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Aerosol is an important atmospheric component that severely influences the global
climate and air quality of our planet [1-4]. In quantitative remote sensing, aerosol is also
a key factor in atmospheric correction of remote sensing data to obtain accurate surface
information [5-7]. The radiation signal received by the sensor is surface-atmosphere
coupled, including the signal of path radiance, surface reflection, and surface—atmosphere
interaction, a phenomenon which impedes quantitative information acquisition from both
surface and atmospheric aspects. Accurate aerosol estimation and atmospheric correction
are needed to solve this problem.

In this Special Issue, the studies cover several important topics, mainly involving
aerosol retrieval, aerosol emission and regional transfer, and atmospheric correction. The
goal of this Special Issue is to discuss the accurate retrieval and estimation of aerosols to
help with precise atmospheric correction and facilitate various corresponding scientific
studies focusing on the development of new technologies, instruments, and methods.

Aerosol product quality limits their data applications. Some advancements are made
in this Special Issue that improve aerosol detection and retrieval accuracy. Focusing on the
characteristics of Coherent Doppler Wind Lidar (CDWL), a novel method for the calibration
and quantitative assessment of aerosol properties is proposed [8]. The result is verified
through comparison with synchronous Rayleigh-Mie-Raman Lidar (RMRL) data, resulting
in good agreement, proving the ability of CDWL to retrieve aerosol properties accurately.
Meanwhile, exploring aerosol retrieval of single-angle and multi-band polarization instru-
ments containing short-wave infrared bands, surface and atmosphere decoupling without
prior information about the surface is conducted based on optimal estimation theory [9].
The method can avoid the inversion error caused by the untimely updating of the surface
reflectance database and the error in spatiotemporal matching. After being applied to the
Particulate Observing Scanning Polarimeter (POSP) and validated by AErosol RObotic
NETwork (AERONET) measurements, the effectiveness of the proposed algorithm under
different geographical regions and pollution conditions is verified. Another independent
article thoroughly examines MODIS aerosol retrieval accuracies under different land cover
types, aerosol types, and observation geometries based on AERONET measurements involv-
ing three different algorithms, namely Dark Target (DT), Deep Blue (DB), and Multi-Angle
Implementation of Atmospheric Correction (MAIAC), each with unique characteristics [10].
This Special Issue also contains studies aimed toward the identification of specific aerosol
types. A novel MERSI haze mask (MHAM) algorithm to directly categorize haze pixels
in addition to cloudy and clear ones has been designed based on the Medium Resolution
Imaging Spectrometer II (MERSI-II) on board the FY-3D satellite [11]. The algorithm can
illustrate the boundary of the haze region with high reliability, remaining consistent with
the true color image. Determining the threshold value for background aerosol optical depth
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(BAOD) is crucial for identifying aerosol types. A statistical method to select the best BAOD
threshold value using VIIRS DB AOD products is proposed in this Special Issue [12]. The
VIIRS aerosol type classification scheme was further updated using the BAOD threshold.
The results indicate that the updated scheme can reliably detect changes in aerosol types
under low aerosol loading conditions.

Using aerosol products, further scientific studies of atmospheric aerosol are conducted
and included in this Special Issue. The seasonal characteristics and long-term variations
in aerosol optical parameters in Hong Kong are analyzed using AERONET data and
satellite-based observations based on the extreme-point symmetric mode decomposition
(ESMD) model [13]. The interactions between aerosol loading and meteorological factors are
also discussed. Another study uses Cloud—Aerosol LiDAR with Orthogonal Polarization
(CALIOP) aerosol products to identify the global long-range aerosol transport pathways
(the trans-Atlantic, the trans-Pacific, and the trans-Arabian Sea) [14]. Two significant paths
within the range of the trans-Pacific transport pathway (aerosols from the Taklimakan
Desert and aerosols from the North China Plain) are analyzed in detail. A three-stage
conceptual model is further built, providing a straightforward and evident approach to
exploring long-range aerosol transport pathways. To investigate frequently occurring
severe haze pollution in northeast China, the vertical characteristics of aerosols and the
causes of aerosol pollution throughout the year are analyzed using multisource data
of ground-based LiDAR and Cloud-Aerosol LiDAR Pathfinder Satellite Observations
(CALIPSOs) [15]. The contribution of dust, smoke, and firework aerosols are analyzed, and
recommendations for pollution control policies are provided.

The effect of aerosols on atmospheric correction is also discussed. For Soil Organic
Carbon (SOC) estimation, Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance retrieved
from Top-Of-Atmosphere (TOA) radiance using atmospheric correction methods is needed.
A thorough sensitivity study of SOC estimation in relation to aerosol optical depth and
water vapor is conducted based on Earth Observing-1 Hyperion Hyperspectral data [16].
The research suggests using the FLAASH AC method to provide BOA reflectance values
before SOC mapping. Another study focuses on improving the accuracy of remote sensing
reflectance products in the nearshore waters of the Shandong Peninsula [17]. To achieve
that goal, a monthly aerosol model based on aerosol data collected from the Mu Ping site in
the coastal area of the Shandong Peninsula is developed to replace the standard model.

In summary, this Special Issue collects a series of representative studies in the research
field of aerosol and atmospheric correction, mainly focusing on the improvement in aerosol
identification and retrieval methods; atmospheric aerosol formation, transfer, and spa-
tiotemporal variation; and the effect of aerosols on atmospheric correction and quantitative
remote sensing. These advancements will help to continuously improve our understanding
of atmospheric aerosol and the accuracy of quantitative remote sensing research. Despite
the significant progress achieved, further related studies are still needed for the scientific
community, policy makers, and the public to reduce evaluation uncertainty and combat the
challenges faced in our society.
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Abstract: Characterization of aerosol transportation is important in order to understand regional
and global climatic changes. To obtain accurate aerosol profiles and wind profiles, aerosol lidar and
Doppler wind lidar are generally combined in atmospheric measurements. In this work, a method for
calibration and quantitative aerosol properties using coherent Doppler wind lidar (CDWL) is adopted,
and data retrieval is verified by contrasting the process with synchronous Rayleigh-Mie-Raman
lidar (RMRL). The comparison was applied to field measurements in the Taklimakan desert, from 16
to 21 February 2023. Good agreements between the two lidars was found, with the determination
coefficients of 0.90 and 0.89 and the root-mean-square error (RMSE) values of 0.012 and 0.013. The
comparative results of continuous experiments demonstrate the ability of the CDWL to retrieve
aerosol properties accurately.

Keywords: aerosol; extinction coefficient; coherent Doppler wind lidar; Raman lidar; Mie lidar

1. Introduction

The study of atmospheric aerosols, especially in the planetary boundary layer (PBL),
is of great importance in understanding the vertical exchange of sensible heat (tempera-
ture), latent heat (moisture), particles, and trace gases between the surface and the lower
troposphere [1-3], which has a strong influence on global climate and atmospheric compo-
sition. To observe vertical and regional transport [4,5] and conduct pollution tracing and
forecasting [6], it is necessary to carry out accurate detection of meteorological parameters
and aerosol properties with high temporal and spatial resolutions.

In the past several decades, lidar has been proven to be a powerful and potential tool
in remote sensing of the atmosphere. Atmospheric lidars are widely used in ground-based,
ball-borne, airborne, and satellite-borne detection devices [7,8]. Generally, atmospheric
lidars can be classified into two categories by different atmospheric backscatter recordings:
heterodyne coherent detection and direct detection. Direct detection has been employed in
the majority of lidar systems, and numerous lidar applications have been applied in the
detection of aerosol and clouds [9-11], the boundary layer [3,12,13], temperature [14,15],
trace gas [16,17], and wind [18]. Heterodyne coherent detection detects the beat signal
between the backscatter and a local oscillator laser to retrieve the Doppler shift due to
moving particles. Coherent detection lidar is widely used in the detection of wind profiles,
boundary layers [19,20], clear air turbulence and wind shear [21], aircraft wake vortices [22],
and precipitation [23,24].

Remote Sens. 2023, 15, 5453. https:/ /doi.org/10.3390 /1515235453 4
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With the Doppler wind lidar technique, one of the most important indicators in the
observation of atmospheric vertical exchange processes, that is, the accurate measurements
of the vertical wind component, can be obtained. Using the combination of Doppler wind
lidar and other types of aerosol lidars, accurate aerosol backscatter signals and wind profiles
were obtained simultaneously [13]. There is no doubt that the combination of several lidars
would make it more accurate, but it also increases the cost and volume, making it less
conducive to airborne and spaceborne detection. Recently, many studies have been devoted
to calibrating the backscatter of coherent Doppler wind lidar (CDWL) to obtain the profiles
of aerosols and wind with only one lidar. To accurately retrieve the extinction coefficient
of aerosol using CDWL, the effect of heterodyne efficiency needs to be considered [25,26],
which represents the coupling of the mode field of the local oscillator and backscatter light.
To quantify the aerosol transport and change in aerosol properties from the Sahara desert to
the Caribbean, backscatter and extinction coefficient profiles were retrieved from airborne
CDWL using function fitting of heterodyne efficiency, measured by changing the altitude of
the aircraft [27]. Normalized backscatter power data points from horizontal detection were
used to fit heterodyne efficiency, and the results of aerosol optical depth were calibrated
with other devices, including a sun photometer [28], ceilometers [29], and atmospheric
visibility [30]. Moreover, theoretical focus function and calibration based on liquid clouds
were also adopted in the retrieval of aerosol [31-33].

Comparison and calibration are usually performed on the aerosol optical depth (AOD),
due to the lack of high accuracy and resolution of the reference devices. In this work,
an experimental comparison between the aerosol extinction profiles using CDWL and
Rayleigh—-Mie-Raman lidar (RMRL) was achieved. By applying the heterodyne efficiency
from horizontal measurement, the backscatter profiles of CDWL were calibrated and used
to retrieve the aerosol extinction coefficient. To compare the results of the two lidars, a
data assimilation and comparison method is proposed, and the data from the Raman lidar
are involved to improve the accuracy of the results. A consistency analysis of the results
was conducted, and good agreement with the determination coefficients of 0.90 and 0.89
was found.

The paper is organized as follows. The involved lidar systems are described in
Section 2, and Section 3 introduces the retrieval and comparison methods. To focus on the
detection of aerosol optical properties, the retrieval of wind speed will not be discussed in
this work. Section 4 introduces the comparison results during a 5-day vertical desert aerosol
observation. Finally, Section 5 summarizes the conclusion and the outlook of future studies.

2. Instrument
2.1. Coherent Doppler Wind Lidar

In this work, an all-fiber CDWL was deployed to provide the atmospheric wind
profiles and backscatter measurements. The lidar system emits a laser at a wavelength
of 1548 nm, with a pulse energy of 110 pJ, a repetition frequency of 10 kHz, and a pulse
full width at half maximum of 200 ns. A 100 mm diameter telescope was used as a coaxial
transmitter and receiver, and then, the backscatter was coupled with the local oscillator light
and finally detected by the balanced detector (BD), with a noise bandwidth of 200 MHz.

Aiming at studying the transport and sedimentation of Taklimakan desert dust, the
CDWL was employed in Minfeng, Xinjiang province, China (82.69°E, 37.06°N). In response
to the instability caused by the large diurnal temperature variation, the lidar system was
designed with an all-fiber structure and temperature control system. The CDWL was
operated in a velocity azimuth display (VAD) scanning mode during the experiment, and
the elevation angle was set to 70°. The scanning range of the azimuth angle is from 0° to
360°, where 0° corresponds to the north and 90° corresponds to the east. The step of the
azimuth angle is 12°, and the period of one scan is about 1 min. The radial range resolution
was set to 30 m/60 m/150 m in the range of 0-3 km/3-6 km/6-15 km. In our previous
work, the performance of wind measurements was validated; the standard deviations
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of wind speed and direction were 0.84 m/s and 9.2°, respectively [23]. The key system
specifications are listed in Table 1.

Table 1. Key parameters of CDWL and RMRL systems.

Parameter CDWL RMRL
Laser
Wavelength 1548 nm 355/532/1064 nm
Frequency offset 80 MHz /
Pulse energy 110 wJ 250/350/350 m]
Repetition rate 10 kHz 20 Hz
Pulse width 200 ns 8ns
Telescope
Diameter 100 mm 450 mm
Elevation angle 70° 90°
Data Detection type BD PMT
acquisition Noise bandwidth 200 MHz 0.3 nm
Sampling rate 250 MHz 20 MHz
Temporal resolution 1s 60s
Spatial resolution 30, 60, 150 m 30m

2.2. Rayleigh-Mie—Raman Lidar

To examine the performance of the CDWL in aerosol measurements, an RMRL was
running near the CDWL simultaneously. The lidar uses an Nd: YAG power laser, which
generates 20 pulses per second with a pulse energy of 250/350/350 m] at the wavelength of
355/532/1064 nm. The backscatter signals are collected by a 450 mm diameter Cassegrain
telescope and then separated into several channels using dichroic beam splitters, including
the elastic channels (355, 532, and 1064 nm) and the nitrogen Raman (386 nm) channels.
During the daytime, the elastic channels detect backscattered light with interferometric
filters of 0.3 nm bandwidth to reduce the solar light, while the inelastic channels do not
work due to the weak Raman scattering and strong background noise. The backscatter
signals are detected by the photomultiplier tubes (PMT), and recorded using multichannel
scaler (MCS) boards with a resolution of 30 m and 60 s.

