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Preface

1. Introduction

In 1915, Albert Einstein presented his original work on General Relativity to the Prussian

Academy of Sciences. It was a new theory of nature, changing previous paradigms about gravity.

Spacetime curvature and gravitation became synonymous in this theory and the new paradigm

has survived direct experimental tests. Yet, a hundred years later, General Relativity cannot be

theoretically quantized using standard methods, and we are still searching for the quanta of gravity.

A decade earlier than the discovery of General Relativity, Max Planck postulated that light

was a stream of photons, which led to the discovery of the quantum world, and Einstein’s paper

on photoelectric effect had used that result. The theoretical discovery of gravitational waves had

followed the formulation of General Relativity as early as 1916, and they were observed in LIGO,

a sensitive laser interferometer, in 2015. However, the quanta of the waves, the gravitons, the

counterpart of the photons for gravity, have not been observed, or even theoretically formulated.

The reason that quantum gravity has not been discovered is connected to what is known as the

hierarchy problem of nature. Gravitational force is 10−38 orders weaker than electrodynamics. One

has to probe length scales of 10−35 m and obtain energies of 1019 GeV in colliders to see experimental

evidence of quantum gravity. Theoretically too, the standard quantization schemes require new

techniques to be invented due to the non-polynomial and non-linearity of the Einstein action.

However, Hawking radiation, area quantization, and black hole thermodynamics were predicted

theoretically, which suggested quantum origins, but these require experimental confirmation. The

search for primordial black holes is an effort in that direction. The theoretical computation of graviton

interactions is non-renormalizable, which makes the particles more mysterious. There are various

studies including very recent ones that argue that gravity is perhaps classical all the way through.

This places gravity on a pedestal, different from the other interactions of nature.

With the discovery of very weak gravitational waves, in 2016, the search for gravitons received

new impetus, and ‘Quantum Gravity Phenomenology’ could have a future. Precision experiments

have given us access to the gravitational waves emitted from distant events. Gravitational waves

are measured up to an amplitude of 10−21 using interferometers. As the precision measurements of

nature head towards the quantum gravity scale, there might be indirect verification of the quantum

gravity physics of the microscopic spacetime. Quantum phenomena might have significant effects

at macroscopic and large scales, as these are emergent from the microscopic scale. The very metric

which measures the curvature of spacetime is the classical limit of a quantum operator, and therefore

semi-classical fluctuations should be visible at some length scales larger than the Planck scale. At

this time, there are several competing theoretical formulations of quantum gravity, some extensions

of standard versions, and some new ones. These include loop quantum gravity, path-integral

quantization, discrete models, causal dynamical triangulation, asymptotically safe gravity, and causal

set theory. Various formulations have matured to discuss observational predictions. In this Special

Issue of Universe, we discuss some of these, and provide new insights into the future direction of this

research area.

Of the various ways to verify the theoretical predictions of quantum gravity, two broad

categories exist. These are the following: (i) Using analog models which simulate gravitational

systems and the quantum phenomena associated with these systems. (ii) Direct and indirect evidence

of quantum gravity predictions in natural experiments.
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There has been considerable research in both of the above avenues for exploring the existence of

new quantum physics for gravity. A volume dedicated to papers in this field is the need of the hour,

and Universe’s topical collections serve that purpose.

When we were asked to suggest topics for a Special Issue for the journal Universe, the topic

of ‘Quantum Gravity Phenomenology’ was a natural choice. There have been a number of papers

addressing both ways of obtaining experimental evidence on the nature of quantum gravitational

physics in the past few decades. When we embarked on this venture of editing a Special Issue

on quantum gravity phenomenology, we wanted a clear direction to emerge in this field. We

have collected 22 paper contributions, now published in two volumes. We would like to thank

profusely our Assistant Editor from Universe, Ms. Cici Xia, who has made the two volumes of paper

contributions happen. Initially our aim was to seek papers only on the above two approaches (i

and ii) for obtaining observational physics in quantum gravity. However, over the course of the

time we took to finalize the volumes, the focus has diversified. We are very thankful to the authors

for publishing their papers in Universe. Although we are still inconclusive about the true nature of

spacetime at quantum length scales, we have some highlights on the current status of research in

this field. In the following, we offer some general considerations and briefly discuss on the papers

in the two volumes, with Volume I being primarily focused on analog models and Volume II on

astrophysics.

2. Probing Quantum Gravity through Analogs (Volume I)

Although direct experiments are to be preferred, given that all phenomena insist on the same

fundamental dynamics, we can extract information on quantum gravity from systems other than

quantum astrophysical systems. Volume I is primarily dedicated to this indirect search.

We shall now briefly describe the contributions to Volume I of this Special Issue, where the

general frame just discussed does not enter yet in its full declination, but some aspects of it do, one

way or the other.

It is our pleasure to open this collection of articles with the contribution of Carlo Rovelli, who

has shaped an important part of the theoretical search for a consistent theory of Quantum Gravity

over the last two decades. His contribution points to the importance of the experimental search, and

is a highlight coming from a master of this highly theoretical field. We then present a review paper

by a leading expert of the phenomenology of Quantum Gravity, Nick Mavromatos, coauthored with

Pablo Pais and Alfredo Iorio. In this review, both the approaches of the direct and the analog are

merged together in the quest for the role of torsion in cosmology as well as in condensed matter.

The following five papers are then fully focused on the analog approach: The contribution

of Smolyaninov and Smolyaninova deals with Hyperbolic Metamaterials, which are fascinating

condensed mater systems, recently discovered, whose potential for Quantum Gravity is still to be

fully exploited. The work of Sreedhar and Virmani reviews the group theoretical structure common

to supernova explosions and laboratory plasma implosion. This research was initiated by Lochlainn

O’Raifeartaigh. Michail Katanaev, in his original contribution, describes the ’t Hooft–Polyakov

monopole within the elastic theory analog approach to geometry/gravity, which he pioneered. The

series of papers on the analog approach is closed by two reviews, fully dedicated to the use of two

different systems, high-energy scattering (by Castorina, Iorio, and Satz) and graphene (by Acquaviva,

Iorio, Pais, and Smaldone), in the hunt for the reproduction of a variety of aspects of the high-energy

theoretical research, from Quantum Gravity to Supersymmetry.

The last three papers are original contributions and are focused on the direct approach: the work
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of Spaniol, Amorim, and Ulhoa deals with the Hilbert space for various solutions of the Einstein

equations, while the work of Garcı́a-Compeán and Mata-Pacheco focuses on the Hořava–Lifshitz

theory of gravity. We close this volume with the paper of Gerhardt that offers a suggestion for a

unified way to quantize fundamental interactions, including gravity.

Arundhati Dasgupta and Alfredo Iorio

Editors
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Abstract: I describe two phenomenological windows on quantum gravity that seem promising
to me. I argue that we already have important empirical inputs that should orient research in
quantum gravity.

Keywords: gravity entanglement; dark matter; primordial black holes

I do two things in this brief note. First, I describe the two directions towards quantum
gravity phenomenology that seem more promising to me. Then, I list some considerable
empirical information that we have obtained lately, which I think is relevant for under-
standing the quantum properties of gravity. This is also the opportunity for some general
considerations on the topic.

1. Where Are We Going to See Quantum Gravity Effects

1.1. Gravity-Induced Entanglement

It is possible to probe a plausible and genuine quantum gravity effect in the laboratory
with technology that is not far from the one available today. Surprisingly, nobody had
realized that this was the case until a few years ago. The trick that makes this possible is
that this is a (genuine, but) non-relativistic quantum gravitational effect.

Here is the main idea (for related ideas, see [1]). Two systems, A and B, each with
mass m, are each put into the quantum superpositions of two different positions, say, L and
R. This generates a state formed by four branches:

(|R〉A + |L〉A)⊗ (|R〉B + |L〉B) =

|R, R〉+ |R, L〉+ |L, R〉+ |L, L〉. (1)

The systems are arranged in such a way that in one of these four branches, the two
masses are at a small distance d from each other, and they are kept so for a time t. Then,
the two components of each of the two systems are recombined.

The vicinity of the masses in one of the branches generates a gravitational interaction.
This has the effect of altering the evolution of the phase of the branch. In a relativistic
picture, this is because the gravitational field is different in each of the branches: the
gravitational field is in a superposition of classical configurations; in the branch where
the particles are close, each particle feels the time dilatation due to the vicinity of the
other mass [2]. In the non-relativistic picture, the same effect is interpreted as due to
gravitational potential energy V = −Gm2/d. Since the phase evolves with the energy H as
in exp{−iHt/h̄}, the total change in the phase of the branch is then clearly

δφ =
Gm2t

h̄d
(2)

This has the effect of entangling the two systems, which, as (1) shows, were not
entangled to start with. The fact that they are entangled can then be tested in the lab.

Universe 2021, 7, 439. https://doi.org/10.3390/universe7110439 https://www.mdpi.com/journal/universe1
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The crucial observation is that today’s technology is not far from the possibility of
keeping nano-particles in a superposition and at a distance d from each other for a time t,
such that δφ ∼ π [3]. Hence, if the gravitational field can be in a superposition, the effect
follows. Since we know from general relativity that the gravitational field is the same entity
as the geometry of spacetime, the measurement of this effect amounts to detecting an effect
that follows from the superposition of spacetime geometries.

The power of this setup is in fact even stronger. The reason is a well-known fact
in quantum information: it is not possible to entangle two quantum systems by having
them both interact with a third classical system. In this setup, the two systems are A and
B, and the third system is the gravitational field. If we find A and B entangled by the
gravitational interaction, then the gravitational field cannot be classical [4].

To be sure, the knowledge that gravity is mediated by a field (in fact, a relativistic
field) is needed for the interpretation of the experiment. If gravity was an instantaneous
action at a distance and not mediated by a field, then we could not conclude anything
from the experiment itself. Hence, the subtlety at the basis of this experiment is that it can
be performed in a non-relativistic regime, but its full implication requires the knowledge
(that we have) that gravity is mediated by a relativistic field. In other words, a positive
outcome of the experiment is not compatible with a description of gravity as the result of a
classical field.

When successfully performed, the importance of this experiment will be major. It
could well be the first clear manifestation of the fact that spacetime geometry is not classical.

Since it is a non-relativistic regime, this experiment would not differentiate current
tentative theories of gravity (such as loop quantum gravity, string theory, asymptotic safety,
or others). All current tentative theories predict it. It could, instead, rule out speculations such
as those exploring the (unlikely) possibility that gravity is not quantized, or that there is a
gravitationally induced physical collapse of the wave function. (A variant of the experiment
has been proposed that might actually access the relativistic regime and test the discreteness
of proper time [5], but this would require a much higher experimental sensitivity.)

In the past, there have been numerous other ideas on testing the effects of hypothetical
quantum gravity, but—as far as I could understand—none considered a plausible effect;
namely, an effect predicted by the current credible quantum gravity theories. The gravity-
induced entanglement experiment does so.

This, I believe, is a general point. I find that there is a common false impression
that since quantum gravity is an open problem, then everything is possible and any wide
speculation can be counted as a “possible” quantum gravity phenomenon. This is not good
science, in my opinion. Quantum gravity is an open problem because no quantum gravity
effect has been measured yet, because there are a few competing theories about what exactly
happens at the Planck scale, and because we do not have a way of empirically probing
them. But all these theories are expected to generically give the same indications about
what does or does not happen at lower scales. As always in science, a priori everything is
possible, but there is a profound difference between testing a wild speculation and testing
the predictions of a plausible, coherent framework.

1.2. Dark Matter as Quantum Gravity Stabilized White Holes

The first black hole signal was detected long before any black hole signal was recog-
nized as such. In fact, a strong radio signal from Sagittarius A*, the gigantic black hole
at the center of our galaxy, has been detected by radio antennas since the dawn of radio
astronomy, without people suspecting it could be due to a black hole.

It might be the same with quantum gravity. Dark matter is a major unclear phe-
nomenon [6]. There are many candidate theories for explaining dark matter, virtually
all of which require the hypothesis of new physics. But there is also a possibility that
dark matter could be explained without any recourse to new physics (which makes this
hypothesis more, not less, interesting). The possibility is that dark matter might be formed
by long-living Planck-size remnants of evaporated black holes. The black holes could have
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been formed in the early universe, or alternatively, if the Big Bang was a Big Bounce, they
might have crossed the bounce.

The idea of black hole remnants is an old one, recently revived by quantum gravity
calculations that provide them with a realistic model: white holes with a large interior and
a small horizon stabilized by quantum gravity [7]. A large body of theoretical research
converge today, indicating that spacetime can be continued past the central singularity of a
black hole and into an anti-trapped region, namely, a white hole. The singularity itself is
replaced by a quantum region where the Einstein equations are briefly violated.

Macroscopic white holes are unstable because they can easily re-collapse into black
holes, but Planck-size ones are stabilized by quantum theory [8]. White hole remnants
need to be long-lived because the information they store needs a long time to exit, in the
form of low-frequency radiation.

This scenario is attractive, difficult to falsify, but also hard to confirm. In this article,
I do not cover the current work that explores its phenomenology [9]. What I intended to
point out is that it might (well) be that we are already seeing a massive quantum gravity
effect: dark matter.

2. What Do We Already Know about Quantum Gravity?

Allow me come to the second topic—results that are relevant to quantum gravity,
which are already providing us with crucial information.

2.1. Lorentz Invariance

The breaking of the Lorentz invariance at the Planck scale may simplify the construc-
tion of a quantum theory of gravity [10]. This observation sparked a large theoretical
enthusiasm for Lorentz-breaking theories some time ago, and rightly so. But that bubble of
enthusiasm has been deflated by empirical observations. A large campaign of astrophysi-
cal observations has failed to reveal the Planck-scale breaking of the Lorentz invariance
in situations where it would have been expected if this track for understanding quantum
gravity had been the good one [11].

A methodological consideration is important at this point. Popperian falsifiability
is an important demarcation criterium for scientific theories (that is, if a theory is not
falsifiable, then we better not call it “science”); however, Popperian falsification is very
rarely the way theories gain or lose credibility in science.

The way scientific theories gain or loose credibility in real science is rather through
a Bayesian gradual increase or decrease of the positive or negative confirmation from
empirical data. That is, when a theory predicts a novel phenomenon and we find that
theory to be right, our confidence in the theory grows; when it predicts a novel phenomenon
and we do not find it, our confidence in the theory decreases. Failed predictions rarely
definitely kill a theory, because theoreticians are very good at patching up and adjusting.
But failed predictions do make the success of a research program far less probable: we
loose confidence in it.

Hence, this has been the effect of not finding Lorentz violations in astrophysics:
tentative quantum gravity theories that break Lorentz invariance might perhaps still be
viable in principle, but in practice, far fewer people bet on them.

2.2. Supersymmetry

What I wrote above is particularly relevant to the spectacular non-discovery of su-
persymmetry at the LHC [12]. While in the Popperian sense, the non-appearance of
supersymmetric particles at the TeV scale does not rule out all the theories based on super-
symmetry, including string theory, in practice, the strong disappointment of not finding
what was expected counts heavily as a strong dis-confirmation, in the Bayesian sense, of all
those theories.

People have written that the non-discovery of supersymmetry is a crisis for theoretical
physics. This is nonsense, of course. It is only a crisis for those who bet on supersymmetry
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and string theory. For all the alternative theoretical quantum gravity programs that were
never convinced by the arguments for low-energy supersymmetry, the non-discovery of
supersymmetry is not a crisis: it is a victory.

Precisely for the same reason that the discovery of supersymmetry would have been a
confirmation of the ideas supporting the string supersymmetry research direction, the non-
discovery of supersymmetry at the LHC is a strong empirical indication against the search
for quantum gravity in the direction of supersymmetric theories and strings.

Nature talks, and we better listen.

2.3. Cosmological Constant

A case similar to the one above but even stronger concerns the sign of the cosmological
constant. The cosmological constant is a fundamental constant of nature, part of the Einstein
equations (since 1917), whose value had not been measured until recently. An entire
research community has long worked, and is still working, under general hypotheses that
lead to the expectation for the sign of the cosmological constant to be negative. Even today,
the vast majority of the theoretical work in that community assume it to be so.

Except that the sign of the cosmological constant is not negative. It is positive, as ob-
servation has convincingly shown [6].

Once again, this counts as a strong dis-confirmation of the hypotheses on which a
large community has worked in the past, and is still working on today.

So far, we lack any direct evidence of a quantum gravitational phenomenon; how-
ever, the non-detection of Lorentz violations around the Planck scale, the non-discovery
of super symmetric particles at the LHC, and the measurement of a positive cosmological
constant are strong indications from Nature that disfavor the tentative quantum gravity
theories that naturally imply these phenomena.

Funding: This research was funded by the JFT—QISS grant #61466.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The concept of torsion in geometry, although known for a long time, has not gained
considerable attention from the physics community until relatively recently, due to its diverse and
potentially important applications to a plethora of contexts of physical interest. These range from
novel materials, such as graphene and graphene-like materials, to advanced theoretical ideas, such as
string theory and supersymmetry/supergravity, and applications thereof in terms of understand-
ing the dark sector of our Universe. This work reviews such applications of torsion at different
physical scales.

Keywords: quantum gravity; torsion; supersymmetry and supergravity; analogs; Dirac materials

1. Introduction

Torsion is as important a concept of differential geometry as curvature [1–3]. The
latter plays a key role in General Relativity (GR), but the former plays no role at all
there. Nonetheless, torsion enters into various contexts and formulations, directing to
diverse physical predictions and realisations that span a huge range of length scales—from
cosmology to condensed matter and particle physics. Therefore, the related literature is
huge, and it is not possible to cover it all in the restricted space of this review.

Here, we focus on specific aspects of torsion, either in the emergent geometric de-
scription of the physics of various materials of great interest to condensed matter physics—
mainly graphene—or in the spacetime geometry itself, in particular in the early Universe.
These two situations correspond to scales that are separated by a huge amount, yet the
mathematical properties of torsion appear to be universal. Torsion has important physical
effects, in principle experimentally testable, in both scenarios.

Graphene and related materials provide a tabletop realisation of some high-energy
scenarios where torsion is associated with (the continuum limit of) the appropriate disloca-
tions in the material. A way to represent the effect of dislocations, in the long wave-length
regime, through torsion tensor is to consider a continuum field-theoretic fermionic system
in a (2 + 1)-dimensional space with a torsion-full spin-connection.

In the case of fundamental physics, torsion is associated with supergravity (SUGRA)
theories or with the geometry of the early Universe (cosmology). We discuss physical
aspects of torsion that may affect particle physics phenomenology. In such cases, the (totally
antisymmetric component of) torsion corresponds to a dynamical pseudoscalar (axion-like)
degree of freedom, which is responsible for giving the vacuum a form encountered in
the so-called running vacuum model (RVM) cosmology, characterised by a dynamical
inflation without external inflaton fields, but rather due to non-linearities of the underlying
gravitational dynamics. Moreover, under some circumstances, the torsion-associated
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axions can lead to background configurations that spontaneously violate Lorentz (and CPT)
symmetry, leading, in some models with right-handed neutrinos, to lepton asymmetry in
the early radiation epoch, that succeeds the exit from inflation.

The structure of the review is as follows. First, in Section 2, we extensively discuss
the concept of the torsion tensor in general geometric terms. This has the double scope
of introducing our notations but also, and more importantly, of elucidating as many
details as possible of the geometry and physics of torsion. The following Section 3 is
dedicated to an important illustration of how torsion may affect well known theories, such
as quantum electrodynamics (QED), while Section 4 focuses on some ambiguities of the
Einstein–Cartan gravity theories and on the Barbero–Immirzi (BI) parameter. In Section 5,
we discuss how torsion can be practically realised in a tabletop system, that is graphene.
Then, after recalling in Section 6 how standard SUGRAs necessarily include torsion, we
discuss in Section 7 a novel type of local supersymmetry (SUSY), without superpartners,
whose natural realisation is in graphene. The rather extended Section 8 is dedicated to the
important and hot topic of torsion in cosmology. Our concluding remarks and some brief
description of other applications of torsion, which are not covered in this review, are given
in the last Section 9.

2. Properties of Torsion

As already mentioned, torsion is an old subject [1–3] that goes beyond GR, as it
constitutes a more general formalism in the sense that, to obtain Einstein’s GR, one needs to
impose a constraint to guarantee the absence (vanishing) of torsion tensor in a Riemannian
spacetime. Specifically, let M be a (3 + 1)-dimensional Minkowski-signature curved
world-manifold1, parametrised by coordinates xμ, where Greek indices μ, ν = 0, . . . 3 are
spacetime volume indices, raised and lowered by the curved metric gμν = ηab ea

μ eb
ν, with

ea
μ the vielbein (we also define the inverse vielbein as Eμ

a ea
ν = δ

μ
ν , and Eμ

a eb
μ = δb

a , such
that gμν = ηab Eμ

a Eν
b gives the inverse metric tensor). In the above formulae, Latin indices

a, b, · · · = 0, . . . 3 are (Lorentz) indices on the tangent hyperplane ofM at a given point p
(cf. Figure 1), and are raised and lowered by the Minkowski metric ηab (and its inverse ηab),
which is the metric of the tangent space TpM.

Figure 1. Tangent hyperplane TpM at a point p of a curved (d + 1)-dimensional manifoldM, used
in the first order formalism of GR to define the vielbein ea

μ mapM → TpM.

In differential form language [4,5], which we use here often for notational convenience,
the torsion two form is defined as [1–3,6]:

Ta =
1
2

Ta
μν dxμ ∧ dxν ≡ dea + ωa

b ∧ eb, (1)

where in the first equality, we used the definition of a differential two form [4], and the
∧ denotes the exterior product2, and ωa

b μ is the generalised (contorted) spin connection
one form, which can can be split into a part that is torsion-free, ω̊a

b μ, and related to the
standard Christoffel symbols of GR, and another part that involves the contorsion one-form3

Ka
b μ [2,3]:

6
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ωa
b μ = ω̊a

b μ +Ka
b μ. (2)

We can use the one-form ωa
b to define the covariant derivative D(ω) acting on q-forms

Qa...
b... in this contorted spacetime [6]:

D(ω) Qa...
b... = d Qa...

b... + ωa
c ∧Qc...

b... + · · · − (−1)q Qa...
d... ∧ωd

b − . . . (3)

It can be readily seen, using the covariant constancy of the Minkowski tangent space metric ηab

D(ω) ηab = 0, (4)

that the spin connection (2) is antisymmetric in its Lorentz indices

ωab = −ωba. (5)

We also have covariant constancy for the totally antisymmetric Levi–Civita tensor εabcd:

D(ω) εabcd = 0. (6)

In this Section, we discuss the generalisation of Einstein–Hilbert action for spacetime
geometries with torsion. To this end, we first note that the generalised Riemann curvature,
or Lorentz curvature, two-form is defined as:

Ra
b = d ωa

b + ωa
c ∧ ωc

b . (7)

We can write the components of the Lorentz curvature in terms of the Riemann curvature
two-form R̊a

b, defined only by the torsion-less spin-connection, i.e., R̊a
b = d ω̊a

b + ω̊a
c ∧

ω̊c
b, and the contorsion Ka

b,

Ra
b = R̊a

b + D(ω̊)Ka
b +Ka

c Kc
b, (8)

where the quantity D(ω̊) denotes the diffeomorphic covariant derivative of GR. From the
definition of the covariant derivative (3), we therefore have that the torsion two form is just
the covariant derivative of the vielbein,

Ta = d ea + ωa
b ∧ eb, (9)

and [6]

D(ω) Ta = Ra
b ∧ eb,

D(ω) Ra
b = 0, (10)

where the Equation (10) are the generalisation of the usual Bianchi identity. The two
Equations (7) and (9), are known as Cartan structure equations [5].

Taking into account that the full diffeomorphic covariant derivative on the vielbein is
zero, D(ω, Γ) ea = 0, we obtain a relation between the affine connection, Γλ

μν, and the spin
connection (2), ω a

μ b . In components [6]:

Dμ(Γ) ea
ν = ∂μ ea

ν − Γλ
νμ ea

λ = −ω a
μ b eb

ν. (11)

From (1), (7) and (11), we easily obtain

Ta
μν = ea

λ

(
Γλ

μν − Γλ
νμ

)
≡ 2 ea

λ Γλ
[μν], (12)

where [μν] indicates antisymmetrisation of the indices.
The relation (12) expresses the essence of torsion, namely that in its presence the affine

connection loses its symmetry in its lower indices. The torsion tensor is associated with the
antisymmetric part (in the lower indices) of the affine connection, which is its only part
that transforms as a tensor under general coordinate transformations.

7
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The spin connection then, in general, is torsion-full. If we want a torsion-free connec-
tion (that is the case of GR) we need to impose

d ea + ωa
b ∧ eb = 0, (13)

and we have that the antisymmetric (because of (4)) connection is ωab = ω̊ab. In other
words, covariant constancy of the metric is a separate request from zero torsion. In fact, in
Riemann–Cartan spaces the metric is compatible, hence ωab is antisymmetric, but torsion
is nonzero.

We next remark that the contorsion one-form coefficients Ka
bc = Ka

bμ Eμ
c satisfy

Kc
ab = −Kc

ba and are related to the torsion tensor coefficients Ta
bc = Ta

μν Eμ
b Eν

c via [5]

Kabc = −1
2
(Tcab − Tabc − Tbca)⇒ T[abc] = −2K[abc], (14)

where [abc] denotes total antisymmetrisation. From (14) we can write the torsion tensor in
term of contorsion as

Ta
bc = −2Ka

[bc]. (15)

Equations (14) and (15) tell us that both torsion and contorsion tensors carry the same
information.

2.1. Geometric Interpretation

Let us now discuss the geometric interpretation of torsion, by parallel transporting the
vector vμ along the direction dxν, using the connection Γλ

μν that appears in (12)

δ‖vμ = vμ

‖(x + dx)− vμ(x) = Γμ
ρν vρ dxν.

Then, the covariant derivative D(Γ) v can be written, in its components, as the difference

vμ(x + dx)− vμ

‖(x + dx) = vμ(x + dx)− vμ(x)− δ‖ vμ =
(
∂νvμ − Γμ

ρνvρ
)

dxν

≡ Dν(Γ) vμ dxν. (16)

Both curvature and torsion measure the noncommutativity of covariant derivatives of a
vector taken along two directions [7],

Dν(Γ) Dρ(Γ) vμ − Dρ(Γ) Dν(Γ) vμ = Rμ
σρν vσ + Tσ

ρν Dσ(Γ) vμ,

where the torsion components have been defined already and the curvature components
can be written as

Rμ
σρν = ∂ρΓμ

σν − ∂νΓμ
σρ + Γμ

λν Γλ
σρ − Γμ

λρ Γλ
σν. (17)

It is remarkable that for a scalar field, ϕ, such noncommutativity is entirely due to torsion,

Dν(Γ) Dρ(Γ) ϕ− Dρ(Γ) Dν(Γ) ϕ = Tσ
ρν∂σ ϕ.

We introduce the metric tensor gμν when it is necessary to measure angles and distances
between events in a spacetime manifold. The line element is

ds2 = gμν dxμ dxν. (18)

We can define the longitude of any curve onM by integrating (18).
A very reasonable assumption usually taken is that local distances do not change

under parallel transport, i.e.,
Dρ(Γ) gμν = 0. (19)

8
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The condition (19) for a linear connection Γ is called metric compatibility, which leads to the
antisymmetry of the spin-connection (5) [5]. Figure 2 illustrates a geometric interpretation
of torsion, with details in the caption.

Figure 2. A geometric interpretation of torsion in Riemann–Cartan spaces. Consider two vector
fields, X and Y, at a point P. First, parallel-transport X along Y to the infinitesimally close point R.
Then, again from P, parallel-transport Y along X to reach a point Q. The failure of the closure of
the parallelogram is the geometrical signal of torsion, and its value is the difference T(X, Y) (here
in red) between the two resulting vectors. An n-dimensional manifold M with a linear connection
preserving local distances, i.e., fulfilling condition (19), is called a Riemann–Cartan space, denoted by
Un. In Riemannian spaces, Vn, this tensor is assumed to be zero. The picture was inspired by [8] but
with the notation of [5], and was taken from [9].

The unique linear metric-compatible torsionless connection, called the Levi–Civita
connection, can then be obtained from the metric gμν (see [5] for details){

μ
ν ρ

}
=

1
2

gμσ (∂νgρσ + ∂ρgνσ − ∂σgνρ). (20)

The quantities (20) are called Christoffel symbols, and the curvature associated with the
Levi–Civita connection is the Riemannian curvature tensor, denoted by R̊μ

νρσ. In this way,
the linear connection in a Riemann–Cartan space can be written as

Γμ
νρ =

{
μ

ν ρ

}
+ Kμ

νρ .

2.2. Gravitational Dynamics in Presence of Torsion

The Einstein–Hilbert scalar curvature term corresponding to the generalised contorted
Riemann tensor is given by

Sgrav =
1

2κ2

∫
d4x

√−g R =
1

2κ2

∫
Rab ∧ �(ea ∧ eb)

=
1

2κ2

∫
(R̊ab + D(ω̊)Kab +Kac ∧ Kc

b) ∧ �(ea ∧ eb)

=
1

2κ2

∫
(R̊ab +Kac ∧ Kc

b) ∧ �(ea ∧ eb), (21)

where, in the last two equalities, we used form language and took into account the definition
of the generalised curvature two form (7) in terms of the contorted spin connection (2).
In (21), κ2 = 8πG = M−2

Pl is the gravitational constant in four dimensions, which is
the inverse of the square of the reduced Planck mass MPl in units h̄ = c = 1 we work
throughout. In passing from the second to the third equality we used the fact that the term
D(ω̊)Kab ∧ � (ea ∧ eb) is a total derivative and thus yields, by means of Stoke theorem, a

9
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boundary term that we assume to be zero (we used also the metric compatibility of the
spin-connection (5)).

For completeness, we give below the component form of the gravitational action (in
the notation of [6]):

Sgrav =
1

2κ2

∫
d4x

√−g
(

R̊ + Δ
)

,

Δ ≡ Kλ
μν Kνμ

λ − Kμν
ν K λ

μλ = Tν
νμ Tλ μ

λ − 1
2

Tμ
νλ Tνλ

μ +
1
4

Tμνλ Tμνλ. (22)

Next, we decompose the torsion tensor in its irreducible parts under the Lorentz group [3,6,10],

Tμνρ =
1
3
(
Tνgμρ − Tρgμν

)− 1
6

εμνρσSσ + qμνρ, (23)

where
Tμ ≡ Tν

μν, (24)

is the torsion trace vector, transforming like a vector,

Sμ ≡ εμνρσTνρσ, (25)

is the pseudotrace axial vector and the antisymmetric tensor qμνρ satisfies

qν
ρν = 0 = εσμνρqμνρ. (26)

Thus, we may write the contorsion tensor components as:

Kabc =
1
2

εabcd Sd + K̂abc, (27)

being K̂abc, by definition, the difference of Kabc and the first term of (27). This yields for the
quantity Δ in (22):

Δ =
3
2

Sd Sd + Δ̂, (28)

with Δ̂ being given by the combination appearing in the expression for Δ in (22) in terms of
the contorsion tensor, but with K replaced by K̂ [6].

Using the decomposition (23) and the relations (24)–(26) and discarding total derivative
terms, the gravitational part of the action can be written as:

Sgrav =
1

2κ2

∫
d4x

√−g
(

Eμ
a Eν

b Rab
μν(ω) +

1
24

SμSμ − 2
3

TμTμ +
1
2

qμνρqμνρ

)
≡ 1

2κ2

∫
d4x

√−g
(

R + Δ̂
)
+

3
4κ2

∫
S ∧ �S, (29)

where in the last line we used mixed notation components/form, following [6], as this will
be more convenient for the discussion that follows. For future use, the reader should notice
that Δ̂ is independent of the pseudovector Sd.

An important part of our review will deal with fermionic torsion, that is torsion
induced by fermion fields in the theory. Such a feature arises either in certain materials,
such as graphene, to be discussed in Section 5, or in fundamental theories, which may
play a role in particle physics, such as SUGRA (local SUSY, Section 6), unconventional
supersymmetry (USUSY) (Section 7), and string theory (with applications to cosmology,
Section 8.1). In the next Section we review such a (quantum) torsion in a fermionic theory
corresponding to QED, as an instructive example, which can be generalised to non-Abelian
gauge fields as well.

10
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3. (Quantum) Torsion, Axions and Anomalies in Einstein–Cartan Quantum
Electrodynamics

Our starting point is a (3 + 1)-dimensional QED with torsion (termed, from now on,
“contorted QED”), describing the dynamics of a massless Dirac fermion field ψ(x), coupled
to a gauged (electromagnetic) U(1) field Aμ, in a curved spacetime with torsion4. The action
of the model reads [6]:

STorsQED =
i
2

∫
d4x

√−g
[
ψ(x) γμDμ(ω, A)ψ(x)−Dμ(ω, A)ψ(x)γμ ψ(x)

]
, (30)

where Dμ(ω, A) ≡ Dμ(ω) − i e Aμ is the diffeomorphic and gauge covariant derivative
and [2,3]:

Dμ(ω) = ∂μ + i ωa
b μ σb

a , σab ≡ i
4
[γa, γb]. (31)

The quantities γa and γμ denote the 4× 4 Dirac matrices in the tangent space and in the
manifold, respectively. On account of (31) and (2) (discussed in Section 2), the action (30)
becomes:

STorQED = SQED(ω̊, A) +
1
8

∫
d4x

√−g ψ(x){γc, σab}Kabc ψ(x), (32)

where SQED(ω̊, A) is the standard QED action in a torsion-free curved spacetime and { , }
denotes the standard anticommutator. Since the Dirac γ-matrices obey

{γc, σab} = 2εabc
d γd γ5,

where εabcd is the Levi–Civita tensor in (3 + 1)-dimensions, one can prove that it is only the
totally antisymmetric part of the torsion that couples to fermionic matter [3]. Indeed, on
using (14), we may write (32) in the form

STorQED = SQED(ω, A)− 3
4

∫
d4x

√−g Sμ ψ γμ γ5 ψ, (33)

where Sd = 1
3εabc

d Tabc (or in form language S = �T) is the dual pseudovector constructed
out of the totally antisymmetric part of the torsion. From (33) we thus observe that only the
totally antisymmetric part of the torsion couples to the fermion axial current

j5μ = ψ γμ γ5 ψ. (34)

The (2 + 1)-dimensional version of (33) will be our starting point to describe the conductiv-
ity electrons in graphene-like materials in a fixed spacetime with torsion (see Section 5).
In contorted QED, the Maxwell tensor is defined with respect to the ordinary torsion-free
geometry, Fμν = ∂μ Aν − ∂ν Aμ = Dμ(ω̊)Aν − Dν(ω̊)Aμ. This way, the Maxwell tensor
continues to satisfy the Bianchi identity (in form language d F = 0) even in the presence
of torsion. Thus the standard Maxwell term, independent from torsion, is added to the
action (30) to describe the dynamics of the photon field:

SMax = −1
4

∫
d4x

√−g Fμν Fμν = −1
2

∫
F ∧ �F, (35)

where � denotes the Hodge star [4,5].
The dynamics of the gravitational field is described by adding Einstein–Hilbert scalar

curvature action (21) (or, equivalently, (22), in component form) of Section 2 to the above
actions. By adding (33) to (22), so as to obtain the full gravitational action in a contorted
geometry, with QED as its matter content, we obtain from the graviton equations of motion
the stress-energy tensor of the theory, which can be decomposed into various components
gauge, fermion and torsion-S (the reader should recall that only the totally antisymmetric
part of the torsion S couples to matter in the theory):

11
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TA
μν = Fμλ Fλ

ν −
1
2

gμν Fαβ Fαβ,

Tψ
μν = −

(
i
2

ψγ(μDν) ψ− (D(μψ)γν) ψ

)
+

3
4

S(μ ψ γν) γ5 ψ,

TS
μν = − 3

2 κ2

(
Sμ Sν − 1

2
gμν Sα Sα

)
, (36)

where (. . . ) denotes indices symmetrisation.
Variation of the above gravitational action with respect to the torsion components Tμ,

qμνρ and Sμ (cf. (23)), treated as independent field variables, leads to the equations of motion
(in form language):

Tμ = 0, qμνρ = 0, S =
κ2

2
j5, (37)

respectively, where j5 is the axial fermion current one form, which in components is given
by Equation (34). Thus, classically, only the totally antisymmetric component of the torsion
is non vanishing in this Einstein–Cartan theory with fermions. From (2), (14) and (23), we
then obtain for the on-shell torsion-full spin connection:

ωab
μ = ω̊ab

μ +
κ2

4
εab

cd ec
μ j5 d, (38)

thereby associating the torsion part of the connection, induced by the fermions, with the
spinor axial current.

We next remark that the equations of motion for the fermion, stemming from (33),
imply the gauged Dirac equation with the vector pseudovector Sμ, corresponding to the
totally antisymmetric torsion component, playing the role of an axial source:

iγμDμ(ω, A)ψ =
3
4

Sμ γμ γ5 ψ. (39)

Classically, (37) implies a direct substitution of the torsion by the axial fermion current
in (36) and (39). Moreover, as a result of the Dirac equation (39), a classical conservation
of the axial current follows, d � j5 = 0. In view of (37), this, in turn, implies a classical
conservation of the torsion pseudovector S, that is:

d � S = 0. (40)

Because the action is quadratic in Sμ, one could integrate it out exactly in a path integral,
thus producing repulsive four fermion interactions

−3 κ2

16

∫
j5 ∧ � j5, (41)

which are a characteristic feature of Einstein–Cartan theories.
However, this would not be a self consistent procedure in view of the fact that,

due to chiral anomalies, the axial fermion current conservation is violated at a quantum
level [12–17]. Specifically at one loop one obtains for the divergence of the axial fermion
current in a curved spacetime with torsion:

d � j5 =
e2

8π2 F ∧ F− 1
96π2 Ra

b ∧ Rb
a ≡ G(ω, A). (42)

It can be shown [14,18,19] that, by the addition of appropriate counterterms, the torsion
contributions to G(ω, A) can be removed, and hence one obtains

d � j5 =
e2

8π2 F ∧ F− 1
96π2 R̊a

b ∧ R̊b
a ≡ G(ω̊, A), (43)

where only torsion-free quantities appear in the anomaly equation.

12
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Therefore, to consistently integrate over the torsion Sμ in the path integral of the
contorted QED, we need to add appropriate counterterms order by order in perturbation
theory. This will ensure the conservation law (40) in the quantum theory, despite the
presence of the anomaly (43). This can be achieved [6] by implementing (40) as a δ-
functional constraint in the path integral, represented by means of a Lagrange multiplier
pseudoscalar field Φ:

δ(d � S) =
∫

DΦ exp
(

i
∫

Φ d � S
)

, (44)

thus writing for the S-path integral

Z ∝
∫

D S δ(d � S) exp
(

i
∫ [ 3

4 κ2 S ∧ �S− 3
4

S ∧ �j5
])

=
∫

DS DΦ exp
(

i
∫ [ 3

4 κ2 S ∧ �S− 3
4

S ∧ �j5 + Φ d � S
])

. (45)

The path integral over S can then be performed, making this way the field Φ dynamical.
Normalising the kinetic term of Φ, requires the rescaling Φ = (3/(2κ2))1/2 b. We may write
then for the result of the S path-integration [6]:

Z ∝
∫

Db exp
[
i
∫ (

− 1
2

db ∧ �db− 1
fb

db ∧ �j5 − 1
2 f 2

b
j5 ∧ �j5

)]
,

fb ≡ (3κ2/8)−1/2, (46)

which demonstrates the emergence of a massless axion-like degree of freedom b(x) from
torsion. The characteristic shift-symmetric coupling of the axion to the axial fermionic cur-
rent with fb the corresponding coupling parameter [20]. Using the anomaly Equation (43)
we may partially integrate this term to obtain:

Z ∝
∫

Db exp
[
i
∫ (

− 1
2

db ∧ �db +
1
fb

b G(ω, A)− 1
2 f 2

b
j5 ∧ �j5

)]
. (47)

The repulsive four fermion interactions in (46) and (47) are characteristic of Einstein–Cartan
theories, as already mentioned, but as we see from (47) this is not the only effect of
torsion. One has also the coupling of torsion to anomalies, which induces a coupling of the
axion to gauge and gravitational anomaly parts of the theory. The emergence of axionic
degrees of freedom from torsion is an important result which will play a crucial role in
our cosmological considerations. We have observed that, in the massless chiral QED case,
torsion became dynamical, due to anomalies. We stress that the effective field theory (47)
guarantees the conservation law (40), and hence the conservation of the axion charge

QS =
∫

�S, (48)

order by order in perturbation theory.
Viewed as a gravitational theory, (47) corresponds to a Chern–Simons gravity [21–23],

due to the presence of the gravitational anomaly. From a physical point of view, placing
the theory on an expanding Universe Friedman–Lemaitre–Robertson–Walker (FLRW)
background spacetime, we observe that the gravitational anomaly term vanishes [21,23].
However, the gauge chiral anomaly survives. This could have important consequences for
the cosmology of the model.

In fact, although above we discussed QED, we could easily consider more general
models, with several fermion species, some of which could couple to non-Abelian gauge
fields, e.g., the SU(3) colour group of Quantum Chromodynamics (QCD). In such a case,
torsion, being gravitational in origin, couples to all fermion species, in a similar way as in
the aforementioned QED case, (33), but now the axial current (34) is generalised to include
all the fermion species:
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J5 μ
tot = ∑

i=fermion species
ψi γμ γ5 ψi. (49)

Chiral anomalies of the axial fermion current as a result of (non-perturbative) instanton
effects of the non-Abelian gauge group, e.g., SU(3), during the QCD cosmological era of
the Universe, will be responsible for inducing a breaking of the axion shift-symmetry, by
generating a potential for the axion b of the generic form [20]

V(b) =
∫

d4x
√−g Λ4

QCD

[
1− cos

( b
fb

)]
, (50)

where ΛQCD is the energy scale at which the instantons are a dominant configurations. As

we observe from (50) one obtains this way a mass for the torsion-induced axion mb =
Λ2

QCD
fb

,
which can thus play a role of a dark matter component. In this way, we can have a geometric
origin of the dark matter component in the Universe [24], which we discuss in Section 8.1,
where we describe a more detailed scenario in which such cosmological aspects of torsion
are realised in the context of string-inspired cosmologies.

4. Ambiguities in the Einstein–Cartan Theory —The Barbero–Immirzi Parameter

The contorted gravitational actions discussed in the previous Section can be modified
by the addition of total derivative topological terms, which do not affect the equations
of motion, and hence the associated dynamics. One particular form of such total deriva-
tive terms plays an important role in Loop quantum gravity [25,26], a non-perturbative
approach to the canonical quantization of gravity. Below, we shall briefly mention such
modifications, which, as we shall see, introduce an extra (complex) parameter, β, in the
connection, termed “BI parameter”, due to its discoverer [27,28]. This is a free parameter of
the theory and it may be thought of as the analogue of the instanton angle θ of non-Abelian
gauge theories, such as QCD, associated with strong CP violation.

Let us commence our discussion by presenting the case of pure gravity in the first-
order formalism. In pure gravity, if torsion is absent, a term in the action linear in the dual
of the Riemann curvature tensor, ˜̊Rab

μν ≡ εab
cdR̊cd

μν, called the Holst term [29]

SHolst = − β

4κ2

∫
d4x e Eμ

a Eν
b

˜̊Rab
μν, (51)

where e =
√−g is the vielbein determinant, and vanishes identically, as a result of the

corresponding Bianchi identity of the Riemann curvature tensor:

R̊αμνρ + R̊ανρμ + R̊αρμν = 0. (52)

However, if torsion is present, such a term yields non-trivial contributions, since in
that case the Bianchi identity (52) is not valid. In the general case β is a complex parameter,
and the reader might worry that in order to guarantee the reality of the effective action one
should add the appropriate complex conjugate (i.e., impose reality conditions). As we shall
discuss below, however, the effective action contributions in the second-order formalism,
obtained from (51) upon decomposing the connection into torsion and torsion-free parts,
and using the solutions for the torsion obtained by varying the Holst modification of
the general relativity action with respect the independent torsion components, as in the
Einstein–Cartan theory discussed previously, are independent of the BI parameter β, which
can thus take on any value.

We mention for completeness that the term (51) has been added by Holst [29] to the
standard first-order GR Einstein–Hilbert term in the action in order to derive a Hamiltonian
formulation of canonical general relativity suggested by Barbero [30,31] from an action.
This formulation made use of a real SU(2) connection in general relativity, as opposed to the
complex connection introduced by Ashtekar in his canonical formulation of gravity [32].
The link between the two approaches was provided by Immirzi [27,28] who, by means of
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a canonical transformation, introduced a finite complex number β �= 0 (the BI parameter,
previously mentioned) in the definition of the connection. When the (otherwise free)
parameter takes on the purely imaginary values β = ±i, the theory reduces to the self (or
anti-self) dual formulation of canonical quantum gravity proposed by Ashtekar [32,33]
and Ashtekar–Romano–Tate [34]. The values β = ±1 lead to Barbero’s real Hamiltonian
formulation of canonical gravity. The Holst modification (51), can then be used to derive
these formulations from an effective action, with the coefficient β in (51) playing the role of
the complex BI parameter5.

In the presence of fermions, the Holst modification (51) is not a total derivative. There-
fore, if added it will lead to the false prediction of “observable effects” of the BI parameter. In
particular, following exactly the same procedure as for the Einstein–Cartan theory of the pre-
vious Section, and using the decomposition (23) of the torsion in the Holst modification of
the Einstein action, obtained by adding (51) to the combined actions (29), (33) and (35), one
can derive the following extra contributions in the action (up to total derivatives) [35–38]

SHolst = − 1
2κ2

∫
d4xe

(
β

3
TμSμ +

β

2
εμνρσq μρ

λ qλνσ

)
. (53)

By varying independently the combined actions (29), (33) and (53) with respect to the
torsion components, as in the Einstein–Cartan theory, one arrives at the equations:

1
24κ2 Sμ +

β

6κ2 Tμ − 1
8

j5μ = 0,

−4Tμ + βSμ = 0,

qμνρ + βενσρλq σλ
μ = 0. (54)

The solutions of (54) are [35,37]

Tμ =
3κ2

4
β

β2 + 1
j5μ, Sμ =

3κ2

β2 + 1
j5μ, qμνρ = 0. (55)

Substituting these back into the action, and following the steps carried out for the Einstein–
Cartan theory, would lead to a four-fermion induced interaction term of the form [35]

Sj5−j5 = − 3
16(β2 + 1)

κ2
∫

d4xe j5μ j5μ. (56)

The coupling of this term depends on the BI parameter β, which is in contradiction to its
role in the canonical formulation of gravity [27,28], as a free parameter, being implemented
by a canonical transformation in the connection field. Moreover, for purely imaginary
values of β, such that |β|2 > 1, the four fermion interaction is attractive. For values of
β → ±i (which corresponds to the well-defined Ashtekar–Romano–Tate theory [34]) the
interaction diverges, which presents a puzzle. Furthermore, for values of |β| → 1+ the
coupling of the four-fermion interaction is strong. Such strong couplings can lead to the
formation of fermion condensates in flat spacetimes, given that the attractive four-fermion
effective coupling of (56) in this case is much stronger than the weak gravitational coupling
κ2 ∝ GN . These features are all in contradiction with the allegedly topological nature of the
BI parameter.

The above are indeed pathologies related to the mere addition of a Holst term in a
theory with fermions. Such an addition is inconsistent with the first-order formalism, for
the simple reason that the Holst term (51) alone is not a total derivative in the presence of
fermions, and thus there is no surprise that its addition leads to “observable” effects (56) in
the effective action. In addition, as observed in [37], the solution (55) of (54) is mathemati-
cally inconsistent, given that the first line of (55) equates a proper vector (Tμ) with an axial
one (the axial spinor current j5μ).

The only consistent cases are those for which either β → 0 or β → ∞. The first is the
Einstein–Cartan theory. The second means no torsion, in the sense that in a path integral
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formalism, where one integrates over all spin connection configurations, only the zero
torsion contributions survive in the partition function, so as to compensate the divergent
coefficient. In either case, Tμ → 0, and the solution (55) reduces to that of the Einstein–
Cartan theory (33) and (41). However, this is in sharp contradiction with the arbitrariness
of the BI parameter β of the canonical formulation of gravity, which is consistent for every
(complex in general) β.

The resolution of the problem was provided by Mercuri [37], who noticed that an
appropriate Holst-like modification of a gravity theory in the presence of fermions is
possible, if the Holst modification contains additional fermionic-field dependent terms so
as to become a total derivative and thus retains its topological nature that characterises
such modifications in the torsion-free pure gravity case. The proposed Holst-like term for
the torsion-full case of gravity in the presence of fermions contains the Holst term (51) and
an additional fermion-piece of the form [37] (we ignore the electromagnetic interactions
from now on, for brevity, as they do not play an essential role in our arguments):

SHolst−fermi =
α

2

∫
d4xe

(
ψγμγ5Dμ(ω)ψ + Dμ(ω)ψγμγ5ψ

)
, α = const., (57)

so that the total Holst-like modification is given by the sum SHolst−total ≡ SHolst + SHolst−fermi.
We next note that the fermionic Holst contributions (57) when combined with the

Dirac kinetic terms of the QED action, yield terms of the form (in our relative normalisation
with respect to the Einstein terms in the total action):

SDirac−Holst−fermi =
i
2

∫
d4xe

[
ψγμ(1− iαγ5)Dμ(ω)ψ + Dμ(ω)ψγμ(1− iαγ5)ψ

]
. (58)

We thus observe that in the Ashtekar limit [32,33] β = ±i, the terms in the parentheses
in (58) containing the constant α become the chirality matrices (1± γ5)/2 and this is why
the specific theory is chiral.

In general, the (complex) parameter α is to be fixed by the requirement that the
integrand in SHolst−total is a total derivative, so that it does not contribute to the equations of
motion. It can be readily seen that this is achieved when

α = β. (59)

In that case, one recovers the results of the Einstein–Cartan theory, as far as the torsion
decomposition and the second-order final form of the effective action are concerned6.

4.1. Holst Actions for Fermions and Topological Invariants

A final comment concerns the precise expression of the total derivative term that
amounts to the total Holst-like modification SHolst−total. As discussed in [37], this action can
be cast in a form involving (in the integrand) a topologically invariant density, the so-called
Nieh–Yan topological density [39], which is the only exact form invariant under local
Lorentz transformations associated with torsion:

SHolst−total = −i
β

2

∫
d4x

[
INY + ∂μ j5μ

]
, (62)

with INY the Nieh–Yan invariant density [39]:

INY ≡ εμνρσ

(
T a

μν Tρσ a − 1
2

ea
μeb

νRρσab(ω)

)
. (63)

Taking into account that, in our case, the torsion-full connection has the form (38), we
observe that the first term in INY, quadratic in the torsion T, vanishes identically, as a
result of appropriate Fierz identities. Thus, upon taking into account (38), the Holst-
like modification of the gravitational action in this case becomes a total derivative of the
form [40]:
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SHolst−total =
i β

4

∫
d4x∂μ j5μ = − i β

6

∫
d4xεμνρσ∂μTνρσ(ψ), (64)

where the last equality stems from the specific form of torsion in terms of the axial fermion
current, implying 2εμνρσTνρσ(ψ) + 3j5μ = 0. In general, the Nieh–Yan density is just the
divergence of the pseudotrace axial vector associated with torsion, INY = εμνρσ∂μTνρσ.

The alert reader can notice that if the axial fermion current is conserved in a theory,
then the Holst action (64) vanishes trivially. However, in the case of chiral anomalies,
examined above, the axial current is not conserved but its divergence yields the mixed
anomaly (42). In that case, by promoting the BI parameter to a canonical pseudoscalar field
β → β(x) [38], the Holst term (64) becomes equivalent to the torsion–axion–j5μ interaction
term in (46), upon identifying β(x) = b(x)

fb
. In this case, the field-prompted BI parameter

plays a role analogous to the QCD CP violating parameter [38]. As we have discussed in
Section 3. Therefore, this is consistent with the association of torsion with an axion-like
dynamical degree of freedom, and thus the works of [38] and [6] lead to equivalent physical
results from this point of view [41].

Before closing this subsection, we remark that Holst modifications, along the lines
discussed for the spin 1/2 fermions above, are known to exist for higher spin 3/2 fermions,
ψμ, like gravitinos of SUGRA theories [40,42]. In fact, Holst-like modifications, including
fermionic contributions, have been constructed in [40,43] for various supergravities (e.g.,
N = 1, 2, 4), non-trivially extending the spin 1/2 case discussed above. The total derivative
nature of these Holst-like actions implies no modifications to the equations of motion.
On-shell (local and global) supersymmetries are then preserved. We discuss such issues in
Section 6.

4.2. Barbero–Immirzi Parameter as an Axion Field

The classical models described until now in this Section 4 lack the presence of a
dynamical pseudoscalar (axion-like) degree of freedom, which, as we have seen in Section 3,
is associated with quantum torsion.

Such a pseudoscalar degree of freedom arises in [42,44], which were the first works
to promote the BI parameter to a dynamical field, the starting point is the so-called Holst
action (51), which by itself is not a topological invariant, in contrast to the Nieh–Yan
term (63). The work of [42,44] deals with matter free cases. If γ(x) represents the BI field,
the Holst term now reads (in form language)

SHolst =
1

2 κ2

∫
γ(x) ea ∧ eb ∧ Rab, (65)

where Rab is the curvature two-form, in the presence of torsion, and we used the notation
of [44] for the inverse of the BI field γ(x) = 1/γ(x), to distinguish this case from the
Kalab–Ramond (KR) axion b(x) in our string-inspired one. The analysis of [42,44] showed
that the gravitational sector results in the action

Seff
grav+Holst+BI−field =

∫
d4x

√−g
[
− 1

2κ2 R +
3

4κ2 (γ2 + 1)
∂μγ ∂μγ

]
. (66)

Coupling the theory to fermionic matter [35,36,45] can be achieved by introducing a
rather generic non-minimal coupling parameter α, for massless Dirac fermions in the form

SF =
i

12

∫
εabcdea ∧ eb ∧ ec ∧

[
(1− iα)ψγdD(ω)ψ− (1 + iα)(D(ω)ψ) γd ψ

]
, (67)

where α ∈ R is a constant parameter. The case of constant γ has been discussed in [35,36]
(in fact, Ref. [35] deals with minimally-coupled fermions, i.e., the limit α = 0), whilst the
work of [37] extended the analysis to coordinate-dependent BI, γ(x).

The extension of the BI to a coordinate dependent quantity, which is assumed to be a
pseudoscalar field, implies:
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(i) The consistency of (55), given that now the BI parameter being a pseudoscalar field,
reinstates the validity of the first of the Equation (55), since the product of its right-
hand side is now parity even, and thus transforms as a vector, in agreement with the
nature of the left-hand side of the equation.

(ii) Additional terms of interaction of the fermions with the derivative of the BI field ∂μγ:

SF ∂γ =
1
2

∫ √−g
( 3

2(γ2 + 1)
∂μγ

[
− j5μ + α γ(x) jμ

])
, (68)

with j5μ being the axial current (34) and

jμ = ψ γμ ψ, (69)

the vector current.
(iii) Interaction terms of fermions with non-derivative γ(x) terms:

SF−non-derivγ =
i
2

∫ √−g
[[
(1− iα)ψγdD(Γ̊)ψ− (1 + iα)(D(Γ̊)ψ) γd ψ

]
−
∫ √−g

3
16(γ2 + 1)

[
j5μ j5μ − 2α γ j5μ jμ − α2 jμ jμ

]
, (70)

with D(Γ̊) being the diffeomorphic covariant derivative, expressed in terms of the
torsion-free Christoffel connection, which is the result of [36], as expected, because
this term contains non derivative terms of the BI.

The action (70) involves four-fermion interactions with attractive channels among the
fermions. Such features may play a role in the physics of the early Universe, as we shall
discuss in Section 8.2.

We also observe from (70) that the case α = 0 (minimal coupling), corresponds to a
four-fermion axial-current (56), which however depends on the BI field. Thus, this limiting
theory is not equivalent to our string-inspired model, in which the corresponding quantum-
torsion-induced four-fermion axial-current-current interaction (56) is independent from the
KR axion field b(x), although both cases agree with the sign of that interaction.

A different fermionic action than (70), using non-minimal coupling of fermions with
γ5, has been proposed in [37] as a way to resolve an inconsistency of the Holst action, when
coupled to fermions, in the case of constant γ. In that proposal, the 1 + iα factor in (70)
below, is replaced by the Dirac-self-conjugate quantity 1− i α γ5. The decomposition of the
torsion into its irreducible components in the presence of the Holst action with arbitrary
(constant) BI parameter, leads to an inconsistency, implying that the vector component of
the torsion is proportional to the axial fermion current, and hence this does not transform
properly under improper Lorentz transformations. With the aforementioned modification
of the fermion action the problem is solved, as demonstrated in [37], upon choosing α = γ,
which eliminates the vector component of the torsion. But this inconsistency is valid only if
γ is considered as a constant. Promotion of the BI parameter γ to a pseudoscalar field, γ(x),
resolves this issue, as discussed in [45], given that one obtains in that case consistent results,
in the sense that the vector component of the torsion transforms correctly under parity,
as a vector, since it contains now, apart from terms proportional to the vector fermionic
current (69), also terms proportional to the product of the BI pseudoscalar with the axial
fermionic current (34), as well as terms of the form γ∂μγ, all transforming properly as
vectors under improper Lorentz transformations.

