of the best filter (Figure 4C,D). By applying
filtering (smoothing) and differentiation of the test spectrum, you can obtain, for example,
its eighth derivative. However, the exact form of this eighth derivative is already known
(this is the eighth derivative of the model spectrum). Comparing the eighth derivatives of
the test spectrum and the model spectrum, one can choose the filter parameters that give
the best match for these derivatives. This filter will be called the optimal filter. The use of
this optimal filter to obtain the eighth derivative of the experimental Chl spectrum should
ensure good agreement between the eighth derivatives of the experimental and theoretical
Chl spectra (Figure 4E,F).
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Figure 4. The noise line obtained on the spectrophotometer when registering without a cuvette in the
sample compartment; the red curve is a smoothed noise line (A). The straightened noise obtained
from the noise line by subtracting the smoothed noise line (B). Search for optimal FFT filter parameters
using Chl as an example. The workspace of Deriver602green program: (C)—processed spectrum,
(D)—the frequency representation of the spectrum (blue) and the filter curve (red). (E) Normalized
eighth derivatives of the test (green) and model (black) Chl spectra. (F) Normalized eighth derivatives
of the experimental (red) and theoretical (blue) Chl spectra.

3. Results

It is well known that the shape of absorption spectra of photosynthetic pigments is
determined by the intensity of the nuclear motions of molecular skeleton [28,37]. Applying
the multimode Brownian oscillator model, these types of motions can be taken into account
by evaluating the spectral density function [33,34]. In this study we will distinguish
between spectra calculated theoretically using spectral density and spectra obtained using
Gaussian decomposition.

Parameters of the multimode Brownian oscillator model for simulation of the theoretical
absorption spectra of Chl (Figure 3B) and BChl were taken from our previous studies [35,40].
Carotenoid spectra were simulated especially for this study (Figure 3C,D). Parameters of the
spectral density, the electronic energy gap, and the full width at half maximum are listed
in Table A1 in Appendix A. The time and frequency scales of simulated spectra contain
212 = 4096 points. This is due to the use of the fast Fourier transform to process the spectra,
which requires 2n point arrays. All the spectra were saved with an accuracy of 16 digits.
Numerical differentiation of such simulated data makes it possible to obtain derivatives up
to the eighth order without preliminary smoothing, namely without distortion. It has to be
stressed that the eighth derivative of the spectrum of any dye is the natural limit for a standard
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personal computer when using double precision. When calculating derivatives of a higher
order, there are problems related to the representation of numbers in the RAM of the computer.

Spectra obtained by Gaussian decomposition are much easier to simulate. Using
the procedures described in the previous section and applying our software, we can
approximate the experimental spectra with a high degree of fidelity (Figure 5A,C,E,J). The
key point is to find the optimal filter parameters. The use of test spectra for smoothing
allowed us to adjust the filter finely and we obtained the smallest discrepancies between
the spectrum of an ideal higher derivative (for example, of the eighth order) and the
corresponding model derivative.

G 

Figure 5. Experimental absorption spectra of Chl (A), BChl (C), (black curves) and its decomposition
into three Gaussian bands (red, green, and blue), as well as experimental spectra of spheroidene (E)
and spheroidenone (G) and its decomposition into five Gaussian bands. The resulting spectra, which
are the sum of Gaussians, are shown by the yellow dashed lines. Normalized eighth derivatives
of the pigment experimental spectra (red curves) and those of theoretical spectra (blue curves) are
shown on the graphs (B,D,F,H).
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To check that the proposed optimal filter parameter selection technique works, we
applied it to obtain the eighth derivatives of the experimental spectra of four photosynthetic
pigments for which the theoretical spectra were calculated (Chl, BChl, spheroidene, and
spheroidenone). The results are shown in Figure 5. It can be seen that the proposed
technique makes it possible to obtain high derivatives of the experimental spectrum, which
are quite close to the theoretical ones.

4. Discussion

Application of the Gaussian decomposition has a long tradition, particularly in astron-
omy [19,41,42]. The optical data obtained by astronomers are essentially different from
the spectroscopy of biological pigments and proteins. Astronomers measure and analyze
the intensities of atomic transitions, whereas the object of study for biophysicists is the
electronic transitions of multi-atomic organic molecules, complicated by the influence of
the immediate environment (solvents or proteins). Electronic transitions in atoms and
small inorganic molecules in space mostly have a Gaussian shape, therefore decomposition
into Gaussians, in addition to a trivial smoothing of spectral curves and noise removal,
allows astronomers to extract from the absorption and emission spectra parameters of
physical processes (for instance, the Doppler shift of frequencies, the full width at half
maximum) occurring in the interstellar space. The computational implementation of mod-
ern advances in artificial intelligence enables efficient automation of astronomical data
processing [13,19,43].

Unlike the spectra of astronomical objects, the spectra of biological pigments are much
more difficult to interpret. In general, the shape of their absorption profile is not Gaussian
and is determined by the integral expression (3). This expression can turn to the Gaussian
function only at a certain relation between the parameters of the theory, which are in
fact never fulfilled for organic pigments at room temperature [28,30,37]. Experimental
spectra of photosynthetic pigments are shown in Figure 2. It should be noted that the
Gaussian decomposition in the study of organic and photosynthetic pigments has its own
history [44–47]. However, in spite of the achieved success, one cannot but note the fact
that the parameters of Gaussians obtained after decomposition have no physical meaning
and do not reflect real physical processes occurring in pigments when absorbing light
quanta. On the other hand, the high derivatives of the Chl and BChl spectra in these
studies are characterized by a large number of narrow peaks, which were attributed to
the absorption bands of certain transitions, which in fact can be interpret as insufficient
filtering (smoothing) of the original spectra. Interestingly, in addition to decomposition
into Gaussians or Lorentzians, the Padé transform was used to estimate the shape of the
derivative spectrum, which, however, also excludes the possibility of physical interpretation
of the obtained data [48].

The absorption spectra of Chl and BChl in the range of 12,000–17,000 cm−1 (830–590 nm)
and carotenoids in the range of 18,000–26,000 cm−1 (560–380 nm) were not arbitrary chosen.
It is in these ranges that the absorption bands of strictly defined electronic transitions are
found. Thus, for this spectral region it is allowed to use the multimode Brownian oscillator
model, which will reproduce the true absorption profile with high accuracy. With the
help of the differential evolution algorithm, we have fitted the given spectra finely [35],
however, from a practical point of view, if we are talking about automation of the processes
of analysis and registration of optical data, carrying out such modelling will not allow us
to analyze the spectra on the spot. Moreover, if we consider the problem more generally, it
is obvious that the set of vibronic modes of any organic pigment cannot be known exactly.
This circumstance fundamentally complicates the application of the multimode Brownian
oscillator model and the use of this theory becomes irrational if the purpose of modeling
is to obtain high-order derivatives. It is worth noting that the application of semi-classical
theories to on-the-fly modeling of optical properties has been discussed before [15,16,18].

Consequently, to calculate higher order derivatives, we replace the approximation
of the experimental spectrum based on a physical model (discussed above) with the
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approximation of the experimental spectrum by the sum of Gaussians. It is clear that such
an envelope is an analytic curve for which it is easy to obtain accurate high derivatives. We
call the envelope the model curve, and its derivatives, the model derivatives. By adding
the noise track to the model spectrum, we obtain a test spectrum that approximates the
experimental one in its shape and noise characteristics.

Smoothing (filtering) the test spectrum with the selected filter, we obtain its eighth
derivative and compare it with the model eighth derivative. The process continues until
it is possible to obtain the best match of these two derivatives and thereby find the pa-
rameters of the optimal filter. Since it is assumed that the noise characteristics of the test
spectrum do not differ from the noise characteristics of the experimental one, the use of
the optimal filter for processing the experimental spectrum should allow one to obtain its
“true” eighth derivative. For the four compounds that are considered in this work, it is
possible to check whether their eighth derivatives obtained using the proposed method are
really “true”. As can be seen from the comparison of the derivatives obtained by smooth-
ing/differentiating the experimental spectra and the theoretical derivatives (Figure 5), the
agreement is quite good.

5. Conclusions

It was shown that the noisy experimental spectra of photosynthetic pigments can
be processed by Gaussian decomposition in order to obtain the undistorted high-order
derivatives. The spectra of the studied pigments (chlorophyll, bacteriochlorophyll, and
carotenoids) were chosen in a way that their frequency range allowed the use of a semi-
classical theory called the multimode Brownian oscillator model to simulate the shape of
the absorption spectrum. The calculated true theoretical spectra were used as reference
spectra to generate higher derivatives, in particularly the eighth one. At the same time, the
absorption spectra were modeled using Gaussian decomposition: three Gaussians were
sufficient to obtain the envelope curve of the spectrum for Chl and BChl, and five Gaussians
were needed in the case of carotenoids. Overlaying a noise track on the model spectra
allowed us to synthesize the test experimental data roughly, as it would be read from a
spectrophotometer. By comparing the model derivatives of the eighth order and those of
the test spectra, the optimal settings of the smoothing filter were found, where the spectra
of the high derivatives match perfectly.

Thus, it was demonstrated that Gaussian decomposition in modeling the optical
response of biological pigments allows us to obtain undistorted high-order derivatives
with good precision. Considering that the computational costs of Gaussian decomposition
is much less than optimization of spectra modeling by semi-classical quantum theory,
this method can be used in on-the-fly spectral data analysis with minimal computational
costs. It is also worth noting that in the future it is reasonable to consider the possibility
of optimizing the Gaussian decomposition with the help of differential evolution. The
algorithm of multiparametric optimization has already shown high efficiency in quantum
calculations of the optical response of photosynthetic pigments [33–35].
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Appendix A

Table A1. Parameters of the multimode Brownian oscillator model for simulation of spheroidene
(Figure 3C) and spheroidenone (Figure 3D) absorption spectra. ν1 = 1524 cm−1, ν2 = 1158 cm−1,
ν3 = 1006 cm−1, ν4 = 965 cm−1 are the characteristic vibronic modes of carotenoids; 2ν1 and 2ν2 are
the overtones of the corresponding frequencies; ν1 + ν2 is sum of the frequencies; Sj are Huang-Rhys
factors, where j = {ν1, ν2, ν3, ν4, 2ν1, 2ν2, ν1 + ν2}; Ωeg is the electronic energy gap; FWHMΩ is the
full width at half maximum.

Ωeg FWHMΩ ωlow Slow γlow Sν1
Sν2

Sν3
Sν4

2ν2 2ν1 ν1 + ν2

Spheroidene 22,631.0 1007.6 4.9 3.0 42.7 0.63 0.57 7.3 × 10−3 1.5 × 10−3 9.3 × 10−2 6.9 × 10−8 9.7 × 10−2

Spheroidenone 21,785.8 1668.3 1.0 3.2 × 10−3 450.4 1.02 0.30 3.2 × 10−11 2.5 × 10−11 1.1 × 10−11 1.2 × 10−11 0.15
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Abstract: Spectral reflectance or transmittance measurements provide intrinsic information on the
material of an object and are widely used in remote sensing, agriculture, diagnostic medicine, etc.
Most reconstruction-based spectral reflectance or transmittance measurement methods based on
broadband active illumination use narrow-band LEDs or lamps combined with specific filters as
spectral encoding light sources. These light sources cannot achieve the designed spectral encoding
with a high resolution and accuracy due to their low degree of freedom for adjustment, leading to
inaccurate spectral measurements. To address this issue, we designed a spectral encoding simulator
for active illumination. The simulator is composed of a prismatic spectral imaging system and a
digital micromirror device. The spectral wavelengths and intensity are adjusted by switching the
micromirrors. We used it to simulate spectral encodings according to the spectral distribution on
micromirrors and solved the DMD patterns corresponding to the spectral encodings with a convex
optimization algorithm. To verify the applicability of the simulator for spectral measurements based
on active illumination, we used it to numerically simulate existing spectral encodings. We also
numerically simulated a high-resolution Gaussian random measurement encoding for compressed
sensing and measured the spectral reflectance of one vegetation type and two minerals through
numerical simulations. We reconstructed the spectral transmittance of a calibrated filter through an
experiment. The results show that the simulator can measure the spectral reflectance or transmittance
with a high resolution and accuracy.

Keywords: spectral measurement; spectral encoding; active illumination; compressed sensing

1. Introduction

Every object has its own unique spectral characteristics; as a result, the spectrum
is regarded as the “fingerprint” of the object. The spectral reflectance or transmittance
of an object contains considerable inherent physical information that can be applied in
object classification [1,2], remote sensing [3–6], medical diagnosis [7–9], and image repro-
duction [10,11]. Spectral measurement methods based on active illumination address the
constraints between the spectral resolution and signal-to-noise ratio of traditional spectral
measurement methods and have gained attention due to their rapidity and accuracy [12].
Active illumination is an important component of computational optical imaging. This
improves the imaging resolution and environmental adaptability by encoding space, time,
polarization, or spectral information on the light source side. When the spectral signal is
collected under broadband active illumination, the spectral reflectance or transmittance
of the target object can be measured. In recent years, researchers have performed many
studies on active-illumination-based spectral measurement techniques. Park et al. used a
set of LEDs in a multiplexed sequence to illuminate a scene and applied a simple empirical
linear model to measure the spectral reflectance [13]; however, although the measurement

Sensors 2023, 23, 4608. https://doi.org/10.3390/s23104608 https://www.mdpi.com/journal/sensors105



Sensors 2023, 23, 4608

algorithm was accurate and fast, the combined spectrum of the LEDs was not continuously
tunable due to the fixed spectrum of each LED. In actual use, this light source led to fitting
difficulties with spectral encodings with a high resolution and accuracy. In addition to
using LEDs as active illumination sources, Chi et al. proposed a new active illumination
approach. They selected 16 channels using a set of 228 possible filters and used an opti-
mized broadband filtered illumination to obtain multispectral reflectance information [14].
However, they used tungsten and xenon lamps with specific filters as light sources for
active illumination. While this approach is simple, the spectral encoding of the nearly
optimal illumination set, which was based on the designed Hadamard code, could not be
fitted because the equivalent broadband filters were not physically available. The above
traditional illumination methods are inflexible. Han et al. measured the reflectance of
a scene using a digital light processing (DLP) projector as a light source with spectrally
distinct illuminations and a high-speed camera [15]. DLP projectors equipped with RGB
color wheels have only three fixed illumination spectra. Although high-speed spectrum
switching can be achieved for dynamic scenes, accurate spectral measurements are difficult
to attain. For a more accurate reconstruction of the spectral reflectance, Zhang et al. devel-
oped a deeply learned broadband encoding stochastic hyperspectral camera with an active
measurement mode that used a broadband light source and random filter to illuminate the
target object. With this approach, accurate and dynamic measurements of the spectra in the
entire field of view were obtained by detecting the target spectral reflectance [16]; however,
the random filter used in the directional design was difficult to manufacture.

To address the various deficiencies in the existing active illumination light sources,
we designed a spectral encoding simulator (SES) based on spectral tuning technology.
In reconstruction-based spectral measurements, there are various methods for spectral
encoding. A commonly used method is performed at the receiver side, usually using
devices such as filters for encoding. One of the other methods is performed at the light
source side, encoding the spectrum of the initial light source into a specific spectrum (the
premise is that active illumination is applied to spectral measurements), and our SES is an
active encoding light source.

In recent years, an increasing number of scholars have applied digital micromirror
devices (DMDs) in spectral tuning. These devices control the wavelength and intensity
of the spectrum through two dimensions, namely, the DMD rows and columns. For
example, in 2005, MacKinnon et al. proposed a spectral programmable engine (SPLE)
that used a DMD to output a specific spectral distribution (SPD), which has been used
in the fields of biochemistry and biomedicine [17]. This system was an early prototype
of a programmable spectral light engine based on a DMD, which has inspired various
spectral light engines that have been applied in different fields. In 2006, Chuang et al.
proposed a DMD pattern-scanning calibration method and a digital programmable light
spectrum synthesis system, which was applied to the synthesis of various infrared C-band
(1530–1565 nm) spectral profiles [18]. In 2017, Luo et al. proposed a programmable light
source in the visible range based on the combination of a prism and an echelle grating [19].
Rice et al. developed a visible hyperspectral image projector (HIP). This projector has a
double-DMD symmetrical structure, with the DMDs used as the spectral engine and spatial
engine. The HIP outperforms conventional digital light processing (DLP) projectors because
it has hyperspectral image projection capabilities [20]. Hirai et al. proposed a projector with
a programmable light source (Optronic Laboratories OL490) and a DMD. The projection
principle was the same as that of DLP projectors, and the proposed projector achieved
spectral image projection similar to the HIP [21]. In addition to the abovementioned
techniques, spectral light engines have been developed in various fields, such as stellar
simulation [22], lasers [23], and spectral calibration [24–26]. In addition, there are some
commercially available spectral light engines, such as Optronic Laboratories OL490 and the
recently developed Chromatiq Spectral Engine (CSE) from Energetic (Hamamatsu). These
spectral light engines use gratings to achieve good and smooth spectral matching; however,
they cannot achieve a broad spectral range or high brightness. While the abovementioned
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spectral light engines are all based on DMDs, there are some problems in using them for
spectral measurements. Active illumination sources for spectral measurements require a
broad spectral range, high spectral encoding accuracy, and high optical throughput. Thus,
the light source is better suited for using a prismatic spectral imaging system.

The main work of this study is to present a method of applying the SES to active-
illumination-based spectral measurement and to verify the feasibility of the method using
numerical simulations. We designed the SES based on spectral tuning technology. The
SES uses the flexible spatial light modulation capability of the DMD to simulate spectral
encoding in the broadband range of 300–1100 nm, which provides a basis for broadband
active illumination and the reconstruction of spectral measurements. The SES uses a pris-
matic spectral imaging system to image the spectral image onto the DMD. The spectral
dimension of the image corresponds to the dimension of the DMD micromirror columns,
and the spatial dimension corresponds to the dimension of the DMD micromirror rows.
Therefore, the on–off state of the DMD micromirror columns determines the wavelength
of the output spectrum, and the number of micromirrors in the on state in each column
determines the intensity of this wavelength. After the hardware structure was determined,
we verified the high optical throughput of the SES through numerical calculations and
analysis. To accurately simulate spectral encoding, a spectral encoding simulation method
based on a convex optimization algorithm is used to calculate the optimal state of each
DMD micromirror, and the controller controls the on–off state of 1920 × 1080 micromirrors
according to the calculated optimal state. Furthermore, we theoretically analyzed the spec-
tral encoding simulation capability and performance of the SES. These are the preconditions
for its application in the field of spectral measurement. To verify the applicability of the
SES in spectral measurements, we used the SES to simulate some existing spectral encoding
schemes. Moreover, we also used the SES to perform a Gaussian random spectral encoding,
achieving compressed-sensing-based spectral measurements. The theoretical analysis and
numerical simulation results show that the SES can be used to achieve accurate complex
spectral encoding simulations, and the compressed-sensing-based spectral measurements
using this light source show a priority in the spectral reconstruction accuracy, because the
SES compensates for the low accuracy in the spectral encoding simulations near the high
end of the wavelength tuning range. The proposed SES can be used not only for high
accuracy active-illumination-based spectral measurements but also as a simulation and
verification platform for various spectral encoding schemes because of its ability to achieve
high-resolution and accurate spectral encoding simulations.

The main structure of the paper is as follows: Section 1 is the introduction. In Section 2,
the principle (Section 2.1) and structure (Section 2.2) of the SES are introduced, and the
optical throughput is numerically simulated (Section 2.3). In Section 3, the spectral encod-
ing simulation principle (Section 3.1) is introduced, and, after the position–wavelength
function is numerical simulated, the model of the spectral response function is established
(Section 3.2). Then, the spectral resolution of the SES is numerically simulated; after that,
the spectral encoding simulation method is finally introduced (Section 3.3). In Section 4,
the spectral encoding simulation capability and performance is numerically simulated. In
Section 5, the applicability of the SES in spectral measurement is verified by the numerical
simulation of the spectral encoding designed by various groups (Section 5.1) and the nu-
merical simulation of spectral measurement based on compressed sensing (Section 5.2). In
Section 6, the performance of the SES is verified by spectral encoding simulation capability
experiments (Section 6.1) and compressed sensing experiments (Section 6.2). Section 7 is
the conclusion.

2. System Principle and Structures

2.1. System Principle

The hardware principle of the simulated system is shown in Figure 1. The DMD
controller controls the state of the 1920 × 1080 micromirrors according to the target SPD to
encode the spectrum and then outputs the spectrum through the integrating sphere. The
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output of the integrating sphere is measured by the fiber optic spectrometer to evaluate the
spectral encoding simulation accuracy.

Figure 1. The hardware principle of the system.

2.2. System Structure

The main body of the SES uses the Czerny–Turner structure. The ray of the initial
light sources (1000 W halogen lamp) is converged to the slit through a closely arranged
fiber array and passes through an off-axis parabolic mirror (collimating mirror), a prism
(dispersion element), and a spherical mirror (focusing mirror), imaging on the DMD. The
spatial light modulation characteristics of the DMD are used to modulate the spectral image.
The light is finally output through the converging lens and integrating sphere. The slit is
0.1 × 6 mm, the numerical aperture of the object is 0.12, the vertical magnification is 1.83,
and the image height is 10.98 mm. In order to achieve a wide operating spectral range of
300–1100 nm and high optical throughput, the prismatic spectral imaging system and the
fiber array are needed. The fiber array consists of 48 fibers with a diameter of 105 microns
and a numerical aperture of 0.12. They are closely arranged in a 1 × 48 array to illuminate
the slit. It is just enough to fill the entire 0.1 × 6 mm slit. The fibers on the other side are
dispersed to couple more energy.

The design of the optical path of the system is shown in Figure 2a, and the design
software is zemax 14.2. Figure 2b shows the design of the mechanical structure, and the
design software is ug 10.0.
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Figure 2. The optical–mechanical structure of the system: (a) the design of the optical path of the
system; (b) the design of the mechanical structure.

2.3. Optical Throughput of the System

As an active illumination light source, the SES needs to have a high optical throughput
to achieve spectral measurements with high signal-to-noise ratios. In order to improve the
optical throughput of the SES and broaden the operating band, we used a prism made of
JGS2 quartz. In addition, all reflective surfaces were simulated as coated with aluminum,
and the front surface of the prism was coated with MgF2.

The use of the fiber array can also improve the optical throughput. The 48 optical
fibers are equipped with 3 mm diameter grin lenses and placed at a distance of 50 mm from
the 1000 W halogen lamp. In an ideal situation, the energy entering the fiber array is the
product of the irradiance of the halogen lamp at 50 mm, the total area of all the grin lenses,
and the coupling efficiency. For the same light source and coupling mode, the illuminance
and coupling efficiency can be considered equal, so the optical energy gain is the ratio
between the area of the fiber array and the area of the slit directly irradiated by the light
source. This ratio is equal to approximately 300.

In the software simulation (the simulation software is lighttools 6.0), we set the light
source spectrum as a 1000 W halogen lamp spectrum. The energy entering the slit was
1.94 W, and all the working surfaces were linked with the corresponding film characteristics.
The simulation results are shown in Figure 3. Figure 3a shows the irradiance distribution
on the DMD surface and Figure 3b shows the spectral power distribution on the DMD
surface. The light energy utilization efficiency through the slit was 68.72%. However, the
average diffraction efficiency with blazed or concave gratings was less than 50%, and they
cannot be used with a broad spectral range. If other optical components are included, the
light energy utilization rate decreases. For example, the initial light source of the CSE is
directly used to illuminate the slit, and the CSE uses a concave grating, which operates in
the range of 380–780 nm. The results of spectral measurements measured by the CSE have
a low signal-to-noise ratio.

Figure 3. The optical throughput of the system: (a) the irradiance on DMD; (b) the spectral power
distribution on DMD.
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3. Spectral Encoding Simulation Method and Model

3.1. Spectral Encoding Simulation Principle

The spectral encoding simulation principle, which is also the main process of the
spectral measurement simulation, is shown in Figure 4.

Figure 4. Flow chart of the spectral encoding simulation method. The PSF and LSF can be obtained
by optical design, and the DMD column SPD can be calculated. The spectral matrix A is combined
with all the SPDs. After the target spectrum is set, the state of DMD can be calculated. The state of
DMD is fed into the controller.

As shown in the flow chart in Figure 4, based on the optical design, we can obtain the
point spread function (PSF) and line spread function (LSF). The PSF describes the response
of the imaging system to a point light source. Figure 5a shows the PSF in the on-axis field of
view at 700 nm (the software is zemax 14.2). The LSF, which can be obtained by integrating
the PSF in the slit length direction, describes the response of the imaging system to a line
light source. The LSF can be used to obtain the spectral response function (SRF) of each
DMD micromirror column. The product of the SRF and the initial light source SPD is the
column SPD. All DMD column SPDs are divided into column vectors according to the
central wavelength of the corresponding DMD micromirror column. These vectors are
combined into a matrix known as spectral matrix A. Therefore, the row vector in matrix A
represents the intensity of the corresponding wavelength in all DMD columns. The column
vector in matrix A represents the SPD in the whole spectral band corresponding to the
DMD column. Figure 5b shows a contour map of a part of matrix A. The horizontal axis
represents DMD micromirror columns 1 to 128. The vertical axis represents wavelengths
ranging from 300 nm to 308.54 nm. The blue parts in Figure 5b are all 0, which indicates that
the micromirrors in this column do not receive light with the corresponding wavelength.
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Figure 5. The spectral encoding simulation models: (a) the point spread function exported from
optical design software; (b) contour map of a part of the matrix A.

Spectral matrix A and a convex optimization algorithm can be used to determine the
state of each DMD micromirror, leading to accurate spectral encoding simulations. The
detailed encoding simulation steps are described in Sections 3.2 and 3.3.

3.2. Model of Spectral Response Function

As shown in the flow chart in Figure 4, the SPD on each micromirror must be known to
modulate the spectral image on the image plane by the DMD. The SPD on each micromirror
is determined by the product of the initial light source SPD (discussed in Section 4.1) and
the spectral response function (SRF) on that micromirror. The SRF is an inherent property
of the prismatic spectral imaging system, which is mainly determined by the spectroscopic
principle and the efficiency of the optical system. Spectrometers have inherent spectral
smile effects. Through monochromatic ray tracing, we find that the spectral smile effect of
the SES system is not significant, and the edge and center positions of the monochromatic
image with the most severe smile effects are only three micromirrors apart. However, it will
be a great challenge to find the SRFs of all micromirrors on the DMD, and the simulation
accuracy is not significantly improved by calculating the SRFs of all micromirrors. Therefore,
we assume that the micromirror SRFs in each DMD micromirror column are the same and
that these SRFs are uniformly distributed in the spatial dimensional direction. Therefore, it
is necessary to calculate only the sum of micromirror SRFs in each single DMD micromirror
column. The SRF of the prismatic spectral imaging system is shown in Equation (1).

SRF(λ) = rect
(

x(λ)
b

)
∗
[

LSF(x(λ)) ∗ rect
(

x(λ)
a

)]
τ(λ), (1)

where * represents the convolution operation, a is the slit width, b is the micromirror width,
and Rect is a rectangular function. When the independent variable is between −0.5 and 0.5,
it equals 1; otherwise, it equals 0. The former rectangular function represents the response
function of the micromirror, and the latter represents the slit function. For each micromirror,
its center is defined as zero, and x is the position in this micromirror coordinate system.
The spectral power received by the micromirror can be regarded as the response of the
micromirror to the translation and superposition of each monochromatic image of the
incident slit, and this process is equivalent to the convolution of the micromirror response
function and the response function of the incident slit. τ(λ) is the system optical efficiency,
and LSF(x(λ)) is the LSF at the position corresponding to the DMD micromirror column,
which can be obtained by integrating the PSF in the slit length direction after the optical
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design has been determined. x(λ) is the position coordinate along the dispersion direction
on the image plane. There is a mapping relationship with the wavelength in the spectral
dimension. Using the method of monochromatic ray tracing, the monochromatic image
position coordinates can be simulated (the simulation software is lighttools 6.0). As shown
in Figure 6a, the distribution of the monochromatic images from left to right is 300 nm,
400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, and 1100 nm on the image
plane. Figure 6b shows the correlation of x to wavelength.

Figure 6. The positions of monochromatic images at different wavelengths on the image plane: (a) the
distribution of monochromatic images at 9 wavelengths (the distance between 2 adjacent wavelengths
is 100 nm) on the image plane; (b) the correlation of position to wavelength.

When the position–wavelength mapping relationship is applied in the SRF equation,
the SRF curve can be obtained as shown in Figure 7. A total of 1575 DMD micromirror
columns are covered in the range of 300–1100 nm, so a total of 1575 SRF curves are needed.
The normalized SRF curves of the four DMD micromirror columns with center wavelengths
of 325.45 nm, 457.15 nm, 694.07 nm, and 1078.27 nm are shown in Figure 7.

Figure 7. The normalized SRF curves of the four DMD columns with center wavelengths of 325.45 nm,
457.15 nm, 694.07 nm, and 1078.27 nm.
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The full width at half maximum (FWHM) of the SRF also represents the spectral resolu-
tion, as seen in Figures 7 and 8. The FWHM varies at different locations and increases with
increases in the wavelength. This places a constraint on the spectral encoding simulation
performance of the SES. The specific constraint relationship is discussed in Section 4.2.

 
Figure 8. The spectral resolution of SES (numerical simulation).

3.3. Spectral Encoding Simulation Method

The SRFs of the 1575 DMD micromirror columns are discussed in Section 3.2. These
SRFs are multiplied by the initial source SPD to obtain the SPDs of the 1575 DMD micromir-
ror columns. Each SRF is discretized into a 1575-dimensional column vector according to
the central wavelength of the corresponding DMD micromirror column and then combined
into a 1575 × 1575 matrix known as SPD matrix A. The spectral encoding simulation
process is shown in Figure 9. Figure 9a shows matrix A, which consists of the SPDs of the
1575 DMD micromirror columns. A halogen lamp with a 5000 K color temperature is used
as the initial light source. Figure 9b shows the simulation process of a random target SPD.
The simulation process can be modeled as follows:

A · ron = b, (2)

where ron and b are 1575-dimensional column vectors. ron is the unknown to be deter-
mined and represents the proportion of the micromirrors in the “on” state in each DMD
micromirror column, which has a value between 0 and 1. A value of 0 means that the
micromirrors in the column are all off, while a value of 1 means that the micromirrors in
the column are all on. b is obtained by dividing the target SPD by the spectral reflectance of
the micromirrors, the transmittance of the lens and the reflectance of the integrating sphere
diffuse reflector.
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Figure 9. The spectral encoding simulation process: (a) the 1575 × 1575 SPD matrix A (expanded by
column); (b) the simulation process of a random target SPD (the sum of all the modulated columns is
close to the target SPD b).

