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Preface

1. Introduction

In 1915, Albert Einstein presented his original work on General Relativity to the Prussian

Academy of Sciences. It was a new theory of nature, changing previous paradigms about gravity.

Spacetime curvature and gravitation became synonymous in this theory and the new paradigm

has survived direct experimental tests. Yet, a hundred years later, General Relativity cannot be

theoretically quantized using standard methods, and we are still searching for the quanta of gravity.

A decade earlier than the discovery of General Relativity, Max Planck postulated that light

was a stream of photons, which led to the discovery of the quantum world, and Einstein’s paper

on photoelectric effect had used that result. The theoretical discovery of gravitational waves had

followed the formulation of General Relativity as early as 1916, and they were observed in LIGO,

a sensitive laser interferometer, in 2015. However, the quanta of the waves, the gravitons, the

counterpart of the photons for gravity, have not been observed, or even theoretically formulated.

The reason that quantum gravity has not been discovered is connected to what is known as the

hierarchy problem of nature. Gravitational force is 10−38 orders weaker than electrodynamics. One

has to probe length scales of 10−35 m and obtain energies of 1019 GeV in colliders to see experimental

evidence of quantum gravity. Theoretically too, the standard quantization schemes require new

techniques to be invented due to the non-polynomial and non-linearity of the Einstein action.

However, Hawking radiation, area quantization, and black hole thermodynamics were predicted

theoretically, which suggested quantum origins, but these require experimental confirmation. The

search for primordial black holes is an effort in that direction. The theoretical computation of graviton

interactions is non-renormalizable, which makes the particles more mysterious. There are various

studies including very recent ones that argue that gravity is perhaps classical all the way through.

This places gravity on a pedestal, different from the other interactions of nature.

With the discovery of very weak gravitational waves, in 2016, the search for gravitons received

new impetus, and ‘Quantum Gravity Phenomenology’ could have a future. Precision experiments

have given us access to the gravitational waves emitted from distant events. Gravitational waves

are measured up to an amplitude of 10−21 using interferometers. As the precision measurements of

nature head towards the quantum gravity scale, there might be indirect verification of the quantum

gravity physics of the microscopic spacetime. Quantum phenomena might have significant effects

at macroscopic and large scales, as these are emergent from the microscopic scale. The very metric

which measures the curvature of spacetime is the classical limit of a quantum operator, and therefore

semi-classical fluctuations should be visible at some length scales larger than the Planck scale. At

this time, there are several competing theoretical formulations of quantum gravity, some extensions

of standard versions, and some new ones. These include loop quantum gravity, path-integral

quantization, discrete models, causal dynamical triangulation, asymptotically safe gravity, and causal

set theory. Various formulations have matured to discuss observational predictions. In this Special

Issue of Universe, we discuss some of these, and provide new insights into the future direction of this

research area.

Of the various ways to verify the theoretical predictions of quantum gravity, two broad

categories exist. These are the following: (i) Using analog models which simulate gravitational

systems and the quantum phenomena associated with these systems. (ii) Direct and indirect evidence

of quantum gravity predictions in natural experiments.

There has been considerable research in both of the above avenues for exploring the existence of
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new quantum physics for gravity. A volume dedicated to papers in this field is the need of the hour,

and Universe’s topical collections serve that purpose.

When we were asked to suggest topics for a Special Issue for the journal Universe, the topic

of ‘Quantum Gravity Phenomenology’ was a natural choice. There have been a number of papers

addressing both ways of obtaining experimental evidence on the nature of quantum gravitational

physics in the past few decades. When we embarked on this venture of editing a Special Issue

on quantum gravity phenomenology, we wanted a clear direction to emerge in this field. We

have collected 22 paper contributions, now published in two volumes. We would like to thank

profusely our Assistant Editor from Universe, Ms. Cici Xia, who has made the two volumes of paper

contributions happen. Initially our aim was to seek papers only on the above two approaches (i and ii)

for obtaining observational physics in quantum gravity. However, over the course of the time we took

to finalize the volumes, the focus has diversified. We are very thankful to the authors for publishing

their papers in Universe. Although we are still inconclusive about the true nature of spacetime at

quantum length scales, we have some highlights on the current status of research in this field. In the

following, we offer some general considerations and briefly discuss on the papers in the two volumes,

with Volume I being primarily focused on analog models and Volume II on astrophysics.

2. Observational effects of Quantum Gravity in Astrophysics and Cosmology (Volume II)

Astrophysics and cosmology are two fields where the large-scale structure of the universe is

emergent. What would the physics of these systems have to do with physics of the quantum? The

very gravitational metric which describes these observed in nature is expected to be emergent from

an underlying theory of quantum gravity; thus, everything has origins in the quantum. There would

be direct and indirect evidence from early formation stages of the universe as well as in strong

gravity events of this microscopic structure. The photon theory of light was invented in order to

describe the black body radiation spectrum, a macroscopic effect of the microscopic. We expect

similar evidence in macroscopic geometry, of Planck-scale physics. The phenomena of Hawking

radiation from black holes, and particle creation in curved spacetime, are signatures of quantization

in curved geometry. A detailed discussion of this including the search of Hawking radiation appears

in the review by Dasgupta and Fajardo-Montenegro. The paper also discusses macroscopic effects

such as magnification of quantum effects in the presence of strong gravitating regions like black hole

horizons. Cosmology describes the beginning of a universe from a point, and indeed the physics of

this Planck size universe was quantum. A discussion on quantum cosmology can be found in the

paper of Bojowald in this volume.

Apart from this, we have valuable contributions to various angles of probing for evidence of

quantum gravity. From the papers published in Volume II, we found that the field of quantum gravity

research still has lot of theoretical puzzles. The aspects discussed include the following: (i) The choice

of frames of reference in formulating the Planck scale or doubly special relativity (Carmona et al.).

(ii) The choice of time in evolving the system (Maniccia et al) using WKB approach in cosmology.

(iii) The validity of the equivalence principle in the formulation of a quantum theory (Paunkovic

and Vojinovic). These papers also describe the observational consequences in nature and therefore

are important contributions to the future of phenomenology. In addition, a very interesting paper

reports on the existence of Aether, which might provide a way for a choice of the preferred frame for

quantum mechanics of gravity (Cherkas and Kalashnikov).

For direct observational effects, we have two intriguing papers outlining (i) the consequence of

a generalized uncertainty principle on gravitational wave detection (Sen et al.) and (ii) the effect
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of non-commutative geometry in the existence of massive compact objects such as neutron stars

and white dwarfs (Kalita and Mukhopadhay). We also have two contributions to the discussion

from super-symmetric and string motivated theories of cosmology and entropy of curved space-time

(Martinez-Perez et al. and Brahma). Whereas supersymmetry and string theory have not been

detected yet, in the current scenario, these dominate the narrative of the theoretical study of physics

at Planck energies.

Another avenue for direct observation is the search for gravitons, the quanta for the gravitational

wave. Dasgupta and Fajardo-Montenegro as well as the Odutola and Dasgupta papers discuss

semi-classical coherent states for the linearized gravity system, and predict numbers for the

observations. The papers use the formalism of Loop Quantum Gravity to probe semi-classical

geometry, and provide an introduction to this approach to quantum gravity. Whereas at the current

length scales the actual gravitational ‘quanta’ detection cannot be predicted, semi-classical corrections

from these can be obtained. These corrections can be observable, e.g., in the presence of a charged

particle, tiny magnetic fields will be generated from the spacetime fluctuations. Quantum devices

such as SQUIDS which have an accuracy of 10−18 Tesla currently can aid in the detection of these.

We require a slightly more accurate SQUID, but in principle the use of high Coulomb charges could

bring the gravitational semi-classical corrections to current levels of sensitiveness.

We think the phenomenological field in the study of use quantum devices and nanodevices in

detecting the quantum effects of gravity has lot of promise. Recent experimental work on testing

gravitational fields using these nanodevices has shown progress.

Finally in Volume II, we have papers which discuss dark matter and dark energy, without which

the discussion of gravitational physics is not complete. One very interesting paper discusses how

vacuum polarization (Cherkas and Kalashnikov), a quantum effect, can provide an explanation for

observations that require the existence of dark matter. There are other approaches to quantization,

like Causal Set theory and asymptotically safe gravity, which have not been discussed in this Special

Issue. Several quantization programs have advanced over the years and discuss observational effects.

At the current time, with the recent discovery of gravitational waves, we think the most promising

quantum search will be for the graviton, and the physics predicted with the gravitational wave as

interferometers deal with the quantum regime.

3. Concluding Remarks

In conclusion, we ask the same question we had asked some years earlier when we began

editing the Special Issue on Quantum Gravity Phenomenology. What might be the unique experiment

which confirms to us that there is a quantum of gravity? The analog models of gravity tell us that

Hawking radiation is a phenomenon for systems with horizons. The graphene experiment, which is

in progress, will hopefully shed light on thermal effects in curved spacetime. At the current length

scales, the semi-classical corrections to matter energy dispersion have been predicted theoretically.

However, any anomaly at the quantum scale has to be systematically detected and verified. Currently,

big science’s search for dark matter, gravitational wave detectors, and cosmological telescopes on

satellites can also be used for quantum gravity detection.

Arundhati Dasgupta and Alfredo Iorio

Editors
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Abstract: With the discovery of gravitational waves, the search for the quantum of gravity, the
graviton, is imminent. We discuss the current status of the bounds on graviton mass from experiments
as well as the theoretical understanding of these particles. We provide an overview of current
experiments in astrophysics such as the search for Hawking radiation in gamma-ray observations
and neutrino detectors, which will also shed light on the existence of primordial black holes. Finally,
the semiclassical corrections to the image of the event horizon are discussed.

Keywords: quantum gravity; astrophysics; quantum gravity phenomenology; loop quantum gravity;
primordial black holes; Hawking radiation

1. Introduction

The gravitational quantum is still elusive experimentally and somewhat “elusive”
theoretically [1–3]. In electrodynamics, the quantum of the electromagnetic wave is known
as the photon, and we work with the interactions of photons to derive quantum electrody-
namics (QED) phenomena. In the case of gravity, gravitational waves have been discovered
100 years after their prediction. The question is, are there “gravitons” or quanta of these
waves? Like QED, one can define the “Fock” space quantization for the linearized Einstein
equations and study free gravitons. However, introducing interactions with gravitons
to study scattering amplitudes leads to uncontrollable infinities [3]. This is known as
the “non-renormalizability” of perturbative quantum gravity. General relativity might be
nonperturbative in the quantum regime, and the story of the quanta could be present in the
geometry measurements of area and volume [4]. These “nonperturbative” theoretical ex-
plorations cannot be verified, as they are still in the realm of the microscopic Planck length
regime of 10−35 m. We investigate the semiclassical fluctuations of the flat geometry using
loop quantum gravity (LQG) coherent states and discuss whether that can be interpreted
as a graviton quantum.

Further in the 1970s, the discovery of black hole thermodynamics and Hawking
radiation were studied as “semiclassical phenomena”, where gravity remained classical
and other fields were quantum. The isolated black hole was found to have a temperature
proportional to its surface gravity and entropy equal to its horizon surface area. For a
solar-mass black hole, which might have formed using stellar collapse, this temperature is
of the order of 10−8 K. If we observe the current-day black holes, then they are immersed
in the background cosmic radiation, which has a temperature of 2.783 K. As the heat
flows from higher to lower temperatures, the black holes would not radiate into the
surroundings, and as of now, there is no experimental evidence of Hawking radiation.
The study of black hole mergers using gravitational waves has provided evidence for
the area increase theorem [5]. How would one obtain a verification of the temperature
and radiative properties of black holes? The existence of primordial black holes (PBH) of
small mass, originating in density fluctuations of the early universe, would allow for
high-temperature black holes and Hawking decays in the form of gamma-ray bursts. The

Universe 2023, 9, 128. https://doi.org/10.3390/universe9030128 https://www.mdpi.com/journal/universe1
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search for PBH has been a subject of experimental study [6]. We discuss this in some detail,
and the approximations which describe the theoretical derivation of Hawking radiation
are also discussed. The current experiments provide stringent restrictions on the PBH
contributions to photon and neutrino fluxes observed on earth, as well as as fractions of
dark matter [7–11]. Strangely, new observations from gravitational wave data suggest that
there are subsolar mass black holes. Recent work tries to find the origins of these, either as
PBH or from other processes without the Chandrasekhar limit in the collapse process [12].
Whereas this is very interesting, this is not exactly the realm of quantum gravity, though
the research in this area might shed light on semiclassical aspects.

However, astrophysical phenomena, such as the black hole merger event, the collapse
of a supernova to form a black hole, and neutron star mergers, are strong gravitational
events. The energies at which the events happen have strongly coupled gravitational
interactions. The quantum dynamics near these events is interesting, and even though
the effect is weak, one can try and find indirect evidence in the observational data. Using
LQG coherent states, some of these can be studied semiclassically. We discuss these
and also comment on other observational results from the semiclassical gravity program
for astrophysical observations, including that for the image of the event horizon [13,14].
There are several collaborations in quantum gravity phenomenology which, in particular,
discuss Lorentz violations and quantum anomalies. The appropriate discussions on these
topics can be found in [15]. For a previous comprehensive review on quantum gravity
phenomenology, see [16]. One of the aims of this current review is to also provide a
pedagogical introduction to some aspects such as the search for primordial black holes,
which is a very active field currently.

This review has discussions on the (i) graviton, (ii) Hawking radiation, and (iii) semi-
classical corrections to strong gravity systems such as the event horizon. The following
section discusses the theory of the graviton and the experimental bounds. Section 3 de-
scribes the phenomena of Hawking radiation, as well as the experimental efforts to detect
the emitted particles from PBH. Section 4 describes the physics of the event horizon and
quantum correction predictions to the same. The final section concludes with the present
status of the field of research in the above and future avenues of quantum gravity phe-
nomenology.

2. Graviton

The electromagnetic (EM) wave is a solution to Maxwell’s equation and is observed
in nature. The visible spectrum is known as light, the infrared, which we interpret as
heat, and radio waves. The ultraviolet radiation is also detectable and useful as are X-
rays in many practical day-to-day events. These, when quantized, give us the photon
description of the EM wave, and represent the source-free “free” EM fields. The actual
production of EM radiation is from accelerated charges, but as the waves propagate out in
space, they can be studied as “free” EM fields. In the case of gravity, Einstein’s action is
nonlinear, and the gravitational field has self-interactions. To find the “free” plane wave
which propagates on its own, we take a linearized gravity, “weak fluctuations” over a flat
background. Nonperturbative waves, produced using strong gravitational interactions,
have been studied in [17]. As the linearized gravitational waves represent classically “free”
fields, one would expect that the Fock space quantization of these would be obtained
similarly to the photon quantum electrodynamics description. However, herein lies the
problem: the graviton theory is a nonrenormalizable theory [3]. Is it because the graviton
vacuum, which represents the Minkowski spacetime is not a vacuum? Is flat space really a
vacuum state in a true theory of quantum gravity? Can we have a perturbation over the
flat-space system and describe a graviton as a quantum state in the flat-space background?
In the case of the EM theory, the EM field propagates in a flat background that, however,
serves as a noninteractive arena for the EM fields to propagate. The photon is created and
annihilated out of the QED vacuum, which is a state with the photon quantum number
as zero. In the following, we discuss whether seeking a similar quantum field vacuum for
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the graviton is relevant. We also discuss the question of which physics of the systems we
should experiment for the observation of the graviton.

2.1. The Linearized Theory of the Graviton

In the following, we discuss Einstein’s theory of the linearized metric. The field
equations for the Einstein action is “free” in its gauge-fixed form; however, if we try to write
the full Einstein Lagrangian for the gravitational field, then there are interaction vertices to
all orders for the graviton. The quantum amplitudes including these interactions do not
converge, and neither can the theory be renormalized using standard techniques. To begin
with, we write the metric of spacetime gμν as a flat space ημν and a weak fluctuation hμν.

gμν = ημν + hμν. (1)

It is assumed that |hμν|max � 1 (μ, ν, α, β etc. = 0, . . . , 3). Note that using standard conven-
tion, the metric is dimensionless and the amplitude of the fluctuations are defined using
the absolute maximum value. From experiments [1], we are aware now that the amplitude
of the “gravitational wave” is of the order of 10−22 as received on earth. One can write
the Einstein Lagrangian density as a function of this metric, its determinant g, and scalar
curvature R,

L =
√

g R = −1
2

√−1 + h
[
(hμν)(ηαβ∂α∂μhνβ −� hμν)

]
. (2)

In the above, we have kept the terms in the Lagrangian which are quadratic in hμν.
The linear terms of the form ημνηλρ∂ρ∂μhλν are total derivatives and contribute only at the
boundaries, which we ignore. Further, � ≡ ηαβ∂α∂β, and h is the trace of hμν. The equation
of motion from the above to a linear order in “hμν” is

ηαβ∂α∂μhνβ −� hμν = 0. (3)

This still has a gauge degree of freedom due to diffeomorphism invariance, which
can be fixed by putting the ∂αhαβ = 0 restriction on the linearized metric. The equation of
motion reduces to a “wave equation”

� hμν = 0. (4)

The solution for this is a transverse wave (due to Lorentz’s condition) and has two
polarizations as additional restrictions to fix the residual gauge freedom keeping only
two [18]. The two polarizations are taken as h+ = A+ cos(ωz−ωt) and h× = A× cos(ωz−
ωt), if it is propagating in the z-direction [18], with angular frequency ω and amplitude
A+, A×. The question is: can these waves, when quantized, give us “quanta” as it is possible
for photon quantization? In other words, can one define a Fock space representation for
the perturbative Hilbert space of Einstein’s gravity? The answer is surprisingly difficult, as
the Einstein action introduces self-interactions of the gravitons to all orders, which cannot
be renormalized using standard field theory techniques. The gravitational propagator can
be calculated, but the quantum corrections cannot be made finite using regularization and
renormalization techniques. One can see the origin of self-interactions even at this order
in the Lagrangian in Equation (2) as the nonpolynomial “measure”

√−1 + h can give rise
to the interaction terms upon expanding the square root. A simple “degree of superficial
divergence” counting of the gravitational perturbative Feynman diagram gives the number
as D = 2(k + 1), where k is the number of independent momentum interactions [19].
This number therefore increases with the number of loops in the scattering calculations
and cannot be absorbed by redefining the bare Lagrangian. For Yang–Mill’s (YM) theory
the same degree is given as D = 4 − Le, where Le is the number of external legs of the
Feynman diagram. The YM theory is therefore renormalizable, as the number of terms
in the Lagrangian which need to be renormalized is finite (0 < Le < 4). One can use
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asymptotic techniques to obtain a renormalizable effective Lagrangian for gravity, but we
do not discuss this in this review [20]. However, can there be a “free” graviton theory
where we can ignore all the interactions? Up to a certain length scale, a “free graviton”
quantization can be formulated, but the entire theory is also complicated by the definition
of the “gravitational vacuum”. In the theory of gravitational physics, the metric is the basic
degree of freedom, and the graviton is a “perturbation” over the flat-space geometry. In a
true quantization of the theory, the flat spacetime geometry is also an emergent “metric”.
If the metric is an operator, then causality and therefore quantization is not defined. The
vacuum likely is the state with no metric or the state that is such that

ĝμν |0〉 = 0. (5)

There have been several attempts to obtain the perturbative quantum state using a
polymer state in the nonperturbative quantization framework of loop quantum gravity. We
report on those works briefly and then describe a semiclassical description of a “gravita-
tional wave” using LQG. It remains though that the most complicated aspect of Einstein’s
gravity is the fact that the field which has to be quantized is the metric of the spacetime, the
causality of the system is complicated by the quantization, and macroscopic configurations
have to be emergent.

2.2. Gravitons in Loop Quantum Gravity

It was shown in [21] that the SU(2) generators of the loop quantum gravity (LQG)
variables decouple into three independent gauge generators in the linearized approxima-
tion. In LQG, the basic variables are obtained from the ADM formulation of the canonical
gravity. The spacetime is foliated by spatial slices Σ with a timelike normal vector along the
fourth direction, specified using the coordinate t. The induced three-metric on Σt is given
as qab, (a, b = 1, 2, 3); the metric in the ADM formulation is given as

ds2 = −(N2 + NaNa)dt2 + Nadxadt + qabdxadxb, (6)

where N2 is the lapse, Na is the shift, and qab is the induced metric of the time slices Σt.
The second fundamental form of this metric is Kab = Ltqab and is the extrinsic curvature
tensor which characterizes the embedding of the slice.

The LQG variables are defined using the soldering forms eI
a which connect the tangent

space (I = 1, 2, 3) of the three slices to the world volume. The canonical variables are
defined as

eI
aebI = qab, Ea

I EbI = q qab, AI
a = ΓI

a − KabEbI , (7)

where eI
a is the triad, Ea

I are densitized triads, and AI
a have the properties of a connection

due to their definition in terms of the spin connection ΓI
a and the extrinsic curvature tensor

Kab. The details of the variables can be found in [22]. There is usually an Immirzi parameter
in the definition of the gauge connection, and this reflects an ambiguity in the system. We
chose to set it to one, for the purpose of this paper. The internal indices I transform in
the SU(2) group, which is isomorphic to the group of rotations in the three-dimensional
tangent space [22]. The generators of the transformations in the internal directions are the
Gauss constraints

G I = ∂aeaI + εI JKea
J AaK. (8)

In the linearized approximation, q = 1, qab = δab + hab and AI
a = 0, if one keeps the

constraint up to a linear order in the fields, the constraint algebra commutes, i.e.,

G I
Lin = ∂a(δeaI) + εI JKδa

J δAaK, (9)

where due to the linearized metric, one has

eaI = δaI + δeaI , AaK = 0 + δAaK, (10)
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and
hab = δeaIδb

I , (11)

{δeI
a(x), δAKb(y)} = κδ3(x − y)δI

Kδab, (12)

where κ is related to Newton’s constant G [22,23]. The δeI
a and the δAKb are the linearized

dynamical fields, which are quantized. In the limit κ → 0,{
G I

Lin,G J
Lin

}
= 0. (13)

Interestingly, if one keeps the next order in the constraint definition, the algebra is not
zero to a linear order as the Poisson bracket gives a linear result in the fields.

G I
Lin = ∂a(δeaI) + εI JK

(
δa

J + δeaJ
)

δAaK, (14)

and {
G I

Lin,G J
Lin

}
= κ

(
δAI J − δI JδAb

b

)
δ3(x − y). (15)

This term would go to zero in the limit κ → 0. To avoid these confusions about the
algebra and also questions about the Minkowski “quantum state” about which perturbation
is being performed, we use the full SU(2) degrees of freedom and imposed the linear metric
only in the semiclassical approximation. The details of the calculations appear in [24].

For the polymer quantization of linearized gravity using the U(1) × U(1) × U(1)
Hilbert space, one can use the work of [25]. This approach is based on the linearized
algebra of LQG variables, as given in Equation (13). The LQG phase space thus has a
U(1)× U(1)× U(1) symmetry in the linearized approximation, instead of the full SU(2).
The Hilbert space quantum states are of the form

|�α, {q}〉 = |α1, q1〉|α2, q2〉|α3, q3〉, (16)

where |αi, qi〉 are elements of a U(1) Hilbert space. qi label integers and α labels the discrete
network. The flux operator defined in terms of the triads is given as [25]

Xa
�α,{q}(r)(�x) = ∑

I
qI

∫
dsI(�eI(sI),�x)ėa

I , (17)

where sI is a surface in three dimensions, which the discrete edge eI of the graph α
intersects once.

The Fock space quantum vacuum for the graviton is a transform of the state in
Equation (16). Whether this facilitates further study of the perturbation theory of the
graviton is yet to be investigated. The transform is given as

Φ0 := ∑
α,q

c0�α,{q}〈�α, q|, (18)

where

c0�α,{q} = exp
(
− ı

4

∫
d3x G�α,{q}(r)

ab (�x) ∗ Xab
�α,{q}(r)(�x)

)
, (19)

where these are “smeared” operators in the LQG polymer space, and r is a measure of the
Gaussian smearing (Xr(�x) =

∫
d3yX(�y) exp(−|�x −�y|2/2r2)/((2πr2)3/2)).

Xab
�α,{q}(r) = ∑

i
Xa

αi ,qi
δb

i . (20)

The G�α,{q}(r)
ab (�x) is related to the flux of the two “graviton” polarizations in the light

cone. We refrain from getting into the details of the above, but the reader is urged to follow
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the details of the derivation in [25,26]. Whereas this approach to obtaining a “quantum”
of linearized gravity is technically rather involved and involves an additional scale “r”
apart from the usual discretization of quantum variables, it is believed to give a polymer
representation of the “graviton”.

The expectation values of the operators are preserved in the transform and therefore,
one loop corrections to the graviton propagator can be tested. A derivation of a one-loop
correction using a perturbation of reduced loop quantum cosmology states exists in [27].
Another reference for the reduced phase-space quantization of linearized gravitational
waves is [28]. Moreover, a more recent work uses the free graviton Lagrangian and
obtains a “polymer state” for the same. This approach obtains some corrections to the
gravitational wave propagator [29]. However, in none of the above papers the emergence of
the background Minkowski metric is discussed. The self-interaction of gravitons is also not
obtained to all orders, as predicted by the Einstein Lagrangian. In the next section, we try to
find some phenomenological implications of the graviton’s existence in observational data.

2.3. Gravitons in Semiclassical Gravity

In this subsection, we derive the semiclassical phase space of the gravitational wave
metric and obtain a coherent state for the system using the techniques of [22,24]. To begin
with, we find the triads for the metric and the LQG gauge connection, which are the classical
variables for the system. The details can be found in [24]. The spatial metric for a standard
gravitational wave metric in the tt-gauge is (the lapse is one and shift is zero in the ADM
form of the four-metric)

qab =

⎛⎝ 1 + h+ h× 0
h× 1 − h+ 0
0 0 1

⎞⎠. (21)

In the process of obtaining the coherent state for the above metric, we identify the classical
phase space in terms of the LQG variables [30]. The triads eI

aebI = qab are obtained as

eI
a =

⎛⎜⎜⎜⎝
√

1−(h2
++h2×)

2(1−h×)

√
1−(h2

++h2×)
2(1−h×)

0
1−(h×−h+)√

2(1−h×)
−1+(h×+h+)√

2(1−h×)
0

0 0 1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
1√
2
+ h×

2
√

2
1√
2
+ h×

2
√

2
0

1√
2
+ 1√

2
(h+ − h×

2 ) − 1√
2
+ 1√

2
(h+ + h×

2 ) 0

0 0 1

⎞⎟⎟⎠. (22)

Obviously, in our gauge choice, the triad is not diagonal at the zeroth order. The
extrinsic curvature of the metric is obtained using the definition Kab = −∂tqab, and the
SU(2)-valued gauge connections defined in Equation (7) are:

A1
x = − 1

2
√

2
(∂zh× + ∂zh+) = A2

y

A1
y = − 1

2
√

2
(∂zh× − ∂zh+) = −A2

x

A1
z = A2

z = A3
x = A3

y = 0

A3
z =

1
2

∂zh+.

We also computed the nonzero spin connections for this metric [30]. Next, we take a
discretization of the background geometry. This smearing of variables is required to obtain
smooth commutators of the quantum theory, instead of distributional delta functions. For
details, see [22], and the smearing of the gauge connection on one-dimensional curves gives
holonomies which involve path-ordering.

he(A) = P exp
(∫

A
)

. (23)
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The discretization is not dictated by the theory but is motivated from the flat geometry
of the classical three-metric. We take a planar graph, which form a cubic 3-d polyhedronal
decomposition of the three-geometry, as shown in Figure 1. Therefore, there are six links
and/or six faces meeting at a given vertex.

Figure 1. (a) Building block for the decomposition of the 3-geometry. (b) Example of one of the
smearing surfaces to calculate the momenta.

The holonomies and the momentum are calculated as smeared along the one-dimensional
edges of the graph, and the two-dimensional faces of the cube which the links intersect precisely
at one point. These calculations are done using the techniques of [24]. The holonomies of the
three independent links in the x, y, and z directions and the corresponding momenta are given
up to a linear order in the amplitudes A+, A×,

hex = 1 − i
ε

2
AI

xσI (24)

hey = 1 − i
ε

2
AI

yσI (25)

hez = 1 + i
A+

2
sin

(
ω
(

z0 − t0 +
ε

2

))
sin

( ε

2

)
σ3, (26)

where one has taken a vertex at (x0, y0, z0) and the links are of width ε. σI are the Pauli
matrices. Next, one takes the faces centred at the middle of the links, i.e., at x0 + ε/2,
y0 + ε/2, and z0 + ε/2, and of area ε2. The momenta are labelled by the edges which
intersect the faces. The momenta are defined as PI

e = 1
κ

∫
Se
∗EI .

P1
ex =

1√
2κ

(
ε2 +

ε2(A×)
2

cos(ω(z0 − t0))

)
(27)

P2
ex =

1√
2κ

(
ε2 +

ε2(2A+ − A×)
2

cos(ω(z0 − t0))

)
(28)

P2
ey =

1√
2κ

(
−ε2 +

ε2(2A+ + A×)
2

cos(ω(z0 − t0))

)
(29)

P1
ey =

1√
2κ

(
ε2 +

ε2(A×)
2

cos(ω(z0 − t0))

)
(30)

P3
ez =

1
κ

ε2. (31)

As the densitized triads are smeared over two-dimensional areas and acquire dimen-
sions, the momenta are defined with the dimensional constant 1/κ, κ = 8πG/c3 to make
the variables dimensionless. In the quantum version, this acquires the role of 1/h̄κ = 1/l2

p,

7
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where lp is the Planck length. The coherent states are defined as peaked at the classical
values of a complexified SL(2,C) element as specified by Hall [31],

ge = exp(iTI PI
e )he,

and a detailed coherent state can be written for the above classical phase space, now
described only using the discrete one-dimensional smeared holonomies and corresponding
momenta. Note these “coherent states”, as defined in [22] for LQG, are representative
semiclassical states and are not exactly identifiable as “coherent states” as in completely
solvable Hamiltonian systems. However, these states have minimal uncertainty in the time
slice they are defined in. Next, we calculate the semiclassical corrections to the geometry
by using the results of [13]. The coherent states are given for one such discrete element e
and the LQG smeared variables as,

ψt(ge, he) = ∑
j
(2j + 1) exp(−t̃j(j + 1)/2)χj(geh−1

e ), (32)

where χj(he) is the character of the jth irreducible representation of SU(2). One can find the
expectation value of the momentum operator P̂I

e in this state, and one obtains it to the first
order in the semiclassical parameter t̃ [13]

〈ψt|P̂I
e |ψt〉 = PI

e

(
1 +

t̃
Pe

(
1
Pe

− coth(Pe)

))
= PI

e (1 + t̃ f (Pe)), (33)

where Pe =
√

PI
e PI

e and f (p) = (1/p)(1/p − coth(p)). Therefore, one can calculate the
semiclassical corrections to the metric of the classical gravitational wave, if one writes a
coherent state for each discrete element e which comprises the entire Minkowski three-
volume divided into cubic cells as in the figure. The vertices of the cube which are shared
by three+three coherent states and these can have SU(2) intertwiners [32], but the nature
of the corrections remain the same. Note these coherent states are not exactly similar to
the coherent states for photons, which are Abelian. These coherent states are non-Abelian
in nature.

In fact, if we take the pure Minkowski space and use the coherent state as a measure
of the quantum fluctuation, what would we generate as the corrected metric? All the PI

e ’s
for the Minkowski metric can be obtained as given above and, in the limit, A+,× = 0
would represent the Minkowski metric. In this particular gauge, the corrections generate
semiclassical fluctuations in the ηxx, ηyy, and ηzz components but not in the ηxy directions.

Next, we discuss the fluctuations to the gravitational wave metric as generated from
the coherent state which peaks at the gravitational wave metric. Obviously, the metric
would fluctuate and generate semiclassical corrections to the geometry at order t̃. We set
the semiclassical parameter (which has to be dimensionless) as a ratio of the Planck scale
to the gravitational wave, wavelength, or t̃ = l2

p/λ2. We take the wavelength as that is
the length scale which characterizes the wave system. A relevant-frequency gravitational
wave, which might generate detectable semiclassical fluctuations, has to be of very high
frequency. Let us say a 1035 Hz gravitational wave will have the semiclassical parameter as
t̃ ≈ 10−16.

In the above, have we predicted a “quantum origin” of the gravitational wave that
would comprise the “graviton”? Obviously, the story is not about particles in gravitational
physics, or matter quanta, but the quantum of geometry. The tiny area measurements in
each basis state of the operator P̂I

e represent the “graviton”, the condensate of which is
represented by the coherent-state wave packet. It thus remains that from our perspective,
the Minkowski geometry is not the gravitational vacuum, but also emergent from a semi-
classical state. Therefore, one should not confuse the quantum gravity vacuum state with
the “matter vacua”. We suggest two ways to search for quantum gravity bounds/origins
in a gravitational wave experiment:

8
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(i) As the coherent states are non-Abelian in nature, the expectation values of operators
have semiclassical corrections which originate due to self-interactions. These can be
detected for high-frequency gravitational waves.

(ii) The search for individual “gravitons” or quanta of geometry would require much
more precise instruments, able to resolve the coarse-graining of geometry itself.

The latter (ii) will require further investigations, in particular about what the dynam-
ical fundamental “quanta” of LQG is. One also has to find if there is a gauge invariant
observable which is measurable in experiments. Our questions seem to seek answers by
quantizing matter and the gravitational degrees of freedom simultaneously. However, due
to the hierarchy problem, it is preferred that matter is quantized and the gravitational degrees of
freedom are semiclassical in the current epoch. In the combined Hilbert space of the matter
and gravitational degrees of freedom Hmatter ⊗ Hgrav, the combined matter–gravity state
should be taken as

|Ψ〉 = |ψmatter〉 ⊗ |ψgrav
semiclassical〉. (34)

For previous work in adding matter interactions in LQG, refer to [23].
Using criterion (i) and the idea that matter quanta interact with gravitational degrees

of freedom at semiclassical length scales, one finds that the semiclassical fluctuations of
the metric are relevant. We therefore calculate the metric corrections as predicted from the
coherent states for LQG constructed by Thiemann, Winkler, [22] and as observed in [13].
They emerge as

gxx = (1 + h+)(1 + 2t̃ f (Pex )) (35)

gyy = (1 − h+)(1 + 2t̃ f (Pey)) (36)

gxy = h×(1 + t̃ f (Pex ) + t̃ f (Pey)) (37)

gzz = 1 + t̃ f (Pez). (38)

The gauge invariant momenta are found to be:

Pex =
ε2

κ

(
1 +

1
2

h+

)
(39)

Pey =
ε2

κ

(
1 − 1

2
h+

)
(40)

Pez =
ε2

κ
. (41)

The continuum limit is obtained using limε→0 Pe/ε2. This gives the metric fluctuations
at a location (x0, y0, z0) and one can solve the propagation of matter in this corrected metric.
As evident in the continuum limit, the corrections are functions of the classical triads, and
thus dependent only on the z coordinate. Moreover, the corrections are relevant only at one
instant t = t0 of the spacetime. For a 100 Hz frequency, the gravitational wave will have a
semiclassical correction of the order of 10−84, which is way smaller than the gravitational
wave amplitude. If one probes higher-frequency gravitational waves, and therefore shorter
wavelengths, the Planck scale coarse-graining will start manifesting itself and the effects
might be evident in a gravitational wave detector. The Minkowski metric is also corrected
semiclassically, and one can probe these using quantum fields in these geometries.

2.4. Summary

In this section, we gave a “semiclassical” state which could describe a gravitational
wave at one instant. It predicted fluctuations which could be measurable for high-frequency
waves ≥ 1030 Hz. These frequencies were way above the ones observed in the LIGO
detectors. From the current observation of gravitational waves, there are bounds on the
“graviton mass”. From LIGO, the bound is 1.2 × 10−22 eV. This bound does not shed
light on the origins of the mass from the methodology. Theoretically, the graviton mass
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can originate from quantum corrections to the Einstein theory, as well as from matter
interactions which preserve diffeomorphism invariance. In this review, we do not discuss
massive gravitons.

3. Search for Hawking Radiation and Primordial Black Holes

The discovery that quantum mechanics near black hole horizons results in particle
creation originates in the paper by SW Hawking [33]. In that paper, a quantum field
vacuum was time-evolved in the collapsing geometry of a star. The quantum state evolved
into a thermal state, with a temperature inversely proportional to the mass of the black
hole. In [33], it was shown that the exact temperature of a solar-mass black hole was 10−8 K.
However, it would not radiate into the surrounding, which was at 2.78 K. This led to
the search for black holes with mass ∼ 1014 g, and these could have formed in the early
universe. Due to the Chandrasekhar limit, astrophysical black holes have a bounded mass
if formed from stellar collapse. On the other hand, early universe density fluctuations can
lead to the formation of tiny black holes, with horizon size fractions of a millimetre. These
black holes have intrinsic temperatures higher than the current CMB temperature of 2.78 K.
Even if the early universe had been hot, as the primordial universe cooled down, these
black holes would start radiating and evaporate eventually or form Planck size remnants.

3.1. Formation of Primordial Black Holes (PBH)

The story of the collapse of matter to form black holes is well-studied in the work of
Choptuik [34]. Scalar data in an initial slice undergo collapse, and the mass of the black
hole formed has a scaling equation. This physics is true for early universe cosmology. It
is noted that the matter undergoing collapse is taken as dust in most calculations and the
Fermion/quark composition (required for the Chandrasekhar limit) of the cosmic soup is
mostly ignored. For a comprehensive review of primordial black hole formation, one is
referred to [6]. Here, we briefly outline the methods used to study matter collapse in the
early universe. One of the main ingredient in the study of collapse in the early universe is
Jean’s instability. This instability characterizes density fluctuations in a fluid. The formula
for Jean’s instability is obtained by equating the time for free fall (or the time taken for an
object of radius R to collapse under its own gravity) to the time taken by a sound wave to
cross the radius. It is therefore a critical radius for which a pressure wave in the fluid gets
trapped. Jean’s critical length can also be obtained by solving for perturbations flowing in
a fluid and the self-gravitational force generated by the perturbation. In the following, we
discuss Jean’s instability.

3.2. Jean’s Instability

In this section, we discuss the collapse in a fluid of density ρ. This process also gives a
rough description of the physics of a “density” collapsing under “perturbations” or under
its own weight. The time for “free fall” of a mass in an elliptic orbit of eccentricity one,
according to Kepler’s laws (of planetary motion) is

τ2 =
π2

2
R3

GM
, (42)

where M is the mass causing the orbit, and R is the distance from the focus of the ellipse.
We use this to model self-collapse of a mass under its own gravity. If the mass collapses,
then only half of this time is taken. Given that the total mass in a radius R of a spherical
distribution of constant density ρ is

M =
4π

3
R3ρ, (43)

approximating the mass using this formula, the time for free fall is given as a function of
density as
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τ =

√
3π

32Gρ
. (44)

If the speed of sound in the fluid is cs, then the time for sound to flow through a
distance R is

R
cs

. (45)

This time would be the same as that a pressure wave flowing through the medium
would take. If the gravitational collapse time is greater than the pressure wave time, the
mass is unstable, and the critical length scale of the fluid region is given as

RJL =

(
3π

32

)1/2 cs√
Gρ

. (46)

The same “collapse formula” can be derived using a spherical homogeneous mass M,
whose radius increases by a perturbation ΔR = −αR, where α is a small perturbation. The
change in pressure using the formula δp/δρ = c2

s can be related to the change in density
due to the compression, and this gives rise to a force and “acceleration” obtained as

ap =
δp

ρ0R
=

3αc2
s

R
. (47)

In the above, we took δρ = 3αρ0, where ρ0 is the original density. Simultaneously the
shrinking of the radius gives rise to an increase of the Newtonian acceleration

ag =
2GMα

R2 . (48)

If the gravitational acceleration exceeds the “pressure acceleration”, the mass is ex-
pected to collapse, which gives a critical length

3αc2
s

RC
=

2GMα

R2
C

=
4π

3
ρ0R3

C
2G
R2

C
→ Rc ∝

cs√
ρ0G

. (49)

Thus, the critical radius for the collapse in a fluid of density ρ is proportional to the
speed of pressure waves cs in the medium. Here, one of the important assumptions for
the calculation of the speed of sound is the assumption that for the early universe fluid,
entropy is conserved. We next discuss if a change in the description of the fluid of the early
universe might change this Jean’s length. The above discussion on Jean’s instability can be
found in many references, including [35,36].

3.3. A Quantum Entropy Production Fluid and Jean’s Instability

In the above Newtonian derivation of gravitational collapse, the requirement that the
fluid be isentropic may not be true in the early universe. In fact, entropy production causes
the flow of the universe to be as in an “open system”, where the big bang singularity is
resolved [37]. We take a slight detour and discuss the situation where there is entropy
production in the fluid as anticipated in [37]. In [37], it is conjectured that spacetime can
generate particles which add to the fluid, the energy momentum tensor of the Einstein
equation. This particle creation is a quantum process and might add insight to the origins
of today’s cosmological observations. In [37], it is shown that in such open systems,
cosmological singularity is not formed. In this review, we briefly discuss whether the open
system allows for PBH formation. The conservation law for open thermodynamic systems
is given as

d(ρV) + pdV − h
n

d(nV) = 0, (50)
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where n is the particle number and h = ρ + p is the “enthalpy” of the system. In most
irreversible systems, as in systems with chemical reactions, enthalpy is a measure of the
energy of the system, and is a path-independent quantity. The thermodynamics of these
systems is controlled by the chemical potential μ, and the entropy per unit volume “s” is
defined as

μn = h − Ts, (51)

with T being the temperature of the system. The pressure for this fluid is given as

p =
nρ̇

ṅ
− ρ̇. (52)

If one assumes a fluid in the form of “radiation”, i.e., ρ = aT4 and n = bT3, where a
and b are dimensional constants [37], obviously, from Equation (52), the equation of state is
p = ρ/3. In such an open system, if one obtains the propagation equation of a “pressure
wave”, then the conservation of mass and momentum equations are different. In previous
work, the speed of sound in such a fluid was taken as cs =

√
1/3, which was at constant

entropy for the calculation of the Jean’s instability. However, the speed of sound changes in
a fluid with entropy production. We try to see the origin of the speed of a pressure wave in
a gravitating fluid, and it is nonisentropic, with dynamics given by the equations above. To
describe the propagation of pressure waves in a system, one uses the following equations:
For the conservation of mass equation in the fluid, one has

∂ρ

∂t
+ �∇ · (ρ�v) = ṅi, (53)

where we have the “convective” derivative of the density and any particle production on
the other side of the equation. The conservation of momentum equation or Euler’s equation
gives (we assume that the fluid is not viscous)

∂(ρ�v)
∂t

+�v · �∇(ρ�v) = −�∇p + ρg. (54)

In the above, the Navier–Stokes equations have been reduced by setting the viscosity
to zero. On the right-hand side, there is a potential term which can be a gravitational
potential term. In all discussions for the speed of sound, or the speed of pressure waves
in the system, the velocity is taken to be small, and the density and pressure undergo
perturbations. We assume no gravitational potential at this stage. If there is a linear
perturbation in the velocity, density, and pressure of the fluid, with the ṅ remaining the
same, the perturbations lead to the following equations

∂δρ

∂t
+ ρ0�∇ · �δv = 0, (55)

and

ρ0
∂�δv
∂t

= −�∇δp. (56)

If the system is isentropic, i.e., homogeneous, one can take a partial derivative of
Equation (55) and obtain

∂2δρ

∂t2 + ρ0�∇ · ∂�δv
∂t

= 0. (57)

In the above, using Equation (56), one obtains

∂2δρ

∂t2 −∇2δp = 0. (58)
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In the isentropic approximation

δρ =

(
∂ρ0

∂p0

)
s
δp, (59)

one plugs in the above and obtain

∂2δρ

∂t2 − c2
s∇2δρ = 0, (60)

and one obtains the speed of propagation of the density perturbations as

1
cs

=

√(
∂ρ0

∂p0

)
s
. (61)

In case the fluid has entropy changes, they induce a change in volume. One therefore
can obtain for nonisentropic fluids

δρ =

(
∂ρ0

∂p0

)
s
δp +

(
∂ρ0

∂s0

)
p
δs. (62)

If we use the thermodynamic equation for entropy production as

δs =
(

∂s0

∂ρ0

)
T

δp, (63)

then, in the formula for the “density perturbation” velocity, we have

c =

√
c2

s c2
p

c2
s + c2

p
, (64)

where
1
c2

p
=

(
∂ρ0

∂s0

)
p

(
∂s0

∂p0

)
T

. (65)

If we add the gravitational potential in Euler’s equation, then the wave equation has
an inhomogeneous term which has a “force driving term” obtained from the gradient of
a gravitational potential. If we take the potential to originate from the density, we have
∇2φ1 = 4πGρ0, then

∂2δρ

∂t2 − c2∇2δρ = −4πGρ0δρ. (66)

We assume a plane wave solution for the density wave δρ ∼ ei(ωt+�k·�x), and we find

ω2 − c2k2 = 4πGρ0, (67)

so a critical “pressure wave” is identified. For waves with wave numbers above that, the
system will see instability. The critical wave number is given as

k2 =
4πGρ0

c2 . (68)

Jean’s instability is thus identified as perturbations having a wavelength greater than

λJ >

√
π

Gρ0
c. (69)

Unlike the previous estimate of the length scale where the gravitational instability sets
in, here, the speed of sound is not a mere

√
1/3 as given in the formula for an isentropic
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radiation fluid but is obtained using Equation (64). In a turbulent early universe, therefore,
it is expected that the fluid would be nonisentropic. In addition, the open universe will
ensure entropy production as spacetime generates particle species to add to the fluid. As the
speed differs, so will the threshold for the formation of PBH. Note the origin of this change
from an underlying quantum theory is implicit in the velocity change of the pressure wave.
Note our results for a nonisentropic fluid is just one way to see how some of the formulas
used for PBH might change; for other origins of change in Jean’s instability formula in
cosmic fluids, see [38].

3.4. PBH Formation

How does one obtain the dynamics of formation of PBH in the early universe? It
is postulated that the FLRW universe metric could have perturbations induced by the
density fluctuations of the fluid. These can be modelled using a spherical symmetry, and
the conditions for the formation of “trapped surfaces” or apparent horizons derived using
the “Misner–Sharp” equations. These PBH can then accrete and grow in size, and there
can be PBH formed of masses which are bigger than the solar masses of 10M◦–30M◦. A
great deal of the current work on PBH discusses these and the fraction of PBH contributing
to dark matter halos fPBH . For further reading on the PBH production and the interest
in them as contributors to dark matter and physical processes such as microlensing, etc.,
refer to [8]. As the black hole formation follows the same numerical flow as in the spherical
collapse obtained by Choptuik, the PBH’s mass has the following “scaling” formula

MPBH = K MH(tH)(δm − δc)
γ, (70)

where δm = (ρ − ρb)/ρb is the fluctuation in the fluid density over the Hubble density, at
the radius where a compaction function is maximum. δc is the fluctuation at the critical
radius related to the Jean’s instability in the fluid found earlier. δc represents the threshold
of black hole formation. This equation can only be trusted in the regime δm − δc ∼ 10−2.
MH(tH) is the Misner–Sharp mass of the horizon, K is a numerical constant. γ is a universal
scaling exponent and varies depending on the fluctuation profile and the equation of state
of the fluid. This equation provides the basis for PBH formation, though using classical
equations. The compaction function C(r, t) is defined as the excess of mass over the FLRW
mass Mb defined as Mb = 4πρbR3/3,

C(r, t) = 2
M(r, t)− Mb(r, t)

R(r, t)
. (71)

If one takes the perturbation of the FLRW metric to be modelled by a function ζ(r, t),
in the FLRW metric three-slice as a2(t)e2ζ(r,t)r2dΩ, one gets a formula for the compaction
function in terms of this parameterized fluctuation as

C(r) =
2
3

(
1 − (1 − rζ ′(r))2

)
. (72)

This facilitates the study of this function in terms of the curvature fluctuations of
the metric. The various calculations of the “peak” values of this compaction function
use different ensembles for the fluctuations and accordingly, obtain different values. It is
postulated that when the compaction function exceeds a critical value, a collapse occurs,
otherwise the fluctuation dissipates away. The density contrast parameter is related to the
peak value of the compaction function as

δm = C(rm). (73)

In this article, we refrain from discussing the various ways of finding PBH compaction
function but only show a way the change in threshold value δc of PBH formation influences
the collapse process. This critical value is related to Jean’s instability in the cosmic fluid
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and as shown previously, vary according to the approximations used. A dependence on the
formula for PBH on the nature of the fluid is discussed in [8]. As shown in Equations (69)
and (64), the threshold of the onset of the instability of a fluid changes if quantum “particle
creation” is allowed. In [37], the fluid exchanges particles with the gravitational “quantum
field”. In this open universe, there is no initial singularity [37], and as we anticipate, the
formation of PBH would also differ. The masses would be different, and the nature of the
cosmological fluctuations of the gravitational metric would also differ as per the “entropy
production” of this open universe. A more detailed calculation using quantum cosmology
is required for the exact changes required in the theoretical predictions of the PBH’s mass,
and the PBH formation from the cosmic soup.

The formation of PBH can vary from masses of the order of 105–1050 g, and therefore,
they can range from small black holes to larger-than-solar-mass black holes. The lower
limit is based on the Planck mass and the upper limit is based on the cosmological mass.
How can we verify the existence of PBH? The existence of PBH can be verified using the
observation of particles received on earth, which might have originated from the PBH
using the Hawking radiation process. It is this process which we describe next. We discuss
PBH whose evaporation time ∝ M3 is about the age of the universe. These PBH might have
radiated away their mass in the form of photons and neutrinos and would provide evidence
for the phenomena of Hawking radiation. The mass of these black holes is estimated as
<1014 g.

Curiously, there was an attempt to find quantum gravity effects on PBH production
using loop quantum cosmology (LQC) corrections to the scale factor and the density [39].
The authors found that using the LQC-corrected early universe cosmology, the production
of PBH was increased theoretically compared to estimates from other theoretical models as
that of the Brans–Dicke gravity.

3.5. Evaporation of PBH

The mechanism of radiation from black holes can be studied using the power law for
the emission of particles. In the 1970s [33,40,41], one typically calculated the power law
using Hawking’s formula for the particle flux from black holes. The total energy radiated
per unit time from PBH of Hawking temperature TH is given as

dE
dt

=
∫

dω
∫

dΩ ∑
lm

Γωslm
exp(ω/TH)± 1

(74)

where Γωslm is the grey-body factor for the black hole geometry and represents matter
waves scattering off the gravitational potential outside the black hole. s, l, m represent
the spin and angular momentum quantum numbers of particles with frequency ω. The
sign in the denominator is positive for bosons and negative for fermions. The Hawking
temperature for a nonrotating black hole is inversely proportional to the mass. The grey-
body factor is calculated using the solutions to the classical equation of motion of the
particles in the black hole background and is a function of the spin, angular momentum,
mass, and frequency of the emission. The fraction of power radiated in different species
can be calculated. The total power radiated can be calculated numerically as

P = 2.011 × 10−4 h̄c5G−2M−2, (75)

where M is the mass of the black hole. Most of the above is radiated out in the form of
neutrinos (81.4%), 16.7% as photons and 1.9% as gravitons, as long as the black holes have
mass M > 1017g [40] After the black hole has shrunk further, the temperature being higher,
and the mass being denser, the black hole radiates quarks in the form of muons and other
particles such as electrons and positrons. For this range of black holes, 1014 g < M < 1017 g
the power radiated was found to be

P = 3.6 × 10−4 h̄c5G−2M−2, (76)
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90% is equally divided in electrons, positrons, and neutrinos, 9% in photons, and 1%
in gravitons [40]. In this work, when computing the power of Hawking particles, the
numerical calculations of the grey-body factors were used, and the above division into
fractions were based on the spin of the particles. The emission of massive particles would
have a different calculation, but for a detection on earth, the massless particles acquire
relevance.

In a follow up work [41], the emission of gamma rays with energy of about 120 MeV
was discussed, and a study of “gamma ray bursts” from evaporating PBH was introduced.
In there, a mass distribution was assumed for PBH, and this is an ingredient in the current
analysis of the data received on earth. The search for Hawking radiation phenomena in the
universe is thus a search for primordial black holes and the particles emitted from them.
There are several searches for primordial black holes using gamma-ray bursts which might
be the evidence of these black holes evaporating. In the next, we describe some of these
searches in detail and provide a bibliography.

3.6. Archived Data

The Imaging Compton Telescope (COMPTEL) [42] was decommissioned in 2007, but
there remained the archived data to analyze gamma rays. The search from these data has
shown bounds for the primordial black holes (PBH) < 1017 g [43].

3.7. Gamma-Ray Bursts

There are several satellite-based experiments, which are functional or at the planning
stage such as AMEGO and e-ASTROGRAM. AMEGO is an abbreviation for the All-sky
Medium Energy Gamma-ray Observatory experiment and comprises a silicon tracker,
a cesium iodide calorimeter, and a scintillator anticoincidence detector. All these will
form the payload of a satellite. The detector will operate in the MeV range and provide
a wider field of view than the Fermi-LAT detector. This detector is planned by NASA.
e-Astrogram is a European Science Commission gamma-ray detector, based on similar
instrumentation as AMEGO [44]. The e-Astrogram project aims to observe the frequency
range of 0.3 MeV to 3 GeV. It is also aiming to be more sensitive at a particular frequency
than previous instruments. These instruments will send data about the gamma-ray bursts
and other sources which will give a clue on the existence of primordial black holes in the
early universe.

3.8. HESS

The HESS is a gamma-ray observation experiment using an array of atmospheric
imaging Cerenkov telescopes with energy in the TeV range. The telescopes are in Namibia.
We report on the techniques of the HESS experiment in details here as an example, but it is
one of several developments for PBH observations [45]. As the PBH which are smaller than
1017 g might have evaporated by now, one searches for gamma-ray burst signals. The PBHs
are expected to have evaporated with an explosion of gamma rays, which have a high
energy and last only for a few seconds. Using statistics and the methods of [46] Feldman
and Cousins, one can estimate the “rate of” the PBH formation density ρ̇PBH , with 95% and
99% confidence levels. Further, we discuss this experiment’s data analysis [45] in details to
illustrate the methodology of the search of PBH. Let us say an unknown parameter μ is
being assessed using the measurements of a variable x. Usually, one uses Bayesian statistics
to estimate the “belief” in a system’s parameter being μt. This is given using the formula

P(μt|x0) = L(x0|μ) P(μt)

P(x0)
, (77)

where L(x0|μt) is the “likelihood” of obtaining x0 given μt. However, it is assumed that
there is prior knowledge of the probability P(μt) of finding μt independent of what x0 is,
which might not be the case. The probability P(x0) can be absorbed in the normalization
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of the conditional probability. In Bayesian methods, the belief in finding μt given the
measured values of x is expressed as a “confidence”. This is mathematically∫ μ2

μ1

P(μt|x0)dμt = α, (78)

where α is the degree of confidence for μt to be in the confidence interval [μ1, μ2]. In [46], a
variation of this is given, for estimating the value of a parameter μ given the measurements
of the variable x. If one takes the ratio of two likelihoods, then the “prior knowledge”
required in Bayesian statistics is not there.

R =
L(x|μ)

L(x|μbest)
, (79)

where μbest is the value of the parameter which maximizes the conditional probability. This
ratio determines the acceptance region in the x variable, for a given value of μ. A sum
of the observation probabilities in decreasing order of R, until the required confidence
limit is reached, provides a good estimate for the confidence intervals or upper limits for
a parameter.

In the HESS observations, gamma rays were detected using the Cerenkov telescopes
on earth. The number of photons detected could vary from one to infinity in a given time
interval Δt. A time interval of Δt = 10 s was taken for the purpose. We assumed that the
detection of photon “clusters” of size k followed a Poisson distribution

P(k, N) = e−N N
k!

, (80)

where N(r, α, δ, Δt) is the number of γ rays emitted from PBH from a distance r in the
angular interval in the sky specified by α, δ in unit time Δt. Integrating this over all space,
i.e., r, α, δ, and over all runs of the experiment, the number of significant clusters of photons
detected were estimated to be

nsig(k, Δt) = ρ̇PBHVeff(k, Δt), (81)

where

Veff(k, Δt) = ∑
i

Ti

∫
dΩi

∫
dr r2 P(k, N) = ∑

i
TiΩi

(r0
√

N0)
3

2
Γ(k − 3/2)

Γ(k + 1)
, (82)

where N0 is the number of photons emitted from PBH at a distance of r0. Ti is the run’s
live time of the experiment, and Ωi is the solid angle of the observations. Based on the
observed data, the statistical analysis using the techniques of Feldman and Cousins was
implemented. The parameter being sought was nsig given n as the observed variable. Note
that these photon clusters, which might be from evaporating PBH, were received along
with the background photons, whose number was taken as n̄, or off photons.

R = ∏
n

L(n|n̄ + nsig)

L(n|n̄) . (83)

Here, the maximal value of the likelihood function was taken as that of the background n̄.
The χ2 estimate of the above can be found as [46]:

LNR = −2 ln(R) = 2 ∑
n

nsig + n(ln(n)− ln(n̄ − nsig)), (84)

where n is the number of observed photon signals in the on position of the telescopes
and n̄ is the number of mean observed signals in the off data. This is an estimate of the
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background photons, obtained by averaging over “scrambled” time intervals. In deriving
the above, we used the Poisson distribution.

This LNR had a maximum of 0.006 in the preliminary data for Δt = 10 s and 6240 runs
of four of the five telescopes [45]. This showed that there was not much of the PBH excess
data. However, if one sets LNR = 4, 9, one can obtain an upper-limit estimate for ρ̇PBH ,
with 95% and 99% confidence levels. The upper limit was found to be

ρ̇PBH < 2.5 × 104/pc3yr (95%), (85)

ρ̇PBH < 5 × 104/pc3yr (99%), (86)

These data points were further updated with other experiments such as VERITAS, MILA-
GRO, FERMI-LAT, and SWGO [47]. A comparative plot of the experimental predictions of
evaporating PBH or final bursts at the 99% confidence limit is given in Figure 2. The data
for this are quoted from [48] (2021). For some recent updates in the field of constraints on
PBH see [49].

Figure 2. The upper estimates of the number of final bursts at the 99% confidence limit from some
experiments [48].

For recent data on HESS, one can refer to the experiment’s website [50].

3.9. Neutrino Experiments

The Hawking radiation from PBH releases neutrinos. The flux of these as a function
of the PBH production and then a further analysis for “secondary effects” producing
neutrinos were analyzed. The data from several experiments were taken and showed
almost no or a very small estimation of the PBHs. Using a recent work [51], we comment on
the results. A neutrino spectrum rate was defined using the Hawking emission spectrum
as in Equation (74). Further, there can be secondary neutrino production due to the decay
of hadrons produced initially:

d2Nν

dωνdt
=

∫ ∞

0
dM

dN
dM

(
d2Nν

dωνdt prim
+

d2Nν

dωνdt sec

)
. (87)

where the black hole’s mass distribution could be taken as a Gaussian log-normal profile,

dN
dM

=
1√

2πσM
exp

(
− ln2(M/MPBH)

2σ2

)
, (88)
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or simply a delta function profile centred at M = MPBH. In the above, MPBH is an average
mass, and σ is the standard deviation, as the mass of the black hole is allowed to vary. A
plot of the differential neutrino flux from extragalactic sources and the milky way can be
calculated using publicly available software [51] and plotted. The differential flux of the
neutrino plotted as a function of the energy ων varied between 102 and 10−5, as the energy
varied from 1 to 100 MeV for PBH of mass 1013 g. The evaporated PBH were taken as a
fraction of the cosmic background which is 10−18 to obtain this result.

The experimental bounds obtained from the Super-Kamiokande data showed that
for PBH which were already evaporated, the abundance ratio was about 10−17 for 1013 g
black holes and a confidence limit of 90%. The question is of course what the above bounds
imply for quantum gravity phenomenology? Whereas the PBH production cannot be ruled
out completely, using the above estimation methods, it remains that the mechanism of
PBH formation could be different, and the emission flux calculations greatly modified
by intervening cosmic flows and quantum effects. In this aspect, one has to wait for
future experiments such as JUNO, DARWIN, ARGO, and DUNE, and perhaps quantum
cosmology predictions of the PBH formation from a more fundamental theory such as loop
quantum gravity.

It is obvious from the above discussions that the detection of bursts of photons and
neutrinos on earth gives a very small window for the PBH to exist which would be
evaporating now, i.e., those having masses 105–1014 g. However, as we know, there can
still be the option that there are PBH which have not evaporated away but have formed
remnants. These will still be candidate dark matter contributors. The fraction of PBH
which contribute to dark matter and have not been evaporated yet is also estimated as
∼10−3 for masses of the order of 1016 g as in [52]. There are other papers investigating this
using various data sources such as microlensing, accretion disk luminosity, radio signals,
anisotropies of the CMB, etc. We refer the reader to reviews in this field [8]; there are also
discussions of the PBH formation and evaporation using LQG corrected metrics, though in
reduced phase-space formulations [53]. In our opinion, whereas the search is now much
focused than earlier on what a gamma-ray burst or a neutrino flux from PBH may be, the
research is still nascent.

4. Event Horizon

In the initial days of the discovery of the black hole metric solution to Einstein’s equa-
tion, the existence of the horizon was one of the most bizarre predictions. The existence of
trapped surfaces in general relativity was later firmly established with the Ray–Chowdhury
equations and Hawking–Penrose singularity theorems. However, the debate continued on
whether the event horizon existed, as it was unobservable. With the discovery of compact
objects and the observation of X-rays from them, various models were tested for the exis-
tence of the event horizon. As the conclusions were model-dependent, the search continued,
until the event horizon telescope project produced an “assembled image” of the photon
sphere surrounding a black hole [14,54]. This confirmed some of the predictions about
the behaviour of geodesics near a black hole’s horizon, but did it confirm the presence
of an event horizon? Perhaps not, but this is as “good as it gets”. The snapshot of the
photon sphere assimilated from eight infrared telescopes captured the electromagnetic
waves circulating a compact object. The question we are asking in this article is: can we use
the observations of geodesics around a black hole to measure semiclassical physics? In a
work using semiclassical states in loop quantum gravity [13], it was shown that quantum
fluctuations could cause instabilities in black holes, and these could produce tangible
detectable effects for astrophysical black holes [13]. The main results of the paper were the
calculation of a nonpolynomial correction to the metric of the Schwarzschild black hole.
The semiclassically corrected metric was shown to be of the following form
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ds2 = −
(

1 − rg

r
− t̃ htt

)
dt2 + t̃ hrt dtdr +

{
1

(1 − rg/r)
+ t̃ hrr

}
dr2 +

+
(

r2 + t̃ hθθ

)
dθ2 +

(
r2 sin2 θ + t̃ hφφ

)
dφ2. (89)

where rg is the Schwarzschild radius, and the location of the horizon is at rg = 2GM, where
M is the mass of the black hole. htt, hrt, hrr, hθθ , and hφφ are the perturbations motivated
from the corrections to the metric [13]. The perturbations of the metric could be attributed
to other quantum models of gravity, but we used the one motivated from [13], and a shift
was generated, hrt, breaking the “static” nature of the metric. The t̃ which appears in this
coherent state was obtained using the length scales of the system and was thus a ratio of
Planck’s area to the area of the horizon t̃ = l2

p/r2
g. Using this, we solved for the geodesics

of the black hole. The geodesics were taken as circular orbits and the radial coordinate
r was solved as a function of the coordinate φ. These orbits described the trajectory of
light rays which were incident on the black hole geometry from a distance, and the impact
parameter measured the perpendicular distance of the light ray from the horizon. Using
the invariant distance on the Schwarzschild geometry, one can write the equation of motion
for the geodesic of a photon as a differential equation in the azimuth φ, which was taken as
the affine parameter along the geodesic. The deviations in geodesic computations for the
rotating black hole from the nonrotating black holes were small [55] but detectable. For
rotating black holes, the cross section of the photon scattering might not be circular [55],
but the difference was about 4%. However, quantum corrections might be different, and
one needs to formulate coherent states for rotating black holes separately. The effect of
the presence of “echoes” might still be true. The results stated in this paper thus apply to
nonrotating black holes strictly but pave the way for realistic ones.

If we arrange the terms in a way they can be grouped into terms which are zeroth
order in t̃ and then first order in t̃ (in the equatorial plane), one gets [14]:

1
r4

(
dr
dφ

)2
+

1
r2

(
1 − rg

r

)(
1 + t̃

hφφ

r2 − t̃ hrr

)
=

1
b2

(
1 + 2 t̃

hφφ

r2 − t̃ hrr + t̃
htt

1 − rg/r

)
. (90)

As one traces the trajectory through the entire path, the asymptotic angle of “scattering”
from the black hole geometry emerges as a function of the impact parameter of the photon.
The solution is obtained using a set of elliptic integrals and one finds

exp(−φ∞) = δ1+0.0203 t̃ exp

(
+

0.47 t̃1/2

(0.67δ + 0.225 t̃)1/2 + 0.23 t̃ + 1.712
t̃
δ

)
, (91)

where δ = b − bc, and φ∞ is the asymptotic angle the geodesic makes as it re-emerges to
the asymptotic region. The difference of the photon geodesic impact parameter with the
impact parameter of the critical orbit bc = 3

√
3M is expected to be zero as the photon can

orbit an infinite number of times round the horizon. One can see that in Equation (91), the
t̃ → 0 reduces to a linear term in δ. Most importantly, δ → 0 as φ∞ = μ + 2nπ → ∞. n
counts the number of times the geodesic encircles the black hole, and this goes to infinity
for the critical geodesic with the critical impact parameter. The photon circles the black
hole an infinite number of times, when the critical impact parameter is reached. If we take
the semiclassical corrections, then the plot of w(δ) (the RHS of Equation (91) as a function
of δ shows that the function does not reach zero but bounces off (see Figures 3 and 4), and
this we can associate with the presence of a quantization.
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Figure 3. Plot of the semiclassically corrected photon geodesic impact parameter relation. The plot
shows a bounce as the distance from the critical radius approaches the semiclassical length scale of
t̃ ∼ 10−8 units.

Figure 4. Plot of the semiclassically corrected photon geodesic impact parameter relation. The plot
shows a bounce as the distance from the critical radius approaches the semiclassical length scale of
t̃ ∼ 10−66 units.

This observation is commensurate with the work in fuzzballs and ECHOS [56]. In
these models, the horizon is replaced by a “wall” at a particular distance from the black
hole. In our calculations with the LQG coherent states [13], we found the explicit location
of the “wall” as a function of the semiclassical parameter t̃. We expect that our results can
be eventually verified from observational data from astrophysical black holes [56].

5. Conclusions

As it happens, the search for quantum gravity in experiments is still nascent. However,
we expect that in the early universe, the length scales were quantum, and therefore the
search for relics of quantum gravity is ongoing. There are a number of papers in this
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Universe special issue in quantum gravity phenomenology which discuss cosmology and
the effect of quantum cosmology in observational physics. In this review, the experiments
we discussed only provided bounds on the mass of the graviton, the PBH production. We
discussed the quantum effects which could be “directly” observable in recent experiments
including in gravitational wave detectors and event horizon telescope images. We also
reported on the numerous experiments which observe particles from distant celestial events
on earth. We showed theoretical calculations and reported on bounds from experiments
on Hawking emission from PBH. The experimental bounds did not violate any theoretical
predictions. The observations provide directions for the experimental community to seek
for more precise measurements. The plot of the electric and magnetic polarizations from
the EHT [57] and the launching of LISA [58] are ongoing efforts in that direction. The
study of fast radio bursts (FRB) provided an effort towards finding the quantum origins
of astrophysical phenomena. The most promising experiments on earth for the quantum
effects of gravity remain the GW detectors and the possibility that one would detect a
“graviton” or its semiclassical version in the near future.
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Abstract: Over the last couple of decades, there have been direct and indirect evidences for mas-
sive compact objects than their conventional counterparts. A couple of such examples are super-
Chandrasekhar white dwarfs and massive neutron stars. The observations of more than a dozen
peculiar over-luminous type Ia supernovae predict their origins from super-Chandrasekhar white
dwarf progenitors. On the other hand, recent gravitational wave detection and some pulsar observa-
tions provide arguments for massive neutron stars, lying in the famous mass-gap between lowest
astrophysical black hole and conventional highest neutron star masses. We show that the idea of
a squashed fuzzy sphere, which brings in noncommutative geometry, can self-consistently explain
either of the massive objects as if they are actually fuzzy or squashed fuzzy spheres. Noncommutative
geometry is a branch of quantum gravity. If the above proposal is correct, it will provide observational
evidences for noncommutativity.

Keywords: noncommutative geometry; white dwarf; neutron star; equation of state; Chandrasekhar limit

1. Introduction

Quantum mechanics (QM) and general theory of relativity (GR) are widely regarded
as the two most promising discoveries of the twentieth century. QM is used to describe
different microscopic phenomena, whereas GR is used to explain phenomena in which
gravity plays a significant role. QM is primarily based on the Heisenberg algebra, which
relates the position operator (x̂i) and the momentum operator (p̂i) as

[
x̂i, p̂j

]
= ih̄δij, where

h̄ = h/2π, with h being the Planck constant. Note that in QM, position and momentum
operators commute among themselves, i.e.,

[
x̂i, x̂j

]
=
[
p̂i, p̂j

]
= 0. GR, on the other hand,

is based on the equivalence principle, which can account for the perihelion precision of
Mercury, the generation of gravitational waves (GWs), gravitational lensing, and a variety
of other fascinating phenomena. Both QM and GR are required to understand the structure
of compact objects, such as white dwarfs (WDs) and neutron stars (NSs). GR primarily
governs the hydrostatic balance of a star, which is a macroscopic property; whereas, QM
determines the equation of state (EoS), i.e., the relation between pressure and density of the
constituent particles.

If a progenitor star has mass approximately in between 10 and 20 M�, it becomes a NS
at the end of its lifetime. A NS typically possesses central density, ρc of about 1014 to a few
factors of 1015 g cm−3 [1]. Although NSs predominantly consist of neutrons, various other
particles, including hyperons, may also be present at such a high density. This uncertainty
arises from the fact that such a high density has yet to be achieved in the laboratory, and
hence, the specific nuclear reactions, as well as their rates, are unknown. Researchers have
so far provided various NS EoSs, each comprising different particle contributions and
strong nuclear forces. Most of these EoSs are based on the relativistic energy dispersion
relation E2 = p2c2 + m2c4, where c is the speed of light and E denotes the energy of the
particle with mass m with p being its momentum. Although most NSs have masses of
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approximately 1 to 2 M�, recent pulsar observations PSR J2215+5135 and PSR B1957+20
show that they have masses of about 2.3 and 2.4 M�, respectively [2,3]. Similarly, the
LIGO/Virgo collaboration detected a GW merger event, GW 190814, where one of the
merged objects has a mass of about 2.6 M� [4], which is mostly thought to be a NS [5–8].
Nevertheless, there was no detection of electromagnetic counterpart for this GW event, and
hence various other proposals for this object, such as black hole [9,10], quark star [11], etc.,
have been put forward. In this article, however, we only talk about NSs while referring
to this GW event. Based on these observations, various simulations have been performed
and it has been suggested that those EoSs, which give the maximum mass of a non-rotating
and non-magnetized NS less than 2 M�, should be ruled out [5,12,13]. Hence, considering
GR formalism, various EoSs, such as FPS [14], ALF1 [15], etc., seem to be inappropriate for
NSs. Modified gravity, on the other hand, has emerged as a popular alternative to replace
GR in the high-density regime over the last decades. It can be shown that modified gravity
alters the hydrostatic balance of the star and thereby increases the mass of a NS [16–18]. As
a result, some of these EoSs may still be valid in the modified gravity formalism.

On the other hand, WDs are the end-state of stars with mass � (10 ± 2)M� [19]. They
possess ρc typically ranging approximately from 105 g cm−3 to a few factor of 1010 g cm−3.
A WD achieves its stable equilibrium configuration by balancing the outward force of
the degenerate electron gas with the inward force of gravity. If the WD has a binary
companion, it pulls out matter from the companion, resulting in the increase of WD mass.
Once the WD hits the Chandrasekhar mass-limit, which is about 1.4 M� for a carbon-
oxygen non-rotating, nonmagnetised WD [20], this pressure balance is lost, and it bursts
out to create a type Ia supernova (SN Ia). However, recent observations of more than
a dozen of peculiar over-luminous SNe Ia [21–29] reveal that they had to be produced
from super-Chandrasekhar limiting mass WDs, i.e., the WDs burst significantly above the
Chandrasekhar mass-limit [30,31]. Various theories incorporating magnetic fields [32,33],
modified gravity [34–36], etc., can explain this violation of the Chandrasekhar mass-limit,
although each has its own set of limitations.

The goal of this work is to introduce noncommutativity (NC) among position and mo-
mentum variables and examine how it affects WDs and NSs. A popular way of proposing
NC is by defining

[
xi, xj

]
= iη and

[
pi, pj

]
= iθ with η and θ being the NC parameters. It

was shown that in the presence of NC, the spacetime metric alters [37], causing the event
horizon to shift and the singularity at the centre of a black hole to vanish, which is replaced
by a regular de-Sitter core [38–40]. It further alters some other properties associated with
black holes, such as the stability of Cauchy horizon [41], mini black hole formation with
the central singularity replaced by a self-gravitating droplet [42], the Hawking tempera-
ture [43]. Various researchers also utilised this NC to describe a variety of other phenomena,
including Berry curvature, fundamental length-scale, Landau levels, gamma-ray bursts,
and many more [44–49]. Note that the basic assumption in the structure of this NC is quite
ad-hoc. In 1992, Madore introduced the idea of a three-dimensional fuzzy sphere NC [50],
which has been used to better understand the thermodynamical features of non-interacting
degenerate electron gas [51,52]. This formalism was later refined by projecting all the points
of the fuzzy sphere onto an equatorial plane and named this configuration a squashed fuzzy
sphere [53]. This NC model was also proven to imitate the magnetic field by producing
distinct energy levels, which are similar to the Landau levels created in the presence of a
magnetic field [54].

Apart from a few black hole applications, the implication of NC on compact objects
is a relatively novel concept. We earlier showed its applications on the structure of WDs.
We considered both the formalism of NC separately and showed that they modify the
energy dispersion relation of electrons [55,56]. We further used this relation to obtain a
new EoS of the degenerate electrons present in WDs and showed that it can explain the
super-Chandrasekhar limiting mass WDs, which are believed to be the progenitors of the
observed over-luminous type Ia supernovae. We obtained the maximum mass of a WD to
be about 2.6 M� in the presence of NC, and this mass-limit decreases as the strength of NC
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reduces. We further showed that the NC is prominent if the separation of electrons is less
than the Compton wavelength of electrons, and it turns out to be an emergent phenomenon.

The EoS obtained for WD is valid only up to neutron drip density, above which
neutron starts contributing to the degenerate pressure. In this article, we obtain a new EoS
above the neutron drip density taking into account of NC and derive a new mass–radius
relation for NSs. With the advancement of technology, different proposed electromagnetic
and GW detectors are likely to detect numerous WDs and NSs. If their observed masses
and radii follow the mass–radius relations predicted based on NC, it would be a direct
proof of NC’s existence.

The following is a breakdown of how this article is structured. In Section 2, we briefly
review the squashed fuzzy sphere formalism and the modified energy dispersion relation,
which we utilize in Section 3 to derive the EoS for degenerate particles reside inside WD
and NS in the presence of NC. We further use this EoS to obtain the new mass–radius
relation of the NS in Section 4. Finally, we present our concluding remarks in Section 5.

2. Squashed Fuzzy Sphere Formalism and Modified Energy Dispersion Relation

In this section, we recapitulate the basic formalism of a squashed fuzzy sphere. In R
3,

the equation of a sphere with radius r is given by

x2
1 + x2

2 + x2
3 = r2, (1)

where (x1, x2, x3) are the Cartesian coordinates of the points on the sphere. A fuzzy sphere
is similar to a regular sphere, except that its coordinates xi (i = 1, 2, 3) follow the regular
QM angular momentum algebra [50]. Hence, if Ji are the generators of SU(2) group in an
N-dimensional irreducible representation, we have

xi = κ Ji, (2)

with

J2
1 + J2

2 + J2
3 =

h̄2

4

(
N2 − 1

)
I = CNI, (3)

where κ is the proportionality (scaling) constant, CN = h̄2(N2 − 1
)
/4, and I is the N-

dimensional identity matrix. Substituting Ji in terms of xi and defining k = κr, we obtain

κ =
r√
CN

and k =
r2

√
CN

. (4)

Since the angular momentum algebra follows the commutation relation
[

Jj, Jk
]
=

ih̄εjkl Jl , the coordinates of the fuzzy sphere follow [50]

[
xj, xk

]
= i

kh̄
r

εjkl xl . (5)

When all the points of a fuzzy sphere are projected on any of its equatorial planes,
the result is a squashed fuzzy sphere. It should be noted that this is not a stereographic
projection. The projection of all the points of a fuzzy sphere on the x1−x2 equatorial plane
is shown in Figure 1. The points of the upper hemisphere are projected on the equatorial
plane’s top side, while the points of the lower hemisphere are projected on the plane’s lower
side, and then they are glued together. Writing x3 in terms of x1 and x2, using Equation (1)
and replacing it in Equation (5), we obtain the squashed fuzzy sphere’s commutation
relation, given by [53]

[x1, x2] = ±i
kh̄
r

√
r2 − x2

1 − x2
2. (6)
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Figure 1. Schematic diagram of a squashed fuzzy sphere where all the points of the fuzzy sphere are
projected on x1−x2 plane.

The Laplacian for the squashed fuzzy sphere is given by [53]

�s =
1
k2

2

∑
i=1

[Xi, [Xi, ·]], (7)

which satisfies the following eigenvalue equation

�sŶl̃
m̃ =

h̄2

r2

{
l̃(l̃ + 1)− m̃2

}
Ŷl̃

m̃, (8)

where l̃(l̃ + 1)− m̃2 are eigenvalues of the squashed fuzzy Laplacian with l̃ taking all the
integer values from 0 to N − 1 and m̃ taking all the integer values from −l̃ to l̃. Using this
Laplacian, one can obtain the energy dispersion relation in the squashed fuzzy sphere,
given by [53,56]

E2
l̃,m̃ =

2h̄c2

k
√

N2 − 1

[
l̃(l̃ + 1)− m̃(m̃ ± 1)

]
. (9)

Moreover, Equation (6) in spherical polar coordinates (r, θ, φ) can be recast as

[sin θ cos φ, sin θ sin φ] = ±i
kh̄
r2 cos θ. (10)

This shows the NC is between θ and φ alone, while they are commutative with r-
coordinate. In other words, the formalism of a squashed fuzzy sphere is such that it actually
provides a NC between the azimuthal and polar coordinates. This is because the squashed
plane in a fuzzy sphere can be any of its equatorial planes, which means that the squashed
fuzzy sphere possesses rotational symmetry about the equatorial plane. Regardless of the
squashed plane, the above energy dispersion remains unchanged. As a result, a particle
travelling along the r-coordinate in a squashed fuzzy sphere is not affected by NC and the
exact energy dispersion relation is given by

E2 = p2
r c2 + m2c4

[
1 + {l̃(l̃ + 1)− m̃(m̃ ± 1)} 2h̄

m2c2k
√

N2 − 1

]
, (11)
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where pr is the momentum of the particle in the radial direction. In the limit N � 1, the
above expression reduces to [56]

E2 = p2
r c2 + m2c4(1 + 2νθD), ν ∈ Z

0+, (12)

where θD = 2h̄/m2c2k. It is noticeable that this expression is very similar to the dispersion
relation of Landau levels in the presence of a magnetic field. If the magnetic field is present
along z-direction with strength B, the energy dispersion relation for an electron with mass
me is given by [54]

E2 = p2
zc2 + m2

ec4
(

1 + 2ν
B
Bc

)
, ν ∈ Z

0+, (13)

where pz is the momentum of the electron along the z-direction and Bc = m2
ec3/h̄e is the

critical magnetic field (Schwinger limit) with e being the charge of an electron. Comparing
Equations (12) and (13), we obtain

B ≡ 2c
ek

. (14)

Hence, in a squashed fuzzy sphere, k−1 behaves as the strength of NC. A detailed
discussion on the equivalence of magnetic field and NC was given by Kalita et al. [56].
Equation (12) provides the energy dispersion relation of one squashed fuzzy sphere, inside
which k is constant. If we consider a sequence of concentric squashed fuzzy spheres with
same N, from Equation (4), we have k ∝ r2, i.e., k increases and thus the strength of NC
reduces from centre to the surface. As a result, all concentric spheres with a radius greater
than r contribute to the effective NC at a point with radius r. From Equation (6), it is evident
that NC vanishes at the surface.

3. Noncommutative Equation of State for Degenerate Particles

In this section, we first discuss the commutative cases. In 1935, Chandrasekhar
provided EoS for the degenerate electrons [20]. This EoS is valid for a system whose
density is less than the neutron drip density (approximately 3.18 × 1011 g cm−3), above
which neutron also starts contributing to the degenerate pressure. Harrison and Wheeler
(hereinafter HW), in 1958, provided an EoS considering a semi-empirical mass formula,
which is valid even at higher densities than neutron drip density. Denoting ρ to be the
matter density and P the total pressure, HW EoS is given by [1]

ρ =
nionM(A, Z) + εe(ne)− nemec2 + εn(nn)

c2 ,

P = Pe + Pn,
(15)

where εn is the energy density of neutrons and εe is the same for electrons. Similarly, Pe
and Pn are, respectively, the pressures due to electrons and neutrons. Here, ne, nn, and nion
are the number densities of electron, neutron, and ion, respectively, while M(A, Z) is the
energy of nucleus with mass number A and atomic number Z.

In commutative physics, where E2 = p2c2 + m2c4 holds true, the pressures and energy
densities are given by

Pe =
mec2

λ3
e

φ(xF,e), Pn =
mnc2

λ3
n

φ(xF,n), Pp =
mpc2

λ3
p

φ(xF,p), (16)

εe =
mec2

λ3
e

χ(xF,e), εn =
mnc2

λ3
n

χ(xF,n), εp =
mpc2

λ3
p

χ(xF,p), (17)
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where λe = h̄/mec, λn = h̄/mnc, and λp = h̄/mpc are the reduced Compton wavelengths
of electron, neutron, and proton, respectively, with mn being the mass of a neutron and
mp the mass of a proton. Moreover, xF,e = pF,e/mec, xF,n = pF,n/mnc, and xF,p = pF,p/mpc
with pF,e, pF,n, and pF,p being the Fermi momentum of electron, neutron, and proton
respectively, and

φ(xF) =
1

8π2

[
xF

√
1 + x2

F

(
2x2

F
3

− 1

)
+ ln

{
xF +

√
1 + x2

F

}]
,

χ(xF) =
1

8π2

[
xF

√
1 + x2

F

(
2x2

F + 1
)
− ln

{
xF +

√
1 + x2

F

}]
.

This EoS can explain physics beyond the neutron drip density regime. However,
above 4.54 × 1012 g cm−3, the neutrons contribute most in the pressure and density. Hence,
beyond this density, HW used the idea n-p-e EoS where neutrons, protons, and electrons
are considered to be degenerate and non-interacting. In the commutative picture, the n-p-e
EoS is given by [1]

P = Pe + Pn + Pp,

ρ =
εe + εn + εp

c2 .
(18)

HW and n-p-e EoSs together provide the pressure–density relation of the non-interacting
degenerate particles.

In NC, these EoSs are expected to be modified. Vishal and Mukhopadhyay earlier
derived a modified HW EoS of degenerate particles in the presence of a constant magnetic
field [57]. Later, to study the effect of varying NC on degenerate electron gas, we obtained
the following relation [56]

θD =
1
ξ

h2n2/3
e

πm2
ec2 , (19)

where ξ is a dimensionless proportionality constant. The dependency θD ∝ n2/3
e is required

to match the modified EoS with the Chandrasekhar EoS at a low density where NC does
not have any significant influence. Thus, we obtained the modified EoS for degenerate
electrons when all the electrons reside in the ground level, given by [55,56]

Pe =
2ρ2/3

e

ξhμ2/3
e m2/3

p

{
pF,eEF,e − m2

ec3 ln
(

EF,e + pF,ec
mec2

)}
, (20)

ρe =
64μemp p3

F,e

ξ3h3 , (21)

where μe is the mean molecular weight per electron and EF,e is the Fermi energy of electrons,
which is related to pF,e as

E2
F,e = p2

F,ec2 + m2
ec4(1 + 2νθD). (22)

Since, for the present purpose, we require the modified HW and n-p-e EoSs in the
presence of NC, we also assume a similar form of pressure–density relation except that
the various properties of the electron are now replaced by the same for the corresponding
particle. After performing some simplifications using Equations (19) and (21), we obtain

θD =
16
ξ3

x2
F

π
. (23)

Note that we do not put any subscript for the electron in this equation, which means
that it is valid for electrons, protons, and neutrons. We further denote the NC parameters
of neutron, proton, and electron as θD,n, θD,p, and θD,e respectively. Thus, the modified HW
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and n-p-e EoSs are given by the same expressions of Equations (15) and (18), except the
pressures and energy densities of the respective particles are modified as follows:

Pe =
mec2θD,e

2π2λ3
e

η(xF,e), Pn =
mnc2θD,n

2π2λ3
n

η(xF,n), Pp =
mpc2θD,p

2π2λ3
p

η(xF,p), (24)

εe =
mec2θD,e

2π2λ3
e

ψ(xF,e), εn =
mnc2θD,n

2π2λ3
n

ψ(xF,n), εp =
mpc2θD,p

2π2λ3
p

ψ(xF,p), (25)

where
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1
2
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√
1 + x2

F −
1
2

ln
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1 + x2
F

)
,

ψ(xF) =
1
2

xF

√
1 + x2

F +
1
2

ln
(

xF +
√

1 + x2
F

)
.

We already showed that if all the electrons reside only in the ground energy level, we
require ξe ≈ 1.5 to match the noncommutative EoS with the Chandrasekhar EoS at the low
density [55]. However, the corresponding parameters for neutron and proton (ξn and ξp)
remain arbitrary. We choose ξn and ξp in such a way that the maximum mass of NS in
the mass–radius curve is above 2 M�, which we discuss in the next section. Thereby, we
calculate both the noncommutative HW and n-p-e EoSs when all the particles are in their
respective ground levels (see Figure 2). Note that the neutron drip density changes in the
presence of NC, which was also shown earlier in the presence of strong magnetic fields
forming Landau levels [57].

Figure 2. HW and n-p-e EoSs in the commutative and noncommutative formalisms.

4. Mass—Radius Relation of Noncommutativity Inspired White Dwarfs and
Neutron Stars

We assume a semi-classical approach to obtain the mass–radius relations for WDs and
NSs. In other words, we use classical pressure balance and mass estimate equations (also
known as the Tolman-Oppenheimer-Volkoff or TOV equations) while the EoS is governed
by the NC. The TOV equations are given by [58]

dM
dr

= 4πr2ρ,

dP
dr

= − G
r2

(
ρ +

P
c2

)(
M+

4πr3P
c2

)(
1 − 2GM

c2r

)−1
,

(26)

where M is the mass of the star inside a volume of radius r and G is the Newton gravitational
constant. We earlier showed that NC is prominent when the inter-particle separation is less
than the Compton wavelength of the respective particles [55,56]. When we consider the
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hydrostatic balance equations for the entire star having a macroscopic size, the length-scale
of the stellar fluid is much larger than the Compton wavelength of the constituent particles.
Thus, the TOV equations remain commutative in the semi-classical limit. Furthermore,
when all the electrons reside in the ground energy level, we already found the mass–radius
curve earlier [55,56], and for recapitulation, we display it again in Figure 3. It is evident
that NC inspired WDs can possess more mass than the conventional WDs following the
Heisenberg algebra. The maximum mass of such a non-rotating WD is estimated to be
around 2.6 M�, explaining the origins of many over-luminous SNe Ia.

Figure 3. Upper figure: Mass–radius relation; Lower figure: variation of central density with the
mass of WDs. Here M and R are the mass and radius of the star, respectively.

In the case of a NS, ρc is high, and we employ a combination of HW and n-p-e EoSs
to derive its mass–radius relation, as illustrated in Figure 4. In the commutative picture,
the maximum mass turns out to be just 0.7 M�, while it is increased to about 2 M� in
the case of NC, which is supported by the observations of massive pulsars. However,
the radius increases to 20 km in this situation, which is almost ruled out by existing GW
observations [59–61]. Note that the relation θD ∝ x2

F in Equation (23), is valid for electrons
and we extrapolate it for neutrons and protons too. If we choose a different dependency of
θD on xF, the EoS alters and so does the mass–radius relation for NS. Figure 5 depicts several
mass–radius relations for various powers of xF. It is evident that as the power decreases,
the radius for maximum mass falls as well and when θD ∝

√
xF, the maximum mass is

about 2.08 M�, with radius being 12 km. These masses and radii obey the observational
bounds of NSs, and hence, such an EoS is a realistic one.

Figure 4. Upper figure: Mass–radius relation; Lower figure: variation of central density with the
mass of NSs.
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Figure 5. Mass–radius relations of NC induced NSs for various θD − xF relations. θD,pn means θD for
proton and neutron.

5. Conclusions

For a long time, scientists have been fascinated by the possibility of massive WDs and
NSs from several direct or indirect observations. Various ideas, such as magnetic fields and
rotation, modified gravity, etc., have been thoroughly investigated in recent years. Rotation
can explain massive NSs, which, however, alone fails to elucidate the massive WDs with a
mass of about 2.8 M�. High magnetic fields can, in principle, explain both these massive
objects. Nonetheless, the maximum field that a compact object can possess is always a
source of contention. Similarly, despite the fact that modified gravity can explain such
high masses, it has so far been impossible to identify the most appropriate one from the
hundreds of such modified gravity models. In this regard, each of these theories suffers its
own limitations.

In the context of astronomical objects, the concept of NC is relatively new. With
the exception of a few applications on black holes and wormholes, it has received little
attention in astrophysics. We earlier self-consistently used NC for the first time to explain
the super-Chandrasekhar WDs [55,56]. We first employed a basic planar NC model and
later used a squashed fuzzy sphere model to modify the EoS of the degenerate electrons
present in a WD. This modification leads to increasing the mass of a WD. If the electrons
solely occupy the ground energy level, i.e., NC is the strongest, the new mass-limit of
WD turns out to be about 2.6 M�. As NC weakens and electrons occupy higher energy
levels, this mass-limit decreases. It is to be noted that the effect of NC is only prominent
at sufficiently high densities and negligible at low densities. Hence, our model supports
the observed bigger WDs, which generally have very low densities, and it does not violate
any observable at such low densities. We have already established that the strength of
NC depends on the length scale of the system. If the inter-particle separation distance is
smaller than the Compton wavelength of the corresponding particle, NC starts becoming
prominent [55]. Furthermore, NC does not have any classical effect, unlike magnetic fields
(i.e., field pressure, tension, etc.), and hence, the problem of instabilities that occurred in
magnetic fields does not arise in the case of NC, making the NC model preferable over that
of magnetic fields.

In this article, we have extrapolated NC to higher densities and investigated for
its effect on the structure of NSs. For simplicity, we have only considered the effects of
neutrons, protons, and electrons, and assumed they are non-interacting. In commutative
physics, it is well known that such an EoS gives the maximum mass of a NS to be about
0.7 M� [1]. However, current observations demand the maximum mass of a non-rotating
NS has to be at least 2 M� [5,12,13]. Once we introduce NC, we have found that even such
non-interacting particles can constitute an EoS which generates NS with a mass of about
2.1 M� and radius 12 km. Such an EoS is perfectly legitimate with the current observation
constraints. Note that we have only considered the case where all the particles are in their
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respective ground energy levels, which is the scenario for the strongest NC. One can, in
principle, consider higher occupancy in the energy levels. However, it only reduces the
mass of the NS, as we have seen in the case of WDs [56], and the maximum mass could
fall below 2 M� and those cases would be unrealistic. In such instances, one must account
for the interactions that may occur between the various particles at these high densities;
which, however, is beyond the scope of this paper. In such cases, even the EoSs, which are
considered non-physical, might not be ruled out if they are affected by NC. In the future,
GW observations may detect numerous massive WDs and NSs [33,62,63], allowing us to
constrain more EoSs and examine the NC effect on these compact objects more closely. If
observed masses and radii of WDs and NSs follow the respective predicted mass–radius
relations based on NC, it would be a direct confirmation for the existence of NC at scales
far away from the Planck scale.
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Abstract: We considered a vacuum polarization inside a galaxy in the eikonal approximation and
found that two possible types of polarization exist. The first type is described by the equation of state
p = ρ/3, similar to radiation. Using the conformally unimodular metric allows us to construct a non-
singular solution for this vacuum “substance” if a compact astrophysical object exists in the galaxy’s
center. As a result, a “dark” galactical halo appears that increases the rotation velocity of a test particle
as a function of the distance from a galactic center. The second type of vacuum polarization has a
more complicated equation of state. As a static physical effect, it produces the renormalization of the
gravitational constant, thus, causing no static halo. However, a non-stationary polarization of the
second type, resulting from an exponential increase (or decrease) of the galactic nuclei mass with
time in some hypothetical time-dependent process, produces a gravitational potential, appearing
similar to a dark matter halo.

Keywords: vacuum energy; dark matter; vacuum polarization; active galaxy nuclei

1. Introduction

Among the various issues of combining general relativity (GR) and quantum mechan-
ics, one encounters the problems of vacuum energy and black holes.

The first problem is to explain why enormous zero-point vacuum energy density
ρv ∼ k4

max (here kmax is the UV energy scale of quantum field theory associated with a hard
3-momentum cutoff of the order of the Planck mass Mp) does not influence a universe
expansion (e.g., see [1–3] and references herein). The second problem is associated with
the loss of unitarity and information inside of the black hole horizon (e.g., see [4,5] and
references therein), that prevents the definition of a pure quantum state.

On the other hand, the basis of GR is a notion of manifold [6], i.e., a metric space,
which could be covered by coordinate maps. When a concrete space–time possessing some
symmetry is considered, one aims to introduce a system of coordinates allowing maximal
covering of this particular manifold. For instance, the Schwarzschild solution only describes
the region outside the horizon, and one has to introduce the Kruskal coordinates to cover
the complete domain [7]. Nevertheless, one could admit an opposite view: restricting the
manifold by sewing all the black hole horizons by some coordinate transformation. This
approach is similar to a case when a man finds a hole in their trousers at the knee. In such a
case, he steps back a little from the hole border and then subtends it into a node with the
help of sewing.

It is allowed using the conformally unimodular (CUM) metric [8], where an ultra-compact
black hole-like astrophysical object appears as a non-singular ball named “eicheons” [9].
Besides, the vacuum energy problem could be partially solved in the CUM metric if one
builds a gravity theory admitting an arbitrary choice of the energy density level [8]. That
is possible because the equations for evolution of the Hamiltonian H and the momentum
constraints P admit not only the trivial solution P = 0, H = 0, but also P = 0, H = const.
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The constant compensates for the main part of the vacuum energy density proportional
to the Planck mass in the fourth degree [8,10]. Residual energy density, remaining after
omitting the main part of the vacuum energy density, is some kind of dark energy and
results in a cosmological picture containing a period of linear evolution in cosmic time [10,11]
followed by late accelerated expansion.

Both dark energy and dark matter (DM) are unknown “substances” appearing in
modern cosmology and astrophysics [12–14]. DM appears not only on cosmological
scales but also on galaxy scales. The lowest scale at which there is evidence for DM is of
≈kpc [15,16]. Dark energy is associated with vacuum energy, whereas DM is expected to
be some kind of a non-baryonic matter weakly interacting with the known particles of the
standard model [17–19]. Nevertheless, there are attempts to explain the DM by a DM-like
behavior of vacuum energy [20], or a vacuum polarization induced by the gravitational
field. Heuristic models of vacuum polarization such as [21–25], which would demand
dipolar fluid [26], anti-gravitation [27] or hydrodynamical phenomena in a vacuum treated
as hypothetical (super-)fluid [28–30], are of interest.

The conventional renormalization procedure of the quantum field theory applied to
vacuum energy near a massive object [31–36] leads to the modification of the gravitational
potential only at small distances of the order of gravitational radius that are unobservable
with current technologies. That is, the renormalization excludes the manifestation of micro-
scale phenomena on the macro-scales (nevertheless, see [20]). This conclusion assumes
the general covariance of the mean vacuum value of stress–energy tensor < 0|Tμν|0 > on a
curved background. However, regarding the vacuum state |0 >, the invariant relatively
general transformation of coordinates does not exist [37]. That raises a question: is it
reasonable to demand the covariance of < 0|Tμν|0 > in the absence of invariant |0 >? If
invariance violation, which implies the existence of “æther”, takes place, then, similar to
condensed-matter physics, DM still could be treated as an emergent phenomenon produced
by vacuum polarization.

The outline of this paper is as follows: In Section 2, we argue the necessity of consider-
ing a vacuum polarization from a cosmological point of view and explain that the CUM
metric is needed to omit the main part of vacuum energy. Section 3 contains a perturbation
formalism in the CUM metric, which is required to introduce a vacuum polarization as
some media, i.e., “æther”. The eikonal approximation is used in Section 4 to obtain the
vacuum energy density and pressure of a quantum scalar field by summating the contri-
butions from the distorted virtual plane waves. The expression for a vacuum equation
of state is obtained. In Section 5, the F-type vacuum polarization, possessing a radiation
equation of state, is used in the Tolman–Volkov–Oppenheimer (TOV) equations for two
substances. This type of vacuum polarization results in a dark halo if eicheon is situated in
the galactic center. In Section 6, the Φ-type of vacuum polarization is considered. This type
of polarization leads to the renormalization of the gravitational constant in the stationary
case. However, it can contribute to the DM halo for the non-stationary processes. In the
Conclusion, we summarize the consequences of two types of vacuum polarization for
galaxies. In the Appendix A, we consider the static and empty universe to demonstrate an
example of an exact solution for the system of perturbations, taking into account the F-type
vacuum polarization.

2. A Spatially Uniform Universe in the CUM Metric

2.1. CUM Metric in the Five Vectors Theory of Gravity

We based our analysis on using the CUM metric, which is the foundation of the so-
called five vectors theory (FVT) [8]. In the course of this analysis, we will use the particular
cases of the CUM metric appropriate to the physics considered.

A general class of CUM metrics is defined as [8]

ds2 ≡ gμνdxμdxν = a2(1 − ∂mPm)2dη2 − γij(dxi + Nidη)(dxj + Njdη), (1)
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where xμ = {η, x}, γij is a spatial metric, a = γ1/6 is a locally defined scale factor, and γ =
det γij, η is a conformal time connected with a cosmic time t through dt = a(η, x)dη. The
spatial part of the interval (1) looks as

dl2 ≡ γijdxidxj = a2(η, x)γ̃ijdxidxj, (2)

where γ̃ij = γij/a2 is a matrix with the unit determinant. The interval (1) is similar formally
to the ADM one [38], but the lapse function is taken in the form of a(1 − ∂mPm), where Pm

is a three-dimensional vector, and ∂m is a conventional partial derivative. In the gravity
theory admitting arbitrary choice of the energy density level [8], there are the Lagrange
multipliers P, the shift function N, and three triads ea to parameterize the spatial metric
γij = ea

i ea
j . Such model was named the FVT of gravity [8]. In contrast to GR, where the

lapse and shift functions are arbitrary, the restrictions ∂n(∂mNm) = 0 and ∂n(∂mPm) = 0
arise in FVT. The Hamiltonian H and momentum Pi constraints in the particular gauge
Pi = 0, Ni = 0 obey the constraint evolution Equations [8]:

∂ηH = ∂i

(
γ̃ijPj

)
, (3)

∂ηPi =
1
3

∂iH, (4)

which admits adding some constant to H. In the FVT frame, it is not necessary that H = 0,
but H = const is also allowed. The particular cases of the CUM metric corresponding to
the Bianchi I model and the spherically symmetric space–time were analyzed in [39,40].

2.2. Uniform, Isotropic and Flat Universe

Let us consider a particular case of (1)

ds2 = a(η)2(dη2 − dx2) (5)

corresponding to a spatially uniform, isotropic and flat universe, where the Friedmann
equations take the form [11,41,42]:

M−2
p e4αρ − 1

2
e2αα′2 = const, (6)

α′′ + α′2 = M−2
p e2α(ρ − 3p). (7)

Here α(η) = log a(η), the prime denotes the derivative with respect to the conformal

time. We use the system of units h̄ = c = 1 and the reduced Planck mass Mp =
√

3
4πG

(in physical units Mp =
√

3h̄c
4πG ). According to FVT [8], the first Friedmann Equation (6)

is satisfied up to some constant, and the main parts of the vacuum energy density and
pressure

ρv ≈ (Nboson − Nf erm)
k4

max
16π2a4 , (8)

pv =
1
3

ρv (9)

do not contribute to the universe expansion because the constant in (6) compensates the
vacuum energy density, whereas there is no vacuum contribution in Equation (7) by virtue
of the equation of state (9).

Bosons and fermions contribute with opposite signs into a vacuum energy den-
sity (8) [43,44]. Here, we do not consider the supersymmetry hypotheses Nboson − Nf erm
due to the absence of evidence for supersymmetric partners to date [45].

For the contributions of massive particles and condensates, we imply the Pauli sum
rules [44,46]. These rules are not fulfilled at this moment due to the incompleteness of the
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standard model of particle physics. Nevertheless, one may hope that they will be satisfied
after possible discoveries beyond the standard model.

Other contributors to the vacuum energy density are the terms depending on the
derivatives of the universe expansion rate [10,41,42,46]. They have the correct order of
magnitude ρv ∼ M2

pH2, where H is the Hubble constant, and explain the accelerated
expansion of the universe driven by the residual energy density and pressure [10,41,42,46]:

ρv =
a′2

2a6 M2
p(2 + Nsc)S0, pv =

M2
p(2 + Nsc)S0

a6

(
1
2

a′2 − 1
3

a′′a
)

, (10)

where S0 = k2
max

8π2 M2
p
. Equation (10) includes the number of minimally coupled scalar fields

Nsc plus two degrees of freedom of the gravitational waves [41]. The massless fermions
and photons do not contribute to (10) [41].

According to (10), the accelerated expansion of universe allows finding a value of the
momentum UV cut-off

kmax ≈ 12Mp√
2 + Nsc

(11)

from the measured value of the universe deceleration parameter and other cosmological
observations [10,41]. It should be noted that the UV cut-off of the 3-momentums kmax in (8)
and hereafter also reflects the diffeomorphism symmetry violation1 (e.g., see [47–52] and
references herein).

3. Perturbations of a Uniform Background in the CUM Metric

In this section, the scalar perturbations2 of the CUM metric (1) are considered [53]:

ds2 = a(η, x)2

(
dη2 −

((
1 +

1
3

3

∑
m=1

∂2
mF(η, x)

)
δij − ∂i∂jF(η, x)

)
dxidxj

)
. (12)

Here the perturbations of the locally defined scale factor are expressed through a
gravitational potential Φ:

a(η, x) = eα(η,x) ≈ eα(η)(1 + Φ(η, x)). (13)

A stress–energy tensor can be written in the hydrodynamic approximation

Tμν = (p + ρ)uμuν − p gμν. (14)

The perturbations of the energy density ρ(η, x) = ρ(η) + δρ(η, x) and pressure
p(η, x) = p(η) + δp(η, x) are considered around spatially uniform values.

Let us introduce new variables

℘(η, x) = a4(η, x)ρ(η, x), (15)

Π(η, x) = a4(η, x)p(η, x) (16)

for reasons which will be explained below. The perturbations of (15), (16) around the uni-
form values can be written now as ℘(η, x) = e4α(η)ρ(η) + δ℘(η, x), Π(η, x) = e4α(η)p(η) +
δΠ(η, x). The 4-velocity u is represented in the form of

uμ = e−α(η){1,∇ v(η, x)
ρ(η) + p(η)

} ≈ {e−α(η)(1 − Φ(η, x)), e3α(η)∇ v(η, x)
℘(η) + Π(η)

}, (17)

where v(η, x) is a scalar function. Expanding all perturbations into the Fourier series
δ℘(η, x) = ∑k δ℘k(η)eikx... etc. results in the equations for the perturbations:
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−6Φ′
k + 6α′Φk + k2F′

k +
18
M2

p
e−2α ∑

i
vki = 0, (18)

−18α′Φ′
k − 6(k2 + 3α′2)Φk + k4Fk +

18
M2

p
e−2α ∑

i
δ℘ki = 0, (19)

−12Φk − 3(F′′
k + 2α′F′

k) + k2Fk = 0, (20)

−9(Φ′′
k + 2α′Φ′

k)− 9(2α′′ + 2α′2 + k2)Φk + k4Fk − 9
M2

p
e−2α

(
∑

i
3δΠki − δ℘ki

)
= 0, (21)

where the index i denoting the kind of substance has been introduced. It is remarkable
that, as a result of the choice of the variables (15)–(17), the unperturbed values ρ and
p do not appear in the system (18)–(21). This allows us to avoid the influence of the
large uniform energy density and pressure (8) and (9) on the evolution of perturbation.
Equations (18) and (19) are consequences of the Hamiltonian and momentum constraints,
while Equations (20) and (21) are equations of motion. For consistency of the constraints
with the equations of motion, every kind of fluid has to satisfy the continuity and Euler
equations:

α′(δ℘ki − 3δΠki)− (3Πi − ℘i)(Φ′
k − 4Φkα′) + 4℘′

iΦk − δ℘′
ki + k2vki = 0, (22)

Φk(℘i − 3Πi) + δΠki + v′ki = 0. (23)

Equations (18)–(23) have the same form as in GR, but for the consistency of Hamilto-
nian and momentum constraints (18) and (19) with the equations of motions (20)–(23), it
is sufficient for the first Friedmann Equation (6) to be valid up to some constant. Namely,
for such consistency, it is necessary that the differentiation of constraints with the subse-
quent substitution of the second-time derivatives from the equations of motion (7), (20)–(23)
leads to identical equalities. This consistency is a feature of using the CUM metric, in par-
ticular, and the FVT theory, in general. In any other metrics different from CUM (that is,
in a frame of GR), the first Friedmann Equation (6) with the const = 0 in the right hand
side is needed for consistency of the constraints and the equations of motion.

4. Vacuum as a Medium: The Eikonal Approximation for Quantum Fields

Generally, a vacuum could also be considered as some fluid (e.g., see [28–30]),
i.e., “æther” [54], but with some stochastic properties along with its elastic ones [42,46,55].
Here we are interested in its elastic properties only. In Refs. [42,46], the speed of sound for
the scalar waves of vacuum polarization c2

s = p′v(η)
ρ′v(η)

was introduced, where pv and ρv are
given by (10). That is the only heuristic conjecture.

Here, the actual calculations of the vacuum density and pressure on the curved back-
ground are performed in the eikonal approximation. The last one has a very transparent
background. In the Minkowski’s space–time, the virtual plane waves penetrate space–
time and, to obtain a vacuum energy density, we must summarize the contributions of
every wave. In the curved space–time, it is necessary to summarize the contributions of
the distorted waves to obtain the spatially non-uniform energy density and pressure. It
should be mentioned that the eikonal approximation was successfully used in high energy
physics [56] and even in gravity [57], where the small-angle scattering amplitude of two
massive particles were calculated in all orders on gravitational constant G.

A massless scalar field in the external gravitational field obeys the equation

1√−g
∂μ

(√−ggμν∂ν

)
φ = 0. (24)
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Using the gauge N = 0, P = 0 in (1) reduces the CUM metric to

ds2 = a2(dη2 − γ̃ijdxidxj), (25)

so that Equation (24) takes the form

φ′′ + 2
a′

a
φ′ − 1

a2 ∂i

(
a2γ̃ij∂j

)
φ = 0. (26)

This leads to

χ′′ − χ
a′′

a
− γ̃ij∂i∂jχ − ∂iγ̃

ij∂j χ +
χ

a

(
γ̃ij∂i∂ja + ∂ja∂iγ̃

ij
)
= 0 (27)

after the change of variables φ = χ/a. Further, in the terms of the metric perturbations Φ
and F, we come to

χ′′ − Δχ + V̂χ = 0, (28)

where a “potential” operator V̂ has the form

V̂ = −α′′ − α′2 − 2α′Φ′ − Φ′′ + ΔΦ +
1
3

ΔF Δ − ∂2F
∂xj∂xi

∂2

∂xj∂xi −
2
3
(∇(ΔF)) ·∇ . (29)

A quantization of the scalar field in terms of creation and annihilation operators
implies [37]

χ̂(η, x) = ∑
k

uk(η, x)âk + u∗
k(η, x)â+k , (30)

where the function uk satisfies Equation (27), and the orthogonality condition is [37]∫
(uk∂ηu∗

q − u∗
k∂ηuq)d3x = iδkq. (31)

A solution of Equations (27) and (29) for the functions uk can be written in the eikonal
approximation

uk(η, x) =
1√
2k

exp(−iηk + ikx − iΘk(η, x)), (32)

which leads to the equation for the eikonal function

2kΘ′
k +

(
2kmγ̃mj − i∂mγ̃mj

)
∂jΘk +

1
a
(
a′′ − γ̃ij∂i∂ja − ∂ja∂iγ̃

ij)+
ikj∂mh̃mj − kmkjh̃mj = 0, (33)

and, according to Equations (12) and (13), is written in the terms of the metric perturbations
Φ(η, x), F(η, x):

kΘ′
k + k∇Θk(η, x) =

1
2

Vk, (34)

where

Vk(η, x) = −2α′Φ′ − Φ′′ + ΔΦ + kikj∂i∂jF − k2

3
ΔF. (35)

A solution of (34) can be obtained in the form

Θk(η, x) =
1
2k

∫ η

η0

Vk

(
τ, x +

k
k
(τ − η)

)
dτ, (36)

42



Universe 2022, 8, 456

where the lower integration limit η0 depends on the cosmological model. In particular, it
could be 0 or −∞. The mean value of the stress–energy tensor of a massless scalar field

T̂μν = ∂μ φ̂∂νφ̂ − 1
2

gμνgαβ∂α φ̂∂βφ̂ (37)

can be averaged over the vacuum state and compared with the hydrodynamic expression
(14). This gives

δ℘(η, x) = e2α(η) < 0| φ̂
′2

2
+

(∇φ̂)2

2
|0 >≈ 1

2 ∑
k

α′Φ′

k
+ Θ′

k −
k∇Θk

k
, (38)

δΠ(η, x) = e2α(η) < 0| φ̂
′2

2
− (∇φ̂)2

6
|0 >≈ 1

2 ∑
k

α′Φ′

k
+ Θ′

k +
k∇Θk

3k
, (39)

∇v = −e2α(η) < 0|φ̂′∇φ̂|0 >≈ ∑
k

k Θ′
k

k
−∇Θk − α′∇Φ

k
, (40)

where only spatially non-uniform parts of the vacuum averages are implied in the second
equalities on the right-hand side of (38)–(40). The last depends on the metric perturbations
F(η, x) and Φ(η, x) contained in Equations (12) and (13). The final equalities in (38)–(40)
result from calculations in the eikonal approximation (32).

Considering the quantity δ℘(η, x) − 3δΠ(η, x) and using Equations (34) and (35),
result in

δ℘(η, x)− 3δΠ(η, x) = −∑
k

k∇Θk
k

+ Θ′
k +

α′Φ′

k
=

−∑
k

1
2k

Vk +
α′Φ′

k
= ∑

k

1
2k

(
Φ′′ − ΔΦ − kikj∂i∂jF +

k2

3
ΔF

)
=

Nsc

8π2 k2
max(Φ

′′ − ΔΦ), (41)

where summation has been changed by integration ∑k → ∫
d3k/(2π)3 and it is taken into

account that
∫

k<kmax
1
2k

(
kikj − k2

3 δij

)
d3k = 0. The number Nsc of the scalar fields minimally

coupled with gravity has been introduced as in (10).
In consequence of Equation (41), two types of spatially non-uniform vacuum polariza-

tion exist. Namely, the F-polarization has a radiation-type equation of state3

δΠvF(η, x) =
1
3

δ℘vF(η, x), (42)

whereas the Φ-polarization has an equation of state

δΠvΦ(η, x) =
1
3

δ℘vΦ(η, x)− Nsc

24π2 k2
max(Φ

′′ − ΔΦ). (43)

Both types of spatially non-uniform vacuum polarizations correspond to the uniform
component of (8), (9), whereas the uniform polarization given by (10) has no non-uniform
counterpart with an accuracy of our consideration, i.e., in the second order on derivatives.
It must be emphasized that it is easy to obtain the equation of state (9) for a spatially
uniform main part of the vacuum energy density, but it is not so trivial to do that for a
spatially non-uniform vacuum energy density.

In principle, the system (18)–(23), (42) and (43) is a fundamental system allowing
to consider a broad range of cosmological and astrophysical phenomena including CMB
and BAO. However, below, we restrict ourselves to a galactic DM, which scales from kpc
to Mpc.
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5. Galactic DM as a F-Vacuum Polarization

As it was shown in Section 4, the F-component of vacuum polarization has the equation
of state analogous to radiation (see Equation (9)). In this sense, it is similar to the uniform
part of vacuum energy density in Equation (8).

At the same time, it is difficult to determine the concrete value of the non-uniform
vacuum energy density because, according to (38), it contains an eikonal function Θk, which
is determined by the integral (36). For instance, one has Θk(η, r) = ∑q Θ̃k,q(η)eiqr and
from (35), (36) finds

Θ̃k,q(η) =
1
k

(
1
3

k2q2 − (qk)2
) ∫ η

η0

Fq(τ)eikq(τ−η)/kdτ. (44)

Calculation of the integral (44) requires one to know the full evolution history of Fq(τ).
It is simpler to use only the fact that the F-contribution to the vacuum polarization has the
equation of state

pvF = ρvF/3. (45)

The distributions of matter–energy density and potential are not determined for the
static case in the first order on perturbations (see Appendix A). However, it is possible to
consider a nonlinear heuristic model treating the F-vacuum as an abstract substance with
the above equation of state. The model consists of a core of some incompressible substance,
modeling a baryonic-like matter placed on the radiation background, i.e., the F-polarized
vacuum or “dark radiation”, which interacts with this core only gravitationally. Below, we
find a spherically symmetric solution for an incompressible substance with the constant
energy density ρ1 on the background of radiation density ρ2.

5.1. Equations in the CUM Metric

The CUM metric in the case of spherical symmetry acquires the form [9]

ds2 = a2(dη2 − γ̃ijdxidxj) = e2α
(

dη2 − e−2λ(dx)2 − (e4λ − e−2λ)(xdx)2/r2
)

, (46)

where r = |x|, a = exp α, and λ are functions of η, r. The matrix γ̃ij with the unit determi-
nant is expressed through λ(η, r). The interval (46) could be also rewritten in the spherical
coordinates:

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ (47)

to give
ds2 = e2α

(
dη2 − dr2e4λ − e−2λr2

(
dθ2 + sin2 θdφ2

))
. (48)

Restricting ourselves to static solutions, the equations for the functions α(r) and λ(r)
are written as [9]

H = e2α

(
− e2λ

6r2 + e−4λ

(
1

6r2 − 4
3

dα

dr
dλ

dr
+

1
6

(
dα

dr

)2
+

2
3r

dα

dr
+

1
3

d2α

dr2 +

7
6

(
dλ

dr

)2
− 5

3r
dλ

dr
− 1

3
d2λ

dr2

)
+

e2α

M2
p

∑
j

ρj(r)

)
= const, (49)

d2α

dr2 = −3e6λ

r2 +
3
r2 − 8

dα

dr
dλ

dr
+ 7

(
dα

dr

)2
+

10
r

dα

dr
+ 3

(
dλ

dr

)2
− 6

r
dλ

dr
+

3
e2α+4λ

M2
p

∑
j

ρj − 3pj, (50)

44



Universe 2022, 8, 456

d2λ

dr2 = −5e6λ

r2 +
5
r2 − 18

dα

dr
dλ

dr
+ 12

(
dα

dr

)2
+

18
r

dα

dr
+ 8

(
dλ

dr

)2
− 14

r
dλ

dr
+

6
e2α+4λ

M2
p

∑
j

ρj − 3pj, (51)

where Equation (49) is the Hamiltonian constraint, which could be rewritten in a form
containing no second derivatives using Equations (50) and (51):

H = e2α−4λ

2r2

(
−3r2

(
dα
dr

)2
+ 4r dα

dr

(
r dλ

dr − 1
)
−
(

r dλ
dr − 1

)2
+ e6λ

)
+ 3e4α

M2
p

∑j pj = const. (52)

Each kind of substance has to satisfy

d pj

dr
+ (pj + ρj)

dα

dr
= 0. (53)

A vacuum solution of Equations (49)–(51) corresponding to the point massive particle
was considered in [9] where an absence of evidence for a horizon was demonstrated. Let
us consider another solution, corresponding to the substance of a radiation-type filling all
the space. This particular solution is written as

α(r) = ln r − 1
6

ln 7, λ(r) =
1
6

ln 7, (54)

and, under (45), it follows from (53):

d
dr

(
ρe4α

)
= 0, ρ =

1
2

r−4 7−1/3, (55)

if we use (54) and (49) with const = 0 in the right hand side of Equation (49). Here, ρ
is measured in the terms of r−2

g M−2
p , and r is measured in the units of rg, which is not

a gravitational radius, but some arbitrary spatial scale. It should be noted that, for (45),
Equations (50) and (51) look similar to those for an empty space, whereas Equation (49)
could also be considered as that for an empty space, but with const �= 0. Thus, in the
CUM metric of the FVT where the Hamiltonian constraint is satisfied up to some constant,
one could alternatively consider the F-vacuum polarization solution similar to that for an
empty space, but with some non-zero value of const in Equations (49) and (52).

Since the solution (55) is singular, it could be treated as unphysical. To obtain a realistic
model, one has to consider at least two substances: a compact object in the center consisting
of a substance with a constant energy density and a substance with the radiation equation
of state (42). We must emphasize the importance of such a dense kernel for obtaining
non-singular vacuum polarization of F-type.

5.2. Equations in the Schwarzschild-Type Metric

It is more convenient to begin a consideration from the Schwarzschild-type metric [58]

ds2 = B(R)dt2 − A(R)dR2 − R2dΩ, (56)

where Equations (54) and (55) correspond to the well-known solution [58]

ρ2(R) =
1

14R2 , (57)

obeying the TOV Equation [59,60] for a radiation fluid

ρ′2 = −3ρ2
(
m + 4πR3ρ2/3

)
πR

(
R − 3m

2π

) (58)
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in all the spatial region R ∈ (0, ∞), where m(R) is defined by

m′(R) = 4πR2ρ2. (59)

Again, ρ2 is measured in the terms of r−2
g M2

p, and R is measured in the units of rg.
The solutions (57) and (55) are singular at R = 0 and, thereby, non-physical. The situation
changes cardinally in the presence of a core consisting of incompressible matter. More
exactly, in the presence of incompressible matter of low density ρ1, the corresponding
solution remains singular. However, if ρ1 > 1

2
( 8

9
)
, a solid ball in the metric (48) looks

similar to a shell over rg in the metric (56) [9] that is shown in Figure 1a. Here, we again
imply the gravitational radius rg as a measure of the distances, but calculate it taking into
account only an incompressible matter. Such a matter occupies a region between Ri and
R f , where

R f =
3

√
R3

i +
1

2ρ1
(60)

in the units of rg. Here the energy density ρ1 is constant and measured in the terms of
r−2

g M2
p, where the gravitational radius is defined as rg = 3m1

2πM2
p

and m1 = 4
3 πρ1(R3

f − R3
i ).

A compact object of such a type arising in FVT is known as “eicheon” [9] and replaces a
black hole of GR. The appearance of eicheon in the center makes the solution (58) to be
non-singular because it allows for setting the finite boundary conditions for radiation.

Figure 1. (a) Schematic picture of an eicheon in the metric (56), taking into account a vacuum
polarization in the form of dark radiation; (b) an eicheon in the metric (48) looks similar to a solid
sphere with a “dark radiation” of the finite energy density in the center.

To explain this, let us consider two fluids in the metric (56) obeying the TOV equations:

p′1 = −3(p1 + ρ1)
(
m + 4πR3(p1 +

ρ2
3
))

4πR
(

R − 3m
2π

) , (61)

ρ′2 = −3ρ2
(
m + 4πR3(p1 +

ρ2
3
))

πR
(

R − 3m
2π

) , (62)

where the function m(R) satisfies

m′(R) = 4πR2(ρ1 + ρ2). (63)
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For ρ1 > 1
2
( 8

9
)
, the above equations hold for the internal range Ri < R < R f , where

Ri > rg, and the border of a region, occupied by ρ1, is defined through (60).
The pressure of incompressible fluid must turn to zero at the edge of the range filled

by matter R = R f , and it is a boundary condition for p1. Then, one could set an amount
of radiation at R = R f and solve the system of equations in a region of {Ri, R f } assuming
m(Ri) = 0. A solution allows determining m(R f ), and, using this value as an initial
condition, one should solve the equation for the radiation fluid (58) in an outer region of
{R f , ∞}. The metric obtained by solving the equations is [58]

1
B

dB
dR

= − 2
p1 + ρ1

dp1

dR
= − 2

p2 + ρ2

dp2

dR
, (64)

d
dR

(
R
A

)
= 1 − 6 R2(ρ1 + ρ2). (65)

Comparing the metrics (46) and (56) leads to relation for the radial coordinates R and
r [9]

dR
dr

=
( r

R

)2 B3/2

A1/2 , (66)

where the dependencies B(R(r)) and A(R(r)) are implied. Equation (66) has to be in-
tegrated with the initial condition R(0) = Ri, which means that Ri in the metric (56)
corresponds to r = 0 in the metric (46). Knowing R(r) allows plotting ρ2(R) shown in
Figure 2a as the r– dependent function ρ2(R(r)) (Figure 2b).

rg rg

Figure 2. (a) ρ2–nergy density of the vacuum polarization in a form of “dark radiation” in the
coordinates R > Ri calculated for the eicheon parameters ρ1 = 7M2

pr−2
g , Ri = 1.001rg, R f = 1.024rg,

ρ2(R f ) = 0.002M2
pr−2

g . Red part of the curve corresponds to Ri < R < R f , i.e., lies inside an
eicheon. (b) ρ2 calculated in the coordinates r of the metric (48). Red part of the curve corresponds to
0 < r < r f .

Let us consider the motion of a test particle on a circular orbit in the metric (56).
The angular velocity on a circular orbit is calculated as [58]:

dφ

dt
=

√
1

2R
dB
dR

. (67)

A spatial interval followed by a particle along the circular orbit is given by dl = Rdφ =

R dφ
dt dt. To obtain the rotation velocity observed by an observer situated at rest near the

moving particle, one has to divide the spatial interval over the proper time
√

g00dt =
√

Bdt
of such an observer [61]:

vrot =
dl√
Bdt

=

√
R

2B
dB
dR

=

√
− R

p2 + ρ2

dp2

dR
=

1
2

√
− R

ρ2

dρ2

dR
. (68)

A qualitative example of the general form of the numerical solution for the rotation
velocity is shown in Figure 3. Although the shape of the curve resembles observational
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data, the asymptotic of the rotation curve corresponds to vrot ∼ 1/
√

2 ≈ 0.71. This very
large velocity (in units of speed of light) corresponds to asymptotic value ρ2 ∼ R−2 in (57),
whereas, in the reality, the rotation velocities of galaxies are vrot ∼ 100 − 300 km/s ∼ 0.001.
To obtain smaller velocities, one has to diminish the density of radiation in the center of
eicheon, i.e., at r = 0 in the metric (48) or R = Ri in the metric (56). For central radiation
density of ρ2 = 4.6 × 10−27 M2

pr−2
g = 9.6 × 10−24 g/cm3, one has the rotation curve shown

in Figure 4. That is a pure “dark radiation” contribution without the galaxy bulge or disk.
It increases linearly with the distance and corresponds to the rising part of the general
curve shown in Figure 3. In the logarithmic scale, one could see (Figure 5) together the
contribution of the eicheon of the mass of 4.2 × 106 M⊙ in the center of the Milky Way (the
left side of the curve) and the impact of the dark radiation (the right side of the curve),
whereas the effects of the galactic bulge and disk responsible for the intermediate region are
not taken into account. However, it is expected that bulge and disk attraction will influence
the F-type vacuum polarization in such a way that the curve in Figure 4 will be not pure
linear but slightly bent. We do not gain insight into such details because our goal is to
show that the F-type vacuum polarization could arise only around a “sewed” black hole,
i.e., around eicheon.

We emphasize that the presented consideration is heuristic because, although the
linear system for the perturbation and the eikonal approximation for vacuum polarization
seems reasonable, we use its results in the nonlinear TOV model. Another thing is that we
set the density of radiation (the F-type vacuum polarization) in the center of eicheon, i.e., at
r = 0, of R = Ri empirically but not calculate it from the first principles, i.e., we use only
the equation of state obtained from the calculations in the eikonal approximation.

rg

v

Figure 3. The general form of a model rotational curve for the eicheon parameters specified in the
caption to Figure 2.

48



Universe 2022, 8, 456

rg

v

Figure 4. The rotational curve for the eicheon parameters ρ1 = 100M2
pr−2

g , Ri = 1.0001rg and
ρ2(R f ) = 4 × 10−27 M2

pr−2
g , where rg is defined by an eicheon mass. In the physical units, ρ1 =

100 3c6

16πG3m2·
≈ 2.1 × 105 g/cm3. The points and error bars correspond to the Milky Way rotational

curve from [62].

v

Figure 5. The rotational curve of eicheon with the mass of Sgr A∗ with taking into account the
vacuum polarization of F-type. The logarithmic scale is used and the points correspond to the Milky
Way rotational curve from [62]. The eicheon parameters are given in the caption to Figure 4.

6. Vacuum Polarization of Φ-Type

In Sections 3 and 4, the linear system of Equations (20)–(23) and (41) was deduced,
which describes the evolution of perturbation by taking into account vacuum polarization
(see Equation (41) and Appendix A for an example of an exact solution). Galaxy formation
is a complex nonlinear process that develops over cosmological time scales. Generally,
the linear system is insufficient to describe the galaxy evolution. However, one could
create a heuristic picture, setting an approximate profile of matter near the galaxy center,
and obtain a gravitational potential produced by vacuum polarization obeying the linear
equations. Below we will discuss that the observed galaxy halo could originate from a very
fast (compared to the cosmological times) change of the galactic nucleus mass. We will
neglect a cosmological evolution assuming α(η) = 0. This reduces the above system of the
equations to

−12Φq − 3F′′
q + q2Fq = 0, (69)

−9Φ′′
q − 9q2Φq + q4Fq +

9
M2

p

(
∑

i
δ℘ki − 3δΠqi

)
= 0. (70)

δ℘qv − 3δΠqv =
Nsc

8π2 k2
max(Φ

′′
q + q2Φq), (71)
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where the last equation holds for the vacuum polarization of Φ–type and is denoted by
i = v. Substituting Φq from Equation (69), and δ℘qv − 3δΠqv from Equation (71) into
Equation (70) gives the equation

3
(

kmax
2 − 8π2Mp

2
)(

3F′′′′
q + 2q2F′′

q

)
− q4Fq

(
3Nsckmax

2 + 8π2Mp
2
)
= 288π2δ℘q e f f (η), (72)

where an effective “density” of all the substances except vacuum is denoted as

δ℘q e f f (η) = ∑
i �=v

δ℘ki − 3δΠqi. (73)

Equation (72) allows for developing a simple model: setting profile and time depen-
dencies of the quantity ℘q e f f (η) empirically determines the metric perturbation Fq and Φq
using (69).

Let us, for simplicity, take ℘q e f f (η) in the form of

℘q e f f (η) = m Z(q)eη/T , (74)

where m is a “mass” of the object at η = 0, Z(q) is a form-factor and T is some typical
time of the “mass” growth. The model implies some rapid processes such as accretion
occurring around the massive object, i.e., around the galaxy nucleus. Substitution of the
expression (74) into Equation (72) allows finding Fq(η) = F̃qeη/T , where

F̃q = − 288π2T4mZ(q)

3Nsckmax
2(q4T4 − 2q2T2 − 3) + 8π2Mp

2(q2T2 + 3)2 , (75)

and Equation (69) give Φq(η) = Φ̃qeη/T :

Φ̃q = − 24π2T2(q2T2 − 3
)
mZ(q)

3Nsckmax
2(q4T4 − 2q2T2 − 3) + 8π2Mp

2(q2T2 + 3)2 . (76)

At T → ∞, the corresponding static limit is

Φ̃q = − 24π2mZ(q)
(3Nsckmax

2 + 8π2Mp
2)q2

, (77)

which implies that the vacuum polarization leads to the renormalization (increasing) of the
Planck mass, i.e., decreasing the gravitational constant. In particular, using the value (11)
obtained from the cosmological observations [10] gives

M2
p ren =

(
1 +

54Nsc

π2(2 + Nsc)

)
M2

p, Gren = G/
(

1 +
54Nsc

π2(2 + Nsc)

)
. (78)

It seems that the vacuum polarization, in some sense, acts similar to antigravitation,
and the gravitational constant Gren appearing in Newton’s law has to differ from the
gravitational constant G in the Friedmann equations for a uniform universe. Although the
gravitational constant’s renormalization does not influence the cosmological balance of
the different kinds of matter expressed in the units of the critical density M2

pH2, it should
be taken into account for comparison with the directly measured (for instance, utilizing
luminosity) density. Numerically, Nsc = 2 gives Gren ≈ 0.27 G.

Invariant Potentials and Rotational Curves

Astrophysicists express the results of observations in terms of gauge-invariant quan-
tities, which are not dependent on a system of coordinates. The potentials Φ(η, x) and
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F(η, x) are not invariant relatively to the infinitesimal transformations of coordinates and
time of the following type

t = η + ξ1(η, x), r = x +∇ξ2(η, x), (79)

where ξ1(η, x) and ξ2(η, x) are some small functions. Usually, the potentials Φinv(η, x)
and Ψinv(η, x) are introduced [63–65] which are invariant relatively transformations (79).
The potentials correspond to the metric

ds2 = a2(η)
(
(1 + 2Φinv(η, x))dη2 − (1 − 2Ψinv(η, x))δijdxidxj

)
(80)

and are expressed through Φ and F as

Φq inv(η) = Φq(η) +
a′(η)F′

q(η) + a(η)F′′
q (η)

2a(η)
= Φq +

Fq

2T2 , (81)

Ψq inv(η) = − a′(η)F′
q(η)

2a(η)
− Φq(η) +

1
6

q2Fq(η) = −Φq(η) +
1
6

q2Fq, (82)

where the final equalities at the right-hand side of (81), (82) hold for our case of a = const,
and Φ, F ∼ exp(η/T). Using (75), (76) gives

Φ̃q inv = − 24π2T2(q2T2 + 3
)
m Z(q)

3Nsc kmax
2(q4T4 − 2q2T2 − 3) + 8π2Mp

2(q2T2 + 3)2 , (83)

and Ψ̃q inv = Φ̃q inv. Thus, we obtained the Fourier transformation of the time-dependent
gravitational potential Φq inv = Φ̃q inveη/T , allowing us to define

Φinv(x, η) =
eη/T

(2π)3

∫
Φ̃q inv eiqxd3q. (84)

To obtain a concrete empirical formula, one has to set the form factor Z(q), for instance,
using the Gaussian profile δ℘̃e f f (x) = π−3/2m D−3 e−x2/D2

. The spatial dependence of
the potential (84) at the present time, i.e., η = 0, allows us to find the rotational velocity
dependence on the spatial coordinate

vrot(r) =

√
−r

dΦinv(r)
dr

. (85)

Here, the potential (84) is time-dependent, and actually, there are no pure rotational
curves because the radial velocities are present. Here, for an estimation, we discuss
only tangential velocity. The parameters m, D and Z(q) are adopted to produce a typical
rotational curve without an DM (blue curve in Figure 6), then vacuum polarization produces
a halo corresponding to black curve in Figure 6.

The rotational curve has some similarities with the conventional picture at Nsc = 2,
but in the conventional picture, the contribution of the galactic nucleus, bulge and disk
are taken into account. We include all these components into the Gaussian form factor of
galactic baryonic skeleton and call it “nucleus” in our oversimplified picture. Then, we
permit it to increase (or decrease) with time and obtain vacuum polarization caused by
this process.
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v

Figure 6. The lower blue curve corresponds to the contribution of a galactic nucleus of baryonic
matter, including specifically nucleus, bulge and disk. The upper black curve takes the vacuum
Φ-polarization into account. The form factor of a galaxy nuclei is taken as Z(q)− exp

(−λq2), λ = 1,
the accretion rate is of T = 10, i.e., 10 kPc, which corresponds to 32,000 years. The number of the
minimally coupled scalar fields is of Nsc = 2, and k2

max = 8M2
pπ2 98

100 is assumed.

7. Conclusions

We have considered two types of vacuum polarization corresponding to the F- and
Φ-types of metric perturbations in the CUM frame.

The F-type of spatially non-uniform vacuum polarization has the radiation-type
equation of state. In the first order on perturbations, it is impossible to determine a form of
the static gravitational potential around an astrophysical object. In the frameworks of a
nonlinear heuristic model using the TOV equations for matter and radiation, it was found
that the solution, which is non-singular at r = 0, only arises if an eicheon is present in the
galaxy’s center. Eicheon is an analog of the black hole in GR and looks similar to an empty
“nut” in the Schwarzschild-type metric. From this point of view, we assume that DM, as a
vacuum polarization, arises only in the galaxies having an eicheon (i.e., a “black hole-like”
object) in the center. Namely, the eicheon conjecture allows us to convert a singular solution
for pure radiation into a non-singular physical one. Galaxies without an eicheon in the
center (e.g., diffuse galaxies) do not have a DM halo4.

Under the oversimplified assumption of an isolated galaxy, the dark halo, in terms of a
test particle’s rotation velocity, always increases with the distance from the galaxy’s center.
Decreasing the halo could occur only due to a violation of the galaxy’s isolation, i.e., at the
distance of ∼2 Mpc. It should be noted that the Andromeda galaxy is only 0.7 Mpc away.
Generally, the galaxies tend to form clusters. These evident facts urge the development of a
model of interacting galaxies with vacuum polarization.

For the Φ-type of vacuum polarization, the renormalization of the gravitational con-
stant (or Planck mass) has been found. This means that the gravitational constant found
in the Earth, the Solar System, and galaxy observations is not equal (approximately four
times less) to the gravitational constant used in cosmology to describe a spatially uniform
universe. This fact does not influence the balance of the different kinds of matter in cos-
mology if one measures them in M2

pH2. Nevertheless, it increases the directly counted
matter contribution fourfold, i.e., the luminous baryonic matter has to contribute 3.7-times
stronger into the cosmological Friedmann equations.

The second effect of the Φ-type polarization is the creation of the dark halo in the
non-stationary process. It is found that the time-dependent evolving mass of the galaxy
nuclei produces the gravitational potential of the dark halo-type. This point urges a more
careful observational investigation of the possible non-stationary origin of the dark halo.
However, the required time for the galaxy nuclei mass growth seems very short: ∼32,000
years. In such a situation, clarifying the physical status of the possible accretion of vacuum
energy and vacuum condensates discussed in [68–70] is very desirable. In particular, it
was shown in [68,69] that accretion of substance with the equation of state of p = −ρ (e.g.,
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Higgs or QCD condensates) decreases a black hole mass, while accretion of the ordinary
substance with radiation equation of state increases a black hole mass.

Investigations of these processes in the CUM metric with the applications to an eicheon
are waiting. However, one may suggest some scenarios of a galaxy center evolution.
Accretion by an eicheon could be more complicated than a traditional black hole. At some
stage, eicheon could accrete more “dark radiation”, increasing its mass, but at some stage,
it could accrete more condensates, decreasing its mass. One could associate this with the
fast processes with a typical time of ∼32,000 years. Both growth of the galaxy’s center
mass and its lowering produce a halo. Thus, a galaxy center is reminiscent of “Alice from
Wonderland” [71], which takes a bit of a mushroom from one side and rises, then takes a
bit from another side and shrinks. These processes can interlace in a galaxy center.

To summarize, it is possible to obtain an equation of the state of vacuum polarization,
which is some kind of “æther”. It is challenging to find the “amount” of æther because it
depends on the object’s entire history due to the nonlocality of the vacuum state on the
curved background. Here, we have adjusted this “amount” to astrophysical observations.
Thus, the obtained final results have, in some sense, a heuristic nature.
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Appendix A

We emphasize that the presented consideration is heuristic because, although the
linear system for the perturbation and the eikonal approximation for vacuum polarization
seem trustable, we use its results in the nonlinear TOV model. Another point is that we
empirically set the density of radiation (the vacuum polarization of F-type) in the center of
an eicheon, i.e., at r = 0, of R = Ri. That is, we do not calculate it from the first principles,
i.e., we use only the equation of state from the eikonal calculations.

Let us consider the system of Equations (18)–(23) for an empty space–time with the
vacuum polarization of F-type in the form of radiation fluid. For e4αρ = const, the constant
in Equation (6) can be chosen in such a way that there is no evolution of the scale factor,
i.e., α = 0 (a static universe).

For the substance obeying (45), Equations (23) and (22) are reduced to

−δ℘′
q vF + q2vq vF = 0, (A1)

δΠq vF + v′q vF = 0, (A2)

and have the solution

δ℘q vF = c1 sin
qη√

3
+ c2 cos

qη√
3

, (A3)

vq vF =
c2 cos

(
ηq√

3

)
− c1 sin

(
ηq√

3

)
√

3q
. (A4)
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Let us also place into this universe some amount of a dust matter δ℘q m obeying
δΠq m = 0 and without a uniform component, i.e., Πm = 0, ℘m = 0. The complete solution
of the system (18)–(23) takes the form

δ℘q m(η) = − 1
36

q4Mp
2(c6η + c5), (A5)

vq m − c6

36
q2Mp

2, (A6)

Fq(η) = c6η + c5 − 3q−4Mp
−2
(

sin
(

ηq√
3

)(
c4q2Mp

2 + 2
√

3c1ηq + 15c2

)
+

cos
(

ηq√
3

)(
q
(

c3qMp
2 − 2

√
3c2η

)
+ 15c1

))
, (A7)

Φq(η) =
q2

12
(c6η + c5)− 1

2M2
pq2

(
6 sin

(
ηq√

3

)(
c4Mp

2q2 + 2
√

3c1ηq + 9c2

)
+

cos
(

ηq√
3

)(
q
(

c3Mp
2q − 2

√
3c2η

)
+ 9c1

))
.(A8)

Then, in accordance with (38), the energy density for a F-vacuum polarization is
expressed approximately as

δ℘vF(η, x) =
1
2 ∑

k
−k∇Θk

k
+ Θ′

k , (A9)

which gives

δ℘q vF(η) = −2πkmax
4
∫ η

−∞

((
9 − 4q2(η − τ)2

)
sin(q(η − τ)) +

q(η − τ)
(

q2(η − τ)2 − 9
)

cos(q(η − τ))

)
Fq(τ)

3q(η − τ)4 dτ. (A10)

If we consider this equation as an additional equation to the system (18)–(23), we can
find that the constants c1, c2, c3, c4, c6 have to be zero and only c5 term is permitted because

∫ η

−∞

((
9 − 4q2(η − τ)2) sin(q(η − τ)) + q(η − τ)

(
q2(η − τ)2 − 9

)
cos(q(η − τ))

)
3q(η − τ)4 dτ = 0.

Thus, the static gravitational potential

Φq =
q2c5(q)

12
(A11)

of arbitrary form (because c5 could be function of q) is permitted in the framework of a
linear system of the equations considered.

Notes

1 The CUM metric implies a preferred time foliation of space–time. Using the CUM metric per se does not predict some visible
effects in the Solar System and all satellite experiments if their results are expressed in a gauge invariant way. At the same
time, the use of the UV-cutoff at kmax implies the Lorentz invariance violation. In the local particle physics experiments, it leads
to effects of the order of ∼ ε/kmax ∼ ε/Mp, where ε is the typical energy of a particle, but certainly does not produce some
restrictions for Earth and satellite experiments. However, as it will be shown below, the consideration of vacuum physics using
CUM and kmax could produce observable effects in a galaxy scale.

2 We consider only scalar perturbations because the vector and tensor perturbations do not perturb the matter.
3 For instance, see a DM vacuum model with the equation of state “running” from radiation-type to dark energy-type [20].
4 The diffuse galaxy NGC1052-DF2 [66] seems to contain no DM, whereas another diffuse galaxy Dragonfly 44 is supposed to

contain a lot of DM [67]. However, for the last, we do not know for definite whether or not there is an eicheon in its center.

54



Universe 2022, 8, 456

References

1. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [CrossRef]
2. Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [CrossRef]
3. Mostepanenko, V.M.; Klimchitskaya, G.L. Whether an Enormously Large Energy Density of the Quantum Vacuum Is Catastrophic.

Symmetry 2019, 11, 314 . [CrossRef]
4. Unruh, W.; Wald, R. Information loss. Rep. Progr. Phys. 2017, 80, 092002. [CrossRef] [PubMed]
5. Chakraborty, S.; Lochan, K. Black Holes: Eliminating Information or Illuminating New Physics? Universe 2017, 3, 55. [CrossRef]
6. Mizner, C.W.; Thorne, K.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973; Volume 1.
7. Landau, L.D.; Lifshitz, E. The Classical Theory of Fields; Butterworth-Heinemann: Oxford, UK, 1975; Volume 2.
8. Cherkas, S.L.; Kalashnikov, V.L. An approach to the theory of gravity with an arbitrary reference level of energy density. Proc.

Natl. Acad. Sci. Belarus Ser. Phys. Math. 2019, 55, 83. [CrossRef]
9. Cherkas, S.L.; Kalashnikov, V.L. Eicheons instead of Black holes. Phys. Scr. 2020, 95, 085009. [CrossRef]
10. Haridasu, B.S.; Cherkas, S.L.; Kalashnikov, V.L. A reference level of the Universe vacuum energy density and the astrophysical

data. Fortschr. Phys. 2020, 68, 2000047. [CrossRef]
11. Cherkas, S.L.; Kalashnikov, V.L. Universe driven by the vacuum of scalar field: VFD model. In Proceedings of the International

Conference “Problems of Practical Cosmology”, Saint Petersburg, Russia, 23–27 June 2008; pp. 135–140. [CrossRef]
12. Iorio, L. Solar system planetary orbital motions and dark matter. J. Cosmol. Astropart. Phys. 2006, 2006, 002. [CrossRef]
13. Freese, K. Review of Observational Evidence for Dark Matter in the Universe and in upcoming searches for Dark Stars. EAS Publ.

Ser. 2009, 36, 113–126. [CrossRef]
14. Oks, E. Brief review of recent advances in understanding dark matter and dark energy. New Astron. Rev. 2021, 93, 101632.

[CrossRef]
15. Weinberg, D.H.; Bullock, J.S.; Governato, F.; Kuzio de Naray, R.; Peter, A.H. Cold dark matter: Controversies on small scales.

Proc. Natl. Acad. Sci. USA 2015, 112, 12249–12255. [CrossRef]
16. de Martino, I.; Chakrabarty, S.S.; Cesare, V.; Gallo, A.; Ostorero, L.; Diaferio, A. Dark matters on the scale of galaxies. Universe

2020, 6, 107. [CrossRef]
17. Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390.

[CrossRef]
18. Buchmueller, O.; Doglioni, C.; Wang, L.T. Search for dark matter at colliders. Nat. Phys. 2017, 13, 217–223. [CrossRef]
19. Aprile, E.; Abe, K.; Agostini, F.; Maouloud, S.A.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J.R.; Antochi, V.C.; Martin,

D.A.; et al. Search for New Physics in Electronic Recoil Data from XENONnT. arXiv 2022, arXiv:2207.11330.
20. Albareti, F.; Cembranos, J.; Maroto, A. Vacuum energy as dark matter. Phys. Rev. D 2014, 90, 123509. [CrossRef]
21. Hajdukovic, D.S. Quantum vacuum and dark matter. Astrophys. Space Sci. 2012, 337, 9–14. [CrossRef]
22. Penner, A.R. Gravitational anti-screening as an alternative to dark matter. Astrophys. Space Sci. 2016, 361, 124. [CrossRef]
23. Hajdukovic, D. On the gravitational field of a point-like body immersed in a quantum vacuum. Mon. Not. R. Astron. Soc. 2019,

491, 4816–4828. [CrossRef]
24. Fiscaletti, D. About dark matter as an emerging entity from elementary energy density fluctuations of a three-dimensional

quantum vacuum. J. Theor. Appl. Phys. 2020, 14, 203–222. [CrossRef]
25. Penner, A.R. A relativistic mass dipole gravitational theory and its connections with AQUAL. Class. Quant. Grav. 2022, 39, 075001.

[CrossRef]
26. Blanchet, L.; Le Tiec, A. Model of dark matter and dark energy based on gravitational polarization. Phys. Rev. D 2008, 78, 024031.

[CrossRef]
27. Chardin, G.; Dubois, Y.; Manfredi, G.; Miller, B.; Stahl, C. MOND-like behavior in the Dirac–Milne universe. Astron. Astrophys.

2021, 652, A91. [CrossRef]
28. Huang, K. A Superfluid Universe; World Scientific: Singapore, 2016.
29. Sbitnev, V.I. Hydrodynamics of the physical vacuum: Dark matter is an illusion. Mod. Phys. Lett. A 2015, 30, 1550184. [CrossRef]
30. Zloshchastiev, K.G. An alternative to dark matter and dark energy: Scale-dependent gravity in superfluid vacuum theory.

Universe 2020, 6, 180. [CrossRef]
31. Hamber, H.; Liu, S. On the quantum corrections to the Newtonian potential. Phys. Lett. B 1995, 357, 51–56. [CrossRef]
32. Bonanno, A.; Reuter, M. Renormalization group improved black hole spacetimes. Phys. Rev. D 2000, 62, 043008. [CrossRef]
33. Ward, B. Quantum corrections to Newton’s law. Mod. Phys. Lett. A 2002, 17, 2371–2381. [CrossRef]
34. Kirilin, G.G.; Khriplovich, I.B. Quantum power correction to the Newton law. J. Exp. Theor. Phys. 2002, 95, 981–986. [CrossRef]
35. Satz, A.; Mazzitelli, F.D.; Alvarez, E. Vacuum polarization around stars: Nonlocal approximation. Phys. Rev. D 2005, 71, 064001.

[CrossRef]
36. Morley, T.; Winstanley, E.; Taylor, P. Vacuum polarization on topological black holes with Robin boundary conditions. Phys. Rev.

D 2021, 103, 045007. [CrossRef]
37. Birrell, N.D.; Davis, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982.
38. Arnowitt, R.; Deser, S.; Misner, C.W. Republication of: The dynamics of general relativity. Gen. Rel. Grav. 2008, 40, 1997.

[CrossRef]

55



Universe 2022, 8, 456

39. Cherkas, S.L.; Kalashnikov, V.L. Quantization of the inhomogeneous Bianchi I model: Quasi-Heisenberg picture. Nonlin. Phenom.
Complex Syst. 2015, 18, 1–14. [CrossRef]

40. Cherkas, S.L.; Kalashnikov, V.L. Structure of the compact astrophysical objects in the conformally-unimodular metric. J. Belarusian
State Univ. Phys. 2020, 3, 97–111. [CrossRef]

41. Cherkas, S.L.; Kalashnikov, V.L. Determination of the UV cut-off from the observed value of the Universe acceleration. J. Cosmol.
Astropart. Phys. 2007, 01, 028. [CrossRef]

42. Cherkas, S.L.; Kalashnikov, V.L. The equation of vacuum state and the structure formation in universe . Vestn. Brest Univ. Ser.
Fiz.-Mat. 2021, 1, 41–59. (In Russian). [CrossRef]

43. Visser, M. Lorentz Invariance and the Zero-Point Stress-Energy Tensor. Particles 2018, 1, 138–154. [CrossRef]
44. Visser, M. The Pauli sum rules imply BSM physics. Phys. Lett. B 2019, 791, 43–47. [CrossRef]
45. Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; Amsler, C.;

Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [CrossRef]
46. Cherkas, S.; Kalashnikov, V. Dark-Energy-Matter from Vacuum owing to the General Covariance Violation. Nonlin. Phenom.

Complex Syst. 2020, 23, 332–337. [CrossRef]
47. Mattingly, D. Modern tests of Lorentz invariance. Liv. Rev. Relat. 2005, 8, 5. [CrossRef]
48. Amelino-Camelia, G. Quantum-spacetime phenomenology. Liv. Rev. Relat. 2013, 16, 5. [CrossRef]
49. Bluhm, R.; Yang, Y. Gravity with Explicit Diffeomorphism Breaking. Symmetry 2021, 13, 660. [CrossRef]
50. Anber, M.M.; Aydemir, U.; Donoghue, J.F. Breaking diffeomorphism invariance and tests for the emergence of gravity. Phys. Rev.

D 2010, 81, 084059. [CrossRef]
51. Mavromatos, N.E. On CPT symmetry: Cosmological, quantum-gravitational and other possible violations and their phenomenol-

ogy. In Beyond the Desert 2003; Springer: Berlin/Heidelberg, Germany, 2004; pp. 43–72.
52. Nilsson, N.A. Aspects of Lorentz and CPT Violation in Cosmology. Ph.D. Thesis, National Centre for Nuclear Research,
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Abstract: We give a general overview of various flavours of the equivalence principle in classical
and quantum physics, with special emphasis on the so-called weak equivalence principle, and
contrast its validity in mechanics versus field theory. We also discuss its generalisation to a theory of
quantum gravity. Our analysis suggests that only the strong equivalence principle can be considered
fundamental enough to be generalised to a quantum gravity context since all other flavours of
equivalence principle hold only approximately already at the classical level.

Keywords: equivalence principle; general relativity; quantum gravity

1. Introduction

Quantum mechanics (QM) and general relativity (GR) are the two cornerstones of
modern physics. Yet, merging them together in a quantum theory of gravity (QG) is still
elusive despite the nearly century-long efforts of vast numbers of physicists and mathe-
maticians. While the majority of the attempts were focused on trying to formulate the full
theory of quantised gravity, such as string theory, loop quantum gravity, non-commutative
geometry, and causal set theory, to name a few, a number of recent studies embraced a
rather more modest approach by exploring possible consequences of basic features and
principles of QM and GR, and their status, in a tentative theory of QG. Acknowledging that
the superposition principle, as a defining characteristic of any quantum theory, must be fea-
tured in QG as well, led to a number of papers studying gravity-matter entanglement [1–7],
genuine indefinite causal orders [8–15], quantum reference frames [16–20] and deforma-
tions of Lorentz symmetry [21–25], to name a few major research directions. Exploring
spatial superpositions of masses, and in general gravitational fields, led to the analysis of
the status of various versions of the equivalence principle, and their exact formulations in
the context of QG. In particular, in [26], it was shown that the weak equivalence principle
(WEP) should generically be violated in the presence of a specific type of superpositions of
gravitational fields, describing small quantum fluctuations around a dominant classical
geometry. On the other hand, a number of recent studies propose generalisations of WEP
to QG framework (see for example [16,20,27–31]), arguing that it remains satisfied in such
scenarios, a result seemingly at odds with [26] (for details, see the discussion from Section 5).

The modern formulation of WEP is given in terms of a test particle and it’s trajectory:
it is a theorem within the mathematical formulation of GR stating that the trajectory of a
test particle satisfies the so-called geodesic equation [32–46], while it is violated within the
context of QG, as shown in [26]. In this paper, we present a brief overview of WEP in GR
and a critical analysis of the notions of particle and trajectory in both classical and quantum
mechanics, as well as in the corresponding field theories.Our analysis demonstrates that
WEP, as well as all other flavours of the equivalence principle (EP) aside from the strong
one (SEP), hold only approximately. From this we conclude that neither WEP nor any other
flavour of EP (aside from SEP) can be considered a viable candidate for generalisation to
the quantum gravity framework.
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The paper is organised as follows. In Section 2, we give a brief historical overview of
various flavours of the equivalence principle, with a focus on WEP. In Section 3, we analyse
the notion of a trajectory in classical and quantum mechanics, while in Section 4 we discuss
the notion of a particle in field theory and QG. Finally, in the Conclusion, we briefly review
and discuss our results, and present possible future lines of research.

2. Equivalence Principle in General Relativity

The equivalence principle is one of the most fundamental principles in modern physics.
It is one of the two cornerstone building blocks for GR, the other being the principle of
general relativity. While its importance is well understood in the context of gravity, it
is often underappreciated in the context of other fundamental interactions. In addition,
there have been numerous studies and everlasting debates about whether EP holds also in
quantum physics, if it should be generalised to include quantum phenomena or not, etc.
Finally, EP has been historically formulated in a vast number of different ways, which are
often not mutually equivalent, leading to a lot of confusion about the actual statement of
the principle and its physical content [47–53]. Given the importance of EP, and the amount
of confusion around it, it is important to try and help clarify these issues.

The equivalence principle is best introduced by stating its purpose—in its traditional
sense, the purpose of EP is to prescribe the interaction between gravity and all other fields in
nature, collectively called matter (by “matter” we assume not just fermionic and scalar fields,
but also gauge vector bosons, i.e., nongravitational interaction fields). This is important
to state explicitly since EP is often mistakenly portrayed as a property of gravity alone,
without any reference to matter. In a more general, less traditional, and often not appreci-
ated sense, the purpose of EP is to prescribe the interaction between any gauge field and all
other fields in nature (namely fermionic and scalar matter, as well as other gauge fields,
including gravity), which we will reflect on briefly in the case of electrodynamics below.

Given such a purpose, let us for the moment concentrate on the gravitational ver-
sion of EP, and provide its modern formulation, as it is known and understood today.
The statement of the equivalence principle is the following:

The equations of motion for matter coupled to gravity remain locally identical to the
equations of motion for matter in the absence of gravity.

This kind of statement requires some unpacking and comments.

• When comparing the equations of motion in the presence and in the absence of
gravity, the claim that they remain identical may naively suggest that gravity does not
influence the motion of matter in any way whatsoever. However, on closer inspection,
the statement is that the two sets of equations remain locally identical, emphasising
that the notion of locality is a crucial feature of the EP. While equations of motion are
already local in nature (since they are usually expressed as partial differential equations
of finite order), the actual interaction between matter and gravity enters only when
integrating those equations to find a solution (see Appendix A for a detailed example).

• In order to compare the equations of motion for matter in the presence of gravity
to those in its absence, the equations themselves need to be put in a suitable form
(typically expressed in general curvilinear coordinates, as tensor equations). The state-
ment of EP relies on a theorem that this can always be achieved, first noted by Erich
Kretschmann [54].

• Despite being dominantly a statement about the interaction between matter and grav-
ity, EP also implicitly suggests that the best way to describe the gravitational field is as
a property of the geometry of spacetime, such as its metric [55]. In that setup, EP can
be reformulated as a statement of minimal coupling between gravity and matter, stating
that equations of motion for matter may depend on the spacetime metric and its first
derivatives, but not on its (antisymmetrised) second derivatives, i.e., the spacetime
curvature does not explicitly appear in the equations of motion for matter.
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• The generalisation of EP to other gauge fields is completely straightforward, by re-
placing the role of gravity with some other gauge field, and suitably redefining what
matter is. For example, in electrodynamics, the EP can be formulated as follows:

The equations of motion for matter coupled to the electromagnetic field remain locally
identical to the equations of motion for matter in the absence of the electromagnetic field.

This statement can also be suitably reformulated as the minimal coupling between
the electromagnetic (EM) field and matter, i.e., coupling matter to the electromagnetic
potential Aμ but not to the corresponding field strength Fμν = ∂μ Aν − ∂ν Aμ. This
is in fact the standard way the EM field is coupled to matter (see Appendix A for
an illustrative example). Even more generally, the gauge field sector of the whole
Standard Model of elementary particles (SM) is built using the minimal coupling pre-
scription, meaning that the suitably generalised version of the EP actually prescribes
the interaction between matter and all fundamental interactions in nature, namely
strong, weak, electromagnetic and gravitational. In this sense, EP is a cornerstone
principle for the whole fundamental physics, as we understand it today.

Of course, much more can be said about the statement of EP, its consequences, and var-
ious other details. However, in this work, our attention will focus on the so-called weak
equivalence principle (WEP), which is a reformulation of EP applied to matter which consists
of mechanical particles. To that end, it is important to understand various flavours and
reformulations of EP that have appeared through history.

As with any deep concept in physics, EP has been expressed historically through
a painstaking cycle of formulating it in a precise way, understanding the formulation,
understanding the drawbacks of that formulation, coming up with a better formulation,
and repeating. In this sense, EP, as quoted above, is a modern product of long and
meticulous refinement over several generations of scientists. Needless to say, each step in
that process made its way into contemporary physics textbooks, leading to a plethora of
different formulations of EP that have accumulated in the literature over the years. This
can bring about a lot of confusion about what EP actually states [47–50] since various
formulations from old and new literature may often be not merely phrased differently,
but in fact substantively inequivalent. To that end, let us comment on several of the
most common historical statements of EP (for a more detailed historical overview and
classification, see [56,57]), and their relationship with the modern version:

• Equality of gravitational and inertial mass. This is one of the oldest variants of EP,
going back to Newton’s law of universal gravitation. The statement claims that the
“gravitational charge” of a body is the same as the body’s resistance to acceleration,
in the sense that the mass appearing on the left-hand side of Newton’s second law
of motion exactly cancels the mass appearing in Newton’s gravitational force law on
the right-hand side. This allows one to relate it to the modern version of EP, in the
sense that a suitably accelerated observer could rewrite Newton’s law of motion as the
equation for a free particle, exploiting the cancellation of the “intertial force” and the
gravitational force on the right-hand side of the equation. Unfortunately, this version
of EP is intrinsically nonrelativistic, and applicable only in the context of Newtonian
gravity since already in GR the source of gravity becomes the full stress-energy tensor
of matter fields, rather than just the total mass. Finally, this principle obviously fails
when applied to photons, as demonstrated by the gravitational bending of light.

• Universality of free fall. Going back all the way to Galileo, this statement claims that the
interaction between matter and gravity does not depend on any intrinsic property of
matter itself, such as its mass, angular momentum, chemical composition, temperature,
or any other property, leading to the idea that gravity couples universally (i.e., in the
same way) to all matter. Formulated from experimental observations by Galileo, its
validity is related to the quality of experiments used to verify it. As we shall see below,
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in a precise enough setting, one can experimentally observe direct coupling between
the angular momentum of a body and spacetime curvature [32–46], invalidating
the statement.

• Local equality between gravity and inertia. Often called Einstein’s equivalence principle,
the statement claims that a local and suitably isolated observer cannot distinguish
between accelerating and being at rest in a uniform gravitational field. While this state-
ment is much closer in spirit to the modern formulation of EP, it obscures the crucial
aspect of the principle — coupling of matter to gravity. Namely, in this formulation,
it is merely implicit that the only way an observer can attempt to distinguish gravity
from inertia is by making local experiments using some form of matter, i.e., studying
the equations of motion of matter in the two situations and trying to distinguish them
by observing whether or not matter behaves differently. Moreover, the statement is
often discussed in the context of mechanics, arguing that any given particle does not
distinguish between gravity and inertia. This has two main pitfalls—first, the reliance
on particles is very misleading (as we will discuss below in much more detail), and sec-
ond, it implicitly suggests that gravity and inertia are the same phenomenon, which is
completely false. Namely, inertia can be understood as a specific form of gravity, but a
general gravitational field cannot be simulated by inertia, since inertia cannot account
for tidal effects of inhomogeneous configurations of gravity.

• Weak equivalence principle. Stating that the equations of motion of particles do not
depend on spacetime curvature, or equivalently, that the motion of a free particle is
always a geodesic trajectory in spacetime, WEP is in fact an application of modern
EP to mechanical point-like particles (i.e., test particles). One can argue that, as far
as the notion of a point-like particle is a well-defined concept in physics, WEP is
a good principle. Nevertheless, as we will discuss below in detail, the notion of a
point-like particle is an idealisation that does not actually have any counterpart in
reality, in either classical or quantum physics. Regarding a realistic particle (with
nonzero size), WEP never holds, due to the explicit effect of gravitational tidal forces
across the particle’s size. In this sense, WEP can be considered at best an approximate
principle, which can be assumed to hold only in situations where particle size can be
approximated to zero.

• Strong equivalence principle. This version of the principle states that the equations of
motion of all fundamental fields in nature do not depend on spacetime curvature
(see [55], Section 16.2, page 387). To the best of our knowledge so far, fields are indeed
the most fundamental building blocks in modern physics (such as SM), while the
strength of the gravitational field is indeed described by spacetime curvature (as in
GR). In this sense, the statement of SEP is actually an instance of EP applied to field
theory, and as such equivalent to the modern statement of EP. So far, all our knowledge
of natural phenomena is consistent with the validity of SEP.

As can be seen from the above review, various formulations of EP are both mutually
inequivalent and have different domains of applicability. Specifically, only SEP holds
universally, while all other flavours of EP hold only approximately. In the remainder of
the paper, we focus on the study of WEP since recently it gained a lot of attention in the
literature [20,27–29,31], primarily in the context of its generalisation to a “quantum WEP”,
and in the context of a related question of particle motion in a quantum superposition of
different gravitational configurations, the latter being a scenario that naturally arises in
QG. Since WEP is stated in terms of a test particle and its trajectory, in order to try and
generalise it to the scope of QG one should first analyse these two notions in classical and
quantum mechanics and field theory in more detail.

3. The Notion of Trajectory in Classical and Quantum Mechanics

A trajectory of a physical system in three-dimensional space is a set of points that form
a line, usually parameterised by time. More formally, a trajectory is a set {(x(t), y(t), z(t)) ∈
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R
3|t ∈ [ti, t f ] ⊂ R∧ ti < t f }, given by three smooth functions x, y, z : R �→ R. Depending

on the nature of the system, the choice of points that form its trajectory may vary.
In classical mechanics, one often considers an ideal “point-like particle” localised in one

spatial point (x(t), y(t), z(t)) at each moment of time t, in which case the choice of the points
forming the system’s trajectory is obvious. In the case of systems continuously spread
over certain volumes (“rigid bodies”, or “objects”) or composite systems consisting of
several point-like particles or bodies, it is natural to consider their centres of mass as points
that form the trajectory. While this definition is natural, widely accepted, and formally
applicable to any classical mechanical system, there are cases in which the very notion of a
trajectory loses its intuitive, as well as useful, meaning.

Consider for example an electrical dipole, i.e., a system of two point-like particles
with equal masses and opposite electrical charges, separated by the distance �(t). As long
as this distance stays “small” and does not vary significantly with time, the notion of a
trajectory of a dipole, defined as the set of centres of mass of the two particles, does meet
our intuition, and can be useful. Informally, if the trajectories of each of the two particles
are “close” to each other, they can be approximated, and consequently represented, by the
trajectory of the system’s centre of mass. However, if the separate trajectories of the two
particles diverge, one going to the “left”, and another to the “right”, one could hardy talk
of a trajectory of such a composite system, although the set of locations of its centres of
mass is still well defined. In fact, the dipole itself ceases to make physical sense when the
distance between its constituents is large.

Moving to the realm of quantum mechanics, due to the superposition principle, even
the ideal point-like particles do not have a well-defined position, which is further quantified
by the famous Heisenberg uncertainty relations. Thus, the trajectory of point-like particles
(and any system that in a given regime can be approximated to be point-like) is defined as
a set of expectation values of the position operator. Like in the case of composite classical
systems, here as well the definition of a trajectory of a point-like particle is mathematically
always well defined, yet for a very similar reason is applicable only to certain cases. Namely,
in order to give a useful meaning to the above definition of trajectory, the system considered
must be well localised. Consider for example the double-slit experiment, in which the point-
like particle is highly delocalised so that we say that its trajectory is not well defined, even
though the set of the expectation values of the position operator is.

We see that, while in mechanics both the notions of a particle and its trajectory are
rather straightforward and always well defined, the latter make sense only if our system
is well localised in space (see for example [58], where the authors analyse the effects of
wave-packet spreading to the notion of a trajectory).

4. The Notion of a Particle in Field Theory

While in classical mechanics a point-like particle is always well localised, we have
seen that in the quantum case one must introduce an additional constraint in order for it to
be considered localised—the particle should be represented by a wave-packet. The source
for this requirement lies in the fact that quantum particles, although mechanical, are
represented by a wavefunction. Thus, it is only to be expected that when moving to the realm
of the field ontology, the notion of a particle becomes even more involved and technical.

In field theory, the fundamental concept is the field, rather than a particle. The notion
of a particle is considered a derived concept, and in fact in QFT one can distinguish two
vastly different phenomena that are called “particles”.

The first notion of a particle is an elementary excitation of a free field. For example,
the state

|Ψ〉 = â†(�k)|0〉 ,

is called a single particle state of the field, or a plane-wave-particle. It has the following properties:

• It is an eigenstate of the particle number operator for the eigenvalue 1.
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• It has a sharp value of the momentum�k, and corresponds to a completely delocalised
plane wave configuration of the field.

• It has no centre of mass, and no concept of “position” in space since the “position
operator” is not a well-defined concept for the field.

• States of this kind are said to describe elementary particles, understood as asymptotic
free states of past and future infinity, in the context of the S-matrix for scattering
processes. An example of a real scalar particle of this type would be the Higgs particle.
For fields of other types (Dirac fields, vector fields, etc.) examples would be an electron,
a photon, a neutrino, an asymptotically free quark, and so on. Essentially, all particles
tabulated in the Standard Model of elementary particles are of this type.

Note that all the above notions are defined within the scope of free field theory,
and do not carry over to interacting field theory. In other words, free field theory is a
convenient idealisation, which does not really reflect realistic physics. One should therefore
understand the concept of a plane-wave-particle in this sense, merely as a convenient
mathematical approximation. Moreover, the particle number operator is not an invariant
quantity, as demonstrated by the Unruh effect. We should also emphasise that in an
interacting QFT, the proper way to understand the notion of a particle is as a localised
wave-packet, interacting with its virtual particle cloud, which does have a position in space
and whose momentum is defined through its group velocity. In this sense, the particle as a
wave-packet could be better interpreted as a kink, discussed below.

The second notion of the particle in field theory is a bound state of fields, also called a
kink solution. This requires an interacting theory since interactions are necessary to form
bound states. This kind of configuration of fields has the following properties:

• It is not an eigenstate of the particle number operator, and the expectation value of
this operator is typically different from 1.

• It is usually well localised in space, and does not have a sharp value of momentum.
• As long as the kink maintains a stable configuration (i.e., as long as it does not decay),

one can in principle assign to it the concept of size, and as a consequence also the
concepts of centre of mass, position in space, and trajectory. In this sense, a kink can play
the role of a test particle.

• States of this kind are said to describe composite particles. Given an interacting theory
such as the Standard Model, under certain circumstances quarks and gluons form
bound states called a proton and a neutron. Moreover, protons and neutrons further
form bound states called atomic nuclei, which together with electrons and photons
form atoms, molecules, and so on.

For a kink, the notions of centre of mass, position in space and size are described
only as classical concepts, i.e., as expectation values of certain field operators, such as the
stress-energy tensor. Moreover, given the nonzero size of the kink, its centre of mass and
position are not uniquely defined, even classically, since in relativity different observers
would assign different points as the centre of mass.

Given the two notions of particles in QFT, one can describe two different corresponding
notions of WEP. In principle, one first needs to apply SEP in order to couple the matter
fields to gravity, at the fundamental level. Assuming this is completed, the motions of
both the plane-wave-particles and kink particles can be derived from the combined set of
Einstein’s equations and matter field equations, without any appeal to any notion of WEP.
In this sense, once the trajectory of the particle in the background gravitational field has
been determined from the field equations, one can verify as a theorem whether the particle
satisfies WEP or not.

Specifically, in the case of a matter field coupled to general relativity such that it locally
resembles a plane wave, one can apply the WKB approximation to demonstrate that the
wave 4-vector kμ(x), orthogonal to the wavefront at its every point x ∈ R

4, will satisfy a
geodesic equation,

kμ(x)∇μkλ(x) = 0 . (1)
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However, given that the plane-wave-particle is completely delocalised in space, the fact
that the wave 4-vector satisfies the geodesic equation could hardly be interpreted as “the
particle following a geodesic trajectory”, and thus obeying WEP. Indeed, identifying the
vector field orthogonal to the wavefront to the notion of “particle’s trajectory” is at best an
abuse of terminology.

Next, in the case of the kink particle coupled to general relativity, one assumes the
configuration of the background gravitational field is such that the particle maintains its
structure and that its size can be completely neglected. One can then apply the procedure
given in [26,32–46] to demonstrate that the 4-vector uμ(τ), tangent to the kink’s world line
(i.e., its trajectory), will satisfy a geodesic equation (τ ∈ R represents kink’s proper time),

uμ(τ)∇μuλ(τ) = 0 . (2)

Thus, one concludes that the kink obeys WEP as a theorem in field theory, without the
necessity to actually postulate it.

Note the crucial difference between Equations (1) and (2)—while the former features
4-dimensional variable x, the latter is given in terms of only 1-dimensional proper time
τ. This reflects the fact that the plane-wave-particle is a highly delocalised object, with no
well-defined position and trajectory, while the kink is a highly localised object, with a
well-defined position and trajectory. As a consequence, WEP can be formulated only for
the kink, and not for the plane-wave particle.

In the case of the kink, it is also important to emphasise that the zero-size approxi-
mation of the kink is crucial. Namely, without this assumption, the particle will feel the
tidal forces of gravity across its size, effectively coupling its angular momentum Jμν(τ) to
the curvature of the background gravitational field [32–46] (see also [59] for a more refined
analysis of tidal effects). This will give rise to an equation of motion for the kink of the form

uμ(τ)∇μuλ(τ) = Rλ
μρσuμ(τ)Jρσ(τ) , (3)

which features explicit coupling to curvature (absent from (2)) and thus fails to obey WEP.
In this sense, for realistic kink solutions WEP is always violated, and can be considered to
hold only as an approximation when the size of the particle can be completely neglected
compared to the radius of curvature of the background gravitational field. If in addition
the kink has negligible total energy, it can be used as a point-like test particle.

In the above discussion, while matter fields are described as quantum, using QFT,
the background gravitational field is considered to be completely classical. It should
therefore not be surprising that WEP may fail to hold if one allows the gravitational field to
be quantum, such as matter fields, and one needs to revisit all steps of the above analysis
from the perspective of QG. In fact, the case of the kink particle has been studied in precisely
this scenario [26], and it has been shown that if the background gravitational field is in a
specific type of quantum superposition of different configurations, the kink will fail to obey
WEP even in the zero size approximation. Simply put, the equation of motion for the kink
will contain extra terms due to the interference effects between superposed configurations
of gravity, giving rise to an effective force that pushes the kink off the geodesic trajectory.
Moreover, of course, similar to the case of classical gravity, the resulting conclusion is a
theorem, which follows from the fundamental field equations of the theory. One of the
assumptions of that theorem is that the field equations allow for kink solutions in the first
place. Namely, it is entirely possible that in quantum gravity particles cannot be localised at
all, as opposed to the classical case where such an approximation can be feasible. If that is
the case, then one cannot even formulate (i.e., generalise from classical theory) the notion of
WEP in a quantum gravity setup. However, one can instead assume that kink solutions do
exist, as was performed in [26], where a particular superposition of gravitational fields was
considered, describing small quantum fluctuations around a dominant classical geometry.
It was then argued that such superpositions are compatible with the approximation of a
well-defined localised particle (see the discussion around Equations (2.2) and (3.15), as well
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as Section 3.4 of that paper). As it turns out, even in such cases the trajectory of the kink
fails to obey WEP. Therefore, the generalisations of WEP and other approximate versions
of EP are not the best candidates for analysing the properties of quantum gravity.

Moreover, the assumption of a well-defined notion of a particle in the QG framework
can also be supported from the point of view of nonrelativistic limit. Namely, in [4,5]
an experiment was proposed in which the effects of QG fluctuations are expected to be
observable, by measuring the motion of nonrelativistic particles. Furthermore, an exten-
sion of this experiment was also suggested [60], which aims to determine the potential
difference between gravitational and inertial masses of those particles in such a setup.
In fact, the relation between the two types of masses in the nonrelativistic limit has also
been previously analysed in [26], predicting their difference due to quantum fluctuations
of geometry. In this sense, the notion of a kink should make sense even in the QG setup,
at least in the nonrelativistic limit.

For the case of the plane-wave-particle travelling through the superposed background
of two gravitational field configurations, the analysis of the equation of motion for the
wave-vector field kμ(x), in the sense of [26,32–46], has not been performed so far (to the
best of our knowledge). However, in principle, one can expect a similar interference term to
appear in the WKB analysis, and give rise to a non-geodesic equation for the wave 4-vector
as well. In this sense, it is to be expected that generically even the wavefronts of such
plane-wave-particles would fail to obey WEP.

5. Conclusions and Discussion

In this paper, we give an overview of the equivalence principle and its various flavours
formulated historically, with a special emphasis on the weak equivalence principle. We
performed a critical analysis of the notions of particle and trajectory in various frameworks
of physics, showing that the notion of a point-like particle and its trajectory are not always
well defined. This in turn suggests that WEP might not be the best starting point for
generalisation to QG, as we argue in more detail below.

As discussed in Section 4, in [26] it was shown that if superpositions of states of
gravity and matter are allowed, WEP can be violated. It is important to note that the cases
considered in [26] feature a specific type of superposition of three groups of states: the first
consists of a single so-called dominant state—a classical state whose expectation values of
the metric and the stress-energy tensors satisfy Einstein field equations; the second consists
of states similar to the dominant one, with arbitrary coefficients; and the third consists of
states quasi-orthogonal to the dominant one, but with negligible coefficients. Only then
one may talk of a (well-localised) trajectory of the test particle in the overall superposed
state and consequently about the straightforward generalisation of the classical WEP to
the realm of QG. Considering that for the dominant state, being classical, the trajectory of
the test particle follows the corresponding geodesic, we see that in the superposed state its
trajectory would deviate from the geodesic of the dominant state, thus violating WEP. Note that,
as discussed in Section 4, this deviation, in addition to classically weighted trajectories of
the individual branches, also features purely quantum (i.e., off-diagonal) interference terms.

On the other hand, a number of recent studies propose generalisations of WEP to
QG framework, arguing that it remains satisfied in such scenarios, a result seemingly at
odds with [26]. For example, in [29–31], the authors consider superpositions of an arbitrary
number of classical quasi-orthogonal states with arbitrary coefficients, arguing that since
WEP is valid in each classical branch, it is valid in its superposition as well. If taken as a
definition of what it means that a certain principle is satisfied in a superposition of different
quantum states, then the above statement is manifestly true. As such, being a definition,
it tells little about physics—it merely rephrases one statement (“principle A is separately
satisfied in all branches of a superposition”) with another, simpler (“principle A is satisfied
in a superposition”). Namely, note that in [29,30], such a generalised version of EP plays no
functional role in the analyses conducted in those papers. What does play a functional role
is the statement of one version of classical EP (specifically, local equality between gravity
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and inertia) applied to each particular state in a superposition. All physically relevant (and
otherwise interesting) conclusions of the two papers could be equally obtained without
ever talking about the generalised EP. In addition, in [31] EP itself is not even the main
focus of the paper, and its generalisation is just introduced in analogy to the analysis of
the conservation laws, which is itself an interesting topic. On the other hand, in the case of
weakly superposed gravitational fields, such as in proposed experiments [4,5], the violation
of the equality of inertial and gravitational masses is to be expected [26,60]. Moreover,
following the spirit of the above definition, one could be misled to conclude that the notions
of the particle’s position and trajectory are always well-defined, as long as they are defined
in each (quasi-classical) branch of the superposition.

An alternative approach to the generalisation of EP to the quantum domain was
proposed in [16,20,27,28]. In those works, the authors discuss the coupling of a spatially
delocalised wave-particle to gravity, with the aim of generalising such a scenario to QG.
To that end, they prove a theorem which essentially states that for such a delocalised
wave-particle, even when it is entangled with the gravitational field, one can always find a
quantum reference frame transformation, such that in the vicinity of a given spacetime point
one has a locally inertial coordinate system. The theorem employs the novel techniques
of quantum reference frames (QRF) to generalise to the quantum domain the well-known
result from differential geometry, that in the infinitesimal neighbourhood of any spacetime
point one can always choose a locally inertial coordinate system.

The authors then employ the theorem to generalise one flavour of EP to the quantum
domain. Specifically, even if the wave-particle is entangled with the gravitational field, one
can use the appropriate QRF transformation to switch to a locally inertial coordinate sys-
tem, and then in that system “all the (nongravitational) laws of physics must take on their
familiar non-relativistic form”. Here, to the best of our understanding, the phrase “non-
gravitational laws of physics” refers to the equations of motion for a quantum-mechanical
wave-particle, while “non-relativistic form” means that these equations of motion take the
same form as in special-relativistic context.

Our understanding is that the above wave-particle generalisation of EP lies somewhere
“in between” mechanics and field theory, i.e., it is in a sense stronger than WEP, which
discusses particles, but weaker than SEP, which discusses full-blown matter fields. Since
it refers to wave-particles rather than kinks, our analysis of WEP and its reliance on the
particle trajectory does not apply to this version of EP.

The methodology in [16,20,27,28] is that one should try to generalise even approximate
flavours of EP, as a stopgap result in a bigger research programme, in the hope that they
may still shed some light on QG. This is of course a legitimate methodology, and from
that point of view these kinds of generalisations of EP to the quantum domain represent
interesting results. Nevertheless, we also believe it would be preferable to formulate a
generalisation of SEP, and in a way which does not appeal to reference frames at all, since
that would be closer to the essence of the statement of EP, as discussed in Section 2.

To conclude, our analysis suggests that, instead of trying to generalise various ap-
proximate formulations of EP, one should rather talk of operationally verifiable statements
regarding the (in)equality of gravitational and inertial masses, possible deviation from the
geodesic motion of test particles, the universality of free fall, etc., and study other principles
and their possible generalisations to QG, such as SEP (see Section 4.2 in [26]), background
independence, quantum nonlocality, and so on.
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Appendix A

Here, we provide a detailed example of the two applications of the EP. First, we discuss
the gravitational EP and apply it to a real scalar field, giving all mathematical details and
discussing various related aspects such as locality, symmetry localisation, and so on. Then,
we turn to the application of the gauge field generalisation of EP, using electrodynamics
as an example. We describe how one can couple matter to an EM field, mimicking the
previous gravitational example, and emphasize the analogy between the gravitational and
EM case at each step. Note also that the non-Abelian gauge fields can be studied in exactly
the same way. Finally, we discuss the case of test particles, and the violation of the WEP in
both gravitational and electromagnetic cases.

Throughout this section, we assume that the Minkowski metric ημν has signature
(−,+,+,+).

Appendix A.1. The Gravitational Case

Let us begin with an example of a real scalar field in Minkowski spacetime, and apply
the equivalence principle by coupling it to gravity. The equation of motion in this case is
the ordinary Klein–Gordon equation,(

ημν∂μ∂ν − m2
)

φ(x) = 0 . (A1)

As it stands, it describes the free scalar field in Minkowski spacetime, in an inertial
coordinate system. In order to couple it to gravity (in the framework of GR), we first rewrite
this equation into an arbitrary curvilinear coordinate system, as(

g̃μν∇̃μ∇̃ν − m2
)

φ(x̃) = 0 . (A2)

Here the covariant derivative ∇̃μ is defined in terms of the Levi-Civita connection,

Γ̃λ
μν =

1
2

g̃λσ
(
∂μ g̃νσ + ∂ν g̃μσ − ∂σ g̃μν

)
, (A3)

which is in turn defined in terms of the curvilinear Minkowski metric g̃μν. Note that the tilde
symbol denotes the fact that this metric has been obtained by a coordinate transformation
x̃μ = x̃μ(x) from the Minkowski metric in an inertial coordinate system, ημν,

g̃μν =
∂xρ

∂x̃μ

∂xσ

∂x̃ν
ηρσ , (A4)
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and, therefore, if one were to evaluate the Riemann curvature tensor using g̃μν and Γ̃λ
μν,

according to the equation

Rλ
ρμν = ∂μΓ̃λ

ρν − ∂νΓ̃λ
ρμ + Γ̃λ

σμΓ̃σ
ρν − Γ̃λ

σνΓ̃σ
ρμ , (A5)

one would obtain that Rλ
μνρ = 0 at every point in spacetime since transforming into a

different coordinate system cannot induce the curvature of spacetime.
Now one can apply EP (in this example specifically SEP) in order to couple the scalar

field to gravity. The statement of SEP is that, in the presence of a gravitational field (i.e.,
in curved spacetime), the equation of motion for the scalar field should locally retain
the same form as in the absence of the gravitational field (i.e., in flat spacetime). Since
Equation (A2) depends only on the field at a given spacetime point and its first and
second derivatives at the same point, the equation is in fact local—it is defined within an
infinitesimal neighbourhood of a single point. Given this, EP states that the corresponding
equation of motion in the presence of gravity should have precisely the same form:(

gμν∇μ∇ν − m2
)

φ(x) = 0 . (A6)

The absence of the tilde now denotes the fact that the covariant derivative ∇μ is
defined in terms of a generic Levi-Civita connection Γλ

μν which is in turn defined in
terms of a generic metric gμν, which does not necessarily satisfy (A4). In other words, EP
postulates that the Equation (A6) now holds even in curved spacetime since for a generic
metric and connection, the Riemann curvature tensor need not be equal to zero everywhere.
The interaction between the scalar field and gravity, as postulated by EP and implemented
in Equation (A6), is also known in the literature as the minimal coupling prescription [61].

In order to convince oneself that the preparation step of transforming (A1) to (A2)
is trivial in the sense that it does not introduce any substantial modification of (A1),
one can additionally demonstrate that (A6) is in fact locally equivalent to (A1) as well.
Namely, according to a theorem in differential geometry (see for example the end of
Chapter 85 in [62]), at any specific spacetime point x0 one can choose the locally inertial
coordinate system, in which the generic metric gμν, the corresponding connection Γλ

μν and
consequently also the covariant derivative ∇μ take their usual Minkowski values,

gμν(x0) = ημν , Γλ
μν(x0) = 0 , ∇μ

∣∣∣
x=x0

= ∂μ , (A7)

so that in the infinitesimal neighbourhood of the point x0 Equation (A6) obtains the form
precisely equal to (A1).

However, note that when integrating (A6), one must take into account that spacetime is
curved since integration is a nonlocal operation, and the locally inertial coordinate system
cannot eliminate spacetime curvature. Therefore, the solutions of (A6) will in general be
different from solutions of (A1), indicating the physical interaction of the scalar field with
gravity, despite the fact that the form of the equation of motion is identical in both cases.

Another thing that should be emphasised is that EP itself is not a mathematical
theorem, but rather a principle with physical content, since it can be either satisfied or
violated. Specifically, we could have prescribed a different coupling of the scalar field to
gravity, such that in curved spacetime its equation of motion takes for example the form(

gμν∇μ∇ν − m2 + R2 + K2
)

φ(x) = 0 , (A8)

where R ≡ Rμν
μν and K ≡ RμνρσRμνρσ are the curvature scalar and Kretschmann invariant,

respectively. This equation is not equivalent to (A2) and there is no coordinate system
in which it can take the form (A1) since R and K are invariants. In this sense, (A8) is an
example of a scalar field coupled to gravity such that EP is violated. This type of interaction
between matter and gravity is also known in the literature as non-minimal coupling [61].
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Finally, we should note that the transformation from (A1) to (A2) amounts to what
is also known in the literature as symmetry localisation [61]. In particular, one can verify
that (A1) remains invariant with respect to the group R

4 of global translations,

xμ → x̃μ = xμ + ζμ , (ζ ∈ R
4) , (A9)

while (A2) remains invariant with respect to the group Di f f (R4) of spacetime diffeomor-
phisms, obtained by localisation of the translational symmetry group,

xμ → x̃μ = xμ + ζμ(x) ≡ x̃μ(x) , (A10)

which represent general curvilinear coordinate transformations, used in (A4). One can
explicitly verify that all three Equations (A2), (A6) and (A8) remain invariant with respect
to local translations (A10) while describing no coupling to gravity, coupling to gravity that
satisfies EP, and coupling to gravity that violates EP, respectively. In this sense, contrary to
a common misconception (often stated in the literature) that symmetry localisation gives
rise to interactions, one can say that the process of symmetry localisation does not introduce
nor prescribe interactions in any way whatsoever. In particular, a direct counterexample is
the Equation (A4), which manifestly does obey local translational symmetry, while it does
not give rise to any interaction whatsoever (see below for the analogous counterexample in
electrodynamics).

Appendix A.2. The Electromagnetic Case

Let us begin with an example of a Dirac field in Minkowski spacetime, and apply the
generalised equivalence principle by coupling it to the EM field. The equation of motion in
this case is the ordinary Dirac equation,(

iγμ∂μ − m
)
ψ(x) = 0 , (A11)

where γμ are standard Dirac gamma matrices, satisfying the anticommutator identity of the
Clifford algebra {γμ, γν} = −2ημν. As it stands, Equation (A11) describes the free Dirac
field, not coupled to an EM field in any way. Note that it is invariant with respect to global
U(1) transformations, defined as

ψ → ψ′ = e−iλψ , e−iλ ∈ U(1) , λ ∈ R . (A12)

In order to couple it to standard Maxwell electrodynamics, we first rewrite this equa-
tion into a form which is invariant with respect to local U(1) transformations,

ψ → ψ′ = e−iλ(x)ψ , ∂μ → D̃μ = ∂μ + i∂μλ(x) , (A13)

so that the equation takes the form(
iγμD̃μ − m

)
ψ(x) = 0 , (A14)

Note that here, D̃ denotes the covariant derivative with respect to the “pure gauge”
connection

Ãμ ≡ ∂μλ(x) , (A15)

where λ(x) denotes the arbitrary gauge function. Moreover, note that (A11) is analogous
to (A1), (A14) is analogous to (A2), while the global and local U(1) gauge transforma-
tions (A12) and (A13) are EM analogues of the global and local spacetime translations (A9)
and (A10) from the gravitational case. Finally, note that if one were to evaluate the electro-
magnetic Faraday field strength tensor using Ãμ from (A15), according to the equation

Fμν = ∂μ Ãν − ∂ν Ãμ , (A16)
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one would obtain that Fμν = 0 at every point in spacetime since the potential that is a pure
gauge cannot induce an EM field. Here (A16) is analogous to (A5).

Once the Dirac equation in the form (A14) is in hand, one can apply the electromagnetic
generalisation of EP in order to couple the Dirac field to an EM field. The statement of EP,
in this case, is that in the presence of an EM field, the equation of motion for the Dirac field
should locally retain the same form as in the absence of the EM field. Since Equation (A14)
depends only on the field at a given spacetime point and its first derivatives at the same
point, it is therefore defined within an infinitesimal neighbourhood of a single point—in
other words, it is local. Given this, electromagnetic EP states that the corresponding
equation of motion in the presence of EM field should have precisely the same form (the
analogue of (A6)): (

iγμDμ − m
)
ψ(x) = 0 . (A17)

The absence of the tilde now denotes the fact that the covariant derivative
Dμ ≡ ∂μ + iAμ is defined in terms of a generic U(1) connection Aμ which does not
necessarily satisfy (A15), but does obey the usual gauge transformation rule,

Aμ → A′
μ = Aμ + ∂μλ(x) . (A18)

In other words, electromagnetic EP postulates that the Equation (A17) holds even in
the presence of an EM field since for a generic connection Aμ the Faraday tensor may not
be equal to zero everywhere. The interaction between the Dirac field and the EM field as
postulated by the electromagnetic EP and implemented in Equation (A17) is again known
in the literature as the minimal coupling prescription [61,63].

If one wishes to convince oneself that the preparation step of transforming (A11) to (A14)
is trivial in the sense that it does not introduce any substantial modification of (A11), one
can additionally demonstrate that (A17) is in fact locally equivalent to (A11). To do this,
at any specific spacetime point x0 one can choose the following U(1) gauge,

λ(x) = −Aμ(x0)xμ , (A19)

so that, according to (A18)

A′
μ(x) = Aμ(x)− ∂μ(Aν(x0)xν) ⇒ A′

μ(x0) = 0 , Dμ

∣∣∣
x=x0

= ∂μ . (A20)

This choice of gauge is the EM analogue of the choice of a locally inertial coordinate
system (A7). Substituting this into the primed version of (A17) and evaluating the whole
equation at x = x0, it reduces precisely to the form (A11) in the infinitesimal neighbourhood
at that point, despite the presence of nonzero EM field.

Again note that when integrating (A17), one must take into account that the EM
field is nonzero since integration is a nonlocal operation, and the choice of gauge (A19)
eliminates the EM potential from (A17) only at the point x0, while the Faraday tensor is
gauge invariant. Therefore, the solutions of (A17) will in general be different from solutions
of (A11), indicating the physical interaction of the Dirac field with EM field, despite the
fact that the form of the equation of motion for the Dirac field is identical in both cases.

As in the case of gravity, we should emphasise that the electromagnetic EP is not a
mathematical theorem, but rather a principle with physical content, since it can be either
satisfied of violated. Specifically, we could have prescribed a different coupling of the Dirac
field to electrodynamics, such that in the presence of an EM field its equation of motion
takes for example the form (analogue of (A8))(

iγμDμ − m + I1 + I2
)
ψ(x) = 0 , (A21)

where I1 ≡ FμνFμν and I2 ≡ εμνρσFμνFρσ are the two fundamental invariants of the Faraday
tensor. This equation is not equivalent to (A14), and there exists no local U(1) gauge in
which it could take the form (A11), since I1 and I2 are invariants. In this sense, (A21) is
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an example of a Dirac field coupled to the EM field such that the electromagnetic EP is
violated. This is also known in the literature as non-minimal coupling [61,63].

Finally, we should also note that the transformation from (A11) to (A14) amounts
to what is also known in the literature as symmetry localisation [61,63]. Specifically, one
can explicitly verify that all three Equations (A14), (A17) and (A21) remain invariant with
respect to local U(1) gauge transformations, while describing no coupling to an EM field,
coupling to an EM field that satisfies the electromagnetic EP, and coupling to an EM field
that violates electromagnetic EP, respectively. In this sense, one can again say that the
process of symmetry localisation does not introduce nor prescribe interactions in any way
whatsoever. In the case of electrodynamics and other gauge theories, this is quite often
misrepresented in literature—the step of symmetry localisation is silently joined together
with the step of applying the electromagnetic version of EP; thus, in the end, giving rise
to an interacting theory, and the resulting presence of the interaction is then mistakenly
attributed to the localisation of symmetry, rather than to the application of EP. Similar to
the gravitational case above, the equation of motion (A14) is an explicit counterexample to
such an attribution, since it does have local U(1) symmetry, but does not have any interaction
with an EM field.

Appendix A.3. The Test Particle Case

The last topic we should address is the context in which the statement of electromag-
netic EP is compatible with the existence of the Lorentz force law, acting on charged test
particles. Namely, one often distinguishes the motion of a test particle in a gravitational
field from a motion of a test particle in an EM field, by comparing the geodesic Equation (2)

uμ(τ)∇μuλ(τ) = 0 , (A22)

where uμ is the 4-velocity of the test particle, with the Lorentz force equation

uμ(τ)∇μuλ(τ) =
q
m

Fλρ uρ(τ) , (A23)

where q/m is the charge-to-mass ratio of a test particle moving in an external EM field,
described by the Faraday tensor Fμν. A typical conclusion one draws from this comparison
is that the interaction with the EM field gives rise to a “real force”, while the interaction
with the gravitational field does not.

However, it is highly misleading to compare (A22) to (A23) in the first place. Namely,
as we have discussed in detail in Section 4, in field theory the notion of a particle can be
defined only approximately, and this applies equally for electrodynamics as well as for
gravity. Specifically, given the example discussed above, of a Dirac field coupled to an
EM field via Equation (A17), we have seen that in the infinitesimal neighbourhood of a
given point x0 one can completely gauge away any presence of the coupling to EM field
from (A17). In this sense, the notion of a test particle that satisfies (A23) cannot be identified
with an idealised point-particle, that has exactly zero size. Instead, the realistic test particle
is a wave-packet configuration of a Dirac field (a kink), and as such has a small but nonzero
size. As it evolves, the different parts of the wave-packet are subject to interaction with the
EM potential Aμ at different points of spacetime, giving rise to an effective non-minimal
coupling with the Faraday tensor Fμν. This is completely analogous to the case of a test
particle with small but nonzero size interacting with spacetime curvature due to tidal
forces—both effects are equally nonlocal since both kinks have nonzero size. On the other
hand, a test particle that satisfies (A22) represents an idealised point-particle (a leading
order approximation in the multipole expansion of the matter field), i.e., a kink which thus
has precisely zero size.

In this sense, the Lorentz force Equation (A23) rather ought to be compared with the
Papapetrou Equation (3),

uμ(τ)∇μuλ(τ) = Rλ
μρσ uμ(τ)Jρσ(τ) . (A24)
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Indeed, one can see quite a reasonable analogy between (A23) and (A24). There are
of course small technical differences due to the precise nature of the coupling to various
moments of the kink, but nevertheless, the two equations are strikingly similar. Given this,
while one can still draw the conclusion that the interaction of a kink with the EM field gives
rise to a “real force”, one can draw precisely the same conclusion for the interaction of a kink
with the gravitational field. There is no distinction between gravity and the other gauge
interactions at this level—all four interactions in nature (strong, weak, electromagnetic
and gravitational) are equally “real”. In addition, all four interactions satisfy EP at the
fundamental field theory level (i.e., in the sense of strong generalised EP), while at the level
of mechanics, a corresponding weak generalised EP is manifestly violated in all four cases.
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Abstract: Doubly special relativity considers a deformation of the special relativistic kinematics
parametrized by a high-energy scale, in such a way that it preserves a relativity principle. When
this deformation is assumed to be applied to any interaction between particles, one faces some
inconsistencies. In order to avoid them, we propose a new perspective where the deformation
affects only the interactions between elementary particles. A consequence of this proposal is that the
deformation cannot modify the special relativistic energy–momentum relation of a particle.

Keywords: quantum gravity; doubly special relativity; relative locality; relativistic deformed kinematics

1. Introduction

The aim of this work is to present a new proposal to introduce a departure from the
notions of spacetime and locality in special relativity (SR). The first reference to the possible
limitations of these notions goes back to Einstein himself (1905) [1]: “We shall not here discuss
the inexactitude which lurks in the concept of simultaneity of two events at approximately the same
place, which can only be removed by an abstraction”.

This departure might be very relevant in the development of theories going beyond
SR trying to put in the same scheme general relativity (GR) and quantum field theory
(QFT). Indeed, a possible source of inconsistencies that impedes the unification of these
two theories is the role that spacetime plays in them. While in QFT spacetime is given as
a rigid static framework in which propagation and interactions can be described, in GR
spacetime is understood as a dynamic deformation of the Minkowski spacetime modeled by
energy–momentum sources. Both theories are expected to be limiting cases of a quantum
gravity theory (QGT), where spacetime would reveal its quantum nature, leading to a
completely new structure. This is the case of some proposals for a QGT, such as string
theory [2–4], loop quantum gravity [5,6], causal dynamical triangulations [7], or causal set
theory [8–10]. However, the correct fundamental spacetime structure is still unknown to
date.

An alternative, bottom-up, approach to QGT may come from trying to incorporate
some generic expected modifications of the classical spacetime to our present, low-energy
theories, as a way to try to capture residual quantum gravity effects. Such modifications
include, most notably, departures from the symmetries and from the standard notion of
locality of SR and can indeed have a well-defined and testable phenomenology [11]. Two
main possibilities have emerged in this quantum spacetime phenomenology [12], affecting
the standard kinematics of SR in a different way: either Lorentz invariance is broken, which
implies the existence of a privileged system of reference [13,14], or the symmetries of SR are
deformed, as in the so-called “Doubly Special Relativity” (DSR) scenario, so that a relativity
principle is still present [15,16].

DSR is an attractive theoretical possibility, since it represents a step from SR which
is analogous to the one that SR made from Galilean relativity, and it dismisses the need
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of a privileged system of reference. The kinematics of DSR models is characterized by
two different ingredients that may appear in a generic deformation: a modification of the
dispersion relation of SR (MDR) and a modification in the composition law of momenta
(MCL), which is no longer additive, therefore affecting the conservation of energy and
momentum in processes. The MDR adds new terms to the quadratic relation between the
energy and momentum of a particle in SR, which are proportional to powers of the energy
of the particle divided by a high-energy scale Λ, usually considered as the Planck energy.
The MCL for two particles differs from the simple addition in terms involving products of
momenta of both particles and again, the inverse of the high-energy scale Λ, since we want
to recover SR when this scale goes to infinity. While an MDR may be absent in specific DSR
models (so that the dispersion relation is that of SR), an MCL is always present, as well as
deformed Lorentz transformations, in order to keep the relativity principle [17]. The MCL
can be related [18] to the coproduct operation in the formalism of Hopf algebras [19], being
the κ-Poincaré example [20,21] the most studied model. In the particular case of κ-Poincaré,
the MCL is noncommutative but associative, so that the composition law of a multiparticle
system is completely defined by gathering momenta in pairs.

However, the implementation of the deformed kinematics of DSR leads to several
problems of consistency of the theory. In particular, a deformation of the usual relativistic
expression of the dispersion relation leads to the so-called “soccer-ball” problem [22,23]:
the terms proportional to the inverse of the high-energy scale (even when considering a
Planckian energy) produce a huge contribution when considering a macroscopic object.
This problem is not exclusive to the MDR; it also affects the MCL, whose nonlinear terms
would give enormous contributions to the total energy of a macroscopic object, when
expressed in terms of the energy of its constituents. Although some proposals have been
pointed out to solve this problem [23–25], they are not free from issues, as we discuss in
Section 2.

Another consistency problem of DSR has to do with the apparent nonlocal influences
that a nonadditive composition law seems to suggest [26]. This “spectator problem” is more
evident when one tries to analyze the translational symmetry of a process that includes
several interactions [27–29]. The generator of translations, the total momentum defined
with the MCL, contains momenta of particles that do not directly participate in one of
the interactions, but that appear in other interactions that form part of the process. The
translational invariance can then only be consistently implemented if one knows the whole
sequence of causally connected vertices for the particles involved in every interaction. This
means that a complete knowledge of the content of the Universe should be given for the
description of every process, which impedes us having a physical description of reality.

In this work, we present a solution to these problems of consistency by introducing
a new perspective on how the deformed kinematics of DSR plays a role in processes of
particles. Essentially, we propose that DSR should be seen as a way to go beyond the
standard locality of interactions present in relativistic quantum field theories that is still
compatible with relativistic invariance. Our proposal is described in Section 2 and, in
particular, it leads us to conclude that modified composition laws should appear only
whenever elementary particles are involved in an interaction, while, at the same time,
their dispersion relation should be the same as in special relativity. As we see in Section 3,
this new perspective on DSR has specific phenomenological implications that can be
distinguished from those considered in the standard interpretation of DSR. We end with a
brief summary in Section 4 and give some technical details on a modified composition law
compatible with the present proposal in Appendix A.

2. DSR as a Way to Go Beyond Local Interactions

We present in this work a new interpretation of DSR as a way to go beyond local
interactions in a quantum relativistic theory. In relativistic quantum field theory (RQFT),
interactions are local in the sense that they are defined by products of more than two fields
in a spacetime point, which is the way one introduces interactions in a Lagrangian density
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of the theory of quantum fields. When one uses the plane-wave expansion for the fields,
the locality of the interactions automatically leads to linear relations between the momenta
defining the plane-wave expansion when one considers the integral over spacetime of the
Lagrangian density (action).

One can identify DSR with a nonlinear modification of the sum of momenta (composi-
tion of momenta) depending on an energy scale Λ. This can be implemented in the field
theory framework as a deformation of the product of fields (see [30] and references therein).
However, this mathematical formalism has not yet provided a systematic treatment of the
effects of the deformation in the calculation of observables in particle processes. In any case,
what is clear is that the nonlinear relations between momenta that are obtained through
that procedure imply a loss of the locality of interactions. Interactions in DSR do not define
a point in spacetime but a region of size � ∼ (1/Λ). This is the ingredient that we take as
the key point for the proposed new interpretation of DSR.

We have explored nature at the microscopic level up to scales of the order of (TeV)−1

with collisions of particles in the highest energy accelerators. We have not seen any sign
of deviations from the locality of interactions; then, we conclude that if DSR is realized in
nature, the energy scale Λ of DSR should be larger than 1 TeV.

The interactions involving a system whose size is much larger than the scale � are
not be affected by the transition from SR to DSR. This argument reduces the search for
observable effects of DSR to the interactions of what we identify at present as elementary
particles (leptons, quarks and mediators of the interactions in the standard model of particle
physics).

The above perspective of DSR can be contrasted with the standard interpretation in
which DSR is identified as the necessary modification in SR to make relativistic invariance
compatible with a (minimum) length scale. One finds that the linear Lorentz transforma-
tions between different frames in SR have to be replaced by nonlinear transformations. This
leads to a deformation of the energy–momentum relation of a particle in SR and also to a
deformation of the relations imposed by the energy–momentum conservation associated
with the translational invariance. When one considers a classical model for the interaction
of particles based on the deformed energy–momentum conservation, one finds that the
notion of locality of SR (interactions associated to the intersection of the worldlines of the
particles) becomes an observer-dependent property; absolute locality is replaced by relative
locality [31,32]. The deviations from locality depend on the observer when one considers a
family of observers related by translations.

The search for observable effects in the standard interpretation of DSR follows different
rules from those of the proposal in this work. One usually interprets the deformation of SR
as a signal of a theory of quantum gravity, identifying the energy scale of the deformation
Λ with the Planck scale. The limitation on the energies one can reach in accelerators, or
even in high-energy astrophysics, makes any effect of DSR in the interaction of particles
unobservable. One has to look for the amplification of the effects of DSR in the propagation
of particles over astrophysical distances due to the modification of the energy–momentum
relation and, correspondingly, of the velocity of propagation. If one changes the choice of
energy–momentum variables, one will have a different energy dependence of the velocity
of propagation; in fact, one can always choose energy–momentum variables to make the
velocity of propagation energy-independent. In this case, however, translations generated
by these variables act nontrivially in spacetime and, when one compares two observers
separated by astrophysical distances, one finds once more the amplification of the effects of
DSR [33].

In the new perspective of DSR as a small departure from the locality of interactions,
there are no effects of DSR in the propagation of a free particle, and then no amplification
when one considers astrophysical distances. The only way to find observable effects is to
assume that one can have interactions of particles with energies approaching the scale Λ of
the deformation.
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In order to illustrate the differences between the standard interpretation of DSR and
the new perspective proposed in this work, we consider a process with two interactions in
regions of spacetime separated by a large distance.

2.1. Production, Propagation and Detection of a Very High Energy Particle

We consider a process with an interaction producing a particle which propagates and
is detected by a second interaction, as shown in Figure 1.

Figure 1. A particle, labelled ‘3’, is produced in an interaction (P), propagates over a large distance,
and is detected in a second interaction (D). Particles labelled by ‘1’ and ‘2’ only participate in the
interactions D and P, respectively.

We assume that each interaction is an elastic scattering of two particles. From a
kinematic point of view, the interaction produces a change of the momenta of the particles.
This change of momenta is determined in SR by a conservation law. The effect of DSR is to
modify this conservation law through a deformed composition of momenta and then, to
change the possible momenta of the particles in the final state of the process with respect
to their values in SR. The relativistic invariance of the deformed kinematics generally
requires a modification of the energy–momentum relation of the particles compatible with
the modification of the composition of momenta, since both modifications are related by
the so-called “golden rules” [28,34]. However, there are examples of modifications of the
composition of momenta compatible with the energy–momentum relation of SR, such as
the classical basis [35] of κ-Poincaré and the well-known Snyder kinematics [36].

In previous works [27–29] on DSR, the kinematics of the process in Figure 1 was
studied based on a modified implementation of the translational symmetry. One assumed
the conservation of the total momentum of the three-particle system defined in terms of the
modified composition of their momenta, which could be taken before the first interaction,
between the two interactions, or after the second interaction. One could consider that the
exchange of momenta in each interaction involves the momenta of three particles. In fact,
in the algebraic interpretation of DSR, based on a κ-deformed Poincaré Hopf algebra, the
composition of momenta is determined by the coproduct of momentum operators, which
makes no reference to spacetime and then, the momentum of particle 1 could be modified
by the interaction P even if this particle is far away from the spacetime region where the
interaction takes place [26]. Even if one assumes that this is not the case, nothing tells us
that the conservation of the total momentum of the three-particle system before and after
the interaction P will lead to a relation between momenta independent of the momentum of
particle 1. The total momentum of the three-particle system before the first interaction will
be the result of the composition of the momentum of particle 1 and the momentum variables
of the other two particles participating in the interaction P whose momenta change due
to the interaction. However, nothing fixes the ordering of the momentum variables in the
expression of the total momentum before and after the interaction. In particular, one could
have a case where the conservation of the total momentum can be expressed as

p(1) ⊕ p(2) ⊕ p(3) = p(2)
′ ⊕ p(1) ⊕ p(3)

′
, (1)

where the symbol ⊕ denotes the modified composition between momenta. An example
of such MCL is given in Appendix A. The relation between the variables (p(2), p(3)) and
(p(2)

′
, p(3)

′
) depends on p(1) in this case.
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The same applies to the transition due to the detection of the particle, which can
depend on the momentum of particle 2. In this case, one cannot treat both interactions
independently, even if the produced and detected particle is propagating over a very large
distance. Therefore, DSR leads to a violation of the cluster property of interactions, which
is at the basis of RQFT [37].

The previous argument also raises doubts on the consistency of considering the process
in Figure 1 as an isolated system. The interactions producing particle 1 and the two particles
in the initial state of the interaction P could affect the kinematics of the process and should
be included. One could even go further and consider a fourth particle which does not
participate in any of the two interactions. The conservation of the total momentum of the
four-particle system, including this new particle, would lead to an exchange of momenta
between the particles depending on the momentum of the fourth particle. This is what is
known as the spectator problem [27–29].

The main idea in the new perspective of DSR is to associate the deformation to a
deviation from the locality of the interactions characterized by a length scale � ∼ (1/Λ),
where Λ is the energy scale of DSR. When one considers an interaction of particles which
are seen as elementary when explored at distances larger than the scale �, one sees an
effect of the deviation from the locality of interactions; the change of momenta due to
the interaction is determined by the kinematics of DSR. On the other hand, when one
considers an interaction with composite particles whose size is much larger than the scale
�, one can neglect the deviations from locality, and the change of momenta produced by
the interaction is determined by the kinematics of SR.

Let us assume that in Figure 1, particles 2 and 3 are elementary but particle 1 is a
composite particle, so that the interaction producing particle 3 is between elementary
particles, and the interaction in its detection involves a composite particle. A possible
relation for the change of momenta in the interaction D is

p(1) − p(1)
′
= p(3)

′ ⊕ p̂(3) , (2)

where p̂(3) is the antipode (see Appendix A) of the momentum of particle 3 before its
detection. We selected in Equation (2) one of the two possible orderings of the composition
of momentum variables on the right-hand side. The left-hand side is a difference of
momentum variables of the composite particle 1, whose kinematics is not affected by the
deformation of SR. Then, they transform linearly under Lorentz transformations, and this
implies that the composition of momentum variables on the right-hand side also has to
transform linearly.

The assumption that one can have interactions with different kinematics eliminates the
arbitrariness in DSR associated with the different choices of energy–momentum variables.
The composition of two momentum variables as well as a single momentum variable have
to transform linearly under Lorentz transformations. Therefore, there is no modification
of the dispersion relation with respect to SR and there is no signal of the deformation in
the propagation of a particle. This agrees with the interpretation of DSR as a modification
of the interaction between elementary particles instead of an effect in the propagation of
particles in a quantum spacetime.

2.2. Deviation from Locality in DSR

Another consequence of the standard interpretation of DSR as a modified implemen-
tation of the translational symmetry generated by the total momentum of the three-particle
system is that there is no observer that sees the two interactions in Figure 1 as local. Dif-
ferent observers related by a translation have a different origin of spacetime. An observer
whose origin is close to the region where the interaction P is produced sees this interaction
as approximately local but sees deviations from locality in the interaction D proportional
to the distance between the regions of the two interactions. The same happens for an
observer whose origin is close to the interaction D, who sees a deviation from locality in
the interaction P proportional to the distance from it. One refers to this property as relative
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locality [31,32], which defines DSR in the sense that it reflects the effect in spacetime of the
modification of the composition of momenta. In the standard interpretation of DSR, where
one cannot treat the two interactions independently, the idea of relative locality plays an
important role to understand that there is no conflict between the deviations from locality
in DSR and the very precise experimental tests of locality [38].

In the new perspective of DSR proposed in this work, where one can consider the
two interactions independently, one can directly use in all experimental tests of locality an
observer whose origin is within the region where the interaction that detects the particle
takes place. One can ignore the interaction P producing the particle, and one does not need
to refer to the idea of relative locality in order to see that there is no conflict between DSR
and the very precise tests of locality.

The standard interpretation of DSR is formulated in the framework of a classical model
of interaction of particles based on worldlines, while in the new perspective proposed in this
work, the deformation is introduced in the relation between the momenta associated with a
product of quantum fields. Due to this difference of frameworks used in the formulation of
the transition from SR to DSR, one has a different perspective on the loss of the notion of
absolute locality present in SR.

2.3. Solution of the Spectator and Soccer-Ball Problems in the New Perspective of DSR

If one associates the effects of DSR to a deviation from the locality of the interactions
between elementary particles, it is natural to determine the kinematics of each interaction
by the momenta of the particles participating in it. This means that the change of momenta
due to the interaction P is independent of the momentum of particle 1, which does not
participate in the interaction. The same argument can be applied to the change of momenta
due to the interaction D, leading us to conclude that it is independent of the momentum of
particle 2. Then, both interactions can be treated independently, according to the cluster
property, and each of them can be treated as taking place in an isolated system. As a
consequence, the new perspective of DSR solves the spectator problem and treats the
process as three independent steps: an interaction P producing particle 3, the propagation
of the free particle 3 and an interaction D where particle 3 is detected, just as in the case
of SR.

Another potential inconsistency of the original proposal of DSR comes when one
considers the kinematics of macroscopic systems. For a microscopic system in DSR, one
can understand the small deviations from SR as a consequence of the small ratio of the
energies of the particles and the energy scale which parametrizes DSR. Then, however, if
the modified composition of momenta is the same for any particle, including a macroscopic
system, one would have very large corrections to the kinematics of SR, in obvious conflict
with our observations at the macroscopic level. The solution that has been proposed for this
paradox (soccer-ball problem [22,23,25]) is that the scale of energy which parametrizes the
modification of the kinematics of a macroscopic system is much larger than the energy scale
of DSR at the microscopic level. More specifically, one argues that the scale of deformation
is proportional to the number of constituents of the macroscopic object by considering an
approximation where those constituents all move with the same velocity [23]. Identifying
those constituents with the atoms of a macroscopic object, one finds an effect on the
kinematics of the macroscopic system of the same order as the correction to the kinematics
of the atoms. The smallness of the energy of each atom compared with the energy scale of
DSR solves the soccer-ball problem.

The previous argument can be criticized from different perspectives. Why should we
identify the atoms as the constituents of the macroscopic system instead of the elementary
particles (electrons, quarks and gluons)? Were we to identify these elementary particles as
“constituents”, how many of them would there be in, for example, a proton? How good is
the approximation to consider all the constituents as a rigid system?

In the new perspective of DSR proposed in this work, a macroscopic system is a
composite system with a size much larger than the scale � ∼ (1/Λ) of the deviation
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from the locality of the interactions of elementary particles. Then, the interactions of
macroscopic systems are not affected by DSR and, according to the relativity principle,
the energy–momentum relation of SR applies to a macroscopic system. The soccer-ball
problem is solved as a direct consequence of the assumption that DSR only applies to the
interactions of elementary particles.

We note that there is some similarity between this solution to the soccer-ball problem
and the one offered in ref. [24], where this “problem” is seen as a “case of mistaken
identity”, distinguishing between the composition law, which is relevant in the modification
of interactions in a noncommutative spacetime (then modifying the standard notion of
locality) and the (additive) total momentum of a multiparticle system. However, ref. [24]
does not discuss how one should consider the interaction between macroscopic particles; in
the present proposal, we deduce that they should be described by a standard composition
law between momenta.

3. Observable Effects of DSR

In contrast to the case of the Lorentz invariance violation (LIV), where one can have
observable effects of the deviation from SR in the kinematics of processes at energies
much smaller than the energy scale of the LIV [11,13,14], the relativistic invariance of the
deformation of the kinematics of SR leads to a suppression of any effect in the kinematics
of a process by powers of the ratio of the energy of the particles and the energy scale of
DSR. If this scale is of the order of the Planck scale, as usually assumed when one considers
the quantum structure of spacetime as the origin of the deformation of the kinematics, the
possibilities to observe the effects of DSR are reduced to the problematic access to the details
of the initial state of the Universe or the final stages of the evaporation of a black hole.

A completely different phenomenology of DSR is based on time delays of massless
particles. In this case, even if the modification in the velocity of propagation of a particle
with respect to SR is proportional to the ratio of the energy of the particle and the energy
scale of DSR, there is an amplification effect, proportional to the long distance that astropar-
ticles travel from the source to our detectors on Earth, which could be measured by current
experiments. Therefore, a lot of papers were devoted to this possible effect in the context of
DSR [33,39–45].

In the perspective of DSR discussed in this work, since the dispersion relation is the
one of SR, time delays are absent [33,42]. This means that the strong constraints on the
high-energy scale based on the possibility of time delays [46–52] do not apply in our scheme.

This opens up an attractive alternative from a phenomenological perspective, by
keeping an open mind about the value of the energy scale of DSR. From this point of view,
one can see which bounds are on such scale from the lack of signals of a departure from the
prediction of SR in the kinematics of processes of particles, and which places are best to
look for a first signal of DSR. The best candidates are the interactions involved in very high
energy astroparticle physics [53,54]. Since the effects of the deformation are restricted to the
interactions of elementary particles in the new perspective of DSR proposed in this work,
one is led to identify the observations of the elementary cosmic messengers (gamma rays
and neutrinos) at the highest energies as the best window to look for observable effects of
DSR. A difficulty one faces in this program are the uncertainties in the predictions of SR
due to the limited knowledge of the astrophysical processes in which those messengers are
involved, which have to be disentangled from the possible effects of DSR on the interactions
of those messengers affecting their observation at the highest energies.

Another alternative is to look for the interactions of particles at the highest energies
in laboratory experiments, where one is free from the astrophysics uncertainties, but the
energies one can reach are lower, and then one has to identify a smaller effect. This leads to
concentrate on the most precise observations (Z-line shape is a good example) or on the
experiments involving the highest possible energies (Large Hadron Collider at CERN and
a future higher pp collider) [55].
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4. Summary

We proposed a new way to introduce a relativistic deformation of the kinematics of
SR. In this proposal, the deformation only applies to the interaction of elementary particles.
What is elementary depends on the energy (and associated length) scale of the interaction
considered. In this way, we can restrict the effects of the deformation to those particles
which we have not been able to identify as composite particles. Thus, we obtain a new
perspective of DSR where the different potential inconsistencies (soccer-ball and spectator
problems, consistency with tests of locality) are automatically solved.

In order to explore the consequences of this proposal, we have to incorporate the
effects of DSR in a model for the interaction of particles that gives a generalization of the
result of the perturbative treatment in RQFT for cross sections and decay widths compatible
with the deformed relativistic invariance of DSR. This will be the subject of future work.
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Appendix A. Modified Composition of Momenta

A relativistic deformation of SR in which the dispersion relation and Lorentz transfor-
mations in the one-particle system are not deformed is provided within the mathematical
framework of Hopf algebras by the classical basis of κ-Poincaré [35]. The coproduct of the
momentum operators defines a composition law of momenta

(p ⊕ q)0 = p0 Π(q) + Π−1(p)
(

q0 +
�p ·�q

Λ

)
, (p ⊕ q)i = pi Π(q) + qi , (A1)

with

Π(k) =
k0

Λ
+

√
1 +

k2
0 −�k2

Λ2 , Π−1(k) =

⎛⎝
√

1 +
k2

0 −�k2

Λ2 − k0

Λ

⎞⎠(
1 −

�k2

Λ2

)−1

, (A2)

where Λ plays the role of the high-energy scale deforming the kinematics. From this
composition law of momenta, one defines the antipode (inverse element of the composition)
p̂ of a momentum p satisfying ( p̂ ⊕ p) = (p ⊕ p̂) = 0. For the classical basis, it reads

p̂0 = −p0 +
�p2

Λ
Π−1(p) , p̂i = −pi Π−1(p) . (A3)

The nontrivial coproduct of Lorentz generators provides a Lorentz transformation
of the two-particle system compatible with the linear Lorentz transformation of the total
momentum defined by the noncommutative composition law (A1).
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This relativistic deformation of SR can also be obtained from a geometric perspec-
tive [56]. In fact, the step from SR to DSR can be understood as going from a flat Minkowski
momentum space to a curved momentum space [57,58]. If one considers the metric [59]

gμν(k) = ημν +
kμkν

Λ2 (A4)

in a de Sitter maximally symmetric curved momentum space as a deformation of the
flat Minkowski metric ημν, one can see that the isometries of this metric reproduce the
kinematics of the classical basis of κ-Poincaré. Note that, in particular, the absence of a
deformation of the dispersion relation is compatible with the usual interpretation of the
dispersion relation as given by (a function of the square of) the geometric distance from the
origin (k = 0) to a point k = p with the previous metric. On the other hand, the composition
law of momenta (A1) is the result of a translation in momentum space with the components
of one of the two momentum variables identified as the set of parameters of the translation.
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Abstract: The fact that quantum gravity does not admit an invariant vacuum state has far-reaching
consequences for all physics. It points out that space could not be empty, and we return to the notion
of an æther. Such a concept requires a preferred reference frame for describing universe expansion
and black holes. Here, we intend to find a reference system or class of metrics that could be attributed
to “æther”. We discuss a vacuum and quantum gravity from three essential viewpoints: universe
expansion, black hole existence, and quantum decoherence.

Keywords: vacuum energy; preferred reference frame; vacuum state; quantum gravity

1. Introduction

From the earliest times, people comprehended an emptiness as “Nothing”, which
consists of absolutely nothing, no matter, no light, nothing. Others are convinced that
“nothing” is unthinkable and a space-time should always contain “something”, i.e., to be
“æther” [1]. From straightforward point of view, the æther represents some stationary
“medium” mimicking some matter and needs a preferred reference frame in which it is
at rest “in tote”. After the development of the quantum field theory (QFT), it was found
that a vacuum actually contains a number of virtual particle–antiparticle pairs appearing
and disappearing during the time of Δt ∝ 1

m , where m is a particle mass. That leads to the
experimentally observable effects such as anomalous electron magnetic moment, the Lamb
shift of atomic levels [2], the Casimir effect [3], etc. However, although a vacuum is not
empty, a “soup” of the virtual particle–antiparticle pairs is not æther because it does not
prevent the test particles from moving freely due to the Lorentz invariance (LI) of a QFT
vacuum, as it is illustrated in Figure 1. That implies rigid limits on a local LI violation,
and the existence of a preferred reference frame in the framework of QFT [4]. However,
considering gravity seems to insist on the æther existence and the preferred reference
frame due to an absence of a vacuum state invariant relative general transformation of
coordinates. That demands reconsidering an idea of æther [5]. A possibility of the LI
violation was also considered within string theory and loop quantum gravity (see [6] and
references herein), the Einstein-Æther [7], and Horava–Lifshitz [8] theories, and others
(see [9,10] for phenomenological implications). It could also mention the CPT invariance
violation [11], which manifests itself both under Minkowski’s space-time [12,13] and in the
presence of gravity [10,14].

Another argument for a preferred reference frame is the vacuum energy problem. If the
zero-point energy is real, we need to explain why this energy does not influence a universe’s
expansion. One of the solutions is to modify the gravity theory. That may violate the invariance
relative to the general transformation of coordinates. For example, the Five Vectors Theory
(FVT) of gravity demonstrates such a violation, including a LI violation [15].

Universe 2022, 8, 626. https://doi.org/10.3390/universe8120626 https://www.mdpi.com/journal/universe83
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Figure 1. Illustration of vacuum influence on the particle propagation in (a) QFT, where the vacuum
loops renormalize the mass and charge of the particle but do not prevent their free motion, and in
(b) QG, where the æther fills space due to the absence of an invariant vacuum state.

2. Vacuum State and QG

The notion of a vacuum state originates from the ground state of a quantum oscillator.
In QFT, the free fields are decomposed into a set of independent field oscillators by Fourier
decomposition. Exited states of the oscillators are treated as particles, i.e., matter (both
massive and massless). Introducing the interaction term leads to the renormalization of a
particle mass and charge, but a one-particle state remains a one-particle state. Consequently,
a one-particle wave packet moves freely with the constant envelope velocity, i.e., with no
in vacuo dispersion [16]. That implies that even in the presence of perturbative interaction,
one could still introduce a LI vacuum state in QFT.

Quantization of GR is too complicated to discuss a vacuum state. Nevertheless, let us
consider a toy QG model regarding this issue. In this model only a spatially nonuniform
scale factor represents gravity a(η, r). It is certainly not a self-consistent approach within
the GR frameworks [17]. Nevertheless, there exists a (1+1)– dimensional toy model [17] in-
cluding a scalar fields φ(τ, σ) = {φ1(τ, σ), φ2(τ, σ) . . . } and a scale factor a(τ, σ) described
by the action

S =
∫

L dτ =
1
2

∫ (
−a′2 + (∂σa)2 + a2

(
φ′2 − (∂σφ)2

))
dσdτ, (1)

where τ is a time variable, σ is a spatial variable, and prime denotes differentiation with
respect to τ. Here, like GR, the scalar fields evolve on the curved background a(τ, σ), which
is, in turn, determined by the fields. The equations of motion is written as

φ′′ − ∂2
σφ + 2α′φ′ − 2∂σα∂σφ = 0, (2)

α′′ − ∂2
σα + α′2 − (∂σα)2 + φ′2 − (∂σφ)2 = 0. (3)

The relevant Hamiltonian and momentum constraints, written in terms of momentums
π(τ, σ) ≡ δL

δφ′(τ,σ) = a2φ′, pa(τ, σ) ≡ − δL
δa′(τ,σ) = a′ is

H =
1
2

(
−p2

a +
π2

a2 + a2(∂σφ)2 − (∂σa)2
)
= 0, (4)

P = −pa∂σa + π∂σφ = 0, (5)

and obey the constraint evolution similar to GR [17]:

∂τH = ∂σP , (6)
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∂τP = ∂σH. (7)

2.1. Quasi-Heisenberg Quantization and a Region of Small Scale Factor: Absence of Vacuum State

It is believed that our universe originates from a singularity in which a scale factor
equals zero. Let us consider a region of small scale-factors first. In this region, it is
convenient to use the quasi-Heisenberg picture [18], in which the setting of the initial
conditions for operators at the initial moment allows quantization of the equations of
motion. In the vicinity of small-scale factors, kinetic energy terms dominate over potential
ones [17,18] so that the equations of motion (2) and (3) reduce to

φ̂′′ + 2α̂′φ̂′ ≈ 0, (8)

α̂′′ + α̂′2 + φ̂′2 ≈ 0. (9)

The solutions of Equations (8) and (9) for two scalar fields φ1(τ, σ), φ2(τ, σ) under
initial conditions, discussed in Appendix A, are written as

φ̂1(τ, σ) = − i
π1

∫ ∞

−∞
θ(σ − σ′)S

(
k(σ′)∂σ′

δ

δk(σ′)

)
dσ′ +

π1

2
√

π2
1 + k2(σ)

ln
(

1 + 2e−2α0

√
π2

1 + k2(σ) τ

)
,

φ̂2(τ, σ) = i
δ

δk(σ)
+

k(σ)

2
√

π2
1 + k2(σ)

ln
(

1 + 2e−2α0

√
π2

1 + k2(σ) τ

)
,

α̂(τ, σ) = α0 +
1
2

ln
(

1 + 2 e−2α0

√
π2

1 + k2(σ) τ

)
,

where the notations are given in the Appendix A.
As one can see, the scalar fields and the logarithm of the scale factor have monotonic

behavior with time. It means that there are no oscillators in the vicinity of small-scale
factors and no possibility of defining a vacuum state. In this situation, a quantum state is
described by the momentum wave packet C[k(σ)] as it is discussed in the Appendix A.

The difference in behavior in the vicinity of small-scale factors and at the epoch of the
quantum oscillators occurrence was known long ago from analysis of the Wheeler–DeWitt
equation solutions for the Gowdy model [19]. Therefore, we simply illustrate this fact in
terms of asymptotic solutions of operator equations.

2.2. String-like Quantization within the Intermediate Region

From the previous subsection one can see that the operator equations of motion
are not the oscillator equations in the vicinity of a∼0, which does not allow defining a
vacuum state. A question arises: Could we define a vacuum state when the fields begin
to oscillate, and quantum oscillators arise? In this region, the fields obey nonlinear wave
Equations (2) and (3), which could not be solved analytically. That complicates using the
quasi-Heisenberg picture, and to obtain some analytical results, we will use bosonic string
quantization [20,21]. The action (1) could be rewritten in the reparametrization invariant
form of a string on the curved background [17]

S =
1
2

∫
d2ξ

√−g gαβ(ξ)∂αXA∂βXBGA B(X(ξ)), (10)

where ξ = {τ, σ}, XA = {a, φ1, φ2, . . . }, and the metric tensors gμν, GA B(X) are in the
form of

g =

( −N2 + N2
1 N1

N1 1

)
, G =

⎛⎜⎜⎝
1 0 0 . . .
0 −a2 0 . . .
0 0 −a2 . . .

. . . . . . . . . . . .

⎞⎟⎟⎠.
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The particular gauge for the lapse N = 1 and shift N1 = 0 functions results in (1).
The metric tensor gαβ(ξ) describes an intrinsic geometry of a (1+1)-dimensional manifold,
i.e., a (1+1)-dimensional space-time, and it is an analog of the four-dimensional metric of
general relativity. GA B(X(ξ)) represents a geometry of the external space unifying scale
factor and scalar fields and has no direct physical meaning here. The system (10) manifests
an invariance relative to the reparametrization of the variables τ, σ, which is analog of the
general coordinate transformation in GR. The transformations of coordinates τ̃ = τ̃(τ, σ),
σ̃ = σ̃(τ, σ) imply transition to another reference frame for an observer who “lives on
a string”.

For obtaining a vacuum state, the key point is fixing the gauge by taking gμν in the
form of Minkowski’s metric by setting N = 1, N1 = 0, which simplifies the action (10) to
the form

S =
1
2

∫
dσdτGAB(−∂τXB∂τXA + ∂σXB∂σXA). (11)

The momentum

PA =
δS

δ(∂τXA)
= −∂τXA = −GAB∂τXA (12)

and the variable XA obey the canonical commutation relations

[P̂A(τ, σ), X̂B(τ, σ′)] = iGABδ(σ − σ′). (13)

As a zero-order approximation, one may take G to be equal to G, where

G =

⎛⎝ 1 0 . . .
0 −1 . . .

. . . . . . . . .

⎞⎠.

Then, it could be possible to develop the perturbation theory on G − G. In zero-order,
XA satisfies the wave equation

X̂′′
A − ∂2

σXA = 0, (14)

and the commutation relations (13) can be realized using creation and annihilation operators

X̂A =
∞

∑
k=−∞

1√
2k

(
akAeikσ−i|k|τ + a+kAe−ikσ+i|k|τ

)
, (15)

P̂A =
∞

∑
k=−∞

i

√
k
2

(
−akAeikσ−i|k|τ + a+kAe−ikσ+i|k|τ

)
, (16)

where akA, a+kB obey
[akA, a+qB] = −GABδk,q. (17)

Thus, only when the gauge is fixed by N = 1, N1 = 0, it is possible to define a vacuum
state by akA|0 >= 0. This vacuum state is not gauge-invariant because the dynamic
variable XA satisfies the wave Equation (14) in only this gauge (and in zero-order on G −G).
Moreover, one could see a problem with the definition of the Fock space of quantum states.
Actually, Equation (17) leads to [ak0, a+k0] = −1. That means that the state a+k0|0 > has a
negative norm < 0|ak0a+k0|0 >= −1. To avoid the negative norms, the string theory uses
additional conditions on the physical Fock states | >:

L̂ f | >= 0, (18)

where L̂ f =
∫
(P̂A(τ, σ) + ∂σX̂A(τ, σ))2 f (σ)dσ, and f (σ) is an arbitrary function. Opera-

tors L̂ f obey the Virasoro algebra. It should be noted that the definition of the Virasoro
operators includes the normal ordering [20–22], but it is beyond the concept of our work. If
one accepts the feasibility of using the normal ordering, then the vacuum energy problem
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does not exist at all. However, we intend to refrain from discussing the status of excluding
anomalies in the string theory here.

2.3. Towards a Classical Background

In Section 2.1, it is shown that there is no vacuum state in the vicinity of a small scale-
factor because of an absence of field oscillators. In principle, the quasi-Heisenberg picture
could be used for the description of the subsequent evolution, but it could be done only
numerically because solving the operator equations with the initial conditions is complicated.
Instead, we have used a string-like quantization described in Section 2.2. That allows an
analytical consideration of the vacuum state, but it is only half of the problem because a
further investigation of the perturbation series on G − G is needed. Moreover, the trouble
with the negative norm of the states can be solved based on the Virasoro algebra by the
transition to the D = 26 dimension in the string theory [20–22]. The general conclusion for
us is that the vacuum state is not gauge-invariant and is defined in a single gauge N = 1,
N1 = 0. We could not make some other physical predictions for this region. However,
one could put forward a hypothesis that in the presence of multiple scalar fields, a scale
factor acquires monotonic behavior in time and could be considered classically finally. Such
a situation is studied in the next section and allows for obtaining a number of physical
predictions.

3. Vacuum Energy Problem as a Criterion for Finding the Preferred Reference Frame

The more straightforward problem is to define the vacuum state on a classical back-
ground space-time. Even in this case, the exact vacuum state exists only for some particular
space-time. In other cases, the vacuum state has only an approximate meaning [23]. The
observer moving with acceleration straightforwardly [24] or circularly [25] in Minkowski’s
space-time will detect quanta of the fields. That means that, although an observer could be
in a resting coordinate system, the quantum fields are not in a vacuum state.

Nevertheless, a vacuum state could be defined, for example, in the slowly expanding
universe, where a solution to the vacuum energy problem could serve as a criterion for
choosing a preferred reference frame. The solution implies avoidance of the enormous
zero-point energy density of the quantum fields affecting the universe’s expansion. To do
this, a class of conformally unimodular (CUM) metrics has been introduced [15]:

ds2 ≡ gμνdxμdxν = a2(1 − ∂mPm)2dη2 − γij(dxi + Nidη)(dxj + Njdη), (19)

where xμ = {η, x}, η is a conformal time, γij is a spatial metric, a = γ1/6 is a locally defined
scale factor, and γ = det γij. The interval (19) is similar formally to the ADM one [26], but
the lapse function is taken in the form of a(1 − ∂mPm), where Pm is a three-dimensional
vector, and ∂m is a conventional partial derivative.

Using the restricted class of the metrics (19), the theory [15] has been suggested in
which the Hamiltonian constraint is not necessarily zero but equals some constant. Such a
theory is known as the Five Vectors theory (FVT) of gravity [15], because the interval (19)
contains two 3-vectors P, N and, moreover, spatial metric can be decomposed into a set of
three triads γij = eiaeja, where index a enumerates vectors of the triads ea.

This theory satisfies the strong equivalence principle (EP) because no additional tensor
fields appear.1 Nevertheless, in contrast to GR, where the lapse and shift are arbitrary
functions fixing the gauge, the restrictions ∂n(∂mNm) = 0 and ∂n(∂mPm) = 0 arise in FVT.
The Hamiltonian H and momentum Pi constraints in the particular gauge Pi = 0, Ni = 0
obey the constraint evolution equations [15]:

∂ηH = ∂i

(
γ̃ijPj

)
, (20)

∂ηPi =
1
3

∂iH, (21)

87



Universe 2022, 8, 626

where γ̃ij = γij/a2 is a matrix with a unit determinant. Equations (20) and (21) admit
adding some constant to H and, in the FVT frame, it is not necessary that H = 0, but
H = const is also allowed. That solves the problem of the main part of the zero-point
energy density.

Let us consider a spatially uniform, isotropic, and a flat universe with the metric

ds2 = a(η)2(dη2 − dx2), (22)

which belongs to a class of (19). Using the Pauli hard cutoff of the 3-momentums
kmax [30,31] reduces the zero-point energy density calculated in the metric (22) to

ρv =
(Nboson − Nf erm)

4π2a4

∫ kmax

0
k2
√

k2 + a2m2dk ≈
(Nboson − Nf erm)

16π2

(
k4

max
a4 +

m2k2
max

a2 +
m4

8

[
1 + 2 ln

(
m2a2

4k2
max

)]
+ . . .

)
,

(23)

where, for simplicity, bosons and fermions of equal masses are considered.

The main part of this energy density ∼ k4
max
a4 scales as radiation, and it has to cause an

extremely fast universe expansion in the frame of GR. This result contradicts the observa-
tions [32]. In our approach, a constant in the Hamiltonian constraint [15] compensates this
main part of zero-point energy and makes it unobservable.2

The remaining parts in (23) are also huge but assuming the sum rules for masses of
bosons and fermions (the condensates should be taken into account, as well) would provide
a mutual compensation for these terms [31,34]. Of course, all spectrum of the particles in
nature, including unknown now, should be taken into account. The empirical cutoff of
momentums kmax is used in (23), with the hope that some fundamental basis will be found
for that in the future (e.g., like a noncommutative geometry [35–37]), and will provide the
UV completions of QG without a renormalization.

Equation (19) determines the preferred reference frame ensuring an æther existence
and an absence of dipole anisotropy of the cosmic microwave background (CMB) [38].
Otherwise, the question arises: What is the physical foundation of the frame where CMB is
in a rest “in tote”, i.e., does not have a dipole component [39]?

4. Cosmological Consequences of Residual Vacuum Energy

Other contributors to the vacuum energy density are the terms depending on the
derivatives of the universe expansion rate [34,40,41]. Sum rules cannot remove these terms,
but they have the correct order of ρv ∼ M2

p H2, where H is the Hubble constant, and allow
explaining the accelerated expansion of the universe. These energy density and pressure
are [34,40,41]:

ρv =
a′2

2a6 M2
pS0, pv =

M2
pS0

a6

(
1
2

a′2 − 1
3

a′′a
)

, (24)

where, S0 = k2
max

8π2 M2
p

is determined by the UV cut-off of the comoving momenta and the

reduced Planck mass Mp =
√

3
4πG is implied. The energy density and pressure of vacuum

(24) satisfy a continuity equation

ρ′v + 3
a′

a
(ρv + pv) = 0, (25)

and, in the expanding universe, are related to the equation of state pv = w ρv, as Figure 2
(upper panel) illustrates. Using this equation of vacuum state leads to the cosmological
Vacuum Fluctuations Domination (VFD) model [40–42]. According to VFD the universe
behavior at early times, when the scale factor was small, is as freely rolling, i.e., without any
deceleration or acceleration, but it is accelerated at a late time. The deceleration parameter
q(a) = − a′′a

a′2
+ 1 is shown in Figure 2 (lower panel) [42]. The discovery of an accelerated
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universe expansion was a big surprise [43]. However, if the above view of a vacuum is true,
a stage preceding the acceleration should be Milne-like, i.e., linear in a cosmic time. The
Milne-like universes have been much discussed again recently [44–50].

Figure 2. (Upper panel). Equation of the vacuum state in dependence on the universe scale factor a.
(Lower panel) Deceleration parameter q(a) and the corresponding dispersion channels for the VFD
model (24) and two versions of ΛCDM model.

4.1. Nucleosynthesis in the Milne-like universe

Nucleosynthesis in a slowly expanding universe was considered earlier [51–53]. Here,
we present our calculation for the VFD model, which has a Milne-like stage, as shown
in Figure 2, corresponding to the region where the deceleration parameter q is close to
zero. The calculations have been performed with the PRIMAT code (version 0.1.1) [54,55]
including 423 nuclear reactions. The results of the calculations are presented in Table 1 and
Figure 3. For comparison, the results for the standard cosmological model are also shown.

As expected, there is a very low rate of neutrons during a period of helium formation
in the VFD model (see Figure 3b). That is because an equilibrium between protons and neu-
trons is shifted towards a neutron decay during the slow universe expansion. Nevertheless,
a small amount of neutrons during a long time can create a necessary amount of helium if
baryonic density Ωb ≈ 0.76. From analysis of Supernovae Type-Ia, Cosmic Chronometers,
and Gamma-ray bursts, it was also found that Ωm ≈ 0.87 for the VFD model [42].3 It
means that there is no need for any ad hoc dark matter in the VFD cosmological model
because Ωm ≈ Ωb. Moreover, as it was conjectured in [56], spatially nonuniform vacuum
polarization should be taken into account in the dynamics of the structure formation.

On the other hand, there is a lot of time for the growth of inhomogeneities in the
VFD model [34,57], and the nonlinear regime begins soon after the last scattering surface.
That allows the suggestion that almost all the baryonic matter collapses into eicheons [58],
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which replace the black holes in FVT. There are no strong constraints on the abundance of
black holes in a region of mass M ∼ 1013– 1019 M⊙ [59], and it is possible that the matter
concentrates namely in this region.

In the VFD model, there is no cosmological deuterium production. The amount of
lithium is less than that in the ΛCDM, that alleviates the lithium overproduction problem
of the standard cosmological model. The amount of CNO is 107 times greater compared to
ΛCDM, but it does not contradict the observations [60,61].

Xn YP Xn YP

Figure 3. Dependencies of relative abundances of neutron and 4He on cosmic time dt = adη are given
by red and blue curves, respectively, (a) for standard cosmological model, (b) for the VFD model.

Table 1. Final abundances of light elements in the ΛCDM model at Ωb = 0.049 and the VFD model
at Ωb = 0.87.

ΛCDM VFD

H 0.75 0.75
Yp = 4YHe 0.25 0.25
D/H × 105 2.6 <10−25

3He/H × 105 1.1 <10−8

T/H × 108 7.9 <10−32

(7Li + 7Be)/H × 1010 5.7 2.1
6Li/H × 1014 1.2 <10−25

9Be/H × 1019 9.2 <10−34

10B/H × 1021 2.9 <10−8

11B/H × 1016 3.3 <10−10

CNO/H × 1016 8.0 5.6 × 107

It is widely believed that deuterium is produced only cosmologically in ΛCDM, but
for the VFD model, the most plausible and direct way is to create necessary deuterium by
beams of antineutrino arising during a collapse [62] before the formation of eicheons in
the range of M ∼ 1013–1019 M⊙. Their formation is unavoidable in the slowly expanding
cosmologies because there is much time for the collapse of inhomogeneities in contrast to the
standard cosmological model. Indeed, the matter stored in the supermassive eicheons is not
related to “dark matter” observed in rotational curves of galaxies because the latter could
be explained by the vacuum polarization [56]. Other mechanisms of non-cosmological
deuterium production are also discussed [63].

4.2. Notes about Cosmic Microwave Background in the Slowly Expanding Cosmological Models

By this time, there are no trustable studies of the CMB background for slowly ex-
panding cosmological models, and only some heuristic calculations exist [64]. The main
question is the origin of a scale corresponding to the first peak in the CMB spectrum and
the origin of the baryon acoustic oscillations (BAO) ruler [65]. In the standard cosmological
model, this is the sound horizon’s size at the recombination moment. For the Milne-like
cosmology, these quantities must be different [65,66]. Apart from this, the sound horizon
for the Milne-like flat universe is vast and cannot be a scale, which determines the position
of the first CMB peak. Let us hypothesize that the width of the last scattering surface [64]
could be such a scale for VFD.4 In this light, the mechanisms of perturbation growth during
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a recombination period are of interest [67]. As for the BAO ruler, it has to be determined
by the complex nonlinear process in the slowly evolving cosmologies and is not related
directly to the scale corresponding to the first peak of CMB.

5. Size of Eicheon

The concept of æther considered in this work is based on postulating the preferred
coordinate frame, namely, CUM. One more consequence of this hypothesis is a replacement
of the black hole solutions of GR by the so-called “eicheons”. In Ref. [58], the spherically
symmetric solution of the Einstein equations in the CUM metrics (19) was analyzed, and it
was found that the finite pressure solution exists for an arbitrarily large mass. As a result,
there are no compact objects with an event horizon,5 because an “eicheon” appears instead
of a black hole [58].6

In Ref. [58], we have turned from the CUM metrics (27) to Schwarzschild-like in order
to demonstrate that a compact object looks like a hollow sphere with a radius greater than
that of Schwarzschild (see Figure 4).

a b

r f

R f

R i

Figure 4. (a) A compact object of uncompressible fluid with the radius of r f in the CUM metrics (27)
looks as a shell (b) with the boundaries rg < Ri < R f in Schwarzschild’s type metric, where rg is a
Schwarzschild’s radius.

Here, we intend to calculate the radius of a compact object of constant density in the
CUM metrics depending on maximum pressure and density. For a spherically symmetric
space-time, the CUM metrics (19) is reduced to

ds2 = a2(dη2 − γ̃ijdxidxj) = e2α
(

dη2 − e−2λ(dx)2 − (e4λ − e−2λ)(xdx)2/r2
)

, (26)

where r = |x| and α, λ are the functions of r. In the spherical coordinates, Equation (26)
looks as

ds2 = e2α
(

dη2 − dr2e4λ − e−2λr2
(

dθ2 + sin2 θdφ2
))

. (27)

Let us compare (27) with Schwarzschild’s type metrics

ds2 = B(R)dt2 − A(R)dR2 − R2
(

dθ2 + sin2 θdφ2
)

. (28)

The difference between the metrics (26) and (28) is that the metric (28) suggests that
the circumference equals 2πR. However, there is no evidence for this fact in an arbitrary
spherically symmetric space-time. For the metric (26), the circumference is not equal to 2πr
in the close vicinity of a point-like mass. Coordinate transformation t = η, R = R(r) relates
the metrics (27) and (28), while their comparison gives:

B(R) = e2α, (29)

R2 = r2e−2λ+2α, (30)

A(R)
(

dR
dr

)2
= e4λ+2α. (31)
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Using (29), (30) in (31) to exclude λ and α yields

dr
dR

=
R2

r2
A1/2

B3/2 . (32)

For an empty Schwarzschild space-time A(R) = (1 − rg/R)−1 and B(R) = 1 − rg/R,
whereas in the region filled by matter, A(R) and B(R) obey [72]

d
dR

(
R
A

)
= 1 − 6

M2
p

ρR2, (33)

1
B

dB
dR

= − 2
p + ρ

dp
dR

, (34)

where rg = 3m
2πM2

p
. Further, as in [58], we will consider a model of the constant density

ρ(R) = ρ0. In this case, Equations (33) and (34) can be integrated explicitly that gives

A =
R

R − rg − 2ρ0

(
R3 − R3

f

)
M−2

p

, (35)

B =

(
1 − rg

R f

)
ρ2

0
(p(R) + ρ0)2 (36)

and one needs only to find a pressure p(R), which obeys the Tolman–Volkov–Oppenheimer
(TVO) equation

p′(R) = − 3
4πM2

pR2 M(R)ρ(R)
(

1 +
4πR3 p(R)
M(R)

)(
1 +

p(R)
ρ(R)

)(
1 − 3M(R)

2πM2
pR

)−1

. (37)

It is convenient to measure density and pressure in the units of M2
pr−2

g , so that the
mean density of Schwarzschild black hole ρ0 = m/( 4

3 πr3
g) equals 1/2, while the TOV

limit R f < 9
8 rg gives the value of ρ0 = 1

2
( 8

9
)3 ≈ 0.35. As for the eicheon radius in

Schwarzschild’s type metric, it equals R f = 3
√

R3
i +

1
2ρ0

in the units of rg, where Ri is an
inner radius, which determines maximum pressure. Using

M(R) =
4π

3
ρ0

(
R3 − Ri

3
)

, (38)

for solving the TOV equation for pressure, it is possible to find B, and then solve (32) with
the initial condition r(Ri) = 0 and find the eicheon radius r f = r(R f ) in the CUM metrics.

Let us plot (see Figure 5) the calculated radius of the eicheon in the CUM metrics in
dependence on density ρ0 and maximum pressure, that is, the pressure in the center of a
solid ball in the metric (27). An approaching Ri to unity increases the maximal pressure.
Actual density and pressure in the center of eicheon are defined by the extremal equation
of state, which is the subject of future investigations. However, Figure 5 allows concluding
that the pressure is considerably smaller than the energy density in a region of interest. That
results in a straightforward analytic estimation of the eicheon radius. For the estimation,
one could take pressure equal to some constant (e.g., p(R) = ρ0/10) in (36), or even simply
p(R) = 0. Then one could take Ri = 1, i.e., the Schwarzschild radius and integrate (32)
to obtain

r f =
3

√
3
∫ R f

1

A1/2

B3/2 R2dR ≈
√

3 3
√

11 ρ1/6
0

25/6 , (39)
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where a small “thickness” of the eicheon surface R f − 1 is used, R f is expressed as

R f = 3
√

1 + 1
2ρ0

, and only asymptotic term of large ρ0 is retained. In the ordinary units, the
result reads

r f =
3 35/6 3

√
11 m4/3 6

√
ρ0

4 6
√

2 π4/3M3
p

(40)

and it is slightly unexpected because the eicheon radius rises with the density that turns
out to be a specific manifestation of the CUM geometry.7 In particular, the eicheon of
the Planck density ρ0 = M4

p, which is sometimes considered as a maximal density in

nature [74] has a radius of r f ≈ 0.8 1
Mp

(
m

Mp

)4/3
in the CUM metrics. Looking at the last

equation, one may assume that the large eicheons cannot be very dense. However, r f given
by (39) is not a physical distance but only points out a border of eicheon in the CUM metrics,

whereas the physical distance is given by leiche =
∫ r f

0 eα+2λdr =
∫ R f

1 A1/2dR ≈ 5
24ρ0

.

Figure 5. Dependence of the eicheon radius r f = r(R f ) in the CUM metrics, expressed in the units
of gravitational radius, on the density and maximal pressure (i.e., pressure in the eicheon center).
Pressure and density are in the units of M2

pr−2
g .

Recently, many investigations explored the footprints of black holes manifesting
themselves through star trajectories and a shadow in the accretion disks around the galaxy
centers, gravitational lensing, and gravitational waves from the colliding compact objects
(see footnote 3 on p. 15). These phenomena can be explained from the properties of both
stationary and non-stationary metrics of Schwarzschild and Kerr types, where the radius
of “source” objects is of the order of rg. It seems reasonable to interpret these observations
in the CUM framework and obtain an actual eicheon radius r f using its equation of state.8

The most informative study originates from collisions of ultracompact massive objects
producing the gravitational waves observed by the existing and developing detectors.
At this moment, direct astrophysical observations and, much less, analogous modeling
cannot provide decisive evidence, which would rule out some alternative concepts of
ultracompact massive objects without a horizon (nevertheless, see [76]). One could suggest
that off-horizon properties of an eicheon are the same as for a black hole. However, near-
horizon phenomena like gravitation wave emission in black hole collisions could be most
informative [71,77,78] and the study of these phenomena in the framework of FVT is a
matter for the future.
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6. Decoherence of the Particles Due to Gravitational Potential Fluctuations

Here, we return to the consideration of a locally defined scale factor as an oper-
ator. One more implication of the CUM metrics and æther arises for a gravitational
decoherence [79], which is the subject of the table-top quantum gravity experiments. In GR,
it would not be possible to say that the vacuum fluctuations under Minkowski’s space-time
are small. Actually, for the small vacuum fluctuations, one could turn to the reference
system where they are significant. That means the appearance of the so-called gauge
waves, which are the consequence of the reference frame choice. By restricting the possible
reference systems, it would be possible to reveal the actual vacuum fluctuation influencing
the motion of the massive particles. The main fundamental question is: Does a massive
particle lose its coherence due to interaction with æther? Under Minkowski’s background,
one could write for a locally defined scale factor:

a(η, r) = (1 + Φ(η, r)), (41)

According to [79], the correlator of the Fourier amplitudes for the gravitational poten-
tial in vacuum Φ̂(η, r) = ∑k Φ̂k(η)eikr takes the form

S(τ − η, k) =< 0|Φ̂+
k (η)Φ̂k(τ)|0 >=

∫ ∞

−∞
S̃(ω, k)eiω(τ−η)dω, (42)

where a spectral function S̃(ω, q) is approximately written as [79]

S̃(ω, k) ≈
{ Nall

32π2 Mp
4 , q < ω < 2kmax

0, otherwise.
, (43)

where Nall = Nboson + Nf erm is a number of all degrees of freedom.
For a nonrelativistic massive point particle propagating among the fluctuations of the

gravitational potential, the Fokker–Plank equation is:

∂η fk(p) + i(Ep+k/2 − Ep−k/2) fk(p) = −i K1 k
∂ fk
∂p

+ 2iK2 kp Δp fk(p) + 2iK3 pikj
∂2 fk

∂pj∂pi
, (44)

where fk(p) is a Fourier transform of the Wigner function f̃ (r, p) = ∑k fk(p)eikr. In the
first order on the constants K1, K2, K3 it is possible to write:∫

fk(p, η) f−k(p, η)d3 pd3k ≈ 1 − (3K1 + 3K2 + 6K3)
Γ2η2

m
. (45)

This means that the interaction with a vacuum produces decoherence manifesting itself
in the decreasing of “purity” [79] of a particle state according to (45). From Equation (45), the
decoherence time is estimated as

tdec ≈ 1
Γ

√
m

3K1 + 3K2 + 6K3
, (46)

and using the approximate expressions for the constants K1, K2, K3, the decoherence length
can be found [79]

Ldec ≈
4Mp

3
√

3 Nallπ m
v
Γ

, (47)

where v is a particle velocity, m is a particle mass, 1/Γ is a localization length of the particle
wave packet. That is, a point-like particle of mass m ∼ 4Mp v

3
√

3Nallπ
loses coherence at a distance

equal to the length of the wave packet 1/Γ. It should be noted that interaction with the
æther does not produce a particle scattering because the momentum distribution f0(p)
does not change. Nevertheless, decoherence arises. That is a fundamental result implying
Lorentz and Galilean invariance violation because one particle state becomes non-pure
quantum state.
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The difference in particle propagation in the QG and QFT is illustrated in Figure 1.
The æther in QG originates from an absence of an invariant vacuum state. The last is
not invariant relatively to the general transformation of coordinates and, in particular
relative to the Lorentz transformation when it is considered as a subgroup of the general
transformation of coordinates.

As regards the decoherence observation (47), such massive point particles are un-
known. A real particle of large mass has a finite size, which restricts momentums trans-
ferred by the particle form factor: q < 1/d, where d is particle size. In this case, the
following estimation arises [79]

Ldec ≈
8π(Mpd)2
√

Nall

v
Γ

. (48)

This quantity seems very large and unobservable. At the same time, the real particles
are not rigid but have internal degrees of freedom and consist of a number of point particles,
so more careful investigation is needed. Moreover, other possible fundamental mechanisms
of decoherence also need investigation [80].

Recently, a gravitationally induced entanglement has attracted great attention (see
e.g., [81–85]). There is no doubt that the nonrelativistic quantum mechanics holds for any
interaction, including gravitational interaction in the form of the second Newton’s law and
any weak external gravitational field [86]. It is also no doubt that the gravitational waves of
linearized gravity are fully analogous to electromagnetic waves and have to be quantized.
Undoubtedly, the second Newton’s law could be interpreted as an exchange by gravitons,
like the Coulomb law can be interpreted as an exchange by photons. In contrast, the
result (47) seems much less trivial because this fundamental decoherence implies the
existence of æther with stochastic properties. Such an æther is absent in quantum electro-
dynamics due to the existence of the LI vacuum state. Implications of the æther in a photon
sector of LI violation [87,88] have to be investigated.

7. Conclusions

To summarize, the CUM metrics gives a sustained basis for quantum gravity physics,
cosmology, and physics of compact astrophysical objects. Although fascinating physics
like closed time-like curves [89–91], time machines [92,93], wormholes [94], and Hawking
radiation [95–97] are excluded in the CUM metrics, these metrics give a fresh impetus to
investigate the real physical phenomena, including the structure formation [34], CMB [64],
the structure of ultracompact astrophysical objects, and search for the decoherence QG
effects and other QG consequences from the vacuum fluctuations of the gravitational
potential. All these phenomena imply to single out the conformally unimodular metrics
corresponding to a reference system, where the æther is at rest “in tote”. Certainly, it
suggests the æther existence per se. In QG, an æther is not simply some background but a
thing that weaves all the physical phenomena into a whole quantum universe.

On the other hand, because black holes are absent in this theory, there is no actual
“eraser” of the information in the CUM metrics. In other words, a wave function of some
particular quantum system is only mixed to a more general wave function, including vac-
uum and, finally, all universe, and the universe’s wave function seems not an idealization,
but a reality conserving all information without any loss [98].

Author Contributions: Concepts and methodology are developed by S.C. and V.K.; software, S.C.;
validation, writing and editing, S.C. and V.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

95



Universe 2022, 8, 626

Appendix A. Quasi-Heisenberg Quantization

For simplicity, it is convenient to consider two scalar fields, φ1 and φ2, that correspond
to a system with three degrees of freedom, including the logarithm of scale factor α = ln a.
As a result, there is only one degree of freedom because the Hamiltonian and momen-
tum constraints allow excluding two of them. Let us discuss a quantum picture of the
system (1), (4) and (5). The quasi-Heisenberg picture suggests that one needs to define
the commutation relations and initial values for operators at the initial moment and then
permit the operator evolution according to the equation of motions. For quantization with
the help of the Dirac brackets (see also [99]), one should set two additional gauge fixing
conditions corresponding to the Hamiltonian and momentum constraints.

Let us take these conditions as

α̂(0, σ) = α0 = const, (A1)

∂σπ̂1(0, σ) = 0, (A2)

i.e., the logarithm of the scale factor and momentum π̂1(0, σ) = π1 are c-number constants
at the initial moment. Generally, that is some time-dependent gauge, which is known only
at an initial moment. Then it is permissible for the commutation relations to evolve.

Dirac brackets could allow calculating the operator commutation relations at the initial
moment, but the equivalent receipt is to set

φ̂2(0, σ) ≡ ϕ(σ), (A3)

π̂2(0, σ) ≡ −i
δ

δϕ(σ)
, φ̂′

2(0, σ) = −i e−2α0
δ

δϕ(σ)
(A4)

and express other variables from constraints and gauge conditions to obtain

p̂α(0, σ) =

√
− δ2

δϕ2(σ)
+ π2

1, α̂′(0, x) = e−2α0

√
− δ2

δϕ2(σ)
+ π2

1, (A5)

φ̂1(0, σ) =
i

π1

∫ ∞

−∞
θ(σ − σ′)S

(
δ

δϕ(σ′) ∂σ′ ϕ(σ′)
)

dσ′, (A6)

φ̂′
1(0, σ) = e−2α0 π1, (A7)

where the symbol S denotes symmetrization of the noncommutative operators, i.e.,
S(ÂB̂) = 1

2 (ÂB̂ + B̂Â) or S(ÂB̂Ĉ) = 1
6 (ÂB̂Ĉ + B̂ÂĈ + ÂĈB̂ + . . . ) and θ(σ) is a unit

step function. Its appearance in (A6) is the only nontrivial moment that follows from
calculation of the Dirac brackets [100], and we have introduced it here for expressing φ1
from the momentum constraint (5).

The equations of motion (2), (3) should be considered as the operator equations with
the initial conditions (A1), (A3)–(A7).

The second stage of quantization consists of building the Hilbert space where the
quasi-Heisenberg operators act. This stage again begins from the classical Hamiltonian (4)
and momentum (5) constraints. The momentum constraint and corresponding gauge
condition (A2) are resolved relatively the variable φ1 and its momentum π1. Then, these
quantities are substituted to the Hamiltonian constraint, which is then quantized and
considered as the Wheeler–DeWitt equation in the vicinity of the small scale factor a∼0, i.e.,
ln a = α → −∞. In such a way, we come to(

δ2

δα(σ)
− δ2

δ2 ϕ(σ)
+ π2

1

)
Ψ[α, V] = 0, (A8)

where it is taken into account that π1 is some constant. Space of the negative frequency
solutions of the Equation (A8) constitutes the Hilbert space for the quasi-Heisenberg operators.
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In the general case, the solution of Equation (A8) is of the form of the wave packet

Ψ[α, ϕ] =
∫

C[k] e
∫ (−iα(σ)

√
π2

1+k2(σ)+ik(σ)ϕ(σ)
)

dσ Dk(σ), (A9)

where only negative frequency solutions are taken and Dk(σ) denotes a functional integra-
tion over k(σ). The scalar product has a form [17,18,101]

< Ψ|Ψ >= i Z ∏
σ

∫ (
Ψ∗[α, ϕ]D̂−1/2(σ)

δ

δα(σ)
Ψ[α, ϕ]

−
(

D̂−1/2(σ)
δ

δα(σ)
Ψ∗[α, ϕ]

)
Ψ[α, ϕ]

)
dϕ(σ), (A10)

where D̂(σ) = − δ2

δϕ2(σ)
+ π2

1 and Z is a normalization constant. The infinite product is
taken over σ-points, and to be understood in a formal sense as representing the result of a
limiting process based on a lattice in σ-space. The scalar product (A10) is independent of
the choice of the hyperplane α(σ).

The mean value of an arbitrary operator can be evaluated as

< Ψ|Â[α,−i
δ

δϕ(σ)
, ϕ(σ)]|Ψ >= i Z ∏

σ

∫ (
Ψ∗[α, ϕ]Â D̂−1/2(σ)

δ

δα(σ)
Ψ[α, ϕ]

−
(

D̂−1/2(σ)
δ

δα(σ)
Ψ∗[α, ϕ]

)
Â Ψ[α, ϕ]

)
dϕ(σ)

∣∣∣∣
α(σ)=α0→−∞

. (A11)

Let us note that the hyperplane α(σ) = α0 along which the integration is performed
in (A11), is the same as it is used as an initial condition for the quasi-Heisenberg operator α̂
in (17). In a more convenient momentum representation π̂2(σ) = k(σ), φ̂2(σ) = i δ

δk(σ) , the
wave function ψ is

ψ[α, k] = C[k] exp
(
−i

∫
α(σ)

√
k2(x) + π2

1 dx
)

. (A12)

Then, the mean value of an operator becomes

< ψ|Â[α(σ), k(σ), i
δ

δk(σ)
|ψ >=∫

C∗[k]e−i
∫

α(σ)
√

k2(σ)+π2
1 dσ Â ei

∫
α(σ)

√
k2(σ)+π2

1 dσC[k]Dk(σ)
∣∣∣∣

α(σ)=α0→−∞
. (A13)

Thus, we have an exact quantization scheme consisting of the Wheeler–DeWitt equa-
tion in the vicinity of small scale-factor (A8), the operator initial conditions (A5) for the
equations of motion and the expressions (A11) and (A13) for calculation of the mean values
of operators.

Notes

1 See [27,28] for EP historical and philosophical overview, and [29] for compatibility of EP with QFT.
2 It should be noted that a mutual cancellation of the bosonic Nboson and fermionic Nboson degrees of freedom removes all the

vacuum energy but demands exact supersymmetry, which was not observed to date [33].
3 However, when one compares Ωb =

8πG ρb
3H2 from nucleosynthesis with Ωm from cosmological observations, the result could

depend on the possible renormalization of the gravitational constant [56]. Then, the gravitational constant measured on the Earth
or the solar system can differ from the constant used in cosmology for the uniform universe.

4 In ΛCDM, the recombination turns out to be almost instantaneous, i.e., the last scattering surface is very thin.
5 The event horizon is a region of space-time that is causality disjointed from the rest of space-time.
6 The observations revealed the phenomena such as ultra-speed star motion, accretion disks around the super-massive and

extremely compact objects (e.g., see [68,69]), and gravitational waves from colliding compact objects of stellar mass [70], which
fit well in the black hole concept. However, the claims about “black hole discovery” should be treated with caution because
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these observations do not rule out completely the alternative theories (e.g., see [71]), which also admit the existence of extremely
compact massive objects with the exterior mimicking a black hole.

7 Here, we obtain primitive geometrical formulas connecting the radius of a compact astrophysical object with its mass and density.
To obtain nontrivial formulas expressing the radius of the object through its mass only, using the physical equation of state is
needed, e.g., nucleonic matter or strange quark matter as it was done in the neutron star physics [73].

8 It could be compared with properties of neutron and exotic stars [75].
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Abstract: The Heisenberg uncertainty principle is modified by the introduction of an observer-
independent minimal length. In this work, we have considered the resonant gravitational wave
detector in the modified uncertainty principle framework, where we have used the position momen-
tum uncertainty relation with a quadratic order correction only. We have then used the path integral
approach to calculate an action for the bar detector in the presence of a gravitational wave and then
derived the Lagrangian of the system, leading to the equation of motion for the configuration-space
position coordinate in one dimension. We then find a perturbative solution for the coordinate of
the detector for a circularly polarized gravitational wave, leading to a classical solution of the same
for the given initial conditions. Using this classical form of the coordinate of the detector, we finally
obtain the classical form of the on-shell action describing the harmonic oscillator–gravitational wave
system. Finally, we have obtained the free particle propagator containing the quantum fluctuation
term considering gravitational wave interaction.

Keywords: resonant bar detector; gravitational wave; generalized uncertainty principle; path integral

1. Introduction

Quantum mechanics and general relativity are the two most successful theories ex-
plaining the phenomena at the two most fundamental length scales of the universe. While
quantum mechanics explains the intricacies of the atomic length scale, general relativ-
ity [1,2] sheds light on the large-scale structure of the universe. In order to understand
the fundamental mysteries of the universe, we need a quantum theory of gravity, explaining
the analytical structure of the gravitational interaction at the quantum length scale. Theories
such as loop quantum gravity [3,4], string theory [5,6], and noncommutative geometry [7]
have provided a convincing theoretical framework explaining the Planck-scale nature of
gravity, but none of them have compelling experimental evidence to support their claim
of providing an exact description of the quantum nature of gravity. Meanwhile, all of
them prescribe the existence of an observer-independent minimal length, which can be
incorporated by the modification of the standard Heisenberg uncertainty principle (HUP),
also known as the generalized uncertainty principle (GUP). The first few attempts to im-
provise an integral relation between minimal length scale and gravity was shown in [8,9],
followed by [10]. We also obtain strong evidence of the existence of this fundamental
length scale from the various gedanken experiments in quantum gravity phenomenology
as well. This GUP framework has been used to investigate several areas of theoretical
physics, including black hole physics and its thermodynamics [11–21], various quantum
systems, such as particle in a box and simple harmonic oscillators [22,23], optomechanical
systems [24–26], and gravitational wave bar detectors [27,28]. There have been several
recent studies involving the path integral formalism of a non-relativistic particle moving
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in an arbitrary potential in the generalized uncertainty principle framework [27,29,30].
The simplest form of the modified HUP can be written in the following form [31]:

ΔqiΔpi ≥ h̄
2

[
1 + γ

(
Δp2 + 〈p〉2

)
+ 2γ

(
Δp2

i + 〈pi〉2
)]

; i = 1, 2, 3 (1)

where p2 = ∑3
k=1 pk pk and qk, pk are the phase space position and its conjugate momenta.

In Equation (1), the GUP parameter γ in terms of the dimensionless parameter γ0 can be
recast as follows:

γ =
γ0

m2
pc2 (2)

where mp is the Planck mass and c is the speed of light. It is quite natural to realize that
the order of magnitude of the GUP parameter will play a significant role in providing
an understanding of the GUP effects. There have been several studies to find a bound
on the GUP parameter itself [17,22,28,32–38].

In 1969, the first proposition to detect gravitational waves was made by J. Weber [39],
which was followed by a subsequent paper in 1982 by Ferrari et al. [40]. Bar detectors cur-
rently have a sensitivity ΔL

L ∼ 10−19[41], where ΔL is the fractional variation of the length
L (∼1 m) of the bar detector. A historical perspective on these resonant detectors is given
in [42]. The detection of gravitational waves by the LIGO [43,44] and Virgo [45] detec-
tors has unveiled a new realm of quantum gravity phenomenology. There have been
several recent investigations regarding the traces of quantum gravitational effects in these
gravitational wave detectors. A great deal of investigation has been conducted to check
if any signature of this fundamental Planck length, whether it is noncommutativity [46–51]
or GUP [28,52], is visible in GW bar detectors. We would like to point out that, to date,
there has not been a successful detection of gravitational waves in resonant bar detectors.
However, there is strong hope that the sensitivity of the detectors will increase in the future,
enabling the detection of these waves. The AURIGA (Antenna Ultracriogenica Risonante per
l’Indagine Gravitazionale Astronomica) detector at INFN, Italy is probably the only functional
bar detector. These bar detectors are sensitive to frequencies of the order of 1kHz, along
with a strain sensitivity of the order 10−19 [53]. In the case of astrophysical events, collaps-
ing and bouncing cores of supernova can be a source of huge intensities of gravitational
waves having frequencies in the vicinity of 1–3 kHz. The value of the strain sensitivity
can be calculated using Thorne’s formula [54]. The strain sensitivity (h), according to this
formula, is given by

h = 2.7 × 10−20
[

ΔEGW
Msc2

] 1
2
[

1kHz
f

] 1
2
[

10Mpc
d

]
(3)

where ΔEGW is the energy converted to gravitational waves, f is the characteristic frequency
of the burst, Ms is the solar mass, and d is the distance of the burst source from Earth.
A possible value of the fraction of energy converted to gravitational waves for supernova
events is around 7 × 10−4. Now, for h ∼ 3 × 10−19 and f ∼ 0.9 kHz, the distance d has
a value around 25 kpc. The occurrence of such a supernova event of the required magnitude
at this distance from the Earth would definitely result in the detection of gravitational waves
by the bar detectors. An effort to increase the sensitivity of these detectors to h ∼ 10−20 is
presently being carried out, and achieving this sensitivity would increase the distance of
the supernova event from the Earth to 250 kpc, which is more likely to occur. The main
motivation to work with a gravitational wave bar detector is that it is a very useful and
economic alternative to the LIGO/VIRGO detectors.

In this work, we investigate the path integral formalism of a resonant gravitational
wave bar detector interacting with the gravitational wave emitted from a distant source
in the GUP framework. The incoming gravitational waves interact with the elastic matter
in the resonant bar detector, causing tiny vibrations called phonons. Physically, we can
describe these detectors as a quantum mechanical gravitational wave–harmonic oscilla-
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tor (GW-HO) system, because we call these vibrations the quantum mechanical forced
harmonic oscillator. To calculate the perturbative solution to the system, we use the grav-
itational wave and generalized uncertainty modifications as perturbations. Our study
presents a path integral approach to look at such a system and is the first work using a
path integral. The advantage of working with path integrals is that the effective action
describing the system can be easily read off from the structure of the configuration space
path integral [55].

2. The Gravitational Wave Resonant Detector Interaction Model

To begin the discussion, we need to present the Hamiltonian for the resonant bar
detector in the presence of a gravitational wave in the generalized uncertainty princi-
ple framework. The modified commutation relation following from Equation (1) takes
the following form [31]:

[q̂i, p̂j] = ih̄
[
δij + γδij p̂2 + 2γ p̂i p̂j

]
(4)

where i, j = 1, 2, 3. The modified position and momentum operators q̂i and p̂i in terms of
the usual variables q̂0i and p̂0i read

q̂i = q̂0i , p̂i = p̂0i

(
1 + γ p̂2

0

)
. (5)

Here, p̂2
0 = ∑3

k=1 p̂0k p̂0k and [q̂0i, p̂0j] = ih̄δij. In order to write the Hamiltonian of
the system, we start by analyzing the background metric as a superposition of a small
perturbation on the flat background metric. The background metric is taken as follows:

gμν = ημν + hμν (6)

where ημν = diag{1,−1,−1,−1} and |hμν| � 1. We now consider a two-dimensional
harmonic oscillator with mass m and intrinsic frequency �. The geodesic deviation equation
for the aforementioned system in the proper detector frame is given as follows [56]:

mq̈k = −mRk
0l0ql − m�2qk

=⇒ q̈k =
dΓk

0l
dt

ql − �2qk ; k = 1, 2
(7)

where Rk
0l0 in terms of the background perturbation is given by

Rk
0l0 = −dΓk

0l
dt

= − ḧkl
2

. (8)

Note that, here, we are using the transverse traceless gauge to eliminate the unphysical
degrees of freedom. The Lagrangian from which Equation (8) can be obtained reads

L =
1
2

mq̇2
k − mΓk

0l q̇kql − 1
2

m�2q2
k . (9)

The Hamiltonian corresponding to the Lagrangian in Equation (9) reads

H =
1

2m

(
pk + mΓk

0lq
l
)2

+
1
2

m�2q2
l . (10)

To write the Hamiltonian in Equation (10) in quantum mechanical description, we sim-
ply elevate q and p to the operator prescription. Therefore, the Hamiltonian in terms of
the position and momentum operators can be expressed as follows:

Ĥ =
1

2m

(
p̂k + mΓk

0l q̂
l
)2

+
1
2

m�2q̂2
l . (11)
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Using the representation of the position and momentum operators in Equation (5),
the Hamiltonian (11) of the GW-HO system in the presence of GUP can be written as
follows:

Ĥ =

(
p̂2

0k
2m + 1

2 m�2q̂2
0k

)
+ γ

m p̂2
0k p̂2

0 +
1
2 Γk

0l

(
p̂0kq̂0l + q̂0l p̂0k

)
+ γ

2 Γk
0l

(
p̂0k p̂2

0q̂0l + q̂0l p̂0k p̂2
0

)
. (12)

Now, a typical bar is a cylinder of length L ≡ 3 m and radius R ≡ 30 cm [56]. Hence,
in a first approximation, we can treat the GW detector in the presence of GUP as a one-
dimensional HO. The Hamiltonian in Equation (12) can be recast in one dimension as follows:

Ĥ =
p2

2m
+

1
2

m�2q2 + γ
p4

m
+

1
2

Γ1
01(pq + qp) +

γ

2
Γ1

01(p3q + qp3) (13)

where, for notational simplicity, we have used p̂01 = p and q̂01 = q. In the next section,
we will proceed to construct the path integral formalism of the GW-HO system in the
presence of the GUP and calculate the propagation kernel for that system.

3. Path Integral and the Propagation Kernel

In this section, we will use the Hamiltonian in Equation (13) to calculate the propa-
gation kernel via the path integral approach. We consider the initial and the final state of
the Hamiltonian in Equation (13) at initial time ti and final time t f as |qi, ti〉 and

∣∣∣q f , t f

〉
,

respectively. The general form of the propagation kernel can be written as follows:

〈
q f , t f |qi, ti

〉
= lim

N→∞

∫ +∞

−∞
dqN−1 . . . dq1

〈
q f , t f |qN−1, tN−1

〉
〈qN−1, tN−1|qN−2, tN−2〉 . . . 〈q1, t1|qi, ti〉

= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

〈
q f

∣∣∣e− iĤ(t f −tN−1)

h̄ |qN−1〉 . . . 〈q1|e−
iĤ(t1−ti)

h̄ |qi〉

= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

〈
qβ+1

∣∣e− iĤ(tβ+1−tβ)

h̄
∣∣qβ

〉
(14)

where t f = tN , ti = t0 and tN − tN−1 = Δt. Now, we will introduce the complete set of

momentum eigenstates
(∫ +∞

−∞ dp|p〉〈p| = 1
)

in the following way:

〈
q f , t f |qi, ti

〉
= lim

N→∞

∫ N−1

∏
α=1

dqα

N−1

∏
β=0

∫
dpβ

〈
qβ+1|pβ

〉〈
pβ|qβ

〉
exp

(
− iH(qβ, pβ)(tβ+1 − tβ)

h̄

)

= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

∫ +∞

−∞

dpβ

2πh̄
exp

[
iΔt
h̄

N−1

∑
β=0

[ pβ(qβ+1 − qβ)

Δt
−
( p2

β

2m
+

1
2

m�2q2
β +

γp4
β

m

+
pβqβ(hβ+1 − hβ)

2Δt
+

γp3
βqβ(hβ+1 − hβ)

2Δt

)]]
(15)

where we have used h11 = h . The final form of Equation (15) in the Δt → 0 limit can be
recast as follows: 〈

q f , t f |qi, ti

〉
=

∫
DqDp exp

(
i
h̄
S
)

(16)

where S is the phase space action. The phase space action is given as follows:

S =
∫ t f

ti

dt
[

pq̇ −
(

p2

2m
+

ḣ11

2
pq +

1
2

m�2q2 +
γp4

m
+

γḣ11

2
p3q

)]
. (17)

To obtain the configuration space Lagrangian, we will simplify Equation (15) as
follows:
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〈
q f , t f |qi, ti

〉 ∼= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

∫ +∞

−∞

dpβ

2πh̄

[
1 − iγΔt

mh̄

(
p4

β +
hβ+1 − hβ

2Δt
p3

βqβ

)
+O(γ2)

]
(18)

× exp

[
iΔtm

2h̄

[( qβ+1 − qβ

Δt
− hβ+1 − hβ

4Δt
qβ

)2

− �2q2
β

]]
exp

[
− iΔt

2mh̄

[
pβ −

(m(qβ+1 − qβ)

Δt
− m(hβ+1 − hβ)qβ

4Δt

)]2]
.

To perform the momentum integral for each β value, we shall perform the following
coordinate transformation:

p̄β = pβ −
(m(qβ+1 − qβ)

Δt
− m(hβ+1 − hβ)qβ

4Δt

)
. (19)

Using Equation (19) in Equation (18), the propagation kernel up to ∼ γ, h can be recast
as

〈
q f , t f |qi, ti

〉 ∼= lim
N→∞

∫ +∞

−∞

N−1

∏
α=1

dqα

N−1

∏
β=0

∫ +∞

−∞

dp̄β

2πh̄

[
1 − iγΔt

mh̄

[(
p̄β +

(m(qβ+1 − qβ)

Δt
− m(hβ+1 − hβ)qβ

4Δt

))4

+

hβ+1 − hβ

2Δt

(
p̄β +

(m(qβ+1 − qβ)

Δt
− m(hβ+1 − hβ)qβ

4Δt

))3

qβ

]
+O(γ2)

]
exp

[
− iΔt

2mh̄
p̄2

β

]
× exp

[
iΔtm

2h̄

[( qβ+1 − qβ

Δt
− hβ+1 − hβ

4
qβ

)2

− �2q2
β

]]
.

(20)

The momentum integral in Equation (20) can be obtained as follows:

〈
qβ+1, tβ+1|qβ, tβ

〉 ∼=√ m
2πih̄Δt

{
1 − 6γm2

( qβ+1 − qβ

Δt
− hβ+1 − hβ

4Δt
qβ

)2

− 3γm2(hβ+1 − h − β)

2Δt

( qβ+1 − qβ

Δt

− (hβ+1 − hβ)

4Δt
qβ

)
qβ +

3iγmh̄
Δt

}
exp

[
imΔt

2h̄

[( qβ+1 − qβ

Δt
− (hβ+1 − hβ)qβ

4

)2

− 2γm2

×
[( qβ+1 − qβ

Δt
− (hβ+1 − hβ)qβ

4

)4

+
(hβ+1 − hβ)qβ

2

( qβ+1 − qβ

Δt
− (hβ+1 − hβ)qβ

4

)3]
− �2q2

β

]]
.

(21)

Using Equation (21) in Equation (20), we obtain the form of the propagation kernel up
to some constant factor as follows:

〈
q f , t f |qi, ti

〉
=

∫ +∞

−∞

N−1

∏
α=1

dqα exp
[ N−1

∑
β=0

imΔt
2h̄

{( qβ+1 − qβ

Δt
− (hβ+1 − hβ)qβ

4

)2

− 2γm2
(( qβ+1 − qβ

Δt

− (hβ+1 − hβ)qβ

4

)4

+
(hβ+1 − hβ)qβ

2

( qβ+1 − qβ

Δt
− (hβ+1 − hβ)qβ

4

)3)
− �2q2

β

}]
.

(22)

Imposing the Δt → 0 limit in Equation (22), the final form of the propagation kernel
has the usual configuration space path integral structure as follows:〈

q f , t f |qi, ti

〉
= N (T, γ, ḣ)

∫
Dqe

i
h̄ S . (23)

In the above equation, the configuration space structure of the action S is given as follows:

S =
∫ t f

ti

dt

(
m
2

(
q̇ − ḣq

4

)2

− 1
2

m�2q2 − γm3
(

q̇ − ḣq
4

)4

− γm3ḣq
2

(
q̇ − ḣq

4

)3)

∼=
∫ t f

ti

dt
(

m
2

q̇2 − 1
2

m�2q2 − mḣq̇q
4

− γm3q̇4 +
1
2

m3γḣq̇3q
)

.

(24)
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In the last line of the above Equation (24), we have kept terms up to O(h, γ). The La-
grangian can be easily read off from Equation (24) as follows:

L =
m
2

q̇2 − 1
2

m�2q2 − mḣq̇q
4

− γm3q̇4 +
1
2

γm3ḣq̇3q . (25)

The equation of motion following from the Lagrangian reads

q̈ − ḧq
4

+ �2q − 12m2γq̈q̇2 + 3γm2ḣq̈q̇q +
3
2

γm2ḧq̇2q + γm2ḣq̇3 = 0 . (26)

In the next section, we calculate the classical solution for the above equation of motion.

4. Obtaining the Classical Solution for a Periodic Circularly Polarized
Gravitational Wave

To obtain the classical solution, we shall consider a circularly polarized gravitational
wave in the transverse traceless gauge. Now, for a periodic circularly polarized gravitational
wave, the perturbation term h containing the polarization information reads

hkl(t) = 2 f0

(
ε×(t)σ1

kl + ε+(t)σ3
kl

)
; k, l = 1, 2 (27)

where 2 f0 is the amplitude of the gravitational wave (here, f0 is very small), and σ1 and σ3

are the Pauli spin matrices. In Equation (27), (ε+(t), ε×(t)) are the two possible polarization
states of the gravitational wave satisfying the condition ε+(t)2 + ε×(t)2 = 1. In this particular
scenario, the chosen functional forms of the polarization states can be written as follows:

ε+(t) = cos(Ωt) , ε×(t) = sin(Ωt) (28)

with Ω being the frequency of the gravitational wave. In our case, we will consider
that the only non-zero polarization state is ε+(t) = cos(Ωt). Therefore, in one dimen-
sion, the perturbation term can be written as h = 2 f0 cos(Ωt). The equation of motion
in Equation (26) up to O( f0, γ) takes the form as follows:

q̈ + ω2q − 12m2γq̈q̇2 = 0 (29)

where ω2 = �2 − ḧ
4 . For the equation of motion in Equation (29), we consider a solution

up to O( f0, γ) as
q(t) = q0(t) + f0q f0(t) + γqγ(t) . (30)

For the form q(t) in the above equation, we obtain the solution of Equation (26) as a lin-
ear combination as q0(t), q f0(t) and qγ(t). The analytical forms of q0(t), q f0(t) and qγ(t) are
given as follows:

q0(t) = A1 cos(�t) +A2 sin(�t), (31)

q f0(t) = A3 cos(�t) +A4 sin(�t)− Ω
2(4�2−Ω2)

[Ω cos(Ωt){A1 cos(�t) +A2 sin(�t)}
−2� sin(Ωt){A2 cos(�t)−A1 sin(�t)}] ,

(32)

qγ(t) = A5 cos(�t) +A6 sin(�t)− 3m2�2

2 [t�A1(A2
1 +A2

2) sin(�t)− t�A2(A2
1 +A2

2) cos(�t)
+A1

4 (A2
1 − 3A2

2) cos(3�t)− A2
4 (A2

2 − 3A2
1) sin(3�t)]

(33)

where A1,A2,A3,A4,A5 and A6 are arbitrary constants, which we will calculate for the qcl(t).
To obtain the form of the above constants, we will apply the following set of the initial conditions:

q(t) =
{

q0 for t = 0
q f for t = T . (34)
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Using the initial conditions in Equation (34), the constants can be obtained as follows:

A1 = q0 , A2 =
q f −q0 cos(�T)

sin(�T) , (35)

A3 = A1Ω2

2(4�2−Ω2)
, (36)

A4 = Ω{cos(�T)[ΩA1 cos(ΩT)−2�A2 sin(ΩT)]+sin(�T)[ΩA2 cos(ΩT)+2�A1 sin(ωT)]}
2(4�2−Ω2) sin(�T) −A3 cot(�T) , (37)

A5 = 3
8 m2�2A1

(A2
1 − 3A2

2
)

, (38)

A6 =
3m2�2

[
�T(A1 sin(�T)−A2 cos(�T))(A2

1+A2
2)+

A1(A2
1−3A2

2) cos(3�T)
4 −A2(A2

2−3A2
1) sin(3�T)

4

]
2 sin(�T) −A5 cot(�T). (39)

Using Equation (30) along with Equations (35)–(39) in Equation (24) (with h being
replaced by 2 f0 cos(Ωt)), we obtain the form of the classical action up to O(γ, f ) as follows:

SC = S(0)
C + S(γ)

C + S( f0)
C (40)

where S(0)
C , S(γ)

C , and S( f0)
C are given by the following equations:

S(0)
C = m�

2 sin(�T)

(
(q2

0 + q2
f ) cos(�T)− 2q0q f

)
, (41)

S(γ)
C = − γm3�3

32 sin4(�T)

[
12�T

(
q4

f + 4q2
f q2

0 + q4
0

)
− 48q0q f �T cos(�T)(q2

f + q2
0) + 24q2

0q2
f �T cos(2�T)

−44q0q f sin(�T)(q2
0 + q2

f ) + 4 sin(2�T)
(

2q4
0 + 15q2

0q2
f + 2q4

f

)
− 12q0q f sin(3�T)(q2

0 + q2
f ) + sin(4�T)(q4

0 + q4
f )

]
,

(42)

S( f0)
C = − f0m�Ω

2 sin(�T)(4�2−Ω2)

[
� sin(ΩT)
sin(�T)

(
q2

0 − 2q0q f cos(�T) + q2
f cos(2�T)

)
+ 2q0q f Ω cos2

(
ΩT

2

)
−Ω cos(�T)

(
q2

0 + q2
f cos(ΩT)

)]
.

(43)

Therefore, we now have the final form of the propagator for the resonant bar detector
interacting with a gravitational wave as follows:〈

q f , T|q0, 0
〉
=

√
m�

2πih̄ sin(�T)
Ñ (T, γ, f0)e

i
h̄ Scl . (44)

To obtain an overall structure of the fluctuation parameter in the above equation,
we consider the free particle structure involving gravitational wave (GW) interaction only.
In this case, the infinitesimal propagator considering the particle GW interaction from
Equation (15) can be extracted as follows (in the � → 0 limit):

〈q1, Δt|q0, 0〉 =
∫ ∞

−∞

dp0

2πh̄
exp

[
iΔt
h̄

(
p0

(q1 − q0)

Δt
−
(

p2
0

2m
+

γp4
0

m
+

p0q0 f0

Δt
(cos(ΩΔt)− 1)

))]

�
√

m
2πih̄Δt

e
im

2h̄Δt (q1−q0)
2
[

1 +
3imγh̄

Δt
− 6γm2

(
q1 − q0

Δt

)2
− iγm3(q1 − q0)

4

h̄Δt3

− i f0q0

h̄

(
m(q1 − q0)

Δt

)
(cos(ΩΔt)− 1)

]
.

(45)

Now, the total propagator can be written using the set of infinitesimal propagators as follows:
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〈
q f , T|q0, 0

〉
�
( m

2πih̄Δt

) N
2
∫

dq1dq2 · · · dqN−1e
im

2h̄Δt [(q1−q0)
2+(q2−q1)

2+···+(q f −qN−1)
2]
[

1 +
3iγmh̄N

Δt
− 6γm2

Δt2 ((q1 − q0)
2

+ (q2 − q1)
2 + · · ·+ (q f − qN−1)

2)− iγm3

h̄Δt3 ((q1 − q0)
4 + (q2 − q1)

4 + · · ·+ (q f − qN−1)
4)

− i f0m
h̄Δt2

[
q0(q1 − q0)(cos(ΩΔt)− 1) + · · ·+ qN−1(q f − qN−1)(cos(NΩΔt)− cos((N − 1)ΩΔt))

]]
.

(46)

In the absence of the gravitational wave [29], the form of the propagator
in Equation (46) reads

〈
q f , T|q0, 0

〉
=
√

m
2πih̄T e

im
2h̄T (q f −q0)

2
(

1 + 3iγmh̄
T − 6γm2

( q f −q0
T

)2 − iγm3

h̄T3 (q f − q0)
4
)

. (47)

In the presence of the gravitational wave, the propagator has the form given as

〈
q f , T|q0, 0

〉
�
√

m
2πih̄T

e
im

2h̄T (q f −q0)
2
(

1 +
3iγmh̄

T
− 6γm2

( q f − q0

T

)2
− iγm3

h̄T3 (q f − q0)
4

+
i f0mT

h̄

(
(q f − q0)

T

)2

[cos(ΩT)− 1]− i f0q f

h̄

(
m(q f − q0)

T

)
[cos(ΩT)− 1]

)

�
√

m
2πih̄T

Ñ (T, γ, f0)e
i
h̄ S( f )

cl

(48)

where S( f )
cl is the classical action involving free particles and gravitational waves given by

S( f )
cl =

m
2T

(q f − q0)
2 − γm3

T3 (q f − q0)
4 − m f0

2T
(q f − q0)

[
(q f cos[ΩT]− q0)− (q f − q0)

sin[ΩT]
ΩT

]
(49)

and the form of the fluctuation term is given as follows:

Ñ (T, γ, f0) � 1 +
3iγmh̄

T
− 6γm2

[ q f − q0

T

]2
+

i f0mT
h̄

[ q f − q0

T

]2
[cos(ΩT)− 1]− i f0mq f

h̄

[ q f − q0

T

]
[cos(ΩT)− 1]

− im f0(q f − q0)

2h̄T

[
(q f − q0) sin(ΩT)

ΩT
− (q f cos(ΩT)− q0)

]
.

(50)

5. Summary

In this work, we have constructed the path integral formalism of the propagation
kernel for a resonant bar detector in the presence of a gravitational wave in the generalized
uncertainty principle framework. In this framework, we have considered only quadratic-
order correction in the momentum. We have obtained the configuration space action for
this system using the path integral formalism. With the action in hand, we have then ob-
tained the equation of motion of the system. From the equation of motion, we observe that
the overall frequency of the resonant detector shifts due to interaction with the gravitational
wave. Next, we have used the form of the perturbation term for a circularly polarized
gravitational wave to calculate the classical solution of the detector coordinate q(t). Using
this form of q(t), we have finally obtained the classical action for a resonant bar detector
interacting with a gravitational wave in the generalized uncertainty principle framework.
We have then investigated the quantum fluctuation parameter of the bar detector in the
presence of a circularly polarized gravitational wave. In order to obtain the final form of
the fluctuation, we have considered a free particle interacting with the gravitational wave.
The final form of the fluctuation picks up correction terms due to both GUP correction
and gravitational wave interaction. In this process, we have neglected cross terms consid-
ering both GUP and GW interactions as it would result in a much smaller correction to
the fluctuation factor than the other corrections present in the analytical form of the quan-
tum fluctuation. It would also be important to carry out the above analysis in a linear

108



Universe 2022, 8, 450

GUP framework. However, we would like to report this in future. From an observational
point of view, the importance of our work lies in the fact that resonant bar detectors have
the potential for detecting gravitational waves with their present sensitivity at distances
of the order of 102 kpc from the Earth. The propagator captures the quantum effects also.
Hence, detectability of such quantum effects in resonant bar detectors is also a possibility
in the near future. Knowledge of the propagator of the detector coordinates is therefore
necessary, if not absolutely essential.
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Abstract: In this paper, we discuss the semi-classical gravitational wave corrections to Gauss’s law
and obtain an explicit solution for the electromagnetic potential. The gravitational wave perturbs the
Coulomb potential with a function that propagates it to the asymptotics.

Keywords: gravitationalwave; semi-classical gravity; loop quantum gravity

1. Introduction

The discovery of gravitational waves (GWs) has not only opened a window to astro-
physical events, but it has also given us instruments that are sensitive enough to test very
weak gravitational phenomena [1,2]. Therefore, new theoretical work acquires meaning
and some of the results can be tested, thereby providing evidence for the correctness of the
physical theories. In particular, quantum gravity, which has no experimental confirmation
as of yet, needs to be tested. Our entire understanding of the visible matter universe
is based on the standard model of particle physics, which is quantized. The quantum
of the GW—the graviton—is yet to be detected, and theoretical predictions regarding it
have non-renormalizable quantum interactions. What, therefore, is the story of gravity at
tiny length scales? In [3], we explored a coherent state for the GW, which would help to
predict semi-classical phenomena at higher length scales than the 10−33 cm Planck length.
Verification of the predictions from the coherent states would provide evidence for an
underlying quantum world, which we hope to probe at a later time with more sophisticated
instruments and understanding. On this note, we will briefly discuss a modified GW metric
that was obtained in [3] and has a semi-classical correction to it. A similar computation
of generalized uncertainty principle correction to a GW detector has appeared in this
volume [4]. We will then solve Gauss’s law and find that there are interesting results with
the GW metric when used by itself. What we will find could be interpreted as the charge
density receiving a correction that is measurable. We will consider a configuration with a
point charge at the origin, which thus places us in the realm of electrostatics. Coulomb’s law
is valid and gives the electric field but no magnetic field. We found that if the background
of this is not flat spacetime but a GW, then there is a non-zero ‘current’ generated. An
interesting discussion of a similar phenomenon and its applications can be found in [5].
Note our work is also different from the example of an oscillatory electron, which is dis-
cussed in [6]. As the change in source is proportional to the GW amplitude, we studied a
‘perturbation’ of Coulomb’s law that is time-dependent and gives rise to a magnetic field.
The time-dependent scalar potential does not fall off at infinity but rises with distance.
The electric field’s radial component runs to zero at infinity, but the angular components
rise as they have the same radial behavior as the potential; this can be measured and we will
provide some numerical estimates. We also show that the magnetic potential is generated
in a similar way as the electric potential. A magnetic field will be obtained from this as
non-zero, though one that is very weak. In the conclusion, we will discuss the results
in detail.
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2. Gauss’s Law and the Gravitational Wave

We solved for Maxwell’s equation when investigating the background of a gravita-
tional wave metric, which was corrected using semi-classical coherent states [3]. For the
Maxwell field, the Lagrangian is:

L = −
√−g

4
Fμν Fμν = −

√−g
4

Fσρ Fμνgσμgρν

= −
√−g

4
(
∂μ Aν − ∂ν Aμ

) (
∂σ Aρ − ∂ρ Aσ

)
gσμgρν,

where we assumed a non-trivial metric.
From the Euler–Lagrange equations, we obtained the following EoM in the presence

of a four-source current jν:

1√−g
∂μ(

√−g Fμν) =
1√−g

∂μ(
√−g gμρ gνσ Fρσ) = jν. (1)

In [3], which appeared in this volume, we found semi-classical corrections to a GW metric.
We used the coherent states in a system of loop quantum gravity (LQG) [7,8], which was
defined on the phase space of the LQG canonical variables, i.e., holonomies hea(A) and
conjugate momenta PI

ea(E). The holonomy of the gauge connection Aa was obtained from
the exponential of a path-ordered integral of a gauge connection over a one-dimensional
‘edge’ ea, which formed the links of a graph; meanwhile, the momentum (built from the
densitized triads Ea) was obtained by smearing the triads Ea over surfaces Sea which the
edges intersected. In this calculation, we used only the momentum variables,

PI
ea =

∫ ∗

Sea

E I ; Pea =
√

PI
ea PI

ea . (2)

and the following relation:
E a

I E b
I = qqab, (3)

where E a
I are the density triads; a, I = 1, 2, 3 represent the space and internal SU(2) indices

respectively; qab is the three-space metric of the background; and q is its determinant. The
coherent states were also characterized using a semi-classical parameter t̃ ∼ l2

p/λ2, which
is a ratio of the Planck length to the length scale of a system (here λ is the GW wavelength)
and has a range of 0 < t̃ < 1. For these purposes, we considered a measurable t̃ ∼ 10−16

for a GW with a frequency of 1035 Hz. This, however, was too high for the observed waves
(which had a frequency of 100 Hz) as their t̃ was far smaller. For the next generation of
detectors which will detect higher frequency waves, see [9] for a review.

The momenta were generated by smearing the triads over the faces of a cube, which
were perpendicular to the edges ea which were straight lines along the three axes. This
type of discretization is not unique; however, with respect to the continuum limit, it serves
the purpose of helping to find a semi-classical correction to the metric, as defined from the
operator expectation values of the momentum (a detailed discussion on this topic can be
found in [3]). The LQG-corrected metric of a gravitational wave with the polarizations of
h+ = A+ cos(ω(t − z)), h× = A× cos(ω(t − z)) (as derived in [3]) is as follows:

gμν =

⎛⎜⎜⎝
−1 0 0 0
0 (1 + h+)(1 + 2t̃ fx) h×(1 + t̃ fx + t̃ fy) 0
0 h×(1 + t̃ fx + t̃ fy) (1 − h+)(1 + 2t̃ fy) 0
0 0 0 1 + 2t̃ fz

⎞⎟⎟⎠. (4)

The determinant of the metric was simplified to a first order in t̃, h×,+, which yielded
the following:

g ≈ (1 + 2t̃ fx + 2t̃ fy + 2t̃ fz)(h2× + h2
+ − 1), (5)
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where the semi-classical correction functions in the metric were

fi = f (Pei ) , f (P) =
1
P

(
1
P
− coth(P)

)
,

Pex =
ε2

κ

(
1 +

1
2

h+

)
Pey =

ε2

κ

(
1 − 1

2
h+

)
Pez =

ε2

κ
,

where ei refers to the straight edges along the x, y, z directions of the three spatial slices of
the system [3]; ε represents the graph edge lengths; ε → 0 gives the continuum geometry;
and κ is the dimensional gravitational constant, which is expressed in natural units as the
Planck length squared. We then found the 0th component of the Maxwell’s equations in
a vacuum, i.e., in the presence of no sources. In flat geometry, this gives us Gauss’s law,
but in the background of the new metric, one instead obtains the following:

− 1√−g
∂i

(√−ggijFj0

)
= 0

=⇒ gxx ∂Ex

∂x
+ gyy ∂Ey

∂y
+ gzz ∂Ez

∂z
+ gxy

(
∂Ey

∂x
+

∂Ex

∂y

)
+ gzzEz

1√−g
∂
√−g
∂z

= 0.

As the metric semi-classical corrections were proportional to the GW, these corrections
were found to be functions of t, z (which has been found as such only in [3]). However,
the derivative terms were proportional to t̃A+, which is a product of small quantities;
therefore, we could neglect them in the first approximation. Thus, we obtained

�∇ · �E = 2t̃( fx
∂Ex

∂x
+ fy

∂Ey

∂y
+ fz

∂Ez

∂z
) + h+

(
∂Ex

∂x
− ∂Ey

∂y

)
+ h×

(
∂Ey

∂x
+

∂Ex

∂y

)
. (6)

In the approximation, we wrote the electric field as a zero-eth order field plus a small
perturbation, and the RHS of the above equation could be interpreted as a source for the
perturbation. The zeroeth order field was a static EM field, which was generated by a point
source at the origin. Hence, we obtained

�E =
1

4πε0

r̂
r2 + �̃E, (7)

where we assumed a point source charge at the origin, or at least a charge of 1 Coulomb
within a small radius ε (which is where our considerations were outside the radius). As the
source was time-dependent, we took the perturbation to be composed of the potentials

�̃E = −�∇Φ +
∂�A
∂t

. (8)

In the Coulomb gauge �∇ · �A = 0, the following was yielded:

∇2Φ(x, y, z, t) = 6h×
xy
r5 + 3h+

(x2 − y2)

r5 , (9)

which is clearly Poisson’s equation with a time-dependent source. Seeing as the divergence
of the electric field was zero and the first order in the corrections, all of the f (Pei ) were
found to be equal; as such, we can ignore the semi-classical term (=2t̃ f �∇ · �E = 0). A way
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through which to understand the GW-generated oscillation of the source was to observe
that the charge density fluctuated with time as the volume changed.

To simplify the system, at θ = π/2, we solved for the equations. As such, we obtained,
as the particular solution, the following:

Φ(r, t) =
(
−3A+

4r

)
cos(2φ) cos(ωt). (10)

Clearly, this potential is different in behavior to the regular 1/r spherical potential of the
point-charge source at the origin. Here, the φ dependence makes the potential acquire
different signs as it approaches the x and y axes. If we write the above equation in spherical
coordinates, in which we assume a form of the potential in spherical harmonics with the
same frequency as that of the GW in its time dependence, we obtain

Φ(r, θ, φ, t) = ∑
lm

Φlm(r, t)Ym
l (θ, φ), (11)

which gives, from Gauss’s law, the following:

∑
l,m

[
d
dr

(
r2 dΦlm

dr

)
− l(l + 1)Φlm

]
Ylm(θ, φ) =

3A+eiω(t−z)

r
sin2 θ cos(2φ). (12)

We then assumed that Φlm(r, t) = eiωtΦlm(r). If we keep the plane wave eikz in the
source (k = ω), then we have to use the spherical wave expansion of the function eikr cos θ ,
where we obtain the following:

eikr cos θ =
∞

∑
l=0

il(2l + 1)jl(kr)Pl(cos θ). (13)

Using the partial wave analysis of the above RHS (with the assumption that the EM po-
tential has the same frequency as the GW), a propagating mode was generated in the case of
the oscillating sources. We also wrote the equation cos(2φ) = 1/2(exp(2iφ) + exp(−2iφ)).
We found that the ODE for Φl2(r) was the same as the ODE for Φl−2(r); therefore, we
dropped the second index and solved for the following equation:

∑
l

[
d
dr

(
r2 dΦl

dr

)
− l(l + 1)Φl

]√
(2l + 1)

4π

(l − 2)!
(l + 2)!

P2
l (cos θ)

=
3A+

2 ∑
l′

il′(2l′ + 1)
jl′(kr)

r
Pl′(cos θ) sin2 θ. (14)

The associated Legendre function P2
l (cos(θ)) is on the left and the usual Legendre function

Pl(cos θ) is on the right. If we take the orthonormality property of the associated Legendre
functions by first multiplying with P2

n(cos θ)d(cos θ) and then integrating both sides of the
Equation for −1 ≤ cos θ ≤ 1, we obtain

∑
l

[
d
dr

(
r2 dΦl

dr

)
− l(l + 1)Φl

]
λl

∫ 1

−1
P2

l (x)P2
n(x)dx

=
3A+

2 ∑
l′

il′(2l′ + 1)
jl′(kr)

r

∫ 1

−1
Pl′(x)(1 − x2)P2

n(x)dx, (15)

where λl represents the normalization constant from Ylm(θ, φ). Furthermore, we replaced
cos θ with x for brevity. The LHS uses the orthogonality condition; but, on the RHS, the
integral was difficult to compute. Given the Legendre function recursion equations [10]
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and integrals [11], we obtained non-zero values for l = n − 2 and n, n + 2. Therefore,
we found [

d
dr

(
r2 dΦn(r)

dr

)
− n(n + 1)Φn(r)

]
2(n + 2)!λn

(2n + 1)(n − 2)!
=

1
r
(Λn−2 jn−2(kr) + Λn jn(kr) + Λn+2 jn+2(kr)], (16)

where there were also the following constants:

Λn−2 =
3A+

2
in−2

[
2n(n2 − 1)(n + 2)
(2n + 1)(2n − 1)

]
, (17)

Λn = −3A+

2
in
[

4n(n + 1)(n − 1)(n + 2)
(2n − 1)(2n + 3)

]
, (18)

Λn+2 =
3A+

2
in+2 2n(n + 1)(n + 2)(n − 1)

(2n + 1)(2n + 3)
. (19)

There were, therefore, three independent l = n − 2, n n + 2 partial waves, which gave
non-zero values for the RHS of the equation and generated the ‘source’ for the EM potential
of the nth angular mode. We used MAPLE to generate the solution to the above ODE,
and we found a very elongated formula that contained LommelS1 and Hypergeometric
functions, which, nevertheless, gave the RHS particular solution. It must be noted that,
if we keep the t̃ term detailed in the above equation, the particular solution will become
corrected with static functions as there are no-time dependent contributions of the first
order in t̃. As mentioned earlier, we ignored the t̃A+ product terms, which are equivalent
to the second -order infinitesimal corrections to Gauss’s law.

The general solution is as follows:

Φn(r) = A0rn +
B0

rn+1 − k3/2

Γ
(

7
2 + n

)
2n−1/2

(
A

(rk)n+1

32(n + 1)(n + 1/2)
H([n + 1], [2 + n,

7
2
+ n],− r2k2

4
)

+ B
(kr)n−1(n + 5

2 )(n + 3
2 )

8n(n + 1
2 )

H([n], [n + 1, n +
3
2
],− r2k2

4
)

+ C
(n − 1

2 )(n + 3
2 )(n + 5

2 )(rk)n−3

2(n − 1)
H([n − 1], [n, n − 1

2
],− r2k2

4
)

)

+
(rk)nk3/2

96n(n + 1)(n + 1/2)(2 + n)

[(
−1

8
(rk)Jn−1/2(kr) +

1
4
(n +

1
2
)Jn+ 1

2
(kr)

)
W(A, B, C)S3/2−n,n+1/2(kr)

+ −n(kr)W(A, B, C)Jn+1/2(kr)S1/2−n,3/2+n(kr)
]
+

1
96(n + 1

2 )n(n + 1)(2 + n)

[(
−1

4
(kr)1/2W(A, B, C)

− 2An(n + 1)(n +
3
2
)(n +

1
2
)(kr)−7/2 +

1
4
(kr)−3/2nW(A, B, C)

)
Jn+1/2(kr)

+

(
1
4
(kr)−1/2nW(A, B, C) + (kr)3/2 1

8
W(A, B, C) + (kr)−5/2V(A, B, C)

)
Jn−1/2(kr)

]
. (20)

In the above, we have Jn(x) as the Bessel function of the first kind, Sn,m(x) as the LommelS1
functions, and H(a, b; c, d, e, x) and H(a; b, c, x) as the Hypergeometric functions of the (2,
3) and (1, 2) type, respectively. In addition, Φn was set to have the usual partial wave
potentials of the form rn and r−n−1, which were also the solutions of the homogeneous
equation. The particular solutions represent the functions generated by the GW-induced
oscillations and are propagating EM potentials. There were singularities hidden in the
LommelS1 functions for the integer values of n, which we regulated. Note that we can
trust only the solutions for r �= 0, and this is justified as we have a semi-classical parameter
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t̃ ≈ 0 and the discretization ε length scale, which provide a minimum length to which the
geometry can be probed. The constants were

A =
(2n + 1)(n − 2)!

2(n + 2)!λn
Λn+2, (21)

B =
(2n + 1)(n − 2)!

2(n + 2)!λn
Λn, (22)

C =
(2n + 1)(n − 2)!

2(n + 2)!λn
Λn−2, (23)

W(A, B, C) =
4
3
(Cn2) + (−2B + 4C)n + A − 4B +

8
3
(C), (24)

V(A, B, C) = −2
3
(Cn2) + (A − C)n +

3
2

A +
2
3
(C). (25)

Note that the above results were true only for n = 2 and higher. As the behavior
of the functions for general n were difficult to plot, we simply took one representative
partial wave and observed the difference from a regular solution. We took n = 3 and
observed the behavior of Φ3(r) as r → ∞. The Φ3(r) function had a real component that
fell of as the r−4 was obtained from the homogeneous equation solution, and an imaginary
component (which was evident from the coefficients on the RHS) was the particular solution
for n = 3. Additionally, as our ansatz for the potential was of the form Φ(r)eiωt, it was not
surprising that the solution was complex. We then plotted the function |Φ3(r)|2 to examine
its asymptotic behavior. We found that, despite putting the particular solution strength
as 10−10 of the r−4 term, the function started increasing after a certain interval. We know
that r−4 → 0 as r → ∞, but the presence of GWs reverses the fall off. This behavior persists
for a higher n, thus confirming our claim that the electric potential now extends to the
asymptotic region.

In general, the solutions will be of the form

Φ(r, θ, φ, t) = ∑
l

Φl(r)
(

P2
l (cos θ)e2iφ + P−2

l (cos θ)e−2iφ
)

eiωt. (26)

To obtain the observable function, one must take the real part of the summed solution.
As shown above in Equation (20), Φl(r) is composed of solutions to the homogeneous
equations of the form Alrl + Blr−(l+1). In addition, for each l, there is a particular solution.
It is plausible that the sum over l for the particular solution has a finite convergent answer.
We tried finding a convergent answer but the summation was not simple; thus, work is still
in progress. We instead used a numerical method of summing up the partial waves to some
finite number. We then plotted the particular solution and summed up to l = 3, . . . , m,
where m is some large number. This evidently represents a truncated GW wave contribution
that is up to the m + 2 mode in the source, but it is a good-enough approximation to what
might be the real system. Therefore, we—in the following—plotted the plane wave that
was summed up to m = 50, 100, as well as showed the corresponding Coulomb potential
that was generated by the system.

We investigated the analytic formula in Equation (20) and the partial wave summation
of the spherical wave solution. We found that the potential started growing as had been
observed for the l = 3 solution of the potential, as shown in Figure 1. We then plotted
the potential in 3d and for φ = 0. This showed that the GW effect on the Coulomb
potential was non-trivial and was, in principle, detectable using an electrometer, which is
sensitive to the electric potential. This approach will aid in the detection of a GW in a very
isolated environment.
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Figure 1. The modulus square of the potential for l = 3.

As is evident from the above plots, i.e., in Figure 2a,b (one for m = 50 and another for
m = 100), the potential increased as a function of r, and the image on the x = cos θ axis
showed oscillations due to the Legendre function. If one plots the sum over a small interval,
then these features are also evident, as shown in Figure 3a. If one plots the potential on the
sphere, the oscillations would of course appear as ‘petals’ in a spherical coordinates plot, as
shown in Figure 3b.

(a) (b)

Figure 2. Real parts of Φ(r, θ, 0). (a) Potential with partial modes summed from l = 3, . . . , 50, φ = 0.
(b) Potential with the partial modes summed for l = 3, . . . , 100, φ = 0.

The electric field defined from the above potential was expressed simply as

�E = −�∇Φ(r, θ, φ) = −
(

∂Φ
∂r

r̂ +
1
r

∂Φ
∂θ

θ̂ +
1

r sin θ

∂Φ
∂φ

φ̂

)
. (27)
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(a) (b)

Figure 3. Real parts of Φ(r, θ, 0). (a) Potential with partial modes summed from l = 3, . . . , 50 and
plotted for k = 1, r = [0, 20], φ = 0. (b) Potential with partial modes summed for l = 3, . . . , 50 and
plotted in θ, φ, k = 1, r = 1.

The electric field in the r̂ direction had a non-trivial derivative in the radial direction.
The derivatives of θ and φ acted on the P2

l (cos θ) and the cos(2φ) functions. We found that
the Er function was the derivative of the potential function that is given in Equation (20); it
was also found to be very lengthy and involved SturveH functions. Instead of quoting that,
we show a graphical representation of the functions in the following Figure 4a,b for the
l = 3 partial wave only.

(a) (b)

Figure 4. Magnitude of the radial electric field solution for l = 3. (a) Magnitude of Er ∝ −∂rΦ3 for
φ = 0, θ = π/4; r = [0, 400]. (b) The Er field for φ = 0, θ = π/4, r = [0, 4].

As evident from the above, the radial component decreased with distance. However,
it must be mentioned that the particular part of the solution did show an increase as a
function of r. As in the potential, we took the ratio of the Coulomb term and GW-induced
term as 10−10. In the event that this ratio was different, the nature of the electric field’s
radial component would again change. As shown in Figure 5, the contribution from
the GW-induced electric field increased with r. It also remained that there were angular
components of the electric field, which were generated due to the GW, and these should be
detectable in an electrometer.
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Figure 5. The GW-induced electric field radial component for l = 3, k = 1.

Next, we also found that the electric field’s radial component for the summed potential
was Er(r, θ) = −∂r

(
∑50

l=3 Φl(r)P2
l (θ)

)
. This showed behavior that was almost similar to

the electric field for l = 3, where the function shows a fall off as a function of r. We plotted
the particular solution of the GW-induced electric field, which is non-trivial, for k = 1, as
shown in Figure 6.

Figure 6. The GW-induced electric field radial component for the partial wave summed as l =

3, . . . , 50, k = 1.

Before we end this discussion, the obvious question is whether a calibrated electrome-
ter will detect the above-generated fluctuating electric field, and the answer is yes. If we
find the potential function at a distance of 10 m from the origin where a 10−9 Coulomb
charge has been placed (q/4πε0∼1) and where the GW has a frequency of 10 Hz with an
amplitude of 10−21, then the Eθ component at a fixed angle being proportional to the
potential is almost of a 0.1 N/C order. Small changes in the magnetic fields were detected
by SQUIDS [12], we therefore needed to discuss the magnetic field generated by the GW.

In the above, we showed how a GW can modify Gauss’s law but where our electric
field perturbation was time dependent. Therefore, the discussion is incomplete without
discussing the magnetic field and studying the vector potential. To obtain the magnetic
field, we studied Maxwell’s equations for ν = i, where i is a space component and the
current density is ji = 0, as we are only studying Coulomb’s law for a static source in this
discussion. We found that Maxwell’s equation is as follows:

− 1√−g
∂0

(√−ggijF0j

)
+

1√−g
∂k

(√−ggkl gijFlj

)
= 0. (28)

119



Universe 2024, 10, 65

As the magnetic field was initially zero, the contribution to a non-zero magnetic field �B at a
first order in the GW amplitude was(

∂zBy − ∂yBz
)

= −∂0h+E0
x + ∂0Ẽx, (29)

(∂xBz − ∂zBx) = ∂0h+E0
y + ∂0Ẽy, (30)

(∂xBy − ∂yBx) = ∂0Ẽz. (31)

In the above, E0
i is the components of the Coulomb field and Ẽi is the perturbations that

were computed due to the GW. If we use the Lorenz gauge and write the magnetic field in
terms of a Gauge potential �B = �∇× �A, such that �∇ · �A = 0, one obtains

∇2 Ax = −∂0h+E0
x + ∂0Ẽx, (32)

∇2 Ay = ∂0h+E0
y + ∂0Ẽy, (33)

∇2 Az = ∂0Ẽz. (34)

The above equations can be solved using the same method as the scalar potential solution
for Gauss’s law. Thus, apart from modifying Gauss’s law, the GW also induces a magnetic
field, and this can be calculated. We hope to discuss this in a future work. The fact that a
tiny magnetic field was generated is important for detection purposes as small changes in
magnetic fields can be found using SQUIDS [12].

3. Conclusions

In this short article, we have shown that the GW generates a source for a perturbation
of the EM potential, which is time-dependent. The solution is complicated in form but was
exactly obtained. As GWs were detected, we predicted the corrections to the Coulomb
potential being of a point source charge, and we hope to find an experimental verification
of our results. The semi-classical corrections to the metric described in the paper will also
correct Gauss’s law in a slightly similar functional form but will also be of a next order in the
perturbation. Previously, and in recent years, GW wave-induced corrections to Maxwell’s
equations have been studied [12–16], but our results specifically discussed corrections to
a static electric Coulomb potential using partial wave analysis. We also showed how a
magnetic field is generated by the GW. We found that, when using numerical values, the
GW-induced electric fields propagated and can be almost of an order 1. The question then
is, have we already seen the GW-induced correction to Gauss’s law in some detector? To
attribute the EM detection to a GW would therefore be the next task.

Funding: O.O. was funded by a MITACS summer fellowship.

Data Availability Statement: This paper did not report any experimental data.

Acknowledgments: We are grateful to Narasimha Reddy Gosala for their useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Bulik, T.; LIGO–Virgo–KAGRA Collaboration.
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA.
Living Rev. Rel. 2020, 23, 3. [CrossRef] [PubMed]

2. Saulson, P.R. Fundamentals of Interferometric Gravitational Wave Detectors; World Scientific: Singapore, 1994.
3. Dasgupta, A.; Montenegro, J.L.F. Aspects of Quantum Gravity phenomenology and Astrophysics. Universe 2023, 9, 128. [CrossRef]
4. Sen, S.; Bhattacharya, S.; Gangopadhay, S. Path Integral Action for a Resonant Detector of Gravitational Waves in the Generalized

Uncertainty Principle Framework. Universe 2022, 8, 450. [CrossRef]
5. Bruschi, D.E. Gravity-induced electric currents. arXiv 2023, arXiv:2306.03742.
6. Audagnotto, G.; Keitel, C.H.; Piazza, A.D. Proportionality of gravitational and electromagnetic radiation by an electron in an

intense plane wave. Phys. Rev. D 2022, 106, 076009. [CrossRef]

120



Universe 2024, 10, 65

7. Thiemann, T.; Winkler, O. Gauge field theory coherent states (GCS): II. Peakedness properties. Class. Quantum Gravity 2001,
14, 2561. [CrossRef]

8. Thiemann, T. Introduction to Modern Canonical General Relativity. arXiv 2001, arXiv:0110034.
9. Aggarwal, N.; Aguiar, O.D.; Bauswein, A.; Cella, G.; Clesse, S.; Cruise, A.M.; White, G. Challenges and Opportunities of

Gravitational Wave Searches at MHz to GHz frequencies. Liv. Rev. Rel. 2021, 24, 4. [CrossRef]
10. Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, Products; Elsevier: Amsterdam, The Netherlands, 2007.
11. Samaddar, S.N. Some Integrals Involving Associated Legendre Functions. Math. Comp. 1974, 128, 257.
12. Cabral, F.; Lobo, F.S.N. Gravitational Waves and Electrodynamics: New perspectives. Eur. Phys. J. C 2017, 77, 237. [CrossRef]

[PubMed]
13. Patel, A.; Dasgupta, A. Interaction of Electromagnetic field with a Gravitational wave in Minkowski and de-Sitter space-time. In

General Relativity and Quantum Cosmology; Cornell University: Ithaca, NY, USA, 2021.
14. Kim, D.; Park, C. Detection of gravitational waves by light perturbation. Eur. Phys. J. C 2021, 81, 563. [CrossRef]
15. Ganjali, M.A.; Sedaghatmanesh, Z. Laser interferometer in presence of scalar field on gravitational wave background. Class.

Quant.Grav. 2021, 38, 105010. [CrossRef]
16. Calura, M.; Montinari, E. Exact Solution to the homogeneous Maxwell Equations in the Field of a Gravitational Wave in

Linearized Theory. Class. Quant. Grav. 1999, 16, 643–652. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

121



universe

Review

Space–Time Physics in Background-Independent Theories of
Quantum Gravity

Martin Bojowald

Citation: Bojowald, M. Space–Time

Physics in Background-Independent

Theories of Quantum Gravity.

Universe 2021, 7, 251. https://doi.org/

10.3390/universe7070251

Academic Editors: Alfredo Iorio and

Arundhati Dasgupta

Received: 29 June 2021

Accepted: 17 July 2021

Published: 20 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for Gravitation and the Cosmos, The Pennsylvania State University, 104 Davey Lab,
University Park, PA 16802, USA; bojowald@gravity.psu.edu

Abstract: Background independence is often emphasized as an important property of a quantum
theory of gravity that takes seriously the geometrical nature of general relativity. In a background-
independent formulation, quantum gravity should determine not only the dynamics of space–time
but also its geometry, which may have equally important implications for claims of potential physical
observations. One of the leading candidates for background-independent quantum gravity is loop
quantum gravity. By combining and interpreting several recent results, it is shown here how the
canonical nature of this theory makes it possible to perform a complete space–time analysis in
various models that have been proposed in this setting. In spite of the background-independent
starting point, all these models turned out to be non-geometrical and even inconsistent to varying
degrees, unless strong modifications of Riemannian geometry are taken into account. This outcome
leads to several implications for potential observations as well as lessons for other background-
independent approaches.

Keywords: background independence; space–time physics; geometry; loop quantum gravity; covariance

1. Introduction

A key feature of general relativity is its ability to determine both the dynamics and
the structure of space–time. A complete quantum theory of gravity should therefore
refrain from presupposing space–time structure; only then can it be considered a proper
quantization of the theory. As a conclusion, space–time structure must be derived after
quantization for a subsequent physical analysis, and the result may be modified compared
with the familiar Riemannian structure. Depending on the quantization procedure, it may
even happen that no consistent space–time structure exists for its solutions. A detailed
analysis is then required to see whether the theory can be considered a valid candidate for
quantum gravity, even if it is formally consistent, judged by non-geometrical standards
such as conditions commonly imposed on quantizations of gauge theories. These questions
are highly non-trivial in any approach. A detailed analysis is now available in models of
loop quantum gravity, but it remains preliminary owing to the tentative nature of physical
models of space–time in this theory.

Loop quantum gravity is often advertised as a background-independent approach to
quantum gravity. This characterization suggests that the theory might indeed be free of
pre-supposed space–time structures. In practice, however, the rather involved nature of
methods suitable for derivations of space–time structures, combined with the canonical
treatment used in the more successful realizations of loop quantum gravity, has for some
time obscured the role and nature of space–time in this theory. In fact, several long-standing
doubts exist as to the possibility of covariance in models of loop quantum gravity. For
instance, the “bounce” idea, used in a majority of cosmological and black-hole models in
this setting, is largely based on calculations available for the dynamics in homogeneous
cosmological models, introducing formal properties of discreteness or boundedness seen
in the kinematics of the full theory of loop quantum gravity. Since it remains unknown
whether there is space–time dynamics consistent with the kinematics of the full theory,
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there is no guarantee that kinematical ingredients exported to homogeneous models of
quantum cosmology can give rise to a meaningful structure of space–time and some sense
of general covariance.

More specifically, kinematical features that apply spatial discreteness work as a cut-
off which, if it is a fixed scale, is hard to reconcile with the transformations required for
covariance. If one accepts the possibility that quantum gravity may well lead to non-
classical space–time structures that require a modified and perhaps weakened version
of general covariance, consistency requires a detailed demonstration of how one can
avoid various low-energy problems that may then trickle down from the Planck regime,
as pointed out in [1,2]. Moreover, in such a situation, it is important to determine how
a modified space–time structure can be described in meaningful terms, for instance by
addressing the question of whether such a theory can still be considered geometrical
and whether there is an extended range of parameters (such as h̄) in which effective line
elements may still be available.

A consideration of space–time structure in bounce models also raises the question
of how exactly singularity theorems are evaded. In models of loop quantum cosmology,
bounce solutions are obtained without modifying matter Hamiltonians. The standard en-
ergy conditions therefore remain satisfied, obscuring the possibility of avoided singularities
often claimed in this setting. Since singularity theorems make statements about boundaries
of space–time and use the general properties of Riemannian geometry such as the Ricci
curvature and the geodesic deviation equation, they depend on and require a consistent
form of space–time structure. Unfortunately, however, bounce models of loop quantum
gravity are often accompanied by poorly justified and contradictory statements about
space–time. For instance, standard line elements are commonly used to express modified
gravitational dynamics in tractable form, implicitly presupposing that space–time remains
Riemannian. However, then, singularity theorems should be applicable to the resulting
modified solutions since the behavior of matter energy is assumed to remain unchanged,
making it impossible to evade singularities by a bounce. (The behavior of singularities
may depend on a possibly modified relationship between stress–energy and Ricci curva-
ture even if one maintains positive-energy conditions. However, simple bounce models
based on modified Friedmann equations do not provide such a relationship because their
space–time structure remains unclear.) The fact that this contradiction has gone unnoticed
for several years in this field serves to highlight the challenging nature of questions about
space–time in loop quantum gravity.

Independently of bounce claims, results about space–time structure in models of loop
quantum gravity have been accumulating in recent years. This review presents a summary,
highlighting the similarities between different ways in which covariance can be and often
is violated. By now, all the high-profile claims made in the last decade in the context of loop
quantum gravity, including [3–6], have been shown to rest upon inconsistent assumptions
about space–time structure and covariance. It is therefore of interest to combine and
compare the various ways in which covariance can be violated in order to arrive at a
general perspective. (Some of these models have already been presented in an overview
form in [7]. The focus of this previous review was on implications for models of black
holes, while the present one emphasizes the role of these results for general aspects of
background independence and the viability of quantum gravity. Moreover, it presents
further comparisons between the different results).

A discrete fundamental theory is not expected to respect all the properties that we are
used to from classical space–time. Some violation of classical covariance may therefore be
allowed. Nevertheless, because covariance does not only describe a property of classical
space–time but also implies that all consistency conditions are met for gravity as a gauge
theory, the requirement of general covariance cannot just be abandoned without suitable
replacements. One task to be completed for a consistent theory of quantum gravity is
to find suitable middle ground between completely broken covariance and the strictly
classical notion of general covariance. Considerations of covariance therefore remain
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important even if one believes that quantum gravity may completely change the structure
of space–time in its fundamental formulation.

The examples of violations of covariance discussed here do not directly apply to
fundamental quantum gravity but rather to models used for phenomenological studies of
cosmology or black holes. In this context, the question of covariance is even more pressing
because a general (but often implicit) strategy in this context is to use well-understood
Riemannian geometry to analyze potential modifications in the dynamical equations of
quantum gravity. Since these modifications may easily affect space–time structure as well,
any implicit assumptions about space–time must be uncovered and analyzed before an
analysis can be considered meaningful. In this phenomenological context, the question of
space–time structure is not as challenging as it is at the fundamental level, but it is still
relevant. The task is to show that a certain geometrical structure applies to solutions of an
effective description of quantum gravity not only in the strict classical limit where h̄ = 0
but also within some finite range of the expansion parameter, given for instance by ρ/ρP in
a cosmological model with energy density ρ relative to the Planck density.

The studies [3–6] of interest here implicitly assume that space–time structure remains
unmodified even in the presence of modified dynamics, and sometimes even all the way
to the Planck scale [3,6]. This strong assumption is implemented by inserting solutions of
modified equations in a standard line element, without checking whether the modified
solutions obey gauge transformations compatible with coordinate transformations such
that an invariant line element results. Such a line element is crucial in these studies
because it enables the formulation of new claims of potential physical effects that make
these studies interesting and publishable in high-profile journals. The same ingredient
makes these studies vulnerable to violations of covariance, as reviewed in detail in the
following sections.

The concluding section of this review points out general properties of covariance in
models of loop quantum gravity that may be useful for other approaches. It is generally
expected that quantum gravity leads to new geometrical features at large curvature that
can no longer be described by a classical form of space–time with its common sense of
covariance. Loop quantum gravity is only one approach in which a specific example
of discreteness or other non-classical geometrical effects is being explored. The general
question to be addressed is then whether quantum gravity at large curvature remains a
geometrical theory in the sense that its solutions can still be described in terms of space–
time with a certain generalized meaning compared with our classical notion.

2. Models of Loop Quantum Gravity

In order to set up our analysis, we should first introduce the general form of modi-
fications implemented in models of loop quantum gravity (see [8] for more details). It is
sufficient to illustrate these modifications by recalling the basics of loop quantum cosmol-
ogy for spatially flat, isotropic models.

2.1. Holonomy Modifications and Space–Time Structure

The classical dynamics of the scale factor a can be expressed by a canonical pair (q, p)
where q = ȧ (a proper-time derivative) and |p| = a2, subject to the Friedmann constraint:

− q2

|p| +
8πG

3
ρ = 0 (1)

with the energy density ρ. Kinematical aspects of loop quantization suggest the replace-
ment, or “holonomy modification”:

q2

|p| �→
sin(�q/

√|p|)2

�2 (2)
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where � is a suitable, possibly running length scale, such as the Planck length �P in
simple cases.

Taken in isolation, holonomy modifications imply non-singular behavior in isotropic
models with a modified Friedmann constraint:

sin(�q/
√|p|)2

�2 =
8πG

3
ρ (3)

because the energy density of any solution to this equation must be bounded (assuming
that � is constant, as commonly done in this context). However, this equation includes only
one type of expected quantum corrections. In addition, a complete effective description
of some underlying dynamics of quantum gravity (of any kind) should also include the
remnants of higher-curvature terms in an isotropic model. Higher-curvature terms, just
like holonomy modifications, require a given length scale, which we may assume to equal �
if holonomy modifications and higher-curvature terms are derived from a single quantum
theory of gravity. It is easy to see that higher-curvature terms are not described by (3)
because they generically imply higher time derivatives and therefore extend the phase
space by additional momenta.

The Equation (3) is therefore incomplete from the viewpoint of effective theory. Nev-
ertheless, it may be useful because it determines at least one type of quantum corrections.
However, knowing that there are additional terms not included in (3) that also depend on
�, we cannot trust the full function sin2(�q/

√|p|)/�2 but should rather expand:

sin(�q/
√|p|)2

�2 ∼ q2

|p|
(

1 − 1
3
�2 q2

|p| + · · ·
)

(4)

and only include leading-order terms. If � ∼ �P, these leading corrections are of the order
�2

Pq2/|p| ∼ ρ/ρP, which is the same as the order expected for higher-curvature terms. Even
the leading corrections in (3) should therefore not be considered to be definitely certain
and considered with caution. Interpreting the full series expansion or its sum to the sine
function as an indication of bounded densities is unjustified in the absence of information
about higher-curvature terms.

Higher-curvature terms are also of interest from the point of view of space–time
structure. We already used the fact that they generically include higher time derivatives, but
the specific appearance of such terms is not arbitrary and is instead guided by requirements
of general covariance. In loop quantum cosmology, the form of quantum corrections that
may appear in addition to holonomy modifications can therefore be determined only if
there is good control on space–time structure in this setting.

Isotropic and homogeneous models are not sufficient for an analysis of space–time
structure and covariance because these questions rely on how spatial and temporal depen-
dencies are related in differential equations and their solutions. At least one spatial direction
of inhomogeneity should then be included in suitable models, in addition to the non-trivial
time dependence already described by models such as (3). While such (midisuperspace)
models have been considered in loop quantum gravity for some time, their application to
the question of covariance is rather new and has led to several surprising results.

2.2. Three Examples and One Theorem

We will review three examples of the proposed methods to describe inhomogeneity in
models of loop quantum gravity and the reasons why they turn out to violate covariance
in ways that render them inconsistent. The first example, the dressed-metric approach
for cosmological inhomogeneity [9], has been used several times as a crucial ingredient
in cosmological model building, leading to claims of observational testability that, given
the underlying problems with space–time structure, turn out to be unfounded. (Similar
arguments regarding violations of covariance apply to the hybrid approach to inhomo-
geneity in loop quantum cosmology [10]). The remaining two examples, given by partial
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Abelianizations of constraints in spherically symmetric models [4] as well as a misleadingly
named “covariant polymerization” [11] in related studies apply to proposed scenarios for
quantum black holes. (The proposal of [11] was intended to justify modified equations
used for a study of critical collapse in [5]).

In addition, we will describe a detailed no-go theorem based on a minisuperspace
description of the static Schwarzschild exterior by a homogeneous time-like slicing, as
originally proposed for a different purpose in [6].

3. Dressed-Metric Approach

In classical gravity, as is well known, it is possible to describe cosmological inhomo-
geneity in the early universe as a coupled system of two independent sets of degrees of
freedom, given by inhomogeneous perturbations evolving on a homogeneous background
with THE choice of a time coordinate (such as proper time or conformal time). In a discus-
sion of possibly modified dynamics and space–time structure, it is important to remember
that these two ingredients, background and perturbations, have rather different properties
related to covariance.

3.1. Background and Perturbations

The dynamics of any homogeneous background can be modified without violating
covariance because there is a single constraint, (3), which is always consistent with itself
in any modified form: because {C, C} = 0 for any Poisson bracket, Hamilton’s equations
generated by a constraint C are guaranteed to preserve the constraint equation C = 0
imposed on initial values.

Applied to the Friedmann constraint C, we generate equations of motion:

d f
dt

= { f , NC} (5)

for any phase-space function f , with respect to a time coordinate t indirectly determined by
the lapse function N > 0. The generic time derivative, applied to solutions of the constraint
C = 0, can be rewritten as

1
N

d f
dt

= { f , C} =
d f
dτ

(6)

introducing proper time τ in the last step by the usual definition dτ = Ndt.
All allowed choices of time coordinates (monotonically related to τ) can therefore be

described by a single line element:

ds2 = −dτ2 + ã(τ)2dσ2 (7)

where ã(τ) denotes the scale factor subject to potentially modified dynamics, and dσ2 is
a standard isotropic spatial line element. Because the definition of τ implies that the line
element is correctly transformed to:

ds2 = −N2dt2 + ã(t)2dσ2 (8)

for any other time coordinate t, there is a suitable way to describe any modified homoge-
neous dynamics, subject to a single constraint, by a space–time geometry that is invariant
with respect to the full coordinate changes allowed by the symmetry, given by reparame-
terizations of time.

Coordinate changes are more involved in the case of spatial inhomogeneity because
several independent coordinates may be related by transformations. In the canomical
language of constraints, the presence of a multitude of independent ones, one Hamiltonian
constraint per spatial point as well as diffeomorphism constraints, which implies that a
modification of one or more constraints no longer implies the consistency of their Hamilto-
nian flows with respect to the other constraints. Since the relevant constraints implement
space–time transformations, a dedicated space–time analysis then becomes important.
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For small, perturbative inhomogeneity, there is a standard way to describe curvature
perturbations in terms of combinations of metric and matter fields that are invariant with
respect to small coordinate changes [12]. However, compared with the reparameterizations
of time relevant for the background, it is much harder to derive a suitable invariant line
element extending (8) in a way that is consistent with Hamilton’s equations generated by
modified constraints for perturbative inhomogeneity. In fact, the standard derivations of
curvature perturbations [12,13] as well as the canonical version given in [14] assume that
space–time is of its classical form, for instance by directly working with the coordinate
substitutions in a line element. A modified or quantum treatment then cannot take it for
granted that the form of these curvature perturbations remains unchanged, because the
space–time structure itself may be modified in quantum gravity.

The dressed-metric approach proceeds by quantizing standard curvature perturba-
tions on a modified background, leading to wave equations for perturbations on a modified
background line element ds2 = g̃αβdxαdxβ of the form (8). The approach therefore im-
plicitly assumes that space–time structure remains classical even while the dynamics of at
least the background are modified. Upon closer inspection, this assumption turns out to
be unjustified.

3.2. The Metric’s New Clothes

As already pointed out in [15], Bardeen variables or curvature perturbations are
“gauge invariant” under small coordinate changes, but not necessarily under all coordinate
changes relevant for a given cosmological situation. In particular, in cosmological models of
perturbative inhomogeneity, we also need invariance under potentially large background
transformations of time, such as transforming from proper time to conformal time.

Small coordinate changes of perturbations and large reparameterizations of back-
ground time are not independent of each other. Algebraically, they form a semidirect
product rather than a direct one, as shown in [16]. The non-trivial interplay between these
transformations can be deduced from vector-field commutators such as:[

f (t)
∂

∂t
, ξα ∂

∂xα

]
= f ξ̇α ∂

∂xα
− ḟ ξ0 ∂

∂t
(9)

which in general are not zero (in contrast to what a direct product would imply) but
rather form a small inhomogeneous transformation. This interplay is a general prop-
erty of perturbations in Riemannian geometry, as encoded in line elements suitable for
perturbative inhomogeneity.

The applicability of standard line elements requires the precise algebra of coordinate
transformations to be modeled by gauge transformations in a canonical formulation of any
gravity theory. However, while the dressed-metric approach assumes the availability of
standard line elements with the usual coordinate dependence (but possibly modified metric
coefficients), it violates the algebraic condition by its independent treatment of background
and perturbations: quantizing the background separately from the perturbations evolving
on it implicitly assumes a direct product of coordinate changes. Writing a line element
ds2 = g̃αβdxαdxβ based on modified metric components g̃αβ in a dressed-metric model is
therefore meaningless.

3.3. Effective Line Element

Because a line element ds2 = gαβdxαdxβ is defined as the square of an infinitesimal
distance, it can be meaningful as a description of geometry only if it is independent
of coordinate choices that affect dxα as well as gαβ. For ds2 to be invariant, the metric
coefficients gαβ must be subject to the standard tensor-transformation law:

gα′β′ =
∂xα

∂xα′
∂xβ

∂xβ′ gαβ (10)
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if coordinates xα are transformed to xα′ .
Canonical quantization in its usual form, as applied in models of loop quantum

gravity, does not modify space–time coordinates xα and their transformations, but it may
alter the equations of motion (with respect to these coordinates) for the spatial metric qij in
the generic canonical line element:

ds2 = −N2dt2 + qij(dxi + Midt)(dxj + Mjdt) . (11)

Modifications of the remaining components, the lapse function N and shift vector Mi,
are also determined by canonical equations, although more indirectly because N and Mi

do not have unconstrained momenta. In the presence of modifications, altered equations
for qij, N and Mi must remain consistent with coordinate transformations if an effective
line element ds2 is to be meaningful.

A crucial ingredient in a canonical analysis of covariance is therefore given by the
transformations of N and Mi, in addition to the more obvious transformations of qij. The
full set of canonical transformations makes use of the specific properties of the constraints
of the theory. At this point, the analysis of geometrical properties relevant for effective line
elements benefits from a discussion of hypersurface deformations in space–time, which are
generated from the constraints. While properties of hypersurface deformations constitute
some of the classic results in canonical general relativity [17–21], they do not appear to
be widely known. What follows is a construction of hypersurface deformations based on
elementary properties of special relativity.

3.3.1. Hypersurface Deformations

In special relativity, an observer moving at speed v assigns new coordinates to events
in space–time according to a Lorentz transformation:

x′ = x − vt√
1 − v2

, t′ = t − vx√
1 − v2

. (12)

Interpreting this transformation as a linear deformation of axes in a space–time di-
agram, as shown in Figure 1, the set of all Poincaré transformations can be geometri-
cally represented by linear hypersurface deformations with respect to lapse functions
N(x) = Δt + v · x (deformations in the normal direction of a spatial slice) and shift vector
fields M(x) = Δx + Rx (tangential deformations within a spatial slice). The parameters
in these expressions for linear lapse functions and shift vector fields determine a time
translation Δt, a boost velocity v, a spatial shift Δx and a spatial rotation matrix R.

Figure 1. A Lorentz transformation in Minkowski space–time, shown in the traditional way by means
of axes as well as in terms of linear normal deformations of a spatial slice. A slice t = const in the
original coordinate system was transformed to a new spatial slice t′ = const by a linear deformation
with position-dependent displacement N(x) = N0 + vx along the unit normal vector field n.

We extend these considerations to general relativity by replacing the restricted set of
translations, rotations and Lorentz boosts with arbitrary non-linear coordinate changes.
Correspondingly, hypersurfaces are subject to non-linear deformations [17]. Infinitesimal
hypersurface deformations in Riemannian space–time, split into “temporal” deformations
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T(N) in a normal direction and “spatial” deformations S(M) in tangential directions, can
be shown to obey the commutators:

[S(M1), S(M2)] = S((M1 · ∇)M2 − (M2 · ∇)M1) (13)

[T(N), S(M)] = −T(M · ∇N) (14)

[T(N1), T(N2)] = S(N1∇N2 − N2∇N1) (15)

when they are applied in two alternative orderings. A visualization is shown in Figure 2.
The brackets (13)–(15) represent general covariance in canonical form. While specific ex-
pressions for S and T can vary depending on the gravitational theory, such as different
higher-curvature actions [22], the brackets remain the same as long as the underlying
geometry of space–time is Riemannian. Conversely, deviations of the brackets from their
Riemannian form can be used to detect non-classical space–time structures in modified
canonical gravity. The algebraic nature of the brackets makes it possible to analyze gravi-
tational theories without presupposing specific geometrical formulations of space–time,
constituting a major strength of the canonical approach.

Figure 2. Two non-linear normal deformations, one with a lapse function N1 and one with a
lapse function N2, applied in two different orderings, show the commutator (15) given by a spatial
displacement M.

Figure 3 represents the commutator of an infinitesimal time translation and an infinites-
imal normal deformation. This picture can be interpreted as a version of the vector-field
commutator (9) of a background transformation and a small perturbative transformation.
The non-zero result of (9) corresponds to the presence of a spatial shift on the right-hand
side of Figure 3. Even though there is no immediate time dependence of the canonical
data on which a background vector field as in (9) would act, the semidirect product of
background and perturbative transformations is clear. In canonical language, the failure of
the dressed-metric approach to realize the correct semidirect product means that there is
no common T(N) for background and perturbations in this setting. The non-existence of
consistent temporal deformations signals the break-down of space–time and covariance.
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Figure 3. Semidirect product of time reparameterizations and inhomogeneous transformations as
in (9), represented in the picture of hypersurface deformations: The commutator of two such normal
deformations produces a non-zero spatial shift M.

3.3.2. Structure Functions

The brackets of hypersurface deformations have structure functions because the
gradient in (15) requires the use of the spatial metric, and therefore depend on the geometry
described by these brackets. A canonical realization of these brackets is given by the
Hamiltonian and diffeomorphism constraints, H[N] and D[Mi], of a given gravity theory.
Written in the form:

{D[Mi
1], D[Mj

2]} = D[[M1, M2]
i] (16)

{H[N], D[Mi]} = −H[Mi
1∇i N] (17)

{H[N1], H[N2]} = D[qij(N1∇jN2 − N2∇jN1)] , (18)

they make the appearance of structure functions explicit, depending on the inverse spatial
metric qij. Formally, we may write the constraint brackets as {CA, CB} = FD

ABCD with
indices A, B and D that combine spatial positions with the type of constraint (Hamiltonian
or a component of the diffeomorphism constraint). The coefficients FD

AB are not constants
but phase-space functions.

The presence of structure functions causes long-standing problems in the quantization
of canonical gravity [23,24]: upon quantization, qij as well as D and H are turned into
operators. Maintaining closed brackets therefore requires specific ordering, regularization,
or other choices. Even if the brackets can remain closed under certain conditions, quantized
structure functions may be quantum corrected. A question relevant for covariance is then
that of whether a meaningful interpretation of the generators as hypersurface deformations
in space–time still exists.

As shown in [25], a meaningful space–time interpretation does exist at least in some
cases of modified structure functions. To see this, it is necessary to construct a space–time
line element that is consistent with the modified gauge transformations generated by (18)
with the quantum-corrected structure functions. If these functions are modified, so are
the versions of hypersurface deformations they represent, and therefore the objects qij, N
and Mi in which the brackets are formulated, do not directly define the components of a
meaningful line element because this notion is based on classical space–time with standard
hypersurface deformations. However, in some cases, suitable redefinitions of the canonical
fields are available that can serve this purpose.

A derivation of proper effective line elements is based on the general property of
Hamiltonian and diffeomorphism constraints as generators of evolution equations, giving
the time derivative:

ḟ = Lt f = { f , H[N] + D[Mi]} (19)

of any phase-space function f with respect to the time-evolution vector field tα = Nnα + Mα.
(The space–time vector field Mα is the push-forward of the spatial vector field Mi by the
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embedding map of a spatial slice in space–time). In addition, the constraints generate
gauge transformations:

δε f = { f , H[ε] + D[εi]} (20)

which would correspond to coordinate changes generated by the vector field ξα = εnα + εα

if structure functions were unmodified.
In all cases—modified and unmodified structure functions—evolution equations and

gauge transformations must be consistent with each other: a gauge-transformed f must
evolve according to the general Equation (19) with the same generators H and D as the
original f , but possibly with a new time-evolution vector field. Since the direction of
the time-evolution vector field within a given theory is determined by lapse and shift,
this consistency condition can be used to derive gauge transformations for N and Mi.
Together with the gauge transformations of qij, directly determined by (20) because qij are
phase-space functions, all components of a candidate space–time line element can therefore
be unambiguously transformed.

For generic structure functions FD
AB, evolution and gauge transformations are consis-

tent with each other, provided the multipliers (NA) = (N, Mi) gauge transform according
to [26]:

δεNA = ε̇A + NBεCFA
BC . (21)

Unlike in the case of δεqij = {qij, H[ε] + D[εi]}, the structure functions appear explic-
itly in (21). Structure functions, and their possible modifications, are therefore directly
relevant for space–time structure and the existence of meaningful effective line elements:

ds2 = −Ñ2dt2 + q̃ij(dxi + M̃idt)(dxj + M̃jdt) (22)

which may require field redefinitions of Ñ, M̃i as well as q̃ij if the structure functions FA
BC

are modified.

3.4. Lessons from Hypersurface Deformations

In canonical models of modified gravity, control on space–time structure requires full
expressions for the Hamiltonian constraint H[N] and the diffeomorphism constraint D[Mi]
with closed brackets. This condition is violated in the dressed-metric approach (as well
as in hybrid loop quantum cosmology) because the independent treatment of remnant
coordinate freedom in background and perturbations, the former through deparameteri-
zation and the latter by using curvature perturbations, precludes the construction of joint
constraints for both sets of degrees of freedom. The common assumption that space–time
in this setting can still be described by a line element, presupposing a Riemannian structure
of space–time, is therefore unjustified. Detailed discussions of the underlying modifications
of contributions to the Hamiltonian constraint from background and perturbations show
that the implicit assumption of unmodified brackets, and thus Riemannian structures, is
inconsistent [16].

For a consistent space–time structure, the gauge behavior of the classical theory must
remain intact, even while it may be modified and subject to quantum effects. In general,
this condition requires anomaly freedom, such that the same number of physical degrees of
freedom as in classical gravity is realized in a modified version. If this condition is violated,
the modified theory cannot have the correct classical limit owing to a discontinuity in the
number of degrees of freedom. An anomalous modification or quantization of gravity does
not permit a semiclassical or effective treatment by line elements in any form because it is
incompatible with the gauge structure of space–time.

A formal statement of the condition that the gauge behavior remains intact is the exis-
tence of closed Poisson brackets of H[N] and D[Mi] for all relevant N and Mi, depending
on whether one considers the full theory or a restricted version such as a midisuperspace
model. This condition allows for possible quantum corrections in the structure functions
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of the gauge algebra, given in the case of gravity by the inverse spatial metric qij as it
appears in:

{H[N1], H[N2]} = D[β(q, p)qij(N1∇jN2 − N2∇jN1)] (23)

with a possible modification function β(q, p) on phase space. We have the classical space–
time structure if β = ±1, giving two possible choices of the signature of a classical four-
dimensional metric, where β = 1 for Lorentzian-signature space–time and β = −1 for 4-
dimensional Euclidean-signature space. (In each case, the name only refers to the signature
and does not imply flatness).

We have a consistent non-classical space–time structure if the brackets are closed
such that β �= ±1. The modification function β determines the structure functions of
hypersurface-deformation brackets in the modified theory. Modified structure functions,
in turn, show via (21) how lapse and shift transform and whether it is possible to find
suitable field redefinitions of these fields that can be used in a proper effective line element
as discussed in detail in [25].

As we saw in the present section, suitable transformations of lapse and shift as
components of the space–time metric require knowledge of the structure functions of H[N]
and D[Mi]. If the brackets do not close, as in the dressed-metric approach, there are no
meaningful transformations of lapse and shift and it is impossible to construct a valid
structure of space–time. Such a structure exists only in anomaly-free modifications of the
constraints. However, the condition of anomaly-freedom is not sufficient if it does not
imply a clear modification of the structure function of hypersurface-deformation brackets,
for instance in cases in which the constrained system is reformulated before it is modified
or quantized. An example for such an approach is given by a partial Abelianization of the
constraints [4], to which we turn next.

4. Spherical Symmetry

An instructive set of examples is given by spherically symmetric space–time geome-
tries with the line element:

ds2 = −N2dt2 + L2(dx + Mdt)2 + S2(dϑ2 + sin2 ϑdϕ2) (24)

where N, L, M and S are functions of t and x. Together with the momenta pL and pS of
L and S, respectively, the components L and S of the spatial metric in classical general
relativity are subject to the Hamiltonian constraint:

H[N] =
∫ ∞

−∞
N

(
− pL pS

S
+

Lp2
L

2S2 +
(S′)2

2L
+

SS′′

L
− SS′L′

L2 − L
4

)
dx (25)

and the diffeomorphism constraint:

D[ε] =
∫ ∞

−∞
ε
(

pSS′ − Lp′L
)
dx . (26)

The relevant bracket with a stucture function is given by

{H[N1], H[N2]} = D[L−2(N1N′
2 − N2N′

1) . (27)

4.1. Reformulating the Constrained System

In [4], a reformulation of the constraints has been suggested that can remove the
structure function and even partially Abelianize the brackets. Instead of H[N], this refor-
mulation uses the linear combination:

H[2PS′/L] + D[2PpL/(SL)] =
∫ ∞

−∞
P

d
dx

(
− p2

L
S

+
S(S′)2

L2 − S

)
dx (28)
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of Hamiltonian and diffeomorphism constraints. Specifically, the combination replaces
H[N] with a new constraint whose integrand (except for the multiplier P) is a complete
derivative. Imposing (28) as a constraint therefore requires that the parenthesis in this
expression equals a constant, C0. The same condition can be expressed by the alterna-
tive constraint:

C[Q] =
∫ ∞

−∞
Q

(
− p2

L
S

+
S(S′)2

L2 − S − C0

)
dx . (29)

(The constant can be related to boundary values). Because C[Q] depends neither on
pS nor on spatial derivatives of L, it is easy to see that two such constraints always have a
vanishing Poisson bracket, unlike two Hamiltonian constraints. Together with the original
diffeomorphism constraint, we have the brackets:

{C[Q], D[ε]} = −C[(εQ)′] , {C[Q1], C[Q2]} = 0 (30)

free of structure functions. Therefore, it may be expected that using the reformulated con-
straints greatly simplifies the quantization procedure or the derivation of viable modifications.

However, the reformulation has made use of metric-dependent coefficients S′/L and
pL/(SL) in (28). In general, it is not clear whether these coefficients will be subject to
quantum corrections, in which case it may be difficult or impossible to reconstruct valid
hypersurface-deformation brackets with the correct classical limit from a quantization or
modification of the system (30). The non-trivial nature of this question has been shown
in [27] and the related [28], where examples were presented in which (30) can easily be
modified while no hypersurface-deformation brackets can be reconstructed at all or only in
modified form.

For instance, the modification:

Cf [Q] =
∫ ∞

−∞
Q
(
− f (pL)

2

S
+

S(S′)2

L2 − S − C0

)
dx (31)

with a free function f (pL), such as sin(�pL)/� where � is a suitable length scale analogous
to (3), and an unchanged D[ε] maintains the brackets (30) and is therefore anomaly-free in
the reformulated system. By reverting the steps undertaken in (28), it can be seen that (31)
corresponds to the modified Hamiltonian constraint:

Hf [N] =
∫ ∞

−∞
N
(
− pS

S
d f (pL)

dpL
+

L f (pL)

2S2 +
(S′)2

2L
+

SS′′

L
− SS′L′

L2 − L
4

)
dx . (32)

This modification of the Hamiltonian constraint, which has already been found in [29],
also turns out to be anomaly-free, but with a modified bracket:

{Hf [N1], Hf [N2]} = D[β(pL)L−2(N1N′
2 − N2N′

1)] (33)

where:

β(pL) =
1
2

d2 f
dp2

L
. (34)

The modified structure function is an example of signature change because β is
negative around any local maximum of f .

If spherically symmetric gravity is coupled to a scalar field, the partial Abelianization
of [4] is still available and can be modified as in (31). However, in this case, there is no
consistent set of hypersurface-deformation generators [27]. Therefore, the modified theory
is formally consistent but not geometrical: its solutions cannot be described by Riemannian
geometry or effective line elements, even after a field redefinition. This problem poses
a significant challenge to loop quantization because an application to vacuum models
would only be too restrictive. Moreover, the problem is broader because polarized Gowdy
models, which can also be partially Abelianized, do not admit a consistent set of modified
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hypersurface-deformation brackets [28]. To date, therefore, midisuperspace models with
local physical degrees of freedom cannot be geometrically described in the presence of
loop modifications.

4.2. Non-Bijective Canonical Transformation

To circumvent this problem, ref. [11] proposed a modification of spherically symmetric
gravity based on a non-bijective canonical transformation:

pL =
sin(� p̃L)

�
, L =

L̃
cos(� p̃L)

. (35)

The transformation can be applied to the Abelianized constraint C[Q] or to the Hamil-
tonian constraint by inserting pL( p̃L) and L(L̃, p̃L) in their classical expressions. (The
diffeomorphism constraint is not modified by this transformation.) Terms depending on
pL in C[Q] are then modified as before in (31) with a specific version of f (pL), and there
are new modifications in the L-term. As postulated in [11], this procedure, based on a
canonical transformation, might be able to preserve the covariance of the classical theory
even in the presence of a scalar field, and yet allow room for new quantum effects because
of the non-bijective nature of the canonical transformation.

Unfortunately, this hope remains unfulfilled precisely because the transformation is
not bijective [30]. In particular, the bijective nature breaks down at hypersurfaces defined
by �pL = ±1 or � p̃L = (n + 1/2)π, and pL as well as p̃L are spatial scalars but not space–
time scalars. Therefore, while the transformation preserves symmetries of the classical
theory when it can be restricted to regions of phase space in which it is bijective, these
regions themselves are defined in terms that are not space–time covariant. The resulting
theory is not covariant.

For the same reason, p̃L not being a space–time scalar, the variable L̃ introduced by the
canonical transformation does not have the same behavior as L = L̃/ cos(� p̃L) under space–
time transformations. As a consequence, L̃ cannot be used in a space–time line element
based on L̃2dx2. A meaningful effective line element is obtained only after a suitable
field redefinition that leads to a function of L̃ with the correct transformation properties.
Since we already know that L̃ was derived from such a function, L, the field redefinition
simply sends us back from L̃ to L in regions in which the canonical transformation is
invertible, undoing the modification of the theory in such regions. (More systematically,
such a field redefinition can be derived using the methods introduced in [31].) In these
regions, exact classical solutions without any modifications are produced, but different
regions are connected along hypersurfaces (again, given by �pL = ±1 or � p̃L = (n+ 1/2)π)
that are not covariantly defined. Since these hypersurfaces refer to fixed values of certain
components of extrinsic curvature, their positions in space–time depend on choices of
coordinates and spatial slicings.

In particular, slicings with large pL ∼ 1/� exist even in flat space–time, and therefore
violations of covariance in this model cannot be considered a “large-curvature effect”.
These violations can occur at a low space–time curvature (in an invariant meaning), and
therefore the model cannot be considered a permissible model of quantum gravity that
would have non-standard geometrical features only at the Planck scale. The model could
be permissible only if it were combined with a mechanism that somehow prevents one
from choosing slicings that lead to large extrinsic curvature pL. However, preventing
such slicings (or any slicing) from being allowed requires violations of covariance that
are hard to reconcile with the application of line elements, even if they were only used in
low-curvature regions.

4.3. Bijective Canonical Transformation

As discussed in more detail in [30], the application of canonical transformations makes
an analysis of space–time structure rather non-trivial even if the transformation is bijective.
A bijective canonical transformation from (L, pL) to some (L̃, p̃L) may well be such that all
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possible values of pL are mapped to a finite range of p̃L. One could then conclude that the
transformed theory resolves singularities if p̃L, interpreted as some curvature expression
in the new theory, remains bounded. However, the new theory was obtained by applying a
bijective canonical transformation that cannot modify the physics of classical spherically
symmetric models.

The answer to this conundrum relies on effective line elements. For a transformation
with a significantly modified p̃L to be canonical, L̃ must also be modified compared with L.
Then, the structure function in (27) is modified when expressed in terms of L̃ instead of L,
and solutions of the transformed theory cannot be directly interpreted in terms of a line
element where L̃ directly takes the place of L. An effective line element, derived again as
in [31]), requires the undoing of the canonical transformation for a valid coefficient of dx2,
sending us back to the classical theory in its geometrical interpretation.

Models of loop quantum gravity are not obtained by bijective canonical transfor-
mations and could lead to new physics. However, the example of a bijective canonical
transformation demonstrates that predictions can only be reliable if a proper effective
line element is derived. Unfortunately, this task is rarely performed in phenomenological
studies of models of loop quantum gravity. In several proposals, as in the dressed-metric
approach, it is even impossible to construct an effective line element because they do not
amount to consistent modifications of the crucial bracket (27) that determines the structure
of space–time.

5. Homogeneity in Schwarzschild Space–Time

It is well known that a spatially homogeneous geometry of Kantowski–Sachs type [32],
with the line element:

ds2 = −N(t)2dt2 + a(t)2dx2 + b(t)2
(

dϑ2 + sin2 ϑdϕ2
)

(36)

is realized in the Schwarzschild interior—in the (almost) standard version:

ds2 = −(1 − 2M/r)dt̃2 +
dr2

2M/r − 1
+ r2

(
dϑ2 + sin2 ϑdϕ2

)
(37)

of the Schwarzschild line element, t̃ is a time coordinate only for r > 2M, outside of the
horizon. For r < 2M, the coordinate r may be used as time while t̃ contributes to a positive,
space-like part of the line element. Indicating the modified roles of the coordinates in the
notation, we define t = r and x = t̃ for r < 2M, such that the line element turns into:

ds2 = − dt2

2M/t − 1
+ (2M/t − 1)dx2 + t2

(
dϑ2 + sin2 ϑdϕ2

)
(38)

for t < 2M. A suitable identification of N(t), a(t) and b(t) shows that this line element is
of the general form (36).

The coordinates t and x determine a homogeneous space-like slicing in the interior of
Schwarzschild space–time. It is therefore possible to apply minisuperspace quantizations
to the interior region. However, such models do not show how a modified quantum
interior may be connected to an inhomogeneous exterior, and they do not reveal properties
of space–time structure (let alone physical processes such as occasionally hypothesized
explosions of black holes).

5.1. Time-Like Homogeneity of Exterior Static Solutions

A complex canonical transformation A = ia and pA = −ipa together with n = iN
in (36) implies a Kantowski–Sachs line element of the form:

ds2 = n(t)2dt2 − A(t)2dx2 + b(t)2
(

dϑ2 + sin2 ϑdϕ2
)

. (39)
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The complex transformation has the same effect as crossing the horizon in the Schwarzschild
geometry: it flips the roles of t and x as time and space coordinates. Defining X = t and
T = x, the transformed line element (40) takes the form:

ds2 = −A(X)2dT2 + n(X)2dX2 + b(X)2
(

dϑ2 + sin2 ϑdϕ2
)

. (40)

The exterior Schwarzschild line element:

ds2 = −(1 − 2M/X)dT2 +
dX2

1 − 2M/X
+ X2

(
dϑ2 + sin2 ϑdϕ2

)
(41)

with X > 2M is now of this general form. In particular, the coordinates T and X determines
a homogeneous time-like slicing in the exterior. Methods of minisuperspace quantiza-
tion can therefore be applied even to inhomogeneous geometries [6], possibly leading to
modified space–time structures.

Symmetries of individual space–time solutions such as homogeneity, as opposed to
general covariance which relates different solutions of the underlying partial differential
equations, are built into the setup of the model. Therefore, they are preserved by min-
isuperspace quantization. Time-like homogeneity then remains intact for any modified
dynamics in this setting. As shown in Figure 4, time-like homogeneity with the given num-
ber of degrees of freedom, in turn, implies the existence of a static spherically symmetric
configuration if the resulting theory is covariant and slicing-independent (described by a
meaningful line element). Since the black-hole analysis of [6] is based on line elements and
refers to notions of Riemannian geometry, such as horizons, curvature scalars or Penrose
diagrams, slicing independence is one of the ingredients of the construction and does
not need to be assumed independently. It must therefore be possible to formulate the
same physics claimed in [6] for a homogeneous time-like slicing also within a covariant
spherically symmetric theory, restricted to static solutions.

Figure 4. A homogeneous time-like slicing with coordinates (t, x) and an inhomogeneous space-like
slicing with coordinates (T, X), both in the same static spherically symmetric space–time.

Covariant versions of spherically symmetric gravity models and their static solutions are
under good control, thanks to work on dilaton gravity [33,34] and its generalizations [35,36].
It is therefore possible to check whether a proposed modification of the homogeneous
time-like slicing has a chance of corresponding to a covariant theory.
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5.2. Line Elements

Time-like homogeneity with modified dynamics leads to a formal line element:

ds2 = ñ(t)2dt2 − Ã(t)2dx2 + b̃(t)2
(

dϑ2 + sin2 ϑdϕ2
)

(42)

if solutions ñ, Ã and b̃ are simply inserted in the classical line element. Since properties
of space–time transformations have not been checked at this point, there is no guarantee
that (42) presents a proper effective line element.

Assuming that the Kantowski–Sachs-like (42) is a proper line element that describes a
slicing-independent theory, it is equivalent to the Schwarzschild-like:

ds2 = −K(X)2dT2 + L(X)2dX2 + S(X)2
(

dϑ2 + sin2 ϑdϕ2
)

(43)

where X = t, T = x and:
Ã = K , b̃ = S , ñ = L . (44)

By construction, the coefficients in (43) depend on X but not on T. The line element
therefore presents a static solution in a spherically symmetric model, subject to some
modified dynamics because K, L and S are only Schwarzschild-like but not exactly of
Schwarzschild form if the dynamics of the underlying homogeneous model is modified.

If the assumption of covariance, made implicitly in [6] is justified, (43) must be a solu-
tion of a 1 + 1-dimensional gravity model in terms of time and space coordinates (T, X).
Such theories are under strong control: all local covariant theories of this midisuperspace
form are known as generalized dilaton gravity models [35]. (Their equivalence to Horn-
deski theories in 1 + 1 dimensions has been shown in [36]). While several-free functions
exist in this general setting to specify the dynamics, for instance through an action, as
they can only depend on the variable analogous to our field S. Loop quantum cosmology
applied to the homogeneous time-like slicing, however, implies modifications that do not
fulfill this condition: such minisuperspace modifications depend non-linearly on momenta
pÃ and pb̃, which are linear combinations of dÃ/dt and db̃/dt that, according to (44),
are translated to ∂K/∂X and ∂S/∂X in the spherically symmetric slicing. Therefore, no
holonomy modified dynamics of Kantowski–Sachs-style models can be part of a covariant
space–time theory [37].

6. Conclusions

We discussed the main constructions that were supposed to circumvent difficulties
in earlier applications of loop quantization to inhomogeneous models. Instead of solving
older problems, however, these constructions led to no-go results for covariance in models
of loop quantum gravity. A complete understanding of covariance in any given model is
important not only to demonstrate its consistency, but also to evaluate possible observa-
tional implications of the underlying theory. For instance, if one neglects the identification
of suitable space–time structures for a model of modified or quantum gravity, one could be
led to posing initial conditions at an inadmissible place where there is, in fact, no mean-
ingful version of time. A detailed space–time analysis may well show other regions in
which initial values could reliably be posed, however, the altered location, perhaps at a
different range of curvature values, would affect implied phenomenological effects. Ad-
dressing such questions requires an understanding of different ways in which covariance
can be violated, which we compare in the next subsection. The final two subsections will
discuss general implications for loop quantum gravity and a brief outlook on covariance in
other approaches.

6.1. Comparison of Different Violations of Covariance

The examples reviewed in the preceding sections show different ways in which covari-
ance can be violated in models of loop quantum gravity. The dressed-metric approach, just
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as hybrid loop quantum cosmology, is based on the incorrect assumption that background
and perturbations can be quantized or modified independently in an inhomogeneous
model. This assumption ignores a crucial feature of space–time and covariance, according
to which background and perturbative transformations form a semidirect product but not
a direct one as an independent treatment would require. The fundamental nature of this
property implies that covariance is completely broken in these models, which are therefore
inconsistent as a description of (quantum) space–time.

As usual, one may expect that space–time is non-classical at large curvature and may
exhibit properties different from classical space–time. However, this expectation does not
redeem quantum models that violate covariance unless they can demonstrate that the
classical properties are recovered in a suitable classical limit. Moreover, the dressed-metric
and the hybrid approach both refer to features of classical space–time, such as line elements
or curvature perturbations, even close to the Planck curvature.

The inconsistency of these approaches is rooted not so much in possible modifications
of classical space–time properties near the Planck curvature, but rather in the unquestioned
(and often implicit) application of classical space–time ingredients for an analysis in this
regime. For a model to be consistent, such an assumption must be justified, but this
crucial step has not been attempted in the dressed-metric and hybrid approaches. There is
therefore reason to doubt the validity of these constructions and their implications.

The technical observation that a key property of classical space–time is violated, given
by the semidirect-product nature of transformation, serves as a concrete property that turns
this doubt into a proof that the models are inconsistent, not only in the Planck regime but
to any order in a semiclassical expansion by h̄ or �P. Consistency is recovered only in the
strict limit of h̄ → 0, just because we happen to know that the classical theory is covariant
and has solutions that can be described by line elements. In such modifications, there is
a strong discontinuity at h̄ = 0 in geometrical structures, seen as an h̄-dependent family
of modifications. In practice, this discontinuity translates into low-curvature physical
problems, as discovered in the case of black-hole models of loop quantum gravity in [38,39].

Similarly, the original attempt in [6] to describe the inhomogeneous Schwarzschild
exterior by homogeneous models, using time-like slicings in a static geometry, was based
on an untested assumption that is true in classical space–time but may be violated in
the presence of quantum modifications. The description of inhomogeneity in this case
is different from the preceding example because it is non-perturbative in a space-like
slicing. Here, homogeneous and inhomogeneous configurations do not appear as back-
ground and perturbations, but rather as models of a single space–time geometry using two
different slicings.

Classically, any slicing gives an equivalent description of the full geometry, but this
does not need to be the case once equations have been modified, in contrast to what has
implicitly been assumed in [6]. The good control on covariant local theories for spherically
symmetric dynamics makes it possible to test and invalidate this assumption. Again, it is
the application of line elements in [6] even in the presence of quantum modifications that
makes it possible to demonstrate inconsistency. It is not necessary to assume additional
classical features in the inconsistency proof, beyond properties that have already been used
in [6], explicitly or implicitly.

Models that work directly with spherically symmetric inhomogeneity usually tread
more carefully because the appearance of first-class constraints is explicit. A consistent
quantization or modification then requires that the first-class nature be preserved, i.e.,
that there are no anomalies, in order to prevent spurious degrees of freedom or over-
constraining the theory. However, even in an anomaly-free modification, the structure
of space–time and geometry may remain unclear without further analysis. Here, our
remaining two examples are relevant, given by different modifications implemented for
reformulated, partially Abelianized constraints and modification through a non-bijective
canonical transformation, respectively. These modifications are anomaly-free and therefore
consistent in a formal sense used for general constrained systems. Nevertheless, they turn
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out to violate covariance in different ways, even though the papers in which they have
been proposed go on and analyze their solutions by standard line elements.

6.2. Covariance Crisis of Loop Quantum Gravity

As we just saw, a crucial ingredient of proofs of inconsistency and non-covariance in
models of loop quantum gravity focuses on the application of line elements used routinely
to evaluate solutions of modified equations in canonical gravity. Since modifications
of canonical equations need not preserve covariance, even if they may remain formally
consistent and anomaly-free, line elements are rendered meaningless. It might therefore be
possible to evade some of the no-go results by foregoing line elements or related and more
advanced methods, such as Penrose diagrams. In principle, a physical analysis would
still be possible, at least in the anomaly-free case, by expressing solutions of anomaly-free
modified equations in terms of suitable canonical observables.

However, this option is rarely exercised in interesting models because of the com-
plicated nature of deriving strict observables, compared with the simple procedure of
modifying coefficients in a formal line element. Furthermore, if such an analysis could be
performed, it would not be clear in which sense solutions of the modified theory could
still be considered geometrical, even when quantum modifications are very small, or more
practically, how one would define the horizon of a black hole or curvature perturbations for
cosmology in the absence of geometry. The important covariant form of general relativity
and its geometrical nature would be a mere accident of the classical theory, rather than a
fundamental property of gravity that could be extended to even the tiniest of corrections.
While requiring a geometrical nature for quantum gravity may be largely a matter of taste,
it also has practical implications because most of the gravitational methods and definitions
that we know and understand are based on geometry.

A few additional ways might remain to solve these deep problems. First, in the
context of Section 5, non-local effects might help because they would evade the strong
control on possible covariant theories with spherical symmetry. However, the underlying
analysis of minisuperspace dynamics in [6] implicitly assumes locality because there is
a single momentum for each classical metric or triad component. If one were to try non-
locality in order to solve the covariance problem in models of loop quantum gravity,
the entire formalism used until now would have to change, even in minisuperspace
models. Moreover, non-locality is often pathological and there is no indication that loop
quantization could lead to more controlled situations.

Secondly, one may try to understand non-Riemannian space–time structures as they
would be implied by modified hypersurface-deformation brackets (β �= ±1). In some
(but not all) cases, these modified geometries can be described by an effective Riemannian
line element after suitable field redefinitions. At present, such models, recently analyzed
in [25,40–42], are the only well-defined descriptions of geometries that may incorporate
quantum modifications. If suitable field redefinitions exist, strict effective line elements are
available, but in the presence of holonomy modifications they generically imply a signature
change at high curvature.

There has been progress in constructing anomaly-free versions of the Hamiltonian
constraint directly at the operator level in various versions of loop quantum gravity [43–48].
These constructions do not directly refer to symmetry-reduced models but, for now, im-
plement restrictions of general ingredients such as the spatial dimension, the local gauge
group, or the signature of gravity. In this approach, progress is usually made by reformu-
lating the constraints, simplifying their brackets in a way that is conceptually similar to
partial Abelianizations discussed in Section 4. As in this case, the successful construction of
anomaly-free reformulated constraints does not immediately reveal whether they describe
a consistent structure of space–time or covariance.
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6.3. Lessons for Other Approaches

Background independence implies that space–time structure must be derived in some
way and cannot be presupposed. We should not simply assume that inserting modified
solutions in classical-type line elements is consistent. As a consequence, quantum gravity
may not be “geometrical” as we understand it from general relativity. In the main body of
this paper, we discussed how the canonical nature of loop quantum gravity gives access to
powerful space–time methods, based on algebra, that can be used to rule out many models
that might otherwise look reasonable.

It is not easy to see whether there may be possible analogs of our results in alternative
approaches to quantum gravity if they are not canonical. Nevertheless, we are able to
draw several lessons of general form. First, non-canonical theories do not directly aim
to quantize generators of hypersurface deformations, but it should still be of interest to
construct them and consider their properties in order to facilitate a space–time analysis.
Instead of using these generators, covariance is often expressed in terms of coordinate
choices or embeddings of discrete structures, but these ingredients do not directly refer to
the actual degrees of freedom of gravity. Moreover, the explicit application of these space–
time ingredients reduces the freedom in formulating suitable modifications of space–time
structures if they are called for by modified dynamics.

Secondly, the no-go results we encountered are very general. In particular, they do not
require a specific form of modifications but only qualitative features related to discreteness,
such as bounded modification functions with local maxima. They should therefore be
expected to be largely independent of the specific approach. Even though they were
derived for canonical quantum gravity, the no-go results can be applied to any modified
cosmological dynamics that can be presented in canonical form, even if it has been derived
from a non-canonical approach. It would be interesting to see how other approaches might
be able to circumvent our no-go theorems, for instance by requiring new quantum degrees
of freedom or specific non-local behaviors. (For an example of non-local effects derived for
effective actions, see [49]).

Finally, hypersurface-deformation generators make it possible to analyze different
space–time structures because they express geometrical properties through algebra. It
is easier to control possible modifications or deformations of algebras (or algebroids),
compared with geometrical structures. The strong algebraic background of canonical
gravity is therefore the main reason why it is possible to analyze space–time structures in
detail with canonical methods. Non-canonical approaches are often viewed as preferable
because they can provide a direct four-dimensional space–time picture, at least heuristically.
However, this proximity to the standard four-dimensional formulation of classical gravity
also implies that hidden assumptions about the underlying geometry may easily and
unwittingly be incorporated in a specific approach. As shown in the present paper, even
canonical approaches are not immune to such hidden assumptions, but they also provide
strong methods to spot and test unjustified assumptions.
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Abstract: In this review, we analyse different aspects concerning the possibility to separate a
gravity-matter system into a part which lives close to a quasi-classical state and a “small” quantum
subset. The considered approaches are all relying on a WKB expansion of the dynamics by an order
parameter and the natural arena consists of the Bianchi universe minisuperspace. We first discuss
how, limiting the WKB expansion to the first order of approximation, it is possible to recover for the
quantum subsystem a Schrödinger equation, as written on the classical gravitational background.
Then, after having tested the validity of the approximation scheme for the Bianchi I model, we give
some applications for the quantum subsystem in the so-called “corner” configuration of the Bianchi
IX model. We individualize the quantum variable in the small one of the two anisotropy degrees of
freedom. The most surprising result is the possibility to obtain a non-singular Bianchi IX cosmology
when the scenario is extrapolated backwards in time. In this respect, we provide some basic hints
on the extension of this result to the generic cosmological solution. In the last part of the review, we
consider the same scheme to the next order of approximation identifying the quantum subset as made
of matter variables only. This way, we are considering the very fundamental problem of non-unitary
morphology of the quantum gravity corrections to quantum field theory discussing some proposed
reformulations. Instead of constructing the time dependence via that one of the classical gravitational
variables on the label time as in previous works, we analyse a recent proposal to construct time by
fixing a reference frame. This scheme can be reached both introducing the so-called “kinematical
action”, as well as by the well-known Kuchar–Torre formulation. In both cases, the Schrödinger
equation, amended for quantum gravity corrections, has the same morphology and we provide a
cosmological implementation of the model, to elucidate its possible predictions.

Keywords: quantum cosmology; WKB approximation; minisuperspace dynamics; canonical methods
of quantization; Born–Oppenheimer separation

1. Introduction

All the canonical formulations for quantum gravity [1–6] have to deal with two
fundamental questions: one concerning the construction of a suitable time variable for the
dynamics, and the other one on the determination of a correct classical limit coinciding
with General Relativity (GR).

The first question has been widely addressed in the literature [7–14] and the most
commonly accepted idea is that the dynamics must be described via the introduction of
a “relational time” [7]. The second point on the classical limit is a rather natural question
for the metric approach, related to the Wheeler–DeWitt (WDW) equation, but it becomes
a puzzling question in Loop Quantum Gravity [15,16]. However, these two points are
unavoidably related to the possibility to reconstruct an evolutionary quantum field theory
when, starting from a purely quantum gravity approach in the presence of matter, we
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consider the classical limit on the geometrical component only. This theme contains also the
challenging perspective to determine quantum gravity corrections to quantum field theory.

The first well-known attempt to reconstruct a Schrödinger functional theory for quan-
tum matter from Canonical Quantum Gravity was performed in [17], limiting attention to
a minisuperspace model, in which a “small” quantum subset (not necessarily restricted
to matter) is recovered on a quasi-classical geometrodynamics. For previous approaches
where gravity was treated on a classical background level, see [18,19]. This line of research
was then expanded in [20], where a full development of the gravity-matter dynamics has
been performed in terms of a single order parameter, combining the Planck length and
the Newton constant (see also [21] where such expansion was considered but not fully
developed). As shown in [22], the latter analysis is very similar to that in [17], but it is
extrapolated to the next order where quantum gravity corrections to quantum field theory
must appear. However, constructing a time variable via the time dependence of the classical
limit of the metric has been recognized as affected by a non-trivial shortcoming, i.e., the
emergence of non-unitarity features in the Schrödinger equation.

Here, we review the original formulations giving some sample of the implementation
to the idea in [17] to specific cosmological situations, with particular reference to the
“corner configuation” of a Bianchi IX dynamics. We also discuss the comparison of the
Wentzel–Kramer–Brillouin (WKB) analysis to the standard Arnowitt–Deser–Misner (ADM)
reduction [23] of the dynamics for the Bianchi I model, confirming that a basic assumption
of the proposed formulation is the “smallness” of the quantum phase space available to
the subsystem.

Then, in the second part of the review, the question concerning the non-unitarity
problem is addressed in more detail and proposals for its solutions [22,24–26] are presented
and discussed. In particular, we focus our attention to a cosmological implementation of the
idea developed in [26] that the time variable can be constructed a la Kuchar–Torre [8], i.e.,
fixing a Gaussian reference frame, which is “materialized” as a fluid in the dynamics. In this
framework, both the violation of the so-called strong energy condition and the non-unitarity
of the quantum corrections to quantum field theory are simultaneously overcome.

The main aim of the present review is to focus attention to a theory that lives between
quantum gravity and quantum field theory on curved space-time, i.e., the co-existence of
quantum field theory for matter with weak quantum features of the background gravita-
tional field. A convincing solution to the non-unitarity problem is therefore a central theme
in this perspective and we provide a valuable picture on both the existing problems and
the most promising formulations.

The review is structured as follows. In Section 2, we illustrate the general formalism
of the minisuperspace reduction of a gravity-matter system, addressing the problem of
time concerning the cosmological wave function. In Section 3, we present the work [17]
that proposes a solution by a semiclassical separation of the system, with a brief discussion
on the boundary conditions for such wave function in Section 3.1. In Section 4 we show
the implications of such model for a Bianchi I universe. Section 5 presents instead the
results of the model for the Bianchi IX universe, considering the vacuum case (Section 5.1),
the presence of a cosmological constant and scalar field (Section 5.2), the Taub model
(Section 5.3) and the generic inhomogenenous extension (Section 5.4). In Section 6 we
present the Wentzel–Kramer–Brillouin expansion, whose special case is [17], discussing
in Section 6.1 the proposal [20] that uses such a method to compute quantum gravity
corrections to the matter sector dynamics and the following non-unitarity issue, while
in Section 6.2 we review the Born–Oppenheimer scheme proposed in [25] discussing its
shortcomings. Section 7 contains the recent proposals to solve both the problems of time and
non-unitarity by implementing as a clock either the kinematical action (Section 7.1) or the
reference frame fixing procedure (Section 7.2), presenting a cosmological implementation
of the latter in Section 7.3. Further discussion and conclusions are provided in Section 8.
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2. General Formalism: The Minisuperspace Analysis

Let us preliminarily fix the general context in which we will develop our analysis.
In this respect, we consider a minisuperspace cosmological model [27–29], namely a re-
duction of the Wheeler superspace in presence of symmetries, with the line element in the
Arnowitt–Deser–Misner (ADM) formulation [30] such as:

ds2 = N2(t)dt2 − hab σaσb , (1)

where hab (a, b = 1, 2, 3) is a function of n time dependent variables ga, the 1-forms σa

define the specific isometry of the considered model, e.g., the Bianchi universes [31,32]
and N is the lapse function, whose specification determines the adopted time variable.
An application of the above considerations can be developed for f (R) gravity as analysed
in [33,34].

In the Hamiltonian representation [27], the action for the minisuperspace takes the
general form

SMSS =
∫

dt{pa ġa − NHMSS} , (2)

pa being the conjugate momenta to the configurational variables ga (a = 1, 2, ..., n), and the
superHamiltonian reads

HMSS(ga, pa) = Gab pa pb + V(ga) . (3)

Here Gab denotes the minisupermetric, encoding metric properties in the minisuperspace
and in general having a pseudo-Riemmannian character, while V(ga) is a potential term
due to the spatial curvature of the considered cosmological model. Additional contributions
to both of them can come from the introduction of matter in the dynamics. Of particular
reference is, in this respect, the presence of a self-interacting scalar field φ, interpretable as
the inflaton and responsible for the inflationary phase of the Universe. In such a case, the
superHamiltonian becomes

HMSS(ga, pa) +
1

2
√

h
p2

φ +
√

h U(φ) , (4)

pφ being the conjugate momentum to the scalar field, U(φ) its self-interaction potential and
h ≡ det hij.

Clearly, by varying the action with respect to N, we get that the (total) superHamilto-
nian (4) identically vanishes and this fact reflects the time diffeomorphism invariance of the
theory. Thus, implementing the Dirac prescription [6] for the canonical quantization of a
constrained system, we naturally arrive to the following Wheeler–DeWitt (WDW) equation[

−h̄2Gab(ga)
∂

∂ga
∂

∂gb − h̄2

2
√

h
∂2

∂φ2 + V(ga) +
√

h U(φ)

]
ψ = 0 , (5)

where the Universe wave function ψ(ga, φ) is intrinsically taken over 3-geometries [27] since
the spatial diffeomorphisms leave the 1-forms σa invariant. Above, we have chosen the
so-called natural operator ordering, i.e., the functions of ga are taken always on the left of
the corresponding partial differentiations in constructing the quantum operator constraint.
In this case, the minisupermetric is often redefined by a global scaling as Gab → √

h Gab,
when the whole constraint is multiplied by

√
h �= 0. Other operator orderings are available

and classes of equivalence can be established [4]; in particular, we mention the choice of a
symmetric superHamiltonian operator (for a justification see [35]).

Equation (5) is affected by the so-called “frozen formalism” problem, i.e., no time
evolution emerges in terms of the wave function dependence on an external time parameter,
as will be discussed in Section 2.1. However, it is a well-known result [1–3] that the WDW
equation has a Klein–Gordon-like structure due to the pseudo-Riemmannian nature of
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Gab. In fact, taking h1/4 as a generalized coordinate, we easily see that it has a different
signature with respect to the remaining ones, including also the scalar field. In the spirit
of the relational approach proposed in [7], see also [28], the scalar field can be taken as a
matter clock, even though it has the same signature of the “space-like” variables in Gab.

Thus, the quantization of a minisuperspace model corresponding to a Bianchi Universe
is reduced to the quantum dynamics of a relativistic particle [36] which is affected by a
subtle question concerning the construction of a Hilbert space. In particular, the presence
of the two potential terms in Equation (5) prevents, in many situations, the possibility for
a frequency separation, which can be achieved under specific assumptions or in suitable
asymptotic limits. In this respect, it is worth stressing that we consider here the WDW
equation as a single particle dynamics [37], see also [38], without considering the so-called
“third quantization approach” [39,40], that was first introduced as production of “baby
Universes” in relation to the cosmological constant problem [41–46]. Finally, we observe
that in Quantum Gravity, according to a very general prescription [47], the choices of
h1/4 or of φ as internal time coordinates can be performed after or before the quantization
procedure. In the former case, the quantization is covariantly performed, without specifying
any explicit expression for the lapse function. Instead, in the latter case, the choice is
performed on a classical level by fixing the temporal gauge which naturally leads to the
ADM-reduction [23] of the classical variational principle and therefore to a Schrödinger-like
quantum dynamics for the Universe wave function.

2.1. The Wave Function and the Problem of Time in Quantum Cosmology

An important approach to quantum cosmology and its many applications regards
the semiclassical approximation of the Universe. Indeed, in the full quantum picture,
there is still some discussion regarding the probabilistic interpretation of the Universe
wave function. This aspect is not straightforward since the wave function itself does
not evolve in “time” due to the vanishing of the WDW Equation (5) [6,48–50]. In the
canonical quantum picture [51], this is equivalent to a timeless Schrödinger equation with
null eigenvalues describing a trivial evolution leading to the so-called problem of time [11,14,
47,52,53]. This issue has been long discussed in the literature since the formulation of the
DeWitt theory [54–60]: for example, in [56] some time choices (scalar field, cosmological
constant conjugate, and proper time) models are discussed via a semiclassical expansion in
h̄. Indeed, the time coordinate could in principle be regarded together with the gravitational
degrees of freedom and integrated over [17], such that there is no clear choice for the
definition of another time parameter; subsequently, the definition of a conserved and
well-defined probability distribution is troublesome, unless one imposes further conditions,
e.g., hermicity of the Hamiltonian [61] or finiteness of the probability density [62]. One
of the most followed approaches is the definition of a relational time [5,7–9,37,54,63,64] to
recover a time parameter leading to a Schrödinger dynamics; such “emergence of time”
has been discussed not only for quantum gravity but also in the context of non-relativistic
quantum mechanics, for example in [65].

This identification of a proper time-like variable avoiding the frozen formalism leads
to different results whether it is tackled before or after quantization [66]. Hence, to give
a meaningful probabilistic interpretation to the wave function of the Universe, one can
pursue two different approaches. In the first, the super-Hamiltonian constraint is classically
solved and then the resulting Schrödinger equation is quantized [67,68], i.e., the reduced
phase space quantization (RPSQ) [69,70]. The RPSQ is the most straightforward method
because it is an exact procedure requiring no WKB approximation based on the wave
function of the Universe, even if its mass-like term is time-dependent and the Hamiltonian
density is non-local. While in the second case, one implements both the WKB and Born–
Oppenheimer (BO) approximation (see Sections 6 and 6.2), that is essentially Vilenkin’s
approach (see also the discussion and application in Section 4).

DeWitt himself observed that (5) is equivalent to a n-dimensional Klein–Gordon
equation with variable mass term [1–3] given by −√

h R(3), being R(3) the scalar curvature
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associated to the induced metric hij, and so one could implement a Klein–Gordon-like inner
product. However, being the mass term not necessarily positive, and the Hamiltonian
containing second derivatives in the metric coordinates, such definition could give negative
probabilities for the wave functional, i.e., negative frequency components. This feature can
be avoided in some special cases [37] with ad-hoc conditions, but it remains standing in the
general case, leaving some concerns on how to interpret the wave functional itself.

3. Semiclassical and Quantum Universes: Vilenkin’s Approach

Vilenkin’s proposal [17] will be the starting point of our analysis, that aims to reconcile
the WDW equation with a functional field theory formalism for gravity in the minisuper-
space via a semiclassical expansion. To better show the feasibility of this model in the
context of quantum cosmology, some key implementations to Bianchi universes are then
examined in Sections 4 and 5.

Starting from the interpretation of DeWitt and following the path of a relational time
study, Vilenkin’s work [17] suggested to separate the Universe variables into semiclassical
and quantum components. This separation is indeed valid at some point, since gravity
has a full quantum behaviour only near the Planck scale, and many physical phenomena
relevant in cosmology happen at lower energies.

Vilenkin first considered the case in which the whole Universe behaves semiclassically.
In the homogeneous minisuperspace setting, such a system can be described by a wave
function of the form

Ψ(h) = A(h)e
i
h̄ S(h) , (6)

where we label by ha all the semiclassical superspace variables (both gravity and matter
fields) and S(ha) the classical action that must be a real function, while A(h) encodes the
semiclassical features. The WDW equation reads as(

−h̄2∇(c)2 + U(c)
)

Ψ = 0 , (7)

being U(c) =
√

h U(φ) + V(ga) the potential associated to all semiclassical variables and
∇(c)

a the derivative with respect to ha (we are using the superscript (c) to identify the
semiclassical components). Such a writing is superfluous since at this stage the whole
Universe behaves semiclassically, but it will come into play later by considering the more
general case. A perturbative expansion of S, and so of ψ, can be implemented in powers of
the Planck constant due to the semiclassical feature of the Universe (in the original work,
the expansion was performed in a parameter proportional to h̄ and the h̄ in (6) was absorbed
inside the function S; here, for clarity, it is collected in front). This allows to study the
dynamics going from the lowest order corresponding to the classical limit h̄ → 0, to higher
orders in such parameter. The procedure is clearly linked to the Wentzel–Kramer–Brillouin
(WKB) approximation [71] explained in Section 6, that uses an ansatz very similar to (6) but
with a complex exponential and without the explicit separation of a semiclassical amplitude.
The expansion of (7) brings at O(h̄0)

(∇(c)S)2 + U(c) = 0 , (8)

that is the Hamilton-Jacobi (HJ) equation for S, ensuring the classical limit of the model.
The next order O(h̄) gives

2∇(c)A · ∇(c)S + A∇(c)2S = 0, (9)

where the supermetric Gab is implicitly assumed by the scalar product symbol (·); this is
equivalent to the conservation of the following current

j(c) a = |A|2 ∇(c) aS , (10)
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whose interpretation can now be understood together with the associated semiclassical
probability distribution ρ(c). Indeed, the action S defines a congruence of classical trajec-
tories, as follows from (8); each point ha in a classically allowed region in the superspace
belongs to a trajectory with associated momenta pb = ∇(c)

b S and velocity

ḣa = 2N ∇(c) aS , (11)

that depends on the choice of N(t) from the foliation. Here, we can infer the form of the
time derivative

∂

∂τ
= 2N∇(c)S · ∇(c) , (12)

which will come into play later. The points that satisfy ∇(c)S = 0 separate the classi-
cally allowed and forbidden regions, breaking down the semiclassical approximation. By
requiring that each hypersurface is crossed only once by the congruence of trajectories, i.e.,

ḣa dΣ(c)
a > 0 , (13)

then the probability density
dP = j(c) a dΣ(c)

a (14)

is positive semi-definite, thus the Universe wave function can be properly normalized.
The same can be implemented for a wave function that is a superposition ∑k Ψk of terms
defined as in (6) when the condition (13) is satisfied for each k, such that the total probability
is conserved.

One could then wonder if a similar implementation is possible in the more general
case, when only a part of the Universe is semiclassical and the rest must be described
in a full quantum picture. Vilenkin examined the case in which the quantum variables
(labeled by qν with ν = 1, ..., m) represent a small quantum subset, with negligible effects
on the semiclassical variables (ha with a = 1, .., n − m) dynamics. The full Wheeler–DeWitt
equation then becomes (

−h̄2∇(c) 2 + U(c) + Ĥ(q)
)

Ψ = 0 , (15)

where using the previous notation −h̄2∇(c) 2 +U(c) = Ĥ(c) is given neglecting the quantum
variables and their conjugate momenta, which instead appear in Ĥ(q) = −h̄2∇(q) 2 + U(q)

(here the the superscript (q) refers to the quantum components). At the same time, the
semiclassical part is assumed to satisfy its own WDW Equation (7), thus obtaining a system
of coupled equations for the two sectors dynamics. This separation is backed both by the
hypothesis on the smallness of the quantum subsystem, expressed as

Ĥ(q)Ψ
Ĥ(c)Ψ

= O(h̄) , (16)

and by the independence between the two sets, namely

Gab(h, q) = Gab(h) +O(h̄) , (17)

Gaν = O(h̄) . (18)

In other words, we are assuming Gab to be dependent on the semiclassical variables
only, and the two subspaces to be approximately orthogonal, since any mixed term of
the supermetric (being the index a for the semiclassical variables and ν for the quantum
variables) is of higher order in the perturbative expansion; it follows that higher order
terms will not appear inside ∇(c) 2 = Gab∇(c) a∇(c) b (see for example the applications in
Sections 4 and 5). Following these hypotheses, the wave function can be separated in

Ψ(h, q) = ψ(h)χ(q, h) = A(h)e
i
h̄ S(h)χ(h, q). (19)
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We observe that this ansatz shares similarities with both the WKB and BO approximations.
Considering the former, this is due to the presence of a complex exponential with a small
parameter that can lead the expansion; instead, the latter is due to a separation of a purely
semiclassical sector and the quantum one, as explained in more detail in Section 6. Actually,
Vilenkin’s proposal can be reformulated as a special case of a BO-like approximation with
expansion in h̄, i.e., the semiclassical expansion, as discussed in Section 6.1.

We here use again the Planck constant for the expansion, instead of the parameter
proportional to h̄, as mentioned before. Since the previous hypotheses hold, the semi-
classical function ψ must satisfy Equation (7), giving Equations (8) and (9) respectively at
O(h̄0) and O(h̄). Meanwhile, the quantum function χ inherits a different dynamics from
Equation (15), that is

− h̄2∇(c) 2χ − 2h̄2 A−1(∇(c)A) · ∇(c)χ − 2ih̄ (∇(c)S) · ∇(c)χ + Ĥ(q)χ = 0 , (20)

where we can observe that all terms except the last two are of higher order in the expansion
parameter (H(q) is of order h̄ due to assumption (16)). Thus, at O(h̄), we obtain

Ĥ(q)χ = 2ih̄ (∇(c)S) · ∇(c)χ . (21)

Multiplying (21) by N(t) and using the same time derivative (12) defined for the semiclas-
sical universe, it becomes

ih̄
∂χ

∂τ
= NĤ(q)χ , (22)

namely a functional Schrödinger equation for the matter wave function.
It is worth noting that the definition introduced above for ∂τ is very close to the notion

of a composite derivative ∂τ ≡ dha

dτ ∂ha applied to the quantum wave function. This fact can
be easily realized by recalling that ∂ha S0 is just the conjugate momentum pa and, hence,
it is enough to write down the first Hamilton equation (obtained variating the classical
action with respect to pa) to arrive to the desired statement. By other words, the time
dependence of the quantum wave function is recovered in the approach proposed in [17],
by means of the dependence that the quasi-classical variables ha acquire, at the leading
order, on the label time of the space-time slicing. Clearly, it is also possible and discussed
in [17] that one of the ha themselves is chosen as time coordinate to describe the system
evolution., suitably choosing the lapse function N(t). It is also useful to stress that, as we
will see later in the considered specific applications, the form of the supermetric Gab as a
function of ha is sensitive to the specific set of adopted configurational variables to describe
the studied cosmological model. However, we can observe that any variable among the
ha’s, which is related to the Universe volume, acquires a different signature (say a time-
like one) different from all the other ones (regarded as space-like coordinates) [1–3,38].
Independently from the specific form of Gab and H(q), the important point to make safe the
model self-consistence is that the semiclassical metric Gab and the quantum one, fixed by
the form of H(q) itself, live in orthogonal spaces, i.e., cross terms in the supermetric with a
classical index and a quantum one must be of higher order in the present formulation, as
expressed by (18).

Explicit examples of this classical-from-quantum variable separation are given below,
see Sections 4 and 5. We consider here both the situations in which this separation takes
place between the gravitational degrees of freedom, e.g., Universe volume taken as a quasi-
classical variable and space anisotropies as quantum variables, as well as the case in which
the same separation concerns quantum matter living on a quasi-classical space-time. This
last situation is of particular physical relevance since, as we shall see below, its analysis
to the next order of approximation in the order parameter corresponds to the study of
quantum gravity corrections to standard quantum field theory.
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Differently from the purely semiclassical case, two probability currents now emerge.
The one including the semiclassical sector is

ja = |χ|2|A|2∇(c) aS ≡ j(c) a ρχ, (23)

where j(c) a is the same as (10) and ρχ = |χ|2 is the probability distribution of the quantum
variables computed on the semiclassical trajectories. For the quantum components instead
we find

jν = − i
2
|A|2

(
χ∗∇(q) νχ − χ∇(q) νχ∗

)
=

1
2
|A|2 jν

χ, (24)

associated to the distribution ρχ, where jν
χ is a Klein–Gordon-like current. From the

conservation of both the total current ∇(c)
a ja +∇(q)

ν jν = 0 and the semiclassical current
∇(c)

a j(c) a = 0, given by the full WDW Equation (15) and assumption (7) respectively, we
can state that at the leading order the following equation holds

∂ρχ

∂τ
+ N∇(q)

ν jν
χ = 0 , (25)

which is a continuity equation for the quantum variables. Moreover, both ρc and ρχ can be
normalized on their respective subspaces by requiring

∫
dΣ(c)ρ(c) = 1 and

∫
dΩ(q)ρχ = 1,

being dΣ = dΣ(c) dΩ(q) the total surface element on the equal-time surfaces identified with
the foliation. In this way, the standard probabilistic interpretation is recovered for ψ when
such a separation in semiclassical and quantum variables is valid.

However, there is still one case to discuss, that is when in such a framework one
(or more) quantum variables become semiclassical at later time. This means that the
two subsets change: starting from an initial wave function of the form (19), we have
φkχk → ∑l φk(h′)χkl(h′, q′), the new semiclassical set {h′} having increased by one variable
and the quantum one {q′} decreased by one variable. The sum is explained by the transition
during which each semiclassical trajectory branches into many trajectories, each one for a
different initial condition of the “new semiclassical” variable. For this reason, one has to
impose a unitarity (normalization) condition on the semiclassical current j(c) a

∫
dΣ(c)

k a j(c) a
k = ∑

l

∫
dΣ(c)

kl a j(c) a
kl , (26)

that is satisfied only at an approximate level, i.e., when the cross terms can be neglected. It
should be stressed that the division itself between the two subspaces is heavily dependent
on the considered case and almost arbitrary in a certain footing, leading to an approximate
concept of unitarity for the Universe.

3.1. Boundary Conditions for the Cosmological Wave Function

Vilenkin’s work provides a meaningful description at the typical scale of the quantum
subsystem of the Universe. One related point concerns how to impose boundary conditions
on the wave function (19), which has led to ample discussion in the literature. Vilenkin
himself had previously studied this issue [72–74], developing the so-called tunneling pro-
posal: he constructed a wave function describing an ensemble of Universes that tunnel from
“nothing” to a de Sitter space by implementing a similar expansion of Ψ (19) and choosing
the purely expanding solution.

A different implementation is the one by Hartle–Hawking [75], also known as the
no-boundary proposal. The wave function for a closed Universe is constructed in the
Euclidean path integral approach by integrating over all the possible compact 4-geometries
corresponding to a certain induced metric hij on a spacelike boundary (see also discussion
in [76]); the resulting wave function can be shown to approximately satisfy the WDW
equation, whose corresponding Hamiltonian is required to be a Hermitian operator.
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In this respect, the path integral approach [77] represents an alternative formulation
of gravity as a quantum field theory and it has been widely discussed in relation to the
problems of time and unitarity [46,78–80]. We mention that, actually, Vilenkin’s tunneling
proposal can be reformulated in the Lorentzian path integral formalism [81]. The WKB
implementation also allows to study the probability of tunneling from a false vacuum to a
true vacuum state from the Wheeler–deWitt equation (see [82] and references within). We
will here focus on the Dirac quantization method only, however an interesting discussion
between the two schemes can be found in [83] where, using the Lorentzian path integral,
the WDW equation is uniquely recovered in the minisuperspace via a particular gauge
fixing on the values of hij and N, that solves the operator-ordering ambiguity of the Dirac
scheme. Some sort of WKB procedure a la Vilenkin can also be included in the path integral
formalism to study the boundary conditions, see for example [84–86] (Lorentzian), finding
in some cases different features with respect to the Hartle–Hawking interpretation.

4. Validation of the Vilenkin Proposal for the Bianchi I Cosmology

One of the most interesting open questions in theoretical cosmology concerns how
a primordial quantum universe reaches a classical isotropic limit [28]. The reason to
hypothesise a very general morphology of the universe near the singularity (for a big
bounce picture of the Bianchi I model see [87–91]) relies on the request to address the
quantum cosmological problem within the Bianchi homogeneous framework [6]. These
models are characterized by the preservation of the space-line element under a specific
group of symmetry, and are collected in the so-called Bianchi classification.

4.1. The Minisuperspace Dynamics of Bianchi Universes

The most general homogeneous model is the Bianchi IX model [28,32,92], also called
Mixmaster model [93] (for a recent semiclassical discussion see [94]), that has a relevant
role in the study of the cosmological dynamics. Despite its spatial homogeneity, it presents
typical features of the generic cosmological solution such as a chaotic time evolution of
the cosmic scale factors near the singularity [95]. This corresponds to an infinite sequence
of bounces of the point particle, in the Hamiltonian representation, against the time-
dependent potential walls which can be shown to induce an ergodic evolution in the
Misner–Chitre variables. The standard dynamics in the central region of the potential well
are then restored [28] once it escapes the small oscillations configuration. However, in the
asymptotic limit to the cosmological singularity, the potential term of Bianchi IX dynamics
has the morphology of an equilateral triangle and three open corners appear in the vertices,
which correspond to the non-singular Taub cosmology [96], see Figure 1 [97,98].

This kind of cosmology defines the limit of Bianchi IX dynamics when two scale factors
are considered equal over the three possible independent ones. The importance of the
Hamiltonian formulation of the Mixmaster model (see [93]) using the ADM description,
relies on the fact that it is possible to reduce the dynamics to the two-dimensional point
particle. We start with the line element of the model in the Misner picture

ds2 = N(t)2dt2 − ηabωaωb, (27)

where ωa = ωa
αdxα is a set of the three invariant differential forms that fixes the geom-

etry of the considered Bianchi model, N(t) is the lapse function and ηab is defined as
ηab = e2α(e2β)ab. The choice of these variables allows us to separate the isotropic contri-
bution expressing the volume of the universe related to α, i.e., for α → −∞ the initial
singularity is reached, from the gravitational degrees of freedom β+, β− contained in
the matrix βab = diag(β+ +

√
3β−, β+ −√

3β−,−2β+) acting as the anisotropies of this
model. Moreover, the introduction of the Misner variables makes the kinetic term in the
Hamiltonian diagonal. We can rewrite the superHamiltonian constraint as

HIX =
κ

3(8π)2 e−3α(−p2
α + p2

+ + p2− + V + Λe6α) = 0, (28)
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where κ = 8πG/c4 is the Einstein constant and the potential V takes the form

V ≡ −6(4π)4

κ2 ηR(3) =
3(4π)4

κ2 e4αVIX(β±), (29)

where the spatial scalar of curvature generates the Bianchi IX potential term depending
only on the anisotropies

VIX(β±) = e−8β+ − 4e−2β+ cosh(2
√

3β−) + 2e4β+ [cosh(4
√

3β−)− 1]. (30)

This function has the symmetry of an equilateral triangle with steep exponential walls and
three open angles. The expressions for the equipotential lines for large values of |β+| and
small |β−| are

VIX(β±) ∼
{

e−8β+ β+ → −∞, |β−| � 1
48e4β+ β2− β+ → +∞, |β−| � 1

(31)

while close to the origin, for β± → 0,

VIX(β±) ∼ β2
+ + β2−. (32)

The Hamiltonian approach provides the following equations of motion

α̇ = N
∂HIX

∂α
, ṗα = N

∂HIX
∂α

, (33)

β̇± = N
∂HIX
∂p±

, ṗ± = N
∂HIX
∂β±

. (34)

One recognizes that the dynamics of the universe towards the singularity is mapped into
the motion of a particle that lives on a plane inside a closed domain and bounces against
the potential wall.

Figure 1. Description of Bianchi IX potential isocurve on which is marked the corner structure. Here,
θ describes the width of the β+ channel.
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The canonical quantization of the system consists of the commutation relations

[q̂a, p̂b] = iδab, (35)

which are satisfied for p̂a = −i ∂
∂qa

= −i∂a where (a, b = α, β+, β−) adopting natural
units. By replacing the canonical variables with the corresponding operators, the quantum
behaviour of the universe is given by the quantum version of the superHamiltonian
constraint (28), i.e., the WDW equation for the Bianchi IX model

ĤIXΨ(α, β±) =
[

∂2
α − ∂2

+ − ∂2− +
3(4π)4

κ2 e4αVIX(β±)
]

Ψ(α, β±) = 0, (36)

where Ψ(α, β±) is the wave function of the universe providing information about its physi-
cal state. Therefore, following the step in [17] we can obtain the probability distribution for
the wave function of the universe, that reads as

ρ(α, β±, t) = ρ(c)(α, t) ρχ(α, β±(t), t), (37)

where in particular ρ(c)(α, t) = |A(α(t))|2 is related to the components of the classical
space and ρχ(α, β±(t), t) = |χ(α, β(t), t)|2 to those in the quantum subspace, as explained
in Section 3.

In the subsection below, we will focus on the Bianchi I model in which the structure
constants and so the spatial curvature R(3) vanishes. Hence, the associated superHamilto-
nian constraint in vacuum read as

HI =
κ

3(8π)2 e−3α(−p2
α + p2

+ + p2−) = 0. (38)

This cosmology is the natural extension of the FRLW model with k = 0 generalizing an
homogeneous flat Universe.

4.2. Implementation of the WKB Approach in the Minisuperspace of Bianchi I

Let us consider the case of the Bianchi I model, i.e., with WDW expressed by the
constraint (38). As mentioned in Section 2.1, the time definition for the model can be
implemented before or after quantization, namely the RPSQ and Vilenkin’s proposal,
which present striking differences. The Vilenkin proposal (Section 3) is more feasible,
namely it avoids the square root non-local Hamiltonian operator emerging from the former
but the probabilistic interpretation is achieved only after performing the semiclassical limit
and, in this sense, it can not be seen as a fundamental approach. However, the role of the
time-like variables itself can make the two schemes comparable. In order to determine
under which restrictions the Vilenkin representation of the Universe volume dynamics
becomes predictive, it has been shown in [99] a rigorous comparison of the two quantization
methods carrying out the probabilistic interpretation of the wave function for the Bianchi I
cosmology in which R(3) = 0.

We recall that Vilenkin suggested a semiclassical approximation of the wave function
to achieve a proper probabilistic interpretation due to the emergence of time. This does
not happen for the definition of a scalar product from a conserved current suggested by
DeWitt. Hence, considering a Bianchi I model in the presence of a matter contribution and
achieving the Schrödinger equation describing the motion of a free particle in the (β+, β−)
plane, we arrive at the following result

Ψ(α, βa) =
e−

i
h̄
∫ α

α0
dα′

√
μ2(α)

4
√

μ2(α)

∫
R2

d2 p
2πh̄

e
− i

2h̄ (p2
++p2−)

∫ α
α0

dα′ 1√
μ2(α) · e

i
h̄ pa βa χ̃(α0, pa), (39)
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where the subscript a stands for (+,−) and χ̃(α0, pa) determines initial conditions. The
matter contribution is encoded in the term μ2 as

μ2(α) = ∑
w

μ2
w e3(1−w)α, (40)

where the sum contains all the fluids components characterized by different values of w,
while μ2

w are constants. It is important to stress that with the BO approximation we are
assuming α as the slow variable whereas β+ and β− are the fast ones. The validity of both
Vilenkin’s semiclassical expansion and BO approximation, which will be discussed in detail
in Sections 6 and 6.2, implies that we admit a decomposition of the wave function as

Ψ(α, βa) = exp

(
i
h̄ ∑

n=0
(h̄)nSn

)
(41)

and the following conditions hold∣∣∣∣ 1
μ3(α)

dμ3(α)

dα

∣∣∣∣� 4
h̄

, (42)

h̄|S2(α)| � |S1(α)| and h̄|S2(α)| � 1. (43)

Moreover, the integral over the momentum space extends over those values for which

(p2
+ + p2−) �= 0, (44)

(p2
+ + p2−) � μ2(α). (45)

Now, the BO approximation implies that near a value for which (45) holds, we need a wave
packet for the initial conditions sufficiently peaked, for simplicity a Gaussian distribution
of the form

χ̃(α0, pa) =
1√

πσ+σ−
e
− (p+− p̄+)2

2σ2
+ e

− (p−− p̄−)2

2σ2− , (46)

The aim is to check whether the functional form of the wave functions obtained from the
two formalisms, or their associated probabilities, coincide. In order to do this, we need the
Klein–Gordon-like time-independent inner product, achieved from the RPSQ approach.

Following the steps described in [6,70] the resulting Schrödinger equation is

ih̄
∂

∂α
Φ(βa, α) =

√√√√−h̄2

(
∂2

∂β2
+

+
∂2

∂β2−

)
+ μ2(α) Φ(βa, α), (47)

in which limα→−∞ μ2(α) = μ2
1 and we denoted Φ as the wave function of the RPSQ. Hence,

via inverse Fourier transform a generic solution can be formally found as

Φ(βa, α) = e−
i
h̄
∫ α

α0
dα′

√
−h̄2Δ±+μ2(α)Φ(βa, α0), (48)

where |pa|2 = −h̄2Δ± = −h̄2
(

∂2

∂β2
+
+ ∂2

∂β2−

)
. Now, to compare the two formulations, we

need to identify the same time variable. In particular, we need the two lapse functions (one
from RPSQ and the other one from Vilenkin’s proposal) to be the same

3cK
4πGT

e3τ√
p2
+ + p2− + μ2(τ)

=
3cK

4πGT
e3τ√
μ2(τ)

, (49)
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where K =
∫

d3x|det(e(a)
i (xk))|, the vectors e(a)

i constitute the so-called frame and α =
t/T = τ in which the constant T can be defined in terms of fundamental constants, e.g., it
can be chosen proportional to the Planck length. The above equation is effectively valid if
p2
+ + p2− � μ2(τ). An issue arises if we promote βa to quantum operators since the lapse

function NRPSQ (on the left-hand side) becomes an operator acting on the wave function.
For this reason, we need to replace it by its expectation value. However, in Bianchi I,
pa are essentially constants of motion and we can treat them as numbers. Now, we are
able to choose a range of τ such that the semiclassical approximation is valid, namely τS.
Hence, by normalizing (48) with respect to the inner product near the singularity, such that
μ2 → μ2

1 becomes time-independent [100], implementing it with the BO approximation, we
can write

Φ(βa, τ) ≈ e−
i
h̄
∫ τ

τS
dτ′

√
μ2(τ′)

4
√

μ2
1

∫
R2

d2 p
(2πh̄)

√
2πσ+σ−

e
− i

2h̄ (p2
++p2−)

∫ τ
τS

dτ′ 1
μ2(τ′)

4
√

1 + p2
++p2−

μ2
1

e
i
h̄ pa βa e

− (p+− p̄+)2

2σ2
+ e

− (p−− p̄−)2

2σ2− . (50)

Two main differences are noticed comparing (50) with (39). In Equation (39), the factor(
1 + p2

++p2−
μ2

1

)−1/4
is not present and (μ2

1)
−1/4 is replaced by (μ2(τ))−1/4. However, we

achieve the same probability of finding the Universe in a region of the plane (β+, β−)
for both approaches, if the spectra of the corresponding momenta span sufficiently small
values. In this way, the contribution of the anisotropies to the total energy is negligible
with respect to the matter part. In other words, for the Vilenkin approach we need to
impose a constraint on the anisotropies variables phase space, namely that they exhibit a
“light dynamics”.

5. Implementation of the Vilenkin Approach to the Bianchi IX “Corner”

Let us now analyse the well-known Bianchi IX “corner” configuration [28] implement-
ing the WKB idea to separate the quasi-classical component from the “small” variable β−.
Thus, to describe Bianchi IX’s dynamics near the singularity using the Misner variables
and the Vilenkin approach, we consider as an initial condition for the point-universe the
right corner of the potential VIX ∼ 48e4β+ β2−, where β+ → +∞ and |β−| � 1, therefore,
α and β+ have to be semiclassical variables while β− quantum. In the following analysis
(see [101]) we will include a massless scalar field φ for which φ̇ � U(φ), and we will
assume a synchronous frame N(t) = 1.

Substituting the ansatz (19) and using the conditions above in the WDW equation,
Equation (9) becomes

2
(
∂α A ∂αS − ∂+A ∂+S − ∂φ A ∂φS

)
+ A

(
∂2

αS − ∂2
+S − ∂2

φS
)
= 0, (51)

associated to the probability density, while the dynamics of a harmonic oscillator with
time-dependent frequency and unitary mass reads as

ih̄
∂χ

∂τ
= (∂2− + 16e4(α+β+)β2−)χ, (52)

if we impose ω2(τ) ≡ 16e4(α+β+) and τ = c
∫

e−3αdt. Note that in what follows time will
be rescaled by a factor 2 as in [101]. To solve (52) we make use of the invariant method
developed in [102]. The general solution is given by

χ = ∑
n

cneiαn(τ)φn(β−, τ) = ∑
n

cnχn(β−, τ), (53)

where cn are numerical coefficients that weight the different χn
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cn =
∫

dβ−χn(β−, τ)χ0(β−, τ), (54)

χn(β−, τ) =
eiαn(τ)√√

πn!2nρ
hn

(
β−
ρ

)
e

i
2h̄ (

ρ̇
ρ +

i
ρ2 )β2− , (55)

where the index 0 states the initial condition, hn are Hermite polynomials, ρ satisfies the
auxiliary equation

ρ̈ + ω2ρ − ρ−3 = 0, (56)

and

αn(τ) = −
(

n +
1
2

) ∫ τ

0

1
ρ2 dτ′. (57)

It is usually complicated to analytically solve (56), but in [102] the author developed a
method that allows us to have the explicit expression for ρ, linear combination of functions
h(τ) and r(τ) dependent on the considered model

ρ = (W)−1(A2r2 + B2h2 + 2(A2B2 − (W)2)
1
2 hr)

1
2 , (58)

where A2, B2 are arbitrary real constants, and W is the Wronskian.
As a first step, the dynamical evolution of the Mixmaster model could be studied in

vacuum, namely the simplest case. For further studies of Bianchi IX considering a vector
field, see [103,104].

5.1. Bianchi IX in Vacuum

Starting from (52) and using (36), (33), (34) in particular we find

α(τ) =
1
3

log(6|pα|K) + 2|pα|τ, (59)

where K = κ/3(8π)2. It is worth noting that, in the calculation above, we adopted the
absolute value of pα due to its relation to α̇. In fact the expression for α̇ (with ˙ referring to
the synchronous time t),

α̇(t) = −2Kpαe−3α, (60)

denotes how much the volume of the universe changes with the synchronous time and it has
the opposite sign of pα, so that an expanding universe is described by pα < 0. Considering
the variable τ, for 0 < t < +∞ we have −∞ < τ < +∞. At the same time, for an
expanding universe, the semi-classical variable β+ increases toward larger values that
means β̇+(t) > 0 and this, again, translates in p+ > 0. Therefore, the equation for β+(τ) is

β+(τ) = β0 + 2|pα|τ. (61)

Hence, the frequency for the harmonic oscillator becomes ω2(τ) ∼ C emτ , with m and C
constants. Now, we can compute the expression for ρ that reads as

ρ =
1

2m

√√√√π2 J2
0

(
2
√

C
√

emτ

m

)
+ 64m2N2

0

(
2
√

C
√

emτ

m

)
+ 8π

√
3mJ0

(
2
√

C
√

emτ

m

)
N0

(
2
√

C
√

emτ

m

)
, (62)

where J0 and N0 represent the Bessel functions of the first and the second kind.
To conclude the study of the probability density, firstly we need to compute (37)

using (53). We choose |χ0|2 such that it has a Gaussian shape peaked around β− = 0.
Figure 2 shows the probability density function for different values of the synchronous
time variable as a function of the quantum anisotropic variable β−. We observe that, when
the point-universe enters the corner, there is a suppression of the quantum variable β−,
as its standard deviation decays in time. In other words, the Gaussian packet tends to
peak around the value β− = 0. The corner becomes an attractor for the global system
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dynamics and the point-universe cannot escape anymore. This is the reason why the
universe approaches on a good level the Taub model.

Figure 2. Time evolution of the probability density of the quantum subsystem considering Bianchi IX
in the vacuum case with β+ = 2|pα|τ, for an expanding universe. Figure re-elaborated from [101].

The vacuum case can be analysed also for a collapsing behaviour of the universe. The
dynamical evolution is represented by a decreasing β+ for t → +∞. In this case, the initial
assumption is that β̇+ < 0, which translates in p+ < 0. Therefore, following the same steps,
we achieve

ρ(τ) =
1√

ω(τ)
=

e−β0

2
, (63)

in which ω(τ) = 4e2β0 is constant. The eigenfunctions χn which depend on time through
ρ(τ) are now constant; hence the probability density distribution |χ|2 is defined simply
by choosing its shape at the initial time. This means that it remains constant as the point-
universe moves towards the time singularity, namely the point universe goes deeply inside
the corner (β̇+ < 0). Here, the backward evolution of the universe would correspond to a
Taub universe, which is no longer a singular cosmology in the past, endowed with a small
fluctuating anisotropic degree of freedom in addition to the macroscopic classical universe.
Hence, the singular behaviour of the Bianchi IX universe can be removed. This result could
have a deep implication, under cosmological hypotheses, on the notion of the cosmological
singularity as a general property of the Einstein’s equations (see Section 5.4 and for the
possible removal of the singularity in loop quantum cosmology (LQC) see [105,106]).

5.2. Bianchi IX in the Presence of the Cosmological Constant and a Massless Scalar Field

The aim of this analysis is to mimic the behaviour of the Bianchi IX universe if the de
Sitter phase (which is associated to the introduction of the cosmological constant Λ and the
scalar field φ) takes place when the corner evolution is performed by the point-universe.
The quantum part of the superHamiltonian Hq does not change with respect to the previous
one but we have extra terms in the classical part, namely

H0 = e−3αK(−p2
α + p2

+ + p2
φ + Λe6α), (64)

where K = κ/3(8π)2. Now, following the same steps of the previous Section 5.1, expres-
sions for τ(t), α(τ) and β+(τ) are

τ(t) =
1

6
√

p2
+ + p2

φ

log
[

tanh
(

1
2
(6K

√
Λt + J)

)]
, −∞ < τ < 0 (65)
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α(τ) =
1
3

log

⎡⎣
√

p2
+ + p2

φ√
Λ

sinh
(

2 arctanh
(

e
6τ
√

p2
++p2

φ

))⎤⎦, −∞ < α < ∞ (66)

β+(τ) = β0 + p+τ, −∞ < β+ < β0. (67)

This time, the evolution of the probability density function is computed numerically for
different values of t, as shown in Figure 3.

Figure 3. Time evolution of the probability density of the quantum subsystem considering a scalar
field and a cosmological constant, in the case of an expanding Universe. Figure re-elaborated
from [101].

We can conclude that as the universe evolves in time, the variable β+ is suppressed
while the fully quantum one β− is characterized by a decaying standard deviation. Hence,
in the proposed scheme, the universe naturally isotropizes. In other words, starting with a
Gaussian shape, its evolution is then approaching a Dirac δ-function around the zero value
of β−. Thus, this result offers a new paradigm for the Bianchi IX cosmology isotropization
based on the idea that the de-Sitter phase is associated with the corner regime of the model.

5.3. Taub Model

Another interesting application [107] could be the case of the Taub model [108] (for a
full quantization see [109–112]) that is the natural intermediate step between Friedmann-
Lemaître-Robertson-Walker (FLRW), which is invariant under rotations around any axis,
and the Bianchi IX universe in which the rotational invariance is absent due to the presence
of three different scale factors. Therefore, since the corners of Bianchi IX asymptotically
correspond to the equality of two scale factors, e.g., one is fixed by the condition β− = 0
and the other two are obtained for the rotational invariance of 2π/3 in the plane (β+, β−),
this leads to the Taub solution. The line element of the Taub space-time corresponds to (27)
but the traceless symmetric matrix which determines the anisotropy via β+ only is

βab = diag(β+, β+,−2β+) . (68)

Within this study, we consider again a cosmological constant Λ and a free minimally cou-
pled scalar field φ to mimic the inflationary scenario. For further studies about inflation in
quantum cosmology, see [28,113,114]. The dynamics is summarized by the scalar constraint

HT = Ke−3α(−p2
α + p2

+ + p2
φ + V + Λe6α) = 0, (69)
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(we remind that K = κ/3(8π)2) in which the potential term takes the form

V ≡ 3(4π)4

κ2 e4α VT(β+), (70)

where VT(β+) = e−8β+ − 4e−2β+ . The phase space of the system is six-dimensional with
coordinates (α, pα, β+, p+, φ, pφ) having pφ as a constant of motion because of the absence
of a potential term U(φ). The dynamical picture is completed by taking into account the
choice of N = e3α/K which fixes the temporal gauge.

Now, following the same steps of the Vilenkin approach, we can construct the classical
and the quantum dynamics. Equations (8) and (9) become

− (∂αS)2 + (∂φS)2 + Λe6α = 0, (71)

∂α(A2∂αS) + ∂φ(A2∂φS) = 0. (72)

Equation (22) is instead responsible for the evolution of the quantum subspace, here
represented by β+: introducing the change of variable eα = a, the equation takes the form

ih̄
∂χ

∂τ
=

(
−∂2

+ +
a4

4κ2 VT(β+)

)
χ, (73)

where dτ = Ke−3αdt and the variable α increases with the synchronous time while τ
decreases. In this respect we have

dα

dτ
= −2Kpα < 0, (74)

with pα ∼
√

Λe6α since in (71) p2
φ can be neglected for large values of α. We are also

taking the positive square root since we consider an expanding universe. The behavior of τ
compared to a is then

dτ

dt
= − 1

2K
√

Λa4

da
dt

. (75)

According to Vilenkin’s idea of a small quantum subsystem, the quasi isotropic regime is
considered, in which |β+| � 1, and as a consequence the potential term gets a quadratic
form

VT(β+) = −3 + 24β2
+. (76)

It is worth noticing that the zero order of the approximate potential would provide a
contribution to the HJ Equation (71) and becomes negligible when the cosmological constant
dominates, once substituted into the WDW, i.e., −3e4α ≡ −3a4. Hence, the frequency of the
harmonic oscillator reads as ω2(τ) = 6τ−4/3/k̃2 where k̃2 = κ2(6κ

√
Λ)4/3. Now, with the

method used above [102], we can construct an expression for ρ namely

ρ(τ) =
k̃3

324
√

3

{
1
k̃2

[
(9A2 + 64B2)(k̃2 + 54 τ2/3) +

(
(−9A2 + 64B2)(k̃2 − 54 τ2/3)− 144

√
24A2B2 − 59049

k6 k̃τ1/3

)

× cos

(
6
√

6τ1/3

k̃

)
+ 6

√
2

(
2

√
8A2B2 − 19683

k̃6
k̃2 +

√
3(−9A2 + 64B2)k̃τ1/3 − 108

√
8A2B2 − 19683

k̃6
τ2/3

)

× sin

(
6
√

6τ1/3

k̃

)]}1/2

,

(77)

and the probability density for a generic expansion, i.e., |χ(β+, τ)|2, is then calculated.
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Figure 4 shows that, as the volume of the universe expands, i.e., τ → 0, the profile of
the Gaussian shape becomes more and more peaked. In this case, it cannot reach a real
δ-function as stated in [115] but a steady small finite value emerges, namely

ρ(τ → 0) =
2
√

2
3

81
k̃3 +

2
3

k̃τ2/3 − 3
√

6τ4/3

k̃
+O(τ)5/3. (78)

A confirmation of this behaviour is present also considering an asymptotic study of an
exact Gaussian solution of the time-dependent Schrödinger equation, which will be dis-
cussed below. We can state that the de Sitter exponential expansion of the universe strongly
suppresses the quantum anisotropy leaving a small relic at the end of inflation. This sur-
prising result suggests that, although the anisotropy cannot have the same non-suppressed
behaviour of a scalar field, a small tensor degree of freedom can be present on a quantum
level. In this sense, in the full inhomogeneous scenario, it could originate a smaller tensorial
component of the primordial spectrum.

Figure 4. Time evolution of the probability density is highlighted with different colours. The
dashed black line represents the initial time τi while the continuous line is the solution with Hermite
polynomials. The wavy trend is given due to the truncation of the Hermite polynomials. In this plot

we used A = 81
√

3/2
2B and B = 1. Figure from [107].

To clarify what we anticipated above, we now search for an exact Gaussian solu-
tion [116,117] of the time-dependent Schrödinger equation as

χ(β+, τ) = N(τ)e−
1
2 Ω(τ)β2

+ , (79)

since it is evident from the harmonic oscillator eigenfunction that the simplest way to locate
the universe is a Gaussian shape. Substituting (79) in (73) and separating all terms of zero
and quadratic order in β+, we get

iN′(τ) = 1
2

N(τ)Ω(τ), (80)

iΩ′(τ) = Ω2(τ)− ω2(τ). (81)

To achieve the modulus of the normalization factor we also request a normalized wave func-
tion for any value of time.To obtain the physical information on the anisotropy behaviour
we solve (81) since the quantity we need is the inverse Gaussian width. Now, separat-
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ing Ω into its real and imaginary parts, i.e., Ω = f (τ) + ig(τ), we obtain the following
non-linear system

2g =
f ′

f
, (82)

g′ = g2 + ω2 − f 2. (83)

It is worth noting that (82) and (83) do not admit an analytical solution, but we can easily
construct an asymptotic behaviour for which τ → 0. We achieve

g(τ → 0) � − 3C2

τ1/3 , (84)

f (τ → 0) � f0 e−6C2τ2/3
, (85)

where C2 = 6/k̃2 and f0 is an integration constant. The standard deviation of the Gaussian
probability distribution is

σ(τ → 0) =
1√�(Ω)

� 1√
f0

e
6
2 C2τ2/3

. (86)

Hence, the standard deviation exponentially decays (Figure 5) when the universe expands,
i.e., τ ∼ 1/a3 decreases. However, also here, it approaches a non-zero value. In fact, this
feature corresponds to the constant value assumed by ρ in (78). We can state that, if the
universe anisotropy is small enough to be in a quantum regime when inflation starts, it is
still present at late times.

5.4. Inhomogeneous Extension

We now briefly review the analysis developed in [97], where the ideas presented above
have been extended to the generic inhomogeneous cosmological solution, also clarifying
the physical conditions under which the WKB scheme becomes applicable.

The analysis of a generic inhomogeneous Universe has been first developed in [118],
see also [68,119–121] and it corresponds to the situation in which the functions α, β+ and β−
acquire a dependence on the spatial coordinates and the 1-forms, describing the geometry
of the 3-hypersurfaces, are associated to a generic vector field, whose time dependence is
neglected at the higher order.

This scheme allows to implement the so-called “Belinski–Khalatnikov–Lifshitz (BKL)
conjecture” (for its validation on a classical level see [28,119]), according to which each
region of the order of the averaged cosmological horizon behaves like the homogeneous
Bianchi IX and Bianchi VIII models, sufficiently close to the initial singularity. In this
picture, the chaotic feature of these two Bianchi models is extended to the dynamics of a
generic inhomogeneous Universe as a local concept: each causal region is characterized
by the same oscillatory regime and chaotically evolves independently from any other one.
Actually, this picture is the result of a more rapid decreasing of the average horizon with
respect to the typical inhomogeneous scale, as the initial singularity is approached. Thus, in
the limit of the BKL conjecture validity (for the question concerning possible spikes in the
spatial gradients see [122]), the Mixmaster scenario described by the triangular potential in
Figure 1 can be applied as a point-like model, including the corner dynamics addressed
above [28].
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Figure 5. Time evolution of the probability density is highlighted by different colours. The initial

time is τi. We considered 1
f0
= 2

√
2/3

81 . Figure from [107].

In [97] it has been argued that, inside the corner, the variables α and β+ are, near the
singularity, very large and therefore remain classical degrees of freedom, while the small
variable β− can become a real quantum variable, according to the proposal in [17]. The
idea is that, in a long sequence of iterations of the piecewise representation of the evolution
in terms of the Kasner-like solution, a deep penetration of the point-universe inside the
corner must, soon or later, take place in each spatial point [123].

By other words, it is argued that the uncertainty in the value of the variable β− in
the corner is of the order Δβ− ∼ 2β+

√
h̄. Hence the uncertainty principle implies that

the indetermination on the corresponding momentum is Δp− ∼ 2
√

h̄/β+. Recalling that
deeply in the corner β+ is very large, we deal with a small quantum subsystem associated
to the phase space {β−, p−} and the ratio between the quantum Hamiltonian and the
classical one is of order h̄. That is, all the assumptions at the ground of the decomposition
into two parts of the global system, one classical (here the quantum corrections on α and β+

are not present at all) and a small quasi-classical subset, considered in [17] are fully satisfied.
Hence, the same analysis performed above follows directly in each space point, since the
variable β− dynamics is descried by a time-dependent quantum harmonic oscillator in each
locally homogeneous region. However, in the inhomogeneous case, it has to be taken into
account the so-called fragmentation of the space [28,120,124,125]. In fact, the chaotic time
evolution of the locally homogeneous regions induces a corresponding oscillation of the
spatial dependence of the metric functions. As a result, the comoving inhomogeneity scale
is not the same during all the evolution toward the singularity, but it also decreases [28,119],
although the Mixmaster scenario is preserved.

The important point here is that the corner configuration is then reached in each (even
arbitrarily small) space region which contains a rational value of the parameter u, by which
the BKL map is described [118,120]. This feature ensures that, as the initial singularity is
approached, essentially all the space is (homogeneous patch by homogeneous patch) in the
corner configuration (this takes place in different instants of time) and the WKB scenario
inferred in Section 3 can be applied. Thus, in the end, since the variable β− is frozen out
to a negligible value (described by a constant standard deviation around the zero mean
value), then we deal with a non-singular generic inhomogeneous universe. In this respect,
the implementation of the ideas developed in [17] to the inhomogeneous Mixmaster leads
to a possible picture to solve the problem of the initial singularity on a very general footing.
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6. WKB Expansion for Quantum Gravity Contributions

As seen in Section 3, the work [17] implemented a perturbative expansion in the Planck
constant in order to obtain a functional probabilistic interpretation for the wave function
of the universe. This procedure can be enclosed as a special case of the WKB method [71],
which allows to compute an approximate solution to a differential equation of the WDW
type by going to increasing orders of accuracy in a desired parameter, as seen in the study
presented in Section 4. To illustrate this method, let us start from the WDW Equation (5);
we assume the solution wave function Ψ to be of the form

Ψ = eiS/h̄ , (87)

with S a complex function, that we expand in some parameter P

S =
∞

∑
n=0

PnSn. (88)

The application of the superHamiltonian operator to (87) using (88) brings a series of
equations, each one at a different order in P and acting as a small perturbation to the
previous ones (having chosen P appropriately). Using the Planck constant h̄ as expansion
parameter [126] this corresponds to the so-called semiclassical approximation in quantum
theory; nonetheless, one could implement a different perturbation parameter according to
the physical properties of the considered theory. Substituting (87) into (5), one can solve
each order in P and, supposing that the universe can be separated as in Section 3, obtain
a dynamical description of the quantum subsystem at some level of accuracy, containing
corrections from the “semiclassical” sector.

We emphasize the difference between the direct application of this method and the
work [17] presented in Section 3, i.e., the ansatz (6) was composed of a semiclassical
amplitude A(h), multiplied by an exponential term expanded in h̄. This hypothesis is
based on the assumption that the universe can, at some level, be separated between a
purely semiclassical sector and the remaining quantum one, as already discussed, but it is
not a general feature of the WKB method. However, Vilenkin’s work can be recast as a WKB
expansion with the ansatz (87) by considering a complex function S and expanding (88) in
the parameter h̄, as shown in [22].

The WKB expansion for quantum gravity has been implemented in many works in the
literature after [17], mainly focusing on the canonical quantization prescription [127–131]
sometimes in different expansion parameters [20,24,116,117,132–139], or taking different
paths considering some sort of WKB ansatz [78,140–142]. In several works, the WKB
method has been implemented in the context of a BO approximation [143,144] for gravity
and matter [22,25,26,145–151]. Reviews regarding the use of the WKB procedure for con-
structing time in quantum cosmology can be found in [53,55,59,152,153]. In the following
section we will explore in more detail some of these works and discuss the emerging
problem of non-unitarity for the matter dynamics.

6.1. Time from Gravitational Variables and the Question of Non-Unitarity

The expansion parameter in (88) can also be taken of Planckian size. That is the case
of Kiefer and Singh’s work [20], who first considered a regime in which the “classical limit”
is the absence of matter, i.e., vacuum solutions.

Let us briefly recall this approach. We start by identifying in the system the “subsets”
of quantum gravity and quantum matter, such that the WDW equation can be rewritten as(

− h̄2

2M

(
∇2

g + f · ∇g

)
+ MV(g) + Ĥm

)
Ψ(g, m) = 0 , (89)
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where M is the Planckian parameter

M ≡ 1
4c2κ

=
cm2

P
4h̄

, (90)

being mP =
√

h̄c/8πG the reduced Planck mass, the term f · ∇g is inserted for general-
ization to other operator orderings, and Hm is the (scalar) matter superHamiltonian as
in (4). An important aspect deriving from the choice of the expansion parameter (90) is
that it allows a clear separation between the gravitational and matter subsets, since in the
limit M → ∞ (G → 0 as can be seen from (90)) the latter will disappear, leaving only the
Einstein’s equations in vacuum. Such a choice implies that the WKB expansion will hold
for particles with small mass over Compton length ratio, i.e., whose mass is m � mP.

Similarly to Section 3, the wave function is taken to be of the WKB form

Ψ(g, m) = e
i
h̄ S(g,m), (91)

and S is then expanded in powers of M. However, in Vilenkin’s work [17], the study was
carried out to recover a Schrödinger dynamics for the quantum (here matter) variables,
and to formulate a probabilistic interpretation for the complete Ψ, for which the order h̄1

was enough. In [20] instead, the aim is not only to recover such a dynamics for the matter
sector (which will emerge at O(M0)), but also to investigate its modifications induced by
the quantum nature of gravity, i.e., going up to the next order O(M−1). To obtain this,
the total function S is first expanded in powers of M and then at each order separated in
a(g) + b(m, g), i.e., isolating a purely gravitational function. For the sake of clarity, we here
reformulate the approach with that separation from the beginning, writing

S(g, m) = MS0(g) + S1(g) +
1
M

S2(g) + Q1(m, g) +
1
M

Q2(m, g) +O(M−2), (92)

where for consistency the highest function S0 at O(M) (Planck scale) depends on gravi-
tational variables only, as can be checked from the perturbative expansion. The matter
enters at the next order, such that the gravitational background is naturally recovered
without further assumptions. This feature represents a striking difference from the work in
Section 3, where the WDW gravitational equation was also imposed. We stress that, in this
implementation, the presence of classical matter can only be recovered with some suitable
redefinition, for example with a rescaling of the matter fields themselves (see [116,117]).

Expanding in M, the first order M1 gives

1
2
(∇gS0)

2 + V = 0, (93)

corresponding to the HJ equation for gravity which provides the classical limit, namely
Einstein’s equations in vacuum. We note that the coefficient 1/2 in front of (∇gS0)

2 with
respect to Vilenkin’s proposal (8) is due to the definition of the expansion parameter M
which makes it appear in the starting WDW Equation (89). In this sense, it is not related to
any physical properties. The next order M0 brings

∇gS0 · ∇gS1 +∇gS0 · ∇gQ1 − ih̄
2

(
∇2

gS0 + f · ∇gS0

)
+

1

2
√

h
(∇mQ1)

2 − ih̄
2
√

h
∇2

mQ1 + U = 0 , (94)

where we indicate the derivatives with respect to φ as ∇m. Requiring that S1(g) satisfies

∇gS0 · ∇gS1 − ih̄
2

(
∇2

gS0 + f · ∇gS0

)
= 0 , (95)

namely a continuity equation for S1 (being S0 known from the previous order), the matter
wave function χ0 = e

i
h̄ Q1 satisfies
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ih̄
∂

∂τ
χ0 = NĤm χ0 . (96)

Equation (96) is a functional Schrödinger equation where the WKB time is defined by

∂

∂τ
= N ∇gS0 · ∇g, (97)

similar to (12), in which the lapse function (that was removed in the original work via a
gauge choice) has been reinserted for the general case in order to maintain a parallelism
with Vilenkin’s definition (12). We emphasize that, in Section 3, the continuity equation
was not imposed but obtained from the perturbative procedure since we required the
WDW gravitational constraint from the beginning; here instead, there is no such initial
assumption. To recover the functional quantum field dynamics we have to impose another
condition on S1, i.e., (95).

Developing the analysis to the next order M−1, one finds

∇gS0 · ∇gS2 +∇gS0 · ∇gQ2+
1
2

(
(∇gS1)

2 + (∇gQ1)
2
)
+∇gS1 · ∇gQ1 − ih̄

2

(
∇2

gS1 +∇2
gQ1 + f · ∇gS1

+ f · ∇gQ1

)
+

1√
h
∇mQ1∇mQ2 − ih̄

2
√

h
∇2

mQ2 = 0 ,
(98)

which again can be cast in a clearer form once the function S2 satisfies an analogous
continuity equation

∇gS0 · ∇gS2 +
1
2
(∇gS1)

2 − ih̄
2

(
∇2

gS1 + f · ∇gS1

)
= 0, (99)

thus leaving only

∇gS0 · ∇gQ2 +
1
2
(∇gQ1)

2 +∇gS1 · ∇gQ1 − ih̄
2
(∇2

gQ1 + f · ∇gQ1) +
1√
h
∇mQ1∇mQ2 − ih̄

2
√

h
∇2

mQ2 = 0. (100)

We can now decompose the derivatives ∇g in tangent and normal components to the
hypersurfaces S0 = const and neglect the former by assuming the adiabatic dependence of
Hm on the induced metric. Summing (100) with the previous order, the resulting equation

for the matter wavefunction χ = e
i
h̄ (Q1+

1
M Q2) for N = 1 is

ih̄
∂χ

∂τ
= Ĥmχ +

1

8M
√

hR̄

[
Ĥ2

m + ih̄

(
∂Hm

∂τ
− 1√

hR̄
∂(
√

hR̄)
∂τ

Ĥm

)]
χ . (101)

Here, the terms after Hm are a modification to the standard quantum matter dynamics and
thus they represent quantum gravity corrections. An inspection of these terms reveals that
they violate unitarity in the evolution.

It can be noted that, up to the order M0, the work [20] seems to portray a functional
description of the system analogous to the one obtained by Vilenkin (Section 3). Actually, it
can be shown that the approaches [17,20] are equivalent to a unique WKB expansion of the
WDW equation just by changing the expansion parameter (see reformulation in [22]). As a
consequence, Vilenkin’s work can also be expanded to the next order in h̄ finding quantum
gravity corrections in the functional Schrödinger formalism. However, also in that case,
they manifest a non-unitary morphology.

The question of non-unitarity in this kind of approaches has been long discussed in
the literature [22,24,25,78,79,150,154,155], with many significant outcomes. As presented
in [155], implementing a scalar field clock, the request of unitarity can lead to a quantum
recollapse of the model; in [150] an inner product is proposed in relation to the Faddeev–
Popov gauge-fixing procedure. We here briefly discuss the proposal [24] to overcome the
non-unitarity emerging in Equation (101): the authors construct the set of complex eigen-
values E(τ) associated to the total non-Hermitian Hamiltonian operator in (101), together

165



Universe 2022, 8, 556

with the set of real eigenvalues ε(τ) of Ĥm. In this notation, τ is the only geometrical
variable present that is identified as time from the beginning. The functions E(τ) and ε(τ)
are then expanded in powers of 1/M. By redefining the quantum wave function with a
phase transformation involving the imaginary part of E(τ), and rescaling the background
with the opposite phase, the redefined quantum state gives a contribution in the equation
that exactly cancels the non-unitary terms in (101). Thus, the dynamics for the redefined χ
at O(M−1) presents only the Hermitian part of the quantum gravity corrections, restoring
unitarity; also, a quantum backreaction emerges in the HJ equation due to the rescaling.
However, the procedure is built on the assumption that the operators Htot and Hm com-
mute, and thus can be diagonalized simultaneously. This property does not hold in some
cases, for instance considering a FLRW model with a cosmological constant and a scalar
field. In that setting, Htot at the order 1/M contains both Hm and its time derivative Ḣm,
with Hm including the scale factor a and Ḣm its conjugate momentum, so the two operators
cannot commute (for a critical analysis of this restatement, see [22]).

Moreover, the question of non-unitarity has been addressed also in the context of
modified theories of gravity, where it can emerge due to renormalizability requirements
of the corresponding quantum theory (e.g., [156]). Recent interest has been devoted to
the case of massive gravity, where the graviton particle acquires a nonzero mass. Massive
gravity was first introduced by the work of Pauli and Fierz [157] and later reformulated
with the “gravitational Higgs mechanism” (in which the spontaneously broken symmetry
is the one associated to coordinate reparametrization invariance) or via higher-derivative
curvature terms [158]. Such theory is however plagued by the emergence of ghost fields,
i.e., non-physical states associated to non-dynamical variables, that induce negative proba-
bilities in the theory and so violate unitarity [159,160]. Solutions to this issue have been
proposed both in three dimensions, see [161–164] and in four dimensions with the so-called
dRGT model [165] (see [166] for some deviations from GR predicted by the model), and
also [167–169].

For what concerns the non-unitarity problem in the present General Relativity analysis,
the description of quantum gravity corrections to the matter sector dynamics with the
WKB procedure leaves some unanswered questions. Another relevant implementation is to
regard the gravity and matter system in a Born–Oppenheimer approximation, as mentioned
in Section 4, in order to tackle this issue in the canonical quantization framework.

6.2. The Born–Oppenheimer-like Approximation

A further implementation of the DeWitt theory for gravity and matter is the Born–
Oppenheimer (BO) extended approach presented in [25], later applied in the context of
quantum cosmology in [146,147,149]. In analogy with the BO approximation for molecules,
the wave function is separated as Ψ(g, m) = ψ(g)χ(m, g) since the matter sector is char-
acterized by a lower mass scale with respect to the Planckian one. Hence, the matter
can be regarded as the “fast” quantum sector while gravity is the “slow” quantum com-
ponent. Working in the minisuperspace, the total WDW Equation (5) is averaged over
χ(m, g) and subtracted to the initial equation thus obtaining an equation for the grav-
itational background ψ and one for the matter sector χ. Both functionals are rescaled
making use of the gauge invariance of the system through a phase depending only on the
gravitational variables

ψ = e−
i
h̄
∫

A dgψ̃, χ = e
i
h̄
∫

A dgχ̃, (102)

where A = −ih̄〈∇g〉. Then, rescaling again χ via 〈Hm〉 and taking ψ in the WKB form, the
HJ Equation (93) is modified by the presence of the matter backreaction 〈Hm〉. Implement-
ing the time definition (97), the dynamics of the matter sector is given by(

Ĥm − ih̄
∂

∂τ

)
χs = e−

i
h̄
∫ 〈Hm〉 dτ− i

h̄
∫

A dg h̄2

2M

[
D̄2 − 〈D̄2〉+ 2(D lnN )D̄

]
χ , (103)
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where D, D̄ are covariant derivatives constructed with A as Berry connection, 1/N is
the amplitude associated to the WKB-expanded ψ, and χs = e−

i
h̄
∫ 〈Hq〉 dτ− i

h̄
∫

A dgχ. As in
the previous approaches, in the semiclassical limit the right-hand side vanishes due to
the adiabatic approximation and Equation (103) describes the usual Schrödinger dynam-
ics. Furthermore, the authors suggest that the obtaining dynamics is unitary due to the
vanishing of

ih̄
∂

∂τ
〈χs|χs〉 = 0 . (104)

However, this approach does not completely solve the non-unitarity problem. In fact,
while the norm of quantum states preserves unitarity signaling a possible construction
of the Hilbert space associated to the matter sector, this might not be true when the
quantity (104) is computed between different quantum states. It has also been shown in [22]
that, once the gravitational wavefunction ψ is rescaled with 〈Hm〉 (which is a requirement
of the gauge symmetry of the theory), Equation (103) takes a different form, again as a
modified Schödinger equation that is unitary only if one considers 〈χs|χs〉. Moreover, as a
consequence of the rescaling, the matter backreaction does not appear at the level of the HJ
but goes to the next order where it gets canceled by an opposite term, actually vanishing in
the proposed approach.

The presence of the quantum backreaction in these models is also worth discussing [170].
Considering Vilenkin’s work, this contribution is absent from the HJ due to the background
assumption (7), while in [20] it is forbidden by the choice of expansion parameter, as men-
tioned above. However, using the same parameter, a matter backreaction term emerges in
both [24,25] via some rescaling. In the context of quantum cosmology, when perturbations
are present, such backreaction would describe how small scale inhomogeneities influence
the large-scale structure of the universe. With this aim, many studies have been carried on
considering both semiclassical and quantum backreactions, i.e., with a classical or quan-
tized gravitational sector (see [170] and references within for an overview). In relation
to the topics here presented, we mention the implementations based on Space-Adiabatic
Perturbation Theory (SAPT) [171], which can be formulated as a generalization of the
Born–Oppenheimer procedure aimed at solving the coupled dynamics at a perturbative
level [172,173].

7. A Proposal for Unitarity: The Role of the Reference System

The emergence of non-unitarity in the approaches discussed above may signal that
the time definitions in (12), (97) are to be reconsidered. Indeed, they bring in the expansion
at O(M−1) (or O(h̄) in Vilenkin’s approach) a squared time derivative coming from ∇2

g
which leads to non-unitary terms in the modified dynamics [22].

A different implementation of time can follow from exploiting the role of the reference
frame, whose presence in the model can be made explicit by adding a suitable term to
the action. In the following we will focus on two different types of this implementation,
namely the kinematical action and the Gaussian reference frame fixing, discussing their
relation and physical meaning.

7.1. The Kinematical Action Proposal

Let us first review Kuchar’s discussion presented in [4]. There, the kinematical action is
defined as the term to be added to the theory, using some Lagrange multipliers, to restore
covariance under the ADM foliation and thus under the choice of reference frame. This
procedure stems from the observation that, in quantum field theory with an assigned
ADM foliation, the relation between points on infinitesimally close hypersurfaces is not
evident, i.e., the geometrical meaning of the deformation vector and its components N and
Ni is lost, as can be seen in the case of a scalar matter field theory [4,10,22]. In the ADM
representation, the kinematical action takes the form
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Skin =
∫

dt d3x(pμ∂tyμ − Nμ pμ), (105)

where yμ = yμ(xi; x0) define the family of one-parameter hypersurfaces obtained via the
foliation, and pμ are conjugate to yμ. Adding (105) to the action of the model, further
equations of motion (associated to the variations δyμ, δpμ and δNμ) describe the vanishing
of the momenta pμ and restore the geometrical definition of the deformation vector

Nμ = ∂tyμ = Nnμ + Nibμ
i , (106)

being nμ the timelike direction and bμ
i the tangent basis to the hypersurfaces identified by

the foliation. The superspace constraints are modified by the presence of

Hkin = nμ pμ , (107)

Hkin
i = bμ

i pμ , (108)

such that the total superHamiltonian and supermomentum functions must now vanish.
We notice that these terms represent a good candidate for the definition of time since
Equations (107) and (108) are linear in the momenta pμ.

Let us now analyze the model following from the definition of time through the
kinematical action, as implemented in [22], instead of background variables. Starting from
the action

Sg + Sm + Skin =
∫

dx0 d3x
[
Πaḣa + pμẏμ + πφ̇ − N

(
Hg + Hm + Hkin

)
− Ni

(
Hg

i + Hm
i + Hkin

i

)]
, (109)

and separating the wave function in Ψ(h, φ, yμ) = ψ(h)χ(φ, yμ; h) as in Section 6.2, the
WKB expansion in the Planckian parameter M (90) can be performed

Ψ(h, φ, yμ) = e
i
h̄ (MS0+S1+

1
M S2) e

i
h̄ (Q1+

1
M Q2) , (110)

being Sn = Sn(h) and Qn = Qn(φ, yμ; h). We stress that, in this separation, the kinematical
action (and so the reference frame) is enclosed in the fast quantum sector as are the matter
fields, in contrast with the gravitational background; this requirement allows the time
parameter to be independent from slow background variables which are related to non-
unitarity. In Equation (110), as in (92), the expansion is truncated at order M−1 since the
aim is to compute quantum gravity corrections to the matter dynamics. The requirements

〈Ĥmχ〉
〈ĤgΨ〉 = O(M−1) , (111)

δ

δhij
Qn(φ, yμ; h) = O(M−1), (112)

are satisfied due to the difference in physical scales and in “velocities” of the two sectors
typical of the BO approximation, as discussed in Section 6.2. Following Vilenkin’s rea-
soning, the total WDW equation is imposed together with the analogous equation for the
gravitational background, i.e.,[

− h̄2

2M

(
∇2

g + f · ∇g

)
+ MV(g)− h̄2∇2

m + U − ih̄ nμ δ

δyμ

]
Ψ = 0 , (113)[

− h̄2

2M

(
∇2

g + f · ∇g

)
+ MV(g)

]
ψ = 0 , (114)

where the term f · ∇g has been introduced for generic operator orderings, as in Section 6.1,
the matter sector is described by a scalar field φ and the gravitational sector potential V pos-
sibly includes a cosmological constant term. In the general case, one cannot implement the
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minisuperspace reduction, thus the theory must take into account also the supermomentum
constraints for the total Ψ and for the background respectively[

2hi D̄ · ∇g − ∂iφ · ∇m − ih̄ bμ
i

δ

δyμ

]
Ψ = 0 , (115)

[2ih̄ hiD̄ · ∇g]ψ = 0 , (116)

being hi D̄ · ∇g = hijD̄k
∂

∂hkj
and D̄k the (3-dimensional) induced covariant derivative

associated to hij. We stress that, since we are here presenting the more general formalism,
i, j, k are explicited spatial indices; we will then implement and discuss the minisuperspace
reduction of this model.

Substituting (110), the expansion of the constraints Equations (113)–(116) brings
at O(M)

1
2
∇gS0 · ∇gS0 + V = 0 , (117a)

−2hkD̄ · ∇gS0 = 0 , (117b)

corresponding to the HJ and the diffeomorphism invariance of S0. At O(M0), from the
gravitational constraint, we obtain a relation between S0 and S1. Using this link and
summing Equations (113) and (115) with coefficients N and Ni respectively, one obtains

ih̄
∂χ0

∂τ
≡ ih̄

∫
d3x

(
Nnμ + Nibμ

i

) δ

δyμ χ0 = Ĥmχ0 =
∫

d3x
(

NĤm + Ni Ĥm
i

)
χ0, (118)

where χ0 = e
i
h̄ Q1 is the matter wavefunction at O(M0) and the time derivative, which

is defined via the kinematical momenta pμ, includes the definition of the deformation
vector Nμ. At the next order M−1, proceeding in a similar way and making use of the
hypothesis (112), the modified matter dynamics is obtained

ih̄
∂χ

∂τ
= Ĥmχ +

∫
d3x

[
N∇gS0 ·

(−ih̄∇g
)− 2NkhkD̄ · (−ih̄∇g

)]
χ , (119)

being χ = e
i
h̄ (Q1+

1
M Q2). We can observe that the quantum gravity corrections described by

the integral terms on the right-hand side are indeed small in the perturbation parameter
since they involve the derivative of χ with respect to the gravitational variables, which are
of O(M−1) due to the BO approximation (112). Differently from the approaches in Section 6,
here the obtained modified dynamics is unitary since the correction terms in Equation (119)
involve the conjugate momenta to the gravitational variables and the function S0 which is
constrained to be real from the HJ Equation (117a). A cosmological implementation of this
model can be found in [174].

7.2. Fixing a Gaussian Reference Frame

The implementation in Section 7.1 managed to define a time parameter for the matter
evolution overcoming the non-unitarity problem, however the connection between the
kinematical action (105) and the reference system itself is not straightforward. In this
sense Kuchar later proceeded, together with Torre, to study the implementation of a
term more clearly related to the reference frame [8]. In this further work, the additional
term corresponds to the selection of the Gaussian reference frame γ00 = 1, γ0i = 0
reparametrized in terms of generic coordinates

S f =
∫

d4x
[√−g

2
F
(

gαβ∂αT(x) ∂βT(x)− 1
)
+
√−gFi

(
gαβ∂αT(x) ∂βXi(x)

)]
. (120)
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In Equation (120), Xi(xα), T(xα) are the Gaussian coordinates written in terms of the
general xα whose associated metric is gαβ, and F ,Fi act as Lagrange multipliers. In this
notation, ∂αXi = ∂Xi(xα)/∂xα and the dependence of the Gaussian coordinates on the
xα will be implied. The choice of the Gaussian coordinates is based on a straightforward
implementation of fixing a reference frame (see also [175]), while the case of parametrized
unimodular gravity is discussed in [176], see also [177] and the general parametrization
process has been addressed in [178]. The so-called Kuchar–Torre model is characterized
by the emerging of such Gaussian reference frame as a heat-conducting fluid in the theory.
This brings a source term in Einstein’s equations

Tαβ = F UαUβ +
1
2

(
F α Uβ +F β Uα

)
, (121)

being Uα = gαβ∂βT the four-velocity of the fluid, F its energy density, and Fα = Fi∂αXi

its heat flow. Actually, implementing only the Gaussian time condition in (120), the fluid
reduces to an incoherent dust since Fi is not needed and the stress energy tensor (121)
reduces to the typical form F UαUβ. It is clear from Equation (121) that the fluid emerges
at the classical level acting as a source term for the gravitational sector; for this reason, the
fluid has to satisfy the related energy conditions in order to be physical and not ill-defined.
As examined in the original work, this corresponds to the following relation

F ≥ 2
√

γαβFαFβ . (122)

However, this condition is not satisfied in principle and it is also not conserved during the
evolution unless the system is closed with an additional constraint that turns the fluid to an
incoherent dust and reduces (122) to F ≥ 0. Thus, the energy conditions are not satisfied
in the general case F ,Fi �= 0, while it is possible in the incoherent dust case Fi = 0 with
some suitable initial conditions.

In the Hamiltonian formalism, the total superspace constraints must vanish, containing
the additional functions

H f = W−1P + WWkPk , (123)

H f
i = P ∂iT + Pk ∂iXk ; (124)

where the Lagrange multipliers have been written in terms of the momenta P, Pk conjugate
to (T, Xk) and the functions W, Wk are defined as

W ≡ (1 − hjl∂jT ∂lT)−1/2 , (125)

Wk ≡ hjl∂jT ∂lXk . (126)

As in (107) and (108), the momenta linearly appear in the constraints. Indeed, the authors
show that defining the time derivative from the reference fluid variables, the gravity-fluid
system is described by a Schrödinger dynamics

ih̄ ∂tΨ =
∫

Σ
d3x

δΨ(T, Xk, hjl)

δT(x)

∣∣∣
T=t

Ψ = ĤΨ =
∫

Σ
d3x Ĥg Ψ. (127)

Here, the time derivative is defined in the case of ADM foliation such that the timelike
direction coincides with the Gaussian time T one; both the cases in which xi ≡ Xi and
t ≡ T, xi ≡ Xi are also discussed in the original paper.

Another related approach is the work [9]. There, the added sector is composed of an
incoherent dust whose comoving coordinates and proper time identify a “privileged” refer-
ence frame which again can be used to overcome the frozen formalism issue. Furthermore,
the obtained functional Schrödinger equation is independent from the dust coordinates
and a conserved inner product can be defined. However, the square-root form of the dust
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superHamiltonian, representing the dust scalar energy density, leads to some difficulties in
implementing this definition at a WKB perturbative level. For a minisuperspace application
of the Kuchar–Brown dust time, using the RPSQ and BO approximation, see [179].

The possibility to implement the same WKB and BO procedure for the model with the
Gaussian reference fluid term is investigated in [26]. We start from the WDW equation[(

− h̄2

2M

(
∇2

g + g · ∇g

)
+ M V

)
+ (−h̄2∇2

m + U) + (W−1P + WWkPk)

]
Ψ = 0, (128)

and the total supermomentum constraint[
(2ih̄ hi D̄ · ∇g)− (∂iφ)∇m + P ∂iT + Pk ∂iXk

]
Ψ = 0, (129)

for generality. The BO separation is implemented as Ψ(hij, φ, Xμ) = ψ
(
hij
)
χ
(
φ, Xμ; hij

)
,

where the inclusion of the Gaussian reference frame into the fast quantum sector is backed
by its materialization as a fluid (121). The WKB expansion in M up to O(M−1) corresponds
to the same ansatz (110) with functions Qn = Qn(φ, Xμ; hij). The adiabatic approximation
of the BO procedure gives

δQn

δhij
= O(M−1), (130)

〈Ĥmχ〉
〈ĤgΨ〉 = O(M−1). (131)

Considering again the matter backreaction to be negligible at the gravitational scale, as in
Section 3, the gravitational constraints (114) and (116) also hold. Expanding the system
of Equations (128), (129), (114) and (116) with the ansatz (110), the dynamics at the lowest
order O(M) is described by the same HJ Equation (117a) and diffeomorphism invariance of
S0 (117b). The order M0 describes a functional Schödinger dynamics with time definition

ih̄
∂χ0

∂τ
=
∫

d3x
[

N
(

W−1 δ

δT
+ WWk δ

δXk

)
+ Ni

(
(∂iT)

δ

δT
+ (∂iXk)

δ

δXk

)]
χ0

=Ĥmχ0 ,
(132)

being Hm the matter Hamiltonian defined as linear combination of superHamiltonian and
supermomentum functions as in (118). We stress that the time derivative in (132) is defined
for a generic foliation since the general coordinates are left independent from the Gaussian
ones, differently from (127). Another key property of the model is that the fluid always
emerges at the quantum level, being absent from the HJ Equation (117a), thus it does not
suffer from the energy condition problem discussed above. Finally, the order M−1 describes
quantum gravity corrections in the form

ih̄
∂χ

∂τ
= Ĥmχ +

∫
d3x

[
N∇gS0 ·

(−ih̄∇g
)− 2NihiD̄ · (−ih̄∇g

)]
χ , (133)

which, also in this case, are small in the parameter M and unitary due to assumption (130)
and the reality of S0 from the HJ equation.

Actually, we stress that the functional forms of Equations (119) and (133) depict an
analogy between the kinematical action and the Gaussian reference frame implementation.
Indeed, the time definitions (118) and (132) can be related, if one restricts the kinematical
action to the form ∂tyμ → Ṫ by selecting the homogeneous setting Ni = 0 and the timelike
direction nμ = (1,�0). Moreover, taking the Gaussian reference frame fixing with only the
time condition F �= 0,Fi = 0 that is the incoherent dust, the two procedures give the same
dynamics both at O(M0) and O(M−1). This property signals that the kinematical action is
playing the role of the reference frame, acting as a fast quantum matter component and giv-
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ing a preferred set of variables suitable for the construction of the time parameter. However,
the parallelism is not full since the two implementations (118) and (132) differ between
each other in the case of a generic foliation. It follows that a direct correlation between the
Gaussian reference frame fixing and the kinematical action is not yet understood in the
general case.

7.3. Reference Fluid as Time in the Minisuperspace

We now analyze the effects of the modifications in (133) for quantum cosmology in
the minisuperspace, focusing on the behaviour of the probability density during the slow-
rolling phase of an isotropic universe. Let us consider the minisuperspace reduction of the
FLRW model with a free inflaton scalar field φ and a positive cosmological constant Λ in the
gravitational potential accounting for the slow-roll phase of inflation [26]. This allows us to
discard spatial dependencies and restrict the general form (120) to the case of a reference
frame having g00 = 1, i.e., imposing the reparametrized constraint gμν∂μT ∂νT − 1 = 0 only.
In this setting, the WKB expansion in M (due to the related energies being below the Planck
scale) and the BO separation (110) are performed, considering a negligible backreaction
from the dynamical contributions of the matter scalar field. The line element takes the
simple form

ds2 = N2(t) dt2 − a(t)2
(

dx2 + dy2 + dz2
)

, (134)

in which a is the cosmic scale factor, while the action corresponds to

S =
∫

d4x
√−g

{
− 1

2κ
(R + 2Λ) +

1
2

gμν∂μφ ∂νφ +
F
2
(

gμν∂μT ∂νT − 1
)}

, (135)

where R = 6
(

ä
a +

ȧ2

a2

)
and the spatial Lagrange multiplier Fi is discarded. Due to homo-

geneity φ = φ(t), T = T(t), and F = F (t). Hence, Equation (135) in the Hamiltonian
formulation takes the form

SRW =
∫

dt

{
pa ȧ + pφ φ̇ + pTṪ − N

(
− κ

12
p2

a
a

+
Λ
κ

a3 +
p2

φ

2a3 + pT

)}
, (136)

where ˙≡ ∂/∂t and t coincides with the Gaussian time T due to the constraint introduced
by F (also N = 1 as a consequence of the Gaussian condition on the metric). The spatial
integration has been removed by considering a fiducial volume V0 = 1. In this case, the
only contribution from the reference fluid is the momentum pT present in (136), that is
related to F via pT = a3F Ṫ/N. Hence, to recover the lapse function relation Ṫ = N it
must hold pT = F a3. The WDW equation gives(

h̄2

48Ma
∂2

a + 4MΛa3 − h̄2

2a3 ∂2
φ − ih̄ ∂T

)
Ψ = 0, (137)

where we have considered the natural ordering with f · ∇g ≡ 0.
Following the procedure of Section 7, Equation (137) and the gravitational con-

straint (114) are expanded at each order in M. We emphasize that the supermomentum
constraints are automatically satisfied due to homogeneity of the model, such that the re-
spective equations are not included in the minisuperspace reduction. Numerical solutions
for the gravitational functions Sn are computed, selecting the ones corresponding to an
expanding universe

172



Universe 2022, 8, 556

S0(a) = −8
√

3
3

√
Λ
(

a3 − a3
0

)
, (138a)

S1(a) = ih̄ log
(

a
a0

)
, (138b)

S2(a) = − h̄2

24
√

3
√

Λ

(
a−3 − a−3

0

)
, (138c)

where a0 is an integration constant corresponding to the reference value of the scale factor
at the beginning of the slow-rolling phase. The matter sector at order M0 follows the
dynamics

− h̄2

2a3 ∂2
φχ0 = Ĥmχ0 = ih̄

∂χ0

∂T
, (139)

which is the minisuperspace reduction of (132). Solutions to (139) are, in Fourier space, the
plane waves

χ̃0 = e−ih̄
p2

φ

2a3 T , (140)

corresponding to standard field theory evolution on curved background. At O(M−1)
such dynamics is modified by quantum gravity corrections, such that summing with the
previous order and taking into account the expansion parameter the equation becomes(

− h̄2

2a3 ∂2
φ + ih̄

1
24a

(∂aS0) ∂a

)
χ = ih̄

∂χ

∂T
, (141)

for which explicit solutions can be computed in Fourier space by changing the time variable
to a re-scaled time dτ = dT

a3 evolving with the universe volume. Then, the solution to (141)
reads as

χ̃ = exp

(
−ih̄

p2
φ

2
τ + i

pa (−τ)7/3

7(3Λ)1/6

)
, (142)

where the smallness of the corrections is ensured by the hypothesis |pa| < M−1 deriving
from the adiabatic approximation (130). As discussed before, the kinematical action imple-
mentation would describe the same modified dynamics in the minisuperspace setting. The
solution (142) corresponds to a time-dependent shift in the matter energy spectrum

E = E0 +
h̄pa(−τ)7/3

3(3Λ)1/6 . (143)

To better investigate its effects, it is useful to construct an initial Gaussian wavepacket

χ(a, φ, T) =
∫

dpφ

∫
dpa χ̃(pφ, pa, T)

1√
(2π)1/2 σa

exp
(
− (pa − p̄a)2

4σ2
a

)
1√

(2π)1/2 σφ

exp

(
− (pφ − p̄φ)2

4σ2
φ

)
, (144)

where σa, p̄a and σφ, p̄φ describe the standard deviation and mean value of the wavepacket
associated to the gravitational and matter variable respectively. The wavefunction has
a small dependence on the scale factor a, due to the condition (130) on pa, as shown in
Figure 6.

The probability density associated to (144) using the solution χ̃ in (142) can be in-
vestigated at different values of the rescaled time τ. Figure 6 illustrates the effects of
the time-dependent modifications (142), which are computed for the maximum τ in the
allowed domain. We stress that near the Planck scale, that is outside of this domain, the
previous approximations break down and one should consider an alternative algorithm to
infer the evolution of the matter dynamics.
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(a)

(b) (c)

Figure 6. Evolution of the probability density with and without quantum gravity effects. Plot (a)
represents the initial probability density at τ = 0 associated to the wavepacket (144) Gaussian in the
variables a, φ and satisfying the condition |pa| � M−1 (we used M = 100, Λ = 10−2, ln(a)0 = 10,
p̄φ = 0, σφ = 3, p̄a = 0, σa = 2 · 10−2). Plots (b) and (c) show the spreading of the wave packet at later
times without and with the quantum gravity effects computed in (141) respectively. We note that
the quantum gravity corrections cause a deformation along the a axis when a approaches a reference
value. Each wavefunction has been normalized on a suitable interval of values for the logarithm of
the cosmic scale factor ln (a). Figures re-elaborated from [26].

8. Discussion and Conclusions

We analysed different aspects concerning the separation of a system phase space into
a quasi-classical part and a small quantum subsystem. We first discussed the original
idea in [17] about the possibility to re-construct a Schrödinger equation for the quantum
variables and then we considered also the possibility to include quantum effects of the
quasi-classical system into the quantum evolution of the small subsystem.

The first analysis had the main task to show how, when applied to the mini-superspace
of the Bianchi models, this approach is able to provide interesting implications on the
nature of the so-called corner configuration [101,107]. In particular, the possibility of
a non-singular picture of the Bianchi VIII and IX dynamics, as well as for the generic
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cosmological solution, emerged. The crucial point was here the non-singular behavior of
the Bianchi I dynamics when the variable β− is vanishing. Since, according to the method
in [17] (see also [97]), this variable dynamics is described via the Schrödinger equation
of a time-dependent harmonic oscillator, we arrive to describe the corner dynamics via a
steady classical universe over which a very small quantum anisotropy still lives. Actually,
β− has a probability distribution peaked around its zero value and characterized by a
constant small anisotropic standard deviation. As extended to a generic inhomogeneous
cosmological solution, this picture offers an intriguing paradigm to solve the problem of
the initial singularity.

It is also an interesting achievement to have demonstrated that, comparing the Bianchi
I model described in the ADM quantization procedure (also known as reduced phase space
quantization [6,28]) with Vilenkin’s formulation [17], the coincidence of the two approaches
emerged when the quantum phase space of the anisotropic variables is sufficiently small.
This has confirmed the consistency of the original proposal, where such an hypothesis on
the quantum phase space was considered a basic statement.

In the second part of this review, we studied the various approaches proposed in the
literature to determine the possible quantum gravity corrections to quantum field theory.
By other words, we consider the small quantum subsystem coinciding with matter fields,
while the quasi-classical component was the background gravitational field.

With respect to the original analysis in [17], the WKB procedure has been developed to
the next order of approximation when quantum gravity corrections to the standard matter
quantum dynamics have to arise, as in [20]. In particular, we re-analyzed the emerging
problem that, at such further order of approximation, the Schrödinger equation for the
matter fields acquires non-unitary (non-physical) contributions. The analyses in [17] and
in [20] have been compared, showing, on one hand, that they are essentially equivalent
and, on the other hand, that some proposed solutions to the non-unitary problem [24,25]
are not consistently viable. The delicate point emerged to be the construction of a time
evolution in terms of the classical dependence of the gravitational field on the label time.
On the base of this argument, we eventually revised two different approaches in which the
time coordinate belongs to the fast (matter) component of a Born–Oppenheimer scheme.
In particular, we re-analyzed two related proposals, one based on the introduction of the so-
called kinematical action [4] and one on the “materialization” of a fixed reference frame as
a fluid, first investigated in [8]. These formulations led to the unitary Schrödinger equation
amended for quantum gravity effects on the quantum matter dynamics. A cosmological
implementation of the analysis in [26] (de facto valid also for the proposal in [22]) shows
the consistency of the procedure and outlined some delicate questions concerning the
dependence of the matter wave function on an intrinsic quantum gravity effect (there
corresponding to the presence of the cosmic scale factor of the isotropic Universe), actually
absent in the cosmological applications [116,117] of the study [20]. The present review
had the scope to collect together some different efforts to amend quantum field theory
for quantum gravity corrections. Our presentation elucidated that, as far as we limit our
attention to the first two orders of approximation in the WKB expansion of the theory, the
procedure remains consistent and it gives interesting insight on the primordial universe
evolution. On the contrary, when the next order of approximation has been included,
the one really introducing quantum gravity effects, then we have to move on a rather
pioneering topic in which basic inconsistencies and intriguing proposals co-exist calling
attention for further investigation in the future.

We conclude by observing that the analysis in Section 7 provides an interesting frame-
work to search for phenomenological fingerprints of the quantum gravity corrections to
quantum field theory. In particular, the determination of the primordial spectrum of the
inflaton field is a natural arena to test the predictivity of such kind of reformulations
toward observations of the microwave background radiation (see for instance [180,181]).
Furthermore, the analysis in Section 5.3 gives a significant insight on the possibility that
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pre-inflationary tensor perturbations survive in the later universe and can leave a trace in
the B-modes of the microwave background spectrum [182].
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Abstract: Using the fact that we only observe those modes that exit the Hubble horizon during
inflation, one can calculate the entanglement entropy of such long-wavelength perturbations by
tracing out the unobservable sub-Hubble fluctuations they are coupled with. On requiring that this
perturbative entanglement entropy, which increases with time, obey the covariant entropy bound for
an accelerating background, we find an upper bound on the duration of inflation. This presents a
new perspective on the (meta-)stability of de Sitter spacetime and an associated lifetime for it.
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Although cosmic inflation is widely regarded as the standard paradigm for the early
universe, its embedding into a fundamental theory of quantum gravity (QG) remains an
open question. Recently, there have been different arguments against long-lived accelerat-
ing spacetimes, especially in the context of string theory (ST) [1–3]. One such conjecture
states that trans-Planckian modes should never cross the Hubble horizon during inflation,
leading to an upper bound on the number of e-foldings [4]:

N < ln
(

MPl
H

)
, (1)

where H denotes the Hubble parameter during inflation. Although the physical motivation
behind this conjecture—a trans-Planckian mode should never become part of late-time
macroscopic inhomogeneities—has been heavily debated [5,6], it does find some connec-
tions to other aspects of the ST ‘swampland’ [7–13]. As a whole, there seem to be various
obstructions to finding a quantum gravity completion for long-lived accelerating back-
grounds. Although the specific technical difficulties have been realized in the context of
ST, many of the arguments apply much more generally to any quantum gravity model.
In particular, a corollary of this is that only extremely short-lived de Sitter (dS) spaces can
arise in a UV-complete theory [2,4].

Indeed, it has been long argued that dS space is metastable from different points of
view1. There are three time-scales often associated with the lifetime of dS — the scrambling
time ∼ H−1 ln(SdS) [21] corresponding to (1), the quantum breaking time ∼ H−1 SdS, and
the Poincaré recurrence time ∝ eSdS , where the Gibbons-Hawking entropy for dS is given by
SdS ∼ (MPl/H)2 [22]. Clearly, (1) puts an upper bound on the number of e-foldings N that
is much smaller than the other two time-scales, with drastic implications for inflation [23].

In this essay, we present a different argument for finding the maximum amount of
e-foldings allowed for inflation and, therefore, set an upper bound on the lifetime of dS.
Instead of invoking any QG reasoning, we employ a bottom-up argument by requiring that
the entanglement entropy (EE) of scalar perturbations during inflation be bounded by the
Gibbons–Hawking entropy. We note that the first arguments in favor of the so-called dS
conjecture also followed from an application of the covariant entropy bound (CEB) and
the distance conjecture [2]. However, that derivation was (i) intimately tied to details of
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ST and (ii) valid only in asymptotic regions of moduli space. Here, we circumvent both
these obstructions.

Discussions of EE have become ubiquitous in the context of gravity. However, in most
cases, one considers the EE between different geometric regions of space — in the context
of black holes [24], Minkowski [25], or dS space [26]. Moreover, the EE of cosmological
backgrounds have sometimes been carried out using holographic methods [27,28]. Nev-
ertheless, it is not necessary to define a subsystem, which is separated out in the position
space domain, e.g., demarcation by a black hole horizon. In cosmology, it is more instructive
to consider EE between different bands in momentum space, since it is the correlation
functions of the momentum modes of cosmological perturbations, which are generally
probed. For momentum space, the vacuum of the free field theory is factorized, and any EE
come from the interactions that lead to mode coupling.

One can calculate the perturbative EE in momentum space for a scalar in flat spacetime
as outlined, for example, in [29]. The full Hilbert space can be partitioned into two parts
separated by some fiducial momentum scale μ such that H = HS ⊗HE . The Hamiltonian
of the system is decomposed as

H = HS ⊗ 1 + 1 ⊗ HE + λHint , (2)

where HE ,S are the free Hamiltonians of the respective subsystems, and the interacting
Hamiltonian Hint has a coupling parameter λ. The ground state is the product of the
individual harmonic vacua of HS and HE , i.e., |0, 0〉 = |0〉S ⊗ |0〉E . The energy eigenbasis
of S and E are denoted by |n〉 and |N〉, respectively, while the corresponding energy
eigenvalues are En and ĒN . The (perturbative) interacting vacuum can be written as (up
to normalization)

|Ω〉 = |0, 0〉+ ∑
n �=0

An|n, 0〉+ ∑
n �=0

BN |0, N〉+ ∑
n,N �=0

Cn,N |n, N〉 , (3)

where the matrix elements An, BN , and Cn,N are calculated using standard perturbation
theory. The reduced density matrix corresponding to subsystem S is obtained by tracing
out the E modes. From that, one can extract the leading order contribution to the (von
Neumann) EE:

Sent = −λ2 log
(

λ2
)

∑
n,N �=0

|〈n, N|Hint|0, 0〉|2
(E0 + Ẽ0 − En − ẼN)2 +O(λ2) , (4)

where it is understood that at least one momentum in the matrix element is below μ, and at
least one momentum is above.

The main calculation of [30] was to extend this result to an inflating background,
which we now present. Considering the density perturbations in the comoving gauge

ds2 = −a2(τ)
[
dτ2 − (1 + 2ζ)dx2

]
, (5)

where a and ε are the usual symbols for the scale factor and the (first) slow-roll parameter
for a quasi-dS expansion written as functions of the conformal time τ. The quadratic action
for ζ, in terms of momentum modes, describes a collection of harmonic oscillators with
a time-dependent mass term. This implies a difference between the quasi-dS geometry
and Minkowski background [30] — the sub-Hubble modes (k � aH) are in their quantum
(Bunch-Davies) vacuum, while the super-Hubble ones (k � aH) are in a (two-mode)
squeezed state |SQ(k, τ)〉 [31]. Thus, the ground state factorizes as

|0, 0〉 = |0〉E :k>aH ⊗ |SQ〉S :k<aH . (6)

Since the modes which exit the horizon during inflation can only be later observed,
we consider the super-Hubble modes as our system (S), while the sub-Hubble ones are the
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environment (E ) (Figure 1). (The dynamics of this system were studied in [32].) Finally, the
nonlinearity of GR also provides us with an interaction term which couples the sub- and
super-Hubble modes; thus, this interaction is universal and can never be turned off.

Figure 1. Schematic illustration of the system and environment modes for this setup. Gravity plays
the role of providing a natural scale — the comoving Hubble horizon — which demarcates “long”
and “short” degrees of freedom (dofs). We impose the Planck mass as the natural cutoff for the
UV-modes and assume that these can be properly accounted for within some QG theory.

Mathematically, this translates into having a Hilbert space: H = HS ⊗ HE where
HS = ∏k Hk, |k| < aH and similarly for the sub-Hubble modes. The full Hamiltonian is
given by H = H(2)

S + H(2)
E + Hint, where

Hint =
M2

Pl
2

∫
d3x ε2 a ζ(∂ζ)2 , (7)

is the leading order cubic non-Gaussian term (since ζ “freezes” outside the horizon) out
of all the available interactions [33]. We now need to apply time-dependent perturbation
theory to calculate the matrix elements since λ =

√
ε/(2

√
2aMPl) is time dependent.

Moreover, there is no well-defined notion of energy for the squeezed state, but we only
need energy differences in (4). This is a rather important point which deserves further
explanation. Definitions of entanglement entropy in flat space can heavily depend on
notions of energy which, in turn, is dependent on the Hamiltonian (and the corresponding
vacuum) for the system. It is well known that there are ambiguities in defining the vacuum
(or initial) state for inflation. In this particular case, we assume that all the scalar quantum
fluctuations started out in their Bunch–Davies vacuum, while the modes that crossed the
Hubble horizon correspond to the squeezed state. Although there is no good notion of
energy for the squeezed vacuum, we can nevertheless define excited states (as N-particle
states by acting with the relevant number of creation operators over the squeezed vacuum).
Furthermore, we only need the difference in the energy between these excited states and
the squeezed vacuum, which can be expressed in terms of the physical momenta of the
ladder operators. This is why we are able to generalize the standard definition of EE in flat
space to that for inflation [30].

Using these inputs, one can carefully evaluate (4) for inflationary perturbations [30],
resulting in the EE (per unit physical volume):

sent ∼ ε H2 MPl (a f /ai)
2 , (8)

where (a f ) ai is the scale factor at the (end) beginning of inflation. In this calculation, it
was assumed that there were no super-Hubble modes at the beginning of inflation, and
both (H, ε) remain constant. It was shown that the dominant contribution comes from
the squeezed configuration, and in the large squeezing limit, we present the leading order
estimate omitting some O(1) factors as well as small logarithmic corrections [30].

Firstly, we note that the resulting EE between the sub- and super-Hubble modes
is sensitive to the UV-cutoff MPl, as expected. Note that this is not an artificial cutoff
introduced in the system, but rather one should take the view that the Planck mass is
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an energy scale beyond which we should not expect standard cosmological perturbation
theory on a classical inflationary background to be valid any longer. However, what is
remarkable about this result is that the EE increases secularly with time, as signified by the
(a f /ai)

2 term. The intuitive reason for this is that the dimension of HS increases with time
as modes get stretched outside the horizon. It is not surprising that the EE is increasing
with time, as it does for many systems with dynamical backgrounds. This is indeed what
we would expect to happen for any cosmological (expanding) spacetimes. However, what
is remarkable for inflation is that the rate of increase is very high due to the exponential
expansion of the background. Thus, although we have calculated the EE as a perturbative
quantity here, it will necessarily become very "large” over time.

Let us quantify the last statement made above. We used standard perturbation theory
to calculate the first-order matrix element, which has given us the leading order EE for
the density fluctuations during inflation. Given that this is a perturbative calculation, it is
automatically a small quantity suppressed by factors of the interaction parameter of the
cubic nonlinear term. However, we find that given enough time, this perturbative EE will
soon become quite large and can overcome any entropy bound. To give us an idea of this,
we can consider different entropy bounds. It was shown in [30] that if we demand that
the EE remains subdominant to the thermal entropy, then we end up with a bound for the
duration of inflation that is very close to the one derived from the TCC.

In this work, we want to use the background Gibbons–Hawking entropy as the upper
bound for it. The main idea is that the growth of entropy often leads to deep puzzles
in theoretical physics, and we wish to make our most crucial observation in this context.
We require that the total EE obeys the CEB [34], i.e., the EE in a Hubble patch can, at most,
saturate the entropy corresponding to the apparent horizon (SdS). The reader might be a
bit confused here as to why we are comparing our momentum space EE with the Gibbons–
Hawking entropy, which is something calculated in position space. However, we are not
actually claiming that the momentum space EE calculated here must satisfy the CEB. In fact,
the CEB is a bound for real space entropy for a causal patch, whereas we are calculating a
momentum space EE. Therefore, in order to be more precise, one would have to take our
momentum space result and try to "Fourier transform” it to real space in order to obtain a
strict bound from the CEB.

However, our goal is somewhat different here. We are merely interested in generalizing
the results of [30] by using the CEB as a measure to point out how rapidly the EE is
increasing, and even a perturbative quantity like itself can overcome the CEB within a
few e-foldings. In fact, our main argument is that any bound on the EE — whether it is
the thermal entropy during reheating or the CEB — will soon be saturated. Even more
interestingly, the quantitative measure of how soon the EE saturates any such entropy
bound is seemingly always related to the scrambling time of dS, as shown below.

More explicitly, requiring that the EE saturates the CEB (where the total SGH ∼
M2

Pl/H2 for inflation), we find the relation:

ε e2N <

(
MPl
H

)
⇒ N <

1
2

ln
(

MPl
H

)
− 1

2
ln ε . (9)

With the observed power spectrum Pζ ∼ 10−9, one finds ε ∼ 109(H/MPl)
2, and there-

fore,

N <
3
2

ln
(

MPl
H

)
− 9

2
ln 10 . (10)

This bound on the number of e-foldings is very similar to the one in (1), without
requiring any QG input, and it predicts an upper limit on the lifetime of dS given by

T <
1
H

[
3
2

ln
(

MPl
H

)
− 9

2
ln 10

]
, (11)
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closely related to the scrambling time up to small factors. Our result has far-reaching
implications both for the UV-completions of dS space as well as the phenomenological
predictions of inflation2. Interestingly, a very similar bound on the duration of inflation was
derived from measures of complexity and chaos for inflationary perturbations [35], adding
more evidence that the EE grows to such values on scrambling times that the standard EFT
of inflation fails on these scales.

An immediate question is the implication for our bound on specific models of inflation.
What is clear for from (11) is that the lifetime is larger for low-scale models of inflation.
In other words, models with lower energy scales of inflation (given by the Hubble scale H)
will be preferred according to this. Apart from the fact that such models will have a larger
lifetime according to (10), they are also the ones which require a lower number of e-folds
in order to solve the horizon and flatness problems. Therefore, GUT-scale models (which
generically produce a large tensor-to-scalar ratio) are disfavored by our bounds. This, by
itself, is not a large problem for inflation since there are plenty of small-field models
(which would be the ones obeying the above condition if we allow for single-field models
only). However, it is known that these models lose the preferred "attractor” feature of
inflation [23,36], since it is clear that only small-field models are preferred by (10), which
rules out polynomial potentials (such as the quadratic one) and only allows for hilltoplike
potentials (which have a very small tensor-to-scalar ratio). As an example, for typical
GUT-scale models H ∼ 10−5MPl, the number of e-foldings allowed would be O(10). This
is, of course, completely incompatible with the required number of e-foldings to explain,
for example, the horizon problem. This gives us an insight into why low-scale models of
inflation are the only ones allowed by this bound.

To summarize, for a dS geometry, an observer has access to only part of the entire
spacetime. In particular for inflation, tracing out the unobservable sub-Hubble modes leads
to a non-zero EE for the curvature perturbations that increases with time. However, since
the EE can, at best, saturate the CEB, this puts an upper limit on the duration of inflation.
Our calculation provides an universal limit since we take the simplest case of a minimally-
coupled scalar field — any additional fields or extra-couplings (which give rise to stronger
non-Gaussian) would only enhance the EE and strengthen our result. We emphasize
that our bound does not arise from demanding a finite-dimensional Hilbert space for
dS [37] or that we live in an asymptotically dS universe [38]. Finally, note that EE for other
early-universe scenarios do not produce such bounds on the lifetime [39].
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Notes

1 These arguments, to name a few, are based on the finiteness of dS entropy [14,15], the typical lifetime of 4-dimensional dS vacua
in ST [16], nonperturbative effects in the context of eternal inflation [17], or treating dS as a coherent state [18–20] and so on.

2 A direct evaluation of EE in momentum space for a scalar field on pure dS, as well as a more sophisticated calculation of the
inflationary system allowing for a slowly varying H and ε, shall be carried out in the future.
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Abstract: We consider the effective evolution of a phenomenological model from FLRW supersym-
metric quantum cosmology with a scalar field. The scalar field acts as a clock and inflaton. We
examine a family of simple superpotentials that produce an inflation whose virtual effect on inho-
mogeneous fluctuations shows very good agreement with PLANCK observational evidence for the
tensor-to-scalar ratio and the scalar spectral index.

Keywords: quantum cosmology; local supersymmetry; cosmic inflation

1. Introduction

It is widely accepted that the observable universe originates from an early homogeneous
phase beginning presumably around the Planck scale, just after a less understood phase of
quantum spacetime. This homogeneous phase has a classical description by an effective
FLRW model with scalar matter. The subsequent inhomogeneity is attributed to quantum
fluctuations of space that induce matter inhomogeneities that grow, and loss coherence due
to inflation. Thus, a quantum treatment seems to be natural for the homogeneous phase.

Standard quantum cosmology is based on the canonical quantization of general relativ-
ity [1]. Following Dirac, the Hamiltonian constraint, generator of time reparametrizations,
is implemented as a time-independent Schrödinger equation, the Wheeler–DeWitt (WDW)
equation. Additionally, the solution to the WDW equation, i.e., the wave function of the
universe, must be supplemented with a prescription to compute probabilities considering
the singular character of the universe. Further, as the Hamiltonian operator annihilates the
wave function, this is a timeless theory. However, the universe exhibits a marked one-way
evolution (arrow of time), and internal observers have clocks [2–5].

In recent years, there have been several proposals in standard quantum cosmology
that mainly relate time to the scale factor, essentially by a gauge fixing. These proposals
involve mostly approximations of the semiclassical type, as well as Born–Openheimer
with a weakly coupled matter sector and a large-scale factor. In [6], a general gauge fixing
was analyzed, which was applied in [7] to several minisuperspace models with a classical
‘extrinsic’ time. In [8], a Born–Oppenheimer approximation was used to separate the scale
factor from a weakly coupled matter sector. This allowed for defining a time as in the
WKB approach, proportional to the square of the scale factor, and parametrize matter
evolution with an effective Hamiltonian; see also [9,10]. Further, in [8] and a subsequent
series of works, increasingly complex settings were analyzed, an inflaton with a mass term
in [8], additional generic matter in [11], Mukhanov–Sasaki scalar perturbations for a de
Sitter evolution in [12], and tensor perturbations in a general slow-roll inflationary setting
in [13]. The parameter values of the last work were restricted in [14] by comparison with
observational data, and in [15], they were considered effects on the spectra of primordial
perturbations. In [16] the consequences of the interference of the wave functions before and

Universe 2022, 8, 414. https://doi.org/10.3390/universe8080414 https://www.mdpi.com/journal/universe188



Universe 2022, 8, 414

after a bounce were analyzed. For supersymmetric quantum cosmology, in [9,10,17], in the
semiclassical approach, the effect of supersymmetry was explored for the solution.

The purely bosonic Wheeler–DeWitt equation is a second-order partial differential
equation (PDE) in (mini)superspace. To single out a solution that corresponds to the
wave function of the universe, one must impose suitable boundary conditions. Defining
the appropriate boundary conditions that give rise to the universe with which we are
familiar constitutes a well-known fundamental problem in quantum cosmology. There
is also the possibility that a more complete theory introduces additional restrictions that
uniquely determine a quantum state. An example of this is quantum supersymmetric
cosmology; see, e.g., [9,10]. In this case, the most general state has multiple components,
and the Hamiltonian constraint amounts to a system of coupled second-order PDEs that
is equivalent to a system of first-order PDEs, the supersymmetric constraints. In [18], we
worked out a supersymmetric model leading to an analytic solution to the WDW equation.
In the present work, with a slightly simpler WDW equation by a different operator ordering,
we consider the time choice of [18] by analyzing the wave function. The general expression
of this wave function allows for the identification of a curve of most probable values in
configuration space (superspace), parametrized by the scalar field, and suggests to choose
it as time. Such a type of choice has been known for a long time [19]. Here, we analyze
in detail the wave function regarding the choice in [18], of an effective time-dependent
wave function with a probability density that corresponds to the conditional probability
of measuring a value of the scale factor for a given value of the scalar field. Thus, the
mean values computed with this wave function were time-dependent, in particular for the
scale factor, which gives a trajectory that follows closely the previously mentioned curve of
most probable values. Further, we consider the quantum cosmology of this approach, and
explore a family of inflationary solutions.

We consider supersymmetric models because, even if at LHC energies, supersymmetry
has not been found, it might be broken at higher energies, and it continues to be part of
important candidates of ultraviolet completions for quantum gravity, supergravity, and
string theory. Supersymmetry nontrivially relates fermions and bosons; in a supersym-
metric quantum field theory, fermionic and bosonic divergences are cancelled [20]. Thus,
supersymmetric quantum cosmology [21–24] is a relevant option for the study of quantum
cosmology. Supersymmetry can be formulated by the extension of spacetime translations
to translations in a Grassmann-extended spacetime, which includes fermionic coordinates,
called superspace1. The fields on this supersymmetry superspace are called superfields, and
supergravity can be formulated as a general relativity theory on a supermanifold [20,25].
There are several formulations for supersymmetric extensions of homogeneous cosmologi-
cal models [22,23]. One class of such formulations comes from a dimensional reduction
of four- or higher-dimensional supergravity theories by considering homogeneous fields
depending only on time and integrating the space coordinates [26]. The other class is
obtained by supersymmetric extensions of homogeneous models, invariant under general
reparametrizations of time [27–29], or invariant under general reparametrizations on a
superspace, with anticommutative coordinates besides time [30,31]. In [18,31], we fol-
lowed [25], where one of us gave a geometric Lorentz covariant superfield model building
tool for supergravity that can be straightforwardly applied to any number of spacetime
dimensions. In particular, a homogeneous formulation could be straightforwardly traced
back to four-dimensional supergravity.

As usual in theories with fermionic degrees of freedom, their conjugate momenta are
eliminated by solving a number of second-class constraints, leaving an algebra of Dirac
brackets. The corresponding quantum fermionic operators can be represented in several
ways, e.g., by a matrix representation [21,32], representing half the fermionic degrees of
freedom by either differential operators [33], or by creation operators acting on a vacuum
state [18,29]. The wave function is spinorial in the first case, or a finite expansion of possible
states in the second case. In any case, the Wheeler–DeWitt equation is equivalent to a system
of first-order partial differential equations. In many cases, they have exact solutions [30–32],
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and the integration constants can be assimilated in the normalization. Therefore no initial
conditions are required, although the state depends on the model. For supersymmetric
extensions of higher-order theories, such as f (R) theories, the differential equations might
not be first-order [34].

In Section 2, we review the superfield formulation of supersymmetric cosmology. In
Section 3, we review the quantization of the models from [18]; supersymmetric Wheeler–
DeWitt equations have an analytic solution that depends on the scale factor and the superpo-
tential. In Section 4, we discuss the problem of time. The identification of high-probability
paths in configuration space to which mean trajectories correspond leads to the identifi-
cation of the scalar field as time. Thus, following [18], a time-dependent effective wave
function can be given. This effective wave function allows for computing mean values of
the scale factor that give a time evolution. This scale factor is inversely proportional to
the cubic root of the superpotential, and we obtain inflationary behavior for a family of
superpotentials, as shown in Section 5. These superpotentials depend on three parameters,
namely, μ, λ, and p; the first determines the time scale, the second the number of e-folds,
and the last is a power that modifies the initial conditions of the scale factor. After fixing
parameters μ and λ, we compute the tensor/scalar ratio and the scalar spectral index
with remarkably good agreement with the observational bounds of PLANCK observatory
without having to adjust parameters for this purpose. Lastly, in Section 6, we present a
short discussion with some remarks and future work perspectives. In Appendix A, we give
the effective wave function and the scale factor for k = 1.

2. Supersymmetric FLRW Model with a Scalar Field

The large-scale observable universe has been modelled in general relativity by the
FLRW metric with scalar fields. This is quite a general setting that could follow from
a fundamental theory, and can account for inflation, primordial matter generation and
structure formation, and dark energy. We consider the most studied model, the simplest,
with a single minimally coupled scalar field 1

2κ2

∫ √−gRd4x +
∫ √−g[ 1

2 ∂μφ∂μ − V(φ)]d4x,
where κ2 = 8πG

c4 . For the FLRW metric, it reduces to well-known form

I =
1
κ2

∫ {
− 3

c2 N−1aȧ2 + 3Nka − Na3Λ + κ2a3
[

1
2c2 N−1φ̇2 − NV(φ)

]}
dt. (1)

This Lagrangian is invariant under general time reparametrizations. From this action,
follow the Friedmann equations and the conservation equation for a perfect fluid described
by scalar field φ(t), i.e., in natural units and comoving gauge, ȧ2

a2 − Λ
3 + k

a2 = κ2

3 ρ, 2ä
a +

ȧ2

a2 − Λ + k
a2 = −κ2 p and ρ̇ + 3ȧ

a (p + ρ) = 0, with ρ = 1
2 φ̇2 + V(φ) the energy density, and

p = 1
2 φ̇2 −V(φ) the pressure for the perfect fluid φ(t). The momenta are πa = − 6

c2κ2 N−1aȧ
and πφ = − 1

c2 N−1a3φ̇ The Hamiltonian is H = NH0, where H0 is the Hamiltonian
constraint, which generates time reparametrizations.

2.1. Supersymmetric Cosmology

Supergravity, the supersymmetric version of gravity, can be formulated as general
relativity in superspace, an extension of spacetime by anticommutative spinorial variables,
in four dimensions, xm → (xm, θα, θ̄α̇), where θ are Weyl spinors and θ̄ their conjugates [20],
α, α̇ = 1, 2. Supersymmetric field theory on superspace realizes supersymmetry algebra{

Qα, Q̄α̇

}
= 2iσm

αα̇∂m, which extends the Poincaré algebra. Thus, for homogeneous fields,
the charges decompose into two copies{

Qα, Q̄α̇

}
= 2iσ0

αα̇∂0 = 2iδαα̇∂0. (2)

Therefore, a minimal version of homogeneous supersymmetric field theory can be
given by extending time by one complex anticommuting coordinate, which amounts
to supersymmetric quantum mechanics. This theory can be obtained, in general, by
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dimensional reduction from higher-dimensional models to one (time) dimension [35]. Thus,
supersymmetric cosmology can be obtained from one-dimensional supergravity [30].

For the sake of clarity, here we shortly review the derivation of the supersymmetric
Wheeler–DeWitt equation following [18,31]. In these works, we formulated it as gen-
eral relativity on supersymmetry–superspace, t → zM = (t, Θ, Θ̄), where Θ and Θ̄
are the anticommuting coordinates, the so-called “new” Θ-variables [20]. Hence, un-
der zM → z′M = zM + ζM(z), the superfields, see e.g., [20,25], transform as δζΦ(z) =
−ζM(z)∂MΦ(z), and their covariant derivatives are ∇AΦ = ∇ M

A (z)∂MΦ. ∇ M
A (z) is the su-

perspace vielbein, whose superdeterminant gives the invariant superdensity E = Sdet∇M
A,

δζE = (−1)m∂M(ζME). For the supersymmetric extension of the FLRW metric, we have
E = −N − i

2 (Θψ̄ + Θ̄ψ) [31]. In this formulation, to the scale factor and the scalar field
correspond real scalar superfields [20,30].

A(t, Θ, Θ̄) = a(t) + Θλ(t)− Θ̄λ̄(t) + ΘΘ̄B(t), (3)

Φ(t, Θ, Θ̄) = φ(t) + Θη(t)− Θ̄η̄(t) + ΘΘ̄G(t). (4)

The supersymmetric extension of Action (1) for k = 0, 1 is I = IG + IM, where IG is
the supergravity action, and IM is the matter term [18,30,36]

IG =
3
κ2

∫
E
(
A∇Θ̄A∇ΘA−

√
kA2

)
dΘdΘ̄dt, (5)

IM =
∫

EA3
[
−1

2
∇Θ̄Φ∇ΘΦ + W(Φ)

]
dΘdΘ̄dt, (6)

where W is the superpotential.

2.2. Component Formulation

The component action follows from (5) and (6). After performing the Grassmann
integrals, integrating out auxiliary fields B and G, and producing the redefinitions λ →
a1/2λ, λ̄ → a1/2λ̄, η → a3/2η, and η̄ → a3/2η̄, the Lagrangian reads, see [18]

L = − 3aȧ2

c2Nκ2 +
a3φ̇2

2c2N
+

3kNa
κ2 − 3

√
kNa2W +

3Nκ2

4
a3W2 − 1

2
a3NW ′2 + 3i

cκ2

(
λ ˙̄λ + λ̄λ̇

)
− i

2c
(η ˙̄η + η̇η̄)

+
3
√

aȧ
cκ2N

(
ψλ − ψ̄λ̄

)− a3/2φ̇

2cN
(ψη − ψ̄η̄) +

3iφ̇
2c

(
λη̄ + λ̄η

)
+ 3N

(√
k

κ2a
− 3

2
W

)
λλ̄ + N

(
−3

√
k

2a
+

3κ2

4
W − W ′′

)
ηη̄

+3ia3/2

(√
k

κ2a
− 1

2
W

)(
ψλ + ψ̄λ̄

)− ia3/2

2
W ′(ψη + ψ̄η̄)− 3NW ′

2
(
λη̄ − λ̄η

)− 3
2Nκ2 ψψ̄λλ̄ +

1
4N

ψψ̄ηη̄,

where W ≡ W(φ), W ′ ≡ ∂φW(φ), and W ′′ ≡ ∂2
φW(φ).

The Hamiltonian is of the form H = NH0 +
1
2 ψS − 1

2 ψ̄S̄, with the components of the
one-dimensional supergravity multiplet (N, ψ, ψ̄) as Lagrangean multipliers enforcing the
Hamiltonian (H0 ≈ 0) and supersymmetric (S ≈ 0, S̄ ≈ 0) constraints [18].

The basic nonvanishing Dirac brackets are {a, πa} = {φ, πφ} = 1, {λ, λ̄}+ = cκ2

6 ,
{η, η̄}+ = −c. With these brackets, one can verify the following algebra of constraints

{S, S̄}+ = −2H0, (7)

{H0, S} = {H0, S̄} = 0. (8)

The scalar potential in the Hamiltonian H0 is [18]

VS =
3
√

k
a

W − 3κ2

4
W2 +

1
2

W ′2. (9)

For k = 0, the sign of the superpotential does not matter for the scalar potential.
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3. Quantization

Homogeneous cosmology is a mechanical system; hence, it can be quantized with the
formalism of ordinary quantum mechanics. There are, however, several well-known prob-
lems. On the one hand, the probabilistic character of measurements in quantum mechanics
clashes with the uniqueness of the system as there is no ensemble of universes to perform
a series of tests, in identical, observer shaped conditions [37]. Nevertheless, observables
such as the Hubble parameter can be determined by a set of observations. On the other
hand, since the Hamiltonian vanishes, a time parameter cannot be introduced by means
of the Schrödinger equation, or for the wave function or for the observables. Nonetheless,
the Wheeler–DeWitt equation gives a time-independent Schrödinger equation with zero
eigenvalue whose solution depends on the superspace variables, the minisuperspace in
the homogeneous case, and gives the probability amplitude for the universe to be found in
certain superspace configurations. The fact that the theory does not give a time evolution is
the well-known consequence of invariance under time reparametrizations. Time is argued
to be an internal property that can be determined by the choice of a clock [3]. On the other
side, the observed universe is classical [37]; hence, its description is given by mean values
of the quantum operators. We further discuss the time problem in Section 4.

3.1. Supersymmetric Wheeler–DeWitt Equations

For the derivation of supersymmetric Wheeler–DeWitt equations, we follow [18],
but with a different ordering for fermions which yields somewhat simpler solutions. For
consistency, the Hamiltonian operator must be Hermitian; hence, the supercharges must
satisfy S̄ = S† and S = S̄†. The only nonzero (anti)commutators are

[a, πa] = [φ, πφ] = ih̄, {λ, λ̄} =
4π

3
l2
P, {η, η̄} = −h̄c, (10)

where l2
P = h̄G

c3 is the Planck length. For the quantization, we redefine the fermionic

degrees of freedom as λ =
√

h̄cκ2

6 α, λ̄ =
√

h̄cκ2

6 ᾱ, η =
√

h̄cβ and η̄ =
√

h̄cβ̄. Hence, the
anticommutators are

{α, ᾱ} = 1, {β, β̄} = −1. (11)

as well as α2 = β2 = ᾱ2 = β̄2 = 0. The bosonic momenta are represented by derivatives,
α and β are annihilation operators, and ᾱ and β̄ are creation operators. We fixed the
ordering ambiguities by Weyl ordering, which is antisymmetric for fermions. Hence, the
supersymmetric constraint operators read

1√
h̄c

S =
cκ

2
√

6

(
a−

1
2 πa + πaa−

1
2

)
α + ca−

3
2 πφβ +

3iκ√
6

a
3
2 Wα + ia

3
2 W ′β − i

√
6k
κ

a
1
2 α − i

√
3

4
√

2
h̄cκa−

3
2 α[β̄, β], (12)

1√
h̄c

S̄ =
cκ

2
√

6

(
a−

1
2 πa + πaa−

1
2

)
ᾱ + ca−

3
2 πφβ̄ − 3iκ√

6
a

3
2 Wᾱ − ia

3
2 W ′ β̄ + i

√
6k
κ

a
1
2 ᾱ +

i
√

3
4
√

2
h̄cκa−

3
2 ᾱ[β̄, β]. (13)

Anticommutator {S, S̄} = −2h̄cH0 gives the quantum Hamiltonian

H0 =− c2κ2

24

(
a−1π2

a + π2
a a−1

)
+

c2

2
a−3π2

φ −
√

3i
2
√

2
h̄c2κa−3πφ(αβ̄ + ᾱβ)− 3k

κ2 a −
√

k
4

h̄ca−1[α, ᾱ] +
3
√

k
4

h̄ca−1[β, β̄]

− 3κ2

4
a3W2 + 3

√
ka2W +

1
2

a3W ′2 + 3
8

h̄cκ2W[α, ᾱ]− 3
8

h̄cκ2W[β, β̄] +

√
3

2
√

2
h̄cκW ′(αβ̄ − ᾱβ) +

1
2

h̄cW ′′[β, β̄]

+
3
16

(h̄cκ)2a−3(ᾱαββ̄ + αᾱβ̄β
)
. (14)
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The Hilbert space is generated from the vacuum state |1〉, which satisfies
α |1〉 = β |1〉 = 0. Hence, there are four orthogonal states

|1〉 , |2〉 = ᾱ |1〉 , |3〉 = β̄ |1〉 and |4〉 = ᾱβ̄ |1〉 , (15)

which have norms 〈2|2〉 = 〈1|1〉, 〈3|3〉 = − 〈1|1〉 and 〈4|4〉 = − 〈1|1〉. Hence, a general
state has the form

|ψ〉 = ψ1(a, φ) |1〉+ ψ2(a, φ) |2〉+ ψ3(a, φ) |3〉+ ψ4(a, φ) |4〉 . (16)

Therefore, from constraint equation S |ψ〉 = 0, we obtain

a

(
∂a − 3

h̄c
a2W +

6
√

k
h̄cκ2 a +

1
2

a−1

)
ψ2 −

√
6

κ

(
∂φ − a3W ′

)
ψ3 = 0, (17)(

∂a − 3
h̄c

a2W +
6
√

k
h̄cκ2 a − a−1

)
ψ4 = 0 and

(
∂φ − 1

h̄c
a3W ′

)
ψ4 = 0, (18)

while from S̄ψ = 0

a

(
∂a +

3
h̄c

a2W − 6
√

k
h̄cκ2 a +

1
2

a−1

)
ψ3 −

√
6

κ

(
∂φ + a3W ′

)
ψ2 = 0, (19)(

∂a +
3
h̄c

a2W − 6
√

k
h̄cκ2 a − a−1

)
ψ1 = 0, and

(
∂φ +

1
h̄c

a3W ′
)

ψ1 = 0, (20)

The terms with a−1 in (17)–(20) differ from those in [18] due to a different operator
ordering in the Hamiltonian. In fact, the classical Hamiltonian in [18] has a term a−1π2

a
that can be ordered in many ways to give a Hermitian operator as a−1π2

a → 1
2k+l (ka−1π2

a +

lπ−1
a πa + kπaa−1).

3.2. Solutions

As the Wheeler–DeWitt equation is second-order, its solutions require boundary
conditions. However, in supersymmetric theory, Equations (17)–(20) are first-order and
have unique solutions that can be fixed by consistency and normalization. The equations
for ψ1 and ψ4 can be straightforwardly solved yielding the unique solutions up to constant
factors [30]

ψ1(a, φ) = Aa exp

[
− 1

h̄c

(
a3W(φ)− 3

√
ka2

κ2

)]
, (21)

ψ4(a, φ) = Aa exp

[
1
h̄c

(
a3W(φ)− 3

√
ka2

κ2

)]
, (22)

The power of factor a of these solutions differs from the solutions in [18] due to the
different operator ordering mentioned end of the preceding section. As shown in [18], the
solutions of Equations (17) and (19) are not defined at a = 0 unless they are trivial. Thus,
we chose the solutions |ψ〉 = C1 ψ1(a, φ) |1〉+ C4 ψ4(a, φ) |4〉, where C1 and C4 are arbitrary
constants [18]. The norm of this state is

〈ψ|ψ〉 =
[
|C1|2

∫
|ψ1(a, φ)|2dadφ − |C4|2

∫
|ψ4(a, φ)|2dadφ

]
〈1|1〉 . (23)

Classically, a ≥ 0 and could be a problem for quantization, e.g., it could require an
infinite wall [4]. However, solutions (21) and (22) already vanish at a = 0. For a positive
superpotential, ψ1 has a bell form and tends to zero as a increases; see Figure 1. In this
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case, solution ψ2 must be set to be the trivial one. Oppositely, for a negative superpotential,
ψ2 tends to zero as a increases, and ψ1 must be discarded. For φ → ±∞, the behavior
of (21) and (22) depends on the form of the superpotential. Therefore, we considered only
positive or negative superpotentials, and we chose 〈1|1〉 = 1 for positive superpotentials,
and 〈1|1〉 = −1 for negative superpotentials. Hence,

|ψ〉 = Cψ1(a, φ) |1〉 , if W(φ) > 0, (24)

|ψ〉 = Cψ4(a, φ) |4〉 , if W(φ) < 0. (25)

From Expansions (16), and (15), we see that these states correspond to scalars. By
construction, these states are invariant under supersymmetry transformations.

a

Ψ2

Figure 1. Profile of ψ2(a, φ), for φ constant.

Further, for φ → ±∞, the behavior of (21) and (22) depends on the form of the
superpotential. For a localized particle, the wave function has well-defined position
probabilities and probability conservation. These conditions also guarantee hermicity
of operators. On the other side, the wave functions of free particles do not vanish at
infinity, but can be given a meaning by considering relative probabilities. If we restrict the
superpotential to be an even function of φ, then operators πφ and H0 are self-adjoint even
if the wave function does not vanish at φ → ±∞. Otherwise, if the wave function vanishes
at φ → 0, the domain of φ can be taken to be [0, ∞). A self-adjoint Hamiltonian constraint
is consistent with the lack of evolution in the Heisenberg picture

〈ψ| da
dt

|ψ〉 = i
h̄
〈ψ| [H0, a] |ψ〉 = 0. (26)

In the following, unless otherwise stated, we consider k = 0. In this case, we can write
either (24) or (25) as

ψ(a, φ) = Ca exp
[
− 1

h̄c
a3|W(φ)|

]
. (27)

This wave function differs from the one in [18], by the power of the a in front of the
exponential, due to a different operator ordering, as mentioned in the preceding section.

In Appendix A we give the expressions for k = 1.

4. Time

Ordinary quantum mechanics assigns operators with real spectra to observables and
probability amplitudes for their occurrence. A time dependence of the wave function
is generated by the Hamiltonian operator. However, in an actually occurring state, a
definite time entails certain energy indeterminacy. Hence, the energy spectrum cannot
be restricted to one value, and time-dependent mean values arise by interference among
different energy states. In general relativity, the Hamiltonian is constrained to vanish, and
time is undetermined. This is consistent, since different energy states can manifest only
if there is an environment that makes possible transitions among them. Nonetheless, the
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universe certainly has different components interacting at least gravitationally, and one
such component, suitable chosen, can play the role of a clock [19]; see also [3,5].

In [18], we chose the scalar field as time parameter, and defined an effective time-
dependent wave function that allows for computing time-dependent mean values. Here,
we analyze Wave Function (27) and its probability density regarding the motivation of this
choice of time.

We adopted the standard interpretation of quantum mechanics for the solutions of
the Wheeler–DeWitt equation. Hence, the square modulus of the wave function gives
the probability density for the possible three-geometries. Further, invariance under time
reparametrizations ensures that the superspaces of each of the space slices are equivalent.
Thus, this wave function describes, in a quantum mechanical sense, the space geometries
of the whole spacetime. Furthermore, if it is possible to identify mean trajectories in
superspace along regions around the maxima of the wave function, then it should be
possible to parametrize these trajectories following the idea of Misner’s supertime [38].
These trajectories should be around classical trajectories [37] corresponding to effective
theories. Strictly speaking, measurements should give random values around these mean
values.

In the model of this paper, the configuration space is given by the scale factor and the
scalar field. Further, from (27), we see that, if we keep φ constant, the probability density of
Wave Function (27) has the generic bell form of Figure 1, with the maximum at

amax(φ) =

[
h̄c

3W(φ)

]1/3
. (28)

Allowing for φ to vary, these maxima trace out a curve of most probable values of the
scale factor. The probability density along this curve is

ψ2(amax, φ) = e−2/3a2
max(φ), (29)

Therefore, higher values of the scale factor along this curve have a higher relative
probability, and we could think of an expanding universe for this wave function. On
the other side, in quantum mechanics mean values are generally time-dependent, and
we can speculate that later times correspond to higher probabilities here. Hence, time
would increase monotonically with the scale factor. Nevertheless, amax is driven by Scalar
Field (28); hence, a natural choice for time is the scalar field, and the superpotential should
ensure that amax increases properly. Such a choice corresponds to a gauge where the
scalar field is constant on the spacial slices.In this case, the universe is not localized in
the φ direction, and the wave function is not normalizable in this direction, but relative
probabilities can be considered, i.e., quotients of probabilities. As the value of φ is highly
uncertain, a measurement gives random values, and we can ask then for the probability
that the scale factor takes a value, which is given by the conditional probability of obtaining
this value of a, given a value of φ [18]

|Ψ(a, φ)|2 =
|ψ(a, φ)|2∫ ∞

0 da |ψ(a, φ)|2 . (30)

This probability must be used if there is a correlation between both fields, as required
for a clock in [19], where it is called relative probability. Probability (30) can be obtained [18]
from a wave function normalized for a given value of φ

Ψ(a, φ) =
1√∫ ∞

0 da |ψ(a, φ)|2
ψ(a, φ). (31)
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Thus, making κφ → t/μ where μ accounts for the time scale, and taking Solution (27),
Wave Function (31) becomes

Ψ(a, t) =

√
6|W(t)|

h̄c
a exp

[
− a3|W(t)|

h̄c

]
, (32)

and satisfies a conservation equation [18]. Further, as the observed universe is classical,
what we can give a meaning to, following the Ehrenfest theorem, is mean values. Thus,
under the preceding ansatz, for the scale factor, we obtain [18]

a(t) =
∫ ∞

0
a|Ψ(a, t)|2da = Γ(4/3)

[
h̄c

2|W(t)|
]1/3

, (33)

which is close to (28), as their quotient is Γ(4/3)(3/2)1/3 ∼ 1.02.
The quantum fluctuations produce standard deviations that satisfy the Heisenberg

relation [18].
In this work, we are not producing any approximation, semiclassical or of another

type. As the fermionic degrees of freedom do not have classical counterparts, the mean
values do not necessarily correspond to trajectories that approximate classical solutions,
see e.g., [17]. Actually, (33) can be inserted into the Friedmann equations, from which a
potential can be read out. If we consider the effective FLRW model with a scalar, obtained
by inserting (33) into the Friedmann equations, the corresponding potential can be read out
as a time function

1
3c4κ2

(
2W ′2

W2 − W ′′

W

)
, (34)

which can be compared with the scalar potential (9), which follows when the fermionic
terms in the Hamiltonian are eliminated.

The results for this section can also be given analytically for k = 1; see Appendix A.
They involve hypergeometric, AiryBi, and AiryBi′ functions that have exponential behavior,
and their numerical evaluation is troublesome. As we were interested in qualitative features
here, we restricted ourselves to k = 0. In this case, considering that the sign of the
superpotential did not have consequences for the wave function or the scalar potential, we
chose the superpotential as positive definite in the following.

5. Inflationary Model

In this section, we consider a class of phenomenological superpotentials that give
inflationary dynamics that satisfactorily agrees with the observational bounds. Potentials
of this form appear, e.g., in string-inspired tachyon models. With these superpotentials,
the wave function tends to zero as φ → 0, and we can restrict φ ≥ 0, as mentioned in
Section 3.2. Thus, we consider universes with origin at t = 0, described by homogeneous
quantum cosmology from its very beginning, although above Planck scale, full gravitational
interactions become relevant, and some ultraviolet completion would be required.

In [39,40], we performed a qualitative discussion of several superpotentials that have
diverse drawbacks, as phantom matter. Here, we consider a family of superpotentials

W(φ) =
c4M3

p

h̄2

[√
8π Γ(4/3)

21/3n

]1/3
⎧⎨⎩ (κφ)−p[

1 + e(κφ)1/2
] + λ

⎫⎬⎭, (35)

for p > 0. The wave function fulfils lima→0 ψ(a, φ) = 0 and limφ→0 ψ(a, φ) = 0.
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Thus, from (33), we have

a(t) = n�P

⎡⎣ tp
(

1 + e
√

t/μ
)

μp + λtp
(

1 + e
√

t/μ
)
⎤⎦1/3

, (36)

where �P is the Planck length. In the following, we set the normalization constant equal to
one, n = 1, and we redefined the scale factor to be dimensionless, a/�P → a. Constant μ
accounts for the time scale. With respect to λ, (33) shows that, if the value of W decreases,
the scale factor grows, and, in order to finish this growth, W must stop decreasing; this is
the role of λ, which must be positive. Thus, in order to have a sufficiently large increase in
scale factor, λ must be small enough. This parameter could be seen as the remainder of a
term responsible for dark energy in the superpotential

λ

1 + eβ(φ−φd)
, (37)

we do not pursue this idea further in this work.
For the verification of the predictions of the evolution of Scale Factor (36), we consider

N = 60 e folds and observational data of PLANCK observatory [41]

• Tensor-to-scalar ratio bound r < 0.064,
• Scalar spectral index ns = 0.9649 ± 0.0042.

The acceleration, as usual, can be written by identity

ä(t) = aH2(t)(1 − ε(t)), (38)

where ε(t) = − Ḣ(t)
H2(t) is the slow-roll parameter.

The enhancing effect of inflation on inhomogeneous quantum fluctuations is well-
known [42]. As a consequence, the fluctuations last after inflation and produce structure
seeds, and gravitational waves are generated in the process. These primordial effects last
in the CMB, and their study led to stringent bounds on virtual predictions of inflationary
models, such as the tensor-to-scalar ratio r and scalar spectral index ns, that can be evaluated
directly from the characteristics of the inflationary evolution.

The tensor-to-scalar ratio is the quotient of the tensor-to-scalar power spectra and is
given by

r = 16ε(t). (39)

Scalar spectral index ns follows from scalar power spectrum

Δs
2(t) =

1
8π2MP

2
H2(t)
ε(t)

∣∣∣∣
a(t)H(t)=k

, (40)

as

ns(t) = 1 +
d ln Δs(t)

2

d ln k

∣∣∣∣∣
a(t)H(t)=k

, (41)

where k are the wavenumbers of the scalar perturbations that, during inflation, exit the
horizon at time t, i.e., a(t)H(t) = ȧ(t) = k. Thus, (41) can be written as

ns(t) = 1 + k
dt
dk

d ln Δs(t)
2

dt

∣∣∣∣∣
a(t)H(t)=k

= 1 +
ȧ(t)
ä(t)

d ln Δs(t)
2

dt

∣∣∣∣∣
a(t)H(t)=k

. (42)

which can also be written in terms of the Hubble parameter

ns =
Ḣ(H2 + 5Ḣ)− HḦ

Ḣ(H2 + Ḣ)
. (43)
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Therefore, in order to estimate the values of r and ns predicted by our model during
inflation, we can evaluate them in the dependence of time.

A first approximation for λ can be obtained from the limit of very large times of the
scale factor, limt→∞ a(t) = 1/λ ∼ eN . N are the e folds generated by inflation for the
scale factor

eN =
a(texit)

a(tin)
, (44)

where tin and texit are the beginning and end times of inflation. Then, if we compute (44)
with the scale factor (36), we can solve for λ

λ =
μp

e3N − 1

⎡⎣ 1

tin
p
(

1 + e
√

tin/μ
) − e3N

texit
p
(

1 + e
√

texit/μ
)
⎤⎦ (45)

Further, as λ > 0, from (45) we obtain a condition for μ. For instance, as tin � texit, if
we set tin � μ � texit, we can approximate etin/μ � 1 and etexit/μ � 1. In this case,

μ <
texit

[3N + p(ln tin − ln texit)]2
. (46)

Strictly speaking, we must still define how to define the entry and exit times of inflation
depending on the evolution of the scale factor. Relations (45) and (46) help in checking
the consistency for choices of μ and λ. With this in mind, we can fix the values of these
parameters and evaluate the behavior in each case.

In order to get criteria for the entry and exit times, we first analyse the limits of the
scale factor, its velocity, and acceleration as t → 0. It turns out as follows. The scale factor
tends zero for p > 0. The velocity tends to ∞ for 0 < p < 3, for p = 3 it tends to 21/3

μ , and
for p > 3 it tends to zero. The acceleration tends to −∞ for 0 < p < 3, for 3 ≤ p < 6 it
tends to ∞, for p = 6 it tends to 24/3

μ2 , and for p > 6 it is zero. Additionally, for t → ∞, the

scale factor tends to 1/λ, the velocity tends to 0+, and the acceleration tends to 0−.
Considering now the acceleration, if it is negative at t = 0, for 0 < p < 3, it increases

until it becomes zero and then positive; we took this zero as the entry time for inflation,
see Figure 2. Further, the acceleration continues increasing until a maximum later, and
after that becomes zero again, and then negative. We took this second zero as the exit time.
Afterwards, the acceleration has a minimum, and then tends to zero from the negative
numbers; see Figure 3. For cases 3 ≤ p < 6 where the acceleration tends to infinity at t = 0,
it decreases to a very small minimum that can be taken as the entry time, see Figure 2.
Further, as in the previous case, it has a maximum and then a zero, and we took it as exit
time. For p ≥ 6, the acceleration at t = 0 is equal to or larger than zero and increases from
the beginning; hence, the entry time is zero, and, as a(0) = 0, there is no precise way to
give an initial time for inflation. For this reason, we considered only 0 ≤ p < 5.

Further, as a first input, we took the initial time for inflation at a scale lower than the
GUT scale 1015 GeV. Hence, tin � 5 × 106 TP ≈ 10−37 s. For the exit of inflation, we took the
generally accepted interval t ∼ 10−33–10−32 s, and we set tR = 5 × 10−33 s = 3.7 × 1010 TP,
as reference time for exit texit ≈ tR. With these times, for a given value of p, we estimated
from (46) and set μ ∼ ×106 TP. From it, we computed λ from (45) for N = 60, and then
evaluated the entry and exit times from the acceleration ä(t). Following this procedure, we
adjusted μ and λ, so that texit ≈ tR and N = ln a(texit)/a(tin) ≈ 60. With these data, we
computed the tensor to scalar ratio (39), and the scalar spectral index (41). We performed
these steps for p = 1, 2, 3, 4, 5.
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Figure 2. Inflation entry times for p = 2 and p = 3.
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Figure 3. Inflation exit time for p = 1.

It is remarkable that, with the parameters fixed in the previous way, for given
0 < p ≤ 5, the entry time is of the order of 106 TP, and the tensor/scalar ratio and the
scalar spectral index agree quite well with the observational constrains.

Tensor/scalar Ratio (39) (see Figure 4) satisfies bound r < 0.032 [40] very well and
depends slightly on p.

Figure 4. Tensor/scalar ratio.

Further, from (41), we computed the scalar spectral index whose behavior is shown in
Figure 5.

Figure 5. Scalar spectral index.
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Here, the agreement with observational bound 0.9649 ± 0.0042 (with 68% CL) [41],
was very good for most of the duration of inflation, as shown in Figure 6. It is also slightly
dependent of p. Note that the running of the scalar spectral index dns

d ln k is positive, with a
value around 0.0004, with a a negative running of running.

Figure 6. Detail of scalar spectral index.

6. Discussion

Quantum cosmology gives a canonical quantization of general relativity in the Schrödinger
picture, with the Wheeler–DeWitt equation as a time-independent Schrödinger equation.
The wave function gives the probability amplitudes for the occurrence of all possible spatial
three-geometries and field distributions, at any time. On the other hand, the observed
universe is classical and has time, and classical physics follows from quantum physics,
hence an effective time evolution should follow from the quantum description. Further,
the Wheeler–DeWitt equation is a second-order scalar equation. In the supersymmetric
case, there is a system of first-order equations whose solutions are spinorial wave functions,
see, e.g., [22,23]. A particular meaning of the components of these wave functions has not
been given; it would quickly lead to a Machian discussion. In many cases, there are only
two nonvanishing components, see, e.g., [32], given by real exponentials with opposite
exponent sign. Here, we considered an FLRW theory with a minimally coupled scalar field.
Single-field models are extremely effective to account for the inflationary era.

From the four components of the solution of the supersymmetric Wheeler–DeWitt
equation, only one tends to zero as a → ∞, and the other can be taken to be trivial. The
form of Solution (27) suggests the ansatz that, in a certain gauge, time can be given by
the scalar field, and trajectories for the observables are mean values on an effective wave
function that corresponds to conditional probabilities Thus, for the scale factor, we obtain
an evolution a(t), and we can perform time reparametrizations considering that it is scalar
a′(t′) = a(t). The resulting evolution is nonperturbative. These trajectories are classical if
the quantum fluctuations are negligible. The time proposed here does not follow from a
semiclassical approach.

We considered in this formulation one family of inflationary models that depends on
the parameter p > 0; as for p > 5 there is eternal inflation, we restrict it to p < 5 and for
simplicity consider only integer values. There are other two parameters, μ and λ; the first
fixes the time scale. Parameter λ corresponds to the extent of the inflation, the e folds. We
convened to set the entry of inflation, depending on the value of p, at zeros or minima of
the acceleration, and exit times as zeros. In this way, for all p, we adjusted parameters μ
and λ, so that the exit time coincided with a reference time tR = 5 × 10−33s, and N ≈ 60.
With this setting, the corresponding tensor-to-scalar ratio and scalar spectral index can be
computed with values that agree with the observational bounds remarkably well.

For indepth analysis, inhomogeneous perturbations should be introduced to evaluate
their evolution and the the production of primordial gravitational waves. These computa-
tions should be performed at best in the superfield formalism. An interesting perspective
is also the study of this formalism for dark energy.
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Appendix A

In this appendix, we give, for k = 1, the expressions for the normalization factor for the
wave function (21) for k = 1, and the time-dependent scale factor (33). The normalization
factor of

ψ(a, φ) = |C|a exp

[
1
h̄c

(
−a3|W(φ)|+ 3

√
ka2

κ2

)]
, (A1)

is given by

|C|−2 =
ch̄
6

∫ ∞

−∞

1
|W(φ)|

[
2F2

(
1
2

, 1;
1
3

,
2
3

;
8

ch̄κ6W2(φ)

)
+ 4π

[
2

9ch̄κ6W(φ)2

]1/3
e

4
ch̄κ6W2(φ)

×
[

Bi′
([

6
ch̄κ6W(φ)2

]2/3
)
+

[
6

ch̄κ6W(φ)2

]1/3
Bi

([
6

ch̄κ6W(φ)2

]2/3
)]]

dφ, (A2)

where Bi is the Airy function of second kind.
For the denominator of (31)

∫ ∞

0
da |ψ(a, φ)|2 =

ch̄
18W(φ)

×
{

3 2F2

(
1
2

, 1;
1
3

,
2
3

;− 8
ch̄κ6W(φ)2

)
+ 4 × 61/3π

[
1

ch̄κ6W(φ)2

]2/3
e
− 4

ch̄κ6W(φ)2

×
[

61/3Bi

([
6

ch̄κ6W(φ)2

]2/3
)
−
[
ch̄κ6W(φ)2

]1/3
Bi′

([
6

ch̄κ6W(φ)2

]2/3
)]}

,

from which follows

a(t) =

{
9 3
√

3κ4(ch̄)2/3W(t)4/3
2F2

(
1,

3
2

;
2
3

,
4
3

;
8

cκ6h̄W(t)2

)
e
− 4

ch̄κ6W(t)2 + 22/3π
[
24 + cκ6h̄W(t)2

]
Bi

([
6

ch̄κ6W(t)2

]2/3
)

+8 3
√

232/3πκ2 3√ch̄W(t)2/3 Bi′
([

6
ch̄κ6W(t)2

]2/3
)}

/

{
3 3
√

3κ6(ch̄)2/3W(t)7/3
2F2

(
1
2

, 1;
1
3

,
2
3

;
8

cκ6h̄W(t)2

)
e
− 4

cκ6 h̄W(t)2

+4 3
√

232/3πκ4 3√ch̄W(t)5/3 Bi′
([

6
ch̄κ6W(t)2

]2/3
)
+ 12 22/3πκ2W(t) Bi

([
6

ch̄κ6W(t)2

]2/3
)}

.

Due to the exponential behavior of the hypergeometric and Airy functions that appear in
the numerator and denominator in these expressions, it is difficult to handle them numerically.

Note

1 Should not be confused with the superspace of geometrodynamics.
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