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Aerosol is an important atmospheric component that severely influences the global
climate and air quality of our planet [1–4]. In quantitative remote sensing, aerosol is also
a key factor in atmospheric correction of remote sensing data to obtain accurate surface
information [5–7]. The radiation signal received by the sensor is surface–atmosphere
coupled, including the signal of path radiance, surface reflection, and surface–atmosphere
interaction, a phenomenon which impedes quantitative information acquisition from both
surface and atmospheric aspects. Accurate aerosol estimation and atmospheric correction
are needed to solve this problem.

In this Special Issue, the studies cover several important topics, mainly involving
aerosol retrieval, aerosol emission and regional transfer, and atmospheric correction. The
goal of this Special Issue is to discuss the accurate retrieval and estimation of aerosols to
help with precise atmospheric correction and facilitate various corresponding scientific
studies focusing on the development of new technologies, instruments, and methods.

Aerosol product quality limits their data applications. Some advancements are made
in this Special Issue that improve aerosol detection and retrieval accuracy. Focusing on the
characteristics of Coherent Doppler Wind Lidar (CDWL), a novel method for the calibration
and quantitative assessment of aerosol properties is proposed [8]. The result is verified
through comparison with synchronous Rayleigh–Mie–Raman Lidar (RMRL) data, resulting
in good agreement, proving the ability of CDWL to retrieve aerosol properties accurately.
Meanwhile, exploring aerosol retrieval of single-angle and multi-band polarization instru-
ments containing short-wave infrared bands, surface and atmosphere decoupling without
prior information about the surface is conducted based on optimal estimation theory [9].
The method can avoid the inversion error caused by the untimely updating of the surface
reflectance database and the error in spatiotemporal matching. After being applied to the
Particulate Observing Scanning Polarimeter (POSP) and validated by AErosol RObotic
NETwork (AERONET) measurements, the effectiveness of the proposed algorithm under
different geographical regions and pollution conditions is verified. Another independent
article thoroughly examines MODIS aerosol retrieval accuracies under different land cover
types, aerosol types, and observation geometries based on AERONET measurements involv-
ing three different algorithms, namely Dark Target (DT), Deep Blue (DB), and Multi-Angle
Implementation of Atmospheric Correction (MAIAC), each with unique characteristics [10].
This Special Issue also contains studies aimed toward the identification of specific aerosol
types. A novel MERSI haze mask (MHAM) algorithm to directly categorize haze pixels
in addition to cloudy and clear ones has been designed based on the Medium Resolution
Imaging Spectrometer II (MERSI-II) on board the FY-3D satellite [11]. The algorithm can
illustrate the boundary of the haze region with high reliability, remaining consistent with
the true color image. Determining the threshold value for background aerosol optical depth
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(BAOD) is crucial for identifying aerosol types. A statistical method to select the best BAOD
threshold value using VIIRS DB AOD products is proposed in this Special Issue [12]. The
VIIRS aerosol type classification scheme was further updated using the BAOD threshold.
The results indicate that the updated scheme can reliably detect changes in aerosol types
under low aerosol loading conditions.

Using aerosol products, further scientific studies of atmospheric aerosol are conducted
and included in this Special Issue. The seasonal characteristics and long-term variations
in aerosol optical parameters in Hong Kong are analyzed using AERONET data and
satellite-based observations based on the extreme-point symmetric mode decomposition
(ESMD) model [13]. The interactions between aerosol loading and meteorological factors are
also discussed. Another study uses Cloud–Aerosol LiDAR with Orthogonal Polarization
(CALIOP) aerosol products to identify the global long-range aerosol transport pathways
(the trans-Atlantic, the trans-Pacific, and the trans-Arabian Sea) [14]. Two significant paths
within the range of the trans-Pacific transport pathway (aerosols from the Taklimakan
Desert and aerosols from the North China Plain) are analyzed in detail. A three-stage
conceptual model is further built, providing a straightforward and evident approach to
exploring long-range aerosol transport pathways. To investigate frequently occurring
severe haze pollution in northeast China, the vertical characteristics of aerosols and the
causes of aerosol pollution throughout the year are analyzed using multisource data
of ground-based LiDAR and Cloud–Aerosol LiDAR Pathfinder Satellite Observations
(CALIPSOs) [15]. The contribution of dust, smoke, and firework aerosols are analyzed, and
recommendations for pollution control policies are provided.

The effect of aerosols on atmospheric correction is also discussed. For Soil Organic
Carbon (SOC) estimation, Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance retrieved
from Top-Of-Atmosphere (TOA) radiance using atmospheric correction methods is needed.
A thorough sensitivity study of SOC estimation in relation to aerosol optical depth and
water vapor is conducted based on Earth Observing-1 Hyperion Hyperspectral data [16].
The research suggests using the FLAASH AC method to provide BOA reflectance values
before SOC mapping. Another study focuses on improving the accuracy of remote sensing
reflectance products in the nearshore waters of the Shandong Peninsula [17]. To achieve
that goal, a monthly aerosol model based on aerosol data collected from the Mu Ping site in
the coastal area of the Shandong Peninsula is developed to replace the standard model.

In summary, this Special Issue collects a series of representative studies in the research
field of aerosol and atmospheric correction, mainly focusing on the improvement in aerosol
identification and retrieval methods; atmospheric aerosol formation, transfer, and spa-
tiotemporal variation; and the effect of aerosols on atmospheric correction and quantitative
remote sensing. These advancements will help to continuously improve our understanding
of atmospheric aerosol and the accuracy of quantitative remote sensing research. Despite
the significant progress achieved, further related studies are still needed for the scientific
community, policy makers, and the public to reduce evaluation uncertainty and combat the
challenges faced in our society.
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Abstract: Characterization of aerosol transportation is important in order to understand regional
and global climatic changes. To obtain accurate aerosol profiles and wind profiles, aerosol lidar and
Doppler wind lidar are generally combined in atmospheric measurements. In this work, a method for
calibration and quantitative aerosol properties using coherent Doppler wind lidar (CDWL) is adopted,
and data retrieval is verified by contrasting the process with synchronous Rayleigh–Mie–Raman
lidar (RMRL). The comparison was applied to field measurements in the Taklimakan desert, from 16
to 21 February 2023. Good agreements between the two lidars was found, with the determination
coefficients of 0.90 and 0.89 and the root-mean-square error (RMSE) values of 0.012 and 0.013. The
comparative results of continuous experiments demonstrate the ability of the CDWL to retrieve
aerosol properties accurately.

Keywords: aerosol; extinction coefficient; coherent Doppler wind lidar; Raman lidar; Mie lidar

1. Introduction

The study of atmospheric aerosols, especially in the planetary boundary layer (PBL),
is of great importance in understanding the vertical exchange of sensible heat (tempera-
ture), latent heat (moisture), particles, and trace gases between the surface and the lower
troposphere [1–3], which has a strong influence on global climate and atmospheric compo-
sition. To observe vertical and regional transport [4,5] and conduct pollution tracing and
forecasting [6], it is necessary to carry out accurate detection of meteorological parameters
and aerosol properties with high temporal and spatial resolutions.

In the past several decades, lidar has been proven to be a powerful and potential tool
in remote sensing of the atmosphere. Atmospheric lidars are widely used in ground-based,
ball-borne, airborne, and satellite-borne detection devices [7,8]. Generally, atmospheric
lidars can be classified into two categories by different atmospheric backscatter recordings:
heterodyne coherent detection and direct detection. Direct detection has been employed in
the majority of lidar systems, and numerous lidar applications have been applied in the
detection of aerosol and clouds [9–11], the boundary layer [3,12,13], temperature [14,15],
trace gas [16,17], and wind [18]. Heterodyne coherent detection detects the beat signal
between the backscatter and a local oscillator laser to retrieve the Doppler shift due to
moving particles. Coherent detection lidar is widely used in the detection of wind profiles,
boundary layers [19,20], clear air turbulence and wind shear [21], aircraft wake vortices [22],
and precipitation [23,24].

Remote Sens. 2023, 15, 5453. https://doi.org/10.3390/rs15235453 https://www.mdpi.com/journal/remotesensing4
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With the Doppler wind lidar technique, one of the most important indicators in the
observation of atmospheric vertical exchange processes, that is, the accurate measurements
of the vertical wind component, can be obtained. Using the combination of Doppler wind
lidar and other types of aerosol lidars, accurate aerosol backscatter signals and wind profiles
were obtained simultaneously [13]. There is no doubt that the combination of several lidars
would make it more accurate, but it also increases the cost and volume, making it less
conducive to airborne and spaceborne detection. Recently, many studies have been devoted
to calibrating the backscatter of coherent Doppler wind lidar (CDWL) to obtain the profiles
of aerosols and wind with only one lidar. To accurately retrieve the extinction coefficient
of aerosol using CDWL, the effect of heterodyne efficiency needs to be considered [25,26],
which represents the coupling of the mode field of the local oscillator and backscatter light.
To quantify the aerosol transport and change in aerosol properties from the Sahara desert to
the Caribbean, backscatter and extinction coefficient profiles were retrieved from airborne
CDWL using function fitting of heterodyne efficiency, measured by changing the altitude of
the aircraft [27]. Normalized backscatter power data points from horizontal detection were
used to fit heterodyne efficiency, and the results of aerosol optical depth were calibrated
with other devices, including a sun photometer [28], ceilometers [29], and atmospheric
visibility [30]. Moreover, theoretical focus function and calibration based on liquid clouds
were also adopted in the retrieval of aerosol [31–33].

Comparison and calibration are usually performed on the aerosol optical depth (AOD),
due to the lack of high accuracy and resolution of the reference devices. In this work,
an experimental comparison between the aerosol extinction profiles using CDWL and
Rayleigh–Mie–Raman lidar (RMRL) was achieved. By applying the heterodyne efficiency
from horizontal measurement, the backscatter profiles of CDWL were calibrated and used
to retrieve the aerosol extinction coefficient. To compare the results of the two lidars, a
data assimilation and comparison method is proposed, and the data from the Raman lidar
are involved to improve the accuracy of the results. A consistency analysis of the results
was conducted, and good agreement with the determination coefficients of 0.90 and 0.89
was found.

The paper is organized as follows. The involved lidar systems are described in
Section 2, and Section 3 introduces the retrieval and comparison methods. To focus on the
detection of aerosol optical properties, the retrieval of wind speed will not be discussed in
this work. Section 4 introduces the comparison results during a 5-day vertical desert aerosol
observation. Finally, Section 5 summarizes the conclusion and the outlook of future studies.

2. Instrument

2.1. Coherent Doppler Wind Lidar

In this work, an all-fiber CDWL was deployed to provide the atmospheric wind
profiles and backscatter measurements. The lidar system emits a laser at a wavelength
of 1548 nm, with a pulse energy of 110 μJ, a repetition frequency of 10 kHz, and a pulse
full width at half maximum of 200 ns. A 100 mm diameter telescope was used as a coaxial
transmitter and receiver, and then, the backscatter was coupled with the local oscillator light
and finally detected by the balanced detector (BD), with a noise bandwidth of 200 MHz.

Aiming at studying the transport and sedimentation of Taklimakan desert dust, the
CDWL was employed in Minfeng, Xinjiang province, China (82.69◦E, 37.06◦N). In response
to the instability caused by the large diurnal temperature variation, the lidar system was
designed with an all-fiber structure and temperature control system. The CDWL was
operated in a velocity azimuth display (VAD) scanning mode during the experiment, and
the elevation angle was set to 70◦. The scanning range of the azimuth angle is from 0◦ to
360◦, where 0◦ corresponds to the north and 90◦ corresponds to the east. The step of the
azimuth angle is 12◦, and the period of one scan is about 1 min. The radial range resolution
was set to 30 m/60 m/150 m in the range of 0–3 km/3–6 km/6–15 km. In our previous
work, the performance of wind measurements was validated; the standard deviations
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of wind speed and direction were 0.84 m/s and 9.2◦, respectively [23]. The key system
specifications are listed in Table 1.

Table 1. Key parameters of CDWL and RMRL systems.

Parameter CDWL RMRL

Laser
Wavelength 1548 nm 355/532/1064 nm

Frequency offset 80 MHz /
Pulse energy 110 μJ 250/350/350 mJ

Repetition rate 10 kHz 20 Hz
Pulse width 200 ns 8 ns

Telescope
Diameter 100 mm 450 mm

Elevation angle 70◦ 90◦

Data
acquisition

Detection type BD PMT
Noise bandwidth 200 MHz 0.3 nm

Sampling rate 250 MHz 20 MHz
Temporal resolution 1 s 60 s

Spatial resolution 30, 60, 150 m 30 m

2.2. Rayleigh–Mie–Raman Lidar

To examine the performance of the CDWL in aerosol measurements, an RMRL was
running near the CDWL simultaneously. The lidar uses an Nd: YAG power laser, which
generates 20 pulses per second with a pulse energy of 250/350/350 mJ at the wavelength of
355/532/1064 nm. The backscatter signals are collected by a 450 mm diameter Cassegrain
telescope and then separated into several channels using dichroic beam splitters, including
the elastic channels (355, 532, and 1064 nm) and the nitrogen Raman (386 nm) channels.
During the daytime, the elastic channels detect backscattered light with interferometric
filters of 0.3 nm bandwidth to reduce the solar light, while the inelastic channels do not
work due to the weak Raman scattering and strong background noise. The backscatter
signals are detected by the photomultiplier tubes (PMT), and recorded using multichannel
scaler (MCS) boards with a resolution of 30 m and 60 s.

3. Methodology

The following section introduces the analysis steps applied to the signal measured
by the CDWL and RMRL, including the pre-processing of data, the retrieval algorithm of
optical properties, and the data assimilation method for the different kinds of lidar.

3.1. Retrieval Algorithm of the CDWL

In this subsection, we prefer to discuss the retrieval of aerosol optical properties rather
than wind profiles, for wind measurement, as discussed in many works [21,34,35], is not
this paper’s focus. In the CDWL measurements, the photocurrent in response to the beat
signal of the atmospheric backscatter and the local oscillator can be expressed as [35]

id = RPLo + RPs(r) + 2R[ηh(r)PLoPs(r)]
0.5 cos(ωct + θ) + in, (1)

where R is the response of the detector (R = ηqq/hν, ηq is the quantum efficiency, q is the
elementary charge, h is the Planck constant, and v is the photon frequency), r is the range,
and PLo and Ps(r) are the power of the signal from the local oscillator and the atmospheric
backscatter, respectively. ηh(r) is the heterodyne efficiency, which represents the fraction of
the total signal power matched with the local oscillator field. ωc and θ are the frequency
and phase of the IF (intermediate frequency) signal. The first two terms of Equation (1)
are filtered through AC (alternating current) coupling, and the third and fourth terms are
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signal current is and noise current in, respectively. The wide band CNR (carrier-to-noise
ratio) is defined as the ratio of signal power and noise power and can be expressed as

CNR(r) =
〈
i2s
〉

〈i2n〉
=

ηqηh(r)Ps(r)
hvB

, (2)

where B is the receiver noise equivalent bandwidth. Combined with the lidar equation [36],
the lidar equation of coherent lidar can be expressed as:

CNR(r)r2

ηh(r)
=

ηqCE0

hνB
β(r) exp

[
−
∫ r

0
2α(r)dz

]
, (3)

where C represents the lidar constant, E0 is the pulse energy of the outgoing light, and β(r)
and α(r) are the backscatter and extinction coefficient, respectively. For a monostatic pulsed
coherent lidar, due to the heterodyne efficiency caused by the telescope focus function,
a distance-dependent modulation is applied to the backscatter signal, resulting in the
distortion of the near-field signal. This may have little impact on wind measurements,
but it will cause false values in the attenuated backscatter coefficient profiles. Using the
estimation or calibration of the heterodyne efficiency, the calibrated backscatter signal can
be obtained, and the backscatter and extinction coefficient of atmospheric aerosol can be
further retrieved.

Similar to the processing method of overlap factor correction [37], the modulation of
the heterodyne efficiency over the backscatter signal can be estimated from the horizontal
measurements. To calibrate the heterodyne efficiency in the near field, an advanced hori-
zontal measurement is performed, and the average result of the CNR is applied and fitted,
as shown in the subfigure of Figure 1a. Due to the different range resolutions, the density
of numerical points varies with the range. Using the ratio of the range-correct CNR and the
linear fit result, the heterodyne efficiency can be obtained and used to calibrate the CNR
profiles in the experiment. Figure 1a depicts four heterodyne efficiency profiles at different
times, which seem to be stable within the range of 3 km due to the all-fiber structure and
the stable temperature of the system.

Figure 1. (a) The heterodyne efficiency from four horizontal experiments, which was obtained from
the ratio of the range−correct CNR (blue circles) and the linear fit result (orange line), as shown in the
subfigure. (b) The overlap factor of the 355 nm channel from three horizontal experiments, measured
at 0:00, 6:00, 12:00, and 18:00 local time on 14 February 2023.

In contrast, limited by the non-coaxial telescope and the space optical structure, the
RMRL system is more affected by temperature changes, which are huge in the desert.
Figure 1b depicts four overlap factor profiles of the 355 nm channel, measured at 0:00,
6:00, 12:00, and 18:00 local time on 14 February 2023. The temperature variation affects the
optical coupling of the space optical system significantly, resulting in an unstable overlap
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factor for the RMRL. The signal in the near field, mainly below 0.5 km is distorted, so only
the results above 0.5 km are involved in the comparison.

As mentioned earlier, the CDWL is operated in a VAD scanning mode with an elevation
angle of 70◦. The CNR profiles have to be converted vertically to match the backscatter
profiles of the RMRL, so an approximation is taken so that the average CNR of a circle
scan is approximate to the vertical CNR profile at the projection height. Furthermore, the
vertical CNR profile is interpolated to a height resolution of 30 m to match the profile of
the RMRL.

3.2. Retrieval of the RMRL

In this subsection, two methods are used to retrieve the optical properties of aerosols.
Generally, by assuming a constant lidar ratio between α(r) and β(r), the inversion algorithm
proposed by Klett and Fernald (KF method) can be used to retrieve α(r) and β(r) [38,39].
This method can be used to invert the extinction and backscatter with only one elastic
backscatter lidar, with the assumption of the lidar ratio and boundary value. Different
assumptions of boundary value may lead to various results [40,41]. In general, the boundary
value is chosen at a reference altitude where the atmosphere is relatively pure and the signal-
to-noise ratio (SNR) is high enough. Sometimes, it may be difficult to find the reference
height, and soft targets such as clouds are used to estimate the boundary value [42].

In addition, the Raman backscatter signals can be used alone to retrieve aerosol
extinction profiles [43]. The independent aerosol extinction coefficient can be expressed
as: [44,45]

αaer(λL, r) =
d
dr

[
ln nx(r)

r2P(λx,λL ,r)

]
− αmol(λL, r)− αmol(λx, r)

1 + ( λL
λx
)

k , (4)

where the subscripts aer and mol stand for aerosol and atmospheric molecules, respectively.
nx(r) is the number density of the Raman molecule; λX and λL are the wavelength of the
Raman-shifted laser and the output laser, respectively. P(λX , λL, r) is the backscatter power
of the Raman-shifted signal, and k is the Angstrom exponent. With the combination of Mie
scattering data, aerosol backscatter coefficient profiles can be obtained by:

βaer(λL, r) = −βmol(λL, r) + βmol(λL, r0) · P(λL, r) · P(λx, λL, r0) · nx(r)
P(λL, r0) · P(λx, λL, r) · nx(r0)

·
exp[−∫ r

r0
αaer(λX, r) + αmol(λX, r)dz]

exp[−∫ r
r0

αaer(λL, r) + αmol(λL, r)dz]
, (5)

where r0 is the reference height and P(λL, r) is the backscatter power of the Mie lidar signal.
βmol can be calculated by the atmospheric temperature and pressure from the radiosonde
measurement or the atmosphere model. The two approaches present different advantages
and disadvantages; for example, the KF method relies on the accurate assumption of the
lidar ratio and boundary value, and the Raman method relies on the accurate assumption
of the Angstrom exponent. Figure 2 depicts some retrieval results of the experiments, and
the two algorithms show good consistency under correct assumptions.

To compare the data retrieval of the RMRL and CDWL, the backscatter and extinction
coefficients of aerosol at the wavelengths of 355, 532, and 1064 nm had to be converted to
the wavelength of 1548 nm. However, the extinction coefficient retrieved with the Raman
method only uses the backscatter signal at the Raman wavelength of 386 nm, which may
bring errors to the data conversion process. In this work, the two methods were combined.
First, the aerosol extinction coefficient was obtained at the reference height with the Raman
method using the data from 386 nm and then applied to the KF method as the boundary
value. Next, with the KF method, the extinction coefficient at the wavelengths of 355,
532, and 1064 nm could be obtained using the data from the different elastic lidars. The
Angstrom exponent varies with the wavelength, and an empirical relationship between
aerosol extinction and wavelength can be expressed with a second-order polynomial [46,47]:

ln αaer(λ) = a0 + a1 ln λ + a2(ln λ)2, (6)
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where the coefficient a2 accounts for a “curvature” often observed in Sun photometry
measurements. For a special case of a2 = 0, Equation (6) equals the Angstrom exponent
law and a1 = −k. With the profiles of the aerosol extinction coefficient from the RMRL,
the profiles of the aerosol extinction and the backscatter coefficient at the wavelength of
1548 nm can be obtained, as shown in Figure 3.

Figure 2. Comparison of retrieval using the Raman method (blue dotted line) and the KF method
(red line). Aerosol backscatter coefficient βaer from the data of (a) 355 nm, (b) 532 nm, and (c) 1064 nm
lidar observed at 1:30 local time on 20 February 2023. The lidar ratios assumed for KF inversion are
30, 32, and 45. The Angstrom exponent applied in Equation (4) is set as 1.5.

Figure 3. (a) Three groups of aerosol extinction coefficients at a height of 2 km retrieved from the
RMRL (red dots); second-order poly fit curves using the extinction coefficients and the wavelength
(blue line); aerosol extinction coefficients at the wavelength of 1548 nm derived from the poly fit curves
(blue triangle); (b) a magnification of part of (a) from 1.5 to 1.6 μm; aerosol extinction coefficients
retrieved from the CDWL (pink square), and the blue lines and blue triangles are the same as in (a),
derived from the RMRL. The gray circles indicate the same group of data.

In this way, the data sets of the two lidars were assimilated to the same wavelength
and their inversion results could be compared. The data processing procedure is displayed
in Figure 4. The number density of Nitrogen molecules was calculated by the profile
of temperature and pressure from the Atmosphere model, and the lidar ratio was set as
30/32/45/50 Sr at the wavelength of 355/532/1064/1548 nm.
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Figure 4. Overview of the data processing procedure. CDWL, coherent Doppler wind lidar; DC,
direct current.

4. Experiments and Results

Field joint experiments with the CDWL and RMRL were conducted from 16 to 21 Febru-
ary 2023. The Raman lidar only works from 22:00 to 6:00 local time, so only the data during
the nighttime were compared. Figure 5 depicts the backscatter profiles averaged over ten
minutes altitude during the nighttime and daytime. Both the CDWL and RMRL demon-
strate a vertical detection capability of more than 3 km during the nighttime, and it can be
seen that the aerosols are mainly distributed at altitudes below 3 km. The backscatter signal
at 386 nm decays smoothly because the Raman backscatter coefficient is proportional to
the density of nitrogen, which is independent of the aerosol profiles. During the daytime,
the Raman lidar is turned off, and the effective detection ranges of the other lidars are
also reduced.

With the method in Figure 4, the extinction coefficients at various wavelengths were
retrieved with the resolution of 30 m/1 min, as shown in Figure 6, which also can be used to
retrieve the color ratio. Only the results from 22:00 to 6:00 local time are plotted. Figure 6d,
e shows the extinction coefficients at 1548 nm using the data from the RMRL and CDWL,
respectively, and the comparison results show good consistency.

It can be noticed that longitudinal stripes appear in Figure 6, which may mean the
internal gravity waves strongly affect the backscatter, particularly at 0:00 on 20 February.
To compare the retrieval of extinction coefficients with the two lidars in detail, the results
within a height range at the same time are displayed, as shown in Figure 7. It needs to
be mentioned that the results vary greatly in the near field (mainly in altitudes ranging
below 0.5 km). The signal of the RMRL is uncalibrated in the range of 0–0.5 km due to
the lack of a stable overlap factor, while the CDWL is calibrated with a relatively stable
heterodyne efficiency. Inconsistent results appear at 6:00 local time on 18 February, the
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output power of the laser in the RMRL decreases, and the effective detection distance
is reduced. Consequently, the measurement of the RMRL shows poor ability in aerosol
retrieval, causing a large difference between the CDWL and RMRL.

Figure 5. Ten minutes averaged altitude profiles of backscattered signals measured at (a) 0:00 and
(b) 12:00 local time on 20 February. The Raman lidar does not work during the daytime. The legend
indicates the wavelengths of the backscatter signals in nanometers.

Figure 6. Results of extinction coefficients at the wavelengths of (a) 355 nm; (b) 532 nm; (c) 1064 nm;
(d) 1548 nm using the RMRL; (e) and 1548 nm using the CDWL. The results from 22:00 to 6:00 local
time on the 16, 17, 18, 19, and 20 February are displayed when the Raman lidar works routinely. The
time resolution and height resolution are 1 min and 30 m, respectively.
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Figure 7. Comparison of the aerosol extinction coefficients with the two lidars, measured at 0:00, 3:00,
and 6:00 local time on the 17, 18, and 20 February, respectively. The red lines show the results of the
CDWL at 1548 nm, and the blue dotted lines show the fitting results of the RMRL at 1548 nm.

The scatter diagrams of the aerosol extinction coefficients retrieved from the CDWL
and RMRL are shown in Figure 8. The results of the CDWL are plotted versus those of
the RMRL, and the density of the data points is normalized and displayed in different
colors. Moreover, the distributions of the bias are inserted in the bottom right corner of
each panel, in which the negative bias means that the results of the CDWL are lower than
that of the RMRL. In addition, due to the effects of different overlap factors, comparisons
using data ranging from 0.5 to 3 km and from 0 to 0.5 km are divided into two groups. The
first-order linear fitting functions of the results, the determination coefficients R, and the
root-mean-square error (RMSE) are added to the upper left corner of each graph. Good
performance with an R of 0.90 and 0.89 was obtained, proving the accuracy of aerosol
retrieval by coherent detection after heterodyne efficiency correction. In contrast, results
ranging from 0 to 0.5 km are shown in Figure 8c,d. The uncorrected overlap factor leads to
the result that the aerosol extinction of the RMRL is smaller than that of the CDWL.

The continuous observation results from 16–21 February are shown in Figure 9, in-
cluding the CNR, aerosol extinction coefficients, horizontal wind speed and direction,
and vertical wind speed. When the Raman lidar does not work during the daytime, the
boundary value is set as the interpolation of the result during the night. To ensure the
accuracy of the results, the retrieval of wind speed and direction with the CNR less than
−17 dB is plotted as white. In Figure 9e, the positive value of vertical velocity is defined as
downward, and the upward wind speed appearing every afternoon is consistent with the
results of the extinction coefficient, which also confirms the vertical transport process of
aerosols. The results prove the aerosol retrieval capability of the CDWL system.
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Figure 8. Scatter diagrams of the aerosol extinction coefficients derived from the RMRL and the
CDWL. Results ranging from 0.5 to 3 km during the nighttime of the 17 and 20 February are compared
in Figure 8 (a,b), respectively. In contrast, results ranging from 0 to 0.5 km are shown in Figure 8 (c,d).
The color-shaded dots denote the normalized density. The black dashed lines denote 1:1 lines, and
the red dashed lines show the linear fitting results. The distributions of y-x are inserted in the bottom
right corner of each panel.

 

Figure 9. Continuous observation by the CDWL from the 16 to 21 February. (a) CNR, (b) aerosol
extinction coefficient, (c) horizontal wind speed, (d) horizontal wind direction, and (e) vertical wind
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speed. The CNR and extinction coefficient are averaged over a vertical scanning duration of 1 min.
The positive value of vertical velocity is defined as downward.

5. Conclusions

An experimental comparison between aerosol measurements using the CDWL and
the RMRL was achieved. To calibrate the aerosol retrieval, a method using boundary
values from the Raman lidar was proposed, and the extinction coefficients were compared
from the two lidar systems. Good agreements were achieved during the continuous field
experiments, with the fitting slopes of 0.97 and 0.96, and the determination coefficients
of 0.90 and 0.89. The results prove the accuracy of aerosol retrieval by coherent lidar
after correction powerfully, and the aerosol detection by all-fiber wind lidar was extended,
which may achieve the miniaturization and stabilization of the lidar for meteorological
measurements.
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Abstract: To meet the demand for the aerosol detection of single-angle and multi-band polarization
instrument containing short-wave infrared bands, an inversion algorithm that makes full use of
multi-band intensity and polarization information is proposed based on optimal estimation theory.
This method uses the polarization information in the short-wave infrared band to perform surface and
atmosphere decoupling without a prior information on the surface. This obtains the initial value of
the aerosol, and then it uses the scalar information to obtain the final result. Moreover, the multi-band
information of the instrument is used for decoupling the surface and atmospheric information, which
avoids the inversion error caused by the untimely update of the surface reflectance database and
the error of spatio-temporal matching. The measured data of the Particulate Observing Scanning
Polarimeter (POSP) are used to test the proposed algorithm. Firstly, to verify the effectiveness of
the algorithm under different surface conditions, four regions with large geographical differences
(Beijing, Hefei, Baotou, and Taiwan) are selected for aerosol optical depth (AOD) inversion, and they
are compared with the aerosol robotic network (AERONET) products of the nearby stations. The
validation against the AERONET products produces high correlation coefficients of 0.982, 0.986, 0.718,
and 0.989, respectively, which verifies the effectiveness of the algorithm in different regions. Further,
we analyzed the effectiveness of the proposed algorithm under different pollution conditions. Regions
with AOD >0.7 and AOD < 0.7 are screened by using the AOD products of the Moderate-Resolution
Imaging Spectroradiomete (MODIS), and the AOD of the corresponding region is inverted using POSP
data. It was found to be spatially consistent with the MODIS products. The correlation coefficient
and root mean square error (RMSE) in the AOD high region were 0.802 and 0.217, respectively, and
0.944 and 0.022 in the AOD low region, respectively, which verified the effectiveness of the proposed
algorithm under different pollution conditions.

Keywords: short-wave infrared bands; polarization; optimal estimation retrieval; aerosol optical
depth; Particulate Observing Scanning Polarimeter (POSP)

1. Introduction

Atmospheric aerosol, solid or liquid particles suspended in the atmosphere, including
those from natural and anthropogenic sources, are an important component of the Earth’s
atmosphere and they play an important role in the climate system and atmospheric environ-
ment system. In the climate system, aerosol not only affects the radiative energy balance by
interacting with solar and terrestrial radiation [1–3], but they also change the characteristics
and lifetimes of clouds [4–8]. In terms of the environment, aerosols are considered to be
the main cause of air pollution, and they have a significant negative impact on human
health [9–15]. Therefore, it is of great significance to carry out the remote sensing retrieval
of aerosol and particulate matter concentration.
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According to different remote sensing platforms, aerosol remote sensing can be divided
into ground-based, airborne, and satellite remote sensing. Satellite remote sensing has
the advantages of timeliness, periodicity, and large scale, and it is an effective method for
detecting the optical properties and spatial distributions of aerosols [16–20]. The inversion
of aerosol properties using satellite data has been carried out for more than 40 years.
According to the difference of remote sensing data and the method of surface-atmosphere
decoupling, the following methods are mainly used: dark target method using the statistical
relationship between the apparent reflectance of short-wave infrared channels and the
surface reflectance of red and blue channels [21–23]; deep blue algorithm for bright surface
area [24,25]; in the Multi-angle Imaging SpectroRadiometer (MISR) operational aerosol
retrieval algorithm, a mathematical method, empirical orthogonal functions, is used to
obtain the surface contribution, which gives a general solution for the surface reflectance
estimation in multi-angle aerosol remote sensing [26–28]; Inversion of aerosol optical
thickness using polarization information [29–34].

Although for the aerosol inversion, lookup table (LUT)-based methods are widely
applied, the method turned out to be incapable of fully exploiting the information implicit
in the satellite measurements [35]. So, the optimal estimation theory is introduced into
atmospheric research. The optimal estimation method was applied early to ground-based
observations [36]. After that Dubovik et al. developed the generalized retrieval of an
aerosol and surface properties algorithm which can be applied to a multi-angle observation
satellite such as Polarization and Directionality of the Earth’s Reflectance (POLDER) [37].
There are some inversion framework based on optimal estimation theory that have been
established [38–41]. Nevertheless, further studies based on optimal estimation theory
need to be developed to apply to different satellite measurements such as single-angle
multi-band polarization measurements, including short-wave infrared band.

The Particulate Observing Scanning Polarimeter (POSP) on board the Gaofen-5B
satellite obtains atmospheric information in three dimensions: spectrum, observation
angle and polarization through time synchronization and spatial coverage, and it obtains
atmospheric parameters over the imaging area. The unique advantage of POSP is that it
has nine detection channels from 380 to 2250 nm, all of which have polarization detection
capabilities. Although its observation mode is single-angle observation, its advantages of
multiple detection bands, wide band range and polarization detection capability will help
with the inversion of aerosol optical depth (AOD).

According to the characteristics of POSP instruments, the intensity polarization joint
inversion algorithm is proposed on the basis of optimal inversion theory, which makes
full use of multi-band information. Firstly, the polarization reflectance in the 2250 nm
band is used as the initial value of the surface polarization reflectance, and the optimal
aerosol column concentration is obtained via the optimization iterative method. Then,
according to the preliminary obtained AOD, the scalar signal is subjected to atmospheric
correction to obtain the initial value of surface reflectance. Scalar information is used for
the optimization iteration to obtain the final AOD.

This paper is divided into four parts: firstly, the characteristics of POSP data and the
theory of optimization inversion framework are introduced. Secondly, the implementation
details of the intensity polarization joint inversion algorithm are introduced in detail. Then,
the effectiveness of the algorithm is tested in different regions and under different pollution
conditions. Finally, the relevant conclusions are given.

2. Data and Optimization Estimate Framework

2.1. POSP Data Introduction

POSP is a high-precision polarization scanner developed by Anhui Institute of Optics
and Fine Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences,
which is an onboard satellite for earth observation and can obtain multispectral and polar-
ized radiation information on the surface and in the atmosphere. POSP adopts an on-board
calibration to ensure the measurement accuracy and accuracy of the POSP operation in
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orbit [42]. POSP provides the first three components (I, Q, and U) of the Stokes vector
corresponding to the band, and the basic parameters are shown in Table 1.

Table 1. The basic parameters of POSP.

Parameter Value

Central wavelength/nm 380, 410, 443, 490, 670, 865, 1380, 1610, 2250
Bandwidth/nm 20, 20, 20, 20, 20, 40, 40, 60, 80

Stokes parameters I, Q, U
Quantized digit 14 bit

Radiation calibration error ≤5%
Polarization calibration error ≤0.5%

Since the 380 nm band is greatly influenced by atmospheric molecules, the 1380 nm
band is mainly used for cirrus detection. So, seven bands except for 380 nm and 1380 nm
are used for AOD inversion in this paper.

2.2. Optimization Estimate Framework

The optimal inversion framework in this paper is based on the previous informa-
tion analysis of aerosol [43] plus the solution of the cost function. Let x be a state vector
composed of n parameters (such as aerosol volume, refractive index, particle size distri-
bution, etc.). The state vector will be retrieved from the observation vector y containing
m measured elements, such as spectral scalar and polarization reflectivity. The relationship
between y and x is shown in Formula (1):

y = F(x)+ ∈ (1)

where the forward model F describes the forward model of the physical relationship
between y and x. ∈ represents the combined error of observation uncertainty and forward
model uncertainty.

For satellite remote sensing, the forward model F is a nonlinear function, and the
optimized solution of Equation (1) needs to go through multiple Gaussian hypothesis
processes. According to the maximum likelihood method, the state vector of the t’th
iteration corresponds to the solution that minimizes the quadratic cost function as follows:

J
(

xt) = 1
2
[y − F

(
xt)]TS−1

ε

[
y − F

(
xt)]+ 1

2
ra(xt − xa)

TS−1
a
(
xt − xa

)
(2)

In Formula (2), xt represents the state vector at the t iteration, the two terms on the
right side represent the constraints on the inversion results from observation and a prior
estimation, respectively. The observation error covariance Sε represents the uncertainty of
the model and measurements. The prior error covariance Sa represents the uncertainty of
the prior estimate xa.ra = n/2, where n is the number of parameters to be inverted [44].

The process of finding the minimum value of the cost function needs to go through
multiple iterations, using the LM (Levenberg-Marquardt) iterative method [45]. The state
vector at the (t+1)-th iteration can be expressed as:

xt+1 = xt − [(ra + γ)S−1
a + KT

t S−1
ε Kt]

−1{
KT

t S−1
ε

[
F
(
xt)− y

]
+ S−1

a
[
xt − xa

]}
(3)

In Formula (3), γ is the LM parameter, which is initially set to 10, and is adjusted according
to Rodgers’ update strategy after each iteration of x. K is called the weighting function matrix
or Jacobian matrix, and it consists of the partial derivative of each forward model element with
respect to each state vector element, i.e., Ki,j = ∂Fi/∂xj, (i = 1, . . . m; j = 1, . . . n)(Ki,j denotes
the element in the i-th row and j-th column of matrix K, Fi is the i-th simulated measurement,
and xj is the j-th element in the state vector x).
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3. Optimal Estimation Inversion Algorithm

3.1. A Priori Information on Aerosols and Surface

In the framework of optimal inversion, a priori estimation is an important factor
affecting the inversion results. Reasonable priori estimation can reduce the number of
inversion iterations, improve the time efficiency of the algorithm and avoid unreasonable
convergence results. A priori estimation mainly comes from the a priori knowledge of state
vectors and non-state vectors, such as historical meteorological data, ground measured
data, etc. The influence of prior estimation on inversion is manifested in two aspects: first,
the a priori estimation of the state parameter is input into the inversion program as the
initial value for iteration, and the prior term that constitutes the cost function constrains the
final inversion result. Secondly, the reasonable values of non-state parameters can reduce
the model error and improve the accuracy of the inversion results.

3.1.1. Aerosol Model

In many studies, the bimodal lognormal distribution function is commonly used to
characterize the aerosol particle size distribution, as follows:

n(r) =
2

∑
i=1

Ci

rσi
√

2π
exp

(
− (lnr − lnrm,i)

2

2σ2
i

)
(4)

In Formula (4), C denotes the volume concentration, σ is the standard deviation,
and rm is the mean radius. The bimodal log normal distribution requires six parameters
to represent.

Under the assumption of a bimodal log-normal distribution, five pairs of parameters
can be used to describe the aerosol model: the particle column concentration v f

0 and vc
0,

the effective radius r f
e f f and rc

e f f , the effective variance v f
e f f and vc

e f f , the real part of the

refractive index m f
r and mc

r , and the imaginary part of the refractive index m f
i and mc

i . The
superscripts f and c represent fine mode particles and coarse mode particles, respectively.
A priori information about the aerosol models can use the results of previous studies [46],
and the aerosol particle size distribution is shown in Figure 1.

 

Figure 1. The size distribution of 8 aerosol models ([46]).
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The legends in Figure 1 represent different types of aerosol models. LH-LP: Low
Humidity-Low Pollution Aerosol, CBC: Carbonaceous-Black Carbon Aerosol, DC: Dust
Urban Aerosol, DD: Sand Dust-Desert Aerosol, LH-HP: Low Humidity-High Pollution type
aerosol, HH-LP: High Humidity-Low Pollution type aerosol, HH-Hp: High Humidity-High
Pollution type aerosol, CBrC: Carbonaceous-Brown Carbon type aerosol.

3.1.2. Processing of A Priori Information about Surface

At present, the methods for obtaining a priori surface information mainly include
the surface model method [29], the prior surface reflectivity database [24], etc. In this
paper, according to the polarization reflectancenot being sensitive to band changes [47,48],
the polarization reflectance of the shortwave infrared band is used as the initial value
of the surface polarization reflections of other bands, and then the aerosol parameters
to be retrieved are obtained according to an iterative strategy. According to the aerosol
parameters obtained via polarization inversion, the atmospheric transmittance, hemispheric
albedo and atmospheric path radiation are obtained using Unified Linearized Vector
Radiative Transfer Model (UNL-VRTM) [47], and then the empirical value of the surface
reflectance is obtained using Formula (5):

ρs =
ρ − ρ0

(ρ − ρ0) ∗ S + T
(5)

In Formula (5), ρ, ρ0, and ρs are the normalized reflectances of the atmospheric top,
atmospheric path radiation, and surface, respectively. S and T are the atmospheric hemi-
sphere albedo and the total atmospheric transmittance, respectively.

3.2. Intensity Polarization Joint Optimization Inversion Algorithm
3.2.1. Satellite Observation Model

The radiation signals obtained by satellites can be characterized by the apparent
reflectance. There are multiple interaction processes between the surface and the atmo-
sphere, which are complicated by different surface reflectances and different atmospheric
conditions. Therefore, the apparent reflectance model is as follows [49]:

RTOA(μs,μv,ϕ) = RAtm(μs,μv,ϕ) +
TsTvρ(μs,μv,ϕ)
1 − sρ(μs,μv,ϕ)

RTOA(μs,μv,ϕ) =
πI(μs,μv,ϕ)

μsE0
(6)

In Formula (6), RTOA and RAtm are the top-of-atmosphere (TOA) reflectance and the
atmospheric path radiation, Ts and Tv are atmospheric downward and upward transmit-
tances, respectively, ρ is the surface albedo and s is the atmospheric hemispheric albedo.
μs, μv, and ϕ are the cosine of the solar zenith angle, the cosine of the observed zenith
angle, and the relative azimuth angle. E0 is the solar constant (the solar spectral irradiance
outside the atmosphere). The surface albedo can be obtained if the apparent reflectance,
atmospheric path radiation, atmospheric transmittance, and atmospheric hemispheric
albedo are known.

The polarization signal obtained by the satellite is characterized by the TOA polarized
reflectance. The polarization contribution caused by the multiple interactions between the
surface and the atmosphere is very small. After the attenuation of the atmosphere, the
contribution to the observation at the top of the atmosphere can be ignored. Therefore,
the TOA polarized reflectance modeling only needs to consider the upward polarization
scattering of the atmosphere and the single reflection of the surface [50], and the TOA
polarized reflectance can be written as follows:

RTOA
P (μs,μv,ϕ) = RAtm

P (μs,μv,ϕ) + TsρP(μs,μv,ϕ)TvRTOA
P (μs,μv,ϕ) =

πIp(μs,μv,ϕ)
μsE0

(7)

In Formula (7), RTOA
P is the TOA polarized reflectance, RAtm

P is the polarized reflectance
of the atmosphere (which can be calculated by setting the surface polarized reflectance to
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zero), and ρP is the surface polarized reflectance. Ip =
√

Q2 + U2 is the polarized radiance
at the top of the atmosphere.

In summary, when using the intensity information and polarization information for
the optimization solution, due to different observation models and different assumptions
of the surface, the state vector x and observation vector y are shown in Table 2:

Table 2. State vector x and observation vector y settings.

Category Polarization Setting Intensity Setting

Observation vector y =
[

Ipλ1
, . . . , Ipλ6

]T
y =

[
Iλ1 , . . . , Iλ7

]T
State vector x =

[
Vf , Vc, ρp

]T
x =

[
Vf , Vc, ρλ1 , . . . , ρλ7

]T

In Table 2, the superscript T represents the transpose of the vector, and λ1 − λ7 are
the corresponding center wavelengths of POSP: 410 nm, 443 nm, 490 nm, 670 nm, 865 nm,
1610 nm and 2250 nm, respectively. Vf and Vc are the aerosol fine-mode and coarse-mode
column concentrations, respectively, and ρ represents the surface reflectance. Since it is
assumed that the surface polarized reflectance is independent of the wavelength, and
the TOA polarized reflectance in the 2250 nm band is used as the initial value of the
surface polarized reflectance, in the polarization inversion, the state vector x has only three
parameters, and the observation vector has 6 parameters. In the intensity inversion, the
state vector has nine parameters and the observation vector has seven parameters.

3.2.2. Cost Function Solution Method

The optimal estimation theory provides the cost function J(x) for finding the optimal
inversion result, and gives the specific form. J(x) is a nonlinear function, and Newton’s
iterative method is a common method for solving nonlinear functions. In this paper, the LM
algorithm is used to solve the minimum value of J(x), and in the LM program module, the
forward radiated transmission simulation module and the calculation module of the cost
function are combined to establish the program framework for optimal iterative inversion.
Under the framework of the program, the optimal estimation of the state vector is found
after several iterations. The convergence condition is as follows:

Δ =

∣∣∣∣xt+1 − xt
∣∣∣∣

2
||xt||2

≤ ε (8)

In Formula (8), where || ||2 is the L2 norm, ε is the convergence threshold for
judging the end of the iteration, which is an empirical value, and is taken as 0.1% in
this paper.

In the actual operation process, when the number of iterations exceeds the set max-
imum number of iterations of six, or when the element value in x exceeds the boundary
range, the iteration stops and an invalid value is output.

3.2.3. Algorithm Implementation

The LM program module, UNL-VRTM, and the cost function calculation module are
combined to make full use of the multi-band polarization information of POSP to carry out
the optimal inversion of AOD. The detailed flow chart is shown in Figure 2. After reading
the POSP data, the proposed algorithm can be divided into the following two stages.
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Figure 2. The flowchart of inversion algorithm.

In the first stage, the optimal inversion is performed using the polarization informa-
tion to obtain the aerosol column concentration. There are three main steps at this stage:
(1) Obtain the initial value of the surface polarization reflectivity of other bands through
the apparent polarization reflectivity of 2250 nm; (2) Use the radiation transfer soft-
ware UNL-VRTM to calculate the Jacobian matrix of the state vector; (3) Obtain a new
state vector according to the update strategy of Formula (3), and then after several itera-
tions, when the iterative convergence threshold is met, the aerosol column concentration
parameter is output.
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In the second stage, the final aerosol column concentration parameters are obtained by
optimizing the inversion using the intensity information. First, input the aerosol column
concentration parameters obtained in the previous stage into UNL-VRTM and run it, and
then perform simple atmospheric correction according to Equation (5) to obtain the initial
values of surface reflectance in different bands. Then, according to (2)–(3) of the first stage,
the column concentration parameters of the aerosol are finally obtained.