To solve for ron, the 2-norm is used as the evaluation function to calculate ron, and the
result of ron is used to guide the switching of each DMD micromirror column. The equation
then becomes a convex optimization problem with 1575 constraints, as shown below:

r̂on = argmin
ron

(‖A · ron − b‖2), s.t. 0 ≤ ron ≤ 1. (3)

We use a convex optimization algorithm to solve this equation [27,28], which can
calculate the proportion of the micromirrors that should be in the on state in each column
with minimum deviation. As a toolkit, cvx is simple to use. By entering the code according
to Equation (3) and importing A and b, the result can be easily obtained. ron is multiplied
by the number of DMD micromirror rows and rounded to the nearest integer to determine
the number of micromirrors that should be in the on state in each column. To minimize the
error caused by the spectral smile mentioned in Section 3.2, the code is designed so that
each column of DMD micromirrors turns on from the middle to both ends.

4. Spectral Encoding Simulation Capability and Performance

Matrix A and the target SPD b in the algorithm described in the previous section affect
the spectral encoding simulation capability and spectral encoding simulation performance
of the SES, respectively. These effects are discussed in the following sections. (All of the
following programs were written in python).

4.1. Spectral Encoding Simulation Capability

Matrix A determines the spectral encoding simulation capability, and the product of
the SPD of the initial light source and the SRFs of the SES determines matrix A. For different
types of initial light sources, the spectral encoding simulation capability is different. A
halogen lamp (with a color temperature of 5000 K) and a xenon lamp were used for
simulations. The SPDs of these two initial light sources are shown in Figure 10a,d, and a
random target SPD was simulated with two initial light sources. The numerical simulation
results are shown in Figure 10b,e. The simulation capability of the SES with xenon lamps
with characteristic spectra was inferior to that of the SES with halogen lamps in the range of
the characteristic spectral bands. Therefore, to improve the simulation capability of the SES,
the initial light source should be halogen lamps without characteristic spectra. Figure 10c,f
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show the DMD state when the halogen lamp and xenon lamp are used for simulations,
respectively (black pixels represent the off state and white pixels represent the on state).

Figure 10. The spectral encoding simulation capability: (a) the halogen lamp SPD; (b) the numerical
simulation result using the halogen lamp; (c) the DMD state when the halogen lamp is used for
simulation (black pixels represent the off state and white pixels represent the on state); (d) the xenon
lamp SPD; (e) the numerical simulation result using the xenon lamp; (f) the DMD state when the
xenon lamp is used for simulation.

4.2. Spectral Encoding Simulation Performance

The target SPD b determines the spectral encoding simulation performance. Due to
the nonlinear spectroscopic characteristics of the prism, the spectral resolution (FWHM
of the SRF) decreases with increases in the wavelength. Figure 8 shows the trend of the
change in the FWHM of the SRF with the wavelength. The maximum FWHM is 30 nm in
the range of 300–1100 nm. Therefore, the resolution of the target SPD b should be greater
than 30 nm to obtain an accurate spectral encoding simulation. Clearly, the resolution of b
can increase with a decrease in the range of wavelengths.

Figure 11a–c show extreme cases of 30 nm, 20 nm, and 10 nm resolutions, respectively.
Figure 11d–f show the DMD states of the three numerical simulation cases. The root mean
square errors (RMSEs) of the three cases are 1.22%, 8.05%, and 13.83%, respectively. Since
our numerical simulations are in extreme states, the determined RMSE corresponds to the
maximum deviation of the three cases.

The above numerical simulation results show that the error increases with increases
in the wavelength, and the main reason is that the SES uses a prismatic spectral imaging
system. The broad bandwidth near the high end of the wavelength tuning range could
limit the simulation capability and performance.
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Figure 11. The spectral encoding simulation performance: (a) the numerical simulation result of the
extreme case of 30 nm resolution; (b) the numerical simulation result of the extreme case of 20 nm
resolution; (c) the numerical simulation result of the extreme case of 10 nm resolution; (d) the DMD
state of the 30 nm resolution case; (e) the DMD state of the 20 nm resolution case; (f) the DMD state
of the 10 nm resolution case.

5. Applicability of the SES in Spectral Measurement

5.1. Simulation of Spectral Encoding

The SES can be used to simulate spectral encoding schemes in existing spectral mea-
surement methods based on active illumination. We numerically simulated spectral encod-
ing schemes designed by various groups.

Chi et al. designed the spectral encoding of a nearly optimal illumination set based
on the Hadamard code. Since physically perfect narrow bandpass filters do not exist, they
used the SPD information of a real narrow bandpass interference filter (Edmund Optics) to
simulate nearly optimal illumination [14]. Our SES simulated spectral encoding based on
the Hadamard code numerically, which cannot be achieved with light sources and filters,
and the numerical simulation results are shown in Figure 12a.

Han et al. used a DLP projector as an illumination source and combined it with a
high-speed camera to measure spectral reflectance [15]. This approach has the advantage of
being able to obtain spectral reflectance measurements in dynamic scenes by using the high-
speed switching illumination SPD of the DLP projector, whose core component is a DMD.
Our SES can achieve the same SPD switching speed as the DLP projector. When combined
with a high-speed camera, it can also obtain the spectral reflectance measurements of
dynamic scenes. Figure 12b shows the performance of the SES in numerically simulating
the green spectral illumination channel in the RGB of the DLP projector.
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Figure 12. The numerical simulation of spectral encoding designed by various groups: (a) the numer-
ical simulation result of spectral encoding based on Hadamard code; (b) the numerical simulation
result of the green spectral illumination channel in the RGB of the DLP projector; (c) the numeri-
cal simulation result of one of the optimal illumination SPDs; (d) the DMD state when simulating
spectral encoding based on Hadamard code; (e) the DMD state when simulating the green spectral
illumination channel; (f) the DMD state when simulating one of the optimal illumination SPDs.

Fu et al. presented a simple and efficient convolutional neural network (CNN)-
based spectral reflectance recovery method with optimal illumination. They designed
an illumination optimization layer to optimally multiplex illumination spectra in a given
dataset or to design the optimal one under physical restrictions [29]. We numerically
simulated one of the designed optimal illumination SPDs for spectral encoding. The
numerical simulation results are shown in Figure 12c.

In summary, our SES achieves good numerical simulation for the illumination spectral
encoding used by existing active illumination methods.

Compared to the spectral measurements achieved by Zhang et al. using a light source
and random filter combined with their deeply learned broadband encoding stochastic
hyperspectral camera [16], we used the SES to replace the light source and random filter
and simulated the measurement of spectral reflectance or transmittance by the compressed
sensing method numerically, as discussed in the Section 5.2.

5.2. Spectral Measurement Based on Compressed Sensing

Compressed sensing (CS) is a sampling theory that obtains measurements under a
specific measurement basis Φ and represents the signal to be sampled sparsely in the time
domain by means of a sparse basis Ψ. The sparse signal can be finally recovered by various
algorithms. CS can reduce the number of samples while maintaining signal integrity, which
can be applied to the measurement of spectral reflectance or transmittance. The principle
of CS is shown in the following equation:

y = ΦΨS, (4)

where y is the N1 × 1 observation vector formed by M measurements (N1 = M), Φ is
the N1 × N2 observation matrix, Ψ is the sparse matrix of N2 × N2, and S is the sparse
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signal of N2 × 1. According to compressive sensing theory, the key to measuring whether
S can be compressively losslessly sampled is the restricted isometry property (RIP). The
independent and identically distributed Gaussian random measurement matrix can be
the universal compressive sensing measurement basis. The sensing matrix formed by the
Gaussian random measurement matrix and most sparse bases can satisfy the RIP; therefore,
we choose the Gaussian random matrix as the measurement basis. In addition, we use the
overcomplete dictionary as the sparse basis and construct the sparse basis with a Gaussian
function as the parent function, which can be well sparsed for the spectral reflectance or
transmittance data.

As shown in Equation (5) in the Gaussian function, the central wavelength is μ, and
the FWHM is

√
8ln2. This is equal to the spectral sampling interval λs. After stretching the

Gaussian function 2m times (m is an integer), we can obtain a new Gaussian function with
a stretched FWHM. N times (n is an integer) the stretched FWHM is the center wavelength
offset to yield the new Gaussian function that covers the entire spectral range. The set of
functions forms a sparse basis Ψ, as shown in Equation (6).

g(λ; μ, σ) =
1√

2π · σ
exp

[
− (λ − μ)2

2σ2

]
, (5)

⎧⎪⎨⎪⎩
Ψm,n(λ) =

√
2m · g

(
λ; 2mnλs, 2mλs√

8 ln 2

)
;

1 ≤ 2m ≤ λmax−λmin
λs

; λmin
λs2m ≤ n ≤ λmax

λs2m ; m, n ∈ Z

⎫⎪⎬⎪⎭. (6)

Finally, the convex optimization algorithm is used to measure the spectral reflectance
or transmittance. The algorithm is shown in Equation (7).

Ŝ = argmin
S

(‖ΦΨS − y‖1 + 0.05‖S‖1). (7)

After the measurement basis Φ, the sparse basis Ψ, and the algorithm are determined,
the spectral measurement process is proposed, as shown in Figure 13. The N1 row vectors
in Φ are regarded as the spectral encoding. The SES simulates this spectral encoding as the
active illumination SPD, and the camera is used to acquire M reflectance or transmittance
signals y. The sparse spectral reflectance or transmittance signal S is measured by the
convex optimization algorithm (cvx) [27,28], and ΨS is the measured spectral reflectance or
transmittance signal.

For the illumination, the integrating sphere can be replaced with a fiber coupler to
improve energy utilization. In addition, light guides, which have larger diameters than
optical fibers and higher energy utilization than optical fibers and integrating spheres, can
also be used as illumination elements for the SES. The commercially available quartz light
guides and liquid light guides can directly couple the light from the SES. The use of a fiber
coupler or light guides for illumination can meet spectral measurement requirements.

The most important and difficult part of compressed sensing is the physical imple-
mentation of the measurement basis Φ. Our SES can easily implement a Gaussian random
encoding because of its flexibility. We choose a spectral sampling interval of 10 nm (N2= 80)
to generate a Gaussian random matrix. This is regarded as the spectral encoding. The
numerical simulation results are shown in Figure 14. Four of the numerical simulations are
shown, with the bottom right figure showing the worst numerical simulation results.

118



Sensors 2023, 23, 4608

Figure 13. The process of spectral reflectance measurement. Φ is the measurement basis, which is
simulated by SES, y is the signal obtained by the detector, and Ψ is the sparse basis. The above three
are used as input quantities, and the sparse signal S is obtained by the cvx. x is the measured spectral
reflectance or transmittance signal obtained by multiplying Ψ and S.

Figure 14. Four of the numerical simulations of Gauss random encoding. The black curves are Gauss
random curves and the red curves are simulated random curves. The simulation performance is
shown in the four numerical simulations.
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According to the RIP, all column vectors in the Gaussian random matrix should be
approximately orthogonal, that is, with weak correlation. It is calculated that the mean of
the absolute value of the cross-correlation coefficient of the generated Gaussian random
matrix is 0.087 and the maximum value is 0.428. The mean value of the absolute value of
the cross-correlation coefficient of the simulated matrix is 0.0901 and the maximum value
is 0.434, which can meet the requirement of weak correlation. Figure 15 shows the nu-
merical simulation of Grass_dry.4+.6green from the US Geological Survey (USGS) spectral
reflectance database [30] with the real Gaussian random matrix and the SES simulated
matrix as the measurement encoding. The values for the number of measurements M are 60,
50, 40, and 30, and the product of the measurement encoding and the spectral reflectance is
regarded as the measurement value y.

Figure 15. The numerical simulation of Grass_dry.4+.6green spectral reflectance with the real Gaus-
sian random matrix and the SES simulated matrix as the measurement encoding (M is 60, 50, 40,
and 30).
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The numerical simulation results show that the reconstruction ability of the two
measurement bases gradually diverges (the deviation between the blue line and the red line
in the figure) as M decreases. The following table (Table 1) lists the RMSEs of the spectral
measurements obtained with the two measurement matrices using different numbers of
measurements. The simulated matrix and the real Gaussian random matrix have basically
the same performance on the spectral measurement, and there is no apparent superiority
or inferiority relationship between them. This indicates that the simulation error on the
Gaussian random matrix does not affect the measurement accuracy of spectral reflectance
or transmittance.

Table 1. The RMSEs of spectral measurement with two measurement matrices.

M RMSE of Gauss (%) RMSE of SES (%)

80 0.181 0.185
70 0.232 0.211
60 0.29 0.275
50 0.599 0.619
40 1.636 1.584
30 1.773 2

In the USGS database, we randomly selected the spectral reflectance of two minerals
(Axinite_HS342.3B & Goethite_WS222) [30] and measured them at a sampling rate of 50%
(M = 40). The results are shown in Figure 16a,b. Figure 16c shows the change in the RMSE
for three spectral reflectance measurements with measurement time M. The measurement
deviation has a significant downward trend as the measurement time increases and tends
to stabilize after reaching 58% (M = 47). The RMSE is less than 1%.

Figure 16. The spectral reflectance measurement of two minerals at a sampling rate of 50% (M = 40):
(a) the spectral reflectance measurement of Axinite_HS342.3B; (b) the spectral reflectance measure-
ment of Goethite_WS222; (c) the change in RMSE for three spectral reflectance measurements with
measurement time M.

In summary, with the flexible spectral encoding simulation capability, the SES can
simulate a variety of complex spectral encoding, such as Gaussian random measurement en-
coding, spectral encoding based on deep learning, and Hadamard-based spectral encoding,
so as to achieve accurate spectral reconstruction based on active illumination.

6. Validation Experiments

To verify the performance of the SES, we designed two validation experiments
to verify its spectral encoding simulation capability and applicability of compressed
sensing, respectively.
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6.1. Experiments to Verify the Capability of Spectral Encoding Simulation

To verify the spectral encoding simulation capability and performance of SES, we
mounted the experimental platform as shown in Figure 17.

 

Figure 17. The drawing of the experimental platform.

The initial light source is a 1000 W spectral irradiance standard lamp 210,701 (National
Institute of Metrology, Beijing, China). The optical fiber array is RH-48-127-8-L (Ruihe,
Beijing, China). The prism, the collimating mirror, the focusing mirror, and the lens
were specialized manufactured by the Changchun Institute of Optics, Fine Mechanics and
Physics, China. The DMD is the Discovery F4110 (Jinhua Fldiscovery, Jinhua, China),
and the core DMD chip is the DLP9500 (Texas Instruments, Dallas, TX, USA). The DMD
control program is F4110DMDControlerV2.0, which is provided by Jinhua Fldiscovery. The
integrating sphere is the JFQ-25 (Hangxin, Guangzhou, China). The fiber optic spectrometer
is the USB4000 (Ocean Optics, Orlando, FL, USA). All other control and data acquisition
software were written in Python 3.6.

The USB4000 (Ocean Optics) has a high response at 450–850 nm, so our experiments
were operated at 450–850 nm.

After the experimental platform was mounted, we tested the main performance of the
SES, including the SPDs received by each micromirror column and the spectral resolution of
the system. We tested the SPDs of the micromirror columns by opening the single column.
Figure 18a shows the result of several SPDs. The tested SPDs were also used to calibrate the
SES. Based on the SPDs, we solved the spectral resolution of the SES as shown in Figure 18b.

Figure 18. The tests of basic SES performance: (a) the DMD column SPDs of SES; (b) the spectral
resolution of SES.
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We experimentally simulated random spectra with a 10 nm resolution at 450–850 nm
after the experimental platform was mounted and calibrated, and the results are shown
in Figure 19a,b. The average relative errors of the two experiments were 3.07 and 3.81%.
The RMSE values were 0.0065 μW/cm2·mm·sr and 0.0043 μW/cm2·mm·sr. The main
reason for the errors was that the spectral and radiometric calibrations of the experimental
platform were not precise enough.

Figure 19. The experimental simulations of two random spectral encodings: (a) the experimental
simulation result (red simulated SPD in the figure) of spectral encoding 1 (black target SPD in the
figure); (b) the experimental simulation result of spectral encoding 2.

6.2. Experiments to Verify the Applicability of Compressed Sensing

To verify the applicability of compressed sensing, we used an existing calibrated filter
as an experimental sample and pasted the filter in front of the integrating sphere, as shown
in Figure 20.

 

Figure 20. The drawing of the experimental sample.

We used M’ random spectra (one random spectrum corresponds to one measurement,
so the M’ is equal to the measurement time M) to illuminate the filter with a sampling
resolution of 10 nm, which is the same as the sampling resolution of the filter calibration
result, and then used a single-point detector to collect the energy signal. We finally used the
compressed sensing algorithm to reconstruct the filter spectral transmittance. The results
are shown in Figure 21a–d, which show the reconstruction effect for M values of 40, 35,
30, and 25, respectively. Since compressed sensing requires known random spectra, we
still used the USB4000 to measure the random spectra, so we reconstructed the spectral
transmittance at 450–850 nm.
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Figure 21. The transmittance measurements with different measurement time M (M = 40, 35, 30, and
25). The black curves in the figures are the calibrated transmittance of the filter. The red curves are
the measurement results obtained from transmittance reconstruction experiments.

The causes of the reconstruction errors in the figure are the detector measurement
errors, especially the time drift error and the detector response error. The former leads to a
gradual increase of the error when the number of measurements increases, and the latter
leads to a poorer reconstruction in the low response band (450–550 nm). Figure 22 shows
the change in the RMSE for the spectral transmittance measurements with measurement
time M.

Figure 22. The RMSE for the spectral transmittance measurements with measurement time M.
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7. Conclusions

Since the light sources used in existing methods of spectral measurement cannot
effectively implement the designed active illumination spectral encoding, we designed a
spectral encoding simulator for the broadband of 300–1100 nm and calculated the spectral
response function on the image plane of the prismatic spectral imaging system and the
spectral distribution on the DMD. According to the spectral distribution on the DMD, we
used a convex optimization algorithm to design a spectral encoding simulation method. In
addition, we explored the impact of different initial light sources on the spectral encoding
simulation capability and the impact of different target spectral resolutions on the spectral
encoding simulation performance. The simulation data show that the use of tungsten
halogen lamps without characteristic spectra can improve the spectral encoding simulation
capability. The SES can simulate spectral encoding at 30 nm, 20 nm, and 10 nm resolutions
in the extreme case with RMSEs of less than 1.22%, 8.05%, and 13.83%, respectively. We
also simulated the spectral encoding for most of the existing active illumination methods.
The results show that the SES can achieve the spectral encoding designed by other research
groups. Finally, based on compressed sensing theory, we simulated a 10 nm resolution
Gaussian random measurement encoding and measured the spectral reflectance or trans-
mittance. The simulation results show that the goodness of fit of the spectral measurement
is higher than 0.998 when the sampling rate is larger than 50%. The recovery rate (success
rate) of the system is high because the cvx we use is stable, and the accuracy is acceptable.

Depending on the spectral modulation characteristics of the DMD, the main advantage
of our SES is that it can flexibly simulate various spectral encodings and combine various
algorithms to measure spectral reflectance or transmittance for active illumination. The
main disadvantage of our SES is that the optical throughput of the initial light source is
reduced due to the use of the slit. To compensate for this defect, we use a prismatic spectral
imaging system. We are exploring an optical design without slits to improve the optical
throughput, and this problem is expected to be resolved in future work. Our SES also has
other potential applications, such as in star simulators [22], calibration light sources [24–26],
and other scenes requiring tunable spectra. The SES can even be used as a simulation
and verification platform for various forms of spectral encoding schemes and spectral
reconstruction verification.
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Abstract: A static modulated Fourier transform spectrometer has been noted to be a compact and fast
evaluation tool for spectroscopic inspection, and many novel structures have been reported to support
its performance. However, it still suffers from poor spectral resolution due to the limited sampling
data points, which marks its intrinsic drawback. In this paper, we outline the enhanced performance
of a static modulated Fourier transform spectrometer with a spectral reconstruction method that
can compensate for the insufficient data points. An enhanced spectrum can be reconstructed by
applying a linear regression method to a measured interferogram. We obtain the transfer function of
a spectrometer by analyzing what interferogram can be detected with different values of parameters
such as focal length of the Fourier lens, mirror displacement, and wavenumber range, instead of
direct measurement of the transfer function. Additionally, the optimal experimental conditions for
the narrowest spectral width are investigated. Application of the spectral reconstruction method
achieves an improved spectral resolution from 74 cm−1 when spectral reconstruction is not applied
to 8.9 cm−1, and a narrowed spectral width from 414 cm−1 to 371 cm−1, which are close to the
values of the spectral reference. In conclusion, the spectral reconstruction method in a compact
static modulated Fourier transform spectrometer effectively enhances its performance without any
additional optic in the structure.

Keywords: Fourier transform spectrometer; static modulation; spectral reconstruction; performance
enhancement; transfer function

1. Introduction

Concerning spectrometry, the Fourier transform spectrometer is interesting because
it offers a high spectral resolution in the infrared region. Unlike diffractive optics-based
spectrometry, it does not have the drawback of a diffraction limit in the infrared region;
instead, the spectral resolution improves as the wavelength lengthens. A commercial
Fourier transform spectrometer composed of a Michelson interferometer plays a critical role
in many applications such as refineries, environmental monitoring [1], medical fields [2],
space exploration [3], remote sensing [4], and other scientific areas [5–12]. To obtain a
complete interferogram, the optical path difference between two divided beams at the
beam splitter in the Michelson interferometer needs to be altered by moving one of the two
mirrors back and forth. This is called dynamic modulation. The spectral resolution depends
on the maximum optical path difference. Therefore, the mirror displacement needs to be
long to achieve a long maximum optical path difference. Despite many advantages of
Fourier transform spectrometers, the field application of dynamic modulated commercial
Fourier transform spectrometers has been limited by strict operation prerequisites. They
should be operated under a nitrogen environment to obtain clear spectral information and
kept under high mechanical stability to protect the data acquisition from any vibration
during operation.
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The demand for fast measurement and immunity to vibration has led to the develop-
ment of various static modulated Fourier transform spectrometers.

A static modulated Fourier transform spectrometer produces an optical path difference
that is spatially distributed, resulting in an interferogram as a function of space. Some of
these structures are reported as mirror-based interferometers [7,8,10,12–14] and birefringent
prism-based interferometers [5,9,11,15,16]. However, the spectral resolution and spectral
range of static modulated Fourier transform spectrometers can be worse than those of
dynamic modulated Fourier transform spectrometers due to the limited number of data
points, depending on the number of pixels of the detector. Moreover, the maximum
optical path difference is also limited by the pixel pitch of the detector, resulting in a
poor spectral resolution. Though the static modulated Fourier transform spectrometers
have shown superior performance in terms of faster measurement of rapidly changing
spectral properties of target substances, the main drawbacks of a worse spectral resolution
and limited spectral range remain as major problems to be overcome to surpass dynamic
modulated Fourier transform spectrometers.

A retarder array [11] and a stepped-mirror array [12,14] were introduced to extend the
maximum optical path difference. A sensor shift method was suggested to enhance the
spectral resolution [9]. However, these reports are based on utilizing additional optical com-
ponents, which brings complications to a spectrometer. In addition, the spectral resolution
was not comparable with those of dynamic modulated Fourier transform spectrometers.
A signal-padding method was suggested to enhance the spectral resolution but it is only
valid in limited conditions [10].

Recently, a static modulated Fourier transform spectrometer with multiple optical
switches was reported [17,18]. An optical path difference was obtained by permutating
pre-implemented optical switches. However, the data points were still insufficient and
limited the spectral resolution and spectral range.

This drawback could be solved by employing a reconstruction method. In this study,
a spectral reconstruction method was applied in a static modulated Fourier transform spec-
trometer composed of a modified Sagnac interferometer. After applying the reconstruction
method to our static modulated Fourier transform spectrometer, the spectral resolution
could be improved to a level comparable with that of a commercial Fourier transform
spectrometer.

Applying the reconstruction method requires the transfer function of a spectrometer,
which is directly obtainable through an optical measurement of each wavenumber, per-
formed by a monochromator. However, the spectral resolution depends on the performance
of the monochromator. To overcome this dependency, we calculated the transfer function
based on the relationship between an interferogram and a spectrum. The conditions for
better spectral characteristics were investigated in terms of the ratio of a sampling fre-
quency to the wavenumber of a source, mirror displacement, and the maximum optical
path difference.

2. Methodology

A static modulated Fourier transform spectrometer was adopted that was composed
of a modified Sagnac interferometer, as shown in Figure 1. SD is a source driver with
a temperature controller, S is a radiation source, FL is a Fourier lens, and D is a one-
dimensional array detector. A modified Sagnac interferometer consists of two mirrors, M1
and M2, and a beam splitter, BS. The two mirrors, M1 and M2, are tilted by 67.5◦ from the
optical axis, and the beam splitter, BS, is tilted by 45◦ from the optical axis [8,13]. Radiation
from the source splits into two beams at the BS, then they travel along each optical axis. If
M2 was placed in a symmetrical position (the dashed line) where the displacement of M1
and M2 from the BS was equal, the two beams would have the same optical path length.
In this case, an interferogram would not appear at the detector, D. However, if M2 was
displaced by a distance, a, from the symmetrical position, the transmitted and reflected
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beams would be separated by l. An interferogram would be observed in an overlapped
area of the two beams.

Figure 1. A Fourier transform spectrometer composed of a modified Sagnac interferometer.

The separation distance between a transmitted and a reflected beam is given as follows:

l =
√

2a , (1)

where l is the separation between a transmitted and a reflected beam, and a is the displace-
ment of mirror M2 from the symmetrical point. Since a larger l provides a longer maximum
optical path difference, l should be as long as possible for a better spectral resolution. Since
the incident beam size to the detector is defined by the pupil size of the interferometer, and
a larger l induces a narrower overlapped area width, the obtainable optical path difference
must be limited. The maximum optical path difference and the effective sampling data
points are limited by the separation of two beams, l.

In a static modulated Fourier transform spectrometer, a larger maximum optical path
difference leads to an insufficient number of sampling data points, resulting in a poor
spectral resolution and limited spectral range. Herein, we suggest using the spectral
reconstruction method to solve this problem. It is assumed that an interferogram and a
spectrum are linearly related as follows [18]:

I = TB, (2)

where I is an interferogram, T is the transfer function, and B is spectral information. I and B

are column vectors with M and N elements, respectively. T is a matrix with M × N elements.
A detector is placed in a focal position to record a spatially distributed interferogram. An
interferogram is expressed as the sum of cosine waves multiplied by spectral information
associated with wavenumbers. Moreover, a cosine wave depends on parameters of a
spectrometer such as the focal length of a lens, separation distance, and pixel pitch. We can
assume that the transfer function of a spectrometer is interpreted as a cosine wave. Hence,
Equation (2) is rewritten as follows:⎛⎜⎝ I(1ymin)

...
I(nymin)

⎞⎟⎠ =

⎛⎜⎜⎝
cos(2πνmin1ymin

l
f ) . . . cos(2πνmax1ymin

l
f )

...
. . .

...
cos(2πνminnymin

l
f ) · · · cos(2πνmaxnymin

l
f )

⎞⎟⎟⎠
⎛⎜⎝B(νmin)

...
B(νmax)

⎞⎟⎠ , (3)

where νmin and νmax are the minimum and the maximum wavenumbers, respectively. n
is an integer representing the number of data points in the overlapped area, and ymin is
the pixel pitch. Spectral reconstruction can be performed when an inverse matrix of the
transfer function of a spectrometer exists.

Figure 2 shows the procedures used when applying the spectral reconstruction method.
The transfer function was calculated with optical parameters such as lens focal length,
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pixel pitch, and mirror displacement. There was no phase information in the transfer
function. A recorded interferogram contains phase errors due to thermal and electrical
noise, sampling errors, and refraction, resulting in a shifted position of the zero path
difference. Before the spectral reconstruction, a phase error should be corrected. We
applied Mertz phase correction to the interferogram because it is commonly used in Fourier
transform spectroscopy. Figure 2a shows the procedure for obtaining parameters for the
transfer function of the spectrometer and phase information. The parameters and the phase
information could be obtained from the spectrum. Since pixel pitch, focal length, and
mirror displacement depend on the experimental setup, they were easily measured, but
the focal length was slightly mispositioned due to refraction. To obtain an effective focal
length, the spectrum must be obtained from the Fourier transform of an interferogram. The
spectrum also contains a phase error that can be expressed as an angle along a wavenumber.
The phase error can be calculated by the ratio of the imaginary part to the real part of the
spectrum. Multiplying the calculated angle by the obtained spectrum compensates for the
phase error. Since the center wavenumber of the radiation source was known, calibration
could be performed and then the focal length calculated. Figure 2b shows the procedure
for spectral reconstruction. An interferogram without any phase error could be obtained
by inverse Fourier transforming a phase-corrected spectrum. The transfer function was
calculated by Equation (3). Then the spectrum was reconstructed by calculating the residual
sum of squares after rearranging Equation (2), given as follows [19,20]:

RSS(B) =
(

TTB − I
)2

, (4)

 

 
(a) (b) 

Figure 2. Spectral reconstruction procedure. (a) Procedure used to obtain phase information and
parameters of the transfer function. (b) Reconstruction procedure.

A general standard regression was performed. However, the reconstructed spectrum
still contained problems of overfitting and bias. For better reconstruction of the spectrum,
an elastic-net method was employed [17,18]. This method takes advantage of both ridge
and lasso regression so that overfitting and bias problems can be avoided.

A reconstruction method is valid when an interferogram is properly sampled accord-
ing to the Nyquist sampling theorem and Shannon sampling criterion. Sampling frequency
in a static modulated Fourier transform spectrometer is inversely proportional to the optical
path difference corresponding to a single pixel that is given as follows:

νs =
1

Δmin
=

f√
2aymin

, (5)
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where νs is the sampling frequency of a static modulated Fourier transform spectrometer,
and Δmin is the optical path difference corresponding to a single pixel. To avoid aliasing,
the sampling frequency must be at least twice the maximum wavenumber of the source.

ϕ =
νs

νmax
≥ 2 , (6)

where ϕ is the ratio of the sampling frequency to the maximum wavenumber of the source,
and νmax is the maximum wavenumber of the source. The minimum wavenumber νmin
is 0. Associated with Equation (6), the spectral resolution depending on the width of the
overlapped area created by mirror displacement is given as follows:

νR =
2(νmax − νmin)

Noverlap
=

νs

Noverlap
=

f√
2aNoverlapymin

=
f

( 2r√
2a

− 1)2a2
, (7)

where νR is the spectral resolution, Noverlap is the number of pixels in the overlapped area,
and r is the incident beam radius to the detector. Noverlap is given by A

ymin
, and A is the

width of an overlapped area given by 2r, which reduces with a.

3. Results and Discussion

The experiments were performed in a static modulated Fourier transform spectrometer
composed of a modified Sagnac interferometer. In the experimental setup described in
Figure 1, two square mirrors of 2 inches in width are silver-coated. A beam splitter with
a transmittance of 50% in the wavenumber range from 3920 to 11,110 cm−1 is used. An
LED is employed as the incident light source. The center wavenumber and the maximum
optical power are 6451 cm−1 and 2 mW at a current of 0.55 A, respectively. A parabolic
mirror is coupled with the LED to generate a parallel beam. In our study, a thermo-electric
module was attached to the LED to control the temperature to 25 ◦C. At the width of the
e−2 point from the highest intensity, the beam diameter was measured to be 8.23 mm. Pixel
pitch and the number of pixels of the detector were 25 μm and 512, respectively. A 16-bit
analog-to-digital converter was employed and the exposure time of the detector set to
4 ms. To compare the experimental data and the reconstructed results with the true spectral
information, the reference spectrum was measured by a monochromator.