3. Methodology

The following section introduces the analysis steps applied to the signal measured
by the CDWL and RMRL, including the pre-processing of data, the retrieval algorithm of
optical properties, and the data assimilation method for the different kinds of lidar.

3.1. Retrieval Algorithm of the CDWL

In this subsection, we prefer to discuss the retrieval of aerosol optical properties rather
than wind profiles, for wind measurement, as discussed in many works [21,34,35], is not
this paper’s focus. In the CDWL measurements, the photocurrent in response to the beat
signal of the atmospheric backscatter and the local oscillator can be expressed as [35]

iy = RPpy + RPy(r) + 2R [, (r)Ppo s (r)]% cos(wet + 6) + iy, 1)

where R is the response of the detector (R = 174q/hv, 1,4 is the quantum efficiency, q is the
elementary charge, 1 is the Planck constant, and v is the photon frequency), r is the range,
and Pp, and P;(r) are the power of the signal from the local oscillator and the atmospheric
backscatter, respectively. 1, (r) is the heterodyne efficiency, which represents the fraction of
the total signal power matched with the local oscillator field. w. and 6 are the frequency
and phase of the IF (intermediate frequency) signal. The first two terms of Equation (1)
are filtered through AC (alternating current) coupling, and the third and fourth terms are
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signal current is and noise current i,, respectively. The wide band CNR (carrier-to-noise
ratio) is defined as the ratio of signal power and noise power and can be expressed as

(i) _ 1nqnn(r)Ps(r)

R(r) = X5/ 149 s 2
where B is the receiver noise equivalent bandwidth. Combined with the lidar equation [36],
the lidar equation of coherent lidar can be expressed as:

CNR(r)r*> _ 14CEg .
m(r) Iqu pr)exp [*/O 2t%(r)dz}, )

where C represents the lidar constant, Ey is the pulse energy of the outgoing light, and B(r)
and a(r) are the backscatter and extinction coefficient, respectively. For a monostatic pulsed
coherent lidar, due to the heterodyne efficiency caused by the telescope focus function,
a distance-dependent modulation is applied to the backscatter signal, resulting in the
distortion of the near-field signal. This may have little impact on wind measurements,
but it will cause false values in the attenuated backscatter coefficient profiles. Using the
estimation or calibration of the heterodyne efficiency, the calibrated backscatter signal can
be obtained, and the backscatter and extinction coefficient of atmospheric aerosol can be
further retrieved.

Similar to the processing method of overlap factor correction [37], the modulation of
the heterodyne efficiency over the backscatter signal can be estimated from the horizontal
measurements. To calibrate the heterodyne efficiency in the near field, an advanced hori-
zontal measurement is performed, and the average result of the CNR is applied and fitted,
as shown in the subfigure of Figure 1a. Due to the different range resolutions, the density
of numerical points varies with the range. Using the ratio of the range-correct CNR and the
linear fit result, the heterodyne efficiency can be obtained and used to calibrate the CNR
profiles in the experiment. Figure 1a depicts four heterodyne efficiency profiles at different
times, which seem to be stable within the range of 3 km due to the all-fiber structure and
the stable temperature of the system.
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Figure 1. (a) The heterodyne efficiency from four horizontal experiments, which was obtained from
the ratio of the range—correct CNR (blue circles) and the linear fit result (orange line), as shown in the
subfigure. (b) The overlap factor of the 355 nm channel from three horizontal experiments, measured
at 0:00, 6:00, 12:00, and 18:00 local time on 14 February 2023.

In contrast, limited by the non-coaxial telescope and the space optical structure, the
RMRL system is more affected by temperature changes, which are huge in the desert.
Figure 1b depicts four overlap factor profiles of the 355 nm channel, measured at 0:00,
6:00, 12:00, and 18:00 local time on 14 February 2023. The temperature variation affects the
optical coupling of the space optical system significantly, resulting in an unstable overlap
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.Baer(/\br) = _.Bmol(/\er) + .Bmol()‘L/ 1’0) :

factor for the RMRL. The signal in the near field, mainly below 0.5 km is distorted, so only
the results above 0.5 km are involved in the comparison.

As mentioned earlier, the CDWL is operated in a VAD scanning mode with an elevation
angle of 70°. The CNR profiles have to be converted vertically to match the backscatter
profiles of the RMRL, so an approximation is taken so that the average CNR of a circle
scan is approximate to the vertical CNR profile at the projection height. Furthermore, the
vertical CNR profile is interpolated to a height resolution of 30 m to match the profile of
the RMRL.

3.2. Retrieval of the RMIRL

In this subsection, two methods are used to retrieve the optical properties of aerosols.
Generally, by assuming a constant lidar ratio between a(r) and (r), the inversion algorithm
proposed by Klett and Fernald (KF method) can be used to retrieve a(r) and S(r) [38,39].
This method can be used to invert the extinction and backscatter with only one elastic
backscatter lidar, with the assumption of the lidar ratio and boundary value. Different
assumptions of boundary value may lead to various results [40,41]. In general, the boundary
value is chosen at a reference altitude where the atmosphere is relatively pure and the signal-
to-noise ratio (SNR) is high enough. Sometimes, it may be difficult to find the reference
height, and soft targets such as clouds are used to estimate the boundary value [42].

In addition, the Raman backscatter signals can be used alone to retrieve aerosol
extinction profiles [43]. The independent aerosol extinction coefficient can be expressed
as: [44,45]

% [ln W&im] - ‘Xmol()‘Lr 7) - “mol(/\Xr }’)
% , )
1+ (5)

where the subscripts aer and mol stand for aerosol and atmospheric molecules, respectively.
nx(r) is the number density of the Raman molecule; Ax and A; are the wavelength of the
Raman-shifted laser and the output laser, respectively. P(Ax, Ay, r) is the backscatter power
of the Raman-shifted signal, and k is the Angstrom exponent. With the combination of Mie
scattering data, aerosol backscatter coefficient profiles can be obtained by:

“aer(/\L, 7’) =

P(AL,7) - P(Ax, AL, 1o) - nx(r) ] eXP[*f,:] Qaer (Ax, 1) + ol (Ax, V)dZ}
p(AL/ 70) . P()\xr AL, T) : ”X(VO) eXp[— ! aaer()\L/ r) + ‘xmol(/\L/ r)dz] '

o

®)

where 7 is the reference height and P(Ay, ) is the backscatter power of the Mie lidar signal.
Bmol can be calculated by the atmospheric temperature and pressure from the radiosonde
measurement or the atmosphere model. The two approaches present different advantages
and disadvantages; for example, the KF method relies on the accurate assumption of the
lidar ratio and boundary value, and the Raman method relies on the accurate assumption
of the Angstrom exponent. Figure 2 depicts some retrieval results of the experiments, and
the two algorithms show good consistency under correct assumptions.

To compare the data retrieval of the RMRL and CDWL, the backscatter and extinction
coefficients of aerosol at the wavelengths of 355, 532, and 1064 nm had to be converted to
the wavelength of 1548 nm. However, the extinction coefficient retrieved with the Raman
method only uses the backscatter signal at the Raman wavelength of 386 nm, which may
bring errors to the data conversion process. In this work, the two methods were combined.
First, the aerosol extinction coefficient was obtained at the reference height with the Raman
method using the data from 386 nm and then applied to the KF method as the boundary
value. Next, with the KF method, the extinction coefficient at the wavelengths of 355,
532, and 1064 nm could be obtained using the data from the different elastic lidars. The
Angstrom exponent varies with the wavelength, and an empirical relationship between
aerosol extinction and wavelength can be expressed with a second-order polynomial [46,47]:

Inger(A) = ag + a1 In A + ap(In A)?, (6)
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where the coefficient a, accounts for a “curvature” often observed in Sun photometry
measurements. For a special case of 2, = 0, Equation (6) equals the Angstrom exponent
law and a; = —k. With the profiles of the aerosol extinction coefficient from the RMRL,
the profiles of the aerosol extinction and the backscatter coefficient at the wavelength of
1548 nm can be obtained, as shown in Figure 3.
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Figure 2. Comparison of retrieval using the Raman method (blue dotted line) and the KF method
(red line). Aerosol backscatter coefficient Baer from the data of (a) 355 nm, (b) 532 nm, and (c) 1064 nm
lidar observed at 1:30 local time on 20 February 2023. The lidar ratios assumed for KF inversion are
30, 32, and 45. The Angstrom exponent applied in Equation (4) is set as 1.5.
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Figure 3. (a) Three groups of aerosol extinction coefficients at a height of 2 km retrieved from the
RMRL (red dots); second-order poly fit curves using the extinction coefficients and the wavelength
(blue line); aerosol extinction coefficients at the wavelength of 1548 nm derived from the poly fit curves
(blue triangle); (b) a magnification of part of (a) from 1.5 to 1.6 um; aerosol extinction coefficients
retrieved from the CDWL (pink square), and the blue lines and blue triangles are the same as in (a),
derived from the RMRL. The gray circles indicate the same group of data.

In this way, the data sets of the two lidars were assimilated to the same wavelength
and their inversion results could be compared. The data processing procedure is displayed
in Figure 4. The number density of Nitrogen molecules was calculated by the profile
of temperature and pressure from the Atmosphere model, and the lidar ratio was set as
30/32/45/50 Sr at the wavelength of 355/532/1064/1548 nm.
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Figure 4. Overview of the data processing procedure. CDWL, coherent Doppler wind lidar; DC,
direct current.

4. Experiments and Results

Field joint experiments with the CDWL and RMRL were conducted from 16 to 21 Febru-
ary 2023. The Raman lidar only works from 22:00 to 6:00 local time, so only the data during
the nighttime were compared. Figure 5 depicts the backscatter profiles averaged over ten
minutes altitude during the nighttime and daytime. Both the CDWL and RMRL demon-
strate a vertical detection capability of more than 3 km during the nighttime, and it can be
seen that the aerosols are mainly distributed at altitudes below 3 km. The backscatter signal
at 386 nm decays smoothly because the Raman backscatter coefficient is proportional to
the density of nitrogen, which is independent of the aerosol profiles. During the daytime,
the Raman lidar is turned off, and the effective detection ranges of the other lidars are
also reduced.

With the method in Figure 4, the extinction coefficients at various wavelengths were
retrieved with the resolution of 30 m/1 min, as shown in Figure 6, which also can be used to
retrieve the color ratio. Only the results from 22:00 to 6:00 local time are plotted. Figure 6d,
e shows the extinction coefficients at 1548 nm using the data from the RMRL and CDWL,
respectively, and the comparison results show good consistency.

It can be noticed that longitudinal stripes appear in Figure 6, which may mean the
internal gravity waves strongly affect the backscatter, particularly at 0:00 on 20 February.
To compare the retrieval of extinction coefficients with the two lidars in detail, the results
within a height range at the same time are displayed, as shown in Figure 7. It needs to
be mentioned that the results vary greatly in the near field (mainly in altitudes ranging
below 0.5 km). The signal of the RMRL is uncalibrated in the range of 0-0.5 km due to
the lack of a stable overlap factor, while the CDWL is calibrated with a relatively stable
heterodyne efficiency. Inconsistent results appear at 6:00 local time on 18 February, the

10
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output power of the laser in the RMRL decreases, and the effective detection distance
is reduced. Consequently, the measurement of the RMRL shows poor ability in aerosol
retrieval, causing a large difference between the CDWL and RMRL.

6 (a) Nighttime (b) Daytime
...... 3550m
5 386nm
532nm
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.20
]
Tt
1 L
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Figure 5. Ten minutes averaged altitude profiles of backscattered signals measured at (a) 0:00 and
(b) 12:00 local time on 20 February. The Raman lidar does not work during the daytime. The legend
indicates the wavelengths of the backscatter signals in nanometers.
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Figure 6. Results of extinction coefficients at the wavelengths of (a) 355 nm; (b) 532 nm; (c) 1064 nm;
(d) 1548 nm using the RMRL; (e) and 1548 nm using the CDWL. The results from 22:00 to 6:00 local
time on the 16, 17, 18, 19, and 20 February are displayed when the Raman lidar works routinely. The
time resolution and height resolution are 1 min and 30 m, respectively.
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Figure 7. Comparison of the aerosol extinction coefficients with the two lidars, measured at 0:00, 3:00,
and 6:00 local time on the 17, 18, and 20 February, respectively. The red lines show the results of the
CDWL at 1548 nm, and the blue dotted lines show the fitting results of the RMRL at 1548 nm.