The aerosol volume column concentration parameters are obtained via inversion ac-
cording to the above process, and the spectral AOD can be further calculated by combining
with the aerosol model parameters, but this calculation process does not need to be carried
out separately. In the iterative process, when using the UNL-VRTM software for forward
simulation, AOD can be obtained at the same time, and the calculation result can be output
when the last step satisfies the iterative convergence condition.

4. Result and Discussion

4.1. Algorithm Iteration Process

According to the prior information acquisition and retrieval strategy described above,
the POSP data from November 2021 to July 2022 are selected for the retrieval of AOD. An
inversion case of 8 June 2022, over the Beijing site is selected to illustrate the iteration and
convergence processes of the algorithm, as shown in Figure 3.

Figure 3. (a,c) Illustrations of the iterative process for TOA reflectance and TOA polarized reflectance,
respectively. (b,d) The plot of the cost function as a function of iterations in polarization inversion
and intensity inversion, respectively (case for 8 June 2022).

Figure 3a,c shows the fitting between the simulated values of the model and the
measured values of POSP with the increase in the number of iterations in the process of
inversion using polarization information and intensity information, respectively. After
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the last iteration, the simulated values using polarization information agree well with the
observed values in the first five bands, and there is only a slight gap in the 1610 nm band.
The simulated values using intensity information are in good agreement with the observed
values in all bands, indicating that in single-angle observation, the intensity contains more
information about the atmosphere than the polarization measurement. In Figure 3b,d of the
cost function varies with the number of iterations in the process of polarization inversion
and intensity inversion, respectively. It is also reflected that the intensity contains more
information than polarization from (b) and (d). When convergence, the cost function value
of intensity information inversion is less than that of polarization information inversion.
After five iterations, the cost function almost does not change with the increase in the
number of iterations, so that in order to save the time of the algorithm, the maximum
number of iterations can be set to 6.

4.2. Evaluation Index of the Inversion Result

In the evaluation of the inversion results, quantitative indexes such as correlation
coefficient (R), root mean square error (RMSE), expected error (EE), and the percentage of
except error (Scope) are used. Taking AOD as an example, the specific definitions of each
index are as follows:

R =
cov(τretrieval, τtrue)

std(τretrieval)× std(τtrue)
(9)

RMSE =

√√√√ 1
N

N

∑
i=1

(τretrieval − τtrue)
2 (10)

Δ = EE = ±0.15τtrue ± 0.05 (11)

Scope = Nvalid/N × 100% (12)

In Formulas (9)–(12), τretrieval is the AOD result of inversion using POSP data, and
τtrue is the data for verification. Cov() and std() represent the covariance and standard
deviation calculations, respectively. Scope is the proportion of the amount of data within
the range of τtrue + Δ for the inversion AOD to the total data. N and Nvalid are the amount
of data and the total amount of data that fall into the error range, respectively.

4.3. Validation against Ground-Based Data

The AERONET level 2.0 category is used for ground-based validation in this paper.
AERONET is a ground-based network of sun photometers that provides high-quality
aerosol measurements including AOD products [36,51].

The spectral AOD are retrieved using the proposed algorithm. With regard to valida-
tion, the AOD at 670 nm is selected. Correspondingly, the AOD at 675 nm in the AERONET
products is used.

In order to verify the effectiveness of the inversion algorithms in different regions, four
regions (Beijing, Hefei, Baotou, and Taiwan) with considerable geographical differences
were selected. Additionally these four areas have AERONET ground-based long-term ob-
servation stations, namely: Beijing area (Beijing station), Baotou area (AOE_Baotou station),
Hefei area (Hefei station) and Taiwan area (Chen-Kung_Univ station), the corresponding
latitude and longitude are shown in Table 3.

Table 3. AERONET data for validation.

AERONET Sites Longitude Latitude Date Range

Beijing 116.3814 39.9769 2021.11–2022.7
AOE_Baotou 109.6288 40.8517 2021.11–2022.7

Hefei 117.1622 31.9047 2021.11–2022.7
Chen-Kung_Univ 120.2047 22.9934 2021.11–2022.7
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The location and observation time of the AERONET sites are matched to extract the
observation data corresponding to POSP from November 2021 to July 2022, as shown
in Figure 4.

 Begin

Obtain satellite transit time POSP data
Xml file  

 POSP data
HDF5 file  AERONET sites 

 Match AERONET data 
according to satellite time

 Extract 3*3 pixels of POSP centered on the 
latitude and longitude of the site

Matched POSP data and 
AERONET data 

Save as HDF5 file 

End
 

Figure 4. The flowchart of matching POSP observation data and AERONET data.

The validation against the corresponding AEROENT product is shown in Figure 5a–d
are the verification results in Beijing, Baotou, Hefei and Taiwan, respectively.

It can be found from Figure 5 that the inversion results based on the algorithm pro-
posed in this paper are basically consistent with AOD products of the AERONET sites,
and the results are good. However, due to the influences of different surface types and
aerosol types, the Scope is different. The order from largest to smallest is Hefei, Taiwan,
Beijing, and Baotou. The reason for this may be that the surface vegetation in the Baotou
area is sparse and is often considered to be a bright surface, while the Hefei site is mostly
covered by evergreen vegetation, and the surface reflectance value is relatively small, so
that the impact of the surface on the apparent reflectance is relatively smaller than the
bright surface.

In addition, the aerosols in Baotou are mainly composed of coarse particles, so
when polarization inversion is performed, the AOD obtained will have a large error,
and then a large error will be introduced when the initial value of surface reflectance is
provided based on the results of polarization inversion, resulting in relatively poor final
inversion results.
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(a)Beijing (b)Baotou 

  
(c)Hefei (d)Taiwan 

Figure 5. Validation of the AOD at 670 nm with the proposed method against AOD at 675 nm in
AERONET products at Beijing, Baotou, Hefei and Taiwan sites.

4.4. The Validation against MODIS Products

In order to verify the effectiveness of the intensity polarization joint inversion algo-
rithm under different pollution conditions, MODIS’s AOD products at 550 nm are first used
to screen the time and longitude ranges of AOD high value (AOD > 0.7) and low value
(AOD < 0.7), and then filter out the corresponding POSP observation data. The specific
latitude and longitude ranges and times are shown in Table 4.

Table 4. Data information used for validation.

AOD Range Longitude Range Latitude Range Date

AOD>0.7 114.6–115.9 37.5–38.5 2022.6.9
AOD<0.7 116.6–118.2 31.57–33.46 2022.5.4

The comparison between the inversion results in the high-value area and the MODIS
product is shown in Figure 6. The blank area in the figure indicates no inversion results,
because they are cloud pixels or no data.

Comparing the (a) and (b) figures in Figure 6, it can be found that the inversion results
of POSP are consistent with the MODIS product as a whole, but that the inversion value of
POSP in some areas is smaller than the AOD value in MODIS (prismatic area in the figure),
and that the AOD value of POSP is greater than that of MODIS in some areas (circular
area in the figure). In order to further analyze the difference between the AOD inversion
results of POSP and the MODIS products, the inverted AOD and MODIS products were
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statistically analyzed and linear regression analysis was performed, and the results are
shown in Figure 7.

  
(a) The retrieval of AOD at 550 nm (b) AOD at 550 nm in MODIS products 

Figure 6. POSP AOD inversion results (a) vs. MODIS products (b) (9 June 2022).

Figure 7. The scatter plot of POSP AOD inversion results against MODIS products (9 June 2022).

According to the statistical results of Figure 7, a total of 125 high-value AOD data
are obtained, of which 78.4% of the data fall within the error range, and the correlation
coefficient R is 0.802.
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Figure 8 shows the comparison of the AOD inversion results of POSP in the low AOD
value area with the MODIS product. Comparing (a) and (b), it can be found that the POSP
inversion results are consistent with the MODIS product as a whole. In some areas, the
inversion result of POSP is smaller than MODIS (the prismatic area in the figure). In order
to further analyze the effectiveness of the inversion algorithm, the inversion results and
MODIS products were statistically analyzed, and the results are shown in Figure 9.

Figure 8. POSP AOD inversion results (a) vs. MODIS products (b) (4 May 2022).

 
Figure 9. The scatter plot of POSP AOD inversion results against MODIS products (4 May 2022).
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As can be seen from Figure 9, a total of 670 data points are obtained, 99.6% of the data
are within the error range, and the correlation coefficient R is 0.944, indicating that the
inversion results are in good agreement with the MODIS.

In summary, comparing the inversion results of high-value AOD and low-value AOD,
it can be found that the inversion results of low-value AOD are significantly better than
those in high-value AOD regions. This may be due to the assumption that the 2250 nm
band is not sensitive to the atmosphere when performing polarization inversion, so that the
TOA polarization reflectance of 2250 nm is used as the surface polarization reflectance of
other bands. When the AOD is low, this assumption may have little effect on the inversion
results, but in the high AOD value region, due to the increased probability of collision
between light and particles, the 2250 nm band will carry more aerosol information, which
will have a certain impact on the inversion results.

5. Conclusions

In this paper, based on the observation characteristics of POSP single-angle multi-
band polarization measurements, an intensity polarization joint optimization inversion
algorithm based on optimization theory is proposed, which can effectively perform ground-
air decoupling without prior knowledge of the surface. Additionally, the effectiveness of
the algorithm is verified in different regions and under different pollution conditions. It
is found that in the vegetation coverage area (Hefei) and the urban underlying surface
(Beijing and Taiwan), the correlation coefficient between the inversion AOD at 670 nm
from POSP and the ground-based AOD at 675 nm from AERONET can reach more than
0.98. Good results can also be obtained on the bright surface (Baotou), the correlation
coefficient can reach 0.71, and the proportion of data within the error range can reach 85.5%.
In addition, the inversion results of the high-value area and the low-value area of AOD
are also analyzed. It is found that the AOD at a 550 nm correlation coefficient between
POSP and MODIS in the high-value area is 0.802, and in the low-value area, it is 0.994,
indicating that the performance of the algorithm in the low-value area is better than that of
the high-value area.

This algorithm uses the insensitivity of the short-wave infrared band to the atmosphere
to obtain the initial value of the surface polarized reflectance. Therefore, in the high-value
area of aerosol or under the condition coarse mode dominated aerosol, it will have a certain
impact on the inversion results.
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Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD)
has been widely used in atmospheric environment and climate change research. Based on data of
the Aerosol Robotic Network and Sun–Sky Radiometer Observation Network in the Yangtze River
Delta, the retrieval accuracies of MODIS C6.1 Dark Target (DT), Deep Blue (DB), and C6.0 Multi-angle
Implementation of Atmospheric Correction (MAIAC) products under different land cover types,
aerosol types, and observation geometries were analyzed. About 65.64% of MAIAC AOD is within
the expected error (Within EE), which is significantly higher than 41.43% for DT and 56.98% for DB.
The DT product accuracy varies most obviously with the seasons, and the Within EE in winter is
more than three times that in spring. The DB and MAIAC products have low accuracy in summer
but high in other seasons. The accuracy of the DT product gradually decreases with the increase in
urban and water land-cover proportion. After being corrected by bias and mean relative error, the DT
accuracy is significantly improved, and the Within EE increases by 24.12% and 32.33%, respectively.
The observation geometries and aerosol types were also examined to investigate their effects on
AOD retrieval.

Keywords: Yangtze River Delta; aerosol optical depth; AERONET; SONET; MODIS; aerosol type;
land cover

1. Introduction

Aerosols are tiny particles suspended in the atmosphere, and they are one of the main
pollutants in the atmosphere [1]. This pollutant is an important factor affecting climate
change, by scattering and absorbing solar radiation and changing the microphysical prop-
erties of clouds to disturb the Earth’s radiation balance [2–5]. The impact of atmospheric
aerosols on climate forcing is uncertain due to the relatively high spatial and temporal
variability in their physical and chemical characteristics [6,7]. The observation of aerosol’s
optical and physical properties and the quantification of the impact of aerosol particles on
the climate and environment have also attracted extensive attention. Aerosol optical depth
(AOD) is the integral of the aerosol extinction coefficient in the vertical direction, and it
is a key factor used to describe aerosol optical properties and determine the influence of
climate effects. It is widely used in atmospheric environment monitoring, atmospheric
radiation transmission, remote sensing applications, and climate change research [8–10].

Remote sensing technology is an important method for aerosol monitoring at present [11].
Satellite remote sensing has a large observation region and relatively low cost, and it
can reflect the spatial and temporal variations in regional and even global atmospheric
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aerosol. The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra/Aqua
satellite has been widely used as a global-coverage satellite remote sensing instrument
to detect aerosol optical properties [12]. However, the radiation information received by
the satellite’s sensor is subject to the complex influence of atmospheric scattering and
surface reflection [13]. Moreover, uncertainties are introduced by surface reflectance and
the aerosol model used in AOD retrieval [14,15], which results in uncertainty in the results
of satellite retrieval. Therefore, the applicability of MODIS aerosol products for different
regions still needs to be verified by comparison with ground observation data. East Asia
is one of the regions with the largest aerosol loads in the world. Considerable research
has been conducted on the applicability of MODIS AOD in East Asia, especially China,
including the Yangtze River Delta (YRD), the Beijing–Tianjin–Hebei region, Pearl River
Delta, and northwest China [16–18].

The land surface reflectance is high, and the aerosol types are complex compared with
those in ocean aerosol retrieval, and the retrieval of aerosols over land is still an important
and difficult topic [19]. The solar radiation at the top of the atmosphere (TOA) received by
satellite sensors includes atmospheric scattering and surface reflection. Obtaining accurate
surface reflectance is a key problem to be solved for aerosol retrieval. Land cover type also
affects aerosol characteristics. The reason is that different land cover types will produce
different atmospheric emissions, and this factor can change the local climate and affect
the transmission of aerosols by affecting radiation transport [20]. Therefore, an increasing
number of scholars focus on the influence of surface types on aerosol characteristics and
AOD retrieval accuracy [21–24].

The YRD is one of the fastest-growing and most prosperous regions in China. It is
considered to be a high-aerosol value area in the global context and a heavily polluted area
in China, because of its dense population and industries [25]. The composition of aerosols
in this region is complex, including anthropogenic aerosols such as sulfates, biomass
burning aerosol, as well as natural aerosols, such as dust and sea salt transported over
a long distance, and their optical properties are highly diverse [26–29]. Therefore, the
applicability of the MODIS aerosol product in the YRD needs to be further analyzed to
clarify the influence of different land cover types, aerosol types, and observation geometries
on aerosol retrieval accuracy.

In this study, the YRD is taken as the research area, and the AOD data of the Aerosol
Robotic Network (AERONET) and the Sun–Sky Radiometer Observation Network (SONET)
ground-based observation sites, representing the underlying surface of forest, cropland,
urban, and water, are selected as the benchmark. The aerosol retrieval accuracies of MODIS
Collection 6.1 (C6.1) Dark Target (DT), Deep Blue (DB), and MODIS Collection 6 (C6) Multi-
angle Implementation of Atmospheric Correction (MAIAC) AOD products under different
land cover types, aerosol types, and observation geometries are studied. The accuracy of
MODIS AOD is also corrected according to the land-cover proportion of urban and water
areas to provide a new reference for the more accurate evaluation of the applicability of
MODIS AOD products in different regions and the improvement in the retrieval method.

2. Materials and Methods

2.1. MODIS Aerosol Products

MODIS is one of the most important sensors used by the Earth Observing System
(EOS) Terra/Aqua satellites for aerosol monitoring [12]. It has 36 bands covering the
spectrum from 0.4 μm to 14 μm. Its spatial resolution range includes 250 m (bands 1–2),
500 m (bands 3–7), and 1 km (bands 8–36), and thus, it provides global coverage every
2 days [30]. At present, MODIS aerosol products have been developed for the DT and
DB of C6.1 version [31,32]. The daily aerosol products of C6.1 Level 2 are MOD04_L2
and MYD04_L2 with a spatial resolution of 10 km, where “MOD” is used for Terra and
“MYD” for Aqua. The MAIAC product has been developed for C6 [33], and its daily aerosol
product is MCD19A2, with a spatial resolution of 1 km.
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2.1.1. DT Products

Over vegetated and dark soiled surfaces, a proportional relationship exists between
the surface reflectance in visible wavelengths (0.47 and 0.66 μm) and in the shortwave
infrared wavelengths (2.12 μm), which is called the “VISvs2.12” relationship [34,35]. The DT
algorithm assumes that the aerosol is transparent at 2.12 μm and that the surface reflectance
equals the TOA reflectance in this band; then, the AOD is retrieved based on the selected
aerosol model and look-up table (LUT). Under a dust aerosol regime, aerosol transparency is
an extremely poor assumption, and the 2.12 μm channel contains information about coarse
mode aerosol and the surface reflectance. Levy et al. found that a single set of “VISvs2.12”
ratios is not globally applicable [13,36]. The C5 defined the “VISvs2.12” relationship as a
function between the scattering angle (SA) and the Normalized Difference Vegetation Index
(NDVI) based on 2.12 μm. The C6.1 product over land was corrected as follows: when the
coastal proportion in the 10 km × 10 km grid was greater than 50% or the water proportion
was greater than 20%, the quality assurance (QA) of AOD was dropped to 0; when the
proportion of urban was more than 20%, the surface reflectance calculation scheme was
modified using the MODIS land surface reflectance and land cover type products [37]. The
dataset of “Optical_Depth_Land_And_Ocean” from C6.1 MOD04_L2 and MYD04_L2 was
used, and it contains AOD values for the filtered, quantitatively useful retrievals over dark
targets, where the QA for AOD over land is 3 (representing high-quality retrieval).

2.1.2. DB Products

Hsu et al. found that the surface reflectance of MODIS in the blue channel is still low,
even in areas of high surface reflectance, such as urban and desert [38]. The DB algorithm
assumes that the surface reflectance of most figures remains constant in a short time and re-
trieves AOD by constructing a seasonal surface reflectance database [39]. The C6 algorithm
divides the land surface into three types: arid and semi-arid regions, vegetated regions, and
urban/built-up and transitional regions [40]. The surface reflectance database is improved
using knowledge of NDVI, SA, and season. The C6.1 product has been updated in the
following aspects: radiometric calibration, heavy smoke detection, artifact correction for het-
erogeneous terrain, seasonal and regional aerosol model, and surface reflectance in elevated
terrain [41]. The dataset of “Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate”
from the MODIS C6.1 product was used, where QA = 2, 3 (representing good quality
retrieval). Datasets such as “Solar_Zenith”, “Sensor_Zenith”, “Solar_Azimuth”, “Sen-
sor_Azimuth”, and “Scattering_Angle” were used to evaluate the impact of observation
geometry on the accuracy of DT and DB AOD.

2.1.3. MAIAC Products

The MAIAC algorithm assumes that (1) surface reflectance slightly changes in a short
period of time and that (2) AOD does not change remarkably in adjacent regions [42,43].
MAIAC retrieves AOD through time-series MODIS observations. MAIAC applies the
MODIS L1B data to a fixed grid with a resolution of 1 km, analyzes the time series of
observation data from the past 4 days (polar) to 16 days (equatorial) using the sliding
window strategy to obtain the linear spectral regression coefficient (SRC), and calculates
AOD based on SRC and surface bidirectional reflectance factors via LUT. MODIS C6 has
been improved in terms of cloud mask, SRC estimation, and aerosol properties. MAIAC
utilizes the minimal ratio of spectral reflectance (0.47/2.13 μm) in a 2-month period to
estimate SRC at a 1 km scale, which helps to remove the occasional blockiness at the 25 km
scale in the AOD and in the surface reflectance. Smoke and dust models are introduced in
C6 to distinguish between fine and coarse aerosol models [33]. “Optical_Depth_055” and
“AOD_QA” in the C6 product were used in this study, where “0000” for the QA of AOD
was selected to represent the best quality. The datasets “cosSZA”, “cosVZA”, “RelAZ”, and
“Scattering_Angle” were selected to evaluate the impacts of observation geometry on the
accuracy of MAIAC products.
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2.2. Ground-Based Measurements
2.2.1. AERONET Data

AERONET is a global aerosol optical property monitoring network established by the
National Aeronautics and Space Administration [44]. Through the establishment of ground-
based monitoring sites in representative regions around the world, the benchmark data of
global aerosol parameters have been obtained to study aerosol optical and physicochemical
properties. The AERONET uses the French CIMEL CE318 Sun photometer to obtain
the columnar AOD for the whole atmosphere by measuring the direct (collimated) solar
radiation at different wavelengths, directions, and times. AERONET uses the spectral ed-
convolution algorithm to yield fine and coarse AOD at a standard wavelength of 500 nm,
from which the fine mode fraction to total AOD can be computed [45]. The CE318 Sun
photometer sky radiance measurements can be inverted to produce aerosol characteristics,
such as size distribution, single scattering albedo (SSA), phase functions, and the complex
index of refraction. The AERONET aerosol products are classified into Level 1.0, Level
1.5, and Level 2.0 [46]. L1.0 data are unscreened and do not undergo final calibration; L1.5
data are cloud-cleared, and quality controls have been applied, but these data may not
undergo final calibration; L2.0 data are automatically cloud-cleared and quality-assured,
with pre-field and post-field calibration applied. The V3 Level 2.0 data (Table 1) for Taihu
(TH), Qiandaohu (QDH), Hangzhou_City (HZC), Hangzhou_ZFU (HZZ), NUIST, Shouxian
(SX), Hefie (HF), XuZhou-CUMT (XZ), and LA-TM in the YRD (Figure 1) from 2007 to 2018
were used in this study.

Table 1. Information of ground-based observation sites.

Site Project Longitude Latitude Data Period
Number of Matches (n)

DT DB MAIAC

TH AEROENT 120.215 31.421 09/2005–08/2016 722 956 1512
QDH AEROENT 119.053 29.556 08/2007–10/2008 53 53 88
HZC AEROENT 120.157 30.290 04/2008–02/2009 69 84 103
HZZ AEROENT 119.727 30.257 08/2007–08/2009 174 176 195

NUIST AEROENT 118.717 32.206 09/2008–08/2010 107 137 156
SX AEROENT 116.782 32.558 05/2008–12/2008 86 98 96
XZ AEROENT 117.142 34.217 06/2013–05/2019 831 1135 1238
HF AEROENT 117.162 31.905 11/2005–11/2008 86 107 118

LA-TM AEROENT 119.440 30.324 10/2007–03/2009 93 101 112
HF SONET 117.162 31.905 01/2013–12/2019 484 510 562
NJ SONET 118.957 32.115 01/2013–12/2019 357 476 528
SH SONET 121.481 31.284 01/2013–12/2019 221 370 397

2.2.2. SONET Data

SONET is a ground-based observation network organized and implemented by the
Chinese Academy of Sciences in typical areas of China, including rural, urban, desert,
coastal, basin, mountain, and plateau areas [47]. It obtains the physical, chemical, and
optical characteristics of the total column aerosol for aerosol characteristic modeling and
the authenticity inspection of satellite remote sensing products in China. SONET uses the
French CIMEL’s multiwavelength polarized sun–sky radiometer CE318-DP to observe the
solar and sky radiation and their polarization characteristics in eight wavebands (the central
wavelengths are 340, 380, 440, 500, 675, 870, 1020, and 1640 nm) and to detect the total
column water vapor at 936 nm. Aerosol products are divided into three grades according
to the AERONET product grades, namely, Level 1.0, Level 1.5, and Level 2.0 [48]. L1.0 data
are original data; L1.5 data are cloud-cleared through the automatic cloud identification
algorithm; L2.0 data are cloud-cleared, and calibration coefficient interpolation and expert
identification have been applied. SONET L2.0 data (Table 1) from Hefei (HF), Nanjing (NJ),
and Shanghai (SH) were adopted in this study.
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Figure 1. Locations of the AERONET and SONET sites in the Yangtze River Delta displayed on the
land-cover map.

The AERONET/SONET AOD at 500 and 675 nm were interpolated into AOD at
550 nm using the Ångström exponent (AE) because MODIS AOD is at 550 nm, but
AERONET/SONET AOD does not have such a wavelength.

τ550 = τ675(550/675)−α (1)

α = − ln(τ500/τ675)/ ln(500/675) (2)

where τ500 is AOD at 500 nm, τ675 is AOD at 675 nm, α is the AE at 500–675 nm, and τ550 is
AOD at 550 nm obtained by interpolation.

2.3. Land Cover Data

MCD12Q1 data are the 500 m resolution land classification products formed by ex-
tracting different land cover types based on the annual MODIS Aqua and Terra data using
the decision tree-supervised classification method [49]. These data can be divided into
17 land cover types. The land cover type percentages of each of the AERONET and SONET
sites in the YRD corresponding to 3 × 3 pixels of MODIS L2 data within the range of
30 km × 30 km are counted in Table 2. The areas around QDH, LATM, and HZZ are domi-
nated by forest; notably, the forest proportions of LATM and HZZ account for more than
90%. HF and SX are dominated by cropland, and the proportions account for more than
60%. The land cover types at HZC and SH are mainly urban, of which the urban area in
SH accounts for more than 90%. TH is dominated by water; approximately half of it is
water, and it is slightly more urban than forest. The land cover types at XZ, NJ, and NUIST
are mixtures of forest, cropland, and urban. According to the land cover proportion, the
ground-based observation sites are classified into five land cover types, which are forest,
cropland, urban, mixed, and water.
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Table 2. Percentage of land cover around AERONET/SONET sites (%).

Land Cover Type Site Forest Wetland Cropland Urban Barren Water

Forest
QDH 64.86 9.67 0.00 1.08 0.17 24.22
LATM 99.92 0 0 0.08 0 0
HZZ 93.47 0.27 1.4 4.19 0 0.67

Cropland HF 3.28 1.05 60.33 33.41 0.05 1.88
SX 9.47 2.69 63.61 15.67 0.00 8.56

Urban
HZC 21.92 0.42 0.22 71.22 0.39 5.83
SH 0.3 0.11 0 92.93 0.05 6.61

Mixed
XZ 12.66 0.08 43.94 42.35 0.03 0.94
NJ 36.15 1.72 26.9 29.08 0.51 5.64

NUIST 33.39 1.00 39.14 23.17 0.22 3.08

Water TH 20.67 2.75 1.61 27.58 0.14 47.25

2.4. Evaluation Method
2.4.1. Spatiotemporal Matching

AERONET/SONET data represent the continuous observation of the ground sites
at fixed intervals daily, whereas MODIS AOD represents the instantaneous observations
with a 10 km × 10 km spatial resolution. The spatiotemporal scales of MODIS and ground-
based observations differ. Therefore, the ground-based data were filtered with a temporal
window of 30 min before and after satellite overpass to obtain the average of AOD. The
30 km × 30 km range of the ground site was considered a spatial window, and the average
MODIS AOD under this window was calculated to form the AERONET/SONET-MODIS
AOD dataset matching the temporal and spatial resolution.

2.4.2. Evaluation Method

The expected error (EE hereinafter) is usually used to evaluate the quality of AOD
retrieved by satellite. A large number of experiments have been conducted by the MODIS
science team; EE adopts ±(0.05 + 0.15 × AOD) for DT and DB AOD products, and ±(0.05 +
0.1 × AOD) is used for MAIAC products [33,50–52]. To uniformly compare and analyze the
quality of each algorithm, the EE of ±(0.05 + 0.15 × AOD) is adopted. Above EE, Within
EE and Below EE are expressed by Equations (4)–(6):

EE = ±(0.05 + 0.15 × AODG) (3)

AODM > AODG + |EE| (4)

AODG − |EE| ≤ AODM ≤ AODG + |EE| (5)

AODM < AODG + |EE| (6)

where AODG is the observed AEROENT/SONET AOD, and AODM is the AOD retrieved
from MODIS. In addition, error analysis is performed by root mean squared errors (RMSE),
bias, the square of the correlation coefficient (R2), and the slope (a) of regression analysis.

RMSE =

√
1
n ∑(AODM − AODG)

2 (7)

Bias =
1
n ∑(AODM − AODG) (8)

R2 =

⎛
⎝ ∑

(
AODM − AODM

)(
AODG − AODG

)
√

∑
(
AODM − AODM

)2
√

∑
(
AODG − AODG

)2

⎞
⎠

2

(9)
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3. Results

3.1. Overall Accuracy of DT, DB, and MAIAC

The accuracies of DT, DB, and MAIAC products in the YRD differ greatly (Figure 2),
and the matched number and accuracy of MAIAC are significantly better than those of DT
and DB. The matched number of DT is the lowest, with a value of 3239, which indicates
that it is more difficult to satisfy the DT algorithm than MAIAC or DB. The DT product also
has the lowest accuracy, with a Within EE of only 41.43% (Figure 2a), which is more than
24% lower than that of MAIAC, and the RMSE of DT is the highest at 0.243. In the matched
data of DT, about 54.58% is Above EE, only 3.98% is Below EE, and the bias is 0.151, which
implies that DT AOD in the YRD is mostly overestimated. The bias box at different AODs
is shown in Figure 2d. When the AOD is less than 0.8, the mean bias exceeds the EE, and
the mean bias decreases gradually with the increase in AOD. The mean bias is −0.006 when
the AOD is 1.78, and this suggests that the DT AOD in the YRD is overestimated mainly in
the middle and low value ranges.

Figure 2. Overall accuracy of (a) DT, (b) DB, (c) MAIAC; the solid red line represents the regression
line; the solid blue line represents the 1:1 reference line, and the dashed blue line represents the
expected error line. The AOD bias box plot of (d) DT, (e) DB, (f) MAIAC products; each box is based
on 100 matched data; the dashed line represents the expected error line, and the red dot represents
mean bias.

A total of 4203 DB matched data have a Within EE of 56.98%, an RMSE of 0.174, and
a bias of −0.027. The number and accuracy of DB matched data are better than those of
DT but lower than those of MAIAC. However, 27.93% of DB AOD is Below EE, which is
the highest among the three methods. The bias statistics of different AODs are shown in
Figure 2e. The mean bias is less than 0 when the AOD is between 0.15 and 0.5. The mean
bias is relatively small and fluctuates around 0 when the AOD is between 0.5 and 1.0. The
deviation is larger and becomes less than 0 with the increase in AOD when the AOD is
greater than 1.0. Therefore, DB AOD is mostly underestimated when AOD is greater than
1.0 and less than 0.5.

The MAIAC product is the best of the three algorithms. It has a matched number
of 5105, a Within EE of 65.64%, an RMSE of 0.196, and a bias of 0.036, which values are
obviously better than those of DT and DB. The bias statistics of different AODs are shown
in Figure 2f. The mean bias of MAIAC is relatively large when the AOD is low. In particular,
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the mean bias is 0.079 when the AOD is 0.105, and it is the only mean bias value that exceeds
the EE in the MAIAC product. Therefore, the MAIAC AOD is obviously overestimated at a
low AOD. When the AOD is between 0.2 and 0.5, the mean bias is relatively low, most of
which values are lower than 0.04. The mean bias slightly increases with the rise in AOD.

The retrieval accuracy values for DT, DB, and MAIAC products show discrepancy in
different seasons (Table 3). The matched number is the lowest in winter, and the Within
EE is the lowest in spring for the DT product. The matched number and Within EE of DB
and MAIAC AOD products are the lowest in summer. The matched numbers for the three
algorithms in summer are very low; among them, the matched number of DT in summer is
575, which is smaller than the 1224 in spring and the 996 in autumn, and this value for DB
and MAIAC is lower in summer than in other seasons, only accounting for 12.0% and 13.6%
of all matched numbers, which may be due to the rainy weather in the YRD in summer [25].

Table 3. Accuracy validation of DT, DB, and MAIAC AOD in the Yangtze River Delta in each season.

Season Data n Above
EE (%)

Below
EE (%)

Within
EE (%)

RMSE Bias R2 a

Spring
DT 1224 75.65 1.06 23.29 0.279 0.228 0.789 1.018
DB 1296 9.88 31.17 58.95 0.169 −0.052 0.772 0.974

MAIAC 1497 21.24 17.04 61.72 0.217 0.033 0.667 1.013

Summer
DT 575 49.22 4.52 46.26 0.248 0.134 0.767 0.917
DB 503 7.16 52.48 40.36 0.228 −0.116 0.806 1.011

MAIAC 696 28.74 14.8 56.46 0.265 0.071 0.691 1.058

Autumn
DT 996 42.97 5.92 51.11 0.218 0.104 0.726 0.913
DB 1073 12.86 26 61.14 0.149 −0.032 0.786 0.912

MAIAC 1388 28.17 6.34 65.49 0.192 0.071 0.772 1.000

Winter
DT 444 29.51 6.98 63.51 0.175 0.068 0.736 0.982
DB 1331 24.94 17.06 58.00 0.175 0.035 0.781 1.156

MAIAC 1524 14.3 11.88 73.82 0.132 −0.009 0.821 0.830

The matched number of DT AOD in winter is the lowest, with a value of 444, which is
mainly due to the reduction in green vegetation in winter. The Within EE of DT shows the
most significant seasonal variation, with a peak of 63.51% in winter, and only 23.29% in
spring, which is one-third of that in winter.

The Within EE of DB does not change considerably in spring, autumn, and winter,
and the values are all close to 60%, while the lowest value is 40.36% in summer. The main
reason is that the Deep Blue surface database method is mainly adopted for the surface
reflection in the YRD, and the lush vegetation in summer leads to low accuracy for AOD
retrieval.

The Within EE of MAIAC AOD also shows significant seasonal variation, with 56.46%
in summer, which is the lowest value, 61.72% in spring, 65.49% in autumn, and 73.82%
in winter, which is the highest value. The matched number is also the lowest in summer,
while little change is observed in other seasons. Therefore, the quantity and accuracy of
MAIAC AOD are good, except in summer.

3.2. Influence of Land Cover Types on AOD Retrieval

The three algorithms perform significantly differently for different land cover types
(Table 4). The highest accuracy of the DT product regards the data for forest, where it
obtains a Within EE of 68.75%, an RMSE of 0.163, and a bias of −0.059. The Within EE
of DT for cropland with a higher vegetation proportion is 53.59%, which is obviously
higher than that for mixed, urban, and water areas. The Within EE values of DT for urban
and water are 18.96% and 26.04%, respectively, which are relatively low. The analysis of
the relationship between the land cover proportion of urban and water (LCPUW) and the
Within EE at eight sites with more matched data in the YRD (Figure 3a) shows that Within
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EE is significantly negatively related to LCPUW, that the R2 is 0.892, and that the accuracy
of DT AOD decreases with the increase in LCPUW.

Table 4. Accuracy of DT, DB, and MAIAC AOD in different land cover types in the Yangtze River Delta.

Land
Cover

Data n Above
EE (%)

Below
EE (%)

Within
EE (%)

RMSE Bias R2 a

Forest
DT 320 5.94 25.31 68.75 0.163 −0.059 0.794 0.874
DB 330 0.91 62.12 36.97 0.201 −0.151 0.826 0.910

MAIAC 395 8.35 12.41 79.24 0.130 −0.022 0.843 0.909

Urban
DT 290 79.66 1.38 18.96 0.304 0.254 0.715 0.887
DB 454 23.13 28.19 48.68 0.196 −0.013 0.610 0889

MAIAC 500 18.00 19.00 63.00 0.175 −0.022 0.650 0.720

Cropland
DT 612 45.1 1.31 53.59 0.188 0.123 0.829 1.08
DB 715 9.23 31.89 58.88 0.154 −0.042 0.808 1.059

MAIAC 776 9.15 12.11 78.74 0.126 −0.008 0.849 0.960

Mixed1
DT 464 59.27 1.51 39.22 0.219 0.156 0.840 1.034
DB 613 8.48 38.01 53.51 0.183 −0.078 0.794 0.998

MAIAC 684 8.19 16.37 75.44 0.145 −0.029 0.831 0.907

Mixed2
DT 831 53.67 1.93 44.4 0.200 0.133 0.834 0.974
DB 1135 22.73 16.3 60.97 0.172 0.025 0.791 1.035

MAIAC 1238 17.12 9.53 73.35 0.141 0.021 0.841 0.998

Water
DT 722 72.16 1.8 26.04 0.332 0.245 0.671 0.878
DB 956 15.69 20.4 63.91 0.164 −0.01 0.765 0.953

MAIAC 1512 43.98 10.52 45.50 0.286 0.135 0.634 1.029

Mixed1 is NJ and NJUPT, and its forest proportion is significantly higher than that of XZ. Mixed2 is XZ, and its
urban proportion is higher than those of NJ and NJUPT.

Figure 3. (a) Correlations between land-−cover proportions of urban and water and DT Within EE.
(Three sites with the least matched data are removed, which are QDH, HZC, and SX). (b) Correlations
between land-cover proportion of urban without water and DB Within EE (QDH, HZC, and SX with
fewer matching data and SH with a high urban proportion close to 100% are removed).

The lowest accuracy of the DB product regards the data for forest, where it obtains
a Within EE of only 36.97%. Different from other regions [21,53], the Within EE of DB for
urban in the YRD is only 48.68%, which is lower than that for cropland, mixed, and water
land cover. Among the two sites with urban cover, the Within EE at HZC is 63.10%, which
is significantly higher than that at SH (45.40%). Therefore, other factors besides land cover
type have a great impact on the DB product in SH. The Within EE in TH mainly dominated
by water is 63.91%, which is the highest among all land cover types. The reason is that DB
filters water land cover according to the MCD12C1 dataset and retrieves aerosols of other
land cover types [40]. After the water land cover around TH is removed, about 52.29%
of the underlying surface is urban, which value is second only to SH and HZC. After the
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water land cover is removed in each site, a significant linear relationship can be observed
between the land cover proportion of urban without water (LCPU) and the Within EE of
DB (Figure 3b), and the Within EE of DB increases with the rise in the LCPU.

The accuracy of MAIAC in forest, cropland, and mixed land cover types with a high
vegetation proportion is relatively high. The Within EE values of Mixed1 and Mixed2 are
over 70%, while the Within EE values of cropland and forest are close to 80%, which are
78.74% and 79.24%, respectively. The RMSE and bias are also relatively low, and the lowest
RMSE and bias in cropland are 0.126 and −0.008, respectively. The accuracy of MAIAC in
urban is low, with a Within EE of 63%. The accuracy of MAIAC in water is the lowest, with
a Within EE of only 45.50%.

3.3. DT and DB AOD Correction

The bias and Mean Relative Error (MRE) (defined by Equation (10)) of DT have an
obvious linear relationship with LCPUW (Figure 4a,b), and the R2 values are 0.814 and 0.932,
respectively. The bias and MRE of DT are positive, except for at LATM and HZZ, with a
very small LCPUW. The bias and MRE of DT increase, and the accuracy decreases with the
rise in LCPUW. The bias and MRE of DB have an obvious linear relationship with LCPU
(Figure 4c,d). Different from those of DT, the bias and MRE of DB are all negative, except
for those for XZ, with a high LCPU. Overall, the bias and MRE of DB increase with the rise
in LCPU, and the accuracy improves.

Figure 4. Correlations between land-cover proportion of urban and water and (a) DT bias; (b) DT MRE;
correlations between land-cover proportion of urban without water and (c) DB bias; (d) DB MRE.

Therefore, AOD can be corrected according to LCPUW and LCPU [24]. In this study,
DT and DB products are corrected according to Equations (11) and (12). If the DT product
is corrected, then Biaspredict and MREpredict are determined by regression equations in
Figure 4a,b and LCPUW. If the DB products are corrected, then Biaspredict and MREpredict
are determined by the regression equations in Figure 4c,d and LCPU.

MRE = 100 × ∑(AODM − AODG)/AODG (10)
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AODcorrectd
M = AODM − Biaspredict (11)

AODcorrectd
M = AODM/

(
1 + MREpredict

)
(12)

The accuracy of DT is greatly improved when corrected by the two methods (Figure 5).
In particular, the Within EE of the DT MRE-corrected product has been increased to 72.29%,
but its regression coefficient is only 0.704. The RMSE and bias of the DT MRE-corrected
product are slightly higher than those of the DT bias-corrected product. The change curve
of the mean bias of the DT bias-corrected product (Figure 5e) is similar to that of the DT-
uncorrected product, but the mean bias is significantly reduced and around zero. The mean
bias of the DT MRE-corrected product (Figure 5f) gradually decreases with the increase
in AOD, with a value from 0.048 to −0.327. The lower quartile limit of bias exceeds the
EE when AOD is around 0.8, and the mean bias also exceeds the EE when AOD is around
1.0. Therefore, the accuracy of the DT MRE-corrected product is significantly improved
in the middle and low AOD intervals. However, the error will already exceed that of
DT-uncorrected products with the increase in AOD, especially when the AOD is greater
than 1.0.

Figure 5. Accuracy of (a) DT, (b) DT bias-corrected, (c) DT MRE-corrected AOD; the solid red line
represents the regression line; the solid blue line represents the 1:1 reference line, and the blue
dashed line represents the expected error line. Bias boxplot of (d) DT, (e) DT bias-corrected, (f) DT
MRE-corrected AOD; each box is based on 100 matching data points; the dashed line represents the
expected error line, and the red dot represents the mean bias.

A comparison of the DT Within EE before and after correction at each site is shown in
Figure 6a. The Within EE of LATM and HZZ with low LCPUW does not change considerably
after correction, but the Within EE at TH and SH with a large LCPUW is significantly
improved. Therefore, the DT product can be corrected effectively, especially for urban and
water land cover types.
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Figure 6. Accuracy comparison at each site before and after the correction of DT (a) and DB (b) prod-
ucts. (a) The orange bar represents the DT Within EE, and the green and purple bars represent the
increased Within EE value following bias correction and MRE correction, respectively. The Within EE
shows no change before and after MRE correction at HZZ. (b) The lower orange bar represents the
DB Within EE, and the upper orange bar represents the decreased value after correction.

The comparison of the Within EE of DB before and after correction at each site is
shown in Figure 6b. The Within EE of the DB-corrected product at LATM, HZZ, and NUIST
with low LCPU is significantly improved, but the improvement of Within EE gradually
decreases with the rise in LCPU. When the LCPU exceeds 30%, the Within EE of the
DB MRE-corrected product becomes lower than that of the uncorrected product, and the
bias and MRE-corrected methods lead to a decrease in DB Within EE at HF, XZ, and TH.
Therefore, only the DB product with an LCPU less than 30% can be corrected effectively.

Table 5 shows the accuracy comparison results at LATM, HZZ, and NUIST with
low LCPU before and after the correction of DB AOD. The Within EE based on both
correction methods has been significantly improved; in particular, the Within EE of the DB
bias-corrected product has been increased to 67.88%, and the RMSE and bias have been
significantly reduced, but the R2 has been decreased.

Table 5. Accuracy comparison at LATM, HZZ, and NUIST before and after correction of DB AOD.

Data n Above
EE (%)

Below
EE (%)

Within
EE (%)

RMSE Bias R2 a

DB 414 2.66 56.52 40.82 0.211 −0.150 0.834 0.915
DB Bias-Corrected 414 14.49 17.63 67.88 0.155 −0.023 0.818 0.881
DB MRE-Corrected 414 21.26 18.60 60.14 0.227 0.025 0.803 1.208

3.4. Influence of Observation Geometry on AOD Retrieval

The influence of observation geometry, such as solar zenith angle (SZA), view zenith
angle (VZA), scattering angle (SA), and relative azimuth angle (RAA), on the aerosol
retrieval accuracy is shown in Figure 7. SZA, VZA, and SA are divided into three sections:
Low (0◦–30◦), Moderate (30◦–60◦), and High (60◦–90◦). RAA is also divided into six sections
at 30◦ intervals.

SZA greatly influences the accuracy of DT, DB, and MAIAC products (Figure 7a). The
accuracy generally increases with the rise in SZA. The SZA values of DT, DB, and MAIAC
are mainly concentrated in the Moderate and Low sections; Moderate accounts for about
60–70% of the total. The accuracy of AOD in the Low section is significantly lower than that
in the Moderate section, and the Within EE in the Moderate sections of the three algorithms
is about 14 percentage points higher than that in the Low section. The RMSE value of
DT and DB at a Moderate SZA is about 0.05 lower than that at the Low SZA, while the
difference between the RMSE values of MAIAC in the two sections is 0.101. The proportion
of SZA in the High section is very low. The proportion of SZA of MAIAC in the High
section, which represents the highest proportion of the High section in the three algorithms,
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is only 5.22%. The SZA of DT in the High section is less than 2%, but its accuracy is the
highest, with a Within EE of 85.71% and an RMSE of 0.094.

Figure 7. Influence of SZA (a), VZA (b), SA (c), and RAA (d–f) on the accuracy of DT, DB, and MAIAC
products. The orange vertical bar represents the proportions of matches in each angle section.

VZA is also mainly concentrated in the Moderate and Low sections (Figure 7b). The
accuracies of DT, DB, and MAIAC in the Moderate and High VZA are also higher than
that in the Low VZA, but the influence of VZA is obviously smaller than that of SZA. In
particular, the accuracy shows nearly no difference between the DT in the Moderate VZA
and that in the Low VZA; the Within EE values are 40.74% and 40.27%, and the RMSE
values of DT are 0.153 and 0.156. However, the accuracy of DT in the High section is
significantly improved. The difference in the Within EE of MAIAC between Moderate and
Low VZA is no more than five percentage points, and the difference in RMSE is about
0.023. The accuracy of MAIAC in High VZA is slightly reduced, and the accuracy does not
change considerably with VZA. The DB product shows the largest change with VZA—the
Within EE of Moderate VZA is 12.38 percentage points higher than that of Low VZA, and
the RMSE is 0.026 lower.

The influence of SA is mainly reflected in that the accuracy of the three algorithms is
the lowest for High SA (Figure 7c). The accuracy of the DT and MAIAC AOD varies with
the SA, and the accuracy in Low SA is similar to that in Moderate SA. The difference in the
Within EE between them is less than 3%, and the difference in RMSE between them is less
than 0.1. Meanwhile, the accuracy of DB decreases with the rise in SA, and the accuracy
difference of DB between Low and Moderate SA is large. The difference in Within EE is
close to 17%, and the difference in RMSE is about 0.044.

The influence of RAA on the AOD accuracy of the three algorithms mainly manifests
as high accuracy when RAA is close to vertical, but low accuracy when RAA is close to 0 or
180. The accuracy of DT in the three sections of 30◦–60◦, 60◦–90◦, and 90◦–120◦ are better,
with Within EE values of about 50%, among which the highest is 52.27% at 60◦–90◦, and
the lowest RMSE is 0.189. The maximum Within EE of DB is 69.77% at 90◦–120◦ RAA, and
the lowest RMSE is 0.134 at 60◦–90 ◦ RAA. MAIAC has good accuracy at 60◦–90◦, 90◦–120◦,
and 120◦–150◦ RAA, and their within EE values are close to 70%.
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3.5. Influence of Aerosol Types on AOD Retrieval

Aerosol type is an important source of aerosol retrieval error. The DT algorithm
establishes five aerosol models based on the global AERONET aerosol data through cluster
analysis, and the appropriate aerosol model is selected according to regions and seasons.
The DB algorithm uses the maximum likelihood method to calculate a mixing ratio between
various dust and smoke models and then retrieves the AOD and AE. The MAIAC algorithm
divides aerosols into eight types according to aerosol size distribution and the concentra-
tion ratios of coarse and fine particle columns, as well as other parameters observed by
AERONET. Model 5 is mainly used for aerosol retrieval in China. The bias distributions of
DT, DB, and MAIAC products under different AE and SSA are shown in Figure 8.