For successful spectral reconstruction, an interferogram should be recorded with the
least distortion possible. Moreover, the ratio of the sampling frequency to the maximum
wavenumber of the source needs to be considered. Figure 3 shows the optical path dif-
ference corresponding to a single pixel and the ratio of the sampling frequency to the
maximum wavenumber ϕ along mirror displacement a. The focal length of the Fourier lens
was 300 mm. As mirror displacement a increases, the optical path difference Δmin linearly.
The ratio ϕ decreases along a and falls below two when a is greater than 6.3 mm. When the
ratio ϕ is below two, an interferogram is insufficiently sampled, leading to aliasing in the
spectrum. a may be no longer than 6.3 mm to avoid aliasing.

As a increases, the distance l increases proportionally. As a result, the length of an
overlapped area decreases, leading to a decrease in sampling data points. Figure 4 shows
the variation of data points in an overlapped area and the spectral resolution along mirror
displacement. As the mirror displacement increases, the optical path difference correspond-
ing to single pixel Δmin increases so that the maximum optical path difference increases
as the spectral resolution is enhanced. However, as the length of an overlapped area de-
creases, the maximum optical path difference begins to decrease, resulting in deterioration
of spectral resolution. In this experiment, the longest maximum optical path difference
was obtained at a mirror displacement of 5 mm. The best spectral resolution was expected
to be 74 cm−1. Moreover, since ϕ was close to two, it was highly possible to obtain an
interferogram with the lack of sampling data points.
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a

Figure 3. Variation of optical path difference of a single pixel and the ratio of sampling frequency to
maximum wavenumber of source radiation along mirror displacement.

a

N

Figure 4. Variation of sampling data points in an overlapped area and spectral resolution along
mirror displacement.

As shown in Figure 4, the static modulated Fourier transform spectrometer with a
modified Sagnac interferometer has a poor spectral resolution, similar to other reports.
However, through a reconstruction method, the spectral resolution of the system can
be significantly improved. When the reconstruction method is applied to a measured
spectrum, the spectral resolution becomes dependent on the number of wavenumber
components in the transfer function. In this experiment, the wavenumber range of the
transfer function is from 3584 to 12,472 cm−1, which is coincident with that of the detector,
and the number of components is 1024, resulting in a spectral resolution of 8.7 cm−1 at
any mirror displacement. The number of components should be 1024 at most because
the spectrum cannot successfully be reconstructed when the number of components is
greater than 1024. This is because the complexity inducing the bias and overfitting problem
grows as the number of components increases. In addition, to obtain the narrow spectral
width, an interferogram needs to be sampled for a long maximum optical path difference
according to the Shannon criterion. The optimal mirror displacement should be decided
by careful consideration. Figure 5 shows interferograms and Fourier transformed spectra
along mirror displacement. Figure 5a is an interferogram obtained at a mirror displacement
of 1 mm. The number of data points in the overlapped area is 457 and the maximum
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optical path difference is 5.6 × 10−2 mm. The maximum optical path difference Δmin is
determine by multiplying Noverlap. Figure 5b shows the spectrum at a mirror displacement
of 1 mm. The monochromator (black solid line) is the reference spectrum. F.T. (black
dashed line) is a Fourier transformed spectrum. When Fourier transform is performed,
the spectral width is 596 cm−1 and the spectral resolution is 178 cm−1. However, after
the reconstruction method is applied, the spectral width reduces to 468 cm−1 and the
spectral resolution improves to 8.9 cm−1. The spectral resolution could be significantly
improved but the spectral width was still wider compared to that of the reference spectrum
due to the small value of the maximum optical path difference. We could obtain spectra
along mirror displacement by performing Fourier transform and reconstruction to find
the condition under which the spectral width became the narrowest. The best spectral
resolution of 73 cm−1 was obtained at a mirror displacement of 5 mm and a spectral width
of 428 cm−1. However, in this experiment, the narrowest spectral width was obtained at
mirror displacement of 4 mm. The difference might have arisen from sampling errors that
broadened the spectral width, with the effects of the errors dominant when ϕ became closer
to the condition in Equation (7). At the mirror displacement of 4 mm, ϕ was 3.2, which was
greater than the 2.6 obtained for a mirror displacement of 5 mm. Therefore, the optimal
mirror displacement should be adjusted by considering the optimal value of ϕ. Figure 5c is
an interferogram obtained at a mirror displacement of 4 mm. The number of data points
in the overlapped area is 288, and the maximum optical path difference is 13.6 × 10−2

mm. Figure 5d shows the spectrum at a mirror displacement of 4 mm. When Fourier
transform is performed, the spectral width and spectral resolution are 414 cm−1 and 74
cm−1, respectively. When the reconstruction is performed, the spectral width reduces to
371 cm−1 and the spectral resolution improves to 8.9 cm−1. The reconstructed spectrum
shows much closer characteristics to the reference spectrum.

Figure 5e is an interferogram obtained at a mirror displacement of 6 mm. Though
mirror displacement increases, the spectral width becomes broader than that at a mirror
displacement of 4 mm. The number of data points in the overlapped area is 175, and a
maximum optical path difference is 12.3 × 10−2 mm. Compared to Figure 5c, the number of
data points decreases and the maximum optical path difference shortens. Figure 5f shows
a spectrum at a mirror displacement of 6 mm. When Fourier transform is performed, the
spectral width is 450 cm−1 and the spectral resolution is 81 cm−1. When the reconstruction
is performed, the spectral width reduces to 407 cm−1 and the spectral resolution improves
to 8.9 cm−1.

Figure 5g shows a spectral width and ϕ along mirror displacement. A black solid
rectangle and a hollow rectangle show the spectral width obtained by performing Fourier
transform and reconstruction, respectively, along mirror displacement. The hollow circle is
ϕ. The spectral width of the spectrum obtained by the reconstruction method is narrower
than that obtained by Fourier transform. Moreover, the reconstructed spectrum is more
accurate when the maximum optical path difference is long in an obtained interferogram.
The maximum optical path difference is found for the longest mirror displacement of 5 mm;
however, the spectral width is not the narrowest. It should be considered that, for the best
performance of the spectrometer, not only the maximum optical path difference but also the
sampling frequency should be considered. After correction of sampling errors, the optimal
ϕ value of 3.2 was obtained at a mirror displacement of 4 mm.
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Figure 5. Cont.
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(g) 

a

Figure 5. An interferogram and spectra along with mirror displacement. (a) An interferogram
obtained at a mirror displacement of 1 mm, (b) spectra corresponding to (a), (c) an interferogram
obtained at a mirror displacement of 4 mm, (d) spectra corresponding to (c), (e) an interferogram
obtained at a mirror displacement of 6 mm, (f) spectra corresponding to (e), and (g) the spectral
width associated with the method and ϕ, along with mirror displacement..

4. Conclusions

A static modulated Fourier transform spectrometer is composed of a modified Sagnac
interferometer. Due to insufficient sampling data points in the overlapped area, the maxi-
mum wavenumber is limited, resulting in distortion such as spectral folding. A modified
Sagnac interferometer is readily optimized to overcome the distortion, thus improving on
other static modulated interferometers such as a single mirror-based interferometer and a
birefringent prism-based interferometer.

In this investigation, from the relationship between the interferogram and the spec-
trum, the transfer function of a spectrometer could be expressed as a cosine function.
Important parameters of the transfer function were focal length of the lens, mirror displace-
ment, and pixel pitch. In spectral reconstruction, the spectral resolution depends on the
number of wavenumber components of the transfer function. The spectral resolution could
be improved to 8.9 cm−1 at any mirror displacement when the number of wavenumber com-
ponents in a transfer function was 1024 in the range from 3584 to 12,472 cm−1. This marked
a significant improvement compared to the value of 74.0 cm−1 obtained by performing
Fourier transform. To obtain better spectral characteristics, a larger maximum optical path
difference is required. Thus, the ratio of the sampling frequency of a spectrometer to the
maximum wavenumber should be considered. In our experiment, when ϕ became closer
to two, the errors dominantly affected the spectrum, and as a result, the spectral width was
broadened. The best condition for reconstruction was at a mirror displacement of 4 mm,
where ϕ became 3.2. Before applying the reconstruction method suggested in this study, the
obtained Fourier transformed spectral width was 414 cm−1; then, after the reconstruction
method was applied, the spectral width was narrowed to 371 cm−1, which was very close
to the reference spectral value. The spectral reconstruction was successful in improving the
spectral characteristics in a static modulated Fourier transform spectrometer. The spectral
resolution could be greatly improved without requiring any additional optical component
to increase the maximum optical path difference. However, the accuracy of the spectrum
is still dependent on the maximum optical path difference and sampling frequency. An
approach to solving this drawback needs to be discussed. The reconstruction method
that we suggest in this paper allows a static modulated Fourier transform spectrometer to
remain compact with high performance.
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Abstract: Conventional chromatic confocal systems are mostly single-point coaxial illumination sys-
tems with a low signal-to-noise ratio, light energy utility and measurement efficiency. To overcome the
above shortcomings, we propose a parallel non-coaxial-illumination chromatic-confocal-measurement
system based on an optical fiber bundle. Based on the existing single-point non-coaxial-illumination
system, the optical fiber bundle is used as the optical beam splitter to achieve parallel measurements.
Thus, the system can yield measurements through line scanning, which greatly improves measure-
ment efficiency. To verify the measurement performance of the system, based on the calibration
experiment, the system realizes the measurement of the height of the step, the thickness of the trans-
parent specimen and the reconstruction of the three-dimensional topography of the surface of the
step and coin. The experimental results show that the measuring range of the system is 200 μm. The
measurement accurcy can reach micron level, and the system can realize a good three-dimensional
topography reconstruction effect.

Keywords: chromatic confocal system; optical fiber bundle; non-coaxial illumination; transparent
specimen; three-dimensional topography reconstruction

1. Introduction

With the development of science and technology, three-dimensional topography re-
construction plays an important role in production and life. Chromatic confocal technology
is derived from traditional laser confocal technology, which is one of the optical measure-
ment techniques widely used at present. It realizes measurement by using the imaging
characteristics of axial dispersion. Additionally, compared with other optical measurement
techniques, such as the white-light interferometry [1,2], laser triangle method [3,4], grating
projection method [5,6], and laser confocal method [7,8], chromatic confocal technology
has no axial scanning, and its measuring efficiency and precision are higher. The applica-
tion fields of chromatic confocal technology mainly include displacement and thickness
measurements [9,10], flatness and roughness tests [11,12], defect and flaw detection [13,14],
three-dimensional topography reconstruction [15,16], etc.

In recent years, on the one hand, the research of parallel chromatic confocal technology,
which is derived from single-point chromatic confocal technology, is gradually emerging.
Similar to laser confocal technology, chromatic confocal technology also uses light-beam
splitters [17] to realize parallel measurements. Existing light-beam splitters mainly include
the Nipkow turntable [18], micropinhole array [19], microlens array [20], optical fiber
bundles [21], the digital micromirror device (DMD) [22]. They all turn single-light spots
into multi-light spots to reduce scanning time and improve measurement speed. Among
them, the microlens array, DMD and optical fiber bundles have been gradually applied
to chromatic confocal parallel-measurement techniques. In 1996, Tiziani H [23] realized
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multipoint measurement using a microlens array and applied this technology to macro-
and microsurface measurements and defect analysis in 2000 [24]. In 2013, Hillenbrand [25]
designed a three-point chromatic confocal distance sensor to achieve parallel measurements
by two-stage spectral multiplexing. Then, in 2015, the authors of [26] proposed two kinds
of chromatic confocal matrix sensors for a three-dimensional-object snapshot collection,
which can perform spectral evaluations on all transverse channels at the same time. In 2021,
Hao Hu [27] designed a line-scanning chromatic confocal optical path using the slit, which
can achieve accurate measurements of three-dimensional topography and the thickness
of highly reflective materials. In 2020 and 2021, Yu Qing [28] used optical fiber bundles
and the DMD as optical beam splitters to achieve full-field three-dimensional topography
measurements of the coaxial-illumination chromatic confocal system.

On the other hand, with the gradual expansion of application fields, some coaxial-
illumination chromatic confocal systems can no longer meet the measurement requirements
of specific specimens. Therefore, a non-coaxial-illumination system has gradually emerged
in recent years. Non-coaxial illumination occurs when the reflected light and the camera
are not on the same axis. In contrast, coaxial illumination occurs when both are on the
same axis. The optical path structure of the chromatic confocal system mentioned above is
mainly the vertical optical path, which is also called coaxial illumination. With the develop-
ment of research, chromatic confocal research about non-coaxial-illumination structures is
gradually emerging. In 2020, G. Berkovic [29] designed a commercial chromatic-confocal-
displacement sensor suitable for the detection of inclined-incident targets. The sensor
is fitted with collimation mirrors and reverse reflectors to improve its performance. In
2021, Yu Qing [30] proposed a non-coaxial-illumination-light-path structure to measure the
thickness of transparent specimens with micron accuracy.

Based on previous research about parallel chromatic confocal measurements and
non-coaxial-illumination structures, the two methods have been combined to improve the
measurement efficiency, signal-to-noise ratio and light energy utilization of the system in
our paper. Through the usage of an optical fiber bundle with the line-scanning method, the
vertical and lateral information of the measured object was captured by the system. Then,
the system could reconstruct the three-dimensional topography of the measured surface by
the related information.

2. Principles of Parallel Chromatic Confocal System with Non-Coaxial Illumination

2.1. Principle of Dispersion

The core principle of the chromatic confocal technique is the spectral coding technique,
which focuses the light of different wavelengths onto different axial positions through the
dispersion system, as shown in Figure 1. The value of λ1, λ2 and λ3 decrease in turn.

Figure 1. Schematic of the spectral coding technique.
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According to the principle of axial dispersion, polychromatic light is dispersed in
the direction of the optical axis by the dispersion system. Light of different wavelengths
focuses on different axial positions. The wavelength distribution can be expressed as a
function of λ(z), where z is the axial position and the output of the light intensity in object
space is:

I(z) = [
sin( u

4 )
u
4

]
4

(1)

In this formula, u is the normalized axis coordinate. The normalized axis coordinate u
can be expressed as:

u =
2π

λ(z)
Δz

a2

f 2 (2)

As shown in Equation (2), λ is the wavelength of the incident light, a is the exit
pupil radius of the imaging lens and f is the focal length of the lens. Δz is the defocus
amount, which is determined by the axial-light-intensity response function of the chromatic-
confocal-measurement system. Theoretically, there are a series of intensity peaks on the
CCM distribution curve according to λ(z). This “multi-peak” feature allows CCM systems
to perform axial position measurements without mechanical scanning. Thus, the axial
position can be measured by decoding the wavelength information of the reflected light.

2.2. Principle of Single-Point Chromatic Confocal System with Non-Coaxial Illumination

Firstly, different optical path structures are shown in Figure 2. The light from the light
source travels to the beam splitter, and the light that arrives at the object is reflected from
the surface to the detector. When the incident light arrives at the surface at a vertical angle,
the optical path structure is called coaxial illumination, as shown in Figure 2a. On the other
hand, when the incident light arrives at the surface at an inclined angle, the optical path
structure is called non-coaxial illumination, as shown in Figure 2b.

Figure 2. Schematic of the different optical path structures: (a) Coaxial illumination; (b) Non-coaxial
illumination.

Secondly, the schematic of the single-point chromatic confocal system with non-coaxial
illumination is shown in Figure 3, where θ represents the angle of the incident light. The
light beams with different wavelengths emitted from the white-light source are distributed
along the optical axis by the dispersive tube lens and are then focused on different axial
locations. In this process, only the light beams focused on the surface of the sample can
be reflected and focused by the objective. Finally, the light spots with corresponding color
information are captured by the imaging surface of the color camera. Combined with the
different color information corresponding to the different heights of the object surface,
the three-dimensional topography information can be obtained by the two-dimensional
point-scanning method.
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Figure 3. Schematic of the single-point chromatic confocal system with non-coaxial illumination.

The point spread function (PSF) describes the imaging response of the point light
source, and it is often used to measure the resolution of reconstructed images.

When the point light source in the single-point system arrives at the surface of the
measured object, the PSF function h0 of the system is:

h0(x, y, z)
=
∫

δ(x, y, z − Δz) · h1(x, y, z)dz
= δ(x, y)h1(x, y, Δz)

(3)

In Equation (3), Δz represents the longitudinal defocus quantity. Then, the light spot
that arrives at the surface is reflected by the measured surface and arrives at the imaging
plane. So, the PSF function of the whole single-point system is:

hcon f (x, y, z) = δ(x, y)h1(x, y, Δz) ∗ h2(x, y, Δz)
=
∫ ∫

δ(x′, y′)h1(x′, y′, Δz) · h2(x − x′, y − y′, Δz)dx′dy′
= h1(0, 0, Δz)h2(x, y, Δz)

(4)

2.3. Principle of the Optical Fiber Bundle

The optical fiber bundle, also known as the optical fiber image-transmission bundle, is
composed of several optical fibers. It has several array arrangements, including circular,
square and linear arrays. In this paper, the light emitted from the optical fiber bundle is
linear, as shown in Figure 4. In Figure 4, the number of the optical fibers is represented by
M, and the center distance between the adjacent light spots is represented by d.

Figure 4. The point source of linear array.

It can be seen from Equation (4) that in parallel measurements, the imaging rule of
any point light source satisfies the confocal relation of the impulse response function. Then,
the amplitude distribution of the light field of the light source is:

G(x0, y0, z0) =
M

∑
i=1

δ2(x0 − id, y0) (5)
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In Equation (5), δ2 represents the two-dimensional δ function and d represents the
distance between the adjacent point light sources. Therefore, the PSF function of the whole
parallel system is:

hcon f =

[
M
∑

i=1
δ2(x0 − id, y0) · h1(x − id, y, Δz)

]
∗ h2(x, y, Δz)

=
M
∑

i=1

∫ ∫
δ2(x′ − id, y′)h1(x′ − id, y′, Δz) · h2(x − x′, y − y′, Δz)dx′dy′

=
M
∑

i=1
h1(0, 0, Δz)h2(x − id, y, Δz)

(6)

From Equation (6), in the parallel chromatic confocal measurement system, the optical
field distribution is a total of each single-point system. It is equivalent to the coefficient
of M single-point chromatic confocal subsystems. The above theoretical analysis provides
a theoretical basis for the application of optical fiber bundle in the parallel chromatic
confocal system.

Under the measurement conditions, the optical fiber bundle applied in this system
is shown in Figure 5a. The section of the end coupled with the light source is circular, as
shown in Figure 5b. The section of the end coupled with the dispersion tube lens is linear,
as shown in Figure 5c. In Figure 5, the number “1” represents the circular end, and the
number “2” represents the linear end.

Figure 5. (a) The physical picture of the optical fiber bundle; (b) Circular end; (c) Linear end.

From Figure 5b,c, it can be seen that the optical fiber bundle used in our system
is composed of 65 multi-mode fibers, and the material of the fiber core is quartz. The
parameter diagram of the optical fiber bundle is shown in Figure 6. The parameters of each
optical fiber are as follows: the NA value is 0.22; the diameter is 200 μm; the distance D
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between fibers is 120 μm; and the diameter of the circular end is about 2 mm. Due to the
limitation of the aperture of the components, only 18 of the 64 optical fibers are applied in
our system. Therefore, the actual length of the optical fiber bundle array used in the system
is about 5.66 mm.

Figure 6. Parameter diagram of the optical fiber bundle.

2.4. Principle of Parallel Chromatic Confocal System with Non-Coaxial Illumination

After introducing the principle of the optical fiber bundle, we apply it to Section 2.2
to obtain the parallel chromatic confocal system with non-coaxial illumination based on
the optical fiber bundle, as shown in Figure 7, where θ represents the inclined angle of
the incident light. The light generated from the optical fiber bundle is arranged linearly
on the measured surface. When the measured object moves along the direction (the x-
axis in Figure 7) that is perpendicular to the optical fiber bundle and the z-axis of the
system, the measurement can be completed through line scanning. In this process, the
three-dimensional topography of the whole measured object can be obtained.

Figure 7. Schematic of the parallel chromatic confocal system with non-coaxial illumination.

2.5. Principle of the Color-Conversion Algorithm

In our study, a color-conversion algorithm is developed, which mainly involves the
RGB color space and HSI color space, and the two color-space models are shown in Figure 8.

The HSI color model starts from the human visual system. The three related parame-
ters used to describe colors are H (hue), S (saturation) and I (intensity). The H value, which
is a wavelength-dependent parameter, can describe the spectral color and its range is [0,
2π]. Each spectral color has one angle for itself. For example, the angle of spectral red is 0,
the angle of spectral green is 2π/3 and the angle of spectral blue is 4π/3.
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Figure 8. (a) Model of the RGB color space; (b) Model of the HSI color space.

Because the original data from the color camera is in RGB format, a conversion
algorithm for RGB to HSI is needed. The classic geometric derivation conversion formula
for the conversion is given as follows:

H =

{
θ,

2π − θ,
G ≥ B
G < B

(7)

where θ = cos−1
(

(R−G)+(R−B)

2
√

(R−G)2+(R−B)(G−B)

)
.

In the following section, the relevant experiments are discussed to verify the principles
discussed above.

3. Experiments

3.1. Construction of the Measurement System

Based on the above theoretical analysis, the parallel chromatic confocal system with a
non-coaxial-illumination-measurement experimental platform based on an optical fiber
bundle is established, as shown in Figure 9. The components used in the experimental
platform are listed in Table 1.

Table 1. List of components used in our system.

Components Manufacturer Function

White-light source Yousheng, (MT-G2 Easy White LED) Produce polychromatic light source
Optical fiber bundle Yousheng, (Custom-made) Divide a light beam into several beams
Dispersive tube lens Self-built Produce chromatic dispersion
Objective Motic, (Magnification:10×; N.A value:0.1) Focus on the light
Platform Daheng Optics, (GCM-T25MC) Adjust and provide displacement
Gauge block WD, (32 pieces of level 0) As the measured object
Transparent specimen Sail brand As the measured object
Inductance micrometer Tesa, (TT80) Measure displacement value and true value
Color camera Basler, (a2A5320-23ucBAS) Capture color images
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Figure 9. Device diagram of the parallel chromatic confocal system with non-coaxial illumination.

3.2. Calibration Experiment

First of all, the calibration experiment is conducted. After the experimental platform
is built, a standard measuring block is selected as the measured object. The platform is
controlled by the inductance micrometer to perform line scanning along the z-direction at a
fixed step of 50 μm. In the calibration process, the images at different z-axial positions of
50 μm, 350 μm, 650 μm and 950 μm are obtained by the color camera, as shown in Figure 10.

 

(a) (b) 

(c) (d) 

Figure 10. Images at different axial positions obtained by the camera: (a): 50 μm; (b): 350 μm;
(c): 650 μm; (d): 950 μm.

We use the independently developed color-conversion algorithm mentioned in Sec-
tion 2.5 to process the obtained color images. According to the color information of each
light spot and the corresponding displacement information, the “H value–Axial displace-
ment” calibration curve is obtained by calculating the average H value of 18 optical fibers of
spots selected by the dotted box in Figure 10. The calculation results are shown in Table 2.
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Table 2. Calibration experimental data.

Number Axial Displacement (μm) H Value

1 0 26.93
2 50 28.58
3 100 30.46
4 150 32.88
5 200 35.89
6 250 39.57
7 300 44.24
8 350 49.94
9 400 56.56
10 450 65.47
11 500 76.23
12 550 86.36
13 600 93.12
14 650 97.70
15 700 101.27
16 750 104.63
17 800 107.28
18 850 109.58
19 900 112.03
20 950 115.20

The calibration results are shown in Figure 11a. In the calibration curve, the linear
section is the measurement range of the system, which is 200 μm. Through the linear fitting
of the calibration data within the linear measurement range, the fitting line is obtained as
shown in Figure 11b.

Figure 11. Calibration experiment: (a) Experimental data; (b) Calibration fitting results.

From Figure 11b, the calibration equation of the system is:

y1 = 5.29x + 200.23 (8)

where y1 is the axial displacement value of the measured object, the unit is μm and x repre-
sents the corresponding H value. According to the calibration experiment, the measuring
range of the system is 200 μm. The linear correlation coefficient of the calibration equation
is above 0.99.

147



Sensors 2022, 22, 9596

3.3. Measurement of Step Height

Based on the calibration experiment, the step measurement experiment is carried out.
In the experiment, two standard measuring blocks with a height of 1.03 mm and 1.08 mm
are selected. The block of 1.08 mm is Block 1, and the block of 1.03 mm is Block 2. They are
ground together on the base by molecular force to form step, and the base block gauge is
random. The step is shown in Figure 12a.

Figure 12. Measurement of step height: (a) Picture of step; (b) Schematic diagram of step
measurement.

The true height value of the step measured by an inductance micrometer Tesa TT80 is
57.87 μm. The surface of the step is within the linear measurement range of the system and
the schematic diagram is shown in Figure 12b.

In Figure 12b, the six light spots fall on the measuring block surface of 1.03 mm
and 1.08 mm, respectively. By calculating the average H value of the six light spots of
Block 1 and Block 2, the height values and the difference in the height of the step of the
two measuring blocks can be obtained. The diagram of measurement results is shown
in Figure 13, and the above experimental process was repeated 20 times. The results are
shown in Table 3.

Figure 13. Result diagram of step measurement.
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Table 3. Step measurement experiment data.

Number H Value of Block 1
Displacement of

Block 1 (μm)
H Value of Block 2

Displacement of
Block 2 (μm)

Height of
Difference (μm)

1 89.91 675.85 79.31 619.78 56.07
2 89.80 675.27 79.20 619.20 56.07
3 89.80 675.27 79.21 619.25 56.02
4 89.85 675.54 79.34 619.94 55.60
5 89.84 675.48 79.28 619.62 55.86
6 89.83 675.43 79.35 619.99 55.44
7 89.96 676.12 79.32 619.83 56.29
8 89.89 675.75 79.28 619.62 56.13
9 89.85 675.54 79.26 619.52 56.02
10 89.84 675.48 79.34 619.94 55.54
11 89.79 675.22 79.37 620.10 55.12
12 89.89 675.75 79.37 620.10 55.65
13 89.96 676.12 79.45 620.52 55.60
14 89.87 675.64 79.23 619.36 56.28
15 89.98 676.22 79.43 620.41 55.81
16 89.97 676.17 79.39 620.20 55.97
17 89.98 676.22 79.40 620.26 55.96
18 89.78 675.17 79.24 619.41 55.76
19 89.86 675.59 79.33 619.89 55.70
20 89.83 675.43 79.27 619.57 55.86

The average value of the step (μm) 55.84
The difference from the true value (μm) −2.03

Relative error −3.51%
The standard deviation σ of the step (μm) 0.29

Through the analysis of the above data, it can be seen that the measured height of the
step is 55.84 μm, the relative error is −3.51% and the 3σ value is 0.87 μm. Therefore, the
measurement accuracy of the system can reach the micron level.

3.4. Measurement of Transparent Specimen Thickness

In order to verify the ability of the system to measure the thickness of transparent
specimens, a glass slide with the transmittance of 84% (380 nm)–90% (717 nm) is selected as
the transparent specimen for measurement. The true value of the glass slide measured by
Tesa TT80 is 184.08 μm. The physical image of the glass slide is shown in Figure 14a, and
the schematic diagram is shown in Figure 14b. In Figure 14b, the 18 light spots on the left
are the H value reflected on the upper surface of the transparent specimen, and the 18 light
spots on the right are the H value reflected on the lower surface of the transparent specimen.

Similarly, 20 groups of repetitive measurement experiments are conducted based on
the calibration experiment. Additionally, the thickness of the transparent specimen d can
be expressed as follows [30]:

d = k1(Hi − H0) · cos θ · (tan α − tan β)

(tan α′ − tan β′) (9)

The thickness data of transparent specimen obtained is shown in Figure 15 and Table 4.
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(b) 

The upper The lower 

Figure 14. Measurement of transparent specimen thickness: (a) Picture of the transparent specimen;
(b) Schematic of the measurement of the transparent specimen.

Figure 15. Diagram of measurement results of transparent specimen.
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Table 4. Transparent specimen thickness measurement experimental data.

Number H Value of Upper H Value of Lower H Value of the Difference

1 65.80 76.86 11.06
2 65.99 76.57 10.58
3 66.19 76.91 10.72
4 66.17 76.84 10.67
5 66.15 76.84 10.69
6 66.19 76.81 10.62
7 66.06 76.78 10.72
8 66.19 76.65 10.46
9 66.14 76.79 10.65

10 66.00 76.68 10.68
11 66.20 76.90 10.70
12 66.15 76.79 10.64
13 66.21 76.95 10.74
14 66.05 76.74 10.69
15 66.05 76.64 10.59
16 66.23 76.91 10.68
17 66.16 76.75 10.59
18 66.13 76.63 10.50
19 66.05 76.68 10.63
20 66.20 76.97 10.77

The average H value of the difference 10.67
The thickness value of the transparent specimen(μm) 177.58

The difference from the true value(μm) −6.5
Relative error −3.53%

The standard deviation σ of the difference(μm) 0.12

The measured thickness of the transparent specimen is 177.58 μm, the relative error is
−3.53% and the 3σ value is 0.36 μm. The measurement accuracy of the system can reach
the micron level.

3.5. Three-Dimensional Topography by Line-Scanning Method

In order to verify the ability of three-dimensional surface topography, the step in
Section 3.3 and the “1” character on the surface of the coin were chosen as measured objects.
The physical picture and the schematic diagram of the step and CNY 1 coin are shown in
Figure 16.

For the restoration of the step surface, the optical fiber bundle is arranged in the y-axis
direction as shown in Figure 16a, and the motor moves in the x-axis direction. In the actual
measurement process, the measuring range of the step surface is 3.25 mm × 5.92 mm. The
one-dimensional scanning distance is 3.25 mm, and the scanning speed is 50 μm/s. The
photography speed of the color camera is 1 piece/s and a total of 66 photos are taken. Each
photo has 12 measuring points, so there is a total of 792 measuring points. Through the “H
value-displacement” conversion processing of 792 measured points, the three-dimensional
topography features of the step surface are obtained, as shown in Figure 17 in which the
surface height information of the step surface is about 50 μm.

For the restoration of the “1” character on the surface of the coin, the optical fiber
bundle is arranged in the y-axis direction as shown in Figure 16b, and the motor moves in
the x-axis direction. In the actual measurement process, the “1” character measuring range
is 2.20 mm × 1.02 mm. The one-dimensional scanning distance is 2.20 mm, and the scanning
speed is 25 μm/s. The color camera photography speed is 1 piece/s and a total of 89 photos
are taken. Each photo has 18 measuring points with a total of 1602 measuring points.
By data analysis and the processing of these measuring points, the three-dimensional
topography feature of “1” is obtained, as shown in Figure 18 in which the measured surface
height is about 50 μm.
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Figure 16. Three-dimensional topography by the line-scanning method: (a) Schematic of the step
measurement; (b) Schematic of the coin measurement.