The scatter diagrams of the aerosol extinction coefficients retrieved from the CDWL
and RMRL are shown in Figure 8. The results of the CDWL are plotted versus those of
the RMRL, and the density of the data points is normalized and displayed in different
colors. Moreover, the distributions of the bias are inserted in the bottom right corner of
each panel, in which the negative bias means that the results of the CDWL are lower than
that of the RMRL. In addition, due to the effects of different overlap factors, comparisons
using data ranging from 0.5 to 3 km and from 0 to 0.5 km are divided into two groups. The
first-order linear fitting functions of the results, the determination coefficients R, and the
root-mean-square error (RMSE) are added to the upper left corner of each graph. Good
performance with an R of 0.90 and 0.89 was obtained, proving the accuracy of aerosol
retrieval by coherent detection after heterodyne efficiency correction. In contrast, results
ranging from 0 to 0.5 km are shown in Figure 8c,d. The uncorrected overlap factor leads to
the result that the aerosol extinction of the RMRL is smaller than that of the CDWL.

The continuous observation results from 16-21 February are shown in Figure 9, in-
cluding the CNR, aerosol extinction coefficients, horizontal wind speed and direction,
and vertical wind speed. When the Raman lidar does not work during the daytime, the
boundary value is set as the interpolation of the result during the night. To ensure the
accuracy of the results, the retrieval of wind speed and direction with the CNR less than
—17 dB is plotted as white. In Figure e, the positive value of vertical velocity is defined as
downward, and the upward wind speed appearing every afternoon is consistent with the
results of the extinction coefficient, which also confirms the vertical transport process of
aerosols. The results prove the aerosol retrieval capability of the CDWL system.

12
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Figure 9. Continuous observation by the CDWL from the 16 to 21 February. (a) CNR, (b) aerosol
extinction coefficient, (c) horizontal wind speed, (d) horizontal wind direction, and (e) vertical wind
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speed. The CNR and extinction coefficient are averaged over a vertical scanning duration of 1 min.
The positive value of vertical velocity is defined as downward.

5. Conclusions

An experimental comparison between aerosol measurements using the CDWL and
the RMRL was achieved. To calibrate the aerosol retrieval, a method using boundary
values from the Raman lidar was proposed, and the extinction coefficients were compared
from the two lidar systems. Good agreements were achieved during the continuous field
experiments, with the fitting slopes of 0.97 and 0.96, and the determination coefficients
of 0.90 and 0.89. The results prove the accuracy of aerosol retrieval by coherent lidar
after correction powerfully, and the aerosol detection by all-fiber wind lidar was extended,
which may achieve the miniaturization and stabilization of the lidar for meteorological
measurements.
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Abstract: To meet the demand for the aerosol detection of single-angle and multi-band polarization
instrument containing short-wave infrared bands, an inversion algorithm that makes full use of
multi-band intensity and polarization information is proposed based on optimal estimation theory.
This method uses the polarization information in the short-wave infrared band to perform surface and
atmosphere decoupling without a prior information on the surface. This obtains the initial value of
the aerosol, and then it uses the scalar information to obtain the final result. Moreover, the multi-band
information of the instrument is used for decoupling the surface and atmospheric information, which
avoids the inversion error caused by the untimely update of the surface reflectance database and
the error of spatio-temporal matching. The measured data of the Particulate Observing Scanning
Polarimeter (POSP) are used to test the proposed algorithm. Firstly, to verify the effectiveness of
the algorithm under different surface conditions, four regions with large geographical differences
(Beijing, Hefei, Baotou, and Taiwan) are selected for aerosol optical depth (AOD) inversion, and they
are compared with the aerosol robotic network (AERONET) products of the nearby stations. The
validation against the AERONET products produces high correlation coefficients of 0.982, 0.986, 0.718,
and 0.989, respectively, which verifies the effectiveness of the algorithm in different regions. Further,
we analyzed the effectiveness of the proposed algorithm under different pollution conditions. Regions
with AOD >0.7 and AOD < 0.7 are screened by using the AOD products of the Moderate-Resolution
Imaging Spectroradiomete (MODIS), and the AOD of the corresponding region is inverted using POSP
data. It was found to be spatially consistent with the MODIS products. The correlation coefficient
and root mean square error (RMSE) in the AOD high region were 0.802 and 0.217, respectively, and
0.944 and 0.022 in the AOD low region, respectively, which verified the effectiveness of the proposed
algorithm under different pollution conditions.

Keywords: short-wave infrared bands; polarization; optimal estimation retrieval; aerosol optical
depth; Particulate Observing Scanning Polarimeter (POSP)

1. Introduction

Atmospheric aerosol, solid or liquid particles suspended in the atmosphere, including
those from natural and anthropogenic sources, are an important component of the Earth’s
atmosphere and they play an important role in the climate system and atmospheric environ-
ment system. In the climate system, aerosol not only affects the radiative energy balance by
interacting with solar and terrestrial radiation [1-3], but they also change the characteristics
and lifetimes of clouds [4-8]. In terms of the environment, aerosols are considered to be
the main cause of air pollution, and they have a significant negative impact on human
health [9-15]. Therefore, it is of great significance to carry out the remote sensing retrieval
of aerosol and particulate matter concentration.
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According to different remote sensing platforms, aerosol remote sensing can be divided
into ground-based, airborne, and satellite remote sensing. Satellite remote sensing has
the advantages of timeliness, periodicity, and large scale, and it is an effective method for
detecting the optical properties and spatial distributions of aerosols [16-20]. The inversion
of aerosol properties using satellite data has been carried out for more than 40 years.
According to the difference of remote sensing data and the method of surface-atmosphere
decoupling, the following methods are mainly used: dark target method using the statistical
relationship between the apparent reflectance of short-wave infrared channels and the
surface reflectance of red and blue channels [21-23]; deep blue algorithm for bright surface
area [24,25]; in the Multi-angle Imaging SpectroRadiometer (MISR) operational aerosol
retrieval algorithm, a mathematical method, empirical orthogonal functions, is used to
obtain the surface contribution, which gives a general solution for the surface reflectance
estimation in multi-angle aerosol remote sensing [26-28]; Inversion of aerosol optical
thickness using polarization information [29-34].

Although for the aerosol inversion, lookup table (LUT)-based methods are widely
applied, the method turned out to be incapable of fully exploiting the information implicit
in the satellite measurements [35]. So, the optimal estimation theory is introduced into
atmospheric research. The optimal estimation method was applied early to ground-based
observations [36]. After that Dubovik et al. developed the generalized retrieval of an
aerosol and surface properties algorithm which can be applied to a multi-angle observation
satellite such as Polarization and Directionality of the Earth’s Reflectance (POLDER) [37].
There are some inversion framework based on optimal estimation theory that have been
established [38-41]. Nevertheless, further studies based on optimal estimation theory
need to be developed to apply to different satellite measurements such as single-angle
multi-band polarization measurements, including short-wave infrared band.

The Particulate Observing Scanning Polarimeter (POSP) on board the Gaofen-5B
satellite obtains atmospheric information in three dimensions: spectrum, observation
angle and polarization through time synchronization and spatial coverage, and it obtains
atmospheric parameters over the imaging area. The unique advantage of POSP is that it
has nine detection channels from 380 to 2250 nm, all of which have polarization detection
capabilities. Although its observation mode is single-angle observation, its advantages of
multiple detection bands, wide band range and polarization detection capability will help
with the inversion of aerosol optical depth (AOD).

According to the characteristics of POSP instruments, the intensity polarization joint
inversion algorithm is proposed on the basis of optimal inversion theory, which makes
full use of multi-band information. Firstly, the polarization reflectance in the 2250 nm
band is used as the initial value of the surface polarization reflectance, and the optimal
aerosol column concentration is obtained via the optimization iterative method. Then,
according to the preliminary obtained AOD, the scalar signal is subjected to atmospheric
correction to obtain the initial value of surface reflectance. Scalar information is used for
the optimization iteration to obtain the final AOD.

This paper is divided into four parts: firstly, the characteristics of POSP data and the
theory of optimization inversion framework are introduced. Secondly, the implementation
details of the intensity polarization joint inversion algorithm are introduced in detail. Then,
the effectiveness of the algorithm is tested in different regions and under different pollution
conditions. Finally, the relevant conclusions are given.

2. Data and Optimization Estimate Framework
2.1. POSP Data Introduction

POSP is a high-precision polarization scanner developed by Anhui Institute of Optics
and Fine Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences,
which is an onboard satellite for earth observation and can obtain multispectral and polar-
ized radiation information on the surface and in the atmosphere. POSP adopts an on-board
calibration to ensure the measurement accuracy and accuracy of the POSP operation in
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orbit [42]. POSP provides the first three components (I, Q, and U) of the Stokes vector
corresponding to the band, and the basic parameters are shown in Table 1.

Table 1. The basic parameters of POSP.

Parameter Value
Central wavelength/nm 380, 410, 443, 490, 670, 865, 1380, 1610, 2250
Bandwidth/nm 20, 20, 20, 20, 20, 40, 40, 60, 80
Stokes parameters ,QU
Quantized digit 14 bit
Radiation calibration error <5%
Polarization calibration error <0.5%

Since the 380 nm band is greatly influenced by atmospheric molecules, the 1380 nm
band is mainly used for cirrus detection. So, seven bands except for 380 nm and 1380 nm
are used for AOD inversion in this paper.

2.2. Optimization Estimate Framework

The optimal inversion framework in this paper is based on the previous informa-
tion analysis of aerosol [43] plus the solution of the cost function. Let x be a state vector
composed of n parameters (such as aerosol volume, refractive index, particle size distri-
bution, etc.). The state vector will be retrieved from the observation vector y containing
m measured elements, such as spectral scalar and polarization reflectivity. The relationship
between y and x is shown in Formula (1):

y=F(x)+ € 1)

where the forward model F describes the forward model of the physical relationship
between y and x. € represents the combined error of observation uncertainty and forward
model uncertainty.

For satellite remote sensing, the forward model F is a nonlinear function, and the
optimized solution of Equation (1) needs to go through multiple Gaussian hypothesis
processes. According to the maximum likelihood method, the state vector of the t'th
iteration corresponds to the solution that minimizes the quadratic cost function as follows:

J(x) = %[y - F(xt)]TS;l [y—F(x")] + éra(xt - x,Z)TS,,’1 (x! = xp) )
In Formula (2), x! represents the state vector at the t iteration, the two terms on the
right side represent the constraints on the inversion results from observation and a prior
estimation, respectively. The observation error covariance S represents the uncertainty of
the model and measurements. The prior error covariance S, represents the uncertainty of
the prior estimate X,.r, = n/2, where n is the number of parameters to be inverted [44].
The process of finding the minimum value of the cost function needs to go through
multiple iterations, using the LM (Levenberg-Marquardt) iterative method [45]. The state
vector at the (t+1)-th iteration can be expressed as:

=t [+ )+ Kfsglkt]fl{Kthgl [F(x') —y] + Sa* [x" — xa] } 3)

In Formula (3), v is the LM parameter, which is initially set to 10, and is adjusted according
to Rodgers’ update strategy after each iteration of x. K is called the weighting function matrix
or Jacobian matrix, and it consists of the partial derivative of each forward model element with
respect to each state vector element, i.e., Kij = JF;/ axj, (i=1,..mj=1,...n) (Ki,j denotes
the element in the i-th row and j-th column of matrix K, F; is the i-th simulated measurement,
and x; is the j-th element in the state vector x).
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3. Optimal Estimation Inversion Algorithm
3.1. A Priori Information on Aerosols and Surface

In the framework of optimal inversion, a priori estimation is an important factor
affecting the inversion results. Reasonable priori estimation can reduce the number of
inversion iterations, improve the time efficiency of the algorithm and avoid unreasonable
convergence results. A priori estimation mainly comes from the a priori knowledge of state
vectors and non-state vectors, such as historical meteorological data, ground measured
data, etc. The influence of prior estimation on inversion is manifested in two aspects: first,
the a priori estimation of the state parameter is input into the inversion program as the
initial value for iteration, and the prior term that constitutes the cost function constrains the
final inversion result. Secondly, the reasonable values of non-state parameters can reduce
the model error and improve the accuracy of the inversion results.

3.1.1. Aerosol Model

In many studies, the bimodal lognormal distribution function is commonly used to
characterize the aerosol particle size distribution, as follows:

2
"=y, f’ﬁexp(—(l”r ) ) @

= roiV2m
In Formula (4), C denotes the volume concentration, o is the standard deviation,
and ry, is the mean radius. The bimodal log normal distribution requires six parameters
to represent.
Under the assumption of a bimodal log-normal distribution, five pairs of parameters
can be used to describe the aerosol model: the particle column concentration v{; and v,

the effective radius r{ f and ¢ £ the effective variance ZJ{ £ and ¢ £ the real part of the

refractive index m; and my, and the imaginary part of the refractive index m{ and mf The
superscripts f and ¢ represent fine mode particles and coarse mode particles, respectively.
A priori information about the aerosol models can use the results of previous studies [46],

and the aerosol particle size distribution is shown in Figure 1.

0.30

0.25

dv/dinr(um3/um?)
5 5 o
= S S

Radius(um)

Figure 1. The size distribution of 8 aerosol models ([46]).
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The legends in Figure 1 represent different types of aerosol models. LH-LP: Low
Humidity-Low Pollution Aerosol, CBC: Carbonaceous-Black Carbon Aerosol, DC: Dust
Urban Aerosol, DD: Sand Dust-Desert Aerosol, LH-HP: Low Humidity-High Pollution type
aerosol, HH-LP: High Humidity-Low Pollution type aerosol, HH-Hp: High Humidity-High
Pollution type aerosol, CBrC: Carbonaceous-Brown Carbon type aerosol.

3.1.2. Processing of A Priori Information about Surface

At present, the methods for obtaining a priori surface information mainly include
the surface model method [29], the prior surface reflectivity database [24], etc. In this
paper, according to the polarization reflectancenot being sensitive to band changes [47,48],
the polarization reflectance of the shortwave infrared band is used as the initial value
of the surface polarization reflections of other bands, and then the aerosol parameters
to be retrieved are obtained according to an iterative strategy. According to the aerosol
parameters obtained via polarization inversion, the atmospheric transmittance, hemispheric
albedo and atmospheric path radiation are obtained using Unified Linearized Vector
Radiative Transfer Model (UNL-VRTM) [47], and then the empirical value of the surface
reflectance is obtained using Formula (5):

P —pPo ®)

b= o—po) xS+ T

In Formula (5), p, po, and ps are the normalized reflectances of the atmospheric top,
atmospheric path radiation, and surface, respectively. S and T are the atmospheric hemi-
sphere albedo and the total atmospheric transmittance, respectively.

3.2. Intensity Polarization Joint Optimization Inversion Algorithm
3.2.1. Satellite Observation Model

The radiation signals obtained by satellites can be characterized by the apparent
reflectance. There are multiple interaction processes between the surface and the atmo-
sphere, which are complicated by different surface reflectances and different atmospheric
conditions. Therefore, the apparent reflectance model is as follows [49]:

TsTvp (U, Ky, @) SO (K, 1y, @)
i, @) = RAM (g, ) TS VES BV BARTOA () = SR v D 6
Hs, by, @) (Ms/ Hy, @) T—s0(1o e, @) (s Hy, @) L Ey (6)
In Formula (6), RT9* and RA™ are the top-of-atmosphere (TOA) reflectance and the

atmospheric path radiation, Ts and Ty are atmospheric downward and upward transmit-
tances, respectively, p is the surface albedo and s is the atmospheric hemispheric albedo.
Us, Ky, and @ are the cosine of the solar zenith angle, the cosine of the observed zenith
angle, and the relative azimuth angle. E is the solar constant (the solar spectral irradiance
outside the atmosphere). The surface albedo can be obtained if the apparent reflectance,
atmospheric path radiation, atmospheric transmittance, and atmospheric hemispheric
albedo are known.

The polarization signal obtained by the satellite is characterized by the TOA polarized
reflectance. The polarization contribution caused by the multiple interactions between the
surface and the atmosphere is very small. After the attenuation of the atmosphere, the
contribution to the observation at the top of the atmosphere can be ignored. Therefore,
the TOA polarized reflectance modeling only needs to consider the upward polarization
scattering of the atmosphere and the single reflection of the surface [50], and the TOA
polarized reflectance can be written as follows:

7p (K, Hy, @)
HsEo

In Formula (7), is the TOA polarized reflectance, Rf?tm is the polarized reflectance
of the atmosphere (which can be calculated by setting the surface polarized reflectance to

@)

TOA
Rp
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zero), and pp is the surface polarized reflectance. I, = +/ Q%+ U? is the polarized radiance
at the top of the atmosphere.

In summary, when using the intensity information and polarization information for
the optimization solution, due to different observation models and different assumptions
of the surface, the state vector x and observation vector y are shown in Table 2:

Table 2. State vector x and observation vector y settings.

Category Polarization Setting Intensity Setting
. T
Observation vector y= [Iw vy, } y= [IM""/IA7]T
1 6
T T
State vector x= [Vy, Ve x= Vi, Verpre 0P|

In Table 2, the superscript T represents the transpose of the vector, and A; — Ay are
the corresponding center wavelengths of POSP: 410 nm, 443 nm, 490 nm, 670 nm, 865 nm,
1610 nm and 2250 nm, respectively. Vf and V, are the aerosol fine-mode and coarse-mode
column concentrations, respectively, and p represents the surface reflectance. Since it is
assumed that the surface polarized reflectance is independent of the wavelength, and
the TOA polarized reflectance in the 2250 nm band is used as the initial value of the
surface polarized reflectance, in the polarization inversion, the state vector x has only three
parameters, and the observation vector has 6 parameters. In the intensity inversion, the
state vector has nine parameters and the observation vector has seven parameters.

3.2.2. Cost Function Solution Method

The optimal estimation theory provides the cost function J(x) for finding the optimal
inversion result, and gives the specific form. J(x) is a nonlinear function, and Newton’s
iterative method is a common method for solving nonlinear functions. In this paper, the LM
algorithm is used to solve the minimum value of J(x), and in the LM program module, the
forward radiated transmission simulation module and the calculation module of the cost
function are combined to establish the program framework for optimal iterative inversion.
Under the framework of the program, the optimal estimation of the state vector is found
after several iterations. The convergence condition is as follows:

[+ =],
[x![2
In Formula (8), where || |12 is the L2 norm, ¢ is the convergence threshold for
judging the end of the iteration, which is an empirical value, and is taken as 0.1% in

this paper.

In the actual operation process, when the number of iterations exceeds the set max-
imum number of iterations of six, or when the element value in x exceeds the boundary
range, the iteration stops and an invalid value is output.

3.2.3. Algorithm Implementation

The LM program module, UNL-VRTM, and the cost function calculation module are
combined to make full use of the multi-band polarization information of POSP to carry out
the optimal inversion of AOD. The detailed flow chart is shown in Figure 2. After reading
the POSP data, the proposed algorithm can be divided into the following two stages.
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Figure 2. The flowchart of inversion algorithm.

In the first stage, the optimal inversion is performed using the polarization informa-
tion to obtain the aerosol column concentration. There are three main steps at this stage:
(1) Obtain the initial value of the surface polarization reflectivity of other bands through
the apparent polarization reflectivity of 2250 nm; (2) Use the radiation transfer soft-
ware UNL-VRTM to calculate the Jacobian matrix of the state vector; (3) Obtain a new
state vector according to the update strategy of Formula (3), and then after several itera-
tions, when the iterative convergence threshold is met, the aerosol column concentration

parameter is output.
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Polarized reflectance

In the second stage, the final aerosol column concentration parameters are obtained by
optimizing the inversion using the intensity information. First, input the aerosol column
concentration parameters obtained in the previous stage into UNL-VRTM and run it, and
then perform simple atmospheric correction according to Equation (5) to obtain the initial
values of surface reflectance in different bands. Then, according to (2)—(3) of the first stage,
the column concentration parameters of the aerosol are finally obtained.

The aerosol volume column concentration parameters are obtained via inversion ac-
cording to the above process, and the spectral AOD can be further calculated by combining
with the aerosol model parameters, but this calculation process does not need to be carried
out separately. In the iterative process, when using the UNL-VRTM software for forward
simulation, AOD can be obtained at the same time, and the calculation result can be output
when the last step satisfies the iterative convergence condition.

4. Result and Discussion
4.1. Algorithm Iteration Process

According to the prior information acquisition and retrieval strategy described above,
the POSP data from November 2021 to July 2022 are selected for the retrieval of AOD. An
inversion case of 8 June 2022, over the Beijing site is selected to illustrate the iteration and
convergence processes of the algorithm, as shown in Figure 3.
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Figure 3. (a,c) Illustrations of the iterative process for TOA reflectance and TOA polarized reflectance,
respectively. (b,d) The plot of the cost function as a function of iterations in polarization inversion
and intensity inversion, respectively (case for 8 June 2022).

Figure 3a,c shows the fitting between the simulated values of the model and the
measured values of POSP with the increase in the number of iterations in the process of
inversion using polarization information and intensity information, respectively. After
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the last iteration, the simulated values using polarization information agree well with the
observed values in the first five bands, and there is only a slight gap in the 1610 nm band.
The simulated values using intensity information are in good agreement with the observed
values in all bands, indicating that in single-angle observation, the intensity contains more
information about the atmosphere than the polarization measurement. In Figure 3b,d of the
cost function varies with the number of iterations in the process of polarization inversion
and intensity inversion, respectively. It is also reflected that the intensity contains more
information than polarization from (b) and (d). When convergence, the cost function value
of intensity information inversion is less than that of polarization information inversion.
After five iterations, the cost function almost does not change with the increase in the
number of iterations, so that in order to save the time of the algorithm, the maximum
number of iterations can be set to 6.

4.2. Evaluation Index of the Inversion Result

In the evaluation of the inversion results, quantitative indexes such as correlation
coefficient (R), root mean square error (RMSE), expected error (EE), and the percentage of
except error (Scope) are used. Taking AOD as an example, the specific definitions of each
index are as follows:

_ OV (Tretrieval, Ttrue)
std(Tretrieval) X Std(Ttrue)

©)

N

1
RMSE = N Z(Tretrieval - Ttrue)2 (10)
i=1
A = EE = +0.15Tyye £ 0.05 (11)
Scope = Nyaiig/N x 100% (12)

In Formulas (9)—(12), Tretrieval is the AOD result of inversion using POSP data, and
Tirue is the data for verification. Cov() and std() represent the covariance and standard
deviation calculations, respectively. Scope is the proportion of the amount of data within
the range of Tiue + A for the inversion AOD to the total data. N and Ny,q are the amount
of data and the total amount of data that fall into the error range, respectively.

4.3. Validation against Ground-Based Data

The AERONET level 2.0 category is used for ground-based validation in this paper.
AERONET is a ground-based network of sun photometers that provides high-quality
aerosol measurements including AOD products [36,51].

The spectral AOD are retrieved using the proposed algorithm. With regard to valida-
tion, the AOD at 670 nm is selected. Correspondingly, the AOD at 675 nm in the AERONET
products is used.

In order to verify the effectiveness of the inversion algorithms in different regions, four
regions (Beijing, Hefei, Baotou, and Taiwan) with considerable geographical differences
were selected. Additionally these four areas have AERONET ground-based long-term ob-
servation stations, namely: Beijing area (Beijing station), Baotou area (AOE_Baotou station),
Hefei area (Hefei station) and Taiwan area (Chen-Kung_Univ station), the corresponding
latitude and longitude are shown in Table 3.

Table 3. AERONET data for validation.

AERONET Sites Longitude Latitude Date Range
Beijing 116.3814 39.9769 2021.11-2022.7
AOE_Baotou 109.6288 40.8517 2021.11-2022.7
Hefei 117.1622 31.9047 2021.11-2022.7
Chen-Kung_Univ 120.2047 22.9934 2021.11-2022.7
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The location and observation time of the AERONET sites are matched to extract the
observation data corresponding to POSP from November 2021 to July 2022, as shown
in Figure 4.

Begin
\ 4
POSP data POSP data o . . N - .
HDFS file Xml file » Obtain satellite transit time 7 AERONET sites
A
Extract 3*3 pixels of POSP centered on the Match AERONET data

A

A

latitude and longitude of the site according to satellite time

I

Matched POSP data and
AERONET data

v

Save as HDFS file

Figure 4. The flowchart of matching POSP observation data and AERONET data.

The validation against the corresponding AEROENT product is shown in Figure 5a-d
are the verification results in Beijing, Baotou, Hefei and Taiwan, respectively.

It can be found from Figure 5 that the inversion results based on the algorithm pro-
posed in this paper are basically consistent with AOD products of the AERONET sites,
and the results are good. However, due to the influences of different surface types and
aerosol types, the Scope is different. The order from largest to smallest is Hefei, Taiwan,
Beijing, and Baotou. The reason for this may be that the surface vegetation in the Baotou
area is sparse and is often considered to be a bright surface, while the Hefei site is mostly
covered by evergreen vegetation, and the surface reflectance value is relatively small, so
that the impact of the surface on the apparent reflectance is relatively smaller than the
bright surface.

In addition, the aerosols in Baotou are mainly composed of coarse particles, so
when polarization inversion is performed, the AOD obtained will have a large error,
and then a large error will be introduced when the initial value of surface reflectance is
provided based on the results of polarization inversion, resulting in relatively poor final
inversion results.

26



Remote Sens. 2023, 15, 385

144 - A=%0.15x+0.05 0404 T :3=r0115xt0-05 e
- y=x : - y=x
1.2 4 0.35 4
1.0 0.30
a [}
2 08 g 027
o
& % 0.204
a 0.61 a
0.15
0.4 y=0.885x+0.032
R=0.082 0.10
RMSE=0.058
0.2 1 N=81 0.05
¥ Scope=91.4% K
0.0 £ - - - : - - ‘ 0.00 += — - : , :
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 000 005 010 015 020 025 030 035 040
AERONET AOD AERONET AOD
(a)Beijing (b)Baotou
035{ A=%0.15%+0.05 o7l A=+0.15%+0.05 -
- y=x ' - y=X
0.30 0.6
0.25 4 054
a [a]
€020 2
2o T 0.4
5 8
a 0.154 a 0.3
0104 . y=0.886x+0.031 024 y=0.943x+0.016
~ R=0.986 R=0.989
e RMSE=0.020 RMSE=0.029
0.05 N=22 01 .~ N=14
P Scope=100.0% g Scope=92.9%
0.00 += = T T T T r T 0.0 == . : - T T
0.0 005 010 015 020 025 030 035 0.0 01 0.2 0.3 0.4 0.5 0.6 0.7
AERONET AOD AERONET AOD
(c)Hefei (d)Taiwan

Figure 5. Validation of the AOD at 670 nm with the proposed method against AOD at 675 nm in
AERONET products at Beijing, Baotou, Hefei and Taiwan sites.

4.4. The Validation against MODIS Products

In order to verify the effectiveness of the intensity polarization joint inversion algo-
rithm under different pollution conditions, MODIS’s AOD products at 550 nm are first used
to screen the time and longitude ranges of AOD high value (AOD > 0.7) and low value
(AOD < 0.7), and then filter out the corresponding POSP observation data. The specific
latitude and longitude ranges and times are shown in Table 4.

Table 4. Data information used for validation.

AOD Range Longitude Range Latitude Range Date
AOD>0.7 114.6-115.9 37.5-38.5 2022.6.9
AOD<0.7 116.6-118.2 31.57-33.46 2022.5.4

The comparison between the inversion results in the high-value area and the MODIS
product is shown in Figure 6. The blank area in the figure indicates no inversion results,
because they are cloud pixels or no data.

Comparing the (a) and (b) figures in Figure 6, it can be found that the inversion results
of POSP are consistent with the MODIS product as a whole, but that the inversion value of
POSP in some areas is smaller than the AOD value in MODIS (prismatic area in the figure),
and that the AOD value of POSP is greater than that of MODIS in some areas (circular
area in the figure). In order to further analyze the difference between the AOD inversion
results of POSP and the MODIS products, the inverted AOD and MODIS products were
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statistically analyzed and linear regression analysis was performed, and the results are
shown in Figure 7.
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Figure 6. POSP AOD inversion results (a) vs. MODIS products (b) (9 June 2022).
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Figure 7. The scatter plot of POSP AOD inversion results against MODIS products (9 June 2022).

According to the statistical results of Figure 7, a total of 125 high-value AOD data
are obtained, of which 78.4% of the data fall within the error range, and the correlation
coefficient R is 0.802.
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Figure 8 shows the comparison of the AOD inversion results of POSP in the low AOD
value area with the MODIS product. Comparing (a) and (b), it can be found that the POSP
inversion results are consistent with the MODIS product as a whole. In some areas, the
inversion result of POSP is smaller than MODIS (the prismatic area in the figure). In order
to further analyze the effectiveness of the inversion algorithm, the inversion results and
MODIS products were statistically analyzed, and the results are shown in Figure 9.
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Figure 8. POSP AOD inversion results (a) vs. MODIS products (b) (4 May 2022).
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Figure 9. The scatter plot of POSP AOD inversion results against MODIS products (4 May 2022).
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As can be seen from Figure 9, a total of 670 data points are obtained, 99.6% of the data
are within the error range, and the correlation coefficient R is 0.944, indicating that the
inversion results are in good agreement with the MODIS.

In summary, comparing the inversion results of high-value AOD and low-value AOD,
it can be found that the inversion results of low-value AOD are significantly better than
those in high-value AOD regions. This may be due to the assumption that the 2250 nm
band is not sensitive to the atmosphere when performing polarization inversion, so that the
TOA polarization reflectance of 2250 nm is used as the surface polarization reflectance of
other bands. When the AOD is low, this assumption may have little effect on the inversion
results, but in the high AOD value region, due to the increased probability of collision
between light and particles, the 2250 nm band will carry more aerosol information, which
will have a certain impact on the inversion results.

5. Conclusions

In this paper, based on the observation characteristics of POSP single-angle multi-
band polarization measurements, an intensity polarization joint optimization inversion
algorithm based on optimization theory is proposed, which can effectively perform ground-
air decoupling without prior knowledge of the surface. Additionally, the effectiveness of
the algorithm is verified in different regions and under different pollution conditions. It
is found that in the vegetation coverage area (Hefei) and the urban underlying surface
(Beijing and Taiwan), the correlation coefficient between the inversion AOD at 670 nm
from POSP and the ground-based AOD at 675 nm from AERONET can reach more than
0.98. Good results can also be obtained on the bright surface (Baotou), the correlation
coefficient can reach 0.71, and the proportion of data within the error range can reach 85.5%.
In addition, the inversion results of the high-value area and the low-value area of AOD
are also analyzed. It is found that the AOD at a 550 nm correlation coefficient between
POSP and MODIS in the high-value area is 0.802, and in the low-value area, it is 0.994,
indicating that the performance of the algorithm in the low-value area is better than that of
the high-value area.

This algorithm uses the insensitivity of the short-wave infrared band to the atmosphere
to obtain the initial value of the surface polarized reflectance. Therefore, in the high-value
area of aerosol or under the condition coarse mode dominated aerosol, it will have a certain
impact on the inversion results.
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Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD)
has been widely used in atmospheric environment and climate change research. Based on data of
the Aerosol Robotic Network and Sun-Sky Radiometer Observation Network in the Yangtze River
Delta, the retrieval accuracies of MODIS C6.1 Dark Target (DT), Deep Blue (DB), and C6.0 Multi-angle
Implementation of Atmospheric Correction (MAIAC) products under different land cover types,
aerosol types, and observation geometries were analyzed. About 65.64% of MAIAC AOD is within
the expected error (Within EE), which is significantly higher than 41.43% for DT and 56.98% for DB.
The DT product accuracy varies most obviously with the seasons, and the Within EE in winter is
more than three times that in spring. The DB and MAIAC products have low accuracy in summer
but high in other seasons. The accuracy of the DT product gradually decreases with the increase in
urban and water land-cover proportion. After being corrected by bias and mean relative error, the DT
accuracy is significantly improved, and the Within EE increases by 24.12% and 32.33%, respectively.
The observation geometries and aerosol types were also examined to investigate their effects on
AOD retrieval.

Keywords: Yangtze River Delta; aerosol optical depth; AERONET; SONET; MODIS; aerosol type;
land cover

1. Introduction

Aerosols are tiny particles suspended in the atmosphere, and they are one of the main
pollutants in the atmosphere [1]. This pollutant is an important factor affecting climate
change, by scattering and absorbing solar radiation and changing the microphysical prop-
erties of clouds to disturb the Earth’s radiation balance [2-5]. The impact of atmospheric
aerosols on climate forcing is uncertain due to the relatively high spatial and temporal
variability in their physical and chemical characteristics [6,7]. The observation of aerosol’s
optical and physical properties and the quantification of the impact of aerosol particles on
the climate and environment have also attracted extensive attention. Aerosol optical depth
(AOD) is the integral of the aerosol extinction coefficient in the vertical direction, and it
is a key factor used to describe aerosol optical properties and determine the influence of
climate effects. It is widely used in atmospheric environment monitoring, atmospheric
radiation transmission, remote sensing applications, and climate change research [8-10].

Remote sensing technology is an important method for aerosol monitoring at present [11].
Satellite remote sensing has a large observation region and relatively low cost, and it
can reflect the spatial and temporal variations in regional and even global atmospheric
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aerosol. The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra/Aqua
satellite has been widely used as a global-coverage satellite remote sensing instrument
to detect aerosol optical properties [12]. However, the radiation information received by
the satellite’s sensor is subject to the complex influence of atmospheric scattering and
surface reflection [13]. Moreover, uncertainties are introduced by surface reflectance and
the aerosol model used in AOD retrieval [14,15], which results in uncertainty in the results
of satellite retrieval. Therefore, the applicability of MODIS aerosol products for different
regions still needs to be verified by comparison with ground observation data. East Asia
is one of the regions with the largest aerosol loads in the world. Considerable research
has been conducted on the applicability of MODIS AOD in East Asia, especially China,
including the Yangtze River Delta (YRD), the Beijing—Tianjin—-Hebei region, Pearl River
Delta, and northwest China [16-18].

The land surface reflectance is high, and the aerosol types are complex compared with
those in ocean aerosol retrieval, and the retrieval of aerosols over land is still an important
and difficult topic [19]. The solar radiation at the top of the atmosphere (TOA) received by
satellite sensors includes atmospheric scattering and surface reflection. Obtaining accurate
surface reflectance is a key problem to be solved for aerosol retrieval. Land cover type also
affects aerosol characteristics. The reason is that different land cover types will produce
different atmospheric emissions, and this factor can change the local climate and affect
the transmission of aerosols by affecting radiation transport [20]. Therefore, an increasing
number of scholars focus on the influence of surface types on aerosol characteristics and
AOD retrieval accuracy [21-24].

The YRD is one of the fastest-growing and most prosperous regions in China. It is
considered to be a high-aerosol value area in the global context and a heavily polluted area
in China, because of its dense population and industries [25]. The composition of aerosols
in this region is complex, including anthropogenic aerosols such as sulfates, biomass
burning aerosol, as well as natural aerosols, such as dust and sea salt transported over
a long distance, and their optical properties are highly diverse [26-29]. Therefore, the
applicability of the MODIS aerosol product in the YRD needs to be further analyzed to
clarify the influence of different land cover types, aerosol types, and observation geometries
on aerosol retrieval accuracy.

In this study, the YRD is taken as the research area, and the AOD data of the Aerosol
Robotic Network (AERONET) and the Sun-Sky Radiometer Observation Network (SONET)
ground-based observation sites, representing the underlying surface of forest, cropland,
urban, and water, are selected as the benchmark. The aerosol retrieval accuracies of MODIS
Collection 6.1 (C6.1) Dark Target (DT), Deep Blue (DB), and MODIS Collection 6 (C6) Multi-
angle Implementation of Atmospheric Correction (MAIAC) AOD products under different
land cover types, aerosol types, and observation geometries are studied. The accuracy of
MODIS AOD is also corrected according to the land-cover proportion of urban and water
areas to provide a new reference for the more accurate evaluation of the applicability of
MODIS AOD products in different regions and the improvement in the retrieval method.

2. Materials and Methods
2.1. MODIS Aerosol Products

MODIS is one of the most important sensors used by the Earth Observing System
(EOS) Terra/Aqua satellites for aerosol monitoring [12]. It has 36 bands covering the
spectrum from 0.4 um to 14 pm. Its spatial resolution range includes 250 m (bands 1-2),
500 m (bands 3-7), and 1 km (bands 8-36), and thus, it provides global coverage every
2 days [30]. At present, MODIS aerosol products have been developed for the DT and
DB of C6.1 version [31,32]. The daily aerosol products of C6.1 Level 2 are MOD04_L2
and MYDO04_L2 with a spatial resolution of 10 km, where “MOD” is used for Terra and
“MYD” for Aqua. The MAIAC product has been developed for C6 [33], and its daily aerosol
product is MCD19A2, with a spatial resolution of 1 km.
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2.1.1. DT Products

Over vegetated and dark soiled surfaces, a proportional relationship exists between
the surface reflectance in visible wavelengths (0.47 and 0.66 pm) and in the shortwave
infrared wavelengths (2.12 um), which is called the “VISvs2.12” relationship [34,35]. The DT
algorithm assumes that the aerosol is transparent at 2.12 um and that the surface reflectance
equals the TOA reflectance in this band; then, the AOD is retrieved based on the selected
aerosol model and look-up table (LUT). Under a dust aerosol regime, aerosol transparency is
an extremely poor assumption, and the 2.12 um channel contains information about coarse
mode aerosol and the surface reflectance. Levy et al. found that a single set of “VISvs2.12”
ratios is not globally applicable [13,36]. The C5 defined the “VISvs2.12” relationship as a
function between the scattering angle (SA) and the Normalized Difference Vegetation Index
(NDVI) based on 2.12 um. The C6.1 product over land was corrected as follows: when the
coastal proportion in the 10 km x 10 km grid was greater than 50% or the water proportion
was greater than 20%, the quality assurance (QA) of AOD was dropped to 0; when the
proportion of urban was more than 20%, the surface reflectance calculation scheme was
modified using the MODIS land surface reflectance and land cover type products [37]. The
dataset of “Optical_Depth_Land_And_Ocean” from C6.1 MOD04_L2 and MYD04_L2 was
used, and it contains AOD values for the filtered, quantitatively useful retrievals over dark
targets, where the QA for AOD over land is 3 (representing high-quality retrieval).

2.1.2. DB Products

Hsu et al. found that the surface reflectance of MODIS in the blue channel is still low,
even in areas of high surface reflectance, such as urban and desert [38]. The DB algorithm
assumes that the surface reflectance of most figures remains constant in a short time and re-
trieves AOD by constructing a seasonal surface reflectance database [39]. The C6 algorithm
divides the land surface into three types: arid and semi-arid regions, vegetated regions, and
urban/built-up and transitional regions [40]. The surface reflectance database is improved
using knowledge of NDVI, SA, and season. The C6.1 product has been updated in the
following aspects: radiometric calibration, heavy smoke detection, artifact correction for het-
erogeneous terrain, seasonal and regional aerosol model, and surface reflectance in elevated
terrain [41]. The dataset of “Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate”
from the MODIS C6.1 product was used, where QA = 2, 3 (representing good quality
retrieval). Datasets such as “Solar_Zenith”, “Sensor_Zenith”, “Solar_Azimuth”, “Sen-
sor_Azimuth”, and “Scattering_Angle” were used to evaluate the impact of observation
geometry on the accuracy of DT and DB AOD.

2.1.3. MAIAC Products

The MAIAC algorithm assumes that (1) surface reflectance slightly changes in a short
period of time and that (2) AOD does not change remarkably in adjacent regions [42,43].
MAIAC retrieves AOD through time-series MODIS observations. MAIAC applies the
MODIS L1B data to a fixed grid with a resolution of 1 km, analyzes the time series of
observation data from the past 4 days (polar) to 16 days (equatorial) using the sliding
window strategy to obtain the linear spectral regression coefficient (SRC), and calculates
AQOD based on SRC and surface bidirectional reflectance factors via LUT. MODIS C6 has
been improved in terms of cloud mask, SRC estimation, and aerosol properties. MAIAC
utilizes the minimal ratio of spectral reflectance (0.47/2.13 um) in a 2-month period to
estimate SRC at a 1 km scale, which helps to remove the occasional blockiness at the 25 km
scale in the AOD and in the surface reflectance. Smoke and dust models are introduced in
C6 to distinguish between fine and coarse aerosol models [33]. “Optical_Depth_055" and
“AOD_QA” in the C6 product were used in this study, where “0000” for the QA of AOD
was selected to represent the best quality. The datasets “cosSZA”, “cosVZA”, “RelAZ”, and
“Scattering_Angle” were selected to evaluate the impacts of observation geometry on the
accuracy of MATAC products.
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2.2. Ground-Based Measurements
2.2.1. AERONET Data

AERONET is a global aerosol optical property monitoring network established by the
National Aeronautics and Space Administration [44]. Through the establishment of ground-
based monitoring sites in representative regions around the world, the benchmark data of
global aerosol parameters have been obtained to study aerosol optical and physicochemical
properties. The AERONET uses the French CIMEL CE318 Sun photometer to obtain
the columnar AOD for the whole atmosphere by measuring the direct (collimated) solar
radiation at different wavelengths, directions, and times. AERONET uses the spectral ed-
convolution algorithm to yield fine and coarse AOD at a standard wavelength of 500 nm,
from which the fine mode fraction to total AOD can be computed [45]. The CE318 Sun
photometer sky radiance measurements can be inverted to produce aerosol characteristics,
such as size distribution, single scattering albedo (SSA), phase functions, and the complex
index of refraction. The AERONET aerosol products are classified into Level 1.0, Level
1.5, and Level 2.0 [46]. L1.0 data are unscreened and do not undergo final calibration; L1.5
data are cloud-cleared, and quality controls have been applied, but these data may not
undergo final calibration; L2.0 data are automatically cloud-cleared and quality-assured,
with pre-field and post-field calibration applied. The V3 Level 2.0 data (Table 1) for Taihu
(TH), Qiandaohu (QDH), Hangzhou_City (HZC), Hangzhou_ZFU (HZZ), NUIST, Shouxian
(SX), Hefie (HF), XuZhou-CUMT (XZ), and LA-TM in the YRD (Figure 1) from 2007 to 2018
were used in this study.

Table 1. Information of ground-based observation sites.

Number of Matches (1)

Site Project Longitude Latitude Data Period
DT DB MAIAC

TH AEROENT 120.215 31.421 09/2005-08/2016 722 956 1512
QDH AEROENT 119.053 29.556 08/2007-10/2008 53 53 88
HZC AEROENT 120.157 30.290 04/2008-02/2009 69 84 103
HZZ AEROENT 119.727 30.257 08/2007-08/2009 174 176 195
NUIST AEROENT 118.717 32.206 09/2008-08/2010 107 137 156
SX AEROENT 116.782 32.558 05/2008-12/2008 86 98 96

XZ AEROENT 117.142 34.217 06/2013-05/2019 831 1135 1238
HF AEROENT 117.162 31.905 11/2005-11/2008 86 107 118
LA-TM AEROENT 119.440 30.324 10/2007-03/2009 93 101 112
HF SONET 117.162 31.905 01/2013-12/2019 484 510 562
NJ SONET 118.957 32.115 01/2013-12/2019 357 476 528
SH SONET 121.481 31.284 01/2013-12/2019 221 370 397

2.2.2. SONET Data

SONET is a ground-based observation network organized and implemented by the
Chinese Academy of Sciences in typical areas of China, including rural, urban, desert,
coastal, basin, mountain, and plateau areas [47]. It obtains the physical, chemical, and
optical characteristics of the total column aerosol for aerosol characteristic modeling and
the authenticity inspection of satellite remote sensing products in China. SONET uses the
French CIMEL’s multiwavelength polarized sun-sky radiometer CE318-DP to observe the
solar and sky radiation and their polarization characteristics in eight wavebands (the central
wavelengths are 340, 380, 440, 500, 675, 870, 1020, and 1640 nm) and to detect the total
column water vapor at 936 nm. Aerosol products are divided into three grades according
to the AERONET product grades, namely, Level 1.0, Level 1.5, and Level 2.0 [48]. L1.0 data
are original data; L1.5 data are cloud-cleared through the automatic cloud identification
algorithm; 1.2.0 data are cloud-cleared, and calibration coefficient interpolation and expert
identification have been applied. SONET L2.0 data (Table 1) from Hefei (HF), Nanjing (NJ),
and Shanghai (SH) were adopted in this study.
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Figure 1. Locations of the AERONET and SONET sites in the Yangtze River Delta displayed on the
land-cover map.

The AERONET/SONET AOD at 500 and 675 nm were interpolated into AOD at
550 nm using the Angstrom exponent (AE) because MODIS AOD is at 550 nm, but
AERONET/SONET AOD does not have such a wavelength.

Ts50 — Te75 (550/675)7“ (1)

X = — 111(’[500/’[675)/ 111(500/675) (2)

where 1509 is AOD at 500 nm, t475 is AOD at 675 nm, « is the AE at 500-675 nm, and 755 is
AQOD at 550 nm obtained by interpolation.

2.3. Land Cover Data

MCD12Q1 data are the 500 m resolution land classification products formed by ex-
tracting different land cover types based on the annual MODIS Aqua and Terra data using
the decision tree-supervised classification method [49]. These data can be divided into
17 land cover types. The land cover type percentages of each of the AERONET and SONET
sites in the YRD corresponding to 3 x 3 pixels of MODIS L2 data within the range of
30 km x 30 km are counted in Table 2. The areas around QDH, LATM, and HZZ are domi-
nated by forest; notably, the forest proportions of LATM and HZZ account for more than
90%. HF and SX are dominated by cropland, and the proportions account for more than
60%. The land cover types at HZC and SH are mainly urban, of which the urban area in
SH accounts for more than 90%. TH is dominated by water; approximately half of it is
water, and it is slightly more urban than forest. The land cover types at XZ, NJ, and NUIST
are mixtures of forest, cropland, and urban. According to the land cover proportion, the
ground-based observation sites are classified into five land cover types, which are forest,
cropland, urban, mixed, and water.
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Table 2. Percentage of land cover around AERONET/SONET sites (%).

Land Cover Type Site Forest Wetland Cropland Urban Barren Water
QDH 64.86 9.67 0.00 1.08 0.17 24.22
Forest LATM 99.92 0 0 0.08 0 0
HZZ 93.47 0.27 1.4 4.19 0 0.67
Cropland HF 3.28 1.05 60.33 33.41 0.05 1.88
P SX 9.47 2.69 63.61 15.67 0.00 8.56
Urb HZC 21.92 0.42 0.22 71.22 0.39 5.83
rhan SH 03 011 0 92.93 0.05 6.61
Xz 12.66 0.08 43.94 42.35 0.03 0.94
Mixed NJ 36.15 1.72 26.9 29.08 0.51 5.64
NUIST 33.39 1.00 39.14 23.17 0.22 3.08
Water TH 20.67 2.75 161 27.58 0.14 47.25

2.4. Evaluation Method
2.4.1. Spatiotemporal Matching

AERONET/SONET data represent the continuous observation of the ground sites
at fixed intervals daily, whereas MODIS AOD represents the instantaneous observations
with a 10 km x 10 km spatial resolution. The spatiotemporal scales of MODIS and ground-
based observations differ. Therefore, the ground-based data were filtered with a temporal
window of 30 min before and after satellite overpass to obtain the average of AOD. The
30 km X 30 km range of the ground site was considered a spatial window, and the average
MODIS AOD under this window was calculated to form the AERONET/SONET-MODIS
AOD dataset matching the temporal and spatial resolution.

2.4.2. Evaluation Method

The expected error (EE hereinafter) is usually used to evaluate the quality of AOD
retrieved by satellite. A large number of experiments have been conducted by the MODIS
science team; EE adopts £-(0.05 + 0.15 x AOD) for DT and DB AOD products, and 4(0.05 +
0.1 x AOD) is used for MAIAC products [33,50-52]. To uniformly compare and analyze the
quality of each algorithm, the EE of £(0.05 + 0.15 x AOD) is adopted. Above EE, Within
EE and Below EE are expressed by Equations (4)—(6):

EE = +(0.05+ 0.15 x AODg) 3)
AODy; > AODg + |EE| @)

AODg — |EE| < AODy; < AODg + |EE| )
AODy; < AODg + |EE]| (6)

where AODg is the observed AEROENT/SONET AOD, and AODy; is the AOD retrieved
from MODIS. In addition, error analysis is performed by root mean squared errors (RMSE),
bias, the square of the correlation coefficient (R?), and the slope (a) of regression analysis.

RMSE = \/ % Y (AODy — AODg)? ?)
Bias = % ) (AODy — AODg) (8)

R ¥ (AODy — AODy;) (AODg — AODG)

- ©)
\/ ¥ (AODy — AODM)Z\/ ¥ (AODg — AODG)*

38



Remote Sens. 2023, 15, 275

3. Results
3.1. Owverall Accuracy of DT, DB, and MAIAC

The accuracies of DT, DB, and MAIAC products in the YRD differ greatly (Figure 2),
and the matched number and accuracy of MAIAC are significantly better than those of DT
and DB. The matched number of DT is the lowest, with a value of 3239, which indicates
that it is more difficult to satisfy the DT algorithm than MAIAC or DB. The DT product also
has the lowest accuracy, with a Within EE of only 41.43% (Figure 2a), which is more than
24% lower than that of MAIAC, and the RMSE of DT is the highest at 0.243. In the matched
data of DT, about 54.58% is Above EE, only 3.98% is Below EE, and the bias is 0.151, which
implies that DT AOD in the YRD is mostly overestimated. The bias box at different AODs
is shown in Figure 2d. When the AOD is less than 0.8, the mean bias exceeds the EE, and
the mean bias decreases gradually with the increase in AOD. The mean bias is —0.006 when
the AOD is 1.78, and this suggests that the DT AOD in the YRD is overestimated mainly in
the middle and low value ranges.
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Figure 2. Overall accuracy of (a) DT, (b) DB, (c) MAIAGC; the solid red line represents the regression
line; the solid blue line represents the 1:1 reference line, and the dashed blue line represents the
expected error line. The AOD bias box plot of (d) DT, (e) DB, (f) MAIAC products; each box is based
on 100 matched data; the dashed line represents the expected error line, and the red dot represents
mean bias.

A total of 4203 DB matched data have a Within EE of 56.98%, an RMSE of 0.174, and
a bias of —0.027. The number and accuracy of DB matched data are better than those of
DT but lower than those of MAIAC. However, 27.93% of DB AOD is Below EE, which is
the highest among the three methods. The bias statistics of different AODs are shown in
Figure 2e. The mean bias is less than 0 when the AOD is between 0.15 and 0.5. The mean
bias is relatively small and fluctuates around 0 when the AOD is between 0.5 and 1.0. The
deviation is larger and becomes less than 0 with the increase in AOD when the AOD is
greater than 1.0. Therefore, DB AOD is mostly underestimated when AOD is greater than
1.0 and less than 0.5.

The MAIAC product is the best of the three algorithms. It has a matched number
of 5105, a Within EE of 65.64%, an RMSE of 0.196, and a bias of 0.036, which values are
obviously better than those of DT and DB. The bias statistics of different AODs are shown
in Figure 2f. The mean bias of MAIAC is relatively large when the AOD is low. In particular,
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the mean bias is 0.079 when the AOD is 0.105, and it is the only mean bias value that exceeds
the EE in the MAIAC product. Therefore, the MAIAC AOD is obviously overestimated at a
low AOD. When the AOD is between 0.2 and 0.5, the mean bias is relatively low, most of
which values are lower than 0.04. The mean bias slightly increases with the rise in AOD.
The retrieval accuracy values for DT, DB, and MAIAC products show discrepancy in
different seasons (Table 3). The matched number is the lowest in winter, and the Within
EE is the lowest in spring for the DT product. The matched number and Within EE of DB
and MAIAC AOD products are the lowest in summer. The matched numbers for the three
algorithms in summer are very low; among them, the matched number of DT in summer is
575, which is smaller than the 1224 in spring and the 996 in autumn, and this value for DB
and MATAC is lower in summer than in other seasons, only accounting for 12.0% and 13.6%
of all matched numbers, which may be due to the rainy weather in the YRD in summer [25].

Table 3. Accuracy validation of DT, DB, and MAIAC AOD in the Yangtze River Delta in each season.

Above Below Within . 2

Season Data n EE (%) EE (%) EE (%) RMSE Bias R a
DT 1224 75.65 1.06 23.29 0.279 0.228 0.789 1.018
Spring DB 1296 9.88 31.17 58.95 0.169 —0.052 0.772 0.974
MAIAC 1497 21.24 17.04 61.72 0.217 0.033 0.667 1.013
DT 575 49.22 4.52 46.26 0.248 0.134 0.767 0.917
Summer DB 503 7.16 52.48 40.36 0.228 —0.116 0.806 1.011
MAIAC 696 28.74 14.8 56.46 0.265 0.071 0.691 1.058
DT 996 42.97 5.92 51.11 0.218 0.104 0.726 0.913
Autumn DB 1073 12.86 26 61.14 0.149 —0.032 0.786 0.912
MAIAC 1388 28.17 6.34 65.49 0.192 0.071 0.772 1.000
DT 444 29.51 6.98 63.51 0.175 0.068 0.736 0.982
Winter DB 1331 24.94 17.06 58.00 0.175 0.035 0.781 1.156
MAIAC 1524 14.3 11.88 73.82 0.132 —0.009 0.821 0.830

The matched number of DT AOD in winter is the lowest, with a value of 444, which is
mainly due to the reduction in green vegetation in winter. The Within EE of DT shows the
most significant seasonal variation, with a peak of 63.51% in winter, and only 23.29% in
spring, which is one-third of that in winter.

The Within EE of DB does not change considerably in spring, autumn, and winter,
and the values are all close to 60%, while the lowest value is 40.36% in summer. The main
reason is that the Deep Blue surface database method is mainly adopted for the surface
reflection in the YRD, and the lush vegetation in summer leads to low accuracy for AOD
retrieval.

The Within EE of MAIAC AOD also shows significant seasonal variation, with 56.46%
in summer, which is the lowest value, 61.72% in spring, 65.49% in autumn, and 73.82%
in winter, which is the highest value. The matched number is also the lowest in summer,
while little change is observed in other seasons. Therefore, the quantity and accuracy of
MAIAC AOD are good, except in summer.

3.2. Influence of Land Cover Types on AOD Retrieval

The three algorithms perform significantly differently for different land cover types
(Table 4). The highest accuracy of the DT product regards the data for forest, where it
obtains a Within EE of 68.75%, an RMSE of 0.163, and a bias of —0.059. The Within EE
of DT for cropland with a higher vegetation proportion is 53.59%, which is obviously
higher than that for mixed, urban, and water areas. The Within EE values of DT for urban
and water are 18.96% and 26.04%, respectively, which are relatively low. The analysis of
the relationship between the land cover proportion of urban and water (LCPyw) and the
Within EE at eight sites with more matched data in the YRD (Figure 3a) shows that Within
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EE is significantly negatively related to LCPyy, that the R? is 0.892, and that the accuracy
of DT AOD decreases with the increase in LCPyw.

Table 4. Accuracy of DT, DB, and MAIAC AOD in different land cover types in the Yangtze River Delta.

Land Above Below Within . 2

Cover Data " EE(%)  EE(%)  EE(%)  <MSE Bias R a
DT 320 5.94 25.31 68.75 0.163 —0.059 0.794 0.874
Forest DB 330 0.91 62.12 36.97 0.201 —0.151 0.826 0.910
MAIAC 395 8.35 1241 79.24 0.130 —0.022 0.843 0.909
DT 290 79.66 1.38 18.96 0.304 0.254 0.715 0.887
Urban DB 454 23.13 28.19 48.68 0.196 —0.013 0.610 0889
MAIAC 500 18.00 19.00 63.00 0.175 —0.022 0.650 0.720
DT 612 45.1 1.31 53.59 0.188 0.123 0.829 1.08
Cropland DB 715 9.23 31.89 58.88 0.154 —0.042 0.808 1.059
MAIAC 776 9.15 12.11 78.74 0.126 —0.008 0.849 0.960
DT 464 59.27 1.51 39.22 0.219 0.156 0.840 1.034
Mixed1 DB 613 8.48 38.01 53.51 0.183 —0.078 0.794 0.998
MAIAC 684 8.19 16.37 75.44 0.145 —0.029 0.831 0.907
DT 831 53.67 1.93 444 0.200 0.133 0.834 0.974
Mixed2 DB 1135 22.73 16.3 60.97 0.172 0.025 0.791 1.035
MAIAC 1238 17.12 9.53 73.35 0.141 0.021 0.841 0.998
DT 722 72.16 1.8 26.04 0.332 0.245 0.671 0.878
Water DB 956 15.69 20.4 63.91 0.164 —0.01 0.765 0.953
MAIAC 1512 43.98 10.52 45.50 0.286 0.135 0.634 1.029

Mixed1 is NJ and NJUPT, and its forest proportion is significantly higher than that of XZ. Mixed2 is XZ, and its
urban proportion is higher than those of NJ and NJUPT.

100F T T (‘) ] 1007.(b) T T T 1
a
y = - 0.566 X + 65.969 y = 0.546 x +37.23
—~ 80F R?=0.892 1 ~ 80F R?=0936 R
& ° p =0.00041 2 p =0.00036
w60t 1 eof 1
£ . c
F= =
'§ 40 | o o < 1 £ 40peq 4
) . 8
20 - g 20+ 1
0F b 0F 1
! . . s . . . . . . . .
0 20 40 60 80 100 0 20 40 60 80 100
LCPuw (%) LCPu (%)

Figure 3. (a) Correlations between land-—cover proportions of urban and water and DT Within EE.
(Three sites with the least matched data are removed, which are QDH, HZC, and SX). (b) Correlations
between land-cover proportion of urban without water and DB Within EE (QDH, HZC, and SX with
fewer matching data and SH with a high urban proportion close to 100% are removed).

The lowest accuracy of the DB product regards the data for forest, where it obtains
a Within EE of only 36.97%. Different from other regions [21,53], the Within EE of DB for
urban in the YRD is only 48.68%, which is lower than that for cropland, mixed, and water
land cover. Among the two sites with urban cover, the Within EE at HZC is 63.10%, which
is significantly higher than that at SH (45.40%). Therefore, other factors besides land cover
type have a great impact on the DB product in SH. The Within EE in TH mainly dominated
by water is 63.91%, which is the highest among all land cover types. The reason is that DB
filters water land cover according to the MCD12C1 dataset and retrieves aerosols of other
land cover types [40]. After the water land cover around TH is removed, about 52.29%
of the underlying surface is urban, which value is second only to SH and HZC. After the
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water land cover is removed in each site, a significant linear relationship can be observed
between the land cover proportion of urban without water (LCPy) and the Within EE of
DB (Figure 3b), and the Within EE of DB increases with the rise in the LCPy.

The accuracy of MAIAC in forest, cropland, and mixed land cover types with a high
vegetation proportion is relatively high. The Within EE values of Mixed1 and Mixed2 are
over 70%, while the Within EE values of cropland and forest are close to 80%, which are
78.74% and 79.24%, respectively. The RMSE and bias are also relatively low, and the lowest
RMSE and bias in cropland are 0.126 and —0.008, respectively. The accuracy of MAIAC in
urban is low, with a Within EE of 63%. The accuracy of MAIAC in water is the lowest, with
a Within EE of only 45.50%.

3.3. DT and DB AOD Correction

The bias and Mean Relative Error (MRE) (defined by Equation (10)) of DT have an
obvious linear relationship with LCPyw (Figure 4a,b), and the R? values are 0.814 and 0.932,
respectively. The bias and MRE of DT are positive, except for at LATM and HZZ, with a
very small LCPyw. The bias and MRE of DT increase, and the accuracy decreases with the
rise in LCPyyw. The bias and MRE of DB have an obvious linear relationship with LCPy
(Figure 4c¢,d). Different from those of DT, the bias and MRE of DB are all negative, except
for those for XZ, with a high LCPy. Overall, the bias and MRE of DB increase with the rise
in LCPy, and the accuracy improves.
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Figure 4. Correlations between land-cover proportion of urban and water and (a) DT bias; (b) DT MRE;
correlations between land-cover proportion of urban without water and (c) DB bias; (d) DB MRE.

Therefore, AOD can be corrected according to LCPyw and LCPy [24]. In this study,
DT and DB products are corrected according to Equations (11) and (12). If the DT product
is corrected, then Biaspredict and MREpegict are determined by regression equations in
Figure 4a,b and LCPyw. If the DB products are corrected, then Biasp edict and MREpedict
are determined by the regression equations in Figure 4c,d and LCPy.

MRE = 100 x ) (AODy — AODg)/AODg (10)

42



Remote Sens. 2023, 15, 275

AOD§F™ = AODy; — Biaspredict (11)

AODRgrmCtd = AODy;/ (l + MREpredict> (12)

The accuracy of DT is greatly improved when corrected by the two methods (Figure 5).
In particular, the Within EE of the DT MRE-corrected product has been increased to 72.29%,
but its regression coefficient is only 0.704. The RMSE and bias of the DT MRE-corrected
product are slightly higher than those of the DT bias-corrected product. The change curve
of the mean bias of the DT bias-corrected product (Figure 5e) is similar to that of the DT-
uncorrected product, but the mean bias is significantly reduced and around zero. The mean
bias of the DT MRE-corrected product (Figure 5f) gradually decreases with the increase
in AOD, with a value from 0.048 to —0.327. The lower quartile limit of bias exceeds the
EE when AOD is around 0.8, and the mean bias also exceeds the EE when AOD is around
1.0. Therefore, the accuracy of the DT MRE-corrected product is significantly improved
in the middle and low AOD intervals. However, the error will already exceed that of
DT-uncorrected products with the increase in AOD, especially when the AOD is greater
than 1.0.

25 : - — 25 : - ~ 25 ; . . —~
@ E |w E lo . g
it =Y n=3031 = n=3031 %
210 [ MINIEE Sk 8 2.0 [ WithinEE = 64.07% 8 2.0 WithinEE =72.29% P
€ Ger il 5 AboveEE = 17.62% . o AboveEE =9.83% o
< N i Pl o BelowEE = 18.31% ; .. o BelowEE = 17.88% .
Q 15F < 15[ B gt < 15}
0 - o
B 5] 2
[a] ° s = o
Q 1of 1 g 10} 2 10f
5 -3 Q
= 3 o ha " o -
& - Y ="0.975x + 0.171 | y =0.969x +0.002 i) y=0.704x +0.117
0.5 -3 b4 R? = 0.746 1 & 05F " R?=0.780 4 @ 05f RZ=0.752
S RMSE = 0.246 @ RMSE =0.172 = RMSE =0.174
d Bias = 0.158 5 £ : Bias =0.003 b= % Bias = - 0.049
0Bl i 3 ) 00 i . . ) O 40 A i i :
0.0 05 1.0 15 2.0 2.5 0.0 0.5 1.0 15 2.0 25 0.0 05 1.0 15 2.0 25
AERONET/SONET AOD (550 nm) AERONET/SONET AOD (550 nm) AERONET/SONET AOD (550 nm)
T T T 0.6 T T T
06} (&) 4 (€3]
g 8
4 2 o
o 04 a
@) [¢]
o 1 < o2 x
@ 3 L
S g o0 £
< o o .
|~ 1 902 O, ]
o -04 s
| & 5 |
O o6l {4 @ ‘
06 . . . . . . 06 . . .
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0

AERONET/SONET AOD (550 nm) AERONET/SONET AOD (550 nm) AERONET/SONET AOD (550 nm)

Figure 5. Accuracy of (a) DT, (b) DT bias-corrected, (c) DT MRE-corrected AOD; the solid red line
represents the regression line; the solid blue line represents the 1:1 reference line, and the blue
dashed line represents the expected error line. Bias boxplot of (d) DT, (e) DT bias-corrected, (f) DT
MRE-corrected AOD; each box is based on 100 matching data points; the dashed line represents the
expected error line, and the red dot represents the mean bias.

A comparison of the DT Within EE before and after correction at each site is shown in
Figure 6a. The Within EE of LATM and HZZ with low LCPyw does not change considerably
after correction, but the Within EE at TH and SH with a large LCPyy is significantly
improved. Therefore, the DT product can be corrected effectively, especially for urban and
water land cover types.
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Figure 6. Accuracy comparison at each site before and after the correction of DT (a) and DB (b) prod-
ucts. (a) The orange bar represents the DT Within EE, and the green and purple bars represent the
increased Within EE value following bias correction and MRE correction, respectively. The Within EE
shows no change before and after MRE correction at HZZ. (b) The lower orange bar represents the
DB Within EE, and the upper orange bar represents the decreased value after correction.

The comparison of the Within EE of DB before and after correction at each site is
shown in Figure 6b. The Within EE of the DB-corrected product at LATM, HZZ, and NUIST
with low LCPy is significantly improved, but the improvement of Within EE gradually
decreases with the rise in LCPy. When the LCPy exceeds 30%, the Within EE of the
DB MRE-corrected product becomes lower than that of the uncorrected product, and the
bias and MRE-corrected methods lead to a decrease in DB Within EE at HF, XZ, and TH.
Therefore, only the DB product with an LCPy less than 30% can be corrected effectively.

Table 5 shows the accuracy comparison results at LATM, HZZ, and NUIST with
low LCPy before and after the correction of DB AOD. The Within EE based on both
correction methods has been significantly improved; in particular, the Within EE of the DB
bias-corrected product has been increased to 67.88%, and the RMSE and bias have been
significantly reduced, but the R? has been decreased.

Table 5. Accuracy comparison at LATM, HZZ, and NUIST before and after correction of DB AOD.

Above Below Within

: 2
Data n EE (%) EE (%) EE (%) RMSE Bias R a
DB 414 2.66 56.52 40.82 0.211 —0.150 0.834 0.915

DB Bias-Corrected 414 14.49 17.63 67.88 0.155 —0.023 0.818 0.881

DB MRE-Corrected 414 21.26 18.60 60.14 0.227 0.025 0.803 1.208

3.4. Influence of Observation Geometry on AOD Retrieval

The influence of observation geometry, such as solar zenith angle (SZA), view zenith
angle (VZA), scattering angle (SA), and relative azimuth angle (RAA), on the aerosol
retrieval accuracy is shown in Figure 7. SZA, VZA, and SA are divided into three sections:
Low (0°-30°), Moderate (30°-60°), and High (60°-90°). RAA is also divided into six sections
at 30° intervals.

SZA greatly influences the accuracy of DT, DB, and MAIAC products (Figure 7a). The
accuracy generally increases with the rise in SZA. The SZA values of DT, DB, and MAIAC
are mainly concentrated in the Moderate and Low sections; Moderate accounts for about
60-70% of the total. The accuracy of AOD in the Low section is significantly lower than that
in the Moderate section, and the Within EE in the Moderate sections of the three algorithms
is about 14 percentage points higher than that in the Low section. The RMSE value of
DT and DB at a Moderate SZA is about 0.05 lower than that at the Low SZA, while the
difference between the RMSE values of MAIAC in the two sections is 0.101. The proportion
of SZA in the High section is very low. The proportion of SZA of MAIAC in the High
section, which represents the highest proportion of the High section in the three algorithms,
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is only 5.22%. The SZA of DT in the High section is less than 2%, but its accuracy is the
highest, with a Within EE of 85.71% and an RMSE of 0.094.
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Figure 7. Influence of SZA (a), VZA (b), SA (c), and RAA (d—f) on the accuracy of DT, DB, and MAIAC
products. The orange vertical bar represents the proportions of matches in each angle section.

VZA is also mainly concentrated in the Moderate and Low sections (Figure 7b). The
accuracies of DT, DB, and MAIAC in the Moderate and High VZA are also higher than
that in the Low VZA, but the influence of VZA is obviously smaller than that of SZA. In
particular, the accuracy shows nearly no difference between the DT in the Moderate VZA
and that in the Low VZA; the Within EE values are 40.74% and 40.27%, and the RMSE
values of DT are 0.153 and 0.156. However, the accuracy of DT in the High section is
significantly improved. The difference in the Within EE of MAIAC between Moderate and
Low VZA is no more than five percentage points, and the difference in RMSE is about
0.023. The accuracy of MAIAC in High VZA is slightly reduced, and the accuracy does not
change considerably with VZA. The DB product shows the largest change with VZA—the
Within EE of Moderate VZA is 12.38 percentage points higher than that of Low VZA, and
the RMSE is 0.026 lower.

The influence of SA is mainly reflected in that the accuracy of the three algorithms is
the lowest for High SA (Figure 7c). The accuracy of the DT and MAIAC AOD varies with
the SA, and the accuracy in Low SA is similar to that in Moderate SA. The difference in the
Within EE between them is less than 3%, and the difference in RMSE between them is less
than 0.1. Meanwhile, the accuracy of DB decreases with the rise in SA, and the accuracy
difference of DB between Low and Moderate SA is large. The difference in Within EE is
close to 17%, and the difference in RMSE is about 0.044.

The influence of RAA on the AOD accuracy of the three algorithms mainly manifests
as high accuracy when RAA is close to vertical, but low accuracy when RAA is close to 0 or
180. The accuracy of DT in the three sections of 30°-60°, 60°-90°, and 90°-120° are better,
with Within EE values of about 50%, among which the highest is 52.27% at 60°-90°, and
the lowest RMSE is 0.189. The maximum Within EE of DB is 69.77% at 90°-120° RAA, and
the lowest RMSE is 0.134 at 60°-90 ° RAA. MAIAC has good accuracy at 60°-90°, 90°-120°,
and 120°-150° RAA, and their within EE values are close to 70%.
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3.5. Influence of Aerosol Types on AOD Retrieval

Aerosol type is an important source of aerosol retrieval error. The DT algorithm
establishes five aerosol models based on the global AERONET aerosol data through cluster
analysis, and the appropriate aerosol model is selected according to regions and seasons.
The DB algorithm uses the maximum likelihood method to calculate a mixing ratio between
various dust and smoke models and then retrieves the AOD and AE. The MAIAC algorithm
divides aerosols into eight types according to aerosol size distribution and the concentra-
tion ratios of coarse and fine particle columns, as well as other parameters observed by
AERONET. Model 5 is mainly used for aerosol retrieval in China. The bias distributions of
DT, DB, and MAIAC products under different AE and SSA are shown in Figure 8.

) ’ ‘

DB AOD Bias
MAIAC AOD Bias

0.5

AERONET/SONET AE (440-675 nm)

1.0

1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 15 2.0
AERONET/SONET AE (440-675 nm) AERONET/SONET AE (440-675 nm)

T
[€-)]

. ‘ ‘ ‘
06 o6 (P
i 04 g 04
3 o
{1 @o2 g 02
,,,,,,,, 8 <
H ‘ | i < 00fF |1 Q 00— —— i
i s - 2
a <
‘ 1 02 S -02
041 1 04t

L I L I I I I L . I I . I . .
0.70 0.75 0.80 0.85 0.90 0.95 1.00 070 075 080 0.85 0.90 095 1.00 070 075 080 085 0.90 095 1.00
AERONET/SONET SSA (675 nm)

AERONET/SONET SSA (675 nm) AERONET/SONET SSA (675 nm)

Figure 8. Accuracy of DT, DB, and MAIAC products under different AE (a—c) and SSA (d—f); each
box is based on 100 matched data points, the dashed line represents the expected error line, and the
red dot represents mean bias.

The bias of DT and DB does not change considerably with AE. The bias of DT is
generally large and mainly positive (Figure 8a). The mean bias does not change considerably
with AE, and the mean bias of DT is around 0.15 except when the AE is greater than 1.6.
The bias of DB is mainly negative (Figure 8b). The mean bias of DB also does not change
considerably with AE. The mean bias of DB with an AE of 0.8-1.6 is very small and does
not fluctuate considerably. The bias of MAIAC increases with the rise in AE (Figure 8c).
The mean bias at each interval increases linearly with AE. The mean bias is less than 0
when the AE is less than 1.0, which indicates that the AOD of MAIAC is underestimated.
The AOD of MAIAC is overestimated when the AE is greater than 1.0.

The AOD bias values of three algorithms change more obviously with SSA than with
AE. Overall, the mean bias increases and then flattens with the increase in SSA. The mean
bias increases with SSA when it is less than 0.93. The mean bias fluctuates significantly
when the SSA is greater than 0.93. The mean DB bias is negative when the SSA is lower than
0.89; otherwise, it is positive. The mean bias of DB also increases with SSA before it reaches
0.95, and then, it changes slightly. The mean bias of MAIAC increases with SSA before
0.96. The mean bias of MAIAC is negative when the SSA is lower than 0.91; otherwise, it is
positive. It changes slightly when the SSA is greater than 0.96.
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4. Discussion

MODIS products have been extensively evaluated and verified at both global and
regional scales. Many scholars have compared the accuracy of MODIS DT, DB, and MAIAC
aerosol products and found that MAIAC products have greater advantages in terms of
matched number, with more than double those of the DB and DT AOD, and they show
higher accuracy [17,19], which matches our findings in the YRD (Table 3). MODIS DT AOD
is generally overestimated, while DB AOD is mostly underestimated [24]. MODIS products
in the YRD also show a similar phenomenon. However, the Within EE of DT AOD in the
YRD is only 41.43%, which is significantly lower than those in other regions [54]. There
are only 320 matching data points at HZZ, LATM, and QDH for forest, accounting for
8.4% of the total matching number of DT, while SH and TH with higher urban and water
proportions have 943 matching data points, which are about three times those of the forest
sites. Therefore, the accuracy of DT products in the YRD is low, but the accuracy of DT
products for forest in the YRD is relatively high, with a Within EE of 68.75% (Table 4). The
Within EE of DT for cropland is 53.59%, which is obviously lower than that for forest, which
may be due to the high urban presence in the two cropland sites, where the proportion of
urban in HF is 33.41%. As can be seen from Figure 1, the southern YRD is dominated by
forest, while the northern YRD is dominated by cropland. The whole YRD is covered by
about 43% forest, 45% cropland, and only 10% urban and water. Therefore, the accuracy
of DT in the YRD should be high. In addition, we found that the accuracy of MAIAC in
the YRD in summer is significantly lower than that in other seasons, so the DT AOD in
summer can be used to make up for the low accuracy of MAIAC in summer.

5. Conclusions

In this study, the overall accuracy and seasonal variations in MODIS DT, DB, and
MAIAC products in the YRD were analyzed based on AERONET and SONET ground
monitoring data. The influences of land cover type, observation geometry, and aerosol type
on AOD retrieval accuracy were also explored. LCPyw and LCPy were used to correct DT
and DB products. The conclusions are as follows.

The MAIAC product is obviously superior to the DT and DB products in matched
number and accuracy. The accuracy of DT product varies most obviously with seasons,
and it has the highest accuracy in winter and the lowest in spring. The accuracy of DB and
MAIAC is low in summer and high in other seasons.

The accuracy of MAIAC is higher in forests, cropland, and mixed land cover types
with high vegetation proportions, and the accuracy is lowest in water. The accuracy of the
DT product is negatively correlated with LCPyw (R? = 0.892). The accuracy of DT AOD
decreases gradually with the increase in urban and water proportion. A significant linear
relationship exists between the accuracy of the DB product and the LCPy (R? = 0.936), as
the accuracy increases with the rise in LCPy.

A correction method based on bias and MRE can significantly improve the accuracy of
DT products, especially the accuracy at TH and SH with large LCPyw. The MRE correction
method works very well at low AOD, but it amplifies the error at high AOD values. The
correction method also works well for DB AOD with low LCPy, but it amplifies the error
for DB AOD with high LCPy.

The effect of SZA on accuracy is stronger than that of VZA, and the accuracy increases
with the rise in SZA. The accuracy is the lowest when SA is high, but it is high when the
RAA is close to vertical.

The bias of MAIAC increases with the rise in AE. The change in bias for the three
algorithms with SSA is more obvious than that with AE. Notably, mean bias increases and
then flattens with the rise in SSA.
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