Figure 8. Accuracy of DT, DB, and MAIAC products under different AE (a–c) and SSA (d–f); each
box is based on 100 matched data points, the dashed line represents the expected error line, and the
red dot represents mean bias.

The bias of DT and DB does not change considerably with AE. The bias of DT is
generally large and mainly positive (Figure 8a). The mean bias does not change considerably
with AE, and the mean bias of DT is around 0.15 except when the AE is greater than 1.6.
The bias of DB is mainly negative (Figure 8b). The mean bias of DB also does not change
considerably with AE. The mean bias of DB with an AE of 0.8–1.6 is very small and does
not fluctuate considerably. The bias of MAIAC increases with the rise in AE (Figure 8c).
The mean bias at each interval increases linearly with AE. The mean bias is less than 0
when the AE is less than 1.0, which indicates that the AOD of MAIAC is underestimated.
The AOD of MAIAC is overestimated when the AE is greater than 1.0.

The AOD bias values of three algorithms change more obviously with SSA than with
AE. Overall, the mean bias increases and then flattens with the increase in SSA. The mean
bias increases with SSA when it is less than 0.93. The mean bias fluctuates significantly
when the SSA is greater than 0.93. The mean DB bias is negative when the SSA is lower than
0.89; otherwise, it is positive. The mean bias of DB also increases with SSA before it reaches
0.95, and then, it changes slightly. The mean bias of MAIAC increases with SSA before
0.96. The mean bias of MAIAC is negative when the SSA is lower than 0.91; otherwise, it is
positive. It changes slightly when the SSA is greater than 0.96.

46



Remote Sens. 2023, 15, 275

4. Discussion

MODIS products have been extensively evaluated and verified at both global and
regional scales. Many scholars have compared the accuracy of MODIS DT, DB, and MAIAC
aerosol products and found that MAIAC products have greater advantages in terms of
matched number, with more than double those of the DB and DT AOD, and they show
higher accuracy [17,19], which matches our findings in the YRD (Table 3). MODIS DT AOD
is generally overestimated, while DB AOD is mostly underestimated [24]. MODIS products
in the YRD also show a similar phenomenon. However, the Within EE of DT AOD in the
YRD is only 41.43%, which is significantly lower than those in other regions [54]. There
are only 320 matching data points at HZZ, LATM, and QDH for forest, accounting for
8.4% of the total matching number of DT, while SH and TH with higher urban and water
proportions have 943 matching data points, which are about three times those of the forest
sites. Therefore, the accuracy of DT products in the YRD is low, but the accuracy of DT
products for forest in the YRD is relatively high, with a Within EE of 68.75% (Table 4). The
Within EE of DT for cropland is 53.59%, which is obviously lower than that for forest, which
may be due to the high urban presence in the two cropland sites, where the proportion of
urban in HF is 33.41%. As can be seen from Figure 1, the southern YRD is dominated by
forest, while the northern YRD is dominated by cropland. The whole YRD is covered by
about 43% forest, 45% cropland, and only 10% urban and water. Therefore, the accuracy
of DT in the YRD should be high. In addition, we found that the accuracy of MAIAC in
the YRD in summer is significantly lower than that in other seasons, so the DT AOD in
summer can be used to make up for the low accuracy of MAIAC in summer.

5. Conclusions

In this study, the overall accuracy and seasonal variations in MODIS DT, DB, and
MAIAC products in the YRD were analyzed based on AERONET and SONET ground
monitoring data. The influences of land cover type, observation geometry, and aerosol type
on AOD retrieval accuracy were also explored. LCPUW and LCPU were used to correct DT
and DB products. The conclusions are as follows.

The MAIAC product is obviously superior to the DT and DB products in matched
number and accuracy. The accuracy of DT product varies most obviously with seasons,
and it has the highest accuracy in winter and the lowest in spring. The accuracy of DB and
MAIAC is low in summer and high in other seasons.

The accuracy of MAIAC is higher in forests, cropland, and mixed land cover types
with high vegetation proportions, and the accuracy is lowest in water. The accuracy of the
DT product is negatively correlated with LCPUW (R2 = 0.892). The accuracy of DT AOD
decreases gradually with the increase in urban and water proportion. A significant linear
relationship exists between the accuracy of the DB product and the LCPU (R2 = 0.936), as
the accuracy increases with the rise in LCPU.

A correction method based on bias and MRE can significantly improve the accuracy of
DT products, especially the accuracy at TH and SH with large LCPUW. The MRE correction
method works very well at low AOD, but it amplifies the error at high AOD values. The
correction method also works well for DB AOD with low LCPU, but it amplifies the error
for DB AOD with high LCPU.

The effect of SZA on accuracy is stronger than that of VZA, and the accuracy increases
with the rise in SZA. The accuracy is the lowest when SA is high, but it is high when the
RAA is close to vertical.

The bias of MAIAC increases with the rise in AE. The change in bias for the three
algorithms with SSA is more obvious than that with AE. Notably, mean bias increases and
then flattens with the rise in SSA.
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Abstract: Since 2013, frequent haze pollution events in China have been attracting public attention,
generating a demand to identify the haze areas using satellite observations. Many studies of haze
recognition algorithms are based on observations from space-borne imagers, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite
(VIIRS) and the Advanced Himawari Imager (AHI). Since the haze pixels are frequently misidentified
as clouds in the official cloud detection products, these algorithms mainly focus on recovering them
from clouds. There are just a few studies that provide a more precise distinction between haze and
clear pixels. The Medium Resolution Imaging Spectrometer II (MERSI-II), the imager aboard the
FY-3D satellite, has similar bands to those of MODIS, hence, it appears to have equivalent application
potential. This study proposes a novel MERSI haze mask (MHAM) algorithm to directly categorize
haze pixels in addition to cloudy and clear ones. This algorithm is based on the fact that cloudy and
clear pixels exhibit opposing visible channel reflectance and infrared channel brightness temperature
characteristics, and clear pixels are relative brighter, and as well as this, there is a positive difference
between their apparent reflectance values, at 0.865 μm and 1.64 μm, respectively, over bright surfaces.
Compared with the Aqua/MODIS and MERSI-II official cloud detection products, these two datasets
treat the dense aerosol loadings as certain clouds, possible clouds and possible clear pixels, and they
treat distinguished light or moderate haze as possible clouds, possible clear pixels and certainly clear
pixels, while the novel algorithm is capable of demonstrating the haze region’s boundary in a manner
that is more substantially consistent with the true color image. Using the PM2.5 (particle matter with
a diameter that is less than 2.5 μm) data monitored by the national air quality monitoring stations as
the test source, the results indicated that when the ground-based PM2.5 ≥ 35 μg/cm3 is considered to
be haze days, the samples with the recognition rate that is higher than 85% accounted for 72.22% of
the total samples. When PM2.5 ≥ 50 μg/cm3 is considered as haze days, 83.33% of the samples had
an identification rate that was higher than 85%. A cross-comparison with similar research methods
showed that the method proposed in this study had better sensitivity to bright surface clear and
haze areas. This study will provide a haze mask for subsequent quantitative inversion of aerosol
characteristics, and it will further exert the application benefits of MERSI-II instrument aboard on
FY3D satellite.
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1. Introduction

According to the explicit provisions of the World Meteorological Organization, haze is
defined as a day when the average visibility is less than 10 km, the average daily relative
humidity is less than 80%, and other atmospheric haze days that can lead to low visibility,
such as precipitation, are excluded (WMO, 2005). Haze particles are mainly composed of
extremely small particles suspended in the air, such as dust, sulfate and nitrate, which are
drier than fog and wetter than dust [1]. Due to the influence of the energy consumption
structure, the air pollution in China has evolved into regional and complex air pollution.
In recent decades, continuous high-intensity atmospheric haze pollution has swept across
central and eastern China, which has aroused the attention of domestic scholars from all
walks of life [2–4].

Using the discrete ground stations that are distributed in a small area, continuous
observations over a short period of time are feasible to analyze the reasons for the formation
of special pollution processes and the changing trend of the pollutants. For example, the
AOD increases persistently during the daytime, and the diurnal variation varies from
about 15% in summer to about 45% in winter based on thirty-three months of aerosol
data in Beijing [5]. In addition, a severe haze occurred on 20–27 September 2011 in the
megacity of Beijing [6] and several serious haze events in Beijing between January 1 and
1 February 2013 have been observed [7]. Further, the North China Plain was analyzed by
Che et al. (2014) [8] and biomass burning impacted the haze pollution in the Yangtze River
Delta, China [9]. Previous studies have focused on monitoring the process of haze events
and the variation characteristics of the haze formation mechanism; the distribution and
variations of the haze process have seldom been analyzed over continuous spatio-temporal
scales. Subsequently, there have been some studies that have discussed the spatio-temporal
characteristics of haze by using the products retrieved from satellites. For example, the
AOD datasets from the Collection 6 enhanced Deep Blue algorithm of MODIS aboard the
Terra and Aqua satellites, the UV Aerosol Index from Ozone Monitoring Instrument (OMI)
on the Aura satellite, the vertical detection of Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) and other data were jointly used to analyze the variation
characteristics and occurrence frequency of regional haze when the AOD > 1.0, which
basically stabilized at 70~90 days, which was one year after 2009 [10–12]. Although the
AOD data retrieved by satellites is used to analyze the characteristics of haze variation,
some cloud-contaminated hazy areas have no valid AOD retrievals, which means not all of
the aerosol retrieval algorithms are suitable over the heavily polluted regions [13].

Cloud detection algorithms based on satellite remote sensing data are generally de-
signed to generate a cloud mask as an the input for the downstream cloud-relevant, environ-
mental and continental elements retrieval [14]. Many studies revealed that the operational
cloud detection products developed by MODIS, VIIRS and AHI lack the ability to clas-
sify haze aerosols, differentiate the thick aerosol layer from the cloudy pixels and they
include certain uncertainties in desert and non-desert transition areas [7,15,16]. In the
MOD/MYD04 aerosol retrieval algorithms, fast cloud detection has been designed to com-
bine the standard derivation of the reflectance at 0.47 μm and 1.38 μm to distinguish the
cloud edge from the reflectance identification [17]. Considering that the texture characteris-
tic of haze is smoother than that of clouds, the variance information of a matrix composed
of 3 × 3 pixels at 0.412 μm and 0.47 μm is added to the VIIRS cloud identification to avoid
identifying a haze as a cloud [18].

In order to improve the discrimination of the cloud detection algorithm, many scholars
have performed in-depth analyses of the characteristics of haze pixels. For example, after
analyzing the spectral characteristics of cloud, fog, haze and clear pixels in visible-near
infrared and infrared channels based on MODIS data, Ge et al. (2016) selected multiple
sensitive channels to calculate the threshold combination of the haze distribution, and
further, they designed an automatic processing algorithm for haze detection [19]. Shang
et al. (2014) used MODIS secondary products for multi-day sampling to compare the
difference in the cloud amount, cloud phase and cloud top pressure during clear days and
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heavy pollution conditions; a recognition algorithm combining the threshold values of these
three parameters was established to distinguish the haze pixels from the cloud regions [20].
Based on VIIRS data, Wang et al. (2017) selected cloud, clear sky and haze areas from
more than 200,000 pixels of eastern China through visual interpretation, and then, they
determined the thresholds of these two variables by fitting the histograms of the standard
deviation changes of the three targets at 0.412 μm and 0.47 μm, respectively, thus finally
establishing a fast cloud, haze and clear sky identification algorithm for AOD inversion [15].
Ackerman (1998) believed that haze has a smaller optical thickness compared to that of
clouds and is distributed on the surface. The digital elevation model (DEM) was added to
retain the clear pixels above higher altitude mountains [21,22]. By analyzing the radiation
distribution characteristics of 36 bands of accurate and mis-detected cloud detection points
from the MODIS satellite, a cloud detection correction algorithm for mis-detected cloud
products in high pollution areas was constructed, which solved the problem of cloud
over-identification from the perspective of studying cloud microphysical characteristics [7].
NDVI can be used not only to identify vegetation distribution, but it can also be used to
identify clouds and clear skies. Yang (2022) found that the sample with NDVI < 0.1 were
treated as inland water, which is the main reason why the MODIS DT aerosol retrieval
algorithm filters out haze areas [23]. Based on FY3D/MERSI-II data, Yang (2022) added
a reflectance value of 2.13 μm, which is below 0.08, to this condition to recover the haze
area for retrieval. This method was then adopted by the MODIS DT team to retrieve the
haze area from MODIS [24].

In recent years, China’s domestic satellite sensor detection technology has developed
rapidly. The Fengyun series of satellites, which are resource satellites and ocean satellites,
the Gaofen series of satellites, which are environmental satellites, etc., were launched
successively, basically realizing the Earth observation system for multiple application
fields, thus serving the business needs of various industries. As for the Fengyun satellite
series, Fengyun 3 was successfully launched in May 2008 as a polar solar synchronous
orbit satellite. After nearly ten years of development in FY-3A, FY-3B, FY-3C and FY-3D,
the Fengyun 3 Earth Observation System has matured, and it is in the stage of stable
operation [25]. In 2008, the first Moderate Resolution Spectral Imager (MERSI) on FY-
3 indicated that domestic satellites could be used for the quantitative remote sensing
inversion of land and ocean aerosols [26,27]. In November 2017, Fengyun 3D was once
again equipped with an upgraded version of the MERSI instrument, providing a solid data
source for aerosol inversion [28,29]. The MERSI load performance is comparable to that of
MODIS, whose business products are relatively mature. The cloud detection products of
MERSI-II are as same as those of MODIS, therefore, both lack of the ability to identify haze.
For aerosol properties retrieval, the classifications of the MERSI-II operational cloud mask
(MERSI-CLM) cannot meet the requirements, therefore, it is urgent to carry out research on
the multi-elemental identification of cloudy, hazy and clear skies based on the MERSI load
observation data at present.

It has always been a difficult problem to identify haze and clouds using satellite
data because haze and clouds have similar optical and micro-physical properties, and it
is difficult to distinguish them by using traditional threshold methods. Considering the
effectiveness of the business products, the improved algorithm, preferably, does not rely
on external data. Therefore, based on the difference of the spectral characteristics of cloud,
haze and clear sky pixels, this paper proposes a parameter that is suitable for clear sky
pixels on a bright surface according to the characteristics of the MERSI payload instru-
ment. The spectral differences of many wavelengths were combined to construct a fusion
identification method. Section 2 introduces the data and the algorithm principle adopted
by the algorithm, and the recognition effect and accuracy evaluation of the algorithm is
introduced in Section 3.
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2. Materials and Methods

2.1. Study Domain

Our study area, which is bounded by latitudes of 0◦ and 60◦N and longitudes of
60◦~160◦E, mostly covers China, Mongolia, Korea, Japan, Southeast Asia, India and other
regions. Among them, eastern China and India are often affected by anthropogenic source
emissions, resulting in the frequent occurrence of haze. In northwest China, such as in
Xinjiang, Gansu and other regions, dust and bare soil cover the land, the main aerosol
type is the sand dust type, the amount of anthropogenic emissions is relatively small
and the atmosphere is relatively clean. The Tibetan Plateau, which is 5 km above sea
level, has a typical polar plateau climate, and it is often covered by clouds. In general,
the study area selected in this paper includes a haze area, a cloud area and a clear sky
area, which is conducive to a more comprehensive analysis of the performance of the
recognition algorithm.

2.2. Data Sources
2.2.1. FY3D/MERSI-II

The Medium Resolution Imaging Spectrometer is one of the main optical imaging
payloads on the FY-3 series satellites. The second generation of MERSI (MERSI-II) has been
improved in its performance compared to that of the first generation, forming a double
satellite network with the FY-3C series, which greatly improves China’s meteorological
satellite observation capability. MERSI-II uses multiple probes (10 or 40) and provides
an image of about 2900 km (cross track) × 10 km (along track) per scan. Compared with
MERSI-I, MERSI-II has 19 solar reflection channels and 1 infrared emission channel, which
is equipped with a total of twenty-five channels, including sixteen visible-near infrared
channels, three short-wave infrared channels and six medium–long wave infrared channels.
Among them, six channels have a sub-satellite point resolution of 250 m, and the remaining
nineteen channels have a resolution of 1000 m. The bands used in this study are listed in
Table 1. The MERSI-II L1 data used in this study can be downloaded from the website
http://satellite.nsmc.org.cn/portalsite/default.aspx. (accessed on 10 April 2022).

Table 1. The wavelengths of the FY3D/MERSI-II instrument used in the study.

Band Center Wavelength (μm) Width (nm) Spatial Resolution (m)

1 0.47 50 250

2 0.55 50 250

3 0.65 50 250

4 0.865 50 250

5 1.38 50 250

6 1.64 50 1000

7 2.13 50 1000

12 0.67 20 1000

15 0.865 20 1000

19 1.03 20 1000

20 3.8 180 1000

24 10.8 1000 250

The MERSI-II operational cloud detection products were also downloaded from the
above website, including a granular version and daily versions. The cloud mask products
using the daily scale at a resolution of 1 km × 1 km and 5 km × 5 km were released at
the same time, and this study adopted the data of the finer resolution one for the cross-
comparison. The parameter named CLM_DAILY_D was extracted, and the values were
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represented in bits and bytes for certainly the cloudy, probably cloudy, probably clear,
certainly clear, coastal, sun glint and snow/ice areas. Considering that only the pixels over
land were identified in this study, the pixels labeled as sun glint were treated as invalid
filling values.

2.2.2. Aqua/MODIS

Two MODIS sensors were placed onboard the EOS Terra and EOS Aqua satellites.
Terra/MODIS and Aqua/MODIS have been in orbit for more than 20 years, providing
indispensable data sources for global and regional air quality monitoring, special weather
events, urbanization development, assimilation systems and climate change, etc. [30–34].
Since FY3D is an afternoon satellite, the MYD35 cloud products with a resolution of 1 km2

based on Aqua were selected for the evaluation, thus minimizing the inconsistency between
the MERSI and MODIS mis-identification results over the time period. The meaning of the
values in the dataset are as same as those of MERSI-II.

2.2.3. Auxiliary Datasets

The identification of haze pixels based on satellite remote sensing data is still in the
research stage, and the corresponding official products have not released yet, therefore,
there are still great difficulties in quantitative validation of haze recognition. The real-time
PM2.5 monitoring data released by the national ground air quality monitoring stations can
be taken as the true ground-based observation values, which usually reflect the air quality
conditions at the stations, and the larger the value is, then the more serious the pollution is.
There were 1670 monitoring stations nationwide on 22 October 2020. As shown in Figure 1,
most of the stations are located in eastern China, with a few in the Xinjiang and Yunnan
provinces [35]. The Ministry of Environmental Protection classifies the value of PM2.5 into
six ranks, with a value below 35 μg/m3 being excellent, a value larger than 35 μg/m3 and
smaller than 75 μg/m3 (define as 35~75) being good, a value of 75 μg/m3~115 μg/m3

being classified as mild pollution, a value of 115 μg/m3~150 μg/m3 being classified as
moderate pollution, a value of 150 μg/m3~250 μg/m3 being classified as severe pollution
and a value of larger than 250 μg/m3 being classified as serious pollution, which can be
used as a data source to verify the identification accuracy of this study.

Figure 1. The study domain and overlapped digital elevation model from MERSI-II Level 1 GEO1K.
The sea surface is shown in white. The national PM2.5 monitoring stations employed by the Ministry
of Environmental Protection on 22 October 2020 are depicted as the magenta-colored dots.
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Additionally, Yang (2022) mentioned in his research on aerosol retrieval using MERSI
remote sensing data that some haze areas could be recovered by modifying the recognition
conditions of inland water bodies [23]. In this paper, the method proposed by Yang (2022)
were replicated and cross-compared with the results of this study.

2.3. MHAM Algorithm
2.3.1. Algorithm Description

The design of the MHAM algorithm builds upon the spectral characteristics of different
pixels, for example, the reflectance of the cloud pixels in the visible band is greater than
that of the clear sky pixels, while the brightness temperature in the infrared channel is
usually lower than that of the clear sky and haze pixels, and the brightness temperature
difference is also higher than that of the clear sky and haze pixels. The reflectivity ratio
of the near-infrared channel and the visible channel (such as the ratio of R0.865 and R0.65)
has different values in different underlying surfaces [19,20,22]. The above characteristics
were taken as the prior knowledge of this algorithm, and the adaptive improvements to
the threshold selection were carried out for the MERSI instrument. Based on the selected
MERSI bands, the tests were divided into two groups to distinguish the cloud, clear and
haze pixels from each other. The flowchart of the algorithm is shown in Figure 2.

 

is snow/ice?

MERSI L1 GEO1K 
& 1KM

Extract geometry, TOA and 
BT at multi-bands

is inland 
water body?

is cloud?

Snow/ice pixels

water body 
pixels

cloudy pixels is clear?

clear pixelshaze pixels

yes

no

yes

yes

no

yes

yes

no

no

Group1 Test

k0.865vs1.64  
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Figure 2. Flowchart of the MHAM algorithm using FY3D/MERSI-II observations.

Firstly, the DN (data number) values at different bands were extracted from the MERSI-
II L1 data and converted to the apparent reflectance of the top of the atmosphere (TOA) at
visible wavelengths or the brightness temperature at the infrared bands. The geolocation
information and observed angles were extracted from the dataset. It must be noted that
the MERSI Level 1 data at 1 km instead of those at 250 m were used in this analysis.
Secondly, the ice/snow pixels were filtered out using the normalized difference snow index
(NDSI), which was calculated using the apparent reflectance values at 0.55 μm (R0.55) and
1.64 μm (R1.64) for Landsat or R0.55 and R2.12 for MYD35 or R0.865 and R1.24 for MXD04
DT. Here, the ratio of the difference between R0.55 and R1.64 to the sum of R0.55 and R1.64
was taken as the NDSI. When both NDSI > 0.4 and R0.865 > 0.1 were true, the pixel was

56



Remote Sens. 2023, 15, 438

treated as it was ice/snow. The inland water was identified by the combined conditions
of the NDVI and R2.13. For the remaining pixels, R0.65, BT11 and the standard derivation
of R0.47 were used together for distinguishing the cloud pixels. Based on the binary tree
method, the cloud and non-cloud pixels were, respectively, determined. Combined with the
actual characteristics of the MERSI data, clear pixels over brighter surfaces can be capture
accurately by introducing the variation between R0.865 and R1.64. In addition to the lower
reflectance and higher brightness temperature values of the clear areas, the clear pixels
and the remaining haze regions can be separated. More details about the conditions are
summarized in Table 2.

Table 2. Details thresholds for MHAM algorithm using FY3D/MERSI-II observations.

Classification Group1 Group2

ice/snow 1 NDSI > 0.4 & R0.865 > 0.1 /

Inland waterbody 2 NDVInir < 0.4 & R2.13 < 0.08 /

cloud

R0.65 > 0.45 [defined as cloud_c1]

R0.47_std > 0.0075 & R0.65 > 0.4
[defined as cloud_c2] /

BT11 < 250 K [defined as cloud_c3]

clear

/

0 < R0.65 < 0.2 [defined as clear_c1]

Diff0.865_1.64 > 0 [defined as clear_c2]

BT11 > 285 [defined as clear_c3]

BT11-BT3.8 [−50, −40] [defined as
clear_c4]
3 NDVIswir < 0.2 & 0.2 ≤ R0.65 < 0.4
[defined as clear_c5]

1 NDSI = (R0.55 − R1.64)/(R0.55 + R1.64); 2 NDVInir = (R0.865 − R0.65)/(R0.865 + R0.65); 3 NDVIswir = (R0.865 −
R0.65)/(R0.865 + R0.65).

2.3.2. Selection of Spectral Characterization Based on FY3D/MERSI-II

In this analysis, the apparent reflectance at 0.65 μm (R0.65), the brightness temperature
at 11 μm (BT11) and the difference between BT11 and BT3.8 (BT11-BT3.8) were selected
to separate the cloudy and clear skies according to different thresholds. It should be
emphasized that 0.65 μm of atmospheric passage was selected in this paper, instead of
using 0.47 μm of it, as was used in the MODIS aerosol algorithm. This is because the
molecular scattering contribution is larger at large observation angles, and the apparent
reflectance of clear sky pixels is larger than that of some haze pixels. Assuming that the
solar zenith angle is 30◦, the relative azimuth is 72◦, the aerosol model is defined as the
continental aerosol type in the mid-latitude summer and the satellite zenith angle ranges
from 0 to 80◦, Figure 3a,b presents the variation of molecular scattering under different
aerosol loadings with the satellite zenith angles. When the observed angles are smaller
than 50◦, the contribution of molecular scattering changes modestly, whereas the molecular
scattering increases significantly when the satellite zenith angles change from 50◦ to 80◦.
The scattering amplitude of the molecules in the red channel is less than 1/3 of that which
occurs in the blue channel. The aerosol optical thickness decreases with the increase in the
wavelength. As shown in Figure 3c,d, the variation trend of the aerosol scattering signal in
the red band with observation angles is consistent with that of the blue band, and it is still
sensitive to different aerosol contents. If 0.47 μm is used as the reflectance identification
condition, it is easy to misidentify some clear sky pixels as haze ones. Therefore, it is
feasible to select 0.65 μm as the identification condition in this paper.
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Figure 3. Variation of the apparent reflectance at two bands from molecule scattering (a,b) and aerosol
scattering (c,d) as simulated by 6SV; the left panel stands for the variation in blue the channel, and
the right one denotes in the red channel. Different colors in sub-panels (a,b) represent satellite zenith
angles, and those in sub-panels (c,d) represent aerosol optical thickness.

2.3.3. Identification of Clear Conditions over Bright Surface

It is difficult to distinguish the clear pixels over the bright surface from the haze
conditions due to them having similar spectral characteristics. The accuracy of haze
detection could be heavily improved provided that the clear conditions over the bright
surfaces can be accurately identified [21]. Through visual interpretation, the scenes of
cloud, clear and haze regions on different underlying surfaces were selected, including
spring, summer, fall and winter ones. The selected regions were kept constant to reduce
the complexity of the scenes. The selected region changed only when the study region
during a season was no longer pure. Details about the regions are summarized in Table 3.
Inner Mongolia was selected as the clear region with a bright surface, which is defined as
clear1. The area in Guangdong province was selected as clear2. The two cloud scenarios
were selected to be located in Sichuan and Shaanxi, respectively. The Hebei and Henan
provinces, where haze occurs frequently, were selected as the two haze scenarios. We
extracted the apparent reflectance values at eight bands of each scenario, and we averaged
them by region and season.

Figure 4 shows the variation trend of spectral reflectance in each scenario. A similar
pattern appeared in two cloudy scenarios, but with different apparent reflectance values.
The reflectance of different bands in clear2, the haze1 and haze2 showed similar variation.
Surprisingly, in clear1, the apparent reflectance of the B6 and B7 channels are larger than
those of the B4 and visible channels, which is contrary to that of the cloudy and haze pixels.
Haze often contains absorptive components, which will attenuate the apparent reflectance
after absorbing an amount of solar radiation. As we know, 1.64 μm and 2.13 μm were often
used to study the characteristics of the parameters over land. For the clear pixels, 2.13 μm
is only a little bit affected by the atmosphere, and the apparent reflectance is almost equal
to the surface reflectance. Compared with 1.64 μm, the total apparent reflectance at 2.13 μm
may be smaller than the surface reflectance with the enhancement of the atmospheric signal.
As described as Section 2.3.1, visible wavelengths are susceptible to molecular scattering,
therefore, the near-infrared channel (B4) and the B6 channel were selected to construct the
reflectance variation for identifying the clear pixels over bright surfaces. Non-bright surface
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clear skies (clear2) are usually well identified when one is using a reflectance value that
is below a certain threshold. If the cloud pixel coverage area can be accurately identified,
clear skies and haze can be distinguished from the remaining samples.

Table 3. The MERSI-II data set used for training the identification condition with bright surfaces.

Scenarios Selected Areas Selected Time

clear1
42.8496◦~45.3657◦, 109.1090◦~113.6038◦ 8 November 2019/4 April 2020/

14 June 2020

42.2122◦~43.1121◦, 108.6515◦~109.7193◦ 3 December 2019

clear2

23.9992◦~24.3478◦, 112.7604◦~113.6705◦ 8 November 2019/3 December 2019

23.0716◦~23.7766◦, 115.0593◦~115.8996◦ 2 December 2019

25.3634◦~25.9159◦, 116.7444◦~117.5885◦ 15 March 2020

cloud1 27.8471◦~29.0374◦, 103.8887◦~105.2329◦ 8 November 2019/23 December 2019/
3 April 2020/17 June 2020

cloud2 36.1867◦~36.7887◦, 108.4950◦~109.3658◦ 8 November 2019/24 December 2019/
1 April 2020/22 June 2020

haze1 38.0390◦~39.24◦, 115.2247◦~116.4105◦ 8 November 2019/13 December 2019/
6 April 2020/11 June 2019

haze2
33.9950◦~35.4849◦, 113.6284◦~114.8294◦ 8 November 2019/13 December 2019/

26 April 2020/18 June 2020

34.8348◦~35.8514◦, 114.2112◦~115.4611◦ 18 June 2019

Figure 4. The spectral variation of different pixels over different underlying surfaces using MERSI-II
apparent reflectance data. Different colors correspond to the scenarios in Table 2.

To confirm that whether the above parameter is reasonable, Figure 5 shows the differ-
ence of between R0.865 and R1.64 on 8 November 2019 and 1 December 2019, and a difference
that is larger than 0 is masked in the white color. Combined with the true color maps, this
parameter is sensitive to the clear sky with the bright surface. Therefore, this parameter
can be added to the recognition process to further reduce the misjudgment of clear pixels
over bright surfaces.
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Figure 5. True color map and the distribution of the difference between R0.865 and R1.64. (a) True
color map at UTC0540 on 8 November 2019; (b) the difference between R0.865 and R1.64 at UTC0540
on 8 November 2019; (c) True color map at UTC0645 on 1 December 2019; (d) the difference between
R0.865 and R1.64 at UTC0645 on 1 December 2019.

2.3.4. Single Threshold Tests
Cloud Threshold Tests

R0.65 is an effective indicator of clouds with large reflectance and small absorption
values. BT11 is helpful for detecting cold clouds over inland water and certain land features.
As mentioned above, the standard derivation of the reflectance at 0.47 μm usually stands
for the texture patterns of the cloud edge. The cloudy regions detected using the detection
conditions are shown in Figure 6. It should be addressed that Figure 6b–d intends to show
that these three conditions were not independent when we were detecting cloudy pixels
and the common regions distinguished by the three conditions were overwritten by the
latter condition. This test of R0.65 (defined as cloud_c1) was very robust over bright cloud
layers, but it was invalid over very thin cirrus and cloud boundaries. The cloud_c2 is
sensitive to the cloud edges that cloud_c1 did not detect. Part of the cloudy regions over
the ocean were captured by cloud_c3, which was not detected by cloud_c1 nor cloud_c2.
The complete cloudy regions exhibited in Figure 6e complement each other, showing that
each criterion is necessary.

Clear Threshold Tests

As mentioned above, the red channel is less affected by molecular scattering than the
blue channel ix, therefore, R0.65 can be also used to identify the pixels over an absolutely
clear sky. We assumed that a pixel is treated as clear when R0.65 < 0.2, as shown in Figure 7b.
Based on the actual characteristics of the MERSI data, it is found that the difference between
R0.865 and R1.64 can be an indicator of distinguishing the clear pixels on a bright surface.
As depicted in Figure 7c, the clear sky areas in Inner Mongolia, northwest Lanzhou and
part of Qinghai were accurately identified. In addition, there are few atmospheric signals
in Shanxi and Hebei that had been captured by this condition. BT11 is also used as a clear
sky identification condition. Through trial and error, when BT11 > 285 K, it is considered
as a clear sky pixel, as shown in Figure 7d. It can be seen that the bright temperature
difference between BT11 and BT3.9, the reflectance between 0.2 and 0.4 and NDVIswir < 0.2
are a supplement to the bright surface clear sky area. Using these three cloudy conditions
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and five clear sky conditions, the remaining pixels marked in white in Figure 7g were
identified as haze pixels.

 
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6. Test of cloud detection conditions at UTC0500 on 1 December 2019. (a) A true color map.
(b) The cloudy region was detected by cloud condition 1, (c) the cloudy region was detected by cloud
condition 2, (d) the cloudy region was detected by cloud condition 3 (e) and the final cloudy regions
were detected by three conditions.

61



Remote Sens. 2023, 15, 438

  

(a) (b) 

  

(c) (d) 

  
(e) (f) 

(g) 

Figure 7. Test of clear detection conditions at UTC0605 on 3 December 2019. (a) A true color map.
(b) The cloudy region was detected by three cloud conditions and the first clear condition, (c) the
clear pixels were detected by clear condition 2, (d) the clear pixels were detected by clear condition
3, (e) the clear pixels were detected by clear condition 4, (f) the clear pixels were detected by clear
condition 5 and (g) the final cloudy regions and clear pixels were detected by three cloudy conditions
and five clear conditions.
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3. Results

3.1. Distribution of Haze Identification

Two haze scenarios in winter were selected to test the performance of our proposed
method, as shown in Figure 8. The first row of images is 2 December 2019, and the
second row is 9 February 2020. The left panel is a true color map, and the right one is the
distribution of the identified haze. On 2 December 2019, most parts of eastern China and
India were shrouded by haze. Except for the clear sky area in Inner Mongolia, Xinjiang
and the Qinghai-Tibet Plateau, the other parts of the whole study area were covered by
cloud pixels. All of the above phenomena could be identified by the algorithm, and the
boundary between the clear sky area and the cloud area could be clearly identified by the
algorithm. According to the true color map, on 9 February 2020, the haze in the eastern
coastal areas of China, such as Shandong and Tianjin, was relatively serious, while other
areas were basically experiencing the state of light haze. In India, medium haze and light
haze appeared simultaneously, and the distribution of clouds, clear skies and haze were
also accurately identified. However, it is easy to miss cloud features when a thin or broken
cloud covers a clear sky (e.g., South Korea and North Korea), and there is a slight error in
distinguishing light haze from clear sky (e.g., Central India).

Figure 8. True color map and corresponding identification map based on MHAM algorithm, these
three rows represent the distributions on 2 December 2019, 9 February 2020 and 19 October 2020,
respectively.

In addition, the performance of clear pixels on a brighter surface in 19 October 2020
is further presented as the third row of images in Figure 8. Compared with the true color
map, it can be clearly seen that the algorithm can accurately identify the clear sky pixels in
high-altitude areas such as Inner Mongolia, northwest China, Afghanistan, Pakistan and
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the Qinghai-Tibet Plateau, as well as the clear sky in low-value areas of the three provinces
of northeastern China. It shows that the variation of 0.865 and 1.64 μm and NDVIswir
introduced in this algorithm are effective.

Meanwhile, the corresponding operational cloud mask with the same dates as Figure 8
derived from MYD35 and MERSI-II were also presented for a cross-comparison. As
depicted in Figure 9, the cloud, probably cloud, clear and probably clear pixels are drawn in
yellow, gray, green and aqua, respectively. The recognition values of the clear sky and cloud
pixels are basically the same, and the difference is mainly reflected in the processing of
possible cloud and possible clear sky pixels. Compared with the classifications in Figure 8,
neither the MODIS nor MERSI-II operational cloud mask identified the haze regions that
appeared in India and in eastern China. It can be seen that MODIS treated those as probably
cloud and probably clear pixels, while the processing conditions of MERSI-II were not as
strict as that of MODIS, thus most of the haze pixels were labeled as clear.

 

Figure 9. Aqua/MODIS cloud mask (left) and MERSI operational cloud mask (right), these three lines
represent the distribution on 2 December 2019, 9 February 2020 and 19 October 2020, respectively.

3.2. Validation against PM2.5 Measurements

As we all know, ground-based stations measure the air quality near the surface, while
satellites observe the overall state in the troposphere. There are differences between these
observation methods. At present, there is no unified standard, that is, when the PM2.5 values
measured by ground observation are greater than the threshold, it is consistent with the
haze determined by the satellite. Therefore, this paper uses the two thresholds of 35 μg/m3

and 50 μg/m3 of the existing PM2.5 levels to test the MERSI haze identification effect.
Firstly, the 18 MERSI orbits covering eastern China during the haze season were se-

lected, which were mainly concentrated at 12–14 PM Beijing time. The national observation
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PM2.5 data during the same period were downloaded, and the samples with a PM2.5 that
was larger than 35 μg/m3 and 50 μg/m3 were respectively screened out for validation.
Secondly, the spatial and temporal matching between the ground-based and satellite obser-
vations was performed. In the terms of the temporal scale, we chose the PM2.5 value with
the nearest hour to the MERSI orbit, for example, the transit time of MERSI is UTC0515, so
we chose PM2.5 data at 13:00 Beijing time. Spatially, taking the national station as the center,
the MERSI pixels falling within a radius of 500 m were selected. If there were multiple
pixels, then the nearest one was selected. Thirdly, the pixels identified by MERSI as cloud,
ice/snow, inland waterbody ones were further removed from the matched samples, and
only the haze and clear pixels were retained. Finally, the ratio of the number of samples
identified as haze to that of the sum of the samples identified as haze and clear pixels were
calculated to demonstrate the accuracy. Table 4 summarizes the test results based on the
selected MERSI orbits. As it can be obviously seen in Table 4, the haze identification rate
with a PM2.5 threshold of 50 μg/m3 is generally better than that with a PM2.5 threshold
of 35 μg/m3. When PM2.5 > 35 μg/m3 was considered to be haze days, 13 samples with
an identification rate that was larger than 85% accounted for 72.22% of the total samples
(18), and 61.11% of the sample points (11) had an identification rate that was above 90%.
When ground-based PM2.5 > 50 μg/m3 was considered as haze days, 83.33% and 66.67%
of the samples had identification rates that were higher than 85% and 90%, respectively,
indicating that the greater the ground-based PM2.5 value is, the better the consistency is of
the satellite identification of haze.

Table 4. Accuracy test of FY3D/MERSI-II haze identification effect based on ground air quality PM2.5

monitoring data.

Date/Orbit
PM2.5 >= 50 μg/m3 PM2.5 >= 35 μg/m3

Haze Clear Hit Rate (%) Haze Clear Hit Rate (%)

14 January 2020-0430 48 2 96.00 76 5 93.83

19 January 2020-0435 163 2 98.79 195 6 97.01

20 January 2020-0555 145 42 75.94 190 66 74.21

28 January 2020-0505 201 33 85.90 250 39 86.51

29 January 2020-0445 172 11 93.99 220 18 92.44

30 January 2020-0425 74 2 97.37 86 4 95.56

31 January 2020-0545 162 15 91.53 242 28 89.63

31 January 2020-0550 129 61 67.89 139 91 60.43

3 February 2020-0450 125 5 96.15 198 18 91.67

9 February 2020-0435 95 0 100 144 2 98.63

4 March 2020-0520 53 0 100 94 1 98.95

4 March 2020-0525 14 2 87.5 12 33 26.67

7 March 2020-0425 83 1 98.81 98 2 98.0

7 March 2020-0430 10 0 100 12 12 100

19 October 2020-0445 136 5 96.45 193 12 94.15

21 October 2020-0545 64 11 85.33 5 46 9.80

21 October 2020-0550 1 26 3.70 127 34 78.88

22 October 2020-0525 91 5 94.79 164 15 91.62

Taking some orbits as an example, Figure 10 shows the true color map and the MERSI
identification results overlapping it with the PM2.5 values that were observed by the
national stations of UTC0505 on 20 January 2020, UTC0450 on October 19 and UTC0525
on October 22, respectively, covering the scenarios of cloudy, hazy and clear skies over
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different surface types. For the MERSI identification results, cloud, snow, ice and inland
water were combined into masks, and they are marked with yellow. For the pixels that
MERSI identifies as clouds, no matter how large the PM2.5 observed by the state-controlled
stations was, they could not be captured (these stations are not hidden here). For the pixels
identified as clear skies by MERSI, most of the overlapped PM2.5 values were smaller than
35 μg/m3, such as the skies over Inner Mongolia and southern China on October 19. Due to
its topography and large amount of anthropogenic emissions, haze events occur frequently
in the North China Plain. From the true color map, it is obvious that the North China
Plain was covered by haze on January 28, February 3 and October 19. This study can
identify these haze areas well, and the superimposed PM2.5 level is at least good. It should
be emphasized that at UTC0525 on October 22, the haze pollution levels in the Henan,
Anhui and Jiangsu Provinces were not obvious on the true color map, but these areas were
identified as haze in this study. According to the observation data from the national control
station, PM2.5 was already in moderate and severe pollution. In general, the haze area and
clear sky area identified by this study are consistent with the classification of the national
control stations.

 

Figure 10. True color map and identified distribution overlaid with the national PM2.5 monitoring
data (unit: μg/m3). PM2.5 values belonging to excellent, good, little pollution, medium pollution,
heavy pollution and serious pollution are marked as green, yellow, orange, red, purple and dark
purple, respectively.

3.3. Cross-Comparison with Other Method

To further demonstrate the accuracy of this analysis, four MERSI orbits were selected,
and the identification method proposed by Yang (2022) was implemented in this section
for a cross-comparison [23]. On one hand, the pixel identification can provide the distri-
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bution of haze regions from a qualitative perspective, and on the other hand, this study’s
identification results can be used as a haze mask for the retrieval of aerosol quantitative
data. That is to say, we should pay more attention to the pixels classified as haze and the
number of the pixels that are to be retrieved. Therefore, the cloud, ice/snow and inland
waterbody pixels were combined in a background mask, and the remaining pixels were
used for the comparison. Figure 11 shows the true color map and the comparisons of two
recognition methods on UTC0540 8 November 2019, UTC0445 29 January 2020, UTC0545
31 January 2020 and UTC0550 31 January 2020, covering clear regions over bright surfaces,
haze regions over the China North Plain and clear regions in southern China, respectively.
It is obviously seen that, both this study and Yang’s study (2022) can identify the certainly
cloudy pixels well, but there have some discrepancies between them in the identification of
cloud edges, heavy haze and clear regions over bright surfaces. For example, the recogni-
tion procedure of cloud pixels in Yang’s study (2022) is stricter than that of this study, as
shown in 29 January 2020, when most of the areas were covered by a haze layer, and the east
of Shandong Province was covered by a mixture of haze and clouds [23]. By contrast, our
identification method is very sensitive to these phenomena, which is beneficial to increase
the number of retrieved pixels and improve the detection ability of the MERSI instrument
during haze days. At UTC0550, on 31 January 2020, the number of clear pixels in outer
Mongolia detected by Yang (2022) was smaller than that of this study, which was closer to
the true color map [23]. It is also found that this study is very sensitive to the identification
of cloud edges/clear sky edges, such as those in the eastern part of Yunnan province shown
in UTC0545 on 31 January 2020. Although it performs well in the identification of haze
or clear or cloud edges, large errors will be introduced in the aerosol retrievals. This is
a double-edged sword that needs to be balanced in different application scenarios.

Figure 11. True color map and comparison of identified results of Yang (2022) [23] and the MHAM
algorithm at UTC0540 on 8 October 2019 (the first line), UTC0445 on 29 January 2020, UTC0545 on
31 January 2020 and UTC0550 on 31 January 2020.
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4. Conclusions

Cloud detection products based on FY3D/MERSI-II data have been released as op-
erational products for many years, supplying cloud masks for the improved retrieval of
atmospheric environmental products (such as aerosol and PM2.5, etc.), and they have conti-
nental surface parameters (such as the land surface temperature). For aerosol quantitative
retrieval, the cloud detection products of MERSI have limits in their haze area identification.
The absolutely clear and cloudy pixels can be distinguished from each other based on the
fact that they have opposite characteristics in terms of reflectance in the visible channels
and brightness temperature in the infrared channels. Combined with the actual patterns
of the MERSI L1 data, the positive corresponding relationship between the apparent re-
flectance at 0.865 μm and 1.64 μm for the clear pixels over regions with a bright surface
is proposed as an identification condition. Thus, this study proposes a novel MERSI haze
mask (MHAM) algorithm that divides the pixels into one of three categories: cloudy, clear
or haze ones, thereby resolving the problem of distinguishing haze pixels from the clear
ones over a bright surface.

In comparing the operational Aqua/MODIS and MERSI-II cloud detection products
with the true color map, it reveals that these two products misclassified the heavy haze
pixels as certain cloud, possible cloud and possible clear pixels, and they misclassified the
pixels with light/moderate haze conditions as possible cloud, possible clear and certainly
clear regions. In contrast, the novel algorithm proposed in this paper is able to capture
the haze regions correctly, making it more compatible with the true color images. The
real-time PM2.5 data from the national air quality monitoring stations served as true values,
and two thresholds were used to evaluate the new algorithm. The results showed that
the novel algorithm has 72.22% (13 out of total 18 samples) accuracy when a PM2.5 that
was larger than 35 μg/m3 was considered as haze conditions, while for PM2.5 values that
were larger than 50 μg/m3, 83.33% and 66.67% of the total samples were examined with
better identification rates than 85% and 90%, respectively, indicating that the greater the
ground-based PM2.5 value is, the better the consistency is in satellite haze identification.
Through the cross-comparison with the method proposed by Yang (2022) [23], it was found
that the novel algorithm has a better sensitivity to bright surface clear sky areas and haze
areas, and there will be more valid pixels when the subsequent quantitative inversion of
aerosol characteristics is performed.