Figure 17. The three-dimensional diagram of the step.
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Figure 18. The three-dimensional diagram of “1”.

3.6. Contrast Experiment

In order to better verify the improvement of the measurement efficiency of the sys-
tem in this paper, compared with the single-point non-coaxial-illumination system, the
corresponding contrast experiments are conducted.

The experimental platform of the single-point chromatic confocal system with non-
coaxial illumination is shown in Figure 19.

Figure 19. Device diagram of the single-point chromatic confocal system with non-coaxial
illumination.

In the above system, under the condition that the other experimental conditions remain
unchanged, the optical fiber bundle is replaced with an optical fiber. According to the
above-mentioned experimental procedures, the calibration experiment and the transparent
specimen-thickness-measurement experiment are carried out. In the calibration process,
the images at different z-axial positions of 100 μm, 700 μm, 1300 μm and 1900 μm obtained
by the color camera are shown in Figure 20.
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Figure 20. Images at different axial positions obtained by the camera: (a): 100 μm; (b): 700 μm;
(c): 1300 μm; (d): 1900 μm.

As can be seen from the number of light spots in the calibration results between
Figures 10 and 20, the measurement efficiency of the parallel measurement is 18 times that
of the single-point measurement. The total experimental results of the parallel measurement
are presented in Table 5.

Table 5. Experimental comparison results.

Experiment Type Experiment Results Our System The Comparative System

Calibration experiment
Calibration equation y1 = 5.29x + 200.23 y2 = 12.70x + 335.12

Measuring range (μm) 200 400
Linear correlation coefficient >0.99 >0.99

Measurement of transparent
specimen thickness

Measured thickness value (μm) 177.58 176.00
Relative error −3.53% −4.39%

Standard deviation σ (μm) 0.12 0.01

From Table 5, it can be found that the measurement accuracy of the two systems
can reach the micron level regardless of whether the optical fiber bundle is used as the
beam splitter or not. Because the number of light spots in the optical fiber bundle in the
parallel non-coaxial-illumination system is 18 times that in the single-point non-coaxial-
illumination system, the measurement efficiency of the parallel non-coaxial-lighting system
is significantly improved.

4. Discussion

This paper proposes a chromatic confocal system for parallel non-coaxial illumination
based on the optical fiber bundle, and it solves the problem of a low signal-to-noise ratio
and low light energy utility which are in the traditional coaxial illumination system. This
paper includes the following points:

(1) By the related theoretical analysis of the non-coaxial-illumination system and the
properties of the optical fiber bundle, it is proved that the optical fiber bundle can
be applied in the chromatic confocal system. Based on this, the existing single-
point non-coaxial-illumination system is optimized using the optical fiber bundle as
the light-beam splitter to realize parallel measurements, and this optimization can
improve the measurement efficiency of the single-point system.
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(2) Combined with the color-conversion algorithm, the conclusion of (1) is verified by
corresponding step height measurement, transparent specimen thickness measure-
ment and three-dimensional topography restoration. Three-dimensional topography
includes the restoration of the step and character “1” of the coin.

(3) The experimental results show that the measuring range of the system is 200 μm, the
repeatability is better than 0.87 μm, the relative error is less than ±4% and the mea-
surement accuracy can reach micron level. Additionally, the measurement efficiency
of the proposed system is 18 times higher than that of the single-point non-coaxial-
illumination system.

5. Conclusions

In this paper, we propose a chromatic confocal system for parallel non-coaxial illu-
mination. Based on the optical fiber bundle and the existing single-point non-coaxial-
illumination system, the optical fiber bundle as a light-beam splitter achieves parallel
measurements through line scanning, which greatly improves the measurement efficiency
of the single-point non-coaxial-illumination system. The experimental results show that the
measurement accuracy can reach micron level and the system has a good three-dimensional
topography reconstruction effect. In the future, we will further improve the measurement
accuracy of the system in three-dimensional topography. Additionally, efforts will also be
made to develop the system towards miniaturization and integration.
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Abstract: Real time radioluminescence fibre-based detectors were investigated for application in
proton, helium, and carbon therapy dosimetry. The Al2O3:C probes are made of one single crystal
(1 mm) and two droplets of micro powder in two sizes (38 μm and 4 μm) mixed with a water-
equivalent binder. The fibres were irradiated behind different thicknesses of solid slabs, and the Bragg
curves presented a quenching effect attributed to the nonlinear response of the radioluminescence (RL)
signal as a function of linear energy transfer (LET). Experimental data and Monte Carlo simulations
were utilised to acquire a quenching correction method, adapted from Birks’ formulation, to restore
the linear dose–response for particle therapy beams. The method for quenching correction was
applied and yielded the best results for the ‘4 μm’ optical fibre probe, with an agreement at the Bragg
peak of 1.4% (160 MeV), and 1.5% (230 MeV) for proton-charged particles; 2.4% (150 MeV/u) for
helium-charged particles and of 4.8% (290 MeV/u) and 2.9% (400 MeV/u) for the carbon-charged
particles. The most substantial deviations for the ‘4 μm’ optical fibre probe were found at the falloff
regions, with ~3% (protons), ~5% (helium) and 6% (carbon).

Keywords: real time dosimetry; hadron therapy; quenching correction

1. Introduction

Particle therapy has gained popularity as an effective technique for cancer treatment
due to its greater precision in dose delivery and less damage to adjacent healthy tissue
and organs. The complexity of particle therapy brings several technical challenges for
dosimetrists, radiobiologists, and medical physicists. In order to evaluate the performance
of particle therapy against conventional radiotherapy, it is essential to test and report
the response of various treatment modalities using similar methods across treatment and
research centres. International agencies (e.g., the International Atomic Energy Agency-
IAEA, the American Association of Physicists in Medicine-AAPM, and the International
Commission on Radiation Units and Measurements-ICRU) have been working on global
standard protocols to harmonise the reporting of treatments. The standards should cover
beam production, dosimetry, relative biological effectiveness (RBE), treatment planning,
clinical requirements and protocols [1,2].

According to the report “Dose Reporting in Ion Beam Therapy” proposed by the
IAEA (Report No. 1560) [3], to guarantee a cost-effective operation of a therapy facility, the
time required for the quality assurance (QA) program must be kept to a minimum while
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ensuring complete coverage of all critical system parameters. Each particle therapy centre
worldwide should thus optimise its QA procedure.

When looking specifically at dosimetry, several authors have published on charged
particle QA using either commercial or in-house developed devices [4–7]. Most of the
systems in use are based on single ionisation chambers or diodes, or arrays of them, and on
radiographic/radiochromic films, which can be considered sufficiently precise but in need
of lengthy procedures and, in the case of diodes and films, as having energy-dependent
effects with linear energy transfer (LET) [8–13]. The quantity of LET describes the average
energy transfer from electronic interactions per unit length travelled by charged primary
particles.

One class of promising dosimeters is based on luminescence detectors. One advantage
is the diverse (point, 1D, 2D) readout possibilities, both as active (radioluminescence-
RL, scintillation) and as passive detectors (thermoluminescence-TL, optically stimulated
luminescence-OSL and radiophotoluminescence-RPL) [5,14–20]. One known drawback
of luminescence detectors is the existence of the quenching effect [21], which is the dose
nonlinearity effect caused by the high ionisation density in particles of high LET, i.e., the
higher the particle LET, the lower the light production efficiency from the luminescence
detector, resulting in substantially under-estimated doses [22–27].

In this paper, we further explore a novel quenching correction method to restore
the linear dose–response for particle therapy beams. Our approach builds on a method
previously used to correct for quenching in plastic scintillator detectors using the Birks
equation [28,29]. The novelty of our method is to include the contribution from fragments
generated along the Bragg curves by proposing a novel general expression for quenching
correction factors. In a previous attempt to correct the response to proton and carbon-
charged particle beams in 2D, real time RL films, we observed that a better agreement could
be reached by including more fragments in our calculations [30].

The aforementioned method [30] is now applied on three types of RL optical fibre
probes, composed of Al2O3:C, in five therapeutic charged particle beams: 160 and 230 MeV
protons, 150 MeV/u helium ions, and 290 and 400 MeV/u carbon ions. For all the opti-
cal fibre probe types, the quenching-corrected doses along the Bragg curves resulted in
substantial improvement when compared to uncorrected data.

2. Materials and Methods

2.1. Irradiations at HIMAC and SCK CEN

The Heavy Ion Medical Accelerator facility (HIMAC) in Chiba, Japan, consists of
three clinical treatment rooms, one biological experiment room (BIO), two large general
experimental halls, and a low-energy experimental room. Figure 1 shows the BIO room
with a horizontal beam line (indicated by (I)), a pair of wobbler magnets and a scatterer
used to produce uniform irradiation fields. The range shifter is used for adjusting the
residual range of the heavy ions in the target. A set of binary filters changes the depth in
the measurements (II).

For our experiments, we irradiated optical fibres coupled to Al2O3:C sensors with 160
and 230 MeV proton, 150 MeV/u helium, and 290 and 400 MeV/u carbon mono-energetic
beams. Actual energies, based on reference measured Bragg curves and Monte Carlo simu-
lations, were 154.5 MeV (LETw = 5.33 MeV/cm) and 226.5 MeV (LETw = 4.15 MeV/cm) pro-
tons, 142.6 MeV/u (LETw = 22.44 MeV/cm) helium ions, and 273.8 MeV/u
(LETw = 132.9 MeV/cm) and 383.2 MeV/u (LETw = 111.1 MeV/cm) carbon ions (Figure 2).
The experimental set-up consisted in positioning Al2O3:C+fibre probes in front of a Poly-
methylmethacrylate (PMMA, density = 1.19 g cm−3) binary filter (“III” in Figure 1) with
different water-equivalent thicknesses (depth in H2O.). The filters consist of 9 plates of
PMMA of 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 mm thickness, covering a circular 10 cm radiation
field.
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Figure 1. Biological experiment room (BIO). The area around “I” indicates the horizontal beam line,
“II” indicates the set of binary filters, and “III” is the position of the fibre probes.

Figure 2. Bragg curves from 160 and 230 MeV proton, 150 MeV/u helium and 290 and 400 MeV/n
carbon mono-energetic beams measured with reference ion chambers.

Reference data (absorbed doses and depth-dose profiles) were acquired using a Markus
ionisation chamber [31,32] (Figure 2). The given absorbed doses to water and dose rates for
each beam/energy type are summarised in Table 1. Bragg curves had different depths in
water within a 10 cm × 10 cm lateral field, with flatness better than 3%.
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Table 1. Details of each measurement campaign at HIMAC with types and energies of beams, dose
rates, and types and quantities of fibre probes.

Beam Type and
Energy [MeV/u]

Dose Rate
[Gy/min]

Fibber Probes (Quantity) Dose to Water at Entrance (d = 0 mm H2O)

H 160
0.08 (a)
0.25 (b)

Single Crystal (1)
38 μm (1)
4 μm (1)

Dose–response: from 0.04 to 0.10 Gy (a)
from 0.1 to 5.0 Gy (b)

Bragg curve: 0.05 Gy (a)
0.25 Gy (b)

H 230
0.36 (a)
0.49 (b)
0.65 (c)

Single Crystal (1)
38 μm (2)
4 μm (2)

Dose–response: from 0.04 to 0.50 Gy (a),
from 0.06 to 2.00 Gy (b)

from 0.5 to 2.0 Gy (c)
Bragg curve: 0.5 and 1.0 Gy (a)

0.05 and 0.50 Gy (b)
0.5 and 1.0 Gy (c)

He 150 4.50
Single Crystal (1)

38 μm (2)
4 μm (2)

Dose–response: 0.3 to 10.0 Gy
Bragg curve: 0.5, 1.0, and 2.0 Gy

C 290
6.90 (a)
7.34 (b)
3.04 (c)

Single Crystal (1)
38 μm (2)
4 μm (2)

Dose–response: 0.5 to 10.0 Gy (a) and (c)
5 to 60 Gy (b),

Bragg curve: 0.5 and 1.0 Gy (a) and (c)
1, 2 and 5 Gy (b)

C 400 6.90
Single Crystal (1)

38 μm (1)
4 μm (1)

Dose–response: 0.1 to 60.0 Gy
Bragg curve: 0.5, 2.0 Gy

Supplementary dose reference data were obtained using 60Co gamma-ray irradiator
Theratron 780 at the Belgian Laboratory for Standard Dosimetry Calibrations (LNK, SCK
CEN, Belgium) [33]. The fibre probes were exposed with a reference nominal dose rate of
0.5 Gy/min and a total dose of 1.0 Gy (DCo).

These reference irradiations with 60Co gamma beams were used to compare the RL
signal with high LET (RLLET) to the signals with low LET from photons (RLCo) and to
calculate the luminescence efficiency further. Reference irradiations took place before and
after the measurements at HIMAC to account for any changes in material sensitivity.

The relative luminescence efficiency μ used in this paper was previously employed
by Sawakuchi et al. [34] and Kalef-Ezra and Horowitz [35]. It is defined as the ratio of the
luminescence signal to the radiation field k, and the luminescence signal to a reference
radiation field l, for a specific dose Dk or Dl. Equation (1) gives the relative luminescence
efficiency μ for heavy charged particles (HCP) and 60Co gamma rays.

μ =
RLHCP/DHCP

RLCo/DCo
= C · RLHCP/DHCP (1)

where RLHCP and RLCo are the measured luminescence signals (RL), and DHCP and DCo are
the absorbed doses, respectively, from the irradiations with heavy charged particles (HCP)
and 60Co gamma rays. The quantity RLCo/DCo is a constant (C) for each fibre type.

2.2. Optical Fibres and Detectors

We tested several fibre probes with Al2O3:C crystals and powder grains produced
by Landauer, Stillwater, OK, USA: one ‘Single Crystal’-type, with one Al2O3:C crystal
(2 × 1 × 1 mm3); two ‘38 μm’-types, with droplets containing Al2O3:C with average micro-
crystal (or grain) size of 38 μm [36,37] (r = 0.5 mm and l = 200 μm); and two ‘4 μm’-types,
with droplets containing Al2O3:C with an average crystalline grain size of 4 μm (r = 0.5 mm
and l = 200 μm) [38]. All PMMA optical fibres were 15 m long, with a 1 mm diameter. We
irradiated the detectors before the experiments in HIMAC to fill deep traps to saturation [39].
A bi-alkali photomultiplier tube (PMT) P30USB (Sens-TechTM) reads the RL signal from
the probes, while two 2 mm 425 nm Hard Coated Broadband Bandpass Interference Filters
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(Edmund Optics, Nether Poppleton, York, United Kingdom) allow only the slow 420 nm
component from Al2O3:C to pass. For all measurements, we sampled at 200 points per
second using a NI USB 6341 DAQ card (National Instruments, Austin, TX 78759, USA) for
data acquisition and control via an in-house developed LabVIEW software. More details of
the RL prototype can be found in previous publications [38,40,41].

The evaluation of the relative efficiency μ by Equation (1) requires the doses DHCP and
DCo to be in the linear range of the dose–response. In order to check if the RLHCP is linearly
proportional to DHCP, the fibres were irradiated with nominal doses DHCP (in water) in the
ranges presented in Table 1 for each beam type, energy, dose rate, and type and quantity of
fibre probes.

2.3. Quenching Correction

To correct the fibre’s measured luminescence for quenching along the central axis of the
particle beams, we used the Birks law, further adapting the method proposed by Robertson
et al. and Almurayshid et al. [29,42,43] by combining the contribution of fragments along
the Bragg curve and the relative luminescence efficiency (μ) described in Section 2.1.

The Birks model describes the RL light emission in terms of the stopping power of the
phosphor for the particle beam, according to Equation (2) below.

dRL
dx

= RL0 · dE/dx
1 + kB · dE/dx

(2)

where RL is the luminescence intensity, dE/dx is the specific energy deposited by the
particles per unit of path length x in the medium, kB is the Birks constant (μg MeV−1 cm−2),
which depends on the charged particle type and the material and RL0 is the relative
luminescence efficiency of the medium. We rewrite Equation (2) in terms of finite voxels to
describe a more realistic therapeutic charged particle beam, where we replace the stopping
power term of the Birks equation with LET [44] as follows (Equation (3)):

RLv =

(
RL0 · LETv

1 + kB · LETv

)
·φv (3)

where RLv is the light emitted from a voxel of volume “v” (Al2O3:C droplets or crystal
described in Section 2.2), LETv is the fluence-averaged LET within the voxel, and φv is the
particle fluence in the voxel. The fluence and fluence averaged-LET (LETf) from the nuclear
fragments of the primary beams were generated via the “TOol for PArticle Simulation”
(TOPAS) Monte Carlo code [45] Monte Carlo calculations (Section 2.4).

The finite size of the active volume in the Al2O3:C probes caused an averaging of the
dose gradients along the Bragg curves. The dose and LET are scored in 0.1 mm volumes in
TOPAS, while the probes have different volumes, as described in Section 2.2. The deviation
between the dose and LET scored in such voxels compared to the same quantities scored in
0.1 mm wide voxels is taken into account and corrected.

In Equation (3), RLv = RLHCP, gives a direct link between the measurements with the
fibre probes (‘RL signal’), the nominal given doses measured with the reference Markus
chamber (DHCP), and the Birks law for quenching.

In order to correct the measured dose for quenching, a correction factor η is required.
This factor takes the form of Equation (4), where the ratio of deposited energy (Ev) to the
emitted RLv light in the voxel “v” can be expressed as:

ηv =

(
Ev

RLv

)
=

(
φv · LETv

RLv

)
=

1 + kB · LETv

RLo
(4)
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Our proposed quenching correction factor η [30] is the sum of the fluence-weighted
quenching corrections ηi for each particle type (primary and fragment) for specific LET
ranges in water.

η = ∑n
d=0 ∑i

(
f i
d · ηi

)
= ∑n

d=0 ∑i

[
f i
d ·
(

1 + kBi · LETi
d

RLoi

)]
(5)

where f i
d is the percentage contribution in fluence of particle “i” at position “d”, multiplied

by the correction factor corresponding to the LET at depth d. Each particle (primary and
fragment) has its own Birks constant kBi and multiplication factor 1/RLoi .

We determined the Birks constant, kB and the relative luminescence efficiency RL0
for each fibre type (single crystal, 38 and 4μm powder) by plotting the normalised ‘RL
signal’ = [(μ·DHCPi )/DHCPentrance] (i = depth in H2O) versus LETf (TOPAS) and then
fitting the curves by using Equation (3) in the nonlinear curve fit option in the “fitting”
routine in Origin(Pro) (Version 2020b, OriginLab Corporation, Northampton, MA, USA).
The parameter RLo is a scaling factor dependent on the detector geometry and the fluence
in the Monte Carlo calculation, while the Birks constant unit is mg·MeV−1cm−2.

By applying the quenching correction factors to all ‘RL signal’ along the Bragg curves,
weighted by the relative luminescence efficiency (that correlates ‘RL signal’ to reference
DHCP), one obtains a corrected dose distribution for each fibre probe type.

2.4. Monte Carlo Simulations

The LET values used to correct the quenching from the optical fibre probes are based
on fluence-averaged LET (LETf). Fluence-based (LETf) and dose-based (LETD) LET values
can vary considerably with depth [46] according to the choice of step limit. This effect
strongly affects the LETD for small step sizes (<500 μm) because Monte Carlo codes usually
only consider collisions where the kinetic energy imparted to secondary electrons is below
a given threshold, restricting the quantity to shorter-range electrons and giving better char-
acterisation when one wants to correlate the radiation effects to RBE or microdosimetry [47].
This step-limiting effect was studied by Guan et al. [46,48] and further addressed and used
by other authors [18,29,49–51]. The agreement is that the step limit effect is negligible for
LETf although it strongly affects LETD results [52,53]. Since the size of the detectors used
in our study is not at the cellular scale (μm), we decided to show only the results related to
LETf.

The “TOol for PArticle Simulation” (TOPAS) Monte Carlo code [45] was used to
simulate the fluence and LETf from the primary beams and their nuclear fragments. The
proton, helium, and carbon ion simulations were performed respectively with 10*106,
20*106, and 25*105 histories. The error statistics in output results (fluence) were (a) <0.01%
along the 160 MeV proton beam up to the Bragg peak (0.04% at the 80% distal falloff depth),
(b) <0.02% along the 230 MeV proton beam up to the Bragg peak (0.04% at the 80% distal
falloff depth), (c) <0.01% along the 150 MeV/u helium beam up to the Bragg peak (0.07%
at the 80% distal falloff depth), (d) <0.05% along the 290 MeV/u carbon beam up to the
Bragg peak (0.55% at the 80% distal falloff depth), and (e) <0.1% along the 400 MeV/u
carbon beam up to the Bragg peak (0.2% at the 80% distal falloff depth). In TOPAS, a
particle fluence scorer and a fluence-averaged LET scorer were attached to the simulated
water volume in function of beam penetration depth. A dedicated filter was assigned to
both active scorers to separate the scored fluence and LET signals for the primary beam
(1H, 4He or 12C) and a list of nuclear fragments (1H, 4He, 6Li, 7Be, 10B, 14N and 16O). In
post-processing software, written in Matlab R2020b (The Mathworks Inc., Natick, MA,
USA), the output of the energy deposit scorer was divided by the output of the fluence
scorer, multiplied by the voxel volume to obtain LET in MeV/mm units. The final LET
values were converted to MeV/cm or keV/μm. Fluence and fluence LET were scored with
the resolution of 0.1 mm, so that the entrance position for TOPAS simulations is defined as
within the first 0.1 mm in water.
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2.5. Overview of Tests

The dose–response curves of proton, helium, and carbon-charged particles were
evaluated by placing the fibre probes at entrance depth, where each dose relates to the ‘RL
signal’ in the beam’s isocenter, as defined in Section 2.1 and Figure 1. The RL emission
from Al2O3:C is proportional to the dose rate [38,40]. To correlate ‘RL signal’ to the given
dose, the ‘ΔRL’ is calculated as the sum of the ‘RL signal’ from the start of irradiation (t = 0)
until the end (t = T), corrected for the averaged background (Bkg) for each independent
irradiation (Equation (6)). Each Bkg was acquired by averaging 25 measured points prior
and 25 measured points post-irradiation (m = 50).

′RL signal′ = ΔRL = ∑t=T
t=0 RLt −

[
1
m

· ∑m
n=1 Bkgn

]
= ∑t=T

t=0 RLt − Bkg (6)

The linearity of the dose response was evaluated by calculating the linearity index of
the measurements. The linearity index describes the departure of the detector’s response
from linearity at a chosen calibration dose D0. The sensitivity of the fibre probe at dose Di
for the i-th radiation is related to the observed RL signal (‘RL signal’i/Di) and is further
normalised by the chosen calibration dose D0 = 1 Gy so that the linearity index is: (‘RL
signal’i/Di)/(‘RL signal’1 Gy/D1 Gy). Fitting curves were derived to correct further the ‘RL
signal’ for the dose ranges where deviations from linearity were observed (Section 3.1).

The Al2O3:C optical fibre probes’ dependence on radiation LET was assessed by
measuring the Bragg curves for proton, helium, and carbon-charged particles. The mea-
surements in the beam’s isocenter were rescaled according to the relative luminescence
efficiencies at entrance doses (d in H2O = 0 mm) and compared with the curves assessed
with a Markus ionisation chamber in terms of peak-to-plateau ratio signals (Section 3.2).
The Monte Carlo simulated fluence and fluence-averaged LET (Section 3.3) was used to
correct the depth-dose curves for quenching using the quenching model for proton, helium
and carbon-charged particles determined in Section 2.3. The model was first implemented
assuming only the primary proton-charged particles and later expanded considering a
combination of the primary beam plus fragments for the helium (1H fragment) and carbon-
(1H and 4He fragments) charged particles (Sections 3.3 and 3.5).

3. Results

In this Section, we present the results and analysis of the measurement campaigns,
starting with the dose responses and Bragg curves for all probe types, followed by the
determination of calibration curves for the and ηLET,Co compared to LET. We introduce
a method to determine the unknown doses and LET of particle therapy fields using a
combination of two or more probes. We used the LET dependence of the RL from different
Al2O3:C probes to establish fluence-LET (LETf) calibration curves. Our fundamental
assumption was that the RL signal does not depend on beam type/energy, as well as
dose–rate and absorbed dose, and thus the RL signal can describe averaged LET values.
Our results offer a proof of concept of the proposed method. Limitations on applying this
method in practical applications will be discussed at the end of this session.

3.1. Fibres Dose Response

Figure 3a–e show the dose calculated from the ΔRL for ‘Single Crystal’, ‘38 μm’ and
‘4 μm’ fibre probes irradiated with 160 MeV proton, 230 MeV proton, 150 MeV/u helium,
290 MeV/u carbon and 400 MeV/u carbon, respectively. In all figures, each point is the
average of independent irradiations (Table 1), and the standard deviations (1 SD), not
plotted in the graphs, are below 1% for 38 and 4 μm fibres and 5% for the ‘Single Crystal’
probe.
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Figure 3. Dose response ‘Single Crystal’, ‘38 μm’ and ‘4 μm’ from (a) 0.04 to 2.00 Gy (0.08 Gy/min)
and from 0.1 to 0.5 Gy (0.25 Gy/min) irradiated with 160 MeV protons; (b) 0.03 to 0.5 Gy (0.36 Gy/min)
and from 0.5 to 4.0 Gy (0.65 Gy/min) irradiated with 230 MeV protons; (c) 0.3 to 10.0 Gy (4.5 Gy/min)
irradiated with 150 MeV/u helium ions; (d) 0.5 to 10.0 Gy (3.04 and 7.34 Gy/min) irradiated with
290 MeV/u carbon ions; (e) 0.1 to 5.0 Gy (6.90 Gy/min) irradiated with 400 MeV/u carbon ions.

The proton curves are very similar for all the same fibre types, with slopes (s) of 2.42
and 2.39 (‘4 μm’), 4.34 and 4.30 (‘38 μm’), and 138.05 and 136.69 (‘Single Crystal’) for 230
and 160 MeV, respectively, resulting in s = 2.405 ± 0.015 (4 μm), s = 4.32 ± 0.02 (38 μm),
and s = 137.37 ± 0.68 (‘Single Crystal’). The higher the beam LET, the flatter the curves.
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Before measuring the RL signal along the Bragg curve, we tested in which dose ranges
the optical probes responded linearly. The available dose rates for irradiations with both
160 and 230 MeV protons were considerably lower than those available for helium and
carbon (Table 1). Hence, the dose ranges in Figure 3 are different.

The linearity index is depicted in Figure 4 for the helium and carbon beams. A
supralinear behaviour is observed for both ‘38 μm’ and ‘Single Crystal’ starting from 2 Gy,
with maximum overresponses of 7.5% (‘38 μm’) and 17.5% (‘Single Crystal’) at 60 Gy for the
carbon-heavy charged particles. The linearity index for the ‘4 μm’ fibre probe did not show
supralinearity for doses below 60 Gy, and no correction was needed for the subsequent
results.

 

Figure 4. Linearity index relative to 1 Gy for ‘4 μm’, ‘38μm’ and ‘single crystal’ optical fibre probes
for (a) He 150 MeV/u, (b) C 400 MeV/u, and (c) C 290 MeV/u charged particles.

The nonlinear response in the ‘38 μm’ and ‘Single Crystal’ curves were corrected by
fitting the linearity index as a function of dose (D). A linearity correction factor (LCF) was
defined for each ‘38 μm’ and ‘Single Crystal’ curve as shown in Equation (7) below and was
applied in subsequent sections to correct for the doses measured along the Bragg curves.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

LCFHe 150
SingleCrystal = 8.11 · D4 − 24.38 · D3 + 27.46 · D2 − 13.66 · D + 3.53

LCFHe 150
38μm = 0.82 · D3 − 1.83 · D2 − 1.36 · D + 0.66

LCFC 400
SingleCrystal = −0.03 · D3 + 0.12 · D2 − 0.03 · D + 0.99

LCFC 400
38μm = −0.02 · D3 + 0.09 · D2 − 0.07 · D + 1.01

LCFC 290
SingleCrystal = −0.06 · D3 + 0.18 · D2 − 0.02 · D + 0.99

LCFC 290
38μm = −0.05 · D3 + 0.19 · D2 − 0.17 · D + 1.03

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(7)

3.2. Bragg Curves

To assess the Bragg curves, we chose specific entrance doses in the linear range for
each fibre type and energy (Figure 5 and Table 1) or, when necessary, used corrections
according to each fibre type-dose response curve (Equation (7)).

The relative luminescence efficiencies (μ) of ‘Single Crystal’, ‘38 μm’ and ‘4 μm’ were
calculated for the RL signals measured at the entrance doses (d = 0.0 mm in H2O) using
Equation (1). Table 2 shows the calculated μ for each probe type and beam energy, cor-
responding to the average of different dose rate measurements (Table 1), and the error
corresponds to one standard deviation (1 SD).
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Figure 5. Central axis peak-to-plateau ratios (dose normalised to DHCP entrance) profiles along the
Bragg curves for ‘Single Crystal’, ‘38 μm’ and ‘4 μm’ probes for (a) H 160 MeV; (b) H 230 MeV; (c) He
150 MeV/u; (d) for C 400 MeV/u, and (e) C 290 MeV/u.
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Table 2. Relative luminescence efficiency of fibre probes (‘Single Crystal’, “38 μm” and “4 μm”) at
entrance depth in H2O for H 230, H 160, He 150, C 400, and C 290.

Relative Luminescence Efficiency (μ)
at Entrance Depth in H2OEnergy

(MeV/u)
LET (keV/μm)

4 μm 38 μm Single Crystal
H 230 0.41 1.02 ± 0.03 0.97 ± 0.03 0.77 ± 0.06
H 160 0.54 1.01 ± 0.02 0.96 ± 0.03 0.76 ± 0.07

He 150 2.25 0.95 ± 0.02 0.90 ± 0.02 0.71 ± 0.07
C 400 11.22 0.75 ± 0.04 0.71 ± 0.03 0.56 ± 0.08
C 290 13.50 0.73 ± 0.03 0.69 ± 0.02 0.55 ± 0.08

Using the calculated μ at entrance depth from Table 2, we rescaled the doses measured
with the optical fibre probes along the Bragg curve for each beam type/energy and fibre
type. Figure 5a–e shows the rescaled Bragg curves (quenched) and the ion chamber
reference for the 160 and 230 MeV protons, 150 MeV/u helium ions, and 290 and 400 MeV/u
carbon ions, respectively.

A comparative analysis of the calculated μ for the three types of optical probes exposed
to protons, helium and carbon-charged particles indicates a larger statistical error for ‘Single
Crystal’. This result is partially due to the spatial non-uniformity of an ion beam at the
crystal target area (1 mm) compared to the droplet probes (0.2 mm).