5. Torsion on Graphene

The use of graphene as a tabletop realisation of some high-energy scenarios is now
considerably well developed, see, e.g., [46], the review [47] and the contribution [48] to this
Special Issue. Let us here recall the main ideas and those features that make graphene a
place where torsion is present.
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Graphene is an allotrope of carbon and, being a one-atom-thick material, it is the
closest to a two-dimensional object in nature. It is fair to say that was theoretically spec-
ulated [49,50] and, decades later, it was experimentally found [51]. Its honeycomb lattice
is made of two intertwined triangular sub-lattices LA and LB, see Figure 3. As is by now
well known, this structure is behind a natural description of the electronic properties of
graphene in terms of massless, (2 + 1)-dimensional, Dirac quasi-particles.

s
3

s
1

s
2

a1

a2

= sublattice LA = sublattice LB

�

Figure 3. The honeycomb lattice of graphene, and its two triangular sublattices LA and LB. The
choice of the basis vectors, (�a1,�a2) and (�s1,�s2,�s3), is, of course, not unique. Figure taken from [52].

Indeed, starting from the tight-binding Hamiltonian for the conductivity electrons,
and considering only near-neighbours contribution7

H = −t ∑
�r∈LA

i=3

∑
i=1

(
a†(�r)b(�r +�si) + b†(�r +�si)a(�r)

)
, (71)

where t is the nearest-neighbour hopping energy which is approximately 2.8 eV, and a, a†(b, b†)
are the anticommuting annihilation and creation operators for the planar electrons in the
sub-lattice LA(LB).

If we Fourier-transform to momentum space,�k = (kx, ky) annihilation and creation
operators,

a(�r) = ∑
�k

a�kei�k·�r, b(�r) = ∑
�k

b�kei�k·�r, etc, (72)

then

H = −t ∑
�k

i=3

∑
i=1

(
a†
�k

b�kei�k·�si + b†
�k

a�ke−i�k·�si
)

.

Using the conventions for�si of Figure 3, we find that

F (�k) = −t
3

∑
i=1

ei�k·�si = −t e−i�ky

[
1 + 2ei 3

2 �ky cos

(√
3

2
�kx

)]
, (73)

leading to
H = ∑

�k

F (�k)a†
�k

b�k +F∗(�k)b†
�k

a�k.

For graphene, the conduction and valence bands touch at two points8 KD± = (± 4π
3
√

3�
, 0),

as one can check by finding the zeroes of (73). These points are called Dirac points. The
dispersion relation E(�k) = | f (�k)|, for t� = 1, is shown in Figure 4a.
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Figure 4. (a) The dispersion relation E(�k) for graphene, setting t� = 1. We only take into account
the near neighbours contribution in (71). (b) A zoom near the Dirac point KD+ showing the linear
approximation works well in the low energies regime.

If we expand F (�k) around the Dirac points,�k± = �KD± + �p, assuming |p| � |KD|,
we have

F+(�p) ≡ f (�k+) = vF
(

px + i py
)
,

F−(�p) ≡ f (�k−) = − vF
(

px − i py
)
,

where vF ≡ 3
2 t� ∼ c/300 is the Fermi velocity. We can see from this that the dispersion

relations around the Fermi point is

|E±(�p)| = vF|�p|, (74)

which is the dispersion relation for a vF-relativistic massless particle (see Figure 4b).
Defining a± ≡ a(�k±) and b± ≡ b(�k±), and arranging the annihilation (creation)

operators as a column (row) vector ψ± =

(
b±
a±

)
; ψ†± =

(
b†± a†±

)
, then

H = vF ∑
�p

[
ψ†
+�σ · �pψ+ − ψ†−�σ∗ · �pψ−

]
, (75)

where�σ = (σ1, σ2) and�σ∗ = (σ1,−σ2), being σi the Pauli matrices.
Going back to the configuration space, which is equivalent to make the usual substitu-

tion pμ → −i∂μ,

H = −i vF

∫
d2x

[
ψ†
+ σμ ∂μψ+ − ψ†− σ∗μ ∂μψ−

]
, (76)

where sums turned into integrals because the continuum limit was assumed.
By including time to make the formalism fully relativistic, although with the speed

of light c traded for the Fermi velocity vF, and making the Legendre transform of (76), we
obtain the action

S = i vF

∫
d3xΨ̄γa∂aΨ, (77)

here xa = (t, x, y), are the flat spacetime coordinates, Ψ = (ψ+, ψ−) is a reducible represen-
tation for the Fermi field and the γa are Dirac matrices in the same reducible representation
in three dimensions.
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5.1. Torsion as Continuous Limit of Dislocations

Even if we will deal mainly with graphene, the considerations here apply to many
other two-dimensional crystals [56]. For the purposes of this work, we can define a topologi-
cal defect as a lattice configuration that cannot be undone by continuous transformations.
These are obtained by cutting and sewing the pristine material through what is customarily
called a Volterra process [57]. Probably, the easiest defects to visualise are the disclinations.
For this hexagonal lattice, a disclination defect is an n-sided polygon with n �= 6, charac-
terised by a disclination angle s. When n = 3, 4, 5, the defect has a positive disclination angle
s = 180°, 120°, 60°, respectively, whilst for n = 7, 8, . . ., it has a negative disclination angle
s = −60°,−120°, . . ., respectively. These defects carry intrinsic positive or negative curva-
ture, according to the sign of the corresponding angle s, localised at the tip of a conical
singularity. In a continuum description, obtained for large samples in the large wave-
length regime, one can associate9 [64,65] to the disclination defect the spin-connection ωab

μ .
Associated to ω is the curvature two-form tensor Rab,

Rab
μν = ∂μωab

ν − ∂νωab
μ + ωa

cμ ωcb
ν −ωa

cν ωcb
μ ,

that we have already met in (7) and in (17).
A dislocation can be produced as a dipole of disclinations with zero total curvature.

Figure 5 shows a heptagon–pentagon dipole, which in the Volterra process is equivalent
to introducing a strip in the lower-half plane, whose width is the Burgers vector�b, that
characterises this defect.

Figure 5. Edge dislocation from two disclinations. Two disclinations, a heptagon, and a pentagon
add-up to zero total intrinsic curvature, and make a dislocation with Burgers vector�b, as indicated.
In the continuous long wave-length limit, this configuration carries nonzero torsion. Figure taken
from [66].

In the continuum limit one can associate the Burgers vector to the torsion tensor [64,65],

Ta
μν = ∂μ ea

ν − ∂ν ea
μ + ωa

bμeb
ν −ωa

bνeb
μ, (78)

where Tρ
μν = E ρ

a Ta
μν . On this see our earlier discussion around (1) and (9).

The explicit relation between Burgers vectors and torsion can be written as [67]
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bi =
∫∫

Σ
Ti

μνdxμ ∧ dxν, (79)

where the surface Σ has a boundary enclosing the defect. Roughly speaking, the torsion
tensor is the surface density of the Burgers vector. Nonetheless, although the relation (79)
looks simple, there are subtleties: given a distribution of Burgers vector, there is no simple
procedure to assign a torsion tensor to it, even for the simple case of edge dislocations [68].

The smooth way to introduce the effect of dislocations in the long wave-length regime,
through torsion tensor, is to consider an action in a (2 + 1)-dimensional space with a
spin-connection that carries torsion, i.e., a Riemann–Cartan space U3 [2]. Demanding only
Hermiticity and local Lorentz invariance, starting by a simple action

S =
i
2

vF

∫
d3x

√
|g|

(
Ψγμ−→D μ(ω)Ψ−Ψ

←−
D μ(ω)γμΨ

)
, (80)

where
−→
D μ(ω)Ψ = ∂μΨ +

1
8

ωab
μ [γa, γb]Ψ, (81)

Ψ
←−
D μ(ω) = ∂μΨ− 1

8
Ψ[γa, γb]ω

ab
μ , (82)

we obtain, besides possible boundary terms (see details in Appendix A of [69]),

S = i vF

∫
d3x |e| Ψ

(
Eμ

a γa−→D μ(ω̊)− i
4

γ5 εμνρ

|e| Tμνρ

)
Ψ, (83)

where |e| = √|g|, the covariant derivative is based only on the torsion-free connection,

γ5 ≡ iγ0γ1γ2 =

(
I2×2 0

0 −I2×2

)
(we used the conventions for γ0, γ1, γ2 that give a γ5

that commutes with the other three gamma matrices10), and the contribution due to the
torsion is all in the last term through its totally antisymmetric component [69].

We see that the last term couples torsion with the fermionic excitations describing
the quasi-particles and is the three-dimensional version of (33), for Aμ = 0. It can be
also seen that, to have a nonzero effect, we need εμνρTμνρ �= 0, that requires at least three
dimensions. This mathematical fact is behind the obstruction pointed out some time ago
leading to the conclusion that, in two-dimensional Dirac materials, torsion can play no
physical role [70–72].

To overcome this obstruction, in [69] the time dimension is included in the picture.
With this in mind, we have two possibilities that a nonzero Burgers vector gives rise to
εμνρTμνρ �= 0:

(i) a time-directed screw dislocation (only possible if the crystal has a time direction)

bt ∝
∫ ∫

T012dx ∧ dy, (84)

or
(ii) an edge dislocation “felt” by an integration along a spacetime circuit (only possible if

we can actually go around a loop in time), e.g,

bx ∝
∫ ∫

T102dt ∧ dy. (85)

This last scenario is depicted in Figure 6.
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Figure 6. Idealised time-loop. At t = 0, the hole (yellow) and the particle (black) start their movements
from y = 0, in opposite directions. At t = t∗ > 0, the hole is at position −y∗, while the particle is at
position +y∗, (the blue portion of the circuit). Then they come back to their original position, y = 0,
at t = 2t∗ (red portion of the circuit). On the far right, is depicted an equivalent time-loop, where the
hole moving forward in time is replaced by a particle moving backward. Figure taken from [69].

5.2. Time-Loops in Graphene

Scenario (i) could be explored in the context of the very intriguing time crystals intro-
duced some time ago [73,74], and nowadays under intense experimental studies [75,76].
Lattices that are discrete in all dimensions, including time, would be an interesting play-
ground to probe quantum gravity ideas [77]. In particular, it would have an impact to
explore defect-based models of classical gravity/geometry, see for instance [64,65]. How-
ever, here we shall focus only on scenario (ii).

By assuming the Riemann curvature to be zero, R̊μ
νρσ = 0, but nonzero torsion (or

contorsion Kμ
νρ �= 0), and choosing a frame where ω̊ab

μ = 0 (see Appendix B of [69]), the
action (83) is

S = i vF

∫
d3x|e|

(
Ψγμ∂μΨ− i

4
ψ+φψ+ +

i
4

ψ−φψ−
)

, (86)

where Ψ = (ψ+, ψ−) and φ ≡ εμνρTμνρ/|e| is what we call torsion field; it is a pseudo-
scalar and the three-dimensional version of the Sμ we discussed earlier. Even in the
presence of torsion, the two irreducible spinors, ψ+ and ψ−, are decoupled (however, with
opposite signs).

The pictures in Figure 6 refer to a defect-free honeycomb graphene-like sheet. The
presence of a dislocation, with Burgers vector�b directed along x, would result in a failure
to close the loop proportional to�b [69].

The idea of time-looping is fascinating. The challenge is to bring this idealised picture
close to experiments. We present below the first steps in that direction, as taken in [69].

5.3. Towards Spotting Torsion in a Lab

The simplest way to realise the scenario just discussed is to have:

(i) the particle-hole pair required for the time-loop to be excited by an external electromag-
netic field, and

(ii) that what we shall call holonomy—a proper disclination or torsion—provides the
non-closure of the loop in the proper direction.

Stated differently, we are searching for the quantifiable consequences of an holonomy,
caused by disclination or torsion in a time-loop. Only an appropriate combination of (i) and (ii)
can yield the desired outcome.

With this in mind, the action governing such microscopic dynamics is

S = i
∫

d3x |e| (Ψγμ(∂μ − igem Aμ)Ψ− i gtor ψ+φψ+ + i gtor ψ− φ ψ−
)

(87)

→ i
∫

d3x
(

ψγμ∂μψ− i gem ĵμem Aμ − i gtor ĵtor φ
)
≡ S0[ψ, ψ] + SI [A, φ], (88)
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where vF is taken to be one, while gem and gtor are the electromagnetic and torsion
coupling constants, respectively, the latter including the factor 1/4. In (88) we only have
one Dirac point, say ψ ≡ ψ+, as this simplifies calculations, and we focus on flat space,
|e| = 1. Finally, ĵμem ≡ ψγμψ and ĵtor ≡ ψψ.

The electromagnetic field is external, hence it is a four-vector Aμ ≡ (V, Ax, Ay, Az).
Nonetheless, the dynamics it induces on the electrons living on the membrane is two-
dimensional. Therefore, the effective vector potential may be taken to be Aμ ≡ (V, Ax, Ay),
see, e.g., [78,79]. There are two alternatives to this approach. One is the reduced QED
of [80,81], where the gauge field propagates on a three-dimensional space and one direction
is integrated out to obtain an effective interaction with the electrons, constrained to move
on a two-dimensional plane. In this approach a Chern–Simons photon naturally appears
(see, e.g., [82,83]). Another approach is to engineer a (2 + 1)-dimensional Aμ by suitably
straining the material, see, e.g., [71,72], and [84]. In that case, one usually takes the temporal
gauge and Ax ∼ uxx − uyy, Ax ∼ 2uxy, where uij is the strain tensor.

As said, defects here are not dynamical, therefore the torsion field φ enters the action
as an external field, just like the electromagnetic field. One could, as well, include the
effects of the constant φ into the unperturbed action, as a mass term S0 → Sm, see, e.g., [85],
where Sm = i

∫
d3x ψ(/∂ −m(φ))ψ.

We are in the situation described by the microscopic perturbation,

SI [Fi] =
∫

d3x X̂i(�x, t)Fi(�x, t), (89)

with the system responding through X̂i(�x, t) to the external probes Fi(�x, t). The general
goal is then to find

X̂i[Fi], (90)

to the extent of predicting a measurable effect of the combined action of the two perturba-
tions Fi(�x, t): Fem

1 (�x, t) ∝ Aμ(�x, t) that induces the response ĵμem, and Ftor
2 (�x, t) ∝ φ(�x, t)

inducing the response ĵtor:

SI [A, φ] =
∫

d3x
(

ĵμemAμ + ĵtorφ
)

, (91)

where the couplings, gem and gtor, are absorbed in the respective currents.
With no explicit calculations, simply based on the charge conjugation invariance of

the action (88), we can already predict that

χtorem
μ (x, x′) ∼ 〈 ĵem

μ (x) ĵtor(x′)〉 ≡ 0, (92)

which is just an instance of the Furry’s theorem of quantum field theory [86], that in
QED reads

χem
μ1...μ2n+1

(x1, . . . , x2n+1) ∼ 〈 ĵem
μ1

(x1) · · · ĵem
μ2n+1

(x2n+1)〉 = 0, (93)

and for us implies

χtorem
μ1...μ2n+1

(x1, . . . , x2n+1, y1, . . . , ym) ∼ 〈 ĵem
μ1

(x1) · · · ĵem
μ2n+1

(x2n+1) ĵtor(y1) · · · ĵtor(ym)〉 = 0. (94)

This finding indicates that entering the nonlinear response domain is necessary to
observe the desired consequences. High-order harmonic generation (HHG) is a well-
established technique that has been used to analyse structural changes in atoms, molecules,
and more recently, bulk materials (see, e.g., ref. [87] for a recent overview). Thus, the
presence or absence of dislocations will significantly alter the intra-band harmonics in our
system, which are controlled by the intra-band (electron-hole) current.
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5.4. On the Continuum Description of the Two Inequivalent Dirac Points

We have shown earlier that two Dirac points, associated to the reducible Ψ = (ψ+, ψ−) [47],
are important to treat torsion. Two such points are actually relevant in a broader set of
cases. From the material point of view [88], this generally has to do with an extra “valley”
degree of freedom in a pristine material, also called colour index [89]. Things change more
drastically when topological defects are present. For instance, to make a fullerene C60 form
pristine graphene we need twelve pentagons sitting at the vertices of an icosahedron, and
this generates colour mismatches, see a discussion of these effects in [90]. There, different
magnetic flux are added for each vertex which contain a colour line frustration, pointing out
to a “magnetic monopole” at the centre of the molecule structure [90]. Such a “monopole”
is associated with the SU(2) symmetry group stemming from the doublet structure of the
valley degree of freedom (not to be confused with the doublet structure associated with
each valley, which generates the irreducibles ψ±).

Another instance where both Dirac points are needed for an effective description are
grain boundaries (GBs). A GB is a line of disclinations of opposite curvature, pentagonal and
heptagonal here, arranged in such a way that the two regions (grains) of the membrane
match. The two grains have lattice directions that make an angle θ/2 with respect to
the direction the lattice would have in the absence of the GB. Different arrangements of
the disclinations, always carrying zero total curvature, correspond to different θs, the
allowed number of which is of course finite, and related to the discrete symmetries of the
lattice (hexagonal here). The most common (stable) being θ = 21.8°, and θ = 32.3°, see,
e.g., [91,92]. Other arrangements can be found in [93]. In general, one might expect that the
angle of the left grain differs in magnitude from the angle of the right grain, |θL| �= |θR|,
nonetheless, high asymmetries are not common, and the symmetric situation depicted in
Figure 7 is the one the system tends to on annealing [94].

Figure 7. A grain boundary (left), and a possible modelling of its effects in a continuum (right). This
is the prototypical GB, where grain A and grain B are related via a parity (x → −x) transformation.
With this, the right-handed frame in grain A is mapped to the left-handed frame in grain B, so that
the net effect of a GB is that two orientations coexist on the membrane, and a discontinuous change
happens at the boundary. If one wants to trade this discontinuous change for a continuous one, an
equivalent coexistence is at work in the non-orientable Möbius strip. One way to quantify the effects
of different θs is to relate a varying θ to a varying radius R(θ) of the Möbius strip. Notice that the
third spatial axis is an abstract coordinate, z̃, whose relation with the real z of the embedding space is
not specified. Figure taken from [66].

There exists [92,93] a relation (the Frank formula) between θ and the resultant Burgers
vector, obtained by adding all Burgers vectors�bs cut by rotating a vector, laying on the GB,
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of an angle θ with respect to the reference crystal. A possible modelling for this kind of
defects was put forward in [66]. That is a four-spinor living on a Möbius strip, see Figure 7,
and [66].

6. Torsion in Standard Local Supersymmetry

As a prelude to the Section dedicated to cosmology, we should discuss fermionic (grav-
itino) torsion in SUGRA models, which can also lead to dynamical breaking of SUGRA.
Such models can serve in inducing inflationary scenarios by providing sources for primor-
dial gravitational waves which play a crucial role in inflation, to be discussed in detail in
Section 8.

SUGRA theories are Einstein–Cartan theories with fermionic torsion, provided by the
gravitino field, ψμ(x), the spin-3/2 (local) supersymmetric fermionic partner of the graviton.

We commence our discussion with the first local SUSY constructed historically, the
(3 + 1)-dimensional N = 1 SUGRA [95–97], which in fact finds a plethora of (conjectural)
applications to the phenomenology of particle physics [98]. In the remainder of this Section
we shall work in units of the gravitational constant κ = 1 for brevity.

The spectrum of the unbroken (3 + 1)-dimensional N = 1 SUGRA is a massless spin 2
graviton field, described by the symmetric tensor field gμν(x) = gνμ(x), μ, ν = 0, . . . 3 and
a massless gravitino spin 3/2 Rarita–Schwinger Majorana fermion ψμ(x).

The standard action is given by [97]

SSG1 =
1
2

∫
d4x

√−g
(

Σμν
ab R ab

μν (ω)− εμνρσ ψμ γ5 γν Dρ(ω)ψσ

)
, (95)

where Σμν
ab = 1

2 Eμ

[a Eν
b] and Dμ(ω) = ∂μ + 1

8 ωab μ [γ
a, γb] is the diffeomorphic covariant

derivative, with respect to a spin connection ωa
bμ which, as we shall discuss below, neces-

sarily contains fermionic (gravitino-induced) torsion.
As shown in [40,43], the action (95) can be augmented by adding to it a total derivative

Holst type action, which preserves the on-shell N = 1 SUSY for an arbitrary coefficient t:

SHolst1 = i
η

2

∫
d4x

√−g
(

Σμν
ab R̃ ab

μν (ω)− εμνρσ ψμ γν Dρ(ω)ψσ

)
, (96)

with R̃ ab
μν (ω) the dual Lorentz curvature tensor.

Indeed, as demonstrated in [40,43], the combined action

Stotal SG = SSG1 + SHolst1 =

1
2

∫
d4x

(√−g
[

Eμ
a Eν

b Rab
μν −

t
2

εab
cd Rcd

μν

]
+ εμνρσ ψμ γ5 γρ

1− i η γ5

2
Dσ(ω)ψν

)
, (97)

is invariant under the local SUSY transformation with infinitesimal Grassmann parameter α(x):

δψμ = Dμ(ω) α, δea
μ =

i
2

α γa ψμ, δBabμ =
1
2

(
Cμab − eμ[a Cc

cb]

)
, (98)

where, by definition,

Cλμν ≡ 1√−g
εμνρσ α γ5 γλ 1− iη γ5

2
Dρ(ω)ψσ. (99)

We remark for completion that in the special case where η = ±i we obtain Ashtekar’s chiral
SUGRA extension, while for η = 0 one recovers the standard N = 1 SUGRA transformations.

We next remark that variation of the action (97) with respect to the spin connection,
leads to the well-known gravitational equation of motion in first order formalism [95–97],
which leads to an expression of the gravitino-induced torsion T μ

ρσ (ψ) in terms of the
gravitino fields:

D[μ(ω) ea
ν] ≡ 2T a

μν (ψ) =
1
2

ψμ γa ψν, (100)
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with the contorted spin connection being given by:

ω ab
μ (e, ψ) = ω̊ ab

μ (e) + K ab
μ (ψ) , (101)

where ω̊ ab
μ (e) is the torsion-free spin connection (expressible, as in standard GR, in terms

of the vielbeins ea
μ), and K ab

μ (ψ) is the contorsion, given in terms of the gravitino field as:

Kμρσ(ψ) =
1
4

(
ψρ γμ ψσ + ψμ γρ ψσ − ψμ γσ ψρ

)
. (102)

The parameter η does not enter the expression for the contorsion, which thus assumes the
standard form of N = 1 SUGRA without the Holst terms.

Substitution of the solution of the torsion equations of motion into the first-order
Lagrangian density, corresponding to the action (97), leads to a second-order Lagrangian
density that can be written as the sum of the standard N = 1 SUGRA Lagrangian den-
sity [97] and a total derivative, depending on the gravitino fields only:

L(second order) = Lusual N=1 SUGRA(second order) +
i
4

η ∂μ(ε
μμρσ ψν γρ ψσ), (103)

where the standard N = 1 SUGRA in the second-order formalism includes four-gravitino terms,

Lusual N=1 SUGRA =
√−g

1
2

R(e) +
1
4

∂μ[E
μ
a Eν

b
√−g]

(
ψν γa ψb − ψν γb ψa + ψ

a
γnu ψb

)
− 1

2
εμνλρψμ γ5 γν

[
∂λ +

1
2

ω ab
λ (e)σab

]
ψρ

− 11
16
√−g

[
(ψa ψa)2 − (ψb γ5 ψb)2

]
+

33
64
√−g (ψb γ5 γc γb)2

+ appropriate auxilliary− field terms, σab =
i
4
[γa, γb], (104)

and as standard [97] the Lagrangian density is computed by requiring the irreducibility
condition:

γμ ψμ = 0, (105)

which ensures that the spin is exactly 3/2 and not a mixture of this and lower spins. We note
that the four-gravitino terms of (104) have been used in [99,100] in order to discuss, upon
appropriate inclusion of Goldstino terms [101]11, the possibility of dynamical breaking
of SUGRA, via the formation of condensates of gravitino fields σc = 〈ψμ ψμ〉 �= 0. The
gravitino field becomes massive, with mass which can be close to Planck mass, which
implies its eventual decoupling from the low-energy (non supersymmetric) theory.

Such scenarios have been used to discuss hill-top inflation, as a consequence of the
double-well shape of the effective gravitino potential. Indeed, for small condensates
κ6 σc(x) � 1, one may obtain an inflationary epoch, not necessarily slow roll, as the
gravitino rolls down towards one of the local minima of its double well potential [103] (cf.
Figure 8). Such scenarios will be exploited further in Section 8.1, from the point of view
of the generation of gravitational waves in the very early Universe, which can lead to a
second inflationary era in such models, that could provide interesting—and compatible
with the data—phenomenology/cosmology.

We complete the discussion on N = 1 SUGRA as in Einstein–Cartan theory, by noticing
that, on using (62), (63) and (103), we may write for the super Holst term in this case [40,43]:

SSuper Holst N=1 SUGRA(e, ψ) = − i η

2

∫
d4x

[
TNY + ∂μ Jμ(ψ)

]
, (108)

with

Jμ(ψ) = εμνρσ ψν γρ ψσ, (109)

the axial gravitino current, and the Nieh–Yan invariant is given by (63).
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Finally, combining the Fierz identity εμνρσ (ψμ γa ψν) γa ψρ = 0, with the expression
for the N=1 SUGRA torsion T a

μν (ψ) (100), we arrive at εμνρσ Tμνa(ψ) T a
ρσ (ψ) = 0, we may

write for the on-shell-local-SUSY-preserving Holst term (108):

SSuper Holst N=1 SUGRA(e, ψ) = − i η

4

∫
d4x∂μ Jμ(ψ)] =

i η

2

∫
d4x εμνρσ ∂μTνρσ(ψ) . (110)

This section is concluded by mentioning that super Holst modifications have been
constructed [40] for extended SUGRAs, such as N = 2, 4, following and extending appro-
priately the N = 1 case. The spectrum of the N = 2 SUGRA consists of a massless spin-2
graviton, two massless chiral spin-3/2 gravitinos, γ5 ψI

μ = +ψI
μ, γ5 ψIμ = −ψIμ, I = 1, 2,

and an Abelian gauge field Aμ. This is also an Einstein–Cartan theory, with torsion

2T a
μν =

1
2

(
ψ

I
μ γa ψIν + ψIμ γa ψI

ν

)
, (111)

and contorsion

Kμρσ =
1
4

[
ψ

I
ρ γμ ψIσ + ψ

I
μ γρ ψIσ − ψ

I
μ γσ ψIρ + c.c.

]
, (112)

where c.c. denotes complex conjugate, whilst the super Holst term has the form [40]:

SSuper Holst N=2 SUGRA(e, ψ) = − i η

4

∫
d4x∂μ Jμ(ψ)] =

i η

2

∫
d4x εμνρσ ∂μTνρσ(ψ), (113)

with Jμ(ψ) = εμνρσ ψ
I
ν γρ ψIσ the axial gravitino current in this case. We observe from (112)

that then contorsion is again independent, as in the N = 1 case, from the super Holst action
parameter η.

Figure 8. The effective potential of the torsion-induced gravitino condensate σc = 〈ψμ ψμ〉 in the
dynamical breaking of N = 1 SUGRA scenario of [99], in which, for simplicity, the one-loop-corrected
cosmological constant Λ → 0+ (for an analysis with Λ > 0 see [100] and references therein). The
figures show schematically the effect of tuning the inverse-proper-time (renormalisation-group like)
scale μ and the scale of SUSY breaking f , whilst holding, respectively, f and μ fixed. The arrows
in the respective axes correspond to the direction of increasing μ and f . The reader should note
(see left panel) that the double-wall shape of the potential, characteristic of the super-Higgs effect
(dynamical SUGRA breaking), appears for values of μ larger than a critical value, in the direction
of increasing μ, that is as we flow from Ultraviolet (UV) to infrared (IR) regions. Moreover, as one
observes from the right panel of the figure, tuning f allows us to shift the value of the effective
potential Veff appropriately so as to attain the correct vacuum structure, that is, non-trivial minima σc

such that Veff(σc) = Λ → 0+. Picture taken from [99].

Finally, we complete the discussion with the N = 2 gauged SU(4) SUGRA. For our
discussion, we restrict our attention only to the relevant part of its spectrum, consisting of
massless spin-2 gravitons, four chiral Majorana spin-3/2 gravitinos ψI

μ, I = 1, . . . 4, in the 4
and 4� representations of SU(4), and four Majorana chiral gauginos ΛI , I = 1, . . . 4. The
torsion of this theory depends on both the gravitino and gaugino fields [40],
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2T a
μν = 2T a

μν (ψ) + 2T a
μν (ψ) =

1
2

ψ
I
[μ γa ψν]I +

1
2
√−g

eaρ εμνρσ ΛI γσ λI , (114)

and the contorsion reads

Kμνρ =
1
4

(
ψ

I
ν γμ ψρ I + ψ

I
μ γν ψρ I − ψ

I
μ γρ ψν I + c.c.

)
− 1

4
√−g

εμνρσ ΛI γσ ΛI , (115)

which again is independent of the parameter η of the super Holst term, which has the
form [40]:

SSuper Holst N=2 SUGRA(e, ψ) = − i η

4

∫
d4x∂μ[Jμ(ψ)− Jμ(Λ)]

=
i η

2

∫
d4x εμνρσ ∂μ

(
Tνρσ(ψ)− 1

3
Tνρσ(Λ)

)
, (116)

where Jμ(Λ) =
√−g ΛI γμ ΛI , and the torsion quantities have been defined in (114).

7. Torsion in Unconventional Supersymmetry

USUSY is an appealing theory where all the fields belong to a one-form connection
A, in (2 + 1) dimensions, and the vielbein is realised in a different way than in standard
SUGRA models [104]. It has nontrivial dynamics, and leads to a scenario where local SUSY
is absent (although there is still diffeomorphism invariance), but rigid SUSY can survive
for certain background geometries. Because there is no local SUSY, there are no SUSY
pairings. Likewise, no gauginos are present. The only propagating degrees of freedom
are fermionic [105], and the parameters that appear in the model are either dictated by
gauge invariance, or arise as integration constants. We take the one-form connection
spanned by the Lorentz generators Ja, the SU(2) generators corresponding to the internal
gauge symmetry TI (or a other internal group generator, including the Abelian U(1)), the

supercharges Q
i

and Qi (note that these last generators contain the index corresponding to
the fundamental group of SU(2) as well as the spinors)12 [106]

A = AITI + ψ
i
/eQi +Q

i
/e ψi + ωaJa, (117)

where AI = AI
μdxμ is the one-form SU(2) connection, ωa = ωa

μdxμ is the one-form Lorentz
connection in (2 + 1) dimensions, and we defined the one-form /e ≡ ea

μγadxμ.

We can construct a three-form Chern–Simons Lagrangian from (117), namely13

L =
κ

2
〈AdA+

2
3
A3〉, (118)

where 〈. . .〉 is the invariant supertrace of usp(2, 1|2) graded Lie algebra (for the case of
internal SU(2) group) and κ is a dimensionless constant. This way, the Lagrangian can be
written simply as

L =
κ

4

(
AIdAI +

1
3

εI JK AI AJ AK
)
+

κ

4

(
ωadωa +

1
3

εabcωaωbωc
)
+ Lψ, (119)

where the fermionic part is

Lψ = κψ

(
γμ−→D μ −←−D μγμ − i

2
ε bc

a Ta
bc

)
ψ|e|d3x.

We can see the action (119) possesses also a local scale (Weyl) symmetry. Indeed, by scaling
the dreibein and the fermions as

ea
μ → ea

μ
′ = λea

μ , ψ → ψ′ = λ−1ψ,
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where λ = λ(x) is a non-singular function on the spacetime manifold, the action (119) is
invariant. This is a consequence of the particular construction of the connection (117),
where the fermions always appear along with the dreibein field, forming a composite field.

For the case of the internal group SU(2), the internal index can be interpreted as valley
index, making USUSY another good scenario with which to describe the continuous limit
of both Dirac points (see details in [66]).

The action of USUSY in (2 + 1) dimensions, for fixed background bosonic fields, apart
from possible boundary terms, is obtained from the Chern–Simons three-form for A with
an SU(2) internal gauge group [106]

SUSUSY = κ
∫

ψ
i
(

γμ−̊→D μ − i
8

ε bc
a Ta

bc

)
ψi|e|d3x, (120)

where lower case Latin letters, a, b, . . ., represent tangent space Lorentz indices, and
Ta

bc = Ta
μν Eμ

b Eν
c .

This action immediately points to (83), that is, the action with torsion we have seen
emerging in graphene, where we only need to fix the dimensionfull κ to include vF rather
than c. Notice that, as discussed at length in [66] the two Dirac points are both necessary,
so that the emergent action is made of two parts, one per Dirac point. This makes possible
to have both the internal SU(2) symmetry and torsion, that is necessary for the USUSY
description. So far as for similarities between (83) and (120). There are differences, though.
The first is the coefficient of the torsion term, which appears in USUSY as an integration
constant [104]. The second difference is the index i (here taken as an internal colour index,
considering both Dirac points in the model). Both differences are due to the starting point to
obtain (83), which is an Hermitian action with local Lorentz invariance in a Riemann–Cartan
space. In contrast, the starting point of USUSY is an action with a supergroup USP(2, 1|2)
invariance, which is allowed by using another representation for ψ and the Dirac matrices
(see details in Appendix B of [66]). In addition, it is also possible to take into account the
two Dirac points by using other internal supergroups, such as OSp(p|2)×OSp(q|2) in
this USUSY context [85]. In any case, (83) and (120) and the model proposed in [85] are
top-down approaches to describe the ψ electrons in graphene-like systems. Therefore, we
should keep in mind these (and others) models to compare them with the results of a real
experiment in the lab.

Finally, let us comment that the Bañados–Zanelli–Teitelboim (BTZ) black hole [107],
in a pure bosonic vacuum state (ψ = 0), is a solution of USUSY [104]. This follows from
the fact that the BTZ black hole, whose metric in cylindrical coordinates (−∞ < t < +∞,
0 < r < +∞, and 0 ≤ φ ≤ 2π) is

ds2 = −N2(r) dt2 + N2(r) dr2 + r2(Nφ(r) dt + dφ
)2, (121)

N2(r) = −M +
r2

�2 +
J2

4r2 , Nφ(r) =
J2

2r2 , (122)

can be obtained from a Lorentz-flat connection with torsion [108]. The spectrum of these
black holes is given in terms of their mass, M, and angular momentum, J, including the
extremal, M� = |J| and M = 0 cases14. We also mention here that the M = 0 case could play
a very important role in the generalised Uncertainty Principle induced by gravity [110,111],
and in Hawking–Unruh phenomenon on graphene and graphene-like materials [112].

8. Torsion in Cosmology

A plethora of precision cosmological data [113], over the past twenty-five years, have
indicated that the energy budget of the current cosmological epoch of our (observable)
Universe is dominated (by ∼95%) by a dark sector of unknown, at present, microscopic
origin. If one fits the available data at large scales, corresponding to the modern era
of the Universe, within the so-called ΛCDM framework, which consists of a de Sitter
Universe (dominated by a positive cosmological constant Λ) and a Cold Dark Matter (CDM)
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component, then one obtains excellent agreement. On the other hand, there appear to be
tensions to such data at smaller scales [114–116], arising either from discrepancies between
the value of the Hubble parameter in the modern era obtained from direct observations of
nearby galaxies and that inferred by ΛCDM fits (“H0 tension”), or from discrepancies in the
value of the parameter σ8 characterising galactic growth data between direct observations
and ΛCDM fits (“σ8 tension”).

To these tensions, provided of course the latter do not admit more mundane astro-
physical explanations or are mere artefacts of relatively low statistics [117], and thus will
be absent from future data, one should add theoretical obstacles to the self consistency of
the ΛCDM framework, when viewed as a viable gravity model embeddable in microscopic
models of quantum gravity, such as string theory [118,119] and its brane extensions [120].
Indeed, the existence of eternal de Sitter horizons, in spacetimes with a constant Λ > 0,
prohibits the definition of asymptotic states, and thus a perturbative scattering S-matrix,
which is the cornerstone of perturbative string theories, appears not to be well defined, thus
posing problems with the compatibility of a de Sitter spacetime as a consistent background
of perturbative strings [121,122]. Such problems extend to fully quantum gravity considera-
tions, when one attempts to embed de Sitter spacetimes in microscopic ultraviolet complete
models such as strings or branes, due to the so-called swampland conjectures [123–128],
which are violated by the ΛCDM framework.

Barring the (important) possibility of misinterpretation of the Planck data as far as dark
energy is concerned, by, e.g., relaxing the assumption of homogeneity and isotropy of the
Universe at cosmological scales [129,130], one is therefore tempted to seek for theoretical
alternatives to ΛCDM, which will not be characterised by a positive constant Λ, but rather
having the de Sitter vacuum as a metastable one, in such a way that there are no asymp-
totic in future time de Sitter horizons. The current literature has a plethora of potential
theoretical resolutions to the de Sitter Λ problem [131], which simultaneously alleviate the
aforementioned tensions in small-scale cosmological data. What we would like to discuss
below, in the context of our review, is the potential role of a purely geometric origin of such
a metastable dark sector, including both Dark Energy (DE) and Dark Matter (DM), which is
associated with the existence of torsion in the geometry of the early Universe [24,41,132].

To this end, we consider as a first example, in the next Subsection, string-inspired
cosmologies with chiral anomalies. Our generic discussion in Section 2 on the role of
(quantum) torsion in Einstein–Cartan QED [6], will find interesting application in this case.
There we argued that, as a generic feature, the torsion degrees of freedom implied the
existence of pseudoscalar (axion-like) massless dynamical fields in the spectrum, coupled
to chiral anomalies.

8.1. Quantum Torsion in String-Inspired Cosmologies and the Universe Dark Sector

We have seen that in Einstein–Cartan theories, which have been exemplified here by
massless contorted QED, torsion conservation (40) introduces an axionic degree of freedom
to the system, associated with the totally antisymmetric part of the torsion which is the
only part that couples to matter (fermions). The axion-like field becomes a dynamical
part of the theory as a result of (chiral) anomalies, otherwise it would decouple from the
quantum path integral. A similar situation characterises string-inspired theories in which
anomalies are not supposed to be cancelled in the (3 + 1)-dimensional spacetime after
string compactification, which, as we shall review below, provide interesting cosmological
models [133–136] in which the dark sector of the Universe, including the origin of its
inflationary epoch, admits a geometric interpretation.

The starting point of such an approach to cosmology is that the early Universe is
described by the (bosonic) gravitational theory of the degrees of freedom that constitute
the massless gravitational multiplet of the string (which in the case of superstring is also
their ground state). The latter consists of spin-0 dilatons, Φ, spin-2 gravitons gμν, and the
spin-1 antisymmetric KR tensor field [118,119] Bμν = −Bνμ.
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Due to an Abelian gauge symmetry that characterises the closed string sector Bμν →
Bμν + ∂[μ θν], the (3 + 1)-dimensional effective target spacetime action arising in the low-
energy limit of strings (compared to the string mass scale Ms) depends only on the totally
antisymmetric field strength of the KR field Bμν,

Hμνρ = ∂[μ Bνρ] . (123)

As explained in [134], one can assume self consistently a constant dilaton, so that the
low-energy particle phenomenology is not affected. In this case, to lowest non-trivial order
in a derivative expansion, or equivalent to O((α′)0), with α′ = M2

s the Regge slope, the
effective gravitational action reads [137,138]:

SB =
∫

d4x
√−g

(
1

2κ2 R− 1
6
HλμνHλμν + . . .

)
, (124)

whereHμνρ ≡ κ−1Hμνρ has dimension [mass]2, and the . . . represent higher derivative terms.
Comparing (124) with (21), one observes that the quadratic in the H-field terms can

be viewed as a contorsion, in such a way that the effective action (124) can be expressed
in terms of a generalised scalar curvature in a contorted geometry, with a generalised
Christoffel symbols:

Γρ
μν = Γ̊ρ

μν +
κ√
3
Hρ

μν �= Γρ
νμ, (125)

where Γ̊ρ
μν = Γ̊ρ

νμ is the torsion-free Christoffel symbols15.
The requirement of cancellation of gauge versus gravitational anomalies lead Green

and Schwarz [140] to add appropriate counterterms in the effective target space action
of strings, expressed by the modification of the field strength of the KR field (123) by the
Lorentz (L) and Yang–Mills (Y) gauge Chern–Simons (CS) terms [119]:

H = d B +
α′

8 κ

(
Ω3L −Ω3Y

)
,

Ω3L = ωa
c ∧ d ωc

a +
2
3

ωa
c ∧ωc

d ∧ωd
a, Ω3Y = A ∧ d A + A ∧ A ∧ A, (126)

where ω is the standard torsion-free spin connection, and A the non-Abelian gauge fields
that characterise strings.

The modification (126) of the KR field strength (123) leads to the following Bianchi
identity [119]

dH =
α′

8 κ
Tr
(

R ∧ R− F ∧ F
)

, (127)

with F = d A + A ∧ A the Yang–Mills field strength two form and Ra
b = d ωa

b + ωa
c ∧ωc

b,
the curvature two form and the trace (Tr) is over gauge and Lorentz group indices. The
non zero quantity on the right hand side of (127) is the “mixed (gauge and gravitational)
quantum anomaly” we have seen previously in the non-conservation of the axial fermion
current (43)16.

In [133], the crucial assumption made was the (3 + 1)-dimensional gravitational anoma-
lies are not cancelled in the very early Universe. This was the consequence of the assump-
tion that only fields from the massless gravitational string multiplets characterised the early
universe gravitational theory, appearing as external fields. Chiral fermionic matter, radia-
tion and in general gauge fields, which constitute the physical content of the low-energy
particle physics models derived from strings, appear as the result of the decay of the false
vacuum at the end of inflation in the scenario of [133–136].

In this sense, the gauge fields A in (126) can be set to zero, A = 0. In such a case, the
Bianchi identity (127) becomes (in component form):

ε
μ

abc Habc
;μ =

α′

32 κ

√−g Rμνρσ R̃μνρσ ≡ −√−g G(ω), (128)
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where the semicolon denotes covariant derivative with respect to the standard Christoffel
connection, and

εμνρσ =
√−g εμνρσ, εμνρσ =

sgn(g)√−g
εμνρσ, (129)

with ε0123 = +1, etc., are the gravitationally covariant Levi–Civita tensor densities, totally
antisymmetric in their indices, and the dual is defined as

R̃μνρσ =
1
2

εμνλπ Rλπ
ρσ . (130)

The alert reader should have observed similarities between the contorted QED model,
examined in the previous Section 3, and the string inspired gravitational theory, insofar as
the constraints imposed by the torsion conservation (40) in the QED case, and the Bianchi
constraint (128). They are both exact results that are valid in the quantum theory (the
Bianchi (128) is an exact one-loop result due to the nature of the chiral anomalies). In
fact the dual of Hμνρ, εμνρσ Hνρσ plays a role analogous with the pseudovector Sμ of the
contorted QED case, associated with the totally antisymmetric component of the torsion.
In the string theory example, this is all there is from torsion, as we infer from (125).

Following the contorted QED case, one may implement the Bianchi constraint (128) via
a δ-functional in the corresponding path integral, represented by means of an appropriate
Lagrange multiplier pseudoscalar field b(x), canonically normalised:

Πx δ
(

εμνρσHνρσ(x);μ + G(ω)
)
⇒∫

Db exp
[
i
∫

d4x
√−g

1√
3

b(x)
(

εμνρσHνρσ(x);μ − G(ω)
)]

=
∫
Db exp

[
− i

∫
d4x

√−g
(

∂μb(x)
1√
3

εμνρσHνρσ +
b(x)√

3
G(ω)

)]
, (131)

where to arrive at the second equality we performed partial integration, upon assuming
that fields die out properly at spatial infinity, so that no boundary terms arise. We remark at
this point that the similarity [41] of the exponent in the right-hand side of the last equality
in (131), upon performing a partial integration of the first term, and identifying the anomaly
with ∂μ j5μ, with the total Holst action (including the Nieh–Yan invariant) (64), in the case
where the BI parameter is promoted to a pseudoscalar field [38].

Inserting the identity (131) in the path integral over H of the theory (124), we observe
that the equations of motion of the (non-derivative) field H yield εμνρσ Hνρσ ∝ ∂μb, implying
an analogy of the pseudovector field Sμ with ∂μb. After path-integrating out the H-torsion,
one obtains an effective target space action with a dynamical torsion-induced axion b:

Seff
B =

∫
d4x

√−g
[ 1

2κ2 R +
1
2

∂μb ∂μb +

√
2
3

α′

96 κ
b(x) Rμνρσ R̃μνρσ + . . .

]
, (132)

where the dots . . . denote higher derivative terms appearing in the target-space string
effective action [6,137,138].

With the exception of the four-fermion interactions, which are absent here, as the
theory is bosonic, the action (132) has the same form as the effective action (47), with
the pseudoscalar field b having similar origin related to torsion as its contorted QED
counterpart. But the action (132) is purely bosonic, and the anomalies here arise from the
Green–Schwarz counterterms (126). In the model of [133] these are primordial anomalies,
unrelated to chiral matter fermions as in the QED case, but because of the presence of
such anomalies, the torsion (through its dual axion field b(x)) maintains its non trivial role
via its coupling to the gravitational anomaly CS term. The gravitational model (132) is a
Chern–Simons modified gravity model [21,23].
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The massless axion field b(x) is the so-called string-model independent axion [141],
and is one of the many axion fields that string models have. The other axions are due to
compactification. The string axions lead to a rich phenomenology and cosmology [142,143].

From our point of view we restrict ourselves to the role of the KR axion in implying
a geometric origin of the dark sector of the Universe, including non conventional infla-
tion. Indeed, in [133–136] it was argued that condensation of primordial gravitational
waves (GW) leads to a non-vanishing contribution of the gravitational Chern–Simons
term 〈Rμνρσ R̃μνρσ〉, where 〈. . . 〉 denote weak graviton condensates associated with primor-
dial chiral GW [144,145]. If one assumes a density of sources for primordial GW, which
have been formed in he very early Universe, before the inflationary stage in the model
of [135,136], then, the weak quantum graviton calculation of [145], adopted to include
densities of GW sources, leads to [146]:

〈Rμνρσ R̃μνρσ〉condensateN =
N (t)√−g

1.1
π2

( H
MPl

)3
μ4 ḃ(t)

M2
s
≡ n�

1.1
π2

( H
MPl

)3
μ4 ḃ(t)

M2
s

. (133)

In the above expression, μ is an ltraviolet (UV) cutoff for the graviton modes entering
the chiral GW, and n� ≡ N (t)√−g denotes the number density (over the proper de Sitter
volume) of the sources of GW. Without loss of generality, we may take this density to be
(approximately) time independent during the very early universe. The parameter H(t) is
the Hubble parameter of a FLRW Universe, which is assumed slowly varying with the
cosmic time17. The analysis of [133,135] then, shows that there is a metastable de Sitter
spacetime emerging, given that the condensate (133) is only mildly depending on cosmic
time through H(t) mainly, and thus can be considered approximately constant. It can be
shown [133] that, as a consequence of the axion b equations of motion, the existence of a
condensate leads to approximately constant ḃ during the inflationary period (for which
H � constant)

ḃ � εH MPl, (134)

where the overdot denotes a derivative with respect to the cosmic time t. The parameter ε
is phenomenological and, to satisfy the Planck data [113] on slow-roll inflation, one should
set it to ε = O(10−2) [135]. Then, conditions for an approximately constant

〈b(t) Rμνρσ R̃μνρσ〉condensateN � constant, (135)

for some period Δt, can be ensured, which then leads to a metastable de Sitter spacetime
(inflation), with Δt the duration of inflation. Taking into account that the scale of inflation,
set by the current Planck data [113] is

HI � 10−5 MPl, (136)

and that the the number of e-foldings is estimated to be (in single-field models of inflation)
N = O(60− 70), these conditions can be stated as:

|b(t0)| � Ne
√

2ε MPl = O(102)
√

ε MPl, (137)

with b(t0) being the initial value of the axion field at the onset (t = t0) of inflation.
In view of the H-dependence of the condensate the inflation is of the so-called Running-

Vacuum-Model (RVM) type [148–153], which involves a time-dependent, rather than a
constant de Sitter parameter Λ(t) ∝ H2(t), but with a de Sitter equation of state for
the vacuum,

prvm = −ρrvm, (138)

where p (ρ) denotes pressure (energy) density. In the model of [135], detailed calculations
have shown that, in the phase of the GW-induced condensate (133) and (135), the de Sitter–
RVM equation of state (138) is satisfied. The corresponding energy density, comprising
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of contributions from b field (superscript b), the gravitational CS terms (superscript gCS)
and the condensate term (superscript) Λ), acquires [133,135,136,146] the familiar RVM
form [151–153]

ρtotal = ρb + ρgCS + ρΛ
condensate = −1

2
ε M2

Pl H2 + 4.3× 1010√ε
|b(0)|
MPl

H4 . (139)

The important point to notice is that the RVM inflation does not require a fundamental
inflaton scalar field, but is due to the non-linear H4 terms in the respective vacuum energy
density (139) [151–153], arising in our case by the form of the condensate (133). Such
terms are dominant in the early Universe and drive inflation. During the RVM inflation
in our string-inspired CS gravity the H2 term is negative in contrast to standard RVM
formalisms with a smooth evolution from inflation to the current era [151,152]. In our case,
it is the CS quadratic curvature corrections to GR that leads to such negative contributions
tom the stress-energy tensor, in full analogy to the dilaton–Gauss–Bonnet string-inspired
theories [154]. Nevertheless, the dominance of the condensate (i.e., O(H4)) terms in (139)
ensures the positivity of the vacuum energy density during the RVM inflationary era. We
stress that the H4 term in the vacuum energy density (139) arises exclusively from the grav-
itational anomaly condensate in our string-inspired cosmology. In standard quantum field
theories in curved spacetime, RVM energy densities arise after appropriate renormalisation
of the quantum matter fields in the FLRW spacetime background but, in such cases, an
H4 term is not generated in the vacuum energy density. Instead, one has the generation of
order H6 terms and higher [153,155–158]. Such non linear terms, which will be dominant
in the early Universe, can still, of course, drive RVM inflation.

During the final stages of RVM inflation, the decay of the RVM metastable vac-
uum [151,152] results in the generation of chiral matter fermions in the cosmology model
of [133–136] we are analysing here. The chiral fermions would generate their own mixed
(gauge and gravitational) chiral anomaly terms through the non conservation of the chiral
current (49) over the various chiral fermion species (43). The effective action during such
an era will, therefore, contain fermions, which will couple universally to the torsion Hμνρ

via the diffeomorphic covariant derivative. After integrating out the H-field, we arrive at
the following effective action including fermions [133]:

Seff =
∫

d4x
√−g

[ 1
2κ2 R +

1
2

∂μb ∂μb +

√
2
3

α′

96 κ
b(x) Rμνρσ R̃μνρσ

]
+ SFree

Dirac or Majorana +
∫

d4x
√−g

[(
Fμ − α′

2 κ

√
3
2

b J5μ
;μ

)
− 3α′ 2

16 κ2 J5
μ J5μ

]
+ . . . , (140)

where the SFree
Dirac or Majorana fermionic terms denote the standard Dirac or Majorana fermion

kinetic terms in a curved spacetime without torsion, and F a = εabcd ebλ ∂d eλ
c.

The gravitational part of the anomaly is assumed in [133] to cancel the primordial
gravitational anomalies, but the chiral gauge anomalies remain in general. Thus, in [133],
we assumed that, at the exit phase from RVM inflation, one has the condition,

∂μ

[√−g

(√
3
8

κ J5μ −
√

2
3

κ

96
Kμ

)]
=

√
3
8

α′

κ

e2

8π2

√−g Fμν F̃μν

+

√
3
8

α′

κ

αs

8π

√−g Ga
μν G̃aμν, (141)

where we used the fact that the gravitational CS anomaly is a total derivative of an appro-
priate topological current Kμ [15–17],

Rμνρσ R̃μνρσ = Kμ
;μ, (142)

Fμν denotes the electromagnetic U(1) Maxwell tensor, which corresponds to radiation fields
in the post inflationary epoch, and Ga

μν, a = 1, . . . , 8 is the gluon tensor associated with
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the SU(3) (of colour) strong interactions with (squared) coupling αs = g2
s /(4π), which

dominate the Universe during the QCD epoch, and the (̃. . . ) denotes the corresponding
duals, as usual (cf. (130)), with F̃μν = 1

2 εμνρσ Fρσ.
At the exit from RVM inflation, it was assumed in [133–136] that no chiral gauge

anomalies are dominant. Such dominance comes much later in the post inflationary
Universe evolution. In such a case, it can be shown [133] that the b-field equation of motion
implies a scaling of ḃ with the temperature as

ḃ ∝ T3 . (143)

In this case, one may obtain an unconventional leptogenesis of the type discussed in [159,160]
in theories involving massive sterile right handed neutrinos, as a result of the decay of the
latter to standard-model particles in the presence of the Lorentz-violating background (143).
Hence, in such scenarios the torsion is also linked to matter-antimatter asymmetry, given
that the so-generated lepton asymmetry can be communicated to the baryon sector vial
Baryon (B) and Lepton number (L) violating, but B-L conserving sphaleron processes in the
standard-model sector [161].

Connection of torsion to DM might be obtained by noting that the QCD dominance
era (which in the models of [133,134] comes much after the leptogenesis epoch) might be
characterised by SU(3) instanton effects, which in turn break the axionic shift symmetry
by inducing appropriate potential, and mass terms, (cf. (50)) for the torsion-induced axion
field b, which could play a role as a DM component. The electromagnetic U(1) chiral
anomalies may be dominant in the modern eras, and their effects have been discussed in
detail in [133].

We also mention for completion that, as a result of the (anomalous) coupling ḃ J5 0

(cf. (140)), one obtains a Standard-Model-Extension (SME) situation, with the Lorentz and
CPT Violating SME background being provided by ḃ. It is the latter that is constrained
by a plethora of precision experiments, which provide stringent bounds for Lorentz and
CPT violation [162]. Using the chiral gauge anomalies at late eras of the Universe, as
appearing in (141), the thermal evolution of the Lorentz- and CPT- symmetry-violating
torsion-induced background ḃ(T) at late eras of the Universe, including the current epoch,
has also been estimated in [133], and found to be comfortably consistent with the aforemen-
tioned existing bounds of Lorentz and CPT Violation, as well as torsion today [162].

In the above cosmological scenarios, the entire dark sector of the Universe and its
cosmological evolution are one way or another linked to some sort of torsion in the geometry.
During the very early epochs after the Big bang, it is the gravitino torsion of a SUGRA
theory, which the effective string cosmology model of [133,135] is embedded to, that leads
to a first inflationary epoch [103], whilst it is the stringy torsion associated with the field
strength of the antisymmetric spin-one KR field, which in turn gives rise to the KR axion
b(x), that is responsible for the second RVM type inflation, and the eventual cosmological
evolution until the present era, during which the field b(x) can also develop a mass, thus
becoming a dark-matter candidate. Schematically, such a cosmological evolution is depicted
in Figure 9 [136].

Before closing this section, we would like to mention the very recent related work
of [163], which explores further the cosmology of Kalb–Ramond-like particles (KRLP),
which one encounters in string models, and which contain also massive pseudovector
excitations, in addition to the massless pseudoscalar ones, discussed in this review in
connection with the totally antisymmetric part of torsion. Although the non-interacting
KRLP are related to either pseudoscalar or pseudovector excitations, the interacting massive
KRLP can be distinguished from its scalar and vector counterparts, and can have important
phenomenological implications for the dark sector of the Universe, which are described in
detail in [163].
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Figure 9. Schematic representation of the RVM cosmological evolution of the contorted cosmological
model of [133–136]. The figure depicts the evolution of the Hubble parameter with the scale factor of
an expanding stringy-RVM Universe, involving two torsion-induced inflationary eras, interpolated
by a stiff KR-axion “matter” epoch: a first hill-top first inflation, which exists immediately after
the Big-Bang, and is due to dynamical breaking of SUGRA, as a result of gravitino-torsion-induced
condensates of the gravitino field, and second an RVM inflation, due to gravitational anomaly
condensates, that are coupled to the torsion-induced KR axion field b(x). The latter can also play the
role of a dark matter component during post-RVM inflationary eras. Picture taken from [136].