Haze detection based on satellite remote sensing data is still in the research stage of
recognition, and there has been no corresponding official product released so far, thus
leading to great difficulties in the quantitative validation of the haze identification effect.
With the definition of haze, a richer comparison between the accuracies of this identifi-
cation method by using combining relative humidity and visibility data will be carried
out. In addition, the haze identification method proposed in this study directly depends
on the apparent reflectance and brightness temperature, that is, when the calibration co-
efficient is adjusted, the corresponding identification threshold also needs to be updated
synchronously. We will monitor of the MERSI instrument data state and update the recog-
nition threshold iteratively.
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Abstract: Determining background aerosol optical depth threshold value (BAOD) is critical to aerosol
type identification and air pollution control. This study presents a statistical method to select the
best BAOD threshold value using the VIIRS DB AOD products at 1 × 1 degree resolution from
2012 to 2019 as a major testbed. A series of multiple lognormal distributions with 1 to 5 peaks are
firstly applied to fit the AOD histogram at each grid point, and the distribution with the highest
correlation coefficient (R) gives preliminary estimations of BAOD, which is defined as either the
intersection point of the first two normal distribution curves when having multiple peaks, or the
midpoint between the peak AOD and the first AOD with non-zero probability when the mono peak
is the best fit. Then, the lowest 1st to 100th percentile AOD distributions are compared with the
preliminary BAOD distribution on a global scale. The final BAOD is obtained from the best cutoff
percentile AOD distributions with the lowest bias compared with preliminary BAOD. Results show
that the lowest 30th percentile AOD is the best estimation of BAOD for different AOD datasets and
different seasons. Analysis of aerosol chemical information from MERRA-2 further supports this
selection. Based on the BAOD, we updated the VIIRS aerosol type classification scheme, and the
results show that the updated scheme is able to achieve reliable detection of aerosol type change in
low aerosol loading conditions.

Keywords: aerosol type; background aerosol; threshold value; AOD; VIIRS; MERRA-2

1. Introduction

Atmospheric aerosols play a key role in the earth-ocean-atmosphere system [1]. As a
direct effect, they absorb and scatter the incoming short-wave solar radiation and the long-
wave earth radiation; as an indirect effect, they modify the cloud formation processes by
acting as the cloud condensation nuclei [2]. Aerosol particles can be emitted from various
sources, such as the ocean, desert, wildfires, and urban/industrial emissions. Retrieving
aerosol type information helps to characterize regional aerosol optical properties, track
aerosol transport paths, and provide composition information for air quality research [3].

Background aerosol optical depth (BAOD) is a parameter characterizing the light
extinction ability of local aerosol particles and represents the long-term stable level of
aerosol concentrations from local emissions, rather than the long-range transport pollutants
(i.e., dust storm), abrupt emission events (i.e., volcanic eruptions, wildfires), or unexpected
aerosol accumulations due to adverse weather condition (i.e., haze). For a single site, BAOD
could simply be regarded as a certain low level of AOD, but when applied to a large regional
or global scale, BAOD should vary with locations; for example, BAOD in urban areas with
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anthropogenic emissions is supposed to be different from (generally higher than) BAOD at
remote continent or grassland. Extracting BAOD from the total aerosol loading is important
for us and model simulation to separate anthropogenic effects from natural variability and
evaluate climate effects of specific aerosol types, e.g., urban/industrial, biomass burning,
dust, etc. [4,5]. BAOD is also a key factor for some satellite retrieval algorithms performing
atmospheric corrections of surface reflectance to remove aerosol contributions from satellite
signals [6,7]. Thus, determining the BAOD threshold value is fundamental for both aerosol-
climate effect assessment and satellite remote sensing correction.

Typical aerosols usually have certain AOD ranges. For example, background aerosols
like clean continental and maritime aerosols often have an AOD value from 0 to 0.2, while
anthropogenic and biomass-burning aerosols have much higher AOD, which ranges from
0.3 to 1.0, or even over 2 in some extremely polluted situations [8]. AOD is quite useful
in identifying background aerosols, which are characterized by relatively low aerosol
loading emitted from local sources [9,10]. Many previous studies have determined the
BAOD threshold value when identifying aerosol types (e.g., urban industry, dust) from
clean or background types. For example, Zhang, Kondragunta, Laszlo, Liu, Remer, Huang,
Superczynski, and Ciren [6] used the lowest 5th percentile AOD as the estimate of the
background AOD based on global AERONET observations; Xia, et al. [11] set the back-
ground level AOD550 as less than 0.1 based on 40 ground-based observations across China;
Petrenko, et al. [12] selected the peak histogram AOD as the background threshold for
the month before the burning season; Chen, et al. [13] chose AOD440 less than 0.2 as the
background threshold over an urban area in Northeast China. These BAOD threshold
values are generally determined by the researcher’s understanding of local emission and
aerosol transport as well as their own experience and preference. There are also aerosol-
type identification methods without the use of AOD [14,15], such as Angstrom Exponent
and Single scattering albedo (AE-SSA) [16], fine mode fraction, and single scattering albedo
(FMF-SSA) [17], and scattering Angstrom Exponent and absorbing Angstrom Exponent
(SAE-AAE) [18]. However, it should be noted that the widely used aerosol properties, such
as SSA and SAE from sun-photometer observations, are only available when AOD > 0.4.
Therefore, these methods often miss the classification at AOD < 0.4 when ground-based
sun-photometer products are used, and an AOD of 0.4 could be considered the hidden
BAOD threshold value.

In addition to these ground-based studies, satellite sensors like VIIRS also provide
global products with background aerosol information [19]. In the VIIRS aerosol classi-
fication algorithm, aerosols are divided into eight types, in which AOD less than 0.3 is
identified as background type [3]. Different from ground-based observation, the selection
of 0.3 as the BAOD threshold for VIIRS is more like a compromise to the limitation of the
sensor and algorithm because the accuracy of AE is really limited when AOD is lower than
0.3. Aerosol type cannot be accurately identified, and thus, a ‘background’ type is used to
represent these low-loading aerosol situations [20]. Zheng, Che, Xia, Wang, Yang, Chen,
Wang, Zhao, Li, Zhang, Gui, Yang, Liang and Zhang [15] identified clean continent aerosols
with AOD < 0.25 based on MODIS data. Chen, et al. [21] used an AOD threshold value of
0.2 to identify clean aerosols over China based on Himawari-8 observations, and the clean
aerosol is identical to the background aerosol type. Whether for ground or satellite aerosol-
type classification, the background AOD threshold value varies substantially from 0.1 to 0.3
and has not yet been properly defined. The classification of aerosol types, however, is rather
sensitive to the selection of the BAOD threshold value [5,15,22]. Such a large variation
in BAOD threshold value will cause uncertainty in the classification of aerosol types and
decrease the comparability of similar studies [23–25]. Establishing a more reasonable and
statistically based BAOD standard will help to unify the incoherence in aerosol-type studies,
lower the level of difficulty in data comparisons, reduce the uncertainty in aerosol-type
retrievals, and improve the quantification of the aerosol climate effects.

This study presents a reference map of global BAOD threshold values using a statistical
method based on long-term satellite AOD observations from VIIRS, MODIS, and MISR. The
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statistical base of the BAOD determination involves multiple lognormal fitting processes
for AOD histograms within each grid and an optimized process to search the best cutoff
percentile of the lowest AOD on a global scale. With the help of the MERRA-2 dataset, we
discussed the rationality of the BAOD from the chemical view, and we further discussed
the implications of the BAOD threshold value for aerosol-type classification using VIIRS
observations as an example.

2. Materials and Methods

2.1. Satellite AOD Data

VIIRS is a scanning radiometer onboard the Suomi National Polar-orbiting Partnership
satellite launched in October 2011 [19]. It provides multi-spectral data twice per day, once
during the daytime and once during the nighttime [26]. Aerosol properties are retrieved
only during the daytime measurements at 1:30 P.M. local time. In this study, we choose
VIIRS data as a testbed for our statistical method because of the following reasons: (1) VIIRS
orbital swath is broader (by ~50%) than Moderate Resolution Imaging Spectroradiometer
(MODIS), and it has no data gaps at equatorial regions and also twice or more sampling per
day at the middle to high latitudes, which means VIIRS provides a broader spatiotemporal
coverage of AOD measurement. (2) Since the aging of MODIS (especially Terra, launched
in 1999) and Multi-angle imaging spectroradiometer (MISR, onboard) sensors, their data
accuracy is getting unstable, and lots of efforts are needed to ensure the data is suitable
for climate studies [3]. As a new generation sensor designed to continue the EOS-era data
records, VIIRS will become the major sensor replacing MODIS soon. Thus, we choose
the VIIRS DB AOD product as our major testbed. The VIIRS data used in this work is
VIIRS V1 AOD from the Deep Blue Level 3 Daily aerosol data in the Level 1 Atmosphere
(Archive Set 5110) collection (AERDB_D3_VIIRS_SNPP). The spatial resolution of the data
is 1 × 1 degree, and the temporal coverage is from March 2012 to December 2019. Also, the
latest MODIS C6.1 Level 3 Daily AOD product from Dark Target (DT), Deep Blue (DB), and
their fusion (DTB) (MOD08_D3 for Terra and MYD08_D3 for Aqua) and MISR Version 23
Level 3 Global AOD product (MIL3DAEN) are also included to analyze the influence of
spatial-temporal coverage of AOD on the determination of BAOD threshold value. VIIRS
and MODIS data can be found at NASA’s Level-1 and Atmosphere Archive and Distribution
System Distributed Active Archive Center (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 25 March 2024), and MISR data can be found at the Atmospheric Science Data
Center (https://eosweb.larc.nasa.gov/project/misr/misr_table, accessed on 25 March
2024). The time ranges for MODIS and MISR AOD are from January 2012 to December 2019.

2.2. AERONET Data

Aerosol Robotic Network (AERONET) is a ground-based remote sensing network that
provides long-term and continuous aerosol properties around the world [27]. The AERONET
collaboration provides globally distributed observations of spectral AOD, inversion products,
and precipitable water. These products are often used in aerosol-related research and satellite
data validations [28]. The AERONET data are publicly accessible at the AERONET Team
website at NASA Goddard Space Flight Center (http://aeronet.gsfc.nasa.gov/, accessed on
25 March 2024). In this work, Level 2.0 daily AODs at 440 nm and 670 nm in the AEROSOL
OPTICAL DEPTH (V3)-SOLAR collection are used to obtain AOD550 using an Angstrom
Exponential relation. The interpolated AOD is regarded as the ground truth value to validate
the VIIRS AOD.

2.3. MERRA-2 Aerosol Chemical Data

The Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA-2), was developed by the NASA Global Modeling and Assimilation Office
(GMAO) [29]. There are two primary objectives of developing MERRA-2: one is to assimi-
late data from NASA’s Earth Observation System (EOS) and demonstrate its usefulness for
climate study, and the other is to improve the representation of the atmospheric hydrologi-
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cal cycle in reanalysis models compared to previous ones. MERRA-2 reanalysis data has
a resolution of 0.625◦ longitude by 0.5◦ latitude on a global scale, and it provides hourly
column mass density of black carbon (BC), organic carbon (OC), dust, SO4, sea salt, SO2,
and Dimethyl sulfide (DMS) [30]. MERRA-2 data are available at MDISC, managed by
the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
(https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, accessed on 25 March 2024). Since
this study focuses on background AOD over land, only column mass densities of BC, OC,
dust, SO4, and SS are taken into account. The time period of MERRA-2 data used in this
study is between 2018 and 2019 (two years).

2.4. Multiple Lognormal Distribution Fitting for AOD Histogram

This study determines BAOD values by utilizing multiple lognormal fitting processes
for AOD histograms within each grid. Multiple models in AOD histogram can be a
representation of aerosol species [31,32]. The AOD histogram for each grid is created using
a log10 AOD space ranging from −2 to 1 with an interval of 0.1 (a total of 31 bins with AOD
ranging from 0.01 to 10). In each grid, five lognormal distributions with 1 to 5 modes are
fitted to the histogram. P(logτ) denotes the fitted AOD histogram for the five lognormal
distributions. Function F is used to evaluate the fitting performance of the five lognormal
distributions. The lognormal mode number with the lowest F value is considered the best
estimation. Specifically, the target function is the square of the absolute bias between the
AOD histogram and the fitted one.

P(log τ) =
m

∑
i=1

Pi

σi
√

2π
× exp(− log(τ2/μ2

i )

2σ2
i

) (1)

F =
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∑
j=1

[
Pf it(log τj)− Phist(log τj)

]2
(2)

where τ represents AOD, m denotes the number of lognormal modes ranging from 1 to
5, P(log τ) is the probability density of m lognormal with modal probability density Pi,
geometric mean μi, and standard deviation σi, F is the target function, j represents the j-th
AOD bin, Pfit represents the fitted probability density function, and Phist is the reference
probability density function from the AOD histogram.

The least squares method is used for fitting. The main idea of the least squares method
is to minimize the sum of the squares of the errors (also known as residuals) of the true and
predicted values by determining the unknown parameters (usually a matrix of parameters).
The loss function F can be treated as a multivariate function, and F is a partial derivative of
the parameters, respectively, so that the partial derivatives are equal to 0. Thus, a system
of nonlinear equations is obtained, and then the iterative method is used to solve for the
unknowns (i.e., Pi, μi, and σi).
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F(x + dx) = F(x) + dxF′(x) + O
(

α2
)
≈ F(x) + dxF′(x) (5)

where x is the unknowns (i.e., Pi, μi, and σi), dx is the perturbation, and F′ represents
the derivative.

An initial guess pool for each AOD histogram is constructed before fitting. In this
pool, the highest point of the mono-mode, the turning points for the multi-modes (second,
third, and later peak points), and the points where the slope changes significantly make
up the initial guess of mode locations and their corresponding probability densities serve
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as the initial guess of mode heights. The initial standard deviations are 0.5, 0.45, 0.3, 0.35,
and 0.3 for 1 to 5 modes, respectively. The boundary of each mode is set to be the same
as > 0, −2 < < 1, and 0.05 < < 1. If any of the three parameters in each mode exceeds
the boundaries, the fit is rejected. For example, if a negative Pi value is observed in a
bimodal distribution, this fit is rejected, and we turn to fit the trimodal distribution. To
avoid redundant modes, we calculate the specific value of each mode on the log10 AOD
space. If less than two positive values are detected, this mode is deleted. For instance, if
a trimodal fit is performed and the third mode generates only two positive values in the
entire log10 AOD space, with all other values being zero, we delete the mode and degrade
the trimodal distribution to a bimodal distribution. Sites with fewer than 60 observations
are avoided during each fitting process because they are statistically insignificant and may
cause unstable or unrealistic fitting results.

The best fit goes to the lognormal distribution with the lowest F values. The prelimi-
nary BAOD is either the intersection point of the first two normal distribution curves when
having multiple modes, or the midpoint between the peak AOD and the first AOD with
1/10 peak probability density values when the mono normal distribution is the best fit
(Figure 1).

 
(a) (b) 

Figure 1. Determination of background AOD threshold value for different AOD histogram situations.
(a) fitted mono mode, and (b) fitted multiple modes. Here, two AERONET AOD histograms from
Karlsruhe and Georgia Tech are used as an example to illustrate the determination of BAOD threshold
value for the mono- and multi-lognormal distributions.

2.5. Determination of the Best Cutoff Percentile for BAOD

Since the preliminary BAOD is obtained from statistical methods, the results will be
inevitably influenced by factors such as the difference in the observation number in each
grid and the data accuracy. Thus, the preliminary BAOD may not be smooth, and some
outliers may appear. To avoid the outliers, we create 100 guesses with the lowest 1st to
100th AOD as reference BAODs and select the best cutoff percentile for the final BAOD
threshold value. To determine the best estimation of BAOD, we have two target functions:
an absolute bias (R) between the preliminary and guess BAOD and the other is a relative
bias (Q).
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where BAODk
lon,lat represents the AOD of the lowest kth percentile, and BAODpre

lon,lat is the
preliminary BAOD; R and Q are the k-th absolute and relative bias, respectively. The best
cutoff percentile is chosen as the percentile with the lowest R and Q, and the results based
on VIIRS data are presented in Section 3.3.

2.6. IDW Interpolation

To evaluate the rationality of the reference BAOD obtained from VIIRS AOD using
the methods described in Sections 2.4 and 2.5, a ground-based BAOD map from global
AERONET sites is obtained using an Inverse Distance Weight (IDW) interpolation [6]. The
IDW interpolation is a deterministic method for multivariate interpolation with a known
scattered set of points. The values at unknown points are calculated with a weighted aver-
age of the values available at the known points. A general form of finding an interpolated
value y at a given point x based on samples yi = y(xi) for i = 1,2, . . . ,N using IDW is an
interpolating function:

y(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N
∑

i=1
wi(x)yi

N
∑

i=1
wi(x)

, i f d(x, xi) �= 0

yi , i f d(x, xi) = 0

, (8)

where wi = 1/d(x, xi)
p is the IDW weighting function, x denotes an interpolated point,

xi is an interpolating (known) point, d is the distance from the known point xi to the
unknown point x, N is the total number of known points, and p is the power parameter [33].
Specifically, xi denotes the BAOD values from the i-th AERONET site using the same
multiple lognormal fitting processes described in Section 2.4, and x denotes the same grid
point as that in the VIIRS BAOD map.

3. Results

3.1. VIIRS DB AOD Comparison with AERONET AOD

The temporal coverage of the VIIRS DB AOD measurement is shown in Figure 2a.
VIIRS DB AOD product has a high temporal coverage between 10 N and 50 N and between
−10 N and −50 N, while a much lower temporal coverage is observed between the two
belts. Such a temporal coverage difference is probably due to the high occurrence of clouds
near the equator [34]. The scattering circles in Figure 2a illustrate the 697 AERONET sites
used in evaluating the VIIRS DB AOD products. The vertical color bar illustrates the
magnitude of the correlation between AERONET and VIIRS DB AOD, and the horizontal
color bar indicates the VIIRS DB AOD observation frequency. Since AERONET provides a
point observation with a sampling frequency of 5–15 min while satellite provides a regional
snapshot at a single time, a spatiotemporal matchup scheme is applied. To be specific,
AERONET data is firstly averaged within a time window of ±30 min from the satellite
overpass, and then a spatial average is conducted if more than one AERONET observation
is available in the 1◦ × 1◦ grid cell.

Figure 2b shows the overall statistics based on 189,939 common observations from
paired AERONET and VIIRS observations. VIIRS DB AOD generally performs well in
most AERONET sites and has an overall correlation of 0.862 with AERONET AOD, and
74.2% of VIIRS DB AODs fell in the estimated error (EE) envelopes of ±(0.05 + 15%).
The VIIRS DB data set was previously validated by Sayer et al. [35] on an instantaneous
basis. Compared with the results from Sayer et al. [35], a similar RMSE (0.125) and median
bias (0.005) values were obtained. Their correlation R (0.82) is slightly higher, while the
Estimated Error envelope (EE) within the ratio (0.80) is a little bit lower. We also observe
a regional dependency on the correlation, which is in agreement with the results from
Sayer et al. [35]. The correlation coefficients tend to be less than 0.4 over low AOD areas
like southwest Africa and Australia, as well as highly elevated terrain such as the Rocky
Mountains and the Tibetan Plateau in western China, while they are close to 1 over other
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regions with high aerosol loading or low elevated terrain [3]. Figure 2d shows the VIIRS
DB AOD performance over the low AOD regime. High EEs with a ratio >60% are observed
for low AOD bins (0–0.3), which indicates that most of the observations fall into the EE
envelope of ±(0.05 + 15%).

  

(a) (b) 

 
(c) (d) 

Figure 2. (a) Map of the available VIIRS DB AOD observations from March 2012 to December 2019
and the correlations with AERONET measurements, circles denote the involved AERONET sites, the
vertical color bar denotes the magnitude of the correlation, and the horizontal color bar denotes the
VIIRS DB AOD observation number during the study period; (b) the overall correlation between
VIIRS DB and AERONET AOD. EE represents estimated error; the 1:1 line is shown in black dotted
line; the gray dotted lines indicate ±(0.05 + 15%) of the AERONET AOD; and (c) Annual mean DB
AOD map at 550 nm from VIIRS measurements during March 2012 to February 2019. (d) performance
of VIIRS DB for different AOD bins.

A high correlation of 0.862 between VIIRS and AERONET AOD indicates that VIIRS
AOD can accurately represent the daily variation of aerosol loadings globally. The low
fitting intercept of 0.025 suggests that VIIRS generally overestimates AOD by 0.025, which
is higher than the AERONET uncertainty of 0.01 but still accurate for satellite observations.
However, it is important to note that such overestimation on VIIRS AOD would be passed
to BAOD threshold values. AOD observations fall within the expected error, which means
a maximum overestimation or underestimation of around 0.1 when AERONET AOD is
lower than 0.3. Low R or EE ratios are observed in southwest Africa and Australia, as well
as highly elevated terrain such as the Rocky Mountains and the Tibetan Plateau in western
China. This can lead to an imprecise estimation of the absolute BAOD threshold value, and
BAOD from satellite observations in these regions needs further examination before usage.
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3.2. Global AOD Distribution

Figure 3 shows the map of VIIRS DB AOD at different lowest percentiles. The lowest
50th percentile (the median), 25th and 75th percentile (50% of the data), 16th and 83rd
percentile (one-standard deviation, 68% of the data), and 3rd and 97th percentile (two-
standard deviation, 95%) of AOD are selected to show the global AOD characteristics. The
AOD map shown in Figure 3a with the lowest 3rd percentile could be regarded as the
cleanest aerosol condition for different regions. The lowest 3rd percentile AOD in most
parts of the world is lower than 0.1; however, a relatively high AOD above 0.2 is observed
in the northern part of South America, North Africa, and India, indicating a high aerosol
loading base. With the increase of percentile, a relatively fast increase of AOD is observed
in the Middle West Africa, Middle East, India, and East Asia (Figure 3a–e), which indicates
these regions are the major aerosol sources around the world. From Figure 3f, 83% of AOD
in most parts of North and South America, South Africa, Europe, Australia, and North
Asia are below 0.3, which means an overall clean aerosol condition over these regions.
However, from the lowest 97th percentile AOD map (Figure 3g), extremely high AOD
events (AOD > 1) appear in some of these clean regions. The extreme AODs found in the
northern part of North America and the tropical region of South America are mostly from
biomass-burning smoke [3]. Those extreme AODs observed in East Asia are partly due
to the heavy anthropogenic emissions and partly due to transported dust from the desert
region and occasionally biomass-burning smoke from Siberia and Southeast Asia [36]. Also,
97% of AODs are found always below 0.3 over the southwest part of North and South
America, the southern part of South Africa, North Europe, and the Non-desert region
of Middle Asia (e.g., Tibetan Plateau) and West Australia, indicating a year-round clean
aerosol condition.

  
(a) (b) 

  
(c) (d) 

Figure 3. Cont.
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(e) (f) 

 
(g) 

Figure 3. VIIRS DB AOD map at different lowest percentile, from (a–g) 3rd, 16th, 25th, 50th, 75th,
83rd, and 97th percentile.

3.3. Preliminary BAOD from Multiple Lognormal Fitting

Figure 4a shows the global multiple lognormal fitting correlation map. Most parts of
the world have a very high fitting correlation of over 0.98. Although relatively low fitting
correlations are observed over the high latitude northern hemisphere (50 N–80 N), the
Tibetan Plateau, and Midwest Australia, it does not hinder the determination of BAOD
threshold over these regions, and a generally ‘smooth’ BAOD map is finally obtained
despite some abrupt points with abnormal BAOD values. The quadruple and triple
lognormal modes are found to appear most frequently around the world and their combined
fraction is around 80%. This high frequency of occurrence of multiple AOD modes indicates
that aerosol types tend to vary among three or four kinds in most parts of the world [37].

  
(a) (b) 

Figure 4. (a) Multiple lognormal fitting correlation map and fitted ratios for different lognormal
modes, and (b) preliminary BAOD map at 550 nm.
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The preliminary BAOD from multiple lognormal fitting is shown in Figure 4b. A
distinct high BAOD is found over the Indo-Gangetic Plain, Arabian Peninsula, and North
and Mid Africa since the annual mean AOD over these regions is generally over 0.4. South-
east Asia also has a relatively high annual mean AOD, but the preliminary BAOD there is
much lower than in areas like the Indo-Gangetic Plain and the Arabian Peninsula. Such
difference is due to the fact that aerosol loading over Southeast Asia varies in a wide range,
and a number of AOD measurements fall in low AOD bins; thus, the corresponding AOD
histogram has a potential mode in low AOD bins [38]. While in high BAOD regions like
the Indo-Gangetic Plain and the northern part of South America, most AOD observations
fall in relatively high AOD bins, leading to the AOD histogram moving towards the high
AOD end. High BAOD values are also found in the eastern part of North America, for
these areas have relatively large industrial emissions [4].

3.4. Best Cutoff Percentile of the Lowest AOD for Background Aerosol

Figure 5a shows the variations of BAOD bias (R and Q) with an increasing percentile
of the lowest AOD. The lowest R and Q appear in the 9th and 30th percentile, respectively.
Considering that the global mean BAOD from preliminary multiple lognormal fitting is
0.113, we select the 30th percentile of the lowest AOD as the best estimation of BAOD
because its global mean (0.105) is very close to the preliminary mean BAOD of 0.113, while
the 9th percentile is only about half (0.063). The final BAOD map (Figure 4b) shows similar
patterns to those of the preliminary BAOD. North and Mid Africa, the Arabian Peninsula,
North and Mid Africa, and the northern part of South America are still characterized by
high BAOD threshold values. The eastern part of America has a slightly higher BAOD than
the western part. Compared with Figure 4b, wider coverage of BAOD over 0.1 is observed
over Europe and West Asia, and a distinct increase of BAOD from 0.1 to 0.4 is found in
Southeast Asia. Such an increase is generally acceptable for the background aerosol loading
because the annual mean AOD (especially in Southeast Asia, Figure 4b) is still much larger
(nearly twice) than the lowest 30th percentile AOD.

  
(a) (b) 

(c) 

Figure 5. (a) Variation of the BAOD bias with lowest AOD percentiles at 550 nm from VIIRS, (b) global
map of the 30th percentile of the lowest AOD at 550 nm as the background threshold value, (c) The
AERONET interpolated BAOD from inverse distance weight interpolation.
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To evaluate the rationality of the BAOD map in Figure 5b, the lowest 30th percentile
of AERONET AOD is selected as AERONET BAOD value, and then the IDW interpolation
method is applied to get a ground-based BAOD map. Here, the distance is set as 25 degrees,
and the power parameter is set as 2 in the IDW interpolation. Figure 5c shows the ground-
based interpolated BAOD map. We then calculate the global mean bias and RMSE between
the lowest 30th percentile of VIIRS AOD and the IDW interpolated AOD from AERONET.
The global mean BAOD bias and RMSE are 0.03 and 0.06, respectively. Similarly, high
BAOD pools are observed over South America, North Africa, and North Asia, while low
BAOD pools are over North America, Europe, and Australia. The interpolated AERONET
BAOD map generally agrees well with the VIIRS BAOD map, indicating the rationality of
the reference BAOD in Figure 4b. The differences between VIIRS BAOD and the BAOD
obtained from AERONET mainly come from two aspects. One is that the interpolation
process itself generates bias. Since the number of ground-based sites is limited, most regions
are short of reliable observations. Since aerosols are of high spatiotemporal variation, the
interpolated one may not be able to fully describe the variation of spatial aerosol conditions
compared to satellite observations. The other is that, as a statistical method, the multiple
lognormal fitting results may vary due to different inputs. Although high consistency
between VIIRS and AERONET AOD is observed, a lot of observations outside the EE
envelope (Figure 2b) will lead to changes in BAOD values and even outliers.

4. Discussion

4.1. Variation of BAOD to Different Satellite Datasets and Seasons

Due to the inconsistency of spatiotemporal coverage, systematic bias, and retrieval
algorithm between different sensors, the best estimation of the BAOD threshold value
may vary with different AOD products. To assess how the reference BAOD could vary
with different satellite AOD inputs, we apply the same BAOD determination process to
MISR and Terra- and Aqua-MODIS datasets. Figure 6a–g shows the overall fitting results
from Terra-MODIS, Aqua-MODIS, and MISR AOD inputs. Similar to VIIRS, the best
estimation of BAOD threshold value for MISR, Terra-MODIS, and Aqua-MODIS is selected
between the 28th and 33rd percentile of their lowest AOD. Since the first derivatives of the
absolute bias R are all around 0 in the vicinity of their best-fitting percentile, the difference
is negligible between the 30th and 28th/33rd percentile of the lowest AOD being the
best BAOD. Thus, the reference BAOD obtained from the current study varies little with
different satellite AOD products, and the use of the 30th percentile of the lowest AOD as
background AOD threshold value should be reasonable for various satellite sensors.

Aerosol loading and type usually vary with seasons, and such a seasonal variation
may also have an impact on the determination of the best BAOD threshold value. Following
the same data processing, the monthly mean BAOD threshold value from different sensors
is shown in Table 1. Due to the least data limitation (N > 60), the seasonal BAOD threshold
value from MISR is not available here. In general, the monthly average best percentile is
selected between 26.6 and 30.7. The best percentile shows an insignificant seasonal variation,
which tends to be low in June and July while high in January and December. The largest
difference to the reference 30th percentile is observed from the Terra-MODIS DB product,
where the 22nd percentile in June is found to be the best estimation. Figure 6h shows
the corresponding bias curve, and the use of the 30th percentile is acceptable because the
difference in log bias between the 30th and 22nd percentiles is not very large. Therefore, the
use of the 30th percentile of the lowest AOD as the background AOD threshold value is also
reasonable for different months. It should be noted that although the BAOD threshold value
is the 30th percentile, the monthly mean AOD will vary with seasons, and consequently,
the reference BAOD value also has a seasonal variation.
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(e) (f) 

 
(g) (h) 

Figure 6. Variation of the BAOD bias with lowest AOD percentiles at 550 nm from (a) Terra-MODIS
DT, (b) Terra-MODIS DB, (c) Terra-MODIS DTB, (d) Aqua-MODIS DT, (e) Aqua-MODIS DB, (f) Aqua-
MODIS DTB, (g) MISR and (h) Terra-MODIS DB in June during 2012–2019.
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Table 1. Seasonal summary of the best cutoff percentile of the lowest AOD for background aerosol for
different AOD products. The seasonal MISR results are not available due to its limited input number
(>60).

Dataset Year
2012–2019

Month

January February March April May June July August September October November December Average

VIIRS DB 30% 33% 32% 29% 27% 27% 27% 28% 28% 27% 32% 33% 31% 29.5%
MOD DB 28% 31% 27% 26% 24% 26% 22% 25% 25% 24% 25% 29% 31% 26.3%
MOD DT 32% 31% 28% 27% 28% 30% 27% 27% 27% 30% 28% 32% 31% 28.8%

MOD DTB 31% 27% 27% 27% 26% 27% 25% 26% 27% 38% 27% 28% 28% 26.9%
MYD DB 28% 30% 30% 28% 29% 27% 27% 30% 28% 30% 28% 29% 32% 28.9%
MYD DT 33% 30% 28% 29% 31% 29% 29% 28% 29% 32% 32% 32% 33% 30.2%

MYD DTB 32% 29% 28% 28% 29% 30% 29% 29% 29% 30% 28% 28% 29% 28.8%
MISR 32% - - - - - - - - - - - - -

Average 30.8% 30.1% 28.6% 27.7% 27.7% 28.0% 26.6% 27.6% 27.6% 28.7% 28.6% 30.0% 30.7% 28.5%

4.2. BAOD Determination from an Aerosol Chemical Perspective

Although we have determined that the 30th percentile of the lowest AOD is the best
background AOD threshold through a statistical approach, it is preferred to validate this
from a different perspective, such as a chemical view, to prove its rationality. Typical
aerosol particles have specific chemical components [5,13], and therefore, the variation
of aerosol types could be reflected by the variation of their chemical components [29].
The rationality of the BAOD threshold value is illustrated using the co-located aerosol
chemical information from MERRA-2. A spatiotemporal matchup scheme is applied to
ensure accurate validation. This is because VIIRS provides a regional snapshot at a single
time, and the resolutions of MERRA-2 and VIIRS AOD are different. Specifically, hourly
MERRA-2 data are first selected within a time window of ±30 min from the satellite
overpass. Then, they are re-scaled at a resolution of 1◦ × 1◦.

The global average variation of the normalized standard deviation of column aerosol
mass density with the lowest percentile of AOD over land is shown in Figure 7. The increase
of the lowest AOD percentile leads to an increase in the normalized standard deviation,
indicating a corresponding increase in the degree of chemical component change. When
AOD is located in the lowest 30th percentile, aerosol loading is relatively light, and there is
little variation in chemical components (as indicated by a low standard deviation of both
the average and each chemical).

   

Figure 7. Variations of the normalized standard deviation of column aerosol mass density, blue and
red refer to low and high value of normalized standard deviation, respectively.
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Figure 8 shows a decreasing trend in slope variation of normalized standard deviation
from 0 to the 30th lowest percentile AOD, followed by a stable slope variation from the 30th
to around the 75th lowest percentile AOD. This indicates that the chemical component vari-
ations are gradually becoming more prominent before the 30th lowest percentile AOD, but
they still remain at a low level of change, as indicated by the low standard deviation. After
the 30th lowest percentile AOD, a relatively stable rate of change in chemical components is
observed, indicating a gradual and significant shift in aerosol type as AOD increases (with
a high standard deviation). Thus, from a chemical perspective, the aerosol type is generally
stable when the AOD is low but becomes increasingly unstable as the AOD increases. The
breaking point of the changing rate of the standard deviation occurs at the 30th lowest
percentile AOD, which separates these two aerosol conditions.

Figure 8. Slope of the normalized standard deviations of the column mass densities. Note the
y-coordinate ranges are different, and white and red refer to low and high value of slope of the
normalized standard deviation, respectively.

4.3. Case Studies of BAOD Applying on Satellite Aerosol Type Discrimination

For passive observations, particle radius is a key parameter in aerosol type classifi-
cation, and Angstrom Exponent (AE) is a widely used parameter that describes the bulk
aerosol particle size. Previous studies have proposed many well-established aerosol-type
classification methods via ground-based datasets [39–41], but they are not applicable in
low aerosol loading conditions because the key parameter, SSA, can only be accurately
measured or retrieved when AOD is high (e.g., AOD > 0.4 for AERONET inversion prod-
uct) [28]. Alternatively, the AOD-AE scheme is often used to achieve a rough classification
in low aerosol loading conditions [42]. For ground observations, both AOD and AE can be
accurately obtained, and aerosol types can be identified as background (continental clean),
urban industry/biomass burning, dust, and mixed over land. However, the situation gets
worse for satellite observations because AE can not be accurately retrieved in low aerosol
loading conditions. Also, due to a lack of proper background AOD threshold value for
a different region, a concession is made to simply tag the aerosol as a ‘background’ type
when AOD is less than 0.3 in the current VIIRS dataset, and in fact, the aerosol type is not
actually identified.

To illustrate the usefulness of BAOD in aerosol type classification, we update the VIIRS
DB aerosol type classification scheme by replacing the original ‘background’ threshold of
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0.3 with BAOD, and two case studies are introduced to compare their classifying results.
Figure 9 shows the original and updated VIIRS aerosol-type classification schemes. In
the updated scheme, the background AOD threshold value is determined dynamically
with consideration of both the reference BAOD and the sensor limitation (AOD < 0.3),
choosing the smaller one of BAOD and 0.3. A new aerosol type LP (Low Polluted) is
introduced when AOD falls between the reference BAOD (if less than 0.3) and 0.3. This LP
type represents a situation when aerosol loading is higher than the background condition
with potential influence by weak aerosol sources, such as thin dust layers with AOD less
than 0.3. To highlight the differences, we changed the VIIRS background aerosol type to an
unknown type since VIIRS does not perform the type identification when AOD < 0.3.

 
Figure 9. Flowchart illustrating the aerosol type classification scheme over land in the VIIRS DB
algorithm. The yellow boxes represent the original scheme, and the blue boxes represent the updated
scheme of this study.

The first case is a comparison of detecting thin dust layers over the Mediterranean
(Figure 10). A thin dust layer can be observed above the Mediterranean region on 10 April,
26 April, and 9 June 2019 from the MODIS true color images (1st column of Figure 10).
The thin yellow layer over the blue Mediterranean region is composed of suspended dust
particles blown from the southwest to the northeast, and the white pixels are clouds. AODs
over the north part of this region are generally below 0.3. Thus, the original VIIRS typing
scheme reports a UNK (VIIRS background) aerosol type over these areas and loses sight of
the thin dust layers (2nd column of Figure 10). However, the thin dust layers can generally
be detected via the updated typing scheme as LP type, which uses BAOD as the background
threshold value (3rd column of Figure 10).

The second case is a comparison of detecting thin smoke layers over South Africa
(Figure 11). The thin smoke layer (gray) can be easily distinguished from the cloud (white)
on 3 days in May 2019 (1st column of Figure 11). AODs over most of South Africa in the
selected days are generally below 0.3. Thus, the original VIIRS typing scheme reports a
‘background’ aerosol type over this region and fails to identify the thin smoke layers (2nd
column of Figure 11). However, using the updated typing scheme developed in this study,
the smoke layers can be well detected as LP type (3rd column of Figure 11). From these two
dust and smoke case studies, it is clear that the BAOD determined in this study is useful in
detecting aerosol-type variations when AOD is lower than 0.3, which cannot be achieved
using a unified background threshold of 0.3.
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Figure 10. VIIRS RGB images of three dust events over the Mediterranean in (a) April 26th, (d) 9th
June, and (g) 10th April 2019. Corresponding aerosol type classification results from VIIRS original
AOD-AE scheme are shown in (b,e,h), and the results from the updated scheme are shown in (c,f,i).
HAS, NSFM, UNK, BG, and LP represent the high altitude smoke, non-smoke fine mode, unknown,
background, and low pollution in low aerosol loading, respectively.

 

Figure 11. Similar to Figure 10, but for three biomass-burning events over South Africa on 19th
May (a–c), 21st (d–f), and 24th (g–i), 2019. HAS, NSFM, UNK, BG, and LP represent the high
altitude smoke, non-smoke fine mode, unknown, background, and low pollution in low aerosol
loading, respectively.
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4.4. Definitions and Identification of Background Aerosols

The definitions of background aerosol in the previous AOD-AE scheme, the current
VIIRS DB algorithm, and our study are different. Specifically, the background aerosol used
in many previous AOD-AE schemes usually refers to a remote clean continental aerosol
type away from anthropogenic influence (hereafter BG-RM), while the background aerosol
in the VIIRS DB algorithm is more like an unknown aerosol type. The background aerosol
in this study represents a local common aerosol condition without impact from transported
aerosols or occasional emission events like wildfires, and it changes with locations. For
example, in remote locations, the background aerosol has the same definition as BG-RM; in
urban regions, it represents the daily urban/industrial aerosols without influence from dust
or wildfire events or pollution episodes; and in the desert region, it refers to the natural
dust aerosol.

Many previous studies used a threshold value for background type classification at
a single site, and the background aerosol in these studies is similar to BG-RM. However,
when classifying aerosol type at a large domain, a unified threshold value may not be
proper because background aerosol types for different locations may be different, leading to
different background aerosol loadings. For example, Yu, et al. [43] used 0.2 as a background
threshold value to classify aerosol types in the urban Beijing area. For a clean region
like the Tibetan Plateau, however, a unified threshold of 0.2 will lead to a severe loss
of aerosol-type information. Thus, Pokharel, Guang, Liu, Kang, Ma, Holben, Xia, Xin,
Ram, Rupakheti, Wan, Wu, Bhattarai, Zhao and Cong [42] chose a much smaller value of
0.05 as a background threshold value to catch the aerosol-type variations. This indicates
that background aerosol type and its corresponding aerosol loading should vary with
locations. Thus, a location-specified threshold value may be more reasonable to represent
local ‘clean’ conditions (background aerosol). On a global scale, Zhang, Kondragunta,
Laszlo, Liu, Remer, Huang, Superczynski and Ciren [6] used the lowest 5th percentile AOD
as a background threshold value and Xia [44] used the lowest 25 percentile as a background
threshold value, but their selections tend to be personal experience or preference. Based on
a statistical basis in this study, we recommend the lowest 30th percentile AOD as the best
background threshold value.

Although changing the background threshold value from unified 0.3 to 30th percentiles
does not introduce further information regarding the aerosol type (available information
for typing aerosol is still AOD and AE, and AE is unreliable when AOD is less than 0.3), it
does help to identify possible aerosol type changes in a location with low AOD. The reason
is that the BAOD value obtained from the statistical process can be regarded as a priori
knowledge of local common aerosol loading. When AOD is lower than BAOD, the aerosol
generally represents the local background type. When AOD at a certain location is higher
than BAOD, it means that the particular region is influenced by biomass burning, pollution,
or dust episodes. Consequently, the local aerosol type may change from background to
some other types, e.g., smoke or dust. In other words, the 30th percentile itself contains
local background aerosol loading information. Thus, background aerosol can be identified
by comparing AOD and BAOD without the use of AE, which becomes unreliable under
low AOD conditions.

The multiple models in the AOD histogram can be a representation of aerosol species.
A relatively large increase or decrease in AOD is mostly related to the change in local
aerosol type. For a specific location, for example, Los Angeles, the background aerosol type
should be urban/industrial type without transported aerosols (e.g., smoke or dust), and its
AOD histogram tends to be a mono-normal distribution. When wildfire happens, however,
AOD increases sharply, and a peak appears toward a larger AOD end. If dust aerosols or
pollutants are transported into the area, aerosol loading will also increase, and another peak
may appear. Therefore, the first peak could be representative of local background aerosol,
but the later peaks are influenced by the transported pollutants or unusual local emissions
like wildfires. However, what these later peaks represent or which kind of aerosol they are
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(e.g., dust, smoke, or some kind of mixture) needs further in-depth analysis because it may
vary substantially from location to location.

5. Conclusions

This study develops a statistical method to determine global background AOD thresh-
old values using the VIIRS AOD product. The 30th percentile of the lowest AOD is found
to be the best estimation of BAOD for multiple datasets and different seasons. According
to the multiple lognormal fitting, quadruple and triple lognormal modes are found to
occur most frequently around the world, indicating a distinct aerosol-type variation on a
global scale. A high BAOD value of over 0.4 appears in North and Mid Africa, the Arabian
Peninsula, North and Mid Africa, and the northern part of South America, while other
regions generally have a BAOD value of less than 0.1. The original VIIRS dataset left 80% of
observations (AOD < 0.3) unclassified in low aerosol loading regions like America, Europe,
and Australia and tagged them as a ‘background’ type; thus, the aerosol type information
for low AOD remains unknown in the original VIIRS aerosol type classification scheme.

Chemical component information from MERRA-2 is involved in examining the selec-
tion of the 30th percentile of the lowest AOD as the BAOD threshold value. On a global
scale, aerosol chemical components vary slightly when AOD is lower than BAOD, while
the degree and rate of change of aerosol chemical components gradually become strong
and significant when AOD is greater than BAOD. And the breaking point of the changing
trend coincides with our statistical results properly.

Based on the reference BAOD threshold value, we update the AOD-AE aerosol type
classification scheme. We redefine the background type and introduce a new aerosol-type
cluster, low polluted (LP), into the classification scheme. Through two dust and smoke
case studies, it is clear that our updated AOD-AE scheme is able to achieve a pretty good
detection of aerosol type changes in low aerosol loading conditions, and it can give us
a better view of aerosol type variation for VIIRS-like passive sensors over low aerosol
loadings regions like America, Europe, and Australia.

There are also some limitations that should be concluded. VIIRS AOD performs
relatively worse over low AOD areas, such as the highly elevated Tibetan Plateau in western
China. This can lead to biased BAOD threshold value estimation. Although BAOD provides
more details about the variation of aerosol types under low aerosol loading conditions
from satellite observation, it is still insufficient to quantitatively identify the specific aerosol
particles that cause an increase in aerosol loading above the BAOD threshold when the
overall AOD is lower than 0.3. Future efforts will focus on improving the performance
of satellite inversion algorithms over rugged mountain regions. Additionally, detailed
identification of aerosol types under low aerosol loading conditions may be achieved by
including polarized observations or chemical information from real-time model simulations,
with possible assistance from machine learning.
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Abstract: This study analyzes seasonal characteristics and long-term variations in aerosol optical
parameters in Hong Kong from 2006 to 2021 using AERONET data and satellite-based observations
based on the extreme-point symmetric mode decomposition (ESMD) model. The dominant aerosol
types in Hong Kong are mixed aerosols and urban/industrial aerosols with fine-mode sizes, and
slightly absorbing or non-absorbing properties. Aerosol optical depth (AOD), Angstrom exponent
(AE) and single scattering albedo (SSA) varied seasonally with a lower AOD but higher AE and
SSA in summer, and elevated AOD but lower AE and SSA in spring and winter. The long-term
variations show the year 2012 to be a turning point, with an upward trend in AOD and AE before
2012 and then downwards after 2012. However, for SSA, a rising trend was exhibited in both pre- and
post-2012 periods, but with a larger gradient in the first period. The ESMD analysis shows shorter-
term, non-linear fluctuations in aerosol optical parameters, with alternating increasing and declining
trends. The examination of the relationships between AOD and meteorological factors based on
the extreme gradient boosting (XGBoost) method shows that the effects of weather conditions on
AOD are complex and non-monotonic. A lower relative humidity, higher wind speed in southwest
directions and lower temperature are beneficial to the abatement of aerosol loads in Hong Kong.
In conclusion, the findings of this study enhance the understanding of aerosol properties and the
interactions between aerosol loading and meteorological factors.

Keywords: seasonal characteristics; aerosol optical parameters; long-term variations; extreme-point
symmetric mode decomposition

1. Introduction

Aerosols are liquid or solid particles of different sizes suspended in the atmosphere,
and are emitted from anthropogenic and natural sources. Extensive studies have been
conducted to investigate the aerosol distribution and analyze the related effects on cli-
mate, the atmospheric environment and human health [1–6]. They can influence the
Earth–atmosphere system and climate both indirectly (changing lifetime, amount and ra-
diative properties of cloud by modifying cloud physical properties) and directly (altering
the radiative forcing via scattering and absorbing radiation) [7]. Moreover, aerosol leads to
considerable uncertainty in Earth–atmosphere interactions and climate change [8]. Thus,
quantifying the long-term trends of aerosol parameters and the underlying causes are
beneficial to understanding regional air quality conditions and climate variability.

The optical parameters of aerosols, aerosol optical depth (AOD), Angstrom exponent
(AE) and single scattering albedo (SSA) indicate some important characteristics of aerosols,
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such as column-integrated aerosol loads, particle size and light-absorbing properties. They
are also important factors for climate change analysis [9]. AOD is a primary aerosol
parameter representing the amount of aerosol loading in the atmosphere and AE is generally
used to estimate the aerosol particle size. As suggested by Kaufman [10], coarse-mode
aerosols with particle diameters greater than 1 μm are dominant in the atmosphere when
the AE value is smaller than 0.7, whereas a higher AE (>1.8) indicates the dominance of
fine-mode aerosol with particle diameters smaller than 0.1 μm. An AE value between 0.7
and 1.8 is typical of the accumulation mode and the aerosol diameters vary between 0.1 and
1 μm. SSA indicates the aerosol absorption characteristics, which depend on the chemical
composition of the aerosol. Specifically, it measures the ratio of the scattering coefficient to
the total extinction coefficient. Currently, the aerosol optical parameters can be acquired
from both ground-based and satellite-based measurements. Ground-based observations,
such as the Skyradiometer network (SKYNET) [11], Sun-sky radiation observations network
(SONET) [12] and Aerosol robotic network (AERONET) [13], provide accurate aerosol
measurements with a high temporal resolution. Although some studies have demonstrated
that the uneven and sparse distribution limits widespread application (e.g., potential
uncertainties in temporal and regional representation) [14,15], the analysis of long-term
variations based on the AERONET measurements is still reliable for understanding changes
in aerosol characteristics in a specific area.

Numerous studies have been carried out to investigate long-term changes in aerosol
properties based on satellite-based and ground-based observations at global or regional
scales. For example, Xia [16] suggests that a significant decrease in AOD can be found in
Europe and North America by using the data from 79 AERONET stations from 2000 to
2010. By combining multi-source satellite observations, Leeuw et al. [17] observed that
AOD trends over mainland China show an initial increase followed by a significant decline
between 1995 and 2015. Che et al. [18] analyzed global AOD variations via long-term
aerosol datasets and found distinctly different AOD varying trends in different regions. Ra-
machandran and Rupakheti [19] reveal a rising trend of fine-mode particulate AOD across
Asia from 2001 using AERONET data and Moderate resolution Imaging Spectroradiometer
(MODIS) observations. Previous studies have mainly focused on exploring variations in
AOD, whereas changes in AE and SSA are rarely included, which gives an incomplete view
of aerosol variations. Additionally, in the aforementioned studies, variations in aerosol
parameters were commonly addressed using the linear regression method. However, the
ensemble empirical mode decomposition (EEMD), a non-linear trend analysis method,
has been adopted for the estimation of global AOD variations [20]. The results indicated
that non-linear varying trends can provide more perceptible changes than linear trends.
Therefore, the estimation of long-term variations in aerosol parameters from a non-linear
perspective appears a more promising approach.

Basically, changes in aerosol loading are affected by meteorological conditions, and
extensive efforts have been made to analyze the correlations [21,22]. Pearson correlation
and multiple linear regression (MLR) are commonly used in the above studies to study the
associations between AOD and weather conditions. Actually, the effects of meteorological
factors on aerosol loading are synergistic and variable. Notably, the aforementioned meth-
ods can only derive monotonic relationships. Superior to traditional statistical approaches,
machine learning models are capable of estimating the relative importance of driving
factors and capturing complex non-linear relationships between predictors and dependent
variables. Previous studies have affirmed that when multi-driving variables are involved, it
is feasible and reliable to determine the individual impacts of a given factor from synergistic
effects on PM2.5 pollution using machine learning methods [23,24]. However, to the best of
our knowledge, the complex non-monotonic associations of weather conditions with AOD
in Hong Kong have not been investigated and interpreted.

Therefore, to fill the aforementioned gaps, and to analyze the impacts of meteorological
conditions on AOD, the aerosol parameters measured by the PolyU AERONET station in
Hong Kong and the satellite-based observations were integrated and investigated based
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on ESMD and a data-driven method (XGBoost). This study was conducted to (1) identify
the seasonal characteristics in aerosol optical parameters and the dominant aerosol type
in Hong Kong; (2) investigate the long-term variations in AOD, AE and SSA from annual
and seasonal perspectives between 2006 and 2021; and (3) reveal how AOD responds to the
changes in weather conditions.

2. Materials and Methods

2.1. AERONET Data and Sampling Site

AERONET (https://aeronet.gsfc.nasa.gov/ accessed on 22 August 2022) is a global
aerosol monitoring network that provides accurate measurements of aerosol optical param-
eters at multiple wavelengths [13]. There are three quality levels: Levels 1.0, 1.5 and 2.0,
which represent raw observations, cloud-screened data with quality controls but not final
calibration, and quality-assured data after pre- and post-field calibrations, respectively. Two
AERONET stations are deployed in Hong Kong, namely Sheung and PolyU stations. The
Sheung station is a suburban site, while the PolyU station shows subtropical urban aerosol
characteristics (22.3033◦N, 114.1797◦E, 30 m) with a longer service period (starting from
November 2005), located on the roof of the Hong Kong Polytechnic University (Figure 1).
In this study, daily and monthly Version 3 Level 2.0 AE at 440–675 nm, AOD at 500 nm
and Level 1.5 SSA at 440 nm from 2006 to 2021 were adopted. The uncertainty in the
obtained AOD is up to 0.02, while SSA is an inversion product with an uncertainty of
about 0.03–0.05 [25].

 

Figure 1. Geographic location of the PolyU AERONET station and King’s Park weather station.
(a) The Guangdong-Hong Kong-Macao Greater Bay Area, (b) Hong Kong, and (c) enlarged view of
the PolyU AERONET station and King’s Park weather station location.

2.2. Satellite-Based Observations

Due to the maintenance and calibration of sunphotometers, or weather conditions,
missing values of AERONET measurements are inevitable. Therefore, satellite-based
observations were considered to ensure continuous time-series sequences. MCD19A2
(https://lpdaac.usgs.gov/ accessed on 22 August 2022), an AOD product at 470 nm and
550 nm wavelengths provided by MODIS with daily intervals and a 1 km spatial resolution
via the multi-angle inversion atmospheric correction (MAIAC) approach, was adopted,
which is highly consistent with AERONET ground observations [26,27]. A comparison
between AERONET AOD measurements and the MODIS MAIAC AOD dataset in different
seasons in Hong Kong is displayed in Figure 2. Daily mean satellite-based AOD at 470 nm
and 550 nm was extracted by defining with the PolyU AERONET station in the center of an
area of 5 × 5 pixels to interpolate the AE at 440–675 nm and AOD at 500 nm according to
the equations presented in this section [28]. The results show that the satellite-based obser-
vations are in good agreement with the ground-based measurements, with a correlation
coefficient from 0.72 to 0.77.

τ(λi) = βλ−α
i (1)

93



Remote Sens. 2022, 14, 5220

α = − ln(τ1/τ2)

ln(λ1/λ2)
(2)

where τ(λi) represents AOD at λi wavelength, α denotes the Angstrom exponent and β is
the turbidity coefficient. Subsequently, monthly mean AOD and AE were calculated based
on valid daily measurements to complement the missing AERONET data. The percentage
of the satellite-based observations used in this study to substitute the AERONET missing
data accounts for about 38%.

Figure 2. Scatter plots of multi-seasonal MODIS AOD data versus AERONET AOD measurements.
(a) Spring, (b) summer, (c) autumn and (d) winter. The red dashed line represents the linear
regression line.

For the missing values of SSA, the Multi-angle Imaging SpectroRadiometer (MISR)
measurements were used, which can provide SSA inversion results with a spatial resolution
of 4.4 km and a repeat coverage of about seven to nine days for the sampling site (https://
misr.jpl.nasa.gov/ accessed on 22 August 2022). Daily mean SSA at 446 nm was extracted by
defining the PolyU AERONET station in the center of an area of 3 × 3 pixels. Some studies
have stated that the retrieval SSA of MISR was overestimated as compared to the AERONET,
indicating that the effects of some highly absorbing particles were ignored [29–31]. Thus,
the retrieved SSA of MISR was corrected by using the SSA inversion results of AERONET
using the linear regression. After this, the monthly average SSA was calculated to replace
the missing values of AERONET.

2.3. Meteorological Data

In this study, the measurements of the King’s Park weather station (22.3119◦N,
114.1728◦E, 40 m) were used, which is the closest to the PolyU AERONET station (about
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1.2 km, red star in Figure 1b). The daily ground-level mean measurements can be acquired
from the Hong Kong Observatory, including wind direction, wind speed, relative hu-
midity, temperature, pressure and precipitation (https://www.hko.gov.hk/en/index.html
accessed on 22 August 2022). Precipitation was not involved since the ground-level mea-
surements of aerosol optical parameters are not available on rainy days. Additionally, to
ensure accuracy and reduce uncertainties, the weather station records consistent with valid
measurements of the PolyU AERONET site were extracted and used to explore the impacts
of meteorological variables on AOD.

2.4. Extreme-Point Symmetric Mode Decomposition (ESMD)

ESMD was developed based on ensemble empirical mode decomposition (EEMD) [32],
which can be used to detect the time-dependent non-linear tendency without antecedent
assumption. This is a newly popular approach to probing non-linear varying trends of
climate-related issues [33,34]. The original signals can be decomposed into several intrinsic
mode functions (IMFs) and a residual curve (R).

Y(m) = ∑n
i=1 Mi(m) + R(m) (3)

where Mi(m) is the ith IMF, R(m) is the tendency curve and n denotes the total number of
IMFs. More detailed descriptions can be found in the Supplementary Materials. In our
study, R denotes the variation tendency of aerosol optical parameters from 2006 to 2021.

2.5. Extreme Gradient Boosting (XGBoost)

XGBoost is an ensemble decision tree model of machine learning with high accuracy for
classification and prediction issues. It has been widely applied to explore the relationships
between dependent and independent variables. More detailed descriptions can be found in
the literature [35]. In this study, XGBoost was adopted to identify the relative importance of
meteorological factors and investigate their interactions with AOD, which can be generally
demonstrated as follows:

yAOD = f (xi) (4)

where yAOD means the daily averaged measurements of the PolyU AERONET station, and
xi represents meteorological factors, including pressure, temperature, wind direction, wind
speed and relative humidity.

The relationships between AOD and meteorological factors were estimated by the
partial dependence plot results based on the XGBoost model, which can visualize how AOD
responds to changes in a specific variable by marginalizing other impact factors [36]. In
other words, the variable sensitivity can be illustrated by how the dependent variable reacts
when a given predictor changes while other predictors remain constant. To avoid overfitting
and to examine reliability, the 10-fold cross-validation (CV) was adopted, whereby the
dataset was divided into ten equal-sized subgroups. One subgroup was used as the test
dataset and the other samples are for training. The training process is repeated ten times to
ensure that every subgroup is tested once. Mean absolute error (MAE), root-mean-square
error (RMSE) and the coefficient of determination R-squared (R2) were used to assess the
performance of XGBoost.

3. Results

3.1. Aerosol Optical Characteristics and Aerosol Type Classification
3.1.1. Statistical Description of Aerosol Optical Parameters

Figure 3 displays the multi-seasonal frequency histogram and corresponding statistical
descriptions (i.e., minimum, mean, maximum values and standard deviation) based on
daily mean measurements. The AOD has a distinct seasonal variation with a unimodal
structure (Figure 3a). The lowest and highest daily average AODs occur in summer with
values of 0.04 and 1.98, respectively, resulting in the largest standard deviation (SD) of
0.43. Hygroscopic growth and air stagnation may be responsible for the highest AOD
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in summer [37]. A much higher AOD was observed in spring, with about 58% of AOD
levels above 0.5. Summer, autumn and winter have lower AOD values, especially in
summer, when almost 50% of AOD is below 0.3. Thus, spring has the largest mean AOD
(0.58), followed by autumn and winter. This may be attributed to long-distance dust
and biomass-burning sources, as well as rapid production mechanisms by secondary
aerosols [38]. Summer has the lowest mean AOD, as the prevailing wind is southerly
in summer, bringing clean air from the South China Sea [39]. Additionally, there is a
large amount of rainfall in summer, which can scavenge the pollutants and cleanse the
atmosphere [7].

 

Figure 3. Multi-seasonal frequency histograms of (a) AOD, (b) AE and (c) SSA. The blue line is the
fitting curve of the frequency histogram.

Analogously, AE also exhibited a unimodal structure centered at 1.3–1.4 in spring,
summer and winter, while centered at 1.4–1.5 in autumn, suggesting the dominance of
fine-mode aerosol (Figure 3b). Significant seasonal disparities of AE can be found in
summer, with a wide range from 0.17 to 2.47 and a high SD of 0.32. This indicates variations
in aerosol particle types in the atmosphere (i.e., fine-mode pollutants and coarse-mode
dust). However, Figure 3b suggests that anthropogenic fine-mode particles make more
contributions than coarse-mode pollutants over the study period in Hong Kong.

Figure 3c indicates that SSA has a similar distribution frequency histogram in all
seasons except summer. The wide range of SSA, 0.721 to 0.996, indicates different aerosol-
absorbing characteristics from strongly scattering to strongly absorbing aerosols. A large
percentage of high SSA above 0.9 can be observed in all seasons, suggesting that strongly
scattering aerosols dominated in Hong Kong during the study period. The highest mean
SSA was found in summer, indicating strong scattering properties. This is partly ascribed
to the aerosol particles tending to capture atmospheric water vapor under high relative
humidity in summer, making a larger particle radius and further increasing the aerosol
scattering [40]. Due to the effects of the winter monsoon, the transport of pollutants
from China’s mainland was facilitated by the prevailing northerly wind [39], and hence
absorbing particles (i.e., black carbon) are increased in winter in Hong Kong.
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3.1.2. Aerosol Types and Absorbing Aerosol Types

Two different classification criteria suggested by Salinas et al. [41] and Zheng et al. [42]
were used to define the aerosol types and absorbing aerosol types in Hong Kong during
the study period (see Table 1). For the first one, a daily averaged AOD at 500 nm and AE
at 440–675 nm were used to classify the aerosol types, as suggested by Salinas et al. [41].
As depicted in Figure 4a, mixed aerosol (MIXA1 and MIXA2) is the representative type
in Hong Kong, accounting for nearly 50%. Instead of pure aerosol, it is composed of
different types of aerosol (i.e., dust, urban and biomass burning aerosols). The second
dominant type is urban/industrial aerosol (UIA), with a percentage of 33%, followed by
biomass-burning aerosol (BBA). Marine aerosol (MA) and dust aerosol (DA) only make up
a small fraction (6%). For the second classification criteria, to further explore the dominant
aerosol size and properties of absorbing and scattering aerosols, a daily mean Level 2.0 AE
at 440–675 nm, fine-mode fraction (FMF) at 500nm and Level 1.5 SSA at 440 nm were used
as the aerosol optical parameters, as proposed by Zheng et al. [42]. FMF represents the
proportion of fine-mode aerosols in the atmosphere as compared to total aerosols [43,44].
The results are displayed in Figure 4b. Consistent with the above statements, anthropogenic
fine-mode aerosols with non-absorbing (FNA) or slight absorbing (FSA) characteristics
are the prevailing type in Hong Kong, accounting for over 66% overall. Meanwhile, there
are some fine-mode aerosols exhibiting medium (FMA) and highly absorbing (FHA), with
percentages of 16.3% and 4.9%, respectively. Marine absorbing (M-A) and non-absorbing
aerosols (M-NA) have comparable proportions, 6.5% and 4.8%. The percentage of coarse-
mode aerosols is only small (0.7%), and most of them show absorption properties.

Table 1. Classification criteria based on aerosol optical parameters.

Types Aerosol Optical Parameters Thresholds

Criterion 1
(AOD, AE; Salinas et al. [41])

Marine aerosol (MA) AOD < 0.2, AE < 1.0
Dust aerosol (DA) AOD > 0.2, AE < 1.0
Mixed aerosol (MIXA1) AOD < 0.2, AE > 1.0
Urban/industrial aerosol (UIA) 0.2 < AOD < 0.4, AE > 1.0
Mixed aerosol (MIXA2) 0.4 < AOD < 0.8, AE > 1.0
Biomass burning aerosol (BBA) AOD > 0.8, AE > 1.0

Criterion 2
(AE, SSA, FMF; Zheng et al. [42])

Coarse absorbing (C-A) SSA < 0.95, AE < 0.6, FMF < 0.4
Coarse non-absorbing (C-NA) SSA > 0.95, AE < 0.6, FMF < 0.4
Mixed absorbing (M-A) SSA < 0.95, 0.6 < AE < 1.2, 0.4 < FMF < 0.6
Mixed non-absorbing (M-NA) SSA > 0.95, 0.6 < AE < 1.2, 0.4 < FMF < 0.6
Fine highly absorbing (FHA) SSA < 0.85, AE > 1.2, FMF > 0.6
Fine medium absorbing (FMA) 0.85 < SSA < 0.9, AE > 1.2, FMF > 0.6
Fine slightly absorbing (FSA) 0.9 < SSA < 0.95, AE > 1.2, FMF > 0.6
Fine non-absorbing (FNA) SSA > 0.95, AE > 1.2, FMF > 0.6

Additionally, seasonal aerosol types and absorbing aerosol types were also investigated
to identify the discrepancies between aerosol types in different seasons. As shown in Figure
S1, MIXA and UIA are the predominant types in all seasons, and the percentage of UIA
in winter is the highest, reaching up to 42.6%. This may be because of the long-range
transport of increased urban aerosols during the cold winter heating season in the Chinese
mainland [37]. For BBA, it has a higher proportion in spring, possibly caused by frequent
forest fires and the increasing burden of biomass burning in spring. The percentages
of MA and DA remain relatively constant in different seasons, except in spring, during
which MA particles were not found. The seasonal absorbing aerosol types are defined and
displayed in Figure S2. Discernible differences occur between summer and winter, with
larger quantities of FNA in summer and decreasing frequencies in winter, implying strong
scattering properties in summer but more absorption in winter. This is consistent with the
statistics of SSA given in Figure 3c. Additionally, there are no significant fluctuations in the
percentages of other types (i.e., M-A, M-NA, C-A and C-NA) across different seasons.
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Figure 4. Two aerosol type classification schemes based on the daily measurements of PolyU AERONET
station. (a) Aerosol types (MIXA: mixed aerosol; BBA: biomass-burning aerosol; MA: marine aerosol;
DA: dust aerosol; UIA: urban/industrial aerosol); (b) absorbing aerosol types (C-A: coarse absorbing;
C-NA: coarse non-absorbing; M-A: mixed absorbing; M-NA: mixed non-absorbing; FSA: fine slightly
absorbing; FMA: fine medium absorbing; FHA: fine highly absorbing; FNA: fine non-absorbing).

3.2. Trend Analysis of Aerosol Optical Characteristics
3.2.1. Long-Term Variations of Aerosol Optical Parameters

Figure 5 shows inter-annual varying trends in aerosol optical parameters from 2006
to 2021. The linear and non-linear tendencies were estimated by using monthly averaged
measurements of the PolyU AERONET station. The year 2012 can be deemed a turning point
with the highest annual mean AOD (0.57). AOD in Hong Kong shows an upward trend before
2012 and a declining trend after 2012 (see Figure S3); additionally, the annual mean AOD
decreased gradually and a significant decline trend can be seen for 2012 to 2021, which is
consistent with AOD trends in the PRD region suggested by previous studies [45]. Thus, the
study period was divided into two subperiods, namely pre-2012 and post-2012. The linear
regression shows an increasing tendency in AOD and AE during the pre-2012 period with a
significant decreasing trend after 2012 (Figure 5a,b). Contrary to the decrease in AOD and AE,
a slight increase in SSA was found, at a rate of 0.0001 during the post-2012 period (Figure 5c).

A time series of aerosol optical parameters were decomposed into five IMFs and one
variation trend curve based on the ESMD approach. The variance contribution rate (VCR)
and the significance test at 95% confidence level of each IMF and the residual curve were
calculated and are displayed in Table 2. It can be seen that the IMFs and trend curves are
above the 95% confidence level and significantly correlated with the original time series,
except the IMF5 of AOD. As suggested by Zheng et al. [21], the IMFs contain periodic
oscillations and irregular non-periodic changes. Take the decomposed results of AOD time
series as an example: for the irregular fluctuations (i.e., IMF1 and IMF2 in Figure S4a),
the unstable amplitudes of IMFs may be caused by various unexpected factors, including
weather conditions, short-term pollution control policies and human activity intensity.
Periodic oscillations generally include seasonal (IMF3 in Figure S4a) and inter-annual
periodic changes (IMF4 and IMF5 in Figure S4a) related to geographical phenomena. The
residual curve can be used to denote the variation trend, which is the main focus of our
study. The varying trends analyzed by ESMD are not completely consistent with the linear
trends, presenting more fluctuating and detailed variations in aerosol optical parameters.
Using AOD as an illustration, the ESMD-based AOD trend (blue dashed line in Figure 4a)
shows that there is a decline from 2006 to 2008 with the value changing from above 0.5
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to around 0.4, and the values increased subsequently in 2009. The descending trend seen
up to 2008 may be caused by emissions control [46] and the reduction in industrial air
pollution during the global economic crisis, and an increasing trend can be seen after 2009
since the emissions from economic production and transport returned to pre-recession
levels, as suggested by Buchholz et al. [47]. After this, a remarkable descending trend
can be found, with the value decreasing to around 0.3 in 2021, which has been attributed
to the encouragement of renewable sources of energy and relative air pollution control
policies [48,49]. For AE, an increasing tendency similar to the linear trend can be observed
before 2012, whereas noticeable fluctuating variations (decreasing–increasing–decreasing)
are present in the second period. Especially, there is a steep declining trend after 2020,
possibly caused by the reduction in human activities due to the effects of COVID-19
lockdown policies [50]. Nonetheless, most of the monthly averaged AE values are larger
than 1.0, suggesting the dominance of anthropogenic aerosols. Figure 5c shows more
oscillations in SSA, alternating between upward and downward tendencies. SSA increased
substantially after 2017, implying a reduction in absorbing aerosols (long-range transport
biomass burning and local vehicles) and more aerosols with strong scattering properties.
The underlying cause appears to be the formulation of air pollution control policies and
the promotion of new energy sources.

Figure 5. Linear (colored solid lines) and ESMD-based non-linear (blue dashed lines) annual varying
trends of (a) AOD, (b) AE, and (c) SSA from 2006 to 2021 based on monthly averaged measurements.
(* denotes the linear trends passing the 95% confidence level).
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Table 2. Variance contribution rate (VCR) and correlation coefficient of the decomposed results.

Parameters IMF1 IMF2 IMF3 IMF4 IMF5 R

AOD
VCR (%) 39.36 29.03 14.60 5.04 2.42 9.55

Correlation coefficient 0.55 * 0.54 * 0.33 * 0.18 * 0.14 0.30 *

AE
VCR (%) 32.52 14.42 27.18 4.47 4.54 16.87

Correlation coefficient 0.54 * 0.37 * 0.47 * 0.15 * 0.23 * 0.39 *

SSA
VCR (%) 37.97 13.16 9.44 6.53 3.01 29.89

Correlation coefficient 0.55 * 0.35 * 0.38 * 0.41 * 0.14 * 0.57 *

* represents the significance test at the 95% confidence level.

In conclusion, the linear trend is useful for summarizing the overall variable trends
during the study period, whereas the ESMD-based non-linear trends can accurately capture
more detailed fluctuations in data, and provide more detailed and plausible variations of
aerosol optical properties. The overall results indicate that AOD and AE levels, as well as
the proportion of absorbing aerosols in Hong Kong, were reduced during the study period,
suggesting that the aforementioned air quality control countermeasures were effective.

3.2.2. Seasonal Variations of Aerosol Optical Parameters

To reveal a detailed pattern of seasonal variations in aerosol optical parameters, linear
and ESMD-based non-linear trends were derived using monthly averaged measurements
directly. Figure 6a shows that the overall linear seasonal trends in AOD are consistent
with the long-term variation directions, but the magnitudes of trends vary in different
seasons. For AE, the linear seasonal trends are similar to the long-term variations, except in
winter. There is an increase from 2013 to 2021 in winter, attenuating the substantial decline
presented in other three seasons and leading to a moderate decrease in the annual trend in
the post-2012 period. Similarly, descending variations in linear seasonal trends of SSA are
observed in winter, which is different from the increasing pattern in other seasons.

 

Figure 6. Linear (colored solid lines) and ESMD-based non-linear (blue dashed lines) seasonal varying
trends of (a) AOD, (b) AE, and (c) SSA from 2006 to 2021 based on monthly averaged measurements.
(* denotes the linear trends passing the 95% confidence level).
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A time series of seasonal aerosol optical parameters was also decomposed into several
IMFs and the trend curve was based on the ESMD approach. The variance contribution
rate (VCR) and the significance test at a 95% confidence level of the varying trends were
calculated and are displayed in Table 3, and the estimation results of each IMF are shown
in Table S1. The results show that the varying trends are above the 95% confidence level
and have a stronger correlation with the original time series, except for the varying trend
of summer AOD. For the ESMD-based non-linear trends, these are not entirely aligned
with the long-term tendencies shown by the linear analysis. Specifically, in the pre-2012
period, a decreasing–increasing trend of AOD was exhibited in summer and autumn, while
a steady upward trend was seen in spring and winter. In terms of the post-2012 period,
significant declining trends dominated in all seasons. Strikingly, during the COVID-19
lockdown period (2020–2021), AOD variations leveled off in spring and summer but
pronounced decreasing trends occurred in autumn and winter. Apart from the effects of
restricted human activities during COVID-19, the reduction in background pollution in
Guangdong province is beneficial as well, the upwind area of Hong Kong under winter
monsoon [51,52]. Fan et al. [53] also suggested that a considerable mitigation of air pollution
can be found across the Pearl River Delta (PRD) area due to the COVID-19 lockdown. As
depicted in Figure 6b, spring and autumn have similar changing patterns, with fluctuating
variations (increasing–decreasing–increasing) in the pre-2012 period and a continuous
downward trend from 2013 to 2021. Although a slightly rising trend in winter AE was
presented after 2017, it was offset by the rapid decline in summer AE and a sustained
descent in autumn and spring, leading to an overall continuous downward trend in AE
after 2017. With regard to the seasonal variations of SSA, the downward trend in spring
SSA occurred more frequently, presumably caused by the considerable biomass-burning
activities across Indochina Peninsula in spring [54,55]. In addition, during the pre-2012
period, the noticeable increase in winter compensated for the decreasing trend in other
seasons, making a similar varying trend to the long-term changes. Although there is a
slight descending linear trend in winter SSA during the post-2012 period, a significant
rising trend dominated after 2017, indicating a reduction in absorbing aerosols (i.e., black
carbon) in recent years. The striking increase in SSA can be found in all seasons from 2020
to 2021, which may be ascribed to the reduction in absorbing aerosols emanating from
long-range biomass burning, as well as the restrictions on vehicle transport and human
activities during COVID-19 lockdown period [56,57]. Overall, both linear and ESMD-based
non-linear seasonal variations of aerosol optical parameters are not completely consistent
with the long-term trends. This is because a higher AOD can be observed in spring than in
other seasons and spring AOD has been exhibiting a stable trend in recent years. The results
imply that attempting to mitigate spring AOD is beneficial to achieving a remarkable drop
in overall AOD in Hong Kong.

Table 3. Variance contribution rate (VCR) and correlation coefficient of the residual curve.

R-Spring R-Summer R-Autumn R-Winter

AOD
VCR (%) 13.03 5.85 35.46 29.60

Correlation coefficient 0.32 * 0.26 0.47 * 0.49 *

AE
VCR (%) 31.09 36.89 25.01 14.77

Correlation coefficient 0.50 * 0.58 * 0.44 * 0.29 *

SSA
VCR (%) 37.87 50.98 28.38 48.60

Correlation coefficient 0.69 * 0.76 * 0.58 * 0.71 *
* represents the significance test at the 95% confidence level.

3.3. Quantitative Impacts of Meteorological Factors

Meteorological conditions are vital influencing factors for AOD, which have non-
negligible impacts on the composition and transmission path of aerosols [9]. Pressure (hpa),
wind speed (km/h), wind direction (degrees), relative humidity (%), and temperature (◦C)
are used to quantify the relative contributions of each factor and complex relationships
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between explanatory variables and AOD based on the Xgboost model. In our study,
after the 10-fold CV test, the XGBoost method achieves an R2 of 0.80, MAE of 0.08 and
RMSE of 0.11. The estimated relative importance of meteorological factors is displayed in
Table 4, which is calculated by evaluating the increase in the model prediction error when
randomly shuffling a single feature, with the range from 0 to 1 [58]. The results suggest that
temperature exerts the greatest influence on AOD, while relative humidity is the second
primary influencing factor, followed by wind direction, with an importance rate of about
0.2. Wind speed and pressure make lower contributions to AOD, accounting for 0.18 and
0.16, respectively. Overall, the meteorological variables used in this study have comparable
influences in estimating AOD, with a relative importance of around 0.2.

Table 4. Relative importance rate of meteorological factors on AOD.

Wind Speed
Wind
Direction

Relative
Humidity

Temperature Pressure

importance rate 0.18 0.20 0.21 0.25 0.16

Instead of Pearson correlation analysis and multi-linear regression, partial dependence
derived by XGBoost was employed to investigate the non-monotonic relationship between
a given variable and AOD (Figure 7). The results indicate that AOD increases significantly
with relative humidity, increasing from 50% to 70% due to the hygroscopic growth of
aerosols [59], whereas there is a noticeable decline in AOD when the relative humidity
exceeds 70%. This may be because a higher relative humidity tends to induce frequent
precipitation events and the aerosol particles may be scoured, resulting in lower AOD
levels [22]. Notably, AOD remains almost unchanged when relative humidity is lower
than 50%, which may be responsible for the sparse records of lower relative humidity (see
Figure S5), making the correlation insignificant [60]. In contrast, a strong negative correla-
tion can be found between wind speed and AOD, as a higher wind speed promotes aerosol
diffusion, dilution and circulation, leading to better air quality [61]. Nonetheless, there are
some slight positive trends between wind speed and AOD. This can be attributed to the
surface soil and dust raised by high wind speeds, thus increasing the aerosol particles [62].
As depicted in Figure 7c, there is a strong relationship between wind direction and AOD.
Specifically, significant upward trends in AOD occur when wind directions change from
north to northeast (0–45 degrees) and southwest to west (225–270 degrees). Higher AOD
levels can be observed in the northeast (45 degrees) and west (270 degrees) directions. This
is more likely caused by the contributions of the long-distance transport of industrial emis-
sions from the mainland (i.e., Henan, Shandong and Anhui provinces) [9], as well as dust
and agricultural pollution from Southeast Asia [53]. With the wind directions changing
from northeast to east (45–90 degrees) and from west to northwest (270–315 degrees), the
neighboring regions (i.e., Guangdong, Fujian and Guangxi provinces) of Hong Kong have
cleaner background pollution, leading to a decrease in AOD. The southern part of Hong
Kong is surrounded by sea (see Figure 1), which is most likely the reason why AOD remains
stable at a wind direction of 90–225 degrees. As can be seen in Figure 7d, AOD is sensitive
to variations in temperature, and AOD increases with increased temperature when the
temperature is below 25 ◦C. However, when the temperature is in the range of 28–29 ◦C, a
negative association with AOD is presented. According to the partial dependence results
of pressure, AOD is less susceptible to changes in pressure (Figure 7e). AOD decreases
gradually with an increasing pressure from 1005 to 1010 hpa, whereas a positive correlation
can be observed when the pressure is in the range of 1010–1015 hpa. Subsequently, AOD
stabilizes between 0.45 and 0.5 when the pressure exceeds 1015 hpa. In summary, unlike
for typical linear correlations, partial dependence analysis implemented by the XGBoost
can derive complex and non-linear relationships between AOD and meteorological factors.
How AOD responds to the changes in driving factors can be estimated and visualized,
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thus recommending the use of black-box models for facilitating the understanding of
interactions between AOD and meteorological conditions.

 

Figure 7. Interactions between AOD and meteorological factors derived by XGBoost.

4. Discussion

Using ground-based AERONET measurements taken over 16 years and combined
with satellite-based observations, our study explores the dominant aerosol types, long-term
varying trends and the interactions with meteorological factors. The main contributions of
our study can be summarized as follows: First, in addition to classifying the aerosol types
based on AOD and AE values in previous studies [63–66], the aerosol-absorbing properties
in Hong Kong were also categorized using AE, SSA and FMF. Moreover, the multi-seasonal
AOD, AE and SSA distribution patterns in Hong Kong were discussed, which provides a
basis for understanding the seasonal aerosol optical characteristics in subtropical urban
areas such as Hong Kong. Notably, the thresholds of the aerosol optical parameters are
generally used for dominant aerosol type classification, while the proportions of specific
aerosol types depend on the selected aerosol parameters and the thresholds used for the
classification [63]. Additionally, using aerosol optical parameters for aerosol type identifica-
tion is suitable for areas with a stable aerosol composition, but may not be well-suited for
locations with complex topography, Arctic regions and remote marine areas, as aerosols
in these regions are difficult to represent using median optical parameters [67]. Second,
variations in AOD were mainly analyzed in most previous studies in the literature [16–19],
whereas changes in AE and SSA are rarely included, leading to an incomplete view of
aerosol variations. Apart from the linear trend, the non-linear fluctuations of aerosol opti-
cal parameters were also discussed based on the ESMD method, which can reflect more
detailed varying trends. Finally, different from previous studies [21,22], non-monotonic
interactions between AOD and meteorological factors were analyzed using a data-driven
model, XGBoost, which contributes to the knowledge of how AOD responds to the changes
in weather conditions.

However, there are still some limitations in our study. First, the minimum threshold
for the number of AERONET AOD observations per day was not considered. To enrich the
sample size of the AOD observations, the daily mean AOD was not filtered, although there
was only one observation per day. In the future, multi-source AOD datasets (i.e., reanalysis
data and satellite-based observations) or more accurately retrieved AOD should be included
for the substitute of AERONET AOD to generate accurate and continuous AOD time series.
Second, due to the availability of meteorological factors, the interactions between AOD
and other meteorological factors (i.e., planetary boundary layer, PBL) were ignored, which
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has been suggested to have a significant impact on aerosol vertical distributions and the
dispersion of air pollutants in previous studies [68,69].

5. Conclusions

In this study, combining aerosol optical parameters measured by the PolyU AERONET
station with satellite observations (i.e., MODIS and MISR aerosol products) from 2006
to 2021 was adopted to analyze the seasonal distribution patterns, varying trends and
the association with meteorological factors in Hong Kong. Four primary conclusions
can be summarized from the results. Firstly, aerosol optical parameters present signifi-
cant seasonal characteristics. The seasonal mean AOD is at its highest in spring, while
summer has the lowest mean AOD but the largest averaged AE and SSA. Secondly,
mixed aerosol and urban/industrial aerosol, which have a fine-mode size with slight
or non-absorbing properties, are predominant types in Hong Kong during the study pe-
riod. Thirdly, the year 2012 can be deemed as the turning point. Both AOD and AE
exhibit an increasing trend in the pre-2012 period and a downward tendency after 2012,
whereas a consistent rising trend of SSA can be observed over both periods. The use
of ESMD to investigate the non-linear annual and seasonal varying trends, was able to
provide more detailed insights than linear trends. AOD, AE and SSA present “decreas-
ing (2006–2008)–increasing (2009–2013)–decreasing (2014–2021)”, “increasing (2006–2012)–
decreasing (2013–2015)-increasing (2016–2018)–decreasing (2019–2021)” and “increasing
(2006–2007)–fluctuating (2008–2017)–increasing (2018–2021)” variations during the study
period, respectively. Additionally, both linear and ESMD-based non-linear seasonal vari-
ations are not completely consistent with the annual trends. The results suggest that the
sharp AOD decrease in autumn and winter in recent years contributed to the decline in
overall AOD in Hong Kong. Finally, instead of a linear correlation, XGBoost was employed
to quantify the non-monotonic relationships between meteorological factors and AOD, as
well as rank the relative importance of each variable. It can be concluded that meteorologi-
cal factors have comparable contributions to AOD and that interactions are complex. The
results imply that meteorological conditions with lower relative humidity, higher wind
speed, winds from east and southwest directions, lower temperature and higher pressure
tend to lower AOD levels. In conclusion, our study can enhance the understanding of
aerosol characteristics and long-term variations in Hong Kong. Furthermore, the inter-
actions between meteorological factors and AOD can serve as a basis for developing air
quality promotion strategies.
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Abstract: In this study, we used Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol
products acquired from 2006 to 2016 to identify global long-range aerosol transport pathways,
including the trans-Atlantic, the trans-Pacific, and the trans-Arabian Sea pathways. Deep analyses
were subsequently conducted focusing on two significant paths within the range of the trans-Pacific
transport pathway, from which we generated a three-stage conceptual model mainly identifying
aerosols from the Taklimakan Desert and aerosols from the North China Plain. The results show
that in the first stage of the model, the dust or polluted-dust aerosols were emitted, raised, and
mixed within the planetary boundary layer (PBL), characterized by high percentages (>70%) of
aerosols in the PBL (AODPBL), while in the second stage, some aerosols were further raised into
the free troposphere where the AODPBL percentages decreased to less than 40%, driven by vertical
movements and turbulences; in the last stage, the aerosols gradually settled back to the surface layer
due to gravity and wet deposition, inferred by increasing AODPBL percentages. We demonstrated
that the proposed model is capable of characterizing different aerosol types and climate conditions
on spatiotemporal scales, providing a straightforward and evident approach to exploring long-range
aerosol transport pathways.

Keywords: CALIOP; aerosols; three-stage model; long-range transport

1. Introduction

Atmospheric aerosols have important influences on human health, air quality, and
climate change, mainly from natural and anthropogenic sources [1–3]. Natural sources
include dust, sea salt, oceanic dimethyl sulfide (DMS), volcanoes, and secondary organic
aerosols (SOAs) from volatile organic compounds (VOCs) [4–6]. Anthropogenic emissions
are closely associated with industrialization and agricultural production [7] and signifi-
cantly impact human health [2,8,9]. Most aerosols have short lifetimes (about a week) and
have limited transport distances. Some aerosols, such as dust and persistent pollutants,
that have longer lifetimes (probably a few weeks) make long-distance aerosol transport
possible [10,11].
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On the global scale, three long-range aerosol transport pathways have been widely
explored and discussed, namely trans-Atlantic transport, trans-Pacific transport, and trans-
Arabian transport [12–16]. These three pathways drive local aerosol emissions to have
global influences. For example, the westward transport of Sahara Desert dust can reach
the Atlantic Ocean and even Central America [17–19]. Dust emissions and transport in
the Arabian Peninsula are vital to the climate of the Arabian Peninsula and the Arabian
Sea [20]. Dust from the Taklimakan and Gobi deserts potentially influences Northern China,
Mongolia, the Korean Peninsula, Japan, the northeastern Pacific Ocean, and the western
coast of North America through activation and transport [11]. Among all these pathways,
the trans-Pacific transport pathways are some of the most complicated due to their dis-
tinct sources, large spatial impacts, and dense populations along the pathways [21–23].
Therefore, we selected the trans-Pacific pathways for deep aerosol long-distance transport
analysis in this study.

In East Asia, aerosol sources have enormous diversity and wide spatial distribution,
mainly including dust emissions from the Taklimakan Desert and the Gobi Desert, pollutant
emissions in Eastern China, and other large Asian cities [24–26]. Due to aerosol transport,
these emissions would not just influence local or regional air quality but also have impacts
in a much larger area [14]. Moreover, some transcontinental dust and pollutant aerosols
have been found from East Asia to the western part of North America [27]. Compared
with the trans-Atlantic and trans-Arabian Sea dust transport pathways, a mixture of
dust and pollutants is the primary characteristic of trans-Pacific aerosol transport. They
also have more profound impacts considering the large population density in this area.
Therefore, studying and comparing the characteristics of dust and pollutant transport
would be worthwhile. Previous works have seldom focused on multiple-source observation
data [28,29].

In previous studies, atmospheric models were the primary approach for long-distance
aerosol transport analyses. Models like the Weather Research and Forecasting coupled with
the Community Multiscale Air Quality (WRF/CMAQ) model, the Weather Research and
Forecasting model with chemistry (WRF-Chem) [30–32], the Spectral Radiation-Transport
Model for Aerosol Species (SPRINTARS) [26,33,34], and the Goddard Chemistry Aerosol
Radiation and Transport (GOCART) model were widely used in aerosol regional and long-
distance transport analyses. However, model computation is time-consuming, especially
as the simulation areas are usually large in these studies. Meanwhile, satellite observations
provide direct descriptions for studying the vertical structure of aerosols and the charac-
teristics of aerosol transport [25,35,36]. For example, trans-Pacific aerosol transport has
been analyzed using CALIOP aerosol profile datasets [27]. The global trends in layered
aerosol properties from CALIOP level-2 (L2) datasets were systematically analyzed using
the PBLH values as vertical thresholds [35]. However, systematic and comprehensive
analyses of the long-distance aerosol transport characteristics from direct 3-dimensional
(3D) aerosol observations are rare [37]. In particular, discussions from the perspective of
aerosol distributions within/out PBL along long-range transport pathways are subject to
ongoing research.

This paper used CALIOP aerosol profiles to calculate layered data within the PBL
and in the free troposphere. Globally, the characteristics of long-distance aerosol transport
were determined from the layered aerosol data. Furthermore, using multiple datasets,
a three-stage conceptual model was proposed and assessed with long-range transport
pathways of Taklimakan Desert dust and North China Plain pollutants.

This paper is organized as follows. The experimental data sources and preprocessing
methods are given in Section 2. The global long-range aerosol transport characteristics are
presented in Section 3. Finally, Section 4 provides the conclusions and discussions.
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2. Materials and Methods

2.1. CALIOP L3 Aerosol Observation Dataset

CALIOP, a nadir-view, two-wavelength (532 and 1064 nm), polarization-sensitive (at
532 nm) lidar instrument, is mounted on a sun-synchronous satellite, the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The CALIOP L3 aerosol
profile product of version 3.00 is used, which is aggregated from quality-assured daily
L2 aerosol profiles at 532 nm. The CALIOP L3 dataset has global coverage (85◦S to 85◦N,
180◦W to 180◦E). Its horizontal resolution is 2◦ (latitude) × 5◦ (longitude), and the vertical
resolution is 60 m, with an upper altitude limit of 12 km [38]. The CALIOP L3 data contain
products under four atmosphere conditions, which are all-sky, cloud-free, cloudy-sky
transparent, and cloudy-sky opaque. This study used the cloud-free product from June 2006
(initial observation time) to November 2016 for analysis. The CALIOP total-atmosphere
AOD (AODTA) is calculated by integrating the vertical aerosol extinction profile,

AOD = ∑(Exci × Δhi), (1)

where Exci is the extinction coefficient of the ith layer, and Δhi is the corresponding height
difference. The AOD values in the PBL (AODPBL) and the free troposphere (AODFTL) are
calculated using the same method. Furthermore, the ratios of the AODPBL values (denoted
as R_AODPBL) can be calculated as in the equation below,

R_AODPBL =
AODPBL
AODTA

. (2)

At the same time, the ratios of the AODFTL values (denoted as R_AODFTL) can also be
calculated. This study used the daytime CALIOP aerosol profile observations to represent
aerosol vertical structures. In addition, aerosol types were used to understand 3-D aerosol
distributions and emissions better. The CALIOP L3 product contains aerosol extinction
profile data for different aerosol types (dust, smoke, and polluted dust). In particular, dust,
smoke, and polluted-dust products were used to calculate global layered AOD values. Dust
aerosol products were also used to calculate aerosol profiles along aerosol transport path-
ways from the source of the Taklimakan Desert, while polluted-dust aerosol products were
used to calculate aerosol profiles along aerosol transport pathways from the source of the
North China Plain. In this study, AODPBL, AODFTL, and AODTA values and corresponding
ratios for dust and polluted dust were also processed using the same method.

2.2. PBLH Reanalysis Data

In this study, we used the Re-Analysis-Interim (ERA-Interim) reanalysis dataset pro-
vided by the European Centre for Medium-Range Weather Forecasts (ECMWF) [39]. Specif-
ically, the ERA-Interim PBLH variable divides the bottom well-mixed planetary boundary
layer from the top free troposphere layer. This product is available every three hours at 3:00,
6:00, 9:00, 12:00, 15:00, 18:00, 21:00, and 24:00 in Coordinated Universal Time (UTC). As
the CALIPSO satellite crosses the equator at around 13:30 (local time) in the daytime, the
ERA-Interim data closest to the CALIOP L3 aerosol product are used to ensure temporal
consistency. The seasonal mean values of the global PBLH distributions are shown in Figure
S1 in the Supplementary Information (SI). In order to match the horizontal resolution of the
CALIOP L3 product, the ERA-Interim PBLH data were processed to the same horizontal
resolution of 2◦ × 5◦ by calculating the arithmetic mean values of 2◦ × 5◦ grids.
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2.3. Air Mass Forward Trajectories

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT-4) version
4 model provided by the Air Resources Laboratory (ARL) of the National Oceanic and
Atmospheric Administration (NOAA) was utilized herein to calculate the air mass forward
trajectories [26,40]. Furthermore, this study used 1◦ × 1◦ archived meteorological data
from the Global Data Assimilation System (GDAS) of the National Center for Atmospheric
Research (NCAR) as the driving meteorological input data. This study tested five con-
figurations of 10, 11, 12, 13, and 14 days for air mass forward trajectory calculation, with
3987 trajectories for each condition from 2006 to 2016. Considering the representativeness
of the air mass forward trajectories for guiding aerosol long-distance transport character-
istics, 11-day air mass forward trajectories starting at 4:00 a.m. (UTC) were calculated to
help better understand the aerosol long-distance transmission pathways [41,42]. With an
adequate consideration of the spatial distribution of aerosols, the air mass forward trajecto-
ries of the Taklimakan Desert and North China Plain were calculated at (41◦N, 88◦E) and
(38.85◦N, 115.49◦E) starting at 100 m AGL, 500 m AGL, and 1000 m AGL (Figure 1, Figures
S2 and S3). A seasonal analysis of trajectory clusters starting at the heights of different
proportions to PBLH was also conducted (Figures S4 and S5). The seasonal variations
were not significant in terms of trajectory length and direction, and also the corresponding
AODPBL along the trajectory clusters. Therefore, an annual analysis was performed in this
study to investigate the long-term patterns of AODPBL distributions in different general
transport paths.

Figure 1. Eleven-day air mass forward trajectory clusters originating from the North China Plain and
the Taklimakan Desert (starting at 100 m AGL).

The air mass forward trajectories were clustered together based on the wind direction
and speed of the driving meteorological input data. Based on prior knowledge of the
dominant transport regimes in the Taklimakan Desert and the North China Plain, the air
mass forward trajectories were clustered into 3 clusters using a three-dimensional K-means
method and the TrajStat software v1.2.2.6 [43]. After that, each trajectory was regarded
as a string of points (X, Y, Z). The K-means method was performed by calculating and
minimizing the distances among these trajectories using the following equation:
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d12 =

√
∑N

i

(
(X1(i)− X2(i))

2 + (Y1(i)− Y2(i))
2 + (Z1(i)− Z2(i))

2
)

, (3)

where d12 denotes the Euclidean distance between trajectories (X1, Y1, Z1) and (X2, Y2, Z2).
The number N is the number of points along the trajectory, which is 265 in this study. In
the Taklimakan Desert, three representative air mass forward trajectories (CT1, CT2, and
CT3) were used to help understand aerosol transport. The ratios of the air mass forward
trajectories clustered into CT1, CT2, and CT3 were 26.5%, 23.3%, and 50.2% (starting at
100 m AGL), respectively. Similarly, the North China Plain’s representative air mass forward
trajectories were CN1, CN2, and CN3, and the ratios of the air mass forward trajectories
were 26.1%, 58.9%, and 15% (starting at 100 m AGL), respectively. The clustering results
starting at 100, 500, and 1000 m AGL tended to be similar for air masses originating from
the North China Plain and the Taklimakan Desert, and the transport distances increased
with the increased in the starting level. Considering the limited differences in clustering
results, we chose the data starting at 100 m AGL as the main result data. This study also
counted the seasons to which the air mass trajectories of each cluster belonged, and the
statistical results are shown in Tables S1 and S2. Furthermore, aerosol profiles along six
air mass forward trajectory clusters from CALIOP L3 aerosol profiles were used to reflect
the aerosol distribution patterns, since long-range pathways longer than 100 degrees were
explored in this study.

3. Results

3.1. Aerosol Transport Pathway Identification
3.1.1. Generation of Global Distributions of High AOD Values

This study used CALIOP aerosol extinction datasets to help better understand the vertical
aerosol structures. Based on Equation (1), the column-integrated AOD values in the different
layers, i.e., in the PBL, the FTL, and the total atmosphere, were calculated from the raw
CALIOP L3 data using the reanalysis PBLH values as the threshold altitudes. Furthermore,
the ratios of the AODPBL and AODFTL values (denoted as R_AODPBL and R_AODFTL) were
also calculated from the CALIOP L3 aerosol extinction datasets (Figure 2). AODPBL, AODFTL,
AODTA, and the corresponding ratios were extracted along three North China pathways
(CN1, CN2, and CN3) and three Taklimakan pathways (CT1, CT2, and CT3).

In general, high-AODTA regions occurred in Western Africa (WAF), the Arabian Penin-
sula, the Taklimakan Desert, Central Africa, India, and East Asia. However, AODPBL
and AODFTL values exhibited different spatial patterns compared to those of AODTA.
For example, due to intensive biomass burning, AODPBL values were higher in Central
Africa and northern South America [36]. In East Asia, the AODTA values were high in
the Taklimakan Desert and East Asia. The AODFTL values were also high in the North
China Plain and the eastern coast of Asia (Figures S6 and S7). Aerosol transport may have
occurred in these three regions, as reflected by these features. There were also apparent
seasonal variations in the AODPBL values. For example, the AODPBL values were high in
June–July–August (JJA) and September–October–November (SON) in Central Africa
(Figure S8). In India, the AODPBL values were high all year round, especially in
March–April–May (MAM), SON, and December–January–February (DJF).
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Figure 2. Seasonal layered AOD values for all aerosols. The four rows represent the four seasons:
MAM, JJA, SON, and DJF. The three columns are for AODPBL, AODFTL, and AODTA. (a,d,g,j) mean
the AODPBL values in MAM, JJA, SON, and DJF, respectively. (b,e,h,k) mean the AODFTL values in
MAM, JJA, SON, and DJF, respectively. (c,f,i,l) represent the AODTA values in MAM, JJA, SON, and
DJF, respectively.

3.1.2. Identification of Global Aerosol Transport Pathways

Over the land, the R_AODPBL values were ~70%, with seasonal mean R_AODPBL
values of 74.1% (MAM), 71.6% (JJA), 71.6% (SON), and 65.4% (DJF), respectively (Figure S9
and Table S3). The R_AODPBL values were significantly high in the plateau regions,
such as the Rocky Mountains and the Tibetan areas, where the ratios were close to 100%.
Comparatively, over the oceans, the mean R_AODPBL values were 71%, 71.3%, 73.1%, and
76.1% in MAM, JJA, SON, and DJF, respectively (Table S4). The R_AODPBL and R_AODFTL
values can help better understand the transport patterns of aerosols.

It should be noted that the R_AODFTL values were significantly improved in regions
such as the west coast of Central Africa, the west coast of Central America, and the
Pacific Ocean near Northeast Asia. Considering that aerosol emissions in the ocean are
low [4], elevated AODFTL values in these regions should be mainly caused by emissions
in the nearby continental regions [44–46]. In the far oceanic areas, the R_AODFTL values
gradually decreased, indicating that the aerosols settled back into the surface air. Based on
the analysis of the R_AODPBL values, the WAF, the Arabian Peninsula, and East Asia could
be the places where aerosol transport happens intensively and frequently. In addition,
the high R_AODFTL values over Northeast Siberia and Canadian Archipelago and nearest
parts of Arctic Ocean are likely to originate from Asian dust transport [11].

It is reasonable to assume that areas with greater R_AODFTL values could be pathways
of higher possibilities of long-distance aerosol transport (Figure 3) [17,47]. Accordingly,
three regions of the trans-Atlantic, trans-Arabian Sea, and trans-Pacific would be potential
transport pathways. The aerosols in these three long-distance aerosol transport regions
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mainly come from the Sahara Desert, the Arabian Peninsula, and East Asia. Considering
the complex emission sources and significant impacts in East Asia, deep analyses of aerosol
transport processes were further conducted with comprehensive explanatory datasets.

Figure 3. Regions with R_AODFTL values >30% on the seasonal scale: (a–d) R_AODFTL values in
MAM, JJA, SON, and DJF.

3.2. Three-Stage Conceptual Model
3.2.1. Polluted Dust Aerosol Transport Pathway

Polluted-dust aerosol profiles along the air mass trajectory clusters CN1, CN2, and
CN3 were used to explore the polluted-dust aerosol transport characteristics from the North
China Plain. Long-range aerosol transport sourced from the North China Plain has trans-
continental influences on aerosol distributions and air qualities along the pathways [12]. In
the source areas of the North China Plain, the seasonal mean AODTA values were 0.396,
0.658, 0.618, and 0.487, respectively, in MAM, JJA, SON, and DJF, which are generally larger
than those in other regions along aerosol transport pathways (Figure S10). Meanwhile, the
R_AODPBL values were also large at 74.4% (MAM), 68.5% (JJA), 79.6% (SON), and 77.2%
(DJF) (Figure 4), indicating strong local emission intensities as discussed previously. Along
the three representative transport pathways of CN1, CN2, and CN3 (shown in Figure 1),
CN2 was the shortest pathway representing regional transport relatively close to source
regions. The aerosols from the North China Plain were brought to areas as far as Southern
Japan. There were ~30% of CN2 air mass trajectories from JJA. The summary of the ratios
of air mass trajectories from SON and DJF was 50.25%, which means over half of the
trajectories were from these two seasons (Table S1). As for the transport characteristics,
along the pathway CN2, most aerosols were concentrated in the PBLH in the source area,
as the R_AODPBL values were almost 70% in this stage. Then, there wsa an apparent
low-level interval with R_AODPBL values at ~120◦E, especially in warm seasons of MAM
and JJA (the lowest value was <20%). As for the reason, it means that in a coastal zone,
aerosols starting in daytime PBL over land are highly likely to be transported further in the
free atmosphere over the nearby sea. Also, the decrease can also be relative to the PBLH
values over the Yellow Sea, which were lower than over land in warm seasons and vice
versa in cold seasons. This means more air layers are involved in AODPBL over the Yellow
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Sea in cold seasons than in warm ones. However, the R_AODFTL values in this interval
were even higher than the R_AODPBL values, while aerosol emissions from the coast zone
were rare [7]. This strongly indicated transport effects within this area. As the pathway
CN2 extended, the R_AODPBL and the AODPBL values exhibited increasing trends, and
the pollutant aerosols settled back to the ground. At the same time, the changes in the
PBLH values influenced by sea–land changes also had an impact on the R_AODPBL and
the AODPBL values.

Figure 4. R_AODPBL values along three aerosol transport pathways (a) CN1, (b) CN2, and (c) CN3
on a seasonal scale (from the North China Plain).

The CN1 and CN3 are both long-range across-Pacific pathways, and there were 53.4%
and 52.3% of air mass trajectories of CN1 and CN3 from MAM and JJA, respectively
(Table S1). The CN1 trajectories have long lengths of destination to the Eastern Pacific
Ocean. The CN3 trajectories are even longer from the North China Plain and arriving at
the Northwest United States. In both pathways, AODPBL ratios were mostly >70% in the
first stage (Figure 5). In this stage, the simulated air particle heights were lower than the
PBLH values in the source regions, and the air particle heights gradually rose above PBLH
along with the trajectory (Figure 6). The AODPBL and AODTA values rapidly decreased
as the air masses moved northeast (Figure S10). As the trajectory extended to the east,
the aerosols gradually rose into the FTL by vertical air movements (Figure 6), leading to
decreased R_AODPBL values from the North China Plain to around 140◦E (Figure 4a,c).
The lowest R_AODPBL values along CN1 were located in the northern part of Hokkaido,
while the lowest R_AODPBL values along CN3 were in the southeastern part of South
Korea, with ratios <40% in MAM and JJA. Since the emissions over the sea areas were quite
low, high R_AODFTL values indicated there should be transport pathways in these regions.
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Specifically, the R_AODFTL values could reach 60% in MAM and JJA, while the values were
around 30% in SON and DJF.

Figure 5. R_AODPBL values along three aerosol transport pathways on a multiannual scale (from the
North China Plain).

 

Figure 6. Comparison of air particle heights (100 m AGL, 500 m AGL, and 1000 m AGL) and PBLH
values in (a) CN1 and (b) CN3. (a,c) The air particle heights of CN1 and CN3. (b,d) are the clusters of
original air mass trajectories clustering to CN1 and CN3.
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As the air masses moved further east, the aerosols began settling back into the surface
boundary layer. At this stage, approximately 35% of the trajectories for both CN1 and
CN3 were responsible for transporting the aerosols to lower layers (Figure 6b,d). The
R_AODPBL values gradually reached up to around 70% in the areas over the Central and
Eastern Pacific Oceans in both pathways of CN1 and CN3. The deposition would cause
changes in ground-level air quality in remote regions, such as the northwestern part of the
United States [13]. In this stage, seasonal differences in R_AODPBL values were small.

Based on the aforementioned analysis, we propose a conceptual model to describe
a long-range transport pathway, which includes three stages based on layered aerosol
distributions (Figure S11). In the first stage, the local aerosol emissions are first well
mixed within the boundary layer with the improved AODPBL values over the source
areas. Then, in the second stage, the aerosols are further elevated into the free troposphere,
characterized by growing R_AODFTL values. This stage is crucial for a transport pathway
as it determines the scale and areas that aerosols would be brought to. In the last stage,
most dust and pollutant aerosols settle to the surface layer caused by gravity settling and
wet deposition [48], characterized by elevated R_AODPBL values. As discussed before,
the spatial scale of the three stages would be influenced by aerosol particle sizes, air mass
movement speed, and terrain features. For example, the stages would have shorter spatial
distances for larger-particle aerosols than that for finer-particle aerosols (Figures S6 and S7).

3.2.2. Dust Aerosol Transport Pathway

Similarly, duct aerosol profiles along the air mass trajectory clusters CN1, CN2, and
CN3 were used to explore the duct aerosol transport characteristics from the Taklimakan
Desert. Dust aerosol transport from the Taklimakan Desert Plain was also analyzed,
considering its significant impact on air quality over very large areas. In the Taklimakan
Desert Plain, seasonal mean R_AODPBL values were 87.0% (MAM), 95.7% (JJA), 77.5%
(SON), and 55.2% (DJF) (Figure 7), and the R_AODPBL values were higher compared to
those in the North China Plain on the seasonal scale, especially in MAM and JJA. The
seasonal mean AODTA values were highest in MAM (0.573) and lowest in DJF (0.262),
which is consistent with frequent dust storms occurring in East Asia [49,50].

Aerosol transport along CN1 mainly influences local air quality. There was 52.3% of
air mass trajectories from SON and DJF (Table S2). In detail, the CT1 trajectories are short,
indicating its localities for aerosol transport. The R_AODPBL values were almost >75% in
MAM, JJA, and SON (Figure 7a). The aerosols rapidly settled to the surface, as indicated by
the decreasing AODPBL values of CT1 (Figure S12).

The aerosol types in the Taklimakan Desert Plain and the North China Plain were dust-
and pollutant-dominated, respectively, which would influence regional aerosol transport
patterns. Along the long-distance transport pathways of CT2 and CT3, the air masses
passed over East Asia and the Pacific Ocean. In total, 76% of the air mass trajectories of
CT2 were from MAM and SON (38.9% from MAM and 37.1% from SON). At the same
time, the contributions of air mass movement trajectories to CT3 in each season were
relatively uniform (Table S2). The seasonal mean R_AODPBL values were significantly
higher in MAM and JJA than those in SON and DJF, and dust activation in the former
two seasons was frequent. In stage 1, aerosol transport pathways CT2 and CT3 extended
from Northwestern China to Eastern China, whereas the aerosols in CN1 and CN3 were
transported over East Asia. In this stage, the aerosols in CT2 were mostly distributed in
the PBLH, with stable AODPBL ratios of over 75% in MAM, JJA, and SON. While the air
mass advanced along CT2, the air particle heights exhibited a consistent linear increase,
progressively surpassing the PBLH values, as depicted in Figure 8. This upward trend in air
particle heights signifies that the aerosols were being transported into the free troposphere
by the advancing air masses. The R_AODPBL values slowly increased in DJF along CT2 and
CT3. In contrast to that, the AODPBL values along CN1 and CN3 decreased rapidly in stage
1 (Figure S10), and there was a significant second peak in the AODPBL values for CT2 and
CT3 before the R_AODPBL values began to decrease (Figure S12). The second peak may
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be associated with a mixture of local aerosol emissions in Eastern China [43]. Lower peak
values of CT2 than those of CT3 were because the aerosol emissions in the bypassing areas
of CT3 were more severe than those of CT2. The CT2 trajectories passed over Northeastern
China, while CT3 trajectories passed over the North China Plain. When the aerosols moved
from stage 1 to stage 2, there were significant decreases in the R_AODPBL values along CT2
and CT3 (Figure 9).

Figure 7. R_AODPBL values along three aerosol transport pathways (a) CT1, (b) CT2, and (c) CT3 on
the seasonal scale (from the Taklimakan Desert).

 

Figure 8. Comparison of air particle heights (100 m AGL, 500 m AGL, and 1000 m AGL) and PBLH
values in CT2. (a) The air particle heights of CN1 and CN3. (b) The clusters of original air mass
trajectories clustering to CN1 and CN3.
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Figure 9. R_AODPBL values along three aerosol transport pathways on a multiannual scale (from the
Taklimakan Desert).

In stage 2, the R_AODPBL values maintained stable values. Specifically, the R_AODPBL
values were ~60% in SON and DJF, while the R_AODPBL values decreased to ~50% and
even 20% in MAM and JJA. Thus, the R_AODFTL values of CT3 were significantly higher
than the R_AODFTL values of CN1, CN3, and CT2, and higher ratios of aerosols of CT3
were transported into the free troposphere than those of CN1, CN3, and CT2. Furthermore,
there was a small peak in the AODFTL values for CT2 after the second peak in the AODPBL
values, probably due to rising aerosols into the FTL (Figure S12e,f).

In stage 3, the R_AODPBL values of CT2 gradually became similar along with the air
mass movement on the seasonal scale. At this stage, as the air mass moved downward, the
aerosols were also transported to lower atmospheric layers (Figure 8b). The R_AODPBL
values were >60% over the Eastern Pacific Ocean, which may mean the aerosols were
settled back into the PBL (Figure 9). Compared with CT2, the transport distance of CT3
was shorter. At the end of CT3, the R_AODPBL values were still less than 40% in MAM and
JJA, and more than 60% of the aerosols were in the FTL. Therefore, the aerosols in the FTL
at the end of CT3 continued to be transported farther distances.

4. Conclusions and Discussions

This study used 2006–2016 CALIOP layered aerosol data to explore long-distance
aerosol transport pathways. In particular, three apparent long-distance aerosol transport
pathways were identified on the global scale: the trans-Pacific transport pathway, the
trans-Atlantic transport pathway, and the trans-Arabian Sea transport pathway. Different
from aerosol transport from the Sahara Desert and the Arabian Peninsula, complex aerosols
influence aerosol trans-Pacific transport. To better understand the long-distance aerosol
transport characteristics, we selected two representative aerosol trans-Pacific transport
pathways from the North China Plain and the Taklimakan Desert, and meanwhile, used
layered AOD values within/out of the PBL and specific aerosol profiles along air mass
trajectories to analyze long-distance aerosol transport from East Asia. The results show
that the globally covered CALIOP L3 aerosol product and trajectory analyses on a daily
timescale adequately identified the characteristics of long-distance aerosol transport from
East Asia, eliminating the need for time-consuming model calculations. Additionally, the
trajectory model, such as HYSPLIT, simulating air mass movement trajectories provided
valuable guidance for aerosol long-distance transport pathways.

A three-stage conceptual aerosol transport model was proposed to explore long-
distance aerosol transport characteristics. The aerosols were emitted, raised, and mainly
distributed in the PBLH in the first stage. For polluted-dust aerosols, the R_AODPBL values
were almost >70%. Then, the aerosols were further elevated into the free troposphere, and
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the R_AODPBL values decreased to <40%. In this stage, there was a significant decrease in
the R_AODPBL values at around 120◦–140◦E. Finally, in the third stage, the aerosols settled
back to the ground due to gravity. For dust aerosols, the R_AODPBL values were almost
>75%, meaning that there was a higher ratio of aerosols concentrated in the PBLH compared
with the polluted-dust aerosols in the first stage. In the second stage, the R_AODPBL values
decreased to <50% and even 20%. The decrease was at around 130◦–160◦E. Last, the
R_AODPBL values were >60% over the Eastern Pacific Ocean. This three-stage conceptual
model can be used as a common tool for aerosol long-range transport analysis by describing
the dominant features in an aerosol transport process. The method highlighted the factor
of R_AODPBL as an important indicator in the long-range transport feature.

In terms of future work, quantitative studies will require improved spatial resolutions
in observational and atmospheric data, such as aerosol optical depth (AOD) observations
from the Aerosol Robotic Network (AERONET). Expanding on that, the trajectory model
will be cross-validated and enhanced through integration with atmospheric models or
deep-learning-based remote analysis. That is to say, a more comprehensive understanding
of the physical and statistical aspects is essential for analyzing aerosol transport. At the
same time, we can further evaluate the influences of aerosol emissions from the ocean
for aerosol long-distance transport. Daily aerosol profiles can be brought in the future to
precisely explore aerosol vertical structures along aerosol transport pathways and used
as an important data source for quantitative analysis to make up for missing details in
general aerosol transport patterns from monthly data. Moreover, the performance of the
proposed three-stage aerosol conceptual model deserves further validation regarding the
trans-Atlantic and trans-Arabian Sea pathways in future studies.
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Abstract: Despite the long-term implementation of air pollution control policies in northeast China,
severe haze pollution continues to occur frequently. With the adoption of a megacity (Changchun)
in northeast China, we analysed the vertical characteristics of aerosols and the causes of aerosol
pollution throughout the year using multisource data for providing recommendations for controlling
pollution events (i.e., straw burning and fireworks). Based on a ground-based LiDAR, it was found
that the extinction coefficient (EC) of aerosols at a height of 300 m in Changchun was highest in winter
(0.44 km−1), followed by summer (0.28 km−1), with significant differences from those in warmer
regions, such as the Yangtze River Delta. Therefore, it is recommended that air pollution control
policies be differentiated between winter and summer. On Chinese New Year’s Eve in Changchun,
the ignition of firecrackers during the day and night caused increases in the EC at a height of 500 m to
0.37 and 0.88 km−1, respectively. It is suggested that the regulation of firecracker ignition should be
reduced during the day and strengthened at night. Based on the CALIPSO and backward trajectory
analysis results, two events of dust–biomass-burning composite pollution were observed in March
and April. In March, the primary aerosol component was dust from western Changchun, whereas
in April, the main aerosol component was biomass-burning aerosols originating from northern
and eastern Changchun. Hence, reducing the intensity of spring biomass burning can mitigate the
occurrence of dust–biomass-burning composite pollution. These findings can provide emission policy
suggestions for areas facing similar issues regarding biomass-burning transmission pollution and
firework emissions.

Keywords: LiDAR; PM2.5; extinction coefficient; planetary boundary layer; biomass burning

1. Introduction

Aerosols are significant constituents of Earth’s atmosphere; they comprise suspended
solid and liquid particles with varying chemical properties and sizes [1]. Much attention has
been devoted to the consequential impacts of aerosols on the air quality (e.g., atmospheric
haze, acid precipitation, and particulate matter), climate change (e.g., global warming
and extreme weather events), the ecological environment (e.g., carbon emissions and
biodiversity), and human health (e.g., physical ailments and mental disorders) [2,3].

Acquiring the long-term baseline characteristics of aerosols and tracking their short-
term variations are essential for gauging the extent of aerosol pollution and assessing the
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downwind effects. Furthermore, understanding the dynamic evolution of aerosol prop-
erties lays the foundation for formulating strategies to manage anthropogenic emissions,
thereby contributing to improvement in air pollution, which poses risks to human health [4].
Based on remote sensing satellites (e.g., the moderate-resolution imaging spectroradiometer,
MODIS; medium-resolution imaging spectrometer, MERIS; and cloud–aerosol LiDAR with
orthogonal polarization, CALIOP), multiple datasets, such as the aerosol optical depth
(AOD), radiance, and water cloud properties, can be retrieved [5–8]. Notably, cloud–aerosol
LiDAR pathfinder satellite observations (CALIPSO) have provided openly accessible ob-
servation data on a global scale since June 2006 [9]. Subsequently, the analysis of aerosol
vertical profiles in Europe, North America, and East Asia using satellite remote sensing
data has achieved significant progress [10,11]. However, its accuracy gradually decreases
with decreasing altitude (distance from the surface) of the measurements.

During the last two decades, northeast China has faced fluctuating levels of air pollu-
tion from natural emissions, intense anthropogenic activities, and cross-regional transport
of aerosols from nearby regions [12–15]. Studies have focused on proposing control mea-
sures to reduce the intensity of anthropogenic activities, including energy combustion,
illegal emissions, and biomass burning, as well as leveraging favourable meteorolog-
ical conditions to mitigate the formation of intense haze over megacities in northeast
China [16–21]. However, further development is needed to establish efficient air pollution
control measures. Understanding the vertical distribution patterns of air pollution is also
essential for revealing the mechanisms underlying extreme air pollution events and air-
quality regulation [22]. Research was conducted in northeast China using a ground-based
LiDAR to investigate the vertical characteristics and transport mechanisms of dust- and
biomass-burning aerosol pollution [23,24]. Satellites such as MODIS/Terra, MODIS/Aqua,
and CALIOP were employed to analyse the long-term (over ten years) vertical structure of
aerosols in this region [25]. Furthermore, studies have focused on exploring the vertical
distribution of particulate matter and its correlation with the atmospheric boundary layer
structure in northeast China [26,27]. However, most research on the vertical characteristics
of aerosols in northeast China has focused on either the temporal variation in the vertical
structure or the generation or transmission mechanisms of severe pollution events, with
limited exploration of potential policy applications.

In this study, using the ground-based LiDAR, the seasonal aerosol vertical structures
and characteristics of severe haze pollution events were studied in Changchun, a megacity
in northeast China, from October 2020 to September 2021, and recommendations for air-
quality control were determined based on the obtained vertical aerosol characteristics. The
results and policy suggestions could serve as a reference for other similar hotspots facing
severe pollution.

2. Materials and Methods

2.1. Study Area

In this study, atmospheric monitoring was conducted in the cold region of northeast
China (CRC), specifically in the provincial city of Changchun (43◦5′–45◦15′N, 124◦18′–127◦5′E)
(Figure 1). The region experiences winter from November to March of the following year,
characterized by long-term coal-fired heating. June, July, and August are classified as summer,
while September and October are considered autumn, and April and May are categorized
as spring. Additionally, Changchun is located in a large, cultivated area spanning over
1.32 million hectares and is renowned for its automobile industry, optoelectronic information,
and applied chemistry [28]. The city of Changchun falls within the UTC+8 time zone. Hence,
all the times referred to in this paper are in UTC+8 (Beijing time), unless otherwise specified.

125



Remote Sens. 2024, 16, 1098

Figure 1. The elevation and land-use types surrounding Changchun City in the cold region of China.
The grey outline shows the administrative boundary of Jilin Province; the red circle represents the
LiDAR monitoring site in Changchun.

2.2. Data Source

The daily concentration variations of six air pollutants (PM2.5, PM10, NO2, SO2, CO,
and O3) in Changchun were analysed using hourly data from October 2020 to Septem-
ber 2021. The data were obtained from the China National Environmental Monitoring
Center (http://106.37.208.233:20035/, accessed on 1 January 2021). The meteorological
data included precipitation (Prec), relative humidity (RH), air temperature (AT), and
wind speed (WS), which were provided by the China Meteorological Administration.
For the verification of planetary boundary layer height (PBLH), reanalysis data with a
horizontal resolution of 0.25◦ were downloaded from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Specifically, the dataset named “ERA5 monthly av-
eraged data on a single level from 1979 to present”, containing monthly average PBLHs
(https://cds.climate.copernicus.eu/, accessed on 10 January 2021) from 2020 to 2021, was se-
lected.

The ground-based polarization LiDAR (PL) (HKLiDAR-V, Jilin Hongke Photonics
Corporation, Liaoyuan, China) was installed at the Northeast Institute of Geography and
Agroecology, Chinese Academy of Sciences in Changchun (44◦00′N, 125◦24′E), as depicted
in Figure 1. The PL was equipped with a 532 nm wavelength laser emitter, which has high
atmospheric transmittance, with a maximum pumping-pulse energy of 12 MJ. Furthermore,
the PL has a range resolution of 7.5 m, an integration time of 20 s, and a blind detection zone
of 150 to 200 m. The LiDAR is installed in an analysis room in Changchun with a constant
temperature of 20–25 ◦C and humidity below 60%. Quarterly calibration of the equipment
was conducted using quadrant testing, geometric overlap factor correction, polarization
channel gain ratio calibration, and signal-to-noise ratio calculations. The uncertainty
range estimated for the LiDAR optical parameters remains stable at 25–35%. The aerosol
extinction coefficient (EC) profiles were retrieved from October 2020 to September 2021
using the retrieval algorithm developed by Fernald [29].

In this study, to acquire the high-resolution images of the vertical and horizon-
tal profiles of six major aerosol subtypes—namely clean marine, clean continental, pol-
luted continental, dust, polluted dust, and smoke—the V3.41 products of CALIPSO
Level 2 data were used [30], which are available at the NASA Langley Research Center
(https://www-calipso.larc.nasa.gov/, accessed on 10 February 2021).
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2.3. Potential Sources of Pollution

In this study, backwards trajectory analysis was utilized, and the HYSPIT4 model from
the National Oceanic and Atmospheric Administration (NOAA) and the meteorological
data of the Global Data Assimilation System (GDAS) provided by the National Centers for
Environmental Prediction (NCEP) (https://www.ready.noaa.gov/archives.php, accessed
on 18 January 2021) were used to calculate trajectories.

Using the GIS-based software (TrajStat 1.5.3, http://meteothink.org/docs/trajstat/
trajstatrun.html, accessed on 10 March 2021), the 72-h backward trajectories at three dimen-
sions were calculated over the Changchun observation site, starting at an arrival level of
1000 m above the ground level every 6 h (00:00, 06:00, 12:00, and 18:00 UTC). Then, the mod-
ified Ward’s hierarchical clustering method was used to form the trajectory clusters [31]. In
this study, the potential source contribution function (PSCF) model and the concentration
weighted trajectory (CWT) model were used to analyse the source locations of pollutants
(PM2.5 and PM10). The values of PSCF and CWT are defined as follows [32]:

PSCFij = mij/nij

Cij =
1

∑M
l=1 τijl

M

∑
l=1

Clτijl

where PSCFij is the PSCF value in the ijth cell; nij is the number of endpoints that fall in
the ijth cell; mij is the number of endpoints for the same cell having arrival times at the
sampling site corresponding to PM concentrations higher than an arbitrarily set criterion;
Cij is the average weighted concentration (μg/m3) in the ijth cell; l is the index of the
trajectory; M is the total number of trajectories; Cl is the concentration observed on arrival
of trajectory l; and τijl is the time spent in the ijth cell by trajectory l. A high value of Cij
implies that air parcels travelling over the ijth cell would be, on average, associated with
high concentrations at the receptor.

Moreover, the arbitrary weighting function Wij was applied to minimize the uncer-
tainty in the PSCF and CWT values, which are referred to as the WPSCF and WCWT,
respectively. The Wij values are defined as follows [33]:

Wij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.00 nij > 3 · Avg
0.70 Avg < nij ≤ 3 · Avg
0.42 0.5 · Avg < nij ≤ Avg
0.17 0 < nij ≤ 0.5 · Avg

where Avg is the average number of trajectory segment endpoints in all cells.

2.4. Statistical Analysis

A characteristic radar chart is a relatively intuitive method for analysing the spatial and
temporal types (e.g., sand dust, biomass burning, and coal combustion) of air pollutants [21].
Characteristic values, standard values, upper-limit values, and lower-limit values were
used to plot the characteristic radar charts. The pollution types can be determined by
the magnitude of the characteristic values. Furthermore, the extent of pollution can be
determined based on standard values, upper-limit values, and lower-limit values. The
standard value was set as a natural number 1, and the characteristic values were calculated
from the pollutant concentration data as follows:

Zkl = Ckl/∑n
l=1 Ckl (1)

CVkl = Zkl/Zl (2)
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where Ckl is the concentration of type l pollutant at time k; Zkl, which can eliminate the
influence of pollutant concentration fluctuations, is the component ratio of type l pollutant
at time k; CVkl is the characteristic value of type l pollutant at time k; and Zl is the average
concentration of type l pollutant in a study period.

Upper-limit values and lower-limit values were calculated based on the following equations:

Maxl =
(

Zl + Sl
)
/Zl (3)

Minl =
(
Zl − Sl

)
/Zl (4)

where Maxl, Minl, and Sl are the upper limit, lower limit, and standard deviation of the
type l pollutant in the study period, respectively.

3. Results

3.1. Variation in Aerosol Vertical Distribution

Throughout the study period, the ECs within the near surface layer (below 1 km)
consistently demonstrated the highest values in the observed range and decreased with
increasing altitude (Figure 2). The average ECs within the near surface layer were greater in
winter than that in other seasons, reaching their peak in January at approximately 0.45 km−1.
From May to June, the near-surface layer ECs averaged approximately 0.2 km−1, followed
by a subsequent increase from July to September, reaching approximately 0.3 km−1. Ad-
ditionally, during the heating period, the EC ranged from 0.3 to 0.4 km−1 under 1 km
height, while during the non-heating period, it varied from 0.2 to 0.3 km−1. In July, the
extinction coefficient (EC) showed a 7.2% increase per 100 m below 1 km, while in January,
it exhibited a significantly higher increase of 31.9% per 100 m below 1 km. Above 1.5 km,
the average ECs remained below 0.15 km−1 during the study period. At an altitude of
2.5 km, a peak structure was observed in August, with the EC reaching 0.1 km−1. During
autumn, the mean EC within the 0–3 km range was the lowest in that year, measuring less
than 0.13 km−1.

Figure 2. Monthly averaged profiles of aerosol extinction coefficients and monthly ratios of the
aerosol optical depth (AOD) in different layers to the TAOD retrieved from LiDAR in the cold region
of China from October 2020 to September 2021 during the day (6:00–18:00). Note: AOD1, AOD2,
AOD3, and TAOD were used to indicate the AODs within the height ranges of 0–1 km, 1–2 km,
2–3 km, and 0–3 km, respectively.
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The AOD1/TAOD ratio exhibited smaller values in summer (46%) and larger values
in winter (65%) (Figure 2). This ratio peaked at 70% in December and reached a minimum
of 40% in May. Furthermore, the AOD1/TAOD and AOD2/TAOD ratios were nearly
equal from May to July. In contrast to AOD1/TAOD, AOD2/TAOD showed the opposite
seasonal variation, with higher values in summer (38%) and lower values in winter (24%)
(Table 1). The AOD2/TAOD ratio peaked at 42% in July and decreased to a minimum of
22% in December throughout the year. The AOD3/TAOD ratio was lowest in winter at
11% compared to other seasons, where it ranged from 16% to 19%.

Table 1. The AOD of each height range and their ratio to the TAOD in different seasons.

Season AOD1 1 AOD2 2 AOD3 3 TAOD 4 AOD1/
TAOD

AOD2/
TAOD

AOD3/
TAOD

Spring 0.155 0.136 0.069 0.359 43.13% 37.78% 19.09%
Summer 0.169 0.141 0.058 0.368 45.83% 38.42% 15.75%
Autumn 0.117 0.078 0.042 0.237 49.36% 32.86% 17.77%
Winter 0.180 0.067 0.032 0.279 64.59% 24.09% 11.32%

1 AOD1, the integral of the extinction coefficients between the heights of 0.27 km and 1 km; 2 AOD2, the integral of
the extinction coefficients between the heights of 1 km and 2 km; 3 AOD3, the integral of the extinction coefficients
between the heights of 2 km and 3 km; 4 TAOD, the integral of the extinction coefficients between the heights of
0.27 km and 3 km.

Based on Pearson correlation analysis, the ECs between AOD1 and the concentrations
of PM2.5 and PM10 throughout the year were 0.28 (p < 0.05) and 0.24 (p < 0.05), respectively
(Table 2). In this table, we present the correlation matrix between PM2.5, PM10, AOD1,
AOD2, AOD3, TAOD, PBLH, AT, and RH. The correlation coefficients range from −1
to 1, where 1 represents a perfect positive correlation, −1 represents a perfect negative
correlation, and 0 indicates no linear correlation. From the observations, it can be noted
that PM2.5 and PM10 exhibit a relatively high correlation coefficient of 0.736. AOD1 shows
a moderate positive correlation with AOD3, with a coefficient of 0.8. Additionally, some
variables exhibit negative correlations, such as AOD1 and AOD2 with a correlation coef-
ficient of −0.048. The correlation coefficient between AOD2 and the PM2.5 concentration
was 0.17 (p < 0.05), while the correlation between AOD2 and the PM10 concentration was
not statistically significant.

Table 2. Correlation coefficients among the PM concentrations, AOD, PBLH, air temperature, and
relative humidity in Changchun.

PM2.5 PM10 AOD1 AOD2 AOD3 TAOD PBLH AT RH

PM2.5 1 0.736 0.277 −0.169 −0.245 0.032 * −0.245 −0.358 −0.133
PM10 - 1 0.24 −0.029 * −0.1 * 0.112 −0.159 −0.166 −0.343
AOD1 - - 1 0.387 −0.048 * 0.8 −0.304 −0.015 * 0.264
AOD2 - - - 1 0.403 0.808 0.071 * 0.306 0.241
AOD3 - - - - 1 0.44 0.419 0.174 0.139
TAOD - - - - -− 1 −0.041 * 0.176 0.317
PBLH - - - - - - 1 0.262 0.053 *

AT - - - - - - - 1 0.144
RH - - - - - - - - 1

Note: The significance was investigated using the independent-samples t-test. A value with an asterisk (*) (p > 0.05)
is not significant at a confidence level of 95%. PBLH, planetary boundary layer height; AT, air temperature; RH,
relative humidity.

3.2. Variations in Meteorological Parameters and Air Pollutants

There was a strong positive correlation of the PBLH between the retrieved data from
LiDAR in this study and the data released by the ECMWF (R = 0.74, p < 0.05). Throughout
the study period, the highest PBLH was observed in May with a mean value of 1.9 km,
while the lowest was observed in December with a mean value of 1 km (Figure 3a). In
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spring and summer, the PBLH was relatively higher, with averages of 1.73 km and 1.64 km,
respectively, compared to 1.47 km and 1.32 km in autumn and winter. Over the study period,
a negative correlation coefficient was found between the PBLH and the concentrations of
PM2.5 (R = −0.27, p < 0.05) and PM10 (R = −0.16, p < 0.05) (Table 2).

Figure 3. Monthly variations in (a) planetary boundary layer height (PBLH), (b) air temperature, and
(c) relative humidity in the cold region of China from October 2020 to September 2021.

The study period covered a range of temperatures in the Changchun region, with
January being the coldest month at −15 ◦C and July being the warmest month at 26 ◦C
(Figure 3b). The average temperature in winter was −7 ◦C, while in summer, it was 22 ◦C.
August had the highest relative humidity, reaching 88%, while April had the lowest at
41% (Figure 3c). In spring, the relative humidity was recorded at 44%, while in summer, it
increased to 80%. These temperature and humidity variations have significant implications
for air quality in the region.

Between October 2020 and September 2021, the study recorded a total of 33 days
where the air-quality index (AQI) exceeded the threshold of 100, as defined by the Technical
Regulation on Ambient Air-Quality Index (HJ633-2012) (Figure 4). High AQI values
indicate a significant increase in air pollution levels during these periods, which could pose
health risks to the population.
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Figure 4. Daily variation in AQI with aerosol pollution type (when daily AQI value is over 100)
and (a–e) characteristic radar chart for pollution cases in the cold region of China from October to
November 2020 (Note: Columns under five aerosol pollution scenarios are marked with grey circles).

Further analysis revealed that PM dominated most pollution events, as shown in the
radar charts in Figure 4a–e. This finding is consistent with previous studies, indicating
that particulate matter is a major contributor to air pollution in many regions of China,
including Changchun. The presence of high PM concentrations can lead to respiratory
issues, cardiovascular diseases, and other health problems, highlighting the urgent need to
address particulate matter pollution in the region.

In accordance with the ambient air-quality standards in China (GB 3095-2012) [34],
Grade-II classification was adopted for this study (Table A1). Within the October 2020
to September 2021 period, Changchun experienced 22 days in which the Grade-II limits
for PM2.5 were exceeded (Table 3). Notably, during winter, the concentration of PM2.5
exceeded the Grade-II limit for 17 days, indicating that winter was the primary period for
haze pollution in the Changchun area. According to the WHO 2021 AQG standards [35], it
was found that the pollution situation of PM2.5 in the winter in Changchun area was severe.
Additionally, there are 29 and 27 days in December and January, respectively, when NO2
exceeds the health standards set by WHO.

Table 3. The number of days in which the concentrations of PM2.5, PM10, SO2, CO, NO2, and O3 (8 h)
exceeded Grade II and the WHO 2021 AQG from October 2020 to September 2021.

Period
PM2.5

(GB/WHO)
PM10

(GB/WHO)
SO2

(GB/WHO)
NO2

(GB/WHO)
CO

(GB/WHO)
O3

(GB/WHO)

Jan. 2021 6/31 1/20 0/0 1/27 0/0 0/0
Feb. 2021 6/28 1/16 0/0 0/15 0/0 0/2
Mar. 2021 4/29 4/25 0/0 0/25 0/0 0/4
Apr. 2021 4/28 2/28 0/0 0/22 0/0 1/14
May 2021 0/28 0/25 0/0 0/20 0/0 4/15
June 2021 0/11 0/6 0/0 0/19 0/0 2/14
July 2021 0/18 0/6 0/0 0/11 0/0 0/11
Aug. 2021 0/10 0/5 0/0 0/8 0/0 0/7
Sept. 2021 0/11 0/8 0/0 0/20 0/0 0/3
Oct. 2020 1/21 0/17 0/0 0/24 0/0 0/4
Nov. 2020 1/25 0/20 0/0 0/24 0/0 0/0
Dec. 2020 0/31 1/20 0/0 0/29 0/0 0/0
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3.3. Typical Aerosol Pollution Scenarios

Using multisource data, we analysed the vertical distributions of aerosol particles
during typical aerosol pollution cases. The main information of these cases is summarized
in Table 4. In northeast China during winter, pollution events exhibit a higher extinction
coefficient. Moreover, based on the extinction coefficient and air-quality index (AQI) of
China, it can be inferred that biomass combustion constitutes a significant pollution event
in this region.

3.3.1. Firework Aerosols

In China, it is a long-standing tradition to ignite an abundance of firecrackers on
Chinese New Year’s Eve (11 February) and Lunar New Year’s Day (12 February). At 14:00
on February 11, the average EC below 0.5 km was 0.37 km−1, while at 22:00 on the same day,
it increased to 0.88 km−1 (Figure 5a). Additionally, the ECs within a height range of 0.5 km
from 22:00 on 11 February to 13:00 on 12 February remained elevated, averaging between
0.82 and 1.07 km−1. In contrast, the depolarization ratio within 0.5 km is approximately
0.05 (Figure 5b), indicating a low level of coarse particles [36]. The concentration of PM2.5
exhibited a rapidly increased after 20:00 on 11 February, reaching 118 μg/m3 at midnight
that night (Figure 5c). In recent years, as a result of the Chinese government’s efforts to
control fireworks, the use of fireworks in urban areas has decreased significantly. However,
the tradition of setting off fireworks unavoidably persists, driven by people’s pursuit of
spiritual fulfilment. During 11–12 February, there was a simultaneous occurrence of high
extinction and elevated concentrations of PM2.5. Furthermore, the PBLH on that day was
exceptionally lower than in the rest of that month. As a result, aerosols from firework
setoffs still have a significant impact when there is an extremely low boundary layer.

Figure 5. Variations in the (a) extinction coefficient (EC, 532 nm), (b) depolarization ratio, and
(c) concentrations of PM2.5, PM10, and planetary boundary layer height (PBLH) in the cold region of
China during a firework event (11–14 February 2021).
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Table 4. Characteristics of aerosol optical parameters during haze pollution (i.e., fireworks pollution,
dust, and biomass-burning) in northeast China.

Researcher Study Area Period EC (0–500 m) AQI Uncertainty Aerosol Types

Zhao et al., 2018 [37] Shenyang 31 March 2016 0.1–0.5 182 None Dust
Zhao et al., 2018 [37] Shenyang 5 November 2016 0.5–1.1 259 None Biomass-burning
Liu et al., 2017 [38] Shenyang 7 January 2017 0.3–1.1 250 None None

Zhao et al., 2020 [39] Siping 12 January 2019 0.9–1.3 210 None None
This study Changchun 12 February 2021 0.1–0.7 143 25–35% Firework
This study Changchun 15 March 2021 0.2–0.6 152 25–35% Dust
This study Changchun 9 April 2021 0.3–0.7 188 25–35% Biomass-burning

3.3.2. Dust Aerosols

At 22:00 on 14 March, an aerosol air mass was observed with its base located approx-
imately 1 km above ground level and a thickness that could extend up to 2 km (Figure 6a).
However, by 4:00 on 15 March, the air mass had mostly dissipated. Furthermore, at 12:00
on 15 March, the average depolarization ratio within the 0–1 km range increased to 0.11
(Figure 6b). At 19:00 on 15 March, the profiles of the EC and depolarization ratio both indi-
cated that the top of the aerosol air mass reached a maximum altitude of 2.2 km. Additionally,
between 10:00 on 15 March and 4:00 on 16 March, the PM2.5 concentration ranged from 16 to
69 μg/m3, while the PM10 concentration ranged from 91 to 838 μg/m3 (Figure 6c).

Figure 6. Variations in the (a) extinction coefficient (EC, 532 nm); (b) depolarization ratio; (c) concen-
trations of PM2.5, PM10, and planetary boundary layer height (PBLH); (d) mean 48-hour backwards
trajectories; (e) spatial distributions of WPSCF values for PM10; and (f) spatial distributions of WCWT
values for PM10 in the cold region of China during a dust event (14–16 March 2021).
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Based on the backwards trajectories, the sources of PM10 transport in Changchun on
15 March were analysed (Figure 6d–f). The cluster analysis of the 24 trajectories revealed
two primary clusters. The first cluster originated from the desertified area in the western
part of Jilin Province, accounting for 83% of the trajectories, while the second cluster
originated from the Liaoning and Shandong provinces, accounting for 17%. Additionally,
based on PSCF and CWT calculations, it was determined that the desert areas in the
western CRC had the highest potential for the source of dust aerosol pollution. The
CALIPSO data from 17 March at 02:27 revealed that dust aerosols had accumulated below
2 km and between 4–5 km, creating two distinct zones of dust accumulation (Figure 7a,b).
This indicates that dust aerosols were the predominant aerosol subtype in Changchun on
17 March. Despite the lack of CALIPSO data for the Changchun region on 15 March, the
observation of dust aerosols on 17 March still provides evidence of the impact of natural
source transport in the CRC.

Figure 7. CALIPSO L2 products of (a,b) aerosol subtype, (c,d) vertical feature mask, and their ground
track in the cold region of China on 17 March 2021 and 9 April 2021 (Note: The vertical feature mask
at a height of 1 km is shown on the track).

3.3.3. Biomass-Burning Aerosols

In the Changchun region, straw burning is regulated by the government and is typi-
cally scheduled before the spring tilling period, which occurs in April each year. Conse-
quently, in April 2021, a total of 5070 fire points was recorded by the MODIS product in
Changchun (Figure 8).
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Figure 8. Daily variations of total fire points in Changchun from October 2020 to September 2021.

At 04:00 on 8 April, the EC of the air mass at a height of 0.6 km was 1.5 km−1,
and it decreased by 7:00 (Figure 9a). At approximately 20:00 on 8 April, the average
EC within 1 km increased to 1.11 km−1 and then decreased to 0.31 km−1 by 15:00 on 9
April. Nevertheless, on 9 April, the mean depolarization ratio below 1 km was less than
0.01 (Figure 9b). At 04:00 on 8 April, the PM2.5 concentration peaked at 598 μg/m3 and
subsequently decreased to 21 μg/m3 by 08:00 (Figure 9c). Moreover, between 16:00 on 8
April and 08:00 on 9 April, the PM2.5 concentration increased from 55 to 251 μg/m3.

Figure 9. Variations of the (a) extinction coefficient (EC, 532 nm), (b) depolarization ratio, (c) concen-
trations of PM2.5 and PM10 and planetary boundary layer height (PBLH), (d) mean 48-hour backward
trajectories, (e) spatial distributions of WPSCF values for PM2.5, and (f) spatial distributions of WCWT
values for PM2.5 (f) in the cold region of China during a biomass-burning event (8–10 April 2021).

CALIPSO dataset analysis indicated that smoke and polluted continents were the
predominant aerosol subtypes observed in the Changchun area (Figure 7c,d). To determine
the source of PM2.5 transport on 9 April, a backwards trajectory analysis was conducted
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(Figure 9d–f). The trajectory clustering analysis revealed that the backwards trajectories
could be primarily separated into two clusters, each accounting for 50% of the trajectories.
These clusters originated from the western and northern regions of the Changchun region,
respectively. The PSCF analysis indicated that these regions were the primary potential
sources of PM2.5. Additionally, the CWT analysis suggested that these regions, with a
significant number of fire points, contributed more than 90 μg/m3 of PM2.5 to Changchun.

4. Discussion

4.1. Seasonal Vertical Distribution of Aerosols

Previous investigations have demonstrated that in warm regions, such as the Yangtze
River Delta region of China, the near-surface aerosol ECs were comparable between summer
and winter in most years, with the maximum extinction sometimes occurring during the
period from June to September [40]. However, in CRC, the near-surface layer within 1 km
exhibits greater ECs during winter than during other months. Furthermore, there were
significant differences in the vertical variation trend of EC with height among the different
seasons. This is mainly manifested by a significant increase in the nonuniformity of the
gradient in the vertical profile of aerosols as the temperature decreases. This difference
may be attributed to several factors. First, during winter, a lower PBLH of 1.32 km in
Changchun and a higher proportion of AOD within 1 km (65%) were observed, indicating
that aerosols were primarily concentrated at lower altitude. Second, the low temperatures
during winter may attenuate the atmospheric thermal turbulence in northern China [41],
thereby facilitating the accumulation of aerosol particles. Finally, the concentrations of
PM2.5 and PM10 in the atmosphere were significantly greater during winter compared to
other seasons, primarily due to material combustion for heating purposes. These factors
collectively contribute to the increase in ECs near the surface in CRC during the winter.
It is worth noting that, due to the inconvenience of data acquisition, the impact of motor
vehicles was not fully considered. Further investigation into the impact of motor vehicles
is still needed. Additionally, in spring, the extinction characteristics may be influenced
by fine particles emitted from centralized biomass burning and wind erosion from bare
agricultural land surfaces in CRC. The atmospheric diffusion conditions during spring are
more favourable compared to other seasons [42], which could explain the relatively lower
EC in spring compared to winter in this region.

The study period revealed a negative correlation coefficient between the PBLH and
the concentrations of PM2.5 and PM10. The negative correlation coefficient suggests that as
the PBLH decreases, the concentrations of PM2.5 and PM10 increase, indicating a strong link
between atmospheric mixing depth and particulate matter concentration. These findings are
consistent with similar studies conducted across many regions in China [40,43]. However,
the correlation between the PBLH and PM concentration in CRC was weak, which could
be due to the impact of various complex meteorological and anthropogenic emissions in
the area. For example, the Changchun region has a unique climate, with cold temperatures
prevailing throughout the year. Additionally, the region has a high density of industries
and factories, leading to significant anthropogenic emissions, which could have influenced
the observed weak correlation coefficient. Furthermore, the topography of the region could
also play a role in the weak correlation, as it may contribute to the formation of local
circulations or wind patterns that could further influence the dispersion and accumulation
of particulate matter.

Although the weak correlation between the PBLH and PM concentration in CRC may
indicate the complexity of the factors affecting air pollution in the region, it also highlights
the need for targeted measures to mitigate the adverse effects of particulate matter pollution.
Effective strategies that address the unique circumstances of the region are necessary to
promote healthy living environments for the population. Such measures could include
the implementation of stricter emission controls for industrial facilities in the area, the
promotion of cleaner transportation modes, and the adoption of sustainable agricultural
practices, among others. In conclusion, this study provides valuable insights into the rela-
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tionship between the PBLH and particulate matter concentrations in the Changchun region.
Although the weak correlation coefficient observed in CRC underscores the complexity
of the factors influencing air pollution in the area, it also highlights the importance of
adopting targeted measures to mitigate the adverse effects of particulate matter pollution
in the region.

4.2. Typical Aerosol Pollution

To gain a comprehensive understanding of aerosol pollution in urban atmospheres
during firework displays, scientists conducted analyses utilizing MODIS data [44]. The
analysis revealed that during festival days, India experienced a significant increase of 56–
121% in aerosol surface mass loading in the middle Indo-Gangetic Plain compared to that
under normal conditions. This indicates that firework displays have a substantial impact
on aerosol pollution levels in the region. Furthermore, Joly’s findings [45] indicated that
the concentration of PM2.5, which is a fine particulate matter known to have detrimental
effects on human health, reached its peak during firework emissions. These concentrations
were found to be nearly 1000 times higher than the background level within just one hour.
Such high levels of PM2.5 pose serious health risks to the population, highlighting the need
for effective measures to mitigate the pollution caused by fireworks. Although our study
primarily focused on low-intensity fireworks emissions that did not result in a vertical
expansion of the affected area, they still had a considerable impact on the enhancement
of EC within the boundary layer. EC is a key component of aerosols and is associated
with various adverse health effects. Our research revealed that the emissions from low-
intensity fireworks contributed to a significant 76.4% increase in EC concentrations within
the boundary layer, further emphasizing the implications of pollution from fireworks.

During the spring season, East Asia frequently experiences the presence of dust
aerosols, as indicated by previous research [46]. To identify these dust aerosols in East Asia,
past studies have utilized a depolarization ratio threshold of 0.1 [47,48]. For instance, on 15
March 2021, an observed aerosol air mass exhibited a depolarization ratio of 0.11, surpassing
the established threshold. This air mass extended vertically up to 3 km, indicating the
significant spread and coverage of the dust aerosols in the atmosphere. Furthermore,
the concentration of PM10, which includes inhalable particles with diameters that are
generally 10 μm and smaller, peaked for the entire year on this day. Additionally, the
EC values exceeded the average level for the month of March. These findings suggest a
substantial presence of dust aerosols and associated particulate matter pollution during this
period, underscoring the environmental and public health implications of such atmospheric
conditions in East Asia.

In warmer regions of China, farmers implement crop rotation practices, which re-
sults in biomass-burning aerosols being released into the atmosphere during the summer
season [49]. However, in colder regions such as Changchun, only one cultivation cycle is
possible each year, and as a result, anthropogenic biomass burning is mainly conducted
during the spring. Prior research has indicated that biomass-burning aerosols exhibit a
lower depolarization ratio and a moderate-to-significant level of EC [47,50]. On 8–9 April,
an aerosol air mass with a vertical extent of up to 2 km was observed in the CRC area,
showing high values of EC. This indicates that the intensity of biomass burning in this re-
gion is higher compared to warmer regions in China. Furthermore, the depolarization ratio
of this air mass was found to be lower than 0.1, indicating the presence of biomass-burning
aerosols. These findings suggest that anthropogenic biomass-burning activities significantly
contribute to the atmospheric pollution in this region. Additionally, on 9 April, an increase
in the concentration of PM2.5 was detected, further indicating the presence of pollutants in
the atmosphere. High levels of PM2.5 pose serious health risks to the population, especially
for those with respiratory issues, highlighting the urgent need for effective measures to
mitigate the pollution caused by biomass-burning activities. Overall, the study suggested
that the air pollution observed on 8–9 April in the CRC area was primarily associated
with the transportation of biomass-burning aerosols. The results illustrate the importance
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of understanding the impact of different agricultural practices on the environment and
the need to adopt sustainable farming methods to minimize the negative consequences
of biomass burning on air quality. While the implementation of crop rotation practices
may have benefits in some regions, it is essential to consider the associated environmental
impacts carefully. By adopting sustainable agricultural practices, we can reduce the adverse
effects of biomass burning on air quality and promote healthier living environments for all.

4.3. Implication for Local Pollution Control

During the implementation of air pollution control measures, it is essential to under-
stand the long-term variations in local atmospheric aerosols [51]. However, traditional
aerosol monitoring networks are primarily located in developed areas and are designed to
capture atmospheric composition characteristics near the surface only. Fortunately, ground-
based LiDAR technology allows for the acquisition of long-term and high-resolution vertical
profiles of aerosols [52]. In this study, utilizing ground-based LiDAR technology, we found
that the ECs in the near-surface layer of in CRC were significantly greater during the
winter season than during other seasons. Therefore, it is advisable to implement specific
air pollution control measures tailored to the distinct characteristics of winter and summer
seasons. A case in point is the observation made on Chinese New Year’s Eve in Changchun,
where the daytime and night-time discharge of firecrackers resulted in an elevation of EC
levels at a height of 500 m to 0.37 km−1 and 0.88 km−1, respectively. As a potential solution,
it is proposed to ease restrictions on firecracker usage during the day while intensifying
regulations during night-time hours. Furthermore, through an analysis of data obtained
from CALIPSO and backwards trajectory assessments, it was determined that two instances
of dust–biomass-burning composite pollution occurred in March and April. The findings
revealed that in March, the predominant aerosol component consisted of dust originating
from western Changchun, while in April, biomass-burning aerosols stemming from the
north and east of Changchun were identified as the primary aerosol component. Conse-
quently, a reduction in the intensity of spring biomass-burning activities could serve as an
effective measure to alleviate the prevalence of dust–biomass-burning composite pollution.
These insights could offer valuable guidance for formulating emission policies aimed at
addressing similar challenges related to the transmission of biomass burning pollutants
and firework emissions in other regions.

To effectively control air pollution, it is crucial to establish a comprehensive monitor-
ing network that enables the government to develop informed policies and manage air
quality [53]. However, it is important to note that atmospheric pollutants are primarily
generated, dispersed, and degraded in the upper troposphere, typically within altitudes
ranging from 2 to 8 km above ground level [54]. Consequently, an air pollution episode
caused by aerosol transport from the free troposphere may not be effectively addressed only
by reducing local anthropogenic sources [55]. This highlights the need for a well-established
three-dimensional characterization of air pollutants to ensure informed decision making
in policy development. Therefore, we propose the implementation of three-dimensional
monitoring in CRC to analyse and forecast the extent and types of air pollution. This
approach will not only enhance local pollution control efforts but also safeguard public
health.

As for the limitations, although certain vertical structures of aerosol pollution have
been emphasized, decades of monitoring are required to reduce the impact of uncertainty
and consider other factors, such as chemical generation and natural emissions. In the future,
we will continue to conduct long-term monitoring in cold regions and develop aerosol
pollution recognition models based on identification elements such as aerosol pollution
recognition to provide valuable policy recommendations.

5. Conclusions

In this study, the properties and impacts of atmospheric aerosols in the megacity
of Changchun in the CRC were investigated. The nonuniformity of the gradient in the
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vertical profile of aerosols significantly increased with decreasing temperature. In contrast,
in warmer regions, the differences in the aerosol vertical distribution remained relatively
consistent across the different seasons. The correlation between the temperature and
ground-level PM concentration was greater than that between the planetary boundary layer
height and PM concentration. The EC concentration in the near-surface layer (below 1 km)
in winter in the CRC was significantly greater than that during the other seasons, which
could be attributed to the low PBLH and anthropogenic emissions in winter. The ignition
of fireworks in suburban regions on Chinese New Year’s Eve, despite the government’s
prohibition in urban areas, led to a substantial increase in aerosol concentrations below
the 3 km altitude. Additionally, during the scheduled biomass-burning period, the EC
concentration of polluted aerosols originating from the western and northern areas of
Changchun below 3 km exceeded the annual average in April, indicating the persistence of
high aerosol levels despite the prevailing monsoon winds. The analysis using the CWT
method indicated that these regions, characterized by a substantial number of fire points,
contributed over 90 μg/m3 of PM2.5 to the air pollution levels in Changchun. Sand–dust
activity and biomass burning in March and April could cause severe pollution in this region,
even under the conditions of elevated boundary layers. These findings are beneficial for
understanding the characteristics of the aerosol variations in cold climates and substantial
anthropogenic emissions.
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Appendix A

Table A1. Concentration limits of PM2.5, PM10, SO2, CO, NO2, and O3 (8 h) within the air-quality
standards of China (GB 3095-2012) [34].

Standard
PM2.5

(μg/m3)
PM10

(μg/m3)
SO2

(μg/m3)
CO

(mg/m3)
NO2

(μg/m3)
O3 (8 h)
(μg/m3)

Grade II 75 150 150 4 80 160
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Abstract: Visible Near infrared and Shortwave Infrared (VNIR/SWIR, 400–2500 nm) remote sensing
data is becoming a tool for topsoil properties mapping, bringing spatial information for environmen-
tal modeling and land use management. These topsoil properties estimates are based on regression
models, linking a key topsoil property to VNIR/SWIR reflectance data. Therefore, the regression
model’s performances depend on the quality of both topsoil property analysis (measured on labora-
tory over-ground soil samples) and Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance which are
retrieved from Top-Of-Atmosphere radiance using atmospheric correction (AC) methods. This paper
examines the sensitivity of soil organic carbon (SOC) estimation to BOA images depending on two
parameters used in AC methods: aerosol optical depth (AOD) in the FLAASH (Fast Line-of-Sight
Atmospheric Analysis of Spectral Hypercubes) method and water vapor (WV) in the ATCOR (ATmo-
spheric CORrection) method. This work was based on Earth Observing-1 Hyperion Hyperspectral
data acquired over a cultivated area in Australia in 2006. Hyperion radiance data were converted to
BOA reflectance using seven values of AOD (from 0.2 to 1.4) and six values of WV (from 0.4 to 5 cm),
in FLAASH and ATCOR, respectively. Then a Partial Least Squares regression (PLSR) model was
built from each Hyperion BOA data to estimate SOC over bare soil pixels. This study demonstrated
that the PLSR models were insensitive to the AOD variation used in the FLAASH method, with
R2

cv and RMSEcv of 0.79 and 0.4%, respectively. The PLSR models were slightly sensitive to the WV
variation used in the ATCOR method, with R2

cv ranging from 0.72 to 0.79 and RMSEcv ranging from
0.41 to 0.47. Regardless of the AOD values, the PLSR model based on the best parametrization of
the ATCOR model provided similar SOC prediction accuracy to PLSR models using the FLAASH
method. Variation in AOD using the FLAASH method did not impact the identification of bare soil
pixels coverage which corresponded to 82.35% of the study area, while a variation in WV using the
ATCOR method provided a variation of bare soil pixels coverage from 75.04 to 84.04%. Therefore,
this work recommends (1) the use of the FLAASH AC method to provide BOA reflectance values
from Earth Observing-1 Hyperion Hyperspectral data before SOC mapping or (2) a careful selection
of the WV parameter when using ATCOR.

Keywords: Hyperion; hyperspectral imagery; atmospheric corrections; soil organic carbon; ATCOR;
FLAASH; mapping

1. Introduction

Soil is a heterogeneous composite material with a wide range of physical and chemical
properties. It supports life and vegetation on earth and plays a central role in many of
today’s environmental challenges. A solid understanding of soil is required for improved
soil management. Composition and properties such as clay, sand, silt, calcium carbonate,
free iron, organic carbon, and pH in the spatial and temporal domains. Soil organic carbon
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(SOC) is one of the major soil constituents because of its ability to influence plant growth
as a source of energy and a trigger for nutrient availability via mineralization [1]. SOC is
also important for the carbon cycle in terrestrial environments [2]. The determination of
SOC content is also an obvious requirement to determine the rate and/or extent of Carbon
soil sequestration. In agronomy, soil science, and climate change research, information
on geographical and temporal fluctuations in SOC content is needed [3,4]. Traditional
laboratory procedures for determining SOC content are time-consuming, expensive, and
labor-intensive. The VNIR/SWIR spectroscopy (350–2500 μm) can be used to estimate the
SOC in lab, field and from remote sensing conditions [5]. The soil reflectance spectra in
the 1100–2500 nm range generally includes three distinct absorption peaks around 1400,
1900, and 2200 nm with a few small absorption peaks between 2200 and 2500 nm [6]. The
effect of SOC containing biochemical constituents like chlorophyll, oil, cellulose, pectin,
starch, lignin, and humic acids [7] is dominant in the visible and near infra-red portion of
the spectrum (400–1100 nm), and some parts of the SWIR region (1100–2500 nm) [8], and
soil reflectance generally decreases with organic matter content [9]. Simple Linear Regres-
sion [10], Principal Component Analysis [11], Partial Least Squares regression (PLSR) [12],
and Artificial Neural Networks [13] are some of the statistical techniques used for SOC
estimation. Out of these methods, PLSR is the most common method. VNIR/SWIR hyper-
spectral remote sensing data were becoming a potential tool to extend SOC mapping [14,15].
However, this technique is affected by the presence of green and dry vegetation [16,17],
topsoil moisture [18] and atmospheric composition [19]. Concerning the latter, since the
mid-1980s some Atmospheric Correction (AC) methods have been developed which were
applied on VNIR/SWIR data obtained via airborne and spaceborne multispectral and
hyperspectral sensors. AC methods are used to convert the Top-Of-Atmosphere radiance to
the surface reflectance (also called Bottom-of-Atmosphere reflectance). By reducing external
atmospheric components, reflectance can be improved. Empirical models, radiative transfer
models, and hybrid models are the three categories of AC models. They have evolved from
an empirical approach to rigorous radiative transfer modeling [20].

Empirical models mainly rely on image statistics to estimate surface reflectance. A
few of the empirical methods are Internal Average Reflectance (IAR), Flat Field (FF), and
Empirical line method [21]. Darkest Pixel principle (DP) is also an empirical method,
where studies [22] indicated the best results for accurate surface reflectance estimation
are achieved using a method that adds the effect of Rayleigh scattering to conventional
dark object subtraction. For atmospheric correction and aerosol retrieval, semi-empirical
approaches such as QUick atmospheric correction (QUAC) [23] are used. Radiative trans-
fer methods simulate the absorption and scattering effects of atmospheric components.
To mimic the atmosphere, several algorithms have been created, notably ATREM (AT-
mospheric REMoval algorithm), ATCOR (ATmospheric CORrection [24], FLAASH (Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes [25], ISDAS (Imaging Spec-
trometer Data Analysis System [26], HATCH (High-accuracy ATmosphere Correction for
Hyperspectral data [27], and ACORN (Atmospheric CORrection Now) [28]. For the deriva-
tion of surface reflectance from hyperspectral imaging data, hybrid models commonly
combine radiative modeling with empirical methodologies. With physical models, Gor-
don [29] has summarized the evolution of Ocean color Atmospheric corrections right from
its early years to the current scenarios. Other physical models are also developed and used
for various applications [30,31]

Some studies compared performances of AC models for identifying tree species [32],
mineral mapping [33], littoral environments studies [34], and SOC content mapping [35].
Beyond the type of AC methods and the choice of the AC method, the atmospheric parame-
ters (e.g., Aerosol Optical Depth, Water vapor, Ozone, Visibility) used in AC methods might
be uncertain and the choice of these atmospheric parameters may impact the reflectance
quality. Only a few studies focused on an evaluation of the impacts of these atmospheric
parameters on reflectance quality such as ozone, water vapor, Rayleigh scattering, aerosol
scattering on the spectral reflectance of NOAA-AVHRR and derived NDVI data [36,37].
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Mannschatz et al. [38] studied sensitivity of LAI estimation from satellite imaging to atmo-
spheric correction using ATCOR, and highlighted that the ATCOR parameter ‘visibility’
has the strongest influence on LAI estimation. Griffin et al. [39] studied the sensitivity of
Visibility, Aerosol model type, Atmospheric model and solar zenith on surface reflectance
using AVIRIS data in FLAASH and ATREM and concluded the sensitivity to input visibil-
ity generally varied between +0.03 for both AC models. Davaadorj. A. [40] studied the
sensitivity of different aerosol models using Worldview 3 data with FLAASH and ATCOR
AC and concluded that maritime aerosol has the least sensitivity compared to rural and
urban models. The variation of surface reflectance caused by different surface types such
as sand, artificial turf, grass, bright and dark targets with respect to AOD was studied by
Nazer et al. and Bassani et al. [41,42].

In this context, the aim of the study is to evaluate the uncertainty of SOC prediction due
to two atmospheric parameters used in AC methods: the water vapor (WV) using ATCOR
and the Aerosol Optical Depth (AOD) using FLAASH. A Hyperspectral Hyperion image
was corrected by ATCOR and FLAASH AC methods to convert the at-sensor radiance
spectrum to the ground reflectance spectrum, with a feasible range of WV and AOD values,
respectively. And the PLSR method was selected as the classical chemometric method for
SOC content estimation based on each corrected Hyperion reflectance data. The data and
methods used are presented in Section 2 and the results in Section 3. Finally, the results are
discussed in Section 4.

2. Materials and Methods

2.1. Study Area

The Narrabri site is in Australia’s northwestern state of New South Wales (NSW)
(Figure 1a). The study area is divided into two subsites: the cotton fields of Namoi (referred
to as Narrabri site#1 henceforth) (149◦37′E, 30◦10′S), which cover 70 km2, and the pastures
in the town of Narrabri (referred to as Narrabri site#2), which covers 69 km2 (Figure 1b). The
Australian fields are extensive and continuous (approximately 500 m × 900 m). Vertisols
predominate in this area. The terrain is flat, with plane regions rising to an average elevation
of 210 m above sea level.

Figure 1. Location of the study area (a) in Australia, (b) on the Narrabri region; hyperion image
acquired over (c) the site#1 and (d) site#2 with sampling points plotted in red dots.
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2.2. Raw Hyperion Data

The EO-1 satellite’s Hyperion sensor monitors radiation from 400 to 2500 nm in
242 spectral bands with a spectral resolution of about 10 nm and a spatial resolution of
30 m. The Hyperion images have a sweep width of 7.6 km. Folkman et al. [43] provided a
full description of Hyperion’s characteristics, operations, and uses.

Two Hyperion cloud-free pictures were obtained over the Narrabri study area in this
study: the first on 13 December 2006 at 23:51 UT over Narrabri pasture soils (site#2), and
the second on 17 January 2007 at 23:47 UT over cropping soils (site#1) and traveling stock
routes of Namoi. The Hyperion images were georeferenced Hyperion images in L1T format
(Figure 1c,d).

2.3. Soil Sampling

Over the two Narrabri locations, a total of 98 soil samples were collected (Figure 1c,d)
from researchers of The University of Sydney in Australia [12]. It includes 46 samples
from Narrabri site#1’s cropping soils and stock routes collected in October 2006 (during
the same semester as Hyperion data) (Figure 1c) and 52 samples from Narrabri site#2’s
pastures collected in December 2006 (during the same month as Hyperion data) (Figure 1d).
During the field campaign, soil samples were gathered from bare soil areas. Because there
was no organic matter added or consumed in the field due to the absence of vegetation
during this period at the sampling locations, SOC content may be deemed steady between
sampling and picture collection. Climate change, particularly changes in temperature and
rainfall, have an impact on SOC by hastening its decomposition. However, it was reliably
concluded that SOC was very consistent between measurements in Narrabri site#1 during
a short period of three months from October 2006 to January 2007. Soil samples were taken
at a depth of 0 to 10 cm. This depth corresponds to the ploughed soil horizon, and the
Hyperion measurement may be deemed indicative of this tested depth because the soil
samples were gathered on cultivated areas. Soil samples are the average of sub-samples
obtained at the center and four corners of a 20 × 20 m area’s perimeter.

2.4. SOC Laboratory Measurements

Laboratory mid-infrared (MIR) spectroscopy was used to determine the SOC content
of soil samples. Samples were crushed to 200 μm for MIR analysis and analyzed as neat
powders. Each soil sample’s MIR spectral reflectance was measured using a Bruker Optics
Tensor 37 Fourier Transform Infrared spectrometer with an 8 cm-1 resolution and 64 scans
per second in the range 2500 to 25,000 nm. PLSR from MIR calibrations was used to predict
the SOC content of each soil sample [12]. The calibration used 13 factors, and the model’s
root mean squared error in the test set validation was 0.15 dag/kg, with an R2 of 0.91 [12].
The SOC ranges from 0.002% to 3.6%, with a mean of 1.56%, and a standard deviation of 0.97%.

2.5. Atmospheric Parameters
2.5.1. Water Vapor

Water vapor (WV) absorption has a strong effect within specific absorption bands,
but spectral bands for land surface observations are typically designed to avoid strong
absorption lines. Hence water vapor absorption must be accurately corrected in the selected
bands. From a joint project between the National Center for Environmental Prediction
(NCEP, formerly “NMC”) and the National Center for Atmospheric Research (NCAR) [44],
the total column WV over the study area ranged between 0.9 cm to 3.7 cm in the last 15 years
(from 2000 to 2015, Figure 2, Table 1). These WV values were estimated by reanalysis models
built from historic meteorological data collected over 15 years.
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Figure 2. The WV distribution over Narrabri over 15 years estimated by the joint project between the
National Centers for Environmental Prediction (NCEP, formerly “NMC”) and the National Center
for Atmospheric Research (NCAR).

Table 1. WV and AOD estimations, estimated by the joint project between the National Centers for
Environmental Prediction (NCEP, formerly “NMC”), the National Center for Atmospheric Research
(NCAR), and the atmosphere global product based on Modis MOD08_M3 V6, respectively.

Water Vapor (WV)
(in cm)

Aerosol Optical Depth
(AOD)

Minimum 0.9 0.02
Maximum 3.7 1.50

Mean 2 0.48
Median 1.9 0.42

Standard Deviation 0.7 0.25

At the date of the Hyperion images acquisition, the total column WV value would
be estimated between 2.8 cm and 3.1 cm. Finally, considering the “Mid Latitude Summer”
climatic condition over the study area, the default WV value usually selected in the ATCOR
model would be 2–3 cm (Table 3, [12]). The Hyperion data were corrected from atmospheric
effects using six WV values, preselected by the ATCOR software: 0.4, 1, 2, 2.9, 4, and 5 cm.

2.5.2. Aerosol Optical Depth

Molecular scattering and absorption can be adequately explained, but not the optical
properties of aerosols for the portion of the spectrum dominated by scattering processes
rather than thermal emission. Kaufman [45] demonstrated how aerosols reduce apparent
spatial resolution, alter the apparent spectral characteristics, resulting in a loss of classifica-
tion accuracy. From MODIS MOD08_M3 V6, which is an atmosphere global product that
contains monthly 1 × 1-degree grid average values of atmospheric parameters, the AOD
values over the study area ranged from 0.02 to 1.5 over the last 15 years (from 2000 to 2015,
Figure 3, Table 1) [46].
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Figure 3. The aerosol optical depth distribution over Narrabri over 15 years estimated by the
atmosphere global product based on Modis MOD08_M3 V6.

At the date of Hyperion images acquisition, over the study area, the AOD value
would be estimated between 0.25 and 0.26. Finally, considering the “Mid Latitude Summer”
climatic condition over the study area, the default AOD value in FLAASH would be 1.
The Hyperion data were corrected from atmospheric effects using seven AOD values in
FLAASH: 0.2, 0.4, 0.6, 0.8, 1, 1.2, and 1.4.

2.6. Methodology

The FLAASH and ATCOR atmospheric correction was performed in ENVI and AT-
COR software, respectively. Bands selection and bare soil pixels selection were performed
in QGIS, an open-source GIS software. The regression model, including the calibration
data preparation, the model building, and the evaluation of the performances were per-
formed in Matlab(R). Historical AOD and WV data were extracted using the Google
Earth Engine platform.

2.7. Atmospheric Correction Models
2.7.1. ATCOR Atmospheric Correction Model

ATCOR uses the MODTRAN5 radiative transfer model [24] with the newest high-
resolution transmission molecular absorption (HITRAN) database for atmospheric correc-
tion. MODTRAN5 is an updated version with greater spectral resolution and supplemen-
tary atmospheric gas treatment [47,48]. In the 400–2500 nm range, ATCOR uses a variable
wavenumber grid to achieve a constant spectral sample distance of 0.4 nm [24]. In this
study, the band model of MODTRAN was used.

For each image, ATCOR assumes a Lambertian surface and requires a sensor type,
flight date, solar zenith angle, sensor view geometry, average ground height, and adjacency
range. The initial visibility estimate was 30 km. The spectral specifications for the sensor
Hyperion are stored in a calibration file called “hyperion 167.cal” provided by ATCOR.
There is an atmospheric database, which consists of look-up tables for radiative transfer
calculations that span a wide range of weather situations and sun angles. The user has the
option of using the standard MODTRAN model for atmosphere and aerosol types to depict
the scene, and each image receives its own MODTRAN solution.

In this study, both Hyperion images were corrected from atmospheric effects with the
ATCOR model (Figure 4) using the six WV values, preselected by the ATCOR software:
0.4, 1, 2, 2.9, 4, and 5 cm. The default values of other parameters were selected for running
the ATCOR model as described in Table 2. Six atmospherically corrected Hyperion images
were created for both sites (site#1 and site#2).
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Figure 4. Process flow.

Table 2. ATCOR parameters.

Parameter Selected Value

Atmospheric Model Mid-Latitude Summer
Adjacency correction No

Aerosol Model Rural
Visibility 30 km

Region for water vapor retrieval 820 nm
Spectral polishing No

CO2 390 ppm
Water vapor Ranges from 0.9 cm to 3.7 cm

2.7.2. Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubus (FLAASH)
Atmospheric Correction Model

FLAASH is an atmospheric adjustment approach based on physics [49]. It calculates
the parameters needed for RT equations using the MODTRAN4 code, which results in
surface reflectance. A scaled DISORT (DIScrete Ordinate Radiative Transfer) algorithm
is utilized to calculate atmospheric multiple scattering, and the correlated k technique is
employed to represent absorption for places with significant absorption effects. FLAASH,
with a resolution of 5 cm−1, results in SSD ranging from 0.08 to 3.12 nm depending on
wavelength in the 400–2500 nm range.

Hyperspectral sensors, such as HyMAP, AVIRIS, HYDICE, Hyperion, Probe-1, CASI,
and AISA, and multispectral sensors, such as HyMAP, AVIRIS, HYDICE, Hyperion, Probe-
1, CASI, and AISA), are supported by FLAASH (such as Landsat, SPOT, IRS, and ASTER).
Retrieval of water vapor and aerosol are only possible when the image comprises bands
with incorrect wavelength locations. A method for extracting an estimated aerosol/haze
amount from chosen dark land pixels in the picture is included in the FLAASH model.

In this study, both Hyperion images were corrected from atmospheric effects with
the FLAASH model (Figure 4) using the seven AOD values selected based on the Modis
MOD08_M3 V6 product (Section 2.5.2): 0.2, 0.4, 0.6, 0.8, 0.1, 0.12, and 0.14. The default
values of other parameters were selected for running the FLAASH model as described
in Table 3. Seven atmospherically corrected Hyperion images were created for both sites
(site#1 and site#2).

Table 3. FLAASH parameters.

Parameter Selected Value

Atmospheric Model Mid-Latitude Summer
Adjacency correction No

Aerosol Model Rural
Visibility 30 kms

Region for water vapor retrieval 820 nm
Spectral polishing No

CO2 390 ppm
Aerosol optical depth Ranges from 0.02 to 0.15
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2.8. Bands Selection

The HYPERION spectral bands with a very low SNR and those located in the at-
mospheric absorption bands are removed, as previously done by Gomez et al. [12], Lu
et al. [50], and Minu et al. [35]. A total of 122 spectral bands, belonging to spectral ranges
from 467 to 854 nm, 1063 to 1336 nm, 1548 to 1790 nm, and 1981 to 2355 nm, were finally
kept to estimate SOC content from PLSR models. Different degrees of vertical stripping
were indicated by visual observation of individual reflectance bands. It was discovered that
excluding certain bands from the study was beneficial [50,51]. This is done after FLAASH
or ATCOR has applied atmospheric adjustment (Figure 4). Bands surrounding large at-
mospheric absorption areas (e.g., at the 950, 1400, 1900, and 2500 nm water absorption
bands) that appear as over/under-corrected reflectance values were also removed from
the reflectance spectrum. After using the FLAASH and ATCOR algorithms, a few bands
with negative or zero reflectance values near the 450 nm spectral area that were not actual
reflectance values were also removed.

Finally, a total of 122 spectral bands were used in both ATCOR and FLAASH and then
used to estimate SOC content from PLSR models. This is in accordance with the bands
used by Minu et al. [35]. These 122 spectral bands belong to the spectral ranges from 467 to
854, 1063 to 1336, 1548 to 1790, and 1981 to 2355 nm.

2.9. Bare Soil Pixels Selection

The Normalized Differential Vegetative Index (NDVI) was used to identify and mask
green vegetation pixels [52], based on the following equation:

NDVI = (NIR − Red)/(NIR + Red) (1)

where NIR and Red are the reflectance measured at 834 nm and 661 nm, respectively. Pixels
with NDVI values over 0.2 were masked.

The Modified Normalized Difference Water Index (MNDWI) was used to identify
and mask water pixels. The MNDWI is calculated for the enhancement of open water
features [53], as follows:

MNDWI = (Green − SWIR1))/(Green + SWIR1) (2)

where Green and SWIR1 are the reflectance measured at 559 nm and 1609 nm, respectively.
It also diminishes built-up area features that are often correlated with open water in other
indices. Pixels with MNDWI values greater than 0 were masked.

The Normalized Burned Ratio 2 (NBR2) index was used to mask the dry vegetation [54]
as follows:

NBR2 = (SWIR1 − SWIR2)/(SWIR1 + SWIR2) (3)

where SWIR1 and SWIR2 are the reflectance measured at 1609 nm and 2193 nm, respectively.
Pixels with an NBR2 value greater than 0.2 were masked [54].

2.10. Regression Model
2.10.1. Data Preparation

Before performing quantitative statistical analysis, a noise reduction was achieved
through standard pre-treatments: a Savitzky–Golay filter with third-order polynomial
smoothing and window widths of 61 nm [55], mean centering and variance scaling. A
generalised moving average filter, the Savitzky Golay filter [55], is also known as a digital
smoothing polynomial filter or least-squares smoothing filter. The filter coefficients are
calculated by fitting a polynomial of a particular degree with an unweighted linear least-
squares fit. It requires equidistant bandwidth and fits a local polynomial regression on
the signal. It is feasible to get a high amount of smoothing without attenuating data
features using a higher degree polynomial. Mathematically, it’s nothing more than a
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weighted sum of nearby values. The Hyperion spectra were filtered with a third order
Savitzky Golay filter.

xi =
∑n

j=1 Xij

n
(4)

Standard normal variate (SNV) calculates the standard deviation of all the pooled variables
for the given sample [56]. The entire sample is then normalized by this value, thus giving
the sample a unit standard deviation (s = 1).

wi =

√
∑n

j=1(Xij − xi)2

n − 1
+ δ−1 (5)

where n is the number of variables, xij is the value of the jth variable for the ith sample, and
δ is a user-definable offset. The user-definable offset can be used to avoid over-normalizing
samples which have near-zero standard deviation. The default value for this offset is zero,
indicating that samples will be normalized by their unweighted standard deviation. The
selection of δ is dependent on the scale of the variables. A setting near the expected noise
level (in the variables’ units) is a good approximation.

Outliers are observations that differ significantly from normal values and are not
compatible with the rest of the data [57,58]. Spectra can be defined as a spectral outlier
when the sample is spectrally different from the rest of the samples. Out of the 98 samples
for which SOC values are present, spectral outliers were identified using Mahalanobis
distance [59]. This class of methods only uses distance space to flag outlier observations.
The Mahalanobis distance (MD) for the ith observation is given by:

MDi =
√
(xi − x)tC−1 (xi − x)

C = 1
n−1 X′X (6)

where X is the data matrix of size n × p, where p is the number of variables and n is the
number of observations. xi is an observation (a row of X), x is the mean vector, and C is the
sample covariance matrix which gives information about the covariance structure of the
data. In the analysis, Mahalanobis distance cutoff was set to 3.

2.10.2. PLSR with Leave-One-Out Cross-Validation (LOOCV)

In this study, Partial Least Squares Regression (PLSR) is carried out to find predictive
models for soil organic carbon data and discusses the effectiveness of these methods in
predicting soil carbon using spaceborne Hyperspectral data. Here, the PLSR method is used
to regress a relationship between response variables to many predictor variables [60]. Care
should be taken whilst choosing the number of latent variables. Using many components
will lead to a good fitting model but is a strategy that leads to overfitting. In this case,
cross-validation, which is a widely used method, was used in choosing the optimal number
of variables. The maximum number of latent variables was defined as 10, then the optimal
number of latent variables was determined using the prediction residual error sum of
squares (PRESS) analysis. This allows avoiding under- and over-fitting.

Cross validations also avoid overfitting by not using the same data to both fit a model
and to estimate prediction error. In this study, 10-fold cross-validation was used. Here
the original data was divided into subsets or folds, which in this case is 10. One of the
folds is not used in the model building and is used to estimate the error. This process is
replicated for all the folds for multiple iterations. This leads to a minimized prediction
error for different numbers of latent variables. Hence there is no fixed validation dataset.
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2.10.3. Model Evaluation

The coefficient of determination (R2
cv) is the percent of the total variation in the

response variable that is explained by the regression line [61]. The R2
cv was obtained for

the cross-validation dataset as follows:

R2 = 1 − SSE
SST

(7)

where SSE is the sum squared differences between the predicted and observed value, and
SST is the sum of squared differences between the observed and overall mean value.

The root means squared error (RMSEcv) is the average prediction error (square root of
mean squared error) [62].

RMSE =

√
∑n

i=1(yi − ŷi)2
n

(8)

RPD is the ratio of the standard deviation (SD) of analyzed data to RMSEcv. It is given
by the following equation:

RPD =
SD

RMSE
(9)

Chang and Laird [63] defined three classes of RPD: category A (RPD > 2) describes
models that can accurately predict the soil property, category B (2 > RPD > 1.4) describes
models with limited predictive power, and category C (RPD < 1.4) describes models that
have no prediction ability.

The ratio of performance to interquartile (RPIQ) value is more objective than RPD [64]
as it is based on quartiles, which better represents the spread of the population. The
quartiles are milestones in the population range: Q1 is the value below which 25% of the
samples are found; Q3 is the value below which 75% of the samples are found; and Q2,
commonly called the median, is the value under which 50% of samples are found. RPIQ is
the ratio of IQ to RMSE, where IQ is the difference between the third quartile Q3 and the
first quartile Q1. A larger RPIQ value indicates improved model performance. The formula
is shown as follows:

IQ = Q3 − Q1
RPIQ = IQ

RMSE
(10)

The Variable Importance in Projections (VIP) is a weighted sum of squares of PLS
weights, with weights generated from each PLS component’s Y-Variance [65,66]. Multi-
plying the VIP and the absolute value of PLS regression coefficients from the PLSR model
yields the wavelengths important for modeling. Each PLSR model was examined for a
higher value for the product of absolute regression coefficient and variable importance
for projection (VIP) to identify significant wavelengths in determining SOC content from
spectral reflectance data rather than the full spectrum.

2.10.4. SOC Mapping

The calibrated PLSR models were applied to bare soil pixels. This would produce
an estimated SOC map for each model. In case of a negative estimated SOC value, this
value was replaced by 0 g/kg. So, a total of 13 SOC maps were obtained: six from the
Hyperion images corrected by FLAASH and different AOD values and seven from the
Hyperion images corrected by ATCOR and different WV values. A map of the standard
deviation of the estimated SOC along the six SOC maps obtained from the Hyperion images
corrected by FLAASH was produced. A map of the standard deviation of the estimated
SOC along the seven SOC maps obtained from the Hyperion images corrected by ATCOR
was produced.
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3. Results

3.1. Bare Soil Coverage Analysis

Similar histograms of NDVI, MNDWI and NBR2 values were obtained whatever be the
AOD value used in the FLAASH model to correct the Hyperion images (Figure 5(A1,B1,C1)).
Moreover, a similar bare soil coverage of 82.35% was obtained, whatever be the used AOD
value (Table 4). So, a variation of the AOD value used in the FLAASH model did not
impact the reflectance at the spectral bands used to calculate the NDVI, MNDWI, and
NBR2 spectral indexes (Equations (1)–(3)).

Figure 5. Histograms of NDVI (overall the area) obtained from the Hyperion images corrected
with several (A1) AOD and (A2) WV; Histograms of MNDWI (overall the area) obtained from the
Hyperion images corrected with several (B1) AOD and (B2) WV; Histograms of NBR2 (overall the
area) obtained from the Hyperion images corrected with several (C1) AOD and (C2) WV.
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Table 4. Figures of merit obtained from PLSR models, based on Hyperion data corrected by the
FLAASH method, and depending on 7 values of AOD.

AOD 0.2 0.4 0.6 0.8 1 1.2 1.4

Bare soil coverage (%) 82.35 82.35 82.35 82.35 82.35 82.35 82.35
R2

cv 0.79 0.79 0.79 0.79 0.79 0.79 0.79
RMSEcv (%) 0.40 0.41 0.40 0.40 0.40 0.40 0.40

RPD 2.23 2.21 2.22 2.23 2.23 2.23 2.23
RPIQ 3.26 3.24 3.25 3.26 3.27 3.26 3.26

bias (%) 0.32 0.33 0.33 0.33 0.33 0.33 0.33
Number of Latent Variables 2 2 2 2 4 2 2

By contrast, the selection of the WV value used in the ATCOR model to correct the
Hyperion images appeared to impact marginally the spectral bands used to calculate the
NDVI, MNDWI, and NBR2 spectral indexes (Equations (1)–(3)). Histograms of NDVI
and MNDWI values displayed the same shapes irrespective of the WV value used in the
ATCOR model, with the same modes at 0.1 and −0.4 for NDVI and MNDWI, respectively
(Figure 5(A2,B2)). Histograms of NBR2 values displayed the same shapes with a slight
shift of modes (Figure 5(C2)). Consequently, the bare soil coverage varied depending on
the used WV value from 75 % (obtained with a WV of 0.4) to 84 % (obtained with a WV of
2) (Table 5).

Table 5. Figures of merit obtained from PLSR models, based on Hyperion data corrected by the
ATCOR method, and depending on 6 values of WV. The best performances are highlighted in bold.

Water Vapor
(in cm)

0.4 1 2 2.9 4 5

Bare soil coverage (%) 75.04 80.54 84.04 83.50 83.17 82.85
R2

cv 0.75 0.78 0.79 0.75 0.72 0.72
RMSEcv (%) 0.44 0.41 0.41 0.44 0.47 0.46

RPD 2.04 2.17 2.19 2.03 1.91 1.93
RPIQ 2.98 3.17 3.21 2.97 2.80 2.83

bias (%) 0.35 0.33 0.31 0.34 0.38 0.35
Number of Latent Variables 5 2 3 4 2 6

For the same pixel, it is observed that there is no variation of the spectrum along with
the AOD range, but variations can be observed of the spectrum along with the WV range
(Figure 6). No absorption bands of clay or carbonate are observed in the spectrum with
FLAASH AC. Meanwhile, for the spectrum with ATCOR AC, the higher the WV the higher
the albedo of the spectra.

Figure 6. Spectral signature of the same bare soil pixel corrected by (A) FLAASH with varying AOD
levels and (B) ATCOR with varying WV levels.
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3.2. SOC Prediction Models Performances Using Hyperion Data Corrected by FLAASH

A PLSR model was built from the Hyperion spectra corrected by the FLAASH model
and from SOC associated with the available soil samples. Four spectral outliers were
removed from the calibration database, regardless of the study area, and the number of
latent variables were determined following the rule of the first local minimum of the
RMSEcv and varied between 2 and 4 (Table 4). The performance of the PLSR models was
correct, with R2

cv of 0.79, RMSEcv of 0.40 and RPD of 2.2 whatever be the AOD values
(Table 4). So, the selection of the AOD for correcting the Hyperion images using the
FLAASH model did not affect the model’s performance for SOC prediction.

3.3. SOC Prediction Models Performances Using Hyperion Data Corrected by ATCOR

A PLSR model was built from the Hyperion spectra corrected by the ATCOR model
and from SOC associated with the available soil samples. Four spectral outliers were
removed from the calibration database, regardless of the study area, and the number of
latent variables were determined following the rule of the first local minimum of the
RMSEcv, which varied between 2 and 6 (Table 5). The performances of the PLSR models
were correct, with R2

cv from 0.72 to 0.79, RMSEcv from 0.41 to 0.47 and RPD from 1.9
to 2.2 (Table 5).

The best performance was obtained from the model based on spectra corrected by the
ATCOR model and WV of 2 cm (Table 5). The lowest performance was obtained from the
model based on spectra corrected by the ATCOR model and WV of 4 cm (Table 5).

3.4. Significant Wavelengths for SOC Estimation

Between 41 to 43 wavelengths were identified as significant in the PLSR models
built from the 6 Hyperion images corrected by FLAASH and different AOD values. 41
of these significant wavelengths are common between the six PLSR models. 48% of the
significant wavelengths belonged to the VNIR (400–1100 nm) and 42% of the significant
wavelengths belonged to the spectral domain from 1100–2000 nm (Figure 7A). In the region,
2000–2400 nm fewer significant wavelengths (14%) were found corresponding to some
minerals (Carbonates and Clay) (Figure 7A).

Figure 7. Spectral signature of the same bare soil pixel corrected by (A) FLAASH for an AOD level
of 80 and the significant wavelengths for the associated PLSR model (highlighted by gray vertical
lines); (B) ATCOR for an WV of 2 cm and the significant wavelengths for the associated PLSR model
(highlighted by gray vertical lines).

Between 28 to 42 wavelengths were identified as significant in the PLSR models
built from the two Hyperion images corrected by ATCOR and different WV values, and
only 1 of these significant wavelengths are common between the thirteen PLSR mod-
els. Most of the significant wavelengths (36%) belonged to the spectral domain from
1100 to 2000 nm (Figure 7B). 33% of significant wavelengths belonged to the spectral do-
main from 2000–2500 nm (Figure 7B).
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3.5. SOC Maps Using Hyperion Data Corrected by FLAASH

PLSR models built from Hyperion images corrected with different AOD values using
the FLAASH model were applied to the bare soil pixels to produce SOC maps over both
sites. The percentage of negative predictive SOC values over both sites varied from 2.64 to
6.31% depending on the AOD value used to correct the Hyperion images with the FLAASH
model (Table 6). The percentage of negative predictive SOC increases from an AOD of 0.4 to
AOD 1.4 (Table 6) while the highest percentage was observed with an AOD of 0.2 (Table 6).

Table 6. Percentage of negative SOC estimated using Hyperion data corrected by FLAASH, from
both the sites.

AOD Negative SOC Pixels %

0.2 6.31
0.4 1.93
0.6 2.64
0.8 2.65
1.0 3.27
1.2 4.98
1.4 5.50

The distributions of SOC contents estimated by PLSR over both sites varied slightly
when using an AOD value from 0.4 to 1.4 with a mode around 1.8%, while the distribution
of SOC contents estimated by PLSR when using an AOD value of 0.2 has a mode around
1.6% (Figure 8). The SOC map using AOD 0.2 has a greater number of pixels which have
SOC of greater than 3%. This is not observed in the other SOC maps. The SOC prediction
map with AOD 80 is visualized in the Figure 9.

Variation in the SOC content of the pixels adjacent and in between vegetation pixels
can also be observed. This can be clearly seen in the Standard Deviation map (Figure 10).
A higher standard deviation along the riverbed in site#2 is observed. This may be due to
no bare soil and a mixture of water, green, and dry vegetation. High standard deviation is
observed in areas that have negative values with AOD = 0.2 and AOD > 1.0.

Figure 8. Histogram of the estimated SOC content from both the sites with varying AOD.
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Figure 9. SOC prediction maps using an AOD of 80 with FLAASH method.

It is observed that there is a slight deviation in the spectral signatures with varying
AOD in the VNIR region of 400 to 1100 nm and no deviation in the rest of the spectrum
up to 2400 nm (Figure 6). The percentage of bare soil pixel is very consistent 82.35% and
good consistency is observed for the significant wavelengths for the prediction model with
FLAASH atmospheric correction (Table 4). Hence due to these observations, consistency
can be observed in the model performance across varying AOD levels.

The range of AOD in the Narrabri region varies from 0.02 to 1.5 as per Table 1.
Comparing the SOC maps obtained by varying the AOD level with the exception of AOD
level 0.2, good consistency prediction from AOD 0.4 to AOD 1.4 is observed. This is also
confirmed by the histogram as per (Figure 8). The standard deviation map of SOC variation
is fairly consistent with high variation at a few places. These places match with farm
boundaries indicating inconsistencies at a farm level.
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Figure 10. Standard deviation map of estimated SOC obtained along the seven AOD values used
with FLAASH method.

3.6. SOC Maps Using Hyperion Data Corrected by ATCOR

PLSR models built from Hyperion images corrected with different WV values using
the ATCOR model were applied to the bare soil pixels to produce SOC maps over both
sites.

The percentage of negative predictive SOC values over both areas varied from 1.78%
(obtained with a WV of 5 cm) to 5.51% (obtained with a WV of 0.4 cm) depending on the
WV value used to correct the Hyperion images with the ATCOR model (Table 7).
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Table 7. Percentage of negative SOC estimated using Hyperion data corrected by ATCOR, from both
the sites.

Water Vapor (in cms) Negative SOC Pixels %

0.4 5.51
1.0 4.60
2.0 4.63
2.9 3.22
4.0 4.53
5.0 1.78

The distributions of SOC contents estimated by PLSR over both sites varied signifi-
cantly when using a WV value from 0.4 to 5 cm (Figure 11), with different modes from 1.2%
(obtained with a WV of 2 cm) to 1.8% of SOC (obtained with a WV of 0.4 cm). The PLSR
model built from Hyperion spectra corrected by ATCOR and a WV value of 2 cm provided
the best performances (Table 5) while the estimated SOC contents over the sites displayed
the lower SOC values (Figure 11). The SOC prediction map with WV 2 cm is visualized in
the Figure 12.

Figure 11. Histogram of the estimated SOC content from both the sites with varying WV.

There is variation in the SOC map using WV of 0.4, 4, and 5 cm, respectively (Figure 11),
compared to the rest of the maps, which are fairly consistent. Variation in the pixels around
and between vegetation can also be observed. This can be clearly seen in the standard
deviation map (Figure 13). High standard deviation is observed along the riverbed due
to no bare soil pixel and the mixture of water and vegetation pixels in site#2. A couple of
prominent stripes in site#1 and site#2 are observed. In site#1, high standard deviations are
observed along the farm boundaries.
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Figure 12. SOC prediction maps using WV of 2cm with ATCOR method.

The distribution of SOC estimates varied with different WV conditions though sim-
ilarity in the modes is observed between 1 cm, 2 cm, and 2.9 cm (Figure 11). The best
results statistically are obtained for the models in this range. A higher percentage of SOC is
estimated in the 0.4 cm, 4 cm, and 5 cm (Figure 11). It is to be noted these ranges are not
in the range of WV over the study area (Figure 2, extracted from NCEP). Small deviations
in SOC can be observed throughout the study area and stronger deviations in SOC can
be observed where there is uncertainty associated with surface types like riverbeds and
boundaries of farm plot (Figure 13).
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Figure 13. Standard deviation map of estimated SOC obtained along the six WV values used with
ATCOR method.

4. Discussions

4.1. Bare Soil Identification Variations Based on Atmospheric Parameters

The choice of the AOD parameter in the FLAASH AC method seems to have no impact
on the three tested spectral indexes (NDVI, MNDWI, and NBR2; Figure 5(A1,B1,C1)).
Therefore, the percentage of bare soil pixels, based on NDVI indexes, remained constant
along the AOD parameters in FLAASH (Table 4). On the other hand, the WV parameter
in the ATCOR AC method affects the three tested spectral indexes (NDVI, MNDWI, and
NBR2; Figure 5(A2,B2,C2)). Therefore, the percentage of bare soil pixels identification
varied depending on the WV parameter (Table 5).

As soil properties estimations are affected by the presence of green and dry vegetation
on spectra [16,17], bare soil pixel identification is a major step in soil properties mapping
by remote sensing. As this step of bare soil pixels identification depends on spectral indices
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calculations (e.g., NDVI and NBR2) [67,68], the choice of the AOD parameter may impact
the soil properties mapping. Additionally, the topsoil moisture conditions may also affect
reflectance spectra and therefore spectral indices calculation, such as the NBR2 index [67],
and then soil properties mapping [18].

4.2. Performance Analysis of PLSR Models after FLAASH AC Method

The SOC predictions obtained by PLSR models using Hyperion data corrected by the
FLAASH AC method were accurate within the range of the AOD parameter (Tables 4 and 5).
These PLSR performances are in accordance with Gomez et al. [12] using the same data and
the Atmospheric Removal Program’ (ATREM) model, and with Minu et.al [35] using the
same data and the FLAASH method, who obtained R2

cv of 0.71 and RMSEcv of 0.46% for
SOC prediction. These PLSR performances for mapping SOC are slightly better than those
obtained by Lu et al. [50], who also used the FLAASH AC method to derive reflectance
from Hyperion radiance.

The performance results in the SOC prediction model using Hyperion data corrected
by the FLAASH method show a constant R2

cv and RMSEcv of 0.79 and 0.4% whatever the
AOD parameter. This is in line with the study of Griffin et al. [39] where for the dry and
relatively clear rural aerosol case, the effect of varying the aerosol optical depth produces
errors < 0.02 with sensitivity. Davaadorj A. [40] also stated that FLAASH produced less
variability in reflectance with varying AOD compared to other AC models (ATCOR). Most
of the significant wavelengths (48%, Figure 7A) used in the PLSR models belonged to the
VNIR spectral range (400–1100 nm) and more precisely around 600 to 750 nm which has
been also referred by Ben Dor et al. [69] confirming that PLSR models are based on spectral
features. The remaining 42% of significant wavelengths belonged to the spectral domain
from 1100–2000 nm (Figure 7), including 1358 nm, probably due to OH ions in water [70].

The distribution of SOC estimation over bare soils were similar with Hyperion images
corrected with FLAASH and AOD of 0.4 to 1.4 (Figure 8). While constant PLSR perfor-
mances were observed whatever the AOD parameters (Table 4), differences in the SOC
mapping can be observed in the maps (Figure 10). The differences in SOC estimations over
some fields (Figure 10) due to the choice of AOD in FLAASH may be due to dry vegetation
residue [71]. Studies by Nazeer et al. [41] and Bassani et al. [42] showed that influences of
AOD vary with respect to the surface types, such as grass, water, artificial turf, sand etc.
The current study deals with only one surface type i.e., bare soil, whereas compared to
Nazeer et al. [41] and Bassani et al. [42] who accounted for multiple surface types.

4.3. Performance Analysis of PLSR Models after ATCOR AC Method

The SOC predictions obtained by PLSR models after the ATCOR AC method were
accurate within the range of the WV (Table 5). These PLSR performances are in accordance
with Gomez et al. [12] using ATREM AC method [20,72] and with Minu et.al [35] using the
same data and the ATCOR AC method and obtained R2

cv of 0.76, respectively.
In the ATCOR method, the R2

cv lies in between 0.72 and 0.79 and variations in RPD
and RPIQ values can be observed. A RPD higher than 2 is observed for WV of 0.4 to 2.9 cm
while RPD values in between 1.91 to 2 were observed for WV 4 to 5 cm. An increase in the
reflectance values of the spectral signatures for higher values of WV i.e., 4 cm, and 5 cm in
the VNIR region of 400–1100 nm, as well as SWIR region of 1200 to 2400 nm (Figure 6B), is
observed. Consistency in the significant wavelengths of the models using 1, 2, and 2.9 cm
of WV is seen. 33% of significant bands in predicting SOC are in the region 2000–2400 nm
(Figure 7). Henderson et al. [8] showed that soils generated from various parent materials
had the best correlation with SOC concentration at wavelengths of 1955–1965, 2215, 2265,
2285–2295, and 2315–2495 nm. A combination of metal–OH bonding and O–H stretching
causes an absorption band in the soil signature (Figure 6B) around 2200 nm [73]. In an
ATCOR adjusted signal, this absorption band is retrieved. At wavelengths between 640
and 690 nm, Bartholomeus et al. [16] highlighted the strongest association between the
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inverse of reflectance and SOC (Figure 6B). They also discovered a negative relationship
with respect to SOC between the area of the absorption feature between 2050 and 2200 nm.

Best SOC estimation performances were obtained with Hyperion images corrected
with ATCOR and WV of 2 cm (Table 5), which is the default parameter in for “Mid-
latitude summer” context (Table 3, [24]), while at the date of Hyperion images acquisition,
the WV value would be estimated between 2.8 cm and 3.1 cm (Figure 2, extracted from
NCEP). Inversely, worst SOC estimation performances were obtained with Hyperion
images corrected with ATCOR and WV of 4 and 5 cm (Table 5) which are not in the range
of WV over the study area from NCEP data (Figure 2).

4.4. ATCOR versus FLAASH for SOC Predictions

The best SOC prediction model after the ATCOR method was obtained with a WV
of 2 cm (Table 5) and gave similar performance than the one after FLAASH method and
whatever the AOD. Though the overall percentage of the bare soil pixel selection using spec-
tral indices between ATCOR method and FLAASH method was similar (Tables 4 and 5),
FLAASH method showed more consistency than the ATCOR method. The study conducted
by Yusuf et al. 2018 [74] showed that for rural aerosol model FLAASH and ATCOR showed
similar Standard Error of Estimate for surface types such as vegetation, sand, and water
bodies. In the study conducted by Marcello et al. [75] on soil using worldview imagery us-
ing for a rural aerosol model, FLAASH gave an RMSE of 0.0398 and ATCOR gave an RMSE
of 0.0406, which is line with the superior RMSE of FLAASH over ATCOR (Tables 4 and 5).

The reflectance obtained by FLAASH spectra has a slightly higher albedo compared to
ATCOR spectra (Figure 6). Similar results have been also observed by Manakos et al. [76]
where FLAASH and ATCOR spectra of rural aerosol model were studied with respect to
Asphalt and Gravel surface types. The comparison of Spectral angle mapper results for
FLAASH and ATCOR were similar for the Asphalt surface type, but FLAASH performed
slightly better with the Gravel surface type [76]. Majority of the significant wavelengths
were found after 2000 nm in the ATCOR method (Figure 7B), whereas the majority of the
significant wavelengths were found in the visible region in the FLAASH method (Figure 7A).
Similar results were arrived at by Minu et al. [35] while comparing FLAASH and ATCOR
for the soil reflectance. FLAASH method showed better consistency overall in the SOC
distribution than the ATCOR method (Figures 8 and 11). With respect to mapping of SOC,
FLAASH method showed high standard deviations at a few farms whereas salt and pepper
standard deviation distribution was found throughout the study area (Figures 10 and 13).

5. Conclusions

This study highlights the influence of AOD and WV input parameters in AC methods.
The AOD parameter was found to have no impact on performance of the FLAASH method
and the spectral reflectance. Some amount of variability of estimated SOC was found at
low values of AOD i.e., 0.2 and it was found to be fairly consistent at other values of AOD.
Variation of the WV had an effect on the performance of the ATCOR method. The best
performance of the ATCOR method was observed at 2 cm. With increase in WV, there
was increase in the reflectance values between 1000 nm and 2000 nm. The estimation
of SOC was consistent around the default value of 2 cm (i.e., from 1 cm to 2.9 cm) but
inconsistency is observed at WV < 1 cm and >2.9 cm. Hence in terms of atmospheric
parameters, it is found that AOD is a more robust parameter to WV in terms of uncertainty
in selection. Caution must be exercised when selecting values of WV in ATCOR method
which are not close to the default parameter. As Hyperion is a moderate resolution satellite
of 30 m spatial resolution, the bare soil pixel selection is an important step. Wrong bare
soil classification especially at the locations when different surface types meet has a high
impact and uncertainty on the estimated SOC.

Finally, the next hyperspectral sensors (EnMAP, PRISMA, and HyspIRI) will generate
an increasing amount of VNIR/SWIR data around the planet, providing a new chance
for mapping topsoil features. If the soil spectroscopy community tries to produce fre-
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quently topsoil characteristics maps, the selection of a robust and appropriate AC method,
input AC parameters, regression method, and bare soil identification process will become
crucial phases.
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Abstract: Applying standard aerosol models for atmospheric correction in nearshore coastal waters
introduces significant uncertainties due to their inability to accurately represent aerosol characteristics
in these regions. To improve the accuracy of remote sensing reflectance (Rrs) products in the nearshore
waters of the Shandong Peninsula, this study develops an aerosol model based on aerosol data
collected from the Mu Ping site in the coastal area of the Shandong Peninsula, enabling tailored
atmospheric correction for this specific region. Given the pronounced seasonal variations in aerosol
optical properties, monthly aerosol models were developed. The monthly aerosol model is derived
using the average values of aerosol microphysical properties. Compared to the standard aerosol
model, this model is more effective in characterizing the absorption and scattering characteristics
of aerosols in the study area. Corresponding lookup tables for the aerosol model were created and
integrated into the NIR-SWIR atmospheric correction algorithm. According to the accuracy evaluation
indexes of RMSD, MAE, and UPD, it can be found that the atmospheric correction results of the
aerosol model established in this paper are better than those of the standard aerosol model, especially
in the 547 nm band. It demonstrates that the new aerosol model outperforms the standard model in
atmospheric correction performance. With the increasing availability of aerosol observational data,
the aerosol model is expected to become more accurate and applicable to other satellite missions.

Keywords: atmospheric correction; aerosol model; GRASP; size distribution

1. Introduction

Ocean color remote sensing provides abundant observational data for studying water
color constituents, including chlorophyll-a concentration, suspended sediment concentra-
tion, and water transparency [1,2]. These water color constituents can be inferred using
inversion algorithms constructed with remote sensing reflectance (Rrs) at different spectral
bands as variables. Remote sensing reflectance is typically defined as the ratio of radiance
leaving the water (Lw) to the downwelling irradiance just above the water surface (Ed).
The signal outside the water constitutes only a small fraction of the signal received by
the satellite, with the majority originating from interactions with aerosols and Rayleigh
molecules. This atmospheric signal contributes approximately 80% to 90% of the satellite
signal in the visible light spectrum over the ocean [3,4]. Additionally, it is subject to subtle
influences such as glint and whitecaps. Therefore, obtaining accurate water-leaving signals
requires the crucial step of mitigating the impact of aerosols and Rayleigh molecules. Due
to the relatively stable composition of molecules in the atmosphere, the portion of Rayleigh
molecular scattering can be accurately assessed by considering the influences of polar-
ization, surface pressure, and roughness [5,6]. It is evident from this that mitigating the
impact of aerosol components is particularly crucial for obtaining accurate water-leaving
signals. As is well known, atmospheric aerosol properties exhibit significant variability
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across both temporal and spatial scales. Differences in geographical location and time
can lead to pronounced disparities in aerosol optical and microphysical characteristics [7].
Consequently, developing an appropriate aerosol model for the relevant satellite images is
crucial for eliminating aerosol signals and achieving effective atmospheric correction [8].

The microphysical and optical properties of aerosols, such as particle size distribution
and complex refractive index, effectively characterize the features of regional aerosols. They
contribute to the successful elimination of aerosol signals during atmospheric correction
processes, thus obtaining accurate Rrs products [9]. However, characterizing these aerosol
properties proves challenging due to their significant temporal and spatial variability [10].
To improve this situation, many studies began analyzing various aerosol observational
data to characterize aerosol properties. By constructing different aerosol models, they aim
to characterize the absorption and scattering characteristics of aerosols under different
temporal and spatial conditions [11–13].

Aerosol particle size distribution is an important indicator for studying the origin
and distribution of aerosols, and it is commonly incorporated as one of the aerosol model
parameters [14,15]. The aerosol size distribution is commonly characterized using the
classical log-normal distribution theory, which assigns specific parameters to each com-
ponent, including modal radius and standard deviation [16]. Several other studies utilize
power functions, gamma functions, and analytical functions to depict aerosol particle sizes
and their distribution [17–20]. Based on size distribution, aerosols are classified into five
categories (rural, urban, maritime, tropospheric, and fog) by Shettle and Fenn, commonly
known as SF79 [12]. In establishing relevant aerosol models, they further consider the
impact of relative humidity on each group of aerosol particles. Gordon and Wang [21]
were the first to apply three SF79 aerosol models (maritime, coastal, and tropospheric)
in atmospheric correction for ocean color remote sensing satellite imagery. Chomko and
Gordon introduced maritime, coastal, tropospheric, and urban aerosol models [17].

Ahmad et al. [22] categorized aerosol types into 10 categories and combined them
with eight relative humidity levels to form 80 aerosol models (referred to as AF10). They
constructed corresponding lookup tables for each model. Among these, the fine-mode
particle component of the 10 aerosol types is comprised of 99.5% dust particles and 0.5%
soot particles, showing excellent consistency with the average results of aerosol optical
properties measured by AERONET. These 10 aerosol models have varying proportions of
coarse and fine modal particles but share the same effective radius and mean radius [5,22].
These aerosols can be used to eliminate aerosol signals during the atmospheric correction
process. However, due to the limitations of the models themselves, they cannot effectively
account for the presence of strongly absorbing aerosols. These aerosols often occur in
coastal waters where aerosols from land are transported to the sea due to wind advection
effects, even extending into the open ocean. To effectively characterize the characteristics
of strongly absorbing aerosols, many researchers focused their studies on this aspect [10].
However, during the atmospheric correction process, there is no reliable method to detect
the presence of absorbing aerosols in the Near-Infrared (NIR) band. As a consequence, all
pixels are processed using non-absorbing or weakly absorbing aerosol algorithms [5].

Current atmospheric correction algorithms often overestimate aerosol radiance in
coastal marine areas, leading to the underestimation of water-leaving signals, particularly
near the blue spectral bands, and even negative remote sensing reflectance values may
occur [6]. This situation may arise because AERONET sites are primarily located on land,
with fewer stations situated in marine areas, and their global distribution is not uniform.
As a result, the observed data from AERONET sites used for constructing aerosol models
are limited, with a mere 11 sites situated in open oceans and adjacent coastal waters. In
coastal waters, influenced by both land and sea, aerosol sources are more complex. Merely
relying on observed marine data to characterize aerosol conditions with complex sources in
coastal areas poses challenges [1]. Given this limitation, other studies started to collect more
aerosol observational data and integrate it into aerosol models [22,23]. Some researchers
utilize continuously updated AERONET datasets to build new aerosol models for studying
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specific regions [24]. One study divided 27 aerosol models based on global AERONET
aerosol observational data to improve the inadequacy of AF10 in effectively characterizing
strongly absorbing aerosols [25]. In this research, we attempt to utilize aerosol observation
data from the Yellow Sea Offshore Verification Platform established by the National Satellite
Ocean Application Center. We aim to construct aerosol models and Look-Up Tables (LUTs)
specifically for the nearshore region of the Shandong Peninsula in China. This endeavor is
undertaken to achieve more accurate remote sensing reflectance (Rrs) inversion products
for the coastal waters of China.

2. Materials and Methods

2.1. Materials
2.1.1. Sun/Sky Photometer Data

The Mu Ping site (37.681N, 121.700E) is located in the coastal area approximately
20 km north of the coastline in the Mu Ping district of Yantai City, Shandong Province, as
shown in Figure 1. Situated near the junction of the Bohai Sea and Yellow Sea, this site
experiences a dual influence from both the ocean and the mainland due to its proximity
to the coastline. The station employs the CE318 Sun Photometer, a water color version
manufactured by the French company CIMEL Electronics. It comprises 11 observation
channels at wavelengths of 400 nm, 412 nm, 442 nm, 490 nm, 510 nm, 560 nm, 620 nm,
665 nm, 779 nm, 865 nm, and 1020 nm. In atmospheric aerosol research, the wavelengths of
442 nm, 665 nm, 865 nm, and 1020 nm are commonly used [26]. The instrument primarily
measures solar radiance, allowing for the estimation of atmospheric aerosol characteristics
and other components.

Figure 1. The geographical location of the Mu Ping station.

The CE318 multi-band sun photometer, using the PhotoGetData (v2.18.5) software,
can transmit the measured data through the RS232 serial port to a computer and save it,
generating binary storage files (K8 files). Each K8 file, after conversion into ASCII format,
typically includes multiple file types with different suffixes. Among them, the NSU file
represents data for direct solar radiation measurements, primarily used for calculating
aerosol optical thickness and other parameters. The ALL and ALR files, respectively, denote
data for zenith angle scans in the sky and left–right scans along the azimuth circle, mainly
used for inverting sky radiance parameters. The sun photometer data at this site are sourced
from the National Satellite Ocean Application Center.

2.1.2. Remote Sensing Images

MODIS is equipped with 36 spectral bands, among which 16 are primarily suitable for
water color research, including 10 visible bands, 3 Near-Infrared bands, and 3 Short-Wave
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Infrared bands. The high temporal resolution of MODIS sensor provides significant advan-
tages for studying rapidly changing water color in time dynamics, making it one of the
widely used image data globally. For turbid coastal waters, MODIS’s Short-Wave Infrared
bands can effectively serve atmospheric correction work. MODIS sensor provides various
level data products, including L0, L1A, L1B, L2, and L3. L0 data are the raw data received
by the sensor without processing, which is only used in a few specific applications. L1A
data are reconstructed from L0 data and supplemented with auxiliary information (includ-
ing radiometric and geometric calibration coefficients, as well as geolocation parameters).
L1B data are radiometrically calibrated L1A data. L2 data are the geophysical products
developed by combining L1B data with auxiliary data through processes such as atmo-
spheric correction and parameter inversion. L3 data are raster data obtained by uniform
mosaicking and projecting L2 products over a certain geographic grid within a certain time
period. In this article, MODIS Aqua L1A data are used as the source of remote sensing
image data to validate the atmospheric correction results obtained from aerosol models.
The data were downloaded from NASA (https://oceancolor.gsfc.nasa.gov/, accessed on
1 October 2023).

2.1.3. Rrs Validation Data

This study utilizes on-site measurements of Rrs spectra from the Mu Ping station,
established by the National Satellite Ocean Application Center on the northern coast of the
Shandong Peninsula. The dataset includes measurements collected from the year 2020 to
the present. When conducting measurements, the method used was that recommended by
NASA for obtaining above-water remote sensing reflectance (Rrs) data [27], which were
estimated as

Rrs =
ρp

(
Lu − ρ f × Lsky

)
πLpla

(1)

where Lu is the upward radiance, Lsky denotes skylight radiance, Lpla represents the ra-
diance emitted from a standard reference plaque, all of which were directly measured
using a spectrometer. ρp represents the reflectance (approximately 10%) of a standard
reference plaque provided by the producer, and ρ f signifies the Fresnel reflection off the
water surface, assumed to be 0.022 for a flat water surface.

2.2. Methods
2.2.1. Construction of Aerosol Models

The raw data used for the inversion of aerosol microphysical properties comes from
the Mu Ping station’s CE318 Water Color Sun/Sky Photometer. The microphysical char-
acteristics of aerosols, including particle size distribution and complex refractive index,
can be inferred from spectral sky radiance measurements conducted at 442, 665, 865, and
1020 nm, obtained at the almucantar plane, along with solar direct irradiance measure-
ments at corresponding wavelengths [26]. The selected four bands exhibit no significant
gas absorption and demonstrate high sensitivity to the typical sizes of major aerosols [28].
Before the inversion of microphysical properties, it is necessary to select data that meet
certain criteria. First, the observed sky radiance data from both left and right azimuth scans
(clockwise and counterclockwise) should differ by no more than 20%. The average of the
left and right azimuth scan data is then taken as the sky radiance data for that specific
time point. Second, under the condition of symmetric azimuth angles for left and right sky
scattering radiance, the scattering radiance data used for inversion should have a symmet-
rical azimuthal angle count greater than 21, within the range of 3.5◦ to 160◦ [29]. Third,
the selected data should have a solar zenith angle greater than 50◦. The data generated
under this criterion is similar to the AERONET website’s version 2.0 data [29,30]. The sky
radiance data were convolved using a square filter with a width of 10 nm centered at the
effective wavelengths of the photometer. The standard extraterrestrial spectrum irradiance
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(https://oceancolor.gsfc.nasa.gov/docs/rsr/f0.txt, accessed on 1 October 2023) was used
to normalize the resulting spectra [31].

The Generalized Retrieval of Aerosol and Surface Properties (GRASP) code, devel-
oped by Dubovik et al., is an open-source algorithm designed for retrieving properties of
aerosols [30,32,33]. GRASP comprises two main modules: numerical inversion and forward
modeling. The numerical inversion module employs statistical optimization techniques to
fit observational data, while the forward model accurately simulates various atmospheric
remote sensing observations [34]. Therefore, this versatility allows GRASP to be applied
across passive and active satellites, as well as ground-based atmospheric observations, and
it is particularly suited for synergistic retrievals when inverting different observations si-
multaneously [35]. The algorithm accepts diverse input data, such as satellite images, polar
nephelometer measurements, sun/sky photometer data, sky camera images, and lidar data.
The precise inversion of various combinations of these input data is accomplished through
the use of a multi-term least squares method (LSM) [36]. This fitting algorithm can undergo
statistical optimization, allowing for flexible inversions based on different observations [37].
In this study, ground-based observations from a single sun photometer were utilized for
the inversion of aerosol properties. The retrieved column-integrated aerosol volume size
distributions (VSDs) are adjusted using 22 logarithmically equidistant triangle bins ranging
from 0.05 to 15 μm in radius [38]. While some studies suggest approximating VSDs with
bimodal log-normal distributions to reduce the information required by the binned VSDs,
a problem arises when the retrieved VSDs deviate from perfect log-normality, leading to
asymmetrical or trimodal shapes. In such cases, the strategy based on simplified bimodal
VSDs may not yield accurate retrievals, hence the preference for the former approach
despite its more complex calculations. To further validate the algorithm’s reliability and
ensure the accuracy of the results, we selected raw data from the AERONET Beijing_PKU
and Socheongcho sites as input for the GRASP algorithm [39]. We inverted the aerosol
particle size distribution for the respective regions of these two sites. The Beijing_PKU
site is located on land, and the data selected are from 1 January 2019, at 01:21:13 UTC. The
Socheongcho site is situated in the ocean, and the data retrieved are from 3 January 2020, at
03:48:35 UTC. These two sites represent different underlying surface types. The obtained
results are shown in Figure 2.

 

Figure 2. Comparison of aerosol size distributions obtained by the GRASP algorithm and AERONET;
(a) Beijing_PKU, (b) Socheongcho.

For the Beijing_PKU site, it can be observed that the trend of aerosol size distribution
obtained by the GRASP algorithm is generally consistent with the AERONET results.
However, a notable difference is that the AERONET results exhibit higher peaks at the
coarse and fine modal particles compared to the GRASP results. For the Socheongcho site,
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the consistency between GRASP and AERONET results is nearly perfect, with only minor
differences observed at the peak of coarse-mode particles. This suggests that the GRASP
algorithm is capable of accurately retrieving aerosol characteristics in the respective regions.

In open ocean regions, the distribution of aerosol particles in the air above the sea
surface is relatively stable, with less influence from external factors, and the composition
and concentration of aerosols change minimally with the seasons [22]. However, in coastal
areas, due to proximity to land, the composition of aerosols in the atmosphere above under-
goes rapid changes in both time and space, influenced significantly by human activities and
natural factors on land, and is subject to larger variations due to terrestrial influences [40].

The AF10 model, currently adopted as the globally standardized aerosol model by
NASA, incorporates relative humidity as a key parameter to adapt various regional aerosol
models. However, aerosol particles originating from terrestrial sources, including conti-
nental, biomass burning, and dust sources, demonstrated limited sensitivity to variations
in relative humidity, particularly under conditions where the relative humidity is below
70% [41,42]. Kinne’s study of aerosol characteristics on the monthly average time scale
found that large monthly differences were rare [43]. Sang Woo studied the optical prop-
erties of columnar aerosols in East Asia and found that their changes had seasonal and
monthly characteristics [44]. Through studying the global aerosol particle size distribution
and complex refractive index parameters, Zhao Dan found that these parameters changed
slightly in the same month in different years and were relatively stable [1]. Therefore, for
more accurate construction of regional aerosol models, this study builds aerosol models
for the region based on monthly aerosol data. Selecting the sun photometer data from the
Mu Ping station between 2020 and 2022, which underwent quality control, the GRASP
algorithm is employed to invert aerosol microphysical and optical properties. Results with
inversion fitting errors of less than 5% are considered valid. Valid results are then statisti-
cally analyzed, and monthly averages are calculated to construct monthly aerosol models.
The microphysical properties of aerosols, including particle size distribution and complex
refractive index, along with optical properties such as extinction coefficient, Ångström
exponent (α), single scattering albedo (SSA), and aerosol phase function, can be simulated
using a radiative transfer model predicated on these pivotal microphysical attributes [45].

The aerosol size distribution function describes how particles of different diameters are
distributed within a given volume. Typically, this function is modeled as the combination
of two log-normal distributions: one for fine particles and the other for coarse particles.
This combined distribution is commonly known as a bimodal log-normal distribution.
Mathematically, it can be represented as follows:

dV(r)
dlnr

=
Vf√
2πσf

exp

⎡
⎣−
(

lnr − lnr f√
2σf

)2
⎤
⎦+

Vc√
2πσc

exp

[
−
(

lnr − lnrc√
2σc

)2
]

(2)

where V denotes the volume concentration of the particles, r represents the mean volume
radius of the particles, f and c represent coarse mode particles and fine mode particles,
respectively. r f and rc represent the mean volume radius of the fine and coarse mode
particles, respectively. σf and σc signify the standard deviation of the fine mode and
coarse mode particle size within a model. Figure 3 shows the monthly average particle
size distribution at the Mu Ping station for months 1 to 12 [43]. The complex refractive
index comprises the real part (nr) and the imaginary part (ni), which vary depending on
the chemical composition of the aerosol; nr and ni govern the scattering and absorption of
aerosols by incident light, respectively [46,47]. Figure 4 illustrates the distribution of the real
and imaginary components of the complex refractive index at 442 nm across months 1 to 12.
In July, there is only one valid data point, and thus, it lacks monthly representativeness. By
inputting the aforementioned particle size distribution and complex refractive index into
the 6S radiative transfer model, the optical properties of aerosols can be simulated [48].
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Figure 3. Monthly average particle size distribution.

Figure 4. Real and imaginary parts of the monthly average complex refractive index at 442 nm.

2.2.2. Construction of the Lookup Table for the New Aerosol Model

These tables contain parameters identical to those used in the AF10 model. Addition-
ally, two sets of coefficients were computed. The first set represents the correlation between
single-scattering albedo and multiple-scattering albedo. The second set of coefficients
relates to the relationship between diffuse transmittance from the sun to Earth’s surface,
diffuse transmittance from the surface to the satellite, and aerosol optical thickness.

In the case where geometric conditions and aerosol optical thickness (AOD) are known,
the relationship between aerosol single-scattering reflectance (ρas) and aerosol multiple-
scattering reflectance (ρa) can be expressed as

ln[ρa(λ)] = a(λ) + b(λ)ln[ρas(λ)] + c(λ)ln2[ρas(λ)] (3)
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ρas(λ) = ωa(λ)τa(λ)pa(θs, θv, φ, λ)/4cosθvcosθs (4)

pa(θs, θv, φ, λ) = Pa(θ−, λ) + (r(θs) + r(θv))Pa(θ+, λ) (5)

cosθ± = ±cosθscosθv − sinθssinθvcosφ (6)

where ωa is aerosol single scattering albedo, τa is aerosol optical depth, θs and θv are solar
zenith angle and view zenith angle, respectively, φ is relative azimuth angle, Pa(θ±, λ) is the
aerosol scattering phase function for a scattering angle, θ±, r(θ) is the Fresnel reflectance of
the interface for an incident angle θ.

Whereas the multiple-scattering reflectance is obtained through simulations using
the 6S radiative transfer model [48], the single-scattering reflectance is calculated using
Equations (4) and (5) [49].

By employing the method of least squares fitting regression to solve for the coefficients
a, b, and c, the relationship between lnρa and lnρas under specific geometric conditions
(θs = 36◦, θv = 66◦, φ = 70◦) for the aerosol model at the Mu Ping station in June is
depicted in Figure 5. The regression coefficients in the regression equation correspond to
the a, b, and c in Equation (3).

 

Figure 5. An example illustrating the least squares fitting relationship between variables ln(ρa) and
ln(ρas) for four MODIS bands, using the aerosol model for June under specific geometric conditions
(θs = 36◦, θv = 66◦, and φ = 70◦). The color of each point reflects the aerosol optical depth at
550 nm (τ550).
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The relationship between diffuse transmittance t (ts or tv) and aerosol optical depth
(τa) can be expressed as

t = Aexp(−Bτa) (7)

Whereas the diffuse transmittance t is obtained through simulations using the 6S
radiative transfer model under specific geometric parameters and AOD conditions, the
coefficients (A and B) can be obtained through the least squares fitting method. Figure 6
depicts the relationship between diffuse transmittance and aerosol optical depth when the
solar zenith angle is 36 degrees, and the coefficients of the fitting equation correspond to
the A and B in Equation (7).

 

 

Figure 6. An example illustrating the least squares fitting relationship between variables t and τa for
four MODIS bands, using the aerosol model for June under specific geometric conditions (θs = 36◦).

For each lookup table (LUT) associated with the aerosol model for each month, we
integrated diverse combinations of aerosol multiple-scattering and diffuse transmittance
coefficients correlated with aerosol optical depth (AOD) values and satellite/solar geomet-
ric parameters. In particular, the AOD varied from 0 to 3 (with an increment of 0.1), while
the solar/sensor zenith angles (θs and θv) ranged from 0 to 78 degrees (with an increment
of 6 degrees), and their relative azimuthal angles (φ) ranged from 0 to 180 degrees (with an
increment of 10 degrees). Conversely, NASA’s LUT employed only 8 AOD values within a
significantly narrower range [4]. The format and content of the aerosol lookup table are
shown in Table 1.
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Table 1. Aerosol lookup table LUTs parameter list.

Parameter Description Dimension

wave wavelength 1
scatt scattering angle 1

albedo single scattering albedo 1
extc extinction coefficient 1

angstrom Ångström index 1
phase Scattering Phase Function 2
solz Solar zenith angle 1
senz View zenith angle 1
phi Relative azimuth 1

accost bcost ccost Aerosol single-multiple scattering
coefficient 4

dtran_wave Diffuse transmission wavelength 1
dtran_theta Diffuse transmission zenith angle 1

dtran_a (a0 ) dtran_b (b0 ) Diffuse transmittance coefficient 2

2.2.3. Atmospheric Correction

The radiative signals observed by satellite sensors include signals from both water
bodies and the atmosphere [21,50]. To achieve more accurate retrieval of water color ele-
ments, it is essential to separate the water color signal from the atmospheric signal [51–53].
The process of removing the atmospheric signal is known as atmospheric correction [54,55].

The goal of atmospheric correction is to establish specific models that remove at-
mospheric path and surface influences from the Top of Atmosphere (TOA) signals. The
primary difficulty involves accurately assessing the impact of aerosols, a major source of
uncertainty in atmospheric correction, on atmospheric path radiance. This contribution
varies considerably and must be estimated based on observations [56]. Water exhibits
strong absorption in the Near-Infrared to Short-Wave Infrared (NIR-SWIR) range, pro-
viding a basis for separating atmospheric and ocean signals [57,58]. Initially, for open
ocean regions, SeaWiFS and MODIS atmospheric correction was conducted using two
Near-Infrared (NIR) bands under the assumption that the marine influence in these NIR
bands could be considered negligible [50]. However, coastal regions, influenced by factors
such as land–sea dynamics, often have turbid waters. In these areas, the radiance observed
in the Near-Infrared (NIR) bands can be significant. This can pose challenges for iterative
methods that rely solely on NIR, leading to underestimation or even negative values for
water-leaving radiance. To tackle this issue, Wang et al. [59] proposed an atmospheric
correction algorithm for MODIS that incorporates both Near-Infrared and Short-Wave
Infrared bands. The key aspect of this algorithm involves introducing a turbidity index
based on MODIS measurements in the Near-Infrared (748 nm) and Short-Wave Infrared
bands (1240 nm, 2130 nm), as described in Equation (7). When the turbidity index meets
certain conditions Tind(748, 1240) < 1.3, the iterative method using Near-Infrared bands
(748 nm, 869 nm) is applied; otherwise, the iterative method using Short-Wave Infrared
bands (1240 nm, 2130 nm) is utilized [59,60].

Tind(748, 1240) =
Δρ(RC)(748)

Δρ(RC)(1240)
exp

{
−492

890
ln

(
Δρ(RC)(1240)
Δρ(RC)(2130)

)}
(8)

Δρ(RC)(λl) = ρt(λl)− ρr(λl) (9)

where ρt(λl) represents the reflectance of the top atmosphere observed by satellites after
gas absorption correction, and ρr(λl) denotes the reflectance contributed by the molecules,
also known as Rayleigh scattering.
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3. Results

To further validate the efficacy of our new aerosol model in improving atmospheric cor-
rection, we applied the previously described NIR-SWIR atmospheric correction algorithm.
This algorithm, recommended jointly by NASA for turbid water bodies, was validated
utilizing datasets on a global and regional scale. The monthly Look-Up Tables (LUTs)
developed for the study sites in this research were substituted for the standard LUTs in
the SeaDAS (v8.3) software. During the atmospheric correction process for a specific pixel,
the aerosol LUT is selected based on the location of the target pixel and the month of data
collection. Subsequently, this LUT is utilized to estimate the aerosol scattering component
of the signal [1].

This research utilized the same version of SeaDAS (v8.3) for the removal of gas
absorption and Rayleigh scattering to assess the improvements of the new aerosol model
on remote sensing reflectance (Rrs) products. We established specific criteria for selecting
corresponding satellite and in situ observational data. Initially, the time interval between
satellite observations and ground-based measurements was limited to 30 min. While
NASA’s standard allows a 3 h time difference in open ocean regions, our stricter criterion
was necessary due to the higher variability and influence of continental factors in coastal
areas. Pixels identified as being affected by cloud or ice contamination, having high sensor
view zenith, high solar zenith, and stray light contamination were deemed invalid. Instead
of using NASA’s default Rayleigh-corrected reflectance for cloud-masked reflectance, we
opted for an alternative approach [1]. This decision was made due to concerns that NASA’s
default threshold might incorrectly identify turbid water or thick aerosols, which are
common in coastal waters. Similar methodologies were adopted in previous research
studies [61,62].

Figure 7 shows the remote sensing reflectance (Rrs) obtained from the aerosol model
developed in this study and the AF10 aerosol model processed through the NIR-SWIR
algorithm. It can be observed that the Rrs distribution from the two models is generally
consistent, with subtle differences in specific values. In certain regions, the aerosol model
established in this article yields slightly higher Rrs than the NASA standard model. This
means that the aerosol signals assessed by standard aerosol models in these regions may be
higher than those in the aerosol models presented in this paper. This is due to the fact that
standard aerosol models are constructed using only a small number of observations from
ocean sites, especially in coastal areas. This results in the overestimation of aerosol signals
in turbid water, while the measured aerosol data in this paper can better characterize the
aerosol characteristics of the study area, and the aerosol signals obtained are more accurate.
Figure 8 presents a further comparison between satellite-retrieved Rrs and ground-based
measured Rrs spectra. For this collection of spectra, in strict adherence to the previously
defined criteria, the time gap between satellite imagery and ground measurements does
not exceed 30 min. It can be seen that when we use the new aerosol model, the results
calculated by the NIR-SWIR algorithm are closer to the measured values.

Figure 7. Cont.
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Figure 7. Atmospheric corrected Rrs products (443, 547, 645 nm) of MODIS-Aqua over the nearshore
of Shandong Peninsula region on 26 September 2020. (new aerosol model: (a–c), NASA aerosol
model: (d–f)).

Figure 8. Comparison between satellite-retrieved spectra and in situ measurements at the Mu
Ping site.

4. Discussion

We use several accuracy assessment metrics to evaluate the results of the aerosol
model, encompassing the regression slope, coefficient of determination (R2), root mean
squared difference (RMSD), unbiased percentage difference (UPD), and mean absolute
error (MAE).

RMSD =

√√√√ 1
N

N

∑
i=1

(Yi − Xi)
2 (10)

MAE =
1
N

N

∑
i=1

|Yi − Xi| (11)
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UPD =
N

∑
i=1

|Yi − Xi|
0.5 × |Yi + Xi| (12)

Figure 9 displays the satellite data alongside corresponding measurements for three
visible bands (i.e., 443, 547, and 645 nm), and the satellite Rrs product is also calculated using
the NIR-SWIR algorithm. The red points represent the results of NASA’s standard aerosol
model, while the blue points represent the results of the new aerosol model proposed in
this study.

   

Figure 9. Scatter plots comparing the satellite-derived remote sensing reflectance (Rrs) using the
NIR-SWIR atmospheric correction method with the in situ Rrs at three MODIS bands (443 nm (left),
547 nm (middle), and 645 nm (right)). The evaluation metrics for the atmospheric correction results
of the nine MODIS bands are specifically presented in Table 1.

From the results, it is clear that for the RMSD, MAE, and UPD accuracy evaluation
indicators, the results of the new model are significantly better than NASA’s standard
model. For R2 and slope, except for slightly lower values at 645 nm, the new model’s
results at 443 nm and 547 nm are also better than the standard model. Table 2 lists the
accuracy assessment statistics for MODIS’s nine bands. Overall, the performance of the
new aerosol model is better than the standard aerosol model, especially at 547 nm. It is
important to highlight that the underestimation observed in the blue light band with the
new model, relative to the standard model, was mitigated, which is likely attributed to a
more accurate representation of absorbing aerosols [1]. It is notable that the slopes observed
in these bands are all less than 1, possibly indicating the overcorrection of remote sensing
reflectance (Rrs) in turbid water. Please note that the study initially matched 24 satellite
situ points. However, minor discrepancies in the number of data points across different
models or bands may arise from saturation or negative Rrs values in MODIS bands or from
the atmospheric correction process.

Table 2. The evaluation metrics for the atmospheric correction results of the nine MODIS bands,
evaluated using in situ Rrs dataset from the Mu Ping site.

Band R2 Slope RMSD MAE UPD (%)

Our/NASA
model

412 0.56/0.53 0.71/0.6 0.003/0.0037 0.0022/0.0029 41.68/49.13
443 0.61/0.6 0.78/0.77 0.0029/0.0036 0.0023/0.0028 32.12/40.29
469 0.65/0.64 0.76/0.77 0.0032/0.0039 0.0026/0.0031 28.48/38.04
488 0.57/0.66 0.6/0.77 0.0038/0.0039 0.0031/0.0031 27.01/32.86
531 0.76/0.69 0.84/0.79 0.0033/0.0042 0.0025/0.0033 21.93/28.69
547 0.82/0.68 0.86/0.76 0.0029/0.0044 0.0023/0.0034 19.46/27.69
555 0.62/0.65 0.7/0.72 0.0045/0.0048 0.0037/0.0037 49.41/31.14
645 0.64/0.73 0.81/0.83 0.0018/0.0023 0.0014/0.0018 42.00/46.28
678 0.62/0.72 0.74/0.82 0.0014/0.0019 0.0012/0.0015 40.49/43.32
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5. Conclusions

Coastal regions, characterized by complex water compositions, introduce significant
uncertainties in remote sensing reflectance (Rrs) obtained through atmospheric correction.
NASA’s aerosol models are primarily developed for open ocean conditions, leading to
substantial variability in coastal areas, mainly due to the inaccurate characterization of
absorbing aerosols in the aerosol correction process. In this study, aerosol observation
data from the Mu Ping station in the Yellow and Bohai Seas were utilized to characterize
aerosol properties in the region. Aerosol properties, such as single scattering albedo (SSA)
and Ångström exponent, exhibited noticeable spatial gradients and seasonal dynamics.
The monthly aerosol model, based on these aerosol characteristics by taking their monthly
averages, can more effectively characterize the scattering and absorption properties of
aerosols in the region, facilitating the precise removal of aerosol signals from the sensor-
received signals. By incorporating this aerosol model and the standard aerosol model into
the NIR-SWIR algorithm for atmospheric correction, the atmospheric correction results
for both models in the region are obtained. These results are then matched and validated
against measured data. From the precision evaluation metrics, including RMSD, MAE,
and UPD, it can be observed that the new aerosol model outperforms the standard aerosol
model across the nine visible light bands of MODIS, leading to an improvement in the
accuracy of atmospheric correction.

While we only applied this aerosol model to MODIS satellite imagery in this study, it
can seamlessly be adapted for use with other satellite imagery. This adaptation requires
constructing aerosol model lookup tables that align with the specific wavelength bands of
the other satellites. This opens up the possibility of generating additional remote sensing
reflectance (Rrs) products for coastal regions, facilitating the improved retrieval of water
color-related parameters.

Certainly, there is substantial room for improvement in the current aerosol model. The
model’s construction was based on observational data from the Mu Ping station spanning
2020 to 2022, which is relatively limited. As time progresses, the Mu Ping station will
provide more observational data, enabling the aerosol model to better capture the seasonal
dynamic changes in aerosol characteristics. This will facilitate more effective atmospheric
correction efforts. Depending on requirements, aerosol models can be constructed with
smaller time intervals. Presently, the Huangdonghai offshore observation platform has
deployed two observation stations, Mu Ping and Dongtou. In the future, more aerosol
observation stations will be established in China’s offshore areas, achieving comprehen-
sive coverage of aerosol characteristic observations in the Chinese near seas. This holds
extraordinary significance for obtaining precise Rrs products in China’s nearshore regions.
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