3.3. Fluence and Fluence Averaged-Let

The contribution from the primary beam and its fragments along the Bragg curve
concerning fluence and LETf, is presented in Figure 6 (protons), Figure 7 (helium ions) and
Figure 8 (carbon ions).

Figure 6. Fluence (upper-left Y-axis) and LETf (bottom-left Y-axis) contribution in depth in water
from the primary 230 (a) and 160 (b) MeV proton-charged particles and their fragments (H, He, B,
Li, Be, N and O) simulated in TOPAS. Upper-right Y-axis presents the reference measured doses
(Markus ion chamber) normalised to the entrance dose (DHCP/DHCP entrance).
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Figure 7. Fluence (upper-left Y-axis) and LETf (bottom-left Y-axis) contribution in depth in water
from the primary 150 MeV/u helium-charged particles and its fragments (H, He, B, Li, Be, N and O)
simulated in TOPAS. Upper-right Y-axis presents the reference measured doses (Markus ion chamber)
normalised to the entrance dose (DHCP/DHCP entrance).

Figure 8. Fluence (upper-left Y-axis) and LETf (bottom-left Y-axis) contribution in depth in water
from the primary 400 (a) and 290 (b) MeV/u carbon-charged particles and their fragments (H, He,
B, Li, Be, N and O) simulated in TOPAS. Upper-right Y-axis presents the reference measured doses
(Markus ion chamber) normalised to the entrance dose (DHCP/DHCP entrance).
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Figure 6 and Table 3 show that the contribution, in fluence, from the primary beam
(1H) consists of >99% along the Bragg curves for both 230 and 160 MeV. As such, we
assumed that the quenching correction factors (Equation (5)) take the form of Equation (8)
below and that, to correct the doses along the Bragg curves, only the primary beam Birks
factors were necessary.

η = ηH

(
f H
d , LETH

d

)
=

(
1 + kB1H · LET1H

d
RLo1H

)
(8)

Table 3. Fluence and LETf were simulated for the 160 MeV and 230 MeV primary beam (1H) and two
fragments (4He and 7Li) for four depths in water: entrance, end of the f plateau, Bragg peak, and
falloff.

Depth in H2O
(mm)

Fluence
(%)

LETf

(keV μm−1)
Fluence

(%)
LETf

(keV μm−1)
Fluence

(%)
LETf

(keV μm−1)
1H 4He 7Li

230 MeV
00.10 99.999 0.381 3.6 × 10−3 83.62 4.5 × 10−5 502.442

170.42 99.994 0.567 4.2 × 10−3 82.92 4.1 × 10−5 490.233
317.74 99.994 3.01 4.1 × 10−3 122.07 3.3 × 10−6 519.452
329.4 99.981 6.987 12.8 × 10−3 115.18 2.3 × 10−4 575.503

160 MeV
00.10 99.995 0.496 3.4 × 10−3 84.60 3.9 × 10−5 536.542
110.8 99.995 0.842 3.8 × 10−3 87.27 4.6 × 10−5 528.111

164.81 99.996 3.820 2.7 × 10−3 127.22 2.7 × 10−5 555.512
168.8 99.997 7.93 1.7 × 10−3 104.29 7.7 × 10−5 583.401

Figure 7 and Table 4 show that the fluence coming from the primary beam decreases
by around 29% at the Bragg peak (d = 30.68 mm), with 29.4% of the fluence coming from
1H and 0.004% coming from the other fragments. When looking at the falloff region,
the contribution to the total fluence from 1H amounts to >98%. As such, the quenching
correction factor for the Helium curves takes the form of Equation (9), where η is mostly
affected by the primary beam (4He) and the 1H fragment.

η = ηHe

(
f He
d , LETHe

d

)
+ ηH

(
f H
d , LETH

d

)
=

[
f H
d ·
(

1 + kBH · LETH
d

RLoH

)
+ f He

d ·
(

1 + kBHe · LETHe
d

RLoHe

)]
(9)

Table 4. Fluence and LETf simulated for the 150 MeV/u primary beam (4He) and two fragments (1H
and 7Li) for four depths in water: entrance, end of plateau, Bragg peak, and falloff.

Depth in H2O
(mm)

Fluence
(%)

LETf

(keV μm−1)
Fluence

(%)
LETf

(keV μm−1)
Fluence

(%)
LETf

(keV μm−1)
4He 1H 7Li

150 MeV/u
00.10 99.636 2.077 0.360 3.94 4.00 × 10−4 423.292
88.91 74.705 3.221 25.255 1.241 3.30 × 10−4 27.360

144.91 70.525 22.659 29.471 1.562 6.29 × 10−5 205.123
148.1 1.227 56.400 98.768 1.464 1.49 × 10−5 330.995

Figure 8 and Table 5, the primary carbon-charged particles are responsible for ~98% in
fluence contribution (d = 0.01 mm), with a rapid increase in fragments contribution with
deeper depths, reaching a contribution in fluence of ~61% (1H) and ~24% (4He) at the Bragg
peak (d = 256.9 mm) for 400 MeV/u and for ~51% (1H) and ~23% (4He) at the Bragg peak
(d = 147.92 mm) for 290 MeV/u. At the falloff region, primary carbon-charged particles are
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almost negligible. The quenching correction factor for the carbon-charged particles takes
the form of Equation (10), where the quenching correction factor has the contribution from
the primary beam (12C) and the 1H and 4He fragments.

η = ηC
(

f C
d , LETC

d
)

+ηHe
(

f He
d , LETHe

d
)
+ ηH

(
f H
d , LETH

d
)

=

[
f H
d ·
(

1+kBH ·LETH
d

RLoH

)
+ f He

d ·
(

1+kBHe ·LETHe
d

RLoHe

)
+ f C

d ·
(

1+kBC ·LETC
d

RLoC

)]
(10)

Table 5. Fluence and LETf simulated for the 400 MeV/u and 290 MeV/u primary beam (12C) and two
fragments (1H and 4He) for four depths in water: entrance, end of plateau, Bragg peak and falloff.

Depth in H2O
(mm)

Fluence
(%)

LETf

(keV μm−1)
Fluence

(%)
LETf

(keV μm−1)
Fluence

(%)
LETf

(keV μm−1)
12C 1H 4He

400 MeV/u
00.10 98.196 9.883 1.646 2.510 0.117 16.517

172.24 18.948 14.972 56.712 0.636 18.215 1.494
256.9 8.031 167.429 61.438 0.763 23.790 2.455

259.21 0.054 291.223 66.900 0.740 25.929 2.411
290 MeV/u

00.10 98.600 11.985 1.237 2.790 0.110 15.473
95.03 32.500 18.089 45.839 0.836 15.946 1.875

147.92 18.900 182.151 50.947 1.036 23.109 3.366
150.15 0.0001 170.56 63.010 0.981 28.714 3.278

3.4. Relative Luminescence Efficiency Curves (μ)

Figure 9 shows the calculated relative luminescence efficiency (μ) of all the optical
probes at entrance depth (d = 0.01 mm) compared with data provided by Yukihara et al.
using Al2O3:C OSL crystals mixed with a binder to form detectors with a diameter of 7 mm
and thickness of 0.3 mm [54]. These detectors were read out, such as the LET dependence
was acquired by combining the two known OSL emissions (called UV and blue). One can
observe that the Al2O3:C RL and OSL relative luminescence efficiencies do follow the same
decay trend, with the ‘4 μm’ showing the closest agreement with the Al2O3:C OSL.

Figure 9. Relative luminescence efficiencies (μ) of fibre probes (‘Single Crystal’, “38 μm” and “4 μm”)
at depth in H2O = 0 mm compared to Al2O3:C OSL results.

As a next step, we calculated the relative luminescence efficiencies along the Bragg
curves and plotted the results against the simulated primary LETf at each depth position.
In Figure 10, the μ curve from the ‘4 μm’ fibre clearly follows the same trend as observed for
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the Al2O3:C OSL for the μ calculated using the primary LETf from 160 (orange hexagons)
and 230 (red circles) MeV proton-charged particles. At deeper depths, the μ calculated using
the primary LETf from 150 MeV/u helium-charged particles (green triangles) decreased to
30 keV/μm, where the curve started increasing again. For the data calculated using the
primary LETf from the 400 (purple squares) and 290 (blue rhombi) MeV/u carbon-charged
particles, one observes first a jump from μ calculated at the entrance, with the following
points following a similar trend as observed for the primary helium-charged particles.

Figure 10. Combination of all the ‘4 μm’ Relative luminescence efficiencies (μ) acquired from different
beam types and energies vs. primary LETf.

Similar results were observed for the ´38 μm´ and ´Single Crystal´ fibre probes when
plotting the relative luminescence efficiencies along the Bragg curves vs. simulated primary
LETf, with the difference that the calculated μ are shifted to lower values when compared
to the ‘4 μm’ (as observed in Figure 9).

Suppose one uses the fluence weighted contribution of LETf from the primary and
each fragment (Equation (11)) instead of using the primary charged particles to plot the
relative luminescence efficiencies. In that case, the points in Figure 10 are rearranged in the
form presented in Figure 11.

LETf = ∑i LETf ,i × f luence(%)i i = 1H, 4He, 7Li, 9Be, 10B, 12C, 14N, 16O (11)

Figure 11a–c show the relative luminescence efficiencies (μ) and fluence weighted
LETf (primary + fragments) for ‘4 μm’, ‘38 μm’ and ´Single Crystal´, respectively. In all
the plots, the curves of both proton beams (160 MeV and 230 MeV) superimpose (i.e.,
similar μ for similar averaged LETf), smoothly connecting to the curves generated by the
helium-charged particles (150 MeV/u) and to the two carbon-charged particles (290 MeV/u
and 400 MeV/u). The combination of all curves reveals a trend consistent with previous
results for OSL Al2O3:C [54] (shown in Figure 11d).

A fitting exponential curve can describe the combination of the calculated μ vs. LETf
(primary + fragments), as shown in Figure 11a–c by the full black lines. The calculated
coefficients of the determination indicate a good correlation, with R2 = 0.994 (‘4 μm’),
R2 = 0.991 (‘38 μm’) and R2 = 0.989 (‘Single Crystal’). Based on the results, we observed
that (i) each probe presents a unique curve μ and (ii) that μ is independent of beam quality
(i.e., only depends on the averaged LETf).

171



Sensors 2022, 22, 9178

Figure 11. Relative luminescence efficiency (μ) curves and exponential fitting (ExpFit) for (a) ‘4 μm’
(R2 = 0.994), (b) ‘38 μm’ (R2 = 0.991) and (c) “Single Crystal” (R2 = 0.989) acquired from different
beam types and energies vs. LETf and (d) the combination of all curves plus A2O3:C OSL (data
provided by Dr. Yukihara).

3.5. Determination of the Birks Factors and Quenching Corrected Curves

The values of RL0 and kB (Table 6) were determined for the ´4 μm´, ´38 μm´ and
‘Single Crystal’ fibre probes irradiated with protons, individually, according to the fitting
curves (Equation (3)) presented in Figure 12, as described in Section 2.3. These values are
valid for the LETf range from 3 to 45 MeV/cm and used further to correct for quenching
using the correction factor derived for proton-charged particles (Equation (8)).

Table 6. Comparison of the determined kB and RLo parameters, as in Equation (3), for ‘4 μm’, ‘38μm’
and ‘Single Crystal’ for proton-charged particles.

Beam
Type/Energy

(MeV/u)

LETf

(MeV cm−1)

kB (μg MeV−1 cm−2) RL0

4 μm 38 μm Single Crystal 4 μm 38 μm Single Crystal

H 230
H 160 3–45 (300 ± 20) (300 ± 30) (250 ± 30) 1.13 1.09 0.856
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Figure 12. The central axis peak-to-plateau ratios (normalised RL, Figure 5a,b) for the (a) ‘4 μm’,
(b) ‘38μm’ and (c) ´Single Crystal´ fibre probes are shown as a function of averaged electronic
stopping power (LETf) for mono-energetic proton beams with nominal energies 160 and 230 MeV.
The RLo and kB parameters are derived from a nonlinear fit (full line, Equation (3)).

The corrected RL measurements for proton beams, using Equation (8), agreed closely
with the reference measurements as shown in Figures 13 and 14a–c, for ‘4 μm’, ‘38 μm’
and ´Single Crystal, respectively. A better overall agreement is again observed for ‘4 μm’
compared to the other two probes. The calculated and corrected Bragg peak heights agreed
within 3% (‘4 μm’), 4% (‘38 μm’) and 5% (‘Single Crystal’) for both proton beams.

Figure 13. The RL signal converted to dose and normalised to the entrance dose of the reference
(DHCP entrance) from the (a) 4μm, (b) 38μm and (c) Single Crystal (SC) RL fibre probe before and
after the correction factor was applied for 160 and 230 MeV protons beams. The normalised dose
from the reference is shown for comparison (dotted line).

Figure 14. The plots are the difference between the uncorrected (quenched) and corrected RL signal
with respect to the reference (ion chamber) from the (a) 4μm, (b) 38μm and (c) Single Crystal RL
fibre probe before and after the correction factor was applied for 160 and 230 MeV protons beams.
The green area in the curve represents the differences < 1%, and the yellow area represents values
between 1 and 5%.

173



Sensors 2022, 22, 9178

As described in Section 3.3, a good approximation for the correction factor function to
be applied to the helium-charged particles is based on Equation (9), where the contribution
from the primary beam (4He) and the fragment 1H account for most of the beam’s fluence.

The Birks factor (kB) is characteristic of the material and can have different values for
the same material in different measurements and data treatment conditions. In our study,
the kB values were obtained by fitting data for particles of one kind and in some specific
energy/LET range. We assumed, as such, that the kBH and RLoH from Equation (9) are the
same derived from the fitting in Figure 12 and described in Table 6 for each fibre probe
type.

The values of RL0 and kB (Table 7) were determined for the ‘4 μm’, ‘38 μm’ and ‘Single
Crystal’ fibre probes irradiated with 150 MeV/u helium-charged particles, according to the
fitting curves (Equation (3)) presented in Figure 15, as described in Section 2.3. These values
are valid for the primary LETf range from 20 to 240 MeV/cm from 4He. The parameters
from Tables 6 and 7 are combined to correct for quenching using the correction factor
derived for helium-charged particles (Equation (9)).

Table 7. Comparison of the determined kB and RLo parameters, as in Equation (3), for 4 μm, 38μm
and Single Crystal for helium-charged particles.

Beam
Type/Energy

(MeV/u)

LETf

(MeV cm−1)

kB (μg MeV−1 cm−2) RL0

4 μm 38 μm Single Crystal 4 μm 38 μm Single Crystal

He 150 20–240 (120 ± 30) (110 ± 35) (100 ± 42) 1.3 1.2 0.78

Figure 15. The central axis peak-to-plateau ratios (normalised RL, Figure 5c) for the (a) 4 μm, (b) 38μm
and (c) ´Single Crystal´ fibre probes are shown as a function of averaged electronic stopping power
(LETf) for mono-energetic proton beams with nominal energies 160 and 230 MeV. A nonlinear fit (full
line, Equation (3)) determines the RLo and kB.

The corrected RL measurements for the 150 helium beam, using Equation (9), agreed
closely with the reference measurements as shown in Figures 16 and 17a–c, for ‘4 μm’,
‘38 μm’ and ´Single Crystal, respectively. The corrected curves for quenching present a
clear improvement in the dose–response, especially for points close to the Bragg peak. For
example, the difference between the ‘4μm’ fibre probe and reference improved from ~30%
to ~5% at the Bragg peak (144.91 mm). The same type of improvement is also observed for
the other two probes.
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Figure 16. The RL signal converted to dose and normalised to the entrance dose of the reference
(DHCP entrance) from the (a) 4μm, (b) 38μm and (c) Single Crystal (SC) RL fibre probe before and
after the correction factor was applied for 150 MeV/u helium beams. The normalised dose from the
reference is shown for comparison (dotted line).

Figure 17. The plots are the difference between the uncorrected (quenched) and corrected RL signal
concerning the reference (ion chamber) from the (a) 4μm, (b) 38μm and (c) Single Crystal RL fibre
probe before and after the correction factor was applied for 150 MeV/u helium beams. The green area
in the curve represents the differences < 1%, and the yellow area represents values between 1 and 5%.

Moving forward to correct the quenched curves measured in the carbon-charged
particles, Equation (10) is the sum of the contribution from the primary beam (12C) and
the fragments 1H and 4He. We assume that the Birks factors (kB) from the fragments are
already defined in Table 6 for kBH and RLoH , and Table 7 for kBHe and RLoHe for each fibre
probe type.

The values of RL0 and kB were determined for the ‘4 μm’, ‘38 μm’ and ‘Single Crystal’
fibre probes irradiated with 290 and 400 MeV/u carbon-charged particles, according to the
fitting curves (Equation (3)) presented in Figure 18 and Table 8, as described in Section 2.3.

 

Figure 18. The central axis peak-to-plateau ratios (normalised RL, Figure 5d,e) for the (a) 4 μm,
(b) 38μm and (c) ‘Single Crystal’ fibre probes are shown as a function of averaged electronic stopping
power (LETf) for mono-energetic carbon beams with nominal energies 290 and 400 MeV/u. The RLo
and kB parameters are derived from a nonlinear fit (full line, Equation (3)).
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Table 8. Comparison of the determined kB and RLo parameters, as in Equation (3), for 4 μm, 38μm
and Single Crystal for carbon-charged particles.

Beam
Type/Energy

(MeV/u)

LET
(MeV cm−1)

kB (μg MeV−1 cm−2) RL0

4 μm 38 μm Single Crystal 4 μm 38 μm Single Crystal

C 400
C 290 90–1700 (1.8 ± 0.2) (1.7 ± 0.3) (2.5 ± 0.4) 0.2 0.19 0.06

The corrected RL measurements for both carbon beams, using Equation (10), resulted
in a significant improvement in the difference values concerning the reference dose mea-
surements, as shown in Figures 19 and 20a–c, for ‘4 μm’, ‘38 μm’ and ‘Single Crystal’,
respectively. The corrected curves for quenching presented differences with respect to the
reference between 5 and 8% for doses around the Bragg peak and in the falloff regions.

Figure 19. The RL signal converted to dose and normalised to the entrance dose of the reference
(DHCP entrance) from the (a) 4μm, (b) 38μm and (c) Single Crystal (SC) RL fibre probe before and
after the correction factor was applied for 290 and 400 MeV/u carbons beams. The normalised dose
from the reference is shown for comparison (dotted line).

Figure 20. The plots are the difference between the uncorrected (quenched) and corrected RL signal
with respect to the reference (ion chamber) from the (a) 4μm, (b) 38μm and (c) Single Crystal RL
fibre probe before and after the correction factor was applied for 290 and 400 MeV/u carbon beams.
The green area in the curve represents the differences < 1%, and the yellow area represents values
between 1 and 5%.

4. Discussion

In this paper, we studied a method to correct dose quenching in Al2O3:C RL detectors.
The Birks formulation was adapted to account for the contribution of fragments generated
along the Bragg curves. Our method has been previously applied to correct for quenching
in Al2O3:C,Mg two-dimensional films irradiated with three different proton and one
therapeutic carbon beam. Here, we used our method in three different optical fibre probes
and five charged therapeutic beams (protons, helium, and carbon).
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For the dose–response test (Figure 3), measured at entrance depth, all the probes
presented a linear response for doses up to 2 Gy and at higher doses, supralinearity, with
higher deviations observed for the ‘Single Crystal’ probe followed by the ’38 μm’. The
results from the ‘4 μm’ fibre probes agreed most with linear dose–response (Figure 4).

The sensitivity of Al2O3:C detectors changes with irradiation due to the filling of
deep electron and hole traps, competing with dosimetric traps during irradiation and
readout [55], a phenomenon generally linked to supralinearity. This effect was previously
observed in other studies [38,41,56]. Figure 3 suggests a dependency on crystal size and
the deposition of energy, similar to those observed for irradiations with other beam types,
such as 6 MV photons [38] and heavily charged particles [30,41]. Although identifying the
exact mechanisms explaining the differences between crystal sizes needs further analysis,
we believe this effect comes from the competition between the immediate recombination
of charge carriers and charge trapping. Pre-irradiated fibres stabilised the RL signal from
Al2O3:C [39] and Al2O3:C, Mg [57]. However, the pre-dosing likely only fills up the charge
from the dosimetry traps [58] and does not fill all the deep traps.

If one considers each optical fibre probe as a large cavity, such as the electrons stopping
entirely in the RL material, we would not expect differences in quenching observed in
probes made with different grain sizes. However, we have observed that the smaller the
grain size, the larger the number of ionisations happening in the water-equivalent binder
surrounding the grain. In large powder grains and crystals (such as ‘38 μm’ and ‘Single
Crystal’), there is a higher absorption of the electrons inside the Al2O3:C, resulting in a
higher ionisation density that causes quenching. This effect with detector size has also been
discussed by previous authors using “cavity theory” in OSL/TL passive detectors [59] and
scintillators [60] in X-rays.

For measurements along the Bragg curves, we observed quenching for all fibre probes,
with a closer agreement to the reference for the ‘4 μm’ fibre, followed by ‘38 μm’ and
the ‘Single Crystal’. The same trend was observed for all beams and energies. There is
also a better agreement for lower LET beams (i.e., 230 MeV protons) than for the higher
LET beams (290 MeV/u). The link between quenching and crystal size was observed
previously [30,41], where probes with ‘38 μm’ were compared with ‘Single Crystal’. We
further studied crystal size dependence with LET by adding an extra (smaller) crystal size
(‘4 μm’) and four extra beams. Although the difference between the rescaled Bragg curves
from ‘4 μm’ and ‘38 μm’ was smaller than the difference between ‘38 μm’ and ‘Single
Crystal’, we did not find a linear correlation with crystal size.

Quenching was previously observed for Al2O3:C when used as both passive (OSL)
and active (RL) detectors. Andersen et al. studied the Al2O3:C RL vs. absorbed dose–rate
during 175 MeV proton radiotherapy [61]. They observed that in the low 0–0.3 Gy range,
the RL signal closely resembles that observed for a clinical 6 MV X-ray beam without
any LET-dependent correction factors. In contrast, the relative luminescence efficiency
decreased to about 60% for higher doses. Klein et al. tested a thin layer of Al2O3:C to resolve
the steep gradients of the ion depth-dose curves in 142.66 MeV proton and 270.55 MeV/u
carbon ion beams and observed a relative luminescence efficiency dropping for higher LET
values [62]. Measurements with helium, carbon, neon and iron ions demonstrated that the
Al2O3:C OSL signal is also strongly LET-dependent [34,41].

The energy deposition along the Bragg curves can explain the quenching dependence
with LET. Near the Bragg Peak and in the falloff region, primary proton, helium, and
carbon-charged particles experience a rapid increase in their LET values, nearing the end
of their ranges. Fragmentation (most prominent for carbon beams) generates secondary
particles with very high LET (such as alpha particles and heavy ion recoils) [63] that will
create regions of highly high local dose in the close vicinity of the ion track, saturating RL
centres and causing luminescence quenching [64]. As scintillators are used in several appli-
cations where heavy particles are present, from medical applications to dark matter studies,
many approaches for the calculation of quenching factors have been proposed [43,65–67].
However, there is no standard theory to predict and describe measured quenched response
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curves. According to the Birks model, two ions with the same LET but a different atomic
number (Z) will result in the same ionisation quenching and, consequently, the same kB.
Many experiments, however, contradict such a statement [67–69], showing that the Birks
factor (kB) is characteristic of the material and can have different values for the same
material in various measurements and data treatment conditions.

Here, the kB values were obtained by fitting data for particles of one kind and in some
specific energy/LET range. The fitting curves derived from the measured ‘4 μm’ RL signals
and simulated LETf values are R2 > 0.982 for protons, R2 > 0.992 for helium and R2 > 0.991
for carbon-charged particles (Figures 12a, 15a and 18a), from the measured ‘38 μm’ RL
signals and simulated LETf values, are R2 > 0.992 for protons, R2 > 0.982 for helium and
R2 > 0.991 for carbon-charged particles (Figures 12b, 15b and 18b) and from the measured
‘Single Crystal’ RL signals and simulated LETf values are R2 > 0.980 for protons, R2 > 0.972
for helium and R2 > 0.962 for carbon-charged particles (Figures 12c, 15c and 18c).

Our method shows promising results when applied in the plateau and peak region of
the Bragg curves for the five beam types studied. The method is less accurate for the points
measured at falloff (see Section 3.5). We believe this is due to the low doses measured and
the worse statistics from the Monte Carlo simulations in this region. To improve these
errors, we recommend a dedicated measurement campaign, using much higher doses to
improve signal-to-noise ratios and new Monte Carlo simulations with a more significant
number of events.

5. Conclusions

We found that the response of Al2O3:C RL detectors is LETf-dependent, a general
phenomenon observed in solid-state dosimeters. Because of the decrease in relative lumi-
nescence efficiencies with LET, doses in heavily charged particle beams cannot be calculated
directly from real time RL measurements unless in regions and energies where the relative
luminescence efficiencies are flat.

The RL response from three types of Al2O3:C optical fibre probes to radiotherapy
proton, helium, and carbon-charged particles have been investigated and compared with
ionisation chamber measurements in the same conditions. The observed LET-related
quenching under response along the Bragg curve was corrected using a new method
based on RL measurements and Monte Carlo simulated fluence averaged-LET values. This
method demonstrated the linear dose response of all the optical fibre probes.
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Abstract: In this paper, a conventional camera modified to capture multispectral images, has been
used to locate latent forensic traces with a smart combination of wavelength filters, capturing angle,
and illumination sources. There are commercial multispectral capture devices adapted to the specific
tasks of the police, but due to their high cost and operation not well adapted to the field work in
a crime scene, they are not currently used by forensic units. In our work, we have used a digital
SLR camera modified to obtain a nominal sensitivity beyond the visible spectrum. The goal is to
obtain forensic evidences from a crime scene using the multispectral camera by an expert in the
field knowing which wavelength filters and correct illumination sources should be used, making
visible latent evidences hidden from the human-eye. In this paper, we show a procedure to retrieve
from latent forensic traces, showing the validity of the system in different real cases (blood stains,
hidden/erased tattoos, unlocking patterns on mobile devices). This work opens the possibility of
applying multispectral inspections in the forensic field specially for operational units for the location
of latent through non-invasive optical procedures.

Keywords: forensic science; photography; multispectral; latent traces; blood; ultraviolet; infrared

1. Introduction

If there is an axiom that has gone along with photography since its creation, it is the
advertising slogan from the Ermanox camera, (the camera used by the pioneering photojour-
nalists of the early 20th century) promising the capture of all kinds of indiscreet snapshots,
even in impossible lighting conditions: “with Ermanox, my eye becomes my exposure meter, if
I can see it, I can photograph it!” [1]. By its nature and intended purpose, photography has
always been traditionally related to the capture of images within the visible light spectrum,
trying to imitate with it the strict patterns of perception of the human eye. However, the
demands of a discipline, such as forensic photography, have made it necessary to progres-
sively incorporate new techniques, in many cases far away from the so-called conventional
photography. The advances in tools and methods have taken forensic photography far
beyond the limited human perception, being especially significant multispectral technology
that, despite the associated problems of aliasing [2,3] and artifacts derived from image
conditions [4] as a non-invasive procedure for locating vestiges, it has allowed new fields
of research to open [5] and minimizing the risks of deterioration or accidental deletion of
latent traces, a common problem of classical inspection procedures [6]. There are multiple
related fields where multispectral image analysis has been used, for example, to detect
certain chemicals in food [7] to detect dangerous gas emissions [8] and, in forensic sciences
to retrieve shooting distances [9]. Remote sensing is the main research field where multiple
bands of information is considered, thus several advances in hyperspectral images related to
reduce band interference and select the best band has been proposed [10]. In our paper, we
focus the research work on the forensic inspection to retrieve latent vestiges, considering the
advantage of the method because the risks of deterioration or accidental deletion of traces is
reduced compared with traditional inspection procedures [11].
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The continuous evolution of optical image capture devices, in any of its variants, has
contributed, not without some initial scepticism, to the definitive incorporation of this
technology into the field of Forensic Sciences, being today an essential tool for any forensic
researcher. This progress, especially in the last 45 years with the emergence of electronics
and computing in the photography sector, has not only increased the performance of this
technology but also improving the sensitivity, precision and definition of current optical
devices [12,13]. In addition, the appearance of new techniques and capture image devices
has led to greater and faster access to the latent information to be obtained, regardless of
whether or not they are initially visible.

Every investigator looking into a crime scene to locate those vestiges relevant to the
clarification of a case, must use, during the forensic inspection of the scene, each and
every one of the available detection procedures and tools. Therefore, from the definitive
incorporation of photography into the field of forensic sciences, one of the main search
tools has been the “illumination” of the scene with visible light (VL), which represents
only a small fraction of the electromagnetic spectrum contained in the 380–740 nm wave-
length band, corresponding to a frequency band of about 405–790 THz. Radiations with
wavelengths bordering the limits of the VL, especially ultraviolet (UV) and infrared (IR)
radiation, are also used in criminalistics for the detection and photographing of vestiges,
both visible and latent, thanks to the incorporation of forensic lights, named as alternate
lighting sources (ALS) which use tunable wavelengths for illumination of the scene [14].
A large part of the ALS radiated spectrum is not perceptible by the human eye, being
outside the spectral curve of luminous efficiency of its photoreceptors, but it is captured by
certain photosensitive emulsions used in old argentic/analogue photography or, currently,
multispectral/hyperspectral capture devices. These optical localization procedures provide
the researcher with several advantages [15]. In addition to providing more information
about the scene than narrow-band visible sensors [16]. On the one hand, as a non-contact
inspection method there is no risk of deterioration of traces nor cross-contamination of the
scene itself. On the other hand, the inspection results can be evaluated instantaneously,
reducing the processing times and permanence of the researchers at the scene, improving
the performance and moving the searching process in the right direction. Finally, it is worth
noting that the optical inspection can be complemented with other traditional procedures
to locate latent vestiges by means of physical developers or chemical components, such
as blood chemo locators, Luminol, Bluestar, powdery developers of sweat and sebaceous
secretions, black magnetic, wax or fluorescent powder.

Just as the resolution of a digital image is determined by the number of pixels of
its sensor, the visual perception that the human being has of its environment is given, at
first, by the density of photoreceptors located in its retina, called cones and rods for the
characteristic shape of its external segments. Its main function is to absorb light and, thanks
to the visual pigments they contain—proteins such as opsin and rhodopsin—transform it
into electricity, which is the only form of energy that can be processed by the brain. The
cones are responsible for the so-called photopic or diurnal vision, while the rods on the other
hand are more sensitive (scotopic or nocturnal vision conditions) but their response to light
is more moderate, which translates into lower visual acuity and reduced discrimination
of colour. Figure 1 shows a comparison of the spectral curve of luminous efficiency of the
cones and rods of the human retina, whether under conditions of photopic or scotopic
vision, with those of a conventional digital camera with a CMOS silicon sensor. It can
be observed that the nominal spectrum sensitivity of the camera is considerably higher
than the human-eye photoreceptors, specifically from about 380 to 740 nm versus 300 to
1150 nm, both at short wavelengths (UV radiation) and at long wavelengths (IR radiation).