8.2. Comments on Other Contorted Cosmological Models with a Spin

In the previous Subsection we discussed cosmological models corresponding to the
standard generic type of Einstein–Cartan theories with fermionic torsion, involving in their
Lagrangian densities repulsive four fermion interactions, of axial-current-current terms
j5 − j5, with fixed coefficient depending on the theory, proportional to the gravitational
coupling κ2. Condensates of such repulsive terms, when formed, have been interpreted as
providers of dark energy components in both the early [164] and the late [165] Universe,
thus leading to a current-era acceleration of the Universe.

In this subsection, we shall briefly discuss generalisations involving more general
four-fermi structures among chiral (Weyl) spinors [166], which include vector fermionic
currents in addition to the axial ones, in similar spirit to the models (70), but with more
general coefficients (on the other, hand, unlike the situation encountered in (70), the BI
parameter in [166] is assumed constant, which, as we have discussed in Section 2, and
mention below as well, is a problematic feature). Depending on the couplings considered,
such fermion self-interactions may conserve or break parity invariance, while they may
contribute positively or negatively to the energy density, thus having the feature that
they could also be attractive. Thus, such “cosmologies with a spin” [166] exhibit a broad
spectrum of possibilities, ranging from cases for which no significant cosmological novelties
arise, to cases in which the fermion self-interaction can turn a mass potential into an upside-
down Mexican hat potential, leading to cosmologies with a bounce [166,167], without a
cosmic singularity.

However, as we shall discuss below, there are some subtleties in the treatment of [166],
which, in view of what we discussed in Section 2, require some discussion. Let us first
describe the approach of [166]. On defining Dirac spinors Ψ(x) from the chiral ones ξ, χ as

Ψ(x) =
(

ξ(x)
χ(x)

)
, (144)

the authors of [166] constructed fermionic field theories in a contorted curved spacetime,
with action given by:

SΨ[e, ωab, Ψ] =
1
3

∫
d4x εabcd eb ec

[1
2

ea Ψ γdD(ω)Ψ− D(ω)Ψ γd Ψ) +
3
2

Ta(α Vd + βAd)
]

− 1
4

∫
d4x U εabcd ea eb ec ed + Sint[ξ, χ, A], (145)
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where Ta is the torsion two-form, (1), U is a fermion-self-interaction potential which is
assumed to be a function of scalars constructed from Ψ Ψ and Ψ γ5 Ψ, while Sint denotes
an interaction term of the chiral spinors ξ, χ with (in general, non-Abelian) gauge fields
A. We also defined Vd = ΨγdΨ as the vector chiral current, and Ad = Ψγ5 γd Ψ its axial
counterpart. Finally, the quantities α, β ∈ R are real couplings that characterise the model.

The gravitational dynamics, on the other hand, is described by the standard Einstein–
Hilbert term plus the Holst action, this is the combination (29) and (51), which in the
parametrization and normalisation of [166] is written as:

Sgrav+Holst =
1

2κ2

∫
d4x

(
εabcd +

1
γ

ηac ηbd

)
ea eb Rcd, (146)

with Rab being the Riemann curvature two-form, and γ ∈ R being related to the BI
parameter β = −1/γ (51).

This is not a minimal torsion model, as the generic Einstein–Cartan theories examined
before, given that it includes several postulated interaction potentials. Because of this, this
model leads to more general four-fermion interactions than the standard Einstein–Cartan
theory. The effective four fermion interaction is found by using, as in the standard Einstein–
Cartan theories, the Euler–Lagrange equations of motion for the fermions, torsion and
gravity fields. By varying the action with respect to the contorted spin connection, we
determine the torsion Ta and contorsion Kabc for this model [166]:

1
κ2

(
εabcd +

2
γ

ηa[c ηd]b

)
Ta eb =

1
4

εamnp ea em en ε
dp

cd Ad − 1
4

ε[c|mnq em ene|d]
(

α Vq + βAq
)

,

Kabc = κ2 γ2

4 (γ2 + 1)

[
εd

abc
1
2

(
Ad +

1
γ
(αVd + βAd)

)
− 1

γ
A[b ηa]c + α V[b ηa]c + β A[b ηa]c

]
. (147)

From the graviton (vielbein) and fermion equations of motion, on the other hand, we
obtain, respectively:

2
κ2 G̊μν = − i

2
edμ(Ψ γd D̊ν Ψ− D̊νΨ) γd Ψ) +

i
2

eσ
d(Ψ γd D̊σ Ψ− (D̊σΨ γd Ψ)− gμν W,

iγd eμ
d D̊μ Ψ =

δW
δΨ

, (148)

where G̊μν is the standard Einstein tensor of GR; to ease the notation we used D̊μ ≡ D(ω̊)μ

and W is the effective four-fermion interaction potential, which depends on the contorsion:

W = U +
3 κ2

16
γ2

γ2 + 1

[
(1− β2 +

2
γ

β)Aa Aa − α2 Va Va − 2α(β− 1
γ
) Aa Va

]
. (149)

The mixed axial-vector current term in (149) breaks parity. One should compare these
four-fermion interactions with the ones in the models (70), discussed in Section 4.2.

However, the analysis of [166], leading to (149), is not entirely formally correct, as
we have explained in Section 2, following the careful analysis of [37]. The presence of
the (constant) BI parameter in the effective potential (149) would imply that a parame-
ter that appears in a total derivative term does affect physics at the end. As explained
above, this paradox leads also to another inconsistency, that of Equation (55), in which,
for non-zero 1/γ, one obtains the inconsistent result that the vector component of torsion
is proportional to the pseudovector of the axial current. As we discussed in Section 2,
the resolution of this paradox is achieved by considering the addition of the Nieh–Yan
topological invariant [39] (62).

We do mention at this stage that, naively, the independence of the potential W on the
(constant) BI parameter γ can be achieved in the specific cases

β =
1
γ

and α2 = c2
0

γ2 + 1
γ2 , (150)
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where c0 ∈ R is an arbitrary real constant. This case preserves parity, since the mixed
term Aa Va in the potential W (149) is absent. In such a case the effective four-fermion
interactions become

W = U +
3κ2

16

(
Aa Aa − c2

0 Va Va
)

. (151)

This model contains, in addition to the potential term U, the standard repulsive axial-
current-current four-fermion interactions of the Einstein–Cartan theory, augmented by
vector-current-current four fermion interactions.

Superficially looking at (151), one may think that the contributions to the vacuum
energy density due to such interactions could be positive or negative, depending on the
relative magnitude of the parameter c2

0, and in general the terms in (151). However, this is
not the case. Indeed, as discussed in [166], for classical spinors, as appropriate for solutions
of Euler–Lagrange equations of motion, one may argue that

〈Aa Aa〉 = −〈Va Va〉, (152)

given that the axial term is always space-like, while the vector time-like. From (151)
and (152) we obtain that in this case W = U + κ2

16 (1 + c2
0) Aa Aa and, due to the space-like

nature of the classical axial-current-current term 〈Aa Aa〉, the four-fermion interaction is
always repulsive, as in the standard Einstein–Cartan theory, but with a coefficient whose
magnitude is unconstrained, given the phenomenological nature of the parameter c0. In
that case, one can show that there are no bouncing cosmologies or other effects, such as for
instance turning a positive mass potential into a Higgs one, which arose in the treatment
of [166]. Nonetheless, doubt is cast on the mathematical consistency of such solutions
in view of (55), which is still valid in such special cases, even if the potential (151) is
independent from the BI parameter.

The above criticisms, however, may be bypassed in the case one promotes the BI param-
eter to a pseudoscalar (axion-like) field 1/γ → a(x), as discussed previously in Section 4.2.
Indeed in such a case, the corresponding effective four-fermion interactions (149) have
to be reworked in accordance with the fact that the BI parameter is now a fully fledged
pseudoscalar field, as in the case of the action (70). Thus, cosmologies based on such
models, with four-fermion interactions that may include attractive fermion channels, may
justify (some of) the expectations of [168] on the role of torsion-induced fermion condensates
in the early universe cosmology, which cannot characterise the repulsive terms (56). In
this latter respect, in the context of SUGRA theories (cf. Section 6), the torsion-connected
four gravitino interactions can also lead, due to the existence of attractive channels, to the
formation of appropriate condensates [99,100], which, as we have discussed in Section 8.1,
may play an important role in the early eras of string-inspired cosmologies.

9. Concluding Remarks: Other Observational Effects of Torsion

We reviewed various aspects of torsion, both in emergent geometric descriptions of
graphene or other Dirac materials, and in fundamental theories of spacetime, especially
cosmology. These two scenarios have enormously different scales, yet the physical proper-
ties of torsion appear to be universal, and can in principle be appreciated in experiments in
both frameworks.

On the cosmological side, we focused on specific string-inspired models in which the
totally antisymmetric component of torsion is represented as an axion-like field. Conden-
sates associated with torsion can lead, as we have discussed, to inflationary physics of
RVM type, characterised under some conditions, by torsion-induced-axion background
that spontaneously violates Lorentz symmetry. Such a situation may leave imprints in the
early Universe cosmic microwave background.

In general, however, in generic Einstein–Cartan theories, torsion has more components.
In [169], a plethora of tests involving coupling of the various torsion components to
fermions in combination with Lorentz violation, in the context of the Standard Model
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Extension [162], have been discussed which exhibit sensitivity for some of the pertinent
Lorentz-violating parameters down to 10−1 GeV.

The presence of torsion may also have important consequences for cosmological obser-
vations independent of Lorentz violation. For instance, as discussed in [170], non-zero tor-
sion affects the relation between the angular-diameter (DA) and luminosity (DL) distances
used in astrophysical/cosmological measurements, such that the quantity η = DL

DA(1+z)2 − 1
is linked to various types of torsion. This may affect low-redshift measurements, and thus
contribute to the observed Hubble-parameter (H0) tensions [171]. Of course, contributions
to such tensions, including the growth of structure ones (σ8) [114–116], can also come, as
we discussed in Section 8.1, from the late-Universe RVM cosmology, which the contorted
string-inspired models lead to, but the combination of the plethora of late-time cosmo-
logical measurements, and details of structure formation [172] can provide information
that can distinguish between the quantum string-inspired RVM cosmology and generic
torsion models.

Other constraints on late Universe torsion of relevance to our discussion here, namely
of associating axions to torsion, come from CP (rather than Lorentz) violation effects
in axion-photon cosmic plasma through dynamo primordial-magnetic-field amplifica-
tion [173] (see also [174] on the role of axion fields), which torsion is a specific species of for
cosmic magnetic helicity generation).

An alternative way to probe experimentally the role of torsion is to realise in graphene,
or other Dirac materials, the scenarios described in this review. At this time, there is still
nothing going on in that direction. There are two steps that will make this enterprise
possible. On the theory side, we should identify the best experimental setting to have
a precise correspondence between the specific dislocation defects (the nonzero Burgers
vectors) and the torsion term in the Dirac action. On the experimental side, we should be
able to realise, with the help of suitable external electromagnetic fields, the time-loop that
will spot the nonzero torsion in the time direction.

We mention for completeness that we have not covered here certain interesting aspects
of torsion, such as those characterising teleparallel theories [175], in which torsion replaces
the metric, or the so-called f (Q) gravity theories [176], which involve the non-metricity
tensor Qαμν = Dα(ω) gμν �= 0. The interested reader is referred to the rich relevant
literature for more details on the formal, phenomenological and cosmological aspects of
such models.

We would like also to mention here that, in the current literature, there are several
works which deal with topics partially overlapping with those of our review, but from a
different perspective than ours.

In a revisited Einstein–Cartan approach to graphene dislocations, in particular wedge
disclination in a planar graphene sheet, the authors of [177], studied the properties of
its electronic degrees of freedom in a novel approach which relates to elasticity theory,
given that the aforementioned disclination is found there. An important novel result,
as these authors claim, is the demonstrated explicit dependence of the energy on the
elasticity (Poisson’s) constant. The works [178,179] examine effects of the thermal Nieh–
Yan anomaly terms of the axial fermion current, of the form ∂μ J5μ ∝ T2 Ta ∧ Ta, where T is
the temperature, and Ta the effective/emergent torsion, where the proportionality constant
is determined by the geometry and topology of the material, and the number of chiral
quantum fields. In the case of Weyl superfluids, the authors show that such anomalous
terms characterise the hydrodynamics of a chiral p-wave superfluid, such as 3He-A, or a
chiral superconductor.

The role of torsion, when induced by the BI field within Holst and Nieh–Yan formu-
lations, in modified general relativity and bounce cosmology has been studied in a series
of works [180–184], which complement our treatment of the H-torsion in this review and
related references. In this context, the role of spacetime torsion, sourced from antisymmetric
tensor (Kalb–Ramond) fields in various modified gravity theories is discussed in [185–189],
including phenomenological aspects, providing potential explanation for the invisibility
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of torsion in late eras of the Universe, due to dynamical suppression in its couplings with
standard model fields.

Claims on potential connection between Lorentz symmetry breaking and torsion are
provided in [190], where the one-loop fermionic effective action in Einstein–Cartan theories,
computed by the proper time method, results in a contact interaction term between the two
topological terms of the Nieh–Yan topological current (axial vector torsion Sμ in our review)
and the Chern–Simons topological current, which is thoroughly determined by the metric.
Such terms may lead to spontaneous breaking of Lorentz symmetry, through appropriate
vacuum expectation values of Sμ. We note that similar mechanisms for spontaneous
breaking of Lorentz symmetry arise in our stringy RVM model [133,135], where the time
derivative of the Kalb–Ramond axion acquires a constant vacuum expectation value.

The effects of torsion on gravitational waves in extended theories of gravity, in
particular in Einstein–Cartan gravity using the post-Newtonian formalism devised by
Blanchet–Damour, that goes beyond the linearised gravitational theory is discussed in the
works [191–196].

In [197], the Lorentzian gravitational path integral has been evaluated in the presence
of non-vanishing torsion (with the application of the Picard–Lefschetz theory for minisu-
perspaces corresponding to a number of phenomenological bouncing cosmological models
as well as for the inflationary paradigm). In addition, in [198], it was demonstrated that,
unlike any other non-trivial modifications of the Einstein gravity, the presence of spacetime
torsion does not affect the entropy of a black hole. In [199], a shift-symmetric Galileon
model in the presence of spacetime torsion has been constructed, with applications to the
study of the evolution of the universe at a cosmological scale. For a wide class of torsional
structures, the model leads to late time cosmic acceleration, while the standard results are
obtained in the limit of vanishing torsion which is a smooth one.

The role of metric-scalar-torsion couplings and their impact on the growth of matter
perturbations in the Universe has been discussed in [200] within the context of an interacting
dark-energy scenario in which the matter density of a scalar field that sources a torsion
mode ceases to be self-conserved, thereby affecting not only the background cosmological
evolution but also the perturbative spectrum of the local inhomogeneities, thus leading to
cosmic growth. As argued in [200], the model can become phenomenologically viable.

A rather surprising feature of spacetimes with torsion was pointed out in [201], where
the authors, on considering the coupling of fermions in the presence of torsion, have
demonstrated the emergence of a possibly new length scale (in analogy to the electroweak
theory, as we shall explain below), which turns out to be transplanckian, and actually much
larger than the Planck length. The new scale arises as a result of the non-renormalisable,
gravitational four-fermion contact interaction, which characterises generic Einstein–Cartan
theories, as we discussed repeatedly in this review. The authors of [201], argued that, by
augmenting the Einstein–Cartan Lagrangian with suitable kinetic terms quadratic in the
torsion and curvature, gives rise to new, massive propagating gravitational degrees of
freedom. The whole situation is to be viewed in close analogy to the Fermi’s effective
four-fermion weal interaction, which is the effective low energy theory of the standard
model and arises from virtual exchange of the (emergent) W and Z weak bosons of the
electroweak theory.

In an interesting recent work [202], torsion was associated with potentially measurable
properties of the electroweak vacuum, in the sense that the latter can be stabilised provided
one assumes the metric-affine framework instead of the usual metric formulation of gravity.
In this framework the Holst invariant is present since in general the torsion does not vanish
and this leads to important physical consequences, according to the claims of the authors
of that work. Specifically, by using measured quantities such as the Higgs and top quark
masses, the authors claim that, in principle, the Einstein–Cartan theory can be differentiated
from the standard General Relativity.

Last but not least, we mention the work of ref. [203], where the authors, with the help
of appropriate conformal transformations, explored the use of non-symmetric contorted
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connections in “Fisher information geometry”. As is well known, the latter corresponds
to a probability distribution function ubiquitous in the study of the effective “geometry”
entering information theory. They introduced the idea of both metric and torsion playing
equal roles in such a context, and studied the corresponding scalar curvature for a few sta-
tistical systems, which served as concrete examples for pointing out the relevant properties.
As the authors claimed, this study helps to solve some long-standing problems in the field
of information geometry, concerning the uniqueness of the Fisher information metric.

Our report would not be complete if we did not mention the role of torsion in the
hydrodynamics of a fluid system with spin currents, as discussed in [204]. This could
be of interest in the case of, say, heavy-ion collisions in particle physics, where there is
experimental evidence for correlations between the spin polarisation of Λ-hyperons and
the angular momentum of the quark-gluon plasma in off-centre collisions [205,206] or
in the case of liquid metals, where an experimental realisation of spin currents has been
demonstrated [207].

A fully consistent theory of spin-current hydrodynamics is currently lacking. In
constructing such a theory, the first open issue to be addressed is identifying a canonical
spin current. At this stage, we remind the reader that, in a relativistic theory, on a flat
background without torsion, Lorentz invariance dictates that energy and momentum are
conserved, which, as a result, implies also the conservation of angular momentum. In
the absence of torsion, it is always possible to add an improvement term to the energy
momentum tensor, Tμν such that the symmetry property Tμν = Tνμ follows from an
additional equation of motion, implying angular momentum conservation from energy-
momentum conservation. Recalling that the angular momentum tensor J μνρ is related to
the spin current Sμνρ via J μνρ = xν Tμρ − xρ Tμν − Sμνρ, it follows that the spin current
suffers from ambiguities due to the possibility of adding improvement terms to the stress
tensor. Specifically, by a judicious choice of such terms, it can be set to zero. In the work
of [204], it has been argued that one way of dealing with such ambiguity is to couple
the theory to an external spin connection with torsion (which is thus independent of the
vielbeins). As discussed in that work, the presence of such a background torsion leads to
a uniqueness of the spin current by precluding the addition of improvement terms to the
stress tensor. After the computation of the spin current, one can set the background torsion
to zero, going back to Minkowski spacetime. The presence of torsion plays an important
role in ensuring uniqueness, i.e., the absence of ambiguities, in the so-called entropy current
that enters the local version of the second law of thermodynamics in the pertinent fluid. The
formalism of turning on the background torsion, and eventually turning it off, ensures that
the total entropy current is independent of the choice of improvement terms, which in turn
resolves some issues regarding the effect of the improvement terms (called pseudo-gauge
transformations) on the entropy production in the system.

Funding: N.E.M. is supported in part by the UK Science and Technology Facilities research Coun-
cil (STFC) under the research grants ST/T000759/1 and ST/X000753/1, and UK Engineering and
Physical Sciences Research Council (EPSRC) under the research grant EP/V002821/1; he also ac-
knowledges participation in the COST Association Action CA18108 Quantum Gravity Phenomenology
in the Multimessenger Approach (QG-MM). P. P. thanks Fondo Nacional de Desarrollo Científico y
Tecnológico–Chile (Fondecyt Grant No. 3200725). A.I. and P.P. gladly acknowledge support from
Charles University Research centre (UNCE/SCI/013).

Data Availability Statement: Data are contained within the article.

Acknowledgments: A.I. and P.P. are indebted to Jorge Zanelli, for explaining to them the special role
of torsion in general, and in USUSY and graphene in particular.

Conflicts of Interest: The authors declare no conflict of interest.

42



Universe 2023, 9, 516

Notes

1 Although the contorted geometry formalism can be generic and valid in (d + 1)-dimensional spacetime, nonetheless for the sake
of concreteness, in this work we shall present the analysis for d = 3, and, in the case of graphene, for d = 2.

2 The action of ∧ on forms is expressed as [4,5]: f (k) ∧ g(�) = (−1)k � g(�) ∧ f (k), where f (k) and g(�) are k-forms and �-forms,
respectively.

3 Some references refer to it as a contortion tensor [2]. However, as we are more closely following the terminology of [5], we keep the
name contorsion. As far as we know, there is no consensus yet about the name of this quantity.

4 For a recent study of the massive case, where the focus is on neutrino mixing and oscillations, see [11].
5 In the original formulation of Barbero and Immirzi, the BI parameter is γ = 1/β, but this is not important for our purposes.
6 Indeed, by applying the decomposition (23) onto (57), prior to imposing (59), we obtain the following extra contribution in the

effective action, as compared to the terms discussed previously in the case α = 0 [37]:∫
d4xe

α

2
Tμ j5μ. (60)

Including such contributions, and considering the vanishing variations of the total action with respect to the (independent)
torsion components, Tμ, Sμ and qμνρ, we obtain the solution

Tμ =
3 κ2

4

(
β− α

β2 + 1

)
j5μ, Sμ = 3κ2 1 + αβ

1 + β2 j5μ, qμνρ = 0. (61)

Clearly, as we discussed above, the first equation is problematic from the point of view of leading to a proportionality relation
between a vector and a pseudovector, except in the Einstein–Cartan case β = 0 and the limit α = β, where the situation is reduced
again to the Einstein–Cartan theory, given that in such a case the Holst-like modification is a total derivative.

7 It is possible to include in the description next-to-near neighbour contributions, while keeping a modified Dirac structure [53]. In
fact, such modifications allow for the reproduction of scenarios related to generalised uncertainty principles both for commuting
coordinates [54] and noncommuting coordinates [55].

8 Actually, there are six such points, but the only two shown above are inequivalent under lattice discrete symmetry.
9 A deep study of how curvature and torsion emerge in a geometrical approach to quantum gravity, along the lines of how classical

elastic-theory emerges from QED, can be found in [58], see also [59]. In those papers, the authors elaborate on a model of quantum
gravity inspired by graphene, but independent from it [60,61], see also [62,63]. A review can be found in [48]

10 This is due to the reducible, rather than irreducible, representation of the Lorentz group we use
11 The Goldstino λ is a Majorana spin 1/2 fermion which plays the role of the Goldstone-type fermionic mode arising from the

spontaneous breaking of global SUSY. To incorporate the relevant dynamics into the dynamically-broken SUGRA scenario, one
adds to the SUGRA Lagrangian (104) the terms

Lgolds = − f 2 det
(

δ
μ
ν + i

1
2 f 2 λ γμ ∂ν λ

)
= − f 2 − 1

2
i λ γμ ∂μλ + . . . (106)

where f ∈ R is the energy scale of SUSY breaking, and the . . . denote higher order self-interaction terms of λ. Such a term
realises SUSY non linearly in the sense of Volkov and Akulov [102]. After an appropriate gauge fixing (105) the derivative ∂μλ

can then be absorbed, by a suitable redefinition of the gravitino field ψμ in the schematic combination ψ′μ = ψμ + ∂μλ, so that the
gravitino field acquires a non zero mass, proportional to the gravitino condensate σ. Then, all that is left from the lagrangian
density (106) is a negative cosmological constant term − f 2 < 0, and thus the final, gauge fixed, SUGRA lagrangian encoding
dynamical breaking of local SUSY, is given by:

Ltotal = − f 2 + LN=1 SUGRA. (107)

We shall not give further details here on this dynamical mechanism for SUGRA breaking, referring the interested reader to the
literature (see refs. [99,100] and references therein).

12 It is possible to add a central extension generator Z and its corresponding one-form coefficient b [106]. However, we shall not
consider this extension in the present work.

13 Here, we omitted the wedge notation for the exterior product. For instance, A3 stands for the three-form A∧A∧A.
14 The case M = −1 is the globally anti-De Sitter space, while the other cases are conical singularities [109].
15 We note for completeness that, by exploiting local field redefinition ambiguities [6,137–139], which do not affect the perturbative

scattering amplitudes, one may extend the above conclusion to the fourth order in derivatives, that is, to the O(α′ 2) effective
low-energy action, which includes quadratic curvature terms.
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16 We stress once again that the modifications (126) and the right-hand-side of the Bianchi (127) contain the torsion-free spin
connection, given that, as explained previously, any H-torsion contribution can be removed by an appropriate addition of
counterterms [18,19].

17 To ensure homogeneity and isotropy conditions, the authors of [135] assumed the existence of a stiff-axion-b-dominated era
(i.e., with equation of state wb = +1) that succeeds a first hill-top inflation [103] (cf. Figure 9), which is the result of dynamical
breaking of local SUSY (SUGRA) right after the Big Bang, that is assumed to characterise the superstring inspired theories. This
breaking is achieved by a condensation of the gravitino (supersymmetric partner of gravitons) as a result of the existence of
attractive channels in the four-gravitino interactions that characterise the SUGRA Lagrangian due to fermionic torsion [99,100],
as discussed in Section 6. As argued in [135,136], unstable domain walls (DW) are formed as a result of the gravitino condensate
double well potential (Figure 8), whose degeneracy can be lifted by percolation effects [147]. The non-spherical collapse of such
DW leads to primordial GW, which then condense leading to (133).
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Abstract: It is well known that extraordinary photons in hyperbolic metamaterials may be described
as living in an effective Minkowski spacetime, which is defined by the peculiar form of the strongly
anisotropic dielectric tensor in these metamaterials. Here, we demonstrate that within the scope of this
approximation, the sound waves in hyperbolic metamaterials look similar to gravitational waves, and
therefore the quantized sound waves (phonons) look similar to gravitons. Such an analogue model of
quantum gravity looks especially interesting near the phase transitions in hyperbolic metamaterials
where it becomes possible to switch quantum gravity effects on and off as a function of metamaterial
temperature. We also predict strong enhancement of sonoluminescence in ferrofluid-based hyperbolic
metamaterials, which looks analogous to particle creation in strong gravitational fields.

Keywords: analogue quantum gravity; hyperbolic metamaterials; sonoluminescence

1. Introduction

Hyperbolic metamaterials are a special class of electromagnetic metamaterials, which
exhibit extremely strong anisotropy. These metamaterials exhibit metallic behavior in
one direction and dielectric behavior in the orthogonal direction. The original purpose
of these metamaterials was to overcome the diffraction limit of optical microscopy [1,2].
However, very soon it was realized that these materials exhibit a very large number
of strikingly interesting physical properties, which result from the singular behavior of
their photonic density of states [3,4]. In addition to super resolution imaging [1,5,6], it
was shown that these materials exhibit enhanced quantum electrodynamic effects [7–9],
which may be used, for example, in stealth technologies [10]. The transport properties of
hyperbolic metamaterials may also be quite unusual, resulting in such effects as thermal
hyperconductivity [11], and high Tc superconductivity [12]. It was also pointed out that
hyperbolic metamaterials may be used to create very interesting laboratory analogues of
gravitational effects [3,13–16]. While initially it was believed that hyperbolic properties
may only be observed in artificial structures, soon it was discovered that many natural
materials may also exhibit hyperbolic properties [12,17]. Strikingly enough, even the
physical vacuum may potentially exhibit hyperbolic properties [18] when it is subjected to
a very strong magnetic field [19].

Essential electromagnetic properties of hyperbolic metamaterials may be understood
by considering a nonmagnetic uniaxial anisotropic material with dielectric permittivities
εx = εy = ε1 > 0 and εz = ε2 < 0. Any electromagnetic field propagating in this material may be
expressed as a sum of ordinary and extraordinary contributions, each of these being a sum
of an arbitrary number of plane waves polarized in the ordinary (Ez = 0) and extraordinary
(Ez �= 0) directions. Let us assume that an extraordinary photon wave function is ϕ = Ez so
that the ordinary portion of the electromagnetic field does not contribute to ϕ. Maxwell
equations in the frequency domain result in the following wave equation for ϕ� if ε1 and ε2
are kept constant inside the metamaterial [3]:
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− ∂2φω

ε1∂z2 +
1

(−ε2)

(
∂2φω

∂x2 +
∂2φω

∂y2

)
=

ω0
2

c2 φω =
m∗2c2

h2 φω (1)

This wave equation coincides with the Klein–Gordon equation for a massive field
ϕ� (with an effective mass m∗) in a 3D Minkowski spacetime, in which one of the spatial
coordinates z = τ behaves as a timelike variable. The metric coefficients gik of this flat 2 + 1
dimensional Minkowski spacetime may be defined as [3,13]:

g0 0 = −ε1 and g11 = g22 = −ε2 (2)

As demonstrated in [13], a nonlinear optical Kerr effect may “bend” this 2 + 1
Minkowski spacetime, resulting in effective gravitational force between the extraordi-
nary photons. It was also predicted that for the effective gravitational constant inside
the metamaterial to be positive, negative self-defocusing Kerr medium must be used as a
dielectric host of the metamaterial [13].

Artificial hyperbolic metamaterials described by εx = εy = ε1 > 0 and εz = ε2 < 0 are
typically made out of metal wire array structures, as illustrated in Figure 1.

Figure 1. Typical geometry of a metal wire array hyperbolic metamaterial.

If the Maxwell–Garnett approximation is applied to such geometry [20], the diagonal
components of the permittivity tensor of the metamaterial may be acquired as

ε1 = εx,y =
2 f εmεd + (1− f )εd(εd + εm)

(1− f )(εd + εm) + 2 f εd
≈ 1 + f

1− f
εd, ε2 = εz = f εm + (1− f )εd ≈ f εm (3)

where f is the metallic phase volume fraction, and εm < 0 and εd > 0 are the permittivities of
the metal and the dielectric phase, respectively (note that −εm >> εd is typically assumed in
the visible and infrared range). On the other hand, as mentioned above, several common
natural materials, such as Al2O3, ZrSiO4, TiO2, etc., may also exhibit hyperbolic properties
in the long wavelength infrared frequency range [21]. For example, Al2O3 is naturally
hyperbolic in the 19.0–20.4 μm and 23–25 μm frequency bands. Such natural hyperbolic
material examples look especially interesting near the phase transitions of the material,
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since they represent a natural physical situation in which the effective Minkowski spacetime
may be “melted” as a function of material temperature T [22]. For example, in the melted
state of Al2O3, the material becomes an isotropic liquid, and the effective Minkowski
spacetime experienced by the extraordinary photons becomes an ordinary Euclidean space.

2. Methods: Acoustic Waves in Hyperbolic Materials as Analogues of Gravitational Waves

While the relationship between the dielectric permittivity and density of a material
may be somewhat complicated, in general, the Clausius–Mossotti relation is typically
used for this purpose [23]. In the case that the material consists of a mixture of two or
more species, the molecular polarizability contribution from each species a, indexed by i,
contributes to the overall dielectric permittivity as follows:

ε− 1
ε + 2

= ∑
i

Niαi
3ε0

(4)

where Ni is the molecular concentration of the respective species and e0 is the dielectric
permittivity of the vacuum. As a result, for small deviations of e with respect to its average
number, we may write

Δε =
(ε + 2)2

3 ∑
i

ΔNiαi
3ε0

(5)

Equations (2), (3) and (5) clearly indicate that acoustic waves (the oscillations of
molecular concentration DN) in a hyperbolic metamaterial act as classical gravitational
waves, which perturb the effective metric of a flat 2 + 1 dimensional Minkowski spacetime
(see Equation (2)) experienced by the photons propagating inside the metamaterial. In fact,
these “gravitational waves” are known to be quite pronounced in such natural hyperbolic
material as sapphire (Al2O3) due to its very strong piezoelectric behavior.

Furthermore, the sound waves in hyperbolic metamaterials may be quantized in a
straightforward fashion, thus giving rise to the quantum mechanical description of sound
waves in terms of phonons. The well-known Hamiltonian for this system is

H = ∑
pi

2

2m
+

1
2

mω2∑
(
xi − xj

)2 (6)

where m is the mass and w is the oscillation frequency of each atom (assuming for simplicity
that they are all equal), and xi and pi are the position and momentum operators, respec-
tively (the second sum is made over the nearest neighbors). The resulting quantization in
momentum space is

kn =
2πn
Na

(7)

where a is the interatomic distance. The harmonic oscillator eigenvalues or energy levels
for the mode ωk are:

En =

(
1
2
+ n

)
hωk (8)

While in the k → 0 limit the dispersion relation of phonons is linear, this behavior
changes near p/a. The picture of “acoustic” and “optical” phonons arises generically if
different kinds of atoms are present in the crystalline lattice of the material. For example, if
a one-dimensional lattice is made of two types of atoms of mass m1 and m2 connected by
a chemical bond, which may be characterized by spring constant K, two phonon modes
result [24]:

ω± = K
(

1
m1

+
1

m2

)
±
√(

1
m1

+
1

m2

)2
− 4 sin2 ka

2
m1m2

(9)

The plus sign corresponds to the “optical mode” in which the two adjacent atoms
move against each other, and the minus sign results in the acoustic mode in which they
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move together. These modes are shown schematically in Figure 2. We should also mention
that similar to photons, the dispersion law of phonons in a metamaterial may also be made
hyperbolic [25,26], so that both photons and phonons will live in an effective Minkowski
spacetime. Quite obviously, the phonons in this picture become the analogues of gravitons.
With this conclusion, our analogue model of quantum gravity is basically complete.

Figure 2. Dispersion curves of “acoustic” and “optical” gravitons.

3. Discussion: Analogue Quantum Gravity Effects in Hyperbolic Metamaterials

One of the main predictions of various versions of quantum gravity theories is the
existence of the minimum length (which typically coincides with the Planck scale) [27]. In
the hyperbolic (meta)material version of quantum gravity, this minimum length appears
naturally due to the finite interatomic distance a. However, the minimum length physics
actually look more complicated and quite interesting in such natural ferroelectric hyperbolic
materials as Al2O3 and BaTiO3. Based on Equations (1) and (2), the effective length element
in a hyperbolic metamaterial equals

dl2 = (−ε2)
(

dx2 + dy2
)

(10)

Therefore, the minimum length experienced by the extraordinary photons is

lmin =
√−ε2a (11)

Since −e2 is temperature-dependent and may actually diverge near the critical tem-
perature Tc of a ferroelectric phase transition, the analogue quantum gravity effects may
become quite pronounced near Tc. Indeed, near the transition temperature, the dielectric
susceptibility, χ, of these materials diverges following the Curie–Weiss law:

χ = (ε− 1) =
C

T − Tc
(12)

where C is the Curie–Weiss constant of the material.
On the other hand, at the “melting point” of the effective Minkowski spacetime

(which was experimentally observed in a ferrofluid-based hyperbolic metamaterial [22]
by tuning the f parameter in Equation (3)), −ε2 changes sign, and therefore it transitions
through the ε2 = 0 point as a function of temperature. As a result, the effective “minimum
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length” inside the metamaterial becomes zero. The possibility of switching quantum
gravity effects on and off as a function of metamaterial temperature looks very interesting
and attractive. Moreover, since some naturally hyperbolic ferroelectric materials may
exhibit quantum criticality [28], truly quantum effects associated with the emergence of the
effective Minkowski spacetime at zero temperature may also be studied in the experiment
(see also [12]).

Another important prediction of quantum gravity theories is the various effects related
to particle creation by gravitational fields, such as Hawking radiation, Unruh effect, cosmo-
logical particle creation, etc. Let us discuss how these kinds of effects may be experimentally
observed and studied within the scope of our model. Based on the analogy between sound
and gravitational waves described above, sonoluminescence [29–35] appears to be the most
natural choice to search for such effects. Moreover, Eberlein [36,37] already pointed out
deep connections between sonoluminescence in liquids and the Unruh effect. According
to Eberlein, sonoluminescence occurs when the rapidly moving surface of a microscopic
bubble created by ultrasound converts virtual photons into real ones. Like in the Unruh
effect, the resulting sonoluminescence spectrum appears to be similar to a black-body
spectrum. For example, the radiated spectral density within the scope of this model is

P(ω) = 1.16
(ε− 1)2

64ε

h
c4γ

(
R2

0 − R2
min

)2
ω3e−2γω (13)

where R0 and Rmin correspond to changes in bubble radius and γ describes the timescale of
the bubble collapse (see Equations (4) and (12) from [36]). This expression is indeed propor-
tional to the energy density of the thermal radiation given by the usual Planck expression

dU
dω

=
1

π2c3
hω3

ehω/kT − 1
(14)

if we assume that T~1/γ.
As was recently predicted in [38], the Unruh effect is supposed to be strongly enhanced

inside hyperbolic metamaterials, so that many orders of magnitude smaller accelerations
may be used to observe the Unruh radiation. Following this prediction, we may demon-
strate that sonoluminescence in ferrofluid-based hyperbolic metamaterials [14,22] will be
strongly enhanced too. Let us consider a microscale sonoluminescent bubble inside the
ferrofluid, as illustrated in Figure 3. The enhancement of the Unruh effect in hyperbolic
metamaterials originates from the modification of the conventional Planck expression for
the energy density of thermal radiation (Equation (14)) due to the huge enhancement of the
photonic density of states r(w) inside the metamaterial [3,7]. In particular, for the nanowire
array metamaterial design shown in Figure 1, this enhancement factor equals

ST

S(0)
T

≈ 5
16π2

(
k2

max

kTkp

)2

(15)

where ST is the energy flux along the symmetry axis of the metamaterial and S(0)
T is the

usual Planck value for the energy flux (see Equation (9) from [38]). The characteristic
k-vectors in Equation (15) are kmax~1/a (defined by the structural parameter a of the
metamaterial), kT = kBT/h̄c is the typical thermal momentum, and kp is the typical “plasma
momentum” [39] of the metamaterial, which is defined as

kp =

√
4πN
m∗

e
c

(16)

where N and m∗ are the free charge carrier density in the metamaterial and their effective
mass, respectively. Since, in a typical metamaterial, kmax is several orders of magnitude
larger than kT and kp [40], the enhancement factor defined by Equation (15) may reach
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up to ten orders of magnitude (recall that a~1 nm in natural hyperbolic materials). As a
result, a similar strong enhancement may be expected for the radiated spectral density of
sonoluminescence defined by Equation (13).

Figure 3. Photo of a ferrofluid-based self-assembled hyperbolic metamaterial [22]. The cobalt
nanoparticle chains are formed inside the ferrofluid after application of external magnetic field.
Several micron-scale bubbles inside the ferrofluid are indicated by arrows.

To summarize, it appears that several quantum gravity effects find interesting ana-
logues in artificial and natural hyperbolic metamaterials. While the described analogies
are obviously not perfect, the fact that these effects may be studied in the lab [14,22]
make them a very useful tool to develop more intuition on the actual inner working of
quantum gravity.

4. Conclusions

In conclusion, based on the fact that extraordinary photons in hyperbolic metama-
terials [41–43] may be described as living in an effective Minkowski spacetime (which is
defined by the peculiar form of the strongly anisotropic dielectric tensor in these meta-
materials), we have demonstrated that sound waves in hyperbolic metamaterials look
similar to gravitational waves [44–47]. As a result, within the scope of this model, the quan-
tized sound waves (phonons) look similar to gravitons [48–50]. Such an analogue model
of quantum gravity looks especially interesting near the phase transitions in hyperbolic
metamaterials where it becomes possible to switch quantum gravity effects on and off at
will as a function of metamaterial temperature. We also predicted strong enhancement of
sonoluminescence in ferrofluid-based hyperbolic metamaterials, which looks analogous to
such important quantum gravity effects as particle creation in gravitational fields [51–61].
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Abstract: The maximal kinematical invariance group of the Euler equations of fluid dynamics
for the standard polytropic exponent is larger than the Galilei group. Specifically, the inversion
transformation (Σ : t → −1/t, �x → �x/t) leaves the Euler equation’s invariant. This duality has
been used to explain the striking similarities observed in simulations of the supernova explosions
and laboratory implosions induced in plasma by intense lasers. The inversion symmetry extends to
discontinuous fluid flows as well. In this contribution, we provide a concise review of these ideas and
discuss some applications. We also explicitly work out the implosion dual of the Sedov’s explosion
solution.

Keywords: fluid dynamics; symmetries; shock conditions

1. Introduction

Surprises lurk in unexpected corners of physics. This review summarises a body of
results that ensue from one such surprise, viz. the striking similarity between the earlier sim-
ulations of supernova explosions and the experimental evolution of an imploding plasma
contained in a fusion capsule bombarded by high-intensity lasers [1]. It was hoped [1]
that, over time, laser experiments would become more in line with actual supernovae
behaviour. Hence, considerable efforts were devoted to simulating astrophysical systems in
the laboratory. Modern supernova simulations have become much more complex; several
new physical effects and numerical techniques are incorporated [2]. At the present stages
of development, it is not clear how much one can learn about the astrophysical systems
in the laboratory setting. However, the observations mentioned above have led to some
intriguing theoretical developments. In this paper we concentrate on discussing the the-
oretical explanation [3–5] for the observed similarity [1], and some ramifications of the
resulting analysis [6]. We limit our considerations mostly to references [3–6].

Earlier computational studies of the evolution of a supernova remnant (as cited in [1])
usually used initial conditions of dense pressure-free ejecta expanding ballistically outwards
from the site of the explosion, taken for convenience to be the origin, and interacting with a
stationary ambient medium of much lower density and negligible pressure. At early times,
the bulk of the ejecta expands ballistically, except for a thin interaction region on the outside
consisting of a forward shock running into the ambient medium, a zone of hot-shocked
ambient medium, a contact discontinuity, a zone of shocked ejecta, and a reverse shock
propagating into the ejecta. At later times, when the mass of the swept-up ambient medium
becomes comparable with the ejecta mass, the reverse shock detaches itself from the contact
discontinuity and implodes on the origin.

In the laboratory plasma, we have, initially, a stationary sphere of high density material
surrounded by a low density converging flow. The inflowing gas has to decelerate at the
shock front, building up pressure and driving a reverse shock which leads to an implosion.
From an experimental point of view, a perfectly spherically symmetric explosion is not
realistic. The ejecta emerging from a supernova explosion is also highly nonuniform on a
wide range of scales making it computationally challenging to calculate its evolution.

Universe 2022, 8, 319. https://doi.org/10.3390/universe8060319 https://www.mdpi.com/journal/universe58
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From a theoretical point of view, it is interesting to study the underlying symmetry
that enables one to map an explosion to an implosion. One can straightaway rule out
time-reversal as an answer because the supernova explosions occur over astronomical
time-scales, while the plasma implosions happen in a few nano-seconds.

Both an exploding star and an imploding plasma can be modelled by the equations
of a perfect fluid, as we are taught in standard textbooks [7,8]. The explanation offered in
Refs. [3,4] for the observed explosion–implosion duality stems from a hitherto unnoticed
nonlinear symmetry of these equations, which we expand upon in the next section.

This analysis of ref. [4] highlights that the maximal kinematical invariance group
of the Euler equations of fluid dynamics for the standard polytropic exponent is larger
than the Galilei group. The techniques required to establish this find applications in other
situations, viz. fluid flows in non-inertial frames. The Earth’s oceans and atmosphere
are important examples of fluid flows in non-inertial reference frames, where the Earth’s
rotation provides the underlying non-inertial frame. In order to describe oceanic and
atmospheric fluid flows, it is natural to analyse fluid phenomena in the Earth’s frame. This
requires adding Coriolis forces to the right hand side of the fluid equations. The Coriolis
force terms lead to surprising phenomenon: weather storms and ocean’s currents. Going to
the non-inertial reference frame allows us to separate out the rotational component of the
fluid flows. We can then concentrate on the parts of flow patterns that matter the most.

Related situations arise when fluid flows are characterised by a large degree of expan-
sion or contraction. Poludnenko and Khokhlov [6] considered the formulation of Euler
equations of fluid dynamics in an expanding or contracting or possibly rotating reference
frame. The motivation being that by going to an appropriately chosen frame we can discard
the expanding or contracting or rotating nature of the fluid flows. The frame motion is ad-
justed to minimise the local fluid velocities. This method allows to accommodate efficiently
large degrees of change in the flow extent, such as those encountered in astrophysical flows:
supernovae, contracting stars, etc. Their work investigated numerical computations in such
non-inertial reference frames.

As in the case of rigidly rotating reference frames, going to an expanding or contracting
reference frame requires adjustments of the fluid flow equations. Ref. [6] argued that these
adjustments do not come at any additional numerical cost: the new equations can be as
easily implemented numerically using any of the standard numerical schemes. However,
by separating out the global component of the fluid flow, it leads to significant improvement
in the physical understanding of the fluid flows, which would be difficult to extract in
inertial reference frame simulations. (More precisely, in numerical work it is important
to work with smaller local fluid velocities. If a fluid flow is dominated by the global
component associated with expansion or contraction or rotation, then it is inefficient to
model such flows in inertial frames.) They carried out extensive numerical testing of the
method for a variety of reference frames representative of realistic applications.

The rest of the article is organised as follows. In Section 2, we review the maximal kine-
matical invariance group of fluid dynamics, based on the original work of O’ Raifeartaigh
and one of the authors [4]. In Section 3, we discuss the symmetries of discontinuous
flows, based on our original work with Oliver Jahn [5]. In Section 4, we review the work
of Poludnenko and Khokhlov [6], who considered the formulation of Euler equations
of fluid dynamics in non-inertial reference frames. In Section 5, we present the conclu-
sions. Appendix A explicitly works out the implosion dual of Sedov’s explosion solution.
Throughout the review we will be concise, referring the reader to original references for
further details.
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2. The Fluid Equations

This section is based on the original work of O’Raifeartaigh and one of the authors [4].
The general fluid dynamic equations in n-dimensional space are (see, e.g., textbooks [7,8])

Dρ = −ρ∇ · u, (1)

ρDu = −∇p + V, (2)

Dε = −(ε + p)∇ · u, (3)

where the convective derivative D and the viscosity terms V are defined by

D =
∂

∂t
+ u · ∇, (4)

Vi = ∇j
(
η(∇jui +∇iuj − 2

n
δij∇kuk)

)
+∇i(ζ∇kuk), (5)

respectively. In the above equations ρ, u, p, ε stand for the density, the velocity vector
field, the pressure, and the energy density respectively, and η and ζ are the bulk and shear
viscosity fields. These partial differential equations are augmented by an algebraic condition
called the equation of state that relates the pressure and energy density. According to the
polytropic equation of state

p = (γ0 − 1)ε =⇒ p + ε = γ0ε, (6)

where the constant γ0 is called the polytropic exponent. This equation can be used to
eliminate p from the fluid equations. Further, by making the substitution

ε = χργ0 (7)

the equations can be rewritten in the form

Dρ = −ρ∇ · u, (8)

ρDu = −(γ0 − 1)∇(χργ0) + V, (9)

Dχ = 0. (10)

2.1. Action Formulation

The fluid equations may be given an action formulation by switching off the viscosity
fields, i.e., η = ζ = 0. Such fluids are called inviscid, or perfect fluids, and the equations
are called Euler’s equations. We next set χ = 1 without loss of consistency, representing
the isentropicity condition. Further, the Clebsch parametrisation [9–11]

u = ∇φ− ν∇θ, (11)

allows us to isolate the irrotational parts by setting ν = θ = 0. The resulting action for
inviscid, isentropic, irrotational flows in three dimensions is given by,

S =
∫

d3xdt
[

ρ

(
φ̇− 1

2
(∇φ)2

)
− ργ0

]
. (12)

It may be mentioned in passing that the terms contained in the parentheses represent
the Hamilton–Jacobi function for a free particle.

The symmetries of the aforementioned special flows, represented by the action, follow
from the requirement of its form-invariance. The transformation properties of the fields in
the general fluid equations may be extracted from these transformation properties once
again by requiring the equations to transform covariantly.
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2.2. Symmetries

We begin a priori with the most general transformations involving the coordinates
and fields. The transformed coordinates ξ and τ are defined by

�ξ = �ξ(�x, t), τ = τ(�x, t), φ̃ = φ̃(ξ, τ, φ), ρ̃ = ρ̃(ξ, τ, ρ). (13)

Substituting the transformations and demanding the form-invariance of the action
produces a set of equations which can be solved exactly to yield [4],

�ξ = f (t) (R�x +�a +�vt), (14)

ρ̃ = f−3(t)ρ, (15)

φ̃ = φ + λ(ξ, τ), (16)

where

τ =
αt + β

γt + δ
, f (t) =

1
γt + δ

, αδ− βγ = 1, (17)

∂λ

∂τ
− 1

2

(
∂λ

∂ξ

)2
= 0. (18)

In the above, R represents the usual rotation matrix,�a the translations, �v the boosts,
and f (t), a time-dependent scale parameter. The α, β, γ, δ represent parameters of the
SL(2, R) group, a non-relativistic remnant of the special conformal group, to be discussed
in Section 2.4. For details on λ(ξ, τ), we refer the reader to the original reference [4]. We
note that the following discrete symmetries are permitted:

(α, β, γ, δ) ∼ (α,−β,−γ, δ) ∼ (−α, β, γ,−δ) ∼ (−α,−β,−γ,−δ). (19)

2.3. Transformation Functions for General Flows

The transformation functions for general flows may be obtained by requiring the
general fluid equations to transform covariantly. It is straightforward to see that for
general non-isentropic flows, the equations transform covariantly if χ is a scalar under the
coordinate transformations.

The velocity vector transforms inhomogeneously as,

�̃u = (γt + δ)�u− γ�x (20)

We note that these transformations do not preserve the condition ∇ · u = 0, im-
plying that unlike Galilean symmetry, the above symmetry is valid only when the fluid
is compressible.

The viscosity fields transform similar to scalar densities [4]. This implies that the
symmetry we are discussing is broken in the case of Navier–Stokes equations which
approximate the viscosity to be constant.

2.4. The Maximal Invariance Group

Let g be a general element of the symmetry group G obtained by setting β = γ =
0, α = 1. It follows

�ξ = R�x +�vt +�a, τ = t (21)

In this case,
ρ̃ = ρ and �̃u = �u +�v (22)

We notice that these correspond to the static Galilei transformations.
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Let σ denote an element of the SL(2, R) group obtained by setting�a = �v = 0. In this
case,

�ξ = f (t)�x, τ =
αt + β

γt + δ
, (23)

ρ̃ = (γt + δ)3ρ and �̃u = (γt + δ)�u− γ�x. (24)

This represents a combination of dilatations and inversions, which are a nonrelativistic
limit of the special conformal group.

It is a straightforward exercise to check that G is an invariant subgroup:

σ−1 · g(R,�a,�v) · σ = g(R,�aσ,�vσ), (25)

where (
�aσ

�vσ

)
=

(
δ β
γ α

)(
�a
�v

)
. (26)

It therefore follows that the full group under which the fluid equations are invariant
under the specified transformation properties for the coordinates and the fields is a semi-
direct product

G = SL(2, R) ∧ G.

A special element of the group viz. Σ : (α, β, γ, δ) = (0,−1, 1, 0) corresponds to
a composition of an inversion and reversal of time, and plays an important role in the
explosion–implosion duality discovered by Drury and Mendonça in [3]. A curious result
follows immediately: Σ2 = P, where P is the parity operator.

Cosets defined using these elements, gΣ(R,�a,�v) = Σ · g(R,�a,�v) have the interesting
property that they are fourth roots of Galilean transformations,

g4
Σ(R,�a,�v) = g

(
R4, (R2 − 1)(R�a−�v), (R2 − 1)(R�v +�a)

)
(27)

Since (R�a−�v) and (R�v−�a) are linearly independent, it follows that every Galilean
transformation is a fourth power of a coset transformation [4].

2.5. Conservation Laws

Euler’s equations for a perfect fluid can be expressed in the form of conservation laws
for mass, momentum, and energy, as follows:

∂ρ

∂t
= − ∂

∂xj
(ρuj), (28)

∂

∂t
(ρui) = − ∂

∂xj
(ρuiuj + δij p), (29)

∂

∂t

(
1
2

ρ�u2 + ε

)
= − ∂

∂xj

[(
1
2

ρ�u2 + ε + p
)

uj

]
. (30)

These equations can be expressed succinctly as follows:

∂μ Jμ
ρ = ∂μ Jμ

�P
= ∂μ Jμ

H = 0. (31)

The zeroth components of the above currents namely, ρ, ρ�u, 1
2 ρ�u2 + ε, give the charge

densities which, when integrated over all space, give the conserved charges. The corre-
sponding current densities are

J j
ρ = ρuj, (32)
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J j
Pi
= (ρuiuj + δij p), (33)

J j
H =

(
1
2

ρ�u2 + ε + p
)

uj. (34)

The conservation laws corresponding to rotations (δxi = ωijxj), boosts (δxi = vit),
dilatations (δxi = λxi, δt = 2λt), and expansions (δxi = −μtxi, δt = −μt2) can be stated
similarly,

∂μ Jμ
�L
= ∂μ Jμ

�K
= ∂μ Jμ

D = ∂μ Jμ
A = 0, (35)

where the appropriate charge densities are [5],

�L = �P×�x, �K = �Pt− ρ�x, D = −2tH +�x · �P, A = t2H − t�x · �P +
ρ2

2
�x2. (36)

The corresponding current densities can also be written down in a straightforward
manner

�JLi = εikl xk�JPl , (37)
�JKi = tJPi − xi�Jρ, (38)
�JD = xi�JPi − 2t�JH , (39)

�JA =
1
2
�x2�Jρ − txi�JPi + t2�JH . (40)

These laws follow as a direct consequence of Noether’s theorem. They will be useful
in studying flows with discontinuities, a topic to which we now pass.

3. Discontinuous Flows

This section is based on our original work with Oliver Jahn [5]. As long as the flows
are smooth, i.e., the functions ρ,�u, p, ε are smooth functions of �x, t, Equations (1)–(3) and
(31) are equivalent. Real flows, however, may develop discontinuities as they evolve. Such
flows are described by weak solutions of differential Equations [12]. A weak solution is
generally piecewise smooth. The smooth parts satisfy the differential equations in the
usual strong form. The entire solution required to specify the course of motion of the initial
conditions is obtained by supplementing the strong solutions by jump conditions. The jump
conditions are derived from the conservation laws. We briefly review these concepts in
the next two subsections. For pedagogical discussions on these topics we refer the reader
to [7,8,13].

3.1. Weak Solutions and Jump Conditions

By definition, any, possibly non-smooth, function Jμ(�x, t) that satisfies∫
∂μω(�x, t)Jμ(�x, t)d3xdt = 0, (41)

for all test functions ω(�x, t) is called a weak solution of the differential equation ∂μ Jμ = 0.
Suppose Jμ(�x, t) has a jump discontinuity across a hypersurface S in �x, t space while

otherwise being continuously differentiable in some neighbourhood N of S ; see Figure 1.
Let ω(�x, t) be a test function with support in region N . Let R be the part of the region
N that lies on one side of S , say to the right. We take ω(�x, t) = 0 on the boundary of R,
except on S . Then by Gauss’s theorem,∫

R
∂μω Jμd3xdt +

∫
R

ω ∂μ Jμd3xdt =
∫
R

∂μ(ω Jμ)d3xdt =
∫
S

ωnμ JμdS , (42)

since ω(�x, t) = 0 on the boundary ofR, except on S . Here nμ is the outward normal to the
hypersurface S . The second integral on the left hand side is zero because the conservation
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law holds in the strong sense in the interior ofR. If we integrate similarly over the left part
of the support ω(�x, t), and add the two results we obtain for a weak solution

0 =
∫
S

ω nμΔJμdS , (43)

where Δ f denotes the difference of the two limiting values of the the function f on the two
sides of the hypersurface S , i.e., the jump of the function. This result follows as the normal
which points outwards by convention, flips its sign when we move from the right to the
left side of the hypersurface. Since ω(�x, t) is an arbitrary function, it follows that

nμΔJμ = 0 on S . (44)

This equation is the jump condition we mentioned earlier.

S

R

N

Figure 1. Diagram for the jump condition.

3.2. Rankine–Hugoniot Conditions

The general expression for the jump condition derived above can be applied to the
conservation laws derived earlier. The conservation laws associated with mass, momentum,
and energy yield

nμΔJμ

(ρ)
= 0, (45)

nμΔJμ

(�P)
= 0, (46)

nμΔJμ

(H)
= 0, (47)

and are called the Rankine–Hugoniot conditions in the fluid dynamics literature [7,8,13,14].
Similar equations can be derived for the other conservation laws, viz.

nμΔJμ

(�L)
= 0, (48)

nμΔJμ

(�K)
= 0, (49)

nμΔJμ

(D)
= 0, (50)

nμΔJμ

(A)
= 0. (51)

These new jump conditions are associated with angular momentum, boosts, dilata-
tions, and expansions.
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3.3. Dual Rankine–Hugoniot Conditions

The new set of jump conditions are identically true because the current densities
associated with angular momentum, boosts, dilatations, and expansions are linear combina-
tions of the current densities associated with mass, momentum and energy conservation as
shown in Equation (40). This suggests that the Rankine–Hugoniot conditions are invariant
under the full kinematical invariance group of smooth flows including the SL(2, R) part.
We examine this point in what follows.