To avoid certain optical aberrations associated with the radiations of the non-visible
spectrum, that is, those that are below 380 and above 740 nm wavelengths, the manufactur-
ers of cameras place in front of the silicon sensor a colour filter array (CFA) and a bandpass
filter, generically called hot mirror, whose mission is to block all UV and IR radiation,
allowing only VL wavelengths to reach it. The function of the hot mirror is to limit the
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spectral sensitivity of the sensor to adapt it to human perception, eliminating possible
optical aberrations associated with these specific regions of the spectrum, so that the images
captured by the camera are the same as those perceived by the photographer. On the
other hand, Forensic Photography requires that the optical devices capture regions of the
spectrum outside the strict human perception, since it is often there where the reactions of
the electromagnetic radiation with the relevant forensic vestiges occur and their observation
is critical for the subsequent clarification of the fact to be investigated.

 
Figure 1. Normalized spectrum sensitivity for photopic and scotopic vision of the cones and rods of
a human eye compared with a CMOS sensor.

Generically, multispectral imaging refers to the capture of images using more than one
spectral band, regardless of whether they are contiguous and whether they are visible to the
human eye in which the result is processed as an individual image. Therefore, multispectral
imaging uses a subset of specific wavelengths within a defined spectral range. The concept
of multispectral imaging has its origins in the mapping of the Earth’s surface using artificial
satellites, such as the pioneer LandSat-1 launched in 1972 and equipped with a quad-band
multispectral scanner system. As this technology became more affordable, it was taking
more and more presence, expanding its uses to the digitization of cultural goods in the
1980s, and in recent years, to the location of vestiges in the field of Criminalistics [17].

Currently, the multispectral capture devices available in the market, incorporate
different types of sensors, depending on the model and the specific nominal sensitivity to
the spectrum that is necessary according to the demands of the addressed work.

On the one hand, there would be the sensors InGaAs, indium gallium arsenide, used
in infrared cameras and which have, depending on the manufacturer, a spectral curve
of luminous efficiency wavelengths of 700 to 1.700 nm. These devices are commonly
used in the inspection of industrial phenomena but, from a strictly forensic point of view,
their sensors, although they are useful in the detection of certain latent evidence that
reacts to long wavelengths. In the cases of blood, alterations in documents or shooting
residues, the captured images do not have sufficient quality to provide the vestige with the
necessary identifying value, with a general lack of sharpness and contrast that reduces its
effectiveness [18].

Another type of sensors would be the so-called Vidicom tubes which, in essence,
are video cameras with a lead oxysulfide sensor. They are capture devices commonly
used in examinations of artworks, in particular paintings on canvas. Its spectral curve
of luminous efficiency is variable, being able to reach up to 1.900 nm wavelength. Its
application in Criminalistics has several drawbacks, derived largely from its low resolution,
which ultimately translates into a difficulty in reproducing elements or details of size less
than 2 mm. In addition, the captured images present large geometric aberrations that make
it impossible to obtain measurements of elements within the image. Finally, the reduced
field of view forces to work with image mosaics so their use during a police technical
inspection is very scarce [19].
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Thermal imaging sensors based on uncooled microbolometers, or lead selenide or
indium antimonide, offer a nominal spectral sensitivity of 1.500 nm and higher wave-
lengths [20]. The main limitation presented by this type of sensors for forensic use is that
the main vestiges of criminalistic relevance do not emit any thermal reaction, beyond the
heat generated by the action of cadaveric fauna.

In the same way that there has been a natural evolution of the traditional systems of
capturing images in monochrome bands to those others in colour bands, already assuming
a considerable improvement in the quality and usefulness of them, also the capture devices
have evolved from capturing only the visible spectrum to those capable of capturing images
in multispectral bands not visible to human-eye. The incorporation of these devices into
the field of criminalistics has had a direct utility as a tool to detect elements not perceived
with the naked eye, through a direct comparison with the object to be inspected or with
the visible image of it, visually analysing the differences between the two. In forensic
sciences, the usefulness of these multispectral devices lies in the fact that they allow to
visualize and document the reactions that, in the face of electromagnetic radiation of a
specific wavelength, present certain components of both the vestiges to be located and the
surface where they settle.

The multispectral capture systems used today in criminalistics for the search for latent
vestiges, offer the possibility of locating and photographing evidence in multiple scenarios
and work circumstances. These tools are presented in the form of portable tablets with
limited functionality, such as the ForenScope tool, intended for fieldwork during the police
technical inspection at the scene or as independent workstations, as is the case of foster and
Freeman’s DCS 5, oriented exclusively to the work of localization and documentation of
pieces of evidence in a forensic laboratory [21]. Both proposals incorporate autonomous
filtering and lighting systems in the form of LED rings located around the optics that emit,
according to the vestige to be located, different wavelengths, but without the possibility
of varying their angle of incidence on the search surface. However, reasons, such as their
high cost or a functionality often poorly adapted to fieldwork, mean that they are currently
not used by many criminalistics sections. These are the reasons why the Scientific Police
in Spain use a low-budget multispectral modified digital camera, without reducing its
operability and effectiveness when it comes to locating latent vestiges in a crime scene.

The modified camera, together with a quartz or fluorite lens and an adequate long-
pass or shortpass filter, would allow to locate and graphically document certain latent
traces/vestiges, such as latent blood stains, tattoos partially erased or covered under new
tattoos and unlock patterns on mobile phones, among others. Currently, such vestiges are
located by physical developers and chemical reagents for forensic use, such as Luminol,
Bluestar, Hemascein or Benzidine in the case of latent blood; or magnetic, wax, fluorescent
powder, cyanoacrylate or diazafluorenone plus flavin, in the case of traces of sebaceous
and sudoriparous secretions.

These classic localization procedures have a direct impact in the scene as they require
direct contact with the surface on which the vestige might be present. This fact means that,
when applied, either by means of sprayers or fiberglass brushes, they do not allow the
analysis of the trace’s morphology nor the subsequent search for other latent vestiges, such
as fingerprints. This problem is solved using a non-contact localization procedure, such as
the modified multispectral modular system presented in this paper.

The rest of the paper is organized as follows. Next section presents the materials
and methodology used in the research, to show the correct procedure to retrieve latent
forensic traces. Section 3 presents the conducted experiments, resume tables and detection
results for real use cases (blood stains, hidden/erased tattoos, unlocking patterns on mobile
devices, etc.) showing the validity of the proposal. Finally, Section 4 resume the main
conclusions of the research work.
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2. Materials and Methods

Electromagnetic radiation can interact with the matter through an exchange of energy,
being able to classify this phenomenon according to several criteria, such as nature of the
matter involved, specific incident spectral band or the possible reactions of the interac-
tion. Starting from the fact that the laws of spectrophotometry were enunciated based
on monochromatic electromagnetic radiation acting on a homogeneous system, when
electromagnetic radiation affects a certain material, we understand that, for the purposes
of this study, a vestige or the surface where it sits, the beam will produce different reactions
depending on the energy levels in its atoms, it may be absorbed, transmitted, dispersed,
reflected or it may induce photoluminescence [22].

When the atoms of a certain material are irradiated with electromagnetic radiation, part
of that form of energy can be absorbed by the atoms of the material which, as a consequence,
will pass from a lower energy state (basal state or E1) to a state of higher energy (excited
state or E2). For this absorbance reaction to occur, the energy of the photons of the incident
beam (h · v), must be equal to the energy difference between E1 of the atoms of the material
and posterior energy E2.

ΔE = E2 − E1 = h · v (1)

The atoms of the material can return to their E1 by converting the energy of their
E2 either into heat, through a luminescent reaction or through a photochemical reaction,
which can be documented, by means of the appropriate capture devices, evidenced by
a darkening of the irradiated material for the duration of the induced reaction. The
transmission of electromagnetic radiation assumes that the beam that is not absorbed or
reflected, will pass through the sample without suffering perceptible or energetic changes.
As the wavelength of the incident radiant flux increases, the absorption of radiation by the
sample decreases, increasing the transmittance, so that the energy absorbed and reflected
is less than that transmitted, which will be evidenced in a partial disappearance of the
element in the captured image. Dispersion occurs when the incident beam is absorbed and
immediately emitted uniformly in all directions, without any energetic change. A reaction
that occurs when radiation hits particles in the sample that are smaller than the wavelength
of the incident beam itself, so they polarize and oscillate at the same frequency as the
radiation, acting as a source that propagates in all directions. Photoluminescence involves
an excitation of the particles that make up the sample by absorbing the incident radiation,
emitting fluorescence, as happens in scattering, in all directions.

The relevance of these phenomena, for the purposes of this study, is that a large part
of the relevant forensic vestiges for the possible clarification of facts of police interest and
on which the subsequent expert and technical reports in each of the forensic disciplines
will be based, present distinct reactions, visible or not to the human eye, depending on
the wavelengths of spectrum used to induce them and the specific region of the spectrum
where they occur. This feature leads to a characteristic behaviour that can be used, as
a spectral fingerprint, to achieve its location and subsequent graphic documentation [23].

In this paper for the development of the multispectral camera it has been used a Nikon
camera D3500-24.2 megapixels, reflex CMOS APS-C 23.5 × 15.6 mm, commonly available in
the Scientific Police units in Spain and that meets the needs of the fieldwork of a crime scene
investigator: ease of handling the different modules of the multispectral system, ability to
view the scene before capturing, interchangeable bayonet to mount quartz optics e.g., Nikon
UV. Reusing the camera currently owned by operational units significantly reduce the cost,
making available the multispectral technology. The multispectral techniques shown in the
paper has also been tested with other cameras/sensors capturing multispectral images
such as smartphones and action cameras, but its operation, focus range and resolution is
reduced when compared with digital SLR cameras. Figure 2 shows the modified Nikon
D3500 camera. The bandpass hot mirror filter—CFA colour filter matrix—has been extracted
and replaced by a full spectrum filter, to increase its nominal sensitivity [24]. The sensor
has been conveniently shifted closer to the nodal point of the lens, recalibrating it in
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order to correct the image focus, important when it is necessary to locate latent traces
using infrared illumination. Likewise, for those images in which UV radiation is used,
the camera lens has been replaced by a quartz or fluorite lenses, both permeable to UV
radiation, because the Crown glass used by commercial photographic lenses blocks short
wavelengths. This conversion allows the capture of regions of the UV and IR spectrum,
losing colour information.

Figure 2. Multispectral capture device modified with quartz optics and Baader UV/IR-cut coupled.

For the analysis of pieces of evidence presented in the next section, different bandpass
and shortpass filters have been used when filtering the specific wavelengths of the lighting
sources and, thus, making visible the reactions of the latent traces. We have carried out
a field study on the effectiveness of multiple long-pass and shortpass filters from different
manufacturers to detect latent traces in multiple situations. The working band of the used
filters (Wratten 87, Schott RG9 and Baader UV/IR-cut) are shown in Figure 3 where it
can be shown their spectral response to the electromagnetic radiation used to locate the
latent vestiges.

  
(a) (b) (c) 

Figure 3. (a) IR Longpass filter Wratten 87; (b) IR Longpass filter Schott RG 9; (c) UV Shortpass filter
Baader UV/IR-cut.

We have named the modular multispectral inspection system as Invespector being
composed by the modified camera, optical lenses, band filter and the illumination source.
The right combination of the different elements leads to an effective retrieval of latent traces.

3. Results and Discussion

This section presents the results obtained using the Invespector capturing device for
the localization of multiple and diverse pieces of evidence: latent blood stains, erased
tattoos and unlocking pattern of mobile devices. The source of data comes from real cases
analysed by the Spanish Scientific Police.
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3.1. Localization of Spots and Latent Blood Patterns

One of the applications in which the effectiveness of the modified multispectral camera
has been tested is in the location and photographing of latent blood. Blood stains and
patterns are one of the most common vestiges present at any scene of a violent crime.
Whether during the police technical inspection conducted at the scene or later in the
forensic laboratory, it always acquires special relevance to locate and document this type of
biological vestiges because, in addition to being a source of genetic and serological material,
they might provide significant information for blood pattern analysts, allowing them to
sometimes reconstruct the very commission of the fact, by studying the morphology, size
and location of blood stains in the scene or on the objects located in it.

When the blood is recent, has not been manipulated and is settled on surfaces that
contrast with the sample itself, its location and photography is a simple task. Unfortunately,
it is common for blood stains to be difficult to detect, either because they are settled on dark
surfaces that mask them, or because they have been intentionally cleaned or partially erased
as a result of the passage of time. It will be then when the researcher uses presumptive
methods of locating latent blood, both with chemical and optical means [25]. Blood, human
or animal, contains certain components such as hemoglobin iron, lipids and proteins
that react through intense absorbance when illuminated with wavelengths typical of ALS
forensic lights in its spectrum and near IR wave radiation [26]. This reaction makes the
blood vestige latent even in low dilutions (1:200) [27] or small amounts darken, which
facilitates its detection and subsequent photographing, provided that the surface where
it sits reacts by reflecting or transmitting those specific wavelengths used to induce the
reaction [28].

Figure 4 shows the detection results for a latent blood settled in a black cotton shirt.
The classical visible images were compared with the image captured using a multispectral
Invespector device with a source of IR radiation of 850 nm, a capture angle of 90◦ and
attaching to the camera lens an IR longpass filter Schott RG9. As it can be seen, it is possible
not only to locate and document latent blood settled in a black cotton shirt, but to respect
the morphology of the stain itself, in this case a footstep. Additionally, the cotton shirt
is treated with the Bluestar chemo locator which can react with blood in dilutions of up
to 1:10,000.

   
(a) (b) (c) 

Figure 4. Images of black cotton shirt with traces of latent blood photographed (a) with conventional
camera and illuminated with white visible light, (b) by Invespector illuminated with IR radiation
850 nm and (c) after applying a chemo locator, such as Bluestar.
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Although optical procedures of localization in multispectral bands are less sensitive
to the presence of blood than the classic chemical procedures, optical procedures offer
several advantages:

• It is a non-invasive procedure that is with no contact, so it is possible to conduct
subsequent comparative morphological studies.

• It preserves the morphology of the latent blood stain, for example, in this case, the
footprint of the footwear. It can be shown that only Figure 4b can be correlated with
the footprint provided in Figure 5.

 
Figure 5. Footprint of the shoe used in the T-shirt under inspection.

• It does not interfere with the subsequent DNA study of the localized sample.
• It allows the subsequent search for lophoscopic traces if the surface is adequate.
• The high penetration capacity of IR radiation on certain surfaces. An example is the

location of blood settled under layers of up to 5 mm of acrylic paint, wallpaper or
cotton or nylon fabrics, as it can be seen in the images of the Figure 6.

  
(a) (b) 

Figure 6. Images of a wall with traces of latent blood under a layer of acrylic paint: (a) photographed
with a conventional camera and illuminated with white visible light and (b) by Invespector illumi-
nated with IR radiation 850 nm.
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Additionally, in order to locate latent blood, UV radiation of 365 nm wavelength has
been shown to be equally effective [29]. The two images that make up Figure 7 correspond
to a fragment of cotton sheet from the scene of a violent crime. In this case, despite the fact
that the sheet had been washed, using the multispectral device it was possible to locate
remains of what a laboratory later certified to be human blood. To do this, the effect was
illuminated with UV radiation of 365 nm with an angle of incidence of 90◦, attaching to the
camera a fluorite lens that provides permeability to the UV radiations and a UV shortpass
filter Baader UV/IR-cut. Under these circumstances, and despite the fact that the amount
of vestige was very small, after the sheet was subjected to washing, the blood vestige could
be detected without the need to apply chemical locators for it.

  

(a) (b) 

Figure 7. Images of a cotton sheet with traces of latent blood photographed: (a) with a conventional
camera illuminated with white visible light and (b) Invespector system using UV illumination 365 nm.

We have run multiple tests to show the capabilities of the multispectral device. Table 1
shows the right configurations for the detection of a drop of blood on different surfaces.
For example, to search for blood stains in a denim-fabric, the best configuration is a Crown-
glass lens with a Hoya R72 filter, illuminating the scene with a 720 nm UV source, capturing
the sample in vertical (90◦).

Table 1. Test results for the detection of a drop of human blood -0.05 ml- considering different surfaces.

Surface
Configuration

On Steel
On Washed

Cotton
On Wood On Tile

On Denim
Fabric

On ABS
Plastic

On Cotton
Under

Acrilic Paint
On Nylon

Lens type quartz quartz Crown
glass

Crown
glass

Crown
glass

Crown
glass

Crown
glass

Crown
glass

Crown
glass

Filter type Kolari UV Baader
UVIR none none Hoya R72 Hoya R72 Schott RG9 Schott RG9 Wratten 87

Illumination 365 nm 365 nm 415 nm 455 nm 720 nm 750 nm 850 nm 850 nm 950 nm
Capturing

angle
25◦ 90◦ 45◦ 45◦ 90◦ 45◦ 45◦ 90◦ 45◦

Surface’s
reaction

reflectance reflectance reflectance reflectance transmittance absorbance reflectance transmittance transmittance

3.2. Detection of the Unlocking Pattern of Mobile Devices

Another application in which the Invespector multispectral device has been shown
to be effective is in the detection of unlocking patterns of mobile phones not visible to
the human-eye. As it can be seen in Figure 8, in this case the unlocking pattern could be
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detected, illuminating the phone with IR radiation of 950 nm wavelength at an angle of
incidence of only 10◦, attaching to the target of the multispectral device an IR longpass
filter Wratten 87.

(a) (b) (c) 

Figure 8. Images from a mobile phone photographed (a) with a conventional camera and illuminated
with white visible light; (b) captured by Invespector camera and illuminated with IR radiation 950 nm;
and (c) the pattern movement recovered to unlock the smartphone successfully.

The sebaceous secretions deposited by repetition of the movement on the screen of the
mobile phone provoke the absorbance reaction to the IR radiation of 950 nm wavelength.
Additionally, the outer layer of Indium Tin Oxide (ITO) [29] that coats the glass of the phone
screen, as a consequence from the repeated friction of the user in the area of the unlocking
pattern, modifies the reflectance reaction of the glass that is below the ITO coating making
it more visible in the captured image. The Invespector device captures the contrast between
the absorbance reaction of the sebaceous secretions and the ITO layer; and the reflectance of
the glass below the ITO. Therefore, it is possible to recover the repeated finger movement
to input a similar pattern and unlock the smartphone.

3.3. Locating Covert or Partially Erased Tattoos

Tattoos, like any other birth mark or supervening mark (wounds or scars), have been
used as an authentication particular mark complementary to other identifying elements
of the individual/person. In 1853, a court in Paris commissioned the pathologist Auguste
Tardieu a study on the indelible condition of tattoo inks, the medico-legal interest in
tattooing as a sign of identity capable of providing relevant information about its wearer
gradually grew until it was incorporated, like any other distinctive physical characteristic,
to the written and photographic police portrait of Alphonse Bertillon. However, as Tardieu
claimed in his forensic study, “despite the permanent character of the tattoo, they can always be
made less noticeable, altered or increased by time” [30].

Most of the pigments that make up the inks used in tattoos are derived from charcoal
(black ink) or metals such as iron (black ink), mercury (red ink), cobalt (blue ink), chromium
(green ink), titanium/zinc oxide (white ink) or cadmium (yellow ink) [31]. These substances
have the property of reacting by transmitting or absorbing, to a greater or lesser extent, the
wavelengths of the IR spectrum up to 1050 nm [32], which makes the tattoo either disappear
or darken and become more visible, by increasing its contrast with human skin, which in turn
reacts by reflecting NIR (Near Infrared) radiation.

Figure 9 shows how the multispectral camera coupled with an IR longpass filter
Wratten 87 is capable to capture the transmittance and absorbance reactions of the different
components of the inks used in the tattoo. In this particular case, this individual has hidden
a small latent tattoo, with the now readable text “caliente”, under another tattoo of the
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shield of the “Valencia CF”. Although the ink is injected between 1.5 and 2 mm under
the epidermis, the high penetration capacity of IR radiation −850 nm wavelength at an
angle of incidence of 90◦—cause certain pigments that make up the inks of this second
tattoo—cobalt in the blue ink, cadmium in the yellow, chromium in the red—react by
transmitting/reflecting the IR radiation, so they partially disappear in the final image. This
make the underlying tattoo perceptible as its ink composition—iron of the black ink—reacts
by absorbing the IR radiation, that is, darkening the text.

  

(a) (b) 

Figure 9. Images of tattooed shoulder: (a) captured with a conventional camera and illuminated with
white visible light, and (b) captured by Invespector and illuminated with IR radiation 850 nm.

As a conclusion, it can be said that this technique is highly effective to visualize
hidden elements, partially erased or covered under external layers, when the elements
located in these upper layers react according to their own composition modifying the
transmittance/absorption of current spectrum illumination.

Multiple tests and combinations of the filter and illumination modules have been
done to show the capabilities of the multispectral device to detect skin tattoos. We have
concluded that, in the case of eternal ink, the best option is to use a crown glass lens,
a Wratten 87 filter, illuminate the scene with an IR source (850 nm) and capture the image
with a 90◦ angle. Table 2 shows the ink’s reaction for the infrared radiation based on the
components for each ink colour.

Table 2. Reactions of different tattoo inks to infrared radiation.

Tattoo Inks Black Red Blue Green White Yellow Orange

components Iron/charcoal Mercury cobalt chromium zinc ox-
ide/titanium cadmium Iron/cadmium

Ink’s
reaction

absorbance reflectance transmittance transmittance reflectance reflectance absorbance

4. Conclusions

In this paper, an effective procedure has been shown to detect latent vestiges by
modifying a conventional camera, from those assigned to the scientific police units in
Spain to its multispectral version, thus increasing its curve of luminous efficiency and
nominal sensitivity.
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Several processing results are shown to demonstrate the efficiency of such a system
considering not only the multispectral camera but different ways of filtering the light
captured from IR/UV illumination considering both the radiation reflected/absorbed by
the scene or vestige.

The effectiveness of this multispectral procedure has been shown in the location and
graphic documentation of latent vestiges present in the crime scene itself, such as traces
of stains or blood patterns, and in the pieces of evidence to be analysed in the laboratory,
such as the detection of hidden or partially erased tattoos, or the visualization of unlocking
patterns on mobile devices. Similar procedures can be carried out either during the technical
inspection of the crime scene itself or later in the forensic laboratory.

Currently in forensic sciences, the usefulness of multispectral devices on the market
lies in the fact that they allow to visualize the reactions that, in the face of electromagnetic
radiation, present certain intrinsic and extrinsic components of these vestiges to be located.
However, its high cost and an often poorly adaptation to field work reduces its use. The
modified digital SLR camera, with a nominal sensitivity beyond the visible spectrum, open
the possibility of incorporating this technology to police departments that currently lack it,
complementing these new non-invasive procedures for locating latent vestiges.
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Abstract: TDLAS (tunable diode laser absorption spectroscopy) is an important gas analysis method
that can be employed to obtain characteristic parameters non-invasively by the infrared absorption
spectra of tracer molecules such as CH4, H2O and O2. In this study, a portable H2O-based TDLAS
system with a dual optical path was developed with the aim of assessing the combustion characteris-
tics of flammable gases. Firstly, a calculation method of gas characteristics including temperature and
velocity combining absorption spectra and a HITRAN database was provided. Secondly, to calibrate
and validate this TDLAS system precisely, a pressure vessel and a shock tube were introduced
innovatively to generate static or steady flow fields with preset constant temperatures, pressures, or
velocities. Static tests within environment pressures up to 2 MPa and steady flow field tests with
temperatures up to 1600 K and flow velocities up to 950 m/s were performed for verification. It was
proved that this system can provide an accurate values for high temperature and velocity gas flows.
Finally, an experimental investigation of CH4/air flames was conducted to test the effectiveness
of the system when applied to small diffusion flames. This TDLAS system gave satisfactory flame
temperature and velocity data owing to the dual optical path design and high frequency scanning,
which compensated for scale effects and pulsation of the flame. This work demonstrates a valuable
new approach to thermal hazard analysis in specific environments.

Keywords: tunable diode laser absorption spectroscopy (TDLAS); gas flow field; H2O-based TDLAS;
doppler-shift; small-scale flame

1. Introduction

The measurement of hot gas characteristic parameters in complex environments—e.g.,
those involving high flow rates, vibration, or combustion—has posed a long-standing
challenge to the study of aero-engines and industrial furnaces [1]. In recent decades, there
has been positive exploration concerning the non-contact assessment of combustion fields
using spectral imaging technologies, including emission, absorption, Raman spectrum,
and LIF/PLIF (laser induced fluorescence/planar laser induced fluorescence). Of all these
methods, TDLAS (tunable diode laser absorption spectroscopy) has emerged an effective
yet inexpensive technique providing a rapid response [2].

TDLAS technology has undergone significant development attributable to the progress
in semiconductor lasers. As a consequence, this technique is now widely used for the non-
contact measurement of temperature, velocity, or species concentrations for environmental
engineering, petroleum engineering, and hazardous chemicals detection. Additionally,
when incorporating DFBs (distributed feedback lasers) and VCSELs (vertical cavity surface
emitting lasers), a TDLAS system becomes more portable and easier to establish [3,4].

Early research regarding the application of TDLAS to the analysis of combustion
was reported by Hanson and Allen et al. [1,5–7]. Characteristic parameters of hot gases
in combustion flow fields involving high temperatures and pressures were assessed by
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TDLAS based on the absorption spectra of O2 and H2O. This method was then extended to
the monitoring of waste gases such as NO2 and NH3 for the process control of industrial
combustion systems. With the development of tunable diode laser sources, the useable
wavelength range associated with this method was broadened to approximately 700–
3300 nm, allowing the analysis of H2O, CO, CO2, CH4, and other gases [8,9]. The data
obtained from TDLAS have provided new perspectives concerning the monitoring of
combustion processes [10].

An effective component for flame measurement by TDLAS now well recognized is
H2O [11–13]. The most important reason is that H2O is commonly one of the primary
combustion products and can reflect the progress of combustion based on the local thermo-
dynamic equilibrium hypothesis. Although the measurement by gas molecular absorption
spectra with TDLAS seems to be a proven technology, there are still significant deficiencies
related to this technique. Specifically:

(1) Generally, a typical TDLAS analysis provides only the average value of a selected
parameter along the optical path.

(2) Since it is challenging to generate a constant flow field with a given temperature,
pressure, and velocity, the calibration of a TDLAS system is relatively difficult.

(3) H2O-based TDLAS measurement can also be disturbed by the presence of ambient
water vapor, leading to underestimations of temperature and overestimations of component
concentrations.

(4) The Doppler effect can interfere with TDLAS velocity measurements in high-speed
flow fields.

The aim of the study is to develop a portable TDLAS system for combustion analysis
and to provide an associated means of calibrating this system. In this paper, a TDLAS
system was designed and applied to the assessments of gas flow and CH4/air co-flow
flame including temperature and velocity measurements. A static flow field vessel and
a shock tube were employed to generate a steady flow field along with specific constant
temperature or velocity for precise calibration. The measurement results obtained from
this system were verified. Finally, experimental investigation of the CH4/air flame was
conducted to test the effectiveness of the new TDLAS system in combustion diagnosis.

2. Experimental Methodology

2.1. Absorption Fundamentals

The principle of TDLAS measurement is on the basis of the Beer–Lambert law, de-
picting the relationship of incident light, transmitted light, molecule temperature, and
concentration [14] as

I(ν) = I0(ν)e
−∑

i
αi(ν)L

, and αi(ν) = pi ϕi(ν − ν0)Si(T) (1)

where I and I0 are the transmitted light intensity and incident light intensity, respectively,
which are corresponding to the output frequency of laser, ν. αi(ν) is the absorptivity of
absorbing species i# and L is the path length. Moreover for αi(ν), pi, and ϕi(ν − ν0) are
the partial pressure and absorption line shape function of species i#, such as Gaussian,
Lorentzian, or Voigt line profile (ν0 is the center frequency of the absorption spectrum) [15].
In addition, Si(T), as a function of temperature, is the molecular absorption line strength
of species i#. Consequently, integrated absorbance of independent transition line can be
obtained as

Ai =
∫ +∞

−∞
− ln(I/I0)dv =

∫
Si(T)ϕi(ν − ν0i)dν (2)

Based on the theory of molecular spectroscopy [16], the absorption line strength at
temperature T can be expressed as

S(T) = S(T0)
Q(T0)

Q(T)
· exp[− hcE

k
(

1
T
− 1

T0
)] · 1 − exp(−hcE/kT)

1 − exp(−hcE/kT0)
(3)
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where T0 is a reference temperature. ε0, h, c and k are four constant numbers, including the
dielectric constant, Planck’s constant, speed of light and Boltzmann’s constant, respectively.
E is the energy of the lower transition state, and Q(T) is the molecular internal partition
function at temperature T, which could be obtained from the HITRAN database [17,18].
These relationships enable the non-invasive experimental analysis of hot gases.

2.2. Measuring Principle of Gas Temperature and Velocity

The absorption line shape, bandwidth and intensity of absorption spectral features
can be obtained using a TDLAS system together with wavelength-scanning. Furthermore,
the gas temperature can be calculated from the ratio, R (the integrated absorbances of two
transition [7]), as

R =

∫
S1(T)ϕ1(ν − ν01)dν∫
S2(T)ϕ2(ν − ν02)dν

=
S1(T0)

S2(T0)
exp[− hc(E1 − E2)

k
(

1
T
− 1

T0
)] (4)

where subscripts 1 and 2 denote the two absorption transitions selected as shown in
Figure 1a. ΔE = E1 − E2 is the energy separation of the absorbing states. Based on the
use of a near-IR laser (Figure 1b), the gas temperature can then be obtained from the
relationship [19]

T =
− hc

k ΔE

ln R + ln S2(T0)
S1(T0)

− hc
kT0

ΔE
(5)

u
2

ν

I
I

ν
ν

S S

Figure 1. (a) Integrated absorbances of two selected transitions and diagrams summarizing the
processes used to measure (b) gas temperature and (c) flow velocity.

On the other hand, the gas flow velocity can be calculated according to Doppler-shift
as shown in Figure 1c [20]. Assuming that a monochromatic laser beam with a frequency
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ν0 (the same as the center frequency of the absorption spectrum) is used here, the Doppler-
shifted center frequencies for laser beams a and b would change into

ν1 =
ν0c

c + u sin θ
(6)

ν2 =
ν0c

c − u sin θ
(7)

Considering that c >> u, the flow velocity relationship can be simplified to

Δν = ν2 − ν1 =
2uν0c · sin θ

c2 − u2 sin2 θ
∼ 2uν0 · sin θ

c
(8)

or u =
c · Δν

2ν0 · sin θ
(9)

2.3. The Experimental TDLAS System

The TDLAS system designed in this work mainly comprised an infrared laser, modu-
lation unit, optical path, photodetectors, and high-speed data acquisition and processing
module, as shown in Figure 2. An OEM VCSEL driver (VITC002 from Thorlabs, Newton,
NJ, USA) with a temperature controller was applied for laser modulation. The functional
parameters of the laser (VCSEL from Vertilas, München, Germany) and function signal
generator (DG-1022 from Rigol, Beijing, China) are listed in Table 1.

Figure 2. Schematic of the TDLAS system designed in the present work.
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Table 1. Main parameters of laser and function signal generator selected.

Infrared Laser (VCSEL from Vertilas)

Center wavelength (nm) 1392 *
Operating current range (mA) 0.5–8.5

Operating temperature range (◦C) 15–35
Wavelength range at 20 ◦C (nm) 1389.16–1392.96
Wavelength range at 30 ◦C (nm) 1390.20–1393.70

Function signal generator (DG-1022 from Rigol)

Maximum output frequency (MHz) 20

Frequency of sampling (MSa/s) 100

Frequency resolution (Hz) 1μ
* Center wavelength is chosen according to the absorption spectrum of H2O, which will be discussed later.

Because of the advantages provided by analyzing water vapor, H2O-based TDLAS
measurement assessments were used in this study but with more accurate experimental
validation and a specially designed optical path intended for the monitoring of combustion
processes. Water will produce intense absorbance bands in the near-IR region 1400, 1800,
and 2700 [16,21]; and to avoid any interference by other species (such as C-H radical), 1392
nm was selected as the center wavelength for water vapor detection. Photodetectors (PN-
2000 from Lightsensing Technologies, Beijing, China) with a response range of 900–1650 nm
were used to determine the transmitted light intensity. Data were obtained using a data
acquisition card (PCI-20612 from TDEC, Sichuan, China) with four channels, operating at
32 bits and a maximum rate of 50 MSa/s.

2.4. Experimental Design for Validation

The functioning of the TDLAS system was calibrated or examined in three ways, as
shown in Figure 3, using a pressure vessel, a shock tube, and a co-flow combustion platform.

(1) Firstly, normal pressure and temperature were applied to the pressure vessel
(Figure 3a) with standing air to calibrate the basic performance of the system. This vessel
was made of stainless steel with optical glasses on both sides. The optical path in this
device had a maximum length of 0.4 m and a 532 nm green laser was employed to adjust
the path.

(2) Secondly, the shock tube was intended to provide determinable high-temperature
and high-speed water vapor flow to permit the precision and response rate of the mea-
surement system to be ascertained. As shown in Figure 3b, the shock tube was comprised
a high-pressure section, a low-pressure section, a gas circuit, and an electronically con-
trolled diaphragm. Prior to each test, the low-pressure section was charged with air to a
preset pressure. Following this, the high-pressure section was also slowly filled with air
until the diaphragm instantaneously ruptured to create a shock wave, thus producing a
high-temperature/pressure, high-speed flow field.

(3) Finally, the calibrated TDLAS system was used for the CH4/Air flame temperature
and hot gas velocity measurements, as shown in Figure 3c. A co-flow CH4/air burner
was made to generate a stable diffusion flame with preset initial conditions [22,23]. High
precision mass flowmeters (KM7100 from Alicat, Tucson, AZ, USA) were used to dispense
the combustible gases. To avoid the disturbance by H2O absorption in the non-flame zone
(i.e., a background signal resulting from atmospheric H2O), a beam splitter (50%:50%)
was used to subtract the background interference. As noted, the flame width (absorption
length about 2–3 cm) was relatively short, thus a reflector was added to obtain a stronger
absorption signal.
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Figure 3. Experimental facilities for TDLAS tests, including (a) a pressure vessel, (b) a shock tube,
and (c) a co-flow flame burner.

The experimental conditions are summarized in Table 2. All the tests were repeated 20
times to ensure reproducible results.

Table 2. Experimental conditions for tests by three facilities.

No. Test Facility Object Initial Conditions

1 Pressure vessel Air temperature Room temperature
Pressure: 90 kPa–2 MPa

2 Shock tube Flow velocity Velocity: 500–950 m/s

3 Combustion platform Flame temperature
and velocity

Room temperature at 1 atm
CH4 flow rate: 0.2–2.0 sl/min

3. Results and Analysis

3.1. Room Temperature Measurement by TDLAS

Absorption spectra of the contents of the pressure vessel (see Figure 3a) could be
obtained on the basis of comparisons between the laser output and absorption line strength
using the HITRAN [17] data, as shown in Figure 4 with an example at initial pressure of
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1 atm. Figure 4a shows the voltage U variation of function signal generator output used
for driving laser during a half cycle, and Figure 4b presents the transmitted light intensity
after absorption. Furthermore, clear positions and strengths of absorption peaks could be
found in Figure 4c. The line strength of water vapor vs. wavelength is plotted in Figure 4d
with independent absorption line.

Figure 4. Variation in (a) laser driving voltage and (b) transmitted light intensity in a half circle
with (c) peak positions and strengths, and (d) the line strength distribution calculated from the
HITRAN [17] database.

To calculate the vapor temperature, the time-domain of transmitted light intensity (I
vs. t) should be transformed to frequency-domain (that is, I vs. ν or I vs. λ) at first. Based
on the approximately linear relationship between λ and U, two reference wavelength-time
points were selected: (λ1, t1) and (λ2, t2). Then we obtained

λ =
t − t2

t1 − t2
(λ1 − λ2) + λ2 (10)
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This simplified linear fitting was considered a reasonable approximation over short
time spans. Note that λ vs. t would not be a continuous function, due to the discreteness
of λ. Furthermore, the wavelengths that were selected for these calculations (λ1 and λ2)
should be a certain distance apart to reduce the error caused by uncertainties in determining
the positions of the absorption peaks. Hence, λ1 = 1391.67275 nm and λ2 = 1395.00424 nm
were selected in the present work for the purpose of wavelength calibration.

Consequently, as ν ∼ 1/λ, the correlation between I and ν could be obtained by
combining Equation (10) with the data in Figure 4, as shown in Figure 5a. The baseline in
Figure 5a was fitted by using the polynomial I0 = a0 + a1ν + a2ν2 + a3ν3 and employing
data within the non-absorption region. The curve of ln(I/I0) vs. ν, as the key relation for
temperature calculation deduced in Equations (4) and (5), could be further illustrated in
Figure 5b,c.

ν

ν

Figure 5. (a) Absorption frequency-domain diagrams of the transmitted light intensity and (b) the
absorption ratio with (c) main peak positions and strengths.

It is necessary to take into account that the line-pair selection had to meet certain
conditions, meaning that there was no interference by other spectral lines and these lines
were positioned near the central wavelength of the laser. Furthermore, the lines had to be
separated by a suitable distance to avoid overlap. Therefore, we chose ν = 7181.15578 cm−1

and ν = 7185.59731 cm−1 under overall consideration. Other important parameters related
to the HITRAN database [17] are provided in Table 3. Combining Equations (4) and (5)
provide T = 302 ± 1.4 K, and this value—compared with the average experimental value of
301.14 ± 0.8 K by the thermocouples—provides a measurement error of less than 0.3%.
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Table 3. Parameters queried and calculated from HITRAN.

Frequency (cm−1)
Absorption Line Strength under
Room Temperature (cm−2/atm)

Energy of the Lower
Transition State (cm−1)

7181.15578 0.12280 136.7617

7185.59731 0.00648 1045.0579

The pressure effects on measurement accuracy were investigated subsequently. The
results showed that, with the enlarged initial test pressure, pressure broadening occurred
generally and became dominant due to the increasing frequency of molecular collisions.
In addition, spectral interference resulting from line overlap became evident at pressures
exceeding 0.8 MPa. It should be noted that the measurement errors related to temperature
and concentration could be larger than 10% at pressures above 1 MPa.

3.2. Velocity of High Speed Air Flow in Shock Tube

As shown in Figure 3b, a uniform and controllable air flow field could be generated in
the shock tube. The velocity values measured by the TDLAS system were compared with
those by both ICP (integrated circuits piezoelectric) shock wave pressure sensors (102B15
from Dibeiqi Electronic Technology, China) and theoretical calculations. Two ICP sensors
with a distance of 120 mm were mounted along the tube as shown in Figure 6a, and typical
results were plotted in Figure 6b. The shock wave velocity was determined from these
data as

ushock =
120 mm

ΔtICP
(11)

Figure 6. (a) ICP sensor locations and (b) responses for a pressure wave in the shock tube.

Based on assuming isentropic flow, the flow velocity could be simplified as

u = M
√

γRgasT (12)
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where M is the Mach number of the shock wave determined by ushock in Equation (11) and
sound velocity, γ is the adiabatic exponent, and Rgas is the universal gas constant.

The signals obtained from laser beams a and b during the TDLAS analyses are shown
in Figure 7. To avoid miscalibaration, the synchronization of the initial absorption peaks of
the two lasers under static air condition were performed. According to the correlation of t
with λ (or Δt vs. Δλ) in Equation (10), the frequency shift resulting from the Doppler effect
could be

|Δν| =
∣∣∣∣Δ 1

λ

∣∣∣∣ ∼ |Δλ|
λ2

0
(13)

and combining this relationship with Equation (9) allowed the flow velocity to be deter-
mined from the TDLAS results.

t

Figure 7. Time difference in the TDLAS signal due to the frequency shift induced by the Doppler effect.

In theory, the flow velocity and temperature could also be predicted by shock wave
propagation equations numerically [24]. It is helpful to summarize the characteristics of
the three measurement methods:

(1) The ICP sensors can capture the shock wave movement and time interval, which are
the key parameters to calculate flow velocity with shock wave theory.

(2) As noted above, the velocity by TDLAS measurement is actually that of H2O molecule.
(3) Numerical prediction is based on both the Mach number (obtained according to the

pressure ratio between the high-pressure and low-pressure sections) and the shock
wave propagation equations.

To validate these methods, tests were conducted applying an initial pressure in the
range of 100–650 kPa for the low-pressure section, and a comparison of the results is
provided in Figure 8.

It is found that the results obtained from the ICP sensors and the numerical predictions
were similar, presumably because both methods are on the basis of Mach number calcula-
tions and shock wave theory. However, the manner in which the Mach number is obtained
is very different between the two. In the case of the ICP sensors method, the Mach number
was deduced by shock wave velocity and sound velocity of the wave front, whereas, for
numerical prediction, the Mach number was calculated from the aforementioned pressure
ratio and iterative solution of gas dynamics relationships. Moreover, we should note that
some assumptions had been made in shock wave theoretical analysis that may have led to
a slight overestimation of the flow velocity. Specifically,

(1) Air viscosity effects and the propagation of waves in more than one dimension
were ignored.
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(2) The attenuation of the shock wave along shock tube was not considered.
(3) Considering the velocity range of gas flow, the re-absorption effect was also ig-

nored [25].

Figure 8. Gas flow velocities in the low-pressure section of the shock tube as determined using three
methods.

In general, for high-speed gas flow velocity, the TDLAS measurements show good
agreement the results obtained using the other two methods, with a maximum averaged
error of 4.3%. The temperature of the reflected shock wave was also monitored, and a
comparison between the TDLAS results and numerical predictions is shown in Figure 9. It
is proved that the TDLAS system we developed in the present work was able to accurately
capture the variation of temperature and velocity for high-speed gas flow.

Figure 9. Comparison of gas temperature after reflected shock wave by two measurement methods.

3.3. Local Temperature and Velocity of CH4/Air Flame

As one of the most important combustion products, the H2O is an ideal tracer for
flame measurement by the TDLAS system. Here, variations in S(T) were evaluated using
a thin Pt–Rh thermocouple wire with a diameter of 0.1 mm to estimate the approximate
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flame temperature range (in the vicinity of 1500 K). These data were subsequently used to
validate the results by TDLAS as shown in Figure 10a,b.

Figure 10. CH4/air flame data acquired using (a) thin Pt-Rh thermocouples, (b) the TDLAS system,
and validations of the (c) flame temperature and (d) velocity results.

The line-pair of ν = 7181.15578 cm−1 and ν = 7185.59731 cm−1 was again used in this
assessment. During the trials, the fuel mass (or volume) flow rate of CH4/air diffusion
flame was controlled by mass flowmeters to obtain an air flow rate of 2 standard liters per
minute (slpm) and CH4 flow rates in the range of 0.25–2 slpm under an ambient pressure
of 1 atm.

Figure 10c compares the temperature results between the thermocouples and the
TDLAS system. The tendencies and actual values of the two curves are very similar,
meanwhile, velocities by numerical simulations and the TDLAS process are also compared
in Figure 10d with good agreement. It is interesting that although there were pulsations of
the flame during testing, it can be ignored when using a driver scanning frequency above 1
kHz, meaning that approximately steady state flame information could be acquired at high
scanning and sampling frequencies.

4. Conclusions

With the goal of performing combustion diagnostics and assessing the thermal char-
acteristics of flammable gases, a portable H2O-based TDLAS system was designed. The
measuring principle was revealed theoretically, and experimental calibration and valida-
tion were performed using a pressure vessel, shock tube, and CH4/air diffusion flame,
respectively. The main conclusions from this work are:
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(1) A method of calculating gas characteristics including temperature, velocity, and
species concentration was provided using H2O absorption spectra and the HITRAN
database in conjunction with TDLAS system. In addition, the line-pair selection criteria
was verified. This method was demonstrated to be a viable approach to hot gas analyses.

(2) The dual optical path TDLAS system established can eliminate the background
interference effectively when applied to a relatively small test target. The combined
selection of an appropriate center wavelength, wavelength calibration between the time
and frequency domains, and use of a specific scanning or sampling frequency allowed this
system to be used for the assessment of small flames.

(3) The temperature calibration and pressure broadening effect of absorption spectra
of this TDLAS system were studied using a pressure vessel. It is found that this system can
provide an accurate measurement within environment pressure of 0.8 MPa.

(4) A shock tube was built to provide controllable and steady gas flows with high
temperature or high speed, which turned out to be an ideal experimental setup for the
parameter calibration of TDLAS at extreme conditions. The TDLAS system was confirmed
to accurately monitor variations in high temperature and velocity gas flows.

(5) A small scale CH4/air diffusion flame burner was developed to validate the ability
of the TDLAS system to monitor combustion characteristics. A comparison of the TDLAS
results with thermocouple measurements and numerical simulations indicated that the
TDLAS method provided satisfactory flame temperature and velocity values.

Future work will involve the application of TDLAS to the assessment of hydrocarbon
combustion products such as CO2 and C-H radicals to explore more precise measurements.
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Nomenclature

A Integrated absorbance of independent transition line
c Speed of light (m s−1)
E Energy of the lower transition state (J)
I Signal of light intensity (V)
L Path length (m)
p Partial pressure (Pa)
S Molecular absorption line strength (cm−2 atm−1)
T Temperature (K)
t Time (s)
u Velocity (m s−1)
α Absorptivity of absorbing species
ν Frequency of laser
ϕ Absorption lineshape function of species
θ Angle between two lasers
λ Wavelength

207



Sensors 2022, 22, 6707

References

1. Philippe, L.C.; Hanson, R.K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature,
pressure, and velocity in shock-heated oxygen flows. Appl. Opt. 1993, 32, 6090–6103. [PubMed]

2. Alexander, K.; Oliver, W.; Volker, E. Rapid, Time-division multiplexed, direct absorption- and wavelength modulation-
spectroscopy. Sensors 2014, 14, 21497–21513.

3. Lo, Y.H.; Grabbe, P.; Iqbal, M.Z.; Bhat, R.; Gimlett, J.L.; Young, J.C.; Lin, P.S.D.; Gozdz, A.S.; Koza, M.A.; Lee, T.P. Multigigabit/s
1.5 mu m lambda/4-shifted DFB OEIC transmitter and its use in transmission experiments. IEEE Photonics Technol. Lett. 1990, 2,
673–674.

4. Zah, C.E.; Amersfoort, M.R.; Pathak, B.; Favire, F.; Lin, P.S.D.; Rajhel, A.; Andreadakis, N.C.; Bhat, R.; Caneau, C.; Koza, M.A.
Wavelength accuracy and output power of multiwavelength DFB laser arrays with integrated star couplers and optical amplifiers.
IEEE Photonics Technol. Lett. 1996, 8, 864–866.

5. Nagali, V.; Hanson, R.K. Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases. Appl. Opt.
1997, 36, 9518–9527.

6. Mihalcea, R.M.; Baer, D.S.; Hanson, R.K. Advanced diode laser absorption sensor for in situ combustion measurements of CO2,
H2O, and gas temperature. Proc. Combust. Inst. 1998, 27, 95–101.

7. Allen, M.G. Diode Laser Absorption Sensors for Gas-Dynamic and Combustion Flows. Meas. Sci. Technol. 1998, 9, 545–562.
8. Chang, A.Y.; Dirosa, M.D.; Davidson, D.F.; Hanson, R.K. Rapid tuning cw laser technique for measurements of gas velocity,

temperature, pressure, density, and mass flux using NO. Appl. Opt. 1991, 30, 3011–3022.
9. Kranendonk, L.A.; Walewski, J.W.; Kim, T.; Sanders, S.T. Wavelength-agile sensor applied for HCCI engine measurements. Proc.

Combust. Inst. 2005, 30, 1619–1627.
10. Webber, M.E.; Wang, J.; Sanders, S.T.; Baer, D.S.; Hanson, R.K. In situ combustion measurements of CO, CO2, H2O and temperature

using diode laser absorption sensors. Proc. Combust. Inst. 2000, 28, 407–413.
11. Torek, P.V.; Hall, D.L.; Miller, T.A.; Tiffany, A.; Wooldridge, M.S. H2O absorption spectroscopy for determination of temperature

and H2O mole fraction in high-temperature particle synthesis systems. Appl. Opt. 2002, 41, 2274–2284.
12. Zhou, X.; Sanders, S.T.; Jeffries, J.B.; Hanson, R.K.; Jenkins, T.P. Combustion temperature and H2O concentration sensor using a

single diode laser. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002;
Volume 395.

13. Zhou, X.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Development of a sensor for temperature and water concentration in combustion
gases using a single tunable diode laser. Meas. Sci. Technol. 2003, 14, 1459.

14. Fuwa, K.; Valle, B.L. The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer-Lambert law.
Anal. Chem. 1963, 35, 942–946.

15. Gao, N.; Du, Z.H.; Qi, R.B.; Ma, Y.W.; Wang, Y. Lineshape deviation and correction in tunable diode laser absorption spectroscopy
technology. J. Optoelectron. Laser 2011, 22, 893–896.

16. McHale, J.L. Molecular Spectroscopy; Prentice Hall: Hoboken, NJ, USA, 1998.
17. High-Resolution Transmission Molecular Absorption Database. Atomic and Molecular Physics Division, Harvard-Smithsonian

Center for Astrophysics, 2012. Available online: http://cfa-www.harvard.edu/HITRAN/ (accessed on 2 May 2013).
18. Rothman, L.S.; Barbe, A.; Chris, B.D.; Brown, L.R.; Camy-Peyret, C.; Carleer, M.R.; Chance, K.; Clerbaux, C.; Dana, V.; Devi, V.M.;

et al. The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat.
Transf. 2003, 82, 5–44.

19. Allen, M.G.; Kessler, W.J. Simultaneous water vapor concentration and temperature measurements using 1.31 μm diode lasers.
AIAA J. 1996, 34, 483–488.

20. Miller, M.F.; Kessler, W.; Allen, M.G. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets. Appl. Opt. 1996,
35, 4905–4912.

21. Rieker, G.B.; Liu, X.; Li, H.; Jeffries, J.B.; Hanson, R.K. Measurements of near-IR water vapor absorption at high pressure and
temperature. Appl. Phys. B 2006, 87, 169–178.

22. Zeng, Y.; Fang, J.; Wang, J.W.; Li, J.; Tu, R.; Zhang, Y. Momentum-dominated methane jet flame at sub-atmospheric pressure.
Procedia Eng. 2013, 63, 924–931.

23. Wang, J.W.; Fang, J.; Guan, J.F.; Zeng, Y.; Zhang, Y.M. Flame volume and radiant fraction of jet diffusion methane flame at
sub-atmospheric pressures. Fuel 2016, 167, 82–88.

24. Anderson, J.D. Fundamentals of Aerodynamics; McGraw Hill: New York, NY, USA, 2006.
25. Lundgaard, S.; Ng, S.H.; Cahill, D.; Dahlberg, J.; Allender, J.; Barber, M.; Stephens, J.; Juodkazis, S. Electrical breakdown

spectroscopy of nano-/micro-thermites. Technologies 2021, 9, 34. [CrossRef]

208



Citation: Li, D.; Li, L. Detection of

Water pH Using Visible

Near-Infrared Spectroscopy and

One-Dimensional Convolutional

Neural Network. Sensors 2022, 22,

5809. https://doi.org/10.3390/

s22155809

Academic Editor: Simone Borri

Received: 28 June 2022

Accepted: 2 August 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Detection of Water pH Using Visible Near-Infrared
Spectroscopy and One-Dimensional Convolutional
Neural Network

Dengshan Li and Lina Li *

College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China;
20013080028@stu.hqu.edu.cn
* Correspondence: lilina@hqu.edu.cn; Tel.: +86-13-395023485

Abstract: pH is an important parameter for water quality detection. This study proposed a novel
calibration regression strategy based on a one-dimensional convolutional neural network (1D-CNN)
for water pH detection using visible near-infrared (Vis-NIR) spectroscopy. Two groups of Vis-NIR
spectral analysis experiments of water pH detection were employed to evaluate the performance
of 1D-CNN. Two conventional multivariate regression calibration methods, including partial least
squares (PLS) and least squares support vector machine (LS-SVM), were introduced for comparative
analysis with 1D-CNN. The successive projections algorithm (SPA) was adopted to select the feature
variables. In addition, the learning mechanism of 1D-CNN was interpreted through visual feature
maps by convolutional layers. The results showed that the 1D-CNN models obtained the highest
prediction accuracy based on full spectra for the two experiments. For the spectrophotometer
experiment, the root mean square error of prediction (RMSEP) was 0.7925, and the determination
coefficient of prediction (R2

p) was 0.8515. For the grating spectrograph experiment, the RMSEP was
0.5128 and the R2

p was 0.9273. The convolutional layers could automatically preprocess the spectra
and effectively extract the spectra features. Compared with the traditional regression methods,
1D-CNN does not need complex spectra pretreatment and variable selection. Therefore, 1D-CNN is a
promising regression approach, with higher prediction accuracy and better modeling convenience
for rapid water pH detection using Vis-NIR spectroscopy.

Keywords: visible; near-infrared; pH detection; one-dimensional convolutional neural network;
multivariate regression calibration

1. Introduction

Water is the basic resource for human survival and ecosystem evolution. Water safety
is an issue that cannot be overlooked and that directly affects the earth′s ecological envi-
ronment and human survival. However, with the development of society and economics,
industrial waste is emerging as a principal source of water contamination. Water quality
parameters, such as pH, dissolved oxygen, turbidity, sediments, chloride ions, potassium
ions, and so on, characterize the quality of the water environment. pH is one of the im-
portant water quality parameters, as it involves the water′s natural phenomena, chemical
changes, and production process [1]. Therefore, research on the rapid detection of water
pH is significant.

Traditionally, the determination of water pH mainly adopts the glass electrode
method [2]. The measurements of this method are accurate, but the process is cumbersome
and needs the pH buffers to calibrate. Visible near-infrared (Vis-NIR) spectroscopy is a
fast, non-destructive and qualitative analysis technique which has been widely used in the
rapid detection of chemical composition [3–5]. In the Vis-NIR region, the absorption of the
spectrum mainly comes from the frequency doubling and combination band of hydrogen-
containing groups (such as O-H, C-H, and N-H) [6]. Vis-NIR spectroscopy combined with
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chemometrics is one of the promising techniques for rapid water pH detection. However,
since the prediction accuracy is not satisfactory, there are few reports about the use of this
technology to detect the water pH value [7].

High-accuracy and effective multivariate regression calibration models play a key
role in Vis-NIR spectral analysis. A lot of multivariate calibration algorithms have been
developed to build the relationship between the Vis-NIR spectra and the target attributes,
including partial least squares (PLS), least squares support vector machine (LS-SVM),
artificial neural network (ANN), and extreme learning machine (ELM) [8–10], etc. Among
these methods, the PLS (linear) and LS-SVM (nonlinear) are the most commonly used
multivariate calibration methods [11]. The high dimension and high complexity are the
main characteristics of modern spectroscopy. The spectra data contains a large number of
uninformative variables and noise, which is the challenge of spectra analysis. In order to
reduce the dimension of spectra and improve the prediction accuracy, a large amount of
characteristic wavelength variable selection methods were proposed [12]. However, many
variable selection algorithms are of low reproducibility and have the risk of overfitting,
such as competitive adaptive reweighted sampling (CARS), genetic algorithm (GA), and
variable combination population analysis (VCPA) [13].

In recent years, convolutional neural networks (CNN) have provided new insights for
spectra analysis. CNN is a representative deep learning algorithm which was initially used
to solve the spectra classification problems. Recent studies have found that CNN is feasible
in spectra multivariate regression calibration, and the prediction performance of CNN is
better than PLS. Cui et al. (2018) proposed a unified CNN structure used for multivariate
regression, and the results indicated that the CNN models achieved the highest prediction
accuracy [14]. Li et al. (2022) explored the potential of using the short-wave infrared (SWIR)
hyperspectral imaging (HSI) technique combined with a one-dimensional convolutional
neural network (1D-CNN) for predicting the SSC of dried Hami jujube, and the results
indicated that the prediction accuracy of 1D-CNN was satisfactory [11]. Mishra et al. (2022)
presented a strategy of 1D-CNN modeling for the multi-response prediction for spectral
data of fresh fruit, they found that the prediction performance of 1D-CNN is better than
PLS [15]. Moreover, CNN modeling has no need for complex spectra pretreatment and
variable selection, since the CNN with convolutional layers can automatically extract the
features of spectra [13]. Thus, CNN is expected to be a widely used multivariate calibration
technology in Vis-NIR spectroscopy analysis.

Although the CNN model has outperformed the traditional calibration methods, it is
hard to explain how CNN extracts efficient information from the input spectra and how
CNN establishes the relationship between the spectral and the objective attribute. For
linear regression strategies such as principal component regression (PCR) and PLS, the
absolute value of regression coefficients indicates the importance of the corresponding
wavelength variables. The nonlinear regression methods, such as LS-SVM, ELM, and CNN,
have more complex calculation processes and structures, and it is difficult to explain the
relevance between the spectral data and the attribute of interest. The CNN model is a
black box due to the complex network structure and multilayer operations. Interpreting
the learning mechanism of CNN is critical for further application. In the field of spectra
classification, CNN’s visual explanation method has already been reported. Fukuhara
et al. (2019) proposed a feature visualization method that calculates important regions
in the spectra from weights in pooling and fully-connected layers [16]. This approach
focuses on explaining the characteristic variables extraction but ignores the explanation
of how the convolutional layers process the spectra and learn the spectra features. Zhang
et al. (2020) and Ng et al. (2020) visualized the feature maps of convolutional layers to
explain how the CNN model processes the spectra and extracts the feature variables [13,17].
This method explains the contribution of each variable to the classification results and
interprets how the convolutional layers process the spectra and learn the spectra features.
However, in the field of spectra regression, there are few reports about interpreting the
CNN regression model.
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Therefore, a novel calibration regression strategy based on 1D-CNN for water pH
detection is proposed in this study. Two experiments of water pH value detection using
Vis-NIR spectral analysis are adopted to evaluate the performance of 1D-CNN. PLS and
LS-SVM are introduced for comparative analysis with 1D-CNN. The main goal of this
study are the following: (1) explore the potential of using Vis-NIR spectroscopy for water
pH detection; (2) establish and optimize traditional models (PLS and LS-SVM) through
spectra pretreatment methods and characteristic wavelength variables algorithms; (3)
construct the 1D-CNN architectures and optimize the parameters of 1D-CNN for modeling
to predict water pH; (4) visualize the feature maps by convolutional layers and interpret
the internal feature representations of 1D-CNN; (5) compare the prediction performance of
1D-CNN and traditional multiple regression algorithms, the model prediction accuracy,
and convenience of modeling are discussed.

2. Materials and Methods

2.1. Experiment

In this study, two independent experiments were conducted to evaluate the effective-
ness and applicability of the 1D-CNN regression method for water pH detection using
Vis-NIR spectroscopy. In these two experiments, we adopted two Vis-NIR spectrometers
with different spectroscopic principles to measure the absorbance of samples.

Sample preparation: Randomly added the 0.1 mol/L HCl solution or 0.1 mol/L NaOH
solution into distilled water to prepare samples with different pH values.

Reference pH measurement: Use the pH meter (Shanghai Lichen-BX Instrument
Co., Ltd. Shanghai, China) to measure the reference pH of each sample. The measurement
accuracy of the pH meter is ±0.01 pH unit.

2.1.1. Spectrophotometer Experiment: Detecting the pH Value of Distilled Water with a
Spectrophotometer

Sample description: A total of 34 samples were used in this experiment. The reference
pH range was 3.19~10.63, and the average value and standard deviation were 6.15 and 2.08,
respectively.

Spectra acquisition: A spectrophotometer (V-1800PC, Shanghai Mapada Instrument
Co., Ltd. Shanghai, China) with a resolution of 2 nm was employed to measure the Vis-NIR
spectra in the range of 400~1100 nm. Each sample was placed in a 10 mm quartz cell.
Adopted transmission measurements to obtain the spectra and record the absorbance as the
spectra data. The original Vis-NIR spectrum of the 34 distilled water samples are shown in
Figure 1a.

Sample grouping: In order to ensure that the multivariate calibration model has a
good generalization ability, the distilled water samples were divided into a calibration set
(24 samples) and a prediction set (eight samples) by the descending sorting method [18].
The calibration set is used for modeling, and the prediction set is adapted to test the
performance of the multivariate calibration model.

2.1.2. Grating Spectrograph Experiment: Detecting the pH Value of Distilled Water with a
Grating Spectrograph

Sample description: A total of 32 samples were used in this experiment. The reference
pH range was 1.64~9.31, and the average value and standard deviation were 6.27 and 2.03,
respectively.

Spectra acquisition: The spectra acquisition system consists of a light source (HL-
2000-LL), two transmission fibers, and a grating spectrograph (FLAME-T-XR1-RS, Ocean
Optics Inc., Orlando, FL, USA). The wavelength range was 400~1049 nm and the spectra
resolution were 2860 pixels. Each sample was placed in a 10 mm quartz cell. Spectrometer
parameters include an integration time of 34 ms, smoothing 3, and average times 200.
Adopted transmission measurements to obtain the spectral and record the absorbance
value as the spectra data. The original Vis-NIR spectrum of the 32 distilled water samples
is shown in Figure 1b.
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Sample grouping: The 32 distilled water samples were partitioned into two parts by
the descending sorting method, including a calibration set (24 samples) and a prediction
set (8 samples).

Figure 1. Original Vis-NIR spectra of distilled water samples: (a) spectrophotometer experiment;
(b) grating spectrograph experiment.

2.1.3. Spectral Reference Characteristics

As shown in Figure 1, the key chemical features appear near the ~970 nm, which is
related to the third overtones of O-H bonds in water [19]. The small mounds near ~840 nm
and ~750 nm, which can be correlated to 2v1 + v2 + v3 and 3v1 + v3 combination transition,
respectively, where v1 is the symmetric O-H stretch, v2 is the O-H bending mode, and v3 is
the antisymmetric O-H stretch [20].

2.2. Traditional Modeling Methods
2.2.1. Spectral Preprocessing Methods

The spectra data is easily disturbed from instrumental drifts, measurement modality,
sample state, and other environmental factors in the acquisition process [21]. Three com-
monly used preprocessing strategies are applied in this study, including Savitzky-Golay
(S-G) smoothing, standard normal variate (SNV), and Z-score normalization. The S-G
smoothing with a second-order polynomial and seven smoothing points (SG (2,7)) was
used to improve the spectral smoothness and reduce noise interference. The purpose of
SNV is to remove scatter noise [22]. The spectra data by Z-score normalization conforms to
the standard normal distribution [23].

2.2.2. Modeling Algorithms

Two traditional calibration algorithms, PLS and LS-SVM, are adopted for comparative
analysis with 1D-CNN. These two calibration algorithms are briefly introduced as follows.

(1) Partial least squares regression is one of the most commonly used calibration methods,
which establishes a linear connection between the spectra data matrix (x) and the
target attributes (y). PLS extract uncorrelated principal components (PCs) from the
spectra to construct the calibration models. For more details about PLS, please refer to
reference [24]. In this study, according to the root mean square error of cross-validation
(RMSECV), we chose the optimum number of PCs (nPCs) [18].

(2) Least squares support vector machine is a commonly-used machine learning algo-
rithm which exhibits high prediction accuracy in addressing linear and nonlinear
problems [25]. LS-SVM employs a kernel function to transform the original spectra
data into a high-dimensional space. Then support vectors are obtained by a set of

212



Sensors 2022, 22, 5809

linear equations. For more details about LS-SVM, please refer to reference [8]. The
prediction results of LS-SVM can be expressed as Equation (1):

ŷ =
n

∑
i=1

αi·K (x, xi) + b (1)

where αi correspond to the Lagrange multiplier called support vector, K (x, xi) rep-
resents the kernel function, x refers to the spectra data in the prediction set, and b is
the bias.

Before building the LS-SVM model, three crucial factors were considered, including
the optimal input features, kernel function, and optimal model parameters [26]. Firstly, the
raw or the preprocessed spectra was adopted as the input dataset. Secondly, the radial
basis function (RBF) was selected as the kernel function. The RBF kernel can reduce the
computational complexity and has an excellent performance in dealing with nonlinear prob-
lems [25]. Finally, two model parameters need to be optimized, including the regularization
parameter (γ) and the parameter (δ2) of RBF.

This research employed the particle swarm optimization (PSO) algorithm to search
the optimal γ and δ2. The range of γ and δ2 within 10−2 to 106 [25,26]. PSO algorithm to
find the optimal solution by iteration, according to different problems, the corresponding
fitness function is used to evaluate the quality of the solution [27]. Compared with other
optimization methods, the advantage of PSO is easy to realize, and has high solution
accuracy and calculation speed. For the PSO, parameters include the population size of
particle swarm (20), learning factors c1 = c2 = 1.5, inertia weight wmax = 1.2 and wmin = 0.8,
and the velocity vmax = −vmin = 20. The fitness function of the PSO algorithm is the root
mean square error of calibration (RMSEC). After 200 iterations, the optimal parameters of
LS-SVM were obtained.

2.2.3. Successive Projection Algorithm (SPA)

Characteristic wavelength variables selection can eliminate the noise and uninforma-
tive variables in the original spectra. Models established based on the small numbers of
characteristic wavelength variables are less costly and easy to interpret.

The successive projection algorithm is a forward variable selection method [7]. SPA
has a good performance in solving the collinearity problems of spectra data. The objective
of SPA is to select a subset of variables whose information content is at least redundant [28].
Firstly, SPA projects the variable onto other variables, and the variable of the largest
projection vector is selected as the characteristic variable. It then incorporates a new one at
each iteration until the best m variables are selected. It is worth noting that the m value is
not more than the number of samples in the calibration set. More details about SPA can be
found at reference [29].

All spectra pretreatment and traditional models were implemented using MATLAB
R2016b (The MathWorks Inc., Natick, MA, USA).

2.3. One-Dimensional Convolutional Neural Network (1D-CNN)
2.3.1. Data Augmentation and Spectral Preprocessing

In this study, the number of distilled water samples is small for 1D-CNN modeling.
The raw spectra data were augmented using the data augmentation algorithm proposed by
Bjerrum et al. to avoid the overfitting phenomenon in the training process and improve the
robustness of the 1D-CNN model [30]. This method adds random offset, multiplication,
and slope into the original dataset. The offset was varied −0.1~0.1 times the standard
deviation of the calibration set. The multiplication was done with 0.9~1.1 times the standard
deviation of the calibration set. In addition, the slope was uniformly randomly adjusted
between 0.95~1.05.

For the spectrophotometer experiment, the raw spectra were first processed by Z-
score normalization. Then, each sample in the calibration set was done 10 times data
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augmentation and appended to the dataset. After data augmentation, the calibration
dataset has a total of 264 spectra.

For the grating spectrograph experiment, the raw spectra were first processed by
Z-score normalization. Then, each sample in the calibration set was done 10 times data
augmentation and appended to the dataset. After data augmentation, the calibration set
has a total of 264 spectra. Finally, the calibration set and prediction set were subjected to
SNV preprocess.

2.3.2. 1D-CNN Architecture

The CNN basic architecture generally includes input layer, convolutional layer, pooling
layer, activation function layer, flatten layer, fully connected layer, and output layer, etc. The
main function of convolutional layers is to extract the characteristics of input spectra [13,31].
Take the first convolutional layer as an example, the convolutional layer with N same
size filters. After the convolutional layer, the input spectra are transformed to N feature
maps. However, the convolution is a linear operation. In order to implement nonlinearity
transformation in the network, the feature maps are passed to an activation function
layer [31]. The generally used activation function includes sigmoid function, rectified linear
units (ReLU), and exponential linear units (ELU). The main purpose of the pooling layer
is to reduce the dimensional of convolutional layer feature maps, which helps increase
the calculation speed and prevent overfitting. The fully connected layer is a multi-layer
perceptron, and each neuron in this layer is connected to all the elements in the previous
layer [18].

Inspired by the classic CNN network structures of LeNet-5 [18], as shown in Figure 2,
this study constructed a 1D-CNN framework to predict the water pH value. The 1D-CNN
model consists of an input layer, three convolutional layers, three batch normalization
layers, four activation function layers, three average pooling layers, a flatten layer, a
dropout layer, a fully connected layer, and an output layer. The pooling size is 2 × 1 and
the stride is 2. The purpose of the batch normalization layer is to standardize the data of
each mini-batch and normalize the output into a standard normal distribution, which is
an effective regularization strategy [18]. In order to prevent overfitting and improve the
calculation speed, a batch normalization layer was added after each convolutional layer.
We added a dropout layer after the flatten layer. The dropout layer randomly drops out
nodes to further reduce overfitting. The output layer predicts the pH value. It is worth
noting that the output layer is a fully connected dense layer with one node.

Figure 2. Architecture of 1D-CNN models.
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For the spectrophotometer experiment, the input of the 1D-CNN model is one-
dimensional spectra data which have a total of 351 wavelength variables, so the shape
of the input layer is 351 × 1. The number of filters in the three convolutional layers is
8, 16, and 32, respectively. The ReLU is the activation function added between the batch
normalization layer and the pooling layer. The sigmoid is the activation function added
after the dropout layer.

For the grating spectrograph experiment, the shape of input layer is 2860 × 1. The
number of filters in the three convolutional layers is 8, 16, and 32, respectively. The ReLU
is the activation function added between the batch normalization layer and pooling layer,
and the sigmoid is the activation function added after the dropout layer.

The hyperparameters of 1D-CNN models (filter size, node number of fully connected
layer, and dropout probability) were optimized according to the number of samples, the
number of convolutional layers, and the spectral dimension [13]. The optimal results of
hyperparameters are shown in Figure 2.

2.3.3. Training of 1D-CNN

In the 1D-CNN model training process, mean squared error (MSE) was employed as
the loss function and calculated in Equation (2) [11].

loss = MSE =
∑n

i=1(ŷi − yi)
2

n
(2)

where n is the number of water samples in the calibration set, ŷi and yi are the predicted
pH and reference pH of the ith water samples, respectively. The initial learning rate was
0.001. We adopted the adaptive moment estimation (Adam) optimizer to minimize the
MSE through the gradient descent algorithm.

The flowchart of water pH detection using Vis-NIR spectral analysis based on 1D-CNN
is shown in Figure 3. The 1D-CNN model training process was as follows:

Figure 3. The flowchart of water pH detection using Vis-NIR spectral analysis based on 1D-CNN. In
this figure, n is the training epochs and E is the expected value of MSE.

(1) Data augmentation and spectral preprocessing. Before 1D-CNN training, in order to
improve the prediction accuracy and prevent overfitting. As previously described,
after Z-score preprocess, the calibration set was augmented 10 times using the data
augmentation method.

(2) The parameters of 1D-CNN, including all layer weight and biases, were initialized
randomly.
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(3) Forward propagation. The spectra in the calibration set as the input data of the
1D-CNN finally acquired the predicted pH values from the output layer.

(4) Calculate the MSE value between the predicted and the reference pH values by
Equation (2).

(5) Backpropagation. Calculate the error gradient of the output layer, and use the back-
propagation algorithm to calculate the error gradient of each weight. Then, use the
gradient descent algorithm to update the weight value in each layer. The purpose of
this step is to optimize the weight of 1D-CNN to minimize the MSE [32].

(6) Go to step (3) until the training epochs reach the maximum number of training epochs
or the MSE value is less than the set value.

For the spectrophotometer experiment, the batch size was set to 24. The model has
been trained for 180 epochs to make sure it was fully trained. For the grating spectrograph
experiment, the batch size was set to 24, and the model has been trained for 80 epochs.

All 1D-CNN models were implemented using the Python (3.7.1) programming lan-
guage and TensorFlow (1.14.0).

2.4. Criteria for Model Evaluation

The performance of the calibration models is evaluated according to the values of the
root mean square error (RMSE) of calibration (RMSEC), prediction (RMSEP), and coefficient
(R2) of determination calibration (R2

c ) and prediction (R2
p) [11,33]. Generally, the lower value

of RMSE and the closer the R2 is to 1 indicate that the prediction result from the calibration
model is more reliable and the calibration model has a better-predicted performance [11].

2.5. Outlier Recognition

Outliers contained in the calibration set may have a significant effect on the calibration
result [34]. Particularly for the 1D-CNN model, the MSE loss function is more sensitive to
outliers [35,36]. In order to reduce the influence of outliers in the calibration model training
process, leave-one-out cross-validation (LOOCV) with the 3σ criterion was employed for
outlier recognition [37]. This algorithm firstly constructs the PLS model, then adopts the
leave-one-out manner to calculate the standard deviation σ(i) of the prediction error e(i) for
the ith sample. If the absolute value of e(i) is larger than the absolute value of 3σ(i), the ith
sample is an outlier sample and should be eliminated. For more details about LOOCV with
the 3σ criterion, please refer to reference [37].

Figure 4a,b show the results of LOOCV with the 3σ criterion for two groups of water
pH detection experiments. The results show that there are no outliers in the calibration set.

Figure 4. Results of LOOCV with the 3σ criterion: (a) spectrophotometer experiment; (b) grating
spectrograph experiment.
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3. Results and Discussion

3.1. Prediction Results Using Traditional Modeling Methods

To compare the effects of different preprocessing methods on the spectra analysis, PLS
and LS-SVM calibration models based on different preprocesses were established.

For the spectrophotometer experiment, the prediction results are given in Table 1.
Under the PLS, for the raw spectra, the RMSEP is 1.1381, and the R2

p is 0.6942. For other
preprocessing methods, the prediction results show a decrease to some degree. Under
the LS-SVM, for the raw spectra, the RMSEP is 1.0295, and the R2

p is 0.7495. With the
comparison of the prediction results for different preprocessing methods, the SG (2,7)
smoothing preprocess achieved the best prediction accuracy, the RMSEP is 1.0290, and the
R2

p is 0.7498.

Table 1. Prediction parameters of PLS and LS-SVM with different preprocessing for the spectropho-
tometer experiment.

Model Preprocessing nPCs γ δ2
Calibration Set Prediction Set

RMSEC R2
c RMSEP R2

p

PLS

Raw 9 - - 0.3986 0.9621 1.1381 0.6942
Smoothing 6 - - 1.0119 0.7557 1.3038 0.5986

SNV 3 - - 1.6956 0.3141 1.8039 0.2318
Z-score 5 - - 1.1286 0.6961 1.1711 0.6762

LS-SVM

Raw - 77,838.29 26,573.41 0.8957 0.8086 1.0295 0.7495
Smoothing - 85,781.59 29,349.56 0.9332 0.7923 1.0290 0.7498

SNV - 22,520.66 79,010.55 0.7688 0.8590 1.6613 0.3478
Z-score - 54,293.14 14,798.45 0.8296 0.8358 1.2398 0.6368

For the grating spectrograph experiment, the prediction results are given in Table 2.
Under the PLS, for the raw spectra, the RMSEP is 1.1496 and the R2

p is 0.6569. Compared
with the raw spectra, the prediction accuracy of the model based on SG (2,7) smoothing
shows a slight increase. While the prediction results of the models based on other prepro-
cessing methods show a decrease to some degree. Under the LS-SVM, for the raw spectra,
the RMSEP is 1.1991, and the R2

p is 0.6025. Compared with the prediction results based on
different preprocessing methods, the Z-score normalization acquired the best prediction
accuracy, the RMSEP is 1.0228, and the R2

p is 0.7108.

Table 2. Prediction parameters of PLS and LS-SVM with different preprocessing for the grating
spectrograph experiment.

Model Preprocessing nPCs γ δ2
Calibration Set Prediction Set

RMSEC R2
c RMSEP R2

p

PLS

Raw 8 - - 0.0424 0.9995 1.1496 0.6569
Smoothing 8 - - 0.0754 0.9985 1.1366 0.6646

SNV 6 - - 0.1354 0.9954 1.2530 0.5924
Z-score 6 - - 0.2187 0.9882 1.2879 0.5694

LS-SVM

Raw - 29,195.21 3095.09 0.0022 0.9999 1.1991 0.6025
Smoothing - 92,829.47 99,301.32 0.0293 0.9998 1.2294 0.5821

SNV - 89,171.26 1500.91 0.0001 0.9999 1.3533 0.4936
Z-score - 35,097.78 3077.16 0.0018 0.9999 1.0228 0.7108

3.2. Characteristic Wavelength Selection and Validation

SPA was employed to select the characteristic wavelength variables and simplify the
calibration models. For the spectrophotometer experiment, after extensive experimentation,
using the raw spectra to select characteristic wavelength variables can acquire the best pre-
diction accuracy. A total of 15 characteristic wavelength variables were selected. Figure 5a
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shows the distribution of the selected wavelength variables. The characteristic wavelength
variables are 402 nm, 448 nm, 472 nm, 572 nm, 592 nm, 824 nm, 874 nm, 954 nm, 964 nm,
1010 nm, 1062 nm, 1068 nm, 1078 nm, 1088 nm, and 1100 nm.

Figure 5. The distribution of wavelength variables selected by SPA: (a) spectrophotometer experiment;
(b) grating spectrograph experiment.

For the grating spectrograph experiment, before characteristic wavelength selection,
the spectra were preprocessed by the Z-score normalization and SNV. A total of 19 charac-
teristic wavelength variables were selected. Figure 5b shows the distribution of the selected
wavelength variables. The characteristic wavelength variables are 716 nm, 896 nm, and the
band of 956~994 nm and 1004~1017 nm.

To evaluate the effectiveness of characteristic wavelength variables, SPA-PLS and
SPA-LSSVM models were established by taking these characteristic wavelength variables
as the input data matrix. For the spectrophotometer experiment, the prediction results are
given in Table 3. Under the SPA-PLS, the RMSEP is 1.0209 and the R2

p is 0.7539. Under the
SPA-LS-SVM, the RMSEP is 1.1286 and the R2

p is 0.6990.

Table 3. Prediction parameters of SPA-PLS and SPA-LS-SVM based on characteristic wavelength
variables for the spectrophotometer experiment.

Model nPCs γ δ2
Calibration Set Prediction Set

RMSEC R2
c RMSEP R2

p

SPA-PLS 12 - - 0.8760 0.9169 1.0209 0.7539
SPA-LS-SVM - 98,472.83 2024.81 1.0019 0.7605 1.1286 0.6990

For the grating spectrograph experiment, the prediction results are given in Table 4.
Under the SPA-PLS, the RMSEP is 0.5737 and the R2

p is 0.9145. Under the SPA-LS-SVM, the
RMSEP is 0.5211 and the R2

p is 0.9249.

Table 4. Prediction parameters of SPA-PLS and SPA-LS-SVM based on characteristic wavelength
variables for the grating spectrograph experiment.

Model nPCs γ δ2
Calibration Set Prediction Set

RMSEC R2
c RMSEP R2

p

SPA-PLS 8 - - 0.1549 0.9941 0.5737 0.9145
SPA-LS-SVM - 73,016.22 6037.97 0.0782 0.9985 0.5211 0.9249

3.3. Prediction Results of 1D-CNN

In order to estimate the effectiveness of 1D-CNN for water pH detection using Vis-
NIR spectroscopy, 1D-CNN is introduced to build the calibration model. Table 5 lists the
prediction results of 1D-CNN models. For the spectrophotometer experiment, the RMSEP
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is 0.7925 and the R2
p is 0.8515. For the grating spectrograph experiment, the RMSEP is

0.5128, and the R2
p is 0.9273.

Table 5. Prediction parameters of 1D-CNN models for the spectrophotometer experiment and grating
spectrograph experiment.

Experiment
Calibration Set Prediction Set

RMSEC R2
c RMSEP R2

p

Spectrophotometer 0.7478 0.8715 0.7925 0.8515
Grating spectrograph 0.1337 0.9953 0.5128 0.9273

3.4. Interpreting the Feature Representations of Convolutional Layers

To further understand how the 1D-CNN extracts intricate features hierarchically, we
took one sample from the prediction set to visualize the feature maps of each convolutional
layer [13,17].

For the spectrophotometer experiment, Figure 6 shows the input spectral and feature
maps of each convolutional layer. The first convolutional layer convolutes the input spectra
to generate eight feature maps. Then, these eight feature maps are used as the input of
different channels for the second convolutional layer to generate 16 feature maps. Similarly,
the third convolutional layer generates 32 feature maps. Since the spatial invariance of the
1D-CNN, the feature map corresponds to the input spectral. Therefore, visualization of
feature maps is helpful to understand the data transformation by convolutional layers [13].

The first convolutional layer (Conv1) mainly acts for the spectra preprocess and learns
the shape characteristics of the spectra [17,30]. As shown in Figure 6, the effect of many
filters (#1, #2, #3, #4, and #5) are similar to the commonly spectral preprocessing methods.
The effect of the #3 filter is similar to the first derivative preprocessing. Three feature maps
(filters #6, #7, and #8) show nearly zero activations in the whole spectrum, except for high
responses in the band of near ~970 nm. The zero activations indicate that these filters are
not sensitive to the input wavelength variables.

The second convolutional layer (Conv2) enhances the response of spectra peaks to
extract the informative wavelength variables [30]. As shown in Figure 6, half the number
of filters (#1, #2, #5, #6, #7, #14, #15, and #16) have high activations on variables between
960~980 nm, and the theoretical peak around 970 nm is related to the third overtones of
O-H bonds in water [19]. Seven filters (#1, #2, #6, #7, #10, #15, #16) have high responses on
variables between 840~860 nm, which around the O-H weak absorption bands [20]. The
uninformative variables are reduced to zero.

Deeper in the network, the third convolutional layer (Conv3) becomes more complex.
As shown in Figure 6, the feature maps show a stable increased activation on the spectra
peaks. The higher activation value indicates more contribution to the final calibration
regression result. On the contrary, the zero activations do not influence the final calibration
regression result [13].
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Figure 6. Visualization of the input spectral, the first derivative of the input spectral, and the feature
maps of each convolutional layer for the spectrophotometer experiment.

For the grating spectrograph experiment, Figure 7 shows the input spectral and feature
maps of each convolutional layer. In the first convolutional layer (Conv1), the effect of
many filters is preprocessing the input spectra [13]. Six filters (#1, #3, #5, #6, #7, and #8)
have high responses on the band of 400~500 nm and 960~1049 nm.

The second convolutional layer (Conv2) works something like feature variable se-
lection. The Conv2 has enhanced the informative peaks on a few of the characteristic
wavelength variables, while the uninformative wavelength variables were almost zero
activations. Most filters have high activations on wavelength variables on 400~500 nm,
890~900 nm, and 960~1049 nm. In the third convolutional layer (Conv3), a stable increased
activation on the wavelength band at 400~500 nm, 890~900 nm, and 960~1049 nm was
noted. The results indicate that these wavelength variables contribute more greatly to the
final calibration regression result.

3.5. Calibration Performance Comparisons Discussion of the Multivariate Calibration Models
3.5.1. Discussion of Model Prediction Accuracy

The best prediction results and scatter plots of predicted results and reference pH
values obtained by different calibration models are shown in Figures 8 and 9, respectively.

As shown in Figure 8a, for the spectrophotometer experiment, the 1D-CNN model
achieved the best prediction performance, the RMSEP is 0.7925 and the R2

p is 0.8515. Com-
pared with the SPA-PLS model, the RMSEP is reduced by 22.37%, and the R2

p is increased
by 12.95%. As shown in Figure 9a, the 1D-CNN model shows that more sample points
are closed to the ideal regression line, which indicates that the prediction performance of
1D-CNN is better than the other four traditional regression models [11,38].
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Figure 7. Visualization of the input spectral and feature maps of each convolutional layer for the
grating spectrograph experiment.

Figure 8. The best prediction accuracy of different calibration models: (a) spectrophotometer experi-
ment; (b) grating spectrograph experiment.
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Figure 9. Scatter plots of reference pH and the predicted pH obtained by different regression models:
(a) spectrophotometer experiment; (b) grating spectrograph experiment. The solid line in each figure
represents the ideal regression line.

As shown in Figure 8b, for the grating spectrograph experiment, both the SPA-PLS,
SPA-LS-SVM, and 1D-CNN models acquired good prediction accuracy. The 1D-CNN
model achieved the best prediction performance, the RMSEP is 0.5128, and the R2

p is 0.9273.
As shown in Figure 9b, both the sample points of SPA-PLS, SPA-LS-SVM, and 1D-CNN
models are closed to the solid line, which indicates that these three models could predict
the water pH accurately.

Compared with the prediction accuracy of different calibration models for the water
pH detection experiments, the results show that the prediction performance of the 1D-CNN
models is better than that of other traditional calibration models. The root cause of better
prediction performance of 1D-CNN is the well-trained convolutional layers that can extract
the spectra features more effectively and accurately [11,18]. As shown in Figures 6 and 7,
compared with the characteristic variables selected by SPA, more variables are activated by
the third convolutional layer in the 1D-CNN models. The activation function also plays
a central role in the prediction performance of 1D-CNN models [11]. Convolution is a
linear operation. The feature maps of the convolutional layer passed the activation function
to implement the nonlinear transformation. Thus, 1D-CNN with the outperformance of
extracting the linear and nonlinear features in the spectra [18,33].

In addition, for the SPA-PLS and SPA-LS-SVM models, although the variable selection
can effectively improve the prediction performance, the SPA algorithm does not consider
the effect of the variable combination. The variable combination also has a significant effect
on the prediction performance [12]. However, few of the variable selection algorithms have
solved this problem [39].

3.5.2. Impacts of Spectra Preprocessing on Calibration Models

After different preprocess for raw spectra, PLS and LS-SVM models were established.
As shown in Table 1, for the spectrophotometer experiment, the LS-SVM model based
on SG (2,7) smoothing preprocess achieved the highest prediction accuracy. Under some
preprocessing methods, the prediction results decrease to some degree. As shown in
Table 2, for the grating spectrograph experiment, the LS-SVM model based on Z-score
normalization preprocess showed the best prediction performance. The results show that
different preprocessing methods have quite different effects on PLS and LS-SVM models.
Thus, spectra preprocessing plays an important role in traditional calibration modeling.
Appropriate preprocessing methods can improve the prediction performance, but misuse
of preprocessing methods will decrease the prediction performance.

For 1D-CNN models, the only required preprocessing is normalization [14]. As shown
in Figures 6 and 7, the first convolutional layer can process the spectra automatically. For
the water pH detection experiments, 1D-CNN acquired the highest prediction accuracy.
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Therefore, the results indicate that the 1D-CNN regression strategy can achieve excellent
prediction performance without the need for complex spectra pretreatment [11].

3.5.3. Impacts of Feature Selection on Calibration Models

As shown in Figure 8a, for the spectrophotometer experiment, the prediction perfor-
mance of SPA-PLS model is better than that of the PLS model. Under the SPA-PLS model,
the RMSEP is 1.0209 and the R2

p is 0.7539. Compared with the PLS model, the RMSEP is
reduced by 10.30%, and the R2

p is increased by 8.59%. However, it is worth noting that, un-
der the SPA-LS-SVM model, the prediction accuracy decreased to some degree. Compared
with the LS-SVM model, the RMSEP is increased by 9.63%, and the R2

p is reduced by 6.74%.
According to the principle of the SPA algorithm, the characteristic wavelength variables
are selected based on linear regression. Therefore, using these characteristic wavelength
variables to establish a nonlinear model may reduce the prediction accuracy.

As shown in Figure 8b, for the grating spectrograph experiment, both the SPA-PLS
and SPA-LS-SVM models acquired good prediction accuracy. Under the SPA-PLS model,
the RMSEP is 0.5737, and the R2

p is 0.9145. Compared with PLS model, the RMSEP is
reduced by 49.52%, and the R2

p is increased by 37.60%. Under the SPA-LS-SVM model,
the RMSEP is 0.5211, and the R2

p is 0.9249. Compared with LS-SVM model, the RMSEP is
reduced by 49.05%, and the R2

p is increased by 30.12%. The results further indicated that
variable selection could effectively extract the informative variables and eliminate the noise
and uninformative variables from the original spectra [18]. There are five characteristic
variables located at the wavelength near 970 nm, which is related to the third overtones
of O-H bonds in water [19]. The result indicates that the O-H bond in water is helpful to
water pH prediction.

For 1D-CNN models, as the results show in Figures 6 and 7, the convolutional lay-
ers can automatically extract the informative variables from full spectra. Uninformative
variables are almost not activated, and information variables are highly activated [13].
Compared with the characteristic wavelength variables selected by SPA, the convolutional
layers extract more hidden features of spectra. For both the spectrophotometer experiment
and grating spectrograph experiment, 1D-CNN models based on full spectra acquired
the best prediction accuracy. The results indicate that 1D-CNN can effectively extract the
spectra features to build the relationship between spectra and water pH value.

3.5.4. Discussion of Calculation Rapidity

This subsection discussed the calculation rapidity in the prediction process of different
calibration models. The original spectra of the prediction set were inputted into the trained
calibration models to calculate the prediction results. All calculations were repeated five
times, and the statistical results of the calculation time are shown in Table 6.

Table 6. Calculation time in the prediction process of different calibration models *.

Experiment
PLS (s) LS-SVM (s) SPA-PLS (s) SPA-LS-SVM (s) 1D-CNN (s)

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Spectrophotometer 0.0014 0.0005 0.0065 0.0004 0.0017 0.0002 0.0081 0.0009 0.0024 0.0005
Grating spectrograph 0.0068 0.0008 0.0065 0.0012 0.0186 0.0008 0.0232 0.0009 0.0082 0.0011

* All calculations were performed on a PC with an Intel® Core™ i5-9500 CPU (3.0 GHz) and 8.0 GB RAM, running
a Windows 11 operating system.

As shown in Table 6, for the spectrophotometer experiment, 1D-CNN is faster than
LS-SVM and SPA-LS-SVM in the prediction process. Although PLS and SPA-PLS are
faster than 1D-CNN, PLS and SPA-PLS are not as accurate as 1D-CNN. For the grating
spectrograph experiment, 1D-CNN is faster than SPA-PLS and SPA-LS-SVM. The PLS and
LS-SVM are faster than 1D-CNN, but the prediction performance of 1D-CNN is better than
PLS and LS-SVM. That is because 1D-CNN does not need the complex spectra preprocessing
and variable selection, and 1D-CNN can effectively extract the linear and nonlinear features
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from the spectra. Therefore, 1D-CNN provides a better balance of prediction accuracy and
calculation rapidity.

For the PLS and LS-SVM methods, in order to build a high-accuracy calibration model,
a lot of experiments are needed to find the best preprocessing and variable selection meth-
ods. The spectra preprocessing and variable selection are repetitive and time-consuming.
On the contrary, 1D-CNN only required preprocessing is normalization. Therefore, 1D-
CNN could improve the convenience of modeling.

4. Conclusions

This study proposed a novel calibration regression strategy for distilled water pH
detection using Vis-NIR spectroscopy, a 1D-CNN regression architecture with three convo-
lutional layers constructed to optimize the prediction performance. Two groups of Vis-NIR
spectral analysis experiments of water pH detection are employed to evaluate the per-
formance of 1D-CNN. Two traditional multiple regression algorithms (PLS and LS-SVM)
are introduced for comparison analysis with 1D-CNN. The conclusions are described as
follows.

(1) The prediction performance of 1D-CNN based on full spectra is better than the
traditional linear (PLS) and nonlinear (LS-SVM) approaches using full spectra and
characteristic wavelength variables. For the spectrophotometer experiment, the RM-
SEP is 0.7925 and the R2

p is 0.8515. For the grating spectrograph experiment, the
RMSEP is 0.5128 and the R2

p is 0.9273.
(2) (By visualizing the characteristic map through three convolution layers, we can

understand how the convolution network converts one-dimensional spectral data
into prediction results. The first convolutional layer acts for spectra pretreatment and
learns the shape feature of input spectra. The second convolutional layer extracts
the hidden features in the spectra. The third convolutional layer stably enhances the
activations of the feature spectra peaks.

(3) 1D-CNN could effectively extract the spectra features. The number of activation
variables of 1D-CNN is more than the feature variables selected by SPA, and the
prediction accuracy of 1D-CNN is higher than that of SPA-PLS and SPA-LS-SVM for
both experiments.

(4) 1D-CNN could improve the convenience of modeling. Compared with the traditional
regression methods, 1D-CNN modeling only require preprocessing is normalization.
1D-CNN does not need complex spectra pretreatment and variable selection, which
ensures the calculation rapidity of 1D-CNN.

This study indicates the 1D-CNN regression method is an alternative quantitative
calibration technology for water pH detection using Vis-NIR spectroscopy. The future
direction of our work is to explore the feasibility of the 1D-CNN regression method for
other water quality parameters (such as chemical oxygen demand) detection and to develop
a calibration transfer approach of water pH based on 1D-CNN.
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