If an (abstract) symmetry generator Tr transforms under the SL(2, R) transformation
σ as

T
′
r = σ−1Trσ = ∑

s
Mrs(σ)Ts, (52)

then the corresponding currents transform as [5]

Jμ′
r (x

′
) = det

(
∂x
∂x′

)
∂xμ′

∂xν ∑
s

Mrs(σ)Jν
s (x). (53)

The fact that the currents transform similar to vector densities can be appreciated by
looking at the temporal components, which pick up the multiplicative factor (γt + δ)3.

Arranging the currents in a column Jμ =
(

Jμ

(ρ)
, Jμ

(�K)
, Jμ

(�P)
, Jμ

(A)
, Jμ

(D)
, Jμ

(H)

)T
, one has

the following transformation matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 α β 0 0 0
0 γ δ 0 0 0
0 0 0 α −αβ β2

0 0 0 −2αγ (βγ + αδ) −2βγ
0 0 0 γ2 −γδ δ2

⎞⎟⎟⎟⎟⎟⎟⎠. (54)

Using αδ− βγ = 1, it is easy to check that the matrix M has unit determinant.
The temporal components transform according to the transformations,

ρ′ = (γt + δ)3ρ, (55)
�P′ = (γt + δ)3(δ�P + γ�K), (56)

H′ = (γt + δ)3(γ2 A− δγD + δ2H). (57)

Thus, ρ transforms under the singlet representation of SL(2, R) as a scalar density.
The translations and boosts constitute the doublet representation and transform similar
to vector densities. Likewise the Hamiltonian, and the generators of dilatations and
expansions transform similar to densities under the triplet (adjoint) representation of
SL(2, R). The transformation properties of the spatial components of the current can
similarly be read off from the above matrix.

The dual Rankine-Hugoniot conditions are now easily obtained. The normal vector
nμ appearing in the jump condition (44) transforms like a covector

n
′
μ =

∂xν

∂xμ′ nν. (58)

Thus, the transformed jump conditions for the currents are

n
′
μΔJμ′

r ∝ det
(

∂x
∂x′

)
∑

s
Mrs(σ)nμΔJμ

s (x) = 0 on S . (59)

Since the determinant is smooth across the hypersurface S , the factor in front can
be omitted, and the transformed jump condition is a linear combination of the original
jump conditions.
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In particular, the transformed conditions for Jμ

(ρ)
, Jμ

(�P)
, Jμ

(H)
(the Rankine–Hugoniot

conditions), become linear combinations of the jump conditions of Jμ

(ρ)
, Jμ

(�P)
, Jμ

(H)
, Jμ

(�K)
, Jμ

(D)

and Jμ

(A)
. Specifically,

n
′
μΔJμ′

(ρ)
∝ nμΔJμ

(ρ)
(60)

n
′
μΔJμ′

(�P)
∝ nμ(γΔJμ

(�K)
+ δΔJμ

(�P)
) (61)

n
′
μΔJμ′

(H)
∝ nμ(δ

2ΔJμ

(H)
− γδΔJμ

(D)
+ γ2ΔJμ

(A)
) (62)

The original Rankine-Hugoniot conditions, in conjunction with the new conditions
(48)–(51), imply that the right hand sides of the above equations are identically zero, i.e.,
the Rankine-Hugoniot conditions are form-invariant [5].

In particular, this holds for the Drury–Mendonça transformation [3] t → −1/t,�x →
�x/t used to relate the explosion and implosion problems. This corresponds to the choice
(α, β, γ, δ) = (0,−1, 1, 0). We conclude that, if an explosion is described by the standard
Rankine–Hugoniot conditions, the corresponding implosion is described by the dual
Rankine–Hugoniot conditions.

3.4. Physical Conditions

As already mentioned, for a polytropic gas, ε = χργ0 , which enables us to write the
third of Euler’s Equation (3) as Dχ = 0. χ transforms similar to a scalar. For a polytropic
gas, it is well known [14] that χ is related to the specific entropy (entropy per unit mass) as
follows:

S− S0 = CV log[χ(ρ, V)γ0 ], (63)

where CV = R/(γ0 − 1), R being the universal gas constant divided by the molecular
weight, V, the volume, and S0, an appropriate constant. Since χ transforms similar to a
scalar, it follows that the specific entropy of a moving particle remains constant under
an SL(2, R) transformation. Hence a physical shock is mapped to a physical shock under
the transformation.

The requirement that the transformation preserves the physicality of a shock puts
a condition on the viscosity viz. that its positivity is preserved. As already pointed out,
the viscosity fields transform as scalar densities, similar to ρ. It follows that the total
viscosity, such as mass, is an invariant under the transformation.

4. Fluid Equations in Non-Inertial Frames

In this section, we review the work of Poludnenko and Khokhlov [6], who considered
the formulation of Euler equations of fluid dynamics in non-inertial reference frames. We
start with the inertial reference frame Euler Equations (1)–(3)

∂tρ + ∂i(ρui) = 0, (64)

∂t(ρui) + ∂j(ρuiuj) + ∂i p = 0, (65)

∂tε + ∂i((ε + p)ui) = 0, (66)

where ρ is the density, ui the fluid velocity, p the pressure, and ε the total energy density.
The total energy ε is related to the internal energy per unit mass e as,

ε = eρ +
1
2

ρu2. (67)
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Consider a non-inertial reference frame {x̃i, τ} that expands or contracts with respect
to the inertial frame {t, xi}:

x̃i =
xi

a(t)
, τ =

∫ t

0

dt
a(t)β+1 , (68)

where β is a constant and the scale factor a(t) is a smooth non-vanishing function of time.
(Poludnenko and Khokhlov [6] also considered additional rotational terms in transforma-
tion (68).) For simplicity we do not consider such terms; essential ideas are all captured
by the simplified transformation). We use quantities with tilde signs to refer to quanti-
ties in the non-inertial reference frame {x̃i, τ}. Time t is the physical time, and τ is the
computational time.

For the density, pressure, and energy density fields we introduce the scaling,

ρ̃(x̃, τ) = aαρ(x, t), (69)

p̃(x̃, τ) = aα + 2βp(x, t), (70)

ẽ(x̃, τ) = a2βe(x, t), (71)

where α and β are constant scaling exponents. A short calculation shows that

ui =
d
dt

xi(t) = a−β d ln a
dτ

x̃i + a−βũi, (72)

and

ä =
1

a2β+1

[
d2 ln a

dτ2 − β

(
d ln a

dτ

)2
]

. (73)

As a result, the mass conservation Equation (64) in the non-intertial frame (68) become,

∂τρ̃ + ∂̃i(ρ̃ ũi) = (α− n)
d ln a

dτ
ρ̃, (74)

where ∂̃i are partial derivatives with respect to x̃i and n is the dimension of space. The
momentum conservation Equation (65) becomes

∂τ(ρ̃ ũi) + ∂̃j(ρ̃ ũiũj) + ∂̃i p̃ = (α− n + β− 1)
d ln a

dτ
ρ̃ ũi − a2β+1 ä ρ̃ x̃i. (75)

The transformation of the energy Equation (66) to the non-intertial frame (68) is quite
tedious. When the dust settles one finds,

∂τε̃ + ∂̃i((ε̃ + p̃)ũi) =
d ln a

dτ
[(α− n + 2β)ε̃− np̃− ρ̃ ũi ũi]− a2β+1 ä ρ̃ ũi x̃i. (76)

4.1. Conditions for Invariance of the Fluid Equations

There is subclass of transformations (68) that preserve the form of the Euler’s equation.
Let us look at this subclass in relation to the discussion of the previous sections. For the
form invariance of mass conservation Equation (64) we require α = n from Equation (74).
For the invariance of momentum and energy conservation (65) and (66), we require from
Equations (75) and (76), ä = 0, together with

α = n, β = 1, (77)

and
ε =

n
2

p +
1
2

ρu2. (78)
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Recalling that the total energy ε is related to the internal energy e via (67), we have

e =
np
2ρ

(79)

This is a restriction on the equation of state. For a polytropic gas p = χργ0 we have
the general relation,

e =
p

(γ0 − 1)ρ
. (80)

Thus, we conclude that the form invariance of Equations (74)–(76) singles out a special
value of the polytropic index,

γ0 = 1 +
2
n

. (81)

For n = 3, γ0 = 5/3. Low mass white-dwarf stars are well approximated by this
polytropic index. These results are perfectly consistent with [4] reviewed in the previous
sections. ä = 0 implies,

a(t) = ct + d. (82)

Thus, transformation (68) becomes

xi → xi
ct + d

, t → − 1
c(γt + d)

. (83)

Comparing this with general SL(2, R) transformations [4]

xi → xi
ct + d

, t → at + b
ct + d

, ad− bc = 1, (84)

we have a = 0, b = −1/c. The scaling of density, pressure, and energy density (69)–(71) are
also compatible with the scalings in [4], and so is the value of the polytropic index.

4.2. Non-Invariant Terms as Sources

Poludnenko and Khokhlov argue that the above formulation based on general scaling
of the fluid variables provides a degree of flexibility, provided we treat the non-invariant
terms as sources. They consider values of exponents other than in Equation (77) that do not
leave the form of the equations invariant. For example, a set of exponents can be obtained
by demanding the invariance of the first law of thermodynamics. For isentropic flows, the
first law of thermodynamics in inertial frames take the form

ds = 0 =⇒ de = −pd
(

1
ρ

)
, (85)

which for fluid flows implies,

∂te + ui∂ie =
p
ρ2 (∂tρ + ui∂iρ). (86)

In non-inertial frames (68), Equation (86) becomes

∂τ ẽ + ũi ∂̃i ẽ =
p̃
ρ̃2 (∂̃τ ρ̃ + ũi ∂̃i ρ̃)− (α p̃− 2β ẽ ρ̃)

1
ρ̃

d ln a
dτ

. (87)

Using the polytropic equation of state (80), it simplifies to

∂τ ẽ + ũi ∂̃i ẽ =
p̃
ρ̃2 (∂̃τ ρ̃ + ũi ∂̃i ρ̃) + (2β− α(γ0 − 1))

d ln a
dτ

ẽ . (88)
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The choice of exponents

α = n, β =
n(γ0 − 1)

2
, (89)

ensures the invariance of the first law of thermodynamics together with the mass conserva-
tion for all values of the polytropic index. The momentum conservation equation no longer
takes the conservative form, however. With this choice of exponents (89), the first of the
source terms of the momentum conservation Equation (76),

(α− n + 2β)ε̃− np̃− ρ̃ ũi ũi (90)

simplifies to
(β− 1)ρ̃ ũi ũi. (91)

This source term is proportional to the kinetic energy. This new set of exponents may
be a preferred choice in numerical simulations if the thermal energy dominates the local
kinetic energy in the non-inertial frame.

4.3. Primitive Fields as Simulation Variables

The key drawback in working with exponents (77) or (89) is the fact that they modify
the primitive fields (69)–(71). From the general transformed equations (74)–(76), we imme-
diately note that the homogeneous part of the equations is form-invariant. This allows for
straightforward numerical implementations of the transformed equations for any value
of the scaling exponents α and β treating the right hand side terms in Equations (74)–(76)
as sources. The equations no longer take the form of conservation laws, but this is not
a problem. In most practical situations this is a necessity. For example, if systems are
governed by a non-polytropic equation of state, then we must work with source terms
irrespective of the choice of the scaling exponents. We may as well work with the primitive
fields as simulation variables, that is, we choose

α = 0, β = 0. (92)

The use of primitive fields as simulation variables has the advantage of direct interpre-
tation.

4.4. Numerical Results

In numerical work, source terms are frequently treated. Depending on the problem
under consideration, source terms representing gravitational forces, electromagnetic forces,
energy release due to radiation, etc are routinely added. Therefore, numerical computation
in a moving frame can be performed at virtually no extra technical complication and at
no extra computational cost. Poludnenko and Khokhlov mostly focus on tests of moving
frame formulation of the fluid flow Equations (74)–(76) with zero exponents (92). They
only briefly discuss other choices of scaling parameters. They perform their numerical
simulations in a variety of frames for diverse physical problems. The details can be found
in their paper. The key points are summarised as follows:

• They consider several types of non-inertial reference frames: accelerating, expanding,
contracting, oscillating (sinusoidal) reference frames, etc.

• They treat in detail simulations of blast solutions (e.g., Sedov solution), converging
shock solutions (e.g., Guderley blast wave solution), problems involving expansion of
a gas sphere in vacuum, etc. They work in different reference frames best suited for
the problem at hand.

• They note that the computation in moving frames does not introduce systematic
errors. Numerical solutions properly converge to the exact ones when they are known,
e.g., the Sedov solution.
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• The method accuracy is valid even when solving the fluid equations for non-zero
values of the exponents α and β.

There are some problems for which numerical simulations in non-inertial frames
are not ideally suited. Such problems typically involve stationary regions of fluids in an
inertial frame. The canonical example being the strong explosion in an otherwise stationary
environment. (Expanding or collapsing environments where the ambient conditions are
vacuous or dynamically unimportant can be optimally treated in non-inertial frames.
In such problems, the ambient fluid can be set to be stationary in the computational–non-
inertial–frame.) However, the demonstration in [6] that the numerical solution converges
to the correct analytic Sedov solution is a crucial test of the method. The success of the
simulation clearly shows that the non-conservative nature of the method does not introduce
systematic errors and the Rankine–Hugoniot conditions are valid in the transformed
reference frame too. The Rankine–Hugoniot conditions were shown to be valid in a subclass
of transformed reference frames with scaling exponents Equation (77) in [5], as reviewed
above. Further generalisation for different scaling exponents has not yet been carried out;
however, given the numerical results it is likely that a useful formulation exists in more
general situations.

5. Conclusions

In this article, we reviewed that the maximal kinematical invariance group of the Euler
equations of fluid dynamics is larger than the Galilei group. Specifically, the inversion
transformation (Σ : t → −1/t, �x → �x/t) leaves the Euler equations invariant. This duality
has been used to explain the striking similarities observed in simulations of the supernova
explosions and laboratory implosions induced in plasma by intense lasers. It is quite
remarkable that the inversion symmetry extends to discontinuous fluid flows as well. We
also reviewed how this comes about.

We summarised the work of Poludnenko and Khokhlov [6]. They presented methods
for computation of fluid flows characterised by large degree of expansion or contraction.
The key idea is the transformation to a non-inertial reference frame. The scaling transforma-
tion of the primitive fluid variables provides a degree of flexibility. The use of non-inertial
frames often leads to non-conservative formulation of the fluid equations, however, this
does not affect the accuracy of the numerical work. For many problems of astrophysical
and geophysical interests, going to an appropriate non-inertial frame allows for a cleaner
extraction of relevant physics. We focused on [6] because of its close connection to the
invariance properties of fluid equations.

There are several other papers addressing these issues, see, for example [15,16] and
references therein. Similar ideas are frequently used in simulations of galaxies and the
large-scale structure in an expanding universe and in atmospheric simulations.
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Appendix A. Implosion Dual of the Sedov Explosion Solution

In this appendix we write down the explicit implosion solution dual of the Sedov
explosion solution. To the best of our knowledge this has not been carried out before.
(Drury and Mendonça in [3] have made some elementary remarks. They comment that
Dwarkadas and Drury would publish details on the implosion solution dual to the Sedov
solution in a separate paper. However, we are unable to locate the relevant references.
Perhaps the results were not communicated to a journal. We will be glad if someone can
point out relevant references to us.) We start with a brief review of the Sedov solution. We
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then apply the duality transformation to write the dual implosion solution. Some properties
of the dual solution are presented. For the Sedov solution our presentation closely follows
([7], Section 99).

Appendix A.1. Sedov Solution

Sedov solution refers to an exact solution of compressible fluid dynamics equations in
which spherical shock of great intensity propagates radially outwards as a result of a strong
explosion. Strong explosion is characterised by the instantaneous release of energy E at the
center. The equation of fluid dynamics in spherical symmetric situations take the form

∂ρ

∂t
+

∂(ρu)
∂r

+
2ρu

r
= 0,

∂u
∂t

+ u
∂u
∂r

+
1
ρ

∂p
∂r

= 0,
∂s
∂t

+ u
∂s
∂r

= 0, (A1)

where s = ln (p ρ−γ). The last equation is the conservation of entropy. For the Sedov
solution, the pressure discontinuity is very large: the pressure behind the shock is p1
is much larger than the pressure in front of the shock p0. Sedov solution neglects p0
everywhere (more on this later). The flow pattern is completely determined by the energy
released E and the ambient density ρ0. The ratio of densities just behind and front of the
shock is obtained by the Rankine–Hugoniot condition,

ρ1 =
γ + 1
γ− 1

ρ0, (A2)

assuming p1 � p0. The shock front is defined by

R(t) = ξ0

(
E
ρ0

)1/5
t2/5. (A3)

The propagation velocity of the shock is

D =
dR
dt

=
2
5

R
t

. (A4)

Now, using the other two Rankine–Hugoniot conditions, which determine the gas
velocity u1 and pressure p1 immediately behind the shock front, we obtain

p1 =
2

γ + 1
ρ0D2, u1 =

2
γ + 1

D. (A5)

Note that as the shock expands p1 and u1 also change as a function of time. We define

ξ =
r

R(t)
(A6)

and define

p(r, t) =
8ρ0

25(γ + 1)
· r2

t2 · p̌(ξ), (A7)

u(r, t) =
4

5(γ + 1)
· r

t
· ǔ(ξ), (A8)

ρ(r, t) = ρ0
γ + 1
γ− 1

· ρ̌(ξ). (A9)

Variables p̌, ǔ, ρ̌ are dimensionless pressure, velocity, and density. These are functions
of the dimensionless variable ξ. The Rankine–Hugoniot jumps conditions in terms of these
functions become

p̌ = ǔ = ρ̌ = 1 at ξ = ξ0. (A10)
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These are the new boundary conditions. We warn the reader that there is a huge
variation in the literature on the use of dimensionless variables for pressure, density,
and velocity.

Using self-similarity of the solution one can argue that energy contained in a sphere
of constant ξ remains constant in time. This gives an integral of motion. The argument
proceeds as follows. For more details see [7]. Consider a spherical volume size r at constant
ξ. It expands at the rate 2r

5t . The energy exiting the sphere in time dt due to the motion of
the fluid is

4πr2 · ρvs.
(

h +
1
2

v2
)
· dt. (A11)

This energy must be equal to the increase in the internal energy of the sphere in time
dt due to its expansion

4πr2 · ρ
(

ε +
1
2

v2
)
· 2r

5t
· dt. (A12)

Equating the two expressions give the first integral,

p̌(ξ)
ρ̌(ξ)

=
γ + 1− 2ǔ(ξ)

2γǔ(ξ)− γ− 1
ǔ2(ξ). (A13)

We obtain the remaining equations from the mass and entropy conservation equations.
These equations simplify in the form

dǔ
d ln ξ

+

(
ǔ− γ + 1

2

)
d ln ρ̌

d ln ξ
= −3ǔ, (A14)

and
d

d ln ξ

(
ln

p̌
ρ̌γ

)
=

5(γ + 1)− 4ǔ
2ǔ− (γ + 1)

. (A15)

These equations can be integrated to give implicitly the functions p̌(ξ), ǔ(ξ), ρ̌(ξ).
They take the form(

ξ0

ξ

)5
= ǔ2

(
5(γ + 1)− 2(3γ− 1)ǔ

7− γ

)ν1
(

2γǔ− γ− 1
γ− 1

)ν2

, (A16)

ρ̌ =

(
2γǔ− γ− 1

γ− 1

)ν3
(

5(γ + 1)− 2(3γ− 1)ǔ
7− γ

)ν4
(

γ + 1− 2ǔ
γ− 1

)ν5

, (A17)

where

ν1 =
13γ2 − 7γ + 12
(3γ− 1)(2γ + 1)

, (A18)

ν2 = −5(γ− 1)
2γ + 1

, (A19)

ν3 =
3

2γ + 1
, (A20)

ν4 =
13γ2 − 7γ + 12

(2− γ)(3γ− 1)(2γ + 1)
, (A21)

ν5 =
2

γ− 2
. (A22)

Here we have corrected a few typos from [7] (the ν5 there has a typo). The parameter
ξ0 is determined by the requirement that the total energy of the gas up to radius R(t) is
E. Other details of the solution can be found in [7,13]. Although reference [13] does not
discuss the explicit solution, the discussion on the physical properties of the solution is
very thorough and lucid.
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Appendix A.2. Duality in Spherical Coordinates

In order to work out the implosion dual it is instructive to first work out the invariance
of the simplified fluid Equation (A1) in spherical coordinates. To this end, we define the
new time (now we use the notation t̃ for the new time as opposed to τ) and the new radial
variable r̃

r̃ =
r

a(t)
, t̃ =

∫ t

0

dt
a(t)β+1 , (A23)

and rescale pressure and density as,

ρ̃(r̃, t̃) = aαρ(r, t), (A24)

p̃(r̃, t̃) = aα + 2βp(r, t). (A25)

These transformations give

u = a−β

(
ũ + r̃

d ln a
dt̃

)
. (A26)

As for the derivatives we need to use

∂tX =
∂X
∂t̃
· ∂t̃

∂t
+

∂X
∂r̃
· ∂r̃

∂t
= a−β−1 ∂X

∂t̃
− r̃a−β−1 d ln a

dt̃
∂X
∂r̃

, (A27)

and
∂rX =

∂X
∂r̃
· ∂r̃

∂r
= a−1 ∂X

∂r̃
. (A28)

Now it is not difficult to verify that:

1. The continuity equation is form invariant for α = 3.
2. The momentum equation is form invariant provided ä = 0 and β = 1.
3. The entropy equation is form invariant for γ = 5/3.

Appendix A.3. Implosion Dual

We choose a(t) = t. Then,

r̃ =
r
t
, t̃ = −1

t
. (A29)

Since the radial variable does not undergo an inversion, the interior Sedov solution is
mapped to an interior solution, and the exterior solution is mapped to an exterior solution.
Due to this, the dual solution does not satisfy any physically interesting boundary condi-
tions, i.e., it cannot be compared with standard implosion solutions of the sort discussed in
say, chapter XII of [13]. For a simple physically interesting laboratory realisable implosion
solution, one would require the interior to be stationary at fixed density and negligible
pressure. This is certainly not the case for the dual solution. On the contrary the exterior
solution is at zero pressure (hence there the speed of sound is zero) and the fluid is moving.

We ask in what sense is the solution an implosion solution. Does it satisfy expected
properties, specifically the Rankine–Hugoniot jumps conditions? We take 0 < r̃ < ∞ and
−∞ < t̃ < 0. For the initially stationary exterior region the velocity transformation gives

ũ(r̃, t̃) =
r̃
t̃
. (A30)
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Since t̃ is negative, the velocity of the exterior fluid is directed inwards; an implosion.
The location of the shock is

R̃(t̃) =
R(t)

t
= −t̃ R(t) = ξ0

(
E
ρ0

)1/5
(−t̃)3/5. (A31)

As t̃ increases from negative value towards zero, R̃(t̃) decreases, i.e., it represents an
implosion. The velocity of the shock surface is

dR(t̃)
dt̃

=
3
5

R̃(t̃)
t̃

. (A32)

Since the inward velocity of the shock surface is smaller than the inward velocity of
ambient fluid just outside, the fluid is injected into the interior region through the shock
surface. Thus, in this set-up the exterior fluid of low (zero) pressure is getting compressed
at the shock surface into the interior region.

Let us now calculate the velocity of the fluid just behind the shock surface. Recall
ξ = r

R(t) . It follows that,

ξ =
r̃

R̃(t̃)
, (A33)

so the interpretation of ξ as a dimensionless variable remains the same. We have

ũ(r̃, t̃) = − 4
5(γ + 1)

· r̃
t̃
· ǔ(ξ) + r̃

t̃
, (A34)

for the interior region. Similarly, other variable can be constructed. At the shock surface,

ũ = − 4
5(γ + 1)

R̃
t̃
+

R̃
t̃
=

1 + 5γ

5(1 + γ)

R̃
t̃

. (A35)

the frame of the shock, we can confirm that these velocities satisfy the Rankine–Hugoniot
conditions. The other Rankine–Hugoniot conditions can also be checked similarly. The post-
shock pressure increases as (−t̃)−19/5. These results are all consistent with the comments
in Drury and Mendonça in [3].
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Abstract: Recently the ’t Hooft–Polyakov monopole solutions in Yang–Mills theory were given new
physical interpretation in the geometric theory of defects describing the continuous distribution of
dislocations and disclinations in elastic media. It means that the ’t Hooft–Polyakov monopole can be
seen, probably, in solids. To this end we need to compute the corresponding spin distribution on
lattice sites of crystals. The paper describes one of the possible spin distributions. The Bogomol’nyi–
Prasad–Sommerfield solution is considered as an example.

Keywords: ’t Hooft–Polyakov monopole; geometric theory of defects; disclination

1. Introduction

Many real solids possess a spin structure. For example, ferromagnets are characterized
by the distribution of magnetic moments described by the unit vector field (n-field) in the
continuum approximation. This unit vector field may have defects (singularities) that are called
disclinations. Disclinations define many important properties of media and attract much interest
in physics (see, e.g., [1,2]). Real solids may have many disclinations, and it is highly likely
to have the continuous description for their distribution. The approach based on the n-field
is applicable for single disclinations when we can write down equations for the n-field with
suitable boundary conditions on the corresponding cuts in media. However this approach is
not applicable for the continuous distribution of disclinations because, in this case, the n-field
has singularities at each point and therefore does not exist at all.

The promising approach to this problem is the geometric theory of defects [3,4] which
describes defects in elastic media within the Riemann–Cartan geometry. To avoid the
problem with singularities of the n-filed we introduce new variable–the SO (3) connection–
which is smooth even for continuous distribution of disclinations. The curvature tensor
for this connection acquires the physical interpretation as the surface density of the Frank
vector characterizing disclinations. The Frank vector for a single straight linear disclination
equals, by definition, to the total rotational angle of the n-field when it goes around the
disclination axis which is a multiple of 2π. If defects are absent in some domain of media,
then the SO (3) connection is a pure gauge, and the n field can be reconstructed in this
domain in full agreement with standard models.

We note that the geometric theory of defects is a more general model also describing the
distribution of dislocations that are defects in elastic media itself. These defects correspond
to nontrivial torsion, the latter having physical interpretation as the surface density of the
Burgers vector of dislocations. The Burgers vector for a single straight linear dislocation
is equal, by definition, to the jump of the displacement vector when it goes around the
dislocation axis. In the present paper, we deal only with disclinations assuming that the
metric is Euclidean which corresponds to the absence of elastic stresses but the SO(3)
connection is nontrivial.

There is some interest in describing effects of dislocations on physical properties of
solids within the geometric theory of defects (see, e.g., [5–14]). In the present paper, we
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deal only with another defects–disclinations. As far as we know, the first application
of the geometric theory of defects to disclinations was given in [15–17] where straight
linear disclinations were described in full agreement with the classical theory [1]. Several
examples of point disclinations were given in [18]. A short review of disclinations in the
geometric theory of defects can be found in [19].

Since the Lie algebras SO (3) and SU(2) are isomorphic, then the static solutions of
SU(2) gauge models can be considered as describing some distribution of disclinations and,
possibly, dislocations. In particular, it was noted that the ’t Hooft–Polyakov monopole has
straightforward physical interpretation in the geometric theory of defects describing media
with continuous distribution of disclinations and dislocations [20]. It means that the ’t
Hooft–Polyakov monopole can, in principle, be observed in solids. There arises a problem.
On the one hand, the solution describes the continuous distribution of disclinations, and
the n-field does not exist in a strict sense. On the other hand, there is a spin in each site of
the crystal lattice. The problem relates to what is the corresponding spin distribution for a
given nontrivial SO (3) connection? The answer to this question relies on the definition
of the presumable paths of parallel transport of spins and requires additional physical
assumptions which are not known at present. In the present paper, we consider one of
the possible and simplest way to compute spin distribution for the ’t Hooft–Polyakov
monopoles. As an example, we consider the Bogomolny–Prasad–Sommerfield solution.

2. The ’t Hooft–Polyakov Monopole

The famous ’t Hooft–Polyakov monopoles [21,22] are the exact solutions of the field
equations in the SU (2) gauge theory interacting with the triplet of scalar fields in the adjoint
representation and λϕ4-type interaction (for review, see, e.g., [23–25]). The solutions are static
and spherically symmetric. Therefore, the problem is reduced to minimization of the three-
dimensional Euclidean energy functional which can be regarded as the free energy expression
in solid state physics. We consider the SU (2) connection components as the SO (3) connection
because their Lie algebras coincide, the triplet of scalar fields being the source of defects.
Moreover, we assume that the SO (3) group acts not only in the isotopic space but also in the
tangent space to the space manifold R3, the metric of the space being Euclidean. So the ’t
Hooft–Polyakov monopoles correspond to Euclidean metric (and triad) and nontrivial SO (3)
connection which give rise to nontrivial Riemann–Cartan geometry of space.

Let us consider three-dimensional Euclidean space R3 with Cartesian coordinates
xμ and Euclidean metric δμν, μ, ν = 1, 2, 3. The spherically symmetric SU (2) gauge fields
Aμ

i(x), i = 1, 2, 3 interacting with the triplet of scalar fields ϕi(x) in the adjoint representa-
tion minimize the three-dimensional energy [23–25]:

ε :=
∫

d3x
(

1
4

FμνiFμνi +
1
2
∇μ ϕi∇μ ϕi +

1
4

λ
(

ϕ2 − a2)2
)

, (1)

where indices are raised and lowered by Euclidean metrics δμν and δij,

Fμν
i :=∂μ Aν

i − ∂ν Aμ
i + Aμ

j Aν
kε jk

i,

∇μ ϕi :=∂μ ϕi + Aμ
j ϕkε jk

i.
(2)

− are the curvature tensor components for SU (2)-connection and the covariant deriva-
tive of scalar fields; λ > 0, a > 0 – are coupling constants, εijk is the totally antisymmetric
tensor, ε123 := 1, and ϕ2 := ϕi ϕi.

The spherically symmetric ansatz is:

Aμ
i =

εμ
ijxj(K− 1)

r2 , ϕi =
xi H
r2 , (3)

where K(r) and H(r) are some dimensionless functions on radius r :=
√

x2, x2 := xμxμ.
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We assume that the SO (3) group acts simultaneously in the isotopic space and base
manifold. Therefore the difference between Greek and Latin indices disappear, but we
shall distinguish them as long as possible.

The Euler–Lagrange equations for functional (1) in the spherically symmetric case
reduce to:

r2K′′ =K
(
K2 + H2 − 1

)
,

r2H′′ =2HK2 + λ
(

H2 − a2r2
)

H.
(4)

At present we know only a few exact analytic solutions to this system of equations for
λ = 0 [26–28] (see also [29–32]). In the following, we consider the Bogomol’nyi–Prasad–
Sommerfield solution [26,27]:

K =
lr

sh(lr)
, H =

lr
tanh(lr)

− 1, l > 0. (5)

It is easily checked that this solution has finite energy (1).
Solutions of Equation (4) describe ’t Hooft–Polyakov monopoles in the SU(2) gauge

model. In the geometric theory of defects, we consider functional (1) as the expression
for the free energy describing static distribution of disclinations and dislocations in elastic
media with defects, the triplet of scalar fields being the source of defects. This is possible
because the Lie algebra SU(2) is isomorphic to SO(3), and scalar fields are real (in the
fundamental representation of SO(3) group).

The Euclidean metric means that elastic stresses are absent in media. The Cartan
variables (triad and SO (3) connection) for monopole solutions are:

eμ
i = δi

μ, ωμ
ij = Aμ

kεk
ij = (δ

j
μxi − δi

μxj)
K− 1

r2 , (6)

where we use the spherically symmetric SO(3)-connection (3). In the considered case,
simple calculations yield the following expressions for curvature and torsion:

Rμν
k :=

1
2

Rμν
ijεij

k = Fμν
k =εμν

k K′

r
− εμν

jxjxk

r3

(
K′ − K2 − 1

r

)
, (7)

Tμν
k =

(
δk

μxν − δk
νxμ

)K− 1
r2 . (8)

In the geometric theory of defects, curvature (7) and torsion (8) have physical meaning
of surface densities of Frank and Burgers vectors, respectively. That is they are equal to
k-th components of respective vectors on surface element dxμ ∧ dxν. If sμ is normal to the
surface element, then there are the following densities of Frank and Burgers vectors:

fμ
i :=

1
2

εμ
νρRνρ

i =
1
3r

δi
μ

(
2K′ + K2 − 1

r

)
− 1

r

(
x̂μ x̂i − 1

3
δi

μ

)(
K′ − K2 − 1

r

)
, (9)

bμ
i :=

1
2

εμ
νρTνρ

i = εμ
ij x̂j

K− 1
r

, (10)

where x̂μ := xμ/r and tensor fμ
i is decomposed into irreducible components.

We see that ’t Hooft–Polyakov monopoles describe a continuous distribution of discli-
nations and dislocations in media. The problem lies in what is seen in real crystals. We
do not observe directly the distribution of the Frank and Burgers vectors, but we observe
instead the distribution of spins on lattice sites of a crystal. So, we have to compute it
for a given SO (3) connection. In what follows, we concentrate our attention only on the
distribution of disclinations as the first step in the analysis.

3. Distributions of Spins

To compute the distributions of spins, we follow the idealogy adopted in lattice gauge
models [33] (for review, see, e.g., [34]). For simplicity, we consider the cubic lattice. There is
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a spin at each lattice site. We ascribe the rotational SO (3) matrix to each link of the lattice.
This is possible because we know the connection, and the rotational matrix is given by the
path-ordered integral of the connection along the link which corresponds to the parallel
transport of spins. Thus we obtain the unique rotational matrix at each link. The problem
is that curvature of the connection is nontrivial, and the parallel transport of spins depends
on the path. In particular, we must avoid closed paths because a spin cannot take different
directions at a given site. Thus we fix the spin at one site, say, at the origin of the coordinate
system, and parallelly transport it to the whole lattice. The paths have to reach all sites but
without closed loops. It is clear that there are many possibilities. To choose the unique one,
we must engage additional physical assumptions. At the moment, we do not know how
to do this uniquely and therefore consider one of the simplest possibilities, because it is
interesting to see how the ’t Hooft–Polyakov monopole may look in a crystal.

The following calculations are performed in the continuous approximation.
Let the spin (unit vector) n0 := n(0) = (0, 0, 1) at the origin be directed along the

x3 := z axis. We parallelly transport it to a point x1 along a path x(t), t ∈ [0, 1], x(0) := 0,
x(1) = x1. A path is assumed to have no intersection points. In our notation, we use the
covector n = (n1, n2, n3), ni := njδji, instead of vector components (sure, they coincide in
the Cartesian coordinates). Then the result of parallel transport is given by the path-ordered
exponent (see, e.g., [35], Section 14.5).

ni(x1) = Si
jn0j = P exp

(∫ 1

0
dt ẋμωμ

)
i

j

n0j, (11)

where Si
j(x1, x0) is the rotational matrix and the dot denotes differentiation with respect to

the path parameter t.
First, we consider the parallel transport from the origin to a point xμ

1 along the ray
x(t) := (x1

1t, x2
1t, x3

1t). Then ẋμ = (x1
1, x2

1, x3
1) and the integrand for connection (6) is zero:

ẋμ
1 ωμ

ij = xμ
1 (δ

j
μxi − δi

μxj)
K− 1

er2 = (xj
1xi − xi

1xj)
K− 1

er2 = 0,

Because x(t) is proportional to x1 along a ray, and the parallel transport does not
change the vector.

We see that parallel transport along rays from the origin in R3 produces no effect on
spins for the ’t Hooft–Polyakov connection independently of function K(r).

Let us consider another possibility for the parallel transport. First, we transport the
vector n0 from the origin along the x3 axis. Previous calculations tell us that it is not
changed. Then we parallelly transport it along the rays in the perpendicular planes x1, x2.
Thus the path is x(t) := (y1t, y2t, z = const) and ẋμ = (y1, y2, 0), where x1 = (y1, y2, z) is
the final point (now we write the coordinate indices of y at the bottom to distinguish them
from exponents). The integrand in Equation (11) for connection (6) becomes:

ẋμωμ
ij(t) = Bk(t)εk

ij, (12)

where

B1 = −y2zt
K− 1

er2 , B2 = y1zt
K− 1

er2 , B3 = 0.

Now one can easily check that the integrands commute:

[ẋμωμ(t1), ẋνων(t2)]i
j = −Bk(t1)Bl(t2)εkl

mεmi
j = 0, ∀t1, t2.

Therefore the ordered exponent (11) coincides with the usual one and can be easily calculated:

Ckεk
ij :=

∫ 1

0
dtẋμωμ

ij = εk
ij
∫ 1

0
dt Bk, (13)

where
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C1 = −y2z
eρ2 I, C2 = −y1z

eρ2 I, C3 = 0, ρ2 := y2
1 + y2

2,

and

I :=ρ2
∫ 1

0
dt t

K− 1
r2 =

∫ √ρ2+z2

z
dr
(

K
r
− 1

r

)
,

r2 = ρ2t2 + z2 ⇒ rdr = ρ2tdt.

For the Bogomol’nyi–Prasad–Sommerfield solution (5), the integral can be easily taken:

I = ln

[
z√

ρ2 + z2

tanh(l
√

ρ2 + z2)

tanh(lz)

]
, l → 2l, (14)

where we rescaled the constant l → 2l for simplicity. The rotational matrix for the
Bogomol’nyi–Prasad–Sommerfield solution is:

Si
j = exp(Ckεk)i

j = δ
j
i cos C +

Ckεki
j

C
sin C +

CiCj

C2 (1− cos C), (15)

where
C2 := CkCk =

z2

e2ρ2 I2.

For the Bogomol’nyi–Prasad–Sommerfield solution, the rotational matrix is:

S =

⎛⎜⎜⎜⎝
y2

2
ρ2 +

y2
1

ρ2 cos C − y1y2
ρ2 (1− cos C) − y1

ρ sin C

− y1y2
ρ2 (1− cos C) y2

1
ρ2 +

y2
2

ρ2 cos C − y2
ρ sin C

y1
ρ sin C y2

ρ sin C cos C

⎞⎟⎟⎟⎠. (16)

One can easily check that S = 1 for ρ = 0 or z = 0. In addition, the asymptotics at
infinities are the same:

S → 1 for ρ → ∞, z = const �= 0 or |z| → ∞, ρ > 0.

Now we can easily calculate spins components:

n1 =
y1

ρ
sin C, n2 =

y2

ρ
sin C, n3 = cos C, (17)

where C =
z
eρ

I.

We see, that the spin distribution is invariant with respect to rotations around the z
axis, as expected. Therefore, without loss of generality, we may put y2 = 0 to visualize the
distribution. Then:

n1 = sin C, n2 = 0, n3 = cos C,

where

C =
z

ey1
ln

⎡⎣ z√
y2

1 + z2

tanh(l
√

y2
1 + z2)

tanh(lz)

⎤⎦.

It implies that spins are rotated on the same plane y2 = 0. The corresponding spin
distributions are shown in Figure 1 for a different range of coordinates.
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Figure 1. Spin distributions for the Bogomol’nyi–Prasad–Sommerfield solution for different ranges of coordinates:
y1, z ∈ [−1, 1] (a); y1, z ∈ [−10, 10] (b); and y1, z ∈ [−1000, 1000] (c). The plots are drawn numerically for e = 1 and l = 1.

Notice that for large coordinate values, the function tanh goes exponentially to
unity and:

C ≈ z
ey1

ln

⎡⎣ z√
y2

1 + z2

⎤⎦.

This function is homogeneous, and the spin distribution is self-similar. Therefore the
Figure 1b,c are almost the same though the range of coordinates differs one hundred times.
The difference appears only near the origin, as shown in Figure 1a.

4. Conclusions

The geometric theory of defects describes dislocations and disclinations in elastic
media and crystals in the continuous approximation. It is well suited for the description
of single defects as well as their continuous approximation. In the present paper, we
consider media with Euclidean metric but nontrivial SO (3)-connection. This assumption
corresponds to the absence of elastic forces.

The famous ’t Hooft–Polyakov monopoles are static spherically symmetric solutions of
SU(2) Yang–Mills theory. The isomorphism of SU(2) and SO (3) Lie algebras implies that
the ’t Hooft–Polyakov monopoles have new physical interpretation in solid state physics.
In contrast to the original model, the SO (3) group acts now not in the isotopic space but
in the tangent space, giving rise to nontrivial torsion and curvature. These geometrical
notions have physical interpretation as surface densities of Burgers and Frank vectors in
the geometric theory of defects, respectively. To visualize these solutions in media, we
have to compute the corresponding spin distributions. This is done in the present paper.
We follow the prescription from lattice gauge theory. Spins are assumed to be located at
sites of simple cubic lattice. Afterwards the rotational matrix for a given SO (3) connection
is attributed to each link connecting neighboring sites. The spin is fixed at the origin and
parallelly transported along links to all other sites along non-intersecting paths. There are
many ways to do this, but we do not know the right prescription at present. Therefore
we choose one of the simplest ways. First, we parallelly transport the spin along the z
axis and then by radial rays in perpendicular planes. In this case, everything is computed
analytically in the continuous approximation. The Bogomol’nyi–Prasad–Sommerfield
solution is considered as an example for which we computed the spins distribution. The
particular feature of the obtained distribution is its self-similarity at large scales. This is
proved for the Bogomol’nyi–Prasad–Sommerfield solution, but seems to have place for
other monopole solutions.

We leave interesting questions, such as what kind of media have to be chosen for
experimental observation of monopoles and what is the right prescription for parallel
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transport of spins for reconciliation of the theory and practice, for future investigations.
The present paper is a small step in this direction but it shows that this is possible.
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Abstract: In this review, we collect, for the first time, old and new research results, and present future
perspectives on how hadron production, in high-energy scattering processes, can experimentally
probe fundamental questions of quantum gravity. The key observations that ignited the link be-
tween the two arenas are the so-called “color-event horizon” of quantum chromodynamics, and
the (de)accelerations involved in such scattering processes. Both phenomena point to the Unruh
(and related Hawking)-type effects. After the first pioneering investigations, such research studies
continued, including studies of the horizon entropy and other “black-hole thermodynamical” behav-
iors, which incidentally are also part of the frontier of the analog gravity research itself. It has been
stressed that the trait d’union between the two phenomenologies is that in both hadron physics and
black hole physics, “thermal” behaviors are more easily understood, not as due to real thermalization
processes (sometimes just impossible, given the small number of particles involved), but rather to a
stochastic/quantum entanglement nature of such temperatures. Finally, other aspects, such as the
self-critical organizations of hadronic matter and of black holes, have been recently investigated. The
results of those investigations are also summarized and commented upon here. As a general remark,
this research line shows that we can probe quantum gravity theoretical constructions with analog
systems that are not confined to only the condensed matter arena.

Keywords: analogs; hadronic physics; quantum gravity

1. Introduction

Analogs have reached a level of maturity in theoretical modeling, e.g., [1], and exper-
imental modeling, e.g., [2], which might bring them to the forefront in the experimental
search for quantum gravity (QG) signatures, or, in general, in the theoretical research in
fundamental high-energy physics, see, e.g., the contribution [3] to this Issue.

There are two obstacles. First, there is the skepticism of a large part of the theoretical
community, which still do not trust analogs as a way to test the fundamental ideas; second,
the need for a new era in the analog enterprise, namely to reach dynamical effects, rather
than kinematical effects 1.

Here, we describe a line of research, initiated in [5,6], which addresses both problems.
We focus on a specific high-energy scenario, where the effects of a large acceleration are
evident; much of the subsequent work was carried out to understand the meaning of
entropy in this context and its relation to BH entropy, which is a typical dynamical issue
(e.g., recall that Wald’s formula relates entropy to the action [7]).

The reproduction of aspects of gravitational physics, both classical and quantum,
by means of analogs, is mainly based on condensed matter systems. Examples range
from lasers [8–12] (see also the contribution [13] to this issue) to water-waves [14], and
from Bose–Einstein condensates [2] to graphene [15–25], and more [1].
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In particular, the detection of some form of the Unruh phenomenon [26–28] has been
proposed in various set-ups [8–11,14,17,18,29–31]. However, in many of the proposed
analog systems, the Unruh temperature

TU =
h̄a

2πckB
(1)

is still too small [5] for a direct experimental verification, as one sees that 1 m/s2 →∼
4× 10−21 K. In (1), a is the uniform acceleration, and we explicitly kept the Planck constant,
the speed of light, and the Boltzmann constant to ease the unit conversion. In the following,
we shall set to one h̄,c and kB.

Some encouraging results come from femtosecond laser pulses that can produce an
acceleration a � 1023 m/s2 [11], with the associated Unruh temperature TU ∼ 400 K. On the
other hand, the enormous accelerations (or decelerations) produced in relativistic heavy
ion collisions, a � 4.6× 1032 m/s2, have associated Unruh temperatures many orders of
magnitude larger, TU ∼ 1.85× 1012 K. A simple unit conversion shows that this is nothing
else than the hadronization temperature Th

TU ∼ 160 MeV ∼ Th . (2)

This fact triggered the investigation of hadron production, in high-energy collisions, as a
manifestation of the Unruh phenomenon in quantum chromodynamics (QCD) [5,6].

Of the latter we discuss it in this paper, by reviewing why such an interpretation is
natural, commenting on the various ramifications, and speculating on the possible future
directions. In other words, we elaborate on which aspects of this QCD phenomenology can
be taken as viable analogs of specific aspects of QG.

The underlying idea behind the latter analogies is based on quark confinement as a
phenomenon where a “horizon” (sometimes called “color horizon”, see, e.g., [32,33]) hides
those degrees of freedom to any observer, and only quantum (tunneling) effects could
explain a radiation phenomenon [5]. This is a non-perturbative quantum phenomenon, re-
lated to the chromomagnetic properties of the QCD vacuum (see for example reference [34]),
producing the squeezing of the chromoelectric field in quark–antiquark strings, with a
constant energy density. Let us comment a bit more on this.

Quark confinement can be described as due to a potential that grows linearly at
large distances, V = σr. This corresponds to a constant acceleration; henceforth, the
Rindler spacetime is the appropriate framework for this phenomenon. As well known,
the Rindler metric is equivalent to the near-horizon approximation of the BH metric,
with the acceleration equal to the surface gravity, k. Therefore, the local correspondence
between a linear potential and the near-horizon dynamics of a BH is a strong analogy.

This is another perspective as to why quark confinement can be related to a “color
horizon” [32,33], which hides the color degrees of freedom and a Rindler horizon, and
is, in turn, associated with a specific BH (in [35], some proposals of specific BHs could
account for this specific scenario). On the other hand, the Hawking radiation is a quantum
phenomenon associated with tunneling and pair creation near the event horizon [36,37].
This is a clear dynamical correspondence to the string-breaking and quark–antiquark pair
creation in the final process of the mechanism leading from the color degrees of freedom
until the formation of hadrons.

Finally, another delicate dynamical issue involves the entropy associated with a “color
event horizon”. This is an entanglement entropy between the quantum field modes on
the two sides of the horizon. As well known, such an entropy follows an area law [38–40],
similar to the entropy of a BH [41,42], when logarithmic corrections are not included,
or the entropy of a Rindler horizon [43]. Even though it is still an open question whether
entanglement entropy alone could account for the whole BH entropy, this is yet another
argument that strengthens the analogy between the two systems. Furthermore, in such QCD
environments, the entropy is a quantity routinely considered, e.g., in (quantum) statistical
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models. Henceforth, we have measurable and natural candidates for quantities that can
play the role of a BH entropy. As mentioned earlier, this is a very important milestone to
move analogs to the next era; that is, the possibility to reproduce BH thermodynamics,
with its intriguing fundamental open questions, such as the information paradox. For the
sake of completeness, let us recall that the general Page approach (i.e., to the calculation
of the entanglement entropy of an evaporating BH [44]) has been successfully applied to
gluon shadowing in deep inelastic scattering [45], following the proposal in [46].

In this review paper, we collect, for the first time, the most important (old and new)
results of this line of research; we comment on and discuss them. The paper is organized as
follows. In Section 2, we recall the main features of the Unruh effect, and of the related BH
physics, using the descriptions of the effects that make the link with hadron physics (that we
want to disclose) easier; this Section is also important for setting the notation. In Section 3,
we recollect three well-known aspects of the phenomenology of hadrons, which will be
scrutinized using the analogies and links with gravitational physics in the Sections that
follow. The hadronic phenomena described in Section 3.1 are reinterpreted as gravity
analogs in Section 3.2; the hadronic phenomena described in Section 4 are reinterpreted as
gravity analogs in Section 4.2; finally, the hadronic phenomena described in Section 5 are
reinterpreted as gravity analogs in Section 5.2. We close the review with our conclusions in
Section 6.

2. Accelerated Observers and near BH Horizon Observers

In this Section, we recall the main features of the Unruh effect, and the related BH
physics, which will mostly be used in the realizations in hadronic physics, which we discuss
later. In particular, we first discuss the interplay between pair production, tunneling, and
the Unruh effect. We then mention the correspondence between the near-horizon BH metric
and Rindler metric, and the area law obeyed by BH entropy.

Let us begin by discussing the Unruh effect and its relation to tunneling and pair
production. For this part, we follow [5].

Consider the action, A, of a particle of mass m, subject to a constant force derived from
a potential ϕ(x):

A = −
∫

(m ds + ϕ dt) . (3)

For a constant force, the one-dimensional (1D) potential is ϕ = −σx modulo, an additive
constant, and the equations of motion of the particle are

dpx

dt
= σ,

dp⊥
dt

= 0 . (4)

Using ds2 = (1− v2(t)) dt2 and the equations of motion, one can evaluate action A [5]

A(τ) =
∫ τ

dt (−m
√

1 − v(t)2 + σx(t))

= − m
a

arcsinh(aτ) +
σ

2 a2 [a τ (
√

1 + a2 τ2 − 2) + arcsinh(a τ)] + const . (5)

In quantum theory, the particle has a finite probability to be found under the potential
barrier, σx, in the classically forbidden region. Mathematically, this comes about because
action A, being an analytic function of τ, has an imaginary part

A(τ) =
m π

a
− σπ

2 a2 =
π m2

2σ
, . (6)

which corresponds to the motion of a particle in Euclidean time, tE, with the Euclidean
trajectory

x(tE) = a−1
(√

1 − a2 t2
E − 1

)
, (7)
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bouncing between the two identical points xa = −a−1 at tE,a = −a−1 and xb = −a−1 at
tE,b = a−1, and the turning point xa = 0 at tE,a = 0.

In the quasi-classical approximation, the rate of tunneling under the potential barrier
is given by

Γvac→m ∼ e−2 ImA = e−
π m2

σ , (8)

which gives the probability to produce a particle and its antiparticle (each of mass m) out of
the vacuum, under the effects of a constant force σ. The ratio of the probabilities to produce
states of masses M and m is then

Γvac→M
Γvac→m

= e−
π (M2 −m2)

σ . (9)

The relation (9) had a double interpretation, in terms of both the Unruh and the
Schwinger effects, see, e.g., [47–49] and references therein. Indeed, consider a detector with
quantum levels m and M, moving with a constant acceleration. Each level is accelerated
differently; however, if the splitting is not large, M−m � m, we can introduce the average
acceleration of the detector

ā =
2σ

M + m
. (10)

Substituting (10) into (9), we arrive at

Γvac→M
Γvac→m

= e
2 π (M−m)

ā . (11)

This expression is reminiscent of the Boltzmann probabilistic weight in a heat bath, with an
effective temperature, T = ā/2π. This is the Unruh effect.

A similar study of the Unruh radiation (tunneling through a barrier by WKB-like
methods) was carried out in [50]. A more rigorous derivation of the Unruh effect can
be given by recalling that the uniformly accelerated detector in the Minkowski space is
equivalent to the inertial detector in the Rindler space. The vacuum in the Minkowski space
is related to the vacuum in the Rindler space by a nontrivial Bogoliubov transformation,
which shows that the Rindler vacuum is populated with thermal radiation of temperature
T = a/2π (for a review, see [28]).

We will now focus on another aspect of the Hawking–Unruh phenomenon that is
crucial for the analogy between quark confinement and the physics of curved spacetime
(which we shall discuss later)—the correspondence between the Rindler metric and the
near-horizon approximation of a BH metric.

The Schwarzschild metric for a BH of mass M, in radial coordinates, is given by

ds2 = f (r)dt2 − f (r)−1 dr2 − r2[dθ2 + sin2 θdφ2], (12)

with

f (r) =
(

1− 2GM
r

)
. (13)

The equation f (r) = 0 sets the Schwarzschild radius, RS, as the radius of the spherical
event horizon

RS = 2G M. (14)

This means that M(RS) = (2G)−1 RS, which is a linear law for the BH mass. This is
particularly interesting if one notices that an analogous behavior is enjoyed by the confining
potential of the strong interactions.

In Equation (12), the coordinate transformation [39] is

η =

√
f (r)
κ

, (15)
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where the surface gravity κ is given by

κ =
1
2

(
∂ f
∂r

)
r=RS

, (16)

one obtains, for r → RS, the BH metric in the near-horizon approximation

ds2 = η2κ2dt2 − dη2 − R2(dθ2 + sin2θdφ2) . (17)

To compare the previous result with the Rindler metric of a constantly accelerated
observer, let us recall the relations among Rindler coordinates, (ξ, τ) and the Minkowski
coordinates (x, t)

x = ξ cosh aτ , t = ξ sinh aτ, (18)

where a = σ/m denotes the acceleration in the instantaneous rest frame of m, and τ
is the proper time. With these, the metrics of such an accelerating system (in spherical
coordinates) are

ds2 = ξ2a2dτ2 − dξ2 − ξ2 cosh2 aτ(dθ2 + sin2 θdφ2) . (19)

Comparing Equations (19) and (17), it is evident that the system in uniform acceleration is
the same as a system near a spherical BH horizon, provided we identify the surface gravity
κ with the acceleration a.

The final topic of this Section will be entropy and its area law, a feature common to
BH and constantly accelerated systems.

The gravitational entropy is related to the existence of a horizon, which forbids an
observer to acquire knowledge (or what is happening beyond it). In a way, it could be seen
as a measure of the ignorance of the fate of matter (and space) degrees of freedom that
contribute to making the BH.

As well known, such entropy obeys the Bekenstein–Hawking area law [41,42]:

SBH =
1
4

A
�2

P
, (20)

where �P =
√

G is the Planck length, and, for Schwarzschild BH: A = 4πR2
S. Once more

the only parameter of interest is the mass of the BH: M ∼ RS.
On the other hand, it is also well known that access to the degrees of freedom describ-

ing an accelerated observer is also restricted by a horizon—the Rindler horizon. Therefore,
the entropy of the so-called Rindler wedge was evaluated (similar to the BH). The compu-
tation was performed a long time ago [43], and it turns out that S = (1/4) (Aa/�2

P), where
Aa is the area of a surface of the constant Rindler spatial coordinate, x, and the proper time,
τ. If yandz are the Minkowski coordinates (we suppose that the acceleration is along the
x-axis), the entropy is actually infinite; however, an entropy density, per unit area, can be
defined for this spacetime.

Finally, we recall another well-known result, namely that the entanglement (hence,
quantum) entropy of a bipartite system (which includes both the Rindler and the BH cases
just discussed, due to their event horizons) also obeys an area law. This has been shown in
various quantum field theoretical setups, see, e.g., [38–40].

In the following, we schematically recall those results of the phenomenological analysis
of high-energy collision data, which will then be reconsidered in light of the gravity analog,
in a separate dedicated Subsection.
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3. Hadron Production in High-Energy Collisions

3.1. Statistical Hadronization Model

There is abundant multihadron production in high-energy collisions, starting from the
electron-positron annihilation, and then in the proton–proton, proton–nucleus, and nucleus–
nucleus scattering processes. The relative rates of the secondaries produced are well
accounted for by ideal gases of all hadrons and hadronic resonances, at a fixed temperature
T and baryochemical potential μB. This is known as the statistical hadronization model
(SHM) [51–53]. There is one (well-known) caveat though. The strangeness production one
finds is reduced with respect to the rates predicted by the SHM. However, this suppression
can be taken into account by one further parameter, 0 < γs ≤ 1, if the predicted rate for a
hadron species containing ν = 1, 2, 3 strange quarks is suppressed by the factor γν

s [54].
To describe such a resonance gas, the basic tool one needs is the grand-canonical

partition function for an ideal gas at the temperature T in a spatial volume V

ln Z(T) = V ∑
i

diγ
νi
s

(2π)3 φ(mi, T) , (21)

with di specifying the degeneracy (spin, isospin) of the species i, and mi its mass. The sum
runs over all species. For simplicity, we assume for the moment μB = 0. Here,

φ(mi, T) =
∫

d3 p exp{
√

p2 + m2
i /T} ∼ exp(−mi/T) , (22)

is the Boltzmann factor for species i, so that the ratio of the production rates, Ni and Nj,
for hadrons of species i and j, is given by

Ni
Nj

=
diγ

νi
s φ(mi, T)

djγ
νj
s φ(mj, T)

, (23)

where νi = 0, 1, 2, 3 specifies the number of strange quarks in species i.
Both the temperature T and strangeness suppression factor γs were measured, at vari-

ous collision energies, and for different collision configurations. The resulting temperature
of the emerging resonance gas is found to have a universal value

Tc � 160± 10 MeV , (24)

for all (high) collision energies, where μB � 0 and all collision configurations, including
hadron production in the e+e− annihilation.

Moreover, in heavy ion collisions at lower energy, the finite baryon density has a
crucial role and the dynamics are dominated by Fermi statistics and baryon repulsion.
In the T − μB plane, the dependence of the hadronization temperature on μB defines the
chemical “freeze-out” curve, which can be described by specific (but poorly understood,
see next Section) criteria [55–59].

Indeed, a fixed ratio between the entropy density, s, and the hadronization temperature,
s/T3 � 7, or the average energy per particle, < E > /N � 1.08 GeV reproduces the curve
in the T − μB plane, as shown in Figure 1, where the percolation model result [55] is
also plotted.
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Figure 1. Freeze-out curve in the statistical hadronization model compared with the criteria discussed
in the text. The green squares without error bars are the QCD lattice simulation data.

The agreement of the SHM with data on the abundances of different hadronic species,
from e+e− annihilation to heavy ion collisions, is puzzling. In heavy ion collisions, it is pos-
sible to expect the emergence of statistical distributions as a result of intense reinteractions;
however, this seems very implausible in the e+e− annihilation at high energies because the
density of the produced hadron is small there.

Moreover, in e+e−, the jet structure, the angular distributions of the produced hadrons,
and the inter–jet correlations, point to the important role of QCD dynamics of gluon
radiation. Thus, the “phase space dominance” cannot be invoked. Indeed, in all high-
energy collisions, for

√
(s) ≥ 20 GeV, the hadronization temperature is essentially constant

and independent from the initial configurations.
The previous aspects call for some universal mechanism at the root of hadron produc-

tion, which has to be related to the way the QCD vacuum responds to color fields.

3.2. Analog Gravity Interpretation of the SHM and the QCD Hawking–Unruh Radiation

As mentioned in the introduction, the phenomenology of quark confinement can be
seen as the effect of a Rindler force due to the string tension, σ. Let us now describe this
phenomenon in more detail.

We recall in Section 2 that the basic mechanism of the Unruh radiation involves
tunneling through the confining event horizon. This is most simply illustrated by hadron
production through the e+e− annihilation into a q pair, see Figure 2.

γ

e−e+

*

qq

ee+ −

q q
q

1
q

1

Figure 2. Quark formation in the e+e− annihilation
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The first quark–antiquark pair, qq̄, initially tries to separate. The attempt stops when
both quarks hit the confinement horizon, i.e., when they both reach the end of the binding
string, where their separation is R. At that point, the attempt to separate can only continue
if a further quark–antiquark system is excited from the vacuum. Although the new pair,
q1q̄1, is at rest, in the overall center of mass system, each constituent has a transverse
momentum kT , determined by the uncertainty relation in terms of the transverse dimension
of the string flux tube. The string theory [60] for the basic thickness gives

rT =
√

2/πσ , (25)

leading to
kT =

√
πσ/2 . (26)

The maximum separation distance R is specified by

σR = 2
√

m2
q + k2

T = 2kT , (27)

where we take mq = 0 for the quark mass. From this, we obtain

R =
√

2π/σ , (28)

as the string-breaking distance. The departing quark q now pulls the newly formed q̄1
along, giving it an acceleration [6]

a =
√

2πσ . (29)

The q1q̄1 pair eventually suffers the same fate as the q pair: it is separated to its confinement
horizon, where it again excites a new pair, which is now emitted as the Unruh radiation of
temperature

Th = a/2π =
√

σ/2π , (30)

that is also the hadronization temperature, as we shall see in a moment. This process is
sequentially repeated until the energies of the initial “driving” quarks q and q̄ are exhausted.

The case of the e+e− annihilation corresponds to baryochemical potential, μB = 0.
Here, one finds the average value σ � 0.19 ± 0.03 GeV2, see, e.g., [61], which with
Equation (30) then leads to

Th(μB = 0) =
√

σ/2π � 175± 15 MeV . (31)

for the freeze-out temperature at μB = 0.
The fundamental mechanism in the Unruh scenario is quark (de)acceleration, leading

to the string-breaking with the resulting pair production, as specified by Equation (27).
As long as we assume a vanishing quark mass, the only dimensional parameter in the
entire formalism is the string tension σ.

Therefore, the Unruh hadronization temperature is “universal”; this explains the obser-
vation of thermal hadron production in high-energy collisions in e+e− and pp interactions.
In this respect, the emitted hadrons are “born in equilibrium” [62,63].

The previous analysis shows that the hadronization temperature corresponds to the
Unruh temperature related to the string-breaking in high-energy collisions, where μB � 0.

As discussed, the dependence of the hadronization temperature on μB defines the
chemical “freeze-out” curve, which turns out to be in agreement (see Figure 1) with a fixed
ratio between the entropy density, s, the hadronization temperature, s/T3 � 7, and/or the
average energy per particle, < E > /N � 1.08 GeV, and/or n � 0.12 fm−3, where n is the
number density.

Although the Unruh mechanism and the string-breaking provide theoretical bases for
the production of newly formed hadrons in high-energy collisions, they do not address the
roles of the nucleons already present in the initial state of the heavy ion collisions. However,
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the corresponding hadron formation gives clear meaning to the figures that characterize
the whole freeze-out curve.

Indeed, as discussed in [64], the energy of the pair produced by string-breaking, i.e., of
the newly formed hadron, is given by (cf Equations (26) and (27))

Eh = σR =
√

2πσ . (32)

In the central rapidity region of high-energy collisions, one has μB � 0, so that Eh is, in
fact, the average energy 〈E〉 per hadron, with an average number 〈N〉 of newly produced
hadrons. Hence, one obtains

〈E〉
〈N〉 =

√
2πσ � 1.09± 0.08 GeV , (33)

in accordance with the phenomenological fit obtained from the species abundances in
high-energy collisions [56,58].

Next, we turn to the number density. For a single string-breaking, the number density
is given by

nsb � 1
4πR3/3

, (34)

where R is the string-breaking distance, which turns out to be R = 1/Th for massless quarks.
For Th � 160 MeV, consistent with our previous evaluation, one obtains nsb � 0.129 fm−3.

Let us now consider the entropy. Since the event horizon is caused by color confine-
ment, such entropy is an entanglement entropy of quantum field modes on both sides of
the horizon (recall that, here, we have no real gravitational degrees of freedom). Its general
form is [39,40]

Sent = α
A
r2 , (35)

where A is the area of the event horizon, r the scale of the characteristic quantum fluctua-
tions, and α an undetermined numerical constant, which might as well be infinite. This
expression shares the holographic structure (holography of entanglement entropy is a
general result, see [38,65]) with the Bekenstein–Hawking entropy [41,42] for a BH given
in (20)

SBH =
1
4

A
�2

P
.

A relation similar to (20) also holds in the case of an accelerated observer [43]. Here,
we take it to be valid in our case, where gravity is not involved and the entire entropy must
be of the entanglement type. The scale of the characteristic quantum fluctuations is now
given by the transverse string thickness in Equation (25), rather than the Planck length, �P,
of the gravitational phenomena. One obtains

Sh =
1
4

Ah

r2
T

=
1
4

4πR2

r2
T

, (36)

for the entropy in the hadron production. The parameter R is given by Equation (28), and
inserting these expressions into Equation (36) for the entropy associated with the hadron pro-
duction gives

Sh = π3 , (37)

and the entropy density, s = Sh/V (here, V = 4/3πR3), divided by T3, turns out to be

s
T3 =

Sh
(4π/3)R3T3 =

3π2

4
� 7.4 , (38)
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as the freeze-out condition in terms of s(T) and T. This result is in accordance with the
value obtained for s/T3 from species abundance analyses in terms of the ideal resonance
gas model [58,59]. Moreover, within this picture, one can show [66] that QCD entropy,
evaluated by lattice simulations in the region Tc < T < 1.3Tc, is in reasonable agreement
with a melting color event horizon.

The analogy between the freeze-out temperature as a function of μB and the Hawking
temperature for charged BH is discussed in [6]; another interesting aspect is that it can
be translated to the temperature dependence on the collision energy

√
s, by considering

μB(
√

s) [67].
Since the Unruh temperature triggers the search for the gravitational BH, which in

its near-horizon approximation better simulates the hadronization phenomenon, one can
study which BH behind that Rindler horizon could reproduce the experimental behavior
of T(

√
s). Although the complete hadronization process is in 4D spacetime, the hadronic

Rindler spacetime should be better consider as the near-horizon approximation of the
effective two-dimensional (2D) BH analog for the following two reasons

• New particle creation is effectively 2D because it can be described in terms of the
evolution in time of the hadronic strings, which are one-dimensional objects [68].

• The near-horizon field dynamics are effectively 2D [36,69].

Provided certain natural assumptions hold, it has been shown [35] that the so-called
exact string BH in 2D dilaton gravity [68] turns out to be the best candidate, as it fits the
available data on T(

√
s), and that its limiting case, the Witten BH, is the unique candidate

to explain the constant T for all elementary scattering processes at large energies.
To conclude this Section, we now turn to the strange quark mass and the interpretation

alla Unruh of the strangeness enhancement.
At the beginning of this Section, we illustrated how the thermal hadron production

process is a Hawking–Unruh mechanism. In doing so, we neglected the effects of the quark
mass. If one includes them, the expression one obtains for acceleration is

aq =
σ

wq
=

σ√
m2

q + k2
q

, (39)

where wq =
√

m2
q + k2

q is the effective mass of the produced quark, with mq the bare quark
mass, and kq the quark momentum inside the hadronic system q1q̄1 or q2q̄2 (see Figure 3).
Since the string breaks [6] when it reaches a separation distance

xq � 2
σ

√
m2

q +
πσ

2
, (40)

the uncertainty relation gives us kq � 1/xq

wq =
√

m2
q + [σ2/(4m2

q + 2πσ)] , (41)

for the effective mass of the quark. The resulting Unruh temperature depends on the quark
mass; thus it is given by

T(qq) � σ

2πwq
. (42)

Here, it is assumed that the quark masses for q1 and q2 are equal. For mq � 0, Equation (42)
reduces to T(00) � √σ/2π, as obtained in Equation (30).
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Figure 3. Sequential quark formation in the e+e− annihilation

If the produced hadron q̄1q2 consists of quarks of different masses, the resulting
temperature has to be calculated as an average of the different accelerations involved.
For one massless quark (mq � 0) and one of strange quark of mass ms, the average
acceleration becomes

ā0s =
w0a0 + wsas

w0 + ws
=

2σ

w0 + ws
. (43)

From this, the Unruh temperature of a strange meson is given by T(0s) � σ/π(w0 + ws)
with w0 �

√
1/2πσ and ws is given by Equation (4) with mq = ms. Similarly, we obtain

T(ss) � σ/2πws for the temperature of a meson consisting of a strange quark–antiquark
pair (φ).

The scheme is readily generalized to baryons. The production pattern leads to an aver-
age of the accelerations of the quarks involved [70]. Thus, we have T(000) = T(0) � σ/2πw0
for nucleons, T(00s) � 3σ/2π(2w0 + ws) for Λ and Σ production, T(0ss) � 3σ/2π(w0 + 2ws)
for Ξ production, and T(sss) = T(ss) � σ/2πws for that of Ωs.

Thus, we obtain a resonance gas picture with five different hadronization temperatures,
as specified by the strangeness content of the hadron in question: T(00) = T(000), T(0s),
T(ss) = T(sss), T(00s), and T(0ss).

In other words, the event horizon of the color confinement leads to thermal behav-
ior, but the resulting temperature depends on the strange quark content of the produced
hadrons, causing a deviation from the full equilibrium and, hence, a suppression of strange
particle production, without the introduction of the γs parameter. The resulting formal-
ism was applied to the multihadron production in the e+e− annihilation over a wide
range of energies to make a comprehensive analysis of the data, in the conventional
(i.e., with γs) SHM and its modified Hawking–Unruh formulation [70,71]. The modified
SHM, with the different Unruh temperature, gives a better fit with respect to the standard
SHM formulation.

In the Hawking–Unruh formulation, the number of free parameters of the model does
not increase since all previous temperatures were completely determined by the string
tension and the strange quark mass. Apart from possible variations of the quantities of σ
and ms, the description is parameter-free.

In all cases, the temperature for a hadron carrying nonzero strangeness was lower
than that of non-strange hadrons and this led to an overall strangeness suppression in
elementary collisions, in good agreement with the data, without the introduction of the ad
hoc parameter γs. Figure 4 reports the comparison between the SHM with one temperature
and γs and the Hawking–Unruh-inspired approach.
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Figure 4. Comparison between the measured and fitted multiplicities of long-lived hadronic species
in e+e− collisions at

√
s = 91.25 GeV. (Left): statistical hadronization model with one temperature.

(Right): Hawking–Unruh radiation model. See [70].

On the other hand, in nucleus–nucleus (AA, “large systems”) collisions at
√

s ≥ 15 GeV,
the so-called strangeness enhancement with respect to e+e− and hadronic scattering (the
“small” systems) has been observed, which in the standard SHM is described by the con-
dition γs = 1 in AA with respect to γs � 0.5− 0.6 in small systems. Moreover, the same
enhancement has been detected in proton–proton collisions at large energies and in large
multiplicity events [72].

The translation of alla Unruh (of the strangeness enhancement) requires that the differ-
ent temperature for various hadronic strangeness content disappear. Indeed, T(00), T(0s), . . .
are derived from the breaking of a single string with the corresponding average acceleration
and Unruh temperatures. On the other hand, as shown in reference [73], the universal-
ity among small and large systems is directly related to the initial parton density in the
transverse plane.

If the initial setting is different but the collision energy and the large multiplicity
cut produce initial states with similar entropy densities (i.e parton density in the trans-
verse plane), the hadron production and other coarse-grain dynamical signatures are the
same [73]. Therefore, for large parton density, there is a strong string overlap, as depicted
in Figure 5.

Let us outline, in a simplified model, the mechanism that washes out the strangeness
dependence of the Unruh temperature when, in a causally connected region, the parton
density in the transverse plane is large.

Assume two species only: one scalar meson and one electrically neutral meson; that is,
“pions” with mass mπ , and “kaons” with mass mk and strangeness s = 1.

Let us consider a high-density system of quarks and antiquarks in a causally connected
region for high-energy and high multiplicity events. Generalizing Equation (43), the average
acceleration is given by

ā =
Nlw0a0 + Nswsas

Nlw0 + Nsws
, (44)

where Nl >> 1, Ns >> 1 are, respectively, the number of light quarks and strange quarks.
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Figure 5. Left: Hadron production alla Unruh by a sequence of independent single string breakings.
Right: Hadron production due to the overlap of different color event horizons for large parton density.

By assuming Nl >> Ns, after simple algebra, the average temperature, T̄ = ā/2π,
turns out to be

T̄ = T(00)
[

1− Ns

Nl

w0 + ws

w0

(
1− T(0s)

T(00)

)]
+ O[(Ns/Nl)

2] , (45)

Now, in our “world of pions and kaons”, one has Nl = 2Nπ + Nk and Ns = Nk and,
therefore,

T̄ = T(00)
[

1− Nk
2Nπ

w0 + ws

w0

(
1− T(0s)

T(00)

)]
+ O[(Nk/Nπ)

2] . (46)

On the other hand, in the Hawking–Unruh-based statistical calculation, the kaon–pion
ratio, Nk/Nπ , depends on the equilibrium (average) temperature T̄; that is

Nk/Nπ =
m2

k
m2

π

K2(mk/T̄)
K2(mπ/T̄)

, (47)

where K2(x) denotes a Hankel function of a purely imaginary argument. Therefore, one
has to determine the temperature T̄ by self-consistency of Equation (46) with Equation (47).
This condition implies

2 [1− T̄/T(00)]w0

[1− T(0s)/T(00)](ws + w0)
=

m2
k

m2
π

K2(mk/T̄)
K2(mπ/T̄)

, (48)

which can be solved numerically. For σ = 0.17 Gev2, ms = 0.083 GeV (see Figure 4),
the solution gives T̄/T(00) � 0.97.

In other words, this toy model shows that the non-equilibrium condition, with species-
dependent temperatures, converges to an equilibrated system, with the average tempera-
ture, T̄ � T(00), for large parton density in a causally connected region.

4. Thermal Component in the Transverse Momentum Spectra

4.1. High-Energy Hadronic Processes

The transverse momentum, pT , and spectra of hadrons produced in high-energy
collisions, can be decomposed into two components: the exponential (or “soft”) component
and the power (or “hard”) component. Their relative strengths, in deep inelastic scattering
(DIS), depend drastically on the global structure of the event. Namely, the exponential
component is absent in the diffractive events characterized by a rapidity gap [74,75].

The hard component is well understood, resulting from the high-momentum transfer
scattering of quarks and gluons and their subsequent fragmentations. The “soft” component
is ubiquitous in high-energy collisions and appears as a thermal spectrum. In nuclear
collisions, given the high number of participants involved, one may expect thermalization
to take place; however, it is hard to believe that this might occur in processes such as DIS or
e+e− annihilation.
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In [76], it was found that the following parametrization well describes the hadron
transverse momentum distribution, both in hadronic collisions and in deep-inelastic scattering

dσ

pTdpT
= Atherm e−mT/Tth + Ahard

(
1 +

m2
T

n T2
th

)−n

. (49)

This clearly defines the soft/thermal components and the hard component parameterized

by Tth. Here, mT =
√

m2 + p2
T .

4.2. Analog Gravity Interpretation of the Origin of the Thermal Component in the Transverse
Momentum Spectra

The strength of the chromoelectric field, in a single string-breaking, is determined by
the string tension, and it describes the yields of the different hadronic species. However,
to discuss the transverse momentum spectra of the produced hadrons (see Section 4),
one has to take into account the increasing number of gluons in the wave functions of
the colliding hadrons. This can be done by the parton saturation [77], or color glass
condensate [78,79] picture. In this approach, the density of partons in the transverse
plane is parameterized by the saturation momentum Qs(s, η), which depends on the c.m.s.
collision energy-squared s and (pseudo-)rapidity η.

The temperature of the radiation from the resulting Rindler event horizon is given
by [5]

TU = Tth = c
Qs

2π
, (50)

where c is a constant [80]. Tth is related to the deceleration of partons in the transverse plane;
moreover, Qs = T in the parametrization of the hard component in Equation (22) [74].
Therefore, one predicts a proportionality between the Tth and T, which has been
verified [74,75].

The established proportionality of the parameters describing the thermal and hard
components of the transverse momentum spectra supports the theoretical picture in which
the soft hadron production is a consequence of the quantum evaporation from the event
horizon formed by the deceleration in longitudinal color fields. The absence of the thermal
component in diffractive interactions lends further support to this interpretation.

5. Self-Organization and Self-Similarity

5.1. Hadronic Spectrum

The typical illustration of self-organized criticality (SOC), proposed in the pioneering
work [81], is the ’avalanche dynamics’ of sandpiles. There, the number N(s) of avalanches
of size s observed over a long period was found to vary as a power of s, N(s) = αs−p. This
means that the phenomenon is scale-free, so the same structure is found, again and again,
at all scales. This phenomenon is often referred to as self-similarity: the system resembles
itself at all scales.

Another example of self-similarity is found when partitioning naturals. Given a
natural number, N ∈ N, we can decompose it (in mathematical jargon) into the natural,
whose sum gives N = ∑i Ni, with no distinction of the order of Nis entering the sum,
e.g., 3 = 2 + 1 and 3 = 1 + 2 would count the same as a decomposition of 3. On the other
hand, we also have compositions of N, which are decompositions of N in which the order
of the terms matters. In the following, according to the ’abuse’ of language in the physics
literature, we shall call the decompositions “unordered partitions of the integer” (UPIs)
and the compositions “ordered partitions of the integer” (OPIs).

The number of OPIs of N, say O(N), can be easily computed as

O(N) = 2N−1 . (51)
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In other words, the self-similarity pattern can be phrased as “large integers consist of
smaller integers, which in turn consist of still smaller integers, and so on...”.

Starting with the integer N, we need to know the number n(N, k) that specifies how
often a given integer k occurs in the set of all OPIs of N, e.g., considering N = 3, we have
n(3, 3) = 1, n(3, 2) = 2, and n(3, 1) = 5. To apply the formalism of SOC, we associate
a weight s(k) to each integer. The natural choice is s(k) = O(k) = 2k−1 and the number
n(N, k) we are looking for, in a scale-free scenario, is given by

n(N, k) = α(N)[s(k)]−p . (52)

For small values of N, n(N, k) is readily obtained explicitly and one finds that the critical
exponent is p � 1.26.

The previous example is immediately reminiscent of the statistical bootstrap model of
Hagedorn [62,82–84]. There, we have “fireballs composed of fireballs, which in turn are
composed of smaller fireballs, and so on”. Indeed, its general pattern is shown to be due to
an underlying structure related to the OPIs [85].

More precisely, Hagedorn’s bootstrap approach proposes that a hadronic colorless
state, with overall mass m, can be partitioned into structurally similar colorless states.
Then, those component colorless states can be partitioned into structurally similar colorless
states, and so on. If the states were at rest, the situation would be identical to the OPI just
discussed. Since the constituent fireballs, though, have intrinsic motions, the number of
states, ρ(m), corresponding to a given mass m, is determined by the bootstrap equation,
which can be asymptotically solved [83]. This gives ρ(m) ∼ m−a exp(m/TH), and TH is the
solution of (

2
3π

)(
TH
m0

)
K2(m0/TH) = 2 ln 2− 1, (53)

with m0 denoting the lowest possible mass and K2(x) denoting a Hankel function of pure
imaginary argument. For m0 = mπ � 130 Mev, this leads to the Hagedorn temperature

TH � 150MeV , (54)

that is, approximately, the critical hadronization temperature found in statistical QCD.
The cited solution gives a = 3, but other exponents could also be considered.

The previous expression of ρ(m) is an asymptotic solution of the bootstrap equation,
which diverges for m → 0; hence, it cannot hold for small masses. Using for ρ(m) a result
similar to the one obtained in the dual resonance model, Hagedorn proposed

ρ(m) = const.(1 + (m/μ0))
−a exp(m/TH) , (55)

where μ0 � 1− 2 GeV is a normalization constant.
We should emphasize that the form of ρ(m) is entirely due to the self-organized nature

of the system. That is in no way a result of thermal behavior. We expressed the slope
coefficient of m in terms of the Hagedorn “temperature” only because we have the analog
gravity scenarios in mind, which will soon be discussed; however, by itself, this coefficient
is exclusively of combinatorial origin.

5.2. Analog Gravity Interpretation of the Partitions of Integers for BH Self-Similarity

The celebrated self-similarity at work in the hadronic spectrum, recalled in Section 5,
is typical of many physical setups that enjoy scale invariance, such as fractals, phase
transitions at the critical point, etc. [86]. Among those, BH self-similarity [87–89] is surely
one of the most interesting, if one wants to probe fundamental ideas of QG.

Some aspects of BH self-similarity are understood if one recalls that the Hawking
temperature, TH , of a Planck-sized BH (TH ≈ l−1

P , where lP is the Planck length) could be
viewed as the Hagedorn temperature in string theory [90–92]. At that temperature, BH
evaporation stops and a phase transition is expected to occur, in analogy to what hap-
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pens at the phase transition between the hadrons and the quark–gluon–plasma phase [93].
Nonetheless, to properly speak of self-similarity, one would need to make sense of state-
ments, such as, “large BHs could be viewed as formed by smaller BHs, formed in turn of
even smaller BHs, and so on...”

In the work [94], some steps were moved in that direction, and a link was established,
in simple terms, between the spaces of BH configurations and the OPI. This, in turn, shed
new light on BH self-similarity, in the plain terms of the statement quoted above. In what
follows, let us comment on this.

First, the model we refer to is the so-called “quantum BH” of Mukhanov and Beken-
stein [95–97]. In that approach, the area of the BH event horizon is quantized

A = α N l2
P , (56)

where N ∈ N and the “it from bit” [98] choice for the proportionality factor, α = 4 ln 2,
allows for a two-level spin-1/2 system description, ↑ or ↓, per given Planck cell. With these,
BH entropy, SBH , can be written as

SBH =
A

4 l2
P

= N ln 2 , (57)

which is the entropy of a quantum system living in a Hilbert (configuration) space of
dimension dimH = 2N , where each 2N configuration has the same statistical weight, e.g.,
see [99] for this and other approaches.

Thus, on the one hand, the number of OPIs of N, O(N) = 2N−1, whereas the number
of configurations of the quantum BH is given by C(N) = 2N . Therefore, if we want to
relate the two ways of counting configurations, one needs to find a 2-to-1 map from the
latter to the former.

In [94], this is achieved by distinguishing between BH configurations, differing not
only by how many spins are up and how many are down, as in other approaches [99],
but also by the position of the spin. The “spin-flip map”, there introduced, does the job
of halving the number of BH configurations in a consistent way (to associate spin states,
on the one hand, and with the OPI of N, on the other hand).

The 2-to-1 map works as follows: For any one given OPI of N, it associates the
two BH states that are obtained (one from the other) when all the spins that identify the
given configuration are flipped, ↑↔↓. Then, the rule that relates a given pair of BH (spin)
configurations to a given OPI is the following (for details see [94]):

When a spin is next to an opposite spin, i.e., when ↑ is next to ↓ or when ↓ is next to ↑, in the
OPI this corresponds to 1 + 1, e.g., (↑, ↓, ↑, . . .), and the spin-flips (↓, ↑, ↓, . . .) both correspond in
the OPI to the partition 1 + 1 + . . .. When the spin is likewise, it contributes with an integer that is
the sum of how many times the spin does not flip, e.g., (↑, ↑, ↓, . . .) and (↓, ↓, ↑, . . .) correspond in
the OPI to the partition 2 + . . ..

With these, one takes into account all possibilities; hence, the wanted 2-to-1 map from
the BH configurations to the OPI (the “spin-flip map”) is obtained. Having established
that, we want to see how the self-similarity patterns of the OPI can be imported into the
self-similarity of BHs.

To avoid overcounting some configurations or missing others, in [94], the authors
constructed an operation, +̂, which allowed obtaining the configuration space of the
given BH only once, for any given partition. If we indicate with N such 2N-dimensional
configuration space, and N1 + N2 + · · · = N is a given OPI of N, such an operation must
give N1+̂N2+̂ · · · = N. Doing so, we establish a one-to-one correspondence between the
OPI of N, and the way to combine the subspaces of N, corresponding to the OPI. We report
here the actual definition of such an operation:

Take each partition of N, say N1 + N2 = N, and write the spin configuration space associated
with the first number of the sum, N1. Then, take the tensor product of each representative with all
of the spin configurations of N2, explicitly including all spin-flipped configurations. The result of
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such an operation, N1+̂N2, is all of the spin configurations of N, with no redundant or missed
configuration. The operation gives the same result for each OPI of N, including those with more
than two terms. For the latter, one must start from the first term on the left, act with the second (as
described), and the result needs to be acted upon with the next term, and so on, until the end.

The trivial example is N = N, where no composition is performed. The first non-trivial
operation is 1 +̂ 1, which originates from the partition 1 + 1 = 2, so it must give 2:

1+̂1 =↑ ⊗ ↑
↓ =

↑ ↑
↑ ↓ = 2 . (58)

Indeed, in the second-last term, the first line is one spin representative of 2, (↑, ↑), while the
second line is one spin representative of 1 + 1, (↑, ↓). The four-dimensional (2N = 22), full
configuration space, 2, is obtained when we spin-flip each final configuration: (↑, ↑),(↓, ↓)
and (↑, ↓),(↓, ↑). Notice that this is a general feature of this operation: one can consider
even just one single representative per each spin-flipped pair of the first term, perform
the operation as described earlier, and then to obtain all configurations at the end of the
procedure—apply the spin-flip.

We are now where we want to be. When N is the configuration space of a Mukhanov–
Bekenstein quantum BH, we have found the BH self-similarity; in plain terms, we were
searching for:

The configuration space, N, of a BH is made of the configuration spaces of smaller BHs, which
are made of configuration spaces of even smaller BHs, and again and again, until we reach N copies
of 1, the configuration space of the tiniest (elementary) BH.

To any of the 2N−1 OPIs of N, we can associate one of the 2N−1 OPIs of N

∑
i

Ni = N → ˆ∑iNi = N , ∑
j

Mj = N → ˆ∑jMj = N , . . . , (59)

where ∑̂iNi = N1+̂N2+̂ · · · , whatever pattern we find in the OPI of N, it is found in the
configuration space N of the BH, and then repeated for the smaller numbers, until we reach
the “quantum” of the BH space, 1.

A suggestive pattern is given by

N = 1+̂(N− 1) = 1+̂(1+̂(N− 2)) = 1+̂(1+̂(1+̂(N− 3))) = · · · = ˆ∑
N

i=11 . (60)

Here, one can say that when the configuration space of the tiniest BH, 1, is isolated from
the rest, this can be repeated until the complete splitting.

As wanted, in this picture, self-similarity does not require any change of description of
the degrees of freedom (e.g., from the evaporating BH to the long string [92], see also [90]).
What one does there is finds patterns within the configuration space of a given fixed BH.
We are not considering either BH evaporation or BH merging [100].

Let us conclude this part by saying that the constructions of [94] may solve the problem
we started with. On the other hand, they lack any dynamical consideration whatsoever,
as only kinematics was the concern there. No configuration is preferred to any other,
by virtue of the dynamical properties of the system. In other words, all configurations
were treated equally and this can only give back the entropy of (57), which, with a strong
abuse of the language, since we are in a quantum BH model, is sometimes referred to as
“classical entropy”.

This is likely something that will be fully amended only by the long-sought-for final
QG theory, see, e.g., [101], which will tell us how these fundamental (fermionic) degrees
of freedom (see, e.g., [102–104]) interact, and some, O(ln N), “quantum corrections” have
been put forward based on perturbative quantum considerations [105–110].

On the other hand, the simple (simplistic) approach of [94] has two advantages.
First, it is based on a non-interacting (free) spin model that some authors also consider
to be a viable candidate [102–104]. Second, in order to use an information–theoretical
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approach, the selection of specific configurations over others is not appropriate. In fact, if a
(quantum) BH has to be used as the ultimate (quantum) computer [111], then one expects
all configurations to be treated equally. The actual evolution of the quantum states should
not be fixed by a given spin model, but rather be governed by a specific Hamiltonian that
“implements” the given “computation”.

6. Conclusions

The interpretation of quark confinement as the effect of an (event) horizon for color
degrees of freedom naturally leads to the view of hadronization as ’quantum tunnel-
ing’ through such a horizon. With this view, hadron formation is the result of an Un-
ruh phenomenon, related to the string-breaking/string formation mechanism. This is
because the large-distance QCD potential generates a constant and large acceleration,
a � 3.2 × 1033 m/s2, which is precisely what we need for a measurable Unruh effect,
TU ∼ 4× 1011K ∼ 170 MeV.

This opens up the way for a clear explanation of the thermal behaviors of both arenas—
hadron physics and BH physics. For instance, this immediately explains why the hadroniza-
tion temperature, Th, is universal when seen as a TU . Indeed, Th is found to be the same for
small and large initial collision settings, whereas TU is fixed, once and for all, by the value
of the acceleration, a. This also explains why hadrons are born in equilibrium.

In fact, the Hawking–Unruh radiation is an example of a stochastic rather than kinetic
equilibrium. The reason behind the randomization is not repeated (as well as casual
collisions among particles), but rather the quantum entanglement between the degrees
of freedom on the two sides of the barrier to the information transfer, which is the event
horizon. The temperature is then determined by the strength of the “confining” field.

In the chromodynamics counterpart of this phenomenon, described in this review,
the ensemble of all produced hadrons, averaged over all events, leads to the same equi-
librium distribution as obtained in the hadronic matter by kinetic equilibration. For a
very high-energy collision, with a high average multiplicity, even one event alone can
provide such equilibrium. The destruction of memory, which in kinetic equilibration
is achieved through many successive collisions, is here automatically provided by the
tunneling process.

The above are the physical fundamental aspects common to both types of phenomena.
On this, the analogy can be solidly established, and many results can be obtained, i.e.,
the string-breaking and BH entropy analogies, which reproduce the “magic numbers”
characterizing the freeze-out curve; the strangeness production, at low parton density,
which is due to different Unruh temperatures in the single string-breaking; at high-energy
and multiplicity, the large parton density, in the transverse plane, which removes the
different temperatures by string (or color event horizon) overlap, giving the strangeness
enhancement; or self-similar behavior, characteristic of the hadronic production, which has
driven research into the self-similarity of BH configurations.

Let us then close on an optimistic note, by stating that this new and original analog
system of QG has many other results to grasp.

In particular, Unruh radiation should exhibit both spatial and temporal coherence,
reflecting its quantum origin. In our case, the spatial coherence should be observable by
probing the phase correlation between particle jets. This correlation exists in the gravita-
tional case, although it cannot be detected since one particle of the pair remains trapped
inside the event horizon. Indeed, in the condensed matter analog of the Unruh effect, this
correlation has been observed [112].

Another interesting aspect concerns the relation between ’de-confinement’ and restora-
tion of the chiral symmetry. The Rindler metric corresponds to the near-horizon approxima-
tion of a black-hole metric. On the other hand, in the near-horizon approximation, the field
theory becomes conformal and effectively two-dimensional. Therefore, there is no way,
in the near-horizon approximation, to maintain a physical scale generated by symmetry
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breaking. From this point of view, the Unruh hadronization temperature and the critical
temperature of the restoration of chiral symmetry are deeply related.
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Note

1 In fact, different physical systems, governed by different Hamiltonians, Lagrangians, and equations of motion (dynamics) may
exhibit analog features, such as the emergence of some sort of horizon, as with the vast majority of cases used to probe the
Hawking–Unruh phenomenon [1]. This is similar to taking a snapshot of the evolution of the analog system, precisely when
this “looks like” the target system (or, we believe it should “look like” the target system). With this, we can study the behavior
of the target system using the analog system at that particular stage of the evolution. It is much more important though to be
able to keep going, even just a little bit. Namely, it is important that the evolution of the analog system is similar to the one of
the target system, at least in certain conditions and within a limited range. When this happens, we have a much better analog
that can furnish much more information on the target system (these are the analogs introduced in the famous Feynman lecture
of electrostatics [4]). This is particularly important when one wants to face issues, such as black-hole (BH) evaporation, which
is a phenomenon intimately associated with the dynamics of the gravitational field and something impossible to capture in a
single “snapshot”.
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Abstract: Analogs of fundamental physical phenomena can be used in two ways. One way consists in
reproducing specific aspects of the classical or quantum gravity of quantum fields in curved space or
of other high-energy scenarios on lower-energy corresponding systems. The “reverse way” consists
in building fundamental physical theories, for instance, quantum gravity models, inspired by the
lower-energy corresponding systems. Here, we present the case of graphene and other Dirac materials.

Keywords: analogs; Dirac materials; quantum gravity

1. Introduction

Richard Feynman wrote beautiful and visionary pages on analogs, in a famous lecture
titled “Electrostatic Analogs”, available in [1] (see also [2] for comments and discussions).
There, he explains how it happens that different physical systems, among which a solid
analogy can be established, are all described in a unified manner. In his now famous words,
this happens because “the same equations have the same solutions”. Therefore, if we have
no access to certain regimes of system A, but they correspond to certain reachable regimes
of the analogous system B, we can perform experiments on system B, and establish results
that are valid for system A.

In the final, and less known, part of the lecture, he ventures into a visionary attempt to
explain why this is so. This goes on until the thrilling hypothesis of the existence of more ele-
mentary constituents than the ones we deem to be fundamental. All those systems, including
electrostatics itself, are just different coarse-grained versions of one dynamics, even more
fundamental than quantum electrodynamics. Amazingly, Feynman realizes that the physi-
cal properties of space itself play a crucial role in the identification of such fundamental
objects (that he calls “little Xons” [1]). It is precisely when space itself, besides matter, is in-
cluded as part of the emergent phenomenon that these are also the conclusions of certain
completely independent arguments of the contemporary quantum gravity (QG) [3–7].

As for the field of gravity analogs (see [8]), the seminal work is the 1981 paper of
Bill Unruh [9], where he proposed to search for the experimental signatures of the Unruh
effect [10] and of the Hawking effect [11], in a fluid-dynamical analog.

Due to our deeper theoretical understanding of these phenomena and to the higher ex-
perimental control of condensed matter systems, it is now becoming increasingly popular to
reproduce that and other aspects of fundamental physics in analog systems. Examples in-
clude the Hawking phenomenon in Bose–Einstein condensates [12], the Weyl symmetry [13,14]
and the related Hawking/Unruh phenomenon on graphene [15–17], gravitational and axial
anomalies in Weyl semimetals [18], “Moiré gravity” in bilayer graphene [19,20]), and more.
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Let us mention, for instance, the beautiful example of supernova explosions simulated
in the laboratory by plasma implosions induced by intense lasers. Both systems are
examples of fluid dynamics, and the Euler equations are invariant under an inversion
transformation, which is an arbitrary uniform expansion or contraction of the system.
This symmetry is studied in cosmology, and allows to map an explosion problem to a
dual implosion problem. In principle, this duality allows the complete three-dimensional
evolution of highly structured explosion ejecta to be modeled using a static target in an
implosion facility. In [21], the maximal invariance group was determined to be the semi-
direct product of the Galilei group with SL(2, R), the latter containing time translations,
dilations, and the inversion. Those results had an important impact on the field. More
details are in the contribution [22] to this Issue.

Gravity analogs are not limited to condensed-matter systems, as shown by heavy-ion
collisions at high energy [23–25]. In fact, hadron production in high-energy scattering
processes is just a Unruh effect in quantum chromodynamics (QCD) [23], with the Unruh
temperature, TU = (h̄a)/(2πckB), given by the hadronization temperature, Th � 160 MeV,
thus corresponding to an enormous acceleration, a � 4.6× 1032 m/s2 that makes the effect
very easy to detect. Here, we explicitly write the Planck constant, speed of light and
Boltzmann constant. More details on this approach are in the contribution [26] to this Issue.

Here, we focus on the proposal of graphene as an analog of high-energy funda-
mental physics [13–17,27–29], based on the fact that its low-energy excitations [30] are
massless Dirac pseudo-relativistic fermions (the matter fields ψ), propagating in a car-
bon two-dimensional honeycomb lattice. The emergent (long-wave limit) description of
the latter is a surface (a portion of spacetime described by the “emergent” metric gμν).
Such a behavior is shared by a wide range of materials, ranging from silicene and ger-
manene through d-wave superconductors to topological insulators [31]. Each of those
materials has its own peculiarities, which allow for further extensions of results obtained
with graphene, and hence permit to explore a wider range of the high-energy target systems.
Let us now give some details.

Despite those impressive advances in the highly active area of analog physics, there
are still two milestones to reach. One is to fully understand the epistemic role of analogs in
fundamental high energy physics, as not all theorists would agree that analogs are much more
than mere divertissements. In fact, experimental results obtained with analogs are not used as
feedback for the target theories that they are analogs of (see, for example, [2,32]). Another
milestone would be a reliable definition of an analog black-hole (BH) entropy, or at least, of
a quantum field theory (QFT)-like entanglement entropy that, in the presence of horizons,
might serve the scope of setting-up some form of the second principle of BH thermodynamics.

Any progress in this direction would be truly important for the QG research. Having
some results there, we could eventually be able to address the so-called information paradox,
i.e., the apparent loss of information during BH evaporation, a question that, most probably,
cannot be entirely solved via theoretical reasonings. See, for example, [33–37] for different
points of view.

In fact, there are plenty of unreachable regimes in fundamental physics, starting from
BHs, that we do know to exist but that are not (easily or at all) reproducible in a laboratory.
It is then of tremendous interest to establish solid criteria for such systems to correspond to
other systems, within our reach, and to perform experiments on the latter to know of the
former. On the other hand, when such correspondences are solidly established, why not
infer from the analog system the most intimate nature of the target system? For instance, if
QG behaves like graphene (under certain conditions for graphene and for certain specific
regimes of QG), and since we still do not know how QG really is, why not trying to guess
the whole QG picture from what we learned of the partial overlap between the two systems?

This is a less beaten track, but not a completely empty one. For instance, inspired by
the findings of [13–17,27–29], in Ref. [6], the authors propose the existence of fundamental,
high-energy constituents underlying both matter and space, and that these, at our low
energies, exist in an entangled state. This entanglement is there because both matter and
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space emerge from the dynamics of the same more fundamental objects, whose existence
can be inferred from the celebrated upper bound on the entropy of any system, conjectured
by Bekenstein [3]. Quoting Feynman and paraphrasing Bekenstein, those objects are called
“Xons” [2]. If such a view is correct, even matter that we deem to be fundamental, i.e., ele-
mentary, is in fact “quasi-matter”, just like the massless quasi-particles, ψ, of graphene [30]
that owe their properties to the interaction with the lattice1. The most noticeable result
of this “quasi-particle picture” [6] is that the evaporation of a BH inevitably leads to an
information loss, in the sense that, in general, there is a nonzero entanglement entropy asso-
ciated to the final products of the evaporation. On the other hand, within the same picture,
in [40], the authors describe BH evaporation from the point of view of the Xons. They see
there that the Bekenstein bound [3–5] can be an effect of the Pauli exclusion principle, and
that a full unitary picture, leading to a complete recovering of the initial information, is
only possible if one could track the evolution of those fundamental constituents.

The paper is organized in two large Sections and some concluding remarks. Section 2
is dedicated to graphene and Dirac materials (DMs) as analogs of high-energy fundamental
physics. Section 3 is dedicated to the QG that the latter research has inspired. Each large
Section has many Subsections. As for Section 2, Sections 2.1–2.3 explain the main reasons
why graphene is good at reproducing scenarios of fundamental physics; then Section 2.4
tells about old, new and future developments of this line of research, dedicating to each
topic a brief Subsubsection; finally, Section 2.5 comments on the experimental search. As for
Section 3, Section 3.1 introduces the quasi-particle picture in the QG context;
Sections 3.2 and 3.3 deal with BH evaporation as seen from the quasi-particles and as seen
from the Xons, respectively; the last Section 3.4 comments on recent work on how (classical)
space emerges from the underlying (quantum) dynamics of Xons during BH evaporation.
Section 4 is dedicated to our concluding remarks, which are a chance to point to future
developments of the whole analog enterprise, in general, and those based on graphene,
in particular.

2. Analog Gravity on Graphene

Graphene is an allotrope of carbon. It is one-atom-thick; hence it is the closest to
a two-dimensional object in nature. It was theoretically speculated [41,42] and, decades
later, it was experimentally found [43]. Its honeycomb lattice is made of two intertwined
triangular sub-lattices LA and LB; see Figure 1. As is now well known, this structure is
behind a natural description of the electronic properties of π electrons2 in terms of massless,
(2 + 1)-dimensional, Dirac (hence, relativistic-like) quasi-particles.

s
3

s
1

s
2

a1

a2

= sublattice LA = sublattice LB

�

Figure 1. The honeycomb lattice of graphene, and its two triangular sublattices LA and LB. The
choice of the basis vectors, (�a1,�a2) and (�s1,�s2,�s3), is, of course, not unique. Here we indicate the one
used in [17]. Figure taken from [16].
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2.1. First Scale, E < E�: From the Tight-Binding to the Dirac Hamiltonian

Such electrons, in the tight-binding low-energy approximation, are customarily described
by the Hamiltonian (as here we use natural units, the reduced Planck constant is h̄ = 1)

H = −η ∑
�r∈LA

3

∑
i=1

(
a†(�r)b(�r +�si) + b†(�r +�si)a(�r)

)
, (1)

where the nearest-neighbor hopping energy is η � 2.8 eV, and a, a† (b, b†) are the anti-
commuting annihilation and creation operators, respectively, for the planar π electrons
in the sub-lattice LA (LB); see Figure 1. All the vectors are bi-dimensional, �r = (x, y),
and, for the choice of basis vectors made in Figure 1, if we Fourier transform, a(�r) =

∑�k a(�k)ei�k·�r, etc., then H = ∑�k( f (�k)a†(�k)b(�k) + h.c.), with

f (�k) = −η e−i �ky
(

1 + 2 ei 3�ky/2 cos(
√

3�kx/2)
)

, (2)

where � � 1.4 A is the graphene honeycomb lattice length (see Figure 1). Solving
E(�k) = ±| f (�k)| ≡ 0 tells us if, in the first Brillouin zone (FBZ), conductivity and valence
bands touch and where. Indeed, this does happen for graphene, pointing to a gapless
spectrum, for which we expect massless excitations to emerge. Furthermore, the solution is
not a Fermi line (the (2 + 1)-dimensional version of the Fermi surface of the (3 + 1) dimen-
sions), but instead, they are two Fermi points,�kD± =

(
± 4π

3
√

3�
, 0
)

. Even if the mathematical

solution to | f (�k)| = 0 has six points, only the two indicated are unequivalent [30].
The label “D” on the Fermi points stands for “Dirac”. This refers to the all-important

fact that, near those points, the spectrum is linear, as can be seen from Figure 2, E± � ±vF|�k|,
where vF = 3η�/2 ∼ c/300 is the Fermi velocity. This behavior is expected in a relativistic
theory, whereas, in a non-relativistic system, the dispersion relations are usually quadratic.

E

�

�

Figure 2. The linear dispersion relations near one of the Dirac points, showing the typical behavior of
a relativistic-like system (the “vF-light-cone” in k-space). Figure taken from [17].
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If one linearizes around �kD±, �k± � �kD± + �p, then f+(�p) ≡ f (�k+) = vF(px + ipy),
f−(�p) ≡ f (�k−) = −vF(px − ipy), and a±(�p) ≡ a(�k±), b±(�p) ≡ b(�k±). Therefore,
the Hamiltonian (1) becomes

H|�k± � vF ∑
�p

(
ψ†
+�σ · �p ψ+ − ψ†−�σ∗ · �p ψ−

)
(3)

where ψ± ≡
(

b±
a±

)
are two-component Dirac spinors, and�σ ≡ (σ1, σ2),�σ∗ ≡ (σ1,−σ2),

with σi the Pauli matrices. Notice that here the 1/2-spinor description emerges from the
two sublattice honeycomb structure instead of the intrinsic spin of the π electron.

Hence, if one considers the linear/relativistic-like regime only, the first scale is

E� ∼ vF/� ∼ 4.2 eV. (4)

Notice that E� ∼ 1.5η, and that the associated wavelength, λ = 2π/|�p| � 2πvF/E,
is 2π�. The electrons’ wavelength, at energies below E�, is large compared to the lattice
length, λ > 2π�. Those electrons see the graphene sheet as a continuum.

The two spinors are connected by the inversion of the full momentum �kD
+ + �p →

−�kD
+ − �p ≡�kD− − �p. Whether one needs one or both such spinors to describe the physics

strongly depends on the given set-up. For instance, when only strain is present, one
Dirac point is enough (see, for example, [27]), similar (see below here) to when certain
approximations on the curvature are valid [15–17]. The importance and relevance of the
two Dirac points for emergent descriptions of scenarios of the high-energy theoretical
research were discussed at length in [28], where the role of grain boundaries and the related
necessity for two Dirac points were explained in terms of a relation to spacetime torsion;
see below. The full focus on torsion, though, is in [44].

When only one Dirac point is necessary over the whole linear regime, the following
Hamiltonian well captures the physics of undeformed (planar and unstrained) graphene

H = −i vF

∫
d2x ψ†�σ ·�∂ ψ , (5)

where the two-component spinor is, for example, ψ ≡ ψ+, we moved back to configuration
space, �p → −i�∂, and sums turned into integrals because of the continuum limit. In various
papers, this regime was exploited to a great extent until the inclusion of curvature and
torsion in the geometric background. On the other hand, the regimes beyond the linear one
were also investigated. There, granular effects associated with the lattice structure emerge;
see [45] and also the related [46].

When both Dirac points are necessary, one needs to consider four-component spinors in a

reducible representation [17,47,48] Ψ ≡
(

ψ+

ψ−

)
, and 4× 4 Dirac matrices αi =

(
σi 0
0 −σ∗ i

)
,

β =

(
σ3 0
0 σ3

)
, i = 1, 2. These matrices satisfy all the standard properties, see, e.g., [17,28].

With these, the Hamiltonian is

H = −i vF

∫
d2x

(
ψ†
+�σ ·�∂ ψ+ − ψ†−�σ∗ ·�∂ ψ−

)
= −i vF

∫
d2x Ψ̄�γ ·�∂ Ψ . (6)

2.2. Second Scale, E < Er < E�: From the Flat Space to Curved Space Dirac Hamiltonian

In [13], the goal was to identify the conditions for graphene to get as close as possible
to a full-power QFT in curved spacetime. Therefore, key issues had to be faced, such as
the proper inclusion of the time variable in a relativistic-like description and the role
of the nontrivial vacua and their relation to different quantization schemes for different
observers. All this finds its synthesis in the Unruh or the Hawking effects, the clearest
and unmistakable signatures of QFT in curved spacetime. Therefore, starting from [13,14],
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this road was pursued in [15,16]. Let us explain here the main issues and the approximations
made there.

Besides the scale (4), when we introduce curvature, we also have a second scale. When
this happens, E� is our “high energy regime”, as we ask the curvature to be small compared
to a maximal limiting curvature, 1/�2, otherwise: i) it would make no sense to consider
a smooth metric, and ii) r < � (where 1/r2 measures the intrinsic curvature), means that
we should bend the very strong σ-bonds, an instance that does not occur. Therefore, our
second scale is

Er ∼ vF/r , (7)

with Er = �/r E� < E�. To have a quantitative handle on these scales, let us take, e.g.,
r � 10� as a small radius of curvature (high intrinsic curvature). To this corresponds an en-
ergy Er ∼ 0.4 eV, whereas to r ∼ 1 mm ∼ 106 �, corresponds Er ∼ 4 μeV. The “high energy”
to compare with is E� ∼ 4 eV.

When energies are within Er (wavelengths comparable to 2πr), the electrons experi-
ence the global effects of curvature. That is to say, at those wavelengths, they can distinguish
between a flat and curved surface and, in particular, between, for example, a sphere and
a pseudosphere. Therefore, whichever curvature r > � we consider, the curvature effects
are felt until the wavelength becomes comparable to 2π�. The formalism we have used,
though, considers all deformations of the geometric kind, except for torsion. Hence, this
includes the intrinsic curvature and elastic strain of the membrane (on the latter, see [27]).
However, the power stops before E� because there, local effects (such as the actual structure
of the defects) play a role that must be taken into account in a QG-type theory. On the latter,
the first steps were moved in [45] and also in [46] and in the forthcoming [49].

The intrinsic curvature is taken here as produced by disclination defects, that are
customarily described in elasticity theory (see, for example, [50]), by the (smooth) derivative
of the (non-continuous) SO(2)-valued rotational angle ∂iω ≡ ωi, where i = 1, 2 is a “curved”
spatial index3. The corresponding (spatial) Riemann curvature tensor is easily obtained

Rij
kl = εijεklε

mn∂mωn = εijεlk2K. (8)

where K is the Gaussian (intrinsic) curvature of the surface. In this approach, we have
included time, although the metric we adopted is

ggraphene
μν =

⎛⎝ 1 0 0
0
0

−gij

⎞⎠ , (9)

i.e., the curvature is all in the spatial part, and ∂tgij = 0. Since the time dimension is
included, the SO(2)-valued (abelian) disclination field has to be lifted up to a SO(1,2)-valued
(non-abelian) disclination field4, ωμ

a, a = 0, 1, 2, with ω a
μ = eb

μω a
b , and the expression

ω d
a =

1
2

εbcd
(

eμa∂bEμ
c + eμb∂aEμ

c + eμc∂bEμ
a

)
, (10)

gives the relation between the disclination field and the metric (dreibein). All the informa-
tion about intrinsic curvature does not change. For instance, the Riemann curvature tensor,
Rλ

μνρ, has only one independent component, proportional to K, just like in (8) (see [13]).
With all of the above in mind, the hypothesis is that, when only curvature is important,

the long wavelength/small energy electronic properties of graphene are well described
by the following action

A = i vF

∫
d3x
√

g Ψ̄γμ(∂μ + Ωμ)Ψ , (11)

where Ωμ ≡ ωμ
a Ja, and Ja are the generators of SO(1,2), the local Lorentz transformations

in this lower-dimensional setting. Notice that Ja can never take into account the mixing
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of the ψ± because they are of the form Ja =

(
ja
+ 0
0 ja−

)
, whereas what is necessary are

generators of the form Ka =

(
0 ka

+

ka− 0

)
. This point was discussed at length in [28],

within the Witten approach [51]. In that approach, the most general gauge field that takes
into account curvature (intrinsic and extrinsic) and torsion has the following structure
Aμ = Ωμ + Kμ, where Kμ ≡ ea

μKa, hence a Poincaré (ISO(2, 1)) or (A)dS type of gauge the-
ory, depending on the role played in here by the cosmological constant (on this see [15,16],
and the review [17]). The matter, though, might be faced by taking an alternative view, for
which the gauge fields are internal rather than spatiotemporal. In this case, a link with the
supersymmetry (SUSY) introduced in [52] (that is a SUSY without superpartners, often
referred to as unconventional SUSY (USUSY)) can be established, as is shown in [28] and
in [53–55], as is briefly discussed in Section 2.4.2.

Let us clarify here an important point. Within this scenario, a nontrivial g00 in (9),
and hence a clean nontrivial general relativistic effect (recall that g00 ∼ Vgrav) can only
happen if specific symmetries and set-ups map the lab system into the wanted one. A lot of
work went into it, e.g., [15,16], and went as far as producing measurable predictions of a
Hawking/Unruh effect, for certain specific shapes. Let us recall here the main ideas behind
this approach, which we may call the “Weyl symmetry approach” [17].

2.3. The Importance of Weyl Symmetry

First of all, one notices that the action (11) enjoys local Weyl symmetry

gμν → e2σ(x)gμν and Ψ → e−σ(x)Ψ , (12)

that is an enormous symmetry among fields/spacetimes [56]. As explained in [13,14], to
make the most of the Weyl symmetry of (11), we better focus on conformally flat metrics.
The simplest metric to obtain in a laboratory is of the kind (9). For this metric, the Ricci
tensor is Rμ

ν = diag(0,K,K). This gives as the only nonzero components of the Cotton
tensor, Cμν =

(
εμσρ∇σRρ

ν + μ ↔ ν
)
, the result C0x = −∂yK = Cx0 and C0y = ∂xK = Cy0.

Since conformal flatness in (2 + 1) dimensions amounts to Cμν = 0, this shows that all
surfaces of constant K give rise in (9) to conformally flat (2 + 1)-dimensional spacetimes.
This points the light-spot to surfaces of constant Gaussian curvature.

The result Cμν = 0 is intrinsic (it is a tensorial equation, true in any frame), but
to exploit Weyl symmetry to extract non-perturbative exact results, we need to find the
coordinate frame, say Qμ ≡ (T, X, Y), where

ggraphene
μν (Q) = φ2(Q)gflat

μν (Q) . (13)

Besides the technical problem of finding these coordinates, the issue to solve is the
physical meaning of the coordinates Qμ, and their practical feasibility. See [17,57].

Tightly related to the previous point is the conformal factor that makes the model
globally predictive, over the whole surface/spacetime. The simplest possible solution would
be a single-valued, and time independent φ(q), already in the original coordinates frame,
qμ ≡ (t, u, v), where t is the laboratory time, and, for example, u, v are the meridian and
parallel coordinates of the surface.

Here, we are dealing with a spacetime that is embedded into the flat (3 + 1)-dimensional
Minkowski. Although, as said, the focus is on intrinsic curvature effects, just like in a general
relativistic context, issues related to the embedding, even just for the spatial part, are important.
For instance, when the surface has negative curvature, one needs to move from the abstract
objects of non-Euclidean geometry, to objects measurable in a Euclidean real laboratory. This
involves the last point above about global predictability, and, in the case of negative curvature,
necessarily leads to singular boundaries for the surfaces, as proved in a theorem by Hilbert,
see, for example, [17,58]. Even the latter fact is, once more, a coordinates effect, due to our
insisting in embedding a negative curvature surface in R3, and clarifies the hybrid nature of
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these emergent relativistic settings. The quantum vacuum of the field that properly takes into
account the measurements processes, as for any QFT on a curved spacetime, was identified,
including how the graphene hybrid situation can realize that [15,16]. As well known, this is
crucial in QFT, in general, and on curved space, in particular.

The above leads us to propose a variety of set-ups, the most promising being the one
obtained by shaping graphene as a Beltrami pseudosphere [15–17], a configuration that
can be put into contact with three key spacetimes with horizon: the Rindler, the de Sitter
and the Bañados–Teitelboim–Zanelli (BTZ) BH [59]. The predicted impact on measurable
quantities is reported in the first papers, and then explored in the subsequent efforts of
computer-based simulations.

2.4. Ramifications

Many other high energy scenarios can be reached with graphene and related systems
that go under the name of Dirac materials (DMs) [31]. Here, we list some such directions.

2.4.1. Generalized Uncertainty Principles on DMs

In Ref. [45] (see also [46]), the realization in DMs of specific generalized uncertainty
principles (GUPs) associated with the existence of a fundamental length scale was stud-
ied. The scenarios that one wants to reproduce there is that for which the commutation
relations are modified by quantum gravity effects to be (see, for example, [60–69] and
references therein)

[xi, pj] = i h̄
(

δij − A
(
|�p|δij +

pi pj

|�p|
)
+ A2

(
|�p|2δij + 3pi pj

))
, (14)

where A = Ã �P/h̄, with Ã a phenomenological dimensionless parameter and �P ∼ 10−35 m
the Planck length.

In Ref. [45], it is shown that a generalized Dirac structure survives beyond the linear
regime of the low-energy dispersion relations. Additionally, a GUP of the kind compatible
with (14) related to QG scenarios with a fundamental minimal length (there, the graphene
lattice spacing) and Lorentz violation (there, the particle/hole asymmetry, the trigonal
warping, etc.) is naturally obtained. It is then shown that the corresponding emergent
field theory is a table-top realization of such scenarios by explicitly computing the third-
order Hamiltonian and giving the general recipe for any order. Remarkably, these results
imply that going beyond the low-energy approximation does not spoil the well-known
correspondence with analog massless quantum electrodynamics phenomena (as usually
believed). Instead, it is a way to obtain the experimental signatures of quantum-gravity-like
corrections to such phenomena.

In Ref. [46], the authors investigated the structure of the gravity-induced GUP in
(2 + 1)-dimensions. They showed that the event horizon of the M �= 0 BTZ micro-black-
hole furnishes the most consistent limiting “gravitational radius” Rg (that is, the fundamen-
tal minimal length induced by gravitational effects). A suitable formula for the GUP and
estimate the corrections induced by the latter on the Hawking temperature and Bekenstein
entropy could be obtained. As for the role of graphene, it is shown that the extremal M = 0
case, and its natural unit of length introduced by the cosmological constant, � = 1/

√−Λ,
is a possible alternative to Rg, and DMs when shaped as hyperbolic pseudospheres rep-
resent condensed matter analog realizations of this scenario with � = �DM. Due to the
peculiarities of three-dimensional gravity [70], this configuration can still be regarded
as a BH, even though M = 0; on this, see, for example, [71–73].

More work in this QG phenomenology direction is forthcoming [49]. There, it is
found that even more GUPs are at work at different energy scales, and a link is established
between the abstract coordinates satisfying the GUPs and the coordinates one measures in
the lab.
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With this in mind, one sees that our scales here are much more within reach than
those of (14). Indeed, �P needs to be traded for the lattice spacing �, that, for example, for
graphene is �graphene ∼ 1.4× 10−10 m. Therefore, we have much more hope to see in DMs
the effects of the modifications to [xi, pj] = i h̄ δij compared with the direct effects of O(�P).

2.4.2. Grain Boundaries on DMs and Two Scenarios: Witten 3D Gravity, and Ususy

In Ref. [28], two different high-energy-theory correspondences on DMs associated
with grain boundaries (GBs) are proposed. We recall here that a GB can be realized as a line
of disclinations of opposite curvature, for instance, pentagons and heptagons, arranged
so that two regions (grains) of the membrane match. These grains have different relative
orientations, given by the so-called misorientation angle θ, which characterizes the GB
defect. Each side of the GB corresponds to one of the Dirac points (and the other is related
by a parity transformation, see Appendix B of [28] for details) in the continuous π electron
description. Therefore, the continuous limit description of the π electrons living in a
honeycomb with GB needs the two inequivalent Dirac points. Even more, as the θ angle
is related to a non-zero Burgers vector �b through the Frank formula, and a non-zero �b
implies non-zero torsion in the continuous limit5, such a description should take into
account torsion.

The first correspondence points to a (3 + 1)-dimensional theory, with spatiotem-
poral gauge group SO(3, 1), with nonzero torsion, locally isomorphic to the Lorentz
group in (3 + 1) dimensions, or the de Sitter group in (2 + 1) dimensions, in the spirit of
(2 + 1)-dimensional gravity à la Witten [51]. The other correspondence treats the two Dirac
fields as an internal symmetry doublet, and it is linked there with USUSY [52] with SU(2)
internal symmetry [53]. One of the properties of USUSY is the absence of gravitini, although
it includes gravity and supersymmetry. Even if in (2 + 1) dimensions it is constructed
from a Chern–Simons connection containing fermion fields, the only propagating local
degrees of freedom are the fermions [75]. Notice that in USUSY, the torsion of geometric
backgrounds appears naturally, and its fully antisymmetric part is coupled with fermions.

Those results pave the way for the inclusion of GB in the emergent field theory picture
associated with these materials, whereas disclinations and dislocations have already been
well explored.

2.4.3. Particle–Hole Pairs in Graphene to Spot Spatiotemporal Torsion

In Ref. [44], assuming that dislocations could be meaningfully described by tor-
sion, a scenario is proposed based on the role of time in the low-energy regime of two-
dimensional DMs, for which coupling of the fully antisymmetric component of the torsion
with the emergent spinor is not necessarily zero. That approach is based on the realization
of an exotic time loop, that could be seen as oscillating particle–hole pairs. Although that
is a theoretical paper, the first steps were moved toward testing the laboratory realization
of these scenarios by envisaging Gedankenexperiments on the interplay between an exter-
nal electromagnetic field (to excite the particle–hole pair and realize the time loops) and
a suitable distribution of dislocations described as torsion (responsible for the measurable
holonomy in the time loop, hence a current). The general analysis establishes that we
need to move to a nonlinear response regime. Then the authors conclude by pointing
to recent results from the interaction of laser–graphene that could be used to look for
manifestations of the torsion-induced holonomy of the time loop, e.g., as specific patterns
of suppression/generation of higher harmonics. As said before, USUSY takes into account
torsion and couples its fully antisymmetric component with fermions in a very natural way.
Therefore, it could play a significant role also in this exotic time loop [76].

2.4.4. Vortex Solutions of Liouville Equation and Quasi-Spherical Surfaces

In Ref. [57], the authors identified the two-dimensional surfaces corresponding to
specific solutions of the Liouville equation of importance for mathematical physics, the
non-topological Chern–Simons (or Jackiw–Pi [77,78]) vortex solutions, characterized by
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an integer [79] N ≥ 1. Such surfaces, called S2(N), have positive constant Gaussian
curvature, K, but are spheres only when N = 1. They have edges and, for any fixed K, have
a maximal radius c that is found there to be c = N/

√
K. If such surfaces are constructed

in a laboratory using DMs, these findings could be of interest to realize table-top Dirac
massless excitations on nontrivial backgrounds. Then the types of three-dimensional
spacetimes obtained as the product S2(N)×R are also briefly discussed.

2.5. Realization in the Labs

Besides the theoretical work just outlined, one should always aim at the actual real-
ization of the necessary structures in real laboratories. See, for example, the work [58],
where Lobachevsky geometry was realized via simulations by producing a carbon-based
mechanically stable molecular structure arranged in the shape of a Beltrami pseudosphere. It
was found there that this structure (i) corresponds to a non-Euclidean crystallographic group,
namely a loxodromic subgroup of SL(2,Z), and (ii) has an unavoidable singular boundary
that is fully taken into account. That approach, substantiated by extensive numerical sim-
ulations of Beltrami pseudospheres of different sizes, might be applied to other surfaces of
constant negative Gaussian curvature, and points to a general procedure to generate them.
Such results pave the way for future experiments. More work is currently undergoing.

3. Graphene-Inspired Quantum Gravity: The Quasiparticle Picture

If the entropy of any physical system of volume V, including the entropy associated to
space itself, is never bigger than the entropy of the BH whose event horizon coincides with
the boundary of V [3]

S ≤ SBH , (15)

this means that the associated Hilbert space, H, has finite dimension, dim(H) ∼ eSBH .
This simple consideration poses serious questions.

In fact, at our energy scales, the world is well described by fields (matter) and the space
they live in. Quantum fields, as we know them, act on infinite-dimensional Hilbert spaces,
to which one should add the degrees of freedom surely carried by (the quanta of) space
itself. How can then be that the ultimate Hilbert space, which must include all degrees
of freedom, is not only separable, like for a single harmonic oscillator, but is actually
finite-dimensional?

This logic points to the existence of something more fundamental, making both matter
and space. Hence, the elementary particles of the standard model (leptons, quarks, etc.)
would be, in fact, quantum quasi-particles, whose physical properties (spin, mass, etc.) are
the effect of the interaction with a lattice whose emergent picture is, in turn, (classical) space.
Inspired by Feynman [1] (see the Introduction here) these objects were called Xons [2]. To
access the Xons, one needs resolutions of the order of the Planck length, which might not
only be technically unfeasible, but actually impossible; see, for example, [80].

In Ref. [6], and later in [40], general arguments are provided regarding the connection
between our low-energy quantum-matter-on-classical-space description and an hypotheti-
cal fundamental theory of the Xons. The reshuffling of the fundamental degrees of freedom
during the unitary evolution then leads to an entanglement between space and matter. The
consequences of such a scenario are considered in the context of BH evaporation (see, for
example, [81–83]) and the related information loss: a simple toy model is provided in which
an average loss of information is obtained as a consequence of the entanglement between
matter and space. Pivotal for the previous study is the work of [84], where the Hawking–
Unruh phenomenon is studied within an entropy–operator approach, à la thermo-field
dynamics (TFD) [85,86] that discloses the thermal properties of BHs.

3.1. The Universal Quasiparticle Picture

Emergent, nonequivalent descriptions of the same underlying dynamics are ubiquitous
in QFT [87], as, in general, the vacuum has a nontrivial structure with nonequivalent6

“phases” [86]. That is, for a given basic dynamics (governed by an Hamiltonian or a
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Lagrangian), one should expect several different Hilbert spaces, representing different
“phases” of the system with distinct physical properties. Distinct excitations play the role of
the elementary excitations for the given “phase”, but their general character is that of the
quasiparticles of condensed matter [85,86].

What it is added here to that QFT picture is the following:

• The degrees of freedom are finite, hence fields are necessarily emergent;
• Spacetime is also emergent.

Taking this view, the continuum of fields and space is then only the result of an approx-
imation, of a limiting process. In general, there must be (many) microscopic configurations
of the Xons giving rise to the same emergent space but to different/non-equivalent fields.

With this in mind (for details, see [6]), the generic state |ψ〉 ∈ H can be written as

|ψ〉 =
NT⊕
i=1

pi

∑
I=1

qi−1

∑
n=0

c(i)In |Ii〉 ⊗ |ni〉, (16)

where the vectors |Ii〉 and |ni〉 form a basis of Hpi
G and H

qi
F , that are the Hilbert space of the

“spatial degrees of freedom” (geometry) of dimension pi and of the Hilbert space of the
“matter degrees of freedom” (fields) of dimension qi, respectively, and c(i)In are numerical
coefficients. Notice that NT is the number of specific rearrangements (topologies) of the
degrees of freedom.

By denoting with P(i) : H �→ T(i) a projector onto T(i), a subspace with a given
“topology”, the associated density matrix, representing the state of the field, is

ρ(i) = Tr
H

pi
G
|ψ〉i〈ψ|i, (17)

where |ψ〉i ∼ P(i)|ψ〉, and we trace away the degrees of freedom of the gravitational field.
Correspondingly, the entropy of entanglement between matter and space, for a given
topology of the lattice, is the usual expression7

S(i) = −Tr
H

qi
F

ρ(i) ln ρ(i) . (18)

This picture needs to be compared to the standard QFT picture, recalled earlier, of the
non-equivalent field configurations, or “phases” à la TFD [85,86] where the mirror degrees
of freedom, that characterize TFD (often called there the tilde degrees of freedom), model
the degrees of freedom of the geometry. These degrees of freedom are then traced away,
leaving us with quantities all referring solely to matter (fields). Indeed, the vacuum of TFD
can be written as [85]

|0(θ)〉 = ∑
n

√
wn(θ)|n, ñ〉, (19)

where θ is a physical parameter labeling the different “‘phases”, wn are probabilities
such that ∑n wn = 1, and the states |n, ñ〉 (infinite in number) are the components of the
condensate, each made of pairs of n quanta and their n mirror counterparts (ñ). Therefore,
such a vacuum is clearly an entangled state. Notice that [85]

〈0(θ)|0(θ′)〉 → 0, (20)

in the field limit, which formalizes the inequivalence we discussed. Notice also that, if one
fixes θ, there is no unitary evolution to disentangle the vacuum, as the interaction with the
environment and non-unitarity are the basis for the generation and the stability of such an
entanglement [84].
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The expected value of field’s observables, O, are obtained by tracing away the mirror
modes, ñ. In the TFD formalism, this corresponds to taking the vacuum expectation value
over the vacuum (19)

〈O〉 ≡ 〈0(θ)|O|0(θ)〉 = ∑
n

wn(θ) 〈n|O|n〉 . (21)

In particular, there is always an entanglement entropy associated to any field, given by,
for example,

〈S〉 = ∑
k
[nk ln nk + (1− nk) ln(1− nk)] . (22)

where nk = 〈Nk〉 is the expected value of the number operator for the given (fermionic, in
this example) mode k. The analogy of (22) with (18) is stronger, if we think that in TFD the
process of taking statistical averages through tracing is replaced, by construction [85], by
taking vacuum expectation values (vevs) over the vacuum (19). Furthermore, as is well
known, in the basis where the density matrix in the entropy (18) is diagonal, the entropy
can be written as

〈S〉 = −∑
n

wn(θ) ln wn(θ) , (23)

as shown, for example, in [86].
In this comparison, the mirror (tilde) image of the field mimics the effects of the

entanglement with space where the field lives, even when the space is flat. This happens
on a level that is both emergent and effective. This would have far reaching consequences,
surely worth a serious exploration. For instance, the entanglement entropy associated
to any field, would never be zero. Furthermore, this would explain why the attempt to
quantize gravity as we quantize the matter fields, cannot make much sense.

To compare TFD entropies and the entropies obtained in the quasi-particle picture,
a different point of view is taken in [40]. There, the authors focus on BH evaporation as
seen from the point of view of the fundamental Xons, and were able to establish formulae
and structures indeed similar to those of TFD. The main difference with TFD is that, at the
level of the discrete structures related to Xons, the quantum field theoretical considerations
illustrated above are only an approximation. In Section 3.3, we recall those results. Before
doing so, let us focus on BH evaporation as seen from the point of view of the emergent
quantum fields and emergent space.

3.2. Effects of the Quasiparticle Picture on Black Hole Evaporation

When applied to BH evaporation, the immediate consequence of the above is that it is
impossible after the evaporation to retrieve the very same “phase” we had before the BH
was formed. Hence, the information associated to the quantum fields before the formation
of the BH is, in general, lost after the BH has evaporated, due to the entanglement between
matter and space.

Even when the emergent spaces, before the formation and after the evaporation, are
the same (say they are both Minkowski spacetimes), the emergent fields belong, in general,
to non-equivalent Hilbert spaces. Therefore, even assuming unitary evolution at the X
level, the initial and final Hilbert spaces of fields cannot be the same. There is always a relic
matter–space entanglement entropy.

Looking at Equation (16), it is clear that the Hilbert space H can be written as

H =
NT⊕
i=1

H
pi
G ⊗H

qi
F (24)

where we can now introduce measures, RFs, RGs, of the “degeneracies”, pi = NG Ri
G,

with the NG classical geometries available (they represent the BH with mass M(a) = a ε,
where a = 0, 1, . . . NG − 1), and each classical geometry can be realized by Ri

G microstates.
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On the other hand, qi = NF Ri
F, that is, each emergent field state can be realized by Ri

F
indistinguishable microstates.

The analytic computations of the entanglement entropy demand a heavy toll, so in [6],
the authors proceeded numerically. The case we present here is for the following choice
of NG = 30, NT = 2, and Ri

F = 1, for each topology. The plots in Figure 3 show the
entanglement entropies, corresponding to the three sets of values given in the box, as
functions of the discrete evolution parameter k.

M0 0

0

S1

S2

S3
R1

G = 1, R2
G = 5

R1
G = 2, R2

G = 10

R1
G = 4, R2

G = 20

Figure 3. Entropy of the entanglement between matter and space, as a function of the decreasing
mass of the evaporating BH. The initial and final points of this curve are in exact correspondence
with the initial and final points of the Page curve. The plot here is for two topologies and three cases.
The more microscopic realizations of macroscopic classical geometries are allowed, the higher the
residual entropies. Here, S1 = 0.77, S2 = 1.43, S3 = 2.06. Figure taken from [6].

As can be seen from the figure, the residual entropies are never zero, and are given by

S1 = 0.77, S2 = 1.43, S3 = 2.06 , (25)

corresponding to the set of values in the box going from the top to the bottom, respectively.
The more microscopic realizations of the same macroscopic geometry (i.e., the bigger the
degeneracy RG), the higher the relic entanglement entropy. This is as it must be.

The fact that, at the end of the evaporation, the entanglement entropy remains finite
signals a dramatic departure from the information conservation scenario of the famous Page
curve [82], presented here in Figure 4. There, the total Hilbert space has the dimension mn,
and consists of two subsystems: the BH subsystem, of dimension n ∼ eA/4, where A is
the area of the event horizon, and the radiation subsystem, of dimension m ∼ esth , where
sth is the thermodynamic radiation entropy. In Page’s picture, there is no explicit mention
of the degrees of freedom of space, and the evolution is taken to be unitary. Thus, in that
picture, one sees that, when the BH is formed, there is no Hawking radiation outside; hence,
m = 1 and n = dimH. The BH-radiation entanglement entropy, Sm,n is trivially zero. As
the BH evaporates, m increases, while n decreases, keeping m n constant. Since the emitted
photons are entangled with the particles under the horizon, Sm,n increases, but only up
to, approximately, half of the evaporation process. There, the information stored below
the horizon starts to leak from the BH, so that Sm,n decreases until full evaporation; hence
n = 1 and m = dimH and Sm,n returns to zero.
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0 lnm
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S S

I

Figure 4. Page curve, representing the entanglement between matter modes inside the BH and matter
modes of the radiation leaving the BH (in this picture there is no explicit reference to the degrees
of freedom related to space) vs. the log of the dimension m of the Hilbert space of the radiation,
obtained in [81,82]. The point ln m = 0 corresponds to the initial mass of the BH, M = M0. Indeed,
m = 1 means that only the vacuum state populates the radiation subsystem of the Hilbert space, at
the start of the evaporation. On the other hand, mmax corresponds a fully evaporated BH, M = 0.
Figure taken from [6].

From the point of view of the quasiparticle picture, we may say that, even if one takes
a conservative view for which the Xons evolve unitarily, nonunitarity is unavoidable:

• The unitary evolution may as well be only formally possible, but physically impossible
to measure, for some form of a generalized uncertainty forbidding the necessary Planck
scale localization/resolution (see, for example, [80]).

• The emergent description of the evolution is that of the combined system gravity +
matter, and hence there is inevitably information loss, due to the relic entanglement of
the matter field with the space.

• This description should apply also to standard nonunitary features of QFT, and we
evoke here the possibility that the tilde degrees of freedom of TFD could be interpreted
as “how the emergent fields see the degrees of freedom of space with which they
are entangled”.

Notice that this description does allow for an arbitrary number of different fields, and
hence naturally includes the possibility of yet unknown (“dark”) kinds of matter.

3.3. BH Evaporation as Seen from the Xons and the Unification of the Entropies

In Ref. [40], the authors describe BH evaporation from the point of view of the funda-
mental constituents, assuming they are fermions, so that only one excitation per quantum
level is permitted. Because the Xons must be responsible for the formation of both matter
and space, no geometric notions can be used. For example, it is assumed that only a
finite number N of quantum states/slots are available to the system. This last condition
is a non-geometric way of requiring that the system is localized in space. Moreover, it is
not meaningful to refer to the interior and the exterior of a BH. Instead, the authors there
distinguish between free and interacting Xons, respectively: BH evaporation is the process
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in which the number of free Xons decreases, N → (N − 1) → (N − 2) → · · · , while
interacting Xons form matter (quasi-particles) and space (geometry), i.e., the environment.

The Hilbert space of physical states H is the subspace of a larger kinematical Hilbert
space K ≡ HI ⊗ HII , and it has dimension Σ ≡ dim H = 2N . Here I and II refer to BH
and environment, respectively, in the sense explained above.

The state of the system |Ψ(σ)〉 ∈ H is [40]

|Ψ(σ)〉 =
N

∏
i=1

∑
ni=0,1

Ci(σ)
(

a†
i

)ni
(

b†
i

)1−ni |0〉I ⊗ |0〉II , (26)

where a and b are environment and BH ladder operators, respectively, and

Ci(σ) = (sin σ)ni (cos σ)1−ni . (27)

σ is an interpolating parameter going from 0 to π/2. We can also define TFD-like en-
tropy operators

SI(σ) = −∑N
n=1

(
a†

n an ln sin2 σ + an a†
n ln cos2 σ

)
. (28)

SII(σ) = −∑N
n=1

(
b†

n bn ln cos2 σ + bn b†
n ln sin2 σ

)
. (29)

so that their averages on |Ψ(σ)〉 give the von-Neumann entropy of the two subsystems:

SI(σ) = SII(σ) = −N
(

sin2 σ ln sin2 σ + cos2 σ ln cos2 σ
)

. (30)

Such entropy quantifies the entanglement between the environment and the BH.
As for the original Page result, the entropy (30) shows that the BH evaporation at such
fundamental level is a unitary process, with S(0) = S(π/2) = 0 and a maximum value
Smax = N ln 2 = ln Σ, so that Σ = eSmax . Smax quantifies the maximum information
necessary in order to describe the BH and should be identified with the BH entropy before
the evaporation. When the BH evaporates the mean number NII(σ) = N cos2 σ of free
Xons decreases, while the mean number of interacting Xons NI(σ) = N sin2 σ increases.
Then, BH and environment entropy should be

SBH = N ln 2 cos2 σ , Senv = N ln 2 sin2 σ . (31)

Moreover, σ finds a natural explanation as a discrete parameter in the interval [0, π/2],
essentially counting the diminishing number of free Xons.

The entanglement, BH and environment entropy satisfy SI ≤ SBH + Senv = Smax:
the entropy of both BH and environment is bounded from above, in accordance with the
Bekenstein bound. In Figure 5, these three entropies are plotted as functions of the discrete
parameter σ.

For a full identification of Smax with the entropy SBH of the initial BH, one would have
(for a non-rotating, uncharged black hole)

N =
4 π M2

0
l2
P ln 2

, (32)

where M0 is the initial BH mass. Finally, identifying the N quantum levels with the quanta
of area, in the spirit of Refs. [89–92], one obtains

A = 4 N l2
P ln 2 , (33)

for the BH horizon area. Notice that the value of α ≡ A/(Nl2
P) could be inferred from

measurement on BH quasinormal modes [93].

119



Universe 2022, 8, 455

0.5 1.0 1.5

100

200

300

400

500

600

700

S

Figure 5. Plot of SBH (black), Senv (green) and SI (red), as function of σ, for N = 1000. Figure taken
from [40].

3.4. Topological Phases and the Emergence of Space from Evaporating BHs

How is the existence of different phases of matter compatible with the finiteness of
degrees of freedom? Such an issue is closely related with the evasion of the Stone–von
Neumann theorem [94–96]. In fact, it is known that in quantum mechanics, all continuous,
irreducible representations of Weyl–Heisenberg (for bosons) or Clifford (for fermions)
algebra, are unitarily equivalent. However, as it was previously noted, such a theorem
does not apply to QFT, where systems with an infinite number of degrees of freedom
are studied [97–100]. The existence of unitarily inequivalent representations of canonical
(anti)commutation relations permits to describe transitions among disjoint phases of the
same system, in the QFT framework.

However, it is known that it is also possible to evade the Stone–von Neumann theorem
by relaxing the continuity hypothesis [101]. This has been shown in quantum mechanical
systems with a multiple-connected configuration space [102–104] or in polymer quantum
mechanics [105–107].

In Ref. [108], the authors studied an example where both thermodynamical and topologi-
cal disjoint phases are realized: a vortex solution in a QFT with a spontaneously broken
U(1) symmetry was analyzed by means of the boson transformation method [109–111]. Such
an idea, firstly developed by H. Umezawa and collaborators, permits to describe classical
extended objects emerging from an underlying QFT, by means of a canonical transformation
performed on bosonic quasi-particle fields, which induces an inhomogeneous condensate
on vacuum. Then, the authors showed that spontaneous symmetry breaking (SSB) is indeed
possible, even when the volume of the system stays finite [108]. This represents a first step
to understand the emergence of different phases in the Xons model.

The above method also permits to shed some light on the mechanism of the forma-
tion of space and quasi-particles from an underlying Xons dynamics. In Ref. [112], the
authors face the delicate and fascinating issue of how space itself might be viewed as a
classical extended object stemming from the SSB of underlying quantum dynamics, with
the associated Goldstone bosons. In that case, discrete Xons Ψj are approximated by a field
Ψ(x), and the space structure and geometric tensors (metric, curvature, torsion) emerge as
a result of the condensation of Goldstone bosons, while quasi-particles are described by
fields on a classical (curved) space.

4. Concluding Remarks and Future Perspectives of the Graphene Analog Enterprise

QG and other fundamental scenarios can be tested also with analog experiments. In
fact, the exciting and rapidly evolving field of analog physics is facing a new era. The
interest is shifting from the reproduction of the kinematical aspects of the Hawking/Unruh
phenomenon that has reached a climax of precision and accuracy, to the realization of
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some form of BH (thermo)dynamics. The latter is a challenging problem, but given its
importance, even a partial solution is surely worth the effort.

The primary goals of the research in this field should then be to search for realizations
of such dynamical aspects, and to learn from the above on QG. Here we have described the
results found following the road of graphene. Let us now collect the many directions we
see departing from there.

4.1. Hunting for Analog BH (Thermo)Dynamics

A conservative approach to BH evaporation [81,82] assumes that the evolution of the
collapsing matter to produce a BH and its subsequent evaporation is a unitary process. This
is what we would like to test in our analog systems. Indeed, current ongoing work [112]
primarily focuses on the emergence of space in a QG scenario, as described in Section 3.4;
henceforth, from there we are on the hunt for a BH dynamics on graphene and other DMs.
In fact, the results of that general work will help us construct an experimentally sound
geometry/gravity theory that describes the dynamics of the elastic DM membrane and
explore the relations to existing gravity models. Having an action, we would be able to
compute the Wald entropy in the usual way [113].

With this in mind, we are studying the realization of BHs on DM, based on the
discoveries we summarized in Section 2.4. One important case under scrutiny is that
of the BTZ BH realized using hyperbolic pseudospheres [46]. We shall operate through
theoretical investigations but will interact more and more with the experimentalists to test
the formulae obtained in [15,16] (or variants, obtained by refining earlier computations in
the light of the new results; see, for example, [28]), and we shall produce more predictions
of this kind for different samples’ morphologies and various graphene observables.

In the “time-wise” approach, the focus will be on reproducing BH (and other non-
trivial) emergent metrics, by suitably engineering the interaction of the electromagnetic
field with the appropriate DM. The basis for the study are two kinds of results obtained
in earlier investigations and discussed here. On the one hand is the emergence of the
Hawking/Unruh effect for specific spatial geometries. On the other hand is the great
level of accuracy reached with laser pulses to control spatial and temporal resolution for
graphene’s electrons dispersion relation [114]. The latter results inspired Ref. [44], where
important details are obtained that will pave the way to a full understanding of how
to engineer suitable temporal components of the emergent metric, and how to control
their dynamics. The two approaches are, of course, tightly related, as one goal will be
to rephrase the spatial analysis of previous work into a temporal language, namely by
identifying the appropriate transformations among spatial and temporal nontriviality of
the emergent metric, and by envisaging the physical setups that could realize those metrics
in a laboratory, for instance in the laser–DM interaction.

On the more proper QG side, we expect that lattice effects will play a role, even within
the continuous approximation regime [27], but surely at the “very high energy” regimes,
where the linear approximation no longer works, these aspects become dominant. In the
latter regimes, the (pseudo-)relativistic structure of the Dirac field will be deformed, and
the discrete nature of the space(time) becomes so important that the continuum description,
in terms of smooth metrics, will no longer be valid. This will become an important point to
enforce the analogy with QG scenarios of the discrete spacetime. Indeed, the results in [45],
where the natural analog of the Planck length is the lattice spacing � of the material, point
in that direction.

4.2. BH Entropy, the Information Paradox and the Xons Model

Having in our hands a suitable emergent gravitational dynamics, along the lines of
what is explained in Section 3.4, it surely will be a great advancement and a necessary step
toward analog BH thermodynamics. Still it would not be enough, as a suitable and reliable
analog of a BH entropy is the key problem to be solved. In this respect, we have two roads
in mind, one being easier than the other: i) entanglement entropy of the Dirac fields, on the
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given dynamical emergent BH background; ii) computation of the Wald entropy through
standard classical calculations based on the experimentally sound geometry/gravity theory
that describes the dynamics of the elastic graphene membrane.

The first approach is easier in two respects. First, one does not need an action for the
geometry/gravity theory in point. Second, there are many results at our disposal on the
entanglement entropy, from the general ones on generic bipartite systems [115], to the spe-
cific ones on the BH thermodynamics [84,116,117]. With these in our hands, we can surely
attempt various things, and it will be exciting to see how certain issues of the theoretical
side are solved here in practice. Given the results on the granular regimes beyond the linear
theory [45,118] (see also [49]), we are also in the position to compute QG corrections to the
formula, and compare theoretical predictions on the QG side, as well as experiments on the
condensed matter side. The second approach is more difficult; nonetheless, we plan to also
move steps in that direction because of its more direct link with purely gravitational sce-
narios. An exciting perspective is that these two approaches are complementary. It will be
illuminating to compare the two, Bekenstein/Wald and entanglement.

To have these aspects under control, it is clearly necessary to face, within this approach,
the long-standing issue of the information loss. In [6], it was investigated the impact on the
Page curve of a picture born in analogy with condensed matter, named there the “quasi-
particle picture”. In this picture, more fundamental entities exist (we might call them Xons,
with Feynman), and they make particles and spacetime at once: hence, the (information
preserving) unitarity of the BH evaporation of the Page curve is not tenable. In [40], it was
shown how entanglement, Bekenstein and thermodynamic entropies all stem from the
same operator, whose structure is the one typical of Takahashi and Umezawa’s TFD [86].
We expect that the several interesting new insights gained from this work will substantially
help to reach the goals.

Finally, in [46], taking advantage of the peculiarities of the BTZ BH [59], the extremal
M = 0 case was identified as furnishing an alternative way for the emergence in DMs of a
maximal resolution/minimal length, given by the lattice length �, and related to the (nega-
tive) cosmological constant as � = 1/

√−Λ. Noticeably, a similar independent proposal
emerged in the discussion of the entanglement entropy of the BTZ; see [119]. There, the
AdS length is promoted to the typical length, below which spatial quantum correlation is
traced out. Clearly, this road has the potential to produce very interesting results.

4.3. Other Hep-Th Scenarios on DMs

Many other aspects that will contribute toward the main goal of testing QG scenarios
with DMs but that are important on their own right are in sight. Let us mention one.

The action of graphene can be recast [28] in a form very similar to the action of USUSY,
for an external non-abelian SU(2) gauge field and a fixed curved background [52]. Indeed,
if the geometric background is fixed and the non-abelian gauge field is external (there is no
dynamics for the phonons and gauge fields), then the only difference between such actions
is the coefficient in front of the torsion term. Interestingly enough, the vacuum sector is
defined by configurations that are locally Lorentz flat as is the case of BTZ BHs [120], and
SU(2) connections carrying nontrivial global charges [121].

4.4. HELIOS

Let us close by making the case for a laboratory where QG and other fundamental the-
ories of nature are tested with analogs. Bearing in mind what we discussed at length in this
review, and that these are the days of the AdS/CFT correspondence (see, for example, [122]),
relating gravity and matter, we believe that the times are mature for a dedicated laboratory,
entirely devoted to test fundamental theories by using analogs [123–125]. A laboratory built
with the same spirit of CERN will unify, systematize and organize those efforts, but will also
raise the status of the analog enterprise to the quest to reach beyond the known. The other
side of the story is that analogs are often important materials for technological applications,
like the case of graphene discussed in this review. Such a laboratory would then be an
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invaluable think-tank, where unconventional thinking would be routinely applied to create
new technology, and to solve fundamental problems. Within our research group in Prague,
we call this future facility HELIOS, for High Energy Lab for Indirect Observations.
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Notes

1 Interestingly, there is a proposal called “atoms of spacetime matter” that could be closely related with this concept of Xons [38,39].
2 As the π electrons do not participate in the stronger covalent σ bonds, these electrons are not so attached to the carbon nuclei and

are freer to “hop” from an atom to a neighbor one.
3 Here our notations: μ, ν = 0, 1, . . . , n− 1 are Einstein indices, responding to diffeomorphisms, a, b = 0, 1, . . . , n− 1 are flat indices,

responding to local Lorentz transformations, while α, β are spin indices. The covariant derivative is

∇μψα = ∂μψα + Ωμ
β

α
ψβ ,

with
Ωμ

β
α
=

1
2

ωab
μ (Jab)

β
α ,

where (Jab)
β

α are the Lorentz generators in spinor space, and

ωμ
a
b = ea

λ(δ
λ
ν ∂μ + Γλ

μν)Eν
b ,

is the spin connection, whose relation to the Christoffel connection comes from the full metricity condition∇μea
ν = ∂μea

ν − Γλ
μνea

λ +

ωa
μ beb

ν = 0. We also introduced the Vielbein ea
μ (and its inverse Eμ

a ), satisfying ηabea
μeb

ν = gμν, ea
μEν

a = δν
μ, ea

μEμ
b = δa

b , where
ηab = diag(1,−1, . . . ). The Weyl dimension of the Dirac field ψ in n dimensions is dψ = (1− n)/2. Here n = 3, and we can move
one dimension up (embedding), or down (boundary). More notations can be found in [13].

4 Recall that in three dimensions ωμ ab = εabc ω c
μ .

5 Roughly speaking, torsion is the surface density of the Burgers vector�b. For technicalities, see [50,74].
6 Let us explain why we use the word phase in quotation marks. Given the general vacuum of a QFT, one can identify several vacua

that cannot be obtained one from the other through a smooth unitary transformation. Starting from each of these “sub vacua”,
and acting with the appropriate creation operators, one builds several (infinite) sectors, sometimes called super-selection sectors.
Not all of them correspond to a phase of the system, in the proper statistical mechanical/thermodynamical sense. On the other
hand, all such phases need be described by a super-selection sector or by a set of them. On this, see, for example, [88].

7 As it is impossible to distinguish the space corresponding to different topologies of the lattice, the expected value of the
entanglement between the fields and the geometrical degrees of freedom is 〈S〉 = ∑i p(i)S(i).
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Abstract: This article deals with the fractional problem of Sturm–Liouville and the Hilbert space
associated with the solutions of this differential equation. We apply a quantization procedure
to Schwarzschild space–time and obtain a fractional differential equation. The Hilbert space for
these solutions is established. We used equations arising from quantization for the FRW and
Reissner–Nordstron metrics to build the respective Hilbert spaces.

Keywords: quantum gravity; teleparallelism; non-commutative gravity

1. Introduction

The search for a quantum theory of gravitation has been attempted as a stepping
stone towards a great unified field theory. Despite this, there is no consensus on how to
achieve this goal. The two most widespread approaches are loop quantum gravity [1]
and string theory [2]. The latter, despite the mathematical consistency and simple basic
principles, does not present experimental verification. On the other hand, loop quantum
gravity is based on quantization processes applied to the Hamiltonian formulation of
general relativity. This generates a discretization in the space–time itself instead of one in
the gravitation source. The lack of gravitational energy in this context leads to a difficult
physical interpretation of the result.

In fact, theories, which have a well-defined energy-momentum tensor for the field in
question, are less refractory to known quantization techniques. Among the best known of
these techniques, we have the canonical quantization that requires the formulation of the
field in the phase space [3]. None of these conditions are met by the standard approach
to gravitation. On the other hand, an alternative theory equivalent to general relativity
allows the conception of a very well-defined gravitational energy, the so-called teleparallel
gravity [4,5]. Teleparallelism equivalent to general relativity (TEGR) is constructed out of
the tetrad field and was introduced by Einstein himself as part of the same effort to find a
unified theory. TEGR is not a priori formulated in the phase space, which makes canonical
quantization difficult to implement. The Hamiltonian formulation can certainly overcome
this difficulty [6], but we are interested in applying a quantization technique that acts on
functions dependent only on coordinates. We refer to Weyl’s quantization [7].

Weyl’s quantization was introduced in the early days of quantum mechanics and has
the property of transforming a coordinate function into an operator [8–10]. On the other
hand, it shares with the canonical quantization the arbitrariness in the representation of the
operators constructed from the coordinates. Given n variables denoted by z1, z2, . . . , zn,
then the prescription

(z1, z2, . . . , zn)→ (̂z1, ẑ2, . . . , ẑn) ,
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immediately quantizes a function f dependent on the classical variables. This quantization
of the functions f is achieved by the following Weyl’s map,W : f → f̂ =W[ f ],

W[ f ](z1, z2, . . . , zn) :=
1

(2π)n

∫
dnkdnz f (z1, z2, . . . , zn) exp

⎛⎜⎜⎜⎜⎜⎝i
n∑

l=1

kl (̂zl − zl)

⎞⎟⎟⎟⎟⎟⎠. (1)

The operators constructed out of the classical variables obey the following relation

[̂zi, ẑ j] = iβi j,

which means that the Weyl’s quantization is essentially a non-commutative prescription.
It is worth noting that such non-commutativity can be established for all coordinates one
pair at a time, by choosing the beta components. On the other hand, non-commutativity
involving the temporal coordinate is problematic, so we usually restrict ourselves to spatial
coordinates or apply the technique to stationary systems. In addition, the very dependence
of the function to be quantized influences this choice. Particularly when energy is used, its
dependence on coordinates becomes the natural choice to use non-commutative coordinates.
Weyl’s quantization combined with TEGR creates a powerful approach to quantum gravity
that has achieved consistent results such as the discretization of the charge-mass ratio [11],
as well as the achievement of discrete levels of energy in a primordial universe [12]. On
the other hand, improvements must be made such as the construction of the Hilbert space
associated with the functions on which the resulting operators act. It is interesting to
note that the three systems discussed in this article have different possible interpretations.
Certainly until the advent of an experimental measurement, we may have a somewhat
speculative interpretation. In Schwarzschild’s case, a discrete mass spectrum points to a
deeper quantum construction of matter, perhaps linked to a geometric structure of particles.
Incidentally, such an idea applied to a charged black hole explains why the charge-mass
ratio is discrete. It was even possible to associate the non-commutative parameter to the
fundamental charge. As for the FLRW metric, its quantization provides a simple and ab
initio explanation of the inflation process of the early universe.

This article is divided as follows. In Section 2, we introduce the basic ideas of TEGR,
and we show the expression of gravitational energy that will be object of quantization. In
Section 3, we approach the fractional problem of Sturm–Liouville and how to build the
Hilbert space associated with the solutions of the differential equation. In Section 4, we
obtain a fractional equation as a result of the quantization of Schwarzschild space–time. In
Section 5, we show that the quantization of Reisner–Nordstrom space–time, obtained in a
previous article, has a well-defined Hilbert space. In Section 6, we used the quantization
of the FRW metric, already obtained in another article, to establish the associated Hilbert
space. Finally, in Section 7 we present our final points. We adopt a unity system such that
G = c = 1.

2. Teleparallelism Equivalent to General Relativity (TEGR)

TEGR is an alternative theory of gravitation whose dynamic variables are the tetrads.
They also determine the state of the observer. That is, there is a single solution of the field
equations for each reference system. This arbitrariness in the choice of the observer is a
physical feature absent from the standard theory of gravitation, general relativity. In this
sense, an expression of gravitational energy must be dependent on the reference system
but invariant by coordinate transformations. The tetrad field relates two symmetries. On
the one hand, the Greek indices denote coordinates transformation. On the other hand, the
Latin indices denote Lorentz transformations.

Let’s consider a manifold endowed with the following connection:

Γμλν = ea
μ∂λeaν ,
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which is the Weitzenböck connection. It is curvature free, but has a torsion given by

Ta
λν = ∂λea

ν − ∂νea
λ . (2)

It is important to note that the tetrad is related to the metric tensor through gμν = ea
μeaν.

The metric tensor is the foundation of a Riemannian geometry in which Christoffel symbols,
0Γμλν, are defined. The scalar curvature obtained from this connection is the invariant
in the Hilbert–Einstein’s action. Thus, a relationship between Christoffel symbols and
Weitzenböck connection determines in itself an equivalence between TEGR and general
relativity. Such a relationship is a mathematical identity given by

Γμλν = 0Γμλν + Kμλν , (3)

where Kμλν, that is defined as

Kμλν =
1
2
(Tλμν + Tνλμ + Tμλν) , (4)

with Tμλν = eaμTa
λν, is the contortion tensor.

Due to the identity (3), the following equation holds

eR(e) ≡ −e(
1
4

TabcTabc +
1
2

TabcTbac − TaTa) + 2∂μ(eTμ) . (5)

It should be noted that the scalar curvature calculated out of the Weitzenböck connection
vanishes identically. Hence, the Lagrangian density of TEGR may be written as

L(eaμ) = −κ e (
1
4

TabcTabc +
1
2

TabcTbac − TaTa) − LM

≡ −κ eΣabcTabc − LM , (6)

where κ = 1/(16π), LM is the Lagrangian density of matter fields and Σabc is given by

Σabc =
1
4
(Tabc + Tbac − Tcab) +

1
2
(ηacTb − ηabTc) , (7)

with Ta = ea
μTμ. The Lagrangian density above yields the Einstein equation but doesn’t

share the same symmetries of the general relativity Lagrangian density because the total
divergence in (5) was dropped out. Thus, the field equations read

∂ν
(
eΣaλν

)
=

1
4κ

e ea
μ(tλμ + Tλμ) , (8)

where
tλμ = κ

[
4 ΣbcλTbc

μ − gλμ ΣabcTabc
]

(9)

is the gravitational energy-momentum tensor. Such a tensor is conserved due to

∂λ∂ν
(
eΣaλν

)
≡ 0 . (10)

This allows one to define the total energy-momentum vector as

Pa =

∫
V

d3x e ea
μ(t0μ + T0μ) , (11)

which can be expressed in view of the field equations as

Pa = 4k
∫

V
d3x ∂ν

(
e Σa0ν

)
. (12)
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It should be noted that Pa is a vector under Lorentz transformations, but it is invariant
under coordinate transformations, as expected for a energy-momentum vector.

3. The Fractional Sturm–Liouville Theory and Hilbert Space

In this section, we present the fractional theory of Sturm–Liouville. This subject
is the background to analyze fractional ordinary differential equations (ODEs) by self-
adjunct procedure and to establish a Hilbert space. The content of this section is based on
references [13–18].

3.1. Preliminaries

In this subsection, we recall definitions of fractional integrals and derivatives. We
focus on the Caputo’s approach due to the smoothing of Riemann–Liouville regarding
physical interpretations.

Definition 1. Let’s assume α > 0, with n− 1 < α < n and n ∈ N, [a, b] ⊂ R, in addition let f be a
suitable real function. The Caputo fractional derivative is

(CDαa+ f )(x) = (In−α
a+ Dn f )(x), (x > a), (13)

(CDαb− f )(x) = (In−α
b− Dn f )(x), (x < b), (14)

where

(Iαa+ f )(x) =
1

Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, (x > a), (15)

(Iαb− f )(x) =
1

Γ(α)

∫ b

x
(x− t)α−1 f (t)dt, (x < b), (16)

Γ(α) denotes the Euler gamma function, and Dn represents the usual derivative operator Dn =
∂n

∂xn .

As an example, let’s calculate the Caputo fractional derivative of function f (x) = x2

of order 1/2. First, we apply the differential operator D =
∂
∂x

in f (x) = x2, obtaining

D(x2) = 2x. Now, we calculate the integral

(CD1/2
0 x2) =

1
Γ(1/2)

∫ x

0
(x− t)1/22xdt.

Performing this integral and using Γ(1/2) =
√
π, we obtain

(CD1/2
0 x2) =

2√
π

x1/2. (17)

The Caputo fractional derivative satisfies several properties which can be find in
references.

Next we present the definition of a relevant function to Caputo differential calculus
which is called Mittag–Leffer function.

Definition 2. The two parameters Mittag–Leffer function, Ea,b(x), where Re(a) > 0, Re(b) > 0,
is defined by

Ea,b(x) =
∞∑

k=o

xk

Γ(ak + b)
, (18)

where we notice that E1,1(x) = ex and Ea,1(x) = Ea(x).
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It is easy to show that the Caputo derivative of Mittag–Leffer function is given by

CDγEα(xα) = Eα(xα). (19)

The Mittag–Leffer function is a kind of generalization of exponential function to
fractional calculus.

3.2. Fractional Sturm–Liouville Theory

In this section, we introduce fractional version to the Sturm–Liouville theory. For this
proposal, let’s begin with the following definition.

Definition 3. A Caputo fractional Sturm–Liouville problem is a fractional problem with boundary
conditions in the form

−C Dαb−(CuCDαa+y)(x) + v(x)y(x) = λr(x)y(x), (20)

a < x < b, 1/2 < α < 1 (21)

α1y(a) + α2I1−α
b− (CuCDαa+y)(x)|x=a = 0, (22)

β1y(b) + β2I1−α
b− (CuCDαa+y)(x)|x=b = 0, (23)

where La = −CDαb−(CuCDαa+) + v is a self-adjoint operator and the constants αi, βi satisfied in the
boundary conditions verify α2

1 + α
2
2 � 0, β2

1 + β
2
2 � 0 and the functions u, v, r are continuous, such

that u > 0 and r > o in x ∈ [a, b]. The function r is called a weight function, and the values of λ for
which there exist non-trivial solutions are called eigenvalues of the boundary value problem.

In this sense, the Caputo fractional Sturm–Liouville problem satisfies the follow-
ing properties.

Caputo Fractional Sturm–Liouville problem properties:

1. All of the eigenvalues of the fractional Sturm–Liouville problem are real.
2. If y1 and y2 are two eigenvalues of the fractional Sturm–Liouville problem correspond-

ing to eigenvalues λ1 and λ2, respectively, with λ1 � λ2, then

∫ b

a
r(x)y1(x)y2(x)dx = 0. (24)

That is, the eigenvalues corresponding to different eigenvalues have the property of
orthogonality with respect to the weight function r.

3. For each eigenvalue, there is only one eigenfunction (except for multiples non zeros).
4. The eigenfunction corresponding to different eigenvalues are linearly independent.

If yn(x) are complex functions, orthogonality condition, Equation (24) becomes

∫ b

a
r(x)y∗n(x)ym(x)dx = 0; m � n, (25)

where y∗n(x) is the conjugate complex of yn(x).
Due the hermiticity of operator L	, i.e., L = L, their eigenfunctions yn(x) form

a complete set. This completeness means that any well-behaved function f (x) can be
approximated by a series

f (x) =
∞∑

n=0

anyn(x), (26)

where the coefficient an are given by

an =

∫ b

a
p(x) f (x)y∗m(x)dx. (27)
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Equation (26) is unique for a given set of yn(x). The functions yn(x) are a basis vector
in an infinite dimensional Hilbert spaceH . In this sense, we can define an Hilbert spaceH
form the linear space with inner product defined as

〈 f (x), g(x)〉 =
∫ b

a
r(x) f ∗(x)g(x)dx. (28)

Those functions f (x) defined inH are integrable square functions, i.e.,

〈 f (x), f (x)〉 =
∫ b

a
r(x) f ∗(x) f (x)dx < ∞. (29)

This framework of fractional Sturm–Liouville theory and Hilbert space will be useful
in our discussion about quantum gravity in the next sections. It is worth mentioning that
the fractional Sturm–Liouville problem reduces to the usual case when α = 1.

4. Quantum Schwarzschild Equation

In this section, we study the eigenvalue equation related to the quantum Schwarzschild
system. First, we consider the following metric,

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ2, (30)

where f (r) = 1− 2M
r

and dΩ is a solid angle element. M represent the mass of the system
and r is the radial coordinate. From Equation (30), we obtain the density of energy

H = 4kr sinθ(1− f 1/2). (31)

It should be noted that the energy density is obtained from expression (11) or equivalently

from (12), that is H =
∂P(0)

∂V
. This function can be quantized by using the symmetrization

rule and the operators

ω̂ = ω, r̂ = iβ
∂
∂ω

, (32)

where ω = sinθ and β = β12 is the non-commutativity parameter. A particularly prob-
lematic feature of the energy density is its dependence on the radial coordinate with a
fractional exponent. In previous articles [19], this difficulty was overcome through a power
series expansion because the non-commutativity parameter must be very small. Here
another possibility will be explored, namely the use of the fractional derivative that can

be directly used in the energy operator. Then, using the condition
β

M
� 1 and the result

D1/2(ω) =
2√
π
ω1/2, we obtain the following fractional differential equation,

ε
2k
ψ(ω) =

⎡⎢⎢⎢⎢⎣iβ+ 2iβω
∂
∂ω
− i3/2β1/2

√
2MωD1/2 − 2i3/2β1/2

√
2M√

π
ω1/2

⎤⎥⎥⎥⎥⎦ψ(ω), (33)

where ε is the eigenvalue of operator Ĥ. From now on, we represent the Caputo’s fractional
derivative CDα just by Dα. Equation (33) can be written as

c1ωD1ψ(ω) + c2ωD1/2ψ(ω) + c3ω
1/2ψ(ω) + c4ψ(ω) = 0, (34)
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where c1 = 2iβ, c2 = −i3/2β1/2
√

2M, c3 = −2i3/2β1/2
√

2M√
π

, c4 = iβ − ε. If we multiply

Equation (34) by integrator factor

μ(ω) = E1/2(
c2

c1
ω1/2),

and use the following property of Mittag–Leffer function

Dα[Eα(xα)] = Eα(xα).

Equation (34) becomes

D1/2
[
E1/2(

c2

c1
ω1/2)D1/2ψ(ω)

]
+

c3

c1ω1/2
E1/2(

c2

c1
ω1/2)ψ(ω) +

c4

c1ω
E1/2(

c2

c1
ω1/2)ψ(ω) = 0. (35)

Equation (35) is a Caputo’s fractional Sturm–Liouville problem with weight function
given by

g(ω) =
c4

c1ω
E1/2(

c2

c1
ω1/2). (36)

In this sense, the eigenvalues of this problem are real and the solutions ψn(ω) satisfy
the following orthogonality condition,

∫ b

a

c4

c1ω
E1/2(

c2

c1
ω1/2)ψnωψmωdω = 0, m � n. (37)

Then, we can define an Hilbert space in such functions where ψn(ω) are square
integrable.

5. Quantum Reissner–Nordstrom System

In reference [11], the possibility of a charged particle being described by a quantized
version of the Reissner–Nordstrom metric was explored. Here we deal with the Hilbert
space as a theoretical advance of the quantum description. The metric is described by the
following line element,

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dθ2 + r2 sin2 θdφ2 ,

with f (r) = 1− 2M
r

+
Q2

r2 , which leads to the following energy density

H = 4r sinθ

⎡⎢⎢⎢⎢⎢⎣1−
(
1− 2M

r
+

Q2

r2

)1/2
⎤⎥⎥⎥⎥⎥⎦ .

Thus, by using the following quantization rule, sinθ→ ˆsinθ = ω and r→ r̂ = β
∂
∂ω

,
we have the equation{

−4β2ω

2Q
∂2

∂ω2 + 4β
[
ω

(
1 +

M
Q

)
− β

2Q

]
∂

∂ω
+

[
2β
(
1 +

M
Q

)
− ε− 4Qω

]}
ψ(ω) = 0. (38)

Equation (38) can be written as[
b1ω

∂2

∂ω2 + (b2ω− b3)
∂
∂ω

+ (b4 + b5ω)

]
ψ(ω) = 0, (39)

where b1 = −4β2

2Q
, b2 = 4β

(
1 +

M
Q

)
, b3 =

2β2

Q
, b4 = 2β

(
1 +

M
Q

)
− ε and b5 = −4Q.
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If we multiply Equation (39) by the integrator factor μ(ω) =
b1

b3
e

b3
b1
ω

, we obtain

∂
∂ω

(
b1

b2
e

b3
b1
ω ∂ψ(ω)

∂ω

)
+

1
b3ω

e
b3
b1
ω
(b4 + b5ω)ψ(ω) = 0. (40)

Equation (40) is the adjoint form of Equation (39). In this way, Equation (40) represents
a usual Sturm–Liouville problem with weight function given by

g(ω) =
b4

b3ω
e

b3
b1
ω

. (41)

In this case, the eigenvalues of operator Ĥ are real and quantized. The functions ψn(ω)
are orthogonal with respect to weight function r, that is∫ ∞

0

b4

b3ω
e

b3
b1
ω
ψn(ω)ψm(ω)dω = 0, n � m. (42)

Then, the set {ψn(ω)} is complete and an general state f (ω) can be expressed in terms
of this basis,

f (ω) =
∞∑

n=0

cnψn(ω), (43)

with

cn =

∫ ∞
0

b4

b3ω
e

b3
b1
ω

f (ω)ψn(ω)dω. (44)

This shows that we have a Hilbert spaceH with square integrable functions. Due to Ĥ
being self-adjointed, their eigenvalues are real. In this way, εn can be represent a measure
of a physical quantity.

6. Quantum FLRW System

In reference [12], the quantization of a homogeneous and isotropic universe is explored.
The FLRW metric is

ds2 = −dt2 + a2
[

dr2

1− k r2 + r2 (dθ2 + sin2 θ dφ2)

]
.

Then the energy density is

kH=
a2(3 ȧ2 − k)

√
ȧ2 + k (1− a2)

4 (ȧ2 + k)
− a (3 ȧ2 + k)

4
√

k
arctan

⎡⎢⎢⎢⎢⎣
√

k a√
ȧ2 + k (1− a2)

⎤⎥⎥⎥⎥⎦ .
It should be noted that we can choose any representation for the operators in the

quantization process. Here we use a→ â = a and ȧ→ ˆ̇a = β
∂
∂a

. This leads to the equation[
15a2 +

66
8

+
(
6a2 +

76
8

)
a

d
da

+

(
a2

2
+

31
8

)
a2 d2

da2

]
ψ(a) = εψ(a) , (45)

where ε =
k3/2E
β2 and E is the observable energy. Equation (45) can be written as

[
−ε+ h3(a) + h2(a)a

d
da

+ h1(a)a2 d2

da2

]
ψ(a) = 0, (46)

135



Universe 2022, 8, 413

where h1 =
1
2

(
a2 +

31
4

)
a2, h2(a) = 2

(
3a2 +

19
4

)
a, h3(a) = 15a2 +

66
8

. Multiplying

Equation (46) by integrator factor

μ(a) =
2
(
a2 + 31

4

)127/31

a45/31
, (47)

we obtain

d
da

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(
a2 + 31

4

)158/31

a76/31

dψ(a)
da

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ h3(a)μ(a)ψ(a) − εμ(a)ψ(a) = 0. (48)

Equation (48) is the self-adjoint of Equation (47). Equation (48) represents a usual
Sturm–Liouville problem with weight function given by

r(a) =
2
(
a2 + 31

4

)127/31

a45/31
. (49)

In this case, the eigenvalues of operator Ĥ are real and quantized. The functions ψn(a)
are orthogonal with respect to weight function r, that is

∫ b

0

2
(
a2 + 31

4

)127/31

a45/31
ψn(a)ψm(a)da = 0, n � m. (50)

Then, the set {ψn(a)} is complete and an general state f (a) can be expressed in terms
of this basis,

f (a) =
∞∑

n=0

cnψn(a), (51)

with

cn =

∫ ∞
0

2
(
a2 + 31

4

)127/31

a45/31
f (a)ψn(a)da. (52)

This shows that we have a Hilbert spaceH with square integrable functions. Because
Ĥ is self-adjointed, their eigenvalues are real. In this way, εn can represent a measure of a
physical quantity.

7. Conclusions

In this article, we apply a quantization procedure to Schwarzschild space–time and
obtain a differential equation in terms of the Caputo fractional derivative. With this,
we were able to establish Hilbert’s space for this configuration. In previous articles,
quantization procedures were applied to Reissner–Nordstron space–time, as well as to
the FRW metric. The first describes a charged black hole, and the second describes an
isotropic and homogeneous Universe. Thus, we show how the respective functions of
Hilbert space obey certain orthogonal conditions. It is interesting to note that once Hilbert’s
space has been defined, the eigenvalues of the equations resulting from the quantization
process have real values and represent experimentally verifiable quantities. It is worth
clarifying that the quantization process is done in the space of one of the coordinates,
that is, one of the operators resulting from the process is always multiplicative. The
passage of the gravitational energy function to the quantum operator can be problematic
due to the semi-integer powers of the coordinates on which the function depends. This
is circumvented with the use of the fractional derivative of Caputo. In particular, the
conditions which establish a Hilbert space for the FLRW metric strengthen the interpretation
of a multiverse. Each discrete function may describe a specific universe. The orthogonality
relationship guarantees the physical independence of each solution. This establishes a very
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well-defined procedure for the construction of the respective Hilbert space and therefore for
a promising quantum gravitational theory. The quantization procedure used here depends
only on the existence of a gravitational energy, although we defend the concept of energy
obtained in the scope of the TEGR; the method extends to any definition of energy in
the literature. In particular, a very well-accepted approach to quantum gravity, the loop
quantum gravity, could benefit from this quantization process. As a future perspective
we hope to understand the limitations or advantages of Weyl quantization in the 3 + 1
decomposition of the Hamiltonian formulation of gravitation. The greatest difficulty would
be in the choice of operators since they are defined from an anti-commutation relation of
two (or more) coordinates. In ADM decomposition, the dynamic field is generic. This
problem is analogous to the Schroedinger equation in which we need to define the potential
so that the equation can be solved; otherwise we have a generic Hamiltonian.
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Hugo García-Compeán * and Daniel Mata-Pacheco

Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, P.O. Box 14-740,
Ciudad de México 07000, Mexico; dmata@fis.cinvestav.mx
* Correspondence: compean@fis.cinvestav.mx

Abstract: The vacuum transition probabilities for a Friedmann–Lemaître–Robertson–Walker universe
with positive curvature in Hořava–Lifshitz gravity in the presence of a scalar field potential in the
Wentzel–Kramers–Brillouin approximation are studied. We use a general procedure to compute such
transition probabilities using a Hamiltonian approach to the Wheeler–DeWitt equation presented in a
previous work. We consider two situations of scalar fields, one in which the scalar field depends on
all the spacetime variables and another in which the scalar field depends only on the time variable.
In both cases, analytic expressions for the vacuum transition probabilities are obtained, and the
infrared and ultraviolet limits are discussed for comparison with the result obtained by using general
relativity. For the case in which the scalar field depends on all spacetime variables, we observe that
in the infrared limit it is possible to obtain a similar behavior as in general relativity, however, in
the ultraviolet limit the behavior found is completely opposite. Some few comments about possible
phenomenological implications of our results are given. One of them is a plausible resolution of
the initial singularity. On the other hand, for the case in which the scalar field depends only on the
time variable, the behavior coincides with that of general relativity in both limits, although in the
intermediate region the probability is slightly altered.

Keywords: quantum gravity; Hořava–Lifshitz theory; early universe; vacuum transitions

1. Introduction

The quantum theory of the gravitational phenomena, or quantum gravity, is a theory
in construction, which is necessary in order to shed light on the quantum effects of gravita-
tional systems. Among the problems that require the uses of quantum gravity is the study
of the microscopic origin of thermodynamic properties of black holes and those describing
some cosmological phenomena in the very early universe. Another important problem
is the study of the vacuum decay and the transition between vacua at early stages of the
evolution of the universe. Euclidean methods have been proposed in order to compute
this transition probability by using the path integral approach [1–3]. One of the salient
features of this approach is the prediction of transitions between open universes [3]. Later
an alternative procedure to compute these transitions using the Hamiltonian approach was
developed [4,5]. This method incorporates the Arnowitt, Deser and Misner (ADM) Hamil-
tonian formalism of general relativity (GR) [6–8]. The vacuum is implemented through
a cosmological constant, which is interpreted as the vacuum energy, and the transitions
are carried out through a bubble nucleation [9]. In this approach, the transitions between
Minkowski and de Sitter spaces are allowed. Very recently, an approach [4,5] was further
developed by Cespedes et al. [10] where the vacuum is implemented by the minima of
a potential of a scalar field in the curved space. In this reference, it was computed the
general vacuum decay transitions in the Hamiltonian formalism in Wheeler’s superspace
and some examples were implemented in the minisuperspace formalism for the Friedmann–
Lemaître–Robertson–Walker (FLRW) cosmology. In this kind of model, it was shown that
the transitions between closed universes are allowed, contrary to the Euclidean approxima-
tion of Coleman and De Luccia [3]. Later, the formalism of [10] was extended and used to
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obtain the vacuum decay transition probabilities for some examples of transitions between
anisotropic universes [11].

On the other hand, it is well known that GR is not a renormalizable theory. Thus,
its application to very small distances such as those associated with the early universe is
expected to fail. Instead of that, an important proposal to describe the quantum effects
of gravity is the Hořava–Lifshitz (HL) theory [12] (for some recent reviews, see [13–16]
and references therein). Hořava–Lifshitz theory is a theory with an anisotropic scaling
of spacetime and, consequently, it is not Lorentz invariant at high energies (ultraviolet
(UV)). However, it is a well-behaved description at small distances due to the incorporation
of higher order derivative terms in the spatial components of the curvature to the usual
Einstein–Hilbert action, giving rise to a ghost-free theory. Thus, this theory is more appro-
priate to describe the quantum effects of the gravitational field, such as the vacuum decay
processes in the early stages of the universe evolution.

It is important to remark that HL theory is a theory whose low energy limit which
connects with GR is troublesome. The parameters of the theory are the critical exponent z
and the foliation parameter λ. This last parameter is associated with a restricted foliation
compatible with the Lifshitz scaling. In the low energy limit z → 1, the Lorentz invariance
is recovered. In the infrared (IR) limit, the z → 1 limit is accompanied by the limit
λ → 1, where the full diffeomorphisms symmetry is recovered and, consequently, the
usual foliation of the ADM formalism is regained. In addition, the higher order derivative
terms in the action have to be properly neglected in order to obtain the correct limit.
As we mentioned before, the GR limit is problematic since it remains an additional degree
of freedom (in some cases interpreted as dark matter) which leads to a perturbative IR
instability [14,16–18]. The non-projectable version of the HL theory has the possibility
to remove this unphysical degree of freedom. Thus, it represents an advantage over the
projective theory. However, in the case in which one is concerned with the Wheeler–DeWitt
(WDW) equation, both approaches give the same result. In consequence, we will work with
the projectable version.

Since HL theory represents an improvement over GR in the high energy regime,
it is natural that quantum gravity aspects of the theory are of great interest. Indeed,
canonical quantization of the theory has been extensively studied. For example, some of
the papers describing solutions for Hořava–Lifshitz’s gravity in quantum cosmology in the
minisuperspace are [19–25].

As we mentioned before, HL gravity is a UV completion of GR, thus, it is a more
suitable arena to study the vacuum transitions in the presence of a scalar field potential.
This proposal will be carried out in the present article. In order to do that, we use the
Hamiltonian formalism of the HL theory, in particular the WDW equation will be discussed
in this context following [10,11]. We will particularly focus on the closed FLRW universe
and study two types of scalar fields. First, since the anisotropic scaling of spacetime
variables is a key ingredient of HL theory, we will consider a scalar field which is allowed
to depend on all spacetime coordinates. Lastly, we will also consider a scalar field which
only depends on the time variable as it is more usual on the cosmological models.

This work is organized as follows. In Section 2 we give a brief review of the general
procedure presented in [11] to study vacuum transition probabilities between two minima
of a scalar field potential in the minisuperspace following the formalism of [10]. We will
show that this formalism implemented for GR in [10,11] is sufficient to study vacuum
transitions in a more general theory, such as HL theory. Section 3 is devoted to obtaining
the WDW equation in the context of gravity coupled with matter. In Section 4, we study the
vacuum transitions in HL gravity for the scalar field depending on all spacetime variables.
The IR and UV limits for the transition probabilities are discussed and compared to the GR
result. Then, in Section 5, we study the transition probabilities for the scalar field depending
only on the time variable and we also compare the result to the GR one. Finally, in Section 6,
we give our conclusions and final remarks.
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2. Vacuum Transitions for a Scalar Field

In this section, we review the procedure to obtain a general expression for the tran-
sition probability between two minima of the potential of a scalar field by obtaining a
semi-classical solution to the WDW equation using a WKB ansatz described in Ref. [11].
We follow closely the notation and conventions given in that reference. It is a remarkable
point to see that this procedure is enough to implement theories more general than GR
such as the HL gravity.

We start by using the well-known ADM-formulation of GR [6–8] and consider the
Hamiltonian constraint expressed in the general form:

H =
1
2

GMN(Φ)πMπN + f [Φ] ≈ 0, (1)

where we take the coordinates in Wheeler’s superspace to be ΦM with M, N = 1, . . . , n
(which has in general an infinite number of dimensions). These variables are the com-
ponents of the three-dimensional metric, the matter field variables, etc. and are denoted
collectively as Φ. Their corresponding canonical momenta are πM and the inverse metric
in such space is GMN . Finally, f [Φ] is a function that represents all other additional terms,
such as the 3R term and the potential terms of scalar field in the WDW equation. The
general WDW equation that we are going to consider is obtained after carrying out the
standard canonical quantization procedure of the Hamiltonian constraint. Thus performing
this procedure we obtain:

HΨ(Φ) =

[
− h̄2

2
GMN(Φ)

δ

δΦM
δ

δΦN + f [Φ]

]
Ψ[Φ] = 0, (2)

where Ψ[Φ] represents the wave functionial which depends on all fields of the theory.
We are interested in obtaining a semi-classical result, therefore, following [10,11] we

consider an ansatz of the following WKB form Ψ[Φ] = exp
{

i
h̄ S[Φ]

}
, where S has an

expansion in h̄ in the usual form:

S[Φ] = S0[Φ] + h̄S1[Φ] +O(h̄2). (3)

Inserting Equation (3) into Equation (2) and focusing only on the term at the lowest
order in h̄ we obtain:

1
2

GMN δS0

δΦM
δS0

δΦN + f [Φ] = 0. (4)

On a certain slice of the space of fields a set of integral curves can be specified in
the form:

C(s)
dΦM

ds
= GMN δS0

δΦN , (5)

where s is the parameter of these curves. The classical action appearing in the previous
equation has the form:

S0[Φs] = −2
∫ s ds′

C(s′)

∫
X

f [Φs′ ]. (6)

It is easy to see that Equations (4) and (5) lead to:

GMN
dΦM

ds
dΦN

ds
= −2 f [Φs]

C2(s)
, (7)

where GMN satisfies the standard relation GPMGMN = δN
P .

We note that we have a system of equations for the n + 1 variables:
(

dΦM

ds , C2(s)
)

defined by (5) and (7). Thus, we can obtain a solution for such a system and then substitute
the results back into Equation (6) to obtain the classical action. Therefore, in principle,
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we have enough information to compute the classical action, and consequently, the wave
functionial to first order in h̄ regardless of the number of fields in superspace.

Under the ansatz that all the fields ΦM on the superspace depend only on the time
variable, we can obtain a general solution to the system in terms of the volume Vol(X) of
the spatial slice X of the form:

C2(s) = −2Vol2(X)

f [Φ]
GMN ∂ f

∂ΦM
∂ f

∂ΦN , (8)

dΦM

ds
=

f [Φ]

Vol(X)

GMN ∂ f
∂ΦN

GLO ∂ f
∂ΦL

∂ f
∂ΦO

. (9)

In this article, we will consider gravity coupled to a scalar field provided by a potential
which has at least a false and a true minima. Moreover, we will study wave functionals
such that the scalar field produces a transition between two minima of the potential.

One can use these wave functionals in order to compute the transition probability
with the standard interpretation that these transitions are due to a tunneling between the
two minima of the potential involved in the transition. In order to be more precise, in the
semi-classical approximation, the probability to produce a transition between two vacua at
φA and φB is the decay rate which can be written as:

P(A → B) =

∣∣∣∣∣Ψ(ϕI
0, φB; ϕI

m, φA)

Ψ(ϕI
0, φA; ϕI

m, φA)

∣∣∣∣∣
2

=

∣∣∣∣∣ βe
i
h̄ S0(ϕI

0,φB ;ϕI
m ,φA) + χe−

i
h̄ S0(ϕI

0,φB ;ϕI
m ,φA)

βe
i
h̄ S0(ϕI

0,φA ;ϕI
m ,φA) + χe−

i
h̄ S0(ϕI

0,φA ;ϕI
m ,φA)

∣∣∣∣∣
2

=
∣∣∣e−Γ

∣∣∣2, (10)

where ϕI denotes all other fields defined on the superspace except the scalar field,
Ψ(ϕI

0, φB, ϕI
m, φA) is the wave functional associated to the path which starts in ϕI(s = 0) = ϕI

0,
and where the scalar field takes the value φB. Moreover, the path ends in ϕI(s = sM) = ϕI

m,
where the scalar field is denoted by φA. Furthermore, β and χ are the constants of the linear
superposition. In the previous equation, we will consider just the dominant contribution of
the exponential terms. Then, in the WKB approximation at first order Γ yields:

± Γ =
i
h̄

S0(ϕI
0, φB; ϕI

m, φA)− i
h̄

S0(ϕI
0, φA; ϕI

m, φA), (11)

where the choice of the signs ± indicates the dominant terms in the expression (10). Thus,
we finally arrive at the transition probability given by:

P(A → B) = exp[−2Re(Γ)] = exp
{
±2Re

[
i
h̄

S0(ϕI
0, φB; ϕI

m, φA)− i
h̄

S0(ϕI
0, φA; ϕI

m, φA)

]}
. (12)

It is worth mentioning that the formalism developed in [10,11], originally for GR, is
general enough to include other gravitational theories, since it only depends on a Hamilto-
nian constraint written in the general form (1). In the next sections, we will show that it
can perfectly include higher derivative generalizations of GR as the HL theory. It would be
interesting to study to what extent this formalism can be used for more general theories.

3. Wheeler–DeWitt Equation for Hořava–Lifshitz Gravity Coupled to Matter

In this section, we will discuss the action in HL theory, as well as the action that
considers the coupling to a scalar field. We will consider a metric describing an FLRW
universe and a scalar field depending on the time variable, as well as the spatial variables,
and we will obtain the WDW equation for such a system. Although in the context of
cosmology it is usual to use a time-dependent field only, in this case, we will allow the
scalar field to also depend on the spatial variables since the anisotropic scaling of both
sets of variables is a key ingredient for the theory. This type of dependence has been used
previously in the context of cosmology for HL. For example, it was used in Ref. [26] to study
perturbations coming from a scalar field. However, for completeness and correspondence
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with the cosmological models, we will also study the case when the field will only depend
on the time coordinate in Section 5.

Let us begin by considering the gravitational part of the general action in projectable
HL gravity without a cosmological constant and without detailed balance. This action can
be written as [19,27,28]:

SHL =
M2

p
2

∫
dtd3xN

√
h
[

KijKij − λK2 + R− 1
M2

p

(
g2R2 + g3RijRij) − 1

M4
p

(
g4R3 + g5R

(
RijRij)+ g6Ri

jR
j
kRk

i + g7RD2R + g8DiRjkDiRjk
)]

, (13)

where N is the lapse function, Rij the Ricci tensor with i, j = 1, 2, 3 the spatial indices, R the
Ricci scalar, Kij the extrinsic curvature, Mp the Planck mass, D denotes covariant derivative
with respect to the three-metric hij and h denotes its determinant, all gn (n = 2, . . . , 8) are
positive dimensionless running coupling constants and the parameter λ runs under the
renormalization group flow. GR is, in principle, obtained in the limit λ → 1 and gn → 0.
However, this is not actually fulfilled because of the perturbative IR instability and the
presence of an unphysical degree of freedom as mentioned in the introduction.

Let us take the FLRW metric with positive curvature that describes a closed homoge-
neous and isotropic universe. This metric is written as:

ds2 = −N2(t)dt2 + a2(t)
[
dr2 + sin2 r

(
dθ2 + sin2 θdψ2

)]
, (14)

where, as usual, 0 ≤ r ≤ π, 0 ≤ θ ≤ π and 0 ≤ ψ ≤ 2π. In the context of the ADM
formalism, we note that for this metric:

N = N(t), Ni = 0, (hij) = a2(t)diag
(

1, sin2 r, sin2 r sin2 θ
)

, (15)

and therefore, we will work with a projectable version of HL gravity. Substituting these
values in the action (13) we obtain that for this metric the gravitational action reads:

SHL = 2π2
∫

dtN

[
−3(3λ− 1)M2

pa
2N2 ȧ2 + 3M2

pa− 6
a
(3g2 + g3) − 12

a3M2
p
(9g4 + 3g5 + g6)

]
, (16)

where a dot stands for the derivative with respect to the time variable. The integral for the
spatial slice has been performed, that is:

Vol(X) =
∫ π

r=0

∫ π

θ=0

∫ 2π

ψ=0
sin2 r sin θdrdθdψ = 2π2. (17)

In order to couple a scalar field φ(t, xi) (where xi denotes collectively the three spatial
variables) to this theory we need to consider actions that are compatible with the anisotropic
scaling symmetries of the theory and UV renormalizability. In fact, the general scalar action
in HL gravity is found to contain up to six order derivatives. This action is written in the
form [29]:

Sm =
1
2

∫
dtd3x

√
hN

[
(3λ− 1)

2N2

(
φ̇− Ni∂iφ

)2
+ F(φ)

]
, (18)

where the function F(φ) is given by:

F(φ) = φ
(

c1Δφ− c2Δ2φ + c3Δ3φ
)
−V(φ), (19)

with Δ denoting the three-metric laplacian and V(φ) is the potential for the scalar field.
The constant c1 is the velocity of light in the IR limit, whereas the two other constants are
related to the energy scale M as:

c2 =
1

M2 , c3 =
1

M4 . (20)
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There are three more possible terms that can be part of (19) constructed as products of
derivatives, but we restrict ourselves to the terms just described.

Since the three-metric derived from the FLRW metric is just a scale factor times the
metric of the three-sphere S3, we can use the spherical harmonic functions defined in this
space to expand our scalar functions [30,31]. These functions can be defined in our spatial
three-metric as eigenfunctions of the laplacian of the form:

ΔYnlm(xi) = −n(n + 2)
a2 Ynlm(xi), (21)

where n is an integer. They obey the orthonormality condition:

1
a3

∫ √
hYnlm(xi)Y∗n′ l′m′(xi)d3x = δnn′δll′δmm′ . (22)

Since these functions form a complete basis, we can expand any scalar function defined
on the sphere in terms of them as:

f (xi) =
∞

∑
n=0

n

∑
l=0

l

∑
m=−l

αnlmYnlm(xi) = ∑
{n,l,m}

αnlmYnlm(xi). (23)

Therefore, using this basis, we can expand the scalar field as:

φ(t, xi) = ∑
{n,l,m}

φnlm(t)Ynlm(xi), (24)

where the fields φnlm(t) are real functions depending only on the time variable. We can
also expand the scalar field potential as:

V(φ) = ∑
{n,l,m}

Vnlm(t)Ynlm(xi), (25)

where the function Vnlm(t) depends on all the functions φnlm(t) in general. Substituting (24)
and (25) back into the action (18), we observe that for the FLRW metric the field part of the
action is written as:

Sm = ∑
{n,l,m}

1
2

∫
dt
{

3λ− 1
2N

a3φ̇2
nlm − Na

[
c1βn +

c2β2
n

a2 +
c3β3

n
a4

]
φ2

nlm −Na3γnlmVnlm

}
, (26)

where βn = n(n + 2) and

γnlm =
∫ π

r=0

∫ 2π

ψ=0

∫ π

θ=0
sin2 r sin θYnlm(r, θ, ψ)drdψdθ, (27)

are constants. Finally, by considering both actions (16) and (26), we observe that the full
lagrangian describing HL gravity coupled to a scalar field is:

L = 2π2N
[
− 3M2

p ȧ2a
2N2 (3λ− 1) + 3M2

pa− 6
a (3g2 + g3)− 12

a3 M2
p
(9g4 + 3g5 + g6)

]
+∑{n,l,m}

{
3λ−1

4N a3φ̇2
nlm − Na

2

[
c1βn +

c2β2
n

a2 + c3β3
n

a4

]
φ2

nlm − Na3

2 γnlmVnlm

}
.

(28)

We observe, in this case, that the degrees of freedom are the fields {a, φnlm}. Their
canonical momenta turn out to be:

πa = −
6π2M2

p(3λ− 1)

N
aȧ, πφnlm =

3λ− 1
2N

a3φ̇nlm, (29)
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and, as it is usual, the lapse function is non-dynamical since πN = 0. Therefore, we obtain
that the Hamiltonian constraint takes the form:

H = N
{
− π2

a
12π2 M2

p(3λ−1)a
+ ∑{n,l,m}

π2
φnlm

(3λ−1)a3

+2π2
[
−3M2

pa + 6
a (3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6)

]
+ 1

2 ∑{n,l,m}
[(

c1βn +
c2
a2 β2

n +
c3
a4 β3

n

)
aφ2

nlm + a3γnlmVnlm

]}
� 0.

(30)

4. Vacuum Transitions in Hořava–Lifshitz Gravity

Now that we have obtained the Hamiltonian constraint of the HL gravity coupled to
a scalar field depending on all spacetime variables, let us study the probability transition
between two vacua of the scalar field potential. We note that the form of the Hamiltonian
constraint (30) as obtained in the previous section is of the same general form as the one
considered in (1) taking the coordinates on superspace to be {a, φnlm}. The inverse metric
is given by:

(GMN) = diag

(
− 1

6π2M2
p(3λ− 1)a

,
2

(3λ− 1)a3 1nlm

)
, (31)

where 1nlm denotes a vector with length equal to all the possible values that the set {n, l, m}
can have and with 1 in all its entries. In this case then we also have:

f (a, φnlm, Vnlm) = 2π2
[
−3M2

pa + 6
a (3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6)

]
+ 1

2 ∑{n,l,m}
[(

c1βn +
c2
a2 β2

n +
c3
a4 β3

n

)
aφ2

nlm + a3γnlmVnlm

]
.

(32)

Therefore, the general procedure to obtain a solution of the WDW equation presented
in Section 2 is applicable to the WDW equation obtained after quantizing the Hamilto-
nian constraint (30) in HL gravity. In order to study transitions between two vacua of a
scalar field potential, we consider that all fields Vnlm appearing in the expansion of the
potential (25) have the same minima, namely, one false minimum at φA

nlm and one true
minimum at φB

nlm, and therefore, the two minima of the scalar field φ(t, xi) comes only from
its time dependence. Therefore, the transition probability in the semi-classical approach
between these two minima is given by Equation (12).

Following [11], we can choose the parameter s such that for the interval [0, s̄− δs],
where s = 0 is the initial value, the field remains close to its value at the true minimum φB,
and for the interval [s̄ + δs, sm] the field remains very close to its value at the false minimum
φA, that is, we choose the parameter s such that:

φ(s) ≈
{

φB, 0 < s < s̄− δs,
φA, s̄ + δs < s < sM.

(33)

However, in this case, taking the expansion (24) and since the spherical harmonics are
an orthonormal set, the latter implies that:

φnlm(s) ≈
{

φB
nlm, 0 < s < s̄− δs,

φA
nlm, s̄ + δs < s < sM,

(34)

and similarly for the potentials

Vnlm(s) ≈
{

VB
nlm, 0 < s < s̄− δs,

VA
nlm, s̄ + δs < s < sM.

(35)
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Therefore, using the general form of the action (6) we obtain in this case:

S0

(
a0, φB

nlm; am, φA
nlm

)
= −4π2

[∫ s̄−δs

0

ds
C(s)

f
∣∣
φnlm=φB

nlm
+
∫ s̄+δs

s̄−δs

ds
C(s)

f +
∫ sm

s̄+δs

ds
C(s)

f
∣∣
φnlm=φA

nlm

]
, (36)

and
S0

(
a0, φA

nlm; am, φA
nlm

)
= −4π2

∫ sm

0

ds
C(s)

f
∣∣
φnlm=φA

nlm
. (37)

Consequently, the logarithm of the probability (11) is given in this case by:

±Γ = i
h̄

[
−4π2

∫ s̄−δs
0

ds
C(s) f

∣∣
φnlm=φB

nlm
+ 4π2

∫ s̄−δs
0

ds
C(s) f

∣∣
φnlm=φA

nlm

−4π2
∫ s̄+δs

s̄−δs
ds

C(s)

{
1
2 ∑{n,l,m}

[
a
(

c1βn +
c2
a2 β2

n +
c3
a4 β3

n

)(
φ2

nlm − (φA
nlm)

2)
+a3γnlm(Vnlm −VA

nlm)
]}]

.

(38)

We note that the last term of Equation (38) can be written as:

− 4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

⎡⎣1
2 ∑
{n,l,m}

a3γn,l,m(Vn,l,m −VA
nlm)

⎤⎦ = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

a3
[
V0 −VA

0

]
, (39)

with a potential defined by

V0 =
1
2 ∑
{n,l,m}

γnlmVnlm. (40)

We note that this term has the same form as the one considered in Refs. [10,11]
regarding the portion of the integral in which the scalar field can vary, therefore, we can
also interpret this term as a tension term taking:

2π2 ā3T0 = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

a3
[
V0 −VA

0

]
. (41)

Moreover, we note that the term that contains c1 in (38) can be written as:

− 4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

⎡⎣1
2 ∑
{n,l,m}

ac1βn

(
φ2

nlm − (φA
nlm)

2
)⎤⎦ = −4π2i

∫ s̄+δs

s̄−δs

ds
C(s)

c1a
[
V1 −VA

1

]
, (42)

with
V1 =

1
2 ∑
{n,l,m}

βnφ2
nlm. (43)

Although this function has no minima in the points considered, it is a function of the
scalar fields that can be interpreted as a new effective potential with the form of a mass
term. Therefore, applying the same logic used in [11] to such terms, we can define a new
contribution for the tension term as:

2π2c1 āT1 = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

c1a
[
V1 −VA

1

]
. (44)

Similarly, we define for the two remaining terms:

V2 =
1
2 ∑
{n,l,m}

β2
nφ2

nlm, V3 =
1
2 ∑
{n,l,m}

β3
nφ2

nlm, (45)

and the two contributions to the tension terms as:

2π2 c2

ā
T2 = −4π2i

∫ s̄+δs

s̄−δs

ds
C(s)

c2

a

[
V2 −VA

2

]
, (46)

145



Universe 2022, 8, 237

2π2 c3

ā3 T3 = −4π2i
∫ s̄+δs

s̄−δs

ds
C(s)

c3

a3

[
V3 −VA

3

]
. (47)

On the other hand, in order to do the two first integrals in (38) where all scalar fields
are constants, we use the general solutions (8) and (9), then, after changing the integration

variables from s to a according to ds =
(

da
ds

)−1
da we obtain:

− 4π2
∫ s̄−δs

0

ds
C(s)

f
∣∣
φnlm=φA,B

nlm
= ±4π3Mp

√
3(3λ− 1)

∫ ā−δa

a0

√
−αA,B

1 a2 + αA,B
2 +

αA,B
3
a2 + VA,B

0 a4da, (48)

where

αA.B
1 = 6π2M2

p − c1VA,B
1 ,

αA,B
2 = 12π2(3g2 + g3) + c2VA,B

2 ,

αA,B
3 =

24π2

M2
p
(9g4 + 3g5 + g6) + c3VA,B

3 .

(49)

Therefore, substituting Equations (41), (44), (46), (47) and (48) back into (38) we obtain:

±Γ = ± 4π3 Mp
√

3(3λ−1)
h̄

[∫ ā−δa
a0

F
(
αB

1 , αB
2 , αB

3 , VB
0 , a

)
da − ∫ ā−δa

a0
F
(
αA

1 , αA
2 , αA

3 , VA
0 , a

)
da
]
+ 2π2

h̄

[
ā3T0 + c1 āT1 +

c2
ā T2 +

c3
ā3 T3

]
. (50)

where we have defined the function:

F(a, b, c, e, x) =
√

ax2 − b− c
x2 − ex4, (51)

and it is worth noting that in the above result, the sign ambiguity on the left-hand side
comes from the arguments leading to Equation (11), whereas the one on the right comes
from the fact that the general solution (8) and (9) for the system of equations gives a solution
for C2(s), which produces a sign ambiguity in Equation (48). Therefore, both ambiguities
are independent to each other.

As it is well known, the IR limit of HL gravity for an FLRW metric is achieved in the
limit λ → 1 and a >> 1, and corresponds to GR with an extra degree of freedom albeit with
the instability problems mentioned in the introduction section. We note that the kinetic
term for the scale factor in (28) is:

− 2π2

[
3M2

paȧ2

2N
(3λ− 1)

]
. (52)

In the GR case considered in [11], it is given by:

− 3aȧ2

N
, (53)

because the 2π2 term in that case is a global multiplicative factor to the full lagrangian, it
can therefore be ignored. Thus, in order to obtain the same kinetic term in both cases in the
limit λ → 1, we consider units such as 2π2M2

p = 1. This choice of units will allow us to
directly compare the transition probability to the one obtained in GR.

Then, we finally obtain for the logarithm of the transition probability:

±Γ = ± 2π2
√

6(3λ−1)
h̄

[∫ ā−δa
a0

F
(
αB

1 , αB
2 , αB

3 , VB
0 , a

)
da − ∫ ā−δa

a0
F
(
αA

1 , αA
2 , αA

3 , VA
0 , a

)
da
]
+ 2π2

h̄

[
ā3T0 + c1 āT1 +

c2
ā T2 +

c3
ā3 T3

]
(54)
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with

αA.B
1 = 3− c1VA,B

1 ,

αA,B
2 = 12π2(3g2 + g3) + c2VA,B

2 ,

αA,B
3 = 48π3(9g4 + 3g5 + g6) + c3VA,B

3 .

(55)

We note that in contrast to the results obtained using GR for all the types of metrics
considered in [11], this transition probability is described by five parameters, and by
extremizing the latter with respect to ā we can at most reduce them by one. It is also
important to note that the above integrals cannot be performed explicitly for any values
of the αi constants. Nonetheless, it is an expression valid for any value of the potentials
and, interestingly, it is a general expression that does not depend on having to consider the
different modes contributing to the expansion in Equation (24) separately.

As it is explained in [10,11], the choice of s as in (33) is useful to obtain exact solutions
for the transition probabilities that lead to the same solutions as the ones obtained using
euclidean methods. However, there is also room to consider s in different ways. For
example, we can also choose s as the distance in field space. This choice allows us to show
that we can have classical transitions just because the metric in superspace for the WDW
equation considered here coming from the Hamiltonian constraint (30) is non-positive
definite, as is the case for all the metrics considered in [11].

Now that we have computed the transition probability for HL gravity in general, let
us consider its two limits of importance, namely, the infrared and the ultraviolet limit. The
first enables us to directly compare with the result found by using GR and the latter allows
us to highlight the contributions for high energies that marks the importance of HL gravity.

Taking the IR limit of (54), that is, taking λ → 1 and a >> 1, we obtain:

± ΓIR = ∓4π2

h̄

√
1
3

⎡⎣ (αB
1 )

3/2

VB
0

(
1− VB

0

αB
1

a2

)3/2∣∣∣∣ā−δa

a0

− (αA
1 )

3/2

VA
0

(
1− VA

0

αA
1

a2

)3/2∣∣∣∣ā−δa

a0

⎤⎦+
2π2

h̄

[
ā3T0 + c1 āT1

]
. (56)

Therefore, we find in the infrared an expression quite similar to the GR result plus one
degree of freedom extra coming from the c1 term in the action for the scalar field (26) as
expected. In order to directly compare our result to the result obtain for GR, we can, for the
moment, set c1 = 0, then the last result simplifies to:

± ΓIR = ∓12π2

h̄

⎡⎣ 1
VB

0

(
1− VB

0
3

a2

)3/2∣∣∣∣ā−δa

a0

− 1
VA

0

(
1− VA

0
3

a2

)3/2∣∣∣∣ā−δa

a0

⎤⎦+
2π2

h̄
ā3T0, (57)

that is the same result obtained for GR in [10,11]. The only difference comes in the choice
of a0, since for the consistency of the integral approximation we have here that a0 >> 1,
therefore, it cannot be chosen to be zero. Thus, the difference between this result and the
GR one are only constants. We also note that the potential appearing in this expression is
not the potential found originally in the scalar field action, rather it is an effective potential
appearing after integration of the harmonic functions. Considering the thin wall limit
δa → 0 and extremizing the above result with respect to ā we obtain:

T0 = ±2

⎛⎝√ 1
ā2 −

VA
0
3
−
√

1
ā2 −

VB
0
3

⎞⎠. (58)

Then substituting it back into Equation (57) and choosing the plus sign in the right-
hand side we obtain:
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±ΓIR = 12π2

h̄

{
1

VB
0

[(
1− VB

0
3 ā2

)3/2
−
(

1− VB
0
3 a2

0

)3/2
]

− 1
VA

0

[(
1− VA

0
3 ā2

)3/2
−
(

1− VA
0
3 a2

0

)3/2
]
− ā2

3

(√
1− VA

0
3 ā2 −

√
1− VB

0
3 ā2

)}
.

(59)

Therefore, in this limit, the transition probability is finally described in terms of just
one parameter (considering a0 as a constant).

If we take a0 = 0 in (57), consider the thin wall limit and rename V0 → V and T0 → T,
we obtain the result found in [10,11] for GR:

± ΓGR = ∓12π2

h̄

[
1

VB

(
1− VB

3
a2
)3/2∣∣∣∣ā

a0

− 1
VA

(
1− VA

3
a2
)3/2∣∣∣∣ā

a0

]
+

2π2

h̄
ā3T, (60)

then, extremizing we obtain:

T = ±2

(√
1
ā2 −

VA
3
−
√

1
ā2 −

VB
3

)
. (61)

Thus, finally the logarithm of the transition probability in GR is written in terms of
just one parameter as:1

± ΓGR =
12π2

h̄

{
1

VB

[(
1− VB

3
ā2
)3/2

− 1

]
− 1

VA

[(
1− VA

3
ā2
)3/2

− 1

]
− ā2

3

(√
1− VA

3
ā2 −

√
1− VB

3
ā2

)}
. (62)

We can see from (61) that since VA > VB choosing the plus sign on the right-hand side
of (60) implies that T > 0 always. The same is true regarding T0. As we know from [10,11],
this choice of sign allows us to obtain the results found using the euclidean approach in [32].
It can be proven that the right-hand side of (62) is always positive and, therefore, in order
to have a well-defined probability defined by (12) we choose the plus sign in the left-hand
side as well. We note, however, from (58) and (61) that in order to have a well-defined
tension we need the terms inside the square roots to be positive. If both potential minima
are negative, we see that this is indeed satisfied for all values of ā. However, if at least one
of the potential minima is positive, we see that the tension will only be well defined until ā
is big enough, that is, in this case, the tension term is well defined and consequently the
expressions (59) and (62) are valid only in an interval from 0 until an upper bound for ā.

Let us study now the ultraviolet limit, this is found when a << 1. In this limit
Equation (54) simplifies to:

± ΓUV = ±2π2
√

6(3λ− 1)
h̄

[(√
−αB

3 −
√
−αA

3

)
ln a

∣∣∣∣ā−δa

a0

]
+

2π2

h̄

[ c2

ā
T2 +

c3

ā3 T3

]
. (63)

We note, however, that since all gn are positive, and the V3 function defined in (45)
is also positive for both minima, the first term is purely imaginary. Therefore, it does not
contribute to the transition probability at all and it can be ignored. Thus, we finally obtain
in this limit:

± ΓUV =
2π2

h̄

[ c2

ā
T2 +

c3

ā3 T3

]
. (64)

However, this expression does not have an extremal with respect to ā. Then, in this
case, the probability is described by three independent parameters. For consistency with
the GR result, we will choose the plus sign in the left-hand side of the latter equation,
therefore, we note that in order to have a well-defined probability we need the overall sign
of the right-hand side to be positive. Thus, we can choose both T2 and T3 to take always
positive values.
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We can see from the GR result (60), or after extremizing (62), that in any case
P(A → B)→ 1 when ā → 0,. However, for the UV limit of HL presented in (64) we
have in the contrary P(A → B) → 0 when ā → 0 and then the probability increases as ā
increases. Therefore, in this case the UV behavior is completely different for both theories.

Now that we have studied the two limits of interest. We proceed to compare the full
result for the transition probability valid for all ā (54) to the GR result. As we have said,
for consistency with GR we are going to choose the plus sign in the left-hand side and the
minus sign in the right, and use the thin wall limit, therefore, we will consider:

Γ = − 2π2
√

6(3λ−1)
h̄

[∫ ā
a0

F
(
αB

1 , αB
2 , αB

3 , VB
0 , a

)
da

− ∫ ā
a0

F
(
αA

1 , αA
2 , αA

3 , VA
0 , a

)
da
]
+ 2π2

h̄

[
ā3T0 + c1 āT1 +

c2
ā T2 +

c3
ā3 T3

]
.

(65)

If we want to vary (65), we will obtain an expression involving the tension terms and
the functions F(αA,B

1 , αA,B
2 , αA,B

3 , VA,B, ā). However, since those functions are defined in
terms of square roots, we need the terms inside to be non-negative in order to have well
defined tension terms, that is we need that:

αA,B
1 ā2 − αA,B

2 − αA,B
3
ā2 −VA,B

0 ā4 ≥ 0. (66)

We note that in the best scenario, the latter expression implies only a lower bound
on ā coming from the α3 term. In the other cases, it could happen that we obtain a lower
and an upper bound for ā, that is the tension terms would only be well defined over a
specific interval, or it could even happen that the latter expression is not satisfied at all for
any value of ā and in that case (65) would not have an extremal. In any case, we see that
the extremizing procedure is very dependent on the many parameters of the theory and
does not allow us to obtain well-defined tension terms in general, in particular, we never
have access to the UV region. Therefore, in order to avoid these difficulties, we are going
to compare the results obtained before the extremizing procedure takes place, that is, we
will use for the comparison the GR result (60) choosing the signs already mentioned and
the HL result (65). Since the HL expression depends on many independent parameters
and the integrals cannot be made for any values of the constants involved, we are going to
evaluate numerically this expression. Since in the IR limit we saw that after extremizing
T0 and T are always positive, we are going to take positive values for these parameters.
On the other hand, in the UV limit we saw that we can take T2 and T3 also to be positive.
Finally, in order to obtain a well defined probability, we are also going to choose positive
values for the remaining free parameter T1. Thus, we will take positive values for all the
tension terms.

In Figure 1, we show a plot of the transition probabilities coming from the two theories.
We choose units such as 24π2

h̄ = 1. For the GR result (blue line), we choose VA = 1, VB = 0.1
and T = 2. We note that in this case, the first term in (60) is negative, therefore, we need to
choose a value for T great enough to obtain a well-defined probability. We see the behavior
outlined earlier, that is, the probability goes to 1 in the limit ā → 0 and then it decreases as ā
increases going to zero. For the HL plots, we choose VA

0 = 1, VB
0 = 0.1, αA

1 = αA
2 = αA

3 = 5,
αB

1 = αB
2 = αB

3 = 4, T0 = 2 and c1T1 = c2T2 = c3T3 = 1, we plot the probability for three
different values of λ to see how this parameter affects the behavior. In this case, we choose
a0 = 0.000001 in order to compute the integral numerically, however, we know from the
UV analysis, that a0 = 0 can be chosen without any problem and the general form will be
unaltered. In this case, we also have that the first term in (65) is negative and increases
with λ, therefore, we also need to make sure that the tensions chosen are big enough to
have a well-defined probability. This figure shows the behavior that we described earlier
by studying the different limits of interest. That is, in the IR region, the probability falls in
the same manner as the GR result. We note that ā has to be big enough so the first term
can be positive and then contribute to the probability, therefore, the different values of λ
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only affect the curve in the IR region and as λ increases, the probability increases since this
term has the opposite sign than the tension terms. In the UV region, the parameter λ has
no impact at all, and then, everything is defined by the tension terms. As we have said
earlier, the probability goes to 0 as ā → 0 and then it increases with ā. We note that this
behavior comes from the c2 and c3 terms, that is, it comes from the extra terms in the action
for the scalar field (18) and it can be interpreted as the fact that HL avoids the singularity
and predicts these types of transitions to occur in a UV regime (small ā) but not too close to
the singularity. Then, the probability starts to decrease and then it goes into the IR behavior
just described. We note that the general form of the plot will be maintained regardless of
the values of the parameters, we only have to make sure that they are chosen in a way
that the tension terms dominate so we can have a well-defined probability. However,
specific things such as the maximum height or the point in which both plots match is
completely determined by the parameters and, therefore, we cannot say something about
them in general.

Figure 1. Transition probability in units such that 24π2

h̄ = 1, with VA = VA
0 = 1, VB = VB

0 = 0.1,
αA

1 = αA
2 = αA

3 = 5, αB
1 = αB

2 = αB
3 = 4, T = T0 = 2, c1T1 = c2T2 = c3T3 = 1, for GR (blue line) and

HL with a scalar field depending on all spacetime variables with λ = 0.5 (red line), λ = 1 (green line)
and λ = 2 (yellow line). For HL we choose a0 = 0.000001 but the same form is expected for a0 = 0.

In the present section, we have obtained a general formula (65) for the transition
probability when the scalar field depends on all spacetime variables. The integrals involved
cannot be performed in an analytic form, however, a numerical computation was performed
and we showed a plot comparing the results with the one coming from GR. As we pointed
out earlier, the UV behavior is found to be completely opposite. This result depends on
the extra terms in the action for the scalar fields, however, these terms are only present if
we take a field that depends on the spatial variables. Therefore, in the next section we are
going to study a scalar field depending only on the time variable.

Phenomenological Remarks

Before we end this section, let us discuss some phenomenological aspects regarding
our results. The theory of Hořava–Lifshitz has received a lot of attention and much work has
been performed since its first proposal from the theoretical, as well as the phenomenological,
point of view. For example, in [33–35] the viability of the different versions of the theory
have been tested against various experimental (or observational) data sets coming from
different sources such as CMB and BAO collaborations. It is found that the theory is in
good agreement with such data, and therefore, it supports the importance of considering
it as a viable theory. It is also interesting to point out that in these works they always
work with an FLRW metric with a non-zero curvature since the flat metric gives the same

150



Universe 2022, 8, 237

predictions as in General Relativity. Thus, the importance of studying such metrics as the
one we studied in the present article is also supported by these works.

On the other hand, in the vacuum decay process studied by using the euclidean
method, discussed in [3], the process is described by the nucleation of true vacuum bub-
bles and its corresponding expansion. This could lead to phenomenological predictions
regarding this kind of phase transitions occurring at some point in the evolution of the
universe. However, as it was pointed out in [10] the process studied by using a Hamiltonian
approach in the minisuperspace is limited. In fact, in the transition studied, there is no
notion of bubble nucleation, we can only compare two configurations of three-metrics
and then interpret its ratio as a transition probability. Therefore, it is speculated that this
formalism is not describing the same process as the euclidean method. It is believed that
it may describe a generalization of the tunneling from nothing scenario, that is, we are
obtaining probability distributions of creating universes from a tunneling event between
two minima of the scalar potential. If we take seriously this interpretation, then the scale
factor ā appearing in the expression found for the transition probability would correspond
to the value that the scale factor of the created universe would have at the time of creation
(its corresponding ‘size’). Then, the plot in Figure 1 would tell us that in Hořava–Lifshitz
gravity, in the case in which the scalar field depends on the spatial variables, the universe
would be created with a scalar factor different from zero, and therefore, we would avoid
the singularity contrary to GR which predicts a singularity at the beginning of the universe.
This, of course, would have potential phenomenological consequences in the physics of the
early universe and its corresponding evolution. Therefore, although we are in a speculating
phase, these kinds of transitions are worth studying in more detail.

5. Transitions for a Time-Dependent Scalar Field

In the previous sections, we studied a scalar field depending on all coordinates of
spacetime and found a transition probability whose behavior differs completely in the UV
regime comparing to the GR result. However, in cosmology it is more common to study a
scalar field depending only on the time variable as is the case in [29,36,37]. Therefore, in
this section we will consider such a dependence for the scalar field and study the vacuum
transition probability between two minima of the potential.

In this case, the scalar field action (18) reduces to:

Sm = 2π2
∫

dta3(t)
[

3λ− 1
4N2 φ̇2 − NV(φ)

]
, (67)

where we have redefined the scalar field potential appearing in (19) as V
2 → V so it coincides

with the usual scalar potential in the action. Since now we have a global factor of 2π2 as in
the action of the gravitational part (16), we can omit this factor. Then, the lagrangian this
time is given by:

L = N

[
−3M2

pȧ2a
2N2 (3λ− 1) + 3M2

pa− 6
a
(3g2 + g3)− 12

a3M2
p
(9g4 + 3g5 + g6)

]
+ a3

[
3λ− 1

4N
φ̇2 − NV

]
. (68)

Therefore, we have only two degrees of freedom a and φ, their canonical momenta are:

πa = −
3(3λ− 1)M2

p

N
aȧ, πφ =

(3λ− 1)a3

2N
φ̇, (69)

and the Hamiltonian constraint takes the form:

H = N

[
π2

φ

a3(3λ− 1)
− π2

a
6(3λ− 1)M2

pa
− 3M2

pa +
6
a
(3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6) + a3V(φ)

]
� 0. (70)
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Comparing this last expression to the general form considered in Equation (1), we
note that in this case the coordinates in superspace are {a, φ} with inverse metric:

Gφφ =
2

(3λ− 1)a3 , Gaa = − 1
3(3λ− 1)M2

pa
, (71)

and we also have

f (a, φ) = −3M2
pa +

6
a
(3g2 + g3) +

12
M2

pa3 (9g4 + 3g5 + g6) + a3V(φ). (72)

In order to study transitions between two minima of the potential, we choose the
parameter s as in expression (33), then, following a similar procedure as in the previous
section, we obtain in this case that choosing units such as Mp = 1 (as in the GR case) and
in the thin wall limit, the logarithm of the transition probability is written as:

± Γ = ±2π2
√

6(3λ− 1)
h̄

[∫ ā

a0

F(3, ᾱ2, ᾱ3, VB, a)da−
∫ ā

a0

F(3, ᾱ2, ᾱ3, VA, a)da
]
+

2π2

h̄
ā3T, (73)

where
ᾱ2 = 6(3g2 + g3), ᾱ3 = 12(9g4 + 3g5 + g6), (74)

the function F is defined in (51) and as we have mentioned in Section 4, the sign ambiguities
in the last expression are independent.

Now that we have computed the transition probability in general, we move on to
study its behavior in the limiting cases considered before. For the IR behavior, we consider
λ → 1 and a >> 1 in the above expression, the result is the same as in (57) with the same
subtlety about a0 as discussed in the previous section. On the other hand, in the UV limit
we have a << 1. However, in this limit we obtain Γ → 0 as ā → 0. Therefore, we note that
the general behavior of these results is the same as the GR result in both extreme cases.
In fact, we can variate (73) with respect to ā to obtain:

T = ±
√

6(3λ− 1)
3ā2 [F(3, ᾱ2, ᾱ3, VA, ā)− F(3, ᾱ2, ᾱ3, VB, ā)]. (75)

Substituting it back in (73) we obtain finally:

±2Re[Γ] = ± 4π2
√

6(3λ−1)
h̄ Re

[∫ ā
a0

F(3, ᾱ2, ᾱ3, VB, a)da− ∫ ā
a0

F(3, ᾱ2, ᾱ3, VA, a)da
+ ā

3{F(3, ᾱ2, ᾱ3, VA, ā)− F(3, ᾱ2, ᾱ3, VB, ā)}]. (76)

Thus, the transition probability is also written in terms of just one parameter as in
the GR result. Therefore, the only difference between GR and HL in this case is that
the transition probability changes by acquiring two more terms in the square root before
integration, making the integral not possible to be performed in general and a global factor
depending on λ in (76). The qualitative behavior in both the IR and UV limit is unaltered.

In order to compare the result of this section with that of GR in general, not only on
the limiting cases, we note that as in the last section, the extremizing procedure leading to
Equation (75) gives rise to some restrictions for the validity of (76). In particular, it is never
well defined when ā is small. Therefore, we are going to use the result (73) and choose the
minus sign in the right-hand side so in the IR limit it coincides with the GR result and on
the left-hand side we will choose the plus sign in accordance with the GR result as well.
We will compare it with the GR result (60) with the sign choices made in the above section.
In both cases, we will take the tension T as an independent positive parameter and take
values big enough so we can have a well-defined probability and compute the integrals
numerically. In Figure 2, we show such a comparison. We choose units such as 24π2

h̄ = 1,
with VA = −1, VB = −10, ᾱ2 = ᾱ3 = 5 and T = 5. For the HL result we show plots for
three values of λ and choose a0 = 0.000001 in order to perform a numerical computation
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of the integrals, however, doing the UV limit we note that a0 = 0 is possible and it has
the same behavior. This figure shows the limiting behavior that we described earlier, that
is, in the IR and in the UV limits all curves behave in the same way, it is in the middle
region where their behavior is modified. In particular, we note that in the beginning the
HL probability is smaller than the one of GR, and the contribution of the λ parameter is not
noticeable; however, when the first term in (73) is big enough, the contribution of the first
term is big enough to separate the curves, and as in the case considered in the previous
section, as λ increases the probability increases. Finally, the three probabilities fall as in the
GR case.

Figure 2. Transition probability in units such that 24π2

h̄ = 1, with VA = −1, VB = −10, ᾱ2 = ᾱ3 = 5
and T = 5, for GR (blue line) and HL with a scalar field depending only on the time variable with
λ = 0.5 (red line), λ = 1 (green line) and λ = 2 (yellow line). For HL we choose a0 = 0.000001 but
the same form is expected for a0 = 0.

6. Final Remarks

In the present article, we have studied the transition probabilities for an FLRW metric
in Hořava–Lifhitz gravity using a WKB approximation to the WDW equation. The general
procedure proposed in [10,11] was found to be applicable to this case. We used HL theory
without detailed balance and consider an FLRW metric with positive spatial curvature.

We considered two types of scalar fields. First, since the anisotropic scaling between
space and time variables is a key ingredient of HL theory, we considered a scalar field
which depends on all spacetime variables. This type of dependence is useful to study
cosmological perturbations coming from scalar fields [26]. On the other hand, since in
cosmology it is customary to propose an ansatz in which the scalar field depends only on
the time variable, we studied this kind of dependence as well. For both cases, we found
analytic expressions for the logarithm of the transition probabilities in the thin wall limit.

For the scalar field, depending on all spacetime variables, the transition probability (65)
was found to depend on five different parameters coming from the new terms present in the
action for gravity, as well as the action from the scalar field in HL theory. There is only the
possibility to reduce just one of these parameters after an extremizing procedure but such a
procedure is not well defined for all values of the scale factor. Taking the IR limit we found
that one degree of freedom extra coming from the scalar field action survives, which is a
common issue regarding the IR limit of HL theory. However, if we ignore this contribution,
we can obtain an expression that differs from the GR result just by constants. In the opposite
limit, that is, in the UV limit, we found that the probability is described in terms of three
independent parameters and it vanishes in the limit ā → 0. This is opposite to the GR result
in which the probability goes to 1 in that limit. We interpret this result as a way in which
HL theory avoids the spatial singularity at ā = 0 and predicts these transitions to occur on
the UV regime but away from the singularity. We note that this behavior comes from the
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terms in the scalar field action with spatial derivatives, and therefore, it is only possible
in the case in which the scalar field depends on the spatial variables. In order to visualize
these behaviors, we plotted the transition probabilities coming from GR and HL theory.
Such plots were presented in Figure 1. For the HL results, the integrals involved were
performed numerically and we saw that in all cases the probability begins at zero with
ā = 0, then it increases with ā until at some point it starts to decrease and then it behaves as
in the GR case. We noted that the first behavior in the UV region is independent of the λ
parameter and it is only on the IR where the dependence on this parameter is noticeable
making the probability increase as λ increases.

For the scalar field depending only on the time variable, the logarithm of the transition
probability found have the same number of independent parameters as the GR result, that
is, after extremizing we only have one parameter left. However, it also has dependence
on the many constants gn appearing in the extra terms in the gravity action for HL theory,
as well as in the parameter λ. The behavior of the probability in this case is found to be
the same as the GR result in both the IR, as well as the UV limits. In fact, in the IR limit,
we obtain the same expression as the one coming from the scalar field with dependence
in all spacetime variables when we ignore the degree of freedom that survives this limit
and in the UV regime we also found that the probability goes to 1 in the limit ā → 0.
Therefore, with a cosmological ansatz, the behavior in the UV regime found by using GR
is unaltered. However, in the intermediate region, the probability is of course modified.
In order to visualize the difference in this region, we plotted the transition probabilities
coming from GR and HL theory and showed them in Figure 2. In this case, we also carried
out a numerical computation of the integrals involved in the HL result. We noted that, at
first, the probability of HL is smaller than GR and the contribution from the λ parameter is
not noticeable. However, when the scale factor is big enough, this contribution is important
and, as in the latter case, the probability increases with λ. It is interesting to note that
using HL theory instead of GR for a cosmological ansatz of the scalar field does not have a
dramatic change on the transition probability at least at the semi-classical level we used in
this article through the WKB approximation.

It is worth pointing out that we have used a WKB approximation and kept only up
to first order in the expansion. However, this level of semi-classical approximation is
sufficient to obtain the transition probabilities and we can safely explore the UV regime of
both GR, as well as HL theory, since the transition probabilities are well-behaved functions
in the UV. It was shown that in the case when the scalar field is only dependent on
the cosmological time, GR and HL theories give very similar predictions in the WKB
approximation. However, the case with a dependence on time and position coordinates
for the scalar field, yields very different behavior from the GR case even in the WKB
approximation. It would be interesting to work out higher order contributions from the
WKB approximation, which presumably will have the contribution of quantum fluctuations.

It is important to remark as well, that we considered closed universes in the HL theory
and obtained well-defined transition probabilities. Therefore, one of the important results
obtained in Ref. [10] that asserts that these types of transitions can be carried out keeping the
closeness of the spatial universe can certainly be extended to include the Hořava–Lifshitz
theory of gravity as well.
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Note

1 We note that in [11] we miswrote the sign of the last term in Equation (62).
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Abstract: We quantized the interaction of gravity with Yang–Mills and spinor fields; hence, offering a
quantum theory incorporating all four fundamental forces of nature. Let us abbreviate the spatial
Hamilton functions of the standard model by HSM and the Hamilton function of gravity by HG.
Working in a fiber bundle E with base space S0 = Rn, where the fiber elements are Riemannian
metrics, we can express the Hamilton functions in the form HG + HSM = HG + t− 2

3 H̃SM, if n = 3,
where H̃SM depends on metrics σij satisfying det σij = 1. In the quantization process, we quantize
HG for general σij but H̃SM only for σij = δij by the usual methods of QFT. Let v resp. ψ be the spatial
eigendistributions of the respective Hamilton operators, then, the solutions u of the Wheeler–DeWitt
equation are given by u = wvψ, where w satisfies an ODE and u is evaluated at (t, δij) in the fibers.

Keywords: quantization of gravity; quantum gravity; standard model; temporal and spatial
eigenfunctions; Fourier quantization; symmetric spaces

1. Introduction

General relativity is a Lagrangian theory, i.e., the Einstein equations are derived as the
Euler–Lagrange equation of the Einstein–Hilbert functional∫

N
(R̄− 2Λ), (1)

where N = Nn+1, n ≥ 3, is a globally hyperbolic Lorentzian manifold, R̄ is the scalar
curvature, and Λ is a cosmological constant. We also omitted the integration density in
the integral. In order to apply a Hamiltonian description of general relativity, one usually
defines a time function x0 and considers the foliation of N given by the slices

M(t) = {x0 = t}. (2)

We may, without loss of generality, assume that the spacetime metric splits

ds̄2 = −w2(dx0)2 + gij(x0, x)dxidxj, (3)

cf. [1] (Theorem 3.2). Then, the Einstein equations also split into a tangential part

Gij + Λgij = 0 (4)

and a normal part
Gαβνανβ −Λ = 0, (5)

where the naming refers to the given foliation. For the tangential Einstein equations, one
can define equivalent Hamilton equations due to the groundbreaking paper by Arnowitt,

Universe 2022, 8, 404. https://doi.org/10.3390/universe8080404 https://www.mdpi.com/journal/universe157
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Deser, and Misner [2]. The normal Einstein equations can be expressed by the so-called
Hamilton condition

H = 0, (6)

where H is the Hamiltonian used in defining the Hamilton equations. In the canonical
quantization of gravity, the Hamiltonian is transformed to a partial differential operator of
a hyperbolic type Ĥ and the possible quantum solutions of gravity are supposed to satisfy
the so-called Wheeler–DeWitt equation

Ĥu = 0 (7)

in an appropriate setting, i.e., only the Hamilton condition, (6) was quantized, or equiva-
lently, the normal Einstein equation, while the tangential Einstein equations were ignored.

In [1], we solved the Equation (7) in a fiber bundle E with the base space S0,

S0 = {x0 = 0} ≡ M(0), (8)

and fibers F(x), x ∈ S0,
F(x) ⊂ T0,2

x (S0), (9)

the elements of which are the positive definite symmetric tensors of order two, the Rieman-
nian metrics in S0. The hyperbolic operator Ĥ is then expressed in the form

Ĥ = −Δ− (R− 2Λ)ϕ, (10)

where Δ is the Laplacian of the DeWitt metric given in the fibers, R the scalar curvature of
the metrics gij(x) ∈ F(x), and ϕ is defined by

ϕ2 =
det gij

det ρij
, (11)

where ρij is a fixed metric in S0, such that, instead of densities, we consider functions.
The Wheeler–DeWitt equation could be solved in E but only as an abstract hyperbolic equation.
The solutions could not be split into corresponding spatial and temporal eigenfunctions.

In a recent paper [3], we overcame this difficulty by quantizing the Hamilton equations
instead of the Hamilton condition.

As a result, we obtained the equation

− Δu = 0 (12)

in E, where the Laplacian is the Laplacian in (10). The lower order terms of Ĥ

(R− 2Λ)ϕ (13)

were eliminated during the quantization process. This result was valid for all dimensions
3 ≤ n, provided n �= 4.

The fibers add additional dimensions to the quantized problem, namely,

dim F =
n(n + 1)

2
≡ m + 1. (14)

The fiber metric, the DeWitt metric, which is responsible for the Laplacian in (12), can
be expressed in the form

ds2 = −16(n− 1)
n

dt2 + ϕGABdξ AdξB, (15)
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where the coordinate system is

(ξa) = (ξ0, ξA) ≡ (t, ξ A). (16)

The (ξA), 1 ≤ A ≤ m, are coordinates for the hypersurface

M ≡ M(x) = {(gij) : t4 = det gij(x) = 1, ∀ x ∈ S0}. (17)

We also assumed that S0 = Rn and that the metric ρij in (11) is the Euclidean metric
δij. It is well-known that M is a symmetric space

M = SL(n,R)/SO(n) ≡ G/K. (18)

It is also easily verified that the induced metric of M in E is isometric to the Riemannian
metric of the coset space G/K.

Now, we were in a position to use the separation of variables, namely, we wrote a
solution of (12) in the form

u = w(t)v(ξ A), (19)

where v is a spatial eigenfunction of the induced Laplacian of M

− ΔMv ≡ −Δv = (|λ|2 + |ρ|2)v (20)

and w is a temporal eigenfunction satisfying the ODE

ẅ + mt−1ẇ + μ0t−2w = 0 (21)

with

μ0 =
16(n− 1)

n
(|λ|2 + |ρ|2). (22)

The eigenfunctions of the Laplacian in G/K are well-known and we chose the kernel
of the Fourier transform in G/K in order to define the eigenfunctions. This choice also
allowed us to use the Fourier quantization similar to the Euclidean case, such that the
eigenfunctions were transformed to Dirac measures and the Laplacian to a multiplication
operator in the Fourier space.

In the present paper, we quantize the Einstein–Hilbert functional combined with the
functionals of the other fundamental forces of nature, i.e., we look at the Lagrangian functional

J = α−1
N

∫
Ω̃
(R̄− 2Λ)−

∫
Ω̃

1
4 γāb̄ ḡμρ2 ḡλρ1 Fā

μρ1
Fb̄

ρ2λ

−
∫

Ω̃
{ 1

2 ḡμλγāb̄Φā
μΦ̄b̄

λ + V(Φ)}

+
∫

Ω̃
{ 1

2 [ψ̃I Eμ
a γa(Dμψ)I + ψ̃I Eμ

a γa(Dμψ)I ] + mψ̃Iψ
I},

(23)

where αN is a positive coupling constant, Ω̃ � N = Nn+1 and N is a globally hyperbolic
spacetime with metric ḡαβ, 0 ≤ α, β ≤ n, where the metric splits as in (3).

The functional J consists of the Einstein–Hilbert functional, the Yang–Mills and Higgs
functional, and a massive Dirac term.

The Yang–Mills field (Aμ)
Aμ = fc̄ Ac̄

μ (24)

corresponds to the adjoint representation of a compact, semi-simple Lie group G with Lie
algebra g. The fc̄,

fc̄ = ( f ā
c̄b̄) (25)

are the structure constants of g.
We assume the Higgs field Φ = (Φā) to have complex valued components.
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The spinor field ψ = (ψI
A) has a spinor index A, 1 ≤ A ≤ n1, and a color index I,

1 ≤ I ≤ n2. Here, we suppose that the Lie group has a unitary representation R, such that

tc̄ = R( fc̄) (26)

are anti-Hermitian matrices acting on Cn2 . The symbol Aμψ is now defined by

Aμψ = tc̄ψAc̄
μ. (27)

There are some major difficulties in achieving a quantization of the functional in (23).
Quantizing the Hamilton equations, to avoid the problem with the scalar curvature term,
runs into technical difficulties, even if the required quantization of the matter fields in
the curved spacetimes could be achieved since the resulting operator would no longer be
hyperbolic because the elliptic parts of the gravitational resp. matter Hamiltonians would
have different signs in the case of n = 3. This particular problem would not occur when
the Hamilton condition would be quantized. The Hamilton condition has the form

HG + HYM + HD + HH = 0, (28)

where the subscripts refer to gravity, Yang–Mills, Dirac, and Higgs. On the left-hand side
are the Hamilton functions of the respective fields. They depend on the Riemannian metrics
gij, the Yang–Mills connections, and the spinor and Higgs fields. The main part of the
quantized gravitational Hamiltonian is a second-order hyperbolic differential operator
with respect to the variables gij while the scalar curvature term R is of zero-order. With
this in mind, we also shall apply these categories to the gravitational Hamilton function
where the main part, quadratic in the conjugate momenta, is said to be of the second-order
and the zero-order terms consist of the scalar curvature and the cosmological constant Λ.
Similarly, we consider the matter Hamilton functions to be zero-order terms with respect to
the metric gij, i.e., there is no qualitative difference by assuming gij to be flat or non-flat,
or more precisely, quantizing a matter Hamiltonian in a curved spacetime (when gij is a
given, fixed metric and not a variable) is qualitatively the same as quantizing it for the
Euclidean metric, though the task is certainly more difficult.

Thus, the difficulties arising from quantizing the Hamilton condition can best be
explained by considering the Wheeler–DeWitt equation

ĤGu = 0 in E, (29)

cf. (7), where we wrote Ĥ instead of ĤG. This is a hyperbolic differential equation, which
can be expressed by

ĤGu = −Δu + ϕ(R− 2Λ)u = 0, (30)

where the Laplacian is the Laplacian of the fiber metric (15). In the coordinate system (16),
we have

ĤGu = t−m ∂

∂t
(tm ∂u

∂t
)− t−2ΔMu + t2(R− 2Λ)u, (31)

where M is the hypersurface (17). Since M is isometric to the symmetric space (18) it is
mathematically irresistible to solve (31) by applying separation of variables and using the
functions of the Fourier kernel of M as spatial eigenfunctions v, where v = v(σij), σij are
the elements of M. Since

gij(x) = t
4
n σij(x) (32)

the critical term R can be expressed as

R(gij) = t−
4
n R(σij) (33)
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due to the relation between the scalar curvatures of conformal metrics.
Thus, it is obvious that the ansatz

u = wv, (34)

where w = w(t) solves an ODE is only possible if R(σij) is constant

R(σij) = λ0. (35)

The constant is arbitrary but determined by the metrics we consider to be important,
e.g., in the case of a black hole, we would choose σij to be the limit metric of a converging
sequence of Cauchy hypersurfaces of the interior region of the black hole, which converge
to the event horizon topologically but the induced metrics of which converge to a Rieman-
nian metric, cf. [4,5] or [6] (Chapters 4 and 5). In the present case, where we want to include
the matter fields of the standard model, we could choose σij = δij.

However, this ansatz implies that the Wheeler–DeWitt equation is not solved for all
(t, σij) but only for the σij satisfying (35). Given the simplicity and mathematical beauty of
the solution, we are inclined to accept this restriction.

Let us now consider the quantization of the Hamilton condition (28) taking all Hamil-
ton functions into account. In view of the relation (32), let us propose the following model:
If we were able to express the non-gravitational Hamiltonians as

HYM = tpH̃YM, HD = tp H̃D, HH = tpH̃H , (36)

where the embellished Hamiltonians depend on σij, then, by choosing in addition n = 3
and σij = δij, these Hamiltonians could be quantized by the known methods of QFT, if the
Lie groups would be chosen appropriately. The Wheeler–DeWitt equation would then not
be solved for all (t, σij) but only for (t, δij). However, the spatial eigendistributions of the
Hamilton operator ĤG, i.e., the eigendistributions of the Laplacian of M, cf. (20), would
still be used but they would be evaluated at σij = δij.

In Section 4, we prove that the expressions in (36) are indeed valid with p = − 2
3

provided n = 3 and provided that the mass term in the Dirac Lagrangian and the Higgs
Lagrangian is slightly modified. The embellished Hamiltonians are then standard Hamilto-
nians without any modifications, for details, we refer to Section 4. The Hamilton constraint
then has the form

H = HG + HYM + HH + HD

= HG + t−
2
3 (H̃YM + H̃H + H̃D)

≡ HG + t−
2
3 H̃SM = 0,

(37)

where the subscript SM refers to the fields of the standard model or a corresponding subset
of fields. The solutions of the Wheeler–DeWitt equation

Ĥu = 0 (38)

can then be achieved by using the separation of variables. We proved:

Theorem 1. Let n = 3, v = eλ,b0 and let ψ be an eigendistribution of H̃SM when σij = δij
such that

− ΔMeλ,b0 = (|λ|2 + 1)eλ,b0 , (39)

H̃SMψ = λ1ψ, λ1 ≥ 0, (40)
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and let w be a solution of the ODE

t−m ∂

∂t
(tm ∂w

∂t
) +

32
3
(|λ|2 + 1)t−2w +

32
3

α−1
N λ1t−

2
3 w

+
64
3

α−2
N Λt2w = 0

(41)

then
u = weλ,b0 ψ (42)

is a solution of the Wheeler–DeWitt equation

Ĥu = 0, (43)

where eλ,b0 is evaluated at σij = δij and where we note that m = 5.

We shall refer to eλ,b0 and ψ as the spatial eigenfunctions and w as the temporal
eigenfunction.

Remark 1. We could also apply the respective Fourier transforms to−Δ̃eλ,b0 resp. H̃SMψ and consider

wêλ,b0 ψ̂ (44)

as the solution in Fourier space, where ψ̂ would be expressed with the help of the ladder operators.

The temporal eigenfunctions are analyzed in Section 5. They must satisfy an ODE of
the form

ẅ + 5t−1ẇ + m1t−2w + m2
2t−

2
3 w + m3t2w = 0, (45)

where
m1 ≥ 32

3
, m2 ≥ 0, m3 ∈ R. (46)

For simplicity, we shall only state the result when m3 = 0, which is tantamount to
setting Λ = 0.

Theorem 2. Assume m3 = 0 and m2 > 0, then the solutions of the ODE (45) are generated by

J( 3
2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2 (47)

and
J(− 3

2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2, (48)

where J(λ, t) is the Bessel function of the first kind.

Lemma 1. The solutions in the theorem above diverge to complex infinity if t tends to zero and
they converge to zero if t tends to infinity.

2. Definitions and Notations

Greek indices α, β range from 0 to n, Latin i, j, k from 1 to n, and we stipulate 0 ≤ a,
b ≤ n but 1 ≤ a′, b′ ≤ n. Barred indices ā refer to the Lie algebra g, 1 ≤ ā ≤ n0 = dim g.

γāb̄ is the Cartan–Killing metric.
The Dirac matrices are denoted by γa and they satisfy

γaγb + γbγa = 2ηab I, (49)

where ηab is the Minkowski metric with signature (−,+, . . . ,+). γ0 is anti-Hermitian and
γa′ Hermitian.

162



Universe 2022, 8, 404

The indices a, b are always raised or lowered with the help of the Minkowski metric,
Greek indices with the help of the spacetime metric ḡαβ.

The γa act in

C2
n+1

2 , (50)

if n is odd and in
C2

n
2 ⊕ C2

n
2 , (51)

if n is even. In both cases, we simply refer to these spaces as

Cn1 , (52)

i.e., the spinor index A has a range of 1 ≤ A ≤ n1.
The color index I has a range of 1 ≤ I ≤ n2 and, hence, a spinor field ψI

A has values in

Cn1 ⊗Cn2 . (53)

Finally, a Hermitian form 〈·, ·〉 is anti-Hermitian in the first argument.

3. Spinor Fields

The Lagrangian of the spinor field is stated in (23). Here, ψ = (ψI
A) is a multiplet of

the spinors with spin 1
2 ; A is the spinor index, 1 ≤ A ≤ n1, and I, 1 ≤ I ≤ n2, the color

index. We shall also lower or raise the index I with the help of the Euclidean metric (δI J).
Let Γμ be the spinor connection

Γμ = 1
4 ω b

μ aγbγa, (54)

then the covariant derivative Dμψ is defined by

Dμψ = ψ,μ + Γμψ + Aμψ. (55)

Let (eb
λ) be a n-bein, such that

ḡμλ = ηabea
μeb

λ, (56)

where (ηab) is the Minkowski metric, and let (Eμ
a ) be its inverse

Eμ
a = ηab ḡμλeb

λ, (57)

cf. [7] (p. 246).
The covariant derivative of Eα

a with respect to (ḡαβ) is then given by

Eα
a;μ = Eα

a,μ + Γ̄α
μβEβ

a (58)

and
ω b

μ a = Eλ
a;μeb

λ = −Eλ
a eb

λ;μ, (59)

hence, the spin connection Γμ can be expressed as

Γμ = 1
4 ω b

μ aγbγa = 1
4 Eλ

a;μeb
λγbγa = − 1

4 Eλ
a eb

λ;μγbγa. (60)

We shall first show:

Lemma 2. Let ḡαβ be a fixed spacetime metric that is split by the time function x0, then there exists
an orthonormal frame (ea

λ), such that

e0
k = 0, 1 ≤ k ≤ n, (61)
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and
ea′

k;0 = ea′
,0 − Γ̄λ

k0ea′
λ = 0 (62)

for all 1 ≤ a′ ≤ n and 1 ≤ k ≤ n.

Proof. Assume that
ḡ00 = −w2, (63)

then define the conformal metric
g̃αβ = w−2 ḡαβ. (64)

The curves
(γα(t, x)) = (t, xi), x ∈ S0, (65)

are then geodesics with respect to g̃αβ. Let (êa′
λ ), 1 ≤ a′ ≤ n, be an orthonormal frame in

T0,1(S0) ↪→ T0,1(N), such that

êa′
0 = 0 ∀ 1 ≤ a′ ≤ n. (66)

The êa′ depend on x = (xi) ∈ S0. Let (ẽa′
λ )(t, x) be the solutions of the flow equations

D
dt

ẽa′
λ = 0,

ẽa′
λ (0, x) = êa′

λ (x),
(67)

i.e., we parallel transport êa′ along the geodesics. Setting

(ẽ0
λ) = (1, 0, . . . , 0) (68)

the (ẽa
λ) are then an orthonormal frame of 1-forms in (N, g̃αβ) such that the ẽa satisfy

ẽa
λ:0 = 0 ∀ 0 ≤ a ≤ n, (69)

where we indicate covariant differentiation with respect to g̃αβ by a colon.
Define ea

λ by
ea

λ = wẽa
λ, (70)

then the ea
λ are orthonormal frames in (N, ḡαβ). The Christoffel symbols Γ̄

γ
αβ resp. Γ̃

γ
αβ are

related by the formula

Γ̄
γ
αβ = Γ̃

γ
αβ − w−1wαδ

γ
β + w−1wβδ

γ
α − w−1w̌γ g̃αβ, (71)

where
w̌γ = g̃γλwλ. (72)

In view of (69), we then infer

0 = ẽa′
j:0 = ˙̃ea′

j − Γ̃k
0j ẽ

a′
k (73)

and we deduce further
ea′

j;0 = ẇẽa′
j + w ˙̃ea′

j − Γ̄k
0jwẽa′

k

= ẇẽa′
j + Γ̃k

0jwẽa′
k − Γ̄k

0jwẽa′
k

= 0

(74)

because of (71).

Subsequently, we shall always use these particular orthonormal frames.
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We are now able to simplify the expressions for the spin connections

Γμ = − 1
4 Eλ

a eb
λ;μγaγb. (75)

We have

4Γ0 = −Eλ
a eb

λ;0γbγa

= −Eλ
a e0

λ;0γ0γa − Eλ
a eb′

λ;0γb′γ
a

= −E0
0e0

0;0γ0γ0 − Ei
a′ e

0
i;0γ0γa′ − E0

0eb′
0;0γb′γ

0 − Ei
a′ e

b′
i;0γb′γ

a′

= −Ei
a′ e

0
i;0γ0γa′ − E0

0eb′
0;0γb′γ

0

(76)

in view of Lemma 2 and the fact that

e0
0;0 = 0. (77)

The matrices γ0γa′ and γb′γ
0 are Hermitian, since γ0 is anti-Hermitian, γa′ Hermitian,

and there holds
γ0γa′ = −γa′γ0. (78)

Hence, the quadratic form

ψ̃E0
aγaΓ0ψ = −iE0

0ψ̄Γ0ψ (79)

is imaginary and will be eliminated by adding its complex conjugate. Γ0 can therefore be
ignored, which we shall indicate by writing

Γ0 � 0. (80)

A similar notation should apply to other terms that will be canceled when adding the
complex conjugates.

Let us consider Γk:

4Γk = −Eλ
a eb

λ;kγbγa

= −Eλ
a e0

λ;kγ0γa − Eλ
a eb′

λ;kγb′γ
a

= −E0
0e0

0;kγ0γ0 − Ei
a′ e

0
i;kγ0γa′ − E0

0eb′
0;kγb′γ

0 − Ei
a′ e

b′
i;kγb′γ

a′ .

(81)

The first term on the right-hand side vanishes, since

e0
0;k = wk − Γ̄0

0kw = 0. (82)

Furthermore, there holds

e0
i;k = −Γ̄0

ikw = − 1
2 ġikw−1 (83)

and
eb′

0;k = −Γ̄
j

0keb′
j = − 1

2 glj ġkleb′
j , (84)

yielding
4Γk =

1
2 ġikw−1Ei

a′γ0γa′ + 1
2 w−1glj ġkleb′

i γb′γ
0 − Ei

a′ e
b′
i;kγb′γ

a′

= w−1 ġikEi
a′γ0γa′ − Ei

a′ e
b′
i;kγb′γ

a′ ,
(85)

since
γ0γa′ = −γa′γ0. (86)
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The first term on the right-hand side of (85) has to be eliminated because of the
presence of ġik. To achieve this, fix a Riemannian metric ρij = ρij(x) ∈ T0,2(S0), and define
the function ϕ by

ϕ =

√
det gij

det ρij
(87)

and the spinors χ = (χi
A) by

χ =
√

ϕψ, (88)

then
χ̇ =

√
ϕψ̇ + 1

4 gij ġijχ (89)

and
χ,k =

1
2 ϕk ϕ−1/2χ +

√
ϕψ,k. (90)

Looking at the real part of the quadratic form

iχ̃Ek
a′γ

a′χ,k (91)

we deduce that
χ,k � √ϕψ,k. (92)

Moreover, we infer

iψ̃Ek
c′γ

c′Γkψ = iψ̄Ek
c′γ

0γc′Γkψ

= 1
4 iψ̄Ek

c′E
j
a′w

−1 ġjkγ0γc′γ0γa′ψ

− 1
4 iψ̄Ek

c′E
j
a′ e

b′
j;kγ0γc′γb′γ

a′ψ.

(93)

We now observe that

γ0γc′γ0γa′ = −γ0γ0γc′γa′ = −γc′γa′ , (94)

hence,
Ek

c′E
j
a′γ

0γc′γ0γa′ = −Ek
c′E

j
a′γ

c′γa′ = −gjk (95)

and we conclude

iψ̃Eμ
c γcDμψϕ � −iχ̄χ̇w−1

+ iχ̄Ek
c′γ

0γc′ {χ,k − 1
4 Ej

a′ e
b′
j;kγb′γ

a′χ + Akχ} (96)

Remark 2. The term in the braces is the covariant derivative of χ with respect to the spin connec-
tion Γ̃k

Γ̃b′
ka′ =

1
4 ω̃b′

ka′ = − 1
4 Ej

a′ e
b′
j;kγb′γ

a′ (97)

and the Yang–Mills connection (Aμ) satisfying A0 = 0, such that

D̃kχ = χ,k + Γ̃kχ + Akχ. (98)

The gauge transformations for both the Yang–Mills connection as well as for the spin connection
do not depend on x0 but only on x ∈ S0. In case of the Yang–Mills connection, this has already been
proved in [8] (Lemma 2.6), while the proof for the spin connection Γ̃k follows from (97) and (85) if
we only consider Lorentzian metrics of the form

ds̄2 = −dt2 + gij(x)dxidxj (99)

in a product manifold N = I × S0, as will be the case after the quantization of the Dirac field.
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Summarizing the preceding results, we obtain:

Lemma 3. The Dirac Lagrangian can be expressed in the form

LD = i
2 (χ̄I χ̇

I − ˙̄χIχI)w−1 ϕ−1 + miχ̄Iγ
0χI ϕ−1

− i
2{χ̄Iγ

0Ek
a′γ

a′ D̃kχI − χ̄Iγ0Ek
a′γ

a′ D̃kχI}ϕ−1,
(100)

where χ and D̃k are defined in (88) resp. (98).

4. Quantization of the Lagrangian

We consider the functional

J = α−1
N

∫
Ω̃
(R̄− 2Λ)−

∫
Ω̃

1
4 γāb̄ ḡμρ2 ḡλρ1 Fā

μρ1
Fb̄

ρ2λ

−
∫

Ω̃
{ 1

2 ḡμλγāb̄Φā
μΦ̄b̄

λ + V(Φ)}

+
∫

Ω̃
{ 1

2 [ψ̃I Eμ
a γa(Dμψ)I + ψ̃I Eμ

a γa(Dμψ)I ] + mψ̃Iψ
I},

(101)

where αN is a positive coupling constant and Ω̃ � N.
We use the action principle that, for an arbitrary Ω̃ as above, a solution (A, Φ, ψ, ḡ)

should be a stationary point of the functional with respect to compact variations. This
principle requires no additional surface terms for the functional.

As we proved in [1], we may only consider metrics ḡαβ that split with respect to some
fixed globally defined time function x0, such that

ds̄2 = −w2(dx0)2 + gijdxidxj (102)

where g(x0, ·) are Riemannian metrics in S0,

S0 = {x0 = 0}. (103)

The first functional on the right-hand side of (101) can be written in the form

α−1
N

∫ b

a

∫
Ω
{ 1

4 Gij,kl ġij ġklw−2 + R− 2Λ}wϕ, (104)

where
Gij,kl = 1

2{gikgjl + gil gjk} − gijgkl (105)

is the DeWitt metric,
(gij) = (gij)

−1, (106)

R the scalar curvature of the slices

{x0 = t} (107)

with respect to the metric gij(t, ·), and where we also assumed that Ω̃ is a cylinder

Ω̃ = (a, b)×Ω, Ω � S0, (108)

such that Ω̃ ⊂ Uk for some k ∈ N, where the Uk are special coordinate patches of N,
such that there exists a local trivialization in Uk with the properties that there is a fixed
Yang–Mills connection

Ā = (Āā
μ) = fā Āā

μdxμ (109)

satisfying
Āā

0 = 0 in Uk, (110)

167



Universe 2022, 8, 404

cf. [8] (Lemma 2.5). We may then assume that the Yang–Mills connections A = (Aā
μ) are of

the form
Aā

μ(t, x) = Āā
μ(0, x) + Ãā

μ(t, x), (111)

where (Ãā
μ) is a tensor, see [8] (Section 2).

The Riemannian metrics gij(t, ·) are elements of the bundle T0,2(S0). Denote by E the
fiber bundle with base S0 where the fibers F(x) consist of the Riemannian metrics (gij).
We shall consider each fiber to be a Lorentzian manifold equipped with the DeWitt metric.
Each fiber F has the dimension

dim F =
n(n + 1)

2
≡ m + 1. (112)

Let (ξr), 0 ≤ r ≤ m, be coordinates for a local trivialization, such that

gij(x, ξr) (113)

is a local embedding. The DeWitt metric is then expressed as

Grs = Gij,kl gij,rgkl,s, (114)

where a comma indicates partial differentiation. In the new coordinate system, the curves

t → gij(t, x) (115)

can be written in the form
t → ξr(t, x) (116)

and we infer
Gij,kl ġij ġkl = Grs ξ̇r ξ̇s. (117)

Hence, we can express (104) as

J =
∫ b

a

∫
Ω

α−1
n { 1

4 Grs ξ̇r ξ̇sw−1 ϕ + (R− 2Λ)wϕ}, (118)

where we now refrain from writing down the density
√

ρ explicitly, since it does not depend
on (gij) and, therefore, should not be part of the Legendre transformation. Here, we follow
Mackey’s advice in [9] (p. 94) to always consider rectangular coordinates when applying
canonical quantization, which can be rephrased that the Hamiltonian has to be a coordinate
invariant, hence no densities are allowed.

Denoting the Lagrangian function in (118) by L, we define

πr =
∂L
∂ξ̇r

= ϕGrs
1

2αN
ξ̇sw−1 (119)

and we obtain for the Hamiltonian function ĤG

ĤG = ξ̇r ∂L
∂ξ̇r

− L

= ϕGrs
( 1

2αN
ξ̇rw−1)( 1

2αN
ξ̇sw−1)wαN − α−1

N (R− 2Λ)ϕw

= ϕ−1GrsπrπswαN − α−1
N (R− 2Λ)ϕw

≡ HGw,

(120)

where Grs is the inverse metric. Hence,

HG = αN ϕ−1Grsπrπs − α−1
N (R− 2Λ)ϕ (121)
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is the Hamiltonian that will enter the Hamilton constraint, for details see [6] (Chapter 1.4).
Let us recall that the fibers F can be considered Lorentzian manifolds, even globally

hyperbolic manifolds, equipped with the DeWitt metric (ϕGij,kl), where ϕ is a time function,
cf. [6] (Theorem 1.4.2). In the fibers, we can introduce new coordinates, (ξa) = (ξ0, ξA) ≡
(t, ξ A) , 0 ≤ a ≤ m, and 1 ≤ A ≤ m, such that

t =
√

ϕ (122)

and (ξ A) are coordinates for the hypersurface

M = {ϕ = 1} = {ξ0 = 1}. (123)

The Lorentzian metric in the fibers can then be expressed in the form

ds2 = −16(n− 1)
n

dt2 + t2GABdξAdξB, (124)

where (GAB) is a Riemannian metric on M, which is independent of t. When we work in a
local trivialization of the bundle E, the coordinates (ξA) are independent of x. The time
coordinate t is also independent of x, cf. [1] (Lemma 1.8). Moreover, the fiber elements (gij)
can be expressed in the form

gij = t
4
n σij, (125)

where (σij) is an element of M, i.e.,
t(σij) = 1, (126)

or equivalently,
det σij = det ρij. (127)

Next, let us look at the Yang–Mills Lagrangian, which can be expressed as

LYM = 1
2 γāb̄gij Ãā

i,0 Ãb̄
j,0w−1 ϕ− 1

4 FijFijwϕ. (128)

Let E0 be the adjoint bundle

E0 = (S0, g, π, Ad(G)) (129)

with base space S0, where the gauge transformations only depend on the spatial variables
x = (xi). Then the mappings t → Ãā

i (t, ·) can be looked at as curves in T1,0(E0)⊗ T0,1(S0),
where the fibers of T1,0(E0)⊗ T0.1(S0) are the tensor products

g⊗ T0,1
x (S0), x ∈ S0, (130)

which are vector spaces equipped with the metric

γāb̄ ⊗ gij. (131)

For our purposes, it is more convenient to consider the fibers to be Riemannian
manifolds endowed with the above metric. Let (ζ p), 1 ≤ p ≤ n1n, where n0 = dim g, be
local coordinates and

(ζ p)→ Ãā
i (ζ

p) ≡ Ã(ζ) (132)

be a local embedding, then the metric has the coefficients

Gpq = 〈Ãp, Ãq〉 = γāb̄gij Ãā
i,p Ãb̄

j,q. (133)

Hence, the Lagrangian LYM in (128) can be expressed in the form

LYM = 1
2 Gpq ζ̇ p ζ̇qw−1 ϕ− 1

4 FijFijwϕ (134)
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and we deduce
π̃p =

∂LYM

∂ζ̇ p = Gpq ζ̇qw−1 ϕ (135)

yielding the Hamilton function

ĤYM = πp ζ̇ p − LYM

= 1
2 Gpq(ζ̇

pw−1 ϕ)(ζ̇qw−1 ϕ)wϕ−1 + 1
4 FijFijwϕ

= 1
2 Gpqπ̃pπ̃qwϕ−1 + 1

4 FijFijwϕ

≡ HYMw.

(136)

Thus, after introducing a normal Gaussian coordinate system, such that w = 1,
the Hamiltonian that will enter the Hamilton constraint equation is

HYM = 1
2 ϕ−1Gpqπ̃pπ̃q +

1
4 FijFij ϕ. (137)

Combining, now, (122), (125) and (133) we infer that the Yang–Mills Hamiltonian can
be expressed as

HYM = t
4
n−2G̃pqπ̃pπ̃q +

1
4 FijFijt2− 8

n , (138)

where the indices in the last term are raised with respect to the metric σij, i.e.,

Fij = σikσjl Fkl . (139)

In the case of n = 3, the exponents of t in (138) are equal

4
3
− 2 = 2− 8

3
= −2

3
(140)

and we can write
HYM = t−

2
3 {G̃pqπ̃pπ̃q +

1
4 FijFij}

≡ t−
2
3 H̃YM.

(141)

Moreover, if (σij) as well as (ρij) are equal to the Euclidean metric (δij), then the
quantization of H̃YM would be achieved by known methods of QFT.

Hence, we shall attempt to express the Hamiltonians of the other physical forces, such
as the Dirac and Higgs Hamiltonians, when evaluated for

σij = ρij = δij (142)

and in the case of n = 3 in the form

HD = t−
2
3 H̃D (143)

resp.
HH = t−

2
3 H̃H (144)

such that the quantization of the spatial Hamiltonian

H̃YM + H̃D + H̃H (145)

would be well known, and in the end, all spatial Hamiltonians of the standard model could
be incorporated.

Let us first consider the Dirac Hamiltonian. In the Dirac Lagrangian LD, defined
in Equation (100) on page 11, the volume density

√
g is missing, i.e., in order to define

the Hamiltonian, we have to multiply the Lagrangian with
√

g, or, since we work with
functions instead of densities, we have to multiply the Lagrangian with ϕ.
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In addition, we shall also consider—at least locally—a normal Gaussian coordinate
system, such that w = 1. Then, the final Dirac Lagrangian has the form

LD = i
2 (χ̄I χ̇

I − ˙̄χIχI) + miχ̄Iγ
0χI

− i
2{χ̄Iγ

0Ek
a′γ

a′ D̃kχI − χ̄Iγ0Ek
a′γ

a′ D̃kχI},
(146)

The spinorial variables χI
A are anti-commuting Grassmann variables. They are ele-

ments of a Grassmann algebra with involution, where the involution corresponds to the
complex conjugation and will be denoted by a bar.

The χI
A are complex variables and we define the real resp. imaginary parts as

ξ I
A = 1√

2
(χI

A + χ̄I
A) (147)

resp.
η I

A = 1√
2i
(χI

A − χ̄I
A). (148)

Then,
χI

A = 1√
2
(ξ I

A + iη I
A) (149)

and
χ̄I

A = 1√
2
(ξ I

A − iη I
A). (150)

With these definitions, we obtain

i
2
(χ̄I χ̇

I − ¯̇χIχI) =
i
2
(ξA

I ξ̇ I
A + ηA

I η̇ I
A). (151)

Casalbuoni quantized the Bose–Fermi system in [10] (section 4), the results of which
can be applied to spin 1

2 fermions. The Lagrangian in [10] is the same as the main part our
Lagrangian in (146) on page 15, and the left derivative is used in that paper; hence, we use
left derivatives as well such that the conjugate momenta of the odd variables are, e.g.,

πA
I =

∂L
∂ξ̇ I

A
= − i

2
ξ A

I , (152)

and, thus, the conclusions in [10] can be applied.
The Lagrangian has been expressed in real variables—at least the important part of

it—and it follows that the odd variables ξ I
A, η I

A satisfy, after introducing anti-commutative
Dirac brackets as in [10] (equ. (4.11)),

{ξA
I , ξ J

B}∗+ = −iδJ
I δA

B , (153)

{ηA
I , η J

B}∗+ = −iδJ
I δA

B , (154)

and
{ξA

I , η J
B}∗+ = 0, (155)

cf. [10] (equ. (4.19)).
In view of (149), (150) we then derive

{χ̄A
I , χJ

B}∗+ = −iδJ
I δA

B , (156)

where χ̄A
I are the conjugate momenta.

Canonical quantization—with h̄ = 1—then requires that the corresponding operators
χ̂I

A, ˆ̄χB
J satisfy the anti-commutative rules

[χ̂I
A, ˆ̄χB

J ]+ = i{χI
A, χ̄B

J }∗+ = δI
J δB

A (157)
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and
[ ˆ̄χA

I , ˆ̄χB
J ]+ = [χ̂I

A, χ̂J
B]+ = 0, (158)

cf. [11] (equ. (3.10)) and [10] (equ. (5.17)).
From (146), we then deduce that the spinorial Hamilton function is equal to

HD = i
2{χ̄Iγ

0Ek
a′γ

a′ D̃kχI − χ̄Iγ0Ek
a′γ

a′ D̃kχI}
−miχ̄Iγ

0χI .
(159)

When we attempt to quantize this Hamilton function, then the vielbein ea′
k and its

inverse Ek
a′ will correspond to a given element gij(x) in the fiber F, which can be expressed

as in (125), and we deduce that the vielbein

ẽa′
k = t−

2
n ea′

k (160)

and its inverse
Ẽk

a′ = t
2
n Ek

a′ (161)

correspond to the metric σij. Furthermore, the covariant derivative D̃kχI is independent of
t, in view of (97) and (98) on page 10. Thus, the Hamilton function HD can be expressed as

HD = t−
2
3
( i

2{χ̄Iγ
0Ẽk

a′γ
a′ D̃kχI − χ̄Iγ0Ẽk

a′γ
a′ D̃kχI})

−miχ̄Iγ
0χI ,

(162)

i.e., the main part already has the form that we looked for in (143), provided n = 3, only
the mass term spoils the necessary configuration. To overcome this setback, we either have
to omit the mass term or modify it by multiplying the mass term in (23) on page 3 with
the factor

ϕ−
1
n , (163)

where ϕ is defined in (87) on page 10. Note that ϕ = 1 if

gij = ρij = δij (164)

as is the case in QFT. Either by omitting or by modifying the mass term, the Dirac Hamilton
function can be expressed in the required form

HD = t−
2
3 H̃D, (165)

where the underlying Riemannian metric is σij, provided n = 3.
The remaining Hamiltonian is the Hamiltonian of the Higgs field. The Higgs La-

grangian is defined by
LH = − 1

2 ḡαβγabΦa
αΦb

β −V(Φ), (166)

where V is a smooth potential. We assume that in a local coordinate system Φ has real
coefficients. The covariant derivatives of Φ are defined by a connection A = (Aa

μ) in E0

Φa
μ = Φa

,μ + f a
cb Ac

μΦb. (167)

As in the preceding section, we work in a local trivialization of E0 using the temporal
gauge, i.e.,

Aa
0 = 0, (168)

hence, we conclude
Φa

0 = Φa
,0. (169)
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Expressing the density g as in (87) on page 10, we obtain Lagrangian

LH = 1
2 γabΦa

,0Φb
,0 ϕ− 1

2 gijγabΦa
i Φb

j ϕ−V(Φ)ϕ, (170)

where, again, we use local coordinates, such that w = 1. In order to apply our approach,
outlined in (144), we have to modify the Lagrangian. Instead of the above Lagrangian, we
have to consider

LHmod = { 1
2 γabΦa

,0Φb
,0 − 1

2 gijγabΦa
i Φb

j }ϕ1+γ1 −V(Φ)ϕ1+γ2 . (171)

Let us define
pa =

∂LH

∂Φ̇a , Φ̇a = Φa
,0, (172)

then we obtain the Hamilton function

HHmod = paΦ̇a − LH

= 1
2 γab pa pb ϕ−(1+γ1) + 1

2 gijγabΦa
i Φb

j ϕ1+γ1 + V(Φ)ϕ1+γ2 .
(173)

After quantization, the gij are elements of the fiber F, i.e.,

gij = t
4
n σij. (174)

If n = 3, then γ1 has to be chosen, such that

− 2(1 + γ1) = −4
3
+ 2(1 + γ1) = −2

3
(175)

which is the case if
γ1 = −2

3
. (176)

For γ2, we obtain

2(1 + γ2) = −2
3

(177)

yielding

γ2 = −4
3

. (178)

Thus, the Hamilton function of the modified Higgs field has the required form

HHmod = t−
2
3 H̃Hmod, (179)

where
H̃Hmod = 1

2 γab pa pb +
1
2 σijγabΦa

i Φb
j + V(Φ) (180)

is a standard Hamiltonian of a Higgs field in QFT by choosing σij = δij and Φ, V(Φ) as
well as the Yang–Mills connection appropriately.

Combining the four Hamilton functions in (120), (138), (179) and (162), the Hamilton
constraint has the form

H = HG + HYM + HH + HD

= HG + t−
2
3 (H̃YM + H̃H + H̃D)

≡ HG + t−
2
3 H̃SM = 0,

(181)

where we omit the subscript mod and where SM refers to the fields of the standard model
or to a corresponding subset of fields.
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The Hamiltonian

HG = αN ϕ−1Grsπrπs − α−1
N (R− 2Λ)ϕ (182)

we quantize, as in our former papers [1,12], to obtain

HG = −αNΔ− α−1
N Rt2 + 2α−1

N Λt2, (183)

where the Laplacian is the Laplacian of the metric (124) acting in the fibers F of E. The Lapla-
cian acts on smooth functions u of the form u = u(gij). Choosing the Gaussian coordinate
system (ξa) = (t, ξA), such that the fiber metric has form as in (124), then, the hyperbolic
term −Δu can be expressed as

− Δu =
n

16(n− 1)
t−m ∂

∂t
(tm ∂u

∂t
)− t−2Δ̄u, (184)

where Δ̄ is the Laplacian of the hypersurface

M = {t = 1}. (185)

Using the separation of variables we consider functions u which are products

u(t, ξ A) = w(t)v(ξA), (186)

where v is a spatial eigenfunction, or eigendistribution, of the Laplacian Δ̄

− Δ̄v = λv. (187)

The hypersurface
M = {ϕ = 1} (188)

can be considered a subbundle of E, where each fiber M(x) is a hypersurface in the fiber
F(x) of E. We shall use the same notation M for the subbundle as well as for the hypersur-
face, and in general, we shall omit the reference to the base point x ∈ S0. Furthermore, we
specify the metric ρij ∈ T0,2(S0), which we used to define ϕ, to be equal to the Euclidean
metric, such that in Euclidean coordinates

ϕ2 =
det gij

det δij
= det gij. (189)

Then, it is well-known that each M(x) with the induced metric (GAB) is a symmetric
space, namely, it is isometric to the coset space

G/K = SL(n,R)/SO(n), (190)

cf. [13] (equ. (5.17), p. 1123) and [14] (p. 3). The eigenfunctions in symmetric spaces,
and especially of the coset space in (190), are well-known; they are the so-called spherical
functions. One can also define a Fourier transformation for functions in L2(G/K) and
prove a Plancherel formula, similar to the Euclidean case, cf. [15] (Chapter III). Moreover,
similar to the Euclidean case, we shall use the Fourier kernel to define the eigenfunctions
or eigendistributions, cf. [3] (Section 5).

Let
G = NAK (191)
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be an Iwasawa decomposition of G, where N is the subgroup of unit upper triangle
matrices, A is the abelian subgroup of the diagonal matrices with strictly positive diagonal
components and K = SO(n). The corresponding Lie algebras are denoted by

g, n, a and k. (192)

Here,

g = real matrices with zero trace

n = subspace of strictly upper triangular matrices with zero diagonal

a = subspace of diagonal matrices with zero trace

k = subspace of skew-symmetric matrices.

(193)

The Iwasawa decomposition is unique, when

g = nak (194)

we define the maps n, A, k by
g = n(g)A(g)k(g). (195)

We also use the expression log A(g), where log is the matrix logarithm. In the case of
diagonal matrices,

a = diag(a1, . . . , an) (196)

with positive entries
log a = diag(log ai), (197)

hence,
A(g) = elog A(g). (198)

Remark 3. (i) The Lie algebra a is a (n − 1)-dimensional real algebra, which, as a vector space, is
equipped with a natural real, symmetric scalar product, namely, the trace form

〈H1, H2〉 = tr(H1H2), Hi ∈ a. (199)

(ii) Let a∗ be the dual space of a. Its elements will be denoted by Greek symbols, some of which
have special meanings in the literature. The linear forms are also called additive characters.

(iii) Let λ ∈ a∗, then there exists a unique matrix Hλ ∈ a, such that

λ(H) = 〈Hλ, H〉 ∀H ∈ a. (200)

This definition allows defining a dual trace form in a∗ by setting for λ, μ ∈ a∗

〈λ, μ〉 = 〈Hλ, Hμ〉. (201)

The Fourier theory in X = G/K, which we summarized in [3] (Section 6), uses
the functions

eλ,b(x) = e(iλ+ρ) log A(x,b), (λ, b) ∈ a∗ × B, x ∈ X, (202)

as the Fourier kernel, where
B = K/M. (203)

Here, M is the centralizer of A in K and ρ is a special character with the norm

〈ρ, ρ〉 = 1
12

(n− 1)2n, (204)

cf. [3] (Lemma 1). If n = 3, then
|ρ|2 = 1. (205)
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For a precise definition of A(x, b) ∈ A, we refer to [3] (p. 19), which also contains
references to the corresponding mathematical literature given, especially to Helgason’s
book [15] (Chapter III).

The Fourier transform for functions f ∈ C∞
c (X,C) is then defined by

f̂ (λ, b) =
∫

X
f (x)e(−iλ+ρ) log A(x,b)dx (206)

for λ ∈ a∗ and b ∈ B, or, if we use the definition in (202)

eλ,b(x) = e(iλ+ρ) log A(x,b), (207)

by

f̂ (λ, b) =
∫

X
f (x)eλ,b(x)dx. (208)

The functions eλ,b are real analytics in x and are eigenfunctions of the Laplacian, cf. [15]
(Prop. 3.14, p. 99),

− Δ̃eλ,b = (|λ|2 + |ρ|2)eλ,b, (209)

where
|λ|2 = 〈λ, λ〉, (210)

cf. (201), and similarly for |ρ|2. We also denote the Fourier transform by F , such that

F ( f ) = f̂ . (211)

In Equation (209), we identified

Δ̃ = ΔM = ΔX . (212)

In [3], we finally dropped the embellishment and simply wrote Δ when referring to
the above Laplacian, but at the moment we refrain from doing so to avoid confusion.

We shall consider the eigenfunctions eλ,b as tempered distributions of the Schwartz
space S(X) and shall use their Fourier transforms

êλ,b = δ(λ,b) = δλ ⊗ δb (213)

as the spatial eigenfunctions of

F (−Δ) = m(μ) = (|μ|2 + |ρ|2), (214)

which is a multiplication operator, such that

F (−Δ)êλ,b = m(μ)êλ,b = (|λ|2 + |ρ|2)êλ,b, (215)

cf. [3] (Section 6) for details.
Looking at the Fourier transformed eigenfunctions

êλ,b = δλ ⊗ δb (216)

it is obvious that the dependence on b has to be eliminated, since there is neither a physical
nor a mathematical motivation to distinguish between eλ,b and eλ,b′ . We discard the
integration over B in [3] (Section 6) and pick instead a special element b0 ∈ B, namely,

b0 = eM, e = id ∈ K, (217)

and only consider the eigenfunctions eλ,b0 with corresponding Fourier transforms

δλ ≡ δλ ⊗ δb0 = êλ,b0 , λ ∈ a∗. (218)
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For justification, see [3] (Lemma 4) and the arguments preceding the referenced Lemma.
The eigenfunctions eλ,b0 depend on the characters λ ∈ a∗ but not all characters are

physically relevant. For a definition of the physically relevant characters, let us rephrase [3]
(Remark 2, p. 18):

Remark 4. There are characters αij, 1 ≤ i < j ≤ n, that will represent the elementary gravitons
stemming from the degrees of freedom in choosing the coordinates

gij, 1 ≤ i < j ≤ n, (219)

of a metric tensor. The diagonal elements offer, in general, additional n degrees of freedom, but in
our case, where we consider metrics satisfying

det gij = 1, (220)

only (n − 1) diagonal components can be freely chosen, and we shall choose the first (n − 1)
entries, namely,

gii, 1 ≤ i ≤ n− 1. (221)

The corresponding additive characters are named αi, 1 ≤ i ≤ n− 1.
The characters αi, 1 ≤ i ≤ n − 1, and αij 1 ≤ i < j ≤ n will represent the (n+2)(n−1)

2
elementary gravitons at the character level. We shall normalize the characters by defining

α̃i = ‖Hαi‖−1αi (222)

and
α̃ij = ‖Hαij‖−1αij (223)

such that the normalized characters have unit norm, cf. (201).

We can now define the corresponding forms in a∗ with arbitrary energy levels:

Definition 1. Let λ ∈ R+ be arbitrary. Then we consider the characters

λα̃i ∧ λα̃ij, (224)

where we recall that the terms embellished by a tilde refer to the corresponding unit vectors. Then
the eigenfunctions representing the elementary gravitons are eλα̃i ,b0 and eλα̃ij ,b0 .

The corresponding eigenvalue with respect to −Δ̃ is |λ|2 + |ρ|2, where, by a slight abuse of
notation, |λ|2 = λ2 and |ρ|2 = 〈ρ, ρ〉. Note that |ρ|2 = 1 if n = 3, cf. (205).

We define a zero-point energy eigenfunction by choosing λ ∈ a∗ = 0. The corresponding
eigenfunction would be e0,b0 , satisfying

− Δ̃e0,b0 = |ρ|2e0,b0 = e0,b0 . (225)

if n = 3.

We are now able to quantize the Hamiltonian H in (181). For brevity we denote
the quantized Hamiltonians, which are operators, by using the same symbols as for the
Hamilton functions. For the Hamilton operator HG, we express as in (183)

HGu = −αN
n

16(n− 1)
t−m ∂

∂t
(tm ∂w

∂t
)v− αNt−2wΔ̄v

− α−1
N t2− 4

n R(σij)wv + 2α−1
N Λt2wv,

(226)
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where we use the separation of variables in (186), the form of the metric in (125), namely,

gij = t
4
n σij (227)

and the relation between the scalar curvatures of conformal metrics

R(g) = t−
4
n R(σ). (228)

Let us recall that for the quantization of H̃SM we shall specify σij = δij, such that the
spatial eigendistributions, or approximate eigendistributions, ψ, satisfying

H̃SMψ = λ1ψ, λ1 ≥ 0 (229)

can be derived by applying standard methods of QFT. We then solve the Wheeler–DeWitt
equation

Hu = 0 (230)

not for all (t, σij) ∈ R+ × M but only for (t, δij), where t > 0 is arbitrary. Thus, we
shall solve

− Δ̃v = (|λ|2 + |ρ|2)v (231)

by using
v = eλ,b0 (232)

for arbitrary σij ∈ M, but we shall evaluate eλ,b0 only at σij = δij. Furthermore, we observe
that for x = gK ∈ X and b = kM ∈ B, we have

A(x, b) = A(gK, kM) = A(k−1g), (233)

cf. [3] (equ. (202), p. 18), hence, if b = b0, i.e., if k = e = id, then

A(x, b0) = A(g). (234)

Moreover, let
π : G/K → M (235)

be the isometry, then
π(gK) = gg∗, (236)

where g∗ is the adjoint. Thus, if g = (δij) = e, we infer

σij = δij ∈ M =⇒ eλ,b0(σij) = 1, (237)

and we have proved:

Theorem 3. Let n = 3, v = eλ,b0 , and let ψ be an eigendistribution of H̃SM when σij = δij
such that

− Δ̃eλ,b0 = (|λ|2 + 1)eλ,b0 , (238)

H̃SMψ = λ1ψ, λ1 ≥ 0, (239)

and let w be a solution of the ODE

t−m ∂

∂t
(tm ∂w

∂t
) +

32
3
(|λ|2 + 1)t−2w +

32
3

α−1
N λ1t−

2
3 w

+
64
3

α−2
N Λt2w = 0

(240)

then
u = weλ,b0 ψ (241)
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is a solution of the Wheeler–DeWitt equation

Hu = 0, (242)

where eλ,b0 is evaluated at σij = δij and where we note that m = 5.

We shall refer to eλ,b0 and ψ as the spatial eigenfunctions and to w as the tempo-
ral eigenfunction.

Remark 5. We could also apply the respective Fourier transforms to −Δ̃eλ,b0 resp. H̃SMψ and
consider

wêλ,b0 ψ̂ (243)

as the solution in the Fourier space, where ψ̂ would be expressed with the help of the ladder operators.

In the next section, we shall analyze the temporal eigenfunctions.

5. Temporal Eigenfunctions

The temporal eigenfunctions have to satisfy the ODE (240) or equivalently

ẅ + 5t−1ẇ +
32
3
(|λ|2 + 1)t−2w +

32
3

α−1
N λ1t−

2
3 w

+
64
3

α−2
N Λt2w = 0,

(244)

where we used that m = 5, since we assume n = 3. Let us denote the other constants in
front of the three lower order terms by mi, m2

2 resp. m3, then the ODE appears as

ẅ + 5t−1ẇ + m1t−2w + m2
2t−

2
3 w + m3t2w = 0, (245)

where
m1 ≥ 32

3
, m2 ≥ 0, m3 ∈ R. (246)

The ODE (245) has two linearly independent solutions that are smooth and defined
for all t > 0. However, if m2, as well as m3 are both different from zero, then the solution
cannot be expressed by known functions, such as variants of the Bessel functions. Only if
this is not valid, the solutions can be expressed by known functions.

Theorem 4. Assume m3 = 0 and m2 > 0, then the solutions of the ODE (245) are generated by

J( 3
2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2 (247)

and
J(− 3

2

√
m1 − 4 i, 3

2 m2t
2
3 )t−2, (248)

where J(λ, t) is the Bessel function of the first kind.

Proof. We used Mathematica to obtain these solutions. The verification that these functions
are indeed solutions is straightforward.

Lemma 4. The solutions in the theorem above diverge to complex infinity if t tends to zero and
they converge to zero if t tends to infinity.

Proof. The results can be derived by looking at a series expansion of the corresponding
Bessel functions near the origin resp. near infinity.
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Next, let us consider the solutions when m2 = 0 and m3 �= 0. Then we distinguish two
cases m3 > 0 resp. m3 < 0. For a better distinction, we shall express m3 in the form

m3 = m2
4, m4 > 0, (249)

in the first case, and as
m3 = −m2

4, m4 > 0, (250)

in the second case.

Theorem 5. Assume m2 = 0 and m3 > 0, then the solutions of the ODE (245) are generated by
the functions

J( 1
2

√
m1 − 4 i, 1

2 m4t2)t−2 (251)

and
J(− 1

2

√
m1 − 4 i, 1

2 m4t2)t−2, (252)

where J(λ, t) is the Bessel function of the first kind.

Similarly, we obtain in the second case:

Theorem 6. Assume m2 = 0 and m3 < 0, then the solutions of the ODE (245) are generated by
the functions

I( 1
2

√
m1 − 4 i, 1

2 m4t2)t−2 (253)

and
I(− 1

2

√
m1 − 4 i, 1

2 m4t2)t−2, (254)

where I(λ, t) is the modified Bessel function of the first kind. In Mathematica, this function is
denoted by BesselI[λ, t].

The arguments in the proof of Theorem 4 also apply in the case of Theorems 5 and 6.

Lemma 5. The solutions in Theorem 5 resp. Theorem 6 diverge to complex infinity if t tends to
zero, as well as if t tends to infinity.

Proof. The same arguments as in the proof of Lemma 4 apply.

6. Conclusions

The temporal eigenfunctions in the theorems of the previous section all become
unbounded if t → 0, which can be described as a big bang on a quantum level. Furthermore,
if we consider t < 0, then the functions

w̃(t) = w(−t), t < 0, (255)

also satisfy the ODE (244) for t < 0, if we replace t− 2
3 by |t|− 2

3 , i.e., they are also temporal
eigenfunctions if the light cone in E is flipped.

Thus, we conclude

Theorem 7. The quantum model we derived for gravity combined with the forces of the standard
model can be described by products of spatial and temporal eigenfunctions of corresponding self-
adjoint operators with a continuous spectrum.

We have a zero-point energy state as a spatial eigendistribution of the gravitational Hamiltonian
with the smallest eigenvalue |ρ|2 = 1, which could be considered the source of the dark energy.

Furthermore, we have a big bang singularity in t = 0. Since the same quantum model is also
valid by switching from t > 0 to t < 0, with appropriate changes to the temporal eigenfunctions,
one could argue that at the big bang, two universes with different time orientations could have
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been created, such that, in view of the CPT theorem, one was filled with matter and the other with
anti-matter.

Remark 6. One of the reviewers raised two questions. First, he wondered about the logic to combine
a low energy event, the quantization of the fields of the standard model with a flat metric, with an
high-energy event, the quantization of gravity. As we have already pointed out in the introduction,
a unified quantization of gravity and matter fields leads to a hyperbolic equation of second order in a
fiber space, where the main part of the hyperbolic operator acts in the fibers. The zero-order terms of
the operator contain the contributions of the quantized matter Hamiltonian and the interaction of
gravity with matter fields occurs with the help of the fiber variables (t, σij). The metric σij is used
in the quantization of the matter fields. Looking at the spatial eigenfunction v of the gravitational
Hamiltonian and its eigenvalue, which expresses the energy, then the eigenvalue is independent of
the metric σij at which v is evaluated and only the evaluation point is relevant for the interaction,
i.e., even if a non-flat metric σij would have been used in the quantization of the matter fields, the
contribution to the unified operator would not have changed qualitatively. Furthermore, as we
already mentioned in the introduction, due to the scalar curvature term R, we cannot expect to solve
the Wheeler–DeWitt equation for all (t, σij) if we use the separation of variables, instead, we have to
choose metrics with constant scalar curvatures. Thus, we opted for σij = δij, also out of necessity
because we could not quantize the matter field in the curved spacetime.

The second interaction with respect to the variable t, the quantum time, is realized in the
ODE, where the contributions by the spatial gravitational resp. matter eigenfunctions and also by
the cosmological constant Λ have a power of t as a multiplicative factor with different exponents.
For small t, the gravitational energy dominates because of the factor t−2, for larger t, the matter
energy dominates because of the factor t− 2

3 , and if Λ �= 0, then the cosmological constant dominates
for very large t because of the factor t2. This is also reflected in the results of Lemmas 4 and 5.

The second question raised concerned the QFT renormalizability in this unified setting.
The quantization of gravity takes place in the fibers of E while the quantization of the matter

fields takes place in the base space S0 = Rn, which we equipped with the Euclidean metric for this
task. Hence, the usual renormalization techniques can be used to deal with infinities. The fibers are
ignored in this process.

Remark 7. The Academic Editor of the journal also requested some observational predictions of the
theory presented in this paper.

In Theorem 7, we already offered possible answers to two open questions, namely, the source of
the dark energy and why matter dominates anti-matter.

The Big Bang is only predicted by the singularity of the Friedmann model, a classical theory.
In this paper, the Big Bang is predicted on a quantum level, which is a more appropriate level because
the Big Bang is certainly a quantum event.

Powerful gravitational waves might be caused by quantum gravitational forces, such as the
collision of two black holes. If this is the case, then they should satisfy an ODE similar to what we
analyzed in Section 5. The patterns produced by the wave detectors should be similar to the plots
produced by the solutions of the ODE in (244) on page 23, though the scalar curvature term does
not appear in the ODE since R(δij) = 0, and in the case of black holes, R would be constant but

different from zero, i.e., the ODE should contain a term, probably positive, with the factor t
2
3 , and

most likely no contribution by the standard model fields